a¥

Version 8.1

IBM System/360 Time Sharing System
System Generation and Maintenance

Provides the information necessary to generate and
maintain the IBM Systemn/360 Time Sharing System
(TSS/3603 .

The intended audience for this publication is the
system programmer who is responsible for TSS/360 system
generation and system maintenance.

The primary system generation services consists of
the SYSBLD Prelude, System Build, Startup Prelude, and
Startup; they generate a working TSS/360 system.

The first section of the book provides amn overview
of the system generation process. The next sections of
the book describe the SYSBLD, STARTUP, and SYSGEN
phases. The fifth section consists of flowcharts for
the SYSELD, STARTUP, and SYSGEN phases. The Appendixes
provide information on system tables, global symbols,
and data areas referred to by the system generation
modules.

PREREQUISITE PUBLICATIONS

The reader must be familiar with the information
presented in:

IBM System/360 Time Sharing System: System
Generation and Maintenance, GC28-2010

IBM System/360 Time Sharing System: Control Blocks
Program Logic Manual, GY¥28-2011

File No.
GY28~2015-6

S$360-31

Program Logic

Seventh Edition {(September 1971)

This is a major revision of, and makes obsolete IBM
System/360 Time Sharing System: System Generation and
Maintenance, GY28-2015-4. A new subroutine was added to the
STARTUP phase and changes were made to the SYSBLD and STARTUP
phases to support RTAM initialization, dynamic Q-cons, and
user modules. Changes in the actual pages are indicated by a
vertical bar in the margin at the left of the text.

This edition is current with Version 8, Modification 1,
and remains in effect for all subsequent versions or
modifications of IBM System/360 Time Sharing System unless
otherwise noted. Significant changes or additions to this
publication will be provided in new editions or Technical
Newsletters. Before using this publication, refer to the
latest edition of IBM System/360 Time Sharing System:
Addendum, GC28-2043, which may contain information pertinent
to the topics covered in this edition. The Addendum also
lists the editions of publications that are applicable and
current.

This publication was prepared for production using an IBM
computer to update the text and to control the page and line
format. Page impressions for photo-offset printing were
obtained from an IBM 1403 Printer using a special print
chain.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form is provided at the back of this publication for
reader's comments. If the form has been removed, comments
may be addressed to IBM Corporation, Time Sharing System/360
Programming Publications, Department 643, Neighborhood Road,
Kingston, New York 12401.

© Copyright International Business Machines Corporation 1967,
1968, 1969, 1370, 1971

This publication, intended for use by
the system programmer responsible for the
generation and maintenance of the system,
is divided into five sections representing
an introduction, the three lcgical
divisions of the system generation process,
and the flowcharts.

Section 1 is an introduction to the
system generation and maintenance process
and provides an overall picture of the
logic flow from program to program.

Section 2 explains the SYSBLD phase. It
presents a brief picture of the SYSBLD
Prelude routine and an overall picture of
the SYSBLD process, explaining in detail
the routines comprising the module.

Section 3 explains the Startup phase.
It presents a picture of the Startup
Prelude and Startup process, including
Quickstart. Included in the Startup
description is an introduction to the
module, a description of the mainline
routine, a description of the Link-loader
subroutine a brief explanation of its
supporting I/0 and Link-locader subroutines,
and a description of the Quickstart
subroutines.

Section 4 contains a brief explanation
of the SYSGEN phase. It presents the
relationships of the system generation

PREFACE

macro instructions and the APGEN command
procedure.

Section 5 contains a set of flowcharts
to be used in conjunction with the previous
sections.

Also included in this publication is a
set of appendixes. These contain
descriptions of the system table fields set
by the macro instructions and of the global
symbols. In addition, all DSECTs that each
module refers to are listed.

PREREQUISITE PUBLICATIONS

Familijarity with the material contained
in the following publications is essential
to the use of this manual.

IBM System/ 360 Principles of Operation,
GA22-6821

IBM System/360 Time Sharing System:
Concepts and Facilities, GC28-2003

IBM System/360 Time Sharing System:
System Generation and Maintenance,
GC28-2010

IBM System/360 Time Sharing System:
System Control Blocks Program Logic
Manual, GY28-2011

ii1

CONTENTS

SE

CTION 1: INTRODUCTION . . . © o o o o o o o o o o o =

Prelude Module . . . o ¢ o 4o o o o o o o « s s o o« = =
SYSBID MOAULE o v« 4 ¢ o o « o o o o s s s« s « o = « o« =
STARTUP MOAULE .« o v o o « o o o 2 o o o « 2 « « s « =
SYSGEN PhAsS@ ¢ &« o o « = o o o s a s s « « o« « « o« o =

SECTION 2: SYSBLD PHASE . . ¢ ¢ o & o o o o o « o « =
SYSBLD Prelude (CEIBRP) . ¢ v & « « o o o o o o o o« =« =
SYSBLD (CEIFA) +. v v o o o o o = o a2 o s o « « o« « o =

Update Group - « e e s e e e e e e e
Initialization Routlne (CEIFA) e a e o o = e o = o
Convert Paths Routine (CEIFP) . . c e s e o s o .
Interrogate Operator Routine (CEIFB) e e e e e e e
Complete SYSBLD Table Routine (CEIFC)
Adjust DSCBs Routine (CEIFQ) « e e e e e
Update Pathfinder Tables Routine (CEIFD) e e e e
Update Virtual Memory Tables Routine (CEIFG) . . .
Update Configuration Control Block Routine (CEIFI)

Create New Data Set Group e e e s e e o o =
Create User Table Routine (CEIFE) e e e a e e e e
Create User Library (CEIFZA) . . « « « o« o « « « =
Create Catalog Routine (CEIFF) . . . « ¢« . « « « «
Update Catalog JFCB Routine (CEIFTD) < .« .

Completion Group . . . o . . c o o o o
Set Up Volumes for Startup Routlne (CEIFJ) « e e s
Terminating Routine (CEIFK) . . . ¢ ¢ ¢ o « o o o o«

Service Group - - « s 2 s o e e o = @
Locate DEF Entry Routlne (CEIFT) « e e e s e e = .
Page Conversion Routine (CEIFL) . o +v « o o o o «
Create List of Pages Routine (CEIFV)
Locate Descriptor in POD Routine (CEIFU)
Assign External Space Routine (CEIFW)
Communicate With Operator Routine (CEIFR)
Disk I/0 Routine (CEIFS) e e e o ° o = o
Find Format-E DSCB Routine (CEIFDS) e e v e e e e e
Checksum (CEIFCKS) « « « .« . e e e e e
Update Catalog SBLOCK Routine (CEIFECAT) . .

Update Device Tables for RSS and VSS (CEIFRSI, CEIFRS2)

SECTION 3: STARTUP PHASE =« v o o o o o o o o o o o o =
Startup Prelude (CEIAP) . . =« «o o o o o o o o o » o« o« =

St

iv

artup (CEIAR) . ¢ v v ¢ o o o o o a o a s o o o o o =
RTAM Initialization « « « o o o ¢« ¢« « o o « o « o o« «
Link-L0oading =« « « « o = o o« o o = o o o o s s« =« o =
Initialization of Tables . . . « ¢ ¢ « « & o« o« = « »
Input o StartuUp . « « « o « o 4 o o « o« = 2 s o o =

Output From Startup « « o « « 2 o ¢ ¢ o o « o o« « o =
Startup Interface . . . « ¢ ¢« 4 ¢ ¢ ¢ e 4 4 2 4 e .
Internal Tables . . . e e e e s e e e e e s e s e e

Startup Mainline (CEIAA) e e @ » e o s e o w o » s
Link-Loader pMainline . . . ¢ ¢ ¢ o o o o o o o« « o
Link~Loader (EIBAS) . « ¢ o o« o o o o s o o o = « «
Link-Loader Subroutines . . . « e e« o o o = o o @« =
Create Extent Table (EXTENT) . « e e e e e e e .
Load and Process Load List (LOADL) o e o .
Begin Load List (BGNLL) - . .
Scan Load List (LLSCAN) - o e =
Begin Task Dictionary Table (BGNTDY) « o
Build Task Dictionary Table (BIDTDY) .« ¢ ¢ « « « «
Load PMD Into TDY (LDPMD) . . & ¢ o o o o « o = « =
Update Load List (UPDLL) e e e e e e .
Storage Allocation for IVM and RESSUP (ALLOC) . . .

W R

CNNTTONONOEE

APPENDIX C:

Process Complex Definitions in PMD (FIXPMD)
Modify PMD and Text Pages (MODFY)

Compute and Link Defs into Hash Chains (LINK) « o e e

Hash Routine (HASH)
Initialize Reference Entries in CSD (DEFINE)
Locate Name in TDY (NAMLOC)
Create TDY Storage Map (MAPGEN)
Locate XPT or XSPT Origin (LOCXPT)
Form Page Table (FORMPT)
Load and Modify Text (GETEXT)
Relocate TDY Entries (RELTDY)
Relocation Table Proce551ng (RELTAB, RELTBX)
Set External Page Number in XPT/XSPT (SETPT)
Read Page From IPL Volume (READIN) . . .

Delta Data Set Routine (DELDS, DELTBL, DELBTB) « o e
Initialize the XTSI and Page Table Pages (XTSIRT) .

Initialize SPT and XSPT for Public Segments
Write Task Dictionary Table (WRTDY)
Build RSS Communication Table (RCOMIB) . .
Write RESSUP/RSSSUP Symbol Table (WRSYMTB)
Add Pages to Shared IVM (ADDPGS)
Build Shared Data Set Table (BDSDST) . . .
Quickstart Subroutines e e
Read in Quickstart Data Set (QKREAD) « o e
Quickstart Data Set Creator (CEIAB)
Write IVM Page (PAGRT) . v ¢« o o o 2 « « =
Create Format-E DSCB (DSCBE) - .
Locate DSCB Word/Free Page (DSCBF/DSCBA) .
Locate Available Page (PATLOC)
Update Buffer Ilocation (RECPG)
Buffer Cleanup (DSC20) . . . <« .« « « « « .
XSPT Entry Convertor (DsSC25)
Read from Quickstart Volume (DSCS50)
Write to Quickstart Volume (DSC60)
Calculate Checksum (DSC75)
Error Exit (ERREXA) . . .« = « & o o« o o o =
Common Startup Subroutines e e e
Read/Write Operator Routine (OPER) e e e .
Read Cards Routine (READCARD) . . <« . . o« .
Print Message Routine (PRINTER)
Get Field Routine (GETFLD)
Operator's Terminal I/0O Subroutine (STERM)
Move Text (MVTEXT) « . . e e . .
Write Page on Paging Volume (OUTPG) « e o

(SHPTRT)

« o e e o

Create Symbol Table (SYMGEN) and Print Storage Map (SORDID) . .

Reserve Space for PMDs in TDY (ADDPMD) . .
Generalized Input/Output Subroutine (EIAA2)
Write SERR/Reconfiguration Modules on Drums
Get a Block of Main Storage (GETMEM) . . .
Create the Resident Shared Page Index Table
Read Data Set Control Block (RDSCB)
Read Page Assignment Table (GETPAT)
Page Task Dictionary Table (PAGTDY) . .
Build Task Dictionary Table (BLDTBL) . . .

.

SECTION 4: SYSGEN PHASE« ¢ ¢ o o o & o &

SECTION 5: FLOWCHARTS « . o« & 2 o o o o o « « »

APPENDIX B: MACRO GLOBAL SYMBOL DESCRIPTIONS .

INDEX ¢ ¢ o o o ¢ o o o o o o o o o o 2 o« « » =

(SERR100,
(CRRSPI)

e e o e+ e

APPENDIX A: SYSTEM TABLE FIELDS SET BY SYSGEN MACROS . .

« o o @« o

DATA REFERENCES BY SYSTEM GENERATION MCDULES

a e & e o

SERREND)

.101
.110

.112

ILLUSTRATIONS

Figure
Figure
Figure
Figure
Figure
Figure

DU EFEWN =

Chart AA.
Chart AB.
Chart AC.
Chart AD.

vi

.

.

Program Flow of Typical 2311 System Generation Process

SYSBLD Inputs and Outputs

Communication Region -- Prelude to Startup

Startup Input and Output
Startup-Created Buffers and Tables .
SYSGEN Macro Logic Flow

SYSBLD (CEIFA) Overview . . .
SYSBLD/STARTUP Prelude (CEIAP) . e e s
Startup (CEIAA) and Quickstart (CEIAB)
GENSCB Macro (CEIDA) . « « « o « + o« &

-

.

-

-

Figure 1 illustrates the steps involved
in generation of System/360 Time Sharing
System (TSS/360). These steps are:

1. The user initializes the disks and
does a dump/restore from the input
tapes which produces an initialized
disk configuration.

2. In the SYSBLD phase, the user provides
minimum machine configuration parame-
ters to the system, in order that the
system may generate the required sys-
tem tables and control blocks.

3. The user initiates the Startup phase,
which takes information created during
the previous (SYSBLD) phase and
generates a time-sharing system.
Because the input information is as
yet limited, the output at this point
is called a basic time-sharing system.

4. In the SYSGEN phase, operating within
this time-sharing environmemt, the
user initiates execution of a TSS
Assembler, using the SYSGEN macro
instructions, with installation-
dependent parameters as the input data
set, and creates module as the output
data set. The user then updates the
system tables and control blocks, by
using this SYSGEN module as input to
the APGEN command procedure.

5. The user initiates another Startup
phase, which takes information from
the previous (SYSGEN) phase and
generates a time-sharing system. The
result is now a full-fledged TSS/360
system.

This generation of a TSS/360 operating sys-
tem is accomplished through the use of
three independent modules, (Prelude, System
Build (SYSBLD) and Startup), and the execu-
tion of two system modules during the Sys-
tem Generation (SYSGEN) phase (TSS Assembl-
er and TSS*****¥_ APGEN command procedure).

PRELUDE MODULE

The Prelude module (CEIAP) is loaded
whenever an initial program load (IPL)
occurs from the IPL volume. Prelude per-—
forms a configuration analysis, and then:

1. Locates the required SYSBLD or Startup
module.

SECTION 1: INTRODUCTION

2. Reads the required module from disk
into main storage.

3. Transfers control to the required
module.

Since Prelude's initial function is to load
SYSBLD, Prelude in its original state on
the IPL tape is referred to as SYSBLD
Prelude.

The Prelude program flow for the SYSBLD
process is:

1. The SYSBLD Prelude is loaded from the
IPL volume.

2. SYSBLD Prelude loads SYSBLD and exits
to it.

3. At the completion of SYSBLD, SYSBLD
permanently modifies SYSBLD Prelude to
locate and read Startup. SYSBLD then
writes Prelude back on disk. From
this point on Prelude is known as
Startup Prelude.

The Prelude program flow for the Startup
process is:

1. The Startup Prelude is loaded from the
IPL voclume.

2. Startup Prelude loads Startup, and
exits to it.

The Prelude module is described in detail
at the beginning of Section 3, Startup
Phase, and is briefly described as it ap-
plies to SYSBLD at the beginning of Section
2.

SYSBLD MODULE

The SYSBLD module (CEIFA) is independent
of system programs. SYSBLD functions in
main storage as a non-reenterable auxiliary
module making up a group of stand-alone
routines. Running in a nonconversational
environment, its main function is to pro-
vide information that Startup can use to
initialize a basic time-sharing system (of
minimum machine configuration).

Initially SYSPLD locates the operator's
terminal and interrogates the operator for
minimunm system parameters. This data is
used to update the existing Pathfinding
tables, the Symbolic Device Allocation
table (CHBSDA), the Available Devices

Section 1: Introduction 1

ZO—=HPpN—TCB—AT g

O ®mWwgwn

B el 2 P R

Figure 1.

Tapes Sent -

to User

Installations IPL-DASDI
{Initial IPL from Taopes
Release Package) Dump/Restore

/

IPL ACY Public Auxiliary Private
Initialized Disk Configuration
.
(
iPL from IPL Volume
'
< execute SYSBLD PRELUDE
/
execute SYSBLD
\
.
IPL from [PL volume
execute STARTUP PRELUDE
execute STARTUP
\

3L O _ 3L 3 3
149 ACY Public Auxiliary Private

generated Basic Time-Sharing System

l

i
LtOGON ‘
— —p— execufe TSS Assembly
(assemble SYSGEN Macro Instructions
creating SYSGEN object module)

System
Programmer

Zmom-<w
N,

execute TSS***** APGEN

(Update SYSCCB, RESSUP, RSSSUP, and
SYSIVM tables and control blocks

L with data from SYSGEN module)

System
Programmer

LOGOFF

Shutdown
~
5 IPL from IPL volume
S
T
A r
R ¢ execute STARTUP PRELUDE
U
P
4
execute STARTUP

.
<> <> I > I A N T
1PL ACV Public Auxiliary S,'Ld

generated TSS,/360

TSS,/360

l USER l

USER
I USER I

Program Flow of Typical 2311 System Generation Process

tables (CHBAHD, CHBHED, CHBAVE), the System
Common table (CHBSCM) and the Configuration
Control Block (CHBCCB). Next are created:
a system user table (SYSUSE), a system
catalog (SYSCAT) and a user library (USER-
LIB for SYSOPERO, SYSMANGR and TSS*#***%x)
Finally the SYSBLD Prelude module is
changed to Startup Prelude and written back
on disk. SYSBLD finishes with an operator
message telling the operator to reload from
the IPL volume.

SYSBLD is described in detail in Section
2. See Chart AA, Page 2.

STARTUP MODULE

The Startup module (CEIAA) operates out-
side the TSS/360 environment. It is
executed under the control of a main-line
routine. This routine makes use of several
independent routines, each with a specific
function. Startup generates a basic time-
sharing system, a full-fledged system, or
is used to restart the system after
encountering an error from which recovery
cannot be made. Only after Startup has
completed its processing can the user work
within the structure of a time-sharing sys-
tem environment.

Startup initializes the system by set-
ting up tables such as the Shared Data Set
table (SDST), the Core Block table (CBT),
and the Extended Task Status Index {XTSI).
It constructs a Task Dictionary (TDY) for
the dynamic loader; prints the storage map
for Initial Virtual storage (SYSIVM), the
Resident Supervisor (RESSUP) and the Resi-
dent Support System (RSSSUP); and link-
loads the Resident Supervisor and Initial

Virtual storage. It creates a set of spe-
cial device paths, sets protection keys and
starts other CPUs in a multi-CPU environ-
ment. It also creates the Main Operator
Task (MOT).

Once the initialization is complete, the
system is given control as Startup exits to
the Queue Scanner. At this point an oper-
able time-sharing environment exists.

Startup is described in detail in Sec-
tion 3.

SYSGEN PHASE

The SYSGEN.MODULE data set is generated
under a time-sharing system when system
generation macro instructions are assembled
under the TSS/360 Assembler. The resulting
SYSGEN.MODULE data set is composed of sys-
tem tables and control blocks, and contains
configuration and installation data.

These SYSGEN-produced tables are then
incorporated in the existing time-sharing
system to initialize a tailored TSS5/360.
This is accomplished by applying SYSGEN-
produced control sections to the existing
system tables via the command language and
linkage editor control statements contained
in the TSS*#*#*** APGEN command procedure.
After updating the system tables in place,
the TSS/360 must be shut down, so that a
Startup sequence from the IPL volume can be
initiated in order to use the TSS/360
operating system.

The SYSGEN phase is described in Section
4.

Section 1: Introduction 3

SECTION 2: SYSBLD PHASE

SYSBLD PRELUDE (CEIAP)

Entry to the system build and generation
process is accomplished by loading the IPL
volume disk, which reads the SYSBLD Prelude
routine. Aside from normal functions, SYS-
BLD Prelude allocates space dynamically for
a fifty-eight page buffer area to be uti-
lized by SYSBILD. The SYSBLD Prelude reads
the SYSBLD data set off the disk, and
branches to the first instruction, thus
giving it control. A general register
points to a parameter list consisting of
the following adcons:

Word 0: address of the data set name to
be located.

Word 1: address of the data set name in
error message 1.

Word 2: address of the data set name in
error message 2.

Word 3: address of the field containing
operator's terminal address.

Word 4: address of byte switch to be

zeroed.

These fields are changed during SYSBLD
execution to produce the Startup Prelude on
the same IPL volume. This module is
described in greater detail under the head-
ing "Startup Prelude™ (Chart AB).

SYSBLD (CEIFA)

Chart AA

SYSBLD, one stand-alone module, consists
of several routines that pass control among
themselves. The initializing routine sets
the base register for the program, and con-
trol is passed from one routine to another
through the use of adcons. A general
register always points to the common save
area of SYSBLD, the nineteenth word of
which contains the SYSBLD table address.
Thus the table is addressable by all the
SYSBLD routines. Among these routines are
a set of service routines called by the
main routines. These do such jobs as 170,
allocating space, and converting external
page numbers. Chart AA, Page 2 shows the
general flow of control from routine to
routine. If any error conditions arise in
the service routines, a general register is
set with a hexadecimal error code and con-
trol is returned to the calling routine.
This in turn sends control to the Terminat-
ing routine.

SYSBLD operates in main storage, outside
the time-sharing environment, as a nonrelo-

catable, stand-alone module. It is entered

through the SYSBID Prelude.

Input to SYSBLD is made up of the fol-
lowing (see Figure 2):

1. Two disks restored from IBM-supplied
tapes.

a. Initial program load (IPL) VAM-
formatted disk with SYSBLD Prelude
record.

b. Auxiliary control volume (ACV)
VAM-formatted disk.

2. Information on device type and address
as entered by the system operator
through his terminal.

The following are tables updated by
SYSBLD:

i. Data set TSS*****% RESSUP.GO0000VQO0
In this data set the addresses of

five disks (IPL, ACV, public, auxi-
liary, private)

operator's terminal

system programmer terminal

printer

card readerxr

are placed in the Pathfinding tables

CHBSAC CHBSCH
CHBDEV CHBCHL
CHBMCH

In addition, the table CHBTDE is
updated for device code.

2. Data set TSS***** RSSSUP.GO000V0O

In this data set the following table
is updated:

CHBECXRB
3. Data set TSS***** SYSIVM.GO000VOO0

In this data set the following tables
are updated:

CHBSDA CHBSCM
CHBAHD CHBECXVA
CHBAVE CHBBCT

4. Data set TSS**#***_ SYSCCB.G0O000V0O

INPUT OUTPUT

*TSSHE**E SYSCCB
TSS*#=** STARTUP
TSS*#*%% SYSBLD

TSS¥**** SYSCCB
TSS*x*** STARTUP
TSS*#*** SYSBLD

1PL T§S***** RESSUP 1PL *TSS*FFEE* RESSUP
TSS**% % SYSIVM v e o e e e — ——— *¥TSSEx*%% _SYSIVM
SYSBLD Prelude TSS***** RSSSUP - *Startup Prelude TSS***** RSSSUP
'///
/’//
TSS Password and Charge Number
System Programmer Fassword
and Charge Number
System Programmer Terminal Address
System Programmer Terminal Type
1052 ACV Device Address
System Programmer Device Type
Public Disk Address
Private Disk Address
Auxiliary Paging Disk Address
~
N TSSH* 5% ASMMAC
N TSS***+* ASMNDX
h S ®TSS*x**x SYSCAT

~ TSS****% SYSLIB
/,—\ ~ TSS***%% SYSMAC
\-—-——’M TSSH* %% ASMMAC N TSS** 5% MACNDX

* ek ok kR
TSS*#* % ASMNDX gggs(ﬁs'\le
ko :
TSS*#*** SYSLIB *TSS**¥** JSERLIB
TSS****% SYSMAC

et A CMEY — e e] I ACY TSS#+*¥+ SYSSVCT
ACY TSS MACNDX === *SYSOPERO.USERLIB

TSSH s+ % APGEN L__—/ *SYSMANGR ., USERLIB

*indicates change or addition

Figure 2. SYSBLD Inputs and Outputs

The Configuration Control Block is : STARTUP SYSLIB
filled in as follows: RESSUP SYSMAC
SYSIVM MACNDX
Drum table with drum path SYSCCB USERLIB
Transmission Control Path table SYSBLD APGEN
with system programmer's terminal RSSSUP ASMMAC
and line type SYSUSE ASMNDX
Printer table with printer path
SYSBLD also creates six new data sets on and for the usexr SYSOPERO:
the ACV volume.
1. A user table with entries for the SYSLOG
operator and manager. USERLIB
2. A user library for user TSS*¥*** con- and for user SYSMANGR:

taining no entries.
USERLIB
3. A user library for user SYSOPERO con-
taining no entries. 6. A library for user catalogs
(TSS****%*x SYSSVCT) .
4. A user library for user SYSMANGR con-
taining no entries. Output from SYSBLD is in the following form

(see Figure 2}.
5. A catalog containing the following

data sets for the user TSS****x*: Two updated disks:

Section 2: SYSBLD Phase 5

a. IPL disk with Prelude record
changed to read Startup and three
data sets modified.

b. ACV disk with six new data sets.

A work area called CHASBD is created by
SYSBLD, and is used as the common data area
for all steps in the program.

At a successful conclusion of SYSBLD, a
message is sent to the operator informing
him that the program is complete, and
instructing him to load the IPL volume to
run Startup. The machine is put in the
WAIT state. If an error exit occurs, an
appropriate message is produced and the
machine is forced into the WAIT state. All
the SYSBLD routines are described in detail
below.

UPDATE GROUP

Initialization Routine (CEIFA)

Chart AA, Page 2

The purpose of this routine is to create
and initialize the SYSBLD table (CHASBD),
and make it accessible to all SYSBLD rou-
tines. Addressability is set up, base
registers assigned, a common save area
allocated, and CHASBD addressed in the 19th
word of the area. Also at this time, the
fifty-eight page buffer (allocated by Pre-
lude for SYSBLD) is zeroed out.

On entry, a general register contains a
pointer to the fields in SYSBLD Prelude
that must be changed to load Startup. This
pointer and the operator's path are stored
in the table. The IPL path is extracted
from the IPL program status word (PSW -
found in location 0 in storage) and saved
in the table. The Disk I/0 routine (CEIFS)
is called to read the IPL volume label and
from this, the volume ID and relative page
number of the Page Assignment table (PAT)
are saved. The disk type and number of
pages per volume, determined by examining
the volume label, are set in the table.

In the event an error is encountered, a
general register is set with an error code,
and control is sent to the Terminating rou-
tine, (CEIFK). On a normal exit, control
is sent to the Convert Paths routine.

Convert Paths Routine (CEIFP)

Chart AA, Page 3

The purpose of this routine is to adjust
the operator's terminal path and the IPL
path for the checking of operator messages.
On entry, the terminal path (stored in the
SYSBLD table) is converted from binary to

EBCDIC, and is stored back in the table in
the form of control unit and device. The
IPL path, saved previously by Prelude, is
read, converted to EBCDIC in channel, con-
trol unit, and device form, and is
restored. <Control is sent to Interrogate
Operator routine.

Interrogate Operator Routine (CEIFB)

Chart AA, Page 3

This routine interrogates the system
operator for various system parameters,
examines his replies for wvalidity, and
rejects any erroneous responses. Upon
entry, the user's terminal path is in a
parameter register. At this point the sys-
tem is running in the supervisor state,
external interruptions are disabled, and
the PSWs are set to handle machine check
and program interruptions.

This routine moves a message to the ter-
minal output area, selects the write-to-
operator with reply option, and calls the
Communicate With Operator routine (CEIFR).
Once control is returned, the terminal out-
put area is examined for a valid reply. If
acceptable, the reply is stored as an entry
in the SYSBLD table. Then the next message
is moved in, and the process continues
until all parameters are read in. The rou-
tine requests the operator's and manager's
passwords and charge numbers, the system
programmer®’s terminal address and feature
(dedicated versus dial-in), the ACV, pri-
vate, public, and auxiliary device
addresses, the printer path, and the card
reader path.

If an erroneous reply is encountered, an
appropriate diagnostic message is sent out
on the terminal with the write-to-operator
option selected. Control is then sent back
to re-execute the original request, and the
new reply is received or an I/0 error
occurs. If an error occurs, control is
sent to CEIFK. On a normal exit control
goes to the Complete SYSBLD Table routine.

Complete SYSBLD Table Routine (CEIFC)

Chart AA, Page 4

This is a housekeeping routine to com—
rlete the SYSBLID table, and get the ACV
volume ID and relative page number of the
PAT. This routine also reads the IPL and
ACV PATs into a buffer following the SYSBLD
table. The following table entries, having
been obtained by CEIFB, are now converted
from EBCDIC to hexadecimal notation, and
restored in CHASBD:

System Programmer's terminal control
unit
Common disk channel

Common disk control unit

ACV device

Private, public, auxiliary paging disk
devices

Drum channel

Drum control unit

Drum device

IPL device

Printer and card reader control unit

Printer device

Card reader device

plus the paths created to the:
ACV device

Private, public,
Printer

auxiliary paging disks

Next, the ACV path is set in a parameter
register. The volume label CCHHR is set in
a parameter list. The Disk I/0 routine
(CEIFS) is called with option '00' to read
the volume label. On return, the volume ID
and the relative page number of the PAT are
set in the table. The PATs for the IPL and
ACV volumes are read and moved into buffers
following CHASBD.

On return from CEIFS, if general regist-
er 15 is nonzero, an error has occurred and
control goes to the Terminating routine.

On a normal exit, control passes to the
Adjust DSCBs routine.

Adjust DSCBs Routine (CEIFQ)

Chart AA, Page &

The purpose of this routine is to insure
that every precataloged generation data
group has a DSCB with generation 0, version
0. On entry, CEIFQ gets the address of the
IPL PAT buffer, scans the PAT for DSCB
pages, and reads each DSCB page into an 1I/0
area. It tests every DSCB on the page and
changes the format of the generation data
group DSCBs from GxxxxVyy to G0000V00. For
each page on which modifications were made,
CEIFS (DISK I/0) is called to rewrite that
page. Once the IPL volume is complete, the
same procedure is followed for the ACV
volume. At completion, control is sent to
the Update Pathfinder routine.

Update Pathfinder Tables Rcutine (CEIFD)

Chart AA, Page 5

This routine updates the Pathfinder
tables to show the actual device paths to
the devices listed. Specifically, the fol-
lowing ten devices are entered in the
tables in this order:

Drum
IPL disk
ACV disk

Private, public, auxiliery paging disks

Operator's terminal

System programmer's terminal
Printer

Card reader

It is assumed that each table, or group
of tables, will be in a separate CSECT, and
no CSECT will exceed a page in length.
First the Find DSCB routine (CEIFDS) is
called to find and read the format-E DSCB
for data set TSS*#**** RESSUP.G0000V00. On
return, the number of data set and direc-
tory pages is stored from the DSCB. The
Create List of Pages routine (CEIFV) is
called to prepare a list, arranged in vir-
tual page order, of all the external pages
containing the data set.

Using the number of directory pages as a
count, starting at the beginning of the
list, each page in turn is selected and the
Page Convert routine (CEIFL) translates it
to CCHHR. Then, again using CEIFS, the
record is read and moved 256 bytes at a
time into the POD/PMD area. The procedure
is repeated until the page count is zero.
The search routine for the POD, Locate
Descriptor in POD (CEIFU), is called to
locate the module containing the Pathfinder
tables by using the name of one of the
tables.

The relative page number field, located
in the first page of the member descriptor
module (POMFP), is used as an index to the
list of external pages in order to select
the corresponding external page number.
Using CEIFL, the number is converted.

CEIFS is called to read the record contain-
ing the PMD, and this record is moved to
the POD/PMD area.

A field in the header is examined to
determine the size of the PMD. If it is
longer than one page, successive external
page numbers are selected from the list.
Again the number is converted, the record
read and moved contiguously into the POD/
PMD area, until the entire PMD has been
read and set up.

Next the Locate DEF routine (CEIFT) is
called, and the CSECT containing the Sym-
bolic to Actual Conversion table (CHBSAC)
is located. The relative page number of
the CSECT (output of CEIFT) is used as an
offset, from the start of the member in the
list of external pages, to pick up the
external page number of the CSECT. The
number is converted, and the Disk I/0 rou-
tine reads the record. CHBSAC is set up
for the previously listed devices.

Section 2: SYSBLD Phase 7

SYSBID sets the device number (last 4
bits of the path) in the device address
field for each entry. The record contain-
ing the table is written.

Again the CEIFT routine is called to
locate the CSECT containing the device
group tables, using CHBD0316, the name of
the Drum table. The relative page number
of the CSECT is used to locate the external
page number containing the table; the num-
ber is converted, and the record read. The
value of the DEF, a binary number, is used
as an offset, from the beginning of the
page, to access the correct table. Bits
0-7 of the 13-bit drum path are stored in
the first device path byte (DEVPP); bit O
of the additional path byte (DEVLB) is set
to reflect bit 8 of the path. (Bits 9-12
of the path constitute the device number
and were stored in CHBSAC. This table also
has the pointers to the relevant device
group tables set up at SYSGEN time.) The
device number (bits 9-12 of the path) is
used as an index to select the correct
device entry in the table; the symbolic
device address, 1 for the drum, is set up,
and the available flag set off. Since only
one drum type is possible, every device
entry is set up during SYSGEN with this
device type.

The Locate DEF routine is called to find
the location of the Disk Device Group
table, CHBD216, and the value, a binary
number, is used as an offset from the
beginning of the page to access the correct
table. The DEVPP field is set with bits
0-7 of the disk path and bit 0 of DEVIB set
to reflect bit 8 of the path. Bits 9-12 of
the path to each disk will be different,
since all five disks are separate devices
on the same channel and control unit. For
each device in turn, bits 9-12, the device
numbers, are used to select the correct
device entry. The device type field is set
to reflect the disk type -- '01' for 2311
and '04' for 2314 -- and the symbolic
device address is inserted. This is X'09°'
for the IPL, X'OA' for the ACV, X*0B' for
the private disk, X'0C' for the public
disk, and X'0D* for the auxiliary disk.

Locate DEF is called to find CHR0101,
the Operator's Terminal Device Group table.
The DEVPP, and bit 0 of the DEVLB, are set.
The device number of the operator's termin-
al is used to locate the correct device
entry, the flag set off and the symbolic
device address, X'0E' for the operator, is
set up. Again, the operator must use a
1052 Model 7 so the device type can be set
up for every entry.

The System Programmer's Terminal Device
Group table is located (CHB0111), and DEVPP
and DEVLB are set. The correct device
entry is selected, the flag set off, and
the symbolic device, X'0F' for the system
programmer's terminal, inserted. The same
procedure is followed for the printer and
card reader. CHBD011l4 is located and the
flags set to X'10' and X'11' respectively.
The entire page is then rewritten.

The subroutine CEIFT is called to find
the CSECT containing the terminal device
table, CHBTDE, and read it into main
storage. The administrator's terminal
entry is updated to contain the device code
which was determined from the input to SYS-
BLD. The updated table is rewritten to
disk.

CEIFT is called to find the CSECT con-
taining the Channel table, CHBCHL. The
relative page number of the start of the
CSECT is again used to select the correct
external page number; the number is con-
verted and the record read. The table is
constructed by SYSGEN with the channel 0
pointer set up to point to the control
units assigned to the multiplexer channel,
and dummy pointers set up for the selector
channels. The size of the control units
assigned to the multiplexer table is set up
in the flag area corresponding to channel
0, and the flag set off. The disk channel
number, bits 0-4 of the path, is used to
select the correct byte pair for the disk
channel; the flag is set off, and the sele-
ctor channel size inserted. Similarly, the
byte pair corresponding to the drum channel
number is selected, the flag set off, the
table size inserted, and the record
rewritten.

SYSGEN Minimum Tables creates a CSECT
CHBSCH. CHBS2 and CHBS3 are entry points
at relative bytes zero and sixty-four
respectively. Hence the displacements for
the disk and drum channels are known.
These displacements are inserted in the
channel table for the actual channel
address of the disks and drum.

Locate DEF is called to locate the CSECT
containing the control units assigned to
the Multiplexer Channel table, CHBMCH; the
page number is selected and converted, and
the record read. The operator's terminal
control unit, bits 5-8 of the path, is used
as an offset to select the correct entry,
and the flag set off. The displacement
field is saved. The system programmer's
terminal control unit is similarly used to
select the correct entry and the flag set
off. The displacement in this entry is set
to one more than that of the operator's
terminal. Similarly, the printer displace-

ment is set to one more than that of the
system programmer's terminal. The record
is then rewritten.

The Control Unit table, using relevant
entries to which these displacements refer,
is assembled by SYSGEN, with two contiguous
entries for the multiplexer units, the sys-
tem programmer's terminal control unit
being second. CEIFT is called to find the
CSECT containing the two control units
assigned to selector channel tables, using
CHBS3, the Disk table. The page number is
selected and converted, and the record
read. The value of the DEF, CHBS2, is used
to locate the correct table in the page.
The value of the disk control unit is used
to select the correct entry in the table
and the flag set off. This table is
assembled with all displacements pointing
to the disk control unit in the Control
Unit table. CEIFT is called to find the
value of CHBS2, the entry point of the con-
trol units assigned to the Drum Selector
Channel table, and the value used to select
the correct table in the page. The value
of the drum control unit is used to select
the correct entry in the table and the
flag, bit 1 of the first byte, set off.
Again all displacements are set up by SYS-
GEN. The record is rewritten, and control
passed to the next routine.

If any of the subroutines called detects
an error condition, it sets an error code
in a register. The CEIFD routine inspects
the register on return from every subrou-
tine called. If an error code is found,
processing is stopped and control passed to
the Terminate routine. Unless the error
occurred when writing on the disk, proces-
sing can be restarted from the beginning of
SYSBLD regardless of where in the routine
the error occurred.

At completion, control is passed to the
RSS Update Device Tables routine (CEIFRS1),
which modifies the Update Pathfinder Tables
routine (CEIFD) and branches back to the
beginning of CEIFD. Upon completion of
this modified routine (CEIFD) control is
passed to the VSS Update Device Tables rou-
tine (CEIFRS2) which again modifies the
Update Pathfinder Tables routine (CEIFD)
and again branches back to the beginning of
CEIFD (see details of RSS/VSS in the sec-
tion under Service Routines). Control then
passes to the Update Virtual Memory Tables
routine.

In addition to the above Update Path-
finder routines, the following steps are
executed if the operator's console (1050-7)
has the same control unit address as the
2821 control unit.

e A flag is set in the Device Group
table, CHBDEV, to allow asynchronous

interruptions for the operator's con-
sole device (1050-7).

e The "dummy entry™ in the Control Unit
table, CHBCUT, for the 2821 is parti-
tioned out.

e Entries for the card reader and printer
in the Device Group table formerly on
the "dummy" 2821 are now located along
with the entries for the operator's
console on that particular 2821.

e The "displacement”™ for the printer in
the Multiplexer Channel table, CHBMCH,
is now set to equal that of the opera-
tor's terminal control unit.

Update Virtual Memory Tables Routine

(CEIFG)

Chart AA, Page 6

This routine updates information in the
following tables: Symbolic Device Alloca-
tion table (CHBSDA), Availability table and
its header (CHBAVE and CHBAHD), and System
Common (CHBSCM).

Upon entry, general register 0 contains
the IPL path. The Find DSCB routine
(CEIFDS) is called to read the DSCB per-
taining to the TSS****% _ SYSIVM.GO000OV0OO
data set. This DSCB is moved into the
beginning of the I/0 area, and the number
of directory (POD) pages is saved. A list
of external pages for the data set is
created, by calling the Create List of
Pages routine (CEIFV).

