
File No. S360-36
GY28-2012-5

Program Logic

Version 8.1

IBM System/360 Time Sharing System

Resident Supervisor

Describes the internal logic of the resident super­
visor, and provides a brief overview of its operation.
It is intended as a reference for anyone involved in
maintaining or altering resident supervisor logic.

The resident supervisor schedules and dispatches
tasks, provides services that might endanger system
integrity if a task were allowed to execute them,
handles interruptions, and deals with system errors.
It 1s permanently resident in ,main storage,

The first and second sections of the book are
intended to introduce the reader to the functions of
the resident supervisor, and to provide him with an
easily used, overall presentation of resident supervi­
sor logic. Interruption handl~ng is described from the
point at which the interruption occurs until it has
been completely processed. Paging and queuing are dis­
cussed. The third and fourth sections describe in some
detail the individual modules that make up the resident
supervisor. These modules are discussed under the fol­
lowing headings: interruption classification, queue
scanning and processing, storage allocation, SVC pro­
cessing, paging, I/O handling, task selection and sche­
duling, and error recovery. The appendixes contain
module IDs and names of supervisor routines, and SVC
codes.

The prerequisites for this publication are: IBM
System/360 Principles of Operation, GA22-6821, and I§M
System/360 Time Sharing System: Concepts and Facili­
ties, GC28-2003.

PREFACE

This publication describes the logic and
operation of the '1'55/360 resident supervi­
sor. It is divided into four sections and
two appendixes. Section 1, the introduc­
tion, describes the purpose and major com­
ponents of the resident supervisor, and how
these compenents interact with the rest of
TSS/360~ Section 2, the method of opera­
tion, describes resident supervisor inter­
ruption handling, queue processing, storage
allocation, and task selection and schedul­
ing. Section 3, program organization, dis­
cusses the internal logic of the resident
supervisor. Each routine is described in
detail. Section q contains flowcharts for
the more complex supervisor modules.
Appendix A contains a list of module IDs
and entry point names for all modules in
the resident supervisor. Appendix B is a
table of defined SVC codes and their
meaning.

resident supervisor logic. It will be par­
ticularly useful to systems programmers.

PREREQUISITE PUBLICATIONS

Familiarity with the material contained
in the following publications is essential
to the use of this manual:

IBM System/360 Principles of Operation,
GA22-6821

IBM SysternV360 Time Sharing System:
Concepts and Facilities, GC28-2003

This publication is intended for use by
anyone involved in maintaining or altering

In addition, IBM System/360 Time Sharing
System: System Control BlOCKS PLM, GY2B-
2011, and IBM System/360 Time Sharing Sys­
tem: Assembler User Macz:o Instructions,
GC28-~004, Should be available for
reference purposes.

Sixth Edition l:3eptembe.: 1971)

This is a ~ajor revision of, and makes obsolete,
('Y28-2012-1I.

This edition reflects changes to the resident supervisor
intended to improve its performance and make it even more
efficient. Several task selection and scheduling met nods
have been changed, the pa~ing error recovery function has
betin expanded, and XTSI paging has been revised. In addi­
tion, th~ structure of the book itself has been changed for
easier reference and a method of operation section added.

This edition is current with Version 8, Modification 1,
and remains in effect for all subsequent versions or modifi­
cations of IBM Systeml360 TimeSharing System unless other­
wise indicated. Significant change~ or additions to this
pUblication will be provided in new editions or Technical
~ewsletters. Before using this publication, refer to the
latest edition of IB~j system.l360 Time Sharing System: Adden­
.!!!!!!!, GC28-20113, which may contain information pertinent to
the topics covered in this edition. The Addendum also lists
the editions of all TSS/360 publications that are applicable
and current. •

This publication was prepared for production using an IBM
computer to update the text and to control the page and line
format. Page impressions for photo-offset printing were
obtained from an IBM 11103 printer using a special print
chain. ..,

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form is provided at the back of the publication for
reader's comments. If the form has been removed. comments
may be addressed to the IBM corporation. Time Sharing System!
360 Programming Publications, Department 6113. Neighborhood
Road, Kingston, New York 121101

Q Copyright International Business Machines corporation 1967,
1968, 1969, 1970, 1971

.r-.

SECTION 1. INTRODUCTION • • • • • • •
Relationship to the System • • • •
Purpose and Functions • • • • • •
Major Components of the Resident supervisor •

SECTION 2. METHOD OF OPERATION • • • • • •
Overview of Resident Supervisor Operations

processing of Interruptions • • • • •
Scheduling of Tasks • • • • • • • • •
Control Blocks Used by the Supervisor •

Interruption Handling • • • • •
Entry to the supervisor • •
General Queue Ent,ry (GQE)
Queue scanning • • • • • •
Scan Table (SCANT) •••• • • • • •
Scan Table Master Control Table (SMC) • • • •
Queue Scanner Functions •
Queue processing • • • •
Timer Interruption Processing
Segment and Page Tables • • • •
Program Interruption Processing •
I/O Interruption Processing
pathfinding •
paging . . • • • . • •
Disk Paging • • • • • • • • •
Drum Paging • • • • • • • • • • • • • .
Main Storage Allocation • • • •
User Core Allocation • • • • • • • • • •
Supervisor Core Allocation • • • • • • •••••
Auxiliary Storage Allocation • • • • • • • • •
SVC Interruption Processing •
Task Scheduling and selection • •
Schedule Table (CHASTE) • •
Active and Inactive Lists •
Task Selection • • • •
Task Scheduling • • • • • •

CONTENTS

1
1
1
2

4
• • •• 4

4
5
5
6
6

• • •• 7
• • •• 8

8
8
8
9

• • •• 9
• • 10

• 10
• 11
• 12

• -. 12
• • 13

• • • • 13
• • 13

• • • • 14
• 14
• 15
• 15
• 16

• • 16
16

• 17
• • • • 17

SECTION 3: PROGRAl>l ORGANIZATION • • • • • • • • • • 20
Interruption Classification • • • • • • • • • • • • • • • • 20

Interrupt Stacker Module (CEAJI) Chart AA • • • • • 20
Queue Scanning and Processing • • • • • • • • • • • • 25

Queue Scanner (CEAJQ) Chart AB • • • • • • • • • • • 25
Queue-Control Subroutines • • • • • • • • • • • • • • • • • • 26

Enqueue GQE Subroutine (CEAJQ Entered at CEAJEN) •••• 26
Dequeue GQE Subroutine (CEAJQ Entered at CEAJDE) • • • • 27
Move GQE Subroutine (CEAJQ Entered at CEA.:'i!o'.G) • • • • 28
Set Suppress Flag Subroutine (CEAJQ Entered at CEAJSF) Chart AC • 28

Queue Processors ••••••••••••• • • 29
Timer Interrupt Queue Processor (CEAKT) Chart AD • 29
Page Drum Queue Processor (CEAAS) Chart AE 33
Page Drum Interrupt Queue Processor (CEAA9) Chart AF • • • • 35
Program Interrupt Queue Processor (CEANA) Chart AG • 38
I/O Device Queue Processor (CEAA3) Chart AH • • • • • • • • • • • 41
Page Direct Access Interrupt Subprocessor (CEAA7) Chart AK ••• 43
page Direct Access Queue Subprocessor (CEAA6) chart AI • • 45
Channel Interrupt Queue Proces,sor (CEAA4) Chart AK • • • • • 47
Remote Job Entry Asynchronous I/O Interrupt Subroutine (CEABA)
Chart AL • . • • • • • • • • • • • . • . • • • • • • • • • . 53
Remote Job Entry Synchronous I/O Error~nterrupt Subroutine
(CEABS) • 56
Terminal Communications Subprocess or ,(CEATC) Chart AM •••• 58

Storage Allocation Processors • 63

iii

User Core Allocation Queue Processor (CEANB) Chart AN • • • • • • 63
Auxiliary storage Allocation Queue Processor (CEAIA) Chart AO • • 65
Contiguous Core Allocation Queue Processor (CEANF) • • • • • 67
Supervisor Core Allocation Subroutine (CEAL1 Entered at CEAL01)
Cha'rt AP • • . • . • • • • • • • . • • • • • • • . •• 69
Supervisor Cor~ Release Subroutine (CEAL1 Entered at CEAL02)
Chart AP • . . • • . . . • • . • . • • • • . . • • 70
User Core Release Subroutine (CEAL1 Entered at CEALOq) Chart AP • 71
Auxiliary Storage Release Subroutine (CEAIA) Chart AO • 71
Suppress Auxiliary Allocation Subroutine (CEAAP) • • 72

SVC Queue Processor and Service Routines •••• • 72
Supervisor Call Queue Processor (CEAHQ) Chart AQ • 72
Add Page Subroutine (CEAHQ entered at CEAHQA) Chart AR ••••• 73
Add Shared Pages Subroutine (CEAQ6) Chart AS • • • • 75
Delete Page Subroutine (CEAND) ••••••••••• 76
Set External Page Table Entries Subroutine (CEAH7) 77
Move External Page Table Entries Subroutine (CEAPO) • 78
connect Segment to Shared Page Table Subroutine (CEAQ7) Chart AT 78
Disconnect Segment From Shared Page Table Subroutine (CEAQ8) •• 79
Check Protection Class Subroutine (CEAQq) Chart AU •• 79
Create-TSI Subroutine (CEAMC) • • • • • • • 80
Special Create TSI Processor (CEAT2) • 80
Delete TSI Processor (CEAMD) Chart AV • • • • • 80
Set up XTSI Field Subroutine (CEAS4) • • • • • • 81
Set up TSI Field Subroutine (CEAH2) • • • 81
Extract TSI Field Subroutine (CEAH2) 82
Extract XTSI Field Subroutine (CEAS4) • • • • • • 82
Time Slice End Subroutine (CEAHQ entered at CEAHQF) • • 83
AWAIT SVC Subroutine (CEAP7) Chart AW • • • • • 83
TWAIT subprocess or (CEARO) ••••••••• • 84
Pulse Schedule Table Entry Processor (CEAR2) • • 84
Change Schedule Table Entry Processor (CEAR3) • • • •• • 84
Set User Interval Timer Subroutine (CEAQ2) • 85
Set Real Time Interval Subroutine (CEAS7) Chart AX 85
Restore Elapsed Time Subroutine (CEAS8) • • • • • • •• 87
Read-Time Subroutine (CEAS6) ••••••••• • 87

System Table Modification and Extraction Processors • • •• 88
Set up System Table Field SUbroutine (CEAS2 Entered at CEAH42) • 88
Extract Systtm Table Field Subroutine (CEAS2 Entered at CEAH43) • 88
Extract Accumulated Time Routine (CEAT1) • • • • • 88
Lxtract from Auxiliary Storage Allocation Table (CEAT4) • 89
I/O Call Subroutine (CEAAO) Chart AY •••••••••••••• 89
Pageout Service Subroutine (CEAAl> Chart AZ • • • • • • • • • 90
Remote Job Entry Line Control Subroutine (CEABC) Chart BA • 92
Reset Device suppression Flag Subroutine (CEAAH) • 94
set Path Subroutine (CEAAB) • • • • • • • • • • ••• 94
Queue Device on Task Subroutine (CEAAC) • • • • • 94
Kemove Device From Task Subroutine (CEAAD) •••• • • 95
Set Asychronous Entry Subroutine (CEAAK) • • • • 96
Terminal SVC Processor (CEARq) Chart BB • • • • • 97
[l.eset Drum Interlock Subroutine (CEAAZ) • • • • • 99
Inter-Task Communication Subroutine (CEAQ5) • • • 99
TSS Dynamic Status (CEASS) •• 100

Supervisor Subroutines •• • • • • .101

~v

Page-Handling Sunroutines • • • • • .101
Find Page Subroutine (CEANC) • • • • • • • ••••••• 101
Locate Page Subroutine (CEAML) • • • • • .102
page Posting Subroutine (CEru~P) Chart BC • • • • • .102
Write Shared Pages Subroutine (CEAMW) •. 106
Zxternal Page Location Address Translator Subroutine (CEAAE) •• 108
Search-RSPI-Table sunroutine (CEAMS) • • • • .109
~~egment Block Remover Subroutine (CEANG) Chart BD • • • • .109
XTSI Page Packing Subroutine (CEAMY) •••••••••••••• 110
F,eal Core Statistical Data Recording Subroutine (CEAI6) Chart BE 110
Real Core Error Recording Subroutine (CEAI7) Chart. BF •••••• 110

Paging Error Recovery Routines • • • • • • • • • • • .111
Paging Failure Recovery Subroutine (CEAA~) Chart BG • • .111
Paging I/O Error Recovery Routine (CEAAM) • • • • • • • •• 113

Start Retry operation Subroutine (CEAAX) •• 115
Standard Area Retry Subroutine (CEAAT) • • • • • • .116
Alternate Path Retry Subroutine (CEAAS) Chart BH • • • • • .117
Same Path Retry Subroutine (CEAAV) Chart BI • .119

I/O Service Subroutines • • • • • • • • • • • • • .·123
pathfinding Subroutine (CEAAS) Chart BJ •••• 123
Start I/O Subroutine (CEAAG) Chart BK • • • • • • • • .125
Halt I/O Subroutine (CEAAI) • • • • • • • • • • • • • • .126
Dequeue I/O Requests Subroutine (CEAAJ) Chart BL •• 128
Generate and Enqueue Interrupt-GQE Subroutine (CEABQ) • • • .129
Command Word Relocator Subroutine (CEAAA) • • • • • • • .130
Purge Subroutine (CEAAL) Chart BM • • • • • • • • • • .131
Terminal Control Table Entry Slot Allocation Subroutine (CEATS)
Chart BN . • • • • • • • • • • • • • • • • • . • .133

special Task Service subroutines ••••• • • • • .133
Task Initiation Subroutine (CEAMC) Chart BO • • • ••• 134
XTSI Overflow Subroutine (CEAMX) •••••• • ••• 134
Queue GQE on TSI Subroutir.e (CEAAF) Chart BP • • • • • • • .137
Task Communication Control Subroutine (CEAAN) •••• 139

General Service Subroutines. • • • • • • • • • • • ••• 140
Inter-CPU Communication Subroutine (CEAIC) Chart BQ • • ••• 140
Create Real Time Interrupt Subroutine (CEAKR) Chart BR ••••• 142

Task Selection and Scehduling Routines • • • .143
Internal Scheduler (CEAKI) Chart BS • • • • • • • •••••• 143
The Dispatcher (CEAKD) Chart BT • • • • • • • • • ••• 144
Task Interrupt Control Subroutine (CEAA2) Chart BU .145
Entrance Criteria Subroutine (CEAKE) Chart BV • • ••• 146
Rescheduling Subroutine (CEAKZ) Chart BW •••••••• 147

Major Error Recovery Procedures • • • • • • • • • • • .148
Recovery Nucleus-67 (CEAIR) Chart BX • • • • • • .148
Reconfiguration Routine (CGCMA) • • • • • • • • • • •••• :152
External Machine Check Interrupt Processor (CEABE) Chart BY ••• 153

System Environment Recording and Retry Programs. • • • • • .154
SERR Bootstrap (CMASA) Chart BZ • • • • • ••••••• 156
Environment Recording Program (CMASB) • • • • .158
Immediate Print Program (CMASC) • • • • • • • • • • • • ••• 158
'Checker Program (CMASD) Chart CA •• • • • • • •••• 161
Pointer Program (CMASE) ••••••••••••••••••••• 162
Restore and Validate Program (CMASF) Chart CB • • • • • • .162
Instruction Retry Execution Program (CMASG) Chart CC •• 163
CPU/Memory Checkout 1 Program (CMASH) Chart CD.163
CPU/Memory Checkout 2 Program (CMASI) Chart CE •• 164
CPU/Memory Checkout 3 Program (CMASJ) Chart CF • • • • • • .164
System Error Processor (CEAIS) Chart CG •• 164

SECTION 4: FLOWCHARTS •• 167

APPENDIX A: MODULE IDS AND NAMES • • • • • • 313

APPENDIX B: TSS/360 SVC CODES • • •••• 317

INDEX • • • .322

v

ILLUSTRATIONS

Figure 1. General flow of resident supervisor functions • • • • 1
Figure 2. Resident supervisor components and their functions 3
Figure 3. Interruption receiving • • •• 4
Figure 4. Interruption processing • • • • • • • • • • • • • 5
Figure 5. Task scheduling and selection • • • • • • • • • 6
Figure 6. Queue Scanning and processing module interface 9
Figure 7. Page table relationship. • • • • • • • 11
Figure 8. Activities of the SVC Queue Processor • • • • 16
Figure 9. Interrupt stacker module overview • • • • • 20
Figure 10. The interrupt log • • • • • • • • • • • • • 21
Figure 11. Timer Interrupt Queue Processor activities 31
Figure 12. Page Drum Interrupt Queue Processor activities • • • • • 36
Figure 13. Page Drum Interrupt Queue Processor checking and
response to conditions specified in the CSW • • • • • • • • •
Figure 14. Activities of the Program Interrupt Queue Processor •
Figure 15. PDAQ Processor cross-referencing between the GQE, PCB,

• 37
39

and the DAIB • • • • .• •••••••. • • • . • • 46
Figure 16. Activities of the Auxiliary Storage Allocation Queue--
Processor ..
Figure 17. SCA control information block.
E'igure 18. Device type table format • • • •
Figure 19. Track and record ID format ••••••••
Figure 20. Format of translated symbolic addresses
Fig1:'_re 21. Format of path availability check results •
Figure 22. Contents of Halt I/O return registers •
Figure 23. CCW - page list structure • • • • • • • • •
Figure 24. XTSI states • • • • • • • • • • • • • • •
Figure 25. Action Matrix for TSI Flag Settings • • •
Figure 26. General flow through SERR after a machine-check

• 67
• • 69
• .108
• .108

.108
• .124
• .128

.130

.136
• .138

interruption .. .156
Figure 27. Record format for an internal machine check (call types
01 and 09 from the recovery nucleus) • • •• .159
Figure 28. Record format for an external machine check (call type
29) 159
Figure 29. Record format for a paging device SDR overflow or a
solid paging I/O outboard error (call types 27, 28, and 2E) • • .160
Figure 30. Record format for a system error (call type 41). • .160
Figure 31. Record format for a paging I/O inboard failure (call
type 2D) •••••••• • •••••••••••••••••• 161

Table
Table
order
Table
Table
Table

vi

1. Major control blocks used by the supervisor 7
2. Queue Processors that work off the scan table in their

of priority • • •• 8
3. Paging and storage allocation control blocks • • 12
4. Schedule table entry parameters •••••• • 18
5. QUEUE Scanner operations in processing of GQE • 29

-.~

, ; '''',

Chart M. Interrupt Stacker (CEAJI> · · · · · · · .168
Chart AB. Queue Scanner (CEAJQ) · · · · · · · · · · · · · · · .174
Chart AC. Set Suppress Flags subroutine (CEAJSF) · · .175
Chart AD. Timer Interrupt Queue Processor (CEAKT) · · · .17£.
Chart AE. Page Drum Queue Proc~ssor (CE1>AS) · .182
Chart AF. Page Drum Interrupt Qu~ue Proc~ssor (CEAA9) · .184
Chart AG. Program Interrupt Queu~ Processor (CEANA) · .186
Chart AH. I/O Device Queue Processor (CEAA3) · · · · · · .188
Chart AI. Page Direct Access Interrupt subroutine (CEM7) · .192
Chart AJ. Page Direct Access Queue Proc~ssor (CEAA6) · · · · .193
Chart AK. Channel Interrupt Queue Processor (CEAA4) · .194
Chart AL. RJE Asynchronous Interrupt subroutine (CEABA) · · · · · .200
Chart AM. Terminal Communications Subprocessor (CEATC) · · · · .204
Chart AN. User Core Allocation (CEANB) · · · 0 · 0 · · 0 · · .223
Chart AO. Auxiliary Storage Allocation Queue Processor (CEAIA) · · .227
Chart AP. Core Control subroutines (CEALU · · · · .231
Chart AQ. SVC Queue Processor (CEMQ) · · · · · · · · · .235
Chart AR. Add Page SVC (CEAHQA) · · · · · · 0 0 0 · · · .236
Chart AS. Add Shared Page subroutine (CEAQ6) · · 0 · 0 · .239
Chart AT. Connect segment to shared segment (CEAQ7) 0 .240
Chart AU. Check Protection Class SVC (CEAH8) · 0 · 0 · .241
Chart AVo Delete TSI (CEAMD) 0 0 · · 0 · · · 0 0 · · · · 0 .242
Chart AWo AWAIT SVC Processor (CEAP7) · 0 · · · · 0 0 .245
Chart AX. Set Real Time Interval sUbroutine (CEAS7) 0 .246

("
Chart AY. I/O call subroutine (CEMO) · · · 0 · · · · 0 .247
Chart AZ. Pageout Service subroutine (CEAAl) · 0 · · · · .248
Chart BA. RJE line control (CEABC) · 0 0 · · · · 0 · · .249
Chart BB. Terminal SVC Processor (CEAR4) · · · · · · · · .250
Chart BC. Page posting (CEAMP) · · · · · · · · .256
Chart BD. Segment Block Remover subroutine (CEANG) · · · · .259
Chart BE. Real Core Statistical Data Recording (CEAI6) · 0 .260
Chart BF. Real Core Error Recording (CEAI7) 0 · 0 · · · · · .261
Chart BGo Paging Failure Recovery (CEAAQ) · .'263
Chart BH. Alternate Path Retry (CEAAS) · · · · 0 · .264
Chart BI. Same Path Retry (CEAAV) · · · 0 · · · 0 · · · .265
Chart BJ. Pathfinding subroutine (CEAA5) 0 · .267
Chart BK. Start I/O subroutine (CEAAG) · · · · · · · · · · · · .274
Chart BL. Dequeue I/O Requests (CEAAJ) · · · · .275
Chart BM. Purge (CEAAL) . . · · · · · · · · · · 0 .276
Chart BN. Terminal Control Table Entry Slot Allocation subroutine
(CEATS) · · · · · · · · · · · · .277
Chart BO. Task Initiation (CEAMC) · · · · · · · .283
Chart BP. Queue GQE on TSI (CEAAF) · · · · · · · .284
Chart BQ. Inter-CPU Communications (CEAIC) · · .287
Chart BR. Create Real Time Interrupt (CEAKR) · · · · · · · · .288
Chart BS. Internal Scheduler (CEAKI) · · · .289
Chart BT. Dispatcher (CEAKD) · · · · · · · · · · · · · · 0 · · .290
Chart BU. Task Interrupt Control (CEAA2) · · · · · · · · .291
Chart BV. Entrance criteria (CEAKE) · · · · · · · · · .292
Chart BW. Rescheduling (CEAKZ) · 0 · 0 · · .293
Chart BX. Recovery Nucleus (CEAIR) · · 0 · · · 0 · .297
Chart BY. External Machine Check Interrupt Processor (CEABE) 0 .302
Chart BZ. SERR Bootstrap (CMASA) · · · · · · · · .303
Chart CA. Checker Program (CMASD) · · · · · · · · · .304
Chart CB. Restore and Validate (CMASF) 0 · · · · · · .305
Chart CC. Instruction Retry Execution (CMASG) · · · · · · · · · · .306
Chart CD. CPU/Memory Checkout 1 (CMASH) · · · · · · 0 · · · 0 .307

("'"\ Chart CEo CPU/Memory Cneckout 2 (CMASI> · · 0 · · · .308
Chart CFo CPU/Memory Checkout 3 (CMASJ) · · · · 0 0 .309
Chart CG. System Error Processor (CEAIS) · · · · 0 · · · · · .310

vii

Relationship to the System

The TSS/360 resident supervisor is the
only TSS/360 component that is permanently
resident in main storage after startup. By
contrast with other system components,
which reside in virtual storage and are
paged in when needed, the supervisor is
nonpageable and nonrelocatable; its
instruction operands are main storage
addresses, not logical addresses. No loca­
tion within the resident supervisor may be
addressed by a program operating in virtual
storage; thus it is protected from being
altered by other system components or user
programs. Supervisor modules may execute
privileged instructions; they therefore use
Type I linkage to communicate with each
other.

Purpo&e and FUnctions

The resident supervisor is responsible
for accepting and processing interruptions
and scheduling the use of system resources.
The latter involves such operations as:

('" • Time slicing and task dispatching.

• Storage allocation.

• Handling of paging and non-paging I/O
requests.

• CPU and paging I/O error retry and
recovery.

Entry to the supervisor is made by means
of an interruption (see Figure 1). These
interruptions represent such things as:
error conditiOns, time-slice end, I/O hard­
ware completions, and requests from tasks
for services. An interruption may be
received before the processing of previous
interruptions has been completed; there­
fore, on entry, interruptions are stacked
(remembered) until they can be processed.
Since it is possible to receive more than
one interruption at a time, each interrup­
tion is attached to the queue of the appro­
priate interrupt processor (according to
interruption type); the queues are then
processed on a priority basis. ~omplete
information on the status of the inter­
rupted task is saved during processing.

When there is no further work to be pro­
cessed (that is, all the queues have been

/'~ 'UUined' and emptied, if possible), the
{ ,ident supervisor selects the next task

~ be given CPU time. Each task has
assigned to it a set of scheduling parame-

Interruption

r--- ---,
I No work lef. on I
I queues to process t L ______ J

SECTION 1. INTRODUCTION

Storage
Allocation

Error Recovery
and Recording

Storage
Allocation

Storage
Allocation

Error Recovery
and Recording

Storage
Allocation .

Figure 1. General flow of resident super­
visor functions

ters; the value of its time slice starts at
the value indicated in one of these parame­
ters. When the task is interrupted, a
record is kept of the CPU time used. When
the task is .set into execution again, its
time slice is set equaL to the initial
value minus the CPU time the task has
already used.

A time slice is seldom used on a
str.aight through basis; generally there is

Section 1. Introduction 1

some waiting time for input/output, termin­
al, or paging operations. During these
waiting p'eriods, other tasks may begin
their time slices. However, when an inter­
ruption signals that the first task is
ready to proceed, it is again readied for
execution. The scheduling components of
th~ resident supervisor are responsible for
ordering tasks according to established
priorities to determine their eligibility
for execution. Thus each task receives its
fair share of CPU time, and maximum use is
made of system elements.

