File No.

| Program

Version 8.1

IBM System/360 Time Sharing System

Resident Supervisor

Describes the internal logic of the resident super-
visor, and provides a brief overview of its operation.
It is intended as a reference for anyone involved in
maintaining or altering resident supervisor logic.

The resident supervisor schedules and dispatches
tasks, provides services that might endanger system
integrity if a task were allowed to execute them,
handles interruptions, and deals with system errors.
It is permanently resident in main storage.

The first and second sections of the book are
intended to introduce the reader to the functions of
the resident supervisor, and to provide him with an
easily used, overall presentation of resident supervi-
sor logic. Interruption handling is described from the
point at which the interruption occurs until it has
been completely processed. Paging and queuing are dis-
cussed. The third and fourth sections describe in some
detail the individual modules that make up the resident
supervisor. These modules are discussed under the fol-
lowing headings: interruption classification, gueue
scanning and processing, storage allocation, SVC pro-
cessing, paging, I/0 handling, task selection and sche-
duling, and error recovery. The appendixes contain
module IDs and names of supervisor routines, and SVC
codes.

The prerequisites for this publication are: IBM
System/360 Principles of Operation, GA22-6821, and IEM
System/360 Time Sharing System: Concepts and Facili-
ties, GC28-2003. T

5360-36

GY28-2012-5

Logic

PREFACE

This publication describes the logic and
operation of the TSS/360 resident supervi-
sor. It is divided into four sections and
two appendixes. Section 1, the introduc-
tion, describes the purpose and major com-~
ponents of the resident supervisor, and how
these compenents interact with the rest of
Tss/360. Section 2, the method of opera-
tion, describes resident supervisor inter-
ruption handling, queue processing, storage
allocation, and task selection and schedul-
ing. Section 3, program organization, dis-
cusses the internal logic of the resident
supervisor. Each routine is described in
detail. Section 4 contains flowcharts for
the more complex supervisor modules.
Appendix A contains a list of module IDs
and entry point names for all modules in
the resident supervisor. Appendix B is a
table of defined SVC codes and their
meaning.

This publication is intended for use by
anyone involved in maintaining or altering

Sixth Edition (Septewmber 1971)

This is a major revision of, and makes obsolete,
6Y28-2012-4.

This edition reflects changes to the resident supervisor
intended to improve its performance and make it even more
efficient. Several task selection and scheduling methods
have been changed, the paying error recovery function has
_ been expanded, and XTSI paging has been revised, In addi-

tion, the structure of the book itself has been changed for
easier reference and a method of operation section added.

This edition is current with Version 8, Modification 1,
and remains in effect for all subsequent versions or modifi-
cations of IBM System/360 Time Sharing System unless other-
wise indicated. Significant changes or additions to this
publication will be provided in new editions or Technical
Newsletters. Before using this publication, refer to the
latest edition of IBM Systems/360 Time Sharing System: Adden:
dum, GC28-2043, which may contain information pertinent to
the topics covered in this edition. The Addendum also lists
the editions of all TSS/360 publications that are applicable
and current. .

This publication was prepared for production using an IBM
computer to update the text and to control the page and line
format. Page impressions for photo-offset printing were
obtained from an IBM 1403 printer using a special print
chain.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form is provided at the back of the publication for
reader's comments. If the form has been removed, comments

resident supervisor logic. It will be par-
ticularly useful to systems programmers.

PREREQUISITE PUBLICATIONS

Familiarity with the material contained
the following publications is essential
the use of this manual:

in
to

IBM System”360 Principles of Operation,
GA22-6821 ’

IBM System/360 Time Sharing System:
concepts and Facilities, GC28-2003

In addition, IBM System/360 Time Sharing
System: System Control Blocks PLM, GY28-

2011, and IBM System/360 Time Sharing Sys-
tem: Assembler User Macro Instructions,

GC28-2004, should be available for
reference purposes.

may be addressed to the IBM Corporation, Time Sharing System/

360 Programming Publications, Department 643, Neighborhood
Road, Kingston, New York 12401

© Copyright International Business Machines Corporation 1967,

1968, 1969, 1970, 1971

SECTION 1. INTRODUCTION
Relationship to the System
Purpose and Functions . . .

Major Components of the Resident Superv1sor

SECTION 2. METHOD OF OPERATION

oOoverview of Resident Supervisor Operations

Processing of Interruptions
Scheduling of Tasks

-

-

control Blocks Used by the Supervisor

Interruption Handling
Entry to the Supervisor .
General Queue Entry (GQE)
Queue Scanning .« . . . o
Scan Table (SCANT) . . .

Scan Table Master Control Ta

Queue Scanner Functions .
Queue Processing . . . « .

bl

¢ o (De o o »

Timer Interruption Processing .

Segment and Page Tables . .

Program Interruption Processing

1/0 Interruption Processing
Pathfinding . « « « « « &
Paging o« « o o o o o o o
Disk Paging
Drum Paging « « « « « « &
Main Storage Allocation .
User Core Allocation . .
Supervisor Core Allocation

*® s 8 o 5 @

Auxiliary Storage Allocation

SVC Interruption Processing

Task Scheduling and Selection

Schedule Table (CHASTE) . .
Active and Inactive Lists .
Task Selection
Task Scheduling . « . . « &«

SECTION 3: PROGRAM ORGANIZATION
Interruption Classification . .

Interrupt Stacker Module (CEAJI) Chart AA

Queue Scanning and Processing .

Queue Scanner (CEAJQ) Chart AB

Queue-Control Subroutines . .

Enqueue GQE Subroutine (CEAJQ Entered at CEAJEN)
Dequeue GQE Subroutine (CEAJQ Entered at CEAJDE)

s & o g & 3 & & & & s 8 ° o

8 & & 8 & & 0 & 3 s 8 8 % 3 % g 0 s b s e * s

4]

e & &4 & 0 8 % s 8 & B & & & 6 s 8 s » s T & 0

0

e & 8 6 & & 6 & 0 6 8 4 0 s 8 e 8 s 8 3 e s 8

¢ @ 6 a8 % 8 6 & & 2 8 0 B 4 8 & s & 8 2 B s 0 s " s s 2

O 8 6 8 & 8 6 & 8 a4 & .8 0 2 8 e & s & 2 s e 2 s e 2 s 02 s 0

.

Move GQE Subroutine (CEAJQ Entered at CEAJSNMG)

Set Suppress Flag Subroutine (CEAJ{O Entered at CEAJS

Queue ProcesSsSOrsS « « « « « o =

Timer Interrupt Queue Processor (CEAKT) Chart AD
Page Drum Queue Processor (CEAAS8) Chart AE
Page Drum Interrupt Queue Processor (CEAAY9) Chart AF
Program Interrupt Queue Processor (CEANA) Chart AG

I1/0 Device Queue Processor (CEAA3) Chart AH .
Page Direct Access Interrupt Subprocessor (CEAA7) chart

Page Direct Access Queue Subprocessor (CEAA6) Chart Al
Channel Interrupt Queue Processor (CEAAU4) Chart AK
Remote Job Entry Asynchronous I/0 Interrupt Subroutine (CEAB

Chart AL . . - « o e @

-

@ » & &8 6 & 8 & & 8 8 8 & 6 & & & A 4 % s 6 &8 8 A s s s s 0

e 8 & 8 & 8 & & & 8 8 % & 6 & & 2 2 a2 s s 0 8 s 2 s s s a2 s

e & 5 s 0

@ & 0 8 & & 8 8 & & &8 ® 8 6 @ 6 & B a % a8 e s a2 s s s a2 s 3

J.

® 8 % & & & & & 8 6 8 8 8 & & 8 8 N s 6 s s a2 & s s s s o 0 0

e« & o e s 2 2 0 s 2 s 0

a s a »

® & 8 & &4 8 & 8 &4 8 8 6 8 8 8 & 4 5 & s & 8 9 & & 0 a0 s 0+

a8 o & o & & a & @
0
e 8 e 8 s e XY a8 s 0 s s o

« o & o s 0

s s 2 e

@ o 8 & ¢ 8 & B 8 % s 8 & & & & 4 % 8 8 a2 s a & & &t 2 s 2 0 0

&

LI O L

[V

a s s ¢ & 2 M e st s s s on & s

Remote Job Entry Synchronous I/0 ErrorInterrupt Subroutine

(CEARBB) . ¢ « ¢ ¢« ¢« « o « «

Terminal Communications Subprocessor (CEATC) Chart AM .

Storage Allocation Processors .

.

o
»

CONTENTS

. L]] .
) . . .
L) L] [] L]
N

VWO~ & &

S e 0 6 8 8 & & 8 & & B a4 8 s 6 s 6 4 % s s s s s a3 s s s
® 4 0 & &8 8 6 & 4 8 4 8 4 8 4 % s 8 s & o 6 & & o & s s ¢ o 0
® 4 5 6 8 8 & 8 o 8 8 6 4 6 9 8 9 & s 8 o 8 & 0 2 s s v s s o
[y
o

e o 8 o 2 & 8 0 @
Yo o & 0 o o o o

A 4 0 & o a 8 & & 8 8 s 8 & & a2 s 0
N
[}

¢ o & 8 0 4 & 8

)
« « 53

« « « 56

« « « 58
« o« « 63

iii

Paging I/0 Error Recovery Routine (CEARM) . . . « . . .

User Core Allocation Queue Processor (CEANB) Chart AN 63
Auxiliary Storage Allocation Queue Processor (CEAIA) Chart RO . . 65
Contiguous Core Allocation Queue Processor (CEANF) 67

Supervisor Core Allocation Subroutine (CEALl Entered at CEALOl)
Chart AP .« « & 2 « o« o o o « o « & « « « 69

Supervisor Core Release Subroutine (CEALl Entered at CEAL02)

Chart AP « v v v o o o « o o o o . 70
User Core Release Subroutine (CEALl Entered at CEALOH) Chart AP < 71
Auxiliary Storage Release Subroutine (CEAIA) Chart 20 71
Suppress Auxiliary Allocation Subroutine (CERAP) . . . <« « « « « 72
SVC Queue Processor and Service Routines . . . “ ¢ e 2 e e o o o 12
Supervisor Call Queue Processor (CEAHQ) Chart AQ e« e s o « o & 12
Add Page Subroutine (CEAHQ entered at CEAHQA) Chart AR 73
Add shared Pages Subroutine (CEAQ6) Chart AS . . . « ¢« « « « « « 75
Delete Page Subroutine (CEAND) « e s« o o« o o o 16
Set External Page Table Entries Subroutlne (CEAH?) P |
Move External Page Table Entries Subroutine (CEAPO) 78
Connect Segment to Shared Page Table Subroutine (CEAQ7) Chart AT 78
Disconnect Segment From Shared Page Table Subroutine (CEAQ8) . . 79
Check Protection Class Subroutine (CEAQ4) Chart AU . . . « « . . 79
Create-TSI Subroutine (CEAMC) . . ¢ ¢ ¢ &« o « s« o« a « « o« « « « « 80
Special Create TSI Processor {(CEAT2) . « o« « « o« 2 « o« « o« « « « 80
Delete TSI Processor (CEAMD) Chart AV . . « ¢« « « o o« « o« « « « - 80
Set up XTSI Field Subroutine (CEAS4) ¢ ¢ ¢ ¢« &« « « « « « 81
Set up TSI Field Subroutine (CEAH2) . . 4 ¢ 2« « « « 2 « « « o« « . 81
Extract TSI Field Subroutine (CEAH2) . . « ¢ ¢ ¢ ¢ & 4« « « « « « 82
Extract XTSI Field Subroutine (CEAS4) . . ¢ e o e e s s e« o o o« B2
Time Slice End Subroutine (CEAHQ entered at CEAHQF) « . . 83
AWAIT SVC Subroutine (CEAP7) Chart AW . . « « ¢ « « « « « « « « « 83
TWAIT Subprocessor (CEARO) . . . e e e e « e e o o o . 84
Pulse Schedule Table Entry Processor (CEARz) « « o s e s e o « . B4
Change Schedule Table Entry Processor (CEAR3) . . « « . « « « . . 84
Set User Interval Timer Subroutine (CEAQ2) . « +v ¢« ¢ « « « « « - 85
Set Real Time Interval Subroutine (CEAS7) Chart &X « . . 85
Restore Elapsed Time Subroutine (CEAS8) . .« ¢ ¢ « « « « « o« « o« « 87
Read-Time Subroutine (CEAS6) . . « o « « « « « o o o o o« « « « « 87
System Table Modification and Extraction Processors .« . . . 88
Set up System Table Field Subroutine (CEAS2 Entered at CEAHQZ) . 88
Extract System Table Field Subroutine (CEAS2 Entered at CEAH43) . 88
Extract Accumulated Time Routine (CEAT1) . . « « « « . . 88
txtract from Auxiliary Storage Allocation Table (CEAT“) « « « o « 89
I/70 Call sSubroutine (CEAAO) Chart AY . . « « « =« « « « « o » « o« 89
Pageout Service Subroutine (CEAAl) Chart AZ « v e s e <« 90
Remote Job Entry Line Control Subroutine (CEABC) Chart BA 92
Reset Device Suppression Flag Subroutine (CEAAH) 94
Set Path Subroutine (CEAAB) « s e e s e = e o o o « o o 94
Queue Device on Task Subroutine (CEAAC) 1
RrRemove Device From Task Subroutine (CEARAD) . « « « ¢« « « « « « « 95
Set Asychronous Entry Subroutine (CEAAK) « ¢« « « « « . 96
Terminal SVC Processor (CEARU) Chart BB . .« & o « o ¢ o o« « « « « 97
Reset Drum Interlock Subroutine (CEAAZ) . « ¢ « o « o« o « o« « « « 99
Inter-Task Communication Subroutine (CEAQS5) . & « ¢« « « « « « « « 99
TSS Dynamic Status (CEASS) . & o o o« « « o « « o s o o« « s « o« 2100
Supervisor Subroutines .« ¢ ¢ ¢ ¢ c i e e e e s s e e e o @« o o « o 2101
Page-Handling SUubroutines . . . « « ¢ o « o « s o o o ¢ ¢« o « « o 2101
Find Page Subroutine (CEANC) . . <« o v o o« = o « « o o« « « « « 2101
Locate Page Subroutine (CEAML) . .« ¢ « o o « « o « o o o « '« « 2102
Page Posting Subroutine (CEAMP) Chart BC .« « « ¢ ¢ o o« o « « « 102
Write Shared Pages Subroutine (CEAMW) . . <« &« « ¢ s « « « « « « 106
External Page Location Address Translator Subroutine (CERAE) . .108
Search-RSPI-Table Subroutine (CEAMS) . . . e o o o e o o o o 2109
Segment Block Remover Subroutine (CEANG) Chart BD « « « « « « « 109
‘XTSI Page Packing Subroutine (CEAMY) e e 4 s o o « 4110
keai Core Statistical Data Recording Subroutine (CEAIG) Chart BE 110
Real Core Error Recording Subroutine (CEAI7) Chart BF110
Paging Error Recovery ROULINES .« « « & o o o s o o ¢ ¢ o s o « « <111
Paging Failure Recovery Subroutine (CEAAQ) Chart BG « . « « « . .111
e o « o <113

‘Start Retry Operation Subroutine (CEAAX) . .
Standard Area Retry Subroutine (CEAAT) . .
Alternate Path Retry Subroutine (CEAAS) chart
Same Path Retry Subroutine (CEAAV) Chart BI .
170 Service Subroutines . . . « o a
Pathfinding Subroutine (CEAAS) Chart BJ o o =

Start I/0 Subroutine (CEAAG) Chart BK . . .
Halt I/O0 Subroutine (CEAAI)
Dequeue I/0 Requests Subroutine (CEAAJ) Chart

« & s & s e s
4]

2]
t

Generate and Engueue Interrupt-~GQE Subroutine (CEABQ)

Command Word Relocator Subroutine (CEARA)
Purge Subroutine (CEAAL) Chart BM « « ¢« « ¢ « « « «

¢« 8 & & 2 & & s a2 s a

Terminal Control Table Entry Slot Allocation Subroutine

Chart BN s o o o s s e @« s o e o o =
Special Task Serv1ce Subroutlnes .« .
Task Initiation Subroutine (CEAMC) Chart BO .
XTSI Overflow Subroutine (CEAMX) . . .
Queue GQE on TSI Subroutine (CEAAF) Chart BP
Task Communication Control Subroutine (CEAAN)
General Service Subroutines -
Inter-CPU Communication Subroutlne (CEAIC) Chart BO
Create Real Time Interrupt Subroutine (CEARKR) Chart
Task Selection and Scehduling Routines« .
Internal Scheduler (CEAKI) Chart BS ¢« . <« « « « « &
The Dispatcher (CERKD) Chart BT
Task Interrupt Control Subroutine (CEAAZ) Chart BU
Entrance Criteria Subroutine (CEAKE) Chart BV . .
Rescheduling Subroutine (CEAKZ) Chart BW . .
Major Error Recovery ProceduresS « « « « ¢ « o « « « =
Recovery Nucleus-67 (CEAIR) Chart BX . « « « « &«
Reconfigquration Routine (CGCMA)

External Machine Check Interrupt Processor (CEABE) C

(ﬂ ' System Environment Recording and Retry Programs . . .

) SERR Bootstrap (CMASA) Chart BZ . « « « « .
Environment Recording Program (CMASB) . .
Immediate Print Program (CMASC)
‘Checker Program (CMASD) Chart CA
Pointer Program (CMASE) . . « . .
Restore and Validate Program (CMASF) Chart CB .
Instruction Retry Execution Program (CMASG) Char
CPU/Memory Checkout 1 Program (CMASH) Chart CD
CPU/Memory Checkout 2 Program (CMASI) Chart CE
CPU/Memory Checkout 3 Program (CMASJ) Chart CF
System Error Processor (CEAIS) Chart CG

e o » o (Fe a 2 a 0 0

SECTION 4: FLOWCHARTS .« ¢ « o « « ¢ o« « o« « o o o« o s
APPENDIX A: MODULE IDS AND NAMES . . « ¢ « ¢« ¢ « o o &
APPENDIX B: TSS/360 SVC CODES « « « « « o o « o o s o &

INDEX « « « o o ¢ e « s s &« « s ¢ o s o s o o o« o« a s &«

« o s a (s s & s 0 0 0
Q

e o o o ¢ o o
o

& s & & 5 s s DYe a6 2 8 s 4 s

art

O 8 ® & * & 8 8 0 % e % 8 & 8 % 8 & gme s o & 2 b & s s 0 o @

2]

R e~ R RN g

Ko & 5 & o s 0 0 4 2 o s

0
@ & & & o 4 @ A& p % 5 8 s 0 g & s & 8 s 0 4 & 2 0 g 0 a2 & s s We 2 a4 4 s 3 0 p & g &

115
<116
-117
-119
.123
.123
125
.126
.128
129
<130
.131

.133
.133
.134
.134
.137
.139
.140
.140
.142
.143
.143
164
.145
.146
.147
.148
.148
.152
.153
.154
.156
.158
.158
.161
.162
.162
.163

«163

164
.164
.164
.167
.313
«317

.322

ILLUSTRATIONS

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

response to

Figure
Figure

10

11.
12.
13.

14,
15.

General flow of resident supervisor functions . . .
Resident supervisor components and their functions
Interruption receiving . . ¢« o« ¢ 2 ¢« ¢ 4 o o o @

Interruption processing « « « « s « « « « o« o &
Task scheduling and selection . . « « « « « o «
Queue Scanning and processing module interface
Page table relationship « « « « ¢ ¢ « o ¢ o .« @
Activities of the SVC Queue Processor
Interrupt stacker module overview . . .« « « . .

The interrupt 1log . ¢« ¢« ¢ ¢« ¢ ¢ « o« « o« « .
Timer Interrupt Queue Processor activities .
Page Drum Interrupt Queue Processor activities
Page Drum Interrupt Queue Processor checking and
conditions specified in the CSW . . . ¢« ¢« « « « & « &
Activities of the Program Interrupt Queue Processor

PDAQ Processor cross-referencing between the GQE, PCB,

e & & o 8 » 2 s s & s @

.
.
.
.
.
-
.
.
-

and the DAIB =« « « ¢ o « o o o s o « s a e s s o« o s s o« s o o @

Figure

Processor .

Figure
Figure
Figure
Figure
Figvre
Figure
Figure
Figure
Figure
Figure

16.

17.
i8.
19.
20.
21.
22.
23.
24,
25.
26.

Activities of the Auxiliary Storage Allocation Queue -
SCA control information block . « « « «
Device type table format

Track and record ID format

Format of translated symbolic addresses

Format of path availability check results
Contents of Halt I/O return registers . .
CCW - page list structure . « « « ¢« « « &
XTSI StatesS ¢« v« ¢ o o« « o« o o ¢ o a o o s
Action Matrix for TS1 Flag Settings . . .
General flow through SERR after a machlne-check

e & 5 8 o & & & &
a 6 & o & & o 3 @

interruption . . « ¢ ¢ ¢ @ ¢ o o @ o ¢ o 4 e 8 e o o 8 e & o « o

4 8 & & 0 & o 0 & s & o

Figure 27. Record format for an internal machine check (call types
01 and 09 from the recovery nucleus) . « « « ¢ « o « « « & .« .
Figure 28. Record format for an external machine check (call type
29) - L - - L] - - - - L - - - - - - . L - - L]
Figure 29. Record format for a paging device SDR overflow or a

solid paging I/O outboard error (call types 27, 28, and 2E) . . .

Figure 30. Record format for a system error (call type 41) . . .
Figqure 31. Record format for a paging 1I/0 inboard failure (call

type 2D) © & o 4 e 8 6 s e e e e e s s o a e s s 6 e & o 8 o @
Table 1. Major control blocks used by the supervisor
Table 2. Queue Processors that work off the scan table in their
order of priority o . . « e e e
Table 3. Paging and storage allocatlon control blocks « e e e o
Table 4. Schedule table entry parameters . « « « « « o « « «
Table 5. QUEUE Scanner operations in processing of GOE

vi

.108
<124
.128
130
.136
.138

«156
.159
.159

160
160

<161

. . L[] L]
[y
(-]

CHARIS

Chart AA. Interrupt Stacker (CEAJI) . ¢ o ¢ ¢ o « « ¢ « « « o« « « 168
Chart AB. Queue Scanner (CEAJQ) « e s e s« o e o« o o174
Chart AC. Set Suppress Flags subrout1ne (CEAJSF) « o ¢ s s e« o« e « 2175
Chart AD. Timer Interrupt Queue Processor (CEAKT) . . . « . « - « .176
Chart AE. Page Drum Queue Processor (CERA8) . . . e« o o o e = e« <182
Chart AF. Page Drum Interrupt Yueue Processor (CEAA9) e o e o o o 1884
Chart AG. Program Interrupt Quaue Processor (CEANA) « .186
Chart AH. I/0 Device Queue Processor (CEAAR3) e e o o« « o o188
Chart AI. Page Direct Access Interrupt subroutine (CEAA7) « o e « 2192
Chart AJ. Page Direct Access Queue Processor (CEAA6) . . « . « . . 193
Chart AK. Channel Interrupt Queue Processor (CEARA4)194
Chart AL. RJE Asynchronous Interrupt subroutine (CEABA)200
Chart AM. Terminal Communications Subprocessor (CEATC) . « . « « « .208
Chart AN. User Core Allocation (CEANB) . . « ¢ « « « « « s » « o o« 2223
Chart AO. Auxiliary Storage Allocation Queue Processor {CEAIA) . . .227
Chart AP. Core Control subroutines (CEALL) . . . & 4 ¢« ¢ ¢ ¢ « o« « 231
Chart AQ. SVC Queue Processor (CEBRAQ) .« o « « « « o o s o o« o ¢ « 235
Chart AR. Add Page SVC (CEAHQA) « o e s e o o o o o s o o +236
Chart AS. Add Shared Page subroutine (CEAOG) e s e e e o e a s« e o 4239
Chart AT. Connect segment to shared segment (CERQ7) « « « 240
Chart AU. Check Protection Class SVC (CEAHS) e« e o o o o o o o« o 281
Chart AV. Delete TSI (CEAMD) e o e e o @ o o o o e o o o 2U42
Chart AW. AWAIT SVC Processor (CEAP?) « o o s 4 e o o« o« o <245
Chart AX. Set Real Time Interval subroutine (CEAS7) e o o o« o« o« « <246
Chart AY. 1I/O Call subroutine (CEAAOG) . . o ¢ 2 o o « o « = « « « 247
Chart AZ. Pageout Service subroutine (CEAA1) . . . « « ¢ « « « « o .2U8
Chart BA. RJE 1line control (CEABC) . . o« o« o « o s « o s « =« o« = = 249
Chart BB. Terminal SVC Processor (CEARH) . . ¢ « ¢ o« « o o« o o o «.250
Chart BC. Page posting (CEAMP) e s e s s e o o s & o 4256
Chart BD. Segment Block Remover subroutine (CEANG) e« ¢ o o o « o o« <259
Chart BE. Real Core Statistical Data Recording (CEAI6)260
Chart BF. Real Core Error Recording (CEAI7) « . « « « . . .261
Chart BG. Paging Failure Recovery (CEAAQ) . ¢ . « o« « « o « o o« « 4263
Chart BH. Alternate Path Retry (CERAS) . . .+ ¢ « « « « « o« o« o« « « o264
Chart BI. Same Path Retry (CERAV) . ¢ . v o ¢ v « « o o o « o o « 4265
Chart BJ. Pathfinding subroutine (CERAS5) . . . ¢ ¢« « « « ¢ « o « o« 267
Chart BK. Start I/O subroutine (CEAAG) . . « « ¢ o « « « « o « « « <274
Chart BL. Dequeue I/0 Requests (CERAJ) « « o« ¢ « ¢« « « ¢« ¢ o o« « o« «275
Chart BM. Purge (CEAAL) . . & « o « » « o o o s a4 o e o o o o« o o276
Chart BN. Terminal Control Table Entry Slot Allocation subroutine

(CEATS) . . “ e e e e . e e o o o e s e e o o s s e« « o 2277
Chart BO. Task Initiation (CEAMC) e e o o s e o e e & s e = s « « o283
Chart BP. Queue GOE On TSI (CEAAF) . .« ¢ « o« ¢ « = « o s o =« o o« « o288
Chart BQ. Inter-CPU Communications (CERAIC) . . ¢ « ¢ « ¢ « « s « « .287
Chart BR. Create Real Time Interrupt (CEAKR) . . « « « « « « « « = .288
Chart BS. 1Internal Scheduler (CEAKI) . « « « « o« « « « « o « o « « 2289
Chart BT. Dispatcher (CEAKD) e e o e 4 o e o o o o = s« <290
Chart BU. Task Interrupt Control (CEAAZ) e ¢ o s e e & o o o e o o o291
Chart BV. Entrance Criteria (CEBKE) . + « ¢ o« ¢ o« o o « s « o« « « 2292
Chart BW. Rescheduling (CERKZ) . . . « ¢ « o o = « « ¢ o o« o o « « 293
Chart BX. Recovery Nucleus (CEAIR) « « ¢ o o o « o o o o o o o o« o« 297
Chart BY. External Machine Check Interrupt Processor (CEABE)302
Chart BZ. SERR Bootstrap (CMASA) . « ¢ « o « o « s « o« « « o o« o« o« 2303
Chart CA. Checker Program (CMASD) . . . ¢ « « « « o« « o o« « « « « <304
Chart CB. Restore and Validate (CMASF) . « ¢« ¢« « ¢ « ¢ o « « « « « 2305
Chart CC. Instruction Retry Execution (CMASG) « . « .306
Chart CD. CPU/Memory Checkout 1 (CMASH) . ¢ ¢« o o ¢ o o o« « o « s 2307
Chart CE. CPU/Memory Checkout 2 (CMASI) . . . o « « « s « « « « « <308
Chart CF. CPU/Memory Checkout 3 (CMASJI) . . « « « « « « =« « s « « 309
Chart CG. System Error Processor (CEAIS) . « « o« « « « o « « « « « 2310

vii

o

H

Relationship to the System

The TSS/360 resident supervisor is the
only TSS/360 component that is permanently
resident in main storage after startup. By
contrast with other system components,
which reside in virtual storage and are
paged in when needed, the supervisor is
nonpageable and nonrelocatable; its
instruction operands are main storage
addresses, not logical addresses. No loca-
tion within the resident supervisor may be
addressed by a program operating in virtual
storage; thus it is protected from being
altered by other system components or user
programs. Supervisor modules may execute
privileged instructions; they therefore use

Type I linkage to communicate with each
other.

Purpose and Functions

The resident supervisor is responsible
for accepting and processing interruptions
and scheduling the use of system resources.
The latter involves such operations as:

e Time slicing and task dispatching.

e Storage allocation.

e Handling of paging and non-paging I/0
- requests.

e CPU and paging I/0 error retry and
recovery.

Entry to the supervisor is made by means
of an interruption (see Fiqure 1). These
interruptions represent such things as:
error conditions, time-slice end, I/0 hard-
ware completions, and requests from tasks
for services. An interruption may be
received before the processing of previous
interruptions has been completed; there-
fore, on entry, interruptions are stacked
(remembered) until they can be processed.
Since it is possible to receive more than
one interruption at a time, each interrup-
tion is attached to the queue of the appro-
priate interrupt processor (according to
interruption type); the queues are then

SECTION 1. INTRODUCTION

Interruption

Interruption Receiving Routine

Storage

Classify interruption and place Allecation

it on o queue for subsequent
processing

Error Recovery
and Recording

Interruption Processing Routines

Process interruptions from 5 Sroroge.
queves Allocation

[——————
| No work left on |
| queues to process |

—— — —— o — —

Task Scheduling Routines

Determine which task
will be permitted to
execute next

Storage
Allocation

Error Recovery
and Recording

Dispatching Routines

Figure 1.

) St
Dispotch task for execution Alloc:'nion'

General flow of resident super-
visor functions

processed on a priority basis. Complete
information on the status of the inter-
rupted task is saved during processing.

When there is no further work to be pro-
cessed (that is, all the queues have been
amined and emptied, if possible), the
sident supervisor selects the next task
> be given CPU time. Each task has
assigned to it a set of scheduling parame-

ters; the value of its time slice starts at
the value indicated in one of these parame-
ters. When the task is interrupted, a
record is kept of the CPU time used. When
the task is set into execution again, its
time slice is set equal to the initial

value minus the CPU time the task has
already used.

A time slice is seldom used on a
straight through basis; generally there is

Section 1. Introduction 1

some waiting time for input/output, termin-
al, or paging operations. During these
waiting periods, other tasks may begin
their time slices. However, when an inter-
ruption signals that the first task is
ready to proceed, it is again readied for
execution. The scheduling components of
the resident supervisor are responsible for
ordering tasks according to established
priorities to determine their eligibility
for execution. Thus each task receives its
fair share of CPU time, and maximum use is
made of system elements.

During the performance of its interrup-.
tion handling and task scheduling func-
tions, the supervisor allocates and
releases storage as the need arises. Two
categories of storage are allocated by the
supervisor: main storage and auxiliary
storage.

e Main storage, the only storage in which
programs can be executed, is initially
allocated at startup in 4096-byte units
called pages. During system operation,
the supervisor reallocates this storage
in either page or smaller block units
for specific uses by supervisor com-
ponents and user tasks.

e Auxiliary storage, which consists of
the drums and disks used as temporary
storage for pages when they are not in
use during system operation, is allo-
cated initially at startup. Thereaft-
er, the resident supervisor maintains a

constantly updated count of available
auxiliary storage, allocates it to user
tasks as needed, and releases and
returns it to available status when its
use is no longer required.

The resident supervisor exercises its
error recovery and retry capabilities, when
necessary, to dynamically correct errors or
to minimize the effect of errors on the
system as a whole. The general approach to
error recovery is to retry failing opera-
tion, where possible; when an operation
cannot be retried or is retried without
success, or when a hardware element cannot
be made to perform correctly, the failing
element or device is removed from the sys-
tem in an orderly manner so as not to dis-
rupt system operation. Only as a last
resort, when recovery is not possible or
removal of the failing element would render
the system inoperative, is the system shut
down. System enviromment recording facili-
ties maintain a continuous error history,
including complete hardware environment at

the time of failure, on the paging drum for:

subsequent use by the customer engineer.

Major components of the Resident Supervisor

The major components of the resident
supervisor can be grouped according to the
functions they perform (see Figure 2). 1In
addition to its major components, a group
of subroutines provide services throughout
supervisor operations; these are described
in Section 3.

Restdent Supervisor Components Function

Receive, classify and stack
interruptions for processing

Queve
Processors

Queve

Control
Scanner

Subroutines

Scheduling
Scheduler Subroutines

Schedule and select tasks

Dispatcher "
for execution

Sup. Core User Core Contig. Core Aux. Storage Allocate main and
Alloc. and Rel.| Alloc. and Rel.] Allocation Allocation

auxiliary storage

Recovery System Environment Recording System Error ' Provide error recovery and
Nucleus and Retry (SERR) Processor [o : recording capabilities

Figure 2. Resident supervisor components and their functions

Section 1. Introduction 3

SECTION 2. METHOD OF OPERATION

OVERVIEW OF RESIDENT SUPERVISOR OPERATIONS

Normal entry to the resident supervisor
is made via the Interrupt Stacker, whose
function it is to accept, classify, and
save interruptions for processing. Five
types of interruptions may be received by
the supervisor. Three of these interrup-
tion types - program, SVC, and I/0 - occur
during normal operation (that is, they do
not indicate system errors), . and are
received directly by the Interrupt Stacker.
The other two types - external and machine
check - are received initially by the Reco-
very Nucleus, an error recovery routine
discussed in Section 3 under "Major Error
Recovery Procedures®. Those that are to be
handled by the Interrupt Stacker (timer and
interrupt key) are passed to it; those

indicating a malfunction are handled by
error recovery routines (see Figure 3).

Processing of Interruptions

Upon receiving an interruption, the
Interrupt Stacker determines whether it
occurred during the execution of a task
(problem-state interruption) or one of the
supervisor components (supervisor-state
interruption). Supervisor-state interrup-
tions will be discussed in Section 2.

For all problem-state interruptions:
e A 64-byte block called a general queue

entry (GQE) is generated, containing a
description of the processing required.

Interruption
Mach Ext SVC Prog /0
Ext | SVC [Peg [1/O
Recovery

Nucleus Interrupt Stacker

Write
Direct?

Malfunction
Alert?

Error Routines Inter-CPU

Communication
Wait State

Figure 3. Interruption receiving

sSvC

Prog

Interrupt Stacker

|

Task
Monitor

Queve
Scanner

Figure U. Interruption processing

e I/0 and timer interruptions - GQEs for
these interruptions are queued on a
table (scan table) used to contain
pointers to the GQEs representing work
in progress or waiting to be performed;
control is then transferred to the
Queue Scanner.

e SVC and program interruptions - GQEs
for these interruptions are not queued
on the scan table; control is trans-
ferred directly to the appropriate
interrupt processor or to the task via
LPSH.

The Queue Scanner locates queue entries
in the scan table, then transfers control
to the appropriate queue processor, until
no processable work remains. See Figure 4.

Scheduling of Tasks

The task scheduling and selection
mechanism of the supervisor is entered when
the Queue Scanner can find no work left to
process in the scan table. Control is

transferred to the Internal Scheduler,

which moves tasks from the list of those
eligible for CPU time (eligible list) to
the list of those ready to execute (dis-

patchable list). It is assisted by the
Entrance Criteria subroutine, which veri-
fies or denies the task's eligibility to be
moved. The Internal Scheduler then passes
control to the Dispatcher, which selects
from the dispatchable list the task to be
executed. Before the task is dispatched,
the Task Interrupt Control subroutine
checks for pending interruptions to the
task, and arranges for them to be serviced
by the task monitor (see Figure S). Once a
task has used up its allotted CPU time, it
is moved to a list of inactive tasks, after
which the Rescheduling routine is invoked
to compute a new time value for scheduling
the task.

control Blocks Used by the Supervisor

Each supervisor component keeps detailed
records of the status of interruptions

Section 2. Method of Operation 5

1

internal Entrance
Scheduler Criteria

Dispatcher Tic

.

1 Disputeh 1
Tush] 4

—————

Int
Pending

No work Swap
left to do pswW

Queuve
Scanner

Figure 5. Task scheduling and selection

throughout its processing. These records e Program interruption - occurs when any
are kept in tables, or control blocks, of 17 program interruption codes are
which are available to each supervisor com- generated by the System/360 Model 67.
ponent required to process an interruption. When it occurs while the CPU is operat-
Detailed descriptions of these tables are ing in the supervisor state (that is,

presented in the System Control Blocks
manual. General descriptions of tables
used by specialized groups of supervisor

it is caused by the supervisor), an
error is indicated; occurring in the
problem state (during execution of a

task), a program interruption is
handled by the task monitor (codes 1 -
15) or the resident supervisor (codes
16 and 17).

components are presented within the
descriptions of these modules. Table 1
provides a brief summary of the functions
of these control blocks. (Another table of
control blocks, concerned exclusively with
paging and storage allocation activities, e I/0 interruption - represents the

can be found in Section 2 under “"Program
Interruption Processing").

INTERRUPTION HANDLING

Entry to the Supervisor

Five types of interruptions cause the
resident supervisor to be entered:

method by which an I/0 device signals
the CPU that I/0 is completed. These
are classified and queued for proces-
sing according to type: interruptions
involving drum paging operations are
distinguished from all others and tran-
sferred to a separate processor.

SVC interruption - the supervisor call
(SVC) is the normal method of communi-
cation between a task and the supervi-

| Control Block |

Table 1. Major control blocks used by the supervisor

r v

———— 4 -

- -1

Function

+ ‘
IGeneral ygueue Entry (GQE) |6l4~byte control block created at interruption time to con-
| |tain information describing processing required by queue

| | processors.
4

|Task Status Index (TSI)

| for each task.
4

v
|Contains nucleus
|in main storage;

of task information that must be retained
also a pointer to the XTSI. A TSI exists

N T
kxtended Task Status Index |Contains that portion of task's information that is not
(XTSI) |required to be permanently resident in main storage.
4

Page Control Block (PCB)

1

|Created each time a paging operation is indicated. Con-
|trols movement of virtual storage pages between main and
Jauxiliary or external storage.

4

Scan Table (SCANT)

| supervisor.
4

1
|Serves as common anchor point for all GQEs representing
{work in progress or waiting to be performed inside

e ——— = . G e P S e

T
|Scan Table Master Control |[Contains information used by Queue Scanner for more
|efficient search for work in scan table.
4

| Table (s3MC)

|Schedule Table (CHASTE)

i3

1

|parameter table used by scheduling mechanism of supervisor
1 |to determine what scheduling characteristics to apply to

| |each task in TSS/360.

| System Table (SYS)

|
| |chain of TSis.
L N

+
|Contains a variety of system and installation parameters
jused by scheduling and paging mechanisms; anchor point for

Y S VS S NP SR NEpR SpESRp I S g ahmad

sor, caused by the execution of an SVC
instruction that is usually embedded in
the expansion of a macro instruction.
Depending upon the SVC code, these
interruptions are serviced by the Time
Sharing Support System (TSSS), the task
monitor, or the resident supervisor SVC
processing routines.

e External interruption - can result from
a timer interruption, an inter-CPU com-
munication in the form of a write-
direct message, or a machine malfunc-
tion alert. External interruptions are
initially intercepted by the Recovery
Nucleus (discussed in Section 3 under
"Major Error Recovery Procedures®);
those that are to be handled by the
Interrupt Stacker (timer and interrupt
key) are passed on to it. .