For each table to be processed, the POD
page addresses are converted (by CEIFL),
read, and moved to the POD/PMD area. The
POD is searched for the member to be pro-
cessed. The first page of PMD is read to
determine the PMD length. The remaining
PMD pages are then read and moved to the
POD/PMD area. The PMD is searched for the
definition of the table, and the CSECT is
located and read into the common I/0 area.

The tables are updated in the order
CHBSDA, CHBAHD, CHBAVE, and CHBSCM. After
each update, the table is rewritten on the
IPL disk and the next table processed.

Control is sent to the Terminating rou-
tine in case of an error return. Normally,
control is sent to the Update Configuration
Control Block routine.

A description of the table updating
follows:

CHBSDA: The five disk entries for SDA 9,
A, B, C, D are set to the proper device
code, 2311 or 2314. The system program-

Section 2: SYSBLD Phase 9

mer's terminal entry (SDA E) device code is
set for the correct device type.

CHBAHD: The device code for the five disks
is set to either 2311 or 2314.

CHBAVE: The device code for each of the
five disk entries is set to 2311 or 2314.

CHBSCM: The default for disks is set to
2311 or 2314. The count of disks of the
type being used is set to five and the
count field for the type not being used is’
set to zero.

Update Configuration Control Block Routine
(CEIFI)

Chart AA, Page 7

The purpose of this routine is to insert
the actual disk and drum addresses and ter-
minal data in the relevant parts of the
Configuration Control Block. On entry, the
IPL path is set in general register 0. The
IPL volume is searched (via CEIFDS) for the
DSCB pertaining to the data set TSS**#%x%,
SYSCCB.G0O000V00. This DSCB is then moved
into the beginning of the I/0 area and the
number of directory pages is saved. A list
of external pages for the data set is
created by CEIFV. As in previous routines,
the POD page or pages are converted, read,
and moved to the POD/PMD area. Next the
POD is searched for member CHBCCB. The
first page is read to determine the length
of the PMD. The remaining pages are read
and moved to the POD/PMD area. Now the
definition is located, the CSECT found and
read into a common I/0O area.

The drum path is set in the Drum Path
table. The Transmission Control Path table
is updated for the administrator terminal.
The path is inserted and the type and SAD
ORDER set from information stored in the
SYSBLD table. The printer path is set in
its table. The Channel Control Unit table
is set for two selector channels and the
page is rewritten.

Normal control is sent to the Create
User table routine. Any errors encountered
are resolved by the Terminating routine, to
which control is given with appropriate
codes set.

CREATE NEW DATA SET GROUP

The following four routines are run, one
after another, to create five data sets.
needed by system generation. The User
table, three user libraries, the User Cata-
logs Control Block (SYSSVCT), and a scratch
catalog (SYSCAT), containing members for
SYSOPERO, TSS***** and SYSMANGR are set up.
Addressability is provided for these stored

10

tables, and in each routine a general
register contains the ACV path.

Create User Table Routine (CEIFE)

Chart AA, Page 8

This routine inserts the passwords and
charge numbers for the system manager and
system programmer, with the user identifi-
cations, in a stored User table. The rou-
tine also writes out the table and con-
structs a DSCB for the data set. The pass-
words, stored in the SYSBLD table, are
inserted in the User table at their respec-
tive entries. The operator's entries are
prestored. The Assign External Space rou-
tine (CEIFW) is called to allocate 14 pages
of external space for the catalog, User
table, SYSSVCT (User Catalogs Control
Block), and three user libraries. The
fifth page number is converted, and the
User table is written on the disk. The
thirteenth page, SYSSVCT, and the four-
teenth page, the SYSSVCT VISAM directory,
are converted and written on the disk.

The eighth page number is converted, and
a VISAM directory page is written on the
disk. The directory page has all zeros,
with the exception of the first fullword,
which contains a 1.

Next, the physical limits are set up in
the stored data set DSCB, the address of a
zero DSCB 1is obtained and the User table
DSCB is written in that area. Normal exit
is to the Create Catalog routine.

Create User Library (CEIFZA)

Chart AA, Page 8

This routine uses the sixth and seventh
pages obtained previously from CEIFW, and
creates a DSCB for TSS*#**#**_ USERLIB from
them. These pages are flagged as assigned,
but are not in use. CEIFZA also creates a
DSCB for SYSOPERO.USERLIB (using the tenth
and eleventh pages) and a DSCB for
SYSMANGR.USERLIB (using the ninth and
twelfth pages). The DSCBs are then written
on the ACV. Control goes to the Create
Catalog routine.

Create Catalog Routine (CEIFF)

Chart AA, Page 8

This routine updates the volume ID
fields of the ACV and IPL volumes in the
previously assembled catalog. The volume
ID field for the IPL volume is initialized
with the volume ID of the IPL pack. The
volume ID field for the ACV is zeroced out.

The address of the IPL or ACV volume is
stored in register 0 and CEIFECAT is called

to develop the address of the DSCB for that
data set. CEIFECAT stores the address of
the DSCB in a field CCCDPT in the Catalog
SBLOCK. The DSCB address is in the form
SOOOPPPP. S is the slot number, 000 is the
relative volume number of the ACV, and PPPP
is the relative page number on which the
DSCB is located.

Four external pages that were obtained
in the Create User table routine are used
for the catalog. The POD is written on
page one. The catalog entries for SYS-
OPERO, TSS****%x, and SYSMANGR are written
on the second, third, and fourth pages
respectively. The DSCB is then written on
the ACV.

Normal exit goes to the Update Catalog
JFCB routine. As in other routines,
abnormal exit goes through the Terminating
routine.

Update Catalog JFCB Routine (CEIFTD)

Chart AA, Page 9

This routine places a pointer to the
Catalog format-E DSCB in the catalog Job
File Control Block (JFCB).

First, the Find DSCB routine is called
to read the format-E DSCB for TSS*#*#¥*%,
SYSIVM.G0000V00. On return the number of
data set and directory pages are stored
from the DSCB. The Create List of Pages
routine (CEIFV) is called to prepare a list
of all the external pages containing the
data set (in virtual page order).

Using the number of directory pages as a
count, starting at the beginning of the
list, each page in turn is selected and the
Page Convert routine (CEIFL) translates it
to CCHHR. Then, again using CEIFS, the
record is read and moved 256 bytes at a
time into the POD/PMD area. The procedure
is repeated until the page count is zero.
The search routine for the POD, Locate
Descriptor in POD (CEIFU), is called to lo-
cate the module containing the TDT by using
the CSECT name CHBTDT.

The relative page number field, located
in the first page of the member descriptor
module (POMFP), is used as an index to the
list of external pages in order to select
the corresponding external page number.
Using CEIFL, the number is converted.

CEIFS is called to read the record contain-
ing the PMD, and this record is moved to
the POD/PMD area.

A field in the header is examined to
determine the size of the PMD. If it is
longer than one page, successive external
page numbers are selected from the list.
Again the number is converted, the record

read and moved contiguously into the POD/
PMD area, until the entire PMD has been
read and set up.

Next the Locate DEF routine (CEIFT) is
called, and the CSECT CHBTDT is located.
The relative page number of the CSECT (out-
put of CEIFT) is used as an offset, from
the start of the member in the list of
external pages, to pick up the external
page number of the CSECT. The number is
converted, and the Disk I/0 routine reads
the record.

The pointer to the last JFCB is
obtained. CEIFTD chains backwards through
the JFCBs until the Catalog JFCB is encoun-
tered. When the Catalog JFCB is found, the
slot number and page number of its format-E
DSCB are moved from the SYSBLD table into
the TDTDSC field in the JFCB. Chaining
continues through the last DSCB.

CEIFS is called to rewrite the TDT page.
Control is passed to the Terminating rou-
tine if any called subroutine returns an
error code in general register 15. Other-
wise, control is passed to the Set Up
Volumes for Startup routine (CEIFJ).

COMPLETION GROUP

Set Up Volumes for Startup Routine (CEIFJ)

Chart AA, Page 10

The purpose of this routine is to
rewrite the PAT, and modify the SYSBLD Pre-
lude into a Startup Prelude. The two PATs,
one for the IPL volume and one for the ACV
volume, are located in main storage follow-
ing the SYSBLD table. They are moved to
the disk I/0 area and CEIFS is called (with
the path and parameter area set up) to
write them onto the ACV. If the disk rou-
tine returns a nonzero register, the Ter-
minating routine is called. Otherwise, the
Prelude record is read from the IPL volume.
The displacements of the fields to be
changed (previously stored in the SYSBLD
table) are obtained, and the contents
changed. A parameter area is set up and
the disk routine called to write the new
Prelude over the SYSBLD Prelude on the IPL
volume. Control is then passed to the Ter-
minating routine with a normal completion
code.

Terminating Routine (CEIFK)

Chart AA, Page 10

This is the routine that handles the
termination of SYSBLD. It interprets the
error codes sent in general register 15,
and sends out a proper message. Following
is a list of codes and their meanings:

Section 2: SYSBLD Phase 11

'00' errxror free

F0 machine check interruption
*F4' program interruption
*80' terminal I/0 error
40' disk I/0 error
*41° read
'48' write
43 format-E not found
*20' data processing error
21" data set not found
'22' member not in POD
*23' 1list of external pages
incomplete
'*24® invalid channel for IPL
*25' erroneous path (not IPL or
AUX)
10 table is already present
11 user table
'12' catalog
14 userlib
08' restore disks before restarting

On a terminal I/0 error, the message is
suppressed. Otherwise, a correct message
is moved into the message write area, and
the Message Write routine (CEIFR) is called
to write the message on the terminal. On
return from writing the error message, the
machine is put in the WAIT state, with the
EBCDIC for ‘END' in the display register
(d-register). If this was code '00', SYS-
BLD is now complete. If not, SYSBLD must
be rerun.

SERVICE GROUP

Locate DEF Entry Routine (CEIFT)

Chart AA, Page 12

This routine is called to locate the
value of a DEF, the start of the CSD con-
taining the DEF, and the page number in
text of page 0 of the CSECT. All DEFs
called for must be simple, relocatable
DEFs. When the routine is entered, general
register 0 contains a pointer to a parame-
ter list. The PMD is in main storage.
Word 0 of the parameter list contains the
address of the PMD, and word 1 the address
of an eight-byte area containing the name
to be located. The machine is in the
supervisor state, and running with all
interruptions disabled.

In order to locate the first CSD, the
routine will add the length of the PMD
header field to the PMD start address.
Then, to locate the first DEF, it will add
the CSD header length to the start address
of the CSD. Next, every relocatable DEF
name will be compared to the eight-byte
field in the parameter list until a match
is found. If the available DEF supply is
exhausted, the next CSD is located. This
is accomplished by adding the length of the
first to the start address of the first, in

12

order to address the second and so on until
a match is found. When the match is found,
the address of the CSD start location, the
value of the matching DEF, and the page
number in text of page 0 of the CSECT con-
taining this DEF, are returned in the pa-
rameter list in words 2, 3, and 4 respec-
tively. General register 15 will be set to
zero signifying a normal completion.

If no matching DEF can be found, and the
supply of available CSDs is exhausted, gen-
eral register 15 is set to X'21' before a
return is made to the caller.

Page Conversion Routine (CEIFL)

Chart AA, Page 12

This is the routine called to convert an
external page number to the actual cylin-
der, head, and record (CCHHR) address of
the record. On entry to the routine, gen-
eral register 0 contains either a X'01°'
{for disk conversion 2311) or a X'04"' (for
disk conversion 2314). Parameter registers
contain the page number to be converted and
the address of the 64-word save area.

The code type is determined, and control
is sent to one of the following two
routines:

* For type 2311 disks, the page number is
compared with the possible upper and
lower bounds to determine its validity.
If the page number is valid, the cylin-
der is obtained by dividing the number
by 8. The remainder is then used as an
argument in the table look-up to deter-
mine track and record number. The full
address, including the binary number
(which is zero in this case), is con-
structed in the return registers. The
remaining registers are restored, gen-
eral register 15 is zeroed and control
is returned to the caller.

¢ For type 2314 disks, the page number is
also examined for validity. If valid,
the page number is divided by 32, to
determine the cylinder number. The
remainder is divided by 4, to determine
the relevant quarter cylinder required.
This is then multiplied by 5, to obtain
the initial track address of the rele-
vant quarter. The second remainder is
then used as the argument to determine
track and record value within the
quarter cylinder. The value is added
to the initial track address to obtain
the record address. Returning is
accomplished as described above.

If an invalid page number is sent as a
parameter, an error code is set in register
15 and control is sent to the calling rou-
tine. No further processing takes place.

The error codes are X'Al' for 2311 disk
error, X'A2' for 2314 disk error.

Create List of Pages Routine {(CEIFV)

Chart AA, Page 11

The purpose of this routine is to create
a list of external pages for a data set,
ordered by virtual page number.

Prior to entry, general register 0 is
set with the path of the device on which
the data set resides. Another parameter
points to the location where the list is to
be constructed. The format-E DSCB will
already have been read, and will be in the
beginning of the common I/C area.

The count of total pages assigned to the
given data set is taken frcm the format-E
DSCB. & field is then primed with the
maximum number of possible page entries
that can be contained in the DSCB (38 for a
format-E DSCB). External page numbers are
moved one at a time from the DSCB to the
list area. Each time a page is stored, the
count of possible entries and the count of
total pages assigned are decremented by
one. Processing continues until either
count becomes zero. If the count of pos-
sible entries in that DSCB becomes zero
before the count of pages assigned, the
chain field of the DSCB is checked and the
continuation DSCB is read via CEIFS and
moved to the beginning of the I/0 area.

The maximum count of entries field is
primed to 62 for this formet-F DSCB and
processing continues. The 1list is complete
when the count of total pages assigned
becomes zero.

If the continuation DSCE cannot be read,
general register 15 is returned from CEIFS
with a nonzero value and this code is
passed back to the calling routine.
wise, a zero code is returned.

Other-

Locate Descriptor in POD Routine (CEIFU)

Chart AA, Page 13

The purpose of this routine is to locate
the member descriptor in the POD, either by
name or by alias.

Prior to entry to this routine, the
entire POD will have been read into main
storage contiguously. Word 0 of the param-
eter area contains the address of the POD
and word 2 contains the member name address
(8 bytes with trailing blanks).

Using the Hash algorithm, as described
under Startup (see Section 3), this routine
hashes the member name. The hash value is
used as an offset to the hash table to pick
up the first link in the chain. If either

a zero entry or a zero chain is encountered
before the member descriptor is located, an
error return is made with the code set to
X*'22'. The chain of names with the same
hash value is followed and each name is in
turn compared with the given name until a
match is found. If the match is made with
an alias, the member descriptor pointer is
followed to give the member descriptor.

The relative page number of page 0 of the
member, and the number of bytes in the last
page, are returned in word 1 of the parame-
ter area. General register 15 is zeroed,
and control is returned to the caller.

Assign External Space Routine (CEIFW)

Chart AA, Page 11

The purpose of this routine is to assign
pages of external space from a volume, and
mark those pages as assigned in the corres-
ponding PAT. Prior to entry, general
register 0 is loaded with the 13-bit device
address of the disk from which space is to
be assigned. General register 1 contains
the address of a word that contains the
number of pages requested followed by a
word list area in which to return the
external page numbers assigned. (Since the
number of pages requested can vary, the
word list area varies in proportion with
the number of pages requested.)

The device address is examined to deter-
mine from which device the pages are to be
allocated. The corresponding PAT for that
device is selected and searched for pages
marked available. (The byte in the PAT
corresponding to an available page contains
X'00'.) For each page found, the external
page number is entered in the list area and
the byte in the PAT corresponding to that
page is changed to X'01*', thus indicating
that the page is now assigned. When the
requested number of pages have been found,
register 15 is zeroed and control is
returned to the caller. If the PAT is
exhausted before the requested number of
pages have been found, register 15 is set
to X'08*' and control is returned to the
caller.

Communicate With Operator Routine (CEIFR)

Chart AA, Page 15

This routine serves two purposes. It
either sends a message to the operator with
a no-reply condition, or sends a message to
the operator and waits for a reply. Since
there are common message-write and message-
read areas, it is the responsibility of the
calling routine to set up the message-write
area, and clear out any message reply that
may already be there. On entry to this
routine, the message area must contain the
length of the message in the first word,

Section 2: SYSBLD Phase 13

followed by the message itself. General
register 0 contains a 13-bit terminal
device address (right adjusted), and gener-
al register 1 indicates whether a reply is
expected (X'00' = no reply expected, X'04'
= reply expected).

The routine relocates the addresses in
the CCW list and the address of the PSW to
be used when it is first entered. A switch
is set to inhibit relocation on subsequent
entries. The indicator in general register
1 is used to set the command chaining flag
in the first CCW (the write CCW), when a
reply is expected. The current new I/0O PSW
is stored, and the routine sets its own new
I/0 PSW. The CAW is set with the address
of the CCW list, and a Start I/0O issued.

If the 'busy®' condition is present, the
routine reissues Start I/0 until the condi-
tion is cleared. If the 'CSW stored' con-
dition is present, the routine goes to test
whether the I/0 is complete and successful.
The 'not operational' condition causes the
routine to set an error return code and
return to the calling routine. When the
*available' condition is present, the
machine is forced into the WAIT state, with
only the multiplexor channel enabled, until
an I/O interruption is received. A TEST
I/0 is initiated and reissued if the 'busy'
condition is present. Otherwise, the new
I/0 PSW is set to its entry condition, and
the CSW status bits inspected. The pre-
sence of any of the following conditions
results in the error check being taken:

program check
protection check
channel data check
channel control check
interface control check
chaining check

When the 'unit exception®' occurs during
the read, the CAW is set with the address
of the second CCW in the list (the read
CCW) , and the routine loops back to reissue
the Start I/0. The presence of a unit
check results in a sense command being
issued to the terminal. If the check was
caused by intervention being required, the
alarm bell is rung, and the routine loops
back to reissue the original Start I/0. 1In
any other case an error action is taken.

The routine loops and tests I/0 until

the operation is completed successfully,
and the *device end' condition is present.

Disk I/0 Routine (CEIFS)

Chart AA, Page 15

14

The purpose of this routine is to do
disk I/O in one of the three following
ways:

to read a record, given its CCHHR
to write a record to its CCHHR

to read a record after a search on key,
and provide CCHHR

On entry to the routine, the length of
the record in question must be in the first
word of common disk I/O area. If the re-
cord is to be written out, it must immedi-
ately follow the length field. 1In the case
of a read, the record will be read into
this area. For the third option, the 44-
character key must be moved into this area
on entry; then when the record is located,
the data portion is read to follow the key,
and the record ID is read into a store area
and subsequently moved to the input parame-
ter area. General register 0 contains the
13-bit device address, right adjusted, and
general register 1 has the address of a
6-byte parameter area (aligned on a word
boundary), which contains the 5-byte record
ID and a 1-byte code. This byte contains
X*00*, X'04', or X'08' for options 1, 2,
and 3 respectively. If the option is 3,
the record ID field contains the cylinder
and track from which to begin searching.

The routine now relocates the addresses
in the CCW list and the address of the PSWs
to be used when the routine is first
entered. A switch is set to inhibit relo-
cation on subsequent entries. On option 3,
the CAW is set to the address of the CCW
that searches for the record ID. Other-
wise, the CAW is set to the address of the
CCW list which searches for the record ID
and reads or writes the located record.

A Start I/0 is then issued and the con-
dition code inspected. If the device is
busy, the routine loops on Start I/O until
the device is free. On condition code 1,
the routine goes to test the CSW. On con-
dition code 3, general register 15 is set
to X'43*' and control goes to the caller.
Once successful, the routine goes into the
WAIT state until an I/0 interruption is
received. TEST I/0 is issued and the con-
dition code examined. If the condition
code is 2, the routine loops on the TEST
I/0, otherwise the CSW is inspected. If
the 'device end' is not on, the routine
branches to TEST I/0 until the device is
free. If any of the following occur, an
error action is taken, and the error code
set to X'40°':

program check
protection check
channel data check

interface control check
chaining check

The routine attempts the I/0 operation 10
times before declaring a hardware error on
the following conditions and setting the
corresponding error codes:

record not found X'40°*
read error X1t
write error X'48°*
nonoperational X'43"

Otherwise,a normal return is executed.

Find Format-E DSCB Routine (CEIFDS)

Chart AA, Page 16

The purpose of this subroutine is to lo-
cate and read a format-E DSCB or to return
the location of an available DSCB to the
calling routine. If the name of the data
set to be located consists of all zeros,
the location of an available DSCB is
returned.

On entry, general register 0 contains
the 13-bit device address of the device to
be searched, and general register 1 con-
tains the address of a 12- or (optionally)
13-word parameter list. The parameter list
consists of one word in which to return the
address of the DSCB that is found, followed
by a U4s-character data set name. The last
word, the optional one, is sent only if the
calling routine wishes to have returned the
relative page number on which the DSCB was
found. (If this parameter is requested,
the SBDDS1SW field in the SYSBILID table has
been set to X'FF' prior to entry.)

The device to be searched is determined
by comparing its address with those of the
IPL and ACV volumes as stored in the SYSBLD
table, and the corresponding PAT table is
selected. The PAT for that device is
scanned for pages marked as DSCB pages.

If CEIFDS is searching for an empty
DSCR, it tests bits six and seven of the
PAT entries. Bits six and seven must be
zero, indicating available space or the
page is skipped. Once an available page is
found, Convert Pages (CEIFLL) is called to
convert the external page number to a
CCHHR. The Disk I/O routine (CEIFS) is
called to read the page into the common I1/0
area. The sixteen DSCB slots per page are
examined. If CEIFDS is looking for a non-
zero data set name, the data set type field
of the DSCB must contain X'01' to indicate
format-E DSCB and the data set names must
match. If looking for an available DSCB,
the data set type must be X'00*'. If an
available DSCB is found on an already
existing DSCB page, a check is made to see
if it occupies the twelfth slot. If so,

the sixth bit of the corresponding PAT
entry is set to indicate that no new
format-E DSCB should be allocated from this
page. If no empty DSCB can be allocated
from the existing DSCB pages, an available
page is found and the PAT is modified to
indicate that this is a new DSCB page. The
page is zeroced and the first slot is
selected for the requested DSCB.

When the DSCB is found, the address of
the DSCB is set in the parameter list. The
SBDDS1SW is checked and the external page
number parameter is set if requested.

If any subroutine called returns an
error code, CEIFDS passes this code back to
its calling routine. If an available page
cannot be allocated as a new DSCB page, and
error code of X'41' is returned to the cal-
ling routine in general register 15.

Checksum (CEIFCKS)

Chart AA, Page 13

This routine develops a check sum for a
DSCB. On entry, general register 10 con-
tains the address of the DSCB. General
register 0 contains a 0 if this routine is
to verify an existing check sum or a 1 if a
new check sum is to be developed. For the
first option, a return code of zero is
returned to the caller if the check sum
agrees, or X'04' is returned if it does not
agree. Control is returned to the caller.

Update Catalog SBLOCK Routine (CEIFECAT)

Chart AA, Page 14

This routine finds and stores the DSCB
address for a data set in the Catalog
SBLOCK. After chaining backward through
the Catalog SBLOCK to determine the fully
qualified name for the data set, CEIFECAT
calls CEIFDS fo find the DSCB address. The
DSCB address is in the form SOOOPPPP, where
S is the slot number, 000 is the relative
volume for the ACV, and PPPP is the rela-
tive page number on which the DSCB is
located. If the DSCB address is found, it
is stored in the CCCDPT field in the Cata-
log SBLOCK and control is returned to the
caller. If the DSCB address is not found,
control is passed to the Terminating
routine.

Update Device Tables for RSS and VSS
(CEIFRS1, CEIFRS2)

Chart AA, Page 16

In order to find the CSECT containing
the device table CHBECXRB utilized by RSS,
the Update Device tables routine modifies
the Update Pathfinder tables routine
(CEIFD). The Update Pathfinder tables rou-

Section 2: SYSBLD Phase 15

tine is modified to search the TSS*****,
RSSSUP data set for the CSECT containing
the table CHBECXRB. (The Update Pathfinder
Tables routine initially searches TSS****x%,
RESSUP for its device tables and initia-
lizes them.)

Once the CSECT containing the table has
been found, two fields are initialized to
reflect the following information for each
device type:

¢ hardware device address
e device defining information

Each entry in CHBECXRB consists of three
words that contain the following

information:
¢ symbolic device address 1 halfword
e physical path (hardware 1 halfword

address)

16

¢ alternate physical path 1 halfword
» filag byte 1 byte
® reserve byte (unused) 1 byte
o device defining codes 1 word

After initializing the table, the page
containing the CSECT in which the table
resides is written back onto the IPL
volume.

Next, the Update Pathfinder Tables rou-
tine is modified to search the TSS****%*,
SYSIVM data set for the CSECT containing
the table CHBECXVA. CHBECXVA contains
device information utilized by VSS (nonre-
sident portion of TSSS). The body of this
table is a duplicate of CHBECXRB and is
initialized to reflect the same informa-
tion. Once initialized, the page contain-
ing the CSECT in which this table resides
is rewritten onto the IPL volume.

Page of GY¥28-2015-6,

STARTUP PRELUDE (CEIAP)

This program performs certain environ-
mental analyses, stores the results in a
communication region, loads the Startup
module and transfers control to it. Refer
to Section 1 for a preliminary discussion
of this module (see also Chart AB).

Attributes: This module is nonrelocatable
and resides in real storage.

Entries: Prelude is entered by a hardware
IPL or a system restart. In the event of a
hardware malfunction, Reconfiguration
(CGCMA) is invoked to set up a damage
report. When finished processing, Recon-
figuration simulates a hardware IPL and
calls Prelude.

Exits: Normal exit is made by loading
Startup, and sending control there. Errors
that cause termination force the machine
into the WAIT state and set the instruction
address counter to all 1's.

Operation: Prelude is entered through a
hardware IPL or a system restart. Base
registers are set, and the communication
region zeroed out {(Figure 3). The extended
control registers and the address of the
IPL volume are saved. If it is a system
restart, the Reconfiguration program will
have filled a fixed hardware location
called COMAR with the characters "RESTART".
Prelude need only compare this cell with
its own constant "RESTART" to determine how
it has been entered. The address of the
operator's terminal is also passed to Pre-
lude by Reconfiguration (it will be moved
to the communication region at entry). The
volume label of the IPL volume is read,
extended mode entered, and the system put
into the WAIT state, in anticipation of an
170 interruption. Once the interruption is
encountered, the interruption code area
contains the 13-bit (extended mode) address
of the IPL volume. This is moved into the
communication region.

If Prelude has been entered via IPL, it
enters the WAIT state and waits for an
asynchronous interruption from the opera-
tor's terminal. Once the interruption
occurs, the address of operator's terminal
is in the interruption code area and can be
moved into the communication region. Pre-
lude then moves the volume serial number
and the address of the IPL volume PAT from
the label to the communication region.

Prelude now searches for locations into
which it can read the Configuration Control

Issued February 1, 1972 by TNL GN28-3218

SECTION 3: STARTUP PHASE

Block (CCB), PAT and DSCB pages. These
locations must be determined dynamically
for two reasons. First, the prefix storage
areas (PSAs) of a multi-CPU system are
double addressable, and provision is made
that the locations do not overlay Prelude.
Second, since it is not necessary for the
floating storage addresses (FSAs) of the
storage elements (SEs) in the system to be
assigned contiguously in main storage, not
every address may be valid within any par-
ticular installation at any given time.
Prelude searches for the lowest availatble
rain storage locations for these buffers.
Their addresses are placed in the communi-
cation region.

The PAT is read in as soon as its buffer
location is returned. Prelude then
searches the DSCB pages on the IPL volume
(using the PAT) for the DSCBs for Startup,
the CCB, and Quickstart. If only the
Quickstart DSCB if .found, a message
(QKSTART IN PROGRESS) is issued and proces-
sing continues. If the Startup and SYSCCB
DSCBs are found, but not the Quickstart
DSCB, the STARTUP IN PROGRESS message is
issued. If both the Startup and Quickstart
DSCBs are found, a message (STARTUP? Y CR
N) is issued to the operator. Y requests a
normal Startup; N requests a Quickstart.

If a normal Startup is wanted, SYSCCB must
be present. If the correct DSCBs are not
found, a message is issued and Prelude
terminates.

In a normal Startup, the entire data
sets TSS*#***%, STARTUP.GO0000OVO0 and
TSS****% ,SYSCCB.G0000V00 are read. 1In a
Quickstart, the first page of TSS*¥*¥*,
OKSTART.DSxxxxxx is read to get the length
of Startup and the CCB. The Startur and
SYSCCB data sets are read sequentially from
the Quickstart data set, beginning with the
third external page entry of the data set.

Simplex is the term used to describe a
system consisting of a model 1 CPU; there
is no prefixing ability and never more than
one CPU in the system. Duplex is the term
describing a system of model 2 CPUs. All
model 2 CPUs have prefixing ability. A
time-sharing system with only one model 2
CPU is referred to as half-duplex. This
CPU has prefixing abilities and must not be
confused with simplex.

The next task is to determine the iden-
tity of the initially-loaded CPU. 1In a
duplex or half-duplex system, the CPU's ID
is moved into the first byte of each PSA

Section 3: Startup Phase 17

Page of GY28~2015-6, Issued February 1,

1972 by TNL GN28-3218

F3C i COMAR -- Startup or Restart Indicator j
Fuy { DAMREP ~- Damage Report From Reconfiguration (Restart Only)]
FucC I CREGS -- Contents of Extended Control R;;isters 8-14 i
F68 i SESIDS -- Byte Map for Storage Elements ;ggs) i
F70 i SESTSS -- Number of SEs in TSS 1 CPUSTSS -- Number of CPUs in TSS j
F74 :}- OTHCPU -- IDs of Non-IPL CPFUs ESCPID -- ID IPL CPU]
F78 [CCUTSS =-- Byte Map CCUs in TSS Ji
F7C [« PARTND -- Byte Map Partitioned CCUs i
80 [CCBLEN -- CCB Length (in pages) E STPL -- Length of Startup Module i
84 [TERMAD -- Address of Operato;‘Terminalj Unused }
¥88 { VOLTPC -- Volume Type Code 1 VOLAD -- IPL Volume Address }
F8C {——PRINTER -- Printer Address* i IPLID -- Volume Serial i
F90 { Volume Serial (Continued) j
Fay I{"" DSCBLOC -- DSCB Buffer Ji
F98 [PATLOC -- PAT Buffer Ji
FecC E LOABPT -— Starting Address for Startup }
FAOQ { CCBLOC -- CCB Load Point j
Fau i IPLPFX -- Active Prefix of IPL CPU }

E*Initialized by Startup. j
Figure 3. Communication Region -~ Prelude to Startup

associated with that CPU. This process is
repeated for each CPU within the system.

Addressabie location 0 now contains the
desired information if and only if one of
the PSAs has been activated. Location 0 is
checked and, if a wvalid ID is found, it is
moved to the communication region and
becomes the ID of the CPU in question. If
no valid ID is found, no PSA has been acti-
vated, and the error message to activate
the prefix and re-IPL is issued at the
operator's terminal. Prelude then
terminates.

In a simplex system, only one CPU
exists. Since there is no prefixing, aill
SEs are assumed to be in the time-sharing
system, and control passes to Build a Table
of PSAs.

In a duplex or half-duplex system, it is
possible that not all of the devices are
attached to the time-sharing system. In
this case a configuration analysis is made.
The configuration is composed of all SEs,

18

channel control units (CCUs) and CPUs in
the system. SEs in the system must be con-
nected to the loaded CPU. A CCU must be
connected to the initially loaded CPU and
all the SEs in the system. A CCU must also
ke disconnected from those SEs and CPUs not
in the system. Other CPUs must have the
same SE/CCU hookup as the initially-loaded
CPU. Configuration information is set in
the communication region: the number of
SEs in TSS, byte maps for these SEs and the
CCUs in the system, and a byte map for
those CCUs not in the system. Due to the
three-fold requirements of the CCUs, an
erroneous setting of the configuration con-
sole switches could project the false
impression that no CCUs exist in the sys-
tem. In this case a message is issued
instructing the operator to correct the
switches and Prelude terminates.

Prelude next analyzes the prefix activa-
tion and the direct control switch settings
on the configuration consocle. For systems
with two or more CPUs, these switches must
be activated for all CPUs in the system.

For a half-duplex system, prefixing must be
activated, and direct control must be
deactivated.

Prelude now checks that there are no
duplicate FSAs in the system, since the
physical addresses are variable. Should a
duplicate exist, a message is issued to the
operator to correct the configuration con-
sole dials and Prelude terminates. Other-
wise, processing continues.

Because PSA areas should not be over-
laid, a table of PSAs is built for all CPUs
in the systen.

Now a storage analysis creates a page
map giving the condition of every page in
main storage: available to the system,
partitioned from the system, or failing.
Partitioned pages are those not addressable
by the system; that is, no FSA gives that
address. "Failing™ means & machine check
interruption was detected while the page
was being used. While the page map is
being created, the load point for Startup
must be determined. It has to be loaded
contiguously into the highest available
pages without overlaying any PSA. This
load point is now moved into the communica-
tion region. If no load point can be
found, a message is issued at the terminal
and Prelude terminates.

Next the 'Resident Supervisor®' flag is
set in the byte of the page map that corre-
sponds to the active PSA. In simplex mode,
the PSA is in page 0 and the page map is
set to reflect this. In duplex or half-
duplex mode, the address of the PSA is
determined dynamically. The addresses of
the primary and alternate PSAs are stored
in the first fullword of the primary and
alternate PSAs, respectively. Locations
0-3 then contain the address of the PSA
that is active. This address is moved into
the communication region and the byte in
the page map is set to reflect this. If
the active PSA had previously been detected
as failing, a message is issued and Prelude
terminates.

Finally, Prelude reads Startup into the
location determined during the storage ana-
lysis, and the program exits to that
location.

Prelude also includes a few short ser-
vice routines used to perform the work that
is usually done by the system but is not
yet available. Routines are set up to:
recover from program or machine check
interruptions; convert external page num-
bers to CCHHR form; do I/O initialization;
and communicate with the operator.

STARTUP (CEIAA)

Startup (Chart AC) is the module that
performs the operations necessary for
initialization of the time-sharing system.
If a hardware failure occurs, any subse-
guent execution of Startup constitutes a
system restart. The Startup module is non-
relocatable, operates in the supervisor
state, and resides in real storage. It is
a single module containing many subrou-
tines, all running under control of a main-
line. In order to run, Startup needs the
basic minimum machine requirements {see the
System Generation and Maintenance SRL).

The program assumes SYSBLD has created the
configuration-dependent tables to be used
or initialized by Startup. All public
volumes must be mounted, and the System
Catalog data sets (SYSCAT and SYSSVCT)
should be on the ACV volume (public volume
0). Storage need not be contiguous nor
start at location 0, but the starting
address of the highest storage box must be
dialed to not exceed 256,000(n-1), where n
is the number of boxes present at the
installation.

Startup has two primary functions. The
first is the CSECT link-loading of the Ini-
tial Virtual storage (SYSIVM), Resident
Supervisor (RESSUP)and Resident Support
System (RSSSUP) data sets. The second is
the creation and initialization of various
tables.

RTAM INITIALIZATION

RTAM Initialization provides initial
values for the tables required by RTAM to
log the main operator onto the system. The
LOGON processors require such information
from the main operator as his user identi-
fication, terminal address, and terminal
type; since the operator cannot log himself
onto the system, Startup must furnish the
information. There are four steps in RTAM
Initialization:

1. Calculation of the number of Task Core
Table pages (CHBTCT) and the number of
system buffer pages (CHBBFP); these
depend on the number of terminals con-
nected to the system during system
generation.

2. Storage allocation (virtual and real
storage) for the Task Core Storage
Table pages and system buffer pages.

3. Page table initialization (Shared Page
Table and External Shared Page Table).

4. Initialization of certain other
tables.

Section 3: Startup Phase 19

The tables modified, initialized, or
created for RTAM are CHBTCT, CHBBFP,
CHBMTS, CHBDEV, and CHBTDE.

The storage requirements for CHBTCT,
CHBBFP, and CHBMTS are:

1. The virtual storage address of the
Task Core table must start at the
first page of the first public segment
of IVM.

2. The first page of the Task Core table
and the first page of system buffer
pages must reside in real storage at
all times. This is ensured by turning
on the "page hold" flag in the XSPT
entries reflecting the virtual storage
addresses assigned to them.

3. CHBMTS must begin on a 6i4-byte
boundary.

LINK-LOADING

During link-loading, each data set con-
tains a CSECT load list module which con-
tains the names of the CSECTs to be link-
loaded. The delta data sets are sorted
into three groups, those for IVM, for
RESSUP, and for RSSSUP. Within these
groups, the order in which the delta data
sets were entered is maintained. The delta
data sets for IVM are processed first and
then SYSIVM is processed. After the load
list is read in, the PMDs for CSECTs in the
load list are linked into the Task Dic-
tionary table (TDY). If user modules are
being loaded, all additional user CSECT
names (those not present in the load list)
are added at this time. After a PMD is
moved into the TDY, the definitions within
each of the PMDs CSECTs are resolved.
(Preceding the PMDs in the TDY are a head-
er, system hash table, user hash table and
storage map.) Private CSECTs are loaded
into segment 0 of virtual storage, while
the public CSECTs are loaded into segment
1. The Interruption Storage area (ISA) is
automatically assigned a virtual storage
address of zero. After all PMDs are linked
into the TDY, the TDY storage map is
created. It is made up of two-word entries
for each CSECT in the TDY. The first word
is the virtual address for the CSECT. The
second is the address of the CSECT's CSD.
The entries are in a numerically ascending
sequence of virtual storage addresses. The
CSECTs are read in a page at a time, and
packed into the output buffer. They are
then written on the paging drum if they are
public CSECTs, or written on the paging
disk if they are private CSECTs. Once pro-
cessing is complete, then both the TDY and
the Shared Data Set table (SDST) are writ-
ten on their respective paging volumes.

20

The RESSUP and RSSSUP delta data sets
and CSECTs are loaded in a similar manner
to the SYSIVM CSECTs. However the follow-
ing location differences exist for the
RESSUP CSECTs:

e RESSUP CSECTs except for SERR/
Reconfiguration reside in real storage.
SERR/Reconfiguration CSECTs reside on
all drums in the system.

e The TDY, used only in the loading pro-
cess, is not written on the paging
volume.

e User modules cannot be loaded into real
storage.

If a Quickstart is in progress, the

link—-edited routines are read from the
Quickstart data set.