During the performance of its interrup­
tion handling and task SCheduling func­
tions, the supervisor allocates and
releases storage as the need arises. Two
categories of storage are allocated by the
supervisor: main storage and auxiliary
storage.

2

• Main storage, the only storage in which
programs can be executed, is initially
allocated at startup in 4096-byte units
called pages. During system operation,
the supervisor reallocates this storage
in either page or smaller block units
for specific uses by supervisor com­
ponents and user tasks.

• Auxiliary storage, which consists of
the drums and disks used as temporary
storage for pages when they are not in
use during system operation, is allo­
cated initially at startup. Thereaft­
er, the resident supervisor maintains a

constantly updated count of available
auxiliary storage, allocates it to user
tasks as needed, and releases and
returns it to available status when its
use is no longer required.

The resident supervisor exercises its
error recovery and retry capabilities, when
necessary, to dynamically correct errors or
to minimize the effect of errors on the"
system as a whole. The general approach t.o
error recovery is to retry failing opera­
tion, where possible; when an operation
cannot be retried or is retried without
success, or when a hardware element cannot
be made to perform correctly, the failing
element or device is removed from the sys­
tem in an orderly manner so as not to dis­
rupt system operation. Only as a last
resort, when recovery is not possible or
removal of the failing element would render
the system inoperative, is the system shut
down. System environment recording facili­
ties maintain a continuous error history,
including complete hardware environment at
the time of failure, on the paging drum for·
subsequent use by the customer engineer.

Major Components of the "Resident Supervisor

The major components of the resident
supervisor can be grouped according to the
functions they perform (see Figure 2). In
addition to its major components, a group
of subroutines provide services throughout
supervisor operation~ these are described
in Section 3.

Resi-c!el'lt Supervisor Components Function

Figure 2. Resident supervisor components and their functions

Section 1. Introduction 3

SECTION 2. METHOD OF OPERATION

OVERVIEW OF RESIDENT SUPERVISOR OPERATIONS

Normal entry to the resident supervisor
is made via the Interrupt Stacker, who$e
fUnction it is to accept, classify, and
save interruptions for processing. Five
types of interruptions may be received by
the supervisor. Three of these interrup­
tion types - program, SVC, and I/O - occur
during normal operation (that is, they do
not indicate system errors}, and are
received directly by the Interrupt Stacker.
The other two types - external and machine
check - are received initially by the Reco­
very Nucleus, an error recovery routine
discussed in Section 3 under 8Major Error
Recovery Procedures8 • Those that are to be
handled by the Interrupt Stacker (timer and
interrupt key) are passed to it~ those

Interruption

I
Mach Ext SVC Prog

Wait State
Communication

Figure 3. Interruption receiving

4

indicating a malfunction are handled by
error recovery routines (see Figure 3).

Processing of Interruptions

Upon receiving an interruption, the
Interrupt Stacker determines whether it
occurred during the execution of a task
(problem-state interruption) or one of the
supervisor components (supervisor-state
interruption). Supervisor-state interrup­
tions will be discussed in Section 2.

For all problem-state interruptions:

• A 64-byte block called a general queue
entry (GQE) is generated, containing a
description of the processing required.

I
I/O

'\

Figure 4. Interruption processing

• I/O and timer inberruptions - GQEs for
these interruptions are queued on a
table (scan table) used to contain
pointers to the GQEs representing work
in progress or waiting to be performed;
control is then transferred to the
Queue Scanner.

• SVC and program interruptions - GQEs
for these interruptions are not queued
on the scan table; control is trans­
ferred directly to the appropriate
interrupt processor or to the task via
LPSW.

The Queue Scanner locates queue entries
in the scan table, then transfers control
to the appropriate queue processor, until
no processable work remains. See Figure 4.

Scheduling of Tasks

The task scheduling and selection
mechanism of the supervisor is entered when
the Queue Scanner can find no work left to
process in the scan table. Control is

Queue
Scanner

transferred to the Internal Scheduler,
which moves tasks from the list of those
eligible for CPU time (eligible list) to
the list of those ready to execute (dis­
patchable list). It is assisted by the
Entrance Criteria subroutine, which veri­
fies or denies the task' s eligibility to be
moved. The Internal Scheduler then passes
control to the Dispatcher, which selects
from the dispatchable list the task to be
executed. Before the task is dispatched.
the Task Interrupt Control subroutine
checks for pending interruptions to the
task. and arranges for them to be serviced
by the task monitor (see Figure 5). Once a
task has used up its allotted CPU time. it
is moved to a list of inactive tasks, after
which the Rescheduling routine is invoked
to compute a new time value for scheduling
the task.

Control Blocks Used by the supervisor

Each supervisor component keeps detailed
records of the status of interruptions

Section 2. Method of Operation 5

Figure 5. Task scheduling and selection

throughout its processing. These records
are kept in tables, or control blocks,
which are available to each supervisor com­
ponent required to process an interruption.
Detailed descriptions of these tables are
presented in the System Control Blocks
manual. General descriptions of tables
used by specialized groups of supervisor
components are presented within the
descriptions of these modules. Table 1
provides a brief summary of the functions
of these control blocks. (Another table of
control blocks, concerned exclusively with
paging and storage allocation activities,
can be found in Section 2 under -Program
Interruption Processing-).

INTERRUPTION HANDLING

Entry to the Supervisor

Five types of interruptions cause the
resident supervisor to be entered:

6

No work
le.lt to do

Internal
Scheduler

Dispatcher

r--
I Lli'p"~d, I
I '",k I L _____ ..1

• Program interruption - occurs when any
of 17 program interruption codes are
generated by the Systeml360 Model 67.
When it occurs while the CPU is operat­
ing in the supervisor state (that is,
it is caused by the supervisor), an
error is indicated; occurring in the
problem state (during execution of a
task), a program interruption is
handled by the task monitor (codes 1 -
15) or the resident supervisor (codes
16 and 17).

• I/O interruption - represents the
method by which an I/O device signals
the CPU that I/O is completed. These
are classified and queued for proces­
sing according to type: interruptions
involving drum paging operations are
distinguished from all others and tran­
sf erred to a separate processor.

• SVC interruption - the supervisor call
(SVC) is the normal method of communi­
cation between a task and the supervi-

','f

Table 1. Major control "blocks used by the supervisor
r--------------------~~-----T---,
I Control Block I Function I
r---------------------------t---~
IGeneral Queue Entry (GQE) 164-byte control block created at interruption time to con- I
I Itain information describing processing required by queue I
I I processors. I
~---------------------------+---~
ITask Status Index (TSI) IContains nucleus of task information that ~ be retained I
I lin rrain storage; also a pointer to the XTSI~ A TSI exists I
I I for each task. I
~------------------------~--+---~
I~xtended Task status Index IContains that portion of task's information that is not I
I (XTSI) Ireguired to be permanently resident in main storage. I
~---------------------------+---~
IPage Control Block (PCB) ICreated each time a paging operation is indicated. Con- I
I Itrols movement of virtual storage pages between main and I
I 'I auxiliary or external storage. I
~---------------------------t---~
IScan Table (SCANT) Iserves as common anchor point for all GQEs representing I
I Iwork in progress or waiting to be performed inside I
I I supervisor. I
~---------------------------+---~
IScan Table Master Control IContains information used by Queue Scanner for more I
ITable (SMC) lefficient search for work in scan table. I
~---------------------------+---~
ISchedule Table (CHASTE) IParameter table used by scheduling mechanism of supervisor I
I Ito determine what scheduling characteristics to apply to I
I I each task in TSS/360. I
~---------------------------+---~
I System Table (SYS) I contains a variety of system and installation parameters I
I lused by scheduling and paging mechanisms; anchor point for I
I Ichain of TSIs. I L ___________________________ i ___ J

sor, caused by the execution of an SVC
instruction that is usually embedded in
the expansion of a macro instruction.
Depending upon the SVC code, these
interruptions are serviced by the Time
Sharing Support System (TSSS), the task
monitor, or the resident supervisor SVC
processing routines.

• External interruption - can result from
a timer interruption, an inter-CPU com­
munication in the form of a write­
direct message, or a machine malfunc­
tion alert. External interruptions are
initially intercepted by the Recovery
Nucleus (discussed in Section 3 under
"Major Error Recovery Procedures·);
those that are to be handled by the
Interrupt Stacker (timer and interrupt
key) are passed on to it.

• Machine check interruption - indicates
that a hardware detected error has
occurred; error recovery procedures are
initiated by the Recovery Nucleus.

The Interrupt Stacker comprises four
separate stackers, one for each interrup­
tion type it receives. Interruptions are
classified as they are received, and the
information associated with them (old psw,
interrupt code, etc.) is saved. The

stacker receiving the interruption deter­
mines whether the system is under the con­
trol of .the resident support system (RSS).
If it is, the interruption is processed and
control is returned to the appropriate RSS/
VSS handling module. Those interruptions
that do not involve RSS are then classified
as problem state or supervisor state,
depending upon whether the interruption
occurred during the execution of a task or
a supervisor component.

If the interruption occurred in the
supervisor state, the Interrupt Stacker
returns to the point of interruption using
the old PSW, so that the interrupted super­
visor routine can complete the work it
began. For all problem-state interruv­
tions, the Interrupt Stacker builds a rec­
ord, called a general queue entry (GQE), to
contain information describing the
interruption.

General Queue Entry (GQE).

The general queue entry (GQE) is built
in a 64-byte block obtained by a call to
the Supervisor Core Allocation subroutine.
It contains a description of the work to be
done by a device or facility controlled by
the resident supervisor. Contents general­
ly include:

Section 2. Method of operation 7

• Pointers to:

1) The task status index (TSI).

2) Preceding and succeeding GQEs on the
same queue.

3) A page control block (PCB) if paging
is involved.

• GQE movement information.

• Flags.

• Interruption code.

GQES are attached to the appropriate
interruption processor's queue, and are
subsequently processed in a logical order,
on a first-in-first-out basis within each
queue. The queues themselves are processed
on a priority basis (discussed under 8Queue
Scanning8) .' For SVC and program interrup­
tions, control is transferred directly to
the SVC or program interrupt processor to
ensure fast processing of these interrup­
tions which occur quite frequently. I/O
and timer interruptions are queued on a
table, called the scan table, which is
private to the Queue Scanner and determines
the order in which the queues are pro­
cessed. Once classification and queuing is
completed, the Queue Scanner receives
control.

Queue Scanning

It is the responsibility of the Queue
Scanner to provide a sequencing mechanism
that decides the order in which individual
queue processors are permitted to execute.
To accomplish this, the Queue Scanner uses
two tables: the scan table (SCANT) and the
scan table master control table (SMC). The
scan table is used in the processing of all
I/O and external interruptions; program and
SVC interruptions (with a few exceptions)
are sent directly to the appropriate queue
processor by the Interrupt Stacker.

Scan Table (SCANT)

The scan,table, residing in main
storage, contains one 16-byte entry for
each I/O device or supervisor facility.
Four-byte fields within each entry relate
the supervisor queue processors to their
facilities. A processor pointer field
points to a unique processor for each
entry, except for I/O device entries.
Since only one I/O device queue processor
exists in the supervisor, all device pro­
cessor scan table entries point to the same
processor program~ The order in which
device entries appear in the scan table,
hence their priority, is specified from the
symbolic device address (SDA) assigned to
each device during system generation.

S

Table 2 lists the queue processors that
work off the scan table in their order of
priority.

Scan Table Master Control Table (SMC)

The information maintained in the scan
table master control table (SMC) facili­
tates the Queue Scanner's search of the
scan table. SMC comprises a set of device
interaction groups (DIG). A DIG is a sub­
set of entries in the scan table containing
either one queue processor or a group of
I/O devices having a common device con­
troller (control unit). The SMC header
contains a master count of the GQEs await­
ing an available processor. This count is
incremented or decremented as GQEs are
added to or removed from scan table queues.
The header .also contains a count of DIG
entries and a master count of matched faci­
lities. Matched facilities are a proces­
sor, that is neither locked nor suppressed,
and its queue of one or more GQEs. The DIG
fields also include a DIG busy flag.

Queue Scanner Functions

When the Queue Scanner receives control,
it inspects individual queues within a DIG
only if the master count indicates that
there is work queued within the DIG, and
then only if other flags indicate that the
appropriate queue processor is not busy and
an I/O path to the device is available (see
8Pathfinding8). To prevent one active
device in a group from monopolizing an I/O

Table 2. Queue Processors that work off
the scan table in their order of
priority

r---,
ITimer Interrupt Queue Processor (CEAKT) I
IPage Drum Queue Processor (CEAAS) - Page I
I Drum Interrupt Queue Processor (CEAA9) I
IAuxiliary Storage Allocation Queue Pro- I
I cessor (CEArA) I
IUser Core Allocation Queue Processor I
I (CEANB) I
IChannel Interrupt Queue Processor (CEAA4)
11/0 Device Queue Processor (CEAA3)
I
I
I
I
I
I

one queue for each
device on the system

IPageout Service SUDocoutine (CEAA1)
11/0 call Subroutine (CEAAO)
IProgram Interrupt Queue Processor (CEANA)
IContiguous Core Allocation Queue Proces­
I sor (CEANF) L __ _

path and greatly delaying the processing of
other requests within the DIG, the Queue
Scanner processes th~ queues within each
DIG in a round-robin order.

When it finds a DIG with processable
work queued, the Queue Scanner locates the
queue entry in the scan table and transfers
control to its associated processor(s).
The queue control sUbroutines queue and
dequeue entries, and move entries from
queue to queue until all processing speci­
fied in the GQE is accomplished. These
subroutines maintain control fields in SMC
an'd protect the scan table and the queues
by setting suppress flags (see Figure 6).

The queue processors locate the GQES
pointed to by the queue entries, analyze
the processing requirements specified in
the GQES, and set up the necessary storage
space, tables, controls, and SUbroutine
linkages to effect the processing. When
all queues are empty, or when the necessary
processors are busy, the Queue Scanner
transfers control to the Internal Scheduler
to select the next task to be put in
execution.

Queue Processing

Associated with the Queue Scanner are
four groups of specialized queue proces­
sors: timer, drum paging, I/O, and storage
allocation queue processors. The proces­
sors perform detailed checks on conditions
reflected by the GQE fields and determine
the appropriate action to be taken to pro­
cess the GQE. If the processing requires

Interrupt
Stocker
Mechanism - Scan Table Control

Subroutines
Queue Scanner

Scheduling - En~ueue-GOE -Dispatching
Mechanism ,.."

Scan Tabl. D~ueu.-GOE

r- Ma,ter
Control Tabl.

Mave-GOE >-
Scan Table

Set Suppress Flag

~ Queue Processors r-SYSERR

Supervisor Service Subroutines

Figure 6 • Queue Scanning and processing
module interface

the attention of several processors, the
GQE is transferred from one processor's
queue to the next through the services of
one of the queue control subroutines (see
Figure 6).

The queue control subroutines examine
the first routing field in a GQE. This
field will either contain a location-on­
queue (Loc-on-Q) value or all ones. The
Loc-on-Q value designates the relative
location on the scan table of the queue to
which the GQE is to be transferred (see
Table 2). A value of all ones indicates
that no further processing is to be per­
formed for the GQE, and the main storage
occupied can be released.

In general, a queue processor locks its
associated queue upon entry and unlocks it
as soon as the processor has dequeued a GQE
from the queue for processing. In certain
cases a queue processor may wish to lock a
queue until some specific future event or
condition has occurred. Indicators, called
suppress flags, contained in each scan
table entry are set and reset by the Set
Suppress Flag subroutine to prevent
unwanted recursion.

Timer Interruption processing

The GQE for a timer interruption
placed on the Timer Interrupt Queue
sor (TIP) queue in the scan table.
interruption can be the result of·a
having:

• Reached normal time-slice end.

• Been forced to time-slice end.

is
Proces­
The
task

• Been selected to have its pages
migrated from auxiliary drum to auxi­
liary disk storage (see -Auxiliary
storage Allocation-).

The latter two are the more usual reasons
since tasks in TSS/360 seldom reach normal
time-slice end, but are more often forced
to time-slice end to satisfy a variety of
conditions.

A user timer field in the task's XTSI
contains the length of time the task is to
execute'during one time slice. At each
forced or normal time-slice end, the task's
timers are decremented. When the user
timer field goes to zero, and it's a normal
time-slice end, a task interruption is
created and queued on the task's TSI inter­
rup~ion queue, the task's pages are left in
main storage, and the task remains in the
dispatchable list (for eventual dispatching
to the task monitor for processing). In
all other sitUations (that is, when a user
timer interruption has not occurred or the
task has been forced to time-slice end),

Section 2. Method of Operation 9

the task is rescheduled according to its
scheduling parameters, and its pages are
written from main storage.

An exception to this is caused by the
issuance of a TSEND SVC (a request by a
task to delay execution until some event
has occurred), which results in the task
being forced to time-slice end. In this
case the task is set in delay status and
placed on the inactive list, its pages are
written from main storage, and a timer
interruption is set up. Once the event has
occurred, the timer interruption is pro­
cessed, causing the Rescheduling subroutine
to be called to place the task on the elig­
ible list with its time recomputed.

When a timer interruption occurs as a
result of the completion of user I/O for a
page, TIP scans the task's page tables (see
-Program Interruptionft) for a page that is
available. If the page is unchanged,
Supervisor Core Release is called to
release its main storage space; changed
pages must be written to auxiliary storage
and the auxiliary storage space previously
occupied by the page must be released.

When a task has been selected to have
some of its pages migrated from auxiliary
drum to auxiliary disk storage (see -Auxi­
liary Storage Allocation-), a timer inter­
ruption occurs. TIP determines which of
the task's pages are to be migrated and, in
the case of private pages, the GQE is
queued on the Page Drum Queue Processor
queue for processing. If shared pages are
to be migrated, the Write Shared Pages sub­
routine provides the pages to migrate.

Segment and Page Tables

Each task keeps track of the location of
its pages in storage by means of segment
and page tables. Within each task's XTSI
there is a segment table (SGT), consisting
of groups of four-byte entries. Each entry
contains a pOinter to the beginning of a
page table (PGT), the count of the number
of entries in that page table, and its
availability. Each entry in the page table
points to the location of a page in
storage. Immediately following each seg­
ment table is an auxiliary segment table
(AST) containing pointers to page tables on
auxiliary storage; an external page table
(XPT) immediately following each page table
points to pages not in main storage.

A list of the location of all shared
page tables (SPT) currently in the system
is maintained in the resident shared page
index (RSPI). The RSPI, permanently resi­
dent in main storage, indicates the main
storage location (if available), the in­
transit state, and the length of shared
page tables.

10

The relationship of these tables to each
other is illustrated in Figure 7. Table 3
provides a brief summary of the functions
of paging and storage allocation control
blocks referred to by the supervisor. A
more detailed description of these control
blocks is contained in System Control
Blocks.

Program Interruption Processing

Of the 17 program interruption codes
generated by System/360 Mod~l 67, only
codes 16 and 17 are processed by the resi­
dent supervisor. When a program interrup­
tion with a code of 0-15 occurs in the pro­
blem state, the Interrupt. stacker queues
the interruption GQE on the task's TSI;
before the task is next given CPU control
by the Dispatcher, the Task Interrupt Con­
trol (TIC) subroutine arranges for the
interruption to be pro~essed by the task
monitor.

program interruption code 16 is a seg­
ment relocation exception, indicating that
a task's page table (see -Segment and Page
Tables-) or shared page table is unavail­
able. Program interruption code 17 is a
page relocation exception, indicating that
a page is unavailable (that is, not in main
storage). The Interrupt Stacker links
directly to the Program Interrupt Queue
Processor (PIP) to provide faster service
for these interruptions which occur
frequently.

When a segment relocation exception
(code 16) occurs, it is first determined
whether it is a shared page table that is
unavailable. since all of a task's private
pages must be in main storage during execu­
tion, if it is not a shared page table, a
system error is indicated. Fer shared page
tables, a search is made of the resident
shared page index (RSPI) to determine the
location of the shared page in storage.
When the table is found, the task is again
returned to a WreadyW status. When the
page table is not available in RSPI, the
task is put in -page-wait- status. In
either case, control is returned to the
Queue scanner.

For page relocation exceptions (code
17), the number of page reads that have
been performed for the task is compared
with the maximum number permitted (a para­
meter in the task's schedule table entry).
If they are equal (the maximum number has
been reached), the GQE is queued on the
Timer Interrupt Queue processor's queue and
the task is forced to time-slice end. When
the maximum number of page reads has not
been reached, and the page is a shared page
that is in transit, the GQE is added to the
external shared page table (XSPT) queue and
the task is placed in a page-wait status.

I - .-

I L.-J ! TSI

XTSI

I I
SGT J 1 J

AST

C
RSPI

'f ", .

Figure 7. Page table relationship

In all other cases, the necessary steps are
taken for the page to be read in: the
Supervisor Core Allocation (SCA) subroutine
is called to obtain 64 bytes in which to
build a page control block (PCB), which is
then linked to the GQE; the GQE is queued
on the User Core Allocation (UCA) proces­
sor's queue; and UCA searches the core
block table (CBT) for a page of main
storage into which the page can be read
(see ·User Core Allocation·). The actual
paging in will be performed as a result of
an I/O interruption that will be directed
to the appropriate paging queue processor
(drum or disk) to bring in the page.

I/O Interruption Processing

I/O interruptions are initially
separated into two main types - those re­
questing drum paging operations and all
others. Interruptions involving drum pag­
ing are queued on the Page Drum Interrupt
Processor's queue; all others are queued on

'.

PGT
C

XPT

PGT [

XPT

PGT t
XPT I

SPT C

XSPT

r-

Shared page
~able in
main storage

Private p
main s~or

ages in
age

Priva~e page an
auxiliary
storage

the Channel Interrupt Processor's (CIP)
queue.

When control is transferred to CIP, the
GQE for the interruption is examined to
further determine the type of action
required:

• I/O operations for the terminals of
conversational tasks are passed on to
the Terminal Communications subproces­
sor for handling.

• The freeing of devices, channels, and/
or control units is performed, when
specified by the request GQE, by a call
to Reverse pathfinding.

• Synchronous and asynchronous interrup­
tions from remote job entry (RJE)
devices are transferred to the respec­
tive remote job entry processors for
handling.

Section 2. Method of Operation 11

Table 3. Paging and storage allocation control blocks
r-----------------------T---~---,
I Control Block I -. Function, I

~----------------------+---~ ISegment Table (SGT) IA contiguous list of entries, residing in a task's XTSI, which I
I Icontain the length, origin, and availability of the task's pagel
I I tables. I
~-----------------------+---~
IAuxiliary Segment TablelImmediately follows the SGT and contains information concerning I
I (AST) I page tables on auxiliary storage. I
~-----------------------+--~----~
IPage Table (PGT) IA contiguous list of entries containing address and availabili-I
I . I ty status of task's pages in main storage. I

~-----------------------+---~
IExternal Page Table IImmediately follows the PGT and contains information concerning I
I (XPT) I task's pages on auxiliary storage. I
~-----------------------+---~
IShared Page Table IIdentical to page table, the SPT contains a list of address of I
I (SPT) I shared pages. I
~----------------------+---~
IExternal Shared Page IImmediately follows the SPT and contains control information I
1Table (XSPT) Irequired for paging of shared virtual storage pages. I

~------~----------------+---~
IResident Shared Page Icontains status and control information needed to maintain the I
IIndex (RSPI) Isystem's currently active shared page tables. I
~-----------------------+--~
IDirect Access InterfacelContains interface data required for passing pages to or from I
IBlock (DAIB) Icore storage: a new DAIB is constructed for each paging I
I I operation. I
~-----------------------+---~
IAuxiliary Storage Allo-IContains the availability status of all auxiliary storage I
Ication Table (ASAT) I devices, both drum and disk. I

~-----------------------+---~ IGore Block Table IMaintains a list of main storage blocks (pages) and their I
I (CBT) Istatus as available or unavailable for assignment. I L _______________________ ~ __ ~

• preliminary processing is provided for
paging interruptions from direct access
devices other than drums.

• A distinction is made between initial
and subsequent asynchronous interrup­
tions so that a task can be initiated,
when necessary, and affected tasks can
be kept informed of the occurrence of
interruptions.

• Special processing is performed when
requested in the IORCB.

Pathfinding

The symbolic device address (SDA) of a
device specifies the relative position of
the-device's queue entry on the scan table.
The translation of this symbolic address .
into a specific hardware address is per­
formed by the Pathfinding subroutine by
finding a path to the device. A path com­
prises three components: the channel, the
control unit, and the device. pathfinding
involves a search"through the device group
table, the channel table, and the control
unit table, in that order, to define a
path. Reverse pathfinding is called to
perform the opposite fUnction, that is, to

12

translate the actual address of the device
to its SDA.

The Channel Interrupt Processor calls
Reverse Pathfinding to determine the SDA,
and thus the entry for that device on the
scan table. When the entry contains a
pointer to a GQE representing a request for
I/O to or from that device, it is the task
of the I/O Device Queue Processor to handle
that request for all devices on the system
except paging drums.

paging

The paging queue processors manage GQE
requests for page movement between main
storage and drum or disk storage. A paging
operation can be caused by the occurrence
of any of the following events:

• A page relocation exception interrup­
tion caused when a task attempts to
refer to a page not currently in main
storage.

• The first XTSI page, which contains the
PSW and relocation tables for a task to
be dispatched, is not in main storage.

• A request is made for one or more data
set pages to be written out to external
storage.

• Pages destined for external storage are
currently residing on auxiliary storage
and must be read into main storage
before being written out to external
storage.

• One or more buffer pages for an I/O
operation are on auxiliary storage and
must be brought into main storage for

.the duration of the I/O operation.

• A time-slice-end interruption has been
received.

• The Write Shared Pages subroutine is
invoked by User Core Allocation to page
out all changed shared pages that have
not been referred to since the last
time the subroutine was invoked.

When the work associated with a GQE is a
paging operation, one or more additional
control blocks, called paging control
blocks (PCB), are constructed and linked to
the parent GQE. Each PCB can contain up to
three page control block entries (PCBE),
each representing a request to move one
page.