* Machine check interruption - indicates

~ that a hardware detected error has
occurred; error recovery procedures are
initiated by the Recovery Nucleus.

The Interrupt Stacker comprises four
separate stackers, one for each interrup-
tion type it receives. Interruptions are
classified as they are received, and the
information associated with them (old PSwW,
interrupt code, etc.) is saved. The

stacker receiving the interruption deter-
mines whether the system is under the con-
trol of the resident support system (RSS).
If it is, the interruption is processed and
control is returned to the appropriate RSS/
VSS handling module. Those interruptions
that do not involve RSS are then classified
as problem state or supervisor state,
depending upon whether the interruption
occurred during the execution of a task or
a supervisor component.

If the interruption occurred in the
supervisor state, the Interrupt Stacker
returns to the point of interruption using
the old PSW, so that the interrupted super-
visor routine can complete the work it
began. For all problem-state interrup-
tions, the Interrupt Stacker builds a rec-
ord, called a general queue entry (GQE), to
contain information describing the
interruption.

General Queue Entry (GQE)

The general queue entry (GQE) is built
in a 64-byte block obtained by a call to
the Supervisor Core Allocation subroutine.
It contains a description of the work to be
done by a device or facility controlled by
the resident supervisor. Contents general-
ly include:

Section 2. Method of Operation 7

e Pointers to:

1) The task status index (TSI).
v2) Preceding and succeeding GQEs on the
same queue.

3) A page control block (PCB) if paging
is involved.

¢ GOE movement information.
e Flags.
e Interruption code.

GQEs are attached to the appropriate
interruption processor's queue, and are
subsequently processed in a logical order,
on a first-in-first-out basis within each
queue. The queues themselves are processed
on a priority basis (discussed under "Queue
Scanning®). For SVC and program interrup~-
tions, control is transferred directly to
the SVC or program interrupt processor to
ensure fast processing of these interrup-
tions which occur quite frequently. 1I/0
and timer interruptions are queued on a
table, called the scan table, which is
private to the Queue Scanner and determines
the order in which the queues are pro-
cessed. Once classification and queuing is
completed, the Queue Scanner receives
control.

Queue Scanning

It is the responsibility of the Queue
Scanner to provide a sequencing mechanism
that decides the order in which individual
queue processors are permitted to execute.
To accomplish this, the Queue Scanner uses
two tables: the scan table (SCANT) and the
scan table master control table (SMC). The
scan table is used in the processing of all
I70 and external interruptions; program and
SVC interruptions (with a few exceptions)
are sent directly to the appropriate queue
processor by the Interrupt Stacker.

Scan Table (SCANT)

The scan.table, residing in main
storage, contains one 16-byte entry for
each I/0 device or supervisor facility.
Four-byte fields within each entry relate
the supervisor queue processors to their
facilities. A processor pointer field
points to a unique processor for each
entry, except for I/0 device entries.

Since only one I/0 device queue processor
exists in the supervisor, all device pro-
cessor scan table entries point to the same
processor program. The order in which
device entries appear in the scan table,
hence their priority, is specified from the
symbolic device address (SDA) assigned to
each device during system generation.

Table 2 lists the queue processors that
work off the scan table in their order of
priority.

Scan Table Master Control Table (SMC)

The information maintained in the scan
table master control table (SMC) facili-
tates the Queue Scanner's search of the
scan table. SMC comprises a set of device
interaction groups (DIG). A DIG is a sub-
set of entries in the scan table containing
either one gueue processor or a group of
I/0 devices having a common device con-
troller (control unit). The SMC header
contains a master count of the GQEs await-
ing an available processor. This count is
incremented or decremented as GQEs are
added to or removed from scan table queues.
The header also contains a count of DIG
entries and a master count of matched faci-
lities. Matched facilities are a proces-
sor, that is neither locked nor suppressed,
and its queue of one or more GQEs. The DIG
fields also include a DIG busy flag.

Queue Scanner Functions

When the Queue Scanner receives control,
it inspects individual queues within a DIG
only if the master count indicates that
there is work queued within the DIG, and
then only if other flags indicate that the
appropriate queue processor is not busy and
an I70 path to the device is available (see
"Pathfinding®). To prevent one active
device in a group from monopolizing an I/0

Table 2. Queue Processors that work off
the scan table in their order of

priority

r

| Timer Interrupt Queue Processor (CEAKT)

|Page Drum Queue Processor (CEAA8) - Page
Drum Interrupt Queue Processor (CEAA9)

Auxiliary Storage Allocation Queue Pro-
cessor (CEAIA)

User Core Allocation Queue Processor
(CEANB)

Channel Interrupt Queue Processor (CEAAL4)

|I/70 Device Queue Processor (CEAA3)

. one queue for each

. device on the system

Pageout Service Subroutine (CEAA1)

170 call Subroutine (CEAAOQ)

|Program Interrupt Queue Processor (CEANA)

|Contiguous Core Allocation Queue Proces-
| sor (CEANF)

L

T e I P R ——

T

path and greatly delaying the processing of
other requests within the DIG, the Queue
Scanner processes the queues within each
DIG in a round-robin order.

When it finds a DIG with processable
work queued, the Queue Scanner locates the
queue entry in the scan table and transfers
control to its associated processor(s).
The queue control subroutines queue and
dequeue entries, and move entries from
queue to queue until all processing speci-
fied in the GQE is accomplished. These
subroutines maintain control fields in SMC
and protect the scan table and the queues
by setting suppress flags (see Figure 6).

The queue processors locate the GQEs
pointed to by the gqueue entries, analyze
the processing requirements specified in
the GQEs, and set up the necessary storage
space, tables, controls, and subroutine
linkages to effect the processing. When
all queues are empty, or when the necessary
processors are busy, the Queue Scanner
transfers control to the Internal Scheduler
to select the next task to be put in
execution.

Queue Processing

Associated with the Queue Scanner are
four groups of specialized queue proces-
sors: timer, drum paging, I/0, and storage
allocation queue processors. The proces-
sors perform detailed checks on conditions
reflected by the GQE fields and determine
the appropriate action to be taken to pro-
cess the GQE. If the processing requires

Interrupt
Stacker

Mechanism Scan Table Control
Subroutines

Queue §
Scheduling Enqueue-GQE
Dispatching
Mechanism

Scon Table Degqueve-GQE
Tt Master
Control Table

Move-GQE

Scon Table

Set Suppress Flag

Queue Processors

SYSERR

Supervisor Service Subroutines

Figure 6. Queue Scanning and processing
module interface

the attention of several processors, the
GQE is transferred from one processor's
queue to the next through the services of

~one of the queue control subroutines (see

Figure 6).

The queue control subroutines examine
the first routing field in a GQE. This
field will either contain a location-on-
queue (Loc-on-Q) value or all ones. The
Loc-on-Q value designates the relative
location on the scan table of the queue to
which the GQE is to be transferred (see
Table 2). A value of all ones indicates
that no further processing is to be per-
formed for the GQE, and the main storage
occupied can be released.

In general, a queue processor locks its
associated queue upon entry and unlocks it
as soon as the processor has dequeued a GQE
from the queue for processing. In certain
cases a queue processor may wish to lock a
queue until some specific future event or
condition has occurred. Indicators, called
suppress flags, contained in each scan
table entry are set and reset by the Set
Suppress Flag subroutine to prevent
unwanted recursion.

Timer Interruption Processing

The GQE for a timer interruption is
placed on the Timer Interrupt Queue Proces-
sor (TIP) queue in the scan table. The
interruption can be the result of.a task
having:

¢ Reached normal time-slice end.
e Been forced to time-slice end.

e Been selected to have its pages
migrated from auxiliary drum to auxi-
liary disk storage (see "Auxiliary
Storage Allocation").

The latter two are the more usual reasons
since tasks in TSS/360 seldom reach normal
time-slice end, but are more often forced
to time-slice end to satisfy a variety of
conditions.

A user timer field in the task's XTSI
contains the length of time the task is to
execute during one time slice. At each
forced or normal time-slice end, the task's
timers are decremented. When the user
timer field goes to zero, and it's a normal
time-slice end, a task interruption is
created and queued on the task's TSI inter-
ruption gueue, the task's pages are left in
main storage, and the task remains in the
dispatchable list (for eventual dispatching

. to the task monitor for processing). 1In

all other situations (that is, when a user
timer interruption has not occurred or the
task has been forced to time-slice end),

Section 2. Method of Operation 9

the task is rescheduled according to its
scheduling parameters, and its pages are
written from main storage.

An exception to this is caused by the
issuance of a TSEND SVC (a request by a
‘task to delay execution until some event
has occurred), which results in the task
being forced to time-slice end. 1In this
case the task is set in delay status and
placed on the inactive list, its pages are
written from main storage, and a timer
interruption is set up. Once the event has
occurred, the timer interruption is pro-
cessed, causing the Rescheduling subroutine
to be called to place the task on the elig-
ible list with its time recomputed.

When a timer interruption occurs as a
result of the completion of user I/0 for a
page, TIP scans the task's page tables (see
"Program Interruption®) for a page that is
available. If the page is unchanged,
Supervisor Core Release is called to
release its main storage space; changed
pages must be written to auxiliary storage
and the auxiliary storage space previously
occupied by the page must be released.

When a task has been selected to have
some of its pages migrated from auxiliary
drum to auxiliary disk storage (see "Ruxi-
liary Storage Allocation"), a timer inter-
ruption occurs. TIP determines which of
the task's pages are to be migrated and, in
the case of private pages, the GQE is
queued on the Page Drum Queue Processor
queue for processing. If shared pages are
to be migrated, the Write Shared Pages sub-
routine provides the pages to migrate.

Segment and Page Tables

Each task keeps track of the location of
its pages in storage by means of segment
and page tables. Within each task's XTSI
there is a segment table (SGT), consisting
of groups of four-byte entries. Each entry
contains a pointer to the beginning of a
page table (PGT), the count of the number
of entries in that page table, and its :
availability. Each entry in the page table
points to the location of a page in
storage. Immediately following each seg-

. ment table is an auxiliary segment table
(AST) containing pointers to page tables on
auxiliary storage; an external page table
(XPT) immediately following each page table
points to pages not in main storage.

A list of the location of all shared
page tables (SPT) currently in the system
is maintained in the resident shared page
index (RSPI). The RSPI, permanently resi-
dent in main storage, indicates the main
storage location (if available), the in-
transit state, and the length of shared
page tables.

10

.returned to a "ready"™ status.

The relationship of these tables to each
other is illustrated in Figure 7. Table 3
provides a brief summary of the functions
of paging and storage allocation control
blocks referred to by the supervisor. A
more detailed description of these control
blocks is contained in System Control
Blocks.

Program Interruption Processing

Of the 17 program interruption codes
generated by System/360 Model 67, only
codes 16 and 17 are processed by the resi-
dent supervisor. When a program interrup-
tion with a code of 0-15 occurs in the pro-
blem state, the Interrupt Stacker queues
the interruption GQE on the task's TSI;
before the task is next given CPU control
by the Dispatcher, the Task Interrupt Con-
trol (TIC) subroutine arranges for the
interruption to be prucessed by the task
monitor.

Program interruption code 16 is a seg-
ment relocation exception, indicating that
a task's page table (see "Segment and Page
Tables") or shared page table is unavail-
able. Program interruption code 17 is a
page relocation exception, indicating that
a page is unavailable (that is, not in main
storage). The Interrupt Stacker links
directly to the Program Interrupt Queue
Processor (PIP) to provide faster service
for these interruptions which occur
frequently.

When a segment relocation exception
(code 16) occurs, it is first determined
whether it is a shared page table that is
unavailable. Since all of a task's private
pages must be in main storage during execu-
tion, if it is not a shared page table, a
system error is indicated. Fcr shared page
tables, a search is made of the resident
shared page index (RSPI) to determine the
location of the shared page in storage.
When the table is found, the task is again
When the
page table is not available in RSPI, the
task is put in "page-wait® status. 1In
either case, control is returned to the
Queue Scanner.

For page relocation exceptions (code
17), the number of page reads that have
been performed for the task is compared
with the maximum number permitted (a para-
meter in the task's schedule table entry).
If they are equal (the maximum number has
been reached), the GQE is queued on the
Timer Interrupt Queue processor's queue and
the task is forced to time-slice end. When
the maximum number of page reads has not
been reached, and the page is a shared page
that is in transit, the GQE is added to the
external shared page table (XSPT) queue and
the task is placed in a page-wait status.

L1)
TSi t
PGT
XPT
XTs1
l > I |
l PGT l:
Private pages in
SGT I 1 J N
XPT > - main storage
AST
— L
PoT t
XPT r"
J
RSPI SPT E -
Private page on
T ouxiliory
XSPT Shared page storage

Figure 7. Page table relationship

In all other cases, the necessary steps are
taken for the page to be read in: the
Supervisor Core Allocation (SCA) subroutine
is called to obtain 64 bytes in which to
build a page control block (PCB), which is
then linked to the GQE; the GQE is queued
on the User Core Allocation (UCA) proces-
sor's queue; and UCA searches the core
block table (CBT) for a page of main
storage into which the page can be read
(see "User Core Allocation®). The actual
paging in will be performed as a result of
an I/0 interruption that will be directed
to the appropriate paging queue processor
(drum or disk) to bring in the page.

I/0 Interruption Processing

I/0 interruptions are initially
separated into two main types - those re-
questing drum paging operations and all
others. Interruptions involving drum pag-
ing are gueued on the Page Drum Interrupt
Processor's queue; all others are queued on

table in
main storage

the Channel Interrupt Processor's (CIP)
queue.

When control is transferred to CIP, the
GQE for the interruption is examined to
further determine the type of action
required:

e I/0 operations for the terminals of
conversational tasks are passed on to
the Terminal Communications Subproces-
sor for handling.

e The freeing of devices, channels, and/
or control units is performed, when
specified by the request GQE, by a call
to Reverse Pathfinding.

¢ Synchronous and asynchronous interrup-
tions from remote job entry (RJE)
devices are transferred to the respec-
tive remote job entry processors for
handling.

Section 2. Method of Operation 11

Y e . B . S . g, T . Sy, = . s— . S— ooy

Table 3. Paging and storage allocation control blocks
T
Control Block | -~ Function }
'R
1T 4
Segment Table (SGT) {A contiguous list of entries, residing in a task's XTSI, which }
|contain the length, origin, and availability of the task's page|
| tables. |
d J
1
Auxiliary Segment Table|Immediately follows the SGT and contains information concerning}
(AST) |page tables on auxiliary storage. |
1 g 4
$
Page Table (PGT) |A contiguous list of entries containing address and availabili-]
|ty status of task's pages in main storage. |
1 1
+
External Page Table | Immediately follows the PGT and contains information concerning}
(XPT) |task's pages on auxiliary storage. |
1 5
$
Shared Page Table | Identical to page table, the SPT contains a list of address of]
(SPT) |shared pages. i
1 J
R
| External Shared Page | Immediately follows the SPT and contains control information }
1Tab1e (XSPT) | required for paging of shared virtual storage pages. |
[
1 X T 4
|Resident Shared Page |Contains status and control information needed to maintain the]
| Index (RSPI) |system's currently active shared page tables. i
L J}
| T A N "‘{
|Direct Access Interface|Contains interface data required for passing pages to or from |
|Block (DAIB) |core storage; a new DAIB is constructed for each paging |
| {operation. |
i L A (]
|) T
|Auxiliary Storage Allo-|Contains the availability status of all auxiliary storage]
|cation Table (ASAT) | devices, both drum and disk. |
L 1 J
1 3 L] -
jcore Block Table |Maintains a list of main storage blocks (pages) and their]
| (CBT) [status as available or unavailable for assignment. |
L i | J

e Preliminary processing is provided for
paging interruptions from direct access
devices other than drums.

e A distinction is made between initial
and subsequent asynchronous interrup-
tions so that a task can be initiated,
when necessary, and affected tasks can
be kept informed of the occurrence of
interruptions.

e Special processing is performed when
requested in the IORCB.

Pathfinding

The symbolic device address (SDA) of a
device specifies the relative position of

the device's queue entry on the scan table.

The translation of this symbolic address
into a specific hardware address is per-
formed by the Pathfinding subroutine by
finding a path to the device. A path com-
prises three components: the channel, the
control unit, and the device. Pathfinding
involves a search through the device group
table, the channel table, and the control
unit table, in that order, to define a
path. Reverse Pathfinding is called to
perform the opposite function, that is, to

12

translate the actual address of the device
to its SDA.

The Channel Interrupt Processor calls
Reverse Pathfinding to determine the SDA,
and thus the entry for that device on the
scan table. When the entry contains a
pointer to a GQE representing a request for
170 to or from that device, it is the task
of the I/0 Device Queue Processor to handle
that request for all devices on the system
except paging drums.

Paging

The paging queue processors manage GQE
requests for page movement between main
storage and drum or disk storage. A paging
operation can be caused by the occurrence
of any of the following events:

e A page relocation exception interrup-
tion caused when a task attempts to
refer to a page not currently in main
storage.

e The first XTSI page, which contains the
PSW and relocation tables for a task to
be dispatched, is not in main storage.

e A request is made for one or more data
set pages to be written out to external
storage. o

¢ Pages destined for external storage are
currently residing on auxiliary storage
and must be read into main storage
before being written out to external
storage.

¢ One or more buffer pages for an 1I/0
operation are on auxiliary storage and
mast be brought into main storage for
‘the duration of the I/0 operation.

e A time-slice-end interruption has been
received.

¢ The Write Shared Pages subroutine is
invoked by User Core Allocation to page
out all changed shared pages that have
not been referred to since the last
time the subroutine was invoked.

When the work associated with a GQE is a
paging operation, one or more additional
control blocks, called paging control
blocks (PCB), are constructed and linked to
the parent GQE. Each PCB can contain up to
three page control block entries (PCBE),
each representing a request to move one

page.
Disk Paging

When the 1/0 Device Queue Processor is
given control by the Queue Scanner, the GQE
on the device queue is checked for an I/0
request control block (IORCB). The absence
of an IORCB is interpreted as a request for
disk paging. Pathfinding is called to
obtain an available channel and control
unit to the device specified; then the GQE
is transferred to the Page Direct Access
Queue Processor (PDAQ).

PDAQ builds a Direct Access Interface
Block (DAIB), which provides the interface
between it and the Page Direct Access
Interrupt Processor (PDAI), providing the
latter routine with the channel programs
and their related PCBs. PDAQ then builds
the channel program and puts the necessary
information into the DAIB for that inter-
ruption, and calls Start I/O0 to initiate
1/0.

When a paging operation is completed, a
device end I/0 interruption occurs. PDAI
receives control and inspects the DAIB for
the next channel program to execute Start
I/0. When all channel programs in the DAIB
have been processed, control is returned to
the Queue Scanner.

Drum Paging

Drum storage is used in TSS/360 whenever
possible, since the drum is the fastest

- 1/2 pages (or records) on each track.

auxiliary device on the system. To maxi-
mize drum throughput, a process called slot
sorting is used, which depends on the fol-
lowing organization of the drum. The drum
records are arranged in page format and
stored on a pair of adjacent tracks, with 4
The
record-overflow feature is utilized between
the even and odd tracks.

Drum addresses for page storage are
allocated to fill as many consecutive drum
slots as possible. To each slot, one page
may be assigned. There are nine slots for
each two tracks on the drum. If the last
slot of the first pair of tracks has been
allocated, the next address allocated is
from the first slot of the second pair of
tracks. The availability of drum storage
is reflected in a directory in the auxi-
liary storage allocation table (ASAT).

Drum storage is allocated in such a way
that pages are assigned by slot number in
cyclic order. A drum access regquest indi-
cates whether the operation is read or
write, and gives a slot number for the page
to be accessed. The channel program is
constructed so that requests are selected
by slot number in cyclic order from the
queue of drum paging requests. The Page
Drum Queue Processor performs the slot
sorting and constructs channel programs.

Each drum has associated with it two
chains of nine channel programs each, one
channel program for each slot on the drum.
These chains are anchored in a work area of
the system table called a drum interface
control block (DICB). The DICB contains
information describing the status of the
drum as well as pointers to the PCBEs,
IORCBs, and associated GQEs. The DICB is
accessed by both drum paging processors,
the Page Drum Queue Processor (PDQP) and
the Page Drum Interrupt Processor (PDIP).

When PDQP finds a PCBE for which a chan-
nel program can be built (that is, a slot
is available), the channel program is built
in the DICB area of the system table, using
the slot number as a pointer to the proper
program. When all available slots have
been filled, or no work remains to be done,
control is returned to the Queue Scanner.
The Page Drum Interrupt Processor is acti-
vated when channel end, device end, unit
check, or a program controlled interruption
(PCI) is received. Processed pages are
posted, storage released, and the interrupt
GQE dequeued.

Main Storage Allocation

The allocation and release of pages of
main storage is recorded in the core block
table (CBT), which contains one entry for
each page of main storage in the system.
Pages that are available for assignment are

Section 2. Method of Operation 13

kept on an unassigned chain that is updated
after each allocation and release. A set
of these pages (the number will vary from
installation to installation) is kept as a
. reserve list for satisfying resident super-
visor requirements for main storage (for
GQEs, TSlIs, and PCBs). Since these super-
visor requirements must be satisfied for
operation to continue, these pages must be
held available exclusively for supervisor
use; all other pages are available to user
tasks.

User Core Allocation

Requests for user main storage are
represented by one or more PCBs chained to
a GQE; they are processed by the User Core
Allocation (UCA) queue processor. A re-
quest may be to reclaim a specific page
that was previously assigned to the task,
or for storage not previously owned by the
task. A request for previously-owned
storage involves a comparison of the CBT
entry for that storage block with the re-
quest PCB entry to determine whether the
page is still available or has been
assigned to another task. If the page is
available (that is, the page was written
out but its main storage location was not
needed in the interim), it is removed from
the unassigned chain and assigned to the
task, avoiding the necessity of reading a
page in from drum or disk. When a new page
of storage must be assigned, the first
available page of unassigned main storage
is allocated to it.

When no page is available for assign-
ment, or when a check made prior to alloca-
tion indicates a low core condition, an
attempt is made by the Write Shared Pages
subroutine to release shared pages (write
them out to auxiliary storage). If this
fails to provide sufficient main storage,
UCA selects a task to be forced to time-
slice end and its pages released. Whenever
a page is released, it is put on the unas-
signed chain, unless the reserve list has
decreased to less than the required number
of pages, in which case the page or pages
needed are transferred to the reserve list.

When a task has reached the maximum
number of pages in main storage allowed
during one time slice (a value contained in
a parameter of his schedule table entry), .
page stealing may be performed; this means
that the task frees main storage by having
some of its own pages released.
aling can be performed only on pages that
are not: XTSI, PSW, ISA, or previously
referenced pages, in transit, or in I/0 or
SVC hold. Before being released, the page
will be written on drum if it is a changed
page or no old copy exists. A certain per-
centage of the task's maximum pages must be
retained during stealing (another STE para-

14

Page ste-

meter). The algorithm used for page steal-
ing is explained in the description of the
User Core Allocation processor in Section
3.

Supervisor Core Allocation

Allocation of main storage for use by
supervisor components is processed by the
Supervisor Core Allocation (SCA) subrou-
tine; storage is obtained from the reserve
list. Pages in this list must be unfrag-
mented. Since supervisor storage is allo-
cated in 64-byte blocks, once a block has
been allocated from one of its pages, the
page is removed from the reserve list,
divided into 64-byte blocks, and placed in
one of three chains of partially allocated

pages:

e One-block chain - for filling single
block requests.

e Three-block chain - used only when
three contiguous blocks are needed to
build a TSI.

¢ Miscellaneous chain - for filling all
other requests.

The first block of each fragmented page
contains an available block counter and a
bit map indicating which 64-byte blocks
within the page are available. Six poin-
ters are maintained in SCA, two for each
chain; the first pointing to the page, the
second to the block in.the page to be
checked.

To speed up the allocation of a single
block of storage (the most common type of
request), and reduce the number of pages
that must be fragmented, six "quick cells"
are maintained that point to the most
recently returned single blocks. These are
searched first when a single block request
is received.

When the request is for contiguous
blocks, the bit maps of those pages whose
available block counters indicate a good
probability that the request can be satis-
fied are searched before the bit maps of
other pages.

The reserve list is automatically
replenished when necessary with pages from
the unassigned chain in the CBT. There-
fore, when a request for supervisor storage
cannot be satisfied, an in-use page is bor-
rowed from a task in user main storage, the
assumption being that the unassigned chain
in CBT is also empty.

When storage is released, single blocks
are returned to quick cells, if they are
not full; otherwise, they are returned to
fragmented pages. When the return of a

block to a fragmented page causes it to be
composed entirely of available blocks, it
is returned for general system use by the
User Core Release subroutine.

Ruxiliary Storage Allocation

huxiliary storage consists of the disks
and drums on which a task's pages are
stored when not in execution. It is con-
fined to drum when possible, since the drum
is the fastest auxiliary device on the sys-
tem. The Auxiliary Storage Allocation
Table (ASAT) contains a bit directory for
each auxiliary device on the system, with
each bit representing one page. The Auxi-
liary Storage Allocation Queue Processor
mzintains a count of auxiliary storage in
use at all times for the entire system.
This count is updated and checked each time
auxiliary storage is allocated to a task.

Auxiliary storage is obtained when it is
necessary to write a page out to disk or
drum. These requests are assigned to drum
except when: the request specified a drum
preference and no drum storade is avail-
able; or no preference was specified and
drum space has reached the system minimun.
When this minimum is reached (a value con-
tained in ASAT), a task is selected for
migration; that is, some of the task's
pages are moved from drum to disk, freeing
drum space. The task selected for migra-
tion is the task on the inactive list (or,
if necessary, the active 1list) with the
most pages on drum in excess of its fair
share. Migration can be performed on eith-
er private or shared pages. The Timer
Interrupt Queue Processor selects private
pages for migration; the Write Shared Pages
subroutine performs this function when
shared pages are involved.

When a task enters the system, its auxi-
liary storage requirements are compared
with the available auxiliary storage count.
The task is not allowed on the system if
there is not sufficient auxiliary storage
available. If the task should exceed its
limit of auxiliary storage during execu-
tion, and available storage is less than
the installation minimum, the task is first
warned, if conversational, and then ter-
minated; nonconversational tasks are ter-
minated at once.

If there is more than one drum on the
system, the drum with the largest number of
available pages is used. Disk pages are
allocated from the same cylinder, when
possible. Once storage for a GQE has been
assigned, the Auxiliary Storage Allocation
Queue Processor sorts the PCBEs by device
type. If they have all been assigned to
the same device, the GQE is queued on the

queue of that device in the scan table.

When allocation has been made from dif-
ferent devices, a new GQE and PCB must be
created for each device addressed before
queuing can take place.

SVC Interruption Processing

The supervisor call (SVC) is the normal
method of communication between a task and
the supervisor. The interruption is caused
by the execution of an SVC instruction
which is usually embedded in the expansion
of a macro instruction. When the interrup-
tion occurs in the problem state, the SVC
code is examined to determine the type of
request:

¢ SVC codes 0-63 - a request for problem
program services.

e SVC codes 64-95 - a request for Time
Sharing Support System (TSSS) services.

¢ SVC codes 96-127 - a request for privi-
leged program services.

e SVC codes 128-255 - a request for resi-
dent supervisor services.

Appendix B contains a list of SVC instruc-
tions, related macro instructions, and pro-
cessing routines. ‘

The resident supervisor services only
SVC codes 128 through 255. The processors
responsible for servicing these requests
are the SVC Queue Processor and a group of
SVC subprocessors. These subprocessors can
be divided into functional groups according
to the general type of service they
provide:

e Virtual storage processors.

TSI/XTSI modification and extraction
processors.

¢ Timer-maintenance and task-
‘synchronization processors.

e System table modification and extrac-
tion processors.

e I/0 and device management processors.
e Inter-task communication processor.

The individual SVC processing routines
included within each of these functional
groups are described in Section 3 under
their respective functional headings.

.The primary function of SVCs is to cause
a switch from the problem state to the
supervisor state, allowing the execution of
privileged instructions and procedures in a
non-time~-sliced environment. When the SVC

Section 2. Method of Operation 15

interruption is received, the Interrupt
Stacker invokes the SVC Queue Processor by
direct linkage (the GQE is . not queued on
the scan table). Since not all classes of
. users may issue all types of SVC requests,
it is one function of the SVC Queue Proces-
sor to verify that a user has the authority
to ask for the specified service. Once it
has been determined that the SVC was issued
from a routine with the proper authority,
the SVC Queue Processor uses the SVC inter-
ruption code to invoke the appropriate SVC
subprocessor (see Figure 8).

(CEAHQP2)
|

——

Is
svC

Privilege

Class OK

I Creaie Task
No | Program Interrupt
t —l

CEAAFQ

1 Queue
- GQOE on
1S4

Py Queve
Scanner

SWAP
PSWS

> LPSw
To TASK

|

|

|

|

|

|

|

|

| |

: |
|

|

| 3 |

| |

l |
|

; |

|

|

|

|

|

|

Calculate
Entry Point
of Proper
SVC Routine
SVC Routine
> Process
le——t svc
L__—_.‘ CEAIMG
I Routine
Queve
Scanner
- 1
Figure 8. Activities of the SVC Queue

Processor

16

It is possible for the Interrupt Stacker
to receive an SVC interruption while the
CPU is in the supervisor state (that is,
the SVC instruction was executed by the
resident supervisor itself). This indi-
cates an error and causes the Interrupt
Stacker to issue an ERROR SVC to invoke the
System Error Processor. The processing of
such an interruption is discussed in Sec-
tion 3 under “"Major Error Recovery
Procedures."

Task Scheduling and Selection

The task scheduling and selection
mechanism of the resident supervisor con-
trols the order in which tasks are assigned
CPU time, and the length of time they are
allowed to execute. On entry to the sys-
tem, each task is given a set of scheduling
characteristics, in the form of an entry
level in the schedule table (CHASTE), which
determines the order in which it will be
allowed to execute. These scheduling
characteristics will change as the task's
entry level is changed at various stages of
execution.

Schedule Table (CHASTE)

The schedule table comprises a maximum
of 256 entries, beginning with entry zero.
Each entry contains a set of 24 parameters
that become the scheduling characteristics -
of any task assigned to it. All tasks are I
assigned a schedule table entry (STE) when
they enter the system. For conversational
tasks, the initial levels used are 0
through 9; for nonconversational tasks,
entries 10 through 19 are used after logon
is completed; level 20 is used for the
logon procedure, and level 21 for logoff.
Operating conditions within the time-
sharing environment, and their relationship
to the task's service requirements, will
cause a task's entry level to be changed
during its life in the system. Table 4
identifies the 24 parameter fields in a
schedule table entry and specifies the
length of each and its meaning.

Active and Inactive Lists

All TSIs in the system are chained
together on one of two lists, the active
list or the inactive list. The active list
is further subdivided into the ellglble
list and the dispatchable list.

e Eligible list - Tasks in this list are
ready to execute, but have not yet been
brought into main storage. They are
ordered by internal priority (specified
by a field in the STE), with the lowest
priority number first on the list.
Tasks.with the same priority number are
further ordered by their scheduled L
start time (SST). SST is a time value

computed when a task enters the elig-
ible list; it is related to a master
clock to determine whether a task is
ahead of or behind schedule.

¢ Dispatchable list - This list consists
of tasks that are in main storage
attempting to compete for CPU time and,
in most cases, whose SST is less than
the master clock. A task whose SST is
less than the master clock is said to
be behind schedule. Tasks in this list

. are ordered according to their status
as "execute bound® or "I/0 bound.*
Those with heavy paging requirements
(I/0 bound) are dispatched first.

e Inactive list - These tasks are in
AWAIT or TWAIT status, or have issued a
TSEND SVC. Their pages are not in main
storage and they are incapable of con-
tinuing execution until a particular
interruption occurs.

. Task Selection

When a task first enters the system, it
is assigned a schedule table entry (STE)
level, and placed in the eligible list on
the basis of its priority (as shown in its
STE) and its SST. When it is determined
that a task should be moved from the elig-
ible list to the dispatchable list, the
highest priority task that is farthest
behind schedule (SST less than the master
clock) is selected. It is then moved to
the dispatchable list only if it meets the
requirements checked by the Entrance Cri-
teria subroutine.

Tasks in the dispatchable list are
ordered so that those with heavy paging
requirements are dispatched first. When a
task is selected from the dispatchable list
to be given CPU control, the Dispatcher
first checks, via the Task Interrupt Con-
trol (TIC) subroutine, to see if any
enabled interruptions are pending for the
task. If an interruption is pending, TIC

arranges for it to be serviced by the task
monitor. The Dispatcher also checks to see
if a real time interruption is to be
created for the task; if so, it is handled
before the task is dispatched.

Once a task is dispatched, it is allowed
to run until its timer interval runs out
(normal time-slice end), or until it is
forced to time-slice end (see "Timer Inter-
ruption Processing").

Task Scheduling

When normal time-slice end occurs, the
quanta count field in the task's TSI is
decremented by one. This field is initia-
lized to the value in the quanta count
field in the task's STE. If the count has
not reached zero, the task is given another
quantum of CPU time; it is left on the dis-
patchable list, and no change is made in
its STE or SST. If the count does reach
zero, the Rescheduling routine is called to
change the STE level to the level indicated
in the TSE level field of the old STE, and
to recompute the SST. If it is determined,
at the end of a quantum, that a task has
exceeded the maximum number of page reloca-
tions permitted per quantum, the task is
moved to the top of the dispatchable list
(it is "paging bound"). i

For TSEND, TWAIT, and AWAIT extension,
tasks are removed from the active list and
placed on the inactive list. A real time
interruption is created for TSEND tasks
forced to time-slice end, and they remain
on the inactive list until the interruption
occurs. At that time, Rescheduling is
called to compute their SST, and they are
returned to the eligible list. 1In AWAIT
and TWAIT situations, a new STE level is
assigned to the task as specified in the
AWAIT and TWAIT level fields of the STE.
This new set of scheduling parameters will
control each task's movement through the
eligible list to the dispatchable list when
the AWAIT or TWAIT interruption occurs.

Section 2. Method of Operation 17

Table 4.

Schedule table entry parameters (part 1 of 2)

|Scan Threshold
(STEST)

1 byte

 Field Field
Identification Length Meaning

Level (STELEVEL) 1 byte |The relative entry number of this entry (0-255)

Priority (STEPRIOR) |1 byte |Determines which tasks take precedence in having CPU |
| resources allocated to them. The order of precedence is |
| low numbers first. |
i ; |
k]

Quantum Length |2 bytes|The amount of time to be used as a factor in determining i

(STETSVAL) | how long a task will be allowed to run before time slice |

| . | |end (TSE). One unit=3.33 milliseconds. |

'l 1 4]

1) 1) T

|Quanta Count {1 byte |Specifies the number of quanta a task is to receive when }

| (STEQUANT) | |it is placed in execution before time slice end occurs. i

[4 i 4

L] k] k]

| Maximum Pages |1 byte |Specifies the maximum number of pages allowed in main i

| (STEMAXCR) |storage for a task during a complete time slice. |

i 1 4

1] 1] R}

| Maximum Page Reads 2 bytes|Specifies the maximum number of page relocations (includ- |

| (STEMAXRD) |ing XTSI and ISA pages) allowed for a task during a com- |
| |plete time slice. |

b 1 4

|
|

4
|[When a task's pages in core exceed the limit (STEMAXCR)
|and the Steal request flag (STESRI), some of the task's
| pages will be released.
| (in hex) of STEMAXCR as the number of pages to be retained|
| for the task when stealing occurs. The task is not forced|
|to time slice end, but its schedule table entry level is
| changed to the value specified in STENSL.

4

This field specifies a percentage|

|

|

|
| |
| |
t t 1
Pulse Level Entry |1 byte |Specifies the schedule table entry to be assigned to a |
(STEPULSE) { |task in response to the Pulse SVC. |
L 1 i y)
r k) L) 1
|AWAIT Extension |2 bytes|Specifies the duration of time, in milliseconds, a task is|
| (STEAWTEX) | | to remain in the dispatchable list in the AWAIT state. |
L 4 4 J
L) T k) . 1
" |Delta to Run " |1 byte |Specifies the real time interval at which a task is to be |
| (STEDELTA) | |given a slice of CPU time. |
| 4 i d
] T k) 1
| TSE Level (STETSEND) |1 byte |Specifies the schedule table entry to be used when time |
| | |slice end occurs. i
t + 1 4
Maximum Page Reads	1 byte	Specifies the schedule table entry to be used when time
Exceeded Level		slice end is forced because of maximum page reads being
(STEMPRE)		exceeded.
L kN i d		
1 L] v a		
AWAIT Level	1 byte	Specifies the-'schedule table entry to be used when a task
(STEAWAIT)		leaves AWAIT status.
i 4 4 . J		
L] L) T]		
TWAIT Level	1 byte	Specifies the schedule table entry to be used when a task
(STETWAIT)		leaves TWAIT status. {
L 41 4 . i]		
[} 1 T a		
Flag Byte (STEFLAGS)	1 byte	If the byte value is X'80' for a task being moved from the
		inactive list, the task's scheduled start time is recom-
		puted to place it on schedule. Otherwise, the task
		remains on the same relative schedule it was on when it
		entered the active list.
	'	
X*80*=Recompute		When the recompute flag is off, past performance (if the
(STERCMPM)		task is behind schedule) is taken into account by calcu-
		lating SST as the present time plus the delta-to-run less
		the amount behind schedule on the previous time slice.
L 1 1 J

18

Table 4. Schedule table entry parameters (part 2 of 2)

Field
Identification

| Field
|Length

-

L)

I .

| Meaning
4

b

-

X*40'=Preempt
(STEPRMPT)

X*'20'=steal Request

]
!
|
t
|
|
|
|
|
|
| (STESRI)
‘ .

|
|

|X'10*=Subtract delta]

jto run (STESDTR)

— I Gt A, i ST cx— — p—

|If the byte value is X*'U0* for a task in the dispatchable
|list, and a behind schedule task of higher priority
|resides in the eligible list, the task in the dispatchable
]list can be preempted by forcing it prematurely to time
|slice end.

|

|If the byte value is X'20' for a task in the dispatchable
|1ist, whose private pages in main storage exceed the maxi-
|mum limit, some of the pages will be stolen (released)

[from the task.

|

|If the byte value is X'10', STEDELTA should be subtracted
|from, rather than added to, the master clock in calculat-
|ing the scheduled start time for the task.

i

Maximum Page Relo-
|cations per Quantum
| (STEMRQ)

L

i |
byte |Specifies the maximum number of page relocation inter-

| ruptions allowed per guantum before the task is declared
|paging bound. ' ’
4

e e e . ey s e s B . s, amers i . s . . o ——— e — —— — g—— t— i c—— —

|a task by the User Core Allocation routine when it is
{ determined that page stealing is to be initiated.
4

Drum Share (STEDSH)

T
bytes|Specifies the number of drum pages reserved for a task

{when more than the system calculated minimum drum space
jcan be allocated. If the byte value is 0000, default is

|

|
b 1 1
|Holding Interlock }1 byte |Specifies the schedule table entry to be assigned to a
|Change Level | jtask at time slice end when the task is holding an
| (STEHRLCK) | {interlock.
L i 4
1 } T L}
| Low Cores/Holding |1 byte |Specifies the schedule table entry to be assigned to a
| Interlock Level | |task at time slice end when the low core condition exists
| (STELCHL) { fand the task is holding an interlock.
L 4 1
3 T T
jWaiting on Interlock|l byte |[Specifies the schedule table entry to be assigned to a task
|Change Level | jat time slice end when the task is waiting on an |
| (STEWLCK) | }interlock. i
i 4 4 4
1 3 L] Ll b
STECWO	1 byte	Specifies the schedule table entry level to be assigned to
		a task by the WAIT SVC processing routine when a write
		only operation is indicated in the terminal control table.
i 4 L . 1		
T L] v 1		
STELCF	1 byte	Specifies the schedule table entry to be assigned to a
i		task by the rescheduling subroutine when a task‘'s low corej
		flag is on and none of the other schedule table entry i
	}level exit conditions apply. User core allocation will	
{	set the flag, TSILCF, on when it is forcing an active task	
	{to time slice end and the low core condition exists.	
L 4 i 4		
1] T) i		
STEPRJ3	1 byte	Specifies the maximum amount of time a task can be behind
		schedule before it will be submitted to Entrance Criteria
		before higher-priority tasks which have not exceeded this
		ma ximumn.
¢ 4 ¢ '		
STENSL	1 byte	Specifies the schedule table entry level to be assigned to
]		
b 1		
L 4

e

| to the system calculated minimum.
4

Section 2. Method of Operation 19

SECTION 3: PROGRAM ORGANIZATION

INTERRUPTION CLASSIFICATION

Interrupt Stacker Module (CEAJI) Chart AA

The Interrupt Stacker comprises four
subdivisions which provide the processing
necessary to service all interruptions
other than machine check interruptions.
(Note: - Machine check interruptions are
serviced by the Recovery Nucleus discussed
later in this section.) When an interrup-
tion occurs, the new PSW corresponding to
the class of interruption is loaded and
control is given to the appropriate subdi-
vision of the interrupt stacker. In gener-
al, the function of all the subdivisions is
to generate a general gueue entry (GQE) and
to queue it on the appropriate scan table
entry or, in the case of SVC and program
interruptions, to transfer control to the

presents a general flow diagram of the
interrupt stacker mechanism and its rela-
tionship to other supervisor components.