INITIALIZATION OF TABLES

Tables are created,
modified as follows:

initialized, or

For SYSIVM,
e Task Dictionary table (TDY)
¢ Interruption Storage Area (ISA)
e Buffer Page (BFP)

s Skeletal Extended Task Status Index
(XTSI)

¢ Terminal Comtrol Table (TCT)
e Symbolic Device Allocation table (SDAT)
s Task Data Definition table (TDT)
e Shared Data Set table (SDST)
e Public Volume table (PVT)
For RESSUP,
* Prefix Storage Area (PSA)
e CPU Status table (CST)
e Special Device Path tables

e Auxiliary Storage Allocation table
(ASAT)

e Resident Shared Page Index table (RSPI)
s Core Block table (CBT)

¢ Shared Page table/External Shared Page
table (SPT/XSPT)

s System table

e System Activity and Resources table
{SAR)

e Multi-terminal Status Control Block
(MTS)

e Device Group table (DEW)

¢ Terminal Device table (TDE)
For RSSSUP,

e Communication table (RS3COM)

* Page table/External Page table (PTO-
PT3, XPT2-XPT4)

® RSS Symbol table (CHBRST)

e Support System Device Allocation table
(SSDAT)

Once this is complete, Startup creates a
task (TsSI) for the Main Operator's Task
(MOT). Startup interrogates the 2702 par-
titioning lines and enables those lines

N

v INPUT
SYSCCB
SYSIVM
RESSUP
P
IPL Volume RSSSUP\
Delta DELTA DATA SETS
Volume \\\\

Delta Data Set Names
{Storage element names and FSA's}
Paging disk address

Operator’s
1050 Terminal

Delta Volume Address

Delta Data Set Names

Card {Storage element names and FSA s}
Reader Paging disk address

Figure 4. Startup Input and Output

Delta Volume Address ___——— |

which are not partitioned out of the confi-
guration. In addition, the malfunction
alert fields in control register 6 are
enabled for duplex and masked for half-
duplex operations.

INPUT TO STARTUP

The four major sources of input to
Startup (Figure 4) are:

e The IPL volume

¢ The Delta volume

s The Operator's 1050 terminal

s The Card Reader

The SYSCCB, SYSIVM, RESSUP (VPAM for-
matted) and RSSSUP data sets reside on the
IPL volume.

The delta volume contains data sets that
may modify the SYSIVM, RESSUP, and RSSSUP

data sets which reside on the IPL volume.
This provides the optional capability for

OUTPUT

\Ful!y Initialized Tables
/___,, and

Operable Time Sharing System

Section 3: Startup Phase 21

dynamic modification of the time-sharing
system at Startup time.

Information from the operator's terminal
or card reader includes:

e The address of the delta volume and the
names of the delta data sets, if any.

¢ The names of the storage elements and
their corresponding FSAs for simplex
CPUs.

* The address of the paging disk.
¢ The address of the Quickstart volume.

e Load 1list codes of functions not to be
loaded.

OUTPUT FROM STARTUP

The output created by Startup results in
a fully initialized and operable time-
sharing system. However, there are several
error conditions that will cause the ter-
mination of the Startup process. Startup
terminates if:

e There are too many malfunctioning pages
in main storage, thus preventing the
allocation of buffer space for Startup.

e The SYSIVM, RESSUP or RSSSUP data sets
are not on the IPL volume or have
incomplete or missing PODs.

¢ The space allocated for the Extent
table, Read table or storage map is too
small.

» The system catalog data set cannot be
located.

e Certain critical CSECTs are not present
in the Delta or system data sets or
their respective load lists.

e There is I/0 malfunctioning while the
IPL volume or the paging volume is
being accessed during the initializa-
tion of the SDAT.

s The interval timer has not been enabled
or is malfunctioning.

e The operator's terminal is not repre-
sented in the system pathfinding table.

e The initial virtual storage requires
more than 16 segments.

¢ The operator cancels Startup by reply-
ing *N' when asked CONTINUE Y or N

22

after Startup discovers errors with
delta data sets.

In any of these cases the operator is
notified of the cause of termination at his
terminal. If there is I/0 malfunctioning
during an attempt to use the operator's
terminal, a message is issued on the
printer.

STARTUP INTERFACE

Using normal linkage conventions, Start-
up communicates with the following external
routines which are called to complete
Startup processing:

e Inter-CPU Communication (CEIACC) issues
external starts to the non-IPL CPUs.

e Set Path (CEAAS5S) partitions paths to
the I/0 devices.

e Pathfinding (CEAAS5P) locates paths to
the I/0 devices.

e Reverse Pathfinding (CEARAS5R) returns a
path to the system and determines its
symbolic device address.

e Supervisor Core Allocation (CEAL1A)
allocates main storage.

e Task Initiation (CEAMT1) creates and
activates a TSI for MOT.

e Queue GQE on TSI (CEAAFQ) queues a GQE
(containing a simulated asynchronous
interruption) on the TSI for MOT.

At the conclusion of Startup, the
initially-loaded CPU exits to the Queue
Scanner and the other CPUs exit to the
Dispatcher.

INTERNAL TABLES

Startup creates and uses internal
tables, buffers and work areas (Figure 5),
as follows:

AUXILIARY STORAGE DEVICE LIST buffer - set
up by the SDAT initializer. This contains
the symbolic device address, the device
type code, and the extents for all unavail-
able pages on auxiliary devices. This list
is used by the Auxiliary Storage Allocation
routine to create directories for disk and
drum in the Auxiliary Storage Allocation
table.

g BUFFERS AND TABLES CREATED BY STARTUP i ADDRESS E LENGTH i
{ Auxiliary Storage Device List Buffer T ASDLST { Variable }
: CCB Buffer } CCBAD : Variable {
} Extent Table g EXTAB : 150 Words {
{ Input Buffer } INPTAD : 1 Page }
{ Load List Buffer } LDTBL, LDTBLR : Variable }
; Storage Byte Map { MEMAD : 512 Bytes {
: 01ld POD Buffer % OPODAD e Variable }
: Output Buffer I OUPTAD : 1 Page }
; Drum List Table } PGSRSDA ; 4 Words %
? PSA Buffer : PSABUF : 1 Page {
|| RESSUP/RSSSUP Symbol Table } SYMAD : Variable =
: SDAT Buffer { SDATB, SDATBH : Variable }
: SSDAT Buffer % SSDATB, SSDATBH } Variable }
{ Shared Page Table Buffer } SPTAD : 1 Page }
: TDY Page Table g TDYTAB : 62 Words :
i Work Area g DSCBF : 140 Bytes {
= Work Buffer ‘ WORKBF : 1 Page }
i XTSI Buffer i XTSIAD i 1 Page i

Figure 5.

CONFIGURATION CONTROL BLOCK buffer - a data
set read in by Prelude. This is the table
set up by SYSGEN (and modified by SYSGEN).
It contains configuration-dependent infor-
mation utilized by Startup. It supplies:
the path of the drum to be used as the pag-
ing drum; the address of an alternate
printer should the current one malfunction;
and the number of Shared Data Set table
pages. It also contains information used
to update the CPU Status table (CST) and
the Pathfinding tables.

EXTENT table - a multipurpose area. This
table contains the extents for the SYSIVM,
RESSUP and RSSSUP data sets. During
initialization of the Pathfinding tables,
it contains a list of partitionable control
units. The routine to initialize the SDAT
uses the Extent table as a drop area to
contain the symbolic device addresses, and
virtual storage pointers to the SDAT
entries for all volumes containing the Sys-
tem Catalog. It is also used when the JFCB
for the System Catalog is updated.

Startup-Created Buffers and Tables

INPUT buffer - information from the IPL
volume is read into this buffer, as are the
three data sets used during link-loading.
While the SDAT is being initialized, the
first 144 bytes of the buffer are used as a
read-in area for the format-4 DSCB con-
tained on the disks. The area following
these bytes is used to contain the Auxi-
liary Storage Device List.

LOAD LIST buffer - contains the load list
for the SYSIVM, RESSUP, or RSSSUP data
sets.

STORAGE BYTE MAP - used to determine the
availability of pages in main storage. It
supplies information for initialization of
the Core Block table and setting of the
storage protection keys.

OLD POD buffer - used by the link loader to
hold the POD for either the SYSIVM, RESSUP
or RSSSUP data set, whichever is being
processed.

Section 3: Startup Phase 23

OUTPUT buffer - the buffer from which data
is written on the primary paging volume.

DRUM LIST table - used during the link
loading phase to contain the hardware
addresses of the drums in the system, the
first drum being the paging drum. The list
is used to locate the paging drum and then
provide addresses for all the drums, so the
SERR/Reconfiguration modules may be written
on them. The hardware addresses are con-
verted to symbolic device addresses, and
this list is used by the Auxiliary Storage
Allocation routine to insert the drum
addresses into their respective drum direc-
tories in the ASAT.

PSA buffer - used as a temporary storage
area to hold the PSA CSECTs. The PSA
CSECTs are moved to PSABUF after they are
read in during RESSUP processing. After
the PSA is initialized, and just before
exiting from Startup, the PSA is moved to
the actual PSA area.

RESSUP/RSSSUP SYMBOL table - contains the
symbol and address of every entry point in
the Resident Supervisor and the Resident
Support System.

SDAT buffer - used during initialization of
the SSDAT.

SHARED PAGE TABLE buffer - used during
initialization of the Shared Page table.

TDY PAGE table - contains main storage
addresses of the TDY for SYSIVM. This is a
table of one or more three-word groups or
extents. The first two words contain the
lowest and highest real storage addresses
relocatable by a common factor, namely, the
third word. The end of the table is a
double word of omnes.

WORK AREA - used as a DSCB and volume label
read-in area. All DSCBs for SYSIVM, RESSUP
and RSSSUP data sets are read in here.

WORK buffer - used to create the Free Space
table and during SDAT processing.

XTSI buffer - used during initialization of
the XTSI.

The following is a description of the
logic flow of each of the Startup routines
and subroutines.

STARTUP MAINLINE (CEIAA)

Startup (Chart AC) consists of a main-
line routine which calls a number of inde-
pendent routines with specific functioms,
and a set of common subroutines. Upon
entry, the mainline executes several house-
keeping steps, and sets up the base regis-

24

ters. It also sets up a communication area
within Startup, and moves into it the drop
area set up and created by Prelude. 2
check is then made to see whether the
interval timer has been activated. If it
has not, a message ‘Activate TIMER and Re-
IPL® is issued and Startup terminates.
Otherwise, the Enable routine is called.

The Enable subroutine enables the 2702
and 2703 lines so that a terminal usexr can
dial into the time-sharing system. On
entry, it does housekeeping, relocates CCWs
and adcons according to Startup's load
point, and obtains the addresses of the
lines from the Transmission Control Path
table (CCBTPT) of the CCB. The line's type
and address are obtained from each entry in
the table. The Enable subroutine deter-
mines the SAD order specified, and the
device class (dedicated versus dial-in).

An appropriate CCW list is constructed.

The address of the list is set in the CAW
and a SIO instruction issued. The complete
CCW chain is not executed until someone
dials into the line, ending the Enable com-
mand that is command-chained to the rest of
the list. A message is sent out on any
line dialed-in.

On return, the addressing capability of
the system (24— versus 32-bit addressing)
is determined. In order to do this, the
system mask in the extended PSW is set to
X'08' indicating that the 32-bit addressing
feature is operating. If the 32-bit
optional hardware feature has not been
installed, a program interruption occurs
when the next sequential instruction is
reached. A switch (MCHSZE) is set accord-
ing to the presence or absence of the 32-
bit addressing feature. This switch is
tested at various subsequent points to
enable the system to operate in the proper
mode.

In a multi-CPU environment, control next
passes to a mainline routine, P400X. 1In
simplex mode this routine is bypassed. The
purpose is to create a PSA list containing
the addresses of the active PSA of each CPU
in the system, excluding the loaded CPU.
P400X does this by finding the address of
the primary PSA of the CPU in the CCB. The
routine then inspects the Page Map for a
X*3C' to determine if that page is avail-
able as a user page. If so, the Page Map
indicator is reset to X'94' indicating that
this page is partitioned. The address of
the primary PSA is moved into the active
PSA list. Should this primary page be
unavailable, the address of the alternate
PSA of the CPU is found. If this alternate
page is available, the partitioned flag is
set in the page map and the address is
moved into the active PSA list. If this
alternate page is unavailable, the non-
loaded CPU cannot be started up, since it

has no active PSA. In this case, the
address placed in the active PSA list is 0.
This list, set up by P400X, is used later
by Startup to set up the CPU Status table
(CST), and the Storage Byte Map is used to
allocate available pages, and set up the
Core Block table (CBT).

The operator is asked for the address of
the card reader in the event that operator
response messages are to be bypassed. If a
Quickstart is taking place, ithis question
is bypassed and all queries are made to the
operator's console.

A test is made to determine whether this
is a simplex system or not. If it is, the
SIMFSA routine is called. If not, control
passes to P100X. SIMFSA is the routine to
request information regarding the FSAs on
the SEs attached to a simplex CPU. The
operator may partition out a storage ele-
ment (block of 256K bytes) by not mention-
ing that storage element's identification.
However, the operator may not partition out
the FSA that contains the PSA, or the FSA
that contains Startup (just loaded), or
Startup's buffers. If operator response
messages are not bypassed, OPER is called
with the message code asking the operator
to enter the FSA code for each SE in TSS in
this format:

XN, XN, XN, e eu..

where
X = SE ID (A,B,Cpevv..)
N = FSA code (0,1,2,.....for 0-256K,

256K-512K, 512K-768K.....)

If operator response messages are bypassed,
the READCARD routine is called to read a
card containing this information. The
operands are then accessed via GETFLD. All
are checked for validity. An incorrect
response condition is recognized if any of
these conditions exist:

e Operands are longer than two characters
in length.

e The number of responses exceeds the
number of SEs at the installation.

e An SE ID is not within the allowable
range, which is the count of SEs at the
installation. (If four SEs exist, the
allowable range is A to D.)

e An FSA code is not within the allowable
range which is the numeric count of SEs
at the installation, beginning with 0.
(If four SEs exist, the allowable range
is 0 to 3.)

s Two operands in the reply mention the
same SE.

e Any FSA code not mentioned that con-
tains the PSA, Startup, or Startup's
buffers.

On any incorrect response condition, the
operator is informed and asked to reenter
the information. Should the same FSA code
be assigned to two SEs, the operator is
informed. If this is due to an incorrect
response, he can then reenter the informa-
tion correctly. If two or more SEs are
actually set to the same FSA, the condition
must be corrected and the system rein-
itiated by an IPL.

Once a completely valid response is
received, the information is rearranged in
extended control register 10 format and
placed in the Startup communication region.
This is later moved to the SE Status table
in the PSA. Control comes back to the
mainline routine P100X. The purpose of
this routine is to move the Configuration
Control Block, the Storage Byte Map, the
IPL PAT page and an IPL DSCB page from
their locations assigned by the Prelude
routine to the buffers allocated them in
Startup. (Information as to their origin,
length, and destination is available to
P100X in Startup's communication region.)
The information is then moved in blocks of
256 bytes until the entire block has been
transported. The origin of the Page Map is
at a fixed location, 190,4. The destina-
tion was allocated by GETMEM. The length
of the map is proportional to the number of
SEs in the particular installation. There
are 64 bytes per SE. Once the move is com-
plete, control continues on to the DMLST
routine.

Create List of Available Drums (DMLST)
is another subroutine of the mainline. 1Its
purpose is to identify all available drums
of the system, and ask the operator to
supply the address and device type code of
an auxiliary device to be used as the pag-
ing device. First, the routine searches
each drum entry in the Drum Path table of
the CCB for one available path to each
drum. All entries are checked one drum at
a time. If a good path is found, it is
stored in a l1list. If no path is found, the
next entry is checked until all are inves-
tigated. The device attached to the first
path in the list is used as the paging
drum. A count of available drums is made,
and the results are saved for the ASATRT
routine. If operator response messages are
not bypassed, a message is issued (via
OPER) requesting the operator to supply the
address of a paging disk. If operator
response messages are bypassed, READCARD is
called to read a card which contains the
address of the paging disk. A check is
made to see that the IPL volume address is
not specified as the paging disk. If it
is, the operator is prompted for another

Section 3: Startup Phase 25

address. A check is also made to see
whether the paging pack is VAM2-formatted.
If not, the operator is prompted for an-
other address. If so, and if a paging
volume is mounted (byte 17 of the volume
label = X*40*), processing continues. If a
paging drive is not mounted, the operator
is prompted for another address. The pag-
ing disk is used as an additional paging
device. If there are no drums available,
all Startup paging is done on this paging
disk.

Subroutine RTMPGS is invoked next. It
calculates the size of CHBTCT and CHBBFP
(RTAM tables). The sizes of these CSECTs
depend upon the number of terminals con-
nected to the system during system genera-
tion. The results are saved in the com-
munication region for use after link-
loading.

The Link loader, Startup's main proces-
sing routine, is next invoked to load SYS-
IVM. (A complete description of the Link
loader is provided later in this section.)

After SYSIVM has been loaded, a switch
(PGWRT) is set and the link loader is
recalled. The switch setting indicates
that RESSUP/RSSSUP is to be loaded. If a
Quickstart is taking place, the link-loader
is bypassed and QKREAD is called to read in
the link-edited version of IVM, RESSUP, and
RSSSUP.

If Delta data sets were specified, a
message is now issued at the operator's
terminal. This message notifies the opera-
tor that he may remove or replace either
the IPL volume or the delta volume, or
both. If no Delta data sets were speci-
fied, the operator is notified that he may
remove the IPL volume. If the Delta volume
is not removed and it is marked as public,
it is used as a public volume. If the IPL
volume is not removed, the 2314 unit that
it is on is marked as system—-dedicated. If
a Quickstart data set is to be created on
either the IPL or Delta volume, the demount
message for that volume is not issued.

If this was a normal Startup, a test is
made to see if a Quickstart data set is to
be created. If so, CEIAB is invoked to
create that data set. (See Chart AC, p.8.)

If any Q-cons were loaded, the pseudo-
register value is displayed on the printer.
A subroutine (QRDR) is then invoked to up-
date the dynamic loader and task common.
The Q-con hash table and CXD values are
inserted in the dynamic loader PSECT, and
the CXD value is placed in task common.

The current value of the CXD is displayed
on the printer.

26

Now the mainline invokes a series of
subroutines to do table initialization.
Startup mainline may now communicate with
the RESSUP that is now in main storage.
The first subroutine, Initialize Pathfind-
ing Tables (SETPTH), partitions channels
and control units (via RESSUP Pathfinding)
that are outside the time-sharing system
environment. The subroutine's functions
depend on the machine confiquration at the
installation. The routine disables I/0
interruptions and determines whether or not
the system is simplex.

In a simplex system, control bypasses
the above-mentioned partitioning and goes
to the Special routine. In a duplex or
half-duplex system, the subroutine uses the
switch settings on the configuration con-—
sole, the channel controller and the Corre-
spondence List tables of the CCB to find
and partition those channels and control
units not attached to the system. On
entry, the following fields are filled in
with the corresponding parameter

information:

SIMDUP simplex/duplex indicator

CCBAD pointer to CCB

SPATH pointer to CEAASR

SPATH2 pointer to CEAA5S

SSYS pointer to CHBSYS

SSTA pointer to CHBSAC

PAGAD address of primary paging
device

TERMAD address of operator’'s
terminal

VOLAD address of IPL volume

SDABF1 buffer pointer

PGSRSDA list of drum addresses

PARTND prelude map of parti-

tioned CPUs
extended control regis-
ters 8-15

CREG8-CREG15

SETPTH locates the CCU Map in the com-
munication region which has been filled in
by Prelude following a configuration analy-
sis. It searches the table for a CCU found
to be partitioned. The list of channels
connected to the partitioned channel con-
troller is passed on to the Set Path rou-
tine (CEAA5S) of the Pathfinding module in
RESSUP, for partitioning. Error checks are
made and should a channel be found to be
nonexistent in the Pathfinding tables, an
error message is sent to the operator.
CEAAS5S does not complete the list if an
error is encountered, so any remaining
channels to be partitioned are presented to
Set Path again. Every CCU is processed in
this manner. In order to process CUs,
SETPTH inspects each bit in extended con-
trol registers 12 and 13. Each bit corres-
ponds to a CU switch setting. If the par-
ticular CU is attached to a CCU, the bit
setting is on. If partitioned, the setting
is off. There is a Correspondence List in

the CCB which shows the paths in variable
number of halfword entries of each switch
represented in extended control registers
12 and 13. SETPTH obtains the address of
this list. It determines which paths are
to be set as partitioned in the Pathfinding
tables and builds a path list as obtained
from the Correspondence List. CEAA5S is
then invoked to partition the list and the
same error procedures are followed as for
CCUs. Once all the CUs have been pro-
cessed, control is sent to the Special
routine.

The Special routine creates the follow-
ing special device path tables:

SERR/Reconfiguration Path table
Operator's Device Path table
IPL Volume Path table

Pointers to these tables are set in the
appropriate fields of the System table.
Special begins by copying extended control
registers 8-15 into the System table, and
calls on the RESSUP Reverse Pathfinding
routine (CEAA5R) to obtain the SDA of the
paging volumes. The operator's terminal
address is stored in the System table, and
its SDA is likewise obtained. Should
CERASR return an indication that an asynch-
ronous interruption entry does not exist in
Pathfinding for the terminal, or that the
terminal cannot accept asynchronous inter-
ruptions, a diagnostic is issued {(via OPER)
and Startup terminates. Otherwise, SETPTH
finds the entry in the CHBSAC for the SDA.
This provides a pointer to the Device Group
table.

The Operator's Device Path table is
created from information provided by the
above-mentioned tables, in the form of
fullword entries. DIRSIZ is invoked to
obtain available storage for the table.
The Operator's Device Path table is moved
and the System table is initialized with
the number of entries and the location of
the Operator's Device Path table. Should
an error occur in obtaining or attempting
to f£ind the SDA, the creatiom of the Opera-
tor's Device Path table is bypassed but
processing continues. The same process is
followed if the IPL Volume Path table can-
not be found.

The SERR/Reconfiguration Path table is
created only if drums are present in the
system. A list giving a path to each drum
is provided as input to Special. The SDA
for each entry is obtained again via
CEAA5R, and is stored back in the list.
The SDA is used as above to locate all
paths to each drum. Each first halfword of
each fullword entry in the path table is
set with the SDA+1 of each drum. Any
errors are handled as described above. On
exit this output is generated:

PPDSDA SDA of paging drum

TERSDA SDA of operator's terminal
VOLSDA SDA of IPL volume

PGSRSDA list of SDAs for all drums
Certain fields of the CHBSYS

Three Path tables

Control now returns to the mainline
routine.

Mainline now invokes PGXTSI, a subrou-
tine used to complete the initialization of
the XTSI, XPT, and XSPT. If the system is
duplex or half-duplex, the routine also
gathers the information which is to be
loaded into extended control registers i
and 6 later on in Startup. The CCT table
in the CCB is used to determine the channel
controllers and channels in the systemn.

One word, CREGY4, is initialized to repre-
sent the channels in the system. (This
word is also initialized for a simplex sys-
tem.) A second word, CREG6, is initialized
to represent the channel controllers in the
system and, in a duplex system, indicate
that the malfunction alert fields are
enabled.

Initialization of the XPT/XSPT is com-
pleted by invoking LOCXPT to find the ori-
gin of the XPT/XSPT and then storing the
SDA of the paging device in the first two
bytes of each XPT/XSPT entry.

XPT2 and XPT3 are now located in the RSS
Communication table. The symbolic device
address of the paging disk is initialized
in each entry.

Startup calls the Reserve Pages routine
(RESRVP) next. The Reserve Pages routine
reserves as many pages for RSS on the pag-
ing disk as there are RSSSUP and Symbol
table pages. These pages will contain
images of those read-only pages of the
Resident Supervisor which will be overlaid
when RSS is loaded.

The external address of each reserved
page is stored in an XPT4 entry in the RSS
Communication table.

The next routine invoked is BFRPGET.
Two pages of supervisor main storage are
obtained (via GETMEM), the first to be used
as the first page of CHBTCT, and the second
to be used as the first page of CHBBFP.
The real storage addresses of these two
pages are converted into page table format
(halfword block addresses) and are stored
in the Shared Page Table entry reflecting
the virtual storage addresses assigned to
the TCT and BFP.

INTDE is invoked next to initialize all
RTAM tables: CHBTDE, CHBTCT, CHBDEV,
CHBBFP, and CHBMTS. See the section 'RTAM

Section 3: Startup Phase 27

Initialization' for more information on
these tables.

The next routine invoked is SDATRT, the
SDAT Processing routine. It is used to
initialize the SDAT and to provide various
device-related information for use by
Startup. On entry, the following input is
located in the communication region:

SSDATL address of XSPT entry for SDAT
pages

SSDAT VMA of SDAT header

SDALST VMA of first entry in SDAT

SSDATP number of external SDAT pages

PAGAD physical address of paging
drum

PPDSDA SDA of paging drum

SPDSDA SDA of paging disk

VOLSDA SDA of IPL volume

VSSDAT VMA of VSS SDAT

RSSDATL location of first RSS XPT

RSSDATP number of RSS SSDAT pages

SSSDAT location of RSS SSDAT header

SPVTP number of PVT pages

SPVTL address of XSPT entry for PVT

pages

The SDAT is a shared virtual storage
table consisting of an 8-byte header and a
variable number of 6l4-byte entries. The
header and each entry begin on doubleword
boundaries. Entries are arranged in
ascending order of SDA fields. The SDAT
resides on more than one page, but does not
necessarily begin or end on a page
boundary.

Concurrent with processing of the SDAT
is processing of the Support System Device
Allocation table (SSDAT) and the Public
Volume table (PVT). SSDAT combines infor-
mation currently in SDAT and Pathfinding
tables. SSDAT consists of a header and a
body portion. The header includes pointers
and entries for the operator's console and
three RSS residence devices. The body con-
sists of entries for all symbolic devices
defined in the system.

Both the header and body are initialized
by the SDATRT routine. Entries for the
operator's console, primary paging device,
and secondary paging device are made in the
SSDAT header. The VAM-formatted flag is
set for the paging disk. The header to be
placed in RESSUP (CHBECXRA), has adcons
pointing to the first and last SSDAT
entries in the RSSSUP SSDAT (CHBECXRB).

The header to be placed in SYSIVM has
adcons pointing to the first and last SSDAT
entries in the SYSIVM SSDAT (CHBECXVA).
Startup resolves these adcons, which were
initialized by SYSGEN.

The maximum number of possible volumes

allowed in the system is determined during
system generation. This number is set in

28

the PVT header field PVTMCT and space is
allocated by SYSGEN for as many entries as
indicated by this field. Startup initia-
lizes the volume serial number, symbolic
device address, device code, and pages
relocated flag for each legal public volume
that it encounters.

SDAS500, a routine within the SDATRT, is
called to process individual 64-byte SDAT
entries. RESSUP Pathfinding is invoked to
determine whether a path is available to
the device whose SDA is being processed.

If it is not available, the available flag
is set off and the partitiocned flag is set
on. No further processing is required, and
control is returned to the SDATRT mainline.
If there is an available path, RESSUP
Reverse Pathfinding is invoked to free the
path. Control is returned to the mainline,
unless the device is direct access, in
which case the device type returned by the
Pathfinding subroutine is checked.

If the device is a 2301 drum and appears
in the 1list of accessible drums (PGSRSDA)
established previously in Startup by DMLST
and Special, a variable byte entry for the
drum is entered into the Auxiliary Storage
Device List (ASDLST) created by SDATRT. A
count is kept of auxiliary devices in the
field DEVTOT. If the drum is not in
PGSRSDA, the partitioned flag is set on,
and the available flag is set off in the
SDAT entry. Control returns to SDATRT
mainline.

At this point, it is known that the
device is either a 2311 or a 2314. The ex-
ternal storage, available, not reserved,
and IOREQ allowed flags are set on in the
SDAT entry. The SDA of the device is then
compared with the SDA given earlier for the
paging disk; if the SDAs are the same, the
auxiliary storage, reserved, IOERQ not
allowed, private, and not available flags
are set on in the SDAT entry. If the SDAs
are not the same, processing continues.

The volume identification is then read from
the disk and checked to see if the disk is
VAM2-formatted. If it is not, it is
assumed that the volume is SAM-formatted.
In this case, the format-4 DSCB is read and
the device constants and gross available
space data are set in the SDAT entry from
the VIOC DSCB. The appropriate flag in the
VTOC DSCB is examined to determine whether
the device is private or public and the
corresponding flag bit set in the SDAT
entry. If the volume is public, it is
placed in the public volume chain and a
check is made for the ACV volume (public
volume 0). If the volume is the ACV, it is
checked to see if the SYSCAT and SYSSVCT
data sets are on the volume. If they are,
their pointers are placed in the TDT; if
they are not, Startup terminates.

If the disk is VAM2-formatted, it is
checked to see if it is the IPL volume. If
it is, and if the wvoluwe is still mounted,
the extermal storage, unavailable, and
reserved flags are set cn in the SDAT. If
the device is not the IPL volume, or if the
volume has been dismounted, processing con-
tinues. The current device is again
checked to see if it is the secondary pag-
ing volume; if it is, Initial Virtual
storage extents are moved to the auxiliary
device list and the PAT page is read in.

If it is not, the secondary paging volume,
a check is made to see if a paging pack has
been mounted. If it has (X'40° in byte 17
of the volume label), the auxiliary
storage, private, unavailable, reserved,
and IOERQ not allowed flags are set on in
the SDAT.

If no paging pack is mounted, the
public/private flag in the volume table is
checked. If the public flag is not set,
the volume is marked private in the SDAT.
If the public flag is set on, the volume
serial number, the current symbolic device
address and the device code are inserted
into the appropriate PVT entry. Starxrtup
determines which entry in the PVT will be
initialized for this volume by examining
the relative volume number field in the
volume label. If the relative volume num-
ber exceeds the maximum allowable limit,
Startup issues a message to the operator
indicating the device address and the rela-
tive volume number of the volume in ques-
tion. Startup then asks the operator to
remove or replace the volume, and after
doing so, reprocesses all pertinent tables.
If the PVT entry corresponding to the
volume being processed has already been
initialized, Startup issues a message to
the operator indicating the symbolic device
addresses of the two duplicates and their
relative volume numbers, and asks the
operator to remove one of the volumes.
Startup then reprocesses all pertinent
tables.

If the volume qualifies on both of the
above-mentioned checks, its PVT entry is
initialized as described above and it is
entered in the public chain. The PAT for
this volume is also checked to determine
whether this volume contains pages which
have been relocated by the RESTORE program.
If so, the pages relocated flag is set in
the PVT entry for this volume.

Startup reads in the PAT table for all
public and auxiliary volumes. It examines
each PAT entry and maintains a count for
every entry that represents an unused page
(X'00"). It alsc examines each data page
entry (X'01') to determine if the Allocated
flag is set. If an entry is found (X'41°'),
it is cleared and the available count
incremented. The accumulated available

page count is stored in the PVT entry for
the volume. The PAT table is then rewrit-
ten to external storage to reflect the
change. This is done when a page assign-
ment is made from the volume which requires
the rewriting of the PAT table. If the
volume being processed is auxiliary
storage, the PAT information is used to set
up the auxiliary storage allocation bit
directory. If the volume is public
storage, the PAT information is used to set
the Available Space field for the volume in
the Public Volume table (PVT) and to recov-
er lost space from the volume.

The PAT for each public volume is mapped
into shared virtual storage by initializing
the next available entry or entries with
the external address of the PAT. (The vir-
tual address of the PAT is determined by
the relative XSPT entry.) The virtual
address and relative page number of the PAT
are then placed in the SDAT entry for that
volume.

A flag is set in the XSPT entry to indi-
cate that this virtual page resides on ex-
ternal rather than auxiliary storage.

If, when trying to gain access to a
device, during any part of this processing,
Startup finds the device to be malfunction-
ing, the phased out flag is set on, the
*available' flag is set off in SDAT, and
the device is set as malfunctioning in the
pathfinding table. If a direct access
device is lcocated and has an available
path, but is not mounted, further proces-
sing is bypassed for that entry.

After all SDAT entries have been pro-
cessed, a check is made for missing public
volumes. Startup has kept track of the
highest relative public volume it has
encountered. This information is used to
initialize the PVTECT field (actual volume
count) in the PVT header. All PVT entries
up to the one with the highest volume num—
ber encountered are then examined. If any
of these entries have not been initialized,
Startup issues a message to the operator
indicating which relative volume numbers
are missing. Startup then asks the opera-
tor to mount the missing volumes on any
available drive, after which all tables and
their entries are re-initialized.

WRXTSI writes the XTSI on the paging
drum, and the head and slot number of the
XTSI page on the drum, and its SDA, are
saved in the System table. IOCXPT is
invoked, with the SPT pointer as input, to
determine the address of XSPT. The SDA of
the paging drum is set in the first two
bytes of each 12-byte XSPT entry corres-
ponding to a virtual storage address allo-
cated by Startup. Control returns to the
mainline.

Section 3: Startup Phase 29

ASATRT is invoked next. This routine
initializes the Auxiliary Storage Alloca-
tion table (ASAT), which is used to control
allocation of pages on auxiliary storage
devices. It is first set up for the paging
volumes. After the execution of Startup,
pages in use on the paging drum are those
occupied by shared IVM, SERR/Reconfigura-
tion path table, the skeletal XTSI and the
Shared Data Set table. If the paging
device is a disk, the unavailable pages are
PAT pages, IVM pages and error pages.

The extents of the unavailable pages on
each auxiliary device have been previously
set up by the SDATRT. SDATRT uses informa-
tion from the PAT for each auxiliary disk
plus information gathered by the Link-
loader routines to make this determination.
It is important for Auxiliary Storage Allo-
cation to know exactly which pages it may
utilize so that Supervisor time is not con-
sumed trying to use malfunctioning or occu-
pied pages. Additionally, ASATRT initia-
lizes count fields for each cylinder on an
auxiliary disk. These fields indicate the
number of pages available on each cylinder.
This makes it possible for the Supervisor
to minimize seek time by minimizing the
number of cylinders on which it has to per-
form write operations.

The highest external page number on the
paging drum (the XTSI page) is supplied by
the PGXTSI routine. Pages occupied by
SERR/Reconfiguration are provided by the
SERR100 and SERREND routines for each drum
in the system.

On the paging drum, pages 882-890 are
reserved for standard error retry proce-
dures. Page 885 is unavailable because of
error problems. Checks are not made for
bad pages on either drum or disk. Bit
directories for 2311 or 2314 disks include
only 199 cylinders, since the last four are
reserved for standard error retry proce-
dures.

The number of auxiliary storage devices
as determined by the SDAT routine is
checked to determine whether there are any
additional devices for which to set up
tables. If there are, the device type in
the auxiliary storage device list is
checked and the appropriate table is
created. These bit directories reside in
real storage immediately following the
Resident Supervisor.

The directories for devices of the same
type are chained together as each table is
built. The following information is
updated in the ASAT header: number of
drums, number of drum pages available, num-
ber of auxiliary disk pages available,
address of the first disk directory, and
address of the first drum directory. For

30

each bit directory, a subheader is also
filled in with the following information:
number of pages available on drum or disk,
SDA, address of next drum or disk, direc-
tory in chain (a circular chain where last
points to first). In disk directories, a
subheader is filled in with the number of
bytes in the directory. After all direc-
tories are built, the low drum availability
threshold is calculated and entered in the
ASAT header.

Startup reads in the System Common
(CHASCM) and uses the value in SCMAUX to
calculate a new value for the augmentation
of auxiliary storage which is stored (over-
lays) in SCMAUX and the System Common is
rewritten to auxiliary storage.

If a new Quickstart data set has just
been created on a public volume, the rela-
tive public volume number, the relative
page number, and the slot number for the
E-DSCB are set in System Common for use by
CZACB. The third level data set name qual-
ifier (DSxxxxxx, where xxxxxX is the volume
identification on the pack) is also put
into System Common at this time.

Once the tables have been set up, the
reserved list (five pages) is set up for
use by Supervisor Core Allocation, and a
list containing pointers to these pages is
built. Control returns to the mainline.

The next routine invoked is ANZSDA,
which analyzes all the direct access
devices attached to the system. The SDAT
table (CHBSDA) and the PAT pages for each
device are examined for the following
information for each device:

¢ The symbolic device address
e The physical device address
* The device type (2311, 2314, or 2301)

e The status of the device (partitioned,
not ready, etc.)

¢ The relative volume number of the pack
on the device (if public)

¢ The number of available pages on the
device

e The VOLID of the pack on the device.

The PAT pages are checked for validity
to insure that for each device:

s Relative page zerc has a PAT entry of
Xx'co*

e The PAT self-descriptor entries are
X'7F"

s The byte following the last PAT entry
contains X'FF°®

e No other entry except the last byte
following the last PAT entry contains
X'FF'.

The result of the analysis is displayed
on the printer.

If any of the above checks fail, the
SDAT entxy (SDAINV) corresponding to the
device being processed is marked X'80', the
number of available pages in the Public
Volume table is set to zero (if the device
is public¢), and, after all devices have
been processed the entire SDAT and PVT
tables are re-written on the primary paging
device. A message is sent to the operator
informing him of an invalid PAT on the
device being processed. Control then
returns to the mainline.

The next routine called is the Allocate
SERR Operating Pages routine (SOAPGS).
This routine allocates real storage to be
used as the operating area for System Erxrror
Recording and Retry. SOAPGS uses GETMEM to
search for the storage area. An attempt is
made to allocate the two-page operating
area in the same storage area as the active
PSA. Since it is possible to have more
than one PSA (in duplex mode), there may be
more than one two-page SERR operating area.
The address of each area allocated is saved
in its corresponding PSA, in the field PSA-
SOA. If no area is available, the field is
set to zero, and control is returned to the
mainline.

The JPSA routine is invoked next. It
uses information in the commuanication
region pertaining to the number of CCUs and
SEs in the system, together with the CPU
Status table of the CCB, to initialize the
CPU Status table in the PSAs for each CPU
in the system, excluding the initially-
loaded CPU. It does this by locating the
SE section of the CPU Status table in the
CCB, extracting appropriate information,
and storing it in the PSA CSTs. Informa-
tion in the communication region pertinent
to JPSA is as follows:

CCBAD pointer to CCB

SESIDS SE Map of IDs

CPUSTSS number of CPUs in TSS

PSAS list of active PSAs for the
CPUs

RESTART RESTART indicator

OTHCPU map of IDs of non-IPL CPUs (if

applicable)

The floating storage address for each SE
in the installation is initialized in the
SE entries, as taken from the extended con-
trol registers for a duplex or half-duplex
system, or from the operator input for a
simplex system. The number of SEs is
stored in a field called SETOT. The parti-
tioned flag is set on for all those SEs
that are partitioned from the system. The
number of CPUs in TSS is set in the CST
header. If the count is greater than one,
a new machine check PSW is placed in the
PSA buffer for the loaded CPU. This buffer
will be moved to the real PSA for this CPU
at the end of Startup. All other PSAs are
initjialized now. In the event of a
restart, if a CPU is failing, its entry in
the CPU Status table is set with the mal-
functioning bit on. Partitioned CPUs are
set as such in their PSAs.

The inactive prefix indicator for pri-
mary or alternate prefixes is set in the
CPU Status table entry for each CPU in the
system. Now CPU entries are rearranged in
the CPU Status table so that the entry for
a CPU will appear as the first entry in its
copy of the table. The IDs of CPUs are
stored in a byte (WRDCT) to be used by the
Intercom routine for issuing an external
start. The MTS fields MTSMAX and MTSTLM
are set to the value found in CCBCON and
the MTSCUR fields is set to 1.