Disk paging

When the I/O Device Queue Processor is
given control by the Queue Scanner, the GQE
on the device queue is checked for an I/O
request control block (IORCB). The absence
of an IORCB is interpreted as a request for
disk paging. Pathfinding is called to
obtain an available channel and control
unit to the device specified: then the GQE
is transferred to the Page Direct Access
Queue Processor (PDAQ).

PDAQ builds a Direct Access Interface
Block (DAIB), which provides the interface
between it and the Page Direct Access
Interrupt Processor (PDAI), providing the
latter routine with the channel programs
and their related PCBs. PDAQ then builds
the channel program and puts the necessary
information into the DAIB for that inter­
ruption, and calls Start I/O to initiate
I/O.

When a paging operation is completed, a
device end I/O interruption occurs. PDAI
receives control and inspects the DAIB for
the next channel program to execute Start
I/O. When all channel programs in the DAIB
have been prQcessed, control is returned to
the Queue Scanner.

Drum Paging

Drum storage is used in TSS/360 whenever
possible, since the drum is the fastest

auxiliary device on the system. To maxi­
mize drum throughput, a process called slot
sorting is used, which depends on the fol­
lowing organization of the drum. The drum
records are arranged in page format and
stored on a pair of adjacent tracks, with 4
1/2 pages (or records) on each track. The
record-overflow feature is utilized between
the even and odd tracks.

Drum addresses for page storage are
allocated to fill as many consecutive drum
slots as possible. To each slot, one page
may be assigned. There are nine slots for
each two tracks ·on the drum. If the last
slot of the first pair of tracks has been
allocated, the next address allocated is
from the first slot of the second pair of
tracks. The availability of drum storage
is reflected in a directory in the auxi­
liary storage allocation table (ASAT).

Drum storage is allocated in such a way
that pages are assigned by slot number in
cyclic order. A drum access request indi­
cates whether the operation is read or
write, and gives a slot number for the page
to be accessed. The channel program is
constructed so that requests are selected
by slot number in cyclic order from the
queue of drum paging requests. The Page
Drum Queue Processor performs the slot
sorting and constructs channel programs.

Each drum has associated with it two
chains of nine channel programs each, one
channel program for each slot on the drum.
These chains are anchored in a work area of
the system table called a drum interface
control block (DICB). The DICB contains
information describing the status of the
drum as well as pointers to the PCBEs,
IORCBs, and associated GQEs. The DICB is
accessed by both drum paging processors,
the Page Drum Queue Processor (PDQP) and
the Page Drum Interrupt Processor (PDIP).

When PDQP finds a PCBE for which a chan­
nel program can be built (that is, a slot
is available), the channel program is built
in the DICB area of the system table, using
the slot number as a pointer to the proper
program. When all available slots have
been filled, or no work remains to be done,
control is returned to the Queue Scanner.
The Page Drum Interrupt Processor is acti­
vated when channel end, device end, unit
check, or a program controlled interruption
(PCI) is received. Processed pages are
posted, storage released, and the interrupt
GQE dequeued.

Main Storage Allocation

The allocation and release of pages of
main storage is recorded in the core block
table (CBT), which contains one entry for
each page of main storage in the system.
Pages that are available for assignment are

Section 2. Method of Operation 13

kept on an unassigned chain that is updated
after each allocation and release. A set
of these pages (the nuinber·..will vary from
installation to installation) is kept as a
reserve list for satisfying resident super­
visor requirements for main storage (for
GQEs, TSIs, and PCBs). Since these super­
visor requirements must be satisfied for
operation to continue, these pages must be
held available exclusively for supervisor
use; all other pages are available to user
tasks.

User Core Allocation

Requests for user main storage are
represented by one or more PCBs chained to
a GQE; they are processed by the User Core
Allocation (UCA) queue processor. A re­
quest may be to reclaim a specific page
that w~s previously assigned to the task,
or for storage not previously owned by the
task. A request for previously-owned
storage involves a comparison of the CBT
entry for that storage block with the re­
quest PCB entry to determine whether the
page is still available or has been
assigned to another task. If the page is
available (that is, the page was written
out but its main storage location was not
needed in the interim), it is removed from
the unassigned chain and assigned to the
task, avoiding the necessity of reading a
page in from drum or disk. When a new page
of storage must be assigned, the first
available page of unassigned main storage
is allocated to it.

When no page is available for assign­
ment, or when a check made prior to alloca­
tion indicates a low core condition, an
attempt is made by the Write Shared Pages
subroutine to release shared pages (write
them out to auxiliary storage). If this
fails to provide sufficient main storage,
UCA selects a task to be forced to time­
slice end and its pages released. Whenever
a page is released, it is put on the unas­
Signed chain, unless the reserve list has
decreased to less than the required number
of pages, in which case the page or pages
needed are transferred to the reserve list.

When a task has reached the maximum
number of pages in main storage allowed
during one time slice (a value contained in
a parameter of his schedule table entry),
page stealing may be performed; this means
that the task frees main storage by having
some of its own pages released. Page ste­
aling can be performed only on pages that
are not: XTSI, PSW, ISA, or previously
referenced pages& in transit, or in I/O or
SVC hold. Before being released, the page
will be written on drum if it is a changed
page or no old copy exists. A certain per­
centage of the task's maximum pages must be
retained during stealing (another STE para--

14

meter). The algorithm used for page steal­
ing is explained in the description of the
User Core Allocation processor in Section
3.

Supervisor Core Allocation

Allocation of main storage for use by
supervisor components is processed by the
Supervisor Core Allocation (SCA) subrou­
tine; storage is obtained from the reserve
list. Pages in this list must be unfrag­
mented. Since supervisor storage is allo­
cated in 64-byte blocks, once a block has
been allocated from one of its pages, the
page is removed from the reserve list,
divided into 64-byte blocks, and placed in
one of three chains of partially allocated
pages:

• One-block chain - for filling Single
block requests.

• Three-block chain - used only when
three contiguous blocks are needed to
build a TSI.

• Miscellaneous chain - for filling all
other reques.ts.

The first block of each fragmented page
contains an available block counter and a
bit map indicating which 64-byte blocks
within the page are available. Six poin­
ters are maintained in SCA, two for each
chain; the first pointing to the page, the
second to the block in,the page to be
checked.

To speed up the allocation of a single
block of storage (the most common type of
request), and reduce the number of pages
that must be fragmented, six -quick cells·
are maintained that point to the most
recently returned single blocks. These are
searched first when a single block request
is received.

When the request is for contiguous
blocks, the bit maps of those pages whose
available block counters indicate a good
probability that the request can be satis­
fied are searched before the bit maps of
other pages.

The reserve list is automatically
replenished when necessary with pages from
the unassigned chain in the CBT. There­
fore, when a request for. supervisor storage
cannot be satisfied, an in-use page is bor­
rowed from a task in user main storage, the
assumption being that the unassigned chain
in CBT is also empty.

When storage is released, single blocks
are returned to quick cells, if they are
not fulli otherwise, they are returned to
fragmented pages. When the return of a

'.,;',"

block. to a fragmented.ECige causes it to be
composed entirely of available blocks, it
is returned for general system use by the
User Core Release subroutine.

Auxiliary storage Allocation

Auxiliary storage consists of the disks
and drums on which a task.'s pages are
stored when not in execution. It is con­
fined to drum when possible, since the drum
is the fastest auxiliary device on the sys­
tem. The Auxiliary Storage Allocation
Table (ASAT) contains a bit directory for
each auxiliary device on the system, with
each bit representing one page. The Auxi­
liary Storage Allocation Queue Processor
maintains a count of auxiliary storage in
use at all times for the entire system.
This count is updated and checked each time
auxiliary storage is allocated to a task.

Auxiliary storage is obtained when it is
necessary to write a page out to disk or
drum. These requests are assigned to drum
except when: the request specified a drum
preference and no drum storage is avail­
able; or no preference was specified and
drum space has reached the system minimum.
When this minimum is reached (a value con­
tained in ASAT), a task is selected for
migration; that is, some of the task's
pages are moved from drum to disk, freeing
drum space. The task selected for migra­
tion is the task on the inactive list (or,
if necessary, the active list) with the
most pages on drum in excess of its fair
share. Migration can be performed on eith­
er private or shared pages. The Timer
Interrupt Queue Processor selects private
pages for migration; the Write Shared Pages
subroutine performs this function when
shared pages are involved.

When a task enters the system, its auxi­
liary storage requirc-ments are compared
with the available auxiliary storage count.
The task is not allowed on the system if
there is not sufficient auxiliary storage
available. If the task should exceed its
limit of auxiliary storage during execu­
tion, and available storage is less than
the installation minimum, the task is first
~arned, if conversational, and then ter­
minated; nonconversational tasks are ter­
minated at once.

If there is more than one drum on the
system, the drum with the largest number of
available pages is used. Disk pages are
allocated from the same cylinder, when
possible. Once storage for a GQE has been
assigned, the Auxiliary Storage Allocation
Queue Processor sorts the PCBEs by device
type. If they have all been assigned to
the same device, the GQE is queued on the
queue of that device in the scan table.

When allocation has been made from dif­
ferent devices, a new GQE and PCB must be
created for each device addressed before
queuing can take place.

SVC Interruption Processing

The supervisor call (Svc) is the normal
method of communication between a task and
the supervisor. The interruption is caused
by the execution of an SVC instruction
which is usually embedded in the expansion
of a macro instruction. When the interrup­
tion occurs in the problem state, the SVC
code is examined to determine the type of
request:

• SVC codes 0-63 - a request for problem
program services.

• Svc codes 64-95 - a request for Time
Sharing support System (TSSS) services.

• svc codes 96-127 - a request for privi­
leged program services.

• SVC codes 128-255 - a request for resi­
dent supervisor services.

Appendix B contains a list of SVC instruc­
tions, related macro instructions, and-pro­
cessing routines.

The resident supervisor services only
SVC codes 128 through 255. The processors
responsible for servicing these requests
are the SVC Queue Processor and a group of
SVC subprocessors. These subprocessors can
be divided into functional groups according
to the general type of service they
provide:

• Virtual storage processors.

• TSI/XTSI modification and extraction
processors.

• Timer-maintenance and task­
synchronization processors.

• System table modification and extrac­
tion processors.

• I/O and device management processors.

• Inter-task communication processor.

The indiVidual SVC processing routines
included within each of these functional
groups are described in Section 3 under
their respective functional headings.

The primary function of SVcs is to cause
a switch from the problem state to the
supervisor state, allowing the execution of
privileged instructions and procedures in a
non-time-sliced environment. When the SVC

Section 2. Method of Operation 15

interruption is received, the Interrupt
Stacker invokes the SVC Queue Processor by
direct linkage (the GQE is.not queued on
the scan table). Since not all classes of

. users may issue all types of SVC requests,
it is one fUnction of the SVC Queue Proces­
sor to verify that a user has the authority
to ask for the specified service. Once it
has been determined that the SVC was issued
from a routine with the proper authority,
the SVC Queue Processor uses the SVC inter­
ruption code to invoke the appropriate SVC
subprocessor (see Figure 8).

(CEAHQP2)

I-­
I

--I

I
I
I
I
I
I
I
I
I
I
I
I

Is
svc

SWAP
PSWS

Calculate
Entry Point
of Proper
SVC Routine

I
I
I Creole Task

Program Interrupt

I
I

CEAAFG
Queue
GOE on
TSI

I
I
I
I

I
I
I
I SVC Routine

I
I
I
I
I
I
I

I
I
I

I -(

Process
SVC

CEAJMG

Move GOE
Routine

Queue
Scanner

L _____ --.l

Figure 8. Activities of the SVC Queue
Processor

16

)

It is possible for the Interrupt Stacker
to receive an SVC interruption while the
CPU is in the supervisor state (that is,
the SVC instruction was executed by the
resident supervisor itself). This indi­
cates an error and causes the Interrupt
Stacker to issue an ERROR SVC to invoke the
System Error Processor. The processing of
such an interruption is discussed in Sec­
tion 3 under -Major Error Recovery
Procedures.-

Task Scheduling and Selection

The task scheduling and selection
mechanism of the resident supervisor con­
trols the order in which tasks are assigned
CPU time, and the length of time they are
allowed to execute. On entry to the sys­
tem, each task is given a set of scheduling
characteristics, in the form of an entry
level in the schedule table (CHASTE), which
determines the order in which it will be
allowed to execute. These scheduling
characteristics will change as the task's
entry level is changed at various stages of
execution.

Schedule Table (CHASTE)

The schedule table comprises a maximum
of 256 entries, beginning with entry zero.
Each entry contains a set of 24 parameters
that become the scheduling characteristics
of any task assigned to it. All tasks are
assigned a schedule table entry (STE) when
they enter the system. For conversational
tasks, the initial levels used are 0
through 9; for nonconversational tasks,
entries 10 through 19 are used after logon
is completed; level 20 is used for the
logon procedure, and level 21 for logoff.
Operating conditions within the time­
sharing environment, and their relationship
to the task's service requirements, will
cause a task's entry level to be changed
during its life in the system. Table 4
identifies the 24 parameter fields in a
schedule table entry and specifies the
length of each and its meaning.

Active and Inactive Lists

All TSIs in the system are chained
together on one of two lists, the active
list or the inactive list. The active list
is further subdivided into the eligible
list and the dispatchable list.

• Eligible list - Tasks in this list are
ready to execute, but have not yet been
brought into main storage. They are
ordered by internal priority (specified
by a field in the STE), with the lowest
priority number first on the list.
Tasks. with the same priority number are
further ordered by their scheduled
start time (SST). SST is a time value

computed when a ~a.sk enters the elig­
ible listi it is related to a master
clock to determine whether a task is
ahead of or behind schedule.

• Dispatchable list - This list consists
of tasks that are in main storage
attempting to compete for CPU time and,
in most cases, whose SST is less than
the master clock. A task whose SST is
less than the master clock is said to
be behind schedule. Tasks in this list
are ordered according to their status
as -execute bound- or -I/O bound.­
Those with heavy paging requirements
(I/O bound) are dispatched first.

• Inactive list - These tasks are in
AWAIT or TWAIT status, or have issued a
TSEND SVC. Their pages are not in main
storage and they are incapable of con­
tinuing execution until a particular
interruption occurs.

, Task Selection

When a task first enters the system, it
is assigned a schedule table entry (STE)
level, and placed in the eligible list on
the basis of its priority (as shown in its
STE) and its SST. When it is determined
that a task should be moved from the elig­
ible list to thedispatchable list, the
highest priority task that is farthest
behind schedule (SST less than the master
clock) is selected. It is then moved to
the dispatchable list only if it meets the
requirements checked by the Entrance Cri­
teria subroutine.

Tasks in the dispatchable list are
ordered so that those with heavy paging
requirements are dispatched first. When a
task is selected from the dispatchable list
to be given CPU control, the Dispatcher
first checks, via the Task Interrupt Con­
trol (TIC) subroutine, to see if any
enabled interruptions are pending for the
task. If an interruption is pending, TIC

arranges for it to be serviced by the task
monitor. The Dispatcher also checks to see
if a real time interruption is to be
created for the taski if so, it is handled
before the task is dispatched •

Once a task is dispatched, it is allowed
to run until its timer interval runs out
(normal time-slice end), or until it is
forced to time-slice end (see -Timer Inter­
ruption Processing-).

Task Scheduling

When normal time-slice end occurs, the
quanta count field in the task's TSI is
decremented h¥ one. This field is initia­
lized to the value in the quanta count
field in the task's STE. If the count has
not reached zero, the task is given another
quantum of CPU timei it is left on the dis­
patchable list, and no change is made in
its STE or SST. If the count does reach
zero, the Rescheduling routine is called to
change the STE level to the level indicated
in the TSE level field of the old STE, and
to recompute the SST. If it is determined,
at the end of a quantum, that a task has
exceeded the maximum number of page reloca­
tions permitted per quantum, the task is
moved to the top of the dispatchable list
(it is ·paging boundR). •

For TSEND, TWAIT, and AWAIT extension,
tasks are removed from the active list and
placed on the inactive list. A real time
interruption is created for TSEND tasks
forced to time-slice end, and they remain
on the inactive list until the interruption
occurs. At that time, Rescheduling is
called to compute their SST, and they are
returned to the eligible list. In AWAIT
and TWAIT situations, a new STE level is
assigned to the task as specified in the
AWAIT and TWAIT level fields of the STE.
This new set of scheduling parameters will
control each task's movement through the
eligible list to the dispatchable list when
the AWAIT or TWAIT interruption occurs.

sectton 2. Method of Operation 17

- -- ---------- -------------------

Table 4. Schedule table entry parameters (part 1 of 2)
r-------------------~------~--, I . Field I Field I I
I Identification I Length I Meaning I

. r--------------------+-------+--~ ILevel (STELEVEL) 11 byte IThe relative entry number of this entry (0-255) I
~--------------------+-------+--~ IPriority (STEPRIOR) 11 byte IDetermines which tasks take precedence in having CPU I
I . I Iresources allocated to them. The order of precedence is I
I I I low numbers first. I
~--------------------+-------+--~ IQuantum Length 12 byteslThe amount of time to be used as a factor in determining I
I (STETSVAL) I Ihow long a task will be allowed to run before time slice I
I· I I end (TSE). One unit=3. 33 milliseconds. I
~--------------------+-------+--~ IQuanta Count 11 byte ISpecifies the number of quanta a task is to receive when I
I (STEQUANT) I lit is placed in execution before time slice end occurs. I
~--------------------+-------+--i IMaximum Pages 11 byte ISpecifies the maximum number of pages allowed in main I
I (STEMAXCR) I Istorage for a task during a complete time slice. I
~--------------------+-------+--i Ikaximum Page Reads 12 byteslSpecifies the maximum number of page relocations (includ- I
I (STEMAXRD) I ling XTSI and ISA pages) allowed for a task during a com- I
I I Iplete time slice. I
~--------------------+-------+--~ IScan Threshold 11 byte IWhen a task's pages in core exceed the limit (STEMAXCR~ I
I (STEST) I land the Steal request flag (STESRI), some of the task's I
I I lpages will be released. This field specifies a percentage I
I I I (in hex) of STEMAXCR as the number of pages to be retained I
I I I for the task when stealing occurs. The task is not forcedl
I I Ito time slice end, but its schedule table entry level is I
I I I changed to the value specified in STENSL. I
r--------------------+-------+--i Ipulse Level Entry 11 byte ISpecifies the schedule table entry to be aSSigned to a I
I (STEPULSE) I I task in response to the Pulse SVC. I
~-------------------_+-------+--i IAWAIT Extension 12 byteslSpecifies the duration of time, in milliseconds, a task isl
I (STEAWTEX) I Ito remain in the dispatchable list in the AWAIT state. I
~--------------------+-------+----------------------~-----------------------------------~ IDelta to Run 11 byte ISpecifies the real time interval at which a task is to be 1
I (STEDELTA) I Igiven a slice of CPU time. I
~--------------------+-------+--i ITSE Level (STETSEND)11 byte ISpecifies the schedule table entry to be used when time I
I 1 I slice end occurs. 1
r--------------------+-------+---------------------------~------------------------------i IMaximum Page Reads 11 byte ISpecifies the schedule table entry to be used when time I
IExceeded Level I Islice end is forced because pf maximum page reads being I
I (STEMPRE) 1 1 exceeded. 1
~--------------------+-------+-----------~--~
IAWAIT Level 11 byte I Specifies the.'schedule table entry to be used when a task 1
1 (STEAWAIT) 1 Ileaves AWAIT status. 1
r--------------------+-------+----~--~
ITWAIT Level 11 byte ISpecifies the schedule table entry to be used when a task 1
1 (STETWAIT) I Ileaves TWAIT status. I
r--------------------+-------+----------------------------~-----------------------------~ IFlag Byte (STEFLAGS)11 byte IIf the byte value is X'SO' for a task being moved from thel
I I linactive list, the task's scheduled start time is recom- I
I I I puted to place it on schedule. Otherwise, the task I
I I Iremains on the same relative schedule it was on when it I
1 1 I entered the active list. 1
1 1 I I
IX'SO'=Recompute I IWhen the recompute flag is off, past performance (if the 1
1 (STERCMPM) I Itask is behind schedule) is taken into account by calcu- I
I I Ilatin,g SST as the present time plus the delta-to-run less 1
I I I the amount behind schedule on the previous time slice. I L ____________________ ~ _______ ~ __ J

IS

"

Table 4. Schedule table entry parameters (part 2 of 2)

r--------------------T-------~--,
I Field I Field I I
I Identification ILength I Meaning ,
.--------------------+-------+--~ IX' 40 ' =Preempt I If the byte value is X'qO' for a task in the dispatchable
I (STEPRMPT) I list, and a behind schedule task of higher priority
I I resides in the eligible list, the task in the dispatchable
I I list can be preempted by forcing it prematurely to time
I I slice end.
I I
IX'20"=Steal Request I
I (STESRI) I
I I
I I
I I

If the byte value is X'20' for a task in the dispatchable
list, whose private pages in main storage exceed the maxi­
mum limit, some of the pages will be stolen (released)
from the task.

IX'10'=Subtract deltal If the byte value is X'10', STEDELTA should be subtracted
Ito run (STESDTR) I from, rather than added to, the master clock in calculat-
I I ing the scheduled start time for the task •
.--------------------+~-----+--~
IMaximum Page Relo- 11 byte ISpecifies the maximum number of page relocation inter- I
Ications per Quantum I lruptions allowed per quantum before the task is declared I
I (STEMRQ) I lpaging bound. - I
.--------------------+-------+---~
IHolding Interlock 11 byte ISpecifies the schedule table entry to be assigned to a I
IChange Level I Itask at time slice end when the task is holding an I
I (STEHLCIO I I interlock. I
.--------------------+-------+--~ ILow core/Holding 11 byte ISpecifies the schedule table entry to be assigned to a I
IInterlock Level I Itask at time slice end when the low core condition exists I
I (STELCHL) I land the task is holding an interlock. I
.--------------------+-------+--~
IWaiting on Interlockll byte I Specifies the schedule table entry to be assigned to a task
IChange Level I lat time slice end ~hen the task is waiting on an I
I (STEWLCK) I I interlock. I
.--------------------+-------f--~
ISTECWO 11 byte ISpecifies the schedule table entry level to be assigned tol
, 'Ia task by the WAIT SVC processing routine when a write ,
I I ,only operation is indicated in the terminal control table. I
.--------------------f-------f---~
ISTELCF 11 byte Ispecifies the schedule table entry to be assigned to a I
I I I task by the rescheduling subroutine when a task's low core I
I I Iflag is on and none of the other schedule table entry I
, I I level exit conditions apply. User core allocation will ,
I I Iset the flag, TSILCF, on when it is forcing an active task,
, I Ito time slice end and the low core condition exists. I
.--------------------f-------f--~
ISTEPRJ3 11 byte ISpecifies the maximum amount of time a task can be behind,
I I Ischedule before it will be submitted to Entrance Criteria I
I I I before higher-priority tasks which have not exceeded this I
I I I maximum. J

.--------------------+-------f--~
ISTENSL 11 byte Ispecifies the schedule table entry level to be assigned tol
I I la task by the User Core Allocation routine -when it is I
I I I determined that page stealing is to be initiated. I
.--------------------f-------+--~ IDrum Share (STEDSH) 12 byteslSpecifies the number of drum pages reserved for a task I
I I Iwhen more than the system calculated minimum drum space I
I I Ican be allocated. If the byte value is 0000, default is I
I I J to the system calculated minimum. I L-___________________ L _______ L ___ -J

Section 2. Method of Operation 19

SECTION 3: PROGRAM ORGANIZATION

INTERRUPTION CLASSIFICATION

Interrupt Stacker Module (CEAJI) Chart AA

The Interrupt Stacker comprises four
subdivisions which provide the processing
necessary to service all interruptions
other than machine check interruptions.
(Note: Machine check interruptions are
serviced by the Recovery Nucleus discussed
later in this section.) When an interrup­
tion occurs, the new PSW corresponding to
the class of interruption is loaded and
control is given to the appropriate subdi­
vision of the interrupt stacker. In gener­
al, the function of all the subdivisions is
to generate a general queue entry (GQE) and
to queue it on the appropriate scan table
entry or, in the case of SVC and program
interruptions, to transfer control to the
appropriate interrupt processor. Figure 9

presents a general flow diagram of the
interrupt stacker mechanism and its rela­
tionship to other supervisor components.

Attributes: The interrupt stackers are
parallel reenterable, resident, and. operate
in the privileged state with all interrup­
tions except machine check disabled.

Entries: The Interrupt Stacker module has
an entry point unique to each stacker, as
follows:

Program Interrupt Stacker ••••••••• CEAJIP
SVC Interrupt Stacker ••••••••••••• CEAJIS
External Interrupt Stacker •••••••• CEAJIE
I/O Interrupt Stacker ••••••••••••• CEAJII

Modules Called: supervisor Core Allocation
subroutine (CEALl entered at CEAL01)
reserves 64 bytes of main storage for a GQE

TSS/360
HARDWARE

I
Problerr State
Interruption ,------r-------------,

: Jo I I i
External +' SVC Program

l I t J I
Recovery I External Page Drum Other

Ltian Malf
A

Nucleus

I
I

Interrupts Interrupts

LONG SAVE

I
I
I
I
I
I
I
I L_________ __-.1

lert I t t
I Recovery I STACKER MECHANISM PROCESSORS

Procedures

-

1------------------- ------------l
QUEUE SCANNING AND PROCESSING MECHANISM I

I
I r------, ENQUEUE

QUEUE SCAN GQE I
I SCANNER TASLE SUBROUTINE I
L _________ L- ________________________ J

Figure 9. Interrupt stacker module overview

20

and 64 bytes for channel logout data when
required.

Enqueue GQE subroutine (CEAJQ entered at
CEAJEN) places GQEs on the appropriate pro­
cessor queues.

Queue GQE on TSI (CEAAF entered at
CEAAFQ) places a program interrupt GQE on a
task's TSI interrupt queue when a program
interrupt entry is found in the SERR auxi­
liary queue.

Exits: Normal - The interrupt stacker
exits to the resident support system (RSS)
whenever the occurring interruption is one
to be handled by RSS.

Exit is to the Program Interrupt Proces­
sor (CEANA at CEANAA2) for handling ofpag­
ing and segment relocation exceptions (PI
codes 16 and 17).