Attributes: The interrupt stackers are
parallel reenterable, resident, and. operate
in the privileged state with all interrup-
tions except machine check disabled.

Entries: The Interrupt Stacker module has
an entry point unique to each stacker, as
follows:

Program Interrupt Stacker..<...... CEAJIP
SVC Interrupt Stacker.....cceece<.. CEAJIS
External Interrupt Stacker........ CEAJIE
I/0 Interrupt Stacker....ccccece... CEAJII

Modules Called: Supervisor Core Allocation
subroutine (CEAL1 entered at CEALO1)

appropriate interrupt processor. Figure 9 reserves 64 bvtes of main storage for a GQE
155/360
HARDWARE
Problerr State
Interruption
| T
I ' ! I l |
| Vo ‘ |
External I i : svC Program |
Recovery | - External Page Drum Other '
Nucleus i o Interrupts Interrupts ‘
Malfunction | LONG SAVE J |
Alert I - L * I
Recovery | ACKER MECHANISM PROCESSORS |
=P Procedures L_ ST _j
{_ QUEUE SCANNING AND PROCESSING MECHANISM -}
ENQUEUE
| QUEUE f] SCAN — GQE ’
| _ SCANNGER TABLE SUBROUTINE : |

Figure 9.

20

Interrupt stacker module overview

and 64 bytes for channel logout data when
required. -

Enqueue GQE subroutine (CEAJQ entered at
CEAJEN) places GQEs on the appropriate pro-
cessor queues.

Queue GQE on TSI (CEAAF entered at
CEAAFQ) places a program interrupt GQE on a
task's TSI interrupt queue when a program
interrupt entry is found in the SERR auxi-
liary queue.

Exits: Normal - The interrupt stacker
exits to the resident support system (RSS)
whenever the occurring interruption is one
to be handled by RSS.

Exit is to the Program Interrupt Proces-
sor (CEANA at CEANAA2) for handling of pag-
ing and segment relocation exceptions (PI
codes 16 and 17).

Exit is to the SVC Queue Processor
(CEAHQ at CERHQQ) for program interrupt
codes 1 through 15. This exit results in a
program interrupt GQE being placed on the
task's TSI (via a call to CEAAF) and exit
to the Queue Scanner.

An exit to the SVC Queue Processor (at
CEAHQP2) is also made to determine if the
task causing an SVC interruption is
authorized to issue the SVC and to call the
proper SVC routine to provide the requested
service.

Exit is to the Queue Scanner at CEAJQS
after queuing timer and I/0 interruptions
on their appropriate processor gueues.

Exit is made via LPSW (o0ld I/0 or old
external) after gqueuing I/0 or external
interruptions occurring in the supervisor
state.

Exit is to the user task via LPSW after
swapping VPSWs in the ISA and PSA for task-
oriented SVCs and when processing for an
LVPSW SVC is completed.

Error - Exit is to the System Error Proces-
sor (CEAIS at CEAIS2) when the interruption
is caused by a SYSER SVC issued by a virtu-
al storage task.

Exit is to CEAIS1 when processing an
ERROR SVC (SVC 254) for two conditions -
LVPSW issued in problem state, or ERROR
issued in supervisor state.

Operation: The initial processing at each
of the four entry points to the Interrupt
Stacker is similar. The status of the sys-
tem is checked to see if the interruption
occurred in problem state. If it did, the
value contained in the timer (PSATIM) is
saved in PSATSA. The timer is then set to

hex OFFFFFFF to prevent a timer interrup-
tion from occurring in the supervisor
state. The system elapsed time (PSAETM) is
then computed and updated after setting the
real time lock (SYSTMLK) in the system

" table.

If the system was in supervisor state at
the time of interruption, none of the timer

. fields are changed.

After determining the system state and
taking the appropriate action, the Inter-
rupt Stacker fills in an entry in the
interrupt log (CEAJIL) with data pertaining
to the type of interruption just received.
(For a description of the interrupt log,
see Figure 10.)

The Interrupt Stacker then determines if
the interrupt is one to be processed by the

resident support system (RSS). If it is,
CEAJIL
-
Address of Next Available Entry (TSS) Word 1
Address of Start of TSS Log Word 2
Address of End of TSS Log Word 3
Header < Lock Byte Unused Word 4
Address of Next Available Entry (TSS) Word 5
Address of Start of RSS Log Word 6
Address of End of RSS Log Word 7
_ | Lock Byte Unused Word 8
(
CPUID Int Type Interrupt Code or SDA | Word 1
See Note 1 | See Note 2 :
Address of TSI at Time of Interrupt
See Note 3 Word 2
Entries ﬁ
i CSW for 1/O Interrupts or |
Old PSW for other interrupt types Words 3 2.4
‘L Next Available and Subsequent Entries =
(T T
Note 1: CPU 1 =80 Note 2: External =18
CPU2=40 svC =20
Program =28
/(o] =38
Note 3: For an /O Interrupt in Supervisor state
Word 2 =Byte 1: Byte 1 of Ext PSW
Bytes 2-4: Instruction address
For RSS Program and 1/O interrupts:
Word 2 = A pointer to TSS LOG where the inter
interrupt would have been recorded.
Figure 10. The interrupt log

Section 3: Program Organization 21

it is passed to the RSS handling routine
via an LPSW. Otherwise the SERR Auxiliary
Queue Processing subroutine is called to
check for and work off entries in the SERR
auxiliary queue (CHASAQ). Entries in CHA-
SAQ represent status information (from
pending interrupt) on devices used by Sys-
tem Environment Recording and Retry.

The Long Save subroutine (IS01) is used
in common by each of the four divisions of
the Interrupt Stacker. When called, Long
Save is given the address of the inter-
rupted task's TSI in general register 2 and
its XTSI address in general register 3.
This subroutine stores all general purpose,
floating point and control registers in the
XTSI. Long Save then checks the saved time
value in the PSA (PSATSA) to see if it is
negative -- indicating that a timer inter-
ruption is pending along with the interrup-
tion being handled by the SVC, Program or
I/0 Interrupt Stacker. If PSATSA is nega-
tive, zeroes are placed in the XTSI field
XTSCTI. Otherwise the positive value in
PSATSA is saved in XTSCTI. The "in execu-
tion" bit is then turned off and the
"ready" bit turned«aon (in the TSI). Long
Save then returns to the Interrupt Stacker
that called.

The activities of the individual stac-
kers are described on the following pages.

PROGRAM INTERRUPT STACKER: On return from
SaAQ, the Program Interrupt Stacker checks
to see if a timer interruption is pending
in the hardware.

This is accomplished by testing the
stored timer field in the PSA for a nega-
tive value. The purpose of this test is to
take into account the possibility of a pro-
gram and a timer interruption occurring
simultaneously.

If a timer interruption is pending, the
timer/program indicator (PSA128) is turned
on in the PSA. This causes the pending
timer interruption to be ignored until
after the program interruption is pro-
cessed. If no timer interruption is pend-
ing, the Program Interrupt Stacker calls
the Supervisor Core Allocation subroutine
to request storage for a GQE. When the
space has been allopated, the Interrupt
Stacker initializes a GQE with the
following:

e The address of. the current task status
index (TSI) from the PSA.

¢ The instruction-length code (ILC) from
the old program status word (PSW).

22

e The interrupt code from the PSA.

¢ The loc-on-Q (the symbolic queue number
as defined by its relative location in
the scan table sequence) of the queue
on which this GQE will be placed.

When the GQE is initialized, all fields
are first set to zero; required information
is then placed in the proper fields. The
stacker transfers control to the Long Save
subroutine, which saves CPU status informa-
tion in the interrupted program's XTSI.
When the Long Save subroutine is finished,
it returns control to the Interrupt !
Stacker.

The Program Interrupt Stacker then ané—
lyzes the interrupt code (PSAPIC) to deter-
mine which of three exit routes it shoul
take.

If the interrupt code is less than 16,
specifying a program interrupt for the
task, exit is to the SVC Queue Processori at
CEAHQQ. The SVC Queue Processor calls
Queue GQE on TSI (CEAAF) to put the program
interrupt on the task's TSI. On return '
from CEAAF, exit is to the Queue Scanner.

If the interrupt code is 16 or 17, spe-
cifying a segment or paging relocation
exception, exit is to the Program Interrupt
Processor (CEANA).

If the interrupt code is greater than
17, the ERROR macro instruction causes the
System Error Processor to be invoked via an
interrupt.

If the Interrupt Stacker determines that
a timer interruption is pending, the timer
value is set to a value such that the pro-
gram can operate again when the program
interruption is cleared. Thus, another
timer interruption is forced to occur
immediately after the program interruption
has been processed by the supervisor and
the task has been reactivated. The Inter-
rupt Stacker sets the timer/program indica-
tor in the PSA, which causes the timer !
interruption that is currently pending to
be ignored when it occurs (that is, it will
not be acted upon by the External Interrupt
Stacker). When this action has been taken,
the Program Interrupt Stacker initializes
the GQE as described above.

SVC INTERRUPT STACKER: After updating the
timer fields in the PSA, if required, and
making the interrupt log entry, the SVC
Interrupt Stacker again checks the status
of the systen. \

If the system is in supervisor state,
the SVC causing the interruption must be an
RSS type or a system error SVC. If it is

neither of these, a system error condition
exists and the SVC Interrupt Stacker issues
an ERROR macro instruction. This will
cause reentry into itself and eventual exit
to the System Error Processor.

If it is an RSS type SVC, exit is to RSS
via an LPSW. If it is a system error SVC,
exit is to the System Error Processor at
CEAISl.

If the system is in problem state, the
SERR Auxiliary Queue Processing subroutine
is.called. On return, the saved timer is
checked to see if there is a simultaneous
timer interrupt pending. If there is one,
the timer interrupt pending flag (PSA128)
is set. Then, or if no timer interruption
is pending, the Long Save subroutine is
called.

On return, the SVC code is checked to
see which of the following types it is:

e A system error SVC (SYSER) from a vir-
tual storage task.

¢ An RSS type SVC.
e A task oriented SVC or an LVPSW SVC.

If it is none of these three types, it
will be an SVC to be handled by the SVC
Queue Processor (CEAHQ). In this case, GQE
space is requested from Supervisor Core
Allocation and the GQE is initialized with
the following information: The TSI address
and interrupt code from the PSA, the IIC
from the SVC old PSW, the Loc-on-Q of the
SVC queue.- All other fields of the GQE are
set to zero and-exit is to the SVC Queue
Processor at CEAHQP2.

SYSER SVC Processing: Interruptions caused
by SYSER macro instructions issued in vir-
tual storage tasks are processed by the
System Error Processor. When one of these
is detected, therefore, the SVC Interrupt
Stacker exits to this processor at CEAIS2.

RSS Type SVC Processing: RSS type SVCs
issued in problem state are handled by RSS.
Therefore, exit is to RSS via LPSW after
resetting the TSI lock.

Task Oriented SVC Processing: Certain
SVCs, issued in virtual storage routines,
do not require the services of the SVC
Queue Processor and its related processing
routines. These SVCs request transfer of
control from one virtual storage routine to
another. Such requests are handled in the
SVC Interrupt Stacker as follows:

1. When the SVC was the object of an
EXECUTE instruction, the wvirtual
storage address of the SVC is obtained
and stored in the ISA at ISACSW. This

step is skipped if it was not the
object of an EXECUTE instruction.

2. The program and SVC masks are set in
the TSI (TSIPMF=1).

3. The old SVC PSW is mapped from the PSA
to the SVC o0ld VPSW location in the
ISA.

4. The SVC new VPSW is moved to the cur-
rent VPSW location in the ISa.

S. The ILC, CC, program mask, and IC are
moved from the current VPSW to the SVC
old PSW location.

6. The program interrupt mask is moved
~ from the current VPSW location to the
TSI.

7. The updated PSW is then moved from the
XTSI to the PSA. :

8. A check is then made to see if a timer
interrupt is pending. If there is
one:

8A. Exit is to the Queue Scanner after
resetting the TSI lock and enabling
interrupts.

9. When there is no timer interrupt pend-
ing, the elapsed time is computed and
the elapsed timer (PSAETM) updated.

10. The timer reset value (PSATRV) is set
to° HEX OFFFFFFF.

11. The ‘Ready' flag is turned off and the
‘Execute' flag turned on in the TSI.

12. Exit is to the virtual storage task
via LPSW.

LVPSW Processing: When the interruption is
caused by an LVPSW macro instruction, pro-
cessing is similar to that for task-
oriented SVCs. The following procedures
precede those described under points 5, 6,
7, and BA for task SVC handling:

1. If the routine that issued the LVPSW
has the correct authority, the main
storage address of the virtual PSW is
obtained.

2. ’If the segment is not available and
the page table is not in a page table
page, an ERROR macro instruction
(1455) is issued. If the segment is
unavailable and in a page table page
or if the page is unavailable, the

. instruction counter in the XTSI is
backed up to cause re-execution of the
LVPSW. This routine then exits to the
Queue Scanner.

Section 3: Program Organization 23

3. If it is on a doubleword boundary and
the ISA is in main storage, the new
VPSW is moved to the current VPSW
location in the ISA.

4. If the ITI (inhibit task interrupts)
flag is on in the ISA, it is turned
off. If it is not on, the ISA lock is
reset.

Two conditions are checked which can
result in a program interrupt to the task
issuing the LVPSW:

1. If the task is of insufficient
authority to use the instruction, the
program mask and the SVC mask are set
in the TSI. The old SVC PSW is moved
to the o0ld SVC VPSW location in the
ISA. The new SVC VPSW is moved to the
current VPSW location in the ISA.
Processing then continues as in steps
5, 6, 7, and B8A previously mentioned.

2. If the virtual PSW main storage
address is not on a doubleword boun-
dary, the program interrupt code in
the PSW is set to indicate this condi-
tion before proceeding.

In these two cases, the task is
restarted with the current VPSW set to the
program new PSW.

EXTERNAL INTERRUPT STACKER: External
interruptions are initially accepted by the
Recovery Nucleus routine, which saves and
resets the timer location in the PSa,
checks for, and processes any malfunction
alert interruptions, inter-CPU communica-
tion interruptions and interrupt key inter-
ruptions as described under "Major Error
Recovery Procedures" in this section. If
the interruption is not the result of a
malfunction alert, the Recovery Nucleus
transfers control to the External Interrupt
Stacker. On entry to the External Inter-
rupt Stacker, a short-save is performed,
and the external indicator field in the PSA
is checked to determine if any indicators
are on. If none are on, an error condition
exists, at which point the general regis-
ters are restored, and the System Error
Processor is called via an ERROR SVC.

If a supervisor state program was inter-
rupted, and the external interrupt code
indicates that a timer interruption
occurred (i.e., if the PSA location 14 is
08) the External Interrupt Stacker checks
the timer/prog indicator in the PSA. If
the timer/prog indicator is on, a task
interruption is being processed by the Pro-
gram Interrupt Stacker, and the timer
interruption is to be ignored, since it
will occur when the task is restarted.
Therefore, the External Interrupt Stacker

24

turns the timer/program indicator off and
checks the external interrupt code to see
if an external interrupt key signal has
occurred. If not, the saved registers and
timer value are restored and the external
old PSW loaded.

If the timer/program indicator is not
on, a further check is made to determine
whether the CPU was in the wait state. If
not, a major system error is declared. If
the CPU was in the wait state, control is
transferred to the Queue Scanner.

If the interrupted program was in the
problem state, the Long Save subroutine is
called to save all necessary information in
the interrupted task's XTSI. Control then
returns to the Interrupt Stacker and a
check is made for a timer interruption. If
one exists, Supervisor Core Allocation is
called to allocate space for a GQE. When
control returns to the Interrupt Stacker,
the allocated space is used to initialize a
GOE as follows:

e TSI address from the PSA.
¢ Loc-on-Q of the timer interrupt queue.

The PCB count in the new GQE is set to
zero, and the Interrupt Stacker transfers
control to the Enqueue GQE subroutine,
which adds the GQE to the timer interrupt
gueue, posts this in the scan table entry
for the Timer Interrupt Queue Processor,
and disables interruptions. Control
returns to the Interrupt Stacker, interrup-
tions are enabled and the Interrupt Stacker
exits to the Queue Scanner.

External interrupt key signals in the
problem state are delivered to RSS after a
long save is performed and the TSI lock
byte is reset. »

In supervisor state, the interrupt key
signal causes control to go directly to
RSS.

I/0 INTERRUPT STACKER: The I/0 Interrupt
Stacker saves and updates the timer fields
in the PSA when the system is in either
problen or wait state.

170 interrupts for RSS devices are
passed to RSS immediately via LPSW when the
system is in supervisor state. If not in
supervisor state, a long save is done and
the TSI lock reset before exiting to RSS.

When RSS is not involved, the I/0 Inter-
rupt Stacker makes an interrupt log entry
and works off any entries in the SERR Auxi-
liary Queue. Then, GQE space is requested
from the Supervisor Core Allocation subrou-

o

tine. An additional 64 bytes is also
requested for channel logout data when a
channel or interface control check is
specified.

The GQE is initialized with the CSW and
interrupt code from the PSA. If the inter-
rupt is from a paging drum, the Loc-on-Q
field is set for the Page Drum Interrupt
Processor (CEAA9). Otherwise the Loc-on-Q
field is set for the Channel Interrupt Pro-
cessor (CEAA4).

If the interruption occurred in the
supervisor state, interruptions are not
enabled, and the GQE is queued by transfer-
ring control to the Enqueue GQE subroutine,
which returns control to the stacker. A
return is then made to the interrupted pro-
gram by performing the following: i

¢ Restoring the general purpose registers
and timer value.

e Turning off the wait state bit and set-
ting the simultaneous interrupt flags
(PSA128) when a timer interrupt is
pending.

e Loading the I/0 old PSW.

If the interruption occurred in the pro-
blem state, the I/0 Interrupt Stacker
obtains the current TSI address from the
PSA and the XTSI address from the TSI,
saves the old PSW, and transfers control to
the Long Save subroutine. Long Save places
the necessary status information in the
interrupted task's XTSI, and returns con-
trol to the 1/0 Interrupt Stacker. The
Interrupt Stacker then calls the Engueue
GQE subroutine to add the GQE to the appro-
priate queue.

If a timer interrupt is pending, the
simultaneous interrupt flag (PSA128) is
set. Main storage for a timer interrupt
GQOE is then requested from Supervisor Core
Allocation. It is initialized and gqueued
as in the External Interrupt Stacker pro-
cessing. Exit is then to the Queue Scanner
(CEAJQ at CEAJQS).

If no timer interrupt is pending, the
TSI lock is reset and exit is also to the
Queue Scanner.

QUEUE SCANNING AND PROCESSING

Queue Scanner (CEAJQ) Chart AB

The Queue Scanner functions as a centra-
lized sequencing mechanism which determines
the order in which independent processors
are to be given control to perform the work
specified in GQEs on the system queues.

Attributes: The Queue Scanner is parallel
reentrant, resident, closed, and operates
in the privileged state.

Entry: CEAJQS, by:
e The interrupt stackers.

e The queue processor's return of
control.

e Task Interrupt Control.

Assumptions: It is assumed that the queue
processors are maintaining the proper
information in the scan-table entries using
only the subroutines available for that
purpose: the Enqueue GQE, Dequeue GQE, and
Set Suppress Flags subroutines.

Modules Called: Timer Interrupt Queue Pro-
cessor (CEAKT) takes action with respect to
a task for which a GQE has been placed on
the timer-interrupt queue, performing the
initial step(s) appropriate to effect eith-
er the creation of a task interruption, or
a task time-slice end.

Page Drum Queue Processor (CEAAB)
initiates 1I/0 on all 2301 paging drums.

Page Drum Interrupt Queue Processor
(CEAAS9) processes all interruptions occur-
ring on the paging drums.

User Core Allocation Queue Processor
(CEANB) allocates pages of main storage for
user pages.

Auxiliary Storage Allocation Queue Pro-
cessor (CEAIA) allocates and maintains
storage for user pages in auxiliary drum
and disk devices.

1/0 Device Queue Processor (CEAA3) pro-
cesses GQEs representing input or output
requests to devices other than drums.

Channel Interrupt Queue Processor :
(CEAAL) locates GQEs which initiated I/0
operations and performs these required
functions: frees devices, distinguishes
between the initial and subsequent asynch-
ronous interruptions; and informs affected
tasks of the occurrence of I/0 interrupts.

SVC Queue Processor (CEAHQ) dequeues the
GQE from the scan table, assures that the
task issuing the SVC is authorized to do so
and identifies and branches to the proper
SVC subroutine to service the interruption.

The Internal Scheduler (CEAKI) is
entered when there is no work queued or
when devices required to perform queued

, work are not available. The Internal Sche-

duler sorts tasks into order on the dis-

Section 3: Program Organization 25

patchable list and passes control to. the
Dispatcher. .

SYSERR (CEAIS) is called when software
errors are encountered during processing.

Exits: To queue processor - when work is
found in the scan table. If the processor
is the Page Drum Queue Processor (CEAA8),
the affected scan table entry lock byte
(SCNF310K) is locked using the SETLOCK
macro. This ensures exclusive use of the
entry in a duplex environment. If the pro-
cessor is the Page Drum Interrupt Queue
Processor (CEAAY9), the scan table entry
lock byte (SCNF3LOK) for CEAA8 is locked.
This is also done to preserve exclusive use
of the entry while CEAA9 is processing
interrupts for that entry. The lock will
be opened using the OPENLOCK macro by the
processor which was given control prior to
its exiting to the Queue Scanner. To
Internal Scheduler - when all GQEs have
been processed or all queue processors are
busy.

Operation: Upon entry, the queue scanner
disables all interruptions except machine
check; it then enables and immediately dis-
ables I/0 and external interruptions to
cause any pending interruptions to be
queued. CEAJQ then checks the master count
of matched facilities in the scan table
master control table. If the value of the
field is zero, no GQEs can be processed,
and the Queue Scanner transfers control to
the Internal Scheduler. If the value of
the field is not zero, the Queue Scanner
tests the DIG (device interaction group)
counts of matched facilities in the scan
table master control table to find a DIG
entry for which there is work. If none is
found, the Queue Scanner exits to the
Internal Scheduler.

When a DIG entry is found containing a
non-zero count of matched facilities, the
DIG lock byte is tested. If it is off, omne
of the queues associated with this DIG can
be processed. If it is on, the master
count of matched facilities is decremented
by this DIG's count of matched facilities.
The search of DIG entries then continues.

When one is found, the DIG count and the
master count are decremented by one, and
the associated scan table entries are
searched for one which satisfies the fol-
lowing conditions:

e The "Q" flag is on.
e No suppress flég or processor lock
. bytes are on (queues whose lock bytes

are on are currently being manipulated
and may not be entered).

26

When an active queue entry is found, the
Queue Scanner locks the scan table entry
and transfers control to its related pro-
cessor. The linkage to the processor is
performed by storing the following in gen-
eral registers:

e The scan table queue entry (that is,
the address of the GQE).

e The address of the gqueue processor.

If there are no Q flags on in the scan
table entries associated with a DIG entry
whose count is greater than 0, a system
error SVC is issued. 1In all other cases,
when no processable queue can be found, the
Queue Scanner exits to the Internal
Scheduler.

QUEUE-~CONTROL SUBROUTINES

Four subroutines perform the general
functions of controlling the queues sum-
marized by the scan table. These are:

¢ The Enqueue GQE subroutine, which
places a GQE on the specified queue.

* The Degueue GQE subroutine, which
removes a GQE from the proper queue.

o The Move GQE subroutine, which routes a
GQE from queue to queue, and releases
the GQE storage and any PCB storage
associated with it when all work speci-
fied is completed.

¢ The Set Suppress Flag subroutine, which
sets a specified suppress flag on or
off in a specified scan table entry for
a specified queue, and sets and resets
the busy flag in a DIG entry.

These subroutines are available to all
supervisor components that operate on GQEs.
They are entered via subroutine linkage,
with the GQE pointer in general register
one. All of these subroutines are resi-
dent, reenterable, and privileged. There
are other subroutines that perform special
queue control functions (for example, the
Dequeue I/0 Requests and the Generate and
Enqueue Interrupt GQE subroutines). These
subroutines are described in this section
under "Supervisor Subroutines."

Enqueue GQE Subroutine (CEAJQ Entered at

CEAJEN)

This subroutine adds a GQE to the desig-
nated queue and updates the scan table
entry for that queue to reflect the addi-
tion of the new element.

Entry: CEAJEN.

RESTRICTIONS: The subroutineAwill‘operate
with all interruptions except machine check
disabled.

Assumptions: The location-on-queue (loc-
on-Q) field of the GQE contains a binary
value equivalent to the location in the
scan table of the entry on which the GQE is
to be queued. The third byte of each scan
table entry will contain a binary value
from 1 to 255 which will identify the
device interaction group (DIG) to which the
entry belongs.

Exit: To caller.

Operation: On entry, Enqueue disables all
interruptions except machine check, and
then tests a register set by the caller to
determine whether interruptions are to be
enabled before control is returned to the
caller. If so, Enqueue sets an indicator
to specify this, locates the appropriate
scan table entry (i.e., retrieves the first
loc-on-Q from the GQE), and then performs
one of the following:

¢ If there are no prior entries on the
queue (that is, if the first queue
entry field in the scan table entry is
all zeros), the address, or pointer, to
the GQE is placed in the first and last
queue entry fields in the scan table
entry. The forward link and reverse
link fields in the GQE are set to
zeros, and the Q flag in the scan table
entry is set on.

« If there are other entries on the
queue, the subroutine points the new
GQE to the previous last GQE by placing
the address currently contained in the
scan table entry's last-queue-entry
field into the new GQE's reverse link
field. The address of the new GQE (now
the last GQE) is then placed in the
scan table entry's last-queue-entry
field and in the forward-pointer field
of the previously last GQE. The for-
ward pointer of the new GQE is set to
zero.

When Enqueue has accomplished one of the
above actions, the master count of GQEs of
the scan table master control table (SMC)
is increased by one. If there were no
other GQEs on the specified queue when the
new one was added, the subroutine tests to
see if any suppress flags or processor lock
bytes are on. If not, the Engueue GQE sub-
routine adds one to the DIG count of
matched facilities for the GQE and the
master count of matched facilities in the
SMC. The subroutine then enables interrup-
tions, if specified by the caller, and
returns control to the caller.

Dequeue GQE Subroutine (CEAJQ Entered at

CEAJDE)

This subroutine removes GQE pointers
from the proper queues as specified by the
callers. ,

Entry: CEAJDE

Assumptions: The location-on-queue (loc-
on-Q) field in the GQE contains a binary
value equivalent to the location in the
scan table of the processor that must
handle the GQE. The third byte of each
scan table entry will contain a value from
1 to 255 which will identify the device
interaction group (DIG) to which the.entry
belongs.

RESTRICTIONS: The subroutine operates with
all interruptions except machine check
disabled.

Exits:
Normal - To caller.

Error - To the System Error Processor if
the SMC lock is locked too long or
if an invalid Loc-on-Q or DIG ID
is encountered.

Operation: If interruptions are to he
enabled on return to the caller, Dequeue
GQE sets an indicator in a general register
to signify this, locates the scan table
entry for the queue, and performs one of
the following:

e If the GQE to be dequeued is the only
one on the queue, the first and last
queue entry fields in the scan table
entry are set to zero, and the "Q" fl«g
is set off.

e If there are other GQEs on the queue,
forward and reverse are updated to
remove the requested GQE from the
chain. The scan table entry pointers
are updated if it is the first or the
last GQE on the queue.

When one of the above actions has been
taken, the counts of matched facilities in
the DIG are adjusted according to the fol-
lowing algorithm, unless a suppress flag is
found on: :

e If the Q0 flag has been turned off (that
is, no more GQEs remain in the queue),
the counts are decreased by one. In
addition, if the scan table entry is
found to be locked, it is unlocked, and
the counts are increased by one.
Dequeue GQE lowers the master count of
GQEs in the scan table master control
table, enables interruptions if speci-

Section 3: Program Organization 27

fied, and returns control to the
caller. :

Move GQE Subroutine (CEAJQ Entered at
CEAJMG)

This subroutine examines the sequence of
queue processors required to perform the
work specified by the GQE and routes the
GQE from queue to queue until the last pro-
cessor has finished the required proces-
sing. It then returns the storage space
occupied by the GQE and any associated
PCBs.

Entry: CEAJMG

Assumptions:

¢ A group of processor-sequence numbers
is maintained in the gqueue-processor-
string table so that one to three num-
bers can be shifted within the GQE.

The subroutine assumes that:

* An eight-byte field in the GQE is
reserved for from one to three proces-
sor sequence numbers plus an indicator
signaling the end of processing for the
GQE, or the location of a continuation
of the processor string in the gqueue-
processor-string table.

Modules Called: Supervisor Core Release
subroutine (CEALl entered at CEALO1)
releases main storage occupied by the GQE
and any associated PCBs.

Enqueue GQE subroutine (CEAJQ entered at
CEAJEN) places GQE pointers on the speci-
fied scan table queues.

Exit: To caller.

Operation: On entry, the Move GQE subrou-
tine determines whether interruptions can
be enabled, sets up the appropriate indica-
tors to enable or disable interruptions,
and adjusts a string of queue processor
numbers to locate the number of the next
processor required for GQE processing.

If no further work is required by the
GQE, the PCB count in the GQE is checked.
If this field indicates that there are PCBs
attached to the GQE, Move GQE calls the
Supervisor Core Release subroutine to
release the storage space they occupy.

When all PCBs have been released the GQE
storage is released in the same manner.
Move GQE then enables or disables interrup-
tions, and exits to the caller.

If further work is required for the GQE,
Move GQE determines the next required pro-
cessor, calls the Engqueue GQE subroutine to
move the GQE pointer to the appropriate
scan table queue, and enables or disables

28

interruptions. On return of control, move-
GQE exits to the caller.

Set Suppress Flag Subroutine (CEAJQ Entered
at CEAJSF) Chart AC

This subroutine sets on or off all sup-
press flags in the scan table and all DIG
busy flags.

Entry: CEAJSF

Assumptions: It is assumed that this sub-
routine will be called whenever a suppress
flag must be set.

RESTRICTIONS: The subroutine runs with all
interruptions except machine check dis-
abled. The mask used to set the flags on
or off must have the high-order bit set to
zero. If set to one, it may cause the "Q"
flag to be inadverently turned on or off.

Modules called: The System Error Processor
(CEAIS) may be given control when an inter-
ruption indicating a system error condition
occurs.

Exit: To caller.

Operation: On entry, the SSF subroutine
disables all interruptions and then sets
the interruption indicator as specified by
the caller. SSF then checks the -location-
on-queue supplied by the caller against the
scan table master control table. If the
specified location is invalid, a system
error SVC is issued. If the locationm is
valid the subroutine checks the flag set-
ting request to determine whether a sup-
press flag is to be turned on or off.

If a suppress flag is to be set on, the
subroutine accomplishes this by using the
OR instruction on the suppress flag and a
mask specified in the caller's parameter
register. When the flag is on, SSF tests
the "Q" flag. If this flag is on, the scan
table entry's lock byte and suppress flags
are checked. If none of these is on, one
is subtracted from the DIG count of matched
facilities and the matched facilities. No
subtraction takes place if the DIG count is
already zero or if at entry, the processor
lock byte is set on. At this point, or if
the "Q" flag was off, a common return is
performed, as follows:

s Registers are restored to their state.

e Interruptions are enabled,
by the caller.

if specified

e Control is returned to the caller.

The suppress flags are set off in the
same manner as described for setting them
on (that is, via a mask), except that the

—— e S p— - S—

—— —— — — —— {—— T Gp— Gy~ — —— . $ojo S " — o ——" A g s

Table 5. QUEUE Scanner operations in processing of GQE

4
Turn off last Suppress Flag|Non-empty gqueue
4

L}
Queue Scanner Function Conditions Result |
I |
4
Dispatch GQE to Queue Decrement Dig Count; |
Processor Turn on SCNLOK |
d
4
Queue 1st GQOE on Scan |No Suppress Flags on and SCNLOK off Increment Dig Count |
Table Entry l |
|
¥ |
Turn Dig Busy on | SCNLOK off Exit |
t i
T i
| SCNLOK on; Suppress flags on Open SCNLOK |
i 5 J
[) . v 1
|SCNLOK on; Suppress flags off; work |Open SCNLOK; Incre- |
|on queue ment DIG count I
1 d
v |
Turn Dig Busy Off |Pig Busy is now on Increment Dig Count |
4 'y
L] L]
Turn on 1st Suppress Flag |Non-empty queue and SCNLOK on |Open SCNLOK
L 41
4]
| Non-empty queue and SCNLOK off |Decrement Dig Count
i $ -

T
|Increment Dig Count
4

and SCNLOK off

L
Dequeue a GQE | Non-empty queue

| SCNLOK on and No Suppress Flags on
L

1]

|Open SCNLOK; Incre-
|ment Dig Count

i

remains and

—— e oo

L3 T

| Empty queue remains and SCNLOK on and|Open SCNLOK
|[No Suppress Flags on
[l

|and No Suppress

¥
| Empty queue remains and SCNLOK off

4
+
|Decrement Dig Count
Flags on I

All others

No effect on Dig Counts or SCNLOK

s s aodon

DIG count of the matched facilities in the
scan table master control table is raised
when the "Q® flag is on and the other sup-
press flags and the lock byte in the scan
table entry are off (see Table 5).

QUEUE PROCESSORS

Timer Interrupt Queue Processor (CEAKT)
Chart AD

Each GQE on this processor's queue
represents a timer interruption, a forced
time slice end for a task, or a migration
request. The GQE may have been created as
a result of a task having reached normal
time slice end, having been forced to time
slice end, or having been selected to have
its pages migrated from auxiliary drum
storage to auxiliary disk storage.

In the time slice end situations, a user
timer interruption may also be involved.
If it is not, the function of this proces-
sor is to cause the task to be rescheduled
according to its STE parameters and to
effect the release of the space occupied by
the task's pages in main storage unless the

task®s status is such that it is to remain
in the dispatchable list.

If a user timer interruption is involved
(user timer field = 0), and it is not a
forced time slice end situation, the func-
tion of this processor is to cause a task
interruption to be created and placed on
the TSI interruption queue. The task
remains in the dispatchable list and its
pages remain in main storage.

The migration function is invoked to
cause a task's pages to be migrated from
auxiliary drum to auxiliary disk whenever
the drum space being used exceeds the
limit.

The Auxiliary Storage Allocation routine
calls this module for this purpose.

Entries:

CEAKT1 - by Queue Scanner.

CEAKTB - by Create Real Time Interrupt sub-
routine (CEAKR).

Section 3: Program Organization 29

Modules Called: Dequeue GQE subroutine
(CEAJQ entered at CEAJDE) removes GQEs from
the processor's gueue.

Auxiliary Storage Release subroutine
- (CEAIA) releases storage for user pages in
auxiliary drum and disk devices.

Enqueue GQE subroutine (CEAJQ entered at
CEAJEN) places the GQE on the auxiliary
storage allocation queue.

Move GQE subroutine {(CEAJQ entered at
CEAJMG) moves or releases the GQE.

Queue GQE on TSI subroutine (CEAAF)
places the GQE pointer on the TSI's inter-
ruption queue.

Supervisor Core Allocation subroutine
(CEAL1 entered at CEALO1) allocates main
storage for a new GQE or for a PCB.

User Core Release subroutine (CEALl
entered at CEALO4) releases main storage
occupied by unchanged pages.

Supervisor Core Release subroutine
(CEAL1l entered at CEALO2) releases GQE
storage space.

Rescheduling subroutine (CEAKZ entered
at CEARKZA) is called at normal end of time
slice to recompute a task‘s scheduled start
time (SST) and move it to the eligible
list. This subroutine is also called in
forced time slice end situations to add a
task to the inactive list.

Write Shared Pages subroutine (CEAMW
entered at CEAMWS) is called to obtain
shared pages for migration when the GQE
indicates that shared page migration is to
be performed.

Paging routine (CEAMQ entered at CEAMQA)
reads in a set of page table pages to be
used for migration.

Exit: Queue Scanner.

Operation: On entry, the Timer Interrupt
Queue Processor (TIP) calls the Dequeue GQE
subroutine to remove the GQE from its gqueue
and enable interrupts. On return, TIP
determines whether the task's XTSI pages
are in main storage. If not, the processor
exits to the Queue Scanner.

If the XTSI pages are in main storage,
the processor determines the cause of the
interruption and performs the appropriate
function: .

e User Timer Interruption Processing

e Time Slice End Processing

30

¢ Page Table Scanning
e Migration

This processor®s activities are illus-
trated in Figure 11.