The SAR is read in and the SARMCN and
SARCNL fields are set to the volue found at
CCBCON. The SARMMA and SARMAL fields are
set to the value from CCBMTT, the SARMBT
and SARBTIL fields with the CCBBAT value,
and the SARMRM and SARRML fields are set to
the CCBBAK value. Control is now returned
to the mainline. At this point RELMEM is
called and all the pages that have been
reserved for Startup are released in the
Page Map.

SCBTL is invoked for the initialization
of the Core Block table. The Page Map,
created by the main storage analysis done
in Prelude, and updated by routines in
Startup, provides input for this routine.
Now each byte within the map reflects the
condition of its corresponding page of real
storage. The byte settings and their mwean-
ings are:

3C = user page

88 = failing page (machine check
detected during storage analysis)

94 = partitioned page (addressing inter-
ruption during storage analysis)

DC = RESSUP page

Section 3: Startup Phase 31

FC = reserved for RESSUP

SCBTL moves the bytes from Page Map to
their corresponding entries in the CBT, and
initiates the user page chain. All entries
flagged as user pages are chained with both
forward and reverse links. Two entries in
the CBT header are filled in: a pointer to
the user chain and the number of user
pages. Control passes to P4800X.

This routine sets the storage protection
keys for each halfpage block of main
storage. It bases these settings on the
flags in each byte of the Page Map. The
keys and their meanings are:

= user page
5 = RESSUP page
= reserved for RESSUP

If the page is partitioned or failing it is
not assigned a key. Control now passes to
the CRRSPI (Create RSPI) routine. CRRSPI
calls Supervisor Core Allocation to assign
main storage for the SPTs and XSPTs. The
SPT/XSPT is then moved to the area reserved
by Supervisor Core Allocation. The SPT/
XSPT origin is stored in the RSPI.

PARTMP is then called to analyze the
Core Block table and the partitioning reg-
isters, and to display on the printer a map
of all storage on the system during this
Startup. The information printed
describes:

e Each storage element (A through H)

e The CPU {(none, 1, 2, or both) the SE is
connected to

e The real storage location of any pages
in error (failing storage locations are
indicated by a Core Block table entry
of X'88")

¢ All partitioned storage.

ENDABLE is called at this point to re-
initialize each terminal line. Now any
user who dials in on a dedicated terminal
will interrupt the system and request to
log-on. In order to do this a disable fol-
lowed by an enable is issued to every line.
Each line is then inspected to determine if
the line is valid, and if the correct data
set line adapter is specified. For each
dedicated line, a Prepare command is sent
out. If during Endable an unrecoverable
170 error occurs, Startup calls Reverse
Pathfinding (CEAA5R) and pathfinding
(CEAASP) respectively to determine if the
control unit was partitioned at SETPTH
time. If the unit was partitioned, Startup
ignores that bank of lines; if the control
unit is available, and Startup is able to

32

perform successful I/0 to other lines on
that particular group, a malfunction mes—
sage is sent to the printer; if no success-
ful I/0 is performed on a group of terminal
lines, pathfinding (CEAA5S) is called to
partition the contrel unit, and a message
is written to the printer. At the end of
the ENDABLE routine, if any message was
written on the printer, an appropriate di-
agnostic message is sent to the operator’'s
console.

SETTSK, the subroutine to create the
Main Operator's task, creates a TSI with a
task ID of 1, creates a GQE pointing to
this TSI, and queues the GQE on the TSI.
Task Initiation (CEAMI'l) sets up a TSI and
returns a pointer to it. The pointer is
stored in the asynchronous interruption
entry for the operator's terminal in the
Device Group tables (Pathfinding). Certain
fields in TSI are set; the task ID is set
to 1, the system operator priority flag is
set on, the interruption pending flag for
an asynchronous task is set on, and the
intertask acceptance flag is set off. A
64-byte GQE is provided by Supervisor Core
Allocation (CEALl1A). Stored in this GQE is
a pointer to the TSI, an interruption code
(2 path to the operator's terminal), and
the symbolic device address of the opera-
tor's terminal. This GQE is now queued on
the TSI's asynchronous interruption queue,
via the Queue GQE on TSI routine (CEAAFQ).

The QSCNPSA routine is invoked and
Startup exits directly to the Queue Scan-
ner. The SPSABUF routine is called to move
the PSA of the initially-loaded CPU from
the PSA buffer to its preassigned location
in main storage.

At this point, if there are any other
CPUs to be started up in the system, Inter-
com is invoked to issue external starts to
them.

When the other CPUs are ready, the
initially-loaded CPU sets a flag and exits
to the Queue Scanner. This flag acts as a
signal to the other CPUs that they may now
exit to the Dispatcher.

Startup is complete, and an operable
TSS/7360 has been created.
LINK-LOADER MAINLINE

Link-Loader (EIAAS)

Chart AC, Page 2

During Startup, the Initial Virtual
storage routines in TSS****%_ SYSIVM and IVM
Delta data sets are link-loaded onto system
paging devices. The Resident Supervisor
routines in TSS***** RESSUP and RESSUP

Delta data sets together with the Resident
Support System routines in TSS#***%* RSSSUP
and RSS Delta data sets are link-loaded and
written into main storage or the paging
disk respectively. Startup uses a CSECT,
called a load list, within each data set to
determine which CSECTs must be loaded for
Initial Virtual storage and the Resident
Supervisor.

The operator or card reader input pro-
vides for loading:

e Alternate load lists.
e Alternate and/or additional CSECTs.

Prior to searching the system data set
SYSIVM (RESSUP), Startup locks for the load
list in a hierarchy of data sets specified
by the operator or by card reader input.
When the load list is found, Startup
enables the operator (from the operator's
terminal or the card reader) to exclude the
loading of certain csects. The message

ENTER CODE FOR FUNCTIONS NOT TO BE
LOADED. ALL FUNCTIONS WANTED=EOB

prompts the operator for the codes of the
messages to be excluded. STARTUP does not
load those modules that have the selected
function code in the last byte of the load
list entry. When the codes have been
entered, Startup sequentially retrieves and
loads each CSECT named in the load list but
not excluded; again, the hierarchy of data
sets specified by the operator or by card
reader input is searched before the system
data set. In the case of user modules,
either the module name or a CSECT name can
appear in the load list. 1In either case,
Startup loads all CSECTS in the module.

The System Programmer*s Delta data sets
remain in the system from Startup to shut-
down. CSECTs in these data sets will over-
ride versions of the same CSECTs which
reside in the system data sets. Programs
of each user who logs on during this ses-
sion will run with all of these modifica-
tions to Initial Virtual storage, the Resi-
dent Supervisor and the Resident Support
System.

If Delta data sets are requested, a list
of Delta data set names and their hierarchy
numbers is printed out.

The Link-loader interrogates a load
switch set by the Startup mainline to
determine whether to load Initial Virtual
storage or the Resident Supervisor/Resident
Support System. The mainline initially
sets the switch to one so that Initial Vir-
tual storage is loaded first. The switch
is zero when the Resident Supervisor/
Resident Support System is to be loaded.
The name of the data set currently being

processed is stored in location DSNAM.
DSNAM is tested at various points in the
code to determine if Initial Virtual
storage, Resident Supervisor, or Resident
Support System is being processed. Most of
the associated tables are initiated in this
routine.

Input to the Link-loader consists of the
RESSUP, RSSSUP and SYSIVM data sets {(which
reside on the IPL volume), as modified by
those Delta data sets that have been speci-
fied by the operator or by card reader
input. (No Delta data sets need be speci-
fied, in which case no modification will
take place.) The Link-loader can then be
divided into the following three logical
sections:

SECTION ONE is used for processing Ini-
tial Virtual storage, Resident Supervisor
and the Resident Support System.

Initial housekeeping is performed upon
entry. Base registers are initialized, and
CCW addresses are relocated during Initial
Virtual storage processing.

Throughout IVM processing, whenever a
reference is made to a PMD group, a PMD, or
a CSD, a test is made to determine if pag-
ing has been done. If so, PAGTDY is called
to insure that the page is in main storage
before processing continues. Whenever a
real storage address is specified, it could
be a virtual real storage address, in which
case paging could be done.

If Delta data sets are to be loaded, the
address of the Delta volume and names of
the Delta data sets must be supplied by the
operator or by input from the card reader.
If card input is used, cards are read until
an end-of-file condition occurs or a card
with END in columns 1-3 is encountered.
Each name is checked for the required for-
mat. If a name 1is valid, it is entered
into one of three lists. When the lists
are complete, they specify the hierarchy of
search for data sets in Initial Virtual
storage, the Resident Supervisor and the
Resident Support System, respectively.

The volume label and PAT pages are then
read from the Delta data set volume. A
check is made to see if the specified Delta
data sets exist on the volume. For each of
the data sets, the following procedure is
carried out.

The DSCB is read into DSCBF, and the
EXTENT routine is called to pick up the
external page numbers on which the data set
resides. An internal table, EXTAB, is then
created, consisting of 6-byte entries con-
taining extent information. The number of
Partitioned Organization Directory (POD)
pages is found in the format-E DSCB for

Section 3: Startup Phase 33

each data set. Buffer space is allocated
for these pages, and the starting address
of the POD is stored in the CCW 1list for
reading the POD. Then, for every page of
POD, EXTAB is searched to determine the
location of the page. The first POD page
is virtual page 0 of the data set. (These
POD pages temporarily occupy a portion of
the area later used for the TDY.) The
first page is read in, and the CCW is
updated to point to the next higher page.
If the POD is missing or incomplete for a
given data set, a diagnostic message is
issued. If no POD can be found (System or
Delta) comprising Initial Virtual storage,
the Resident Supervisor or the Resident
Support System, Startup is terminated;
otherwise Startup continues.

LOADL is called to perform the following
function for processing Initial Virtual
storage, the Resident Supervisor and the
Resident Support System. Beginning with
the POD for the first data set in the
hierarchy, a search is made for the load
list member descriptor. The search con-
tinues sequentially through the hierarchy
until a load list is found. Now the
address of the input buffer is located from
INPTAD, and moved to the CCW list used to
read the load list CSECT text pages. LOADL
computes the size of the buffer area for
the load 1list text and saves the starting
address in LDTBL. The list contains only
the names of the CSECTs to be processed by
the Link-loader. A hierarchical search
through each data set is conducted for each
CSECT name in the load list. The PODs are
searched in hierarchical order until all
CSECT names are located. Then the hierar-
chy number of the data set in which a CSECT
is located is entered in the load list
entry for that CSECT. The first virtual
page number of the module in which the
CSECT is located is taken from the member
descriptor in the POD, and also placed in
the corresponding load list entry for that
CSECT. For quick access to any name in the
load list, a hashing table is created by
the routine LLLNK.

Note: For LOADL processing of user
modules, the module name, or any CSECT name
in the POD, is sufficient to cause all
CSECTs in the module to be loaded.

Next, the routine BGNTDY is called to
initialize the TDY heading area. More
pages are allocated for Initial Virtual
storage heading than for the Resident
Supervisor/Resident Support System heading,
due to Initial Virtual storage's greater
size. The pages provided are contiguous,
with area set aside for the paging of TDY,
and the starting location of the Task Dic-
tionary table (TDY) is stored in location
TDYAD. Since the TDY for IVM may exceed
the main storage limits, Startup pages all

34

the TDY in excess. The number of resident
TDY pages varies with the configuration as
follows:

2 storage boxes 64 pages
3 storage boxes 128 pages
4 storage boxes 288 pages

All TDY pages in excess are written on the
drum and paged as necessary during system
operation. The page table entries describ-
ing each of these pageable TDY pages con-
sist of 16 bytes:

Bytes 0-3 -- virtual page address
Bytes 4-7 -- pumber of pages

in PMD group
Bytes 8-11 ~- external address on drum
Bytes 12-15 -- virtual address of

beginning of PMD group

Then the BLDTDY routine is called to build
the TDY. This routine performs another
scan of the load list entries. Program
module dictionaries (PMDs) for all entries
in the load 1list are linked into the TDY.
(Any individual PMD may be applicable for
more than one CSECT.) For user modules,
any CSECT in the PMD that is not in the
load 1list has a load list entry generated
for it at this time. For each load list
entry, the following information is
incorporated:

e A pointer to the Control Section Dic-
tionary (CSD).

s An updated virtual page number
(reflecting the displacement of the
CSECT within the module).

At this point, DSNAM is checked to see
if RESSUP is being processed. If so, then
DSNAM is modified to indicate that RSSSUP
is to be processed concurrently with
RESSUP. The same process of building a
Delta data set name list, locating the load
list, and locating each CSECT in the load
list is followed for RSSSUP. The PMDs for
RSSSUP are linked into the same TDY as
those for RESSUP. Therefore, when FIXPMD
is invoked, all cross-references between
RESSUP and RSSSUP modules are resolved.

In the FIXPMD routine, standard entry
points and complex definitions are resolved
for each PMD.

Next the MAPGEN routine is called to
create the Memory Map table in the TDY
heading area. These entries are created in
ascending sequence of CSECT base addresses.

SECTION TWO is used for processing only
the IVM data set(s).

Two previously created buffers are used
to process the initial virtual storage page
tables: XTSI buffer and Shared Page table
buffer. First the segment and page tables
are created. The Segment table (ST) con-
tains: a full word entry pexr segment, the
displacement (relative to the XTSI origin)
of the segment 0 Page table (PT), and a PT
availability indicator, a 0 in bit 31.
Segment 0 is used to store private CSECTs
(containing information pertinent to a spe-
cific user or task). The TSI and the XTSI
are used to keep track of specific tasks.
Segment 1's entry contains the number of
pages in the segment and the PT availabili-
ty indicator, a 1 in bit 31. This is a
shared segment, and its page tables reside
in real storage. If there is public or
private segment overflow, additional Page
tables are created and their addresses are
placed in the corresponding Segment table
entries. CSECTs in the shared segments are
public CSECTs, so their page tables are
applicable for all users.

Next, the Auxiliary Segment table (AST)
is created with a doubleword entry per seg-
ment. Segment 0's entry has a bit set in
the flag byte, indicating that the segment
is assigned. The entry for segment 1 has
bits set to indicate the segment is
assigned, shared, and that the page tables
are in main storage. The Shared Page table
number is stored in the fifth byte. The
entries for the remaining segments (2-15)
are zeroed. Every time a page is assigned
a segment 0 virtual address, a Page table
and an External Page table (XPT) entry is
made in the XTSI. For every virtual
address assigned to segment 1, an entry is
made in the SPT and XSPT. The LOCXPT rou-
tine is invoked to create dummy page table
entries, in the event there is an odd numb-
er of pages in the segment. This also
returns the origin of the XPT or XSPT, as
well as the address of the location follow-
ing the XPT or XSPT. FORMPT is then called
to create PT and XPT entries for segment 0,
or SPT and XSPT entries for segment 1. The
same procedure is followed for additional
public or private segments. Then Link-
loader sets the 'update in place' flag in
the XSPT entries of all the SDAT pages.
Construction of the PT/XPT is accomplished
via the XTSIRT routine. Construction of
the SPT/XSPT is accomplished via the SHPTRT
routines. These two routines are designed
to facilitate the construction of Page
tables for overflow segments.

NAMLOC is called to locate the virtual
storage addresses for a list of selected
IVM entry names. These are found in NAM-
TAB2, and their addresses are stored in the
communication region. GETEXT is used to
read the text for each CSECT in the TDY
storage map. It then modifies the text in
the buffer, packs it into the the output

buffer, and writes it on the paging drum
(in the case of the public segment), or the
paging disk (in the case of the private
segment). If a print map is requested,
SYMGEN and SORDID are invoked to print a
storage map of Initial Virtual storage.
RELTDY is called to convert all the real
addresses in the TDY to virtual addresses.
The private segments of Initial Virtual
storage, and the associated tables, are now
written onto the paging disk. Next, WRTDY
is called to write out the TDY pages on the
paging disk, with the exception of those
allocated pages not being used. (The XTSI
is written on the paging drum.) BAs each
page is written, its external page number
is entered in the appropriate XPT entry by
the SETPT routine. Zeros are stored in the
first word of the XPT entry for any unused
allocated pages. The following fixed areas
in the XTSI are now initialized:

A PSW

The estimated time

The number of bytes available in the
first page

The XTSI page count

The current timer value

The user timer value

The public segments are now written onto
the paging drum (for minimal access time).
Any of the allocated pages that are not
used are not written. The SETPT routine is
invoked to enter the external page numbers
in the appropriate XSPT entries. Zeros are
stored in the first word of the XSPT entry
for unused pages. The 'update-in-place'
flag is set for XSPT entries in the SDST.

The real storage block addresses for the
first pages of CHBTCT and CHBBFP are placed
in their respective Shared Page Table en-
tries. The ‘page hold' flag is then turned
on in the XSPT entries for the first pages
of CHBTCT and CHBBFP. These are IVM CSECTS
(tables) used by RTAM, but the first page
of each must reside permanently in real
storage (that is, they must not be paged
out). See the section *RTAM Initializa-
tion'.

SECTION THREE processes the RESSUP and
RS3SUP data sets.

The NAMLOC routine is invoked to find
the real storage addresses for the list of
RESSUP entry names (NAMTAB). These
addresses are stored in the Startup com-
munication region.

SYMGEN is now called to create the com-
bined RESSUP/RSSSUP Symbol table. If a
RESSUP map has been regquested it will be
printed at this time. RCOMTB is called to
create the RSS Communication table. ADDPGS
is called to add the RESSUP/RSSSUP Symbol
table pages to shared IVM. WRSYMTB is

Section 3: Startup Phase 35

called to write the Symbol table onto the
external pages reserved for it. These
pages are located on the paging drum.
RELMEM is called to release the Symbol
table buffers and GETEXT is called to read
in the text for each CSECT in the TDY
storage map. It modifies the text, packs
it into the output buffer, and then moves
it to a preassigned location in main
storage or the paging drum. The PSA
modules, however, remain in the buffer PSA-
BUF, and if the PPV is a drum, all drums
have the SERR/Reconfiguration modules writ-
ten on them.

The address of the RSS Communication
table is inserted into the System table
field SYSRCT. BDSDST is called to initial-
ize the Shared Data Set table and create a
member entry for the RESSUP/RSSSUP Symbol
table. The SDST is then written on the
paging drum as a part of shared IVM. Buf-
fers used by the Link-loader are now
released and control returns to Startup
mainline.

The following describes the Link-loader
subroutines.
LINK-LOADER SUBROUTINES

Create Extent Table (EXTENT)

This subroutine is called by Link-loader
subroutines to create a table of extents
from format-E and format-F DSCBs of a data
set. On entry, the following fullword
parameters are passed:

¢ Next available location in EXTAB.
e Total number of pages in the data set.

e Location of first external page entry
in format-E DSCB.

For each extent field, an entry of three
halfwords is created in EXTAB:

e First external page number.

s First virtual page number.

e Last virtual page number.
After all extent fields have been pro-
cessed, an entry of all ones is created to
mark the end of the EXTAB. cControl is then

returned to the caller.

Load and Process Load List (LOADL)

Chart AC, Page 4§

This subroutine scans sequentially
through the PODs that comprise IVM/RESSUP/
RSSSUP to find the load list member des-

36

criptor. If a load list cannot be located,
a diagnostic message is issued and Startup
is terminated. The module name is CHBVM
during the IVM processing, CHBRC during
RESSUP processing, and CHBR5 for RSSSUP
processing. The routine allocates storage
for the load 1list and stores the buffer
origin in LDTBL. Next it reads the text
into an input buffer, and moves the text to
LDTBL.

A load list entry is five words in
length, and contains the following
information:

® CSECT name (8 bytes).

* Flag byte 1 (reserved).

e Flag byte 2 (=X'80' for page boundary
control, =X'40' for read-only flag,
=X"'10' for IVM pages SETXP allowed,
=X"'20' for user modules).

e Virtual page number of PMD (after the
PMD is loaded, these two bytes contain
the addresses of the first virtual page
of text).

e Pointer to CSD for the CSECT.

s Hash chain pointer.

¢ Function byte (for selective loading).

Two words of all ones mark the end of the
load list.

Begin Load List (BGNLL)

Chart AC, Page U

This subroutine performs the following
functions:

s Reads in one POD at a time (according
to hierarchy).

e Links to LLSCAN. After returning from
LLSCAN, each entry for which a corres-
ponding name was found in the POD will
have its virtual page number and
hierarchy fields initialized.

¢ Hashes and 1links all load list entries
except those for which no matching name
was found {(LLLNK subroutine).

Scan Load List (LLSCAN)

Chart AC, Page 4§

For each POD in the hierarchy that is
read, this subroutine performs one scan of
the load list, and searches the POD for a
CSECT name corresponding to each CSECT name
in the load list. If a CSECT name was
found on a previous scan, the entry is

bypassed. When an alias is found for that
CSECT in the POD, the related member des-
criptor is located, and the first virtual
page number of the member is moved into the
LLVRPN field of the locad list entry. The
hierarchy number cof the POD in which the
CSECT was found is moved intc a field of
the load list entry for that CSECT name.
For user modules, the module name or any
CSECT in the load list is sufficient.

Cn the last scan performec by this sub-
routine, the following procedure is per-
formed for each CSECT name not found:

e A diagnostic is issued.
e The CSECT name is blanked out in the
leoad 1list.

Begin Task Dicticnary Table (BGNTDY)

This subroutine performs the following
functions:

s Allocates storage for TDY heading area,
and stores the starting address of the
TDY in TDYAD.

e Initializes the fields in the TDY head-
ing area.

Build Task Dictionary Table (BLDTDY)

Chart AC, Page 5

This subroutine performs one scan of the
load list when processing a RSSSUP or
RESSUP CSECT. When processing an IVM
CSECT, three scans are made of the load
list, one for CHBTCT, one for CHBBFP, and
one for the remainder of the IVM control
sections in the load list. TCT and BFP
must be processed first, since they reside
in virtual storage, starting at the first
page of the first public segment in IVM.
If a CSECT's PMD has not been loaded, and
the CSECT is not from a user module, the
subroutine: 1links to LDPMC in order to
load the PMD; links to UPDLIL to update the
virtual page number field (which will now
reflect the displacement of the CSECT
within the module); initializes the pointer
to the CSD; and 1links to ALLOC to allocate
storage for each CSECT in the load list.
After the above scans are complete, three
scans are made for user modules, if any
exist. The modules are handled as above.

After the load list scan is complete,
control returns to Link-loader mainline.

Load PMD Into TDY (LDPMD}

This subroutine performs the following
functions:

e Links to READIN, to read in the PMD
page(s).

e Stores the hierarchy number in the
first byte of the PMD. (If RSS deltas
are present, the hierarchy number is
first incremented by the number of
RESSUP deltas present.)

e Links to ADDPMD, to allocate storage
for a PMD in the TDY, and begin ini-
tialization of the PMD preface.

e Performs further initialization of
fields in the PMD preface.

e Moves the PMD into the space allocated
for it in the TDY.

Update Load List (UPDLL)

This subroutine searches the load list
for names corresponding to each CSECT name
in the PMD. If a matching load list name
cannot be found, a test is made to see if
this is a user module. If it is not, the
CSECT is not processed and a diagnostic
message is issued indicating that that
CSECT is missing from the load list.

If the CSECT is in a user module, a load
list entry for the CSECT name is added to
the end of the load list, and the new load
list entry is processed.

If a name is found that has already been
processed (because it appeared in a pre-
vious PMD), the CSECT is bypassed. If a
CSECT name is found but the hierarchy numb-
er does not match that of the current PMD,
the CSECT is also bypassed.

If a valid matching name is found, the
pointer to the CSD is initialized in the
load 1list entry, and the virtual page num—
ber field is updated to contain the CSECT's
first virtual page number.

Storage Allocation for IVM and RESSUP
{ALLOC)

ALLOC is called by the BLDTDY subroutine
for each CSECT name in the load list for
which the corresponding PMD has not been
loaded. It allocates real storage for
CSECTs of the RESSUP data set, and virtual
storage for CSECTs of the IVM data sets.
ALLOC also resolves relocatable and abso-
lute definitions, via the LINK subroutine.

IVM and RESSUP CSECTs are handled dif-
ferently by ALLOC, as follows:

IVM: Control sections are assigned vir-
tual storage addresses solely on the basis
of their attributes, with the exception of
the ISA module, which is allocated a virtu-
al address of zero. Private CSECTs are

Section 3: Startup Phase 37

assigned virtual addresses starting with
segment 0. Public CSECTs are assigned vir-
tual addresses starting with segment 1.

If a CSECT has its page boundary flag
set, it is automatically aligned on a page
boundary. If the page boundary flag is not
set, the CSECT is assigned a starting
address at the next doubleword boundary
within a page, if it does not overflow that
page. Otherwise, it is aligned on the next
page boundary. (The only exception to this
is for the CHBMTS CSECT (Multiterminal Sta-
tus Control Block), which is assigned a
starting address at the next 64-byte boun-
dary.) Paging operations are minimized by
this set of rules, since no CSECT will
overflow a page boundary unless its length
is greater than one page.

The following rules are followed in
assigning protection keys for each load
list entry: If a CSECT is privileged, it
is assigned a protection key of X'0F°.
Nonprivileged CSECTs that are read-only are
assigned a protection key of X'0OA'. CSECTs
that are neither privileged nor read-only
are assigned a protection key of X'05°.

Note: If a user module is privileged or
has the system attribute, a message is
issued to the printer by ALLOC and the
privileged attribute is ignored.

RESSUP: The control sections in the PSA
page (PSA, CST, Recovery Nucleus, Intercomn,
SERR Bootstrap) are assigned addresses in
page 0. The SERR/Reconfiguration modules
are assigned values, simply for sorting and
identification purposes. In all other
cases addresses are assigned in lower main
storage starting at C(LOWAD). Provision is
made for allocating RESSUP text around
unavailable main storage by calling the
GETMEM routine each time a CSECT requires
main storage outside the last assigned
page. If the limits of available main
storage are exceeded, a diagnostic message
is sent to the operator. The attributes
are not inspected during RESSUP processing.

When processing a RESSUP load list
entry, a check is made for the presence of
a read-only flag. The presence of this
flag indicates that this CSECT and all sub-
sequent RESSUP CSECTs are read-only and may
be overlaid by RSS. The address of the
CSECT that contains the read-only flag is
saved for the RCOMIB routine. The address
that is saved is actually the address of
the first page boundary following the
beginning of the CSECT. CSECTs in RSSSUP
are assigned virtual addresses starting
with the beginning of segment 2 of virtual
storage.

In either case, RESSUP or IVM, ALLOC
sets the PMD link in the CSD headings and

38

links all relocatable and absolute defini-
tions by calling the LINK routine. These
are linked intc one of the TDY hash tables.
Cnce all the CSDs have been processed in a
PMD, ALLOC returns controcl to the LDPMD
routine.

Process Complex Definitions in PMD (FIXPMD)

This subroutine processes standard entry
point definitions and complex definitions
associated with a PMD. The module nane
(SEP) is posted in a hashing chain by the
Hash subroutine. The CSD link of the
module name DEF is set to all ones. 1In
this way, a SEP will never be linked to an
undefined complex DEF. A search is made
for the CSD associated with the SEP of the
module. Its attributes are examined. The
first CSD having the PROTOTYPE (PSECT)
attribute becomes the SEP CSD. If there is
no PSECT, the first CSD becomes the SEP
CSD. Its address is saved for later pro-
cessing. The LINK subroutine is called to
link the complex DEFs in each CSD into the
hash chains. The CSD links of complex DEFs
are set to all 1s. MODFY processes the
complex DEF modifier for each PMD page.

The CSD links of complex DEFs are updated
to point to the defining CSD, and complex
DEF processing is complete. FIXPMD now
picks up the address of the SEP CSD. If
there are no modifiers for the SEP, the
V-value and R-value of the first DEF in the
SEP CSD are stored in corresponding entries
of the module name DEF. The V-value of the
module name DEF is initialized by the MODFY
routine as it processes the SEP modifiers.
The CSD link is now set to point to the SEP
CsD. This is the CSD of the CSECT whose
base defines the R-value of the DEF. If a
CXD-ref is present, its wvalue is set to the
current CXD value. Control is now returned
to the caller.

Modify PMD and Text Pages (MODFY)

This is a subroutine to process reloca-
tion modifiers and perform modifications on
PMD or text pages. It modifies PMDs when
processing standard entry points or complex
definitions. It modifies text when proces-
sing external or intermnal references.

MODFY picks up, analyzes and acts upon the
relocation modifiers in the PMD. A reloca-
tion modifier contains the following
information:

e Number of bytes to modify.

e Number of reference whose V- or R-value
is used to modify the PMD or text.

e What operation to perform.

e Starting byte in page to be modified.

MODFY receives information from the
caller. Each parameter is passed in a gen-
eral register.

e Number of modifiers for page to be
modified.

e Address of first modifier for the page.
¢ Address of CSD (or PMD).

o Address of PMD preface.

e Pointer to the page.

* Address of a reference table.

If a reference is encountered and has
not been defined and it is not a Q-ref or a
CXD-ref, DEFINE is invoked to initialize
the V- and R-values before the reference
can be used to modify PMD or text. Using
the relocation modifier, MODFY now picks up
the bytes of PMD or text, and adds or sub-
tracts the V-value, or substitutes the R-
value of the reference. The modified field
is then returned to its original location.
Only one page can be processed at a time so
at the end of each page, MODFY returns to
caller.

Compute and Link Defs into Hash Chains
(LINK)

This subroutine computes the value of a
DEF or a Q-ref and calls HASH to post the
DEF or Q-ref on the appropriate TDY hash
chains. On entry, LINK expects:

e the CSECT address,

e the corresponding CSD pointer,

¢ the first DEF or Q-ref pointer,

¢ the number of DEFs or Q-refs, and

e an indication of the type of DEF (relo-
cated, absolute, complex, or Q-ref).

LINK also sets up and maintains a hole
table associated with the QO-ref value it
calculates.

On entry, the post indicator for HASH is
set on. If the DEF is a user module, the
double posting flag is set on for HASH. If
this is not a Q-ref call, the V- and R-
constants are increased by the CSECT base
address, if necessary, the CSD link is set
(for complex defs, the CSD link is set to
1s at this time), and HASH is called to
post the DEF on the appropriate chains.

If this is a Q-ref call, HASH is called
to search to see if a Q-ref by this name
has already been posted. If one has, HASH
processes the Q-ref (see below) and the

next Q-ref is examined. If no Q-ref with
this name has already been posted, the
attributes of the current Q-ref are
examined to see if the Q-ref will fit in
any of the holes, if there are any, in the
Q-ref value table. 1If a fit is possible,
the Q-value is placed in the Q-ref, the
hole is marked filled, and HASH is called
to post the Q-ref.

If a new entry is needed, the next
available location is adijusted to the prop-
er boundary. If a hole is created, the
value of the hole is placed in the hole
table. A hole table entry is one word long
and has the format:

r L] Ll
| length | boundary | Q-value
L L X

e e el

The first byte contains the length of the
hole; the second byte is the boundary value
(X'01' = byte boundary, X'02' = halfword
boundary, X'04°' = fullword boundary, X'08°
= doubleword boundary); the last two bytes
contains the Q-value of the start of the
hole.

The CXD value is updated by the attri-
butes of the current Q-ref and HASH is
called to post the Q-ref value on the Q-ref
chain.

Hash Routine (HASH)

This is a subroutine used to post or to
search for a definition in the TDY. On
entry, the address of a REF or DEF, the
address of the PMD preface, and the func-
tion code are passed as parameters. A REF
address and function code of 0 are sent if
the routine is to search, and a DEF address
and function code of 1 are sent if the rou-
tine is to post. If double posting is
required, the high-order bit is set on. A
ref address and function code of 2 is sent
if it is a Q-ref call, with the high-order
bit on for a queue search and off for a
queue post. If the first half of a REF or
DEF name is 0, the module sequence number,
obtained from the PMD preface, replaces it.
The name is hashed, and the hash value is
maltiplied by four. If the function is to
post, the hash value is used to search for
a 0 search link in the hash chain based on
the System Hash table. Once found, the
address of the DEF is stored in the search
link. If the chain is empty, the address
of the DEF is stored in the hash table and
the search link of the new DEF is zeroed.
If double posting is required (that is,
posting of the DEF on both the system non-
privileged and user hash chains), the user
hash chain is then searched; if the chain
is empty, the current DEF value is stored
in the chain. If another DEF has been

Section 3: Startup Phase 39

posted with the same name as the DEF to be
posted, an error message is issued.

If the function is to search, the hash
value is used to search for a definition in
a hash chain based in the System Hash
table. If the DEF is found, its address is
returned in a parameter register; if not, a
zero code is returned in the register.

If the call is for a Q-ref, the hashed
name is searched for on the Q-ref chain.
If the name is not found, the Q-ref is
posted either directly into or at the end
of the Q-ref hash table chain. If the
hashed name is found, the new Q-ref is
posted at the end of the same hash chain.
A test is made to see if the attributes of
the two ¢-refs agree. If they do not, a
diagnostic message is issued and the attri-
butes of the first Q-ref are assumed. The
value of the original Q-ref is given to the
new Q-ref and control returns.

If paging is needed while chaining a
search or post, the first time through a
minor paging buffer is allocated for the
size of the major buffer. Each time paging
is indicated, PAGTDY is called with a minor
buffer indicator, ensuring that the CSD is
in main storage but does not overlay the
major buffer.

Initialize Reference Entries in CSD
(DEFINE)

This subroutine is used to find the
definition that resolves a reference, and
to initialize the V-value, R-value, and CSD
link of the reference. ©On entry, the
address of the CSD (or PMD) of the
reference, the address of the PMD preface
and a pointer to the reference are passed
as input. DEFINE invokes HASH to supply
the address of the definition that resolves
a reference. Once found, the V- and R-
values and the CSD link of the definition
are moved to the corresponding words of the
reference. Should a noncomplex definition
be undefined, a zero code is returned and a
diagnostic message is issued. If a complex
definition's CSD contains all ones, it is
considered undefined and a diagnostic is
issued for it. The V- and R-values of
undefined references are set to all 1s, and
the CSD link is set to the address of the
undefined reference's CSD. If a reference
paired with a complex definition is defined
by a complex definition, a warning is
issued. The user count in the definition's
CSD heading is incremented by one and con-
trol is returned to the caller.

Locate Name in TDY (NAMLOC)

This subroutine searches the TDY for a
given CSECT or entry point name and returns
its address to the caller. The routine

40

hashes the name supplied as an entry para-
meter, searches for it in the corresponding
hashing chain in the TDY, and returns its
address. If the name cannot be found, a
diagnostic message is issued and control is
returned to the caller.

Create TDY Storage Map {(MAPGEN)

This subroutine creates the Storage Map
table in the TDY with entries in order of
ascending CSECT base addresses. Every Con-
trol Section Dictionary (CSD) in the TDY is
located and the corresponding CSECT address
is stored as an entry in the Storage Map
table. These addresses are stored at the
point where the CSECT address is greater
than that of the preceding entry and less
than that of the following entry. The
CSECT address is stored in the first word
of a doubleword entry, the CSD address in
the second word. If a map is to be
printed, main storage is obtained for
building a temporary map. The start of the
map is saved and the first word of each
page points to the next page. The pointer
on the last page is all ones. A temporary
map entry contains the following informa-
tion for each CSD in the TDY:

e Pointer to the CSECT

e Pointer to the CSD

e Version 1D (8 bytes})

¢ Hierarchy number (1 byte)

e Unused (3 bytes)
A count is kept in the TDY heading of the
number of Storage Map entries. Should the
count exceed the maximum, an error message
is issued and Startup terminates. Other-

wise, control is returned to the caller.

Locate XPT or XSPT Origin (LOCXPT)

This routine computes the origin of the
External Page table or the Extended Shared
Page table, which is aligned on a fullword
boundary following the Page table or Shared
Page table for the source segment. The
calling program passes: an indicator as to
whether or not the routine may need to cre-
ate dummy entries, the number of pages in
the segment, the type of page (regular or
shared), and the Page table origin. The
end of the PT or SPT is calculated from the
number of pages in the segment. If the
number is even, the XPT or XSPT begins in
the next location. If it is odd, a dummy
entry is created. If the indicator speci-
fies only the locate option, no dummy en-
tries are created. The end of the XPT/XSPT
is calculated from its number of pages, and
again, if odd, a dummy may be created,
depending upon the caller's option. LOCXPT

then returns to the caller with the start-
ing address of the XPT or XSPT, and the
address of the location following it.

Form Page Table {(FORMPT)

This subroutine is called to create a
Page table and External Page table entry
for all pages of IVM in either a private or
shared segment. For the private segment,
the PT and XPT form a part of the XTSI and
are written onto the paging drum. The
Shared Page tables (SPT and XSPT) reside in
real storage. Their addresses are stored
in the Resident Shared Page Index table
(RSPI).

On entry, an indicator is passed to
FORMPT telling: whether the segment is
private or shared, the number of pages in
the segment, and the PT origin or XPT ori-
gin. For each page in the given segment,
the PT or XPT entry is set to unavailable,
with a main storage address of 0. An XPT
entry for the private segment, or an XSPT
for the shared segment, is now created for
each page. The entries contain certain bit
settings:

preferred paging device = drum

type = program

availability = assigned
In a shared segment, the shared and auxil-
iary flags are set on and the GQE pointer
is set to 0 in each XSPT entry. Control is

returned to the caller.

Load and Modify Text (GETEXT)

GETEXT is invoked three times by the
Link-loader: once when processing IVM,
once for RESSUP and once for RSSSUP. The
routine reads the text pages from the IPL
volume into an input buffer, modifies text
according to information in the CSD for
each module, packs it into the output buf-
fer, and then moves it either intoc a pre-
viously assigned storage location (RESSUP)
or to the paging volumes (IVM or RSSSUP).

The TDY has previously been set up. The
Storage Map in the TDY, containing the load
address for each CSECT (or PSECT) and a
pointer to the associated C$D, determines
the loading order. Text is processed
according to ascending CSECT base addresses
in the storage map. The member descriptors
in the POD are used to locate text pages on
the IPL or Delta volume. If the member des-
criptor cannot be found, a diagnostic mes-
sage is issued and the entry is bypassed.

After the text is read and, if neces-
sary, modified in the input buffer, it is
moved into the output buffer on doubleword

or page boundaries according to the address
in the storage map. Once the output buffer
is ready, it is written on the paging drum
for shared IVM and RSSSUP, on the paging
disk for private IVM, or moved to a real
storage location if RESSUP.

When processing IVM pages, the external
page number is stored in the XPT, if pri-
vate, or in the XSPT, if shared. The ISA
is the first page of IVM text to be
processed.

When processing RSSSUP pages, the
external page number is stored in XPT2 of
the RSS Communication table.

Various tables are initialized before
they are written on the paging volume.
When CSECTs in the name lists (CSECTs
referred to by later portions of Startup)
are processed, the number of external pages
used by them on the paging volume, and the
addresses of their entries in the XSPT and
XPT, are saved in the Startup communication
region.

As GETEXT processes RESSUP, the PSA
modules are taken first. PSA modules are
saved in a Startup buffer, and are not
loaded for the initially-loaded CPU until
later on in Startup.

The SERR/Reconfiguration modules are
written on all drums in the system, and are
not loaded into main storage. They are the
last modules to be processed. A provision
is made for loading RESSUP text around
unavailable main storage pages. Control is
returned to the caller.