Exit is to the SVC Queue Processor
(CEAHQ at CEAHQQ) for program interrupt
codes 1 through 15. This exit results in a
program interrupt GQE being placed on the
task's TSI (via a call to CEAAF) and exit
to the Queue Scanner.

An exit to the SVC Queue Processor (at
CEAHQP2) is also made to determine if the
task causing an SVC interruption is
authorized to issue the SVC and to call the
proper SVC routine to provide the requested
service.

Exit is to the Queue scanner at CEAJQS
after queuing timer and I/O interruptions
on their appropriate processor queues.

Exit is made via LPSW (old I/O or old
external) after queuing I/O or external
interruptions occurring in the supervisor
state.

Exit is to the user task via LPSW after
swapping VPSWs in the ISA and PSA for task­
oriented SVCS and when processing for an
LVPSW SVC is completed.

Error - Exit is to the System Error Proces­
sor (CEAIS at CEAIS2) when the interruption
is caused by a SYSER SVC issued by a virtu­
al storage task.

Exit is to CEAIS1 when processing an
ERROR SVC (SVC 254) for two conditions -
LVPSW issued in problem state, or ERROR
issued in supervisor state.

operation: The initial processing at each
of the four entry points to the Interrupt
Stacker is similar. The status of the sys­
tem is checked to see if the interruption
occurred in problem state. If it did, the
value contained in the timer (PSATIM) is
saved in PSATSA. The timer is then set to

hex OFFFFFFF to prevent a timer interrup­
tion from occurring in the supervisor
state. The system elapsed time (PSAETM) is
then computed and updated after setting the
real time "lock (SYSTMLK) in the syst~
table.

If the system was in supervisor state at
the time of interruption, none of the timer
fields are changed.

After determining the system state and
taking the appropriate action, the Inter­
rupt Stacker fills in an entry in the
interrupt log (CEAJIL) with data pertaining
to the type of interruption just received.
(For a description of the interrupt log,
see Figure 10.)

The Interrupt Stacker then determines if
the interrupt is one to be processed by the
resident support system (RSS). If it is,

Header

Entries

CEAJll

Address of Next Available Entry (TSS) Word 1

Address of Start of TSS log Word 2

Address of End of TSS log Word 3

lock Byte I Unused Word 4

Address of Next Available Entry (TSS) Word 5

Address of Start of RSS log Word 6

Address of End of RSS log Word 7

:::
lock Byte I Unused

CPU 10 lint Type I Interrupt Code or SOA
See Note 1 See Note 2

Word 8

Word 1

Address of TSI at Time of Interrupt
See Note 3

Word 2

- CSW for 1/0 Interrupts or -Old PSW for other interrupt types
Words 3 &4

,t Next Available and Subsequent Entries f
Note 1: CPU 1 =80

CPU 2 =40
Note 2: External = 18

SVC = 20
Program = 28
1/0 = 38

Note 3: For an 1/0 Interrupt in Supervisor state

Word 2 = Byte 1: Byte 1 of Ext PSW
Bytes 2-4: Instruction address

For RSS Program and 1/0 interrupts:

Word 2 = A pointer to TSS lOG where the inter
interrupt would have been recorded.

Figure 10. The interrupt log

Section 3: Program Organization 21

it is passed to the RSS handling routine
via an LPSW. Otherwise the SERR Auxiliary
Queue Processing subroutine is called to
check for and work off entri~s in the SERR
auxiliary queue (CHASAQ). Entries in CHA­
SAQ represent status information (from
pending interrupt) on devices used by Sys­
tem Environment Recording and Retry.

The Long Save subroutine (IS01) is used
in common by each of the four divisions of
the Interrupt Stacker. When called, Long
Save is given the address of the inter­
rupted task's TSI in general register 2 and
its XTSI address in general register 3.
This SUbroutine stores all general purpose,
floating point and control registers in the
XTSI. Long Save then checks the saved time
value in the PSA (PSATSA) to see if it is
negative -- indicating that a timer inter­
ruption is pending along with the interrup­
tion being handled by the SVC, Program or
I/O Interrupt Stacker. If PSATSA is nega­
tive, zeroes are placed in the XTSI field
XTSCTI. Otherwise the positive value in
PSATSA is saved in XTseTI. The "in execu­
tion" bit is then turned off and the
"ready· bit turned,on (in the TSI). Long
Save then returns to the Interrupt Stacker
that called.

The activities of the individual stac­
kers are described on the following pages.

PROGRAM INTERRUPT STACKER: On return from
SAQ, the Program Interrupt Stacker checks
to see if a timer interruption is pending
in the hardware.

This is accomplished by testing the
stored timer field in the PSA for a nega­
tive value. The purpose of this test is to
take into account the possibility of a pro­
gram and a timer interruption occurring
simultaneously.

If a timer interruption is pending, the
timer/program indicator (PSA128) is turned
on in the PSA. This causes the pending
timer interruption to be ignored until
after the program interruption is pro­
cessed. If no timer interruption is pend­
ing, the Program Interrupt Stacker calls
the Supervisor Core Allocation subroutine
to request storage for a GQE. When the
space has been allocated, the Interrupt
Stacker initializes' a GQE with the
following:

22

• The address of. the current task status
index (TSI) from the PSA.

• The instruction-length code (ILC) from
the old program status word (PSW).

• The interrupt code from the PSA.

• The loc-on-Q (the symbolic queue number
as defined by its relative location in
the scan table sequence) of the queue
on Which this GQE will be placed.

When the GQE is initialized, all fields
are first set to zero; required information
is then placed in the proper fields. The
stacker transfers control to the Long Save
subroutine, which saves CPU status informa­
tion in the interrupted program's XTSI.
When the Long Save subroutine is finished,
it returns control to the Interrupt I

Stacker.

The Program Interrupt Stacker then ana­
lyzes the interrupt code (PSAPIC) to deter­
mine which of three exit routes it should
take.

If the interrupt code is less than 16,
specifying a program interrupt for the
task, exit is to the SVC Queue Processor at
CEAHQQ. The SVC Queue Processor calls
Queue GQE on TSI (CEAAF) to put the program
interrupt on the task's TSI. On return'
from CEAAF, exit is to the Queue Scanner.

If the interrupt code is 16 or 17, spe­
cifying a segment or paging relocation ,
exception, exit is to the Program Interrupt
Processor (CEANA).

If the interrupt code is greater than
17, the ERROR macro instruction causes the
System Error Processor to be invoked via! an
interrupt.

If the Interrupt Stacker determines that
a timer interruption is pending, the timer
value is set to a value such that the pro­
gram can operate again when the program
interruption is cleared. Thus, another
timer interruption is forced to occur
immediately after the program interruption
has been processed by the supervisor and,
the task has been reactivated. The Inte'r­
rupt Stacker sets the timer/program indica­
tor in the PSA, which causes the timer '
interruption that is currently pending to
be ignored when it occurs (that is, it w:ill
not be acted upon by the External InterrUpt
Stacker). When this action has been taken,
the Program Interrupt Stacker initialize's
the GQE as described above.

SVC INTERRUPT STACKER: After updating the
timer fields in the PSA, if required, and
making the interrupt log entry, the SVC I

Interrupt Stacker again checks the status
of the system.

If the system is in supervisor state,'
the sve causing the interruption must be an
RSS type or a system error SVC. If it is

;r-

neither of these, a system error condition
exists and the SVC Interrupt Stacker issues
an ERROR macro instruction. This will
cause reentry into itself and eventual exit
to the System Error Processor.

If it is an RSS type SVC, exit is to RSS
via an LPSW. If it is a system error SVC,
exit is to the system Error Processor at
CEAISI.

If the system is in problem state, the
SERR Auxiliary Queue Processing sUbroutine
is. called. On return, the saved timer is
checked to see if there is a simultaneous
timer interrupt pending. If there is one,
the timer interrupt pending flag (PSA12B)
is set. Then, or if no timer interruption
is pending, the Long Save subroutine is
called.

On return, the SVC code is checked to
see which of the following types it is:

• A system error SVC (SYSER) from a vir­
tual storage task.

• An RSS type SVC.

• A task oriented SVC or an LVPSW sve.

If it is none of these three types, it
will be an SVC to be handled by the SVC
Queue Processor (CEAHQ). In this case, GQE
space is requested from Supervisor Core
Allocation and the GQE is initialized with
the following information: The TSI address
and interrupt code from the PSA, the ILC
from the sve old PSW, the Loc-on-Q of the
SVC queue. All other fields of the GQE are
set to zero and· exit is to the SVC Queue
Processor at CEAHQP2.

SYSER SVC processing: Interruptions caused
by SYSER macro instructions issued in vir­
tual storage tasks are processed by the
System Error Processor. When one of these
is detected, therefore, the SVC Interrupt
stacker exits to this processor at CEAIS2.

RSS Type SVC Processing: RSS type SVCS
issued in problem state are handled by RSS.
Therefore, exit is to RSS via LPSW after
resetting the TSI lock.

Task Oriented SVC processing: Certain
SVcs, issued in virtual storage routines,
do not require the services of the SVC
Queue Processor and its related processing
routines. These SVCs request transfer of
control from one virtual storage routine to
another. Such requests are handled in the
SVC Interrupt Stacker as follows:

1. When theSVC was the object of an
EXECUTE instruction, the virtual
storage address of the svc is obtained
and stored in the ISA at ISACSW. This

step is skipped if it was not the
object of an EXECUTE instruction.

2. The program and svc masks are set in
the TSI (TSIPMF=l).

3. The old SVC PSW is mapped from the PSA
to the SVC old VPSW location in the
ISA.

4. The SVC new VPSW is moved to the cur­
rent VPSW location in the ISA.

5. The ILC, CC, program mask, and IC are
moved from the current VPSW to the SVC
old PSW location.

6. The program interrupt mask is moved
from the current VPSW location to the
TSI.

7. The updated PSW is then moved from the
XTSI to the PSA.

B. A check is then made to see if a timer
interrupt is pending. If there is
one:

BA. Exit is to the Queue Scanner after
resetting the TSI lock and enabling
interrupts.

9. When there is no timer interrupt'pend­
ing, the elapsed time is computed and
the elapsed timer (PSAETM) updated.

10. Th~ timer reset value (PSATRV) is set
to'HEX OFFFFFFF.

11. The 'Ready' flag is turned off and the
'Execute' flag turned on in the TSI.

12. Exit is to the virtual storage task
via LPSW.

LVPSW processing: When the interruption is
caused by an LVPSW macro instruction, pro­
cessing is similar to that for task­
oriented sves. The following procedures
precede those described under points 5, 6,
7, and BA for task SVC handling:

1. If the routine that issued the LVPSW
has the correct authority, the main
storage address of the virtual PSW is
obtained.

2. IIf the segment is not available and
the page table is not in a page table
page, an ERROR macro instruction
(1455) is issued. If the segment is
unavailable and in a page table page
or if the page is unavailable, the
instruction counter in the XTSI is
backed up to cause re-execution of the
LVPSW. This routine then exits to the
Queue Scanner.

Section 3: Program Organization 23

3. If it is on a doubleword boundary and
the ISA is in mainsto~~ge, the new
VPSW is moved to the current VPSW
location in the ISA.

4. If the ITI (inhibit task interrupts)
flag is on in the ISA, it is turned
off. If it is not on, the ISA lock is
reset.

Two conditions are checked which can
result in a program interrupt to the task
issuing the LVPSW:

1. If" the task is of insufficient
authority to use the instruction, the
program mask and the SVC mask are set
in the TSI. The old SVC PSW is moved
to the old SVC VPSW location in the
ISA. The new SVC VPSW is moved to the
current VPSW location in the ISA.
Processing then continues as in steps
5, 6, 7, and SA previously mentioned.

2. If the virtual PSW main storage
address is not on a doubleword boun­
dary, the program interrupt code in
the PSW is set to indicate this condi­
tion before proceeding.

In these two cases, the task is
restarted with the current VPSW set to the
program new PSW.

EXTERNAL INTERRUPT STACKER: External
interruptions are initially accepted by the
Recovery Nucleus routine, which saves and
resets the timer location in the PSA,
checks for, and processes any malfunction
alert interruptions, inter-CPU communica­
tion interruptions and interrupt key inter­
ruptions as described under -Major Error
Recovery Procedures· in this section. If
the interruption is not the result of a
malfunction alert, the Recovery Nucleus
transfers control to the External Interrupt
Stacker. On entry to the External Inter­
rupt Stacker, a short-save is performed,
and the external indicator field in the PSA
is checked to determine if any indicators
are on. If none are on, an error condition
exists, at which point the general regis­
ters are restored, and the System Error
Processor is called via an ERROR SVC.

If a supervisor state program was inter~
rUpted, and the external interrupt code
indicates that a timer interruption
occurred (i.e., if the PSA location 14 is
08) the External Interrupt Stacker checks
the timer/prog indicator in the PSA. If
the timer/prog indicator is on, a task
interruption is being processed by the Pro­
gram Interrupt Stacker, and the timer
interruption is to be ignored, since it
will occur when the task is restarted.
Therefore, the External Interrupt Stacker

24

turns the timer/program indicator off and
checks the external interrupt code to see
if an external interrupt key signal has
occurred. If not, the saved registers and
timer value are restored and the external
old PSW loaded.

If the timer/program indicator is not
on, a further check is made to determine
whether the CPU was in the wait state. If
not, a major system error is declared. If
the CPU was in the wait state, control is
transferred to the Queue Scanner.

If the interrupted program was in the
problem state, the Long Save subroutine is
called to save all necessary information in
the interrupted task's XTSI. Control then
returns to the Interrupt Stacker and a
check is made for a timer interruption. If
one exists, SUpervisor Core Allocation is
called to allocate space for a GQE. When
control returns to the Interrupt Stacker,
the allocated space is used to initialize a
GQE as follows:

• TSI address from the PSA.

• Loc-on-Q of the timer inte~rupt queue.

The PCB count in the new GQE is set to
zero, and the Interrupt Stacker transfers
control to the Enqueue GQE subroutine,
which adds the GQE to the timer interrupt
queue, posts this in the scan table entry
for the Timer Interrupt Queue Processor,
and disables interruptions. Control
returns to the Interrupt Stacker, interrup­
tions are enabled and the Interrupt stacker
exits to the Queue Scanner.

External interrupt key signals in the
problem state are delivered to RSS after a
long save is performed and the TSI lock
byte is reset.

In supervisor state, the interrupt key
signal causes control to go directly to
RSS.

I/O INTERRUPT STACKER: The I/O Interrupt
Stacker saves and updates the timer fields
in the PSA when the system is in either
problem or wait state.

I/O interrupts for RSS devices are
passed to RSS immediately via LPSW when the
system is in supervisor state. If not in
supervisor state, a long save is done and
the TSI lock reset before exiting to RSS.

When RSS is not involved, the I/O Inter­
rupt Stacker makes an interrupt log entry
and works off any entries in the SERR Auxi­
liary Queue. Then, GQE space is requested
from the Supervisor Core Allocation subrou-

"~"

tine. An additional 64 bytes is also
requested for channel lOgout data when a
channel or interface control check is
specified.

The GQE is initialized with the CSW and
interrupt code from the PSA. If the inter­
rupt is from a paging drum, the Loc-on-Q
field is set for the Page Drum Interrupt
Processor (CEAA9). otherwise the Loc-on-Q
field is set for the Channel Interrupt Pro­
cessor (CEAA4).

If the interruption occurred in the
supervisor state, interruptions are not
enabled, and the GQE is queued by transfer­
ring control to the Enqueue GQE subroutine,
which returns control to the stacker. A
return is then made to the interrupted pro­
gram by performing the following:

• Restoring the general purpose registers
and timer value.

• Turning off the wait state bit and set­
ting the simultaneous interrupt flags
(PSA12S) when a timer interrupt is
pending.

• Loading the I/O old PSW.

If the interruption occurred in the pro­
blem state, the I/O Interrupt Stacker
obtains the current TSI address from the
PSA and the XTSI address from the TSI,
saves the old psw, and transfers control to
the Long Save subroutine. Long Save places
the necessary status information in the
interrupted task's XTSI, and returns con­
trol to the I/O Interrupt Stacker. The
Interrupt Stacker then calls the Enqueue
GQE subroutine to add the GQE to the appro­
priate queue.

If a timer interrupt is pending, the
simultaneous interrupt flag (PSA12S) is
set. Main storage for a timer interrupt
GQE is then requested from Supervisor Core
Allocation. It is initialized and queued
as in the'External Interrupt Stacker pro­
cessing. Exit is then to the Queue Scanner
(CEAJQ at CEAJQS).

If no timer interrupt is pending, the
TSI lock is reset and exit is also to the
Queue Scanner.

QUEUE SCANNING AND PROCESSING

Queue Scanner (CEAJQ) Chart AB

The Queue'scanner functions as a centra­
lized sequencing mechanism which determines
the order in which independent processors
are to be given control to perform the work
specified in GQEs on the system queues.

Attributes: The Queue Scanner is parallel
reentrant, resident, closed, and operates
in the privileged state.

Entry: CEAJQS, by:

• The interrupt stackers.

• The queue processor's return of
control.

• Task Interrupt Control.

Assumptions: It is assumed that the queue
processors are maintaining the proper
information in the scan-table entries using
only the subroutines available for that
purpose: the Enqueue GQE, Dequeue GQE, and
Set Suppress Flags subroutines.

Modules Called: Timer Interrupt Queue Pro­
cessor (CEAKT) takes action with respect to
a task for which a GQE has been placed on '
the timer-interrupt queue, performing the
initial step(s) appropriate to effect eith­
er the creation of a task interruption, or
a task time-slice end.

Page Drum Queue Processor (CEAAS)
initiates I/O on all 2301 paging drums.

Page Drum Interrupt Queue Processor
(CEAA9) processes all interruptions occur­
ring on the paging drums.

User Core Allocation Queue Processor
(CEANB) allocates pages of main storage for
user pages.

Auxiliary Storage Allocation Queue Pro­
cessor (CEAIA) allocates and maintains
storage for user pages in auxiliary drum
and disk devices.

I/O Device Queue Processor (CEAA3) pro­
cesses GQEs representing input or output
requests to devices other than drums.

Channel Interrupt Queue Processor
(CEAA4) locates GQEs which initiated I/O
operations and performs these required
functions: frees devices, distinguishes
between the initial and subsequent asynch­
ronous interruptions; and informs affected
tasks of the occurrence of I/O interrupts.

SVC Queue Processor (CEAHQ) dequeues the
GQE from the scan table, assures that the
task issuing the SVC is authorized to do so
and identifies and branches to the proper
SVC subroutine to service the interruption.

The Internal Scheduler (CEAKI) is
entered when there is no work queued or
when devices required to perform queued
work are not available. The Internal Sche­
duler sorts tasks into order on the dis-

Section 3: Program organization 25

patchable list and passes control to. the
Dispatcher. .

SYSERR (CEAIS) is called when software
errors are encountered during processing.

~: To queue processor - when work is
found in the scan table. If the processor
is the Page Drum Queue Processor (CEAAS),
the affected scan table entry lock byte
(SCNF3LOK) is locked using the SETLOCK
macro. This ensures exclusive use of the
entry in a duplex environment. If the pro­
cessor i~ the Page Drum Interrupt Queue
Processor (CEAA9), the scan table entry
lock byte (SCNF3LOK) for CEAAS is locked.
This is also done to preserve exclusive use
of the entry while CEAA9 is processing
interrupts for that entry. The lock will
be opened using the OPENLOCK macro by the
processor which was given control prior to
its exiting to the Queue Scanner. To
Internal Scheduler - when all GQEs have
been processed or all queue processors are
busy.

Operation: Upon entry, the queue scanner
disables all interruptions except machine
check1 it then enables and immediately dis­
ables I/O and external interruptions to
cause any pending interruptions to be
queued. CEAJQ then checks the master count
of matched facilities in the scan table
master control table. If the value of the
field is zero, no GQEs can be processed,
and the Queue Scanner transfers control to
the Internal Scheduler. If the value of
the field is not zero, the Queue Scanner
tests the DIG (device interaction group)
counts of matched facilities in the scan
table master control table to find a DIG
entry for which there is work. If none is
found, the Queue Scanner exits to the
Internal Scheduler.

When a DIG entry is found containing a
non-zero count of matched facilities, the
DIG lock byte is tested. If it is off, one
of the queues associated with this DIG can
be processed. If it is on, the master
count of matched facilities is decremented
by this DIG's count of matched facilities.
The search of DIG entries then continues.

When one is found, the DIG count and the
master count are decremented by one, and
the associated scan table entries are
searched for one which satisfies the fol­
lowing conditions:

26

• The -Q- flag is on.

• No suppress flag or processor lock
bytes are on (queues whose lock bytes
are on are currently being manipUlated
and may not be entered).

When an active queue entry is found, the
Queue Scanner locks the scan table entry
and transfers control to its related pro­
cessor. The linkage to the processor is
performed by storing the following in gen­
eral registers:

• The scan table queue entry (that is,
the address of the GQE).

• The address of the queue processor.

If there are no Q flags on in the scan
table entries associated' with a DIG entry
whose count is greater than 0, a system
error SVC is issued. In all other cases,
when no processable queue can be found, the
Queue Scanner exits to the Internal
Scheduler.

QUEUE-CONTROL SUBROUTINES

Four subroutines perform the general
functions of controlling the queues sum­
marized by the scan table. These are:

• The Enqueue GQE subroutine, which
places a GQE on the specified queue.

• The Dequeue GQE subroutine, which
removes a GQE from the proper queue.

• The Move GQE subroutine, which routes a
GQE from queue to queue, and releases
the GQE storage and any PCB storage
associated with it when all work. speci­
fied is completed.

• The Set Suppress Flag subroutine, which
sets a specified suppress flag on or
off in a specified scan table entry for
a specified queue, and sets and resets
the busy flag in a DIG entry.

These subroutines are available to all
supervisor components that operate on GQEs.
They are entered via subroutine linkage,
with the GQE pointer in general register
one. All of these subroutines are resi­
dent, reenterable, and privileged. There
are other subroutines that perform special
queue control functions (for example, the
Dequeue I/O Requests and the Generate and
Enqueue Interrupt GQE subroutines). These
subroutines are described in this section
under ·Supervisor Subroutines.-

Enqueue GQE Subroutine (CEAJQ Entered at
CEAJEN)

This subroutine adds a GQE to the desig­
nated queue and updates the scan table
entry for that queue to reflect the addi­
tion of the new element.

Entry: CEAJEN.

RESTRICTIONS: The subroutine will operate
with all interruptions except machine check
disabled.

Assumptions: The location-on-queue (loc­
on-Q) field of the GQE contains a binary
value equivalent to the location in the
scan table of the entry on which the GQE is
to be queued. The third byte of each scan
table entry will contain a binary value
from 1 to 255 which will identify the
device interaction group (DIG) to which the
entry belongs.

Exit: To caller.

Operation: On entry, Enqueue disables all
interruptions except machine check, and
then tests a register set by the caller to
determine whether interruptions are to be
enabled before control is returned to the
caller. If so, Enqueue sets an indicator
to specify this, locates the appropriate
scan table entry (i.e., retrieves the first
loc-on-Q from the GQE),'and then performs
one of the following:

• If there are no prior entries on the
queue (that is, if the first queue
entry field in the scan table entry is
all zeros), the address, or pointer, to
the GQE is placed in the first and last
queue entry fields in the scan table
entry. The forward link and reverse
link fields in the GQE are set to
zeros, and the Q flag in the scan table
entry is set on.

• If there are other entries on the
queue, the subroutine points the new
GQE to the previous last GQE by placing
the address currently contained in the
scan table entry's last-queue-entry
field into the new GQE's reverse link
field. The address of the new GQE (now
the last GQE) is then placed in the
scan table entry's last-queue-entry
field and in the forward-pointer field
of the previously last GQE. The for­
ward pointer of the new GQE is set to
zero.

When Enqueue has accomplished one of the
above actions, the master count of GQES of
the scan table master control table (S~C)
is increased by one. If there were no
other GQEs on the specified queue when the
new one was added, the subroutine tests to
see if any suppress flags or processor lock
bytes are on. If not, the Enqueue GQE sub­
routine adds one to the DIG count of
matched facilities for the GQE and the
master count of matched facilities in the
SMC. The subroutine then enables interrup­
tions, if specified by the caller, and
returns control to the caller.

Dequeue GQE Subroutine (CEAJQ Entered at
~JDE)

This subroutine removes GQE pointers
from the proper queues as specified by the
callers.

Entry: CEAJDE

Assumptions: The location-on-queue (loc­
on-Q) field in the GQE.contains a binary
value equivalent to the location in the
scan table of the processor that must
handle the GQE. The third byte of each
scan table entry will contain a value from
1 to 255 which will identify the device
interaction group (DIG) to which the.entry
belongs.

RESTRICTIONS: The subroutine operates with
all interruptions except machine check
disabled.

Exits:

Normal - To caller.

Error - To the System Error Processor if
the SMC lock is locked too long or
if an invalid Loc-on-Q or DIG 10
is encountered.

Operation: If interruptions are to he
enabled on return to the caller, Dequeue
GQE sets an indicator in a general register
to signify this, locates the scan table
entry for the queue, and performs one of
the following:

• If the GQE to be dequeued is the only
one on the queue, the first and last
queue entry fields in the scan table
entry are set to zero, and the RQR fleg
is set off.

• If there are other GQEs on the queue,
forward and reverse are updated to
remove the requested GQE from the
chain. The scan table entry pointers
are updated if it is the first or the
last GQE on the queue.

When one of the above actions has been
taken, the counts of matched facilities in
the DIG are adjusted according to the fol­
lowing algorithm, unless a suppress flag is
found on:

• If the Q flag has been turned off (that
is, no more GQEs remain in the queue),
the counts are decreased by one. In
addition, if the scan table entry is
found to be locked, it is unlocked, and
the counts are increased by one.
Dequeue GQE lowers the master count of
GQES in the scan table master control
table, enables interruptions if speci-

Section 3: Program Organization 27

,., .. ,---

fied, and returns control to the
caller.

Move GQE Subroutine (CEAJQ Entered at
CEAJMG)

This subroutine examines the sequence of
queue processors required to perform the
work specified by the GQE and routes the
GQE from queue to queue until the last pro­
cessor has finished the required proces­
sing. It then returns the storage space
occupied by the GQE and any associated
PCBs.