USER TIMER INTERRUPTION PROCESSING: At

forced or normal time slice end, the task's
timers are updated. If the user timer
field goes to zero, and it is not a forced
time slice end, a task interruption is
created and queue-GQE-on-TSI is called to
put it on the task's TSI interrupt queue.
The task's pages are left in main storage
and the task remains in the dispatchable
list.

If it is forced time slice end, the
task's pages are written from main storage,
and rescheduling is called to put the task
on the inactive list. A task interruption
is not created, but one will be when TIP
subsequently gains control after the forced
time slice end situation has been handled
and the task again reaches time slice end
normally.

TIME SLICE END PROCESSING: When a user

timer interruption is not involved, and it
is a forced time slice end situation, a
check is made to see if it was caused by a
TSEND SVC. If yes, the task is set in
delay status, Rescheduling is called to put
it on the inactive list, a timer interrup-
tion is set up, and the task's pages are
written from main storage. The timer
interruption will be fielded by a special
entry point in CEAKT which will cause the
task to be put in ready status, Reschedul-
ing to be called to put it on the eligible
list with its SST recomputed, and then the
processor will exit to the Queue Scanner.

For forced time slice end interruptions,
not TSEND, Rescheduling is called to put
the task on the inactive list and recompute
its SST. Then the task's pages are written
from main storage.

At normal time slice end, the task is
given another time slice value and then the
number of page relocations caused by the
task during the time slice just completed
is checked. If less than the number speci-
fied by the control field in the STE, the
task is moved to the bottom of the dis-
patchable list. In either case, the quanta
count is then lowered by one. If it does
not go to zero, exit is made to the Queue
Scanner. If the count does go to zero, the
normal time slice end flag is set in the
TSI and Rescheduling is called to recompute
the SST and put the task on the eligible
list. The task's pages are then written
from main storage. As a part of time slice
end processing, this routine also updates
fields in the system statistical table

:€ UOTODS

uot3eztuebip weiaboig

1€

Queve

Scanner

Figure 11.

CEAJDE

Dequeue

CEALO]

User Yes
Supervisor

Core

Allocation

CEAAFQ

Queve

CEAIMG

|

|

}._.

}<__ GQE-on
|

|

To Build
a New

GQE

po

CEALQ2

Move GQE

| Queve
! Scanner

Timer Interrupt Queue Processor activities

Sup Core
Release

To Scrub
GQE

| CEAKZA
4 - To Change
! Rescheduling | STE Level
i | CEALOT
= Supervisor To Build
' Core PCB
i - Allocation
ALO4
Unchanged Yes . o CE
Pages | | User Core
? R Release
No
Changed
Poges from Yes - CEAIAR
Auriliary
Aux Storage Sorage
> L ke xe |
No
_[ceramc | | crAaxN
. Move GGE | Enqueve
11 on Yes [TCEAKZA] o put
Inactive Task on
List? Rescheduling | Eligible
List

d

No

4

P Queue
Scanner

To Get
GOE on
Auz Sty
Aliocation
Qi-zve

(CHASST). For any occurrence of time slice
end, SSTALT is increased by one. If time
slice end occurs because a task reaches its
gquanta limit, SSTQLT is also raised.

PAGE TABLE SCAN FUNCTION: The page table
scan goes through the page tables and upon
encountering a page which is available and
whose page hold count is zero (indicating
no user I/0 in progress on this page) a
check is made to see if this page has been
changed. If unchanged, its main storage
space is released. If changed, the page
must be written to auxiliary storage and
the auxiliary storage space previously
occupied by the page must be released. A
PCB is created for each such page prepara-
tory to writing it to the paging disk or
paging drum. An effort is made to block
(write to the paging device in contiguous
groups) certain of the task's changed
pages. Those to be blocked are the high
usage pages of the task.

The procedure for selecting the pages to
be blocked and the device to which they are
to be written is controlled by a page usage
count, maintained in the external page
table (XPTPMC), and two system table
fields: SYSBLK, the drum block limit; and
SYSBLK2, the combined drum and disk block
limit.

When CEAKT finds a changed page that has
been in main storage for three consecutive
time slices (XPTMC=3), a test is made to
see if the number of blocked pages (TSIBLK)
is less than SYSBLK. If so, a flag is set
in the external page table (XPTPP) indicat-
ing that it is a blocked page and the page
is written to drum. When TSIBLK is greater
than or equal to SYSBLK, and the task is
inactive, TSIBLK is compared to SYSBLK2.

If less, XPTPP is set for the page and it
is written to disk. Every time a page is
blocked to the drum or disk, the count,
TSIBLK, is incremented. This count is
initialized at the beginning of each page
table scan for a task. Also, the XPTPP
flag is turned off in each page before the
above investigation is made.

When the end of the page tables is
reached, a check is made to see if there
are any page table pages. If so, the chain
of page tables is scanned, and those page
table pages which do not contain virtual
memory pages in page hold are written out.
Then the segment table entries for the page
table on a page table page that is being
written out are marked "not in main
storage." When the scan of page table
pages is complete, a check is made to see
if any pages were skipped due to user I/0.
If so, a GQE is built and stored in the TSI
(unless the task is identified as an MTT
applicatiosn. 1In this case, immediate exit
is made tc the Queue Scanner). When user

32

I/0 processing is complete for the task,
the GQE is queued on the timer queue. When
control is regained, the page table scan is
reentered.

If no pages were in page hold, all page
table pages should have been written, and a
check is made for segment table pages and
auxiliary segment table pages. If present,
any auxiliary storage is released, and the
pages are written from main storage. Then
the first XTSI page is written after
release of any auxiliary storage it might
have been assigned.

If this is not a migration case, or if
the migration function is complete, the
XTSI pages for the task are written out
with the drum preference bit set in the
PCB. If virtual memory pages on the page
table page reside on drum, the disk pre-
ference bit is turned on instead of the
drum preference bit in the PCB. Exit is
then made to the Queue Scanner via CEAHQR.

MIGRATION FUNCTION:

1. A set of page table pages (the size of
the set is determined by a parameter
in the system table) is read in.

CEAMQ is called to read in the page
table pages.

2. When control returns, the page tables
which correspond to these page table
pages are scanned, and a GQE is set
up. PCBs for all virtual memory pages
to be migrated from this set are
attached to the GQE. When the maximum
number of PCBs that can be attached to
a GQE is reached, a new GQE is built.
A new GQE will also be set up when
pages residing on a different drum are
encountered. These GQE chains are
based on the MIG work area, obtained
via Supervisor Core Allocation.

3. When all page tables in this set of
page table pages have been scanned,
and the necessary GQE/PCBs set up, a
drum read for a group of virtual
memory pages is initiated. The size
of this group is established at star-
tup time. The parameter used is
SYSPCB.

4. When this read is complete, Auxiliary
Storage Release (CEAIA) is called to
free the drum space. The appropriate
fields in the GQE/PCBs for this group
of virtual memory pages are changed to
indicate a write operation and the
write to disk is initiated.

5. Steps 3 and 4 are followed alternately
until all migration GQE/PCBs that were
set up have been exhausted. The set
of page table pages formed in Step 1

is written out as described under
*Time Slice End Processing."

6. Stepskl through 6 are repeated until

all page table pages have been
processed. :

7. The first XTSI page is then processed
as if it were a set of page table
pages.

When a read or a write is initiated, this
module exits to the Queue Scanner via
CERHQR. A returning migration GQE is rec-
ognized on entry to CERKT by an indicator
in the TSI. Reads and writes are distin-
guished from each other by indicators in
the GQE.

SHARED PAGE MIGRATION: Migration of a
task's shared pages is similar to the norm-
al migration function except that the Write
Shared Page subroutine provides the pages
to migrate. The GQE for shared page migra-
tion can indicate any of three conditions:

¢ A GQE starting migration.
e A returning write GQE.
¢« A returning read GQE.

When the GQE represents a request to
start shared page migration, CEAKT locks
the system table lock (SYSTSKLK) and then
updates SYSECB by adding the value in SYS-
PCB to it. SYSTSKIK is then unlocked. A
counter is set to specify the number of
times that CEAKT will call Write Shared
Pages to migrate; the GQE is released by a
call to Move GQE; and Write Shared Pages is
called to obtain pages to migrate.

When it is a returning write GQE, the
GQE is released by a call to Move GQE. The
counter controlling calls to Write Shared
Pages is decreased by one. (If it goes to
zero, the System Error Processor is
invoked.) A check is then made to see if
the shared pages on drum are within the
limit permitting migration of more pages.
If so, Write Shared Pages is recalled to
obtain more pages. If not, (or if Write
Shared Pages returns to CEAKT), SYSECB is
lowered by the value in SYSPCB; the migra-
tion in progress flag (SYSMG) is turned
off; and the Timer Interrupt Processor
exits to the Queue Scanner.

A returning read GQE is handled the same
as in normal migration, that is GQE/PCB
fields are changed from reads to writes;
the auxiliary storage is released; the XTSI
write count is updated; and the drum space
is released with no TSI pointer in register
zero. Whenever a task®s pages are migrated
from drum to disk, a field (SSTMIP) in the

system statistical table is increased by
the number of pages migrated.

Page Drum Queue Processor . (CEAA8) Chart AE

The purpose of the Page Drum Queue Pro-
cessor (PDQP) is to complete and maintain a
series of channel command word programs.
The CCWs are designed to handle drum paging
operations to meet page control block (PCB)
requirements or DRAM requests (IORCB) for
dummy records between drum pages.

Entry: CEAA81. . The affected scan table
entry lock byte (SCNF3LOK) will be locked
prior to entry to this processor in order
to preserve the exclusive use of the device
queue in a duplex environment.

Modules Called: Page I/O Error Recovery
subroutine (CEARM) investigates failure to
obtain a device path and immediate start
I70 failure.

Start I/0 subroutine (CEAAG) performs
the start I/0 function.

Set Suppress Flag subroutine (CEAJQ
entered at CEAJSF) sets the appropriate
flag in the queue processor's scan table
queue.

System Error processor (SYSERR) (CEAIS)
may be given control when an interruption
indicating a system error condition occurs.

Pathfinding subroutine (CEAAS) obtains
actual path to a device.

Dequeue GQE subroutine (CEAJQ entered at
CEAJDE) removes the GQE from the proces-
sor's queue.

Generate and Enqueue Interruption GQE
subroutine (CEABQ) generates and queues an
interruption GQE for the paging drum when a
start I/0 attempt returns a failure code.

Move GQE subroutine (CEAJMG) moves
unposted GQEs to the appropriate queue for
posting.

Queue GQE on TSI (CEAAF) queues an
interrupt GQE on a TSI.

Channel Interrupt Queue Processor
(CEARY) releases pages from page hold.

Exits:

Normal - ToO Queue Scanner.

Error - To System Error Processor.
Operation: The Page Drum Queue processor
uses information passed to it in the GQE

and PCBEs to maintain fields in the system
table (CHASYS). The system table contains

Section 3: Program Organization 33

18 seek arguments divided into two parts.
The first nine seek arquments are called
chain 1 and the second nine, chain 2. Fol-
lowing these are 18 CCW programs (one for
each of the seek arguments) composed of
four CCWs each:

1. SEEXK
2. SEARCH ID EQUAL
3. TIC (2)

4. READ/WRITE.

To link the two chains together, a TIC
command at the end of chain 1 points to the
first SEEK in chain 2, and a TIC at the end
of chain 2 points to the first SEEK in
chain 1. These CCW programs are used by
PDQP to process the GQEs and PCBEs.

Processing includes the following steps:

1. The suppress flag (F5) in the scan
table is set on.

2. The page drum directory is searched
using the location-on-queue as the
search argument. If the entry is not
found, a major system error is
declared.

3. When the proper drum interface control
block is located, its slot mask (SYS-
SLT) is set to all ones, and the 2301
device code (SYSDEV) and symbolic
device address are inserted.

4. If chain 1 is not running, it is
selected for operation. If it is run-
ning, chain 2 is selected. If both
are running, PDQP exits to the Queue
Scanner.

5. All READ/WRITE commands in the
selected chain are initialized to
NOPs. A TIC/NOP is included at the
end of the channel programs.

6. Searching begins with the first PCBE
in the string. It is terminated when
all of the PCBEs have been processed,
or when all slots have been assigned,
or when remaining PCBEs are duplicate
slot requests that must be assigned at
a later time. When a slot request is
recognized the SYSDIC slot mask is
checked for availability. If it is
free, the request is filled and the
GQE unprocessed count is decremented.
The PCBE is flagged as processed and
the GQE slot mask bit is turned off.
The SYSDIC slot mask bit is set to
show that the slot is filled. 1If a
duplicate slot request appears in the
same GQE, thé slot mask bit for the
GQE is turned on again to maintain a
current picture of slots yet to be
assigned. This enables more than 9
PCBEs to be attached to a GQE. The

34

next PCBE is then processed. If the

paging request is for a READ, the P
READ/WRITE CCW is set accordingly. If '
it is for a WRITE, it is checked to

see if it is for a WRITE/CHBECK opera-

tion. If it is, and the WRITE has

been performed, the write check

selected flag is set on. This will

cause a READ CCW, with no data trans-

mission, to be generated and executed.

If the slot just processed is the
highest or lowest, the slot number is
put in the appropriate field in the
system table.

The processing cycle of GQEs and their
associated PCBEsS continues until there
are no more that can be processed.

The lowest slot assigned is used to
set up the CAW when a START 1I/0 is
required, that is, when the other
chain isn't running.

Otherwise the highest slot number in
the chain not being operated upon is
used to set up a TIC command to the
lowest slot assigned in the chain just
set up. In this case, the PCI flag is
set on in the SEEK CCW and the PCI
pending flag set on in the system
table. The system table flag byte
(SYSLK) describes the state of the two
chains at any given time.

The processing cycle of GQEs and their
associated PCBEs continues until there
are no more that can be processed.

When START I/0 is executed to get a
chain running, control is transferred
to 3 (above) when there is more work,
or to the Queue Scanner if not. If
the START I/0 is unsuccessful, control
is given to Paging Error Recovery.

For DRAM requests, PDQP tests the task
to supervisor lock (SYSTKSP) to see if
SERR was recording. If locked, the
task to task lock (SYSTKTK) is checked
to see if DRAM recording was in pro-
gress. If yes and the present request
is from the task that was doing the
DRAM recording, an interrupt is sent
to the task to reinitiate the entire
DRAM operation and SYSTKSP is
unlocked. If the requesting task is
not the task presently using DRAM, an
interrupt to retry the operation is
queued on the requester.

When SYSTKSP is not locked, SYSTKTK is
checked. If locked and the requesting

task is not the task presently using

DRAM, 'an interrupt is sent to the

requester to retry the operation. If S
this is the task using DRAM or if

neither SYSTKSP nor SYSTKTK is locked,
the request is processed. If the
requested path is found, and the GQE
has never been inspected before, 1 is
added to the total count of unpro-
cessed operations (SYSUC). The slot
number is determined from the real
head and record identifiers. If the
slot is not available, the appropriate
slot in the GQE slot mask is set and
the remaining GQEs processed. If the
slot is available, the appropriate- op
code from the IORCB is inserted in the
channel program. Then storage keys
are set for all virtual memory pages
associated with the request, the
appropriate slot in the DICB slot mask
is set off, and the GQE and IORCB
addresses are inserted in the second
double word of the seek argument. If
there are more GQEs processing con-
tinues; if there are .no GQEs control
transfers to 7 (above).

The Page Drum Queue processor is capable
of supporting a multidrum configuration.
If the drums share a channel, however, only
one drum can be in use at any one time.
When a request for another drum is denied
because of this situation, the chains
involved are put in a hold state, that is,
processing terminates until the path to the
first drum is freed up. The second drum is
then activated. The drum placed in hold
will not necessarily be the next to
execute, however. The first drum entry on
the scan table (CHASCN) is completely pro-
cessed before anything is done on the
second drum queue.

In the duplex environment, PDQP is
required to set and reset the lock bytes
associated with the TSI and system table
whenever the two CPUs might interfere with
each other. The scan table entry lock byte
(SCNF3LOK) is reset using the OPENLOCK
macro instruction before this processor
exits to the Queue Scanner.

Page Drum Interrupt Queue Processor (CEAA9)

Chart AF
The Page Drum Interrupt Queue (PDIQ)
processor processes GQEs representing

interruptions caused by the following
conditions: :

e Return of a sense operation
e A unit check
s Channel or interface control check

. Chénnel data or chaining check

e Program protection or incorrect length
check

¢ Control unit or channel end

¢ Channel or device end

® Program-controlled interruption

This processor also collects and stores
in the system statistical table (CHASST)
the number of writes and reads (private and
shared) for each drum device.

Entry: CEAA91

Modules Called: Set Suppress Flag (SSF)

subroutine (CEAJQ entered at CEAJSF) sets
the appropriate flag in the queue proces-
sor's scan table queue.

Page 1/0 Error Recovery subroutine
(CEAAM) investigates the failure to obtain
a device path and all I/0 error conditions.

Start I/0 subroutine (CEAAG) performs
the start I/0 function.

Degueue GQE subroutine (CEAJQ entered at
CEAJDE) removes the GQE pointer from the
PDIQ processor's queue.

Move GQE subroutine (CEAJQ entered at
CEAJMG) determines whether further proces-
sing is specified by the GQE, and, if so,
moves it to another processor's queue, or,
if not, releases it.

User Core Release subroutine (CEAL1l
entered on CEALO4) releases user-page
storage after a write operation has been
completed.

Pathfinding subroutine (CEAAS5) frees the
assigned device path.

Page Posting subroutine (CEAMP) updates
associated page table.

Generate and Enqueue Interrupt GQE sub-

‘routine (CEABQ) generates and queues an

interruption GQE for the paging drum when
status is stored for the device selected on
a Start I/0 attempt.

Queue GOQE on TSI (CEAAF) to queue an
interrupt GQE on a task to -‘indicate a com-
pleted DRAM operation.

Channel Interrupt Queue Processor
(CEAAL4) to release pages in page hold.

Exits:

Normal - To Queue Scanner.

Error - To System Error Processor.
Operation: The Page Drum Interrupt Queue

processor is activated by the Queue Scan-
ner. The affected scan table entry lock

Section 3: Program Organization 35

Queue

CEAJSF
Set
Suppress Flag

Scanner ’

Error

Situation

» Page /O Error Recovery
e Start /O (To Sense)
P Syserr

> Reset Suppress Flag
= Queue Scanner’

CEAASR
Reverse

Pathfinding

CEAMP

Post PCBES

Page Posting

A

CEALO4

Write
Operation

User Core
Release

Done
?

v

CEAJDE

Dequeue

CEAIMG CEALO2

To Scrub

Y

Supervisor
Core

The Inter-

Move GQE rupt GQE ~

Release

CEAJSF
Reset

Y

Suppress
Flag

A

Queve
Scanner

Figure 12.

byte (SCNF3LOK) will be locked prior to
entry to this processor in order to pre-
serve the exclusive use of the device queue
in a duplex environment. Channel end,
device end, and PCI interruptions trigger
posting action of all PCB entry paging
operations that are complete at interrup-
tion time. When all page operations are
posted for any GQE, the Move GQE subroutine
is called to release the GQE. Processor
activities, illustrated in Figure 12, are
discussed on the following pages.

On entry from the Queue Scanner, the
PDIQ Processor calls the Set Suppress Flag
subroutine to set the suppression flag in
its scan table queue to interlock it
against subsequent queue scanner entries.
When control is returned to the processor,
the location-on-queue value specified in
the GQE is used as an argument to search

36

Page Drum Interrupt Queue Processor activities

the entries of the page drum directory
(PDD) for the SYSDIC address in the system
table. If a PDD entry cannot be found SYS-
ERR is called. If an entry is found, the
processor determines whether the interrup-
tion resulted from a sense-operation
return. If so, the Set Suppress Flag sub-
routine is called to unlock the processor's
queue entry flag, after which the Page I/0
Error Recovery subroutine is called.

If a sense operation has not been
returned, the processor tests for other
possible conditions which caused the inter-
ruption. These conditions and the respec-
tive actions taken are illustrated in
Figure 13 and discussed on the following
pages.

The scan table erdtry lock byte
(SCNF3LOK) is reset using the OPENLOCK

e Solid start 1/0 failure. Call the Pag-
ing I/0 Error Recovery control
subroutine.

- If the Start I/0 is successful, either
on the first attempt or after retry
attempts, control returns to the PDIQ pro-
cessor, after which the Dequeue GQE subrou-
tine is called to remove the GQE pointer
from the processor's queue and update rele-
vant areas of the scan table to reflect
this action. When control is returned to
the processor, the Move GQE subroutine is
called to determine whether further proces-
sing is specified by the GQE.

When control returns to the processor,
the Set Suppress Flag subroutine is called
to turn off the suppress flags in the scan
table. Exit is to the Queue Scanner.

CHANNEL/ INTERFACE CONTROL .CHECK: If a

Unit Check ? {—————— Call Start /O
Channel/Interface | Call Page
Control Check ? 1 1/O Error

Recovery
Channe! Dato/
Chaining Check ?
Program/Protection
Check: incorrect
Length Unit Exception;
Call
ifier: ? Py
Status Modifier; or Busy ? SVSERR
Exit to
Control Unit? > Queue
Scanner
Call Reverse
Channe! End and Pathfinding to
Device End or Both hl Free Path I'h_en
Perform Posting
Program Controlled Perform
Interrupt ? Posting

Figure 13. Page Drum Interrupt Queue Pro-
cessor checking and response to
conditions specified in the CsW

macro prior to any exit to the queue
scanner.

UNIT CHECK: The processor initiates the
sense operation by calling the Start I/0
subroutine.

The Start I/0 subroutine will return
control indicating one of five possible
conditions. These conditions and the
action they precipitate are as follows:

e SIO is successful, the channel program
is in execution. Exit is made to the
Queue Scanner.

e The selected channel is defective..
Call the Paging I/0 Error Recovery Con-
trol subroutine. -

¢ The control unit or channel is busy.
Retry 17 times and, if not successful
exit to the Paging I/O Error Recovery
Control subroutine.

¢ Status was stored for the selected
device. Build interruption GQE, queue
it on the drum interrupt queue, and
call the Queue Scanner.

channel or interface control check condi-
tion exists, the PDIQ processor transfers
the GQE's channel log-out data, the CSW,
and control to the Page I/0 Error Recovery
subroutine. If retry is successful, normal
processing continues. If not, exit is to
the Queue Scanner.

INCORRECT LENGTH, UNIT EXCEPTION, PROGRAM
CHECK, PROTECTION CHECK, CHANNEL DATA CHECK
OR CHAINING CHECK: If any of these condi-

tions exists, the Page I/0 Exror Recovery
subroutine is called.

STATUS MODIFIER OR BUSY CONDITION: If this
condition is detected, the PDIQ processor
declares a minor ERROR and exits to the
Queue Scanner.

CONTROL UNIT END: If a control unit end

condition exists, the processor exits to
the Queue Scanner.

CHANNEL END/DEVICE END OR PROGRAM CON-
TROLLED INTERRUPTION: If a channel end or
device end condition exists, the processor
passes the physical device address to the
Reverse Pathfinding portion of the Path-
finding subroutine. This subroutine
releases the path to the addressed device,
and returns control to the processor. At
this point, or if a program-controlled
interruption is specified the processor
initiates the posting action for all PCBE
paging operations that were complete when
the interruption occurred. The posting

" action is initiated by:

1. Selecting the first channel program
executed in the current chain.

2. Locating the PCBE/IORCB from the SEEK
argument of the channel program in the
system table. If it is not a DRAM
operation processing is as follows:

Section 3: Program Organization 37

e If a read operation has been com-
pleted, the Page Posting subroutine
is called to update thié appropriate
tables. When control returns, the
processor selects the next PCBE for
processing.

¢ If a write-operation has been com-
pleted, the processor calls User
Core Release subroutine to release
the storage occupied by the page
associated with the PCBE. The Page
Posting subroutine is then called to
update the associated page table and
returns control to the processor.
The processor selects the next PCBE
to be posted and reinitiates the
posting action.

When all PCBEs for a GQE have been post-
ed, the GQE is passed to Move GQE to
release the main storage space for it and
the PCB. Processing then continues on the
remaining channel programs.

When a complete channel program chain
has been posted, the other chain is checked
to see if it is to be posted.

When both chains of channel programs
have been posted, or if the second chain is
not available, the interrupt GQE is
dequeued and its main storage space
released.

A test is made before exiting from PDIP
to see if the current interruption is a
CE/DE. 1If it is not, the suppress flag
(F5) is reset for the Page Drum Interrupt
Processor, only. Exit is then made to the
Queue Scanner.

If it is a CE/DE condition, the page
drum directory is checked to see if a drum
is in hold state. If yes, it is freed and
set to ready. This allows the path to be
reassigned to either drum. If a channel is
down, PDIP will go to Paging Error Recovery
(CEARM) to obtain an alternate path, if
possible.

In a duplex environment, this routine
sets and resets the lock bytes associated
with the TSI and system table to prevent
the two CPUs from interfering with each
other.

DRAM OPERATIONS: If the channel program is
for a DRAM operation, processing is as
follows:

Control is passed to CEAA43, a subsec-
tion of the Channel Interrupt Processor, to
perform completion operations on the GQE/
IORCB. Upon return, IORDTSI is checked; if
it is on, meaning the TSI has been deleted,
the GQE is discarded via a call to CEAMG.
If it is not on, the completed DRAM I/0

38

request is queued on the TSI as a synch-
ronous I/0 software interrupt. The paging
I/0 count in the TSI is decremented by one.
The remaining channel programs are then
processed.

Program Interrupt Queue Processor (CEANA)
Chart AG

The Program Interrupt Queue (PIP) pro-
cessor analyzes the interruption code in
the GQE to which its scan table queue entry
points, and determines the type of user-
program interruption that it specifies:

e A paging-relocation interruption
requiring table construction and
initiation of a page~read request.

¢ A shared-segment exception requiring
shared-page-table searches.
Entry: CEANAA]
Modules Called: Engueue GQE subroutine

(CEAJQ entered at CEAJEN) scans table
queues for a timer interrupt.

Search RSPI Table subroutine (CEAMS)
locates the proper resident-shared-page-
index (RSPI) entry in main storage for any
specified shared-page-table number, or
locates the address of the next available
entry in the RSPI.

Supervisor Core Allocation subroutine
(CEAL1 entered at CEALO1l) reserves main
storage for PCBs.

Find Page subroutine (CEANC) locates
segment, auxiliary segment page, and
external page table entries.

Paging (CEAMQ) is called to read a page
table page into main storage.

Queue GQE on TSI subroutine (CEAAF)
places the GQE pointer on the TSI's inter-
ruption queue.

Bdd Pages (CERHQ entered at CEAHQA) per-
forms dynamic expansion of a variable
length page table.

Add shared Pages (CEAQ6 entered at
CEAH26) performs dynamic expansion of a
variable length shared page table.
Exit: To Queue Scanner.

Operation: On entry, the processor tests
the interruption code from the GQE to
determine the type of error that has
occurred. An interruption code of 16
denotes a segment-relocation error and a
code of 17, a page-relocation error. The
processing for each type of error is dis-
cussed below, and illustrated in Figure 14.

t¢ UOT3O9S

uotjeztTuebipo wexboxd

6€

(CEANAAI)
r
I . CEANCA Find Page Will Retumn
Location of:
I Find Page STE
] ASTE
| PTE
I l XPTE
I v | CEAMS) Seatch RSP! to Find
, ‘ Shared es PR Origin of SPT for
I : Segr;enr ‘ RSPI the Given SPT
| No !
l System Error I
| S ~
| Is i
SPT Mark

l Available in Task ——f——’@
l RSPt ? Ready

Add GQE 10 |
' RSPI-Q

Chain '
l |
| ’ |
l IPVZ:;:_T;S,:;:" ! ﬂr Queue Scanner ’
- - -

No. of
Page Reads

Force
T.S. End

2 Max,
?

Is This
Shared Page ?

No

|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
L

P
Pr

l CEANCA Find Page Will
4 | Find Return Location
I Page of:
STE
l ASTE
PTE
I XPTE
! o CEAJEN Q.GQE on
I | Enqueve | Timer
i GQE interrupt

Queve
Scanner

Page is |
being Paged CEALO} Get &
in or out In-transit No v | - [; prcaxe
———— Bit On ? ; o SCA)
| h
Add GQE I
| to XSPTE-Q ¥
Chain
I Build FCB l
‘ ard Chain
to GQE .
Mark .
Task in
' Page-Wait I
] I
P ——— ——
I 15t Loc = UCA - Q| Modify t CEAJEN
!2nd Loc =DEV-Q | GQE Loc on Enqueve
l infadadedebadaatey Q. Codes Routine
oy o Queue
I l Scanner

Figure 14. Activities of the Program Interrupt Queue Processor

SEGMENT RELOCATION ERROR PROCESSING:
a code of 16 indicating a segment-
relocation interruption occurs, the proces-
sor performs the following:

When

e Loads into general registers the fol-
lowing: the address, from the TSI, of
the first page of the XTSI; the un-
translated address from the XTSI's con-
trol register save area; and the
address of the Find Page subroutine.

e Calls Find Page to compute the segment-
table-entry address, after which con-
trol returns to the processor.

e Tests for a shared-segment indicator in
the auxiliary segment table (AST). 1If
the shared indicator is not on, and the
page table is in a page table page,
CEAMQ is called to set up the read for
the page table page. On return, this
case is treated as a page relocation
interruption (program interruption code
i7).

e If the shared indicator is on, the
sharing lock is set, the processor
stores the shared-page-table number
from AST in a general register and
calls the Search RSPI subroutine to
locate the RSPI entry associated with
the shared segment. If Search RSPI
determines the shared-page-table number
is not in the RSPI, the processor calls
SYSERR. ' Otherwise, the processor tests
for page-table availability. If the
table is unavailable, the interruption
(code 5) is passed to the task by queu-
ing the GQE pointer on the TSI and
exiting to the Queue Scanner.

If the page table is available, its
length and origin are stored in the segment
table (CHASGT), the TSI's ‘ftask-ready'
indicator is set on, and control is trans-
ferred to the SVC queue processor at
CEAHND, to free the GQE (that is, call the
Move GQE subroutine) and exit to the Queue
Scanner.

PAGE-RELOCATION ERROR PROCESSING: When an
interruption code of 17 (indicating a page-
relocation error) is found, the processor
determines whether the associated XTSI is
in main storage.

If the XTSI is in main storage, the pro-
cessor retrieves the untranslated page
address from the save area of the XTSI and
calls the Find Page subroutine. Find Page
computes the address of the page-table
entry and returns it and a condition code
to the processor. -

If the segment is not variable length,

and the condition code indicates that the
page table entry is not assigned, an inter-

40

ruption is queued on the task's TSI (code
5).

For an unassigned page in a variable
length segment, the processor sets up para-
meters and exits to Add Pages or Add Shared
Pages to dynamically expand the variable
length page table.

If the subroutine returns a condition
code indicating that the page is available
in virtuval storage, the processor deter-
mines the number of read operations that
have been performed for the task during its
current time slice. If the maximum number
of allowed read operations has been per-
formed, the processor specifies a forced-
time-slice-end in the GQE, and calls the
Enqueue GQE subroutine to queue the GQE on
the Timer Interrupt Queue processor's
queue. When control returns, the field,
SSTPLT, in the system statistical table is
increased. PIP exits to the Queue Scanner.

If the maximum number of reads has not
been performed for a task, the processor
determines whether the addressed page is
shared. If not, the processor sets up for
a page-read operation by:

¢ Requesting PCB storage space from the
Supervisor Core Allocation subroutine.

¢ Setting up a PCB with the segment and
page numbers.

e Updating the GQE with information
relating to the new PCB.

¢ Modifying Loc-on-Q in the GQE to requ-
est user storage space for the
addressed page.

e If an external read is required, a GQE
is set up for entry on the appropriate
device queue.

e Calling the Engqueue GQE subroutine to
place the new GQE on the scan table
queue of the User Core Allocation Queue
Processor.

e Exiting to the Queue Scanner when
Enqueue returns control.

1f a shared page has been requested, the
processor locks the sharing lock, locates
the external-shared-page-table entry and
determines whether the requested page is
being moved into main storage. If so, the
processor queues the GQE to the XSPT by:

e Turning on the GQE's pdge-in flag.

. Ad)ustlng the approprlate GQE chain
fields in the XSPT.

¢ Updating pointer fields in the GQE.

¢ Updating TSI ‘page I/0 count' and ‘page
wait' fields.

When this processing is accomplished, the
processor unlocks the sharing and TSI locks
and exits to the Queue Scanner.

If the shared page is not being brought
into main storage, the processor determines
whether the requested page is being
released from main storage. If so, the
processor turns on the available flag in
the page table, and queues the GQE on the
XSPT as described previously. If the page
is not being released, the processor per-
forms the processing to initiate a page-
read operation as described previously
(sets up a PCB, etc.).

1/0 Device Queue Processor (CEAA3) Chart AH

The function of the 1I/0 Device Queue
Processor is to process GQEs representing
I/0 requests. It services all of the
device queues on the scan table, with the
exception of paging drum queues.

Entry: CEAA3l.

Modules Called: Pathfinding subroutine
(CEAAS) this subroutine is entered at
CEAASP to obtain the actual path to a
device. The Reverse Pathfinding portion
(entry at CEAASR) is entered to free
assigned device paths.

Set Suppress Flag subroutine (CEAJQ
entered at CEAJSF) sets the appropriate
flag in the I/0 device queue processor's
scan table queue.

Dequeue GQE subroutine (CEAJQ entered at
CEAJDE) removes GQE pointers from the spec-
ified queues.

Queue GQE on TSI subroutine (CEAAF)
places a pointer to the specified GQE on
the interruption queue in the affected
task's TsSI.

Supervisor Core Allocation subroutine
(CEAL1 entered at CEALO1) reserves main
storage for the use of the Generate and
Tnqueue Interrupt GQE subroutine and the
Deyueue I/0 Requests subroutine.

Dequeue I/0 Requests subroutine (CEAAJ)
removes GQEs in a device queue for a parti-
cular task and device.

Supervisor Core Release subroutine
(CEAL1 entered at CEALO2) releases main
storage after use.

Halt I/0 subroutine (CEAAI) stops any
170 operation being performed on a speci-
fied path.

Paging I/0 Error Recovery Control sub-
routine (CEAAM) attempts to recover and
retry when no path can be found to a speci-
fied device on a paging request.

Start I/0 subroutine (CEAAG) initiates
an I/0 operation across a specified path.

Generate and Enqueue Interruption GQE
subroutine (CEABQ) generates and enqueues
an interruption GQE when a condition code
of 1 is returned in response to a start,
halt, or test-I/O attempt and status is
stored for a device other than the one
addressed (that is, interruption code also
stored).

Command Word Relocator subroutine
(CEARA) performs the operations required to
relocate the channel-command word (CCW)
addresses. ’

Page direct access subprocessor (CEAA6)
builds a channel program to handle requests
for paging operations on a direct access
device. '

Page Direct Access Interrupt Subproces-
sor (CEAA7) services interruptions occur-
ring on direct access paging device.

Move GQE subroutine (CEAJQ entered at
CEAJMG) determines whether further proces-
sing is specified by the GQE and either
moves the GQE to another processor's queue
or releases the space it occupies.

Exit: To Queue Scanner.

Operation: The appropriate scan table
entry will have its lock byte (SCNF3LOK)
set upon entry by the SETLOCK macro. If
the GQE is moved or otherwise done away
with, the pointer to the scan entry is
saved. The SCNF3LOK is reset upon exit by
way of the OPENLOCK macro.

Normally, only the symbolic device
address is supplied, and any path available
may be used for access to the device. 1If,
however, the routine was reentered because
of a paging error (GQEPE on), or to sense
the device, the path already specified is
reused. The user may also specify a path
in the IORCB.

In all cases, Pathfinding is called on
entry to this routine, either to locate a
path or to determine if the path specified
is available.

'If Pathfinding indicates ‘path unavail-

able', the GQE is checked to see if it is
for a paging operation. For paging opera-

Section 3: Program Organization 41

t;ons, the Paging I/0 Error Recovery rou-
tine (CERAM) is called. On return, exit is
to the Queue Scanner.

If the Halt I/0 subroutine indicates
that its operation was unsuccessful, the
I/0 Device Queue Processor checks for the

following conditions and takes the indi-

For other than paging operations, ‘no
.path available' is set in the IORCB, and
exit is to the Queue Scanner. 1.

When Pathfinding indicates an ‘available
path', the I/0 Device Queue Processor
checks for the following conditions and
performs the appropriate processing
described in the following pages:

¢ Paging Request (GQERC off)

s Sense Request (GQEWS on)

e Halt I/0 Request (IORHI on) 3.
¢ User i/O Request

PAGING: If either the paging error (GQEPE)

or paging interrupt (GQEIP) flag is on, the
Paging Direct Access Interrupt Processor

(CEAA7) is called. Otherwise, the Paging

Direct Access Queue Processor (CEAA6) is

called. On return, in either case, exit is 4.
to the Queue Scanner.

SENSE REQUEST: Start I/0 is called to 5.
execute sense. If failure on sense is

indicated by Start I/0, the operation is

retried 512 times. If the failure is due

to the control unit being busy, Set Sup- 6.
press Flags is called to turn on the DIG

busy flag, the path is freed via Reverse
Pathfinding, and exit is to the Queue

Scanner. For all other failures, this
subroutine:

1. Suppresses the device via a call to
CEAAD.

2. Dequeues all I/0 for this task for
this device by calling CEAAJ.

3. Exits to the Queue Scanner. If the
failure on sense is corrected by the
retry procedure or did not exist, Set
Suppress Flags sets the F1 flag on,
and exit is to the Queue Scanner.

HALT I/O REQUEST: The GQEHI flag is

checked. If on, this indicates a success-

ful Halt I/0 and the IORCB has a CCW list

to be started. (A user may not request a 8.
Halt I/0 alone. The request must include a
request for an I/0 channel program to be

started after the Halt 1I/0 is completed.)
Therefore, when GQEHI is on, Halt I/0 pro- 9.
cessing is skipped and processing continues

as described for USER 1I/0 REQUEST, below.

When GQEHI is off, the Halt I/0 subrou-
tine is called. If the Halt I/0 operation
is successful, processing continues as
described in USER 1I/0 REQUEST, below.

42

cated actions:

Status Not for Addressed Device -- A
CE/DE is simulated by calling the Gen-
erate and Enqueue Interrupt GQE sub-
routine. (The GQE is put on the Chan-
nel Interrupt Processor's queue.)

Halt I/0 is retried.

Unit Check or Unit Exception -- Halt
I/0 failure is indicated by turning on
the IORBH flag. A sense operation is
then performed.

Busy on Halt 1/0 (cC=2) -- If a multi-
plexor channel is involved, a minor
system error is ceclared. On return,
or if not a multiplexer channel, the
await device end flag (GQEDE) and
GQEHI are turned on. Set Suppress
Flags is called to turn on Fl1. On
return, exit is to the Queue Scanner.

Non-Operational Device on Test I/0 or
Halt I/0 -- Halt I/O is retried.