Relocate TDY Entries (RELTDY)

This subroutine is invoked to convert
the Task Dictionary table entries from real
storage addresses (RSAs) to virtual storage
addresses (VSAs). It is the first routine
of two (the other being RELTAB/RELTBX)
called to complete the conversion.

RELTDY must first complete the Reloca-
tion table (TDYTAB). On entry the first
two words of a three-word group (first RSA,
last RSA) are complete. RELTDY must pro-
vide the reloccation factor to convert RSA
to VSA, word 3. After the entire table is
complete, two full words of ones are set
following the last group.

Next the input parameters are determined
for each call to RELTAB/RELTBX. The rou-
tine RELTAB or RELTBX performs the actual
relocation on the following entries:

1. Pointers in the system privileged,
systenm nonprivileged, and user hash
tables (RELTAB).

Section 3: Startup Phase 41

2. Control Section Dictionary pointers in
the TDY storage map (RELTAB).

3. PMD group headers (RELTAB).

4. Each Standard Entry Point (SEP) CSD
link (RELTBX).

5. Each SEP search link (RELTBX).

6. PMD preface link to next PMD preface
(RELTBX) .

7. All SEP reference CSD links (RELTAB).
8. Each PMD link in CSD heading (RELTBX).
9. All Definition CSD links (RELTBX).
10. All Reference CSD links (RELTBX).

11. TDY heading link to PMD group
(RELTBX) .

12. TDY heading pointers to System Hash
Table, User Hash Table, and storage
map (RELTAB).

13. Pointers in the dynamic loader Q-ref
hash table (RELTAB).

If, during address conversion, RELTDY
finds that conversion will cause private
segment overflow, the three-word entry in
TDYTAB containing pages in both segments is
split into two three-word entries. The
first three-word entry is for the end pages
in the original segment. The second entry
is for the first pages in the overflow seg-
ment. Each entry in the TDYTAB corresponds
to a section of the TDY which is located on
contiguous pages in main storage.

If paging has been done, the last entry
will be contiguous virtual real storage
addresses with the high-order bit on.

Once control is returned from the
RELTAB/RELTBX routine and the final
addresses have been converted, control is
returned to the caller.

Relocation Table Processing (RELTAB,
RELTBX)

This subroutine is called by RELTDY to
complete the conversion of RSAs to VSAs for
the TDY. There are two entry points,
RELTAB and RELTBX. Entry at RELTAB will
relocate a series of TDY addresses, the
number of which is furnished as a parame-
ter. Also passed is a pointer to the first
address to be processed, and a length
value, indicating the increment to the
first address to reach the second, and so
on. Only one TDY address is processed by
RELTBX and the address of that entry is
passed as a parameter.

42

The TDYTAB is a table of one or more
three-word groups. If the TDY pages are
loaded contiguously in main storage, there
is only one group in TDYTAB. The first
word of each group has the real address of
the first page of the group, and the second
word contains the real address of the last
page of the group. The third word contains
the logical relocation factor to be applied
to each page within the group. There will
be a group for every set of noncontiguous
pages in the TDY. The end delimiter of
TDYTAB is two full words of all 1s.

Processing of RELTBX and RELTAB is
identical, except that RELTBX relocates
only one page, while RELTAB relocates the
number of pages it receives.

The following steps are taken:

1. The TDY RSA parameter is inspected.
If 0, control goes to step 3; no relo-
cation is necessary. If not 0, relo-
cation is necessary and the first
three-word group of TDYTAB is
inspected to see if a match can be
found within the group which corres-
ponds to the RSA. There will always
be at least one group in TDYTAB. If
the address is within the group, con-
trol passes to Step 2. If not, the
next TDY entry is inspected until the
right group is found.

2. Once the proper TDYTAB group is
located, the routine relocates the RSA
by the value in the third word of the
group, and the new value, now a VSA,
is stored back into the TDY.

3. 1If there are any more RSAs requiring
relocation, control is sent back to
step 1 and the processing repeated for
all given RSAs. When all RSAs have
been relocated, control returns to the
RELTDY routine.

Set External Page Number in XPT/XSPT

(SETPT)

This subroutine is called to set the
corresponding external page number or head
and slot number in the XPT or XSPT entry
for a VMA. It is called whenever a page of
text, previously assigned a virtual storage
address, is written on an external page of
the paging volume. The protection key for
each page is set according to the value in
the load list entry for the CSECT to which
this page belongs. On entry, two Startup
cells contain certain input information:

STARTAD = virtual storage address.
XPGNO = external page number.

First, the segment number is determined
from the virtual storage address. The

length of the segment and the starting
address of the PT or SPT are used as param—
eters to invoke the subroutine LOCXPT,
which locates the starting address of the
XPT or XSPT. When control is returned to
SETPT, the entry of the page containing the
virtual address is located by searching the
XPT/XSPT entries arranged in ascending vir-
tual address sequence. The external page
number (disk), or head and slot number
(drum), and protection key are stored in
the entry, and control is returned to the
caller.

If RSSSUP is being processed, entries
are made in XPT2 of the RSS Communication
table. The protection key is not set for
RSS pages.

Read Page From IPL Volume (READIN)

This is the subroutine called to read a
page of a data set from the IPL or Delta
volume. It searches EXTAB for the extent
containing the virtual page number which
was supplied as a parameter. It calculates
the corresponding external page number. If
the virtual page number cannot be found in
EXTAB, a diagnostic message is issued and
READIN sets an error code and returns to
the caller. Otherwise, a subroutine is
called to convert the external page number
to a 2311 or 2314 CCHHR. The CCHHR is set
in a CCW area to read a page into the
Startup input buffer. READIN sends the
address of the IPL or Delta volume to
EIAA2, which builds and executes the chan-
nel program, checks for I/0 errors and
returns. The caller's virtual page number
is incremented by one, and control is
returned to him.

Delta Data Set Routine (DELDS, DELTBL,
DELBTB)

Chart AC, Pages 3 and 4

This subroutine asks the operator (via
OPER) if a Quickstart data set is to be
built. The operator responds with the
device address of the volume on which the
Quickstart data set is to be built. The
response is checked to make sure that the
volume specified is VAM2-formatted. If so,
parameters are initialized to indicate to
the Link-loader (EIAAS) that a Quickstart
data set is to be created after 1link-
loading IVM and RESSUP.

DELDS then asks the operator or reads a
card to determine if Delta data sets are to
be loaded. If the system is not to be
modified, the operator or card reply is 'N®
and Startup proceeds to load Initial Virtu-
al storage, the Resident Supervisor and the
Resident Support System from the system
data sets on the IPL volume.

If the reply is 'Y', DELDS obtains buf-
fers for reading in a Delta data set name
list and for building a Delta data set name
list. The address of the Delta volume and
the Delta data set specification are supp-
lied by the operator or by card input. If
card input is used, cards are read until an
end-of-file condition occurs or a card with
END in columns 1-3 is encountered. Then
DELDS checks to see that the device address
is the proper length, and that the charac-
ters in the data set specifications are
valid. (The address of the Delta data set
volume must be different from that of the
IPL volume and the paging disk.)

Next, DELDS obtains the volume label and
PAT from the Delta data set volume. The
DELTBL routine is invoked to build a table
of Delta data set names.

If the operator has specified 'ALL' as
the data set specification, all appropri-
ately qualified Delta data sets on the
volume will be searched prior to the system
data sets on the IPL volume. The list of
names of data sets to be searched will be
generated in the order in which they appear
on the DSCB pages.

If individual data set names were sup-
plied (as the specification), each is
checked for the required format. If
correct, each is entered into the IVM,
RSSSUP or RESSUP list in the order speci-
fied by the operator or by card input.

If all data sets identified by a par-
tially qualified data set name are to be
searched in the order in which they are
found on the volume, only the partialily
qualified data set name need be entered by
the operator. 1If a specified Delta data
set name does not appear among the DSCBs on
the DSCB pages on the Delta data set
volume, a diagnostic message is issued and
the name is not entered in the list. If no
DSCBs can be found (system or Delta), com—
prising Initial Virtual storage, the Resi-
dent Supervisor, or the Resident Support
System, Startup is terminated; otherwise
Startup continues. If one or more Delta
data set names are (explicitly or implicit-
1y) specified more than once, a diagnostic
message is issued, and only the first spe-
cification is entered into the 1list.

The system data sets TSS**#**%_ SYSIVM,
TSS*** ¥ RESSUP, and TSS****% RSSSUP are
always placed last in the list. The DELTBL
routine is invoked to make entries into the
data set table (DSTBL). As entries are
made into the DSTBL, the external pages of
that data set are entered into the extent
table (EXTAB) via the EXTENT subroutine.

Section 3: Startup Phase 43

Initialize the XTSI and Page Table Pages
(XTSIRT)

The XTSIRT routine is called to create
an External Task Status Index (XTSI) for
the Main Operator's Task. First, the fixed
format portion of the XTSI is initialized.
This entails setting up the following
fields:

e the cold start PSW
¢ estimated time

e user time value

XTSI page count

Next, the Segment table is initialized.
This table begins on the first eight-word
boundary following the fixed portion of the
XTSI. The Segment table entry for segment
0 is set to the relative origin of the Page
table (PT) within the XTSI page. The Seg-
ment table entry for the shared segments is
initialized by the Shared Page Table
routine.

Now, the Auxiliary Segment table (AST)
is initialized. The 'assigned' flags are
set in the AST entries for segment 0 and
segment 1, indicating that these segments
have already been allocated.

Next, the Page table (PT) and External
Page table (XPT) for segment 0 (private)
are constructed within the XTSI page. An
even number of pages must exist within seg-
ment 0. Dummy entries are created within
the PT if an odd number of pages exist
within segment 0. LOCXPT is called to lo-
cate the origin of the XPT within the XTSI

page.

FORMPT is then called to create PT and
XPT entries for segment 0. If there is an
overflow private segment, it is determined
whether or not its PT and XPT will fit in
the original XTSI page. If they will fit,
the PT and XPT are created in the same
manner as for segment 0 and the ‘assigned’'
flag is set in the AST entry for that seg-
ment. If the PT and XPT will not fit on
the original XTSI page, a new Page table
page is allocated and a pointer to this
page is set in the XTSI. A flag is also
set in the AST entry to indicate that the
Page table for this segment is located on
an overflow XTSI page. When the XTSI is
paged out (the PGXTSI routine), the extern-
al location of the particular XTSI page
containing the Page table for this segment
is entered in the appropriate AST entry.
When the first additional Page table page
is allocated, the XTSI overflow flag is set
on.

Ly

The Page table page header is initial-
ized next. For each additional Page table
page that is allocated, forward and back-
ward pointers are set and the count of the
Page table pages in the XTSI is incremented
by 1.

Following the Page table page header,
the PT and XPT is constructed. ZEach PT and
XPT is preceded by a Page table header.

The size of the Page table varies as a
function of the number of pages within the
segment which have been allocated. There-
fore, the block size is set in the Page
table header. The 'segment availability’
flag is set to active.

If there is more than one private over-
flow segment, it is determined whether an
additional PT and XPT can fit on the exist-
ing Page table page. If it can, the count
of the number of Page tables in the Page
table page is incremented by 1. This
field, which is located in the Page table
page header, is initially set to 1 whenever
a new Page table page is allocated. If an
additional PT and XPT cannot fit on the
existing Page table page, a new Page table
page is allocated. The PT and XPT is then
constructed for this segment. A pointer to
this Page table page is set in the Segment
table entry for this segment and the
'assigned' flag is set in the AST. The
segment number is stored in the header, for
cross-referencing purposes. Pointers are
established to keep track of available
space on the Page table page.

control returns to Link-loader mainline.

Initialize SPT and XSPT for Public Segments
(SHPTRT)

This routine locates and forms the
Shared Page table (SPT) and External Shared
Page table (XSPT) for each public segment.
This is accomplished in the following
manner.

First, LOCXPT is invoked. The LOCXPT
subroutine computes the origin of the XSPT
and creates dummy Page table entries in the
event that there are an odd number of pages
in the segment. FORMPT is invoked next.
The FORMPT subroutine creates External
Shared Page table entries. All the Shared
Page tables reside in main storage.

For each additional overfliow public seg-
ment (if any), an additional page of main
storage is allocated for the SPT and XSPT.
The Segment table entry and AST entry are
initialized for each overflow segment to
reflect the length of the segment and the
SPT number. In addition, the 'PT in main
storage', ‘shared segment’', and segment
‘assigned' flags are set in the AST for
each overflow public segment.

The SPT and XSPT have now been created
in buffers. These tables will be relocated
later by the CRRSPI routine.

Controcl now returns to Link-loader
mainline.

Write Task Dictionary Table (WRTDY)

This routine writes the Task Dictionary
table (TDY) out onto the paging disk.
First, the TDY header and map are written.
The unused pages of the TDY header are not
written. Then, the TDY itself is written
out.

As each page is written, its external
page number is entered in the appropriate
XPT entry by the SETPT routine.

Control returns to Link-loader mainline.

Build RSS Communication Table (RCOMTB)

The RCOMTB routine creates the RSS Com-
munication table (RSSCOM).

A virtual storage area is defined by its
page tables. The RSS Communication table
defines the virtual storage used by RSS.
The Page tables define which external pages
are mapped into each segment of virtual
storage. RSSCOM resides in real storage
following the last Resident Supervisor
CSECT. RCOMTB decides whether or not
RSSCOM will fit on the last Resident Super-
visor page. If not, an additional page is
allocated.

RCOMTB creates Page tables PT2 and XPT2
which are initialized with real storage and
external storage addresses of the nonresi-
dent portion of the RSSSUP data set. This
Page table format is identical to that of
the virtual storage Page table format of
segment 2. RSS uses this format because
the Dynamic Address Translation hardware is
active during RSS execution.

Additional Page tables are created in
RSSCOM. PT3 and XPT3 are initialized with
the address of the RESSUP/RSSSUP Symbol
table. (This Symbol table resides on the
paging drum as a portion of IVM.)

XPTH contains as many entries as the sum
of entries in PT2 and PT3. The entries are
the external addresses of the read-only
portion of the Resident Supervisor which
must be reloaded after the execution of
RSS.

When the nonresident porticon of RSS is
to be executed, it is loaded into the por-
tion of real storage occupied by the read-
only portion of the Resident Supervisor.
RCOMTB determines whether there are enough
pages in the read-only portion of the Resi-

dent Supervisor for the nonresident portion
of RSS. If there are not enough pages, RSS
is responsible for allocating this room for
the remainder of itself.

To facilitate this during system
startup, Startup fills as many PT2 and PT3
addresses as it can. It passes this "Page
Status” information to a resident RSS con-
trol module. "Page Status™ information is
described as follows:

r T T T
| ng | nz | n3g | n
L 1 1 n

Page Status

b e el

where

n,; = total number of Segment Two Page
Table (PT2) entries required to
page in the transient portion of
RSS on a demand basis;

n, = number of Segment Two Page
addresses resolved by Startup
(page addresses of the pageable
portions of the Resident
Supervisor);

na = total number of Segment Three Page
Table (PT3) entries required to
page in the Symbol Dictionary on a
demand basis;

n = number of Segment Three Page
addresses resolved by Startup
(remaining page addresses of the
pageable portions of the Resident
Supervisor.

RSS then computes the number of real
storage pages it needs from "Page Status"™
and pages the remainder of RSS into real
storage.

PTO0 contains a map of all real storage
addresses from virtual page X*00' to X'FF'.
PT1 contains a map of all real storage
addresses from virtual page X'100' to
X'1FF".

A Segment table is initialized with en-
tries for PTO, PT1, PT2, PT3, and PTi.
Each entry contains the length and address
of the respective page table. Control
returns to link-loader mainline.

Write RESSUP/RSSSUP_ Symbol Table (WRSYMTB)

The Write Symbol table routine (WRSYMTB)
writes the RESSUP/RSSSUP Symbol table on
the paging drum. It records the external
address in the XSPT and in XPT3 of the RSS
Communication table. This table had pre-
viously been built by SYSGEN.

Section 3: Startup Phase U5

Add Pages to Shared IVM (ADDPGS)

ADDPGS adds new pages to shared IVM by
expanding the last assigned SPT/XSPT. If
not enough room exists in the last assigned
SPT/XSPT, ADDPGS creates a new SPT/XSPT.
The Segment table and Auxiliary Segment
table entries for the public segment
involved are updated.

ADDPGS is called in order to add the
RESSUP/RSSSUP Symbol table pages to shared
IvM.

Build Shared Data Set Table (BDSDST)

The Build Shared Data Set table routine
initializes the Shared Data Set table and
sets up a member entry for the RSS Symbol
table. This member entry is generated so
that VSS may calculate the virtual storage
address of the RSS Symbol table. Since the
RSS Symbol table is placed into virtual
storage following the link-loading of Ini-
tial Virtual storage, it is not possible to
resolve this address in the normal manner.
(See FIXPMD routine for normal address
resolution.)

The address of the RSS Communication
table is computed by VSS from the Shared
Page table number and the byte address
relative to the beginning of the Shared
Page table.

The member entry for the RSS Symbol
table (CHBRST) is located by referring to
the hashing chain pointer which Startup
initializes in the SDST header. A pointer
to the SDST is placed in the ISA and the
SDST is written on the paging drum. SETPT
is called to initialize page table entries
for the SDST.

QUICKSTART SUBROUTINES

Read in Quickstart Data Set (QKREAD)

QKREAD reserves pages for the buffers it
needs, and then calls RDSCB to locate the
Quickstart format—-E DSCB on the IPL volume.
The recording buffer pages are located
within the DSCB, and all three are read in.

For each entry in the recording buffer,
up to the first entry of X'FF*', the next
DSCB location is found (QKRD90), and the
page is read from the Quickstart IPL volume
(OKRD8OR) and written to the primary or
secondary paging device, as necessary
(QKRD8OW) .

After IVM is brought back in, if the
system is duplex or half duplex, QKREAD
checks that the PSAs are in the same loca-
tion, and the PSA buffer is read back in.
The remainder of the pages in the recording

46

buffer, up to the first X'FF' entry, are
read into the location specified in the re-
cording buffer (QKRD8S8OR) from the next
location in the DSCB (QKRD90), and the
RESSUP flag is set in the byte map. If
there are any drums, the SERR/
Reconfiguration pages are also read in from
the Quickstart volume and written on each
drum in the system.

The XTSI and page table page buffers are
read back from their DSCB location {(QKRD90)
into the buffer location indicated in the
Communication Region.

The buffers are released, and control
returns to offer the demounting of the IPL
pack.

QKRDB8OR —-- reads from the Quickstart IPL
volume to a buffer.

OKRD8OW -- writes a buffer. If the device
type code in the recording buf-
fer is X'00' (indicating 2301},
it will write to the primary
paging device. Otherwise, it
will write to the secondary pag-
ing device.

QKRD90 -- locates the next available rela-
tive page number entry for the
Quickstart data set.

At any point, if an unrecoverable I/0 error
occurs, the message ERROR READING QUICK
START DATA SET -- QUICK START TERMINATED is
issued to the operator and Quickstart ter-
minates. Quickstart also terminates if
reading in the Quickstart data set overlays
the Page Allocation table on the secondary
paging volume.

Quickstart Data Set Creator (CEIAB)

Chart AC, Page 8

The Quickstart routine consists of a
mainline routine that calls a number of
independent subroutines with specific func-
tions, and a set of common subroutines.
Upon entry, the mainline (Chart AC, Pages
8-10) sets up standard linkage and executes
initializing steps. Quickstart then links
to a routine (DSCBE) to create the format-E
DSCB for the Quickstart data set (or to
locate the DSCB if the data set already
exists). Quickstart then calls subroutine
DSC30 to locate and update the DSCB entry
to reserve three pages for the recording
buffers. DSC30 is called again to locate
and reserve pages for Startup and the CCB,
and DSC60 is called to write out the CCB
pages. The number of Startup pages and the
number of CCB pages is recorded in the re-
cording buffer.

Link-edited IVM is then written on the
Quickstart volume, beginning immediately
after the CCB. For each assigned segment,
the external page table (XPT), or the
external shared page table (XSPT) is
located in main storage; the PAGRT subrou-
tine is called to write all pages in that
segment onto the Quickstart data set. RSS
page tables are then written as a part of
IVM. Upon completion of IVM a word of
X'FF* is put in the recording buffer.

The PSA buffer (or the page 0 buffer in
a simplex configuration) is next written on
the Quickstart volume, and the address of
the PSA is placed in the recording buffer.
In a duplex system, the address of the
other CPU's PSA is also placed in the re-
cording buffer.

By use of the byte map table (MEMAD)
used by Startup, all pages that are
assigned to RESSUP and RSSSUP (that is, all
pages with X'DC' in this byte) are written
on the Quickstart volume, and the addresses
of these pages are placed in the recording
buffer. Once RESSUP has been written, a
one-word entry of X*'FF* is made in the re-
cording buffer.

The XTSI and all assigned page table
buffers are then written on the Quickstart
volume and their addresses are placed in
the Communication Region of Startup.

The recording buffer itself is then
written in the Quickstart data set in the
pages reserved for it. The last DSCB is
closed out. If there are excess pages in
the Quickstart data set from a previous
Quickstart data set creation, these pages
are then freed. The DSCB buffer and the
PAT for the Quickstart volume are written
in the Quickstart data set.

Startup is then located and written on
the Quickstart volume on the pages pre-
viously reserved for it.

Write IVM Page (PAGRT)

Chart AC, Page 11

This subroutine writes pages from an
external page table or from an external
shared page table onto the Quickstart
volume. For each nonzero entry in the XPT
or the XSPT for a given segment, PAGRT
reads that relative page number off the
primary or secondary paging device. The
relative page number is obtained from the
XPT or XSPT entry. For a drum, the slot/
page format is first converted to a rela-
tive page number format, and Startup sub-
routine EIAA2 is called to perform the READ
into the Read/Write buffer. This buffer is
then written on the next available page of
the Quickstart data set. The device-type

code of the direct access device for the
current segment, and the relative page
number of that device, are recorded in the
recording buffer entry (public segments are
written to a drum if one exists).

The PAGRT subroutine is called once for
each assigned segment in IVM.

Create Format—-E DSCB (DSCBE)

Chart AC, Page 12

This subroutine creates a format—-E DSCB
for the Quickstart data set, or locates a
previous one on the Quickstart volume.

DSCB first calls GETPAT, a Startup sub-
routine, to read the DSCB pages on the
Quickstart volume. Each DSCB is searched
for the identifier TSS****x#% QKSTART; if
this is found, the relative page number and
the slot number are saved and return is
made to the mainline. If no format-E DSCB
is located by the PATLOC subroutine, a new
DSCB page is located (by calling PATLOC)
and its relative page number is saved.

Slot 0 is marked as the slot number for the
format-E DSCB. Fixed format-E information
(the identifier TSS****% QKSTART concate-
nated with .DSxxxxxX, where xxxxxx is the
volume identification of the Quickstart
volume) is then moved in. VAM-sequential
and fixed-length flags are set, and the
record length is set to 4096 bytes, as is
the field containing the number of bytes on
the last page. The format-E indicator is
set and control is returned to the mainline.

Locate DSCB Word/Free Page (DSCBF/DSCBA)

Chart AC, Page 13

If entry is at DSCBF, this subroutine
locates the next available word in the
DSCB. If entry is at DSCBA, the subroutine
frees all remaining pages in the Quickstart
data set.

If there is more room in the current
DSCB, the displacement is updated, the
location is calculated by displacement into
the DSCB buffer and, if pages are not being
freed, the number of pages in the data set
is updated by one and control is returned
to the mainline.

If pages are being freed (entry was at
DSCBA) the next relative page number, if it
exists, has its entry freed in the PAT
table, the entry is freed in the DSCB, the
number of pages freed is updated, and
transfer is made to see if the next dis-
placement is in the current DSCB. When
there are no more pages, the DSCB type is
set in the E-format DSCB, the Checksum
value is calculated, and control returns to
the mainline.

Section 3: Startup Phase 47

If the current DSCB is full, a check is
made to determine if the Quickstart data
set previously existed, or if entry was to
free pages. If neither is true and it is
not a format—E DSCB, the format-F indicator
is set, and a check is made to see if
another DSCB can fit on the page. The new
slot number is saved internally, as well as
in the forward pointer of the previous
DSCB, along with the relative page number
for the DSCB page. The Checksum value is
calculated, and, if a new page has not been
started, the displacement is set to zero
and the location of this DSCB within the
buffer is calculated in preparation for an
exit. If entry was to free a page, on the
first time through, the type is set in the
DSCB and control branches to calculate the
Checksum value.

If this is not the first time through,
the type and Checksum are changed to zeros,
and control branches to check if the new
DSCB page is the same as the old.

If there are no more DSCB pages on the
chain, and if a page is not being freed,
the exist flag is turned off in the Quick-
start byte, the new-data-set-larger flag is
turned on, and control branches to get a
new DSCB page. If a page is being freed,
all other pages have been freed and the
subroutine exits to the mainline.

Locate Available Page (PATLOC)

This subroutine locates an available
page on the Quickstart volume by searching
the PAT for an indicator of X'00'. If the
end of the PAT is reached, the message
INSUFFICIENT SPACE ON QUICKSTART VOLUME -
QUICK START CREATOR ABORTED is sent to the
operator and control returns to Startup.
Otherwise, the relative page number of the
page just located and a pointer to its PAT
entry are returned.

Update Buffer Location (RECPG)

This routine updates the address of the
next available location in the recording
buffer. If a buffer page is full, a check
is made to see if it was the last recording
page. If it was not, the current buffer is
written out again, the current buffer
address is updated, the next available
iocation pointer is reset and control
returns to the mainline. If no new page is
needed, just the pointer is updated. If
the last page was just filled up, the
message

RECORDING BUFFER FULL
QUICKSTART CREATCOR ABORTED

is sent to the operator and control returns
to the Startup module.

48

Buffer Cleanup (DSC20)

This subroutine clears out the contents
of a buffer.

XSPT Entry Convertor (DSC25)

This subroutine converts the XSPT entry
of a drum from slot/record format to rela-
tive page number format.

Read from Quickstart Volume (DSC50)

This subroutine reads from the Quick-
start volume into a buffer. If an unrecov-
erable I/0 error occurs, a message is sent
to the operator:

I/0 ERROR CREATING QUICKSTART DATA SET
QUICKSTART CREATOR ABORTED

and control returns to the mainline.

Write to Quickstart Volume (DSC60)

This subroutine writes the contents of a
buffer onto the Quickstart volume. If an
unrecoverable I/0 error occurs, a message
is sent to the operator:

I/0 ERROR CREATING QUICKSTART DATA SET
QUICKSTART CREATOR ABORTED

and control returns to mainline.

Calculate Checksum (DSC75)

This subroutine calculates the Checksum
of a DSCB and stores it in the previous
DSCB.

Error Exit (ERREXA)

This is the routine given control when
an error occurs. A message is issued to
the operator indicating the type of error
encountered. If the Quickstart data set
already existed or if the PAT had already
been written, the pages are freed and only
the format-E DSCB indicator remains.
Otherwise, no indication is made and con-
trol returns to Startup. On a recursive
call to the error routine, a message is
issued to the operator:

CATASTRCPHIC ERROR ENCOUNTERED - QUICK-
START CREATOR TERMINATED

and CEIAB terminates.

COMMON STARTUP SUBROUTINES

Read/Write Operator Routine (OPER)

This routine is called to issue a
desired message and accept a reply, if
requested. On entry, a general register

contains the number of the message to be
issued. On the first pass, OPER relocates
all address constants in the message
address table. Then the parameter message
number is used to index into the table, to
obtain the length and address of the appro-
priate message. Another parameter register
indicates one of the options (write-only,
read-only, or read/write), and if appli-
cable, the length of the read. STERM is
invoked to do the actual I/0 on the opera-
tor's terminal. Control returns to the
caller.

Read Cards Routine (READCARD)

This routine is called when operator
response messages are to be entered as card
input and not through the operator's ter-
minal. If a card is read successfully, it
is printed at the operator's terminal (via
OPER) and control is returned to the caller
with register 1 pointing to the address of
the card buffer. If an end-of-file occurs,
zeros are returned in register 1.

Print Message Routine (PRINTER)

This routine is called to print a mes-
sage on the printer, and, if the message
corresponds to a major error, to print the
message on the operator's terminal and ter-
minate Startup. Parameter registers speci-
fy the message number and the severity of
the error. PRINTER calls EIAAZ to send the
message to the printer. Normally, control
is now returned to the caller. However, if
a major error occurs, PRINTER invokes OPER
to issue the same message tc the operator's
terminal, and then enters the wait state.

Get Field Routine (GETFLD)

This routine is called to locate a
desired field within a given area. (A
field is defined as a group of characters
within two delimiters. The delimiters
include the beginning and end of the area,
a comma, a tab character, (x'15'), and a
string of one or more blanks.) GETFLD
scans through the area until the given
field is located and then returns the
length and address of the field. If the
field is not found, the length is set to 0.
The address is set to -1 if the end of the
given area was reached before the desired
field, or to 0 if the field contained no
information.

Operator's Terminal I/0 Subroutine (STERM)

This is a subroutine called by Startup
routines when a message must be printed on
the operator's terminal. Its purpose is to
initiate and control any ccmmunications
between Startup and the system operator.

On entry, parameter registers contain eith-
er the address of a CCW list, or data to be

inserted into a prestructured CCW. This is
determined by checking the high order byte
of the first parameter register. If non-
zero, the prestructured CCW is used; other-
wise the address of the CCW list is set in
the CAW. 1I/0 processes are initiated via
an SIO, and comprehensive error checks are
undertaken to insure the successful initia-
tion and completion of all the I/O steps.
If the communication fails after ten re-
tries, a message is issued on the printer.
Should there be any malfunction with print-
er I/0, this process is tried again 10
times. 1In any event, this subroutine ter-
minates Startup whenever the system opera-
tor's terminal cannot be reached. On a
normal exit, at successful completion,
registers are restored and control returned
to the caller.

Move Text (MVTEXT)

This subroutine moves bytes of text from
one location to another. 1In general it
moves information from an input buffer to
the output buffer. Entry parameters con-
sist of the number of bytes to be moved
(specified in INAD), and the address of
their destination (specified in OUTAD).
Bytes are moved in blocks of 256 and are
moved in ascending seguence by location,
beginning at INAD. Should the last move
require less than 256 bytes, only the actu-
al number of bytes remaining in the block
are moved. Control is returned to the
caller at the completion of the move.

Write Page on Paging Volume (OUTPG)

This subroutine writes a page from the
ocutput buffer onto either the paging disk
or the paging drum. Two cells are set up
in main storage before entry to OUTPG takes
place, XPGNDK for the disk (the primary
paging volume) and XPGNDR for the drum (the
secondary paging volume). XPGNO contains
the external page number on the paging
volume where the output buffer page is
written. PAGAD contains the device and
hardware address type of the primary paging
volume and SPGAD contains the device type
and the hardware address type of the secon-
dary paging volume. After determining the
device type, OUTPG branches to ATRAN for a
2311 disk, to CTRAN for a 2314 disk, or to
BTRAN for a 2301 drum. These routines con-
vert the external page number to its corre-
sponding CCHHR. Then, having set entry pa-
rameters for it, OUTPG calls EIAA2 to
execute the CCW list for writing the output
buffer on this CCHHR of the paging volume.
If an 1I/0 error occurs, QUTPG increments
the external page number by one and retries
the whole process. Once the attempt is
successful, the output buffer is zeroced and
control returns to the caller.

Section 3: Startup Phase 49

Create Symbol Table (SYMGEN) and Print
Storage Map (SORDID)

This subroutine is called to create a
table containing names and values of
CSECTs, and their entry points in Initial
Virtual storage or RESSUP/RSSSUP. The user
is given the option of requesting a printed
map of either Initial Virtual storage and/
or the Resident Supervisor. If a map is to
be printed, storage temporarily allocated
for the map in MAPGEN is released and SOR-
DID is called. SORDID sorts the CSECT
names both alphabetically and numerically.
The CSECT names, their respective real or
virtual addresses, the version IDs and
hierarchy numbers are arranged in ascending
sequence within three columns. These names
and values are printed in the form of a
storage map, a page at a time, on the
printer. Whether or not printing of the
storage map is requested, linkage is pro-
vided to the RESSUP/RSSSUP Symbol table for
RSS/VsSS.

The symbols and their addresses are
located for both data sets in the temporary
map created by MAPGEN. The number of en-
tries is found in the TDY heading and the
origin of the table is in a field called
JSMPBG. Each entry points to a CSD. A
24-byte entry is created for each defini-
tion in the CSD; an 8-~byte left-adjusted
name, a 4-byte value field, an 8-byte ver-
sion ID, a 3-byte hierarchy number and an
unused byte. The version ID is either an
8-byte name specified by the creator of the
CSECT or a binary coded time stamp. The
high order bit of the version ID is tested,
and if it is off, the version ID is con-
verted to the form: mm/dd/yy hh:mm:ss.
Entries are made alphabetically. If the
number of potential entries exceeds the
buffer space allowed, a diagnostic message
is issued but the subroutine is not ter-
minated. A heading is added to the symbol
table identifying the storage map. The
symbol table is printed in hexadecimal
print characters.

The buffer space for RESSUP's storage
map is a fixed size of one and a half
pages. IVM's buffer size is determined
dynamically. The following are considera-
tions for the RESSUP/RSSSUP Symbol table
only:

e A combined symbol table of RESSUP/
RSSSUP is created for the use of RSS/
VSS. This symbol table is later writ-
ten on the primary paging device by the
Write Symbol Table (WRSYMTB) routine.

e SERR/Reconfiguration modules are

bypassed. At the conclusion of SYMGEN,
control is returned to the caller.

50

Reserve Space for PMDs in TDY (ADDPMD)

This subroutine is called to allocate
storage for PMDs in the TDY, and initialize
the PMD preface. The size of the PMD being
processed is obtained from the user data
following the module's member descriptor
entry in the POD. For Initial Virtual
storage, the first PMD is loaded eight
pages above the TDY origin; for RESSUP, two
pages. If enough space remains in a page,
a second PMD is also assigned to it. If
not, the PMD is assigned the next higher
available page. If paging is needed, the
initial major buffer and the buffer for
BLDTBL are allocated at this time. 211
addresses allocated from this point on will
be virtual real storage, indicated by the
high-order bit being on. Space for PMDs
can be allocated around malfunctioning
pages. The table TDYTAB is used by IVM for
relocating the TDY around these pages. The
routine initializes only the first two
words in any three-word group in TDYTAB.
These words correspond to the lowest and
highest real storage addresses within each
contiguous group of TDY pages. The third
word of a TDYTAB group is the common relo-
cation factor.

After the first PMD in a group is allo-
cated, the group header is initialized.
Each new group is linked to the TDY heading
and to its preceding group. Once paging
begins, if a new group is needed, BLDTBL is
called to enter this table into the page
table and to page it out. At this time, if
the old buffer was not large enough for the
new PMD, ADDPMD will get a larger buffer
and a new minor buffer if it has previously
been needed. The first group's pointer to
the preceding group is set to 0. The TDY
heading is updated to point to each new
group, and within each group header the
fields pointing to 'last PMD in group' and
‘end of group' are updated. After each PMD
is allocated, the PMD preface link to the
next PMD preface is initialized, and the
remainder of the preface is zeroed out. BAs
control is returned to the caller, the
address of the PMD preface is sent as an
exit parameter.

Generalized Input/Output Subroutine (EIAA2)

This is a subroutine used to initiate
and control the I/0 activity between the
CPU and the channels. It is used to gain
access to the direct access devices and the
printer. On entry, the address of the I/O
device is set in parameter register 1. A
field called IOBYT is used to inform EIAA2Z
of the options desired by the calling rou-
tine. These options indicate:

¢ Whether the calling routine has sup-
plied a CCW 1list

e Whether a read or write operation is
desired

e Whether relocation is desired for disks
if the first try is unsuccessful and
the PAT indicates that there is a relo-
cation entry for this external page

If EIAA2 is to build the CCW 1list, the
calling routine must specify pertinent
information in the following fields:

* JOLEN The number of data bytes to
transfer
e TIOAD The beginning location of the

transfer area

The CAW is then set up, and an SIO
instruction is issued to the I/0 device.
Continuous comprehensive error checks are
made to insure successful completion of the
I/0 activity. If a malfunction occurs,
successive retries are attempted in order
to complete the operation. Unrecoverable
hardware errors result in a diagnostic mes-
sage being issued to the system operator.
The message informs him of the malfunction-
ing device, and either CSW status bytes or
sense bytes are displayed, depending on the
nature of the failure. EIAA2 must also
determine if it is necessary to terminate
Startup. It terminates if the IPL volume
is in use when the failure occurs, or when
the paging volume malfunctions during the
initialization of SDAT.

If a track condition check occurs on an
I1/0 operation to a disk, IOBYT is checked
to see whether the relocation flag is set.
1f it is, the relocation control entry in
the volume's PAT is checked to see whether
there are any relocation entries. If there
are, and if one of these entries is for the
page in question, EIAA2 retries the opera-
tion on the relocated page. These reloca-
tion entries are set by the RESTORE program
when it encounters a track condition check.

If a command reject and a seek check
occur when using the paging disk, it is
concluded that this disk is not VAM2-
formatted. An appropriate message is sent
to the operator and Startup terminates.

Startup continues in all other cases.
1If there should be a recoverable error
(form checks, dropping ready status, etc.),
this routine issues a message to the opera-
tor telling him of the problem and asking
him to reply when the situation has been
rectified. Startup waits for the reply.
If a nonrecoverable error occurs on the
printer, maintenance is required. This
routine automatically switches to another
printer if one is available., If not,
Startup continues with printing suppressed.
Once the I/0 routine has fulfilled its

function, control is returned to the caller
via the return register. Depending on the
calling routine, the activity requested,
and the results of EIAA2, the appropriate
return code is set in IOBYT and control
returns to the calling routine.

Write SERR/Reconfiquration Modules on Drums
(SERR100, SERREND)

This subroutine is invoked to write all
SERR and Reconfiguration modules on all the
drums in the system. On entry, the follow-
ing fields of information are available to
the routine:

XPGNO First available page on
paging drum.

PGSRSDA Table of drum hardware
addresses.

NODMSYS Number of available drums.

QUPTAD Output buffer address.

The GETEXT routine processes the SERR/
Reconfiguration modules last. It calls
SERR100 to write each module on all the
drums in the system. Each call results in
one module being written on every drum.

The module is in the output buffer when the
SERR100 routine is entered. It writes the
first SERR module on the paging drum, and
stores the BBCCHHR of that module in the
System table. This same address is then
used as the starting location for the SERR/
Reconfiguration modules on each drum in the
system. The external page number of the
module just written is stored in the first
half of a fullword entry for each drum in
the list. This list is used later by the
ASATRT routine. When a Reconfiguration
module is written on the paging drum, its
BBCCHHR is saved in the System table.

Since it is possible that an I/0 failure
could occur when trying to write on the
drum, it could happen that, though the
first external page numbers of the modules
are the same, the address of the last
module could vary from drum to drum.
SERR100 will skip any malfunctioning pages
and write in the next available one. SER-
REND is invoked by GETEXT to store the
external page number of the last module
written on each drum. This is saved in the
second half of the entry for each drum in
ASATRT's list. Control returns to the
caller.

Get a Block of Main Storage (GETMEM)

This subroutine is called to allocate a
block of available storage. At entry,
these parameter fields have been set:

Section 3: Startup Phase 51

GTDRN Direction of search for next
page, if requested page(s) are
not available.