Entry: CEAJMG

Assumptions: The subroutine assumes that:

• A group of processor-sequence numbers
is maintained in the queue-process or­
string table so that one to three num­
bers can be shifted within the GQE.

• An eight-byte field in the GQE is
reserved for from one to three proces­
sor sequence numbers plus an indicator
signaling the end of processing for the
GQE, or the location of a continuation
of the processor string in the queue­
processor-string table.

Modules Called: Supervisor Core Release
subroutine (CEALl entered at CEALOl)
releases main storage occupied by the GQE
and any associated PCBs.

Enqueue GQE subroutine (CEAJQ entered at
CEAJEN) places GQE pointers on the speci­
fied scan table queues.

Exit: To caller.

operation: On entry, the Move GQE subrou­
tine determlnes whether interruptions can
be enabled, sets up the appropriate indica­
tors to enable or disable interruptions,
and adjusts a string of queue processor
numbers to locate the number of the next
processor required for GQE processing.

If no further work is required by the
GQE, the PCB count in the GQE is checked.
If this field indicates that there are PCBs
attached to the GQE, Move GQE calls the
Supervisor Core Release subroutine to
release the storage space they occupy.
When all PCBs have been released the GQE
storage is released in the same manner.
Move GQE then enables or disables interrup­
tions, and exits to the caller.

If further work is required for the GQE,
Move GQE determines the next required pro­
cessor, calls the EnqueueGQE subroutine to
move the GQE pOinter to the appropriate
scan table queue, and enables or disables

28

interruptions. On return of control, move­
GQE exits to the caller.

Set Suppress Flag Subroutine (CEAJQ Entered
at CEAJSF) Chart AC

This subroutine sets on or off all sup­
press flags in the scan table and all DIG
busy flags.

Entry: CEAJSF

Assumptions: It is assumed that this sub­
routine will be called whenever a suppress
flag must be set.

RESTRICTIONS: The subroutine runs with all
interruptions except machine check dis­
abled. The mask used to set the flags on
or off must have the high-order bit set to
zero. If set to one, it may cause the "Q­
flag to be inadverently turned on or off.

Modules Called: The System Error Processor
(CEAIS) may be given control when an inter­
ruption indicating a system error condition
occurs.

Exit: To caller.

Operation: On entry, the SSF subroutine
disables all interruptions and then sets
the interruption indicator as specified by
the caller. SSF then checks the location­
on-queue supplied by the caller against the
scan table master control table. If the
specified location is invalid, a system
error SVC is issued. If the location is
valid the subroutine checks the flag set­
ting request to determine whether a sup­
press flag is to be turned on or off.

If a suppress flag is to be set on, the
SUbroutine accomplishes this by using the
OR instruction on the suppress flag and a
mask specified in the caller's parameter
register. When the flag is on, SSF tests
the -Q. flag. If this flag is on, the scan
table entry's lock byte and suppress flags
are checked. If none of these is on, one
is subtracted from the DIG count of matched
facilities and the matched facilities. No
subtraction takes place if the DIG count is
already zero or if at entry, the processor
lock byte is set on. At this point, or if
the -Q. flag was off, a common return is
performed, as follows:

• Registers are restored to their state.

• Interruptions are enabled, if specified
by the caller.

• Control is returned to the caller.

The suppress flags are set off in the
same manner as described for setting them
on (that is, via a mask), except that the

Table 5. QUEUE scanner-operations in processing of GOE

r---------------------------T-------------------------------------r---------------------,
I Queue Scanner Function I Conditions I Result I
~---------------------------+-------------------------------------+---------------------~
IDispatch GQE to Queue I IDecrement Dig Count1 I
I Processor I ITurn on SCNLOK I
~---------------------------+-------------------------------------+---------------------~
IQueue 1st GQE on Scan INO suppress Flags on and SCNLOK off IIncrement Dig Count I
I Table Entry I I I
r---------------------------+-------------------------------------+---------------------~
ITUrn Dig Busy on ISCNLOK off I Exit I
I r-------------------------------------+_------------------~
I ISCNLOK on; Suppress flags on IOpen SCNLOK I

I ~---------------------------~-:---+---------------------~
I ISCNLOK on; Suppress flags off; work IOpen SCNLOK; Incre- I
I Ion queue I ment DIG count I

~---------------------------+-------------------------------------+---------------------~
ITurn Dig BUsy Off IDig Busy is now on IIncrement DIg count I

~---------------------------+-------------------------------------+---------------------~
ITurn on 1st Suppress Flag INon-empty queue ~ SCNLOK on IOpen SCNLOK I

I ~-------------------------------------+---------------------~
I INon-empty queue and SCNLOK off IDecrement Dig Count I

r---------------------------+-------------------------------------+--------------------.~
ITurn off last Suppress FlaglNon-empty queue and SCNLOK off IIncrement Dig Count I

.---------------------------+-------------------------------------+---------------------~
IDequeue a GQE INon-empty queue remains ~ IOpen SCNLOK; Incre- I
I ISCNLOK on and No Suppress Flags on lment Dig Count I

I .-------------------------------------+_------------------~
I I Empty queue remains and SCNLOK on ~ IOpen SCNLOK I

. I INO Suppress Flags on I I

I ~-------------------------------------+_------------------~
I IEmpty queue remains ~ SCNLOK off IDecrement Dig Cou~t I
I I~ No Suppress Flags on I I

.---------------------------+------------------------------------+---------------------~
IAII Others INo effect on Dig Counts or SCNLOK I I L ___________________________ L-___________________________________ -L-____________________ J

DIG count of the matched facilities in the
scan table master control table is raised
when the 8QW flag is on and the other sup­
press flags and the lock byte in the scan
table entry are off (see Table 5).

QUEUE PROCESSORS

Timer Interrupt Queue Processor (CEAKT)
Chart AD

Each GQE on this processor's queue
represents a timer interruption, a forced
time slice end for a task, or a migration
request. The GQE may have been created as
a result of a task having reached normal
time slice end, having been forced to time
slice end, or having been selected to have
its pages migrated from auxiliary drum
storage to auxiliary disk storage.

In the time slice end situations, a user
timer interruption may also be involved.
If it is not, the fUnction of this proces­
sor is to cause the task to be rescheduled
according to its STE parameters and to
effect the release of the space occupied by
the task's pages in main storage unless the

task's status is such that it is to remain
in the dispatchable list.

If a user timer interruption is involved
(user timer field = 0), and it is not a
forced time slice end Situation, the func­
tion of this processor is to cause a task
interruption to be created and placed on
the TSI interruption queue. The task
remains in the dispatchable list and its
pages remain in main storage.

The migration fUnction is invoked to
cause a task's pages to be migrated from
auxiliary drum to auxiliary disk whenever
the drum space being used exceeds the
limit.

The Auxiliary Storage Allocation routine
calls this module for this purpose.

Entries:

CEAKTl - by Queue Scanner.

CEAKTB - by Create Real Time Interrupt sub­
routine (CEAKR).

Section 3: Program Organization 29

Modules Called: Dequeue GQE subroutine
(CEAJQ entered at CEAJDE) removes GQEs from
the processor's queue.

Auxiliary Storage Release subroutine
. (CEAIA) releases storage for user pages in
auxiliary drum and disk devices.

Enqueue GQE subroutine (CEAJQ entered at
CEAJEN) places the GQE on the auxiliary
storage allocation queue.

Move GQE subroutine (CEAJQ entered at
CEAJMG) moves or releases the GQE.

Queue GQE on TSI subroutine (CEAAF)
places the GQE pointer on the TSI's inter­
ruption queue.

Supervisor Core Allocation subroutine
(CEAL1 entered at CEAL01) allocates main
storage for a new GQE or for a PCB.

User Core Release subroutine (CEAL1
entered at CEAL04) releases main storage
occupied by unchanged pages.

Supervisor Core Release subroutine
(CEAJ.1 entered at CEAL02) releases GQE
storage space.

Rescheduling subroutine (CEAKZ'entered
at CEAKZA) is called at normal end of time
slice to recompute a task's scheduled start
time (SST) and move it to the eligible
list. This subroutine is also called in
forced time slice end situations to add a
task to the inactive list.

Write Shared pages subroutine (CEAMW
entered at CEAMWS) is called to obtain
shared pages for migration when the GQE
indicates that shared page migration is to
be performed.

Paging routine (CEAMQ entered at CEAMQA)
reads in a set of page table pages to be
used for migration.

Exit: Queue Scanner.

Operation: On entry, the Timer Interrupt
Queue Processor (TIP) calls the Dequeue GQE
subroutine to remove the GQE from its queue
and enable interrupts. On return, TIP
determines whether the task's XTSI pages
are in main storage. If not, the processor
exits to the Queue Scanner.

If the XTSI pages are in main storage,
the processor determines the cause of the
interruption and performs the appropriate
function:

• User Timer Interruption processing

• Time Slice End Processing

30

• Page Table Scanning

• Migration

This processor's activities are illus­
trated in Figure 11.

USER TIMER INTERRUPTION PROCESSING: At
forced or normal time slice end, the task's
timers are updated. If the user timer
field goes to zero, and it is not a forced
time slice end, a task interruption is
created and queue-GQE-on-TSI is called to
put it on the task's TSI interrupt queue.
The task's pages are left in main storage
and the task remains in the dispatchable
list.

If it is forced time slice end, the
task's pages are written from main storage,
and rescheduling is called to put the task
on the inactive list. A task interruption
is not created, but one will be when TIP
subsequently gains control after the forced
time slice end situation has been handled
and the task again reaches time slice end
normally.

TIME SLICE END PROCESSING: When a user
timer interruption is not involved, and it
is a forced time slice end situation, a
check is made to see if it was caused by a
TSEND SVC. If yes, the task is set in
delay status, Rescheduling is called to put
it on the inactive list, a timer interrup­
tion is set up, and the task's pages are
written from main storage. The timer
interruption will be fielded by a special
entry point in CEAKT which will cause the
task to be put in ready status, Reschedul­
ing to be called to put it on the eligible
list with its SST recomputed, and then the
processor will exit to the Queue Scanner.

For forced time slice end interruptions,
not TSEND, Rescheduling is called to put
the task on the inactive list and recompute
its SST. Then the task's pages are written
from main storage.

At normal time slice end, the task is
given another time slice value and then the
number of page relocations caused by the
task during the time slice just completed
is checked. If less than the number speci­
fied by the control field in the STE, the
task is moved to the bottom of the dis­
patchable list. In either case, the quanta
count is then lowered by one. If it does
not go to zero, exit is made to the Queue
Scanner. If the count does go to zero, the
normal time slice end flag is set in the
TSI and Rescheduling is called to recompute
the SST and put the task on the eligible
list. The task's pages are then written
from main storage. As a part of time slice
end processing, this routine also updates
fields in the system statistical table

,---

en
CD
o
rt
o
t:I

w

."

]
t1
III
!3
o
t1

o..Q
OJ
t:I
N
OJ
rt
o
t:I

w

)

Qveve r­
~.

Scanner I

I .,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-----1
I

Use,
Timer

?
No

I
I
I
I
I

Ves I

I
I

I
I

I
I

CEAJDE

Deqveve

CEAlOI
Supervisor
Core
Allocation

CEMFO
Queue
GOE-on
TSI

CEAJMG

Move GQE

I I I ~ (Oveve) I ~ I Scanner

L ______ ~

To Build
aNew
GQE

CEAl02

Svp Core
Release

To Scrub
GQE

)

Figure 11 . Timer Interrupt Queue Processor activities

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I

No

--I
I

I

L ___ J

CEAKZA

Reschedvling

CEAlOI
Supervisor
Core
Allocation

CEAL04

User Core
Release

CEfllAR

A'J)'iliory
S~o.O'.:le--

Re ~-.J

~ I Ci"A.lMG

MOve CO':

R~scheduling

To Change
STE Level

To Build
PCB

To Put
fask on
Eligible
list

CEAJEN

Enqueve

"

lD Get
G.)E on
A._< Stg
Aiif,,'\cation
Q,.ue

(CHASST). For any occurrence of time slice
end, SSTALT is increased bye;.me. If time
slice end occurs because a task reaches its
quanta limit, SSTQLT is also raised.

PAGE TABLE SCAN FUNCTION: The page table
scan goes through the page tables and upon
encountering a page which is available and
whose page hold count is zero (indicating
no user I/O in progress on this page) a
check is made to see if this page has been
changed. If unchanged, its main storage
space is released. If changed, the page
must be written to auxiliary storage and
the auxiliary storage space previously
occupied by the page must be released. A
PCB is created for each such page prepara­
tory to writing it to the paging disk or
paging drum. An effort is made to block
(write to the paging device in contiguous
groups) certain of the task's changed
pages. Those to be blocked are the high
usage pages of the task.

The procedure for selecting the pages to
be blocked and the device to which they are
to be written is controlled by a page usage
count, maintained in the external page
table (XPTPMC), and two system table
fields: SYSBLK, the drum block limit: and
SYSBLK2, the combined drum and disk block
limit.

When CEAKT finds a changed page that has
been in main storage for three consecutive
time slices (XPTMC=3), a test is made to
see if the number of blocked pages (TSIBLK)
is less than SYSBLK. If so, a flag is set
in the external page table (XPTPP) indicat­
ing that it is a blocked page and the page
is written to drum. When TSIBLK is greater
than or equal to SYSBLK, and the task is
inactive, TSIBLK is compared to SYSBLK2.
If less, XPTPP is set for the page and it
is written to disk. Every time a page is
blocked to the drum or disk, the count,
TSIBLK, is incremented. This count is
initialized at the beginning of each page
table scan for a task. Also, the XPTPP
flag is turned off in each page before the
above investigation is made.

When the end of the page tables is
reached, a check is made to see if there
are any page table pages. If so, the chain
of page tables is scanned, and those page
table pages which do not contain virtual
memory pages in page hold are written out.
Then the segment table entries for the page
table on a page table page that is being
written out are marked "not in main
storage." When the scan of page table
pages is complete., a check is made to see
if any pages were skipped due to user I/O.
If so, a GQE is built and stored in the TSI
(unless the task is identified as an MTT
applicati0n. In this case, immediate exit
is made t (j the Queue Scanner). When user

32

I/O processing is complete for the task,
the GQE is queued on the timer queue. When
control is regained, the page table scan is
reentered.

If no pages were in page hold, all page
table pages should have been written, and a
check is made for segment table pages and
auxiliary segment table pages. If present,
any auxiliary storage is released, and the
pages are written from main storage. Then
the first XTSI page is written after
release of any auxiliary storage it might
have been assigned.

If this is not a migration case, or if
the migration function is complete, the
XTSI pages for the task are written out
with the drum preference bit set in the
PCB. If virtual memory pages on the page
table page reside on drum, the disk pre­
ference bit is turned on instead of the
drum preference bit in the PCB. Exit is
then made to the Queue Scanner via CEAHQR.

MIGRATION FUNCTION:

1. A set of page table pages (the size of
the set is determined by a parameter
in the system table) is read in.
CEAMQ is called to read in the page
table pages.

2. When control returns, the page tables
which correspond to these page table
pages are scanned, and a GQE is set
up. PCBs for all virtual memory pages
to be migrated from this set are
attached to the GQE. When the maximum
number of PCBs that can be attached to
a GQE is reached, a new GQE is built.
A new GQE will also be set up when
pages residing on a different drum are
encountered. These GQE chains are
based on the MIG work area, obtained
via Supervisor Core Allocation.

3. When all page tables in this set of
page table pages have been scanned,
and the necessary GQE/PCBS set up, a
drum read for a group of virtual
memory pages is initiated. The size
of this group is established at star­
tup time. The parameter used is
SYSPCB.

4. When this read is complete, Auxiliary
Storage Release (CEAIA) is called to
free the drum space. The appropriate
fields in the GQE/PCBs for this group
of virtual memory pages are changed to
indicate a write operation and the
write to disk is initiated.

5. Steps 3 and 4 are followed alternately
until all migration GQE/PCBs that were
set up have been exhausted. The set
of page table pages formed in Step 1

r······

, ... ' ..
is written out as described under
-Time Slice End ~~~cessing.-

6. Steps 1 through 6 are repeated until
all page table pages have been
processed.

7. The first XTSI page is then processed
as if it were a set of page table
pages.

When a read or a write is initiated, this
module exits to the Queue Scanner via
CEAHQR. A returning migration GQE is rec­
ognized on entry to CEAKT by an indicator
in the TSI. Reads and writes are distin­
guished from each other by indicators in
the GQE.

SHARED PAGE MIGRATION: Migration of a
task's shared pages is similar to the norm­
al migration function except that the Write
Shared Page subroutine provides the pages
to migrate. The GQE for shared page migra­
tion can indicate any of three conditions:

• A GQE starting migration.

• A returning write GQE.

• A returning read GQE.

When the GQE represents a request to
start shared page migration, CEAKT locks
the system table lock (SYSTSKLK) and then
updates SYSECB by adding the value in SYS­
PCB to it. SYSTSKLK is then unlocked. A
counter is set to specify the number of
times that CEAKT will call Write Shared
pages to migrate; the GQE is released by a
call to Move GQEi and Write Shared Pages is
called to obtain pages to migrate.

When it is a returning write GQE, the
GQE is released by a call to Move GQE. The
counter controlling calls to Write Shared
Pages is decreased by one. (If it goes to
zero, the System Error Processor is
invoked.) A check is then made to see if
the shared pages on drum are within the
limit permitting migration of more pages.
If so, Write Shared Pages is recalled to
obtain more pages. If not, (or if Write
Shared Pages returns to CEAKT), SYSECB is
lowered by the value in SYSPCBi the migra­
tion in progress flag (SYSMG) is turned
off; and the Timer Interrupt Processor
exits to the Queue Scanner.

A returning read GQE is handled the same
as in normal migration, that is GQE/PCB
fields are changed from reads to writes;
the auxiliary storage is released; the XTSI
write count is updated; and the drum space
is released with no TSI pointer in register
zero. Whenever a task's pages are migrated
from drum to disk, a field (SSTf.1IP) in the

system statistical table is increased by
the number of pages migrated.

Page Drum Queue Processor. (CEAAS) Chart AE

The purpose of the Page Drum Queue Pro­
cessor (PDQP) is to complete and maintain a
series of channel command word programs.
The CCWs are designed to handle drum paging
operations to meet page control block (PCB)
requirements or DRAM requests (IORCB) for
dummy records between drum pages.

Entry: CEAA81 •. The affected scan table
entry lock byte (SCNF3LOK) will be locked
prior to entry to this processor in order
to preserve the exclusive use of the device
queue in a duplex environment.

Modules Called: Page I/O Error Recovery
subroutine (CEAAM) investigates failure to
obtain a device path and immediate start
I/O failure.

Start I/O subroutine (CEAAG) performs
the start I/O function.

Set Suppress Flag subroutine (CEAJQ
entered at CEAJSF) sets the appropriate
flag in the queue processor's scan table
queue.

System Error processor (SYSERR) (CEA~S)
may be given control when an interruption
indicating a system error condition occurs.

pathfinding subroutine (CEAAS) obtains
actual path to a device.

Dequeue GQE subroutine (CEAJQ entered at
CEAJDE) removes the GQE from the proces­
sor.' s queue.

Generate and Enqueue Interruption GQE
subroutine (CEABQ> generates and queues an
interruption GQE for the paging drum when a
start I/O attempt returns a failure code.

Move GQE subroutine (CEAJMG) moves
unposted GQEs to the appropriate queue for
posting.

Queue GQE on TSI (CEAAF) queues an
interrupt GQE on a TSI.

Channel Interrupt Queue Processor
(CEAA4) releases pages from page hold.

Normal - To Queue Scanner.

Error - To System Error Processor.

Operation: The Page Drum Queue processor
uses information passed to it in the GQE
and PCBEs to maintain fields in the system
table (CHASYS). The system table contains

Section 3: Program organization 33

18 seek arguments divided into two parts.
The first nine seek arguments are called
chain 1 and the second nine,cbain 2. Fol­
lowing these are 18 CCW programs (one for
each of the seek arguments) composed of
four CCWs each:

1. SEEK
2. SEAfl.CH ID EQUAL
3. TIC (2)
4. READ/WRITE.

To link the two chains together, a TIC
command at the end of chain 1 pOints to the
first SEEK in chain 2, and a TIC at the end
of chain 2 points to the first SEEK in
chain 1. These CCW programs are used by
PDQP to process the GQES and PCBEs.

Processing includes the following steps:

1. The suppress flag (F5) in the scan
table is set on.

2. The page drum directory is searched
using the location-on-queue as the
search argument. If the entry is not
found, a major system error is
declared.

3. When the proper drum interface control
block is located, its slot mask (SYS­
SLT) is set to all ones, and the 2301
device code (SYSDEV) and symbolic
device address are inserted.

4. If chain 1 is not running, it is
selected for operation. If it is run­
ning, chain 2 is selected. If both
are running, PDQP exits to the Queue
Scanner.

5. All READ/WRITE commands in the
selected chain are initialized to
NOPs. A TIC/NOP is included at the
end of the channel· programs.

6. searching begins with the first PCBE
in the string. It is terminated when
all of the PCBEs have been processed,
or when all slots have been assigned,
or when remaining PCBEs are duplicate
slot requests that must be assigned at
a later time. When a slot request is
recognized the SYSDIC slot mask is
checked for availability. If it is
free, the request is filled and the
GQE unprocessed count is decremented.
The PCBE is flagged as processed and
the GQE slot mask bit is turned off.
The SYSDIC slot mask bit is set to
show that the slot is filled. If a
duplicate slot request appears in the
same GQE, the slot mask bit for the
GQE is turned on again to maintain a
current picture of slots yet to be
aSSigned. This enables more than 9
PCBEs to be attached to a GQE. The

34

next PCBE is then processed. If the
paging request is for a READ, the
READ/WRITE CCW is set accordingly. If
it is for a' WRITE, it is checked to
see if it is for a WRITE/CHECK opera­
tion. If it is, and the WRITE has
been performed, the write check
selected flag is set on. This will
cause a READ CCW, with no data trans­
mission, to be generated and executed.

If the slot just processed is the
highest or lowest, the slot number is
put in the appropriate field in the
system table.

The processing cycle of GQES and their
associated PCBEs continues until there
are no more that can be processed.

7. The lowest slot assigned is used to
set up the CAW when a START I/O is
required, that is, when the other
chain isn't running.

Otherwise the highest slot number in
the chain not being operated upon is
used to set up a TIC command to the
lowest slot assigned in the chain just
set up. In this case, the PCI flag is
set on in the SEEK CCW and the PCI
pending flag set on in the system
table. The system table flag byte
(SYSLK) describes the state of the two
chains at any given time.

The processing cycle of GQES and their
associated PCBEs continues until there
are no "more that can be processed.

8. When START I/O is executed to get a
chain running, control is transferred
to 3 (above) when there is more work,
or to the Queue Scanner if not. If
the START I/O is unsuccessful, control
is given to Paging Error Recovery.

9. For DRAM requests, PDQP tests the task
to supervisor lock (SYSTKSP) to see if
SERR was recording. If locked, the
task to task lock (SYSTKTK) is checked
to see if DRAM recording was in pro­
gress. If yes and the present request
is from the task that was doing the
DRAM recording, an interrupt is sent
to the task to reinitiate the entire
DRAM operation and SYSTKSP is
unlocked. If the requesting task is
not the task presently using DRAM, an
interrupt to retry the operation is
queued on the requester.

When SYSTKSP is not locked, SYSTKTK is
Checked. If locked and the requesting
task is not the task presently using
DRAM, an interrupt is sent to the
requester to retry the operation. If
this is the task using DRAM or if

<~-.

I

neither SYSTKSP'nor SYSTKTK is locked,
the request is processed. If the
requested path is found, and the GQE
has never been inspected before, 1 is
added to the total count of unpro­
cessed operations (SYSUC). The slot
number is determined from the real
head and record identifiers. If the
slot is not available, the appropriate
slot in the GQE slot mask is set and
the remaining GQEs processed. If the
slot is available, the appropriate'op
code from the IORCB is inserted in the
channel program. Then storage keys
are set for all virtual memory pages
associated with the request, the
appropriate slot in the DICB slot mask
is set off, and the GQE and IORCB
addresses are inserted in the second
double word of the seek argument. If
there are more GQEs processing con­
tinues~ if there are.no GQEs control
transfers to 7 (above).

The Page Drum Queue processor is capable
of supporting a multidrum configuration.
If the drums share a channel, however, only
one drum can be in use at anyone time.
When a request for another drum is denied
because of this situation, the chains
involved are put in a hold state, that is,
processing terminates until the path to the
first drum is freed up. The second drum is
then activated. The drum placed in hold
will not necessarily be the next to
execute, however. The first drum entry on
the scan table (CHASCN) is completely pro­
cessed before anything is done on the
second drum queue.

In the duplex environment, PDQP is
required to set and reset the lock bytes
associated with the TSI and system table
whenever the two CPUs might interfere with
each other. The scan table entry lock byte
(SCNF3LOK) is reset using the OPENLOCK
macro instruction before this processor
exits to the Queue Scanner.

Page Drum Interrupt Queue Processor (CEAA9)
Chart AF

The Page Drum InterrUpt Queue (PDIQ)
processor processes GQEs representing
interruptions caused by the following
condit ions:

• Return of a sense operation

• A uni t check

• Channel or interface control check

• Channel data or chaining check

• Program protection or incorrect length
check

• Control unit or channel end

• Channel or device end

• Program-controlled interruption

This processor also collects and stores
in the system statistical table (CHASST)
the number of writes and reads (private and
shared) for each drum device.

Entry: CEAA91

Modules Called: set Suppress Flag (SSF)
subroutine (CEAJQ entered at CEAJSF) sets
the appropriate flag in the queue proces­
sor's scan table queue.

Page I/O Error Recovery subroutine
(CEAAM) investigates the failure to obtain
a device path and all I/O error conditions.

Start I/O subroutine (CEAAG) performs
the start I/O function.

Dequeue GQE subroutine (CEAJQ entered at
CEAJDE) removes the GQE pointer from the
PDIQ processor's queue.

Move GQE subroutine (CEAJQ entered at
CEAJMG) determines whether further proces­
sing is specified by the GQE, and, if so,
moves it to another processor's queue, or,
if not, releases it.