Status Modifier Bit on in Stored CSW
in 2nd TIO -- User 1/0 initiation is
performed.

Status Modifier Only in Stored CSW on
Halt I/0 -~ If the return code from
Halt I/0 indicates Test 1/0 was issued
twice, GQEDE and GQEHI are turned on.
Set Suppress Flags is called to turn
on F1, and exit is to the Queue Scann-
er. Otherwise, user I/0 initiation
processing is invoked.

Status Modifier and Busy in Stored CSW
on Halt I/0 -- if the user has pro-
vided a Halt I/O retry counter
(IORHF+#0) it is decremented. The
entire path is freed via Reverse Path-
finding. Set Suppress Flags is called
to set the DIG busy flag on and exit
is to the Queue Scanner. When IORHF=
0, it is set to one, indicating Halt
I/0 failure, and a sense operation is

performed. If Halt I/0 retry has been
requested, it is retried.

Device End Only in CSW Stored by Halt
1/0 or Test I/0 -- User I/0 is
initiated.

CE Only and Control Unit End in Stored
CSW from Halt I/0 or Test 1/0 -- ‘
Reverse Pathfinding is called to free
the control unit and channel. If
GQEHI is not on, GQEDE and GQEHI are
turned on. Set Suppress Flags is
called to turn on F1, and exit is to
the Queue Scanner. .

10. CE End Only in Stored CSW From Halt
I/0 or Test I/0 -- The Test I/0 is
reissued. If the CSW was not stored,
the channel is freed by calling
Reverse Pathfinding. If GQEHI is off,
it and GQEDE are turned on. The F1
flag is set via Set Suppress Flags and
exit is to the Queue Scanner.

If the reissued Test 1I/0 results in a
stored CSW with unit check or unit
exception, GQEHI is checked. If off,
Halt 170 is retried. If on, the path
is freed, the GQE is dequeued via
CEAJDE and exit is to the Queue Scann-
er with the queue unsuppressed. If
the CSW shows device end, a CE/DE is
simulated via CEABQ. If GQEHI is off,
it and GQEDE are turned on. The F1
suppress flag is turned on, and exit
is to the Queue Scanner. If the CSW
shows control unit end, the channel
and control unit are freed. GQEHI, if
off, is turned on as is GQEDE. The F1
flag is set and exit is to the Queue
Scanner.

11. All other Errors =-- Halt I/0 is
retried.

Note: Halt I/O Retry, where indicated
above, is performed a maximum of 17 times.
If still failing, the entire path is freed
via Reverse Pathfinding. The GQE is
dequeued via Dequeue GQE subroutine, and
exit is to the Queue Scanner with the queue
unsuppressed.

USER I1I/0 REQUEST (User I/0 Initiation):

The CCW list addresses are translated into
real core addresses by calling the Command
Word Relocator subroutine. If the return
code indicates failure to tramnslate, the
entire path is freed by a call to Reverse
Pathfinding. The GQE is dequeued, and exit
is to the Queue Scanner with the queue
unsuppressed. Otherwise, the Start I/0
subroutine (CEAAG) is then used to initiate
the channel program in the IORCB.

If the SIO is successful, the IORBP flag
is checked to determine if the user has
requested a PCI. If yes, a CE/DE/PCI is
simulated by calling the Generate and
Engueue Interruption subroutine. On
return, GQEHI is set on. Set Suppress .
Flags is called to turn the F1 flag on and
exit is to the Queue Scanner.

If IORBP is off, then the status
returned from Start I/0 is checked. If
Start I/0 is all right for disk, no further
check is made. Otherwise, a CE/DE causes a
simulated interrupt via calling CEABQ. The
GQEHI and GQEDE flags are turned on. The
F1 suppress flag is turned on and exit is
to the Queue Scanner.

Channel end only is processed as for
Halt I/0 with one exception: The user has
provided a channel program for the disk
containing a SEEK CCW as the first channel
command that is not chained to the next
CCW. If in this situation, software chain-
ing is requested (IORSC on), a CE only
requires a call to CEABQ to simulate CE/DE.
Then, the channel only is freed; GQEHI and
GQEDE are turned on; Fl1 is set on, and exit
is to the Queue Scanner. In all other
cases, successful I/0 initiation will cause
the call to CEABQ and the channel freeing
steps to be skipped.

Unsuccessful Start I/0 situations are
handled as described below:

1. control Unit Busy -- If the device is
a 2314 and the user has provided a
retry count, the DIG busy flag is
turned on, and exit is to the Queue
Scanner.

If the device is not a 2314, the user
requests a retry by setting the IORRS
flag. This causes up to 512 retries
of the SI0. If retry is not
requested, or if unsuccessful, the
IORIB flag is turned on to inform the
user that SI0 failed. Then the path
is freed by calling Reverse Pathfind-
ing; the GQE is dequeued; and exit is
to the Queue Scanner with the gueue
unsuppressed.

2. Unit Exception -- The IORIB flag is
turned on and the sense operation is
performed.

3. All other Cases of SIO Failure -- The
IORIB flag is turned on; the path is
freed; the GQE is dequeued; and exit
is to the Queue Scanner with the queue
unsuppressed.

Page Direct Access Interrupt Subprocessor
(CEAA7) Chart AK

This subprocessor answers a call result-
ing from the interruption of a paging
operation on a direct access device. It
also collects and stores in the system sta-
tistical table (CHASST) the number of reads
and writes, for both private and shared
pages, processed for each disk device.

Entry: CEAAT71

Modules Called: Supervisor Core Release
subroutine (CEAL1l entered at CEALO2)
releases main storage after use.

User Core Release subroutine (CEAL1
entered at CEALOU4) releases a written main
storage block.

Section 3: Program Organization 43

Page Posting subroutine (CEAMP) updates
the TSI and the XTSI pages.

Start I/0 subroutine (CEAAG) issues the
_Start 1I/0 command for all calling programs.

Dequeue GQE subroutine (CEAJQ entered at
CEAJDE) removes a posted GQE.

Set Suppress Flags subroutine (CEAJQ
entered at CEAJSF) resets the suppression
flag after the successful start of I/O.

Page 1/0 Error Recovery subroutine
(CEAAM) initiates retry procedures.

Generate and Enqueue Interrupt GQE sub-
routine (CEABQ) generates and queues an
interruption GQE when an attempt to start
I/70 fails.

Pathfinding subroutine (CEAA5) frees the
assigned device path.

Exits:
Normal - To Queue Scanner.

Error - To System Error Processor.
Operation: Prior to entry to this subpro-
cessor, the affected device queue scan
table entry lock byte (SCNF3LOK) is locked
to preserve its integrity in a duplex
environment.

Oon entry, the subprocessor expects to
find a pointer to the original paging re-
quest GQE in a general register. The sub-
processor stores the pointer, and then
accesses the GQE to which it points to
obtain the following:

s The related channel status word.

» The pointer to the direct access inter-
face block (DAIB).

The subprocessor tests the GQE's ‘waiting
on sense' flag to determine whether the
present interruption is caused by a delay
in the return of a sense operation. If so,
the Page I/0 Error Recovery subroutine is
called to retry the start-I1/0 operation.

If the retry is successful, the Page I1I/0
Error Recovery subroutine returns control
to this subprocessor.

If the ‘waiting on sense' flag is off,
the subprocessor inspects the channel-
status word for a unit-check indicator.
When a unit-check is indicated, the GQE
‘waiting on sense' flag is set in the
device GQOE and a sense-channel-command word
is built in the DAIB to sense into the ori-
ginal device-GQE-sense area. The sense-
command-channel-address word and physical-
device address are passed to the Start I1I/0

4y

subroutine where the start-I/0 instruction
is executed.

The Start I1/0 operation will return one
of five codes indicating the results of its
operation. These codes and the subsequent
action taken by the subprocessor are as
follows:

e Start I/0 is successful, the channel
program is in execution. The Set Sup-
press Flags subroutine is called to
reset the suppress flag and, upon
return, the subprocessor exits to the
Queue Scanner.

e The selected channel is defective. The

subprocessor exits to the Paging 1I/0

Error Recovery Control subroutine in an

effort to recover from the error.

e The control unit is busy. The opera-
tion is retried 256 times. If the
operation is still not successful, an
exit is made to the Paging 1I/0 Error
Recovery Control subroutine in an
effort to recover from the error.

e Status was stored for the selected
device. An interruption GQE is built
and queued on the channel interruption
queue in the TSI. The subprocessor
then exits to the Queue Scanner.

* Solid start 1I/0 failure. The sub-
processor exits to the Paging I/0 Error
Recovery Control subroutine in an
effort to recover from the error.

When device-end is indicated in the
channel-status word, normal posting action
is also initiated. Any interrupts that are
not a result of a device-end, device-end/
channel-end, or unit-check condition will
cause a linkage to the Paging I/0 Error
Recovery Control subroutine except for
channel end or control unit end only condi-
tions (or both, in combination) which cause
an exit to the Queue Scanner. The follow-
ing steps constitute a normal posting
procedure:

e The first seek flag in the DAIB-entry
header is examined to determine if this

. is the first interruption of the chan-

nel program. If it is on, all further
posting action is bypassed and I/0 is
started on the next channel command
word contained in the DAIB. When the
interruption is the result of the first
seek of the next-page operation (com-
mand chained to the previous-page
operation) or the result of the last
read or write of the channel program
sequence, processing continues with the
next step.

e The PCBE is located by using the con-

tents of the DAIB-entry-interruption
pointer, and the DAIB entry itself.

By checking the readswrite flag in the
page-control block it can be determined
whether or not to bypass the release of
the main storage page.

When the PCBE indicates a write opera-

tion, the PCBE pointer and control are -

passed to the User Core Release subrou-
tine to release the main storage page
referred to by the PCBE. The system-
page-write-pending count, contained in

_the system table, is lowered by one.

This operation is interlocked against
simultaneous updating by setting the
system table's lock byte. If the pend-
ing count goes to zero before it is
lowered a major system error is
recognized.

When the PCBE indicates either a read
or write operation the PCBE pointer is
passed to the Page Posting subroutine,
which updates the correct page tables.

The 'PCB page I/0 complete' flag is set
to indicate the completion of a suc-

- cessful paging operation.

The exit switch is checked to determine
if this is the end of the channel pro-
gram. If on, the following operations
are initiated to purge the DAIB and
paging GQE:

1) The pointer to the DAIB and the size
of the DAIB are retrieved from the
GQE and passed to the Supervisor
Core Release subroutine.

2) The pointer to the GQE is passed to
the Dequeue GQE subroutine to
dequeue the GQE from the device
queue.

3) The pointer to the GQE is then
passed to the Move GQE subroutine to
release the main storage space occu-
pied by the GOE and its PCB.

4) The path that was used for the pag-
ing operation is released by calling
the Reverse Pathfinding subroutine
and, upon return, an exit is made to
the Queue Scanner.

When the exit switch is not set the
DAIB entry interruption pointer is

advanced to the next entry and the DAIB

entry count is decremented by one. A
check is made to see if all PCBEs are
posted for this channel program seg-
ment. (Note: For a discussion of
channel program segment, refer to the
section on the Page Direct Access Queue

processor.) If not, control is
returned to the normal posting proce-
dure, described above, so that the next
PCBE can be posted.

When all PCBEs are posted for a given
channel program segment, processing is
initiated for the next channel program
segment.

The channel address word and the physic-
al device address, which are picked up from
the GQE, are passed to the Start 1/0 sub-
routine, which executes the start-1/0
instruction. If the operation is initiated
and the channel is proceeding with its
execution, the Set Suppress Flags subrou-
tine is called to set the F1 suppress flag,
and control is returned to the Queue
Scanner.

When the start-I/0 instruction responds
with a condition code other than zero the
same action will be taken as outlined above
for the initiation of the sense operation
after a unit check occurs.

When the processor calls Locate Page, it
first sets the task lock in the system
table. If the page is shared, the sharing
lock in the system table must also be set
and reset.

When the page write pending count in the
system table is to be updated, the proces-
sor must first set the system table lock
and then reset it after the update
processing.

Similarly, when Page Posting is called,
the TSI lock must be set before the call
and reset on return. The SCNF3LOK lock
byte will be reset using the OPENLOCK macro
prior to exiting to the Queue Scanner.

Page Direct Access Queue Subprocessor
(CEAA6) Chart AIX

The Page Direct Access Queue Processor
(PDAQ) builds a channel program to handle
the paging operations specified by the page
control block pointed to by the first entry
in the device queue.

Entry: CEARG61L

Hardware Confiquration Requirements: The
only paging devices supported by this pro-
cessor are those devices that can be
attached to the IBM 2841 and 2820 storage
control units.

Modules Called: Supervisor Core Allocation
subroutine (CEALl1 entered at CEALO1)
reserves main storage for the direct-
access-interface blocks.

Section 3: Program Organization 45

Start-1I/0 subroutine (CEAAG) issues the
start-I/0 instruction for the processor.

External Page Location Address Transla-
tion subroutine (CEAAE) translates a two-
byte page-number field of a four-byte sym-
bolic address into the physical I/0 device
address required by a seek or search chan-
nel command word.

Set Suppress Flag subroutine (CEAJQ
entered at CEAJSF) sets the suppress flag
in the device queue.

Paging I/0 Error Recovery subroutine
(CEAAM) initiates retry procedures.

Generate and Enqueue Interrupt GQE sub-
routine (CEABQ) generates and queues an
interrupt GQE when -the Start I/0 subroutine
returns an indication that it has failed.

Reverse Pathfinding subroutine (CEAASR)
frees the channel and the control unit
after an 1I/0 operation has been started on
a disk.

Exits:
Normal - To Queue Scanner.

Exrror - To System Error Processor.
Operation: The affected device queue scan
table entry lock byte (SCNF3LOK) has been
locked prior to entry into this subproces-
sor to preserve its integrity in a duplex
environment.

On entry, the PDAQ processor calculates
the storage space required for a direct
access interface block (DAIB) in which to
store the necessary interface data for
transferring pages between the direct-
access device and main storage. The DAIB
is a resident, private table which inter-
faces between the PDAQ processor and the
Page Direct Access Interrupt subroutine and
exists only during the life of a paging
operation. The maximum size of a DAIB is
one page in length (4,096 bytes). For each
DAIB, the processor requires a 32-byte DAIB
header, a 64-byte general register save
area, and a 16-byte DAIBE header. Addi-
tional storage requirements are calculated
by using the PCBE count field in the GQE as
a factor, as follows: . :

¢ An 8-byte seek-and-search-argument
table for each PCBE.

e A 40-byte area for each read or write
channel program to be constructed.

e A 72-byte field for each write-with-

read-back-check channel program to be
constructed.

46

Device GQE

)) 3 I J
¢ = {
DAlB DAIB PC8 PC8E
Extent Pointer Pointer Count
- —

GOEIOR GQESAT GQEPCSB GQECNT

|

A

Direct Access Interface Block Page Control Block

PCBE 1

I {
)L
¢

GQE Pointer (DAIGQE) p

PCBE 1 POINTER (DAIPCB)

PCBE

PCBE n Pointer (DAIPCN)

Figure 15. PDAQ Processor cross-
referencing between the GQE,

PCB, and the DAIB

When the space has been calculated, the
processor specifies the requirement to the
Supervisor Core Allocation subroutine, to
which control is transferred. When storage
is allocated, the PDAQ processor cross-
references it in both the GQE and in the
PCB as illustrated in Figure 15.

The PDAQ processor then selects the
first PCBE for processing. The PCB's
bypass and null flags are tested, and if
either is on, the processor skips this re-
quest and initiates the processing of the
next PCBE. If neither flag is on, the pro-
cessor calls the External Page lLocation
Address Translator subroutine to translate
the page address to a physical address.
When control returns, the processor stores
the returned address in the DAIB (that is,
sets up a seek-argument table entry) and
sets up the following in the first DAIBE
space:

¢ The initial seek channel command word
(nonchained), and the second seek CCW
(command chained).

¢ The search CCW (command chained).
e The transfer in channel CCW.

The processor determines whether a read or
write operation is to be performed. If the
operation is a read, the processor sets up
a read CCW entry for the DAIBE.

If a write operation is specified, the
processor determines whether a write-check
is specified. 1If not, the processor sets
up a write-CCW for the DAIBE. If a write-
check is specified, the processor sets up
the same set of CCWs described above, and
the following additional CCWs:

e Seek (chained immediately to the fol-
lowing search). . ..

e Search.
¢ Transfer in channel (TIC).
e Read Skip (that is, write check).

In either of the above cases, the first
seek CCW generated is not command chained
to the second seek CCWH. This allows the
channel to be released early so that other
outstanding I/70 requests on different con-
trol units may be fulfilled by additional
devices attached to the channel. The
second seek is used to set up control unit
registers to effect chaining to the next
CCW (the search CCW).

In the case of the write operation with
a write-check specification, the third seek
CCW repositions the head when a page over-
flows from one track to the next. The
third seek CCW is immediately command
chained to the subsequent search CCHW.

When the above processing has been com-
pleted, the processor places a PCBE pointer
to the paging operation in the DAIB entry
header so that the Page Direct Access
Interrupt (PDAI) subroutine may match the
page-operation-interrupt GQE against the
PCBE that initiated the paging operation.

The processor constructs a DAIB entry
header for each DAIB. The processor
initializes the pointer to the first DAIB
entry, and sets on the first-seek flag to
differentiate between the first and subse-
quent seek operations. That is, to specify
the following to the PDAI subroutine:

s No posting action is required.

e The start-I/0 operation on the next CCW
is to be initiated.

The channel address word (CAW) and the
physical address of the device are passed
to the Start-1I/70 subroutine together with
an indicator that the call is to start 1/0
on a disk. The Start I/0 routine issues
the start-1I/0 instruction. A return bit-
flag from Start-I/0 is tested. If it is
off, the control unit end condition is set
in the status bits and Reverse Pathfinding
is called to free the channel and control
unit.

Upon return from Reverse Pathfinding or
if the bit flag was on, the start I/0
operation will also return one of five
codes indicating the results of its opera-
tion. These codes and the subsequent
action taken by the subprocessor are as
follows:

e Start I/0 is successful, the channel
program is in execution. The Set Sup-
press Flags subroutine is called to set
the suppress flag and, upon return, the
SCNF3LOK lock byte is reset by the
OPENLOCK macro prior to exiting to the
Queue Scanner.

e The selected channel is defective. The
subprocessor exits to the Paging I/0
Error Recovery Control subroutine in an
effort to recover from the error.

e The control unit is busy. The opera-
tion is retried 256 times. If the
operation is still not successful, an
exit is made to the Paging I/0 Error
Recovery Control subroutine in an
effort to recover from the error.

e Status was stored for the selected
device. An interruption GQE is built
and queued on the channel interruption
queue in SCANT. The SCNF3LOK lock byte
is reset by the OPENLOCK macro prior to
exiting to the Queue Scanner.

e Solid start 170 failure. The sub-~
processor exits to the Paging I/0 Error
Recovery Control subroutine in an
effort to recover from the error.

e For each start 1/0 attempt that has
failed due to a busy return, the PDAQ
processor sets the appropriate lock in
the system table, updates the count of
start 170 failures, and resets the sys-
tem table lock.

Channel Interrupt Queue Processor (CEAAY)
Chart AK

The functions of the Channel Interrupt
Queue Processor (CIP) are to:

e Recognize terminal I/0 interruptions
that are to be processed by the Termin-
al Ccommunications Subprocessor (CEATC)
and call that processor to handle them.

e Iocate the request GQE which initiated
the 170 operation, and perform the
required functions of freeing devices,
freeing channels, freeing the control
unit, paging operations, or I/0 opera-
tions; and recognize and process synch-
ronous interruptions (that is, inter-
ruptions represented by active 170 re-
quest GQEs pointed to by the correct
device queue entry).

* Recognize valid asynchronous interrup-
tions and distinguish between the ini-
tial and subsequent asynchronous inter-
ruptions so that each is processed pro-
perly, and inform the affected tasks of
the occurrence of the interruptions.

Section 3: Program Organization 47

Entries:

CEAA41 - by the Queue Scanner.

CEAA42 - to perform the locate-page
function

CEAA43 - to decrement page hold counters.

Modules Called: Supervisor Core Release
subroutine (CEAL1 entered at CEALO2)
releases main storage occupied by work
areas.

Terminal Communications Subprocessor
(CEATC entered and CEATC1l) is called to
process I/0 interrupts from terminal
devices operating under RTAM or MTT.

Pathfinding subroutine (CEAASR) trans-
lates the actual path address into a sym-
bolic address and releases a path or a por-
tion of a path.

Move GQE subroutine (CEAJQ entered at
CEAJMG) determines whether further proces-
sing is specified by the GQE and either
moves it to another processor's queue or
releases the space it occupies as well as
the space occupied by any associated PCBs.

Task Initiation subroutine (CEAMC) sets
up a new TSI to initiate a new task.

Dequeue GQE subroutine (CEAJQ entered at
CEAJDE) removes GQEs from the scan table.

" Queue GQE on TSI subroutine (CEAAF
entered at CEAAFQ) queues the specified GQE
on the task's TSI interruption queue.

Generate and Enqueue Interrupt GQE sub-
routine (CEABQ) generates a GQE and puts it
back on CIP's queue to simulate a CE/DE.

Set Suppress Flag subroutine (CEAJQ
entered at CEAJSF) sets the suppress flag
in the processor's scan table queue.

Dequeue I/0 requests subroutine (CEAAJ)
returns I/0 requests for a device to the
virtual storage routine.

Remote Job Entry (RJE) Asynchronous I/0
Interrupt subroutine (CEABA) processes
asynchronous interruptions from RJE
devices.

Remote Job Entry (RJE) Synchronous 1/0
Exrror Interrupt subroutine (CEABB) pro-
cesses synchronous I/0 error interruptions
from RJE devices.

Remove Device From Task Processor
(CEAAD) removes from or suppresses a sym-
bolic device in the task-symbolic-device
list.

48

Locate Page subroutine (CERML) provides
the location of any page-table entry or
external-page table entry.

Exits:

Normal - To Queue Scanner. Normal exit may
also be made to the I/0 Device Queue Pro-
cessor (CEARA3) after a return from the
sense operation.

For immediate sense - To I/0 Device Queue
P:ocessor.

Operation: The Channel Interrupt Queue
processor receives hardware I/0 interrup-
tions and performs the following:

* Provides preliminary processing for
paging-interruptions from direct access
paging devices other than drums.

¢ Queues task I/0 interruptions.
s Invokes task initiation.

¢ Releases data paths (or parts of paths)
to which ending interruptions apply.

e Automatically invokes sense procedures
under device failure conditions.

¢ Provides special processing when
requested in IORCB.

On entry, the processor establishes its
base register and calls the Set Suppress
Flag subroutine to set on the suppress flag
in the CIP scan table entry to lock out the
Queue Scanner. The processor then pro-
cesses all GQE's pointed to by the entries
in its queue before returning control to
the Queue Scanner.

The first step in processing a GQE is to
test its channel status word (CSW). If the
value of the status bits in the CSW is
zero, there is no work for CIP to do.
Hence, the Move GQE subroutine is called to
remove the GQE pointer from the Channel
Interrupt Queue Processor's queue. The
processor then selects the next GQE for
processing.

The processor determines the interrup-
tion source by calling the Pathfinding sub-
routine to translate the actual path
address of the device to its symbolic
device address. When control returns to
the Channel Interrupt Queue processor, a
check is made to determine whether the
actual path was successfully translated.

If not, the processor reports an error to
SYSERR. When control returns to the pro-
cessor the Move GQE subroutine is called as
described above and processing continues
with the next GQE. :

When the CSW value is nonzero, CIP
checks to see if the deévice is a terminal
under control of RTAM or MIT (DEVRT or
DEVMT on in the device group table). In
this case, a 64 byte save area is requested
from Supervisor Core Allocation and its
address is passed to the Terminal Communi-
cations Subprocessor (CEATC) along with
pointers to the device group table, the
asynchronous entry (if applicable), and the
interrupt GQE.

When the actual path is successfully
converted to a system symbolic device
address, the return parameters, passed to
the Channel Interrupt Queue processor by
the Pathfinding subroutine, are saved in
the interrupt GQE. The system symbolic
device address is saved in GQEDEV and the
device type is saved in GQEDT.

At this juncture, the processor deter-
mines whether the I/0 interruption is syn-
chronous (has an associated request GQE in
a device queue) or is asynchronous (no re-
quest GQE exists). To locate the correct
device queue GQE, the processor converts
the system-symbolic-device address to a
scan-table-entry pointer. This is accomp-
lished by multiplying the system-symbolic
device address by sixteen and then adding
the beginning address of the scan table to
the result. If the scan-table-entry speci-
fied by the calculated pointer has work in
queue that is marked as busy, the interrupt
GQE is classified as synchronous. When the
processor has determined that the interrupt
GQE is synchronous, the scan table entry
lock byte (SCNF3LOK) is set using the SET-
LOCK macro. This lock byte ensures that no
other supervisor processor will operate on
the associated entry in a duplex environ-
ment until the lock has been reset upon
exit from this processor. An interruption
is synchronous if its associated scan-
table-device-queue entry has both its work-
in-queue and Fl-suppress flags on. If the
DIG busy flag is on, the 1I/0 Device Queue
Processor (CEAA3) is involved in retrying
I/0. The path to the device is freed via
Reverse Pathfinding (CEAASR), the DIG busy
flag is turned off, and the interrupt GQE
is discarded. When the device queue has no
pending request GQE, the interrupt GQE is
classified as asynchronous.

Processor activities in processing these

two types of interruptions are described on
the following pages.

ASYNCHRONOUS-INTERRUPTION PROCESSING: The

first step in asynchronous-interruption
processing is to test the CSW in the GQE
for one of the following:

e An attention indicator only on.

® Channel-end/device-end indicators only
on.

¢ Channel-ends/device-end/unit-exception
indicators only on.

e Device end only.

If none of these indicators are on, the
processor calls SYSERR, and then calls the
Move GQE subroutine to dequeue the GQE from
the CIP*'s queue as described earlier. If
the CSW contains one of these indicators,
the processor checks the device group table
to see if a TSI pointer exists for an
interruption. If one does, it is checked
to see if it equals X'00000003°'. 1If it
does, this identifies the asynchronous
interruption for the master system program-
mer's task. CIP then enters the RSS module
at the “activate RSS because of MSP atten-
tion" entry point after destroying the
interrupt GOE and turning off the F4§ sup-
press flag.

The table is checked to see if a task is
to be created for the first occurrence of
an asynchronous interruption on the device
in question. If this is the case, the
channel interrupt processor calls the Task
Initiation subroutine which performs the
necessary processing to set up a TSI. When
control is returned, the Channel Interrupt
Queue processor tests a return code regist-
er to determine whether the TSI was
created. If not, the user's line must be
reenabled so that he can be reconnected to
the system when it is able to accept him.

A hardware error could prevent reenabling
the line. The GQE is deleted and the next
GQE is selected for processing.

If a task was successfully initiated, or
if one existed initially, the CIP's GQE is
dequeued from the interruption queue and
queued on the appropriate TSI's interrup-
tion queue. The dequeueing is effected by
calling the Dequeue GQE subroutine. When
control returns to CIP, the queue GQE on
TSI subroutine is called to queue the GQE
on the TSI's interruption queue. The next
GQE is then selected for processing by CIP.

SYNCHRONOUS-INTERRUPTION PROCESSING: - When
an interruption is classified as synchro-
nous, the processor first frees the device
and then processes the paging or I/0
request.

Device Freeing: CIP tests the status
field of the interruption GQE to determine
whether there are any devices that must be
freed (that is, set to the non-busy state)
in ‘the pathfinding tables. If so, the pro-
cessor calls the Pathfinding subroutine.
Individual testing and processing activi-
ties are discussed below.

Section 3: Program Organization 49

If the GQE status signals a device-end
and/or device-failure without an associated
channel-end or channel-failure, the
control-unit-end flag in the GQE is tested.
If it is not on, the processor requests
that Pathfinding free the control unit and
the I/0 device. 1If the flag is on, a free-
device-only request is made to Pathfinding.

" When the GQE status signals both a
device-end/device-failure and a channel-
end/channel-failure, the processor requests
pathfinding to free all units (channel,
control unit, and device).

In each of the three cases described
above, the processor checks an addressing-
error indicator returned by Pathfinding.
If the indicator is on, SYSERR is called,
after which the processor dequeues the
interrupt GQE and processes the next
interruption.

If the GQE status field does not indic-
ate a device-end or failure condition, the
processor tests it for a control-unit-end
indicator. If only this indicator is on,
the processor requests that Pathfinding
free the channel and control unit. On
return from Pathfinding, the Channel Inter-
rupt Queue Processor determines whether a
device addressing error occurred. If so,
SYSERR is called. When control returns to
the processor, Move GQE is called to remove
the GQE from the CIP's queue. When control
returns to the Channel Interrupt Queue Pro-
cessor, the next GQE is selected for
processing.

If none of the conditions described pre-
viously exists, the processor checks for a
channel-end-only indicator in the status
field. If this indicator is on, and the
device is a disk, the channel and control
unit are freed. After they are freed, or
if the device was not a disk, the processor
issues a test-I/0 instruction with I/0
interruptions inhibited. The processor
then determines whether status was stored
as a result of the test~-I/0 operation. If
not, the processor issues a free channel
and control unit request to the Pathfinding
subroutine. If Pathfinding returns a
device addressing error indicator, the pro-
cessor calls SYSERR and performs the pro-
cessing described for the control-unit-end-
only condition.

If status was stored in response to the
test-I/0 operation, the processor deter-
mines whether status was stored for a
device other than the one addressed. If
SO, a new interruption GQE must be
generated and queued on the CIP's gueue.

In order to accomplish this, the processor
requests GQE-storage from Supervisor Core
Allocation and, on return, calls the Gener-
ate and Enqueue Interrupt GQE subroutine.

50

The subroutine generates a new GQE and
queues it at the end of the CIP's queue.
When this is accomplished and control
returns to the Channel Interrupt Queue Pro-
cessor, the Supervisor Core Release subrou-
tine is called to release the original
GQE's space, and the next GQE is selected’
for processing.

When the status is stored for the
addressed device, the new status is OR'ed
into the CIP's GQE status field, and the
Channel Interrupt Queue Processor checks
the new status for a channel-end-only indi-
cator or all zeros. If either condition is
indicated, the processor calls the Path-
finding subroutine to free the channel
only, and perform subsequent processing as
described in the case where test-I/O opera-
tion did not store status.

When the new status contains neither a
channel-end-only indicator nor all zeros,
CIP ORs in the additional status and begins
again at device freeing.

When the original GQE status field did
not indicate a channel-end-only condition,
the Channel Interrupt Queue Processor tests
the status field for channel-and-control-
unit-end only indicators. If only these
indicators are on, the Channel Interrupt
Queue Processor saves the channel-command-
word address in the device gqueue GQE, and
requests that Pathfinding free the channel
and the control unit. The subsequent pro-
cessing is the same as that described above
for freeing a control-unit-only. 1If the
channel and control-unit-end indicators are
not the only ones and none of the other
previously described combinations existed,
the processor assumes that the interruption
is not the result of an I/0-end condition,
and performs the paging operation checking
described in the following paragraphs.

Paging Operations: After freeing the
required devices, if any, the Channel
Interrupt Queue Processor determines wheth-
er a paging operation has been done. If
not, the Channel Interrupt Queue Processor
performs the I/O-operations procedure
described later. If a paging operation has
been done, the Channel Interrupt Queue Pro-
cessor moves the CSW from its GQOE to the
device queue's GQE. The device GQE's
await-sense flag is then tested. If await
sense or an error is found, CIP calls
CEAA31 directly with the GQE path error
flag (GQEPE) on. Otherwise, the paging
interrupt flag (GQEIP) is set in the re-
quest GQE, and the next GQE is processed.

I/0 Operations: If the GQE's IORCB flag
is on, one or more of the following non-
paging operations is performed:

s Return from sense.
¢ Normal end, which involves:
1) Software command chaining.

2) Lowering page-hold counters.

The processor's first step in performing
this processing is to check the GOE await-
sense flag. If the flag is on, the return
from sense processing, described in the
following paragraphs, is performed. If the
flag is not on, the normal-end processing,
described later, is entered.

The return-from-sense processing begins
by storing in the IORCB the sense status
information, and setting the sense-
condition code in the IORCB to zero. The
processor then tests the failure indicators
in the status field. If these indicators
are on, a sense operation has failed and
the processor determines whether the fail-
ing command was a sense CCW, a read-home-
address CCW, or a read-record zero CCW.

This is accomplished by comparing the
address for the next CCW which is stored in
the channel-status word against the address
of the sense command in the IORCB plus 8.
The sense command in the IORCB is always
located in a fixed position and therefore
its address can be calculated as the sum of
the IORCB pointer plus a constant. If the
two addresses match, the processor assumes
that it was the sense command that failed
and sets on the IORCB's sense-failed flag.
When the addresses do not match, the pro-
cessor assumes that the read HA or read RO
CCW failed. In this event, the IORCB's
read-RO-failed flag is turned on and, if
unit check or unit exception, the CCW list
is set to do sense only with read-in sup-
pressed. The device queue is unsuppressed
and the sense operation is performed to
clear the control unit.

»

At this point, or, if no sense-operation
failure was indicated, the Channel Inter-
rupt Queue Processor effects the dequeuing
of all GQE entries in the appropriate
device queue that point to the affected
task. This is accomplished by:

e Requesting work storage allocation from
the Supervisor Core Allocation
subroutine.

s Calling the Degqueue I/0 Requests sub-
routine, when storage is allocated, to
remove the queue entries from the
interruption queue and queue them on
the I/0 interruption queue.

e Requesting the release of the work
storage by calling Supervisor Core
Release.

When control returns, CIP resets the *scan
table suppress®' flag for the associated
device queue processor's queue. The Move
GQE subroutine is called to remove the
interrupt GQE's pointer from CIP's queue
and to release the storage space it occu-
pied. When the space has been released,
the SCNF3LOK lock byte is reset using the
OPENLOCK macro and control is then trans-
ferred to the I/0 Device Queue Processor
(CEAA3) with the affected device GQE
address in general register 1.

‘Normal-end processing is entered when
the GQE await-sense flag is off. The Chan-
nel Interrupt Queue Processor moves the
key, status, and count portion of the
interrupt GQE's CSW to the Device Queue
Processor's GQE. The Channel Interrupt
Queue Processor then tests the status indi-
cators in the CSW. If the device channel-
end-only indicator is present, the proces-
sor checks for the following:

e The absence of a ‘'software command
chain' flag and a ‘length of page list®
field of zero in the IORCB.

e A resetting of the GQE's dequeue flag.

If these conditions are met, the Channel
Interrupt Queue Processor calls the Dequeue
GQE subroutine to dequeue the GQEs from the
Device Queue Processor's queue and on
return from the Dequeue GQE subroutine
calls the Queue GQE on TSI subroutine to
queue the GQE on the TSI's interruption
queue. When control returns, the Channel
Interrupt Queue Processor calls the Move
GQE subroutine to remove the GQE pointer
from CIP's queue. When control returns to
the processor, the next GQE is selected for
processing.

If the *software command chain®' flag is
on, the Channel Interrupt Queue Processor
enters its chaining function.

If buffer pages are present in storage,
the processor decrements the page-hold
counters and the TSI I/0 counter as each
page hold counter goes to zero. Both of
these functions are described later in this
section.

If the GQE's ‘dequeune' flag is on, all
I/0 requests for the task must be dequeued
from the device queue processor's queue.
This is effected by calling the Dequeue 1/0
Requests subroutine as described previously
for the return-from-sense operation.

If the device-end-only indicator is on,
the processor checks the await-device-end

Section 3: Program Organization 51

flag. If it is off, the processor performs
the normal-end processing, described above,
for the device/channel-end-only condition.
If the 'await device end' flag 'is on, it is
turned off and the 'dequeue GQE' flag is
checked. If the flag is on, the Channel
Interrupt Queue Processor must suppress the
device's symbolic address entry in the
task-symbolic-device list (that is, the
malfunctioning device is interlocked
against any further parallel activity from
the task to the device). The Channel
Interrupt Queue Processor performs this
function by:

e Requesting work space from the Supervi-
sor Core Allocation subroutine.

e Calling the Remove Device From Task
subroutine, which suppresses the device
and returns control to the processor.

The Channel Interrupt Queue Processor then
calls the Dequeue I/0 Requests subroutine
to remove the I/0 GQEs for the affected
task from the device queue and put them on
the TSI interrupt queue. The work storage
is then released by calling the Supervisor
Core Release subroutine. When control
returns to the Channel Interrupt Queue Pro-
cessor, the Move GQE subroutine is called
to remove the interrupt-GQE entry from the
CIP queue. The Channel Interrupt Queue
Processor then selects the next GQE for
Processing.

If the dequeue flag is off, the proces-
sor checks for the ‘software command chain
condition' flag in the IORCB. If it is on,
the software-command-chaining function is
entered. If the flag is off, the IORCB's
'buffer pages in storage' field is checked.
If it is non-zero, the processor decreases
the page-hold counters and the TSI I/0
counter as each page hold counter goes to
zero. If the field is equal to zero after
the counters have been updated, the Channel
Interrupt Queue Processor calls the Set
Suppress Flag subroutine to reset the
device queue's suppress flag. When control
returns, the Channel Interrupt Queue Pro-
cessor selects the next GQE for processing.
At this point, the Channel Interrupt Queue
Processor calls the Move GQE subroutine to
remove the old GQE from its queue, and when
control returns, continues processing of
the new GQE. If there are no more GQE's in
its queue, the processor exits to the Queue
Scanner.

If the device-end-only status indicator
was not on, the processor checks for a
program-controlled-interruption indicator
in the CSW's statys field. 1f the indica-
tor is on, the Channel Interrupt Queue Pro-
cessor tests for a force-device-end condi-
tion (that is, checks the forced-end flag
in the IORCB). At this point, the channel

52

interrupt queue processor performs the
await-device-end-testing and subsequent
processing described above for the device-
end-only condition.

If the forced-end flag is off, the Chan-
nel Interrupt Queue Processor tests the
CSW/CCW address to determine whether it is
within the bounds of the IORCB's CCW list.
This is accomplished by calculating the
last address of the CCW list in the IORCB
and comparing the CSW command word address
with it. If the CSW address is within the
range of the beginning and ending address
of the CCW list, the Channel Interrupt
Queue Processor signals itself that the
Device Queue Processor's scan table sup-
press flag must not be set off, and calls
the Dequeue GQE subroutine to remove the
GQE from CIP's queue. The processor then
calls the Queue GQE on TSI subroutine to
queue the GQE on the TSI's interruption
queue.

When the CSW command word address is not
within the range of the calculated length
of the CCW list, CIP assumes that I/0
chaining is in effect and performs the
function described above for the forced-end
condition but does not reset the Device
Queue Processor's suppress flag.

If the status field does not contain a
program-controlled-interruption indicator,
the processor tests for a unit-checks/
exception indicator. If either indicator
is on, the await-sense flag is turned on in
the Device Queue Processor's GQE. The
Channel Interrupt Queue Processor calls
Move GQE to dequeue the interrupt GQE from
its own queue. When control returns, the
next GQE is selected and processing
continues.