GTFLG Flag to be placed in page map.

GTNUM Number of requested contiguous
pages.

GTNCA Test byte for termination.

RTSTRT Starting address of assigned

block.

GETMEM is the routine called upon by the
Startup routines whenever they wish for
main storage allocation or wish to inspect
the availability of a block of main
storage. Each byte within the page map
reflects the condition of its corresponding
page of main storage. The byte settings
and their meanings can be found in the
SCBTL routine description. The search com-
mences at the beginning of the map if GTDRN
equals GTDUP, or at the end of the map if
GTDRN equals GTDDOWN. The search continues
in the specified direction until the
requested block of contiguous pages is
located. The value in GTFLG is then
inserted in the bytes corresponding to the
available pages, and the starting address
of the block is returned to the caller in
RTSTRT.

If the requested block is not available,
GTNCA is inspected. If the field is set to
GTNCAR, control is returned to the caller
with RTSTRT set to 0, indicating that the
block of storage was unavailable and not
allocated. If GTNCA is set to GTNCAT and
the block was unavailable, GETMEM issues a
diagnostic message to the operator indicat-
ing that Startup must be terminated. The
system then goes into the wait state.

If GTNCA is set to GTNCARNF, and GTDRN
equals GTDUP, only the first block follow-
ing the last assigned block is searched forxr
availability. If this block is available,
the requested flags are set and the start-
ing address is returned to the caller in
RTSTRT. If the first block is not avail-
able, control returns immediately to the
caller with RTSTRT set to zero. This fea-
ture enables real storage modules to be
packed into contiguous pages.

Create the Resident Shared Page Index Table
(CRRSPI)

This routine creates the Resident Shared
Page Index table (RSPI) after RESSUP text
has been loaded in main storage. It also
obtains main storage for each SPT and XSPT
and moves the tables from their buffers
into lower main storage.

52

The RSPI contains information regarding
the origin and length of each SPT. Space
for the RSPI is allocated on the last page
of the Resident Supervisor if there is suf-
ficient room. Otherwise, a new Resident
Supervisor page is allocated for the RSPI.

Three items are initialized in the Sys-
tem table (CHBSYS).

e The pointer to the RSPI
¢ The RSPI count
¢ The next available SPT number

Supervisor Core Allocation is called to
reserve main storage for each SPT and XSPT.
The SPT number, length and origin arxe then
stored in the RSPI entry corresponding to
the segment number in which they are to be
located. Then the SPT and XSPT is moved to
the storage location that has been reserved
for it. The 'reserved for RESSUP' flag is
set in the Core Block table (CHBCBT) for
each SPT page.

Control returns to Startup mainline.

Read Data Set Control Block (RDSCB)

RDSCB is a generalized routine used to
find a DSCB on a VAM2-formatted pack. Two
options are provided. The first option
supplies the DSCB when given the external
page number of the DSCB and the slot number
of the DSCB within the page as input. The
second option supplies the DSCB when given
the data set name.

For the first option, the field DSNAD
contains the address of the slot number and
external page number as input parameters.
For the second option DSNAD contains the
address of the data set name.

On entry, general register 0 contains a
1 if option one is desired or the length of
the data set name if option two is desired.
General register 1 contains the device
address on which the data set resides.

If option one is specified, RDSCB reads
in the specified DSCB page if it is not
already in main storage. The requested
DSCB is then moved into DSCBF.

On a normal return, the field DSCBF will
contain the requested DSCB. General
register 0 will contain a 1 in its high
order bit if the DSCB was not found.

If option two is specified, a check is
made to see whether a DSCB page for this
volume is presently in main storage. If it
is, each DSCB on this page is checked for
the requested name until a match is found.
If no match is found or if there is no page

in main storage, the PAT is checked for all
DSCB pages on this volume. These pages are
searched sequentially until either the DSCB
is located or there are no more DSCB pages.

Read Page Assignment Table (GETPAT)

GETPAT searches the PAT table for a
volume and returns the external page number
of a given relative DSCB page. The calling
routine must supply the relative DSCB page
number. (The first relative DSCB page is
zero.) General register 0 contains the
relative DSCB page number and general
register 1 contains the address of the
device on which the DSCB page resides.

On a normal return, GETPAT supplies the
requested external page number in page 0.
If the given relative page does not exist,
the high order bit of general register 0 is
set to one.

NIPLPAT contains the address of the PAT
pages for this volume. DSCBF contains the
volume label if this was the first call for
this volume.

The PAT for the IPL volume was read in
by PRELUDE in order to locate the Startup
DSCB and is therefore resident in main
storage. I1f the requested volume is not
the IPL volume or the volume specified on
the previous call, the PAT is read in. The
address of this volume and the length of
its PAT is saved for the next call. (The
PAT is one page long in the case of a 2311
volume and two pages in length for a 2314
volume.)

The PAT is then searched for the
requested relative DSCB page. When the
DSCB page is located, its external page
number is computed from the displacement of
the qualifying byte within the PAT.

Page Task Dictionary Table (PAGTDY)

This routine is called throughout the
link loader, whenever a virtual real

storage address is encountered. At entry,
general register 0 must contain a 0 or 4 to
indicate which of two buffers is to be
used. REQAD1 or REQAD2 contains the virtu-
al real main storage address requested.
BLDTBL is called to write out the group
currently in the buffer. The PMD group
containing the virtual real storage address
is then read into the buffer. RETAD1
(RETAD2) is set with the real storage
address which points to the virtual real
storage address requested.

Build Task Dictionary Table (BLDTBL)

This subroutine is called by ADDPMD to
write PMD groups that must be paged onto
external storage. Space is temporarily
allocated by BLDTBL on the primary paging
volume, starting with the highest external
page number and decending to the lowest.
This allocation is done on the assumption
that space permanently assigned by Startup
on that device will begin with the lowest
available page number and work up. BLDTBL
also builds a table containing information
to permit retrieval of these PMD groups.

For each page, there is an entry in the
table, consisting of four words:

1. displacement of page relative to
beginning of TDY

2. number of pages in group

3. external page number

4. displacement of this group relative to
beginning of TDY

BLDTBL may also be called by PAGTDY to up-
date the external images of PMD groups pre-
viously written out.

Section 3: Startup Phase 53

SECTION 4: SYSGEN PHASE

Entry to the SYSGEN phase begins after a
time sharing system has been generated, and
a system programmer has logged on and
assembled the system generation macro
instructions. These macro instructions are
an input data set for the TSS assembler.
The operands of the macro instructions take
the form of configuration-dependent parame-
ters and installation option indicators.
There are thirteen macro instructions in
SYSGEN. Twelve of them may be assembled in
any order. The thirteenth, GENSCB, must be
last. They must be processed by the TSS/
360 assembler, and their output creates the
SYSGEN.MODULE data set. The first twelve
macro instructions create no code. They
use input supplied by the systems program-
mer to equate global symbols to configura-
tion options. These global symbols are
then used by GENSCB to fill in the system
tables. Refer to Appendixes A and B for
chart descriptions of the fields affected,
and the global settings.

Figure 6 gives an overall view of the
following macros:

CPU saves the identity of the CPUs,
their model numbers, features and the
primary and alternate prefixes assigned
to each.

STEM saves the number of storage ele-
ments in the installation and their
model number.

CCU saves the number of channel control-
lers in the installation.

CHANNEL determines whether selector or
multiplexor channels are present, and
saves the hexadecimal address of those
in existence. It also supplies a total
count of both.

DCU saves the addresses and IDs of all
the control units in the installation.
It also saves their model and unit
numbers.

DEVGRP saves the symbolic and actual
addresses, the paths, units and model
numbers of all the devices in the sys-
tem. It also supplies various I/0
parameters.

OPCNSL saves the addresses and paths to
the operator consoles.

CLOP saves the command language default
options.

54

< ASSEMBLE }

CPU

OPCNSL

save prefixes
count of CPU's

save number/
addr’s of
oper. console

STEM

CLOP

save number
storage elems

save CL default
options

cCcu

DISPAR

save number
channet
controllers

save
dispatching
options

CHANNEL

TSKLMT

save addr’s
MPX and SEL
channels

save system
task timits
by type

DCU

VMPAR

save addr’s,
1D’s of
Control units

save VM
allocation
options

DEVGRP

PUBVOL

save 1/O
device
information

save maximum
number of
public
volumes

Figure 6.

GENSCB

set up all
system control
blocks

END

SYSGEN Macro Logic Flow

DISPAR saves the dispatching or schedul-
ing options of the system.

TSKLMT saves the system limits on size
and number of tasks (specified by type)
allowed to operate at any one time.

VMPAR saves the virtual storage options
that specify the parameters for handling
and allocating virtual storage.

PUBVOL saves the maximum number of pub-
lic volumes.

In all the above macro instructions,
checks are made that valid information has
been supplied. In conversational mode, a
diagnostic message is issued on the termin-
al. The Assembler waits for corrected
information. In nonconversational mode, a
diagnostic message is issued on the output
device, but processing continues through
GENSCB with possible erroneous results. If
any errors are encountered in GENSCB, the
entire macro processing must be done over
again.

GENSCB uses information supplied in the
form of global symbols, and fills in the
system tables. This macro generates code
in the form of CSECTs. Chart AE presents
the flow of GENSCB. First, all the global
and local symbols are defined. The System
table (CHBSYS) and the System Common table
(CHBSCM) are generated using data from DIS-
PAR, VMPAR, TSKLMT, and CLOF. Then the
Scan table (CHBSCN) and Scan Master Control
table (CHBSMC) are generatecd. Looping
through a channel matrix, the Channel
tables {CHBCHL, CHBMCH, and CHBSCH) are
generated. Then, looping on channel con-
trol unit addresses, the Control Unit table
(CHBCUT) and its flags are set. Using a
control unit and channel matrix, the Device
Group tables (CHBDEV) are generated along
with a Symbolic to Actual Conversion table
(CHBSAC). The Symbolic Device Allocation
table (CHBSDA) can then be generated.

Then, picking up the global symbols and
inserting their values into the CSECT, the
following tables are generated:

System Operator ID table (CHBSOT)
Available Device table (CHBHED)

Configuration Control Block (CHBCCB)
containing the following tables:

CPU Status table (CCBCST)

Drum Path table (CCBDPT)
Transmission Control Path table
(CCBTPT)

Channel Control Unit table (CCBCCT)
Correspondence. List (CCBCLT)
Printer Path table (CCBPRT)

Paging Statistical Data table (CHBPSD)

Statistical Data table (CHBSDT)

Core Block Table Header (CHBCBH)

Core Block table (CHBCBT)

Support System Device Allocation header
(CHBECXRA)

Support System Device Allocation table
(CHBECXRB)

Virtual Memory Support System Allocation
table (CHBECXVA)

Public Volume table (CHBPVT)

Terminal Device Table (CHBTDE)

Remote Job Entry Table (CHBRJE)

Bulk Communication Table (CHBBCT)

The second half of this SYSGEN phase
occurs when the system programmer executes
the TSS*****_ APGEN command procedure to use
this SYSGEN.MODULE data set to update the
system tables and control blocks on the IPL
Volume. Following is a list of the com-
mands and linkage editor statements within.
TSS#****¥% APGEN. (Refer to: IBM System/360
Time Sharing System: System Generation and
Maintenance, GC28-2010, “Appendix G: Pro-
cedure for Making TSS/360 Operational. 8.
Contents of the APGEN procedure,” for the
procedure to both modify and execute this
command procedure.)

Contents of the APGEN Command procedure:

LOGON TSS

SECURE (DA=1,2314)

DDEF CEIDALIB, VP, DSNAME=SYSGEN.MODULE,
DISP=OLD

DDEF GENCCB, VP, DSNAME=SYSCCB(0) , DISP=OLD

RUN LNK

CCELNK,N, ,GENCCB,VID,N,Y

RENAME CHBECXVA, CHBECXRA, CHBECXRB

RENAME SYSGEX

RENAME CHBSYS, CHBSAC,CHBDEV,CHBCHL, CHBMCH

RENAME CHBSCH, CHBCUT,CHBSCN, CHBSMC, CHBCBH

RENAME CHBCBT, CHBPSD,CHBSCM, CHBSDA, CHBPVT

RENAME CHBSOT, CHBHED ,CHBAHD ,CHBAVE, CHBSDT

RENAME CHBTDE, CHBRJE, CHBSST, CHBBCT

INCLUDE CEIDALIB(SYSGEN)

END

RELEASE GENCCB

ERASE SOURCE.CCBLNK

DDEF GENSUP, VP, DSNAME=RESSUP (0) , DISP=OLD

RUN LNK

SUPLNK,N, , GENSUP,VID,N,Y

RENAME CHBECXVA,CHBECXRB

RENAME SYSGEX

RENAME CHBCCB, CHBSCM,CHBSDA,CHBSOT, CHBHED

RENAME CHBAHD, CHBAVE, CHBSDT, CHBPVT, CHBBCT

INCLUDE CEIDALIB(SYSGEN)

END

RELEASE GENSUP

ERASE SOURCE.SUPLNK

DDEF GENIVM,VP,DSNAME=SYSIVM(0) ,DISP=0LD

RUN LNK

IVMLNK,N,,GENIVM,VID,N,Y

RENAME CHBECXRA,CHBECXRB

RENAME SYSGEX

RENAME CHBCCB, CHBSYS,CHBSAC, CHBDEV, CHBMCH

Section #: SYSGEN Phase S5

RENAME CHBSCH, CHBCUT, CHBCHL, CHBSMC, CHBSCN
RENAME CHBCBH,CHBCBT,CHBPSD,CHBTDE,CHBRJE,
RENAME CHBSST, CHBBCT
INCLUDE CEIDALIB (SYSGEN)
END
RELEASE GENIVM
ERASE SOURCE. IVMLNK
DDEF GENRSS, VP, DSNAME=RSSSUP (0), DISP=OLD
RUN LNK
RSSLNK, N, ,GENRSS,VID,N, Y
RENAME SYSGEX
RENAME CHBSYS,CHBSAC, CHBDEV, CHBCHL, CHBMCH
RENAME CHBSCH, CHBCUT, CHBSCN, CHBSMC , CHBCBH
RENAME CHBSOT,CHBHED, CHBAHD, CHBAVE, CHBSDT
RENAME CHBCBT,CHBPSD, CHBSCM, CHBSDA,CHBPVT
RENAME CHBCCB,CHBTDE, CHBRJE, CHBSST, CHBBCT
RENAME CHBECXVA,CHBECXRA
INCLUDE CEIDALIB(SYSGEN)
END
ERASE SOURCE.RSSLNK
RELEASE GENRSS
RELEASE CEIDALIB

LOGOFF

56

The flowcharts in this manual have been produced by an IBM program, using ANSI sym-
The symbols are defined in the left column below, and examples of their use are

bols.
shown at the right.

SYMBOL

TERMINAL BLOCK

PROCESS BLOCK

SUBROUTINE
BLOCK

INPUT
B

SOUTPUT

xR
* *

e

OFFPAGE
[IR

IMICCAT ®Y TG OR EXLT
F Al THI‘! BLOCK ON THE
£ FLOWCHART PAGE .

CINITION EXAMPILE
B3:
TRY ©R MODNAME
IN A FLOW-
START$ STOP B3
OR INPERRUP®
INDICATE COMNAME
CALLING
FROM: OTHERMOD
CHART AZ
CSECT
LABELY N
TES A PROCESSING 3 ©3:
10N OR A DEFINED Gp-
AUS NG CHANGE 1N
R LOCATION
N.
LNPICETES A DECISION OR g
"OPERATION D3:
WHICH O NG
NA
AVES
E3:
LABEL2 ENTRYPT
SUBRTN AG
LABEL3
¢ Fi:
~PDPNM-
G3:
[k
NO
7ES
p e
LABEL4
H3:

EP=ENTRYPT
CHART AC
VIA: PASSMECH

SECTION 5:

FLOWCHARTS

COMMENTS

MUDI\A E 1S THE LOAD MODULE OR LIBRARY
NAME OF THE ROUTINE DESCRIBED BY THIS
FLOWCHART .

COMNAME IS THE COMMON NAME OF THE
ROUTINE.

UTHFRMOD INDICAT!
CONTROL TO THIS
rlAR'l‘;.

E THE MCDULES PASSING
MODULE AND THEIR FLOW-

CSECT NAME OR UTHER ENTRY
WHICH PROCESSING BEGI

1S THE LABEL ©F TRE FIRST
RUCTICN.

CSECT 1S THE
POINT AT
LABEL?
INST!

10N CONTINUES WITH BLOCK
CISION 18 NO, OR
HE DECISON fs

WHEN T 'YES,
IS THE LABEL OF THE SECTION OF
FHiS POJTINF FROM WHICH CONTROL
D TD SUBROUTINE. CONTRO

TO THE ka
SUBROUTINE AL

18 THE ENTRY

NSTRU(TIHN }‘Ou[G-

ENTRYPT

SUBRTN IS THE OF THE SUB~
ROUTINE IN FLOY

INDICATES HOW CONTRCL
'i)’\-‘anME TO SUBRTP

13

LLABEL}
‘()[)E £

THE LABEL CF THE
HIC ONTRC

fXE~dF§ NTINUES WITH BLOCK H3 WHE
IS YE OR WITH BLOCK Al OH
THIS SET OF FLOWCHARTS WHEN

SION IS NO.

LABEL4 1S THE LABEL OF A SECTION OF CODE
CF THIS dTIN TH INITIATES I1/0.
THE COMMON NAME OF THE ROUT-
' EXECUTES AFTER THIS ROUTINE.

1S THE ENTRY POINT
DESCRIBED IN CHART

INDICATES HOW ’“‘K"TROL
MNAME TO NEXTRTN

OF NEXTRTN,
AC

Section 5: Flowcharts

57

Chart AA.

58

SYSBLD (CEIFA) Overview {(Page 1 of 16)

SYSBLD FLC

EET
CK AN ERROR
I¥ GENERAL
X100 FLOW
‘THE PROGRAM

THESE
SERYVICL ROU

TWO L

HARTS:

FLOW HART (PAGES 1 TO 16

TIN ARE LINKED T DYNAMICALLY.
URNS TO T IALNL PROGRAM A
CODE WHICH THE SERVICE ROUTINE GE
REGISTER 1%, IF THE ERROR CODE IS
CONTINUES IN THE MAINLINE PROGRAM.
BRANCHES TO THE TERMINATE ROUTINE

SINCE THE SERVICE ROUTINES ARE USED QUITE EXTENSIVELY,

OGIC BLOCKS HAVE BEEN OMITTED FOLLOWING EACH
TINE LOGIC BLOCK. SEE EXAMPLE FLOWCHART BELOW.

) ALL
WHEN A

THE
SERVICE

MADE

NER,

EQUAL TO
IF NOT,
(CEIFK) .

SERVICE ROUTINE

FUNCTTON AND
LOGIC COMMENTS

TERMINATE

NEXT QUENTTAL
LOGIC &
FUNCTION BLOCK

Chart AA. SYSBLD (CEIFA) (Page 2 of 16)

CEIFD 04B2 CEIFZA GRF2
—> — E USER
ADJUST DSCBS LIBRARY
P
p—— et E—
CELFA Ci3A1 LEIFD C5B1 CEIFE aBB4
£ TE CREATE CATALOG
SATHE INDING ROUTINE
T ES
- M— —
03c2 CEILF a6e1 CELFTD 0e)
UPDATE VIRTUAL UPDATE CATALOG
STORAGE JECB
0383

CEIFJ 1081

SET UP VOLUMES
FOR STARTUP

CETFC D4R 1

08B1

F CEIFK 1083
COMPLETE_SYSBLD |-——— CREATE USER TERMINATE
TAELE TABLE SYSBLD

=

Section 5: Flowcharts 59

Chart AA. SYSBLD (CEIFA) (Page 3 of 16)

PARAMETER ORDER

CETFENT

A IFL 5
FRC 5 REQUEST
TAR PARAMETERS ONE
AT A TIME

CONTROL
UNIT AND 'PL
DEVICE

DRESSES IN
YSBLD TAELE

—— |
CEIFST

READ TPL VOLUME
LARET

1
TORE IPL YOL
AND RELATLV
E NUMEER ©
[N S¥sB

ALL
PARAMETERS
PROCESSED

STO.
AND NUMBER
IPL VOLUME
PAGES IN SYSBLD
TABLE

60

Chart AA. SYSBLD (CEIFA) (Page 4 of 16)

CRIFOS

Y I
e |
12A3 1543 Fst
e REWRITE
EXTER? PAGE READ DSCBR FAGE PAG
NUMBER TO 1R

MCRE DSCB
PAGES

Nu OF P
IN SYSBLD TAEBLE

Section 5: Flowcharts 61

o AN RO

Chart AA. SYSBLD (CEIFA) (Page 5 of 16)

CEIFDIA

]

CEIFDS1 164" CFIFRS2 1604
— UPDATE
SEARCH FUR PATHE TNDER UBDATE RSS SET _UP _DEVICE
TSS**kEx RESSUP TABLES FOR VSS

-1 Y Bl TV S —
IFUY 13a1 CEIFRS2 1604
FIND MEMBEF T SET _U¥P _DEVICE
PO TABLES FOR

FDTOO 3
e [—r) s T
CEIFS? T5A3 Al

ET & UPDATE
—» READ PMD PA FIND = NNEL TABLE
INING GROUP CHECHL
CHBDEY
FDTCO4
P
SET_FLAGS FOR
MOVE PAGE TG FIND T EXTSTING
POD/PMD AREA ({DRUM} TABLE CHANNELS
AND UPDATE {0,DRUM,DISK}

FOTOOS L
1

. FOTTOS
GET & UPDATE
READ ALL PAGES FIND DIS CONTROL_UNITS
OF POD TABLE GROUP AND ASSIGNED TGO
UPDATE CHANNEL TABLES
{RD,UFDATE, WR)

FDTCOE FDTC

FDTO1 3T l
34

1241

SET RSSSW TO
T & UPDATE NOT UPDATE
INISTRATICN PATHFINDER
TERMINAL

FOTOO8 FOTOIIL Y
H H2
CEIFT1 1281 CEIFS 1543
LOCATE DEM. GET & LPDATE
ENTRY REALZERS &
PRINTERS.

J 1 2 4 e
1583

GET & UPDATE
READ PCD TERMINAL DEVICE
CONTAINING DEF. TABLE CERTDE

Chart AA. SYSBLD (CEIFA) (Page 6 of 16)

CEIFGT 1 CEIFGBR1 l
CELFDS | T6A 1 ‘

SEARCH FOR FIND TABLE
TSEFRRFE SYSTUM

— —
ET TAELE TG
READ CHBSDA UPDATE TABLE
AVE2
—
SET_UP_POD
PAGES -«
WRITE OUT TABLE
|
AVEESW
1543 -
CREATE POD LAST TABLE
ADDRESS READ
POD & MOVE TO

200, PMD) -~
AREA a7
BY

D E—

13A1 SET TABLE -
CHBAHD THEX
FIND MEMBER IN L] CcHBAVE THEN
POD CHBSCM
CEIFGXY
CEIFS1 1543
CREATE PMD
ADDRESS READ
BMD & MOVE TO
POD, PMD
AREA
.
CEIFST Tons

READ PAGE

Section 5: Flowcharts 63

Chart AA. SYSBLD (CEIFA) (Page 7 of 16)

CETFTY i
I P A 2
CEIFDST 5
GET DRUM PATH
SEARCH] ELE AND
TERERRE e ST INSERT PATH

TABLFE.

1543

READ &
T F

MOVE
€11 P

"~ &REA

1
CEIFU1 T3A1
LOCATE _MEMBER
IN POD

AREZX

SET _UP TG
LOCATE CHBOUB

1543

READ PAGK OF |—r
SOB

64

Chart AA.

SYSBLD (CEIFA) (Page 8 of 16)

.
CEIFS: T5A3
> WRITE GUT
CATALOG
CETEF! ¥
T CELFECAT 1Al i
— MCVE
CTFEBGD SEARCH SCAM FOR DSCB & /0
ZERO DSCBE UBDATE 0O DRT
IN SBLOCK
|
TENTS

UND DSCB
- DSCH

LMPOD
HASH HEMEER
NAMES TC
HASHING TABLE
e [-
CEIFS! 15A3
CEIFESO0 WRITE
PAGE GF DSCB

MVCPCD

u
CEIF

T2A3

WEITE

I

BOD
BROUTINE
CLOSED

Section 5:

Flowcharts

65

Chart AA. SYSBLD (CEIFA)

tosl

SEARCH FOR DSCB
TSSH %Rk SITVM

LEYSIY

FTD2 4
CEIFV1

1141

SET P
PARAMETERS FOR
LIST BUILD

CEIFTD2B
IFTD3

e[} |
CEIFST

READ
PAGE TO

E1l

SET UP
PARAMETER LIST

(Page 9 of 16)

INSERT CATALOG

ENTRY

FOR FOE
o1
CEIFU? T3A1
FIND MEMBER IN
POD
CEIFTDB R CELFTDJ CETFTDE
- N G3 ;
CEIFSY 283
EXTERNAL IS THIS YES
PAGE —»READ FAGE WITH TATRLIG JFCB
CHBTDT
-
CEIFST 1543
MORE JFUBS
& MOVE YN OCHALN

2AL
EXTERNAL PAGE
CD/PMD AREA

CEIFTDE
——
CEIFT? 1250
SEARCH FOR DEF.

HETDT

66

Chart AA. SYSBLD (CEIFA) (Page 10 of 16)

CEIFJ CEIFK

]

CEIFJ T

MOVE PAT TO 170
AREA

|
CEIFJISA ; Y KOO
ki

LOCATE MESSAGE
VERT PAT AND MOVE TO I/0
DRESS T AREA
CCHH

=

D4
SET

FLAG WITH
aSSOCIATED
ERROR INDICATOR

M

SYSBLD ERROR

WRITE PAT PAGE

vl
CEIFJY .
CEIFST 15A3 SET MESSAGE
ELAG TO
CONTINUE TO
READ PRELUDE STARTUE PRELUDE
. KCIOD e r
) CEIFR1 15A1
WRITE MESSAGE

WAIT STATE

Section 5: Flowcharts 67

cosaisaiinss

T ——

Chart AA. SYSBLD (CEIFA) (Page 11 of 16)

DSCB CHAINED

SET
RETURN =

CETIFVY

68

LOUATE

REL

CELFYIND

¢

CEIFV12

{4

HAVE ARY REPLACE PA(
BRER M(

CDIFTED

NUMBER
PARAMETER LIS

JF'{ETURN
§

CEIFVM

E 3

RETURN

e a—
CEIFS1 1543

READ

AGE OF —

Chart AA.

FOUND DEF

1
RETURN

SYSBLD (CEIFA) (Page 12 of 16)

ATR4E .
premme—

YES

CCHHR
DISK

AFRAO

ANSWERS
PARAMETERS
IN_GENERAL
REGISTERS

B

N: ERROR RETURN
=X 00"

Section 5:

Flowcharts

69

Chart AA.

FUC132

70

CEIFUT

SYSBLD (CEIFA)

81
HASH MEMBER
NAME FROM

PARAMETER LIS5T

FUC12C

D1

USE HASH VALUE
Io) ¥IND o

AL

SET ERRCE
RETURN = X227

Y, W

£1

FILL_ IN RETURN
PARAMETER

ENTEIE

NG ERRUR RETURN
=X"'00"

RETURN

i

(Page 13 of 16)

PUT _PAGE IN
PARAMETER LIST

MARK PAGE
ASSIGNED IN PAT

—

GET NEXT PAGE

e

b3

NUMBER_GF
PATS COMPLETE

FINIS
BUT UNFE
REQU

J

PAT
HED
ILLEDR

EST

A YES

SET E
RETURN
“RESTORE

RROR
=X

gt

Drsks”

K e
RETURN

A5
CEIFCKS

CEIFCKST

DEVELOP
CHECKSUM

VERIFY, STORE
Ccr_RETURN BAD
CODE FOR DS

X CODE
FURGH
ERROR, =Xx'OOQ'
PLETE

CELIFCKSS

E G
RETURN

Chart AA. SYSBLD (CEIFA) (Page 14 of 16)

B
GET DATA SET
NAME

FOUND

|

i
‘ RETURN '

Section 5: Flowcharts 71

Chart AA. SYSBLD (CEIFA) (Page 15 of 16)

AN
506

FRMAING Y FaMaIN

D2: H[——[)‘

1 ISSUE

EKROR (ODE

FRMAING

WEIT

TNTE RETURN

T FOk
RUPT LON
AND PROCESS

H 3

RETUERN

72

Chart AA. SYSBLD (CEIFA) (Page 16 of 16)

ERN]

CEIFR

D4

UPDATE UHBECXREB

CETFDS5A

CEIFDSe

FIND EMPTY SLOT

vM

S

UPDATE CHBECXVA

TETEDSS

H2

RETURN
PAGE XU

S

0
=
T

RETURN

57
FOUND
1

RETURN

Section 5: Flowcharts 73

Chart AB.

BEG

BGRA

EXT. MCDE-
INTERRUPTIC

PRLI

)

74

e } 1

REAL ©CB

SYSBLD/STARTUP Prelude (CEIAP)

IDIPL
PRI.I%

{2k

SIMPLEX

PRTZ5

CONFIGURATION
ANALYSIS

DCPX v
S

ECR 14
F.
TTING

VERLIFY PSAS

SE
POR ALL CPUS

‘I PSA TAEBLE

LOAD

JOCATY

——F5
FIND ACTIVE
PSA, SET BYTES

IN PAGE MAP

PRLEB 4

REA
STARTUP

Chart AC.

P1COX

Startup (CEIAA) (Page 1 of 15)

AND
FROM

SAGE VAE
PRELUDE DROP
AREA

PAGE TABLE
INITIALIZATION

SDATRT 0681

INITIALIZE SDAT

E_PAGES
CONTAIN
HBT*""' CHBBFF

SEMPLEX

P4OOX
pe——=F1 Y

CREATE PSA LIST

SETPTH-

PARTITION CCUS
& CUS IN PATH
FINDING TABLES

’J‘

P45

o
REQUEST ADOR OF
CARD READER IF

CPERATCR MSGS
TO BE BYPASSED

ETAAS G2al

LINK LOAD
RESSUP/RSSSUP

‘E IAL
CREA SPE‘VIAL
DEV PI\I‘H TABLE

poemmt 3

-PGXTSI-
COMPLETE XTSI,
XPT, XSPT

EST
FOR BEACH
STPRA\;F ELEMENT

QUICKSTART NO
“REQUESTED :>—~——‘

ESRVP-
RESERVE RSS
PA(;]:‘Z O'g PAGING

‘\J
5YS PUT
POIN'IPR JN T0T

- A T-
INTTIALIZE ASAT

P[\Itl" R"F')PT

.

]

-SOAPGS -
ALLOCATE SERR
OFERATING AREA

EM-
STARTUP
SES

-SC
INITLAL

PAROOX

¥s

p—D5

-SETTSK- CRFATE
MOT

~ INTERCOM-
X NAL 5TA
HER

p——}i5

INITIALI /‘7 SAR
AND

EXLL IO QUEUR
SCANNER

STARTUF FPI h i‘

Section 5:

Flowcharts

Chart AC. Startup (CEIAA) (Page 2 of 15)

LHKOO

DELTBL

CREATE TABLE
DATA SET NAM

1 LNK17 .
5
] R1MA DaAd
GBER §0 ° EARCH_FOR LOAD “MBPGEN- CREATE
SRERZ L SEARCH_FOR LOAD STORAGE HAF
MAPS ARE WANTED LIST I
e
D D5
BOGNLL D4A3
SEARCH FOR _EACH
Léan 1 ENTRY

LNKO3C

5

ASK ~ORIGIN-
CUPERATCR IF WAS DSCB COMPUTE ORIGINS
i) START D& FOUND CF TDY, SDST,
SET AND VAM PACKING

LNKCO3B

2 F5,
DELBTE D4A2 ~XTSIPT-
DATA INTTIALIZE
MAKE_ENTRY IN FGUND SKELETAL XTSI
DSTBL (ST, &ST,"PT,

_—
LNKOG
Gl %
DE {INE IF ~BGNTLY ~ - SHPTRT-
DELTA DATA SETS INITIALIZE TDY SPT
REQUIRED HEADING AREA & XSPT

LNEDT
BLDTDY

TERMINATE
STARTUP

—
5
S RSSSUP -NAMLOC~
V1 TCH "::ES(NVE IS8T

76

Chart AC. Startup

(CEIAR)

(rage 3 of 15)

LNKG

isT
5

= EXT- READ N- CRE
AND PROCE e SYMBOL TABLE OF
RESSUP T RESSUP/RSSSUP

COMMUNT
TABL

TION

-RCOMTB- CREATE
Bes

AND

H Y

RETURN

SYMBOL TAB
LRUM

~WRSYMTE- WRITE
LE GF

—

-RELME
EASE BOL
}E BUFFERS

GET ALD
INPUT B

1
|
{

FOUND

s

MAKE
DS

St
DATA

EXT; 1
ET HNAME

DELBTE

MAKE

NTRY IN
TEL

Js5
NG

END OF

K&

RETUREN

Section 5:

Flowcharts

77

Chart AC.

A1

LLSCAN

YES
O

DATA SET

A2

DELBTB

MAKE ENTRY IN
DSTBL

Startup (CEIAA) (Page 4 of 15)

A3
BGNLL

o2

ENT- MAKE
TN

-EXT
ENTRY IN EXTAR

J

‘ RETURN >

INITIALIZE
LLHRCY AND
LLVRFN IN LOAD {-—
LIST ENTRY

D"
LLSCAN

INTERRUGATE
LOAD LIST
ENTRIES FOR NAM

NG

END OF DSTBL

H 1

RETURN

78

ISSUE_ 'MODULE)

EXAXNKRK -LINK~ HASH_AND
MISSING ...' LINK LOAD LIST
MESSAGE ENTRIES

53
RETURN

=

POINT TG FIRST
(NEXT) DSTBL
Ry

———————

-RDPOD- READ IR
CORRESPONDING
POD

END OF DSTBL

D

ISSUE_'LOAD
LIST MISSING'
MESSAGE

READ LOAD L
INTO BUFFE

~SRTLOAD- SORT
LOAD LIST
SELECTIVELY

STORE BUFFER
ORIGIN IN LDTBL

55

RETURN

Chart AcC.

Startup (CEIARA)

(Page 5 of 15)

- L
kages

D LIST
SE_RESSUF ESS C
LOAD LIST “HBBEFP

T3 e A——

POINT T FIRST

{NEXT!_ENTRY IN
LEeAD LIST

CHBTCT AND

P
PROCESSED

END OF LCAD
LIST

YES

ANY USER
MODULES

K 4

ER
JOULES
PROCESSED

RETURN

Section 5: Flowcharts 79

Chart AC.

—]
GETMEN

Startup (CEIAA) (Page 6 of 15): SDAT Mainline - SDATRT

ALLL

EIAA2

R

P

RE

AD IN PVT

E1
GETMEM

SCA44D

SDAGAT

3e
RELMEM

RELEASE PAT
BUFFER

80

. SDAU4T ShA)
GETMEM OPER EIA
ALLOCATE PVT WRITE_SDAT ON
BUFFER PPV
e
EIAAD
READ IN AND
PROCESS KSS
SSDAT TABLE

SDA4ET

—>

EIAA2

WRITE RSS SDAT
ON PPV

EIAAZ

WRITE VSS SDAT
ON PPV

HY
RETURN T

‘TARTUP
AINLINE

Chart AC. Startup (CEIAA) (Page 7 of 15): SDAT Entry Processor - SDA500

VOLUME

OLUME
1LL MCUNTED

PROCESS ENTRY SET IPL MOUNTED
FOR NON-DIRECT SWITCH
ACCESS

FE e —

SET PUBLIC FLAG
OFF

e
AVAILABLE
TORE HO
AOR

UN WITHIX
ALLOWABLE
LIMITS

IVATE TL
CESSIBLE AVATLABL
DRUMS (D RLLOY 134

SDAS43

CREOM
AVAILARLE

PUT PAT PA
VOLUME SHARED
LABEL

l
&) O

Section 5: Flowcharts 81

Chart AC.

Quickstart (CEIAB)
IVM

LINKAGE,

STANDERD

DSC 20
RESERVE PAGES
OX DISK FOR
STARTUP

D1 e [} ey
DSC3/DSC
ADJUST ADCCNE WRITE CCR_ON
i START
T UVOLTME

(Page 8 of 15):

CEIPTTO

—F

GET PAGE TABLE
POINTER TABLE
PCINTER

DSCBE

12E1

F3

I
SEGMENT

EMENT
NUMBER

——3 D

LOCATE AND
INITIALIZE
FORMAT-E DSC

GET_SEGMENT
TABLE LENGTH
TABLE POINTER

INITIALIZ

VE CISK E— s S TO 15,
AG FOR RE- SEGMENT NUMBER
CORDIN BUFFER D ZERD

E
NUMBER OF
EGMENT

ANY

SET Eb
MARKER

MORE
SEGMENTS

RECCRDING
BOFFER

OF
(FF)

Quickstart Mainline - Initialization, Write

D4

PUBLIC
SEGMENT

PUBLIC
AND SIZE
PT ENTRY

3

GET ADDRESS OF
PRIMARY PAGING
VOLUME

82

E5
SET PRIVATE
FLAGS AND SIZE
OF XPT ENTRY

GET ADDRESS OF
SECONDARY
PAGING VOLUME

LOCATE XPT OR
XSPT

PAGRT

WRITE XPT OR
XSPT PAGES TO
QUICKSTART Vi,

Chart AC. Quickstart (CEIAB) (Page 9 of 15): Quickstart Mainline - Write RESSUP, XTSI,
Page Table Pages

CEIRCZ0

Ps

THIS
P PAGE

NUMBER OF t\zTE]

IN SYSTEM

NO UPDATE BYTE MAP
——p LOCATION

p—mmaas D5
RECPG
SET END OF RECORD IX AND
RESSUP G-IF UPDATE
UPDT BUFF RE ING BUFF

KD
5

|

DSC30/DSC6G

MORE PSAS » FIND AND WRITE
/ WRITE OUT PAGE OUT XTST

£ 3 2 —FC
RECPG RECPG DSC30/DSCE0

RECORD IN_ AND RECORD IN AND FIND AND WRITE
UPDATE BUFFER QUT PTP
RECORDING BUF

grome ; L4 >
GET _NEXT
SET AUX SEG T2 AUXILIARY
PTR, INIT NO. SEGMENT TABLE
OF SEGMENTS LOCATION

¢ CEIXT10

CALCULATE NG
IMUM NUMBER {-——r
OF PAGES

ANY
PAGE TABLE
PAGE FOR THIS
SEGMENT

MAX

Section 5: Flowcharts

Chart AC. Quickstart (CEIAB) (Page 10 of 15): Quickstart Mainline Continued

ET VMA AND
FT LOCATION

OF PPV

G
S

|

B
|
¥ ;
i EIAA2
GET LOCATION
AND LENGTH OF
STARTUP PROPER READ FROM PPV
CEIDS05 CEISUTG ¥ k.
- -
UPDATE NUMBER

DAT
OF AVAILABLE
E_PAGE_TO PAGE ON
ICUS RPN PUICKSTART
VOLUME

1 4 D
DSCFA EIAAZ
DSCB
FEEE ANY EXCESS CTALCULATE T AND REWRITE PVT TO
PAGES CHECKSIM PAGE LOCATION PPV

%

DUICKSTART
DATA SET
EXISTS

CEIDSOB
DSCoH0

WRITE OUT
CURRENT DSCB

PAGE

R DSC75 GET VMA_AND
SET PAT BYTE ~- XSFT LCCATION
TS U x'az' CALCULATE OF SYSTEM
THIS DS CHECKSUM COMMON
PAGE
j
et]
ELAA
WRITE DSCB-E __READ SYSTEM
WRITE QUT PAT GE COMMON FROM BPV

s

JULCKSTART NG CATALCGING
vOLUME PUBLIC INFORMATION

—J
BIAAZ

ITE SYSTEM
MMON TG PPV

CEISUS CEIPB9O

L —

K £
RETURN

pre 1
DSC50

v LOCATE FORMAT-T
0503

READ IT IN

84

Chart AC.