User Core Release subroutine (CEALl
entered on CEAL04) releases user-page
storage after a write operation has been
completed.

Pathfinding subroutine (CEAA5) frees the
assigned device path.

Page Posting SUbroutine (CEAMP) updates
associated page table.

Generate and Enqueue Interrupt GQE sub­
routine (CEABQ) generates and queues an
interruption GQE for the paging drum when
status is stored for the device selected on
a Start I/O attempt.

Queue GQE on TSI (CEAAF) to queue an
interrupt GQE on a task to 'indicate a com­
pleted DRAM operation.

Channel Interrupt Queue Processor
(CEAA4) to release pages in page hold.

Exits:

Normal - To Queue Scanner.

Error - To System Error Processor.

Operation: The Page Drum Interrupt Queue
processor is activated by the Queue Scan­
ner. The affected scan table entry lock

Section 3: Program organization 35

_Q_ue_u_e ___ • .,~I---- --
Scanner

I
I
I
I
I
I
I
I

I
I

I
I

J
I
I
I

I

- -. I
Error Yes

5 ituation
?

No

CE/DE
Yes

?

No I
t

Post PCSES I

Write Yes I Operation
Done

?

No

L __ ---- -- ---

CEAJSF
Set

I Suppress Flog

:
I

I

I CEAA5R

Reverse
Pathfinding

I
I CEAMP

I Page Posting

! CEAL04

I User Core
Release

I

!
,

CEAJDE

: Dequeue

I

I CEAJMG

I Move GQE

I
I

CEAJSF
Reset

I Suppress
Flog

-1
Queue
Scanner

Page I/o Error Re covery

Start I/o (To Sen se)

Syserr

Reset Suppress Flog
Queue Scanner

CEAL02
Supervisor
Core
Release

To Scrub
The Inter­
rupt GQE

Figure 12. Page Drum Interrupt Queue Processor activities

byte (SCNF3LOK) will be locked prior to
entry to this processor in order to pre­
serve the exclusive use of the device queue
in a duplex environment. Channel end,
device end, and PCI interruptions trigger
posting action of all PCB entry paging
operations that are complete at interrup­
tion time. When all page operations are
posted for any GQE, the Move GQE subroutine
is called to release the GQE. Processor
activities, illustrated in Figure 12, are
discussed on the following pages.

On entry from the Queue Scanner, the
PDIQ Processor calls the Set Suppress Flag
subroutine to set the suppression flag in
its scan table queue to interlock it
against subsequent queue scanner entries.
When control is returned to the processor,
the location-on-queue value specified in
the GQE is used as an argument to search

36

the entries of the page drum directory
(POD) for the SYSDIC address in the system
table. If a POD entry cannot be found SYS­
ERR is called. If an entry is found, the
processor determines whether the interrup­
tion resulted from a sense-operation
return. If so, the Set Suppress Flag sub­
routine is called to unlock the processor's
queue entry flag, after which the Page I/O
Error Recovery subroutine is called.

If a sense operation has not been
returned, the processor tests for other
possible conditions which caused the inter­
ruption. These conditions and the respec­
tive actions taken are illustrated in
Figure 13 and discussed on the following
pages.

The scan table entry lock byte
(SCNF3LOK) is reset using the OPENLOCK

. _ ..
Unit Check? Call Start I/O

Channel/Interface Call Page

Control Check? I/o Error
Recovery

Channe I Datal
Chaining Check ?

,

Program/Protec tian
Check: Incorrect
Length Unit Exception;

Status Modifier; or Busy?
Call

SYSERR

Exit to
Control Unit? Queue

Scanner

Call Reverse
Channe I End and --. Pathfinding to

Device End or Bath Free Path then
Perform Pasting

Program Contra lied Perform
Interrupt ? Pasting

~·l.gure 13. Page Drum Interrupt Queue Pro­
cessor checking and response to
conditions specified in the CSW

macro prior to any exit to the queue
scanner.

UNIT CHECK: The processor initiates the
sense operation by calling the Start I/O
subroutine.

The Start I/O subroutine will return
control indicating one of five possible
conditions. These conditions and the
action they precipitate are as follows:

• SIO is successful, the channel program
is in execution. Exit is made to the
Queue Scanner.

• The selected channel is defective.'
Call the Paging I/O Error Recovery Con­
trol subroutine.

• The control unit or channel is busy.
Retry 17 times and, if not successful
exit to the Paging I/O Error Recovery
Control subroutine.

• Status was stored for the selected
device. Build interruption GQE, queue
it on the drum interrupt queue, and
call the Queue Scanner.

• Solid start I/O failure. Call the Pag­
ing I/O Error Recovery control
subroutine.

If the Start I/O is successful, either
on the first attempt or after retry
attempts, control returns to the PDIQ pro­
cessor, after which the Dequeue GQE subrou­
tine is called to remove the GQE pointer
from the processor's queue and update rele­
vant areas of the scan table to reflect
this action. When control is returned to
the processor, the Move GQE subroutine is
called to determ~ne whether further proces­
Sing is specified by the GQE.

When
the Set
to turn
table.

control returns to the processor,
Suppress Flag subroutine is called
off the suppress flags in the scan
Exit is to the Queue Scanner.

CHANNEL/INTERFACE CONTROL .CHECK: If a
channel or interface control check condi­
tion exists, the PDIQ processor transfers
the GQE's channel log-out data, the CSW,
and control to the Page I/O Error Recovery
subroutine. If retry is successful, normal
processing continues. If not, exit is to
the Queue Scanner.

INCORRECT LENGTH, UNIT EXCEPTION, PROGRAM
CHECK, PROTECTION CHECK, CHANNEL DATA CHECK
OR CHAINING CHECK: If any of these condi­
tions exists, the Page I/O Error Recovery
subroutine is called.

STATUS MODIFIER OR BUSY CONDITION: If this
condition is detected, the PDIQ processor
declares a minor ERROR and exits to the
Queue Scanner.

CONTROL UNIT END: If a control unit end
condition exists, the processor exits to
the Queue Scanner.

CHANNEL END/DEVICE END OR PROGRAM CON­
TROLLED INTERRUPTION: If a channel end or
device end condition exists, the processor
passes the physical device address to the
Reverse Pathfinding portion of the Path­
finding subroutine. This subroutine
releases the path to the addressed device,
and returns control to the processor. At
this point, or if a program-controlled
interruption is specified the processor
initiates the posting action for all PCBE
paging operations that were complete when
the interruption occurred. The posting
action is initiated by:

1. selecting the first channel program
executed in the current chain.

2~ . Locating the PCBE/IORCB from the SEEK
argument of the channel program in the
system table. If it is not a DRAM
operation processing is as follows:

sectio~ 3: Program Organization 37

--------------------------------_._._--------

• If a read operation has been com­
pleted, the Page Posting subroutine
is called to update tbe appropriate
tables. When control returns, the
processor selects the next PC BE for
processing.

• If a write-operation has been com­
pleted, the processor calls User
Core Release subroutine to release
the storage occupied by the page
associated with the PCBE. The Page
Posting subroutine is then called to
update the associated page table and
returns control to the processor.
The processor selects the next PCBE
to be posted and reinitiates the
posting action.

When all PCBEs for a GQE have been post­
ed, the GQE is passed to Move GQE to
release the main storage space for it and
the PCB. Processing then continues on the
remaining channel programs.

When a complete channel program chain
has been posted, the other chain is checked
to see if it is to be posted.

When both chains of channel programs
have been posted, or if the second chain is
not available, the interrupt GQE is
dequeued and its main storage space
released.

A test is made before exiting from PDIP
to see if the current interruption is a
CE/DE. If it is not, the suppress flag
(FS) is reset for the Page Drum Interrupt
Processor, only. Exit is then made to the
Queue Scanner.

If it is a CE/DE condition, the page
drum directory is checked to see if a drum
is in hold state. If yes, it is freed and
set to ready. This allows the path to be
reassigned to either drum. If a channel is
down, PDIP will go to paging Error Recovery
(CEAAM) to obtain an alternate path, if
possible.

In a duplex environment, this routine
sets and resets the lock bytes associated
with the TSI and system table to prevent
the two CPUs from interfering with each
other.

DRAM OPERATIONS: If the channel program is
for a DRAM operation, processing is as
follows:

Control is passed to CEAA43, a subsec­
tion of the Channel Interrupt Processor, to
perform completion operations on the GQE/
10RCB. Upon return, IORDTSI is checked; if
it is on, meaning the TSI has been deleted,
the GQE is discarded via a call to CEAMG.
If it is not on, the completed DRAM I/O

38

request is queued on the TSI as a synch­
ronous I/O software interrupt. The paging
I/O count in the TSI is decremented by one.
The remaining channel programs are then
processed.

Program Interrupt Queue Processor (CEANA)
Chart AG

The Program Interrupt Queue (PIP) pro­
cessor analyzes the interruption code in
the GQE to which its scan table queue entry
points, and determines the type of user­
program interruption that it specifies:

• A paging-relocation interruption
requiring table construction and
initiation of a page-read request.

• A shared-segment exception requiring
shared-page-table searches.

Entry: CEANAAl

Modules Called: Enqueue GQE subroutine
(CEAJQ entered at CEAJEN) scans table
queues for a timer interrupt.

Search RSPI Table subroutine (CEAMS)
locates the proper resident-shared-page­
index (RSPI) entry in main storage for any
specified shared-page-table number, or
locates the address of the next available
entry in the RSPI.

Supervisor Core Allocation subroutine
(CEALl entered at CEAL01) reserves main
storage for PCBs.

Find page subroutine (CEANC) locates
segment, auxiliary segment page, and
external page table entries.

paging (CEAMQ) is called to read a page
table page into main storage.

Queue GQE on TSI subroutine (CEAAF)
places the GQE pointer on the TSI's inter­
ruption queue.

Add Pages (CEAHQ entered at CEAHQA) per­
forms dynamic expansion of a variable
length page table.

Add Shared Pages (CEAQ6 entered at
CEAH26) performs dynamic expansion of a
variable length Shared page table.

Exit: To Queue Scanner.

Operation: On entry, the processor tests
the interruption code from the GQE to
determine the type of error that has
occurred. An interruption code of 16
denotes a segment-relocation error and a
code of 11, a page-relocation error. The
processing for each type of error is dis­
cussed below, and illustrated in Figure 14.

.. r-

[J)

I'D n
rt
o
::I

IN

'tI
1'1

.8
~
!3
o .a
III
::I
N
QI
rt
o
::I

IN
\0

)

Figure 14.

(CEANAAI)

---I

I
Yes

Code 161

Yes

CEANCA

Find Page

CEAMSI

Search
RSPI

'------

Yes Mark
Task
KPody

Find Page Wi 1\ Return
location of:
STE
ASTE
PTE
XPTE

Search RSPI to Find
Origin af SPT for
the Given SPT

)

,---=-------1
I
I
I
I
I
I
I
I
1

1

1

I
1

I
1

Exception?

L ______ _

Yes

Yes

No

Force
1. S. End

CEANCA

Find
Page

CEAJEN

Enqueu ..
GOE

I Page is
being Paged

Li::r_ou~

I
No I I «AW'I

L I." SCA

I
I
I
I
1

I
I
1

I

Yes

Add GQE
to XSPTE-Q

Chain

Mark
Task in

Poge-Wait

Build pee
aN Chaon
to GQE

,
il~ l~;:- UCA =-1 Modify I CEAJEN
: 2nd loc ~ DEV - 0 GOE Lac on
,- - - - - - - - O. Codes

Enqueue

Routine

L-______________ _

Activities of the program Interrupt Queue Processor

")
~

Find POiJe Wi II
Return location
of:
STE
ASTE
PTE
XPTE

O.GOE on
Timer
Interrupt
Processor

Get "::ore
for K3

SEGMENT RELOCATION ERROR PROCESSING: When
a code of 16 indicating a segment­
relocation interruption occurs, the proces­
sor performs the following: --

• Loads into general registers the fol­
lowing: the address, from the TSI, of
the first page of the XTSI; the un­
translated address from the XTSI's con­
trol register save area; and the
address of the Find Page subroutine.

• Calls Find Page to compute the segment­
table-entry address, after which con~
trol returns to the processor.

• Tests for a shared-segment indicator in
the auxiliary segment table (AST). If
the shared indicator is not on, and the
page table is in a page table page,
CEAMQ is called to set up the read for
the page table page. On return, this
case is treated as a page relocation
interruption (program interruption code
17).

• If the shared indicator is on, the
sharing lock is set, the processor
stores the shared-page-table number
from AST in a general register and
calls the Search RSPI subroutine to
locate the RSPI entry associated with
the shared segment. If Search RSPI
determines the shared-page-table number
is not in the RSPI, the processor calls
SYSERR. Otherwise, the processor tests
for page-table availability. If the
table is unavailable, the interruption
(code 5) is passed to the task by queu­
ing the GQE pointer on the TSI and
exiting to the Queue Scanner.

If the page table is available, its
length and origin are stored in the segment
table (CHASGT), the TSI's 'task-ready'
indicator is set on, and control is trans­
ferred to the SVC queue processor at
CEAHND, to free the GQE (that is, call the
Move GQE subroutine) and exit to the Queue
Scanner.

PAGE-RELOCATION ERROR PROCESSING: When an
interruption code of 17 (indicating a page­
relocation error) is found, the processor
determines whether the associated XTSI is
in rnai n storage.

If the XTSI is in main storage, the pro­
cessor retrieves the untranslated page
address from the save area of the XTSI and
calls the Find Page sUbroutine. Find page
computes the address of the page-table
entry and returns it and a condition code
to the processor.'

If the segment is not variable length,
and the condition code indicates that the
page table entry is not assigned, an inter-

40

ruption is queued on the task's TSI (code
5),

For an unassigned page in a variable
length segment, the processor sets up para­
meters and exits to Add Pages or Add Shared
pages to dynamically expand the variable
length page table.

If the subroutine returns a condition
code indicating that the page is available
in virtual storage, the processor deter­
mines the number of read operations that
have been performed for the task during its
current time slice. If the maximum number
of allowed read operations has been per­
formed, the processor specifies a forced­
time-slice-end in the GQE, and calls the
Enqueue GQE subroutine to queue the GQE on
the Timer Interrupt Queue processor's
queue. When control returns, the field,
SSTPLT, in the system statistical table is
increased. PIP exits to the Queue Scanner.

If the maximum number of reads has not
been performed for a task, the processor
determines whether the addressed page is
shared. If not, the processor sets up for
a page-read operation by:

• Requesting PCB storage space from the
Supervisor Core Allocation subroutine.

• Setting up a PCB with the segment and
page numbers.

• Updating the GQE with information
relating to the new PCB.

• Modifying Loc-on-Q in the GQE to requ­
est user storage space for the
addressed page.

• If an external read is required, a GQE
is set up for entry on the appropriate
device queue.

• Calling the Enqueue GQE subroutine to
place the new GQE on the scan table
queue of the User Core Allocation Queue
Processor.

• Exiting to the Queue Scanner when
Enqueue returns control.

If a shared page has been requested, the
pro'cessor locks the sharing lock, locates
the external-shared-page-table entry and
determines whether the requested page is
being moved into main storage. If so, the
processor queues the GQE to the XSPT by:

• Turning on the GQE's page-in flag.

• Adjusting the appropriate GQE chain
fields in the XSPT.

\

• Updating pointer fields in the GQE.

• Updating TSI 'page'I/O count' and 'page
wait' fields.

When this processing is accomplished, the
processor unlocks the sharing and TSI locks
and exits to the Queue Scanner.

If the shared page is not being brought
into main storage, the processor determines
whether the requested page is being
released from main storage. If so, the
processor turns on the available flag in
the' page table, and queues the GQE on the
XSPT as described previously. If the page
is not being released, the processor per­
forms the processing to initiate a page­
read operation as described previously
(sets up a PCB, etc.).

I/O Device Queue Processor (CEAA3) Chart AH

The fUnction of the I/O Device Queue
Processor is to process GQEs representing
I/O requests. It services all of the
device queues on the scan table, with the
exception of paging drum queues.

Entry: CEAA31.

Modules Called: pathfinding subroutine
(CEAAS) this subroutine is entered at
CEAASP to obtain the actual path to a
device. The Reverse Pathfinding portion
(entry at CEAASR) is entered to free
assigned device paths.

Set Suppress Flag subroutine (CEAJQ
entered at CEAJSF) sets the appropriate
flag in the I/O device queue processor's
scan table queue.

Dequeue GQE subroutine (CEAJQ entered at
CEAJDE) removes GQE pointers from the spec­
ified queues.

Queue GQE on TSI subroutine (CEAAF)
places a pointer to the specified GQE on
the interruption queue in the affected
task's TSI.

Supervisor Core Allocation subroutine
(CEALl entered at CEAL01) reserves main
storage for the use of the Generate and
~~queue Interrupt GQE subroutine and the
De~aeue I/O Requests subroutine.

Dequeue I/O Requests subroutine (CEAAJ)
removes GQEs. in a device queue for a parti­
cular task arid device.

Supervisor Core Release subroutine
(CEAL1 entered at CEAL02) releases main
storage after use.

Halt I/O subroutine (CEAAI) stops any
I/O operation being performed on a speci­
fied path.

Paging 'I/O Error Recovery Control sub­
routine (CEAAM) attempts to recover arid
retry when no path can be found to a speci­
fied device on a paging request.

Start I/O subroutine (CEAAG) initiates
an I/O operation across a specified path.

Generate and Enqueue Interruption GQE
subroutine (CEABQ> generates and enqueues
an interruption GQE when a condition code
of 1 is returned in response to a start,
halt, or 'test-I/O attempt and status is
stored for a device other than the one
addressed (that is, interruption code also
stored).

Command Word Relocator subroutine
(CEAAA) performs the operations required to
relocate the channel-command word (CCW>
addresses.

page direct access subprocessor (CEAA6)
builds a channel program to handle requests
for paging operations on a direct access
device.

Page Direct Access Interrupt Subproces­
sor (CEAA7) services interruptions occur­
ring on direct access paging device.

Move GQE subroutine (CEAJQ entered at
CEAJMG) determines whether further proces­
Sing is specified ~ the GQE and either
moves the GQE to another processor's queue
or releases the space it occupies.

Exit: To Queue Scanner.

Operation: The appropriate scan table
entry will have its lock byte (SCNF3LOK)
set upon entry by the SETLOCK macro. If
the GQE is moved or otherwise done away
with, the pointer to the scan entry is
saved. The SCNF3LOK is reset upon exit by
way of the OPENLOCK macro.

Normally, only the symbolic device
address is supplied, and any path available
may be used for access to the device. If,
however, the routine was reentered because
of a paging error (GQEPE on), or to sense
the device, the path already specified is
reused. The user may also specify a path
in the IORCB.

In all cases, pathfinding is called on
entry to this routine, either to locate a
path or to determine if the path specified
is available.

If Pathfinding indicates 'path unavail­
able', the GQE is checke~ to see if it is
for a paging operation. For paging opera-

Section 3: Program Organization 41

tions, the Paging I/O Error Recovery rou­
tine (C~ is called. On return, exit is
to the Queue Scanner.

For other than paging operations, 'no
.path available' is set in the IORCB, and
exit is to the Queue Scanner.

When Pathfinding indicates an 'available
path', the I/O Device Queue Processor
checks for the following conditions and
performs the appropriate processing
described in the following pages: .

• Paging Request (GQERC off)

• Sense Request (GQEWS on)

• Halt I/O Request (IORHI on)

• User I/O Request

PAGING: If either the paging error (GQEPE)
or paging interrupt (GQEIP) flag is on, the
Paging Direct Access Interrupt Processor
(CEAA7) is called. Otherwise, the Paging
Direct Access Queue Processor (CEAA6) is
called. On return, in either case, exit is
to the Queue Scanner.

SENSE REQUEST: Start I/O is called to
execute sense. If failure on sense is
indicated by Start I/O, the operation is
retried 512 times. If the failure is due
to the control unit being busy, Set Sup­
press Flags is called to turn on the DIG
busy flag, the path is freed via Reverse
Pathfinding, and exit is to the Queue
Scanner. For all other failures, this
Subroutine:

1. suppresses the device via a call to
CEAAD.

2. Dequeues all I/O for this task for
this device by calling CEAAJ.

3. Exits to the Queue Scanner. If the
failure on sense is corrected by the
retry procedure or did not exist, Set
Suppress Flags sets the F1 flag on,
and exit is to the Queue Scanner.

HALT I/O REQUEST: The GQEHI flag is
checked. If on, this indicates a success­
ful Halt I/O and the IORCB has a CCW list
to be started. (A user may not request a
Halt I/O alone. The request must include a
request for an I/O channel program to be
started after the Halt I/O is completed.)
Therefore, when GQEHI is on, Halt I/O pro­
cessing is skipped and processing continues
as described for USER I/O REQUEST, below.

When GQEHI is off, the Halt I/O subrou­
tine is called. If the Halt I/O operation
is successful, processing continues as
described in USER I/O REQUEST, below.

42

If the Halt I/O subroutine indicates
that its operation was unsuccessful, the
I/O Device Queue Processor checks for the
following conditions and takes the indi­
cated actions:

1. Status Not for Addressed Device -- A
CE/DE is simulated by calling the Gen­
erate and Enqueue Interrupt GQE sub­
routine. (The GQE is put on the Chan­
nel Interrupt Processor's queue.)
Halt I/O is retried.

2. Unit Check or Unit Exception -- Halt
I/O failure is indicated by turning on
the IORBH flag. A sense operation is
then performed.

3. Busy on Halt I/O (CC=2) -- If a multi­
plexor channel is involved, a minor
system error is declared. On return,
or if not a multiplexer channel, the
await device end flag (GQEDE) and
GQEHI are turned on. Set Suppress
Flags is called to turn on Fl. On
return, exit is to the Queue Scanner.

4. Non-Operational Device on Test I/O or
Halt I/O -- Halt I/O is retried.

5. Status Modifier Bit on in Stored csw
in 2nd TIO -- User I/O initiation is
performed.

6. Status Modifier Only in Stored CSW on
Halt I/O -- If the return code from
Halt I/O indicates Test I/O was issued
twice, GQEDE and GQEHI are turned on.
Set Suppress Flags is called to turn
on F1, and exit is to the Queue Scann­
er. otherwise, user I/O initiation
processing is invoked.

7. Status Modifier and Busy in Stored CSW
on Halt I/O -- if the user has pro­
vided a Halt I/O retry counter
(IORHF*O) it is decremented. The
entire path is freed via Reverse Path­
finding. Set Suppress Flags is called
to set the DIG busy flag on and exit
is to the Queue Scanner. When IORHF=
0, it is set to one, indicating Halt
I/O failure, and a sense operation is
performed. If Halt I/O retry has been
requested, it is retried.

8. Device End Only in CSw Stored bv Halt
I/O or Test I/O -- User I/O is
initiated.

9. CE Only and Control Unit End in Stored
CSW from Halt I/O or Test I/O
Reverse Pathfinding is called to free
the control unit and channel. If
GQEHI is not on, GQEDE and GQEHI are
turned on. Set Suppress Flags is
called to turn on F1, and exit is to
the Queue Scanner.

10. CE End only in Stored CSW From Halt
I/O or Test I/O -- The Test I/O is
reissued. If the--CSW was not stored,
the channel is freed by calling
Reverse Pathfinding. If GQEHI is off,
it and GQEDE are turned on. The F1
flag is set via Set suppress Flags and
exit is to the Queue Scanner.

If the reissued Test I/O results in a
stored CSW with unit check or unit
exception, GQEHI is checked. If off,
Halt I/O is retried. If on, the path
is freed, the GQE is dequeued via
CEAJDE and exit is to the Queue Scann­
er with the queue unsuppressed. If
the csw shows device end, a CE/DE is
simulated via CEABQ. If GQEHI is off,
it and GQEDE are turned on. The F1
suppress flag is turned on, and exit
is to the Queue scanner. If the CSW
shows control unit end, the channel
and control unit are freed. GQERI, if
off, is turned on as is GQEDE. The F1
flag is set and exit is to the Queue
Scanner.

11. All Other Errors -- Halt I/O is
retried.

Note: Halt I/O Retry, where indicated
above, is performed a maximum of 17 times.
If still failing, the entire path is freed
via Reverse pathfinding. The GQE is
de queued via Dequeue GQE subroutine, and
exit is to the Queue Scanner with the queue
unsuppressed.

USER I/O REQUEST (User I/O Initiation):
The CCW list addresses are translated into
real core addresses by calling the Command
Word Relocator subroutine. If the return
code indicates failure to translate, the
entire path is freed by a call to Reverse
Pathfinding. The GQE is dequeued, and exit
is to the Queue Scanner with the queue
unsuppressed. otherwise, the start I/O
subroutine (CEAAG) is then used to initiate
the channel program in the IORCS.

If the SIO is successful, the IORSP flag
is checked to determine if the user has
requested a PCI. If yes, a CE/DE/PCI is
simulated by calling the Generate and
Enqueue Interruption subroutine. On
return, GQEHI is set on. Set Suppress
Flags is called to turn the F1 flag on and
exit is to the Queue Scanner.

If IORBP is off, then the status
returned from Start I/O is checked. If
Start I/O is all right for disk, no further
check is made. otherwise, a CE/DE causes a
simulated interrupt via calling CEABQ. The
GQEHI and GQEDE flags are turned on. The
F1 suppress flag is turned on and exit is
to the Queue Scanner.

Channel end only is processed as for
Halt I/O with one exception: The user has
provided a channel program for the disk
containing a SEEK CCW as the first channel
command that is not chained to the next
CCW. If in this situation, software chain­
ing is requested (IORSC on), a CE only
requires a call to CEABQ to simulate CE/DE.
Then, the channel only is freed; GQEHI and
GQEDE are turned on; F1 is set on, and exit
is to the Queue Scanner. In all other
cases, successful I/O initiation will cause
the call to CEABQ and the channel freeing
steps to be skipped.

Unsuccessful Start I/O situations are
handled as described below:

1. Control Unit Busy -- If the device is
a 2314 and the user has provided a
retry count, the DIG busy flag is
turned on, and exit is to the Queue
Scanner.