When the status indicators reflect con-
ditions other than those discussed above,
CIP assumes that there is some error and
that no sense operation is required.
Hence, the Channel Interrupt Queue Proces-
sor enters its return from sense procedure
at the point where all the task's I/0
requests for the failing device are
dequeued from the Device Queue Processor's
queue, and put on the TSI interrupt queue.

The software-command-chaining function
is entered from normal-end processing when
the IORCB's software-command-chaining flag
is on. The first step in this function is
to determine whether the end of the IORCB's
CCW list has been reached. This is accom-
plished by calculating the end-address of
the CCW list and comparing it with the CSW
address in the GQE.

If the address of the CSW word is not
equal to or greater than the calculated
address, the next CCW in the list is pre-

pared for execution by adjusting the new
relative starting address of the CCW list
(that is, pointing it to the next CCW to be
executed). The processor then updates the
device queue, and its own queue as
described for a successful paging
operation.

If the CSW address is equal to or great-
er than the calculated address, the end of
the CCW list has been reached, and the
Channel Interrupt Queue Processor returns
to the normal-end processing at the point
where the length-of-page list field in the
IORCB is tested.

The page-hold-counter-decrementing func-
tion is entered when the length-of-page
list field contains a nonzero value. The
purpose of this function is to update the
page-hold counters in the external-page
table to reflect the release of virtual-
storage-buffer pages being held in main
storage. The processor begins this func-
tion by computing the number of the first
page in the IORCB's page list. The Channel
Interrupt Queue Processor then passes the
page address and TSI's pointer to the Loc-
ate Page subroutine. Locate Page searches
the XTSI pointed to by the TSI for the
storage addresses of the associated page
table entries. If the page entry is
located, the subroutine returns the page-
table (or shared-page table) address and
the external-page table (or external-
shared-page table) address to the Channel
Interrupt Queue Processor. At this point
the Channel Interrupt Queue Processor tests
the page-hold counter. If it is not equal
to zero, the counter is lowered by one. If
it is already a minor system error is
declared.

If the page entry was not located, or if
the counter is equal to zero, a SYSERR call
is made. Upon return from SYSERR, or after
subtracting one from the page-hold counter,
CIP lowers the page-list-length field, and
then tests its content. If it is nonzero,
the processor repeats the steps described
above. When the field is zero, all page-
hold counters have been updated and the
page list processing is complete. The
channel interrupt queue processor now calls
the Dequeue I/0 Requests subroutine to
decrease the page hold counter. :

When CIP has processed all the GQE's
queued on its queue, the following exit
procedures are performed:

e The Set Suppress Flag subroutine is
called to unlock CIP's queue.

¢ The scan table entry lock byte
(SCNF3LOK) is reset using the OPENLOCK
macro.

e CIP exits to the Queue Scanner.

Remote Job Entry Asynchronous I/0 Interrupt
Subroutine (CEABA) Chart AL

The function of this subroutine is to
process all asynchronous I/0 interruptions
from Remote Job Entry devices which origin-
ate in main storage. This includes per-
forming line control error recovery
procedures.

Attributes: CEABA is a serially reentrant
subroutine residing in main storage that
operates in the supervisor state.

Assumptions_and Restrictions: This subrou-
tine is called only by the Channel Inter-

rupt Processor to handle RJE line control
operations. It is not parallel reentrant;
registers are saved internally.

Entries:

CEABA1l -~ entry from Channel Interrupt Pro-
cessor (CEARY).

CEABA2 - return entry point from RJE Synch-
ronous I/0 Error subroutine
(CEABB) .

CEABA3 - return entry point from Create
Real Time Interrupt subroutine
(CEAS7).

When entered at CEABAl, the following
general registers contain significant data,
as indicated:

Register 2 - address of the device group
' table

Register 3 - address of the TSI

Register 11 - address of the device queue
(SCANTE) :

Register 12 - address of the asynchronous
entry in the device group
table

Register 13 - address of the interruption
GQE

Register 14 - return address

Regiéter 15 - entry point for this routine

Modules Called: Supervisor Core Allocation
(CEAL1 entered at CEALO1l) is called to get

core for the asynchronous interruption GQE
to be sent to the virtual memory task.

" The Dequeue GQE subroutine (CEAJQ
entered at CEAJDE) is called to remove the
error GQE from the Channel Interrupt Pro-
cessor's queue.

Section 3: Program Organization 53

The Start 1/0 subroutine (CEAAG entered
at CEAAG1) is invoked to start I/0 on retry
or sense operations. T

. The Task Communication Control subrou-
tine (CEAAN entered at CEAAN1) is called to
send error messages to the operator.

The RJE Line Control subroutine (CEABC
entered at CEABC2) is called to initiate
line control functions.

The Enqueue GQE subroutine (CEAJQ
entered at CEAJEN) is called to put the
error or retry GOE on the device queue.

The Set Suppress Flags subroutine (CEAJQ
entered at CEAJSF) is called to set the Fu
suppress flag to prevent interruption in
the device queue during retry.

The Pathfinding subroutine (CEAAS
entered at CEAA5P) is called to assign
paths for retry or sense operations.

Reverse Pathfinding subroutine (CEAAS
entered at CEAAS5R) is called to release the
path when CEABA is entered from the Channel
Interrupt Processor.

Generate and Enqueue Interrupt GQE
(CEABQ entered at CEABQ1l) is called if the
Start I/0 subroutine returns a non-busy
condition code of one. CEABQ creates an
interruption GQE and places it on the Chan-
nel Interrupt Processor's queue.

The Queue GQE on TSI subroutine (CEAAF
entered at CEAAFQ) is called to put an
interruption GQE on the task interruption
queue after an enable operation when Start
I/0 fails on the prime operation.

The Read Time subroutine (CEAS6 entered
at CEAS6A) is called to get the current
time before a real time interruption is set

up.

The Set Real Time Interval subroutine
(CEAS7 entered at CEAS7A) is called to set
a real time interval for recycling when a
busy return from the Pathfinding subroutine
occurs.

Exits: Normal exit is to the Channel
Interrupt Processor to one of four return
points set up in general register 1iH4.
Return is made in line when CIP is to
dequeue the GQE, put it on the TSI, and
‘process the next GQE. Return is to CEAA44
when CIP is to discard the interrupt GQE
and process the next. Return is to CEAAUS
with a pointer to the next GQE to be pro-
cessed in register 13, when no processing
of other GQEs is required by CIP. Return
is to CEAAL6 when CIP is to have the inter-
ruption GQE put on the task's TSI and pro-
cess the next GQE. An asynchronous event

54

code specifying that the operation was suc-
cessful or the cause of failure is set in
all interruption GQEs to be returned to the
task.)

Error conditions: The System Error Proces-
sing routine (CEAIS entered at CEAIS1) is
invoked via the ERROR SVC for the following
error conditions:

e Error return from Reverse Pathfinding
(7500)

¢ Invalid return code from RJE line con-
trol (7501)

¢ Invalid command code (CCW) encountered
(7502)

- e Channel end or device end on unexpected
command (7503)

e Unexpected interruption from sense
operation (7504) i

e Invalid error condition (no sense bits)
(7505)

e Error return from Pathfinding (7506)

e TSILCK locked more than 50 microseconds
(7507)

e DEVLOCK locked more than 50 microse-
conds (7508)

Operation: On entry, the °'RJE disable
interrupt' flag is checked in the device's
asynchronous entry of the Device Group
table (DEVAE). If it is on, the Reverse
Pathfinding subroutine is called to free
the entire path. The return code from
Reverse Pathfinding is tested; and if an
error is indicated, an ERROR SVC is issued.
On return from the System Error Processor,
exit is to the Channel Interrupt Processor
at CEAAUL.

Otherwise a test is made to determine if
this is a Halt I/0O interruption. If it is,
the RJE line control subroutine is called
to perform the operation indicated by the
appropriate flag in DEVAE (DISABLE/ENABLE/
PRIME). The return from CEABC is examined:

¢ If successful, thé device's scan table
entry (SCANTE) is checked for a GQE
pointer. If none exists (indicating no
previous error on this operation),
return code U4 is set and control
returned to CIP. If a GQE exists
{indicating some previous error on this
operation), the SCANTE is cleared and
unlocked; the original error GQE is
discarded (via CEAMJG), and control is
returned to the CIP.

¢ If the start I/0 condition code
returned to CEABC was ‘1 and no busy
conditions are present, the Generate
and Enqueue Dummy Interrupt GQE subrou-~
tine (CEABQ) is called to create a
simulated I/0 interruption from the
error status information. Processing
then continues as if the RJE line con-
trol operation had been successful.
(Described above.)

e For any other return from CEABC, the
‘appropriate asynchronous event code is
set. The asynchronous event codes are
as follows:

0 - Operation successful

1 - Solid error on DISABLE
2 - So0lid error on SET MODE
3

- S0lid error on ENABLE

&=
1

S0lid error on PREPARE
5 - S0lid error on READ ENQ

- Solid error on WRITE ACK

- O
[}

Failing CCW cannot be determined

8 - Unrecoverable software error in the
supervisor

9 - Intervention required

The device SCANTE is then examined.
Return is to CIP if there was no pre-
vious error. Otherwise, the original
error GQE is discarded; the SCANRTE
cleared and unlocked before returning
to CIP.

When a Halt I/0 interruption is not
indicated, a test is made to see if the
interruption is due to a channel control or
interface control check. If so, the opera-
tion is not retryable. 1In this situation
the asyncnronous entry flag in the device
group table is tested to see if a DISABLE
operation was indicated. If not, the asyn-
chronous event code is set to 7 in the
interruption GQE. - The device's SCANTE is
checked to see if a previous error occurred
requiring the SCANTE to be cleared and the
GQE to be discarded before returning to
CIP.

If the DISABLE flag is set, in the
device group table, it is turned off; and
the asynchrornous event code of 1 is put in
the GQE. A message is then sent to the
operator by calling task communication con-
trol (CEAAN) to inform him of the error.
Return is then made to CIP after clearing
and unlocking the SCANTE and disposing of

the original error GQE if there was a pre-
vious error.

If the error is not a channel control or
interface control check, the CSW is checked
for other error conditions. If the inter-
ruption is normal, the device's SCANTE is
tested to see if there is a GQE. If no GQE
is there, or if there is one, waiting on
sense, the current GQE -represents the suc-
cessful completion of a sense operation.

If not a sense operation, the DISABLE
flag in the device group table is tested.
If it is on, the interruption is to be dis-
carded. The waiting on sense flag is
turned off and the SCANTE is checked for a
GQE. If none exists, control is returned
to CIP. If a GQE exists (indicating suc-
cessful completion of a previous DISABLE
error), the SCANTE is cleared and unlocked;
and the GQE is moved (via CEAJMG) before
returning to CIP.

If the DISABLE flag is not on, a check
is made to see if the error occurred om an
ENABLE command. If noc, the asynchronous
event code is set to zero. If this is the
successful retry of a previous error, the
SCANTE is cleared and unlocked and the pre-
vious error GQE discarded before returning’
to CIP.

If the interrupt is from an ENABLE com-
mand, the RJE line control subroutine is
called to PRIME the line (bypassing Halt
1/0). The return data from RJE Line Con-
trol is then examined.

¢ If successful, and no previous error
occurred on this operation, return is
to the CIP. The SCANTE is cleared and
unlocked and the previous error GQE
discarded before returning if a pre-
vious error occurred.

e If the return from the RJE line control
subroutine indicates that it received a
start I/0 condition code of one with no
busy conditions, an I/0 error interrup-
tion is simulated by calling the Gener-
ate and Enqueue Interrupt GQE subrou-
tine. Processing then continues as if
the return from RJE Line Control indi-
cated that it was successful.

e For any other return, the SCANTE is
checked for previous error GQE. 1If
there was none, Supervisor Core Alloca-
tion (CEAL1l) is called to get main
storage for a task asynchronous inter-
ruption GQE. If there was a previous
error, the SCANTE is cleared and
unlocked and the previous error GQE is
used as the task asynchronous error
GQE.

Section 3: Program Organization 55

The GQE is initialized, and an asynch-
ronous event code of zero is placed in
it. Queue GQE on TSI (CEAAF) is then
called to place the interruption GQE on
the task's TSI interruption queue.
This procedure informs the task of the
successful completion of an ENABLE
operation. The current GQE (the one
that caused CIP to call this routine)
is used to inform the task of the fai-
lure of the PREPARE operation. The
asynchronous event code of 4 is set in
it and return is to CIP.

If the interruption indicates the suc-
cessful completion of a sense operation,
processing skips to the point where first
error, non-unit check errors are processed.

If the CSW status indicates an error
condition, a check is made to see if a
sense operation was in progress. If so,
the asynchronous event code (1-6) appropri-
ate for the condition is set in the GQE to
indicate the failing CCW. The SCANTE is
cleared and unlocked; the original error
GQE discarded; and return is to CIP.

If the error did not occur on a sense
operation, the SCANTE is checked for a pre-
vious error GQE. If there is none, the
current GQE is dequeued by a call to the
Dequeue GQE subroutine. Error retry coun-
ters are then set up in the GQE. The
SCANTE is locked and the address of the
error GQE is saved in the SCANTE. The unit
check bit of the CSW is then examined to
determine if a sense operation must be per-
formed. If so, parameters to perform the
sense operation are set up. Otherwise,
parameters to perform the appropriate error
retry procedure are set up. The common
retry logic (see below) and on return a
check is made to see if retry was success-
ful. If so, the forward GQE pointer from
the original error GQE is put in register
13 and return is to the Channel Interrupt
Processor.

If the retry was not successful, the
SCANTE is cleared and unlocked; the appro-
priate asynchronous event code is set in
the current GQE and control is then
returned to the Channel Interrupt
Processor.

If a pointer to a previous error GQE is
in the device's SCANTE, the unit check bit
in the current GQE is examined. If a sense
operation is to be performed, the sense
" parameters are set up and the common retry
logic is entered.

If a sense operation is not to be per-
formed, the error retry counters are
checked to determine if the error has
become solid. If not, the error counter is
incremented and the appropriate retry para-

56

meters are set up. The common retry logic

is then entered and the return is examined.
If the retry was not started successfully,

processing is the same as for solid failure
(below). If the retry was successful, con-
trol is returned to CIP.

If the failure is solid, the asynch-
ronous event code is set in the current
GQE, and the DISABLE flag in the device
group table is tested. If it is on it is
turned off, and a return code of zero is
set for CIP. Exit is then taken after
clearing the SCANTE and unlocking it and
discarding the old GQE.

The Common Retry Logic for this routine
involves calling the Start I/0 subroutine
(CEAAG) to start I/O on the specified com-
mand. If start I/0 is successful, control
is returned to the calling location.

If the Start I/0 condition code is 2, 3,
or 1 with a busy indication, the Start I/O
subroutine is recalled until either it is
successful or the failure becomes solid.
If the start I/0 failure is solid, return
is to the calling location.

For opher conditions where the start 1I/0
condition code is 1, the Generate and

"Enqueue Dummy Interrupt GQE subroutine is

called to create a simulated I/0 interrup-
tion GQE to be processed later. Control is
then returned to the calling location.

Remote Job Entry Synchronous I/0 Error

Interrupt Subroutine (CEABB)

This subroutine screens all synchronous
I/0 error interruptions from RJE devices
and perform appropriate error recovery pro-
cedures. This includes:

e Identifying the error condition from
information in the CSW, the Start I/0
CAW, sense fields in the GQE and IORCB.

e Maintaining error data and retry coun-
ters in the RJE IORCB.

e Determining if a retry operation is to
be made and setting up to initiate it,
if so.

Attributes: CEABB is a serially reentrant
subroutine residing in main storage that
operates in the supervisor state.

Assumptions and Restrictions: This subrou-
tine is called only by the Channel Inter-
rupt Processor to handle I/0 retry opera-
tions after synchronous errors on the 2780
RJE terminal device. The routine is not
parallel reentrant; it saves registers
internally. In certain cases, it returns
out-of-1line to special return points in the
Channel Interrupt Processor. The recovery

procedures apply only to the channel pro-
grams specified for the 2780 RJE device.
Any alteration to the channel programs in
MSAM will produce unpredictable results in
€rror recovery.

Entries: CEABBl1 - by Channel Interrupt
Processor with these parameters:

Register 7 - address of the request GQE

Register 10 - address of the IORCB

Register 13 - address of the interruption
GQE

Modules Called: Supervisor Core Allocation
(CEAL1 entered at CEALOl) gets main storage
for an error GQE on a PRIME failure
condition.

Start I/0 subroutine (CEAAG entered at
CEAAGl) starts I/O on retry operations.

RJE Asynchronous Interrupt subroutine
(CEABA entered at CEABA2) to process the
interruption GQE when it is to be recycled.

RJE Line Control (CEABC entered at
CEABC2) is called to prime the line after a
unit exception error or time out.

Queue GQE on TSI (CEAAF entered at
CEAAFQ) is called to put an asynchronous
error interruption GQE on a task's TSI.

Pathfinding (CEAAS5 entered at CEAASP) is
called to assign a path for the retry
operations.

Reverse Pathfinding (CEAAS entered at
CEAASR) is called to release a path after
Start I/0 failure on a retry operation.

Generate and Enqueue Interrupt GQE
(CEABQ entered at CEABQ1) is called to cre-
ate a dummy interruption GQE and place it
on the CIP queue when Start 170 fails and
returns a condition code of one.

Exits: Normal exit is to the Channel
Interrupt Processor to the address speci-
fied in general register 14. Register 14
specifies the instruction following the
call to CEABB, when normal processing of a
synchronous error is to continue in CIP.
CEAAUU4 is the return address following
start I/0 on retry to discard the interrup-
tion GQE, and CEAA47 is the return point
when CIP is to reprocess an error GQE.

Exit is also made to the RJE Asynch-
ronous Interrupt routine when Pathfinding
returns a busy indication. This delays
processing of the interruption in CIP
because a real time interruption is created
and placed on the timer interruption queue.

Error Conditions: The System Error Proces-

3ing routine (CEAIS entered at CEAIS1) is
a’cked vie the BRRIX SVC when any cf the
following error conditions are encountered:

e Error return from Reverse Pathfinding
(7600)

e Invalid return code from RJE Line Con-
trol (7601}

¢ Invalid command code (CCW) encountered
(7602)

* Unrecoverable intermittent error
sequence (7603)

¢ Invalid error condition (no status or
sense) (7605)

¢ Error return from Pathfinding (7606)

e TSILCK locked more than 50 microseconds
(7607)

Operation: On entry, CEABB saves the Chan-
nel Interrupt Processor's registers in an
internal save area and establishes addres-
sability for the RJE portion of the IORCB.
Those IORCBs associated with remote job
entry operations use the area normally
occupied by the IORCB data buffer to hold
RJE I/0 error retry information. Individu-
al error counters are included for each 170
error defined as retryable. There are two
sets of retry counters. One set is used to
accumulate the total number of errors of a
particular type that occur for each IORCB.
The second set records the number of errors
occurring in a current intermittent I/O
error retry sequence.

Next, error indicators in the GQE and
IORCB are examined and the appropriate
action is taken.

The only action taken before returning
to the channel interrupt processor (in-
line) for channel or interface control
check is to increment the counter for the
error type in the IORCB.

If sense failure is indicated by the
IORCB sense failed flag, immediate return
to the Channel Interrupt Processor is made
(in-line).

For Unit Check/Lost Data errors, the
current CSW is compared to the previous
error CSW to determine if this is a new
error. If it is, the previous error CsSW
and sense data are replaced by the current
CSW and the retry counters are initialized
to zero. Processing then continues in the
"retry threshold testing” logic described
below.

Section 3: Program Organization 57

Unit Check/Time Out errors are processed
the same as Unit Check/Lost Data until the
retry threshold limit is reached. Then,
the RJE Line Control routine (CEABC) is
.called to reprime the line.

Unit Check/Intervention Required are
processed the same as Unit Check/Lost Data
until the retry threshold limit is reached.
Then the RJE Line Control routine is called
to reenable the line.

Unit Check/Bus Out Check errors are
handled the same as Unit Check/Lost Data.

Unit Checks/Data Check errors are handled
the same as Unit Check/Lost Data.

Unit Check/Equipment Check errors are
handled the same as Unit Checks/Lost Data.

Unit Check/Command Reject errors are
handled the same as Unit Check/Lost Data.

Unit Exception indicates a logical ter-
mination of an I/0 operation which must be
communicated to virtual memory. (It is not
a retryable error condition and has a retry
threshold value of zero. This forces a
"solid error™ on the first occurrence.)
Unit Exceptions are processed the same as
Unit Checkrs/Lost Data until the solid error
condition is encountered. At this point,
the RJE Line Control routine (CEABC) is
called to reprime the line. On return,
exit is to the calling program with a
return code of zero.

Incorrect Length errors are processed
the same as Unit Checks/Data Check, except
for the manipulation of the error counters.
Those Incorrect Length errors that indicate
Unit Checks/Data Check conditions result in
incrementation of the appropriate Unit
Checks/Data Check counters along with the
current counter for Incorrect Length
errors. In the case where the error
results because less than the maximum numb-
er of cards were read, I/0 is restarted on
the next CCW. If during the printer selec-
tion sequence an ENQ (one byte) is read
instead of an ACK 0 (two bytes), RJE Line
Control is called to reprime the line.

Chaining Check errors are processed the
same as Unit Check/Lost Data.

Program Checks are processed the same as
Unit Check/Lost Data.

Protection Checks are processed the same
. as Unit Check/Lost Data.

Busy indications are handled the same as
Unit Check/Lost Data.

Attention indications are handled the
same as Unit Check/Lost Data. :

58

Status Modifier conditions are handled
the same as Unit Check/Lost Data. e

Retry Threshold Testing: The appropriate
current error counter (for the error being
processed) is compared to the retry thre-
shold limit. If the limit has not been
reached, the proper total and current error
counters are incremented and the Common
Retry Logic (described below) is executed.
If the limit has been reached, return code
zero is set and control is returned to the
calling program with the error CSW intact.

Common Retry Logic: The Start 1I/0 subrou-
tine (CEAAG) is called to restart the
operation where specified and the returned
parameters are examined:

e If the SIO was successful, a return
code of four is set and control is
returned to the calling program.

e If a device or control unit busy condi-
tion occurs, the SIO is retried until
successful or the busy condition becom-
es solid. In the latter case, return
parameters from SIO are stored in the
IORCB, return code zero is set, and
control is returned to the calling pro-
gram with the original error CSW
intact.

® When SIO returns a condition code of —
one, and the status other than device
or control unit busy, the Generate and
Enqueue Interrupt GQE subroutine
(CEABQ) is called to simulate an I/0
interruption with the stored status. A
return code of four is set and control
returned to the calling program.

¢ A SIO condition code of two or three
results in a limited number of retry
attempts. If unsuccessful, the SIO
return parameters are stored in the
IORCB, a return code of zero is set,
and control returned to the calling
program with the original error CSW
intact.

Terminal Communications Subprocessor
(CEATC) Chart AM

This subprocessor initiates and pro-
cesses 1/0 operations for the terminals of
conversational tasks. It is called by the
Channel Interrupt Queue Processor when CIP
finds a GQE representing an I/O interrup-
tion for a terminal on its queue. The fol-
lowing functions are provided by CEATC in
its handling of terminal I/0O operations:

e Initially issue channel programs for
dial or dedicated lines to determine
the type of terminal, line code, and
user destination.

e Issue channel programs to MI/T users
and normal TSS users.

e Post attention signaling during 1/0
operations or while processing.

‘e Post completed I/0 operations for
terminals.

e Detect errors or exceptions that ter-
minate the channel program and initiate
recovery action if possible.

e Provide standard translation of input
and output allowing the user the option
to specify no translation if he wishes.

e Allocate buffer areas for input and
output operations.

e Place interruptions on the user's TSI,
if required.

e Inform the user if TSS or MIT limits
have been exceeded.

Entries: TCS has two main entry points,
CEATC1 and CEATC2. CEATC1l is entered from
the Channel Irnterrupt Queue Processor
whenever it finds an I/0 interruption GQE
on its queue for a terminal device sup-
ported by the resident terminal access
method (RTAM). When entered at CEATCl, six
registers contain input data. The regis-
ters and significant data are as follows:
Register 1 - the address of a 64 byte save
area v

Register 2 - a pointer to the device group
table

Register 12 - a pointer to the asynchronous
entry

Register 13 - a pointer to the interrupt
GQE

Register 14 - the return address

Register 15 - the calling address

CEATC2 may be entered by the SVC Queue
Processor (CEAHQ) or the Terminal Communi-
cations subprocessor (CEATCl) itself. The
conditions under which these routines enter
CEATC2, and the parameters passed are as
follows:

e The SVC Queue Processor calls CEATC2
when it is determined that the ATCS
macro (SVC 219) has been validly issued
by an MTT application task. When
entered from the SVC Queue Processor,
the following registers contain per-
tinent input data:

Register 1 - the address of the SvC
GQE (used as a TIOCB
nointer)

Register 2 - a pointer to the TSI
Register 3 - a pointer to the XTSI

Register 4 - either the VM address of
a TCT slot, or all °'F's
to indicate a FREEQ ALL
operation

Register 5 - the address of the mes-
sage and its length for ¢
Free operation. Zero if
no message
Register 6 - low order byte ‘'F's, if a
physical disconnect is
required or zero if a
logical disconnect or
FREE oper~tion

Register 15 - called address

* When the terminal communications sub-
processor has been entered at CEATC1
and it encounters a pending I/C opera-
tion during its processing, a call is
made to CEATC2 with the following input
registers:
Register 1 - all 'F's
Register 3 - a pointer to the TIOCB

Register 5 - a pointer to the TSI

the real core address of
the TCT slot

Register 6
Register 9 - a pointer to the MTSCB

Modules Called: Supervisor Core Allocation
(CEALL entered at CEALO1l) is called to get
a 256 byte buffer area and a 64 byte ter-
minal I/0 control block to handle the ini-
tial interrupt from a user terminal.

Pathfinding (CEAAS entered at CEAASP)
obtains the device path in initial inter-
rupt processing.

Task Initiation (CEAMC entered at
CEAMT1) is entered to set up a TSI in ini-
tial interrupt processing.

Queue GQE on TSI (CEAAF entered at
CEAAFQ) puts an asynchronous interrupt GQE
on the TSI as part of task initialization.

Reverse Pathfinding (CEAAS entered at
CEAASR) releases the device path.

Subervisor Core Release (CEALI entered
at CEALO2) releases unnecessary main

Section 3: Program Organization 59

storage before returning to the Channel
Interrupt Processor. -

Start I/0 (CEAAG entered at CEAAG1) is
-called to initiate terminal I/0 operations.

Halt I/0 (CERAI entered at CEAAIH) halts
terminal I/0 during processing of terminal
I/0 requests.

Exits: When entered at CEATC1, this sub-
processor exits to the Channel Interrupt
Processor after setting appropriate return
codes in register 15.

When entered at CEATC2, exit is to the
Queue Scanner (CEAJQS) if the call was from
the SVC gueue Processor. (When CEATC2 is
called by CEATC1l, return is to CEATC1 which
then returns to the Channel Interrupt
Processor.)

Operation on entry at CEATCl: There are
three general classifications of terminal
I/0 interruptions that result in the Ter-
minal Communications Subprocessor being
called by the Channel Interrupt Processor.
These are: the initial interruption from a
user terminal, an interruption from a TSS
user terminal, and an interruption from an
MTT user terminal.

This subprocessor determines that the
initial interruption from a terminal is to
be processed by checking a field in the
device group table (DEVISI). This flag is
always zero for the initial interruption.

To handle the initial interruption, a
64-byte area is provided by Supervisor Core
2llocation (CEALl) for a terminal I/O con-
trol block (TIOCB). A 256 byte buffer area
is also obtained from Supervisor Core
Allocation.

RTAM locates the appropriate entry in
the terminal device table and saves its
address in the TIOCB (not done for an ini-
tial interruption). For an initial inter-
ruption, a read channel program is
generated for the terminal device line
(according to type of terminal) and a path
to the device is obtained by calling Path-
finding (CEAAS5P). Return is then made to
the Channel Interrupt Processor after set-
ting a code of zero in register 15.

When the terminal responds to the read,
~this interruption is again passed to CEATC1
by the Channel Interrupt Processor. At
this point, the input buffer is inspected
" to see if the terminal user has entered
either the "LOGON'! or 'BEGIN' command. If
it is "LCGON' a test is made to determine
whether the TSS user limit has been
exceeded. If so, a message is issued
informing the user of this; if not, a sys-
tem terminal control table slot (TCT) and

60

buffer page slot are allocated to the task.
Task Initiation is then called to set up a
TSI for the task and an asynchronous inter-
ruption GQE is attached to the TSI inter-
ruption queue by calling Queue GQE on TSI.
The operands following the LOGON command .
are then moved into the buffer page slot.
The TCT pointer is placed in the device
group table (DEVTCT) and the TCT is
initialized.

To specify that the task is operating
under RTAM in TSS mode, a flag is set in
the device group table (DEVRT). Supervisor
Core Release is called to release unneeded
main storage, and the device path is then
released by calling Reverse Pathfinding.
Exit is made to CEAA4 with a return code of
zero after a prepare command has been
placed on the line.

When the command entered by the user is
'BEGIN', the application name specified by
the BEGIN command is checked against the
TSI chain by examining the MTSCB associated
with the TSI of each MTT task. If it is
there, a check is made to see if adding
another user to the application task will
put it over the user limit. If not, a
further check is made to see if the appli-
cation task has a FREEQ ALL operation pend-
ing (MTSFRE on).

If conditions are such that the request
can be met, the ‘number of users' count
(MTSCUR) is increased by one; a prepare
command is placed on the line; and a TCT
slot and buffer slot are obtained. The
operands following the application name are
moved into the buffer and the TCT pointer
is placed in the device group table
(DEVTCT) and the TCT is initialized.

A flag (DEVMT) is set in the device
group table to indicate that the terminal
is connected to an MIT task and Reverse
Pathfinding is then called to release the
path.

If the TSI associated with the applica-
tion task is on the inactive list, the
Rescheduling subroutine is called with a
code of one. On return, or if the task was
on the active list, an external interrupt
is placed on the TSI by calling Queue GQE
on TSI with a code of two. Also, if the
task is in delay status, the status is
changed to ready.

A message control block (MCB) is then
generated containing the following
information:

1. Message code -- 255

2. Receiving task ID

3. Relative line number

4. Work byte (located at TCTWWK)

5. Line coded (located at TCTDTY)

6. Symbolic device (located at TCTSDA)
7. Message area

A return code of eight is set for the
Channel Interrupt Processor.

If the application name, specified Ly
the BEGIN command, is not active, a wvrite
? with response is placed on the line
and a return code of zero is set for the
Channel Interrupt Processor.

When the interruption that caused the
Channel Interrupt Processor to call CEATC1
was not the initial interruption or one
involved in the initialization phase, it is
checked to see if it is for a HIO opera-
tion. If it is, CEATC2 is called to pro-
cess the interruption, and on return, a
return code of zero is set before exit to
the Channel Interrupt Processor.

If it is for a normally completed I/C
operation, the completion is posted in the
TCT (the read completion is also posted
when ATTENTION is received); the path is
released by calling Reverse Pathfinding;
and if an external interruption is not
required, the task is made active before
returning to the Channel Interrupt Proces-
sor with a return code of zero. If an
external interruption is required, it is
placed on the TSI by calling Queue GQE on
TSI. The task is then made active and a
return code of eight is set for the Channel
Interrupt Processor. For abnormal comple-
tions, the subroutine CEA1000 is called to
attempt recovery.

Entry at CEATC2 by CEATCl is made to
prepare for a terminal I/O request when a
previously pending halt I/O operation has
completed on a terminal line.

A CCW list is generated by CEATC2 corre-
sponding to the I/0 requested by virtual
memory (that is, READ, WRITE, or Write with
response). The CCW list depends on the
device type (1050, 2741, TTY35, or 1052-7)
and the 1/0 operation. The I/0 operation
is then started by a call to the Start 1/0
routine (CEAAG). Upon return, exit is made
to the Channel Interrupt Processor, await-
ing the completion of the I/0 operation.

Entry at CEATC2 by the SVC Queue Proces-
sor occurs as a result of the ATCS (SVC
219) macro instruction having been issueé
during execution of a READQ, WRITEQ,
CLEARQ, or FREEQ macro instruction. ATC

is also issued directly by the GATE, ABEND,
LOGOFF, and RELEASE command routines.

When entered for ATCS processing (in all
cases except for a FREEQ ALL), an immediate
test is made to determine if the operation
requested is a clear or attention. If not
these, tests are made for write-type
operations. ‘

If a clear operation has been requested,
CEATC2 causes the buffer slot to be
released, ciears TC1FL1, releases the main
storage for the SVC GQE by calling Supervi-
sor Core Release and exits to the Queue
Scanner.

For a pending attention, the SVC main
storage space is released and exit is taken
to the Queue Scanner. For read and write
operations, a HIO is done first.

When a write is specified, a check is
made to determine if the data to be written
is in main storage, the task ready and
locked. 1If not, the instruction counter is
decreased by eight (to point it at the ATCS
instruction) and exit is to the Queue
Scanner. Otherwise, a new buffer slot is
obtained and the message moved into the
buffer and translated, if required. If the
length of the message exceeds the specified
buffer length, Supervisor Core Allocation
is called for a section of main storage
four bytes larger than the indicated mes-
sage length.

When a read is specified, the current
buffer slot is released and a new buffer
slot obtained. The necessary channel pro-
grams are then generated and the Start I/0
subroutine (CEAAG) called to start I1/0.
Exit is then made to the Queue Scanner.

When a FREEQ ALL operation is specified,
an application TCT slot is located. The
TCTFFR flag is set and the Halt I/O routine
is called. If an interruption is pending,
(TCTHIO on) and it is a FREEQ ALL opera-
tion, a test is made to see if the FREEQ
has been issued to all lines. 1If not, the
above procedure is repeated. If all lines
are cleared, the task is placed in page
wait and exit is to the Queue Scanner.

When a Free completion is detected for a
TSS user (LOGOFF or ABEND having issued
ATCS), a real time interruption of two
minutes is set for each line. For an ABEND
due to SHUTDOWN, a physical disconnection
takes place. The system TCT slot, the sys-
tenm buffer slot and outstanding TIOCBs are
released. DEVTICT, TDELCD, and TDESTA are
cleared and the DEVRT flag is reset. The
task is made active if it is wait status.

Section 3: Program Organization 61

For errors occurring on an initial break
of a prepare command, the status is checked
for unit exception or unit check. If it is
a unit check, a sense is issued. When the
interruption for unit check is returned, or
if the original interruption were unit
exception, normal processing is continued
in CEATCS.

Otherwise, an attempt is made to reen-
able the line.

Interruptions fall into two categories:
outboard errors (unit check, unit excep-
tion) and inboard errors. When a unit
check is encountered, a sense is issued.
Information from the sense is used to
determine what action to take. There are
some additional actions taken because of
design and device dependent situations. A
function byte, corresponding to each CCW,
is located in the TIOCB. One of the fol-
lowing eight functions can be specified in
this byte:

1. Data Qut - Data is being written.
2. Data In - Data is being received.

3. Write Addressing - Addressing charac-
ters being written.

4. Write Polling - Polling characters are
being written.

5. Response Polling - Response characters
are being received as a result of a
prior write polling.

6. Response Addressing - Response charac-
ters are being received as a result of
a prior write addressing.

7. cControl - An operation for line or
channel control.

8. TIC - Transfer in Channel.

When a line is dialed with a 1050 or
2741 terminal connected, a read is put on
the line. The terminal type is unknown but
marked as a 2741. This may result in the
read terminating in an error. If a unit
check, data in, lost data error is fielded
during initialization, it indicates the
device is a 2741; and an inhibit is put on
the line to continue receiving data. If a
unit check, data in, time out error is
‘fielded during initjialization, the terminal
type will be determined; and this is noted
by turning on the TDES2 flag in TDESTA.
With n6é data in the input buffer, the
device is a 1050; and this is flagged by
turning off the initial read operation flag
in TDESTA and switching TDEDEA to a 1050
device type. Control is then passed to the
main routine to put a read on the line.
This condition, but with data in the buff-

62

er, indicates the device is a 2741; and an
inhibit is put on the line to continue
receiving data.

The following actions are taken when the
sense information is received after unit
check:

¢ Data Out:
Data Check - Retry the first CCW in the
TIOCB containing the error. This
causes readdressing of the line.

Bus-Out Check - Action same as for data
check.

Intervention Required - For 1050 with
intervention required only, signal
attention. For 2741 or TTY35 with
above condition and data has been tran-
sferred, signal attention. If identi-
fied as on MIT terminal, pass attention
to MTT task. If not, write "2" with
response. For 1052-7 if Bell bit
(MTSBEL) is on signal hard I/0 Failure.
If bit is not on, set bit and ring
alarm by generating a CCW(0OB) in a
TIOCB which is chained to other out-
standing TIOCBs. When an Attention is
received, MISBEL should be set off and
the writer operation resumed.

All others - Signal hard 1I/0 failure.
¢ Data In:

Time Out - If in initialization proces-
sing, handle as mentioned above. Else,
process same as overrun.

Lost Data - If the residual count in
the error CCW is zero, the buffer over-
flowed. A flag (TCTWW7) is set in the
TCT if identified as an MTT terminal,
and the CCW following the error CCW is
started. The CCW following the error
CCW is started if not an MTT terminal.
If not buffer overflow, process same as
overrun.

Overrun - If identified as an MTT ter-
minal, write "REENTER DATA" message.
If not, write "?" with response.

Date cCheck - For 2741 or TTY/35 process
same ‘as overrun. For 1050, scan input
buffer for X'41'. If not found process
same as overrun. If found, a cancel
has been indicated and the CCW preced-
ing the error CCW is started.

Intervention Required - For 1050 or
TTY35 if accompanied by a data check,
signal attention and post length of
message entered for Read Complete rou-
tine (CEATCl1l). If not or if 2741, pro-
cess same as overrun. If this condi-

tion occurs on 1052-7, the same proce-
dure is followed as indicated under
DATA OUT; however, the read operation:
should be resumed.

All others - Signal hard I/0 failure.
Write Addressing, Write Polling:

Data_ Check - Retry error CCH.

Bus-out Check - Retry error CCH.

" Intervention Required - Retry error
CCH.

All others - Signal hard I/0 failure.
Response Polling:

Time Out - Retry CCW preceding error
CCW.

Lost Data - Same as for time out.
Ooverrun - Same as for time out.
Data Check - Same as for time out.

Intervention Required - Same as for
time out.

All others - Signal hard I/0 failure.
Response Addressing:

Time Out - Check CCW preceding error
CCW for write addressing. If it is,
retry preceding CCW. If not, it is an
error in CCW string.

Lost Data - Same as for time out.
Ooverrun - Same as for time out.

Data Check - Same as for time out.

Intervention Required - Same as for
time out.

All others - Signal hard I/0 failure.
Control:

Time Out - If operation is prepare or
disable, retry error CCW. If operation
is enable, retry error TIOCB at first
CCW (disable). If none of the above,
signal hard 1/0 failure.

Data Check - If operation is a break,
retry first CCW in TIOCB with error
CCW. If not, signal hard 1I/0 failure.