LV

PAGRT

Quickstart (CEIAB) (Page 11 of 15): PAGRT

TE XPT OR
POINTER

ol 7{_2'v"ElRT XPT

ENTRY
EEN FORMA

PAGRT 2

EIAAZ

READ PAGE INTO
BUFFER

e

RECORD 13
RECORDING BUFF

YRE

D4

RETUEN

OF

Section 5:

Flowcharts

85

Chart AC. Quickstart (CEIAB) (Page 12 of 15): DSCBE Locate, Create Format-E DSCB

DSCR70O

ERED FRCM
¥ UBGH . DSCRED
a1 —— 5
DSC20
SET lf' STANDARD INCREMENT DSCR SET QUICKSTART
LINKAGE POINTER WITHIN DATA"SET EXISTS
DSCB PAGE FLAG ZERD OUT BUFFER
1 -
SET \/OL 1o
INITIALIZE SAVE SLOT R
NUMBER FOR

RELATIVE DS B

PAGE T FORMAT-E DSCB

LRQA&[ZATJONQIN
DSCB

D3 —ps-Y
SET FI1 XEU
L \LR&,M \T‘ LENGTH RD

READ PAT GET LATIVE CE LENGTH
LOCATION OF PA&;E Wi\\T‘TE7 SET FURMI—\T E’
FIRST DSCB PAGE FLA

N DSCB4S Y
GETPAT SET
GET ADDRESS OF D[CP‘JALEME[\’T
IPL PACK BUFFER GET NEXT TO DSCB_ONE
RELATIVE DSCB WORD LESS THAN
PAGE FIRST ENTRY
1
B F5
GET ADDRES: ANY MORE
NON-IPL PAs —_— DSCB PAGES RETURN
BU

DSCB30 A DSCRSD

G4
PATLOC
MC%% EECE NO GET_AVAILABLE
e I VAT
G PAGE FOR DSCB
PAGE

._>

DSCB3S

MARK AS DSCB
READ N _DSCB PAGE
PAGE

SAVE CuRRENT
RPX,
SLOT KUVEER
SLOT VUMBER

o

INITIALIZE
MLNBE::? OF SLOTS
AGE

MGE

86

Chart AC.

- LOCATE NEXT AYVAILABLE
IN DSCB

FREE !
PAGES IN DSC

Quickstart (CEIAB) (Page 13 of 15): DSCF/DSCFA

7 2

DSCF

{

:
F__BZ——-
SET UP STANDARD

s
LINKAG

|
R

MAKE SURE
RECLAIM MASK IS
OFF

Page 1

‘.’

DSCFI0 ¥

CALCULATE
POSSIBLE NE

SAVE DISPLACE-
MENT INTC DSCRB

G
TURN RECLAIM CRLCULATE
BIT OFF G

GINNING OF
TURRENT DSCE

JLATE
POINTER THIS
DSCB SLOT

RECLAIP«EU ALL REMAINING

D

GET POINTER TC
DSCB BUFFER

_‘)

DSCF05

DUT
!)DA

CKSTART
Ta SET
EXISTS

ET DISPLACE-
MENT OF
J10US SLOT

INCREMENT TO
SLOT

TURN OFF EXI
FLAG

SAVE NUMBER GF
PREVIOUS

QUICKSTART
PAGES

IS THISA
RECLAIM

DSCF13 o l

UPDATE COUNT OF
QUICKSTART DATA
SET PAGES

DSCF15 L

5 5

RETURN

Section 5:

Flowcharts

87

88

Chart AC.

DSCFATG
s

Quickstart (CEIAB) (Page 14 of 15): DSCF/DSCFA Page 2

RESET F:’:JEE IN
AILABLE

|

—1

UPDATE CCUNT
PAG

FREED

OF

LB

15 THIS AN
E-DSCB

02

SET TYPE E
FORMAT

F

JUALS

CULATE
ECKSUM

Mg

DSTF1s
F 2
RETURN

DECFZ2

r—-—-E4

STORE NEW SLOT
NUMBER_IN OLD

D3CB FCORMAT
POINTER

SET RPN IN OLD
DSCB

SLOT NWUMBER
o]

— 4
DSC75
SET_AS DSCB
PAGE CALCULATE
CHECKSUM
H
SET

—
DSCE

WRITE OUT
CURRENT_DSCB
PAGE

Chart AC.

Quickstart (CEIAB) (Page 15 of 15): DSCF/DSCFA Page 3

O

RE&:LAIM/

SET TYPE
FORMAT

EQUALS

DSCEDE

T A—

GET T NUMBEFR

NEW DSCR

SAVE NEW NUMBER

Dscel
WRITE OUT DSCB
BUFFER

SET
DISPLACEMENT
EQUALS 0

S

"LEAR OUT DS&TB
BUFFER

DSCS50

READ IN NEW
DSCRB PAGE

SET NEW RPN

B

Section 5:

Flowcharts

89

Chart AE.

CHBSYS

Al
GENSCB

1

DECLARE GLOBAL
AND LOCAL
SYMBOLS

Y

R——el]

LCHL125 Y

CALCULATE
NUMBER OF CPUS

LCHL12 l

SET INDEX FOR
CHANN
MATRIX=1

NERATE
MEL TABLES

QENFRAPF SYSTEM
TABLE FROM DATA
IN DISPAR

VMPAR, AN
TSKIMT

CHBSST

CHBSCM v
1

CHBSMC

CHBCHL

90

GENERATE SYSTEM
STATISTICS
TABLE

GENERATE SYSTEM
COMMAND FROM
DATA IN DISPAR,
CLOP

.CHL16

QENLRAmh S(AN
TABL.

H? L

GENERA’
MASTER

GENERAT
CHANWEL TABLE
FROM DATA
CHANNEL Ma(RO

Y

=)

SELECTOR
CHANNEL

CHANNEL
INDEX=32

——H2

INCREMEN
{——1 CHANNEL INDEX

GENSCB Macro (CEIDA) (Page 1 of 2)

LCEB17

CHBMCH

r—) CONTROL UNIT
INDEX

.DGTH

SET CUNTPGL
UNITS ASSIGNE
TO WULTIPIEXER

LHANEU T?
DCU

CHB18 ll’

CHBSCH

USING DCU

CHBCUT

CNTRL UNIT ADDR
GgN CNTRL UNIT

-

LOOF ON CHANNEL

. DGT30 ﬁ,,j

TBL FOR EXIST
ENTRIES

CHANNEL

D
INCREMENT

UNIT
ADDRESS=16

LDGT3S

CHANNEL
INDEX=3Z2

INCREMENT

LHMN\EL INDEX
CONTRO!

UNIT INDEX= 1

|

ALTERNATE
PATH

.DGT40

PUT ALTER¥ATE

-— DEVICE GROUP
ABLE

FORPRIMARY PATH

.DGT204
[——
LOOP ON DEVICE

ADB& GEVERATE
T'BLE ENTRIES

NO

Chart AE. GENSCB Macro (CEIDA) (Page 2 of 2) :

0s

.DGTAaB CHBCST . PTRPRN CHBECXRA
PUT _.AST ENTRY GENERATE
IN GENERATE CPU GENERATE SUPPORT SYSTEM
ACT. COI\VERSION —»{STATUS TABLE OF r—»] PRINTER_PATH ’——-b ICE
CCB TABLE OF CCB ALLOCATION
HEADER
H
CHBSDA PTRDPT ¥ CHBPSD ¥ CHBECXRB
,_. —— e e P
OUGH LOOP ON S‘zVB
CYMB"L}C DE‘ ICE GENERATE DRUM DEVICE SUPPORT S{STFM
RIX FATH TABLE OF GENERATE DIRE"T EVIC
GbNERATE SpAT CCB ACCE ALLO(‘ATION
STAT. DATA TBL
CHBSOT BPTRZ272 Y CTHBSDT 4 CHBECX‘!A v
[1 ' e))
GENER, LOOP ON SYMB ERATE
GENERATE SYSTEM "‘R(’NSMISSILN DEVICE MATRIX . leTUAL MEMCRY
OPERATOR 1D CONTRCL PATH ENERATE I/0 SUPPORT SYSTEM
TABLE TABLE OF CCB STATISTICAL DEV ALLOCATION
TABLE
CHBHED y PTRCCU .Y CHBCBH CHBPVT
GENERATE
AVAILABLE GENERAL CHANNEL GENERATE CORE GENERATE PUBLIC
DEVICE TABLE CONTROL UNIT aLou(TABLE VOLUME TABLE
USING DEVICE TABLE OF CCB ADE]
COUNTS
CHBCCB R PTRCOR CHEBCBT CHBTDE v
F i N
CONFTGUR}\TIUN GENERATE CORE GENERATE
CONTROL BLOCK CORRESPONDENCE —_— BLOCK TABLE — TERMINAL DEVICE
HE:’-\DER ST OF CCB TABLE

CHBRJE

GENERATE REMOTE
JOB ENTRY TABLE

H Lhomen
MEND

Section 5: Flowcharts 91

APPENDIX A: SYSTEM TABLE FIELDS SET BY SYSGEN MACROS

This appendix is constructed as follows:

of the entry, then the name of the macro in
the fields are listed in the order in which

which the global symbol is set, the operand

they are set by the GENSCB macro; the name
of each field is followed by a description

FIELD DESCRIPTION MACRO OPERAND DEFAULT
SYSLOW Low Core Threshold (LOW) DISPAR ICT (1) 1
SYSHI Low Core Threshold (HIGH) DISPAR ICT(2) 10
SYSFLI Flags VMPAR OPTIONS 00
SYSECB Estimated Core Blocks Available 90
SYSXPG Number of XTSI pages to trigger XTSI paging TSKLMT XTSIPGS 0
SYSMGPTP Number of page table pages for migration 8
SYSTLM System TSI Limit TSKLMT TASKS 50
SYSTID Last Task ID Number Assigned 16
SYSRSC Count of Pages in Supervisor Core's Reserve 2
List
SYSMND Lower Shared Page Drum Threshold 250
SYSMXD Upper Shared Page Drum Threshold 300
SYSDATA Number of entries to expand page table TSKLMT VLPTE 3
SYSMXS Maximum Number of Shared Pages 30
SYSMNS Minimum Number of Shared Pages 15
SYSSCH SVC Charge Value 77
SYSMWX Maximum Shared Pages To Purge DISPAR PURGSH 22
SYSMWT Scan Shared Pages Threshold DISPAR THRESH 10
SYSBUF Buffer Size On Drum DISPAR BUFSIZ ou
SYSXTS XTSI size limit TSKLMT PGTBL 16
SYSPSL Maximum number of public segments allowed TSKLMT PSLMT 6
SYSAST Auxiliary Stop Threshold DISPAR AUXSP (1) SYSBUF+10,,
SYSAPT Auxiliary Primary Threshold DISPAR AUXSP(2) 100
SYSRS1 PSW To Enter RSS Via Program Interruption 00040F00
V (CEHAPA)
SYSRS2 PSW To Enter RSS Via SVC Interruption 000L4CFO00
V (CEHASA)
SYSRS3 PSW To Enter RSS Via Interruption Key 00040F00
V(CEHAER)
SYSRSH4 PSW To Enter RSS Via I/0 Interruption 00040F00
V (CEHADA)
SYSRSS PSW To Enter RSS Via Channel Interruption 00040F00
Processor V(CEHACR)
SYSRS6 PSW To Enter RSS Via GQE on TSI 00040F00
V (CEHAQA)
SYSDLY TSEND Delay Time 524288
SYSDTRL Delta Length (Timer Count Per Master Tick) 255
SYSTSEM TSE Maximum Count 255
SYSTCR Task Core Regquirement 55
SYSIDL Idle Timer Setting 3615
SYSCCAIV Contiguous Storage Interruption Timer 3
SYSPT1 Pointer to fixed area of CHASST V(SSTLHT)
SYSPT2 Pointer to drum area of CHASST V(SSTLH2)
SYSPT3 Pointer to disc area of CHASST V(SSTLH3)
SYSBLK Maximum pages blocked to drum DISPAR BLKSZE 12
SYSBLK2 Combined maximum pages blocked to drum and DISPAR BLKSZE 20

listed.

SYSTEM TABLE (CHBSYS)

disk

Appendix A:

System Table Fields Set by Sysgen Macros

of that macro, and the default option are

93

SCMLPR
SCMPDC
SCMCFM
SCMPFM
SCMNCP
SCMOCF
SCMBPR
SCMOMS
SCMTAP
SCMTAl
SCMTA2
SCMTA3
SCMDA

SCMDA1l
SCMDA3
SCMPTN
SCMPUN
SCMRDN
SCMPRN
SCMDET
SCMTDN
SCMORG
SCMLAB
SCMPRV
SCMPSP

SCMSSP
SCMPSC
SCMSSC
SCMSST

SCMUL1
SCMULZ2

SCMMAV
SCMAUX
SCMIDP
SCMQOST
SCMIPL
SCMATH
SCMFIR

SCMTIM
SCMMVD
SCMATV

CHILCUT
CHLPTR
CHICS
CHLFLG
CHLDIGn

94

SYSTEM COMMON (CHBSCM)

Installation Legitimate Privilege Classes

Number of Public Devices

Installation Default for Card Forms
Installation Default for Printer Forms
Nonconversational order priority

Operator Confirmation Default

Batch priority code default

Operator Message Option Default

Installation Tape Default

Number of 7-track Tapes

Number of 7-track Data Conversion Tapes
Number of 9-track Tapes

Installation Direct Access Default

Number of 2311 Direct Access Devices

Number of 2314 Direct Access Devices

Number of Paper Tapes

Number of Punches

Number of Readers

Number of Printers

Total Number of Devices

Installation Tape Density Default

Installation DS Organization Default
Installation Label Type Default
Installation Default Privilege Class
Installation Default Primary Page Space
Allocation

Installation Default Secondary Page Space
Allocation

Installation Default Primary Cylinder Space
Allocation

Installation Default Secondary Cylinder
Space Allocation

Installation Default Secondary Track Space
Allocation

User Library Primary Page Space Allocation

User Library Secondary Page Space
Allocation

Default Maximum Auxiliary Storage

Auxilliary space overcommitment
Installation default external priority
Minimum pages on ACV permitting allocation
Installation Default Prompt Limit
Installation Default Authorization
Installation Default FORTRAN Interruption
Recovery

Task time interval

Multi-volume flag

ACV threshold valve

CHANNEL TABLE (CHBCHL)

Control Unit Table Pointer
Multiplexers/Selector Channel Table Pointers
Control Units Assigned Table Size

Flags for Each Channel

Device Interaction Groups (Note)

Note: No entries are made for non-existent
channels for the fields CHLDIGl1 and
CHLDIG2. The setting of the fields is
determined by analysis by SYSGEN, the ana-
lysis being done on the scan table
{CHBSCN) .

CLOP

CLOP
CI1OP

CLOP

CLOP
CLOP
DEVGRP
DEVGRP
DEVGRP
CLOP
DEVGRP
DEVGRP
DEVGRP
DEVGRP
DEVGRP
DEVGRP
DEVGRP
CLOP
CLOP
CLOP
CLOP
CILOP

CLOP

CLOP

CLOP

CLop

CLOP
CLOP

CLOP

CLOP
GENSCB
CLOP
CLOP
CLOP

VMPAR
GENSCB
GENSCB

CHANNEL
DCU
CHANNEL
DEVGRP

PRVLG

CFM
PFM

OPCONF

OPMSG
TATYPE

DATYPE

DEN

DSORG
LABTYP
PRVLG{1)
DAPAGES(1)

DAPAGES (2)
DACYLS(1)
DACYLS(2)
DATRKS

LIBPGS(1)
LIBPGS (2)

MAV

PRMTLMT
AUTH
FIR

TIME

SEL, MPX
ADDRESS
SEL,MPX
NONE

78000000, ,

1
5081
419K

Y

ox
(=}

=

PHRHEROOWONOO

16
08

256

8

5

U

Y
01000000

80
12¢

CHBCUT

MCHF
MCHFLG
MCHCTD

SCHFLG
SCHCTD

CUTMAX
CUTFP
CUTDGP

CUTF1LG
CUTS
CUTC
CUTDIGn

DEVLOCK
DEVMAX
DEVF
DEVAEP
DEVPP

DEVFLG
DEVTP
DEVSDA
DEVASD
DEVI

SACDA
SACDP

MULTIPLEXER CHANNEL TABLE (CHBMCH)

Not used
Flag Field DCU ADDRESS
Control Unit Table Displacement
SELECTOR CHANNEL TABLE (CHBSCH)
Flag Field DCU ADDRESS
Control Unit Table Displacement
Note: MCHFLG and SCHFLG are set to X*'0000°
if the control unit exists, and to X'4000°
if the control unit does not exist. MCHCTD
and SCHCTD are calculated for existing con-
trol units by SYSGEN.
CONTROL UNIT TABLE (CHBCUT)
Number of Control Unit Entries in Table DCU ADDRESS
Control Unit Table Flag Area
Device Group Table Pointer for Control Unit DCU ADDRESS
N
Flags for Control Unit N DCU ADDRESS

Switch Flag in CUTFIG
Entry Type Flag in CUTFLG
Device Interaction Group DEVGRP NONE
Note: No entries are made for nonexistent

control units, for the fields CUTDGP and

CUTFLG. The settings of the flags CUTS and

CUTC are determined by analysis by SYSGEN,

the analysis being done on the ADDRESS

operand of the DCU Macro.

No entries are macde for nonexistent control
units for the fields CUTDIG1l through CUT-
DIG8. The setting of the fields is deter-
mined by analysis by SYSGEN, the analysis
being done on the scan table (CHBSCN).

DEVICE GROUP TABLE (CHBDEV)

Lock Byte

Maximum Device Address in Table

Table Flags

Asynchronous Interruption List Pointer
Actual Paths to Device

DEVGRP ADDRESS
DEVGRP PATH
DEVGRP PATH
DEVGRP PATH

Device Flags

Device Type

System Symbolic Device Address
System Symbolic Device Address
Asynchronous Interruption Flags

DEVGRP UNIT
DEVGRP ADDRESS
DEVGRP ADDRESS

SYMBOLIC TO ACTUAL ADDRESS CONVERSION TABLE (CHBSAC)

Actual Device Address
Device Group Table Pointer

DEVGRP ADDRESS

Note: The Device Group Table Pointer is
the displacement from CHBDEV to the corres-
ponding Device Group Table.

4000

4000

0
CHBCUT1

00
00
N/A

0

0

0
SYSGEN
VCON

0

01

0

0

0

0
SEE NOTE

Appendix A: System Table Fields Set by Sysgen Macros 95

SDAHPS
SDAHAL
SDALOC
SDAFLA

SDASDA
SDADEV

SDATID
SDAMRB
SDAUSC
SDAFLB
SDADM4
SDASPC
SDATAP
SDAVID
SDANIC
SDALCS
SDATRL
SDAOHI
SDAOHL
SDAOHK
SDATOL

SOTLNG
SOTBCK
SOTUID
SOTDES
SOTLOG
SOTTID
SOTSIN

SIDUID

SIDDES

SIDLOG

SIDTID
SIDSIN

HEDLCK
HEDCNT

HEDSPR

AHDDTC

AHDADR

AHDICK
AHDCNT

96

SYMBOLIC DEVICE ALLOCATION TABLE (CHBSDA)

First Public Device
Address of Last Entry
System Lock Byte

First Flag Byte DEVGRP TYPE,
IOREQ

Symbolic Device Address DEVGRP ADDRESS

Device Code DEVGRP UNIT,
FEATURE

Task ID

Maximum Number of IORCBHs DEVGRP MAXIO

User Count

Second Flag Byte DEVGRP TYPE

Third Flag Byte

Total Space Capacity of Volume

Tape Position Code

Volume ID

Number of Logical Cylinders/Volume
Number of Tracks/Logical Cylinder
Number of Available Bytes/Track
Overhead for Keyed Record

Overhead for Last Keyed Record on Track
Overhead Bytes to be Subtracted if no Key
Tolerances512 Gives Effective

SYSTEM OPERATOR ID TABLE HEADER (CHBSOT)

Number of Table Entries - Binary

Symbolic Device Address of Backup Terminal OPCHSL ADDRESS
User ID - EBCDIC

Destination Flag

Logon Flag

Task ID - Binary

Console Symbolic Device Address

SYSTEM OPERATOR ID TABLE (CHBSID)

User ID - EBCDIC

Destination Flag

Logon Flag

Task ID - Binary

Console Symbolic Device Address OPCNSL ADDRESS

AVAILABLE DEVICE TABLE (CHBHED)

Lock Byte
Count of Subgqueue Headers DEVGRP UNIT,

: ADDRESS
Spare Bytes

SUBQUEUE HEADERS (CHBAHD)
Device Type Code (Same as SDSDEV in SDAT) DEVGRP UNIT
Pointer to First Subqueue Entry
Header Lock Byte
Number of Entries in the Subqueue DEVGRP UnNIT,
ADDRESS

0
SDALST
0

82

0
00000000

o

OO0 OCOOOoOOCOOCOoO®OoONO

SYSOP00O,
1, 2, 3
00, 01,
02, O4
01, 00,
00, 00

0

0

SAME AS
SDAT

SET BY
SYSGEN

00

NO HEADER

SUBQUEUE ENTRIES (CHBAVE)

AVEDEV Full Device Code (Same as SDASEV in SDAT) DEVGRP UNIT NO ENTRY
AVEPNT Pointer to SDAT Entry SET BY
SYSGEN

CONFIGURATION CONTROL BLOCK HEADER (CHBCCB)

CCBNDM Number of Drums of Installation DEVGRP UNIT, 1
ADDRESS
CCBDPP Relative Pointer to Drum Path Table SEE NOTE
CCBTPP Relative Pointer to Transmission Control SEE NOTE
Path Table
CCBNCC Number of Channel Controllers at CHANNEL MPX,SEL
Installation
CCBCPT Relative Pointer ito Channel Controller SEE NOTE
Table
CCBPCL Relative Pointer to Correspondence List SEE NOTE
CCBNPR Number of Printers at Installation DEVGRP UNIT,
ADDRESS
CCBPPT Relative Pointer to Printer Path Table SEE NOTE
CCBLSD Length of Shared Data Set Table VMPAR SDST 10
CCBLDA Low Drum Availability Comnstant DISPAR LDMTR 2%
CCBCON Maximum number of conversational tasks TSKLMT CONV
CCBMTT Maximum number of MTT administrator's tasks TSKIMT MTTADM
CCBVMB Storage Assigned to Variable-length Control VMPAR VCSLNG 20
Sections
CCBTER Number of user and operator's terminals GENSCB
CCBBUF Buffer size for input data VMPAR TBUFS 200
CCBBAT Maximum number of patch tasks TSKLMT BATCH
CCBBAK Maximum number of background tasks TSKLMT BACK

Note: Relative Pointers above are calcu-
lated by SYSGEN, and each is equal to the
number of bytes from CHBCCB to the begin-
ning of the specific table.

CCB _CPU STATUS TABLE (CCBCST)

CSTIDO Identity Byte 0
CSTMDL Model Number of CPUs at Installation CPU MODEL 2
CSTNOP Number of CPUs at Installation CPU NUM 1
CSTNAP Number of Storage Elements in TSS Domain STEM NUM 2
CSTSET Relative Pointer to SE Status Table # Bytes
from
CCBCST
CSTID1 ID Field for External Interruption SEE NOTE
CSTID2 ID Field for External Start BELOW
CSTID3 Interruption Code on Malfunction Alert
CSTCST CPU Status (00=Available) CPU NUM 80
CSTPF1 Primary Prefix CPU PRFX 0
CSTPF2 Alternate Prefix CPU ALTPRFX 0
CSTSST SE Status (00=Available) STEM NUM 80
CSTFSA Floating Storage Address 0

Note: The following values are filled in
by SYSGEN for existing CPUs:

CPU# IDpl1 ID2 IDp3
1 80 08 20
2 40 o4 10
3 20 02 08
4 10 01 o4

Appendix A: System Table Fields Set by Sysgen Macros 97

CCB DRUM PATH TABLE (CCBDPT)

CCBNPD Number of Paths to This Drum DEVGRP PATH 0
CCBPTD Path to Drum NG ENTRY

CCB TRANSMISSION CONTROL PATH TABLE (CCBTPT)

CCBADD Path to Transmission DEVGRP UNIT NO ENTRY
Control Line

CCBDTC Device Type Code Same as SDAT DEVGRP UNIT NO ENTRY

CCBDCL Device Class SDADEV Field DEVGRP UNIT NO ENTRY

CCBUNT Unit Type DEVGRP UNIT NO ENTRY

CCBOPF Optional Features DEVGRP FEATURE NO ENTRY

CCB_CHANNEL CONTROL UNIT TABLE (CCBCCT)

CCBNCH Number of Channel Connected to Channel CHANNEL MPX,SEL 0
Ccont.
CCBCAD Channel Address CHANNEL MPX,SEL NO ENTRY

CCB_CORRESPONDENCE LIST (CCBCLT)

CCBPCM Path to Control Unit DEVGRP PATH NO ENTRY

CCB PRINTER PATH TABLE (CCBPRT)

CCBNPP Number of Paths to This Printer DEVGRP PATH 0
CCBPTP Path to Printer DEVGRP PATH NO ENTRY

DIRECT ACCESS PAGING STATISTICAL DATA RECORD_ HEADER (CHBPSD)

PSDLSD Length of SDR Entry (80 Bytes) 80
PSDLWA Last Word Address LASTWORD

DAPSDR ENTRY

PSDSDA Symbolic Device Address DEVGRP ADDRESS NO ENTRY
PSDFB Flag Byte 0
PSDLSA Last Seek Address (]
PSDLP Path Last Used 0
PSDEIC Total Error - Incident Count 0
PSDRET Total Retry Count 0
PSDRTH Retry Thresholds DEVGRP UNIT SEE NOTE
PSDTS Error Time Stamp 0
PSDSDR SDR Buckets (64 half-bytes) 0

Note: Retry thresholds are as follows:

For 2301 Drum - X"0101010A0505000000000000°

For 2311 or 2314 Disk - X'01020A020A0A0A0A0A000000°
For 2302 - X'020202010A0A0A0A0A010000°*

For other Devices - No entry in DAPSDR

SCAN MASTER CONTROL TABLE (CHBSMC)

SMCMLB Master Lock Byte (4]

SMCMCT Master Count of GQEs 0

SMCDCT Count of Digs calculat-
ed by
SYSGEN

928

SMCCMF
SMEDLB
SMEBFG
SMECMF
SMEFEA

SMECEA
SMELEA

SCNFB1
SCNDID

SCNLOK
SCNPRO

SCNFQE
SCNLQE

SDTLSD
SDTLBA

SDTSDA
SDTFB
SDTLP
SDTEIC
SDTRET
SDTRTH
SDTTS
SDTSDB

CBHUNA
CBHPNX
CBHPXP
CBHAVC
CBHLOCK
CBHBSE
CBHSZE

CBTFLK
CBTTPT
CBTVMA

Master Count of Matched Facilities
Dig Lock Byte

Flag Byte

count of Matched Facilities

First Entry Address

Current Entry Address
Last Entry Address

SCAN TABLE (CHBSCN)

Flag Byte Number 1
DIG code

Lock Byte
Processor Pointer
First Queue Entry
Last Queue Entry

I/0_STATISTICAL DATA TABLE (CHBSDT)

Length of an SDR Entry (72 Bytes)
Last Byte Address of SDT

Symbolic Device Address

Flag Bytes

Path Last Used (Actual I/0 Address)
Total Error Incident Count

Total Retry Count

Retry Thresholds

Time Stamp at Errcr Incident N

SDR Buckets (64 half-bytes)

DEVGRP ADDRESS

DEVGRP UNIT

Note: Retry Thresholds are as follows:

For 2400 Tapes - X'0F0503052805000000000000°*

For 2311 or 2314 - X'0AOAOAOAOAFF020A0A000000°

For 2301 Drum - X*0100010A0505000000000000°*

For 2540 Reader - X'050205050000000000000000°

For 1050 - X*030303030303030303030A00°

For 2780 - X'030312000303030303000000"

For any other Device - X'000000000000000000000000°"
For 2540 Punch - X'020202020000000000000000"

For 1403 Printer - X'050303030200000000000000°

CORE BLOCK TABLE HEADER (CHBCBH)

Pointer to Unassigned Chain

Pointer to Pending Non-XTSI-PSW Chain

Pointer to Pending XTSI-PSW Chain

Count of Available Blocks

Lock Byte for CBT

Base Address for Start of Memory

Number of Core Blocks in Memory STEM NUM

CORE BLOCK TABLE (CHBCBT)

Entry - Forward Link
TSI Pointer
Virtual Memory Address

ocooOo

SYSGEN
adcon
0
SYSGEN
adcon

0
calculat-
ed by
SYSGEN

0

SYSGEN
VCOR

0

0

72
SYSGEN
ADCON

0 ENTRY
0

0

0

0

SEE NOTE
0

0

COOCOOOO

Appendix A: System Table Fields Set by Sysgen Macros 99

CBTFLG
CBTRLK

PVTMCT

ECXBFDE

ECXBLDE

ECXBSDA
ECXBPHP

ECXBPHP2

ECXBDEV

TDEFTD

TDELTD

TDESDA
TDEDEV

SSTLHT

SSTLH2

SSTLH3

BECTDEF
BCTSOI
BCTRUS
BCTEUS
BCTALM
BCTBSN
BCTFL3
BCTALL

100

Flags
Reverse Link

PUBLIC VOLUME TABLE (CHBPVT)

Maximum Volume Entry Count PUBVOL MAXVOL

SUPPORT SYSTEM DEVICE ALLOCATION TABLE (CHBECX)

PTR to 1st Non-resident Device Entry

PTR to Last Non-resident Device Entry

Symbolic Device Address DEVGRP ADDRESS
Physical Path DEVGRP ADDRESS,
PATH
Alternate Physical Path DEVGRP ADDRESS,
PATH
Device Defining Information DEVGRP

Note: If no alternate physical path
exists, the half-word field is set to
X*'FFFF"*.

TERMINAL DEVICE TABLE (CHBTDE)

First Terminal Device Pointer
Last Terminal Device Pointer
DEVGRP ADDRESS

DEVGRP UNIT,
FEATURE

Symbolic Device Address
Device Code

REMOTE JOB ENTRY TABLE (CHBRJE)

Note: Retry Threshold for 2780:
X'030312000303030303000000°"

SYSTEM STATISTICS TABLE (CHBSST)

SST total length - bytes
SST area 2 - bytes

SST area 3 - bytes

BULK _COMMON TABLE (CHBBCT)

Default base time

Operator Intervention

Real time measurement unit

Master service unit of time

ABEND limit

Packed decimal batch sequence number
Interruption-driven flag (initially on)
Length of S-entries

10

SYSGEN
VCON
SYSGEN
VCON

SEE NOTE

SYSGEN
ADCON
SYSGEN
ADCON

0
00000000

calculated
by SYSGEN
calculated
by SYSGEN
calculated
by SYSGEN

3000

1000
100

255C

This appendix is structured as follows:

APPENDIX B:

MACRO GLOBAL SYMBOL DESCRIPTIONS

* The system generation macro instructions are arranged in alphabetical order;

e The global symbols set by each macro instruction are listed;

e For each global symbol there appears:

and

the macro operand that sets the symbol (lower case entries indicate positional
operand), the name of the System Control Block that is affected by the symbol, and

the value assigned to the global symbol,

if the macro operand is defaulted.

Whenever a hardware address is found in a global symbol, its decimal value plus one is

used.

T T T T T 1
| [| | SYSTEM [[
] | | { CONTROL |]
| | | MACRO { BLOCK | |
{GLOBAL SYMBOL |DESCRIPTION | OPERAND | AFFECTED | DEFAULT |
i i 1 4 1)
1) 1 ¥ T T |
|cCu | Number of Cheannel Control Units | i] | | |
| | | | | |
| JCCUNO |Number of channel control units |numccu | CHBCCB 10 |
L 4 1 i i 1
1 8 T h] 1 T)
| CHANNEL |Describe Multiplexer and Selector | i |]
i |Channels | | | |
{ | | | |
JCEL(I)={1{2}* |If the MPX operand is present, each | MPX | CHBCHL, 10 |
i |address has its corresponding sub- | SEL | CHBMCH, | |
| |scripted variable of CHL set to 1; { | CHBSCH, | | |
| |if the SEL operand is present, each | | CHBCCB, { |
| |address has its corresponding sub- | | CHBDEV, | |
} | scripted variable of CHL set to 2. | | CHBCCT | |
| | | | | |
| NOCHN {The sum of the number of addresses | MPX |-- |0 |
| |in the MPX and SEL operands. | SEL | i i
| | | | | |
| ONECH | Indicates the CHANNEL macro has |- {—- |0 |
| | been processed. | | | |
| | | | | |
| SELSOB | | SELSUB | CHBMCH KC,D,E,F)!
| | {] | |
{ |*I is the representation of a channel | { | |
| | hardware address.] | | |
L 1 i L 1]
r L} . T T T 1
| cCLOP | Specify Command Language Options | { | | |
| | I | | |
| A0 | | 7 | | |
| JSCMTAP=| EO | Tape drive type default | TATYPE=} 7DC; |CHBSCM {00 |
i 00 | | 9 i | |
i | i M] |
| JSCMDA= {1} |Direct access device type default |DATYPE={2311}|CHBSCM |1 |
| 8 | | 2314) | | |
| | | | i |
| TSCMMWT |Maximum wait time for operator | MOWT | CHBSCM |6 |
| | response I 1 1 1
L L 1 i 'y i

Appendix B:

Macro Global Symbol Descriptions 101

r T T L] LE 1
; l | |SYSTEM | l
i | | | CONTROL | |
| | | MACRO { BLOCK | |
|GLOBAL SYMBOL |DESCRIPTION | OPERAND | AFFECTED | DEFAULT |
L L L i 1]
3 T T T 4 L
1JSCMOCF={Y |Confirmation or no confirmation |0PCONF{Y} | CHBSCM |Y |
| N |of commands wanted | N i | |
| | | | |
lJSCMOMS={M | Format of system messages to the IOPMSG{M} | CHBSCM M |
| C | operator | C } | |
i | | | |
JSCMIPL	Installation's prompting limit	PRMTLMT { CHBSCM	5	
ISCMPSP	Integer,; -Number of pages used for	DAPAGES	CHBSCM 116	
	default for VAM primary storage	i i		
i	allocation			
{ISCMSSP	Integer,—-Number of pages used for	DAPAGES	CHBSCM	08
	default for VAM secondary storage		{	
i	allocation]	{		
		i		
JSCMPSC	Integer; - Number of cylinders	DACYLS	CHBSCM 12	
jused for default for SAM				
	primary storage allocation			
				{
{JSCMSSC	Integexr,-Number of cylinders used for	DACYLS { CHBSCM 11]		
	default for SAM secondary storage			
Jallocation	{ i			
IJSCMSST	Number of tracks used for default for	DATRKS	CHBSCM	8
	SAM secondary storage allocation	i		
] JSCMTDN=({ 3	Tape recording density default	DEN	CHBSCM	43
{ 3		1		
{ 3	i 2 {			
	,	I I [
JSCMORG= (1	Data set organization default	DSORG={PS	CHBSCM {5	
4	i VI			
{ 5		Vs		
} o f o } %				
ISCMLAB=	Tape label default	LABTYP={ NL	CHBSCM	2
		SL »		
		SUL)		
[_			[
ISCMAT ={U	Default authorization assigned to a IAUTH—{U}	CHBSCM	0	
i P	user when joined to the system i P			
		I		
ISCMPRV,	Default privilege class assigned to a	PRVLG	CHBSCM {D,120,0,]	
ISCMLPO,	user when joined to the system, and		10,0	
JSCMLP1,	other privilege classes			{
ISCMLP2, I]				
e	s			
JSCMCFM	Installation default identification	CFM jcHaBSCM	CARDS	
‘	for card forms	1 i (
JSCMPFM] Installation default identification	PFM	CHBSCM	PAPER	
	for printer forms			
jIscMUL1l	Integer,-Primary space allocation for	LIBPGS { CHBSCM	16	
{a userlib				
l	_ I I	[
ISCMUL2	Integer,-Secondary space allocation	LIBPGS	CHBSCM	8]
{ |for a userlib { | |]
i L L L 1 3

102

——— —]

GLOBAL SYMBOL |DESCRIPTION
i

]

| SYSTEM

| CONTROL
| BLOCK

| AFFECTED
4

L
JSCMFIR={Y|N} |FORTRAN interruption recovery on
| boundary violations desired
SCMMAV | Default maximum auxiliary storage

{Default external priority
i

T
| FIR={Y| N}

MAV

RI

4
| CHBSCM
|

|
| CHBSCM

|
| CHBSCM

T
PU* |Describe a Central Processing Unit

J
JSCMIDP
CPU:
J

CSTNOP(I)=(1)|Each subscripted variable is assigned
2{|the identity of the CPU (except for a
3{jcpUl, MODEL 1).

4

|
JCSTMDL(I)={1}]Each subscripted variable is assigned
jthe model number of the CPU

|

JF1(I)=FLTADD |Each subscripted variable is set to
|FLTADD if floating storage addressing
|is specified for the CPU

._._——..—._.——-—-—-—-——-——_—.—-q—_.—-—-—_—-q—_——-—-—-..

JF2(I)=PTSNS |(Each subscripted variable is set to
|PTSNS if partitioning sensing is spe-

|cified for the CPU.

JF3(I)=XCNTRL |Each subscripted variable is set to
| XCNTRL if extended direct control is
|specified for the CPU.

]

CSTPF1(I) |Primary prefix storage area value

CSTPF2(I)

[T

| Secondary prefix storage area value

|*In all CPU global symbols, I repre-
|sents the identity of the CPU.
L

o s i, S i A o, D - S st S— —

cpuno=(1

FWN

|
!
| MA
|
1®
‘l
|
]
|
l
|
—
=)
FEATURE
FEATURE

FEATURE

PRFX

ALTPRFX

CHBCST

| Q
‘B
0
[47]
3

HBCST

Q 0

HBCST

:

4
|Describe a Device Control Unit

HCU(I) |Each subscripted variable is assigned
| the highest hardware address (exclud-
|ing channel portion) from among the
|device control units attached to the
|channel represented by I.