If the device is not a 2314, the user
requests a retry by setting the IORRS
flag. This causes up to 512 retries
of the SIO. If retry is not
requested, or if unsuccessful, the
lORIS flag is turned on to inform the
user that SIO failed. Then the path
is freed by calling Reverse Pathfind­
ing; the GQE is dequeued; and exit is
to the Queue Scanner with the queue
unsuppressed.

2. Unit Exception -- The lORIS flag is
turned on and the sense operation is
performed.

3. All Other Cases of SIO Failure -- The
lORIS flag is turned on; the path is
freed; the GQE is dequeued; and exit
is to the Queue Scanner with the queue
unsuppressed.

page Direct Access Interrupt SUbprocessor
(CEAA7) Chart AK

This subprocess or answers a call result­
ing from the interruption of a paging
operation on a direct access device. It
also collects and stores in the system sta­
tistical table (CHASST) the number of reads
and writes, for both private and shared
pages, processed for each disk device.

Entry: CEAA71

Modules Called: Supervisor Core Release
subroutine (CEAL1 entered at CEAL02)
releases main storage after use.

User Core Release subroutine (CEALl
entered at CEAL04) releases a written main
storage block.

Section 3: Program organization 43

Page Posting subroutine (CEAMP) updates
the TSI and the XTSI pages.

Start I/O subroutine (CEAAG) issues the
. Start I/O command for all calling programs.

Dequeue GQE subroutine (CEAJQ entered at
CEAJDE) removes a posted GQE.

Set Suppress Flags subroutine (CEAJQ
entered at CEAJSF) resets the suppression
flag after the successful start of I/O.

Page I/O Error Recovery subroutine
(CEAAM) initiates retry procedures.

Generate and Enqueue Interrupt GQE sub­
routine (CEABQ) generates and queues an
interruption GQE when an attempt to start
I/O fails. '

pathfinding subroutine (CEAAS) frees the
aSSigned device path.

Exits:

Normal - To Queue Scanner.

Error - To System Error Processor.

Operation: Prior to entry to this subpro­
cessor, the affected device queue scan
table entry lock byte (SCNF3LOK) is locked
to preserve its integrity in a duplex
environment.

On entry, the subprocessor expects to
find a pointer to the original paging re­
quest GQE in a general register. The sub­
processor stores the pointer, and then
accesses the GQE to which it points to
obtain the following:

• The related channel status word.

• The pointer to the direct access inter­
face block (DAIB).

The subprocessor tests the GQE's 'waiting
on sense' flag to determine whether the
present interruption is caused by a delay
in the return of a sense operation. If so,
the Page I/O Error Recovery subroutine is
called to retry the start-I/O operation.
If the retry is successful, the page I/O
Error Recovery subroutine returns control
to this subprocessor.

If the 'waiting on sense' flag is off,
the subprocessor inspects the channel­
status word for a unit-check indicator.
When a unit-check is indicated, the GQE
'waiting on sense' flag is set in the
device GQE and a·sense-channel-command word
is built in the DAIB to sense into the ori­
ginal device-GQE-sense area. The sense­
command-channel-address word and physical­
device address are passed to the Start I/O

44

subroutine where the start-I/O instruction
is executed.

The Start I/O operation will return one
of five codes indicating the results of its
operation. These codes and the subsequent
action taken by the subprocessor are as
follows:

• Start I/O is successful, the channel
program is in execution. The Set Sup­
press Flags SUbroutine is called to
reset the suppress flag and, upon
return. the subprocessor exits to the
Queue Scanner.

• The selected channel is defective. The
subprocess or exits to the paging I/O
Error Recovery Control subroutine in an
effort to recover from the error.

• The control unit is busy. The opera­
tion is retried 256 times. If the
operation is still not successful, an
exit is made to the Paging I/O Error
Recovery Control subroutine in an
effort to recover from the error.

• Status was stored for the selected
device. An interruption GQE is built
and queued on the channel interruption
queue in the TSI. The subprocessor
then exits to the Queue Scanner.

• Solid Start I/O failure. The sub­
processor exits to the Paging I/O Error
Recovery Control subroutine in an
effort to recover from the error.

When device-end is indicated in the
channel-status word. normal posting action
is also initiated. Any interrupts that are
not a result of a device-end, device-end/
channel-end. or unit-check condition will
cause a linkage to the Paging I/O Error
Recovery Control subroutine except for
channel end or control unit end only condi­
tions (or both, in combination) which cause
an exit to the Queue Scanner. The follow­
ing steps constitute a normal posting
procedure:

• The first seek flag in the DAIB-entry
header is examined to determine if this
is the first interruption of the chan­
nel program. If it is on, all further
posting action is bypassed and I/O is
started on the next channel command
word contained in the DAIB. When the
interruption is the result of the first
seek of the next-page operation (com­
mand chained to the previous-page
operation) or the result of the last
read or write of the channel program
sequence, pr~cessing continues with the
next step.

/'--

(.... • The PCBE is located b¥ using the con­
tents of the DAIB,:,,€ptry-interruption
pointer, and the DAIB entry itself.

• By checking the read/write flag in the
page-control block it can be determined
whether or not to bypass the release of
the main storage page.

• When the PCBE indicates a write opera­
tion, the PCBE pointer and control are
passed to the User Core Release subrou­
tine to release the main storage page
·referred to by the PCBE. The system­
page-write-pending count, contained in
the system table, is lowered by one.
This operation is interlocked against
simultaneous Updating by setting the
system table's lock byte. If the pend­
ing count goes to zero before it is
lowered a major system error is
recognized.

• When the PCBE indicates either a read
or write operation the PCBE pointer is
passed to the Page Posting SUbroutine,
which updates the correct page tables.

• The 'PCB page I/O complete' flag is set
to indicate the completion of a suc-

. cessful paging operation.

• The exit switch is checked to determine
if this is the end of the channel pro­
gram. If on, the following operations
are initiated to purge the DAIB and
paging GQE:

1) The pointer to the DAIB and the size
of the DAIB are retrieved from the
GQE and pa ssed to the s.upervisor
Core Release SUbroutine.

2) The pointer to the GQE is passed to
the Dequeue GQE subroutine to
dequeue the GQE from the device
queue.

3) The pointer to the GQE is then
passed to the Move GQE subroutine to
release the main storage space occu­
pied by the GQE and its PCB.

4) The path that was used for the pag­
ing operation is released by calling
the Reverse Pathfinding subroutine
and, upon return, an exit is made to
the Queue Scanner.

• When the exit switch is not set the
DAIB entry interruption pointer is
advanced to the next entry and the DAIB
entry count is decremented by one. A
check is made to see if all PCBEs are
posted for this channel program seg­
ment. (Note: For a discussion of
channel program segment, refer to the
section on the page Direct Access Queue

processor.) If not, control is
returned to the normal posting proce­
dure, described above, so that the next
PCBE can be posted.

When all PCBEs are posted for a given
channel program segment, processing is
initiated for the next channel program
segment.

The channel adpress word and the physic­
al device address, which are picked up from
the GQE, are passed to the Start I/O sub­
routine, which e~ecutes the start-I/O
instruction. If the operation is initiated
and the channel is proceeding with its
execution, the Set Suppress Flags subrou­
tine is called to set the Fl suppress flag,
and control is returned to the Queue
Scanner.

When the start-I/O instruction responds
with a condition code other than zero the
same action will be taken as outlined above
for the initiation of the sense operation
after a unit check occurs.

When the processor calls Locate Page, it
first sets the task lock in the system
table. If the page is shared, the sharing
lock in the system table must also beset
and reset.

When the page write pending count in the
system table is to be updated, the proces­
sor must first set the system table lock
and then reset it after the update
processing.

Similarly, when Page Posting is called,
the TSI lock must be set before the call
and reset on return. The SCNF3LOK lock
byte will be reset using the OPENLOCK macro
prior to exiting to the Queue Scanner.

Page Direct Access Queue subprocessor
(CEAA6) Chart AI

The Page Direct Access Queue Processor
(PDAQ) builds a channel program to handle
the paging operations specified by the page
control block pointed to by the first entry
in the device queue.

Entry: CEAA61

Hardware Configuration Requirements: The
only paging devices supported by this pro­
cessor are those devices that can be
attached to the IBM 2841 and 2820 storage
control units.

Modules Called: Supervisor Core Allocation
subroutine (CEALl entered at CEAL01)
reserves main storage for the direct­
access-interface blocks.

Section 3: PrOgram Organization 45

Start-I/O subroutine (CEAAG) issues the
start-I/O instruction for the processor.

External Page Location Address Transla­
tion subroutine (CEAAE) translates a two­
'byte page-number field of a four-byte sym­
bolic address into the physical I/O device
address required by a seek or search chan­
nel command word.

Set Suppress Flag subroutine (CEAJQ
entered at CEAJSF) sets the suppress flag
in the device queue.

Paging I/O Error Recovery subroutine
(CEAAM) initiates retry procedures.

Generate and Enqueue Interrupt GQE sub­
routine (CEABQ) generates and queues an
interrupt GQE whenkhe Start I/O subroutine
returns an indication that it has failed.

Reverse Pathfinding subroutine (CEAA5R)
frees the channel and the control unit
after an I/O operation has been started on
a disk.

Normal - To Queue Scanner.

Error - To System Error Processor.

Operation: The affected device queue scan
table entry lock byte (SCNF3LOK) has been
locked prior to entry into this subproces­
sor to preserve its integrity in a duplex
environment.

On entry, the PDAQ processor calculates
the storage space required for a direct
access interface block (DAIB) in which to
store the necessary interface data for
transferring pages between the direct­
access device and main storage. The DAIB
is a resident, private table which inter­
faces between the PDAQ processor and the
Page Direct Access Interrupt SUbroutine and
exists only during the life of a paging
operation. The maximum size of a DAIB is
one page in length (4,096 bytes). For each
DAIB, the processor requires a 32-byte DAIB
header, a 64-byte general register save
area, and a 16-byte DAIBE header. Addi­
tional storage requirements are calculated
by using the PCBE count field in the GQE as
a factor, as follows:

46

• An a-byte seek-and-search-argument
table for each PCBE.

• A 40-byte area for each read or write
channel program to be constructed.

• A 72-byte field for each write-with­
read-back-check channel program to be
constructed.

Device GOE

GOEIOR GOESAT GOEPCB GOECNT

Oirec~ Access Interface ~Iock Page Control Block

PCBE 1

GOE Pointer (DAIGOE)

POE 1 POINTER (DAIPCB)

PCBE

PCBE n Pointer (DAIPCN)

Figure 15. PDAQ Processor cross­
referencing between the GQE,
PCB, and the DAIB

When the space has been calculated, the
processor specifies the requirement to the
supervisor Core Allocation subroutine, to
which control is transferred. When storage
is allocated, the PDAQ processor cross­
references it in both the GQE and in the
PCB as illustrated in Figure 15.

The PDAQ processor then selects the
first PCBE for processing. The PCB's
bypass and null flags are tested, and if
either is on, the processor skips this re­
quest and initiates the processing of the
next PCBE. If neither flag is on, the pro­
cessor calls the External page Location
Address Translator subroutine to translate
the page address to a phYSical address.
When control returns, the processor stores
the returned address in the DAIB (that is,
sets up a seek-argument table entry) and
sets up the following in the first DAIBE
space:

• The initial seek channel command word
(nonchained), and the second seek CCW
(command chained).

• The search CCW (command chained).

• The transfer in channel CCW.

The processor determines whether a read or
write operation is to be performed. If the
operation is a read, the processor sets up
a read CCW entry for the DAIBE.

If a write operation is specified, the
processor determines whether a write-check
is specified. If not, the processor sets
up a write-CCW for the DAIBE. If a write­
check is specified, the processor sets up
the same set of CCWs described above, and
the following additional CCWS:

• Seek (chained immediately to the fol­
lowing search).

• Search.

• Transfer in channel (TIC).

• Read Skip (that is, write check).

In either of the above cases, the first
seek CCW generated is not command chained
to the second seek COl. This allows the
channel to be released early so that other
outstanding I/O requests on different con­
trol units may be fulfilled by additional
devices attached to the channel. The
second seek is used to set up control unit
registers to effect chaining to the next
CCw (the search CCW).

In the case of the write operation with
a write-check specification, the third seek
CCW repositions the head when a page over­
flows from one track to the next. The
third seek CCW is immediately command
chained to the subsequent search COl.

When the above processing has been com­
pleted, the processor places a PCBE pointer
to the paging operation in the DAIB entry
header so that the Page Direct Access
Interrupt (PDAI) subroutine may match the
page-operation-interrupt GOE against the
PCBE that initiated the paging operation.

The processor constructs a DAIB entry
header for each DAIB. The processor
initializes the pointer to the first DAIB
entry, and sets on the first-seek flag to
differentiate between the first and subse­
quent seek operations. That is, to specify
the following to the PDAI subroutine:

• No posting action is required.

• The start-I/O operation on the next ccw
is to be initiated.

The channel address word (CAW) and the
physical address of the device are passed
to the Start-I/O subroutine together with
an indicator that the call is to start I/O
on a disk. The Start I/O routine issues
the start-I/O instruction. A return bit­
flag from Start-I/O is tested. If it i$
off, the control unit end condition is -set
in the status bits and Reverse Pathfinding
is called to free the channel and control
unit.

Upon return from Reverse Pathfinding or
i~ the bit flag was on, the start I/O
operation will also return one of five
codes indicating the results of its opera­
tion. These codes and the subsequent
action taken by the subprocessor are as
follows:

• start I/O is successfu1, the channel
program is in execution. The Set sup­
press Flags subroutine is called to set
the suppress flag and, upon return, the
SCNF3LOK lock byte is reset by the
OPENLOCK macro prior to exiting to the
Queue Scanner.

• The selected channel is defective. The
subprocessor exits to the Paging I/O
Error Recovery Control subroutine in an
effort to recover from the error.

• The control unit is busy. The opera­
tion is retried 256 times. If the
operation is still not successfu1, an
exit is made to the Paging I/O Error
Recovery Control subroutine in an
effort to recover from the error.

• Status was stored for the selected
device. An interruption GQE is built
and queued on the channel interruption
queue in SCANT. The SCNF3LOK lock byte
is reset by the OPENLOCK macro prior to
exiting to the Queue Scanner.

• Solid start I/O failure. The sub­
processor exits to the Paging I/O Error
Recovery Control subroutine in an
effort to recover from the error.

• For each start I/O attempt that has­
failed due to a busy return, the PDAQ
processor sets the appropriate lock in
the system table, updates the count of
start I/O failures, and resets the sys­
tem table lock.

Channel Interrupt Queue Processor (CEAAQ)
ChartAK

The functions of the Channel Interrupt
Queue Processor (CIP) are to:

• Recognize terminal I/O interruptions
that are to be processed by the Termin­
al Communications subprocessor (CEATC)
and call that processor to handle them.

• Locate the request GOE which initiated
the I/O operation, and perform the
required functions of freeing deVices,
freeing channels, freeing the control
unit, paging operations, or I/O opera­
tions: and recognize and process synch­
ronous interruptions (that is, inter­
ruptions represented by active I/O re­
quest GOEs pointed to by the correct
device queue entry).

• Recognize valid asynchronous interrup­
tions and distinguish between the ini­
tial and subsequent asynchronous inter­
ruptions so that each is processed pro­
perly, and inform the affected tasks of
the occurrence of the interruptions.

Section 3: Program Organization 47

Entries:

CEAA41 - by the Queue Scanner.

CEAA42 - to perform the locate-page
function

CEAA43 - to decrement page hold counters.

Modules Called: Supervisor Core Release
subroutine (CEAL1 entered at CEAL02)
releases main storage occupied by work
areas.

Terminal Communications Subprocessor
(CEATC entered and CEATC1) is called to
process I/O interrupts from terminal
devices operating under RTAM or MTT.

Pathfinding subroutine (CEAA5R) trans­
lates the actual path address into a sym­
bolic address and releases a path or a por­
tion of a path.

Move GQE subroutine (CEAJQ entered at
CEAJMG) determines whether further proces­
sing is specified by the GQE and either
moves it to another processor's queue or
releases the space it occupies as well as
the space occupied by any associated PCBs.

Task Initiation subroutine (CEAMC) sets
up a new TSI to initiate a new task.

Dequeue GQE subroutine (CEAJQ entered at
CEAJDE) removes GQEs from the scan table.

, Queue GQE on TSI subroutine (CEAAF
entered at CEAAFQ) queues the specified GQE
on the task's TSI interruption queue.

Generate and Enqueue Interrupt GQE sub­
routine (CEABQ) generates a GQE and puts it
back on CIP's queue to simulate aCE/DE.

Set Suppress Flag subroutine (CEAJQ
entered at CEAJSF) sets the suppress flag
in the processor's scan table queue.

Dequeue I/O requests subroutine (CEAAJ)
returns I/O requests for a device to the
virtual storage routine.

Remote Job Entry (RJE) Asynchronous I/O
Interrupt subroutine (CEABA) processes
asynchronous interruptions from RJE
devices.

Remote Job Entry (RJE) Synchronous I/O
Error Interrupt subroutine (CEABB) pro­
cesses synchronous I/O error interruptions
from RJE devices.

Remove Device From Task Processor
(CEAAD) removes from or suppresses a sym­
bolic device in the task-symbolic-device
list.

48

Locate Page subroutine (CEAML) provides
the location of any page-table entry or
external-page table entry.

Normal - To Queue Scanner. Normal exit may
also be made to the I/O Device Queue Pro­
cessor (CEAA3) after a return from the
sense operation.

For immediate sense - To I/O Device Queue
Processor.

Operation: The Channel Interrupt Queue
processor receives hardware I/O interrup­
tions and performs the following:

• Provides preliminary processing for
paging-interruptions from direct access
paging devices other than drums.

• Queues task I/O interruptions.

• Invokes task initiation.

• Releases data paths (or parts of paths)
to which ending interruptions apply.

• Automatically invokes sense procedures
under device failure conditions.

• Provides special processing when
requested in IORCB.

On entry, the processor establishes its
base register and calls the Set Suppress
Flag subroutine to set on the suppress flag
in the CIP scan table entry to lock out the
Queue Scanner. The processor then pro­
cesses all GQE's pointed to by the entries
in its queue before returning control to
the Queue Scanner.

The first step in processing a GQE is to
test its channel status word (CSW). If the
value of the status bits in the CSW is
zero, there is no work for CIP to do.
Hence, the Move GQE subroutine is called to
remove the GQE pointer from the Channel
Interrupt Queue Processor's queue. The
processor then selects the next GQE for
processing.

The processor determines the interrup­
tion source by calling the pathfinding sub­
routine to translate the actual path
address of the device to its symbolic
device address. When control returns to
the Channel Interrupt Queue processor, a
check is made to determine whether the
actual path was successfully translated.
If not, the processor reports an error to
SYSERR. When control returns to the pro­
cessor the Move GQE SUbroutine is called as
described above and processing continues
with the next GQE.

When the CSW value is nonzero, CIP
checks to see if the device is a terminal
under control of RTAM or MTT (DEVRT or
DEVMT on in the device group table). In
this case, a 64 byte save area is requested
from Supervisor Core Allocation and its
address is passed to the Terminal Communi­
cations Subprocessor (CEATC) along with
pointers to the device group table, the
asynchronous entry (if applicable), and the
interrupt GQE.

When the actual path is successfully
converted to a system symbolic device
address, the return parameters, passed to
the Channel Interrupt Queue processor by
the Pathfinding subroutine, are saved in
the interrupt GQE. The system symbolic
device address is saved in GQEDEV and the
device type is saved in GQEDT.

At this juncture, the processor deter­
mines whether the I/O interruption is syn­
chronous (has an associated request GQE in
a device queue) or is asynchronous (no re­
quest GQE exists). To locate the correct
device queue GQE, the processor converts
the system-symbolic-device address to a
scan-table-entry pointer. This is accomp­
lished by multiplying the system-symbolic
device address by sixteen and then adding
the beginning address of the scan table to
the result. If the scan-table-entry speci­
fied by the calculated pointer has work in
queue that is marked as busy, the interrupt
GQE is classified as synchronous. when the
processor has determined that the interrupt
GQE is synchronous, the scan table entry
lock byte (SCNF3LOK) is set using the SET­
LOCK macro. This lock byte ensures that no
other supervisor processor will operate on
the associated entry in a duplex environ­
ment until the lock has been reset upon
exit from this processor. An interruption
is synchronous if its associated scan­
table-device-queue entry has both its work­
in-queue and F1-suppress flags on. If the
DIG busy flag is on, the I/O Device Queue
Processor (CEAA3) is involved in retrying
I/O. The path to the device is freed via
Reverse Pathfinding (CEAASR), the DIG busy
flag is turned off, and the interrupt GQE
is discarded. When the device queue has no
pending request GQE, the interrupt GQE is
classified as asynchronous.

Processor activities in proceSSing thes.e
two types of interruptions are described on
the following pages.

ASYNCHRONOUS-INTERRUPTION PROCESSING: The
first step in asynchronous-interruption
processing is to test the CSW in the GQE
for one of the following:

• An attention indicator only on.

• Channel-end/device-end indicators only
on.

• Channel-end/device-end/unit-exception
indicators only on.

• Device end only.

If none of these indicators are on, the
processor calls SYSERR, and then calls the
Move GQE subroutine to dequeue the GQE from
the CIP's queue as described earlier. If
the CSW contains one of these indicators,
the processor checks the device group table
to see if a TSI pointer exists for an
interruption. If one does, it is checked
to see if it equals X'00000003'. If it
does, this identifies the asynchronous
interruption for the master system program­
mer's task. CIP then enters the RSS module
at the -activate RSS because of MSP atten­
tion- entry point after destroying the
interrupt GQE and turning off the F4 sup­
press flag.

The table is checked to see if a task is
to be created for the first occurrence of
an asynchronous interruption on the device
in question. If this is the case, the
channel interrupt processor calls the Task
Initiation subroutine which performs the
necessary procesSing to set up a TSI. When
control is returned, the Channel Interrupt
Queue processor tests a return code regist­
er to determine Whether the TSI was
created. If not, the user's line must be
reenabled so that he can be reconnected to
the system when it is able to accept' him.
A hardware error could prevent reenabling
the line. The GQE is deleted and the next
GQE is selected for processing.

If a task was successfully initiated, or
if one existed initially, the CIP's GQE is
dequeued from the interruption queue and
queued on the appropriate TSI's interrup­
tion queue. The dequeueing is effected by
calling the Dequeue GQE subroutine. When
control returns to CIP, the queue GQE on
TSI subroutine is called to queue the GQE
on the TSI's interruption queue. The next
GQE is then selected for processing by CIP.

SYNCHRONOUS-INTERRUPTION PROCESSING: When
an interruption is classified as synchro­
nous, the processor first frees the device
and then processes the paging or I/O
request.

Device Freeing: CIP tests the status
field of the interruption GQE to determine
whether there are any devices that must be
freed (that is, set to the non-busy state)
in 'the pathfinding tables. If so, the pro­
cessor calls the Pathfinding subroutine.
Individual testing and processing activi­
ties are discussed below.

Sectio~ 3: Program Organization 49

If the GQE status signals a device-end
and/or device-failure without an associated
channel-end or channel-failure~-the
control-unit-end flag in the GQE is tested.
If it is not on, the processor requests
that Pathfinding free the control unit and
the I/O device. If the flag is on, a free­
device-only request is made to Pathfinding.

When the GQE status signals both a
device-end/device-failure and a channel­
end/channel-failure, the processor requests
pathfinding to free all units (channel,
control unit, and device).

In each of the three cases described
above, the processor checks an addressing­
error indicator returned by pathfinding.
If the indicator is on, SYSERR is called,
after which the processor dequeues the
interrupt GQE and processes the next
interruption.

If the GQE status field does not indic­
ate a device-end or failure condition, the
processor tests it for a control-unit-end
indicator. If only this indicator is on,
the processor requests that Pathfinding
free the channel and control unit. On
return from Pathfinding, the Channel Inter­
rupt Queue Processor determines whether a
device addressing error occurred. If so,
SYSERR is called. When control returns to
the processor, Move GQE is called to remove
the GQE from the CIP's queue. When control
returns to the Channel Interrupt Queue Pro­
cessor, the next GQE is selected for
processing.

If none of the conditions described pre­
viously exists, the processor checks for a
channel-end-only indicator in the status
field. If this indicator is on, and the
device is a disk, the channel and control
unit are freed. After they are freed, or
if the device was not a disk, the processor
issues a test-I/O instruction with I/O
interruptions inhibited. The processor
then determines whether status was stored
as a result of the test-I/O operation. If
not, the processor issues a free channel
and control unit request to the pathfinding
subroutine. If pathfinding returns a
device addressing error indicator, the pro­
cessor calls SYSERR and performs the pro­
ceSSing described for the control-unit-end­
only condition.

If status was stored in response to the
test-I/O operation, the processor deter­
mines whether status was stored for a
device other than the one addressed. If
so, a new interruption GQE must be
generated and queued on the CIP's queue.
In order to accomplish this, the processor
requests GQE-storage from Supervisor Core
Allocation and, on return, calls the Gener­
ate and Enqueue Interrupt GQE subroutine.

50

The subroutine generates a new GQE and
queues it at the end of the CIP's queue.
When this is accomplished and control
returns to the Channel Interrupt Queue Pro­
cessor, the Supervisor Core Release subrou­
tine is called to release the original
GQE's space, and the next GQE is selected
for processing. .

When the status is stored for the
addressed device, the new status is OR'ed
into the CIP's GQE status field, and the
Channel Interrupt Queue Processor checks
the new status for a channel-end-only indi­
cator or all zeros. If either condition is
indicated, the processor calls the Path­
finding subroutine to free the channel
only, and perform subsequent processing as
described .in the case where test-I/O opera­
tion did not store status.

When the new status contains neither a
channel-end-only indicator nor all zeros,
CIP ORs in the additional status and begins
again at device freeing.

When the original GQE status field did
not indicate a channel-end-only condition,
the Channel Interrupt Queue Processor tests
the status field for channel-and-control­
unit-end only indicators. If only these
indicators are on, the Channel Interrupt
Queue Processor saves the channel-command­
word address in the device queue GQE, and
requests that Pathfinding free the channel
and the control unit. The subsequent pro­
cessing is the same as that described above
for freeing a control-unit-only. If the
channel and control-unit-end indicators are
not the only ones and none of the other
previously described combinations existed,
the processor assumes that the interruption
is not the result of an I/O-end condition,
and performs the paging operation checking
described in the following paragraphs.