Intervention Required - If data check
also, set attention. If not, check for
prepare or break. If so, retry error
CCW. If not, signal hard I/0 failure.

All others - Signal hard I/0 failure.
¢ TIC:
Al1 - signal hard 1/0 failure.

The following actions are taken after
unit exception:

Data Out - Retry first CCW in TIOCB
with error CCW.

Data In - Turn off unit exception and
return to main routine for normal pro-
cessing. For 1052-7 reissue the read
operation at the terminal.

Write Addressing - Retry error CCW.

Write Polling - Same as for write
addressing.

Response Polling - Same as for data in.

Response Addressing - Same as for data
in.

All other functions - Signal hard I/0
failure.

For conditions where retry is attempted,
on the third successive occurrence of the
condition, retry is aborted and hard I/0
failure is signaled.

For hard I/0 failure, if the error is on
a prepare or enable, the interruption is
ignored. Otherwise, if the terminal is
connected to an MIT task, the hard I/0 fai-
lure flag (TCTWWS) is set and the task is
informed of the condition. If not con-
nected to MTT, the path is released, the
TDE initial interruption flag is reset and
a TIOCB is set up to reenable the line.

STORAGE ALLOCATION PROCESSORS

User Core Allocation Queue Processor
(CEANB) Chart AN

The function of the User Core Allocation
Queue Processor (UCA) is to allocate blocks
of physical storage for user pages. User
page allocation is requested by page con-
trol blocks (PCBs), pointed to by the GQEs,
which in turn are pointed to by the proces-
sor's queue entry in the scan table. PCBs
may request the allocation of any block of
storage for a user's page, or the alloca-
tion of a specific block of storage.

. The User Core Release subroutine is log-
ically a part of this module, and is
described immediately following it.

Entry: CEANBA

Section 3: Program Organization 63

Modules Called: Set. Suppress Flag subrou-
tine (CEAJQ entered at CEAJSF)-sets the
appropriate flag in the processor's scan
table entry.

Move GQE subroutine (CEAJQ entered at
CEAJMG) moves or releases the GQE.

Dequeue GQE subroutine (CEAJQ entered at
CEAJDE) removes the GQE pointer from pro-
cessor's queue.

Write Shared Pages subroutine (CEAMW
entered at CEAMWS) scans and/or purges
shared pages as directed.

Page Posting subroutine (CEAMP entered
at CEAMP1) updates page tables associated
with PCBEs.

Set Real Time Interval subroutine (CEAS7
entered at CEAS7A) cancels pending real
time interrupts before forcing a task to
time slice end.

Enqueue GUE subroutine (CEAJQ entered at
CEAJEN) places a timer interrupt GQE on the
Timer Interrupt Processor queue to force a
task to time slice end.

Supervisor Core Allocation (CEAL1
entered at CEALOl), supplies 64 bytes of
main storage for a GQE.

Locate Page subroutine (CEAML entered at
CEAMLP) locates the addresses of the page
table entry and the external shared page
table entry.

Exits:
Normal - To Queue Scanner.

Error - To System Error Processor.
Operation: The activities of this proces-
" sor depend upon the following conditions:

e Requests for previously owned storage
blocks.

¢ New requests for storage allocation.
e The availability of main storage.

e The existence of partially processed
GQEs.

The processor's response to each type of
request is described below.

PREVIOUSLY OWNED STORAGE REQUEST PROCES-
SING: If previously owned storage is
requested, the processor determines whether
the requested page can be reclaimed. This
involves locking the core block table head-
er and computing the address of the appro-
priate core block table (CBT) entry for the

64

previously used storage block and comparing
it to the requested PCB entry testing for
the following:

¢ Page not presently in use.
¢ TSI match.
¢ VM address match.

If the block requested can be reclaimed,
UCA removes it from the unassigned list and
updates the pointers (forward and reverse)
in the list. If the CBT entry is first or
last on the chain, the chain pointer is
also updated. The reclaimed CBT entry is
then marked "in use, user owned" and its
pointers are cleared. UCA then unlocks the
core block header, calls Page Posting, and
selects the next PCB entry for processing.

When reclaiming fails, the page is
removed from the top of the chain, and the
chain is updated accordingly. The CBT
entry is marked, and the internal address
is put in the PCB.

When all PCB entries have been processed
the UCA processor then determines if unal-
located main storage is adequate, that is,
it is greater than the minimum allowed. If
not, an indicator is set in the system
table to control the admission of new tasks
to the system.

If all PCB entries have been posted or
bypassed, UCA deletes the device queue str-
ing entry in the GQE. Move GQE is then
called to move the GQE. On return, exit is
to the Queue Scanner.

NEW_ REQUEST PROCESSING: When the PCB

requests allocation of storage not pre-
viously owned, the processor locks the core
block table header and checks the core
block table (CBT) list for available
storage. If the requested storage is
available, it is assigned and marked "in
use, user-owned". The processor then
unlocks the core block table header and
determines whether a read operation from an
external device is required. If not, the
allocated storage area is cleared to zeros,
and the Page Posting subroutine is called.
When control is returned to the processor,
or if a read operation is required, the
processor. checks for more PCB entries in
the GQE. If there are more entries, the
processor selects the next PCB and starts
processing it. If there are no more PCBsS
to be processed, the UCA processor compares
the available number of storage blocks
against its minimum reserve storage. If
the available number of storage blocks is
not greater than the minimum reserve
storage, the 'low core' flag is set, and
Write Shared Pages is called. When control
returns to the processor, it exits to the

Queue Scanner. If any PCBs have not been
posted, the device queue is not deleted,
the move-GQE subroutine is called, after
which the processor exits to the Queue
Scanner.

LOW CORE CONDITIONS: Prior to processing
new requests for storage, a check is made
to determine if enough main storage is
available. 1If not, an attempt is made by
the processor to free main storage by call-
ing the Write Shared Pages subroutine. In
this case, the scan flag in the system
table is turned off -- resulting in a
purge. If this does not solve the low main
storage problem, the processor will select
a task to force to time slice end, pre-
ferably not the requesting task. When a
task, other than the requesting task, is
forced to time slice end, the processor
then attempts to allocate the main storage
block. If the requesting task is forced to
time slice end, the processor immediately
returns to the Queue Scanner. When setting
or testing the 'low core' flag in the sys-
tem table the TSI lock in the system table
must be locked. It must then be unlocked
when the function is completed.

The check of the low core threshold is
made each time a page is assigned. 1If the
threshold is not reached, the scan flag in
the system table is turned off. When a
task is forced to time slice end because of
a low core condition, the field SSTICT in
the system statistical table is
incremented.

INCOMPLETE PROCESSING: In the event that a
request cannot be fully satisfied because
there is not enough main storage, the pro-
cessor will lock the lockout area lock and
save all pertinent information in a save
area and lock itself out by setting a sup~
press flag on. After information is stored
in the lockout area, its lock is unlocked.
The saved GQE will be processed before any
new request for main storage. To assure
this, the processor builds and gqueues a
dummy request (GQE) to itself which will be
received as soon as User Core Release
causes the UCA suppress flag to be reset
and control returns to UCA. ’

FORCED TIME SLICE END: If it becomes
necessary to force a task to time slice
end, UCA will lock the TSI chain and each
individual TSI is then tested before
selecting a task to be forced. (The re-
qguesting task will not be selected if an
alternative is available.) After selecting
a task to force to TSE, the TSI chain is
unlocked as are the individual TSIs whicn
were not selected. :
placed on the timer interrupt queue. - UCA
then attempts to continue. If it cannot,

data is saved as in "INCOMPLETE PROCESSING"

and exit is to the Queue Scanner.

A GQE is then built and .

Page Stealing: This portion of UCA is
invoked when the steal request indicator
(STESRI) in the schedule table is on, and
the pages using this time slice (XTSNPG) is
greater than the maximum number permitted
to this task (STEMAXCR). The number of
pages that can be stolen is 100 minus the
percentage of the task's maximum pages that
must be retained (STEST) times the number
of maximum pages [((100 - STEST) * STE-
MAXCR}. If this percentage, divided by
100, is greater than the number of pages
used, this time slice:

STEMAXCR * STEST > XTSNPG
100

a scan is done on all user pages, resetting
the reference bits.

Before a page can be stolen, it is
tested to make certain that it is not:

e An XTSI page.
e An ISA page.
e A PSW page.

e In transit (that is, in the process of
being stolen).

¢ In I/0 or SVC hold..
Only unreferenced pages may be stolen;

therefore, the task's reference bits are
reset each time page stealing is performed.

Auxiliarv Storage Allocation Queue
Processor (CEAIA) Chart AO

The function of the Auxiliary Storage
Allocation Queue Processor is to allocate
and maintain storage for user pages in
auxiliary drum and disk devices. This pro-
cessor maintains a count in the system
table of auxiliary storage in use at any
time for the entire system. The amount of
auxiliary storage assigned to each task is
maintained in the task's TSI. Also, if
available drum space falls below a certain
threshold, this processor will cause the
migration of certain tasks from drum to
disk. An additional logical function of
the processor is the Auxiliary Storage
Release subroutine described below.

Entry: CEAIAA
RESTRICTIONS: Auxiliary storage cannot be

extended dynamically and the auxiliary
storage processor can only handle the 2301,
2311, and 2314 devices.

MODULES CALLED: Dequeue GQE subroutine
(CEAJQ entered at CEAJDE) removes the GQE
pointer from the processor's queue.

Section 3: Program Organization 65

Enqueue GQE subroutine (CEAJQ entered at
CEAJEN) queues the GQE on the specified
device queue.

Supervisor Core Allocation subroutine
(CEAL1 entered at CEALO1l) allocates main
storage for a temporary save area and for
GQEs and PCBEs when page storage allocation
is from different devices.

Queue GQE on TSI subroutine (CEAAF
entered at CEAAFQ) queues a GQE on the TSI
representing an interruption to cause a
warning or shutdown message to be issued
because of low auxiliary storage.

Supervisor Core Release subroutine
(CEAL1 entered at CEALO2) releases main
storage used for temporary save area.

Move GQE subroutine (CEAJQ entered at
CEAJMG) causes GQEs to be queued on the
proper device queue.

Exits:
Normal - To Queue Scanner.

Error - To System Error Processor.
Operation: On entry the Degueue GQE sub-
routine is called to remove the GQE pointer
from the auxiliary storage allocation gqueue
entry in the scan table and to enable
interrupts. When control returns to the
processor, the first PCB is located and its
related PCBEs are examined. If at this
point, there still isn't enough auxiliary
storage to satisfy the PCB request, auxi-
liary storage management has failed, and
the System Error Processor is invoked.

When drum space is to be allocated, a
check is made to see if it will cause the
amount of drum space available to fall
. below its threshold value. If it will, a
task is chosen to migrate from drum to
disk. The inactive list of tasks is
searched looking for the task with the
largest number of pages on drum in excess
of its fair share (fair share is determined
by the formula ODS-BUFF-3T/T-2, where ODS =
original drum space, BUFF = system buffer
size, and T = number of tasks in the sys-
tem). If no task on the inactive list
exceeds its fair share of drum, the active
list is searched using the same criterion.
When a task has been selected for migration
in this manner, a GQE/PCB is created to
page in the first XTSI page. After it has
been read in, and Page Posting brings in
all the XTSI pages, migration of the
selected task's pages will be initiated.

Under certain conditions, consideration
is also given to migrating a task's shared
pages from drum to disk. A field is
checked in the auxiliary storage allocation

66

table (ASATMA) which indicates the number
of drum pages available. If the number is
less than the system buffer requirement,
then the number of tasks already in migra-
tion is checked (SYsMC). If the value in
SYSMC is less than the number of storage
units in the system, minus one, and shared
page migration is not already in progress,
the number of shared pages on drum is com-
pared to the maximum shared pages on drum
threshold (SYsMXD). If the threshold is
exceeded, CEAIA turns on the shared page
migration flag (SYSMG), and a flag in the
GQE (GQEMG) to indicate to the Timer Inter-
rupt Processor that migration of shared
pages is to be initiated.

When available drum space is not below
the threshhold value (and migration not
required) a PCBE is located which requests
drum storage allocation (when no bypass or
suppress indicators are set). The proces-
sor then searches the drum directory slots
for available pages. When available
storage has been found, the processor
updates the relevant auxiliary storage
allocation table (ASA) fields and calcu-
lates the drum page number for the
requested storage.

At this point, the processor inserts the
page number and drum address in the PCBEs
external address field and posts the auxi-
liary page address in all required TSI/XTSI
entries. The processor then selects the
next PCBE for processing and performs auxi-
liary storage location and allocation as
described previously.

When minimum drum availability is
reached, the processor makes a check to
determine if the page is a drum-preference
page. If so, the processor assigns the
page a drum address in the manner described
previously.

The processor allocates disk storage
when the following conditions exist:

¢ No drum storage is available.

¢ The requested storage is not a drum-
preference page and the availability of
drum space is minimal.

When these conditions exist, the proces-
sor locates a disk device with available
storage, and then searches the disk direc-
tory until the available space is located.
Auxiliary disk storage is then allocated in
the same manner as drum storage.

When auxiliary storage has been assigned
to the PCBEs, the processor sorts them by
assigned-device type. If page storage has
all been allocated from the same device,
the processor inserts the device address in
the affected GQE fields, and calls the

Enqueue GQE subroutine. Enqueue GQE queues
the GQE on the queue of the addressed
device and enables interruptions as speci-
fied by the processor. WwWhen control is
returned to the processor, an exit is made
to the Queue Scanner.

I1f page storage has been allocated for
the PCBEs from different devices, the pro-
cessor must set up a GQE and PCB for each
addressed device as follows:

e Requesting from the Supervisor Core
Allocation (SCA) subroutine a 64-byte
physical storage area for each GQE. At
the same time, a 64-byte physical
storage area is also allocated for a
PCB.

s When SCA has reserved the storage and
returned control, the GQEs are set up
by inserting a pointer to the PCB and
the device address in the required
fields.

e The PCBE is then moved to the new PCB,
and the count of PCBEs in the GQE is
then updated. When a PCB is filled,
and another PCBE is found for this
device, SCA is called to provide anoth-
er 6u-byte storage area for another
PCB.

e Setting bypass flags in the old PCBEs
to prevent allocation to the wrong
device.

s Calling the Enqueue GQE subroutine to
gqueue the new GQEs on the queues of the
addressed devices.

¢ Regaining control from the Enqueue
subroutine.

Whenever auxiliary storage has been
allocated, the total of auxiliary storage
available field, in the system table, is
decremented by the amount assigned. Also,
the count of auxiliary storage assigned
field in the task's TSI is incremented by
the amount.

If the amount of auxiliary storage
assigned to a task exceeds the amount per-
mitted for that task, a warning flag is set
in the task's TSI. If the amount of auxi-
liary storage available to the systen falls
below the minimum allowed, the task which
has the greatest amount of auxiliary
storage assigned to it, and its warning
flag on, is terminated by way of a program
interruption.

When allocation is completed, this pro-
cessor exits to the Queue Scanner.

Figure 16 illustrates the activities of
the processor. .

"__"_"""'—__ 1 CEAJDE

Queve - Dequeue
Scanner l
Select
Available
Location(s) |
Post as
Specified

More
Than One Yes CEA'LO‘
Device P Supervisor
Core
Involved ? < Allocation

_ /" Queue
- Scanner

Figure 16. Activities of the Auxiliary
Storage Allocation Queue
Processor

Contiquous Core Allocation Queue Processor
(CEANF)

This queue processor allocates conti-
guous main storage pages when user virtual
memory expansion requires more than one
segment table page. Hardware limitations
require segment table pages to be
contiguous.

RESTRICTIONS:

e This routine can only be called by Page
Posting (CEAMP), Add Page (CEAHQ), Add
Shared Page (CEARQ6), and Connect Seg-

. ment to Shared Page Table (CEAQ7)
subroutines.

e The GQECNT field in the GQE passed to
this routine must contain the number of
contiguous main storage blocks
requested.

» o If entry is from Page Posting, the

internal main storage address of the
segment table used in the previous time

Section 3: Program Organization 67

slice must be contained in the PCBIA
fields of the PCBs attached to the GQE.

Assumptions:

e When this routine is called, the task
has at least one segment table page
outside of the first XTSI page.

® Requests from ADDPG, ADSPG, and Connect
Segment are for only one page of conti-
guous main storage at a time.

e The XTSI ID (VMA) will be provided by
the caller.

Entry: CEANFA

Modules Called: Dequeue GQE subroutine
(CEAJQ entered at CEAJDE) removes GQE poin-
ters from specified queues.

Rescheduling (CEAKZ entered at CEAKZA)
places a task's TSI on the inactive list
when the request for contiguous main
storage cannot be met immediately.

Move GQE subtoutine (CEAJQ entered at
CEAJMG) moves a GQE from this processor's
queue to another where processing is to be
done.

Page Posting (CEAMP entered at CEAMP1)
posts user page status information to a
task's TSI, XTSI, and shared page tables
after a paging operation.

User Core Release (CEAL1 entered at
CEALO4) releases storage for unused pages.

Task Communication Control (CEAAN
entered at CEANN1l) sends a message to the
main operator.

Read Time (CEAS6 entered at CEAS6A via
SETTIMER macro) gets the real time in
milliseconds.

Set Real Time Interrupt (CEAS7 entered
at CEAS7A via SETTIMER macro) sets real
time interrupt for this task.

Queue GQE on TSI (CEAJQ entered at CEA-
JEN) adds a GQE to the TSI queue.

Exits:
Normal - To Queue Scanner.
- To System Error Processor when the

following situations are
encountered:

Exrror

. The waiting count is exceeded
while testing the lock byte.

68

® The task does not already have
one segment table page outside
the first XTSI page.

e The condition code setting after
issuing the Load Real Address
instruction indicates unsuccess-
ful translation of the address
of the page to be stolen.

¢ An invalid instruction length
code is encountered.

e An error is encountered when
converting the core block table
entry address to a main storage
page address.

Operation: If this processor is entered
from the Page Posting routine, a task is
starting a new time slice. In this case
(determined by a check on entry), the TSI
is locked and an attempt is made to reclaim
pages used in the task's last time slice.
If successful (all contiguous pages are
obtained), pages will be reposted -- eli-
minating the need for any I/0 operation.
The GQE is then destroyed and the TSI lock
reset before exiting to the Queue Scanner.

If previously used pages cannot be reco-
vered, the core block table is locked
(CHBBLK) and the core block table entry
string is scanned from the top seeking the
required number of contiguous main storage
pages.

If found, they are allocated and the
core block table entries are updated and
relinked. Exit is to the Queue Scanner
with the core block table lock reset.

If the request is from one of the
authorized SVC queue processors (CEAMP,
CEAHQ, CEAQ6, or CEAQ7), the task is active
and needs contiguous main storage pages on
demand. To meet the demand, the page fol-
lowing and the page preceding the segment
table page are checked--in that order. If
the trailing page is available, it is used
to £ill the request. If the page preceding
the segment table page is to be used, all
segment table page pointers in the core
block table entries are updated to reflect
movement of the segment table to the begin-
ning of this page.

When neither adjacent page is available,
the core block table entry string is
scanned as in the procedure previously
described for handling a call from Page
Posting. If necessary, an available page
can be created to satisfy the request for
contiguous main storage by borrowing one of
the pages currently occupied by the task.
This is done by marking the page "unavail-
able" in the page table. Pages may not be
stolen in this way, however, if they are

PSW, XTSI or changed pages, or if they are
in I/0 holgd.

If they are shared pages, the sharing
lock (SYSSHALK) is set, and the Inter CPU
Communication subroutine is called to cause
the other CPU's associative registers to be
reset. After the page table has been
updated, the sharing lock is reset.

When a contiguous main storage block has
been allocated, its first page will be used
to contain the beginning of the segment
table. The address of this first page is
returned to the caller.

If a request cannot be satisfied through
these procedures, a retry effort is set up.
First, a message is sent to the main opera-
tor to inform him of the situation; then
the requesting task is deactivated and a
3-second real timer is set to control reac-
tivation of the task. Exit is then made to
the Queue Scanner. After three seconds,
the task is reactivated and the request for
contiguous main storage regenerated.

Supervisor Core Allocation Subroutine
(CEAL1 Entered at CEALO1) Chart AP

This subroutine allocates main storage
for use by the supervisor components.
Entry: CEALO1
Modules Called: Inter-CPU Communication

subroutine (CEAIC): resets associative
registers for other CPUs.

Write Shared Pages subroutine (CEAMW
entered at CEAMWS) to free shared pages
when all other means of obtaining main
storage for supervisor use have failed.
Exits: To calling routine:

CC = 0 request fulfilled
CC = 1 core unavailable.

Operation: Supervisor Core Allocation
(SCA) allocates main storage in multiples
of 64 bytes for any size request of a full
page or less. Each physical page being
used by SCA is divided into blocks, each
block consisting of 64 bytes. When a
request for main storage is received, the
number of bytes requested is rounded up to
the nearest multiple of the blocksize, and

that many contiguous blocks are made avail-
able for use by the calling component.

The first block of each SCA page is
never assigned for use, but instead con-
tains control information for the SCA sub-
routine. Forward and backward links chain
it to other SCA pages. All SCA pages con-
tain a unique identification word (GAIL) to
ensure that any release of main storage
references a valid SCA page. Also included
in the control information is a count of
available blocks left in the page, and a
pis table sepresenting the current status
of each assignable block in the page, where
a 1 bit indicates an in-use condition, a
zero bit indicates that the block is avail-
able. The control information block of
each SCA page is formatted in the manner
shown in Figure 17.

The one exception to the use of the con-
trol block is when a full page of main
storage is requested. Because of this, a
full page request must be released as a
whole, and never in a series of smaller
blocks.

When SCA is called with an unavailable
return permitted and the 'low core' flag is
on, SCA exits immediately with condition
code = 1. Otherwise the request is filled.
When the request is for one block of main
storage, the quick cell lock is set and a
check is made to see if a block address is
currently in one of the quick cells (words
containing the address of one block of main
storage that was recently released). If
the quick cells are not empty, the request
is filled and exit is made with condition
code = 0. If the quick cells are empty,
the lock is reset, and the request is
filled by other means.

Requests for main storage blocks of less
than a page are allocated from three chains
of partially allocated pages:

e Single block chain - requests for
single blocks are allocated from this
chain when the quick cells are empty.

e TSI chain - blocks in this chain are
allocated in groups of three and are
used only when Create TSI calls for
main storage for a TSI.

) L] 1 T T 1 - 1
Forward	Backward	SCA	Unused	Flags	Count	Availability
Link	Link	ID			Available	Bits
		(GAIL)			Blocks	
L 1 L 41 L i 4 1
4 bytes 4. bytes 4 bytes 1 byte 1 byte 2 bytes 8 bytes

Figure 17.

SCA control information block

Section 3: Program Organization 69

¢ Other - all other requests are filled
from this chain.

In all cases, the RSVIK is set and SCa
allocates from the first two if they have
storage available. When the third chain is
used, each SCA page is checked before it is
searched to assure a reasonable probability
of meeting the request in that page. If
the probability is not good, the page is
skipped and the next page is checked. If
all pages are eliminated because of poor
probability, they are then searched in the
normal manner, contingent upon the count of
available blocks being at least as large as
the request.

When SCA cannot find enough blocks of
contiguous main storage in any of the
chains, or if the request is for a full
page, it goes to its list of reserved pages
- a list containing the addresses of a
number of pages kept in reserve to supply
the immediate needs of the supervisor com-
ponents. Whenever the reserved list is
low, the User Core Release subroutine
assigns the next user page released to the
reserve list. SCA sets the protection key
to "4" on all new pages it takes.

When the reserve list is empty, the core
block header lock (CHBLOCK) is set and an
attempt 'is made to find available main
storage in the core block header chains.

If none is available, the core block header
lock is unlocked, the TSI lock in the sys-

tem table is set and an attempt is made to

steal pages by scanning through the various
XTSI's segment and page tables.

As each task is checked, the TSI lock
and CHBLOCK are set and then unlocked if no
page can be stolen. Up to three passes are
made on the page tables; if at the end of
any pass a page or pages have been found,
the pages are marked unavailable, assigned
to the reserve list and normal SCA proces-
sing is resumed.

The first pass on the page tables
searches for available pages that have been
referenced but not changed for tasks not in
the execution state. On the next pass,
available pages that are not referenced and
not changed for tasks not in the execution
state are considered.

The final pass looks at available pages
‘that are not changed for tasks in the
execution state. When pages for tasks in
the execution state are used, it is neces-
sary to ensure that the page hasn't been
changed between the time it is checked for
a change and the time that it is made
unavailable. This is done by checking the
page for a change, and marking the page
unavailable. Inter-CPU Communication is
called to reset other CPU associative regi-

70

sters. The page is then checked again for
a change.

In the event that a page cannot be sto-
len from another task, the TSI lock in the
system table is unlocked and a special call
is made to Write Shared Pages (CEAMW) to
free up unchanged pages. If the first call
is unsuccessful in freeing pages to place
on the reserve list, a second call is made.
If no main storage can be obtained, a major
SYSERR is issued. ’

The Supervisor Core Allocation subrou-
tine disables all I/0 and external inter-
ruptions for the CPU currently executing
the subroutine, in order to inhibit the
interrupt stackers, so that the SCA subrou-
tine will not be called when its pages are
locked. Prior to entering SCA, the calling
program indicates, as one of its calling
parameters, whether these interruptions are
to be enabled on exiting from SCA or wheth-
er interruptions are to remain disabled.

Supervisor Core Release Subroutine (CEAL1
Entered at CEALO2) Chart AP

This subroutine releases main storage
blocks previously held for the use of
supervisor components.

Entry: CEALO2
Exits: To caller - with reserve list lock
(RSVLK) unlocked.

If a full page of main storage is freed
by the release of blocks, exit is to User
Core Release (CEAL1 entered at CEALO4)
which releases full pages of main storage.

Operation: This subroutine marks available
for use any returned main storage blocks.
To do this, the reserve list lock is set
and the availability bits in the SCA page
are reset, and the count of available
blocks is incremented. If the page is now
composed entirely of available blocks, the
page is returned for general system usage
by calling the User Core Release
subroutine.

When a single block of storage is
released to SCR, a check is made to see if
all quick-cells are empty. If they are
full, the availability for this block of
storage in the SCA page is reset, as noted
earlier; if the quick-cells are empty, the
quick-cell lock is set, the address of the
single block of storage being released is
put in it, and its corresponding availabi-
lity bit remains set. The quick cell lock
is unlocked. The gquick-cell is used to
speed up the allocation of a single block
of storage, which is expected to be the
most common type of request.

SCA disables I/0 and external interrup-
tions for the CPU currently executing the
subroutine, to prevent.the interrupt stack-
er from entering it while SCA has certain
locks locked. The calling program indi-
cates as one of its calling parameters,
whether these interruptions are to be
enabled on exiting SCR, or are to remain
disabled.

User Core Release Subroutine (CEAL]1 Entered
at CEALO4) Chart AP

This subroutine marks 4,096 bytes of
main storage available for reuse in the
core block table (CBT).

Assumptions: Startup will initialize the
core block table.

Entry: CEALOY
Exits: To caller except when it was called

by SCR, in which case exit is to the caller
of SCR.

Operation: Upon entry, User Core Release
(UCR) locks the reserve list (RSVLK) and
core block header (CBHLOCK). UCR then
determines whether the address it has

. received is that of a page or of a PCB con-
taining a page address. The page address
(whether sent directly or by means of a
PCB), is placed into a register; from this
point forward its origin no longer matters.
UCR then checks to make sure that CBHPXP
(the shared page chain pointer in the core
block header) is not pointing to the page
to be released. If it is, it must be
updated to the next page on the chain, or
zeroed if there are no more pages.

UCR then releases main storage to the
core block table unassigned chain, unless
the reserve list is low, in which case the
page is put in the reserve list if the
flags indicate that this is permitted. UCR
then unlocks the core block header and the
reserve list, and resets the low core flag,
if necessary. If a check indicates that
User Core Allocation is suppressed, the Set
Suppress Flags subroutine is called to
reset the flag, provided Write Shared Pages
is not the caller.

UCR then exits to its caller unless
Supervisor Core Release called it to
release a full page, in which case it
returns to SCR's caller.

Auxiliary Storage Release Subroutine
(CEAIA) Chart AO

This subroutine releases auxiliary
storage and maintains auxiliary storage
control fields in the system table and
task's TSIs.

D s

Entry: CEAIAR

Moedules Called: Supervisor Core Allocation
subroutine (CEAL1 entered at CEALOl) pro-
vides main storage for use as a register
save area.

Supervisor Core Release subroutine
(CEAL1 entered at CEALO2) releases main
storage after use.

Set Suppress Flags subroutine (CEAJQ
entered at CERJSF) sets the suppression
fiag off in tlie Auxiliary Storage Alloca-
tion Queue Processor's scan table queue.

Exit: To caller.

Operation: The calling routine must supply
three parameters:

¢ The TSI pointer.
e The number of pages to be released.

¢« The main storage location of the list
of 4-byte symbolic I/0 addresses (one
address for each auxiliary storage page
to be released).

The subroutine finds the bit for each
symbolic I/0 address in the appropriate bit
directory, sets the bit to zero, and raises
the availability count for that device by
one. Each time a page is released, the
count of available auxiliary storage, main-
tained in the system table, is raised. The
TSI pointer is then checked. If it is not
zero, the count of auxiliary storage
assigned to the task, maintained in the
TSI, is lowered. The assigned count of
auxiliary storage for the task is then com-
pared to a field which specifies the limit
of auxiliary storage allocatable to this
task. If the amount of auxiliary storage
actually assigned is equal to or greater
than the limit, the auxiliary storage
requirements exceeded flag is turmned on in
the task's TSI. 1If release of a page
causes the amount of storage allocated to
fall below the 1limit for the task, the flag
is turned off and the program continues.

Two conditions can cause an entry to the
system error processor:

e One of the symbolic I/0 addresses given
does not represent an auxiliary storage

page.

e One of the auxiliary storage pages was
already available.

The processing of the request is com-
plete up to the error entry.

Section 3: Program Organization 71

Suppress Auxiliary Allocation Subroutine
(CEAAP)

This subroutine suppresses external page
~allocation on the specified auxiliary
device.

Entry:

Modules called:
subroutine (CEALl entered at CEALO1?
cates all necessary work/save areas.

CEAAP1

Supervisor Core Allocation
allo-

Supervisor Core Release subroutine
(CEAL1 entered at CEALQO2) releases the
work/save area.

Exit: To caller.
Operation: On entry, processing steps are
performed in the following manner:

* The Supervisor Core Allocation subrou-
tine is called to allocate all neces-
sary work/save areas.

¢ The input general registers are saved.

e A test-and-set instruction is used to
test the auxiliary storage allocation
table lock byte.

e If it is on, a wait loop is entered to
allow a reasonable time for the lock
byte to be reset. If the lock is not
reset during the waiting period, a
minor software SYSERR is reported, and
processing continues as if the lock-
byte had been found off.

e If the lock byte is off the first drum
entry may be referred to via the point-
er in ASAT.

The input symbolic address is compared
to that of the device address field of this
and succeeding drum entries until a match
is found, or until the last drum entry has
been examined. When a match is found, the
drum suppression flag is set, the number of
pages available on the drum subtracted from
the total number of drum pages and control
returns to the caller.

e If no matching entry can be found when
the maximum number of drum entries have
been tested, a test is made to deter-
mine if there are any disk entries in
the ASAT.

e If so, the input symbolic device
address is compared to that of the
device address field of successive disk
entries until a match is found or until
the last disk entry has been examined.

e When a match is found, the drum
suppression flag is set, the number of

72

pages available on the disk is sub-
tracted from the total number of disk
pages, and control is returned to the
caller.

¢ If no match can be found when the maxi-
mum number of disk entries have been
tested, a minor software SYSERR is
reported.

When processing is completed, the ASAT
lock byte is reset, general registers are
restored, and the Supervisor Core Release
subroutine is called to release the work/
save areas and control is returned to the
calling program.

SVC QUEUE PROCESSOR_AND SERVICE ROUTINES

Supervisor Call Queue Processor (CEAHQ)

Chart AQ

The function of the Supervisor cCall
Queue Processor is to assure that the task
issuing the SVC is privileged to do so and
to identify and branch to the proper SVC
processor to service the interrupt.

Attributes: The SVC processor and its pro-
cessor programs are reenterable, resident,
open, and operate in the privileged state.

Entries: The Supervisor Call Queue Proces-
sor is entered from the SVC interrupt
stacker at CEAHQP2. There are also two
other entry points (CEAHQQ and CEAHQR)
which allow the SVC Queue Processor to be
entered as a subroutine to provide GQE
routing service.

Modules Called: Queue GQE on TSI (CERAF)
gqueues program interrupts on the task's
interruption queue in the event the task is
not authorized to issue the SVC or if it
has issued too many consecutive TSEND SVCs.

Move GQE subroutine (CEAJQ entered at
CEAJMG) queues the GQE on the next queue
when there is more work to be done or
releases the GQE's storage space when there
is no more work.

In addition to these, the SVC Queue Pro-
cessor calls all of the SVC processing sub-
routines described on the following pages.
These routines perform the work requested
by the task and only one is entered for
each supervisor call (SvVQC).

Exits: Upon normal completion of its work
the Supervisor Call Queue Processor exits,
by means of a branch, to the individual SVC
subroutine or processor indicated by the
interrupt code. The address of the GQE is
passed, as a parameter, in register one.

In addition, registers two and three will
contain the addresses of the TSI and the

(/‘"“‘\

XTSI respectively and the contents of regi-
sters 0, 1 and 15 at the time the SVC was
issued will be preserved in registers 4, S
and 6 respectively. -

If the task issuing the SVC is found to
be unauthorized to do so, an exit is made
to the Queue Scanner after an appropriate
task interrupt has been set up. Since pro-
grams will issue SVCs as part of macro
instruction expansions, an undefined inter-
rupt code is considered a serious error and
will result in a call to the System Error
Processor with an indication of the nature
of the error from the SVC Interrupt
Stacker.

Operation: The SVC Queue Processor is
initiated either by the Queue Scanner when
a GQRE is on the SVC queue or directly by
the interrupt stacker. General register 1
contains the address of the GQE when this
program is entered.

On entry, the lock byte in the TSI of
the task that issued the SVC is set and the
ready bit will be on meaning that until the
lock byte is reset the task will not be
considered for further execution.

If entered from the Queue Scanner, the
SVC Queue Processor first dequeues the GQE.
If entry is from the Interrupt Stacker,
this function is skipped. Next, the inter-
ruption code from the GQE is used to locate
an appropriate entry in the SVC flags
table. This entry is one byte of informa-
tion which includes the privilege status of
the SVC. This privilege status is compared
to that of the task (contained in the TSI).
If the task's privilege does not qualify it
to have issued the SVC, it is treated as a
program error by generating a program error
interruption. The TSI lock byte is then
reset and exit is made to the Queue
Scanner.

For any SVC except TSEND, the time slice
end SVC count field in the TSI (TSITSC) is
set to 1. If the SVC is TSEND, this count
is raised by 1. It is then compared to the
time slice end maximum count (SYSTSEM) in
the system table. If SYSTSEM is exceeded,
the task is terminated by way of a program
interrupt for issuing too many consecutive
TSEND SVCs.

If the task is of a sufficient priority
to have issued the SVC, the SVC Queue Pro-
cessor places the following in general
registers:

e The GQE pointer.
¢ The TSI pointer.

¢ The XTSI pointer.

& The contents, from the XTSI's save
area, of general registers 0, 1 and 15
when the SVC was issued.

This accomplished, the SVC Queue Proces-
sor uses the interruption code to find the
entry in the SVC address table, which con-
tains the actual main storage address of
the SVC processor required for processing
the sVC. If a corresponding entry is
found, the SVC Queue Processor passes con-
trol to the processor program. If there is
no corresponding entry, the queue processor
branches to an error routine which calls
CEAIS via the ERROR macro instruction.

Two SVC processing routines are internal
subroutines within the SVC Queue Processor,
the Add Page subroutine (CEAHQA) and Time
Slice End subroutine (CEAHQF). They are
branched to by the queue processor whenever
the services they provide are requested.

Add Page Subroutine (CEARHQ entered at
CEAHQA) cChart AR

This subroutine handles SVC requests for
the addition of pages to the calling task's
virtual storage. The Virtual Storage Allo-
cation Service routine normally issues the
SVC, specifying the virtual storage
address, a protection code and the number
of pages to be added. The specified virtu-
al storage address indicates the segment
and page at which the new page addition is
to begin. 1In adding a page to a segment,
the subroutine checks the segment and page
tables.

Entry: CEAHQA - in response to the ADDPG
macro instruction.

Modules Called: SVC Queue Processor (CERHQ
at CEAHQQ) causes a GQE to be put on the
calling task's interruption queue, and
resets the TSI lock and exits to the Queue

. Scanner.

Find Page subroutine (CEANC) locates the
segment table, auxiliary segment table,
page table, segment page and external page
table entries.

XTSI overflow subroutine (CEAMX) is
entered at CEAMXP for page~table expansion;
at CEAMXS for segment-table expansion.

Paging routine (CEAMQ) is called to read
in a page table page, if necessary.

Exits: Upon normal completion the Add Page
subroutine exits to the SVC Queue Proces-
sor. An abnormal condition may result in
an exit to either-the Queue Scanner or the
SYSERR routine.

Section 3: Program Organization 73

Ogeration. The addition of pages to a seg-
ment in a user's virtual storage may
involve either: -

¢ The addition of a page to a segment
that already has pages assigned to it.

e The addition of pages to an unassigned
segment.

When a page is being added to a segment
which already has pages assigned, the addi-
tion may be made to the end of the segment,
thus expanding the page table and external-
page table of the segment; or, the addition
may be made within the segment to an unas-
signed area which has been freed by the
execution of a Delete Page SVC.

In adding pages, the subroutine must
consider the storage required by the XTSI.
For each page added ten bytes of XTSI space
are required; two bytes for the new page
table entry and eight bytes for the new
external-page table entry. Since the page
table and/or external-page table for any
segment may not overlap the XTSI page boun-
dary, the subroutine must determine whether
or not the addition of table entries would
exceed the first XTSI page. If so, another
page of main storage is requested in which
to place the page table and external-page
table for the segment involved. The number
of allowable XTSI pages is a system value
that is checked whenever the subroutine
obtains a new page. If this maximum is
exceeded, an interruption must be queued on
the TSI's interruption queue. This is
accomplished by calling the SVC Queue
Processor.