DCULAB(LABEL) |Each subscripted variable is set to

|of the ADDRESS operand.

|
| The highest value specified in the
| LABEL operand

:

CORLST{LABEL) |For each device control unit with a
|label less than 33, an entry in the
|1list consists of a halfword con-
jtaining a count of the paths to the
|control unit through one controller,
| followed by the actual paths (one per
{halfword) ; a nonexisting entry con-
|sists of a halfword of 'FFFF'.

L

o= s T e S ot T — —— . ——— — {——{— —" p— W—t—. oo, Mo o {—— {oo—

]
|
|
|
|
|
|
|
|
|
|
|
i
{
|
|
|
I
|
|
Jf
|
| ADDRESS
|
|
|
|
|

| ADDRESS,

{the character value of the channel and|LABEL
|device control unit of the first entry|

5 B
® s}
= =
- e

T S

CHBSCH

CHBCLT

. . o S s, SO g PO i . G . g S i b W e g S g S g NS i, B st S g, SO, s S e ST A . M. S s, O S, S s e, . s

e s S i i e e

null

o

null

——_-———._._..—__—_—.—-...__.....____—_——-—.___—-.—-—-—-..Jn.—...—.—.—-—-.—.——._—-—-—-.—.._.—._.-__._.—-—-—u...-_...—_—-——d-—.——_—_——-db—.—p-—#a

Appendix B:

Macro Global Symbol Descriptions

103

T

| SYSTEM

| CONTROL
| MACRO | BLOCK

DESCRIPTION | OPERAND | AFFECTED
1 1

ISP

GLOBAL SYMBOL DEFAULT

e —— et e]

T 1

*DCUN (M) |Effectively, this is an NxM matrix | ONIT, | cHBCUT,
|where N represents a channel and M a |ADDRESS, | CHBSCH,
|device control unit. For the first | MODEL= {1 | CHBDEV,
lentry of the ADDRESS operand, the } | CHBDPT
|DCUN{(M) entry is set as follows (N and|
|M are the channel and control unit of
{the first entry):

null

NOoWwn

1) If DCUN(M) is null, it is set to
the concatenation of the unit code
and the model of the device and a
left parenthesis.

first four characters are
asterisks, the first five char-
acters are replaced by the unit

|
|
|
|
|
12) If DCUN(M) is not null and its
|
|
|
| code and model number.

|

|
|
|
|
l
|
|
|
|
|
|
|
|
|
|

jFor subsequent ADDRESS entries, the
|DCUN(M) entry is set as follows (N and|
|M are the channel and control unit of |
|{the second entry): |

[y
Nt

|
If the channel of the subsequent |
entry is the same as the channel |
of the first entry, and if DCUN{(M) |
is null, DCUN(M) is set to the |
channel and device control unit of |

zero and right parenthesis. |
However, if DCUN(M) is not null |
and the first four characters are |
asterisks, the first five charac- |
ters are replaced by the unit codej
and model number. |

i

|

3o
~

If the channel of the subsequent

entry is not the same as the chan-|
nel of the first entry and, if |
DCUN(M) is null, DCUN(M) is set to|
the concatenated character value |
of the channel and control unit of|
the first entry, zero, and the |
number of entries in the ADDRESS |
operand. The DCU entry for the

first ADDRESS entry has an |
asterisk set to replace the left |
parenthesis originally set.]
However, if DCUN(M) is not null |
and the first four characters are |
asterisks, the first five charac- |
ters are replaced by the unit code]

[o S S e . S s St s o . S G S o S i M. S, . S, St S SOOS saiios Sr. pmre WO S S . WM Ao, S i o, W At S e W WSO, e S g Mo et St g, O e T U W . et et WY

and model number.

[e s i ot e . s o st S Sl S St WAt " it — o, S S {—— — —T——" —— At Vo 0. T~

L

{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
%
the first entry concatenated to a | {
|
|
|
{
|
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
l
]

|
|
!
I
|
|
|
|
|
|
i
|
!
|
|
I
|
|
|
|
|
I
|
{
|
|
|
|
|
I
I
|
|
|
|
|
|
|
|
|
|
|
!
|
]
!
|
|
|
|
|
!
|
|
|
|
|
!

i o et e e i S) S i S LA b e, W RS, MRS St S AT S e S W S, . et M PSS o et e, MO, i b A AT N e S P i, A S o St S o, B S, St oo, T, St s sl s st soovrn, oo)

104

GLOBAL SYMBOL |DESCRIPTION
}

-
!
|

U

| MACRO
| OPERAND
4

1

| SYSTEM

{ CONTROL
| BLOCK

| AFFECTED

|
i
i
'
[N270x
|
|
|
|
i
|

T270X(N270X)

i | 1

|If UONIT = 2701, or 2702, or 2703 and |UNIT,
|if the channel specified in a subse- |ADDRESS
|quent entry is different from the |
|channel specified in the first ADDRESS|
|entry, N270X is incremented by one so |

las to point to the next available |

| subscripted variable in T270X. |

|Each subscripted variable is assigned |UNIT,
|the channel and control unit portion |ADDRESS
|from a 2701, 2702 or 2703 ADDRESS
Jentry that has a channel different
|from the channel of the first entry
|of the ADDRESS operand.

|
*This global symbol is also set by the

—_—

CHBTPT

CHBTPT

DEFAULT
0

b
r
DEVGRP

PNO (NM}

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
| MD (NM)

DEVNM (D)

DEVSNM(D)

SYM(S)

|
|
|
[
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|SYMA(S)
|
|

|
| DEVGRP macro instruction.
I
Ll

|Describe a Levice Group

|Effectively, this is an NxM matrix
{where N is the channel and M is the
|device control unit. An element of
|the matrix provides the number of
|paths specified in the PATH operand

| for the particular channel and device
|control unit.

PATH

|Effectively, this is an NxM matrix
|where N is the channel and M is the
|device control unit. Each element of
|the matrix is set to the maximum
|number of devices specified for a

| particular channel and control unit.

ADDRESS,
PATH

s e . s i apn B . S S e e, o S e o o S g, . i . e

|

|Effectively, this is a NxMxD matrix
|where NMD represents the hardware
|address of a device. Each element
|of the matrix is set to the unit and
|type of device whose hardware address
|is NMD.

| ADDRESS,
| PATH, UNIT,
| TYPE

|Effectively, this is a NxMxD matrix
|]where NMD represents the hardware
|address of a device. Each element
{of the matrix is set to the symbolic
Jaddress that corresponds to the

| hardware address NMD.

|

| Each subscripted variable is assigned |ADDRESS,
|the hardware device address and type |[|PATH,

Jand IOREQ bit corresponding to the | TYPE,
|symbolic device address represented by|IOREQ={YES}
|S- | NO
|

| Each subscripted variable is assigned |ADDRESS,

| the MAXIO value for the device whose |MAXIO

|symbolic address is represented by S. |
L L

ADDRESS,
PATH

— s, . Wb s S —— p— S—

CHBDEV

CHBDEV

e e o . s S o . s, S o e . 1 oo o . . e S s, S, . e st e s S e o

| CHBDEV,
{CcHB272,
| CHBPSD,
| CHBSDT

CHBDEV,
CHB272

U

| CHBSDA,
| CHBDPT,
{ CHBPSD,
| CHBSCN,
| CHBSDT

CHBSDA

s e e st

nulil

null

e e e e o o e e —— . it A oo S o Ao o S S S S e SO St o s o S S St SASS S— { B, S , s i, s S el s s e W . . S, e e e, S, e e, St e, S . ol s . . s

Appendix B:

Macro Global Symbol Descriptions 105

r T T T T L)
| | | | SYSTEM | |
| | I |CONTROL | |
] | MACRO | BLOCK 1 |
|GLOBAL SYMBOL |DESCRIPTION | OPERAND |AFFECTED |DEFAULT |
i 4 L L 4 '
3 T T T T 1
SYMF(S)	Each subscripted variable represents	ADDRESS,	CHBSDA, jnull	
	the features on a device whose sym—	FEATURE	CHB272	
	bolic address is represented by S.	i		
HYSM	The highest symbolic address specified	ADDRESS	CHBSDT, {0]	
i		CHBSDA,		
			CHBPSD,	
			CHBSCN]	
CcTU	Effectively, CTU is a table with an	UNIT,	CHBSCM, {o]	
	entry for each unit represented by U.	ADDRESS	CHBHED,	
i	An entry is incremented by one each		CHBAHD, {	
i	time a device for this particular	{CHBAVE, 1		
junit is processed.		CHBCCB }		
su(cTy)	Effectively, this is a UxCTU matrix	ADDRESS,	CHBAVE	0
	where U represents a unit and CTU	UNIT		
{	represents the n th (n=1,...)			
{	occurrence of a device with this unit			{
]	number. Each element of the matrix isj			
	set to the symbolic address of the]
	device.			
APRNT	A pointer to the next available entry	UNIT,	--	0
}	in the CPRNT table.	PATH,		
	e W T			
{CPRNT (APRNT)	Each time a device in the group of	UNIT, PATH,	CHBPRN jnull	
i]1403 printers is processed, a new	ADDRESS			
	block of symbolic variables in CPRNT	i		
	is started. The first entry in a		{	
	block is the number of paths specified			
	in the PATH operand. If n is the]			
	number of paths, then the next n			
{	entries represent all the hardware	{		
H jaddresses of a specific printer.				
GAPRNT	A pointer to the next available block	UNIT, PATH	CHBCCB	0
	in CPRNT. i			
ISCMTAL	Number of 7-track tape drives	FEATURE,	CHBSCM {0	
		UNIT		
i	{			
ISCMTA2	Number of 7-track tape drives with	FEATURE,	CHBSCM	0
	the data conversion feature	UNIT		
JSCMTA3	Number of 9-track tape drives	FEATURE,	CHBSCM	2
		UNIT		
i				
PGDRUM	Number of paging drums	TYPE, UNIT	CHBSYS	0
L 1 L L L y)

106

GLOBAL SYMBOL |DESCRIPTION
1

P ——
— .

| MACRO
| OPERAND
R

T
| SYSTEM

| CONTROL
{ BLOCK

| AFFECTED
4

P——

DEFAULT

ECXMMN(S)

*DCUN(M)

HISYMX(Y)

LOSYMX(Y)

T T
|Effectively, this is a NxS matrix, | ADDRESS,
|where N represents the path number and|PATH

|S represents the symbolic device |
|address. The MM portion of the matrix|
|is the index for the SDA value; i.e., |
| ECX01N(S) is the matrix for SDA 1-255, |
| ECX02N (S) is the matrix for |
| SDA 256-510, etc. The value of the |
Imatrix is set to the actual hardware |
|address of the device. |

|

|

]

|Effectively, this is a NxM matrix
|where N represents a channel and M a
|device control unit. If there is
|more than one entry in the PATH
|operand and DCUN(M) is null (N and M
| represent the channel and control unit
jof the first PATH entry) DCUN(M) is
|set to ****¥0* where the last asterisk
|denotes more than one path to a device
jcontrol unit and the first four
|asterisks are used for the device
|control unit type until it is defined
|in the DCU macro. If DCUN(M) is not
|null, an asterisk is placed after the
|five characters representing the unit
|and model.

|

| For subsequent PATH entries, the
|appropriate DCU entry is set to the

| character value of the channel and
|device control unit of the first PATH
|entry followed by a number indicating
|the position of the entry in the PATH
| operand.

| #*This global symbol is also set by the
| DCU macro instruction.

|Effectively, this is a XxY matrix
|where X represents the channel and Y a
{device control unit. The value is set
|equal to the high SDA on the control
janit.

|Effectively, this is a XxY matrix
|where X represents the channel and Y a
|device control unit. The value is set
|equal to the low SDA on the control
{unit.

4

1

| CHBECXRA,
| CHBECXRB,
| CHBECXVA

——— s gt TS

| CHBCUT,
| CHBSCH,

3
&
@]
g

| CHBDPT

CHBSCN

CHBSCN

null

null

null

DISPAR

|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
i
|
|
|
|
|
|
|
|
|
|
I
]
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t
|
| ISYSLOW
|
|

L
jSpecify the Dispatching Algorithm

| Integer;-Lower limit on available
|storage before starting a time-slice
| for a new task

|

CHBSYS

P e e S v, s s Y st ST q St S P . P e . (i i s WO s T i, S . S i S s W e AN i, S oo S S s

[o e e e e e o . —— . ———— —— —— — o T— — " — _——— — _———— —— a— T—— — ——— T p— _—— S T - {—— —— S Gt W [T S {— ——— W— O Q— . o o e

i e e oo o s eV s o s i SV S~ (A S—— — ——— —— T ——- f— — T— — — — {_—— — —— — — — — ———" W——— —— ——— ——— — {— —— —— o— — {— . s o7t s s, e o ks, ot s oot e @l

Appendix B: Macro Global Symbol Descriptions

107

r T T T T 1
| I | | SYSTEM I i
{ | | | CONTROL | |
i I | MACRO | BLOCK i |
| GLOBAL SYMBOL |DESCRIPTION | OPERAND | AFFECTED |DEFAULT |
i 4 4 4 i 4
1 T T ¥ T 1
jIJSYSHI | Integer,-Upper limit on available | LCT | CHBSYS j10 |
| |storage before starting a time-slice | | | |
| |for a new task | | | |
[| _ [[| |
JCCBLDA	Percentage of paging drum(s) to	LDMTR	CEBCCB	2%
{be allocated to auxiliary storage				
	before overflow to paging disk(s)	I		
! | | |] i
{ JSYSMWX | Maximum Shared Pages To Purge | PURGSH | CHBSYS 122 |

TSYSMWT	Scan Shared Pages Threshold	THRESH	CHBSYS	10
]			
ISYSBUF	Buffer Size On Drum	BUFSIZ	CHBSYS	64 {
]	
JSYSAST	Auxiliary Stop Threshold	AUXSP (1)	CHBSYS	ISYSBUF
		e		
ISYSAPT	Auxiliary Primary Threshold	AUXSP (2)	CHBSYS	100
ISYSBKD	Maximum pages blocked to drum	BLKSZE (1)	CHBSYS	12
]		I] I		
ISYSBDD	Combined maximum pages blocked to	BLKSZE(2)	CHBSYS	20
i	disk and drum i			
		I	I	
ISYSTCR	Task Core Requirement	TCR	CHBSYS	55
L 4 4 4 4 J				
r T L) 1) LA L				
OPCNSL	Describe Operator Consoles			
JOPCNSL(I)	Each subscripted variable is assigned	ADDRESS	CHBSOT	null
	the concatenation of the hardware and	I]	
	symbolic device addresses specified			
	for an operator console.			
¢ + t t t 4				
PUBVOL	Describe Public Volume Configuration			
PUBNUM	Maximum number of public volumes in	MAXVOL	CHBPVT	10]
	system.	I]		
L i 4 4. 1 1				
T T R 1 T T 1				
STEM	Describe Processor Storage Units	{		
	i			
PSUNO=	Number of processor	number=	CHBCBT,	null
	storage units		CHBCBH,]
]			CHBCST	
]]		
	I i	[
PSUMDL= {	Mcdel number of the processor	MODEL= { f—— jnull		
1	storage units	1 {	{	
L L L s 1 J

108

r T T i) T a1
			SYSTEM	
			CONTROL	
		MACRO { BLOCK		
GLOBAL SYMBOL	DESCRIPTION	OPERAND	AFFECTED	DEFAULT
b e + + + 1				
TSKILMT	Specify Task Limitations			
		{		
JCCBCON	Maximum number of conversational tasks	CONV	CHBCCB	
	that may exist concurrently {			
]				
JCCBMTT	Maximum number of MTT administrator	MTTADM	CHBCCB	
	tasks that may exist concurrently			
JCCBNCV	Maximum number of batch tasks	BATCH	CHBCCB	
	that may exist concurrently			
]	
JSYSTLM	Maximum number of conversational and		CHBSYS	
i	batch tasks that can exist con-	{ i		
	currently			
JCCBBAK	Maximum number of background tasks	BACK { CHBCCB		
	that may exist concurrently			
JPAL1	Maximum size of page tables	PGTBL	CHBSYS	16
	for one task]	
		i		
{ JSYSDAT	Number of entries to expand page table	VLPTE	CHBSYS {3	
JSYSPSL	Maximum number of public segments	PSLMT	CHBSYS	6
	allowed			
[l .		i		
ISCMAUX	Present Aux storage space available	OVRAUX	CHBSCM .00	
ISYSXPG	Maximum number of pages that will	XTSIPGS	CHBSYS {0	
	trigger XTSI paging			{
L L 1 i 4 1				
H H . . T T T 1				
VMPAR	Specify Virtual Storage Parameters			
ISYSPS=	Public segment has sharable virtual	OPTIONS	CHBSYS jnull	
PUBSEG	storage routines		i	
ISYSPC=	Private modules page packed into	CPTIONS	CHBSYS jnull i	
PACKSEG	segments			
)				
ISYSWA=	Validity check paging drum writes	OPTIONS	CHBSYS jnull	
WCDRUM				
o o _	l	1		
ISYSHE=	Validity check auxiliary paging	CPTIONS	CHBSYS jnull 1	
WCDISK	disk write		}	
	i			
JPAL4=	variable-length control sections	VCSLNG	CHBCCB	SEGMENT
SEGMENT	are assigned a segment l			
			i	
JPALS=	Variable-length control sections	VCSLNG	CHBCCB 120	
integer valuelare assigned a segment (256 pages)				
	or a specific number of pages i	{		
				{
CCBSDST	Namber of pages assigned to the	SDST	CHBCCB	10
	shared data set table			
JSCMTIM {Task time interval	TIM	CHBSCM 101000000}		
		i		
JICCBBUF	Number of buffers for input data	TBUFS	CHBCCB	200
L 1 X L L J

Appendix B:

Macro Global Symbol Descriptions 109

APPENDIX C: DATA REFERENCES BY SYSTEM GENERATION MODULES

This appendix presents a list of all DSECTs that are referred to by the System Genera-
tion and Maintenance modules. The modules are listed by ID and the DSECTs by their sym—
bolic names. Refer to the listings for further information.

F L3 Ll)
| | Modules i i
1 k T T Y 4 |
|DSECT | CEIARA | CEIAP | CEIFA | CEIDA | }
| ID | {(STARTUP) | (PRELUDE) | (SYSBLD) | (SYSGEN) | DSECT NAME |
L i L 4 4 4 J
T T 1 L 1 1 a
{CHAAHD | | | X | X |Available Devices Table Subqueue Header |
b } + + + + - |
|CHAASA | X | i { |Auxiliary Storage Allocation |
L 4 i 4 4 1 i
L3 ¥] L] L) ki 1
{CHAASB | X | | | |ASAT Bit Directory 2311 |
I } + + 4 + ——-- 4
|CHAASC | X | | i |ASAT Bit Directory 2314 |
s 1 } 4 il 4. 4
L] T 1 L) T L) . 1
| CHAAST | X | | i |Auxiliary Segment Table |
b t t + } - - -—{
| CHAAVE | | | X i X |Available Devices Table Subqueue Entries|
t i 4 1 s 4 i
1) 1 1 | T 1
| CHACBH | X | X { { X jcore Block Table Header |
b 1 t + + + |
| CHACBT | X | X } { X |[Core Block Table |
L 4 4 4 1 4
r T T T L] 1
| CHACCB | X | X | X jconfiguration Control Block |
b ¥ t + t '
| CRACCC | | i X | |Catalog SBLOCK |
E ¢ t t 1 + :
| CHACHL | | | X | X |Channel Table i
i 4 i 4 4 4 ;|
¥ T T T T i i
| CHACST | X | X i | |CPU Status Table i
k t + + + + - 1
{CHACUT | | | | X |control Unit Table |
b + t : $ + 4
| CHADAV | i | X | |DSCB Format C {
L 1 5 4 1 4 K|
1 3 T L}] T 1 1
| CHADEV | | { X { X |Device Group Table |
[+ + 1 1 + 4
| CHADSE | X | X | X | | DSCB Format E]
t 4 4 4 4 4]
1 3 T T L3 1 1] a
| CHADSF | X | X | X | |DSCB Format F |
I 4 t + 1 + '
| CHAECX | X | | X | X | Support System Device Allocation Table |
i 4 i] 4 4 4
L 3 1 T T L L] T
| CHAGQE | X | | | |General Queue Entry |
E ¢ 1 } t L . !
|CBAHED | | i X | X |Available Device Table Header |
L i $ 4 s 4 4
T L T | T T 1
|CHAISA | X | | | | Interruption Storage Area 1
b + a + + + 1
!CHAMAP l X l ! ! lMemory Map Table i
r Rl 1 k] ¥ 1 1
| CHAMCH | | | X | |Multiplexer Channel Table i
t ¢ { + } t :
| CHAPGH | X | | | |PMD Group Header {
F + = + + + {
|CHAPGT | X | | | |page Table |
F + 1 } + o - 4
|CHAPOD | X | | X i |Partitioned Organization Directory I
i H L L L L J

110

1{!"‘!1']1‘]1Il.J_Inllcll]1|l1.l|l1.lll_lllll_ll~ll1|ll1lj1.|.1_lulj1:lal_|l|l1.'11.‘]1I|J_I.|11.l.ll:lI|J1Il1||.l.1.|ll_lllnl1|l1.|ll1llsl=l‘11!‘]!!‘]]'1

111

: 5 .
1] = @
[&] 0 -t
] =}
W > o 3
[#] [~] Q m
K o} 1]
+ &) 3] a8
P [4] Q
M (o} e] 0] [=] V] Q [} » -l
o] + + Q 2] o L] [} - ~d [+
.mL =1 .w kel @ Hn Q) Q Q Qg]
- 5] 2] 1] Q|- Q 1] [} =]
e a w0 Q LS I o] [V}] 3] o | & |~ H E4 L} 9
Z10ia|81g - R 3 Sidi|m Rk & 2 v §
SIEI8IELE taigiel L 1Els) 121518 2lalft 120 1812 $1g18 ;
1A LI B IBILIRIE | 1R (RIEE SiR1el 151 1EIE 21518 5
qlotgleld 18 migie 1 IBIE] deigla Elyinl g1 1Elnls Alal® 2
el m Hin VIRl NIA m = "l 0l Oil+din o Wolg - F oM Dy
~ [o} % m <] ;] (V] o] o b el | > © |- (] P> [% =] [] (2] 2]
< = + =] o} - | m % o} <1 a o) M [l + o)] [l =] o} (0] + [] o
7] [$) r~ el] + Q Q [} + 2] © + Q m_] A A [~} o 3 (] [0} A B .W
> N. Q O O 1] O | = © 5] -] + &] o L] + + ~ m m
- o <5 > n + Q B] o1 0 [=] + o] 9] (o] 1] Hle + Q o Q) Lo}
10149 g |- Q o |- []] ol ® e | W M|l Ol 1] (7]
+ .@ % d,d Q [A m d Bl I 1T |4 [=] M =B w] Sl IR |A|WIHIIMXN g1y O
19}) Mot + L] 0@ 0] Q @ 5] Q] Q|- =]] @ [~ 14
VIO || OO~ m o @O | =]] m. w gL P m Aol A M u Mo -t]
L] L] Q HO 1 Q 0] il [] 2] [} 5:] Q m g 2] (0] 0 > 2] 2] (2] Q + (1] + Q
et | N edQ j=4 Q]] ™ Q >0 =] N] 4] Lo > [=] 1]] © 2] 9] LR -] L]]
Q Q P4 am [=1] ~ [*3 0ne 9] n w 9] w 7]] w Q 192] &}] w0 B 13 3 3] B fas) Q mipw 2] (]
s el nl miastn Alke sl st steanke aleate abande by o) ILTIl]llllI..\.L1|lL.lILI‘IlT..I.-I:IIDL_lllvll.lll[l-ol.llll:l!1T||LTI|IT'I.‘.|IIT|ILTI|L1|IL d
~
o
[N ™ Mol b} L] » L R R] +
(o8- o]
0 Q
Nt
lll!LIIILTlI.iIIILI"L_!ILIIIJ]‘IT.‘ILIIILIllLlIILlllLI||.l:ll-lL!.Il.1T|||L_l..IlLluallTlIlT'llT!llILTIlLTcl-lTlllTIlTlLllllTll.lTnlllTlll ﬂ.m
”~~
<0
HM Mo » Mopx e i » Lo} wo e H
o] ko]
[oR-} &
gl & g
.M_. b e s s e s e e e e e e s e S e s i ot e e e s s s vt e s s <o e s st G e s s it s e s s s i et R e st e e o st s e s o e o s e e e e e et i o M._
2ol .
= MU -
bt] a
i °
& 3
T‘ILTILT!IIIT-III[‘l’lT!lTIlT‘Ii"‘llTI‘ltli"LI!lT'lTllTl‘Ll"L"Ll'l'l‘Ll‘lTlLllLl‘l'llTIlT‘LTI‘lTILTI‘LT‘L‘ll%
o >
i G
= MM X = = XX = " LT I I KIXIXIiXIO
R 3
QB
= 3
T||L.Il'l.lLlnllL]lILTIlllllllLTlL.l'lTIIlTIliTmllTIllTllT‘iTILTlljlll1T|.||.TIliTll.lTlllTIlllll.l-l-lTlllllv.ll.llll].lli.l.lljl.llllllrl'Lm
BHIE €1 BIAaLQ AimiIis iz iy EH 1A HIinIim i@ I i>»iHIM -]]
agoosmmms,nm%cxnmmwlm A R
: 2 2121812121412 2 SEIERE:
SR1S131808 (2151818 (Blgidis18i8i5i5(81815i3|8/8/81513/8/813138/5/8!"
Q O Q 4] Q o] Q QL ﬁ.* Q o]] o] #] 0 9] Q Q Q Q Q L Q Q O 9] Q 8} Q Q Q
R L D e R it ARSI Tor Sl ST S SRR S S Sl IRpRstRRE Sstpu ISPt W S T e e e =2 T R P

INDEX

ACV path 7

ACV volume 4,6

Add pages to shared IVM 46

ADDPGS 46

ADDPMD 50

Addressing capability (24- or 32-bit)
Adjust DSCBs routine 7

ALLOC 37

Allocate SERR operating routine 31
ANZSDA routine 30

APGEN command procedure 55-56

ASAT 30

ASATRT 30

ASDLST 23,28

Assign external space routine 13
AST 35,44

ATRAN routine 49

Auxiliary paging disks 29
Auxiliary segment table 35,44
Auxiliary storage alloc table 30
Auxiliary storage device list 23,28
Available device subgqueue entry 97
Available device subqueue header 96
Available device table 96-97

BDSDST 46

Begin load list 36

Begin task dictionary table 34,37
BFP 20

BFRPGET 27

BGNLL 36
BGNTDY 34,37
BLDTBL 53

BLDTDY 37

BTRAN routine 49

Buffer Cleanup routine (DSC20) 48
Buffer page table 20

Buffers, input to Startup 22
Build RSS communication table 45
Build shared data set table 46
Build task dictionary table 37
Bulk common table 100

Calculate Checksum (DSCB75) 48
Card reader path 4,7
CBT (see CHBCBT)
CCB (see CHBCCB)
channel control unit table 98
correspondence list 98
CPU status table 97
drum path table 98
printer path table 98
transmission control path table 98
CCBCCT 10,98
CCBCLT 26,98
CCBCST 97
CCBDPT 25,98
CCBPRT 10,98
CCBTPT 24,98

112

CCU macro 54,101

CEAAFQ 22
CEAASP 22
CEAASR 22
CEAASS 22
CEALl1A 22
CEAMT1 22

CEIAA 3,19,24-53
CEIAB 46-u48
CEIACC 22

CEIAP 2,4,17-19
CEIFA (see SYSBLD module)
CEIFB 6

CEIFC 6-7
CEIFCKS 15

CEIFD 7

CEIFDS 15

CEIFE 10
CEIFECAT 15
CEIFF 10-11

CEIFG 9
CEIFI 10
CEIFJ 11

CEIFK 11-12
CEIFL 12-13
CEIFP 6

CEIFQ 7

CEIFR 13-1&4
CEIFRS1 15-16
CEIFRS2 15-16
CEIFS 7,14-15

CEIFT 12
CEIFTD 11
CEIFU 13
CEIFV 13
CEIFW 13

CEIFZA 10

CcGCMA 20,50

CHASBD 6-7

CHANNEL macro 54,101
Channel control unit table
Channel table 94

CHBAHD 9-10,96

CHBAVE 9-10,97

CHBBFP 19
CHBBCT 100
CHBCBH 99

CHBCBT 31,99
CHBCCB 10,97

CHBCHL 94
CHBCUT 9,95
CHBDEV 95

CHBECX 100
CHBECXRA 100
CHBECXRB 100
CHBECXVA 100

CHBHED 96

CHBMCH 95

CHBMTS 20,21,27,31,38
CHBPSD 98

CHBPVT 100

CHBRC 36

98

CHBR5 36
CHBRJE 100
CHBRST 21,46

CHBSAC 95
CHBSCH 95
CHBSCM 94
CHBSCN 99
CHBSDA 96
CHBSDT 99
CHBSID 96
CHBSMC 98
CHBSOT 96
CHBSST 100
ciBs2 8,9
CHBS3 38,83
CHBSYS 93
CHBTCT 19
CHBTDE 100
CHBTDT 11,20
CHBVM 36

Checksum routine

CLOP macro 54,101
COMAR 17

Common disk channel 6

common disk control unit 7

Communicate with operator routine
Communication region 18

Complete SYSBLD table routine 6-7
Configuration control block 97

Control unit table 95

Convert paths routine 6

Core block table 99

Core block table header 99

Correspondence list 98
CPU macro 54,103

CPU status table 97
Create catalog routine

Create extent table 36
Create list of available drums
routine 25-26

Create format-E DSCB routine 47

Create symbol table 50

Create the resident shared page index
table 52

Create TDY storage map 40

Create user library 10

Create user table routine 10

CRRSPI 52

CST (see CCBCST)

CTRAN 49

CXD 26,38,39

15,48

13-14

10-11

DAPSDR entry table, fields of 98
DCU macro 54,103

DEF, value of 39
DEFINE 40

DELBTB 43

DELDS 43

Delta data set routine
DELBTB)

Delta data sets 26,43
Delta volume 26,43
DELTBL 43

Demounting IPL or Delta volume 26
Device group table 95

DEVGRP macro 54,105

Direct access paging statistical data
record (see CHBPSD)

Direct control switch 18

(see DELDS, DELTBL,

DIRSIZ 27

Disk I/0 routine 14-15
DISPAR macro 55,107
DMLST 25-26&

Drum channel 7

Drum control unit 7
Drum device 7

Drum path 5,7,10,23
Drum path table (see CCBDPT)
DSCBA 47

DSCBE 46,u47

DSCBF 47

DSC20 48

DSC25 48

DSC30 46

DSC50 48

DSC60 46,48

DSC75 us8

DSECTs 110-111
Dump/restore 1

EIAaA2 50-51

EIAAS 32-46

Enable subroutine 24

ENDABLE 32

ERREXA 48

Exrror Exit routine 48
Extended task status index 44
EXTENT 36

External page table 40,42

Find Format-E DSCB routine 15
FIXPMD 38

Form page table 41

FORMPT 41

Generalized I/0 subroutine 50-51
GENSCB macro 54-55

Get a block of storage 52

Get field routine 49

GETEXT 41

GETFLD 49

GETMEM 52

GETPAT 53

Global symbols 55,101-109

HASH routine 39-40
Hole table entry 39

Initial program load (see IPL)

Initial virtual storage (see

TSS***** SYSIVM)

Initializatjion routine (see CEIFA)
Initialize pathfinding tables 26-27
Initialize reference entries in CSD 40
Initialize SPT and XSPT for public
segments 44-45
Initialize the XTSI and page table pages
44
INTDE 27

Inter-CPU communication 22
Intercom routine 22

Interrogate operator routine 6
Interruption storage area 20,37

Index 113

I/0 statistical data table 99 Pathfinding routine 22

irL 1,17 Pathfinding tables (see CHBCHL, CHBCUT,
IPL volume 4 CHBDEV, CHBMCH, CHBSAC, CHBSCH, CHBS2,
IPL volume path 6 CHBS3)

IPL volume path table 27 PGXTSI routine 27,30,44

IsA 20,37 Prefix activation switch 18

IVM (see TSS****%¥ SYSIVM) Prelude (see CEIAP)

Primary paging volume 24
Print storage map 50

Job file control block 11 Print message routine 49
JFCB 11 PRINTER 49
Jpsa 31 Printer control unit 7

Printer device 4,7
Printer path table 98

LDPMD 37 Process complex definitions in PMD 38
LINK 35 Protection key 42

Link-loader 32-46 Psudo-register value 26

LLLNK 34 Public volume table 100

LLSCAN 36-37 PUBVOL macro 55,108

Load and modify text 41 PVT (see CHBPVT)

Load and process load list 36 P100X 25

Load PMD into TDY 37 P4OOX 24

LOADL 36 P4800X 32

Load 1ist 33,34,36-37

LOADL 36

Locate available page routine 48 Q-cons 26

Locate DSCB Word routine 47 Q-ref 39

Ilocate free page routine 47 OKREAD routine 46

Locate DEF entry routine 12 QSCNPSA routine 32

Locate descriptor in POD routine 13 Queue GQE on TSI 22

Locate name in TDY 40 Quickstart data set creator routine 46-48
Locate XPT or XSPT origin 40-41 Quickstart volume 46

LOCXPT 40-41 Quickstart 17

Subroutines 46-48

Main operator task 32

Malfunction alert fields 21,27 RCOMTB 45
MAPGEN 40 RDSCB 52
MEMAD 47 Read cards routine 49
MODFY 38-39 Read data set control block routine 52
Modify PMD and text pages 38-39 Read page assignment table routine 53
MOT 3,32 Read in Quickstart data set routine 46
Move text (see MVTEXT) Read from Quickstart volume 48
MPS 21 Read page from IPL volume 43
Multiplexer channel table 95 Read/Write operator routine 49
Multiterminal Status Control Block READCARD 49
(MTS) 21 READIN 43
MVTEXT 49 Reconfiguration (see CGCMA)
RECPG 48
RELMEM 31,36
NAMLOC 40 Relocate TDY entries 41-42
Relocation table processing 42
RELTAB 42
OPCNSL macro 54,108 . RELTBX 42
OPER 49 RELTDY 41-42
Operator Device Path table 27 Remote Job Entry table (see CHBRJE)
Operator terminal 21,32 Reserve space for PMDs in TDY 50
Operator terminal path 6,27 Resident shared page index 52
Operator's terminal I/0 subroutine 49 Resident supervisor (see TSS***** RESSUP)
OUTPG 49 Resident support system (see
TSS**%*% RSSSUP)
Reserve pages routine 27
Page conversion routine 12-13 RESRVP 27
Page Status information 45 RESSUP (see TSS*#*#***%_ RESSUP)
Page TDY 53 Reverse pathfinding 22
PAGTDY 53 RSPI 52
PAGRT 47 RSS communication table 45
PARTMP 32 RSS symbol table 21,46
PATLOC 48 RSSCOM 45

114

RTAM Initialization 19
RTAM tables 19,27
RTMPGS 26

SAR 21,31
Scan load list 36-37
Scan master control table 98
Scan table 99
SCBTL 31
SDAT 96
SDATRT 28-30
SDA500 28
SDST 36,46
Selective loading 33
Selector channel table 95
SERREND 51
SERR/Reconfiguration path table 27
SERR100 30,51
Set external page number in XPT/XSPT 42-43
Set path routine 22
Set up volumes for startup routine 11
SETPT 42-43
SETPTH 26-27
SETTSK 32
Shared data set table 36,46
Shared external page table
SHPTRT 44-45
SIMFSA 24
Skeletal extended task status index 44
SOAPGS 31
SORDID 50
Special device path tables 20
Special routine 27
SPSABUF 32
SSDAT (see CHBECXRA, CHBECXRB, CHBECXVA)
Startup Communication Region 41
Startup Prelude 11
Startup routine 19
STEM macro 54,108
STERM 49
Storage allocation for IVM and RESSUP 37
Subqueue Headers table (see CHBAHD)
Subgqueue Entries table (see CHBAVE)
Supervisor core allocation 22
Support system device allocation
header 100
Support system device allocation table 100
Symbolic device allocation table 96
Symbolic-to-actual address conversion
table 95
SYMGEN 50
SYSBID table 6-7
SYSBLD module 1,4-6
SYSCAT 3
SYSGEN.MODULE data set 3
SYSMANGR 3,10,11
USERLIB 3,5,10
SYSOPERO 3,5,10,11
SYSIOG 5
USERLIB 3,5,10
SYSSVCT 5
System Activity and Resources table (see
SAR)
System buffer pages {(see CHBBFP)
System common table 94
System generation macros 54-55
System operator ID table 9¢
System operator ID table entry 96

(see XSPT)

System programmer terminal 6-8
System statistics table 100
System table 93

Task Core table (see CHBTCT)

Task dictionary table 3

Task initiation 22

TDY 3,34,45,50

TDYTAB 41,42

Terminal device table 100

Terminating routine 11-12

Transmission control path table 98

TSI 35

TSKLMT macro 55,109

TSS**%*%x 3,5,10,11

TSS*** %%
APGEN 55-56
ASMMAC
ASMNDX
MACNDX
RESSUP
RSSSUP
STARTUP 5,17
SYSBLD
SYSCAT
SYSCCB
SYSIVM
SYSLIB
SYSMAC
SYSSVCT 5
SYSUSE 3,5
USERLIB 3,5,10

wwnnonw

GuUnwwwn

Update buffer location 48

Update catalog JFCB routine 11

Update catalog SBLOCK routine 15

Update configuration control block
routine 10

Update device tables for RSS/VSS 15-16

Update load list 37

Update pathfinder tables routine 7

Update virtual storage tables routine 9

UPDLL 37

User Catalogs Control Block (see SYSSVCT)

User library (see TSS#**#*** USERLIB,
SYSMANGR.USERLIB, SYSOPERO.USERLIB)
User modules 20

User table (see TSS***#**, SYSUSE)

Virtual storage support system allocation
table 100
VMPAR macro 55,109

Write IVM page routine 47

Write page on paging volume 49

Write RESSUP/RSSSUP symbol table 45

Write SERR/Reconfiguration modules on
drums 51

Write task dictionary table 4S5

Write to Quickstart volume 48

WRSYMTB 45

WRTDY 45

WRXTSI 29

Index 115

XPT 40,42

XSPT 40,42,44

XSPT entry converter routine
XTSI 44

XTSI buffer 27

XTSIRT 44

116

48

GY28-2015-6

BV

International Business Machines Carporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
{International]

‘¥°s*n ut pajutad usbsids 09¢/S SSI WHI

9-G1L0C-82AD

IBM Technical Newsletter File Number $360-31

Base Publication No. GY28-2015-6

This Newsletter No. GN28~3218
Date February 1, 1972
Previous Newsletters None

IBM System/360 Time Sharing System:
System Generation and Maintenance

©1BM Corp. 1967, 1968, 1969, 1970, 1971

This Technical Newsletter provides replacement pages for the
subject publication. Pages to be inserted and/or removed are:
17-18
A change to the texi is indicated by a vertical line to the

left of the change.

Summary of Amendments

A modification has been made to CEIAP's error exit
description.

IBM Corporation, Dept. 643, Neighborbood Road, Kingston, N. Y. 12401

PRINTEQ IN U S A