Another consideration in adding pages is
whether a shifting of tables is necessary
in order to accommodate any particular
addition of pages. This shifting may take
one of two forms:

e A "short push®, which involves moving
the external-page table entries of a
particular segment away from the page
table entries of that same segment in
order to make room for new page table
entries.

e The "big push", which involves moving
together the page table and external-
page table of a number of segments in
order to make room for the total addi-
tion of table entries to some other ‘
segment. This action is necessary only
when pages are being added to a segment
whose tables (page and external-page)
reside within the first XTSI page and
are not the last set of such tables in
the first XTSI page.

on entry, the Add Page subroutine loads
the virtual storage address specified_by

74

the caller into a general register, and
checks contiguous main storage requirements
for segment table entries. If needed, Con~
tiguous Core Allocation is called to get a
new main storage area address. The Add
Page subroutine passes this address to the
XTSI Overflow subroutine (at CEAMXS) for.
use in segment table expansion. If there
are no contiguous main storage require-
ments, the Add Page subroutine transfers
control to the Find Page subroutine (at
CEANCA). This subroutine returns to Add
Page a condition code and pointers to the
segment/auxiliary-segment tables, and the
pages/external-page table entries involved
in this particular add-page operation. If
the return code from Find Page indicates
that the segment is unavailable, Add Page
checks to see if that segment is in a page
table page. 1If so, CEARMQ is called to read
in the page table pagec. When CEAMQ
returns, the page table will be available.

If the segment is available, the proces-
sor tests the condition code to determine
whether the requested page is to be added -
to an internal area of a segment, to the
end of a segment to which pages are already
assigned, or to an unassigned segment. In
the latter case, the subroutine issues an
ERROR SVC. In the other two cases, the
subroutine determines whether the current
allocation of tables within the XTSI allows
the selected page table to be expanded as
much as the request requires. 1If not, the
tables are rearranged, or the XTSI is
expanded to another page. If the current
size of the XTSI exceeds the current limit
for the task, or if previously assigned
pages are being reassigned by the SVC, the
SVC Queue Processor is called to queue the
GQE pointer on the TSI's interruption
gueue.

If Add Pages'was able to allocate the
requested page(s), the following occurs:

¢ The page-table-length field in the seg-
ment table entry is increased if the
addition was made at the end of a page
table.

¢ The page-table-availability flag in the
applicable segment table entry is set
to indicate that the page table for
that segment is unavailable.

¢ The page~assigned indicator in the
external-page-table entry is turned on.

¢ The appropriate protection keys, speci-
fied by the protection class, are set.

e The page-availability flag in the appl-
icable page-table entry is set to ind-
icate that the page is unavailable.

¢ The Add Pages subroutine exits to the
Queue Scanner. T

Add Shared Pages Subroutine (CEAQ6) Chart
AS

This subroutine handles an SVC request
for additional shared pages for a privi-
teged program's use and tests to determine
~f a new shared page table must be created
or if it is possible to add to the existing
shared page table of the same number. The
ralling program specifies a virtual storage
sddress, a number of contiguous pages, a
protection class, and a shared-table
number.

Entry: CEAH26 - in response to the ADSPG
macro instruction.

Modules Called: SVC Queue Processor (CEAHQ
at CEAHQQ) causes a GQE to be put on the
calling task's TSI interruption queue,
resets the task lock, and exits to the
gueue Scanner. -

Locate Page subroutine (CEAML) provides
the location of any page table entry or
external-page table entry when the appro-
priate virtual storage and TSI addresses
are given.

Supervisor Core Allocation subroutine
(CEAL1 entered at CEALO1l) allocates new
space.

Supervisor Core Release subroutine
(CEAL1 entered at CEALO2) releases old
storage space.

Exit: To Queue Scanner, with following
output:
Register 1 - Virtual Memory Address.

Register 15 - Protection Class and Shared
page table number.

Operation: On entry, the subroutine checks
contiguous main storage requirements for
segment table entries. If needed, Conti-
guous Core Allocation is called to get a
new main storage area address. The Add
Shared Page subroutine passes this address
to the XTSI Overflow subroutine (at CEAMXS)
for use in segment table expansion. If
there are no contiguous main storage
requirements, the Add Shared Pages subrou-
tine tests the shared-page table number
specified by the caller. If the caller
specified a shared-page table number great-
er than zero, the resident-shared-page
index (RSPI) is searched for a matching
entry. If none is found an error has
occurred and the SVC Queue Processor is
called. On return, the subroutine resets
the TSI lock byte and exits to the-Queue
Scanner.

If a matching RSPI entry is found, the
subroutine sets on the RSPI entry's add-
shared-page bit, and determines whether
there is enough available space in the
indicated shared segment to add the new
shared pages. If so, the subroutine deter-
mines whether the storage currently being
used for page table entries contains enough
space for the new page entries. If it
does, the subroutine then constructs the
new shared-page table entries, marking each
of them as assigned and unavailable, and
setting their external-page locations to
zero. The protection class specified by
the caller is stored in the external-
shared-page table.

At this point, the length and page-
table-origin fields in the RSPI are updated
to reflect the new entries. The processor
then searches through the entire chain of
TSIs to update the segment table length
field for those tasks that use this shared-
page page table number. The subroutine
stores the virtual storage address of the
new pages and the shared-page table number
in the general register save area of the
XTSI, and exits to the SVC Queue Processor,
which effects the release of the GQE
storage space, resets the TSI lock byte,
and exits to the Queue Scanner.

If a matching shared-page table number
is found by the processor, or if the caller
specified a shared-page table number of
zero, but there is not enough space in the
associated segment to add the new pages,
the subroutine does two things: Assigns a
new shared table number, and then prepares
to construct new shared-page and external-
page tables. The first step in this proce-
dure is to request main storage from the
Supervisor Core Allocation subroutine.

Wnen the storage is allocated, the proces-
sor constructs a shared-page table and an
external-shared-page table. The entries in
these tables are then marked as assigned
and unavailable. The external-page loca-
tion is set to zero, and the protection
class specified by the caller is stored in
the external-shared-page table.

The subroutine then determines, by
searching the RSPI, whether there is room
for another entry in the existing resident-
shared-page index storage area. If not,
the Supervisor Core Allocation subroutine
is called to allocate new space, and a new
RSPI is generated and chained to the pre-
vious RSPI. If a new RSPI entry may be
added to the previous RSPI, a new entry is
constructed and inserted in the previous
RSPI storage area.

In either of the above cases, the seg-
ment and auxiliary-segment table entries
for the new shared-page table number are
then made in the XTSI of the calling task.

Section 3: Program Organization 75

The virtual storage address and shared-page

table number are then stored in the XTSI's

general register save area, and the subrou-

tine exits to the SVC Queue Processor, as
described previously.

If there is not enough space in the cur-
rently used shared-page table entry to add
new page entries, the subroutine calls the
Supervisor Core Allocation subroutine for
more space. When space is allocated, the
subroutine moves the old shared-page table
entries to the new storage area and
releases the old space by calling the
Supervisor Core Release subroutine. Wwhen
control returns to the subroutine, proces-
sing continues as described previously.

Delete Page Subroutine (CEAND)

This subroutine handles an SVC request
to release a number of contiguous pages
from virtual storage.

Entry: CEANDA - in response to the DELPG
macro instruction.

Modules Called: Find Page subroutine
(CEANC) locates segment, auxiliary segment,
page, and external page table entries.

SVC Queue Processor (CEAHQ) dqueues a GQE
on the interruption queue in the TSI and
resets the task lock.

Supervisor Core Release subroutine
(CEALl entered at CEALO2) releases old
storage space.

Segment Block Remover subroutine (CEANG)
removes unused segment blocks from the end
of the segment table.

Auxiliary Storage Release subroutine
(CEAIA) releases auxiliary storage.

Search RSPI subroutine (CEAMS) locates
the proper resident-shared-page index
(RSPI) entry for any specific shared-page
table (SPT) number, or locates the address
of the next available entry in the RSPI.

Move GQE subroutine (CEAJQ entered at
CEAJMG) determines whether further proces-
sing is specified by the GQE; if not, the
GQE is released. If so, the GQE pointer is
placed on the appropriate scan table queue.

Paging'(CEAMQ) reads a page table page
into main storage.

Exits:
Normal - SVC Queue Processor.

Error - Queue Scanner.

76 .

Operation: The first step in processing
the request is to transfer control to CEAN-
CA, the Find Page subroutine, which locates
the segment, auxiliary segment, page, and
external-page table entries and returns
their addresses via general registers. 1If
a page table entry is not assigned to the
calling task, an addressing error has
occurred and an interruption must be passed
on to the task. This is accomplished by
calling the SVC Queue Processor which
queues a GQE on the interruption queue in
the TSI and resets the task lock. If the
page to be deleted is in IVM, exit is to
the SVC Queue Processor.

If Find Page indicates that the segment
is unavailable and the page table is in a
page table page, the Paging routine, CEAMQ,
is called at CERAMDA to read the page table
page into main storage. When control is
returned to Delete Page, if the page table
has been read in without error, Find Page
is called again to return the necessary
addresses. If the page table is not in a
page table page, and the page is marked
unavailable or if the return from CERMQ
indicates that the page was not read in, a
check is made for a shared page (see below)
and processing continues for that
condition.

If the subroutine finds that the segment
is available and the page is assigned, it
is deleted by setting the unassigned indi-
cator in the corresponding external-page
table entry. If the page to be released is
currently in main storage, the page table
entry is marked unavailable, and the Super-
visor Core Release subroutine is entered at
CEALO2. If the page is currently in auxi-
liary storage, the Auxiliary Storage
Release subroutine is called to release the
assigned auxiliary space. On return to the
subroutine the auxiliary-storage flag is
reset. If there are no more pages to
delete, the subroutine calls the Move GQE
subroutine. If there are more pages to
release, the Find Page subroutine is
called, and the relevant processing steps
are taken.

The subroutine then determines whether
an entire segment was deleted. If not, the
length of the remaining page table is
stored in the segment table entry. If the
page table is not in the first XTSI page,
the procgessor determines whether there are
more pages to be deleted. If so, the Find
Page subroutine is called to locate the
pages. If not, the Move GQE subroutine is
called to queue the GOE on the next proces-
sor's queue, and on return, an exit is made
to the Queue Scanner.

If the Delete Page request specified
that all pages in a segment were to be
released, the auxiliary-segment table is

marked unassigned, the segment table is
marked unavailable, and the segment indica-
tor in the XTSI is set. If a shared page
is released, the system table lock byte is
set on to indicate that a resident-shared-
page index (RSPI) entry is being changed.
The search-RSPI subroutine is called to
locate the shared page. When control
returns, the subroutine uses the shared
page number to delete (set to zero) the
RSPI entry returned by the subroutine. The
system lock byte is then set off. If the
page table was in the first XTSI page, the
subroutine repacks the deleted page and
external-page table entry in the XTSI,
allowing if necessary, for a dummy entry to
keep the length of the segment even. The
location fields of the affected segment
entries are updated. ‘

If the released pages were not in the
first XTSI page, the subroutine calls the
Supervisor Core Release subroutine to
release the main storage. When control
returns, the subroutine determines whether
more pages are to be released. If so, Find
Page is called, and the appropriate proces-
sing steps are taken. If all specified
pages have been released, the Move GQE sub-
routine is called to move the GQE pointer
to another processor's queue or to release
the storage occupied by the GQE. If, as a
result of this deletion, all entries in the
last segment block (for example, the last
16 entries) are now unused, the Segment
Block Remover subroutine is called to
remove the block. When control returns,
the subroutine resets the TSI lock byte and
exits to the Queue Scanner.

Set External Page Table Entries Subroutine
(CEAH7)

This subroutine handles an SVC request
to set external-page locations within the
selected external-page table entries in the
XTSI to the entries in the given list. The
calling task specifies the following:

¢ A virtual-storage address
s 1 parameter count
e A bit flag

¢ A list of external-storage addresses

RESTRICTIONS:
¢ The SVC must be on a word boundary.

e The SVC and all required input parame-
ters must be in one page.

¢ The input parameter must not exceed
1022 (the number of external storage
addresses).

Entry: CERHO7 - in response to the SETXP
macro instruction.

Modules Called: SVC Queue Processor (CELHQ
at CERHQQ) causes a task interruption to be
queued on the TSI's interruption queue.

User Core Release (CEAL1l entered at
CEALO4) releases pages in main storage

Find Page subroutine (CEANC) locates
segment, auxiliary-segment, page, and
external-page table entries.

Ruxiliar; Storage Release (CEAIA entered
at CEAIAR) releases pages in auxiliary
storage.

Paging (CEAMQ) is called to bring in
page table pages.

Exits:
Normal - SVC Queue Processor.

Error - Queue Scanner or System Error
Processor.

Operation: On entry, the processor
attempts to locate the SVC in mair storage.
If either the page table or page containing
the SVC is unavailable, an ERROR SVC is
issued. If the SVC is located, the proces-
sor tests the count of external-storage
addresses. The count must not exceed 1022.
If this maximum is exceeded, or if the
count is zero, the subroutine calls the SVC
Queue Processor to cause a task interrup-
tion by gqueuing a GQE on the TSI's inter-
ruption queue. On return the subroutine
TSI lock byte is reset and an exit is made
to the Queue Scanner.

Other program error conditions handled
in this manner are:-

¢ SVC is not on a word boundary.
e Input specifies illegal SDA.

e Input parameters are not all in one
page.

e Input specifies IVM page.

e Page to which an external location is
to be added is unassigned.

If none of the above errors exists, the
subroutine computes the virtual storage
address of each page for which an external
address is to be stored. The corresponding
external-page table entry is then located
by calling the Find Page subroutine. If
thé page table page is not in main storage,
Paging (CEAMQ) is called to read in the
page table page. If the page is in main’
storage, it is released by User Core

Section 3: Program Organization 77

Release. If the page is in tramsit, the
instruction counter is backed up and the
routine exits. The subroutine Yeleases
auxiliary storage indicated in the
external-page table entry, and stores the
external storage address parameter for the
page in the external-page table. If the
bit flag is on, the unprocessed bit in the
external-page table is set.

When all processing is completed, the
subroutine exits to the SVC Queue
Processor.

Move External Page Table Entries Subroutine

and the processor exits to the SVC Queue

Processor which calls the Queue GQE on TSI Y
subroutine to place the GQE pointer on the

TSI's interruption queue.

If no error occurs, the processor com- .
pletes processing and then exits to CEAHQR
to dispose of the GQE pointer or to queue
it elsewhere on the scan table. When con-
trol returns, the TSI lock byte iS reset
and the processor exits to the Queue
Scanner.

Connect Segment to Shared Page Table
Subroutine (CEAQ7) Chart AT

(CEAPO)

This subroutine handles an SVC request
to move entries from one page table to
another or to change the position of an
entry within a page table. The caller spe-
cifies two virtual storage page addresses
and a page count.

Entry: - CEAH10 - in response to the MOVXP
macro instruction.

Modules Called: Locate Page subroutine
(CEAML) finds the page table and external-
page table entries for the old and new
addresses.

SVC Queue Processor (CEAHQ entered at
CEAHQQ) causes a GQE to be queued on the
TSI's interruption queue. It is also
entered at CEARHQR to cause the GQE to be
moved or released.

Paglng (CEAMQ) brings page table pages
into main storage.

Exits:
Normal - SVC Queue Processor.

Error - Queue Scanner.

Operation: On entry, this subroutine
checks to see if all page table pages to be
used for this SVC are in main storage. 1f
not, a list is built of the range of page
table pages needed, and their addresses,
and CEAMQ is called to read them into main
storage. The subroutine then calls the
Locate Page subroutine to find the page
table and external-page table entries for
the 01d and new addresses. When this has
been done, the processor moves the page
table and external-page table entries from
the o0ld to the new addresses. As pages are
moved, old page table and external-page
table entries are marked as assigned but
unavailable and the external-page location
fields are set to zero.

If the caller specifies that an entry is

to be moved to a position which is marked
"unassigned®, an addressing error occurs,

78

This subroutine handles an SVC request
to connect a segment to a shared-page
table. The caller specifies the number of
the segment to be connected, and the number
of the shared-page table to which it is to
be connected.

Entry: CEAH27 - in response to the CNSEG
macro instruction with SYSSHALK set.

Modules Called: XTSI Overflow subroutine
(CEAMX) checks the segment number for va-
lidity, and either expands the size of the
task's segment table or returns an invalid
condition code of nonzero.

SVC Queue Processor (CEAHQ entered at
CEAHQQ) queues the GQE on the TSI's inter-
ruption queue. It is also entered at
CEAHOR to move or release the GQE.

Exits: SVC Queue Processor.

Operation: On entry, the subroutine checks
contiguous main storage requirements for
expanding the XTSI. If needed, Contiguous
Core Allocation is called to get a new main
storage area address. The Connect Segment
to shared Page Table subroutine passes this
address to the XTSI Overflow subroutine (at
CEAMXS) for use in expanding the segment
table. If contiguous main storage is not
needed, the subroutine compares the segment
number against the length of the calling
task's segment table. If the number is
greater, the processor transfers control to
CEAMXS of the XTSI Overflow subroutine,
which checks the segment number for validi-
ty, and either expands the size of the
task's segment table or returns an invalid
condition code of nonzero. If a nonzero
code is returned, the processor calls the
SVC Queue Processor which calls the Queue
GQE on TSI subroutine to queue the GQE on
the TSI's interruption queue. This results
in an exit to the Queue Scanner.

If the shared-page table number did not
match any number in the XTSI's entries, the
segment table for the designated segment is
set unavailable, the auxiliary-segment Y
table entry is marked as assigned and

shared, and the shared-page table number
and variable flag, if present, are inserted
in the entry. Exit is then to the SVC
Queue Processor at CEAHQR to dispose of the
GQE and exit to the Queue Scanner. If a
shared page table number match is found,
the segment number is inserted in the XTSI
GPR1 save area and the routine exits as
specified above.

Disconnect Segment From Shared Page Table
Subroutine (CEAQ8)

This subroutine responds to an SVC re-
quest to remove a segment from a shared-
page table. The caller specifies a shared-
page table number.

RESTRICTIONS: There must be a match for
the SPT number in the auxiliary-segment
table.

kntry: CEAH28 - in response to the DSSEG
macro instruction.

Modules Called: SVC Queue Processor (CEAHQ
entered at CEARHQQ) causes a GQE to be
queued on the task's TSI interruption queue
and resets the task lock. It is also
called at CEAHQR to dispose of the GQE and
exit to the Queue Scanner.

Segment Block Remover subroutine (CEANG)
removes unused segment blocks from the end
of the table.

Exits:
Normal - SVC Queue Processor:

Register 1 - number of the segment dis-
connected from SPT

Error - Queue Scanner.

Operation: On entry, the subroutine com-
pares the specified stared-page table num-
ber against the shared-page table number in
the caller's auxiliary-segment table. If
no match is found, the SVC Queue Processor
is called at CEAHQQ to cause the GQE to be
gueued on the caller's TSI interruption
queue, after which the TSI lock byte is set
off and the processor exits to the Queue
Scanner.

If a match is found, the corresponding
segment table entry is marked not available
and both words in the auxiliary-segment
table are zeroced. The number of the match-
ing segment is stored in the general
register save area of the XTSI. A check is
nade to determine if the removed segment
table entry was at the end of the table.

If it was, the Segment Block Remover sub-
routine is called. If not, or on return
from the subroutine, the TSI lock byte is

reset, and the subroutine exits to the
anens SConner.

Check Protection Class Subroutine (CEADY)
Chart AU

This subroutine checks the protection
classes of consecutive half pages specified
by the caller. A virtual storage address
and a count of contiguous half-pages are
given by the caller when the SVC is issued.

RESTRICTIONS: All pages checked must be
assigned and within virtual memory and the
count of half-pages must not exceed 220,

Entry: CEAQUA - in response to the CKCLS
macro instruction.

Modules Called: Find Page subroutine
(CEANC entered at CEANCA) provides the
location of the specified page table entry
or external-page table entry when the
appropriate virtuval storage and TSI
addresses are given.

Paging (CEAMQ) reads in page table
pages.

Exits: SVC Queue Processor, after placing
in XTSI, in area normally reserved for gen-
eral register zero:

Normal - protection class.
Error - zero.

Operation: On entry, the processor checks
to see if it is a variable request. 1In
this case, the XTSI segment table pointer
sign bit (XT3GOS) is cleared. If it is not
variable, a check is made to see if the
number of half-pages is greater than 8192.
If so, a program interruption of code X'6B*
(extended) is queued for the task. The
Find Page subroutine is then called to find
the adiresses of the page table entries and
external page table entries. If Find Page
indicates that the page table page is not
in main storage, CEAMD is called to read it
in, and on return Find Page is called
again. .

When control returns, the processor
determines whether each page is assigned,
and if so, the processor checks the two
protection key fields for each page and
returns to the caller the protection class
of the half-pages. The protection classes
are:

Class A ~-- The half-page may be read or
written.

Class B =-- The half-page may be read onily.

Section 3: Program Organization 79

Class C -- The half-page may not be read or
written by nonprivileged
routines.

Thus, if any half-page has a protection
class of C, the processor returns a class C
indicator. If no half-page has protection
class C, but at least one half page is
found with a protection class of B, class B
is returned. Otherwise class A is
returned. Protection class indicators are
assigned as follows:

Class A —- 1
Class B -- 3
Class C =-- 7

When the protection classes for all
half-pages have been examined, the indica-
tor for the most restrictive class found is
stored in the general register zero save
area of the caller‘'s XTSI.

If the segment searched was a shared
segment, the system sharing lock (SYSSHALK)
is reset. It was set by the Find Page sub-
routine if the segment was shared.

If the caller specifies a protection
class check of an unassigned page, the sub-
routine stores a zero in the general
register zero save area of the caller's
XTSI, and exits to CEAHQR.

Create~TSI Subroutine (CEAMC)

This subroutine effects the construction
of a task status index (TSI), and the pla-
cement of a task in the delay state on the
inactive list when a user issues a CRTSI
macro instruction.

Assumptions: The user will issue the VSEND
or VSENDR macro instruction to send infor-
mation to the newly created task.

Entry: CEAMCl1 - in response to the CRTSI
macro instruction.

Modules Called: Task Initiation suproutine
(CEAMC entered at CEAMT1) performs the
necessary processing to set up a TSI and
initiates a new task.

Exit: SVC Queue Processor.
Operation: On entry, the subroutine estab-

lishes addressability and calls the task-
.initiation subroutine (CEAMT1) to generate
an initialized TSI. The processor receives
a task identification from the Task Initia-
tion subroutine indicating either the crea-
tion of a TSI or that the system limit of
TSI's has been reached. The processor
places this identification in the save area
of the XTSI, resets the lock byte of the
task that issued the SVC, and exits tq the
SVC Queue Processor.

80

Special Create TSI Processor (CEAT2)

The function of this processor is to
construct an initialized TSI, regardless of
the system limit on the number of TSIs, and
the setting of the task initiation inhibi-

tion flag, in response to the SCRTSI macro
instruction.
RESTRICTIONS: Any changes on register

usage in this processor will affect its
comnmunication with the Task Initiation sub-
routine (CEAMC).

Assumptions: The user of this SVC will use
VSEND or VSENDR to send information to the
newly created task.

Entries: CEATZA - in response to SCRTSI
macro instruction.

Rl - Location of GQE
R2 - Location of TSI
R3 - Location of XTSI

Modules Called: Task Initiation subroutine
(CEAMC) performs the necessary processing
to set up a TSI and initiate a new task.

Exits: SVC Queue Processor at CEAHQR.
Operation: Special Create TSI calls the
Task Initiation subroutine at a special
entry point (CEAMT2). Task creation is
assured because neither the task-
initiation-inhibition flag nor the system
limit on TSIs is tested. If the TID of the
requesting TSI is 1, indicating a system
operator task, the processor changes the
new TSI's TID to 2. The TID of the created
TSI is stored in the XTSI register save
area of the requesting task.

Delete TSI Processor (CEAMD) Chart AV

This processor causes a task to be
removed from the system by having the
task's TSI removed from either the active
or inactive scheduling lists and by having
all auxiliary and main storage occupied by
the task returned to the system.

Assumptions: It is assumed that the task
issuing the SVC will have disconnected
itself from all shared data sets and will
have unloaded, from its wvirtual storage,
all shared programs except initial VM. 1In
addition, all accounting work will be
cleared up by the LOGOFF command program.

Entries: CEAMDT - in response to DLTSI
macro instruction or call from supervisor
routine.

Modules Called: User Core Release Subrou-
tine (CEALl entered at CEALOY4) releases
unshared page storage space.

Auxiliary Storage Release Subroutine
(CEAIA entered at CEAIAR) releases auxi-
liary storage occupied by the task's pages.

Supervisor Core Release subroutine
(CEAL1 entered at CEALO2) releases main
storage occupied by MCBs and/or IORCBs
associated with task interrupt GQE, storage
occupied by the the TSI, and storage used
as a work area by purge I/0. ’

Move GQE subroutine (CEAJQ entered at
CEAJMG) determines the sequence of queue
processors required to perform the work
required by the GQE and routes the GQE
pointer from queue to queue until the last
processor has finished the required proces-
sing. It also releases GQEs and associated
PCBs when no more work remains.

Locate Page subroutine (CEAML entered at
CEAMLP) locates unshared pages used by the
task being deleted.

Rescheduling subroutine (CEAKZ entered
at CEAKZA) removes the TSI from the active
list.

Purge I/0O subroutine (CEAAL entered at
CEAALQ) inhibits the execution of I/0
requests for all devices assigned to the
task and removes TSDL entries.

Supervisor Core Allocation subroutine
(CEALI entered at CEALO1l) reserves main
storage for use as a work area.

Exits:
Normal - Queue Scanner.
Error - System Error Processor.

Operation: On entry, after establishing
its base address, the processor disables
any pending real time interrupt for the
task. Then, if the second scan flag is not
on in the GQE, the Rescheduling subroutine
(CEAKZ) is called to remove the task from
the scheduling lists. Any GQE left from an
incomplete time-slice-end operation is dis-
posed of by Move GQE.

The number of main storage blocks avail-

~able is increased by TSIPTS. From the seg-

ment table, all available segments are
searched through their page tables in order
to find and release available pages (except
pages in page hold) via User Core Release.
Then the XTSI pages are released through
UCR. Any auxiliary storage is returned to
Auxiliary Storage Release. For available
shared segments, neither main storage nor
auxiliary storage is released. Any main
storage occupied by GQEs and associated
IORCBs or MCBs is released. If any pages
were found in page hold, the GQE created by
the SVC is placed in the TSI and exit is

made to the Queue Scanner. Otherwise the
Supervisor Core Release subroutine is then
called to release the main storage space
occupied by the TSI. The count of TSIs in
the system is decremented, Move GQE is
called to dispose of the GQE, and the pro-
cessor exits to the Queue Scanner.

Set up XTSI Field Subroutine (CEASH)

This subroutine handles a request to
place information in the XTSI.

The user should refer to the description
of the SETXTS macro expansions in Assembler
User Macro Instructions for information
about what CHAXTS fields may be set up.

Entry: CEAHU44 - in response to the SETXTS
macro instruction.

Modules called: SVC Queue Processor (CEAHQ
at CEARHQQ) causes a program interrupt GQE
to be put on the TSI's interruption queue, .
unlocks the TSI lock and exits to the Queue
Scanner. This occurs when a request is
made to set an XTSI field that may not be
set.

Exit: SVC Queue Processor.

Operation: This subroutine handles an SVC
request to place certain information in the
XTSI. The user of the SVC may issue the
SETXTS macro instruction with a mnemonic
code identifying the field to be set up in
the XTSI. The macro assembler substitutes
code values for the set of allowable mne-
monics and expands into the appropriate
SVC. When the SVC is executed the code and
the information to be stored in the XTSI
are loaded into general registers for
access by the subroutine.

On entry, the subroutine checks the
legality of the code. If the code is inva-
lid, the processor calls the SVC Queue Pro-
cessor which passes the interruption on to
the calling task by queuing the GQE on the
TSI's interruption queue.

If the code is valid, the processor
retrieves the length and displacement of
the XTSI field from the table of lengths
and displacements. These values are then
used to store the specified information in
the XTSI field. The processor then makes a
normal exit via the SVC Queue Processor.

Set up TSI Field Subroutine (CEAH2)

This processor handles SVC calls for
placing information in the TSI. To deter-
mine which TSI fields may be set, the user
should refer to the description of the
SETUP macro instruction expansions in
Assembler User Macro Instructions.

Section 3: Program Organization 81

Entry: CEAHO02 - in response to the SETUP
macro instruction. -

Modules called: SVC Queue Processor (CEAHQ
. at CEAHQQ) causes a program interrupt GQE
to be put on the TSI's interruption queue,
unlocks the TSI and exits to the Queue
Scanner. This is done when a request to
set a TSI field, other than those allowed,
is made.

Exits:
Normal - Queue Scanner.

Error - SVC Queue Processor.

Operation: On entry, the Setup TSI Field
Processor establishes its base address reg-
ister, and then checks the reguest to
determined if it is legitimate. If not, an
interruption code is placed in the GQE and
the SVC Queue Processor is called to queue
the GQOE on the TSI's interruption queue.

On return, the TSI is unlocked, and exit is
to the Queue Scanner.

If the request is legitimate, the pro-
cessor obtains the length of the field and
its displacement from the beginning of the
TSI, from a table of lengths and displace-
ments and, using these values, the proces-
sor stores the specified data in the TSI;
exit is then made to the SVC Queue Proces-
sor at CEAHND.

Extract TSI Field Subroutine (CEAH2)

This subroutine handles SVC requests for
information from a task's TSI. To deter-
mine which TSI fields may be extracted, a
user should refer to the description of the
XTRCT macro expansion in Assembler User
Macro Instructions.

Entry: CEAHO3 - in response to the XTRCT
macro instruction.

Modules Called: SVC Queue Processor (CEAHQ
at CEAHQQ) causes a GQE to be put on the
TSI's interruption queue, unlocks the TSI
and exits to the Queue Scanner.

Exits:

Normal - to SVC Queue Processor, with spe-
cified field stored in XTSI field
normally reserved for saving gen-
eral registers 0 and 1.

- To Queue Scanner, with general
registers unchanged and a task
interrupt pending.

Error

Operation: This subroutine is called when
the user of a service routine issues the
XTRCT macro instruction with a mnemonic
code such as SYSIN. The macro assembler

82

substitutes code values for a set of pre-
viously defined mnemonics. This code is
then used by the Extract TSI Field Proces-
sor as an index to a table which contains
the displacement of the indicated field
from the beginning of the TSI, and the
length of the field in bytes.

On entry, the subroutine tests the input
code value against an internal table to
determine its validity. If it is not
valid, the Queue GQE on TSI subroutine is
called to queue the GQE pointer on the TSI
as a program interruption. When control is
returned to the subroutine, the TSI lock
byte is reset and the subroutine exits to
the Queue Scanner.

If the input code value is valid, the
start address and length of the field are
retrieved from the lengths and displace-
ments table. The subroutine then locates
the requested field of information and
stores it in the XTSI register save area,
thus ensuring that the requested informa-
tion will be loaded into the appropriate
general register when control returns to
the calling task, and its registers are
restored from the XTSI. Exit is then made
to the SVC Queue Processor at CEAHND.

Extract XTSI Field Subrcutine (CEASHY4)

This subroutine handles SVC requests for
information to be extracted from the XTSI.
The user should refer to the description of
the XTRXTS macro expansion in Assembler
User Macro Instructions for information
about what CHAXTS fields may be extracted.

Entry: CEAHW45 - in response to the XTRXTS
macro instruction.

Modules Called: SVC Queue Processor (CEAHQ
at CEAHQQ) queues the GQE to be put on the
calling task's TSI interruption queue,
resets the TSI lock, and exits to Queue
Scanner.

Exits:

Normal - To SVC Queue Processor, with spe-
cified field stored in XTSI field
normally reserved for saving gen-
eral registers 0 and 1.

Error - To SVC Queue Processor.

Operation: This subroutine handles SVC

requests for information extraction from

the XTSI. The user of this SVC may issue
the XTRXTS macro instruction with a mnemon-
ic code identifying the field to be
extracted. The macro assembler substitutes
code values for the set of allowable mne-
monics and expands them into the XTRXTS

SVC. When the SVC is executed the identi-

K

fication code will be available to the sub-
routine in a general register.

On entry, the subroutine tests-the
legality of the identification code. 1If
the code is invalid, the SVC Queue Proces-
sor is called to queue the GQE on the cal-
ling task's TSI interruption queue.

If the code is valid, the length and
displacement of the indicated XTSI field
are obtained from a table of lengths and
displacements, and used as the values for
storing the requested information in the
XTSI register save area, thus making it
available to the calling task when it is
restarted and its registers are restored.
The processor exits to the SVC Queue
Processor.

Time Slice End Subroutine (CEAHQ entered at
CEAHOF)

This subroutine responds to an SVC for a
service routine or a system programmer to
force premature time-slice end.

Entry: CEAHQF - in response to the TSEND
macro instruction.

Modules Called: Move GQE subroutine (CEAJQ
entered at CEAJMG) determines whether
further processing is specified by the GQE.
If not, the GQE is released. If so, the
GQE is queued on the appropriate scan table
queue.

Exits:
Normal - SVC Queue Processor.
Error - Queue Scanner.

Operation: On entry, the subroutine sets
the forced-TSE indicator in the specified
GQE, and then changes the sequence string
of queue processors' loc-on-queue values in
the GQE so that the Timer Interrupt Queue
Processor will be the next processor in
line to perfcrm work for the GQE. The Time
Slice End Processor then calls the Move GQE
subroutine, which examines the GQE and
queues it on the Timer Interrupt Queue Pro-
cessor's scan table queue. When control
returns, the Time Slice End subroutine sets
the TSI lock byte off and exits to the
Queue Scanner.

AWAIT SVC.Subroutine (CEAP7) Chart AW

This subroutine responds to a task's SVC
request to test for completion of.a given
event. If the event is complete, it will
return to the task. If it is not, the task
is put in delay state and an AWAIT exten-
sion allowed before the task is forced to
time slice end. It also increments two
fields in the system statistical table:

SSTAWT, each time it is called for AWAIT
processing; and SSTTWT, each time it is
called to complete TWAIT processing.

RESTRICTION: The SVC must be the object of
an EX instruction and must be located in
the second half-word of a full word, which
is an event control block (ECB). The delay
flag must not be set and the SVC must be
remotely executed.

Assumptions: If Queue GQE on TSI subrou-
tine finds the delay bit on when queueing
an interruption for the task, it will 1)
reset the delay bit and turn on the ready
bit in the TSI and, 2) cancel the real time
interruption and turn off the AWAIT flag in
the TSI. .

Entries:

CEAH17 - by the SVC Queue Processor in
. response to the AWAIT macro
instruction.

- by CEARRO to complete processing
for the TWAIT macro instruction.

Modules Called: Supervisor Core Allocation
(CEAL]1 entered at CEALO1l) to obtain main
storage for a GQE.

Real Time Interrupt subroutine (CEAS6
entered at CEAS6A) for a reading of the
real time clock.

Set Real Time Interval subroutine (CEAS7
entered at CEAS7A) to set a real time
interruption for the AWAIT extension
period.

-Move GQE subroutine (CEAJQ entered at
CEAJMG) to queue up a forced time slice end
on the timer interrupt processor's queue.

Exits: Upon normal completion the await-
SVC subroutine exits to the SVC Queue Pro-
cessor. Any abnormal condition will result
in an exit to the Queue Scanner.

Operation: On entry, the subroutine deter-
mines whether the requesting SVC was
remotely executed and whether the SVC
instruction was on the second halfword
boundary of a word. The latter is deter-
mined by examining the virtual storage
address stored in the GQE. If both of
these conditions are not satisfied an error
has occurred, in which case the subroutine
calls the Queue GQE on TSI subroutine to
place the GQE pointer on the TSI's program
interruption queue entry. When control
returns to the processor, the TSI lock byte
is turned off and an exit is made to the
Queue Scanner.

If the above conditions are satisfied
the subroutine computes the location of the

Section 3: Program Organization 83

task's event control block (ECB) by doing
an LRA from the location of the SVC speci-
fied in the GQE, and sSubtracting two. (A
major syser results if the LRA fails.)

. When control returns the subroutine tests
the event-completion indicator in the ECB.
If the indicator specifies that tne event
is complete, the subroutine exits to the
SVC Queue Processor.

If the event is not complete, a check is
made to determine whether any interruptions
are pending for the task. If so, CEAP7
exits to the SVC Queue Processor. Other-
wise, the delay flag in the TSI is checked;
if it is on, a major syser is issued; if
not, the AWAIT flag is set and a check made
to determine whether the task should be
time-slice ended immediately or a timer
interval set up; exit is then to the SVC
Queue Processor at CEAHND.

TWAIT Subprocessor (CEAR0)

This subroutine responds to a task's SVC
request to test for the completion of a
given event.

RESTRICTIONS: The SVC must be the object
of an EX instruction and must be located in
the second half-word of a full word, which
is an event control block (ECB). The delay
flag must not be set.

Entries: CEAH30 - in response to the TWAIT
macro instruction.

Exits: AWAIT SVC processor.
Operation: This subroutine sets TWAIT

indicator flags in the TSI and GQE. It
then exits to the AWAIT SVC processor.

Pulse Schedule Table Entry Processor
(CEAR2)

This routine responds to a task's re-
quest to assign it the schedule table entry
specified in the Pulse level field of its
current STE.

Entry: CEAR2A - in response to the PULSE
macro instruction.

Exit: Queue Scanner.

Operation: This routine extracts the STE®
field (STEPULSE) and then determines its
validity by checking the following two
conditions:

1. 1Is it within the bounds of the current
schedule table?

2. 1Is the PULSE level zero?
If it is invalid, the task‘'s STE level is

left unchanged and a return code is set in

84

register 15 to indicate the condition. If
the PULSE level is valid, the contents of
STEPULSE are moved to the schedule table
entry field in the task's TSI (TSISTE).
The return code is set in register 15, and
exit is taken to the Queue Scanner.

The return register (GPR 15) reflects
the action taken by this routine as
follows:

Byte 0 - Set to 00 if valid change made
Set to 01 if PULSE level out of
schedule table bounds (no change
made to current STE for task)

" Set to 02 if PULSE level is zero
(no change made to current STE for

task)
‘Byte 1 - Contains old STE level for task
Byte 2 - Unused
Byte 3 - Contains level indicated by

STEPULSE.

Change Schedule Table Entry Processor
(CEAR3)

This routine responds to a privileged
task's request to have a specific schedule
table entry level assigned to it.

Entry: CEAR3A - in response to the CHANGE
macro instruction.

Exits:
Normal - SVC Queue Processor.

Error - Queue Scanner.

Operation: As input, this routine receives
the new schedule table entry level to be
assigned in general register 6 (task
register 15). Then, two conditions are
checked:

1. 1Is the requested level change outside
the bounds of the current schedule
table?

2. 1Is the requested entry zero?

If either condition exists, the schedule
table entry level is left unchanged.
Otherwise, the task's STE level is changed
by inserting the contents of the input
register in the schedule table entry field
of the task's TSI (TSISTE). The return
register (15) is then set to indicate what
action was taken as follows:

Byte 0 - Set to 00 if valid change made

—

Set to 01 if requested entry level

out of bounds (No change in level
made)

Set to 02 if requested entry was
zero (No change in level made)

Byte 1 - Contains old STE level of task
Byte 2 - Unused

Byte 3 - Contains requested level (If byte
zero is zero, this will be the new
entry level of the task.)

This routine is also entered to process
requests invoked by issuing the PRESENT
macro instruction. PRESENT requests a
task's current schedule table entry level.
Code in the macro expansion causes the re-
quest for a CHANGE outside of the limits of
the table. CEAR3 processes the req<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>