Paging Operations: After freeing the
required devices, if any, the Channel
Interrupt Queue Processor determines wheth­
er a paging operation has been done. If
not, the Channel Interrupt Queue Processor
performs the I/O-operations procedure
described later. If a paging operation has
been done, the Channel Interrupt Queue Pro­
cessor moves the CSW from its GQE to the
device queue's GQE. The device GQE'S
await-sense flag is then tested. If await
sense or an error is found, CIP calls
CEAA31 directly with the GQE path error
flag (GQEPE) on. Otherwise, the paging
interrupt flag (GQEIP) is set in the re­
quest GQE, and the next GQE is processed.

I/O Operations: If the GQE's IORCB flag
is on, one or more of the following non­
paging operations is performed:

(..
• Return from sense.

• Normal end, which involves:

1) Software command chaining.

2) Lowering page-hold counters.

The processor's first step in performing
this processing is to check the GQE await­
sense flag. If the flag is on, the return
from sense processing, described in the
following paragraphs, is performed. If the
flag is not on, the normal-end processing,
described later, is entered.

The return-from-sense processing begins
by storing in the IORCB the sense status
information, and setting the sense­
condition code in the IORCB to zero. The
processor then tests the failure indicators
in the status field. If these indicators
are on, a sense operation has failed and
the processor determines whether the fail­
ing command was a sense CCW, a read-home­
address CCW, or a read-record zero ecw.

This is accomplished by comparing the
address for the next ccw which is stored in
the channel-status word against the address
of the sense command in the IORCB plus 8.
The sense command in the IORCB is always
located in a fixed position and therefore
its address can be calculated as the sum of
the IORCB pointer plus a constant. If the
two addresses match, the processor assumes
that it was the sense command that failed
and sets on the IORCB's sense-failed flag.
When the addresses do not match, the pro­
cessor assumes that the read HA or read RO
CCW failed. In this event, the IORCB's
read-RO-failed flag is turned on and, if
unit check or unit exception, the CCW list
is set to do sense only with read-in sup­
pressed. The device queue is unsuppressed
and the sense operation is performed to
clear the control unit.

At this point, or, if no sense-operation
failure was indicated, the Channel Inter­
rupt Queue Processor effects the dequeuing
of all GQE entries in the appropriate
device queue that point to the affected
task. This is accomplished by:

• Requesting work storage allocation from
the supervisor Core Allocation
subroutine.

• calling the Dequeue I/O Requests sub­
routine, when storage is allocated, to
remove the queue entries from the
interruption queue and queue them on
the. I/O interruption queue.

-J:' ,_.

• Requesting the release of the work
storage by calling Supervisor Core
Release.

When control returns, CIP resets the 'scan
table suppress' flag for the associated
device queue processor's queue. The·Move
GQE subroutine is called to remove the
interrupt GQE'S pointer from CIP's queue
and to release the storage space it occu­
pied. When the space has been released,
the SCNF3LOK lock byte is reset using the
OPENLOCK macro and control is then trans­
ferred to the I/O Device Queue Processor
(CEAA3) with the affected device GQE
address in general register 1.

Normal-end processing is entered when
the GQE await-sense flag is off. The Chan­
nel Interrupt Queue Processor moves the
key, status, and count portion of the
interrupt GQE's CSW to the Device Queue
Processor's GQE. The Channel Interrupt
Queue Processor then tests· the status indi­
cators in the CSW. If the device channel­
end-only indicator is present, the proces­
sor checks for the following:

• The absence of a 'software command
chain' flag and a 'length of page list'
field of zero in the IORCB.

• A resetting of the GQE's dequeue flag.

If these conditions are met, the Channel
Interrupt Queue Processor calls the Dequeue
GQE SUbroutine to dequeue the GQEs from the
Device Queue Processor's queue and on
return from the Dequeue GOE subroutine
calls the Queue GQE on TSI subroutine to
queue the GQE on the TSI's interruption
queue. When control returns, the Channel
Interrupt Queue Processor calls the Move
GQE subroutine to remove the GQE pointer
from CIP's queue. When control returns to
the processor, the next GQE is selected for
processing.

If the 'software command chain' flag is
on, the Channel Interrupt Queue Processor
enters its chaining function.

If buffer pages are present in storage,
the processor decrements the page-hold
counters and the TSI I/O counter as each
page hold counter goes to zero. Both of
these functions are described later in this
section.

If the GQE's 'dequeue' flag is on, all
I/O requests for the task must be dequeued
from the device queue processor's queue.
This is effected by calling the Dequeue I/O
Requests subroutine as described previously
for the return-from-sense operation.

If the device-end-only indicator is on,
the processor checks the await-device-end

Section 3: Program Organization 51

flag. If it is off, the processor performs
the normal-end processing, descrioed above,
for the device/channel-end-only condition.
If the 'await device end' flag'-is on, it is
turned off and the 'dequeue GQE' flag is
checked. If the flag is on, the Channel
Interrupt Queue Processor must suppress the
device's symbolic address entry in the
task-symbolic-device list (that is, the
malfunctioning device is interlocked
against any further parallel activity from
the task to the device). The Channel
Interrupt Queue Processor performs this
function by:

• Requesting work space from the Supervi­
sor Core Allocation subroutine.

• calling the Remove Device From Task
subroutine, which suppresses 'the device
and returns control to the processor.

The Channel Interrupt Queue Processor then
calls the Dequeue I/O Requests subroutine
to remove the I/O GQES for the affected
task f,rom the device queue and put them on
the TSI interrupt queue. The work storage
is then released by calling the Supervisor
Core Release subroutine. When control
returns to the Channel Interrupt Queue Pro­
cessor, the Move GQE subroutine is called
to remove the interrupt-GQE entry from the
CIP queue. The Channel Interrupt Queue
Processor then selects the next GQE for
Processing.

If the dequeue flag is off, the proces­
sor checks for the 'software command chain
condition' flag in the IORCB. If it is on,
the software-command-chaining function is
entered. If the flag is off, the IORCB's
'buffer pages in storage' field is checked.
If it is non-zero, the processor decreases
the page-hold counters and the TSI I/O
counter as each page hold counter goes to
zero. If the field is equal to zero after
the counters have been updated, the Channel
InterrUpt Queue Processor calls the Set
Suppress Flag subroutine to reset the
device queue's suppress flag. When control
returns, the Channel Interrupt Queue Pro­
cessor selects the next GQE for processing.
At this point, the Channel Interrupt Queue
Processor calls the Move GQE subroutine to
remove the old GQE from its queue, and when
control returns, continues processing of
the new GQE. If there are no more GQE's in
its queue, the processor exits to the Queue
Scanner.

If the device-end-only status indicator
was not on, the processor checks for a
program-controlled-interruption indicator
in the CSW's statqs field. If the indica­
tor is on, the Channel Interrupt Queue Pro­
cessor tests for a force-device-end condi­
tion (that is, checks the forced-.end flag
in the IORCB). At this point, the channel

52

interrupt queue processor performs the
await-device-end-testing and subsequent
processing described above for the device­
end-only condition.

If the forced-end flag is off, the Chan­
nel Interrupt Queue Processor tests the
CSW/CCW address to determine whether it is
within the bounds of the IORCB's CCW list.
This is accomplished by calculating the
last address of the CCW list in the IORCB
and comparing the CSW command word address
with it. If the CSw address is within the
range of the beginning and ending address
of the CCW list, the Channel Interrupt
Queue Processor signals itself that the
Device Queue Processor's scan table sup­
press flag must not be set off, and calls
the Dequeue GQE subroutine to remove the
GQE from CIP's queue. The processor then
calls the Queue GQE on TSI subroutine to
queue the GQE on the TSI's interruption
queue.

When the CSW command word address is not
within the range of the calculated length
of the CCW list, CIP assumes that I/O
chaining is in effect and performs the
fUnction described above for the forced-end
condition but does not reset the Device
Queue Processor's suppress flag.

If the status field does not contain a
program-controlled-interruption indicator,
the processor tests for a unit-check/
exception indicator. If either indicator
is on, the await-sense flag is turned on in
the Device Queue Processor's GQE. The
Channel Interrupt Queue Processor calls
Move GQE to dequeue the interrupt GQE from
its own queue. When control returns, the
next GQE is selected and processing
continues.

When the status indicators reflect con­
ditions other than those discussed above,
CIP assumes that there is some error and
that no sense operation is required.
Hence, the Channel Interrupt Queue Proces­
sor enters its return from sense procedure
at the point where all the task's I/O
requests for the failing device are
dequeued from the Device Queue Processor's
queue, and put on the TSI interrupt queue.

The software-command-chaining function
is entered from normal-end processing when
the IORCB's software-command-chaining flag
is on. The first step in this function is
to determine whether the end of the IORCB's
CCW list has been reached. This is accom­
plished by calculating the end-address of
the CCW list and comparing it with the CSW
address in the GQE.

If the add,ress of the CSW word is not
equal to or greater than the calculated
address, the next CCW in the list is pre-

pared for execution by adjusting the new
relative starting address of the CCW list
(that is, pointing it to the next CCW to be
executed>. The processor then updates the
device queue, and its own queue as
described for a successful paging
operation.

If the CSW address is equal to or great­
er than the calculated address, the end of
the CCW list has been reached, and the
Channel Interrupt Queue Processor returns
to the normal-end processing at the point
where the length-of-page list field in the
IORCB is tested.

The paqe-hold-counter-decrementinq func­
tion is entered when the length-of-page
list field contains a nonzero value. The
purpose of this function is to update the
page-hold counters in the external-page
table to reflect the release of virtual­
storage-buffer pages being held in main
storage. The processor begins this func­
tion by computing the number of the first
page in the IORCB's page list. The Channel
Interrupt Queue Processor then passes the
page address and TSI's pointer to the Loc­
ate Page subroutine. Locate Page searches
the XTSI pointed to by the TSI for the
storage addresses of the associated page
table entries. If the page entry is
located, the subroutine returns the page­
table (or shared-page table) address and
the external-page table (or external­
shared-page table) address to the Channel
Interrupt Queue Processor. At this point
the Channel tnterrupt Queue Processor tests
the page-hold counter. If it is not equal
to zero, the counter is lowered by one. If
it is already a minor system error is
declared.

If the page entry was not located, or if
the counter is equal to zero, a SYSERR call
is made. Upon return from SYSERR, or after
subtracting one from the page-hold counter,
CIP lowers the page-list-Iength field, and
then tests its content. If it is nonzero,
the processor repeats the steps described
above. When the field is zero, all page­
hold counters have been updated and the
page list processing is complete. The
channel interrupt queue processor now calls
the Dequeue I/O Requests subroutine to
decrease the page hold counter.

When CIP has processed all the GQE's
queued on its queue, the following exit
procedures are performed:

• The Set Suppress Flag SUbroutine is
called to unlock CIP's queue.

• The scan table entry lock byte
(SCNF3LOK) is reset using the OPENLOCK
macro.

• CIP exits to the Queue Scanner.

Remote Job Entry Asynchronous I/O Interrupt
Subroutine (CEABA) Chart AL

The function of this subroutine is to
process all asynchronous I/O interruptions
from Remote Job Entry devices Which origin­
ate in main storage. This includes per­
forming line control error recovery
procedures.

Attributes: C~ is a serially reentrant
subroutine residing in main storage that
operates in the supervisor state.

Assumptions and Restrictions: This subrou­
tine is called only by the Channel Inter­
rupt Processor to handle RJE line control
operations. It is not parallel reentrant;
registers are saved internally.

Entries:

CEABAl - entry from Channel Interrupt Pro­
cessor (CEAAIU.

CEABA2 - return entry point from RJE Synch­
ronous I/O Error subroutine
(CEABB) •

CEABA3 - return entry point from Create
Real Time Interrupt subroutine
(CEAS7).

When entered at CEABA1, the following
general registers contain significant data,
as indicated:

Register 2 - address of the device group
table

Register 3 - address of the TSI

Register 11 - address of the device queue
(SCANTE)

Register 12 - address of the asynchronous
entry in the device group
table

Register 13 - address of the interruption
GQE

Register 14 - return address

Register 15 - entry point for this routine

Modules Called: Supervisor Core Allocation
(CEAL1 entered at CEAL01) is called to get
core for the asynChronous interruption GQE
to be sent to the virtual memory task.

The Dequeue GQE subroutine (CEAJQ
entered at CEAJDE) is called to remove the
error GQE from the Channel Interrupt Pro­
cessor's queue.

Section 3: Program Organization 53

The Start I/O subroutine (CEAAG entered
at CEAAG1) is invoked to start I/O on retry
or sense operations.

The Task Communication control subrou­
tine (CEAAN entered at CEAAN1) is called to
send error messages to the operator.

The RJE Line Control subroutine (CEABC
entered at CEABC2) is called to initiate
line control functions.

The Enqueue GQE subroutine (CEAJQ
entered at CEAJEN) is called to put the
error or'retry GQE on the device queue.

The Set Suppress Flags subroutine (CEAJQ
entered at CEAJSF) is called to set the F4
suppress flag to prevent interruption in
the device queue during retry.

The Pathfinding subroutine (CEAA5
entered at CEAA5P) is called to assign
paths for ~etry or sense operations.

Reverse Pathfinding sUbroutine (CEAA5
entered at CEAA5R) is called to release the
path when CEABA is entered from the Channel
Interrupt Processor.

Generate and Enqueue Interrupt GQE
(CEABQ entered at CEABQ1) is called if the
start I/O subroutine returns a non-busy
condition code of one. CEABQ creates an
interruption GQE and places it on the Chan­
nel Interrupt Processor's queue.

The Queue GQE on TSI subroutine (CEAAF
entered at CEAAFQ) is called to put an
interruption GQE on the task interruption
queue after an enable operation when Start
I/O fails on the prime operation.

The Read Time subroutine (CEAS6 entered
at CEAS6A) is called to get the current
time before a real time interruption is set
up.

The Set Real Time Interval subroutine
(CEAS7 entered at CEAS7A) is called to set
a real time interval for recycling when a
busy return from the Pathfinding subroutine
occurs.

Exits: Normal exit is to the Channel
Interrupt Processor to one of four return
points set up in general register 14.
Return is made in line when ClP is to
dequeue the GQE, put it on the TSl, and

'process the next GQE. Return is to CEAA44
when ClP is to discard the interrupt GQE
and process the next. Return is to CEAA45
with a pointer to the next GQE to be pro­
cessed in register 13, when no processing
of other GQEs is required by ClP. Return
is to CEAA46 when CIP is to have the inter­
ruption GQE put on the task's TSI and pro­
cess the next GQE. An asynchronous event

54

code specifying that the operation was suc­
cessful or the cause of failure is set in
all interruption GQES to be returned to the
task.

Error Conditions: The System Error Proces­
sing routine (CEAIS entered at CEAIS1) is
invoked via the ERROR SVC for the following
error conditions:

• Error return from Reverse Pathfinding
(7500)

• Invalid return code from RJE line con­
trol <7501>

• Invalid command code (CCW) encountered
(7502)

• Channel end or device end on unexpected
command (7503)

• Unexpected interruption from sense
operation (7504)

• Invalid error condition (no sense bits)
(7505)

• Error return from Pathfinding (7506)

• TSlLCK locked more than 50 microseconds
(7507)

• DEVLOCK locked more than 50 microse­
conds (7508)

Operation: On entry, the 'RJE disable
interrupt' flag is checked in the device'S
asynchronous entry of the Device Group
table (DEVAE). If it is on, the Reverse
Pathfinding subroutine is called to free
the entire path. The return code from
Reverse Pathfinding is tested; and if an
error is indicated, an ERROR SVC is issued.
On return from the System Error Processor,
exit is to the Channel Interrupt Processor
at CEAA44.

Otherwise a test is made to determine if
this is a Halt I/O interruption. If it is,
the RJE line control subroutine is called
to perform the operation indicated by the
appropriate flag in DEVAE (DISABLE/ENABLE/
PRIME). The return from CEABC is examined:

• If successful, the device's scan table
entry (SCANTE) is checked for a GQE
pointer. If none exists (indicating no
previous error on this operation),
return code 4 is set and control
returned to CIP. If a GQE exists
(indicating some previous error on this
operation), the SCANTE is cleared and
unlocked; the original error GQE is
discarded (via CEAMJG), and control is
returned to the CIP.

• If the start I/O condition code
returned to CEABC was 1 and no busy
conditions are ,present, the Generate
and Enqueue DUmmy Interrupt GQE subrou­
tine (CEABQ) is called to create a
simulated I/O interruption from the
error status information. Processing
then continues as if the RJE line con­
trol operation had been successful.
(Described above.)

• For any other return from CEABC, the
'appropriate asynchronous event code is
set. The asynchronous event codes are
as follows:

o - Operation successful

1 - Solid error on DISABLE

2 - Solid error on SET MODE

3 - Solid error on ENABLE

4 - Solid error on PREPARE

5 - Solid error on READ ENQ

6 - Solid error on WRITE ACK

7 - Failing CCW cannot be determined

8 - Unrecoverable software error in the
supervisor

9 - Intervention required

The device SCANTE is then examined.
Return is to CIP if there was no pre­
vious error. otherwise, the original
error GQE is discarded; the SCANTE
cleared and unlocked before returning
to CIP.

When a Halt I/O interruption is not
indicated, a test is made to see if the
interruption is due to a channel control or
interface control check. If so, the opera­
tion is not retryable. In this situation
the asyncnronous entry flag in the device
group table is tested to see if a DISABLE
operation was indicated. If not, the asyn­
chronous event code is set to 7 in the
interruption GQE. The device's SCANTE is
checked to see if a previous error occurred
requiring the SCANTE to be cleared and-the
GQE to be discarded before returning to
CIP.

If the DISABLE flag is set, in the
device group table, it is turned off; and
the asynchrorious event code of 1 is put in
the GQE. A message is then sent to the
operator by calling task communication con­
trol (CEAAN) to inform him of the error.
Return is then made to CIP after clearing
and unlocking the SCANTE and disposing of

the original error GQE if there was a pre­
vious error.

If the error is not a channel control or
interface control check, the CSW is Checked
for other error conditions. -If the inter­
ruption is normal, the device's SCANTE is
tested to see if there is a GQE. If no GQE
is there, or if there is one, waiting on
sense, the current GQE·represents the suc­
cessful completion of a sense operation.

If not a sense operation, the DISABLE
flag in the device group table is tested.
If it is on, the interruption is to be dis­
carded. The waiting on sense flag is
turned off and the SCANTE is checked for a
GQE. If none exists, control is returned
to CIP. If a GQE exists (indicating suc­
cessful completion of a previous DISABLE
error), the SCANTE is cleared and unlocked;
and the GQE is moved (via CEAJMG) before
returning to CIP.

If the DISABLE flag is not on, a check
is made to see if the error occurred on an
ENABLE command. If noc, the asynChronous
event code is set to zero. If this is the
successful retry of a previous error, the
SCANTE is cleared and unlocked and the pre­
vious error GQE discarded be~ore returning­
to CIP.

If the interrupt is from an ENABLE com­
mand, the RJE line control subroutine is
called to PRIME the line (bypassing Halt
I/O). The return data from RJE Line Con­
trol is then examined.

• If successful, and no previous error
occurred on this operation, return is
to the CIP. The SCANTE is cleared and
unlOCked and the previous error GQE
discarded before returning if a pre­
vious error occurred.

• If the return from the RJE line control
subroutine indicates that it received a
start I/O condition code of one with no
busy conditions, an I/O error interrup­
tion is simulated by calling the Gener­
ate and Enqueue Interrupt GQE subrou­
tine. Processing then continues as if
the return from RJE Line Control indi­
cated that it was successful.

• For any other return, the SCANTE is
checked for previous error GQE. If
there was none, Supervisor Core Alloca­
tion (CEAL1) is called to get main
storage for a task asynchronous inter­
ruption GQE. If there was a previous
error, the SCANTE is cleared and
unlocked and the previous error GQE is
used as the task asynchronous error
GQE.

Section 3: Program Organization 55

The GQE is initialized, and an asynch­
ronous event code of zero is placed in
it. Queue GQE on TSI (CEAAF) is then
called to place the interruption GQE on
the task's TSI interruption queue.
This procedure informs the task of the
successful completion of an ENABLE
operation. The current GQE (the one
that caused CIP to call this routine)
is used to inform the task of the fai­
lure of the PREPARE operation. The
asynchronous event code ofij is set in
it and return is to CIP.

If the interruption indicates the suc­
cessfulcompletion of a sense operation,
processing skips to the point where first
error, non-unit check errors are processed.

If the CSW status indicates an error
condition, a check is made to see if a
sense operation was in progress. If so,
the asynchronous event code (1-6) appropri­
ate for the condition is set in the GQE to
indicate the failing CCW. The SCANTE is
cleared and unlocked; the original error
GQE discarded; and return is to CIP.

If the error did not occur on a sense
operation, the SCANTE is checked for a pre­
vious error GQE. If there is none, the
current GQE is dequeued by a call to the
Dequeue GQE subroutine. Error retry coun­
ters are then set up in the GQE. The
SCANTE is locked and the address of the
error GQE is saved in the SCANTE. The unit
check bit of the CSW is then examined to
determine if a sense operation must be per­
formed. If so, parameters to perform the
sense operation are set up. otherwise,
parameters to perform the appropriate error
retry procedure are set up. The common
retry logic (see below) and on return a
check is made to see if retry was success­
ful. If so, the forward GQE pointer from
the original error GQE is put in register
13 and return is to the Channel Interrupt
Processor.

If the retry was not successful, the
SCANTE is cleared and unlocked; the appro­
priate asynchronous event code is set in
the current GQE and control is then
returned to the Channel Interrupt
Processor.

If a pOinter to a previous error GQE is
in the device'S SCANTE, the unit check bit
in the current GQE is examined. If a sense
operation is to be performed, the sense
parameters are set up and the common retry
logic is entered.

If a sense op~ration is not to be per­
formed, the error retry counters are
checked to determine if the error has
become solid. If not, the error counter is
incremented and the appropriate retry para-

56

meters are set up. The common retry logic
is then entered and the return is examined.
If the retry was not started successfully,
processing is the same as for solid failure
(below). If the retry was successful, con­
trol is returned to CIP.

If the failure is solid, the asynch­
ronous event code is set in the current
GQE, and the DISABLE flaq in the device
group table is tested. If it is on it is
turned off, and a return code of zero is
set for CIP. Exit is then taken after
clearing'the SCANTE and unlocking it and
discarding the old GQE.

The Common Retry Logic for this routine
involves calling the Start I/O subroutine
(CEAAG) to start I/O on the specified com­
mand. If start I/O is successful, control
is returned to the calling location.

If the Start I/O condition code is 2, 3,
or 1 with a busy indication, the Start I/O
subroutine is recalled until either it is
successful or the failure becomes solid.
If the start I/O failure is solid, return
is to the calling location.

For other conditions where the start I/O
condition code is 1, the Generate and
Enqueue Dummy Interrupt GQE subroutine is
called to create a simulated I/O interrup­
tion GQE to be processed later. control is
then returned to the calling location.

Remote Job Entry Synchronous I/O Error
Interrupt Subroutine (CEABB)

This subroutine screens all synchronous
I/O error interruptions from RJE devices
and perform appropriate error recovery pro­
cedures. This includes:

• Identifying the error condition from
information in the CSW, the Start I/O
CAW, sense fields in the GQE and 10RCB.

• Maintaining error data and retry coun­
ters in the RJE IORCB.

• Determining if a retry operation is to
be made and setting up to initiate it,
if so.

Attributes: CEABE is a serially reentrant
subroutine residing in main storage that
operates in the supervisor state.

Assumptions and Restrictions: This subrou­
tine is called only by the Channel Inter­
rupt Processor to handle I/O retry opera­
tions after synchronous errors on the 2780
RJE terminal device. The routine is not
parallel reentrant; it saves registers
internally. In certain cases, it returns
out-of-line to special return points in the
Channel Interrupt Processor. The recovery

procedures apply only to the channel pro­
grams specified for the 2780 RJE device.
Any alteration to the .~h.ann€l progra~' in
MSAU will produce unpredictable result'3 in
error recovery.

Entries: CEABB1 - by Channel Interrupt
Processor with these parameters:

Register 7 - address of the request GQE

Register 10 - address of the IORCB

Register 13 - address of the interruption
GQE

Modules Called: supervisor Core Allocation
(CEALl entered at CEAL01) gets main storage
for an error GQE on a PRIME failure
condition.

Start I/O subroutine (CEAAG entered at
CEAAG1) starts I/O on retry operations.

RJE Asynchronous Interrupt subroutine
(CEABA entered at CEABA2) to process the
interruption GQE when it is to be recycled.

RJE Line Control (CEABC entered at
CEABC2) is called to prime the line after a
unit exception error or timeout.

Queue GQE on TSI (CEAAF entered at
CEAAFQ) is called to put an asynchronous
error interruption GQE on a task's TSI.

Pathfinding (CEAAS entered at CEAASP) is
called to assign a path for the retry
operations.

Reverse pathfinding (CEAAS entered at
CEAASR) is called to release a path after
Start I/O failure on a retry operation.

Generate and Enqueue Interrupt GQE
(CEABQ entered at CEABQ1) is called to cre­
ate a dummy interruption GQE and place it
on the' CIP queue when start.I/O fails and
returns a condition code of one.

Exits: Normal exit is to the Channel
Interrupt Processor to the address speci­
fied in general register 14. Register 14
specifies the instruction following the
call to CEABB, when normal processing of a
synchronous error is to continue in CIP.
CEAA44 is the return address following •
start I/O on retry to discard the interrup­
tion GQE, and CEAA47 is the return point
when CIP is to reprocess an error GQE.

Exit is also made to the RJE Asynch­
ronous Interrupt routine when pathfinding
returns a bu~y indication. This delays
processing of the interruption in CIP
because a real time interruption is created
and placed on the timer interruption queue.

Error Conditions: The System Error Proces­
~ing routine (CEAIS entered at CEAIS1) is

_,,'c:ked v:1..a t.hEO' J!.RR.):,\ SVC when any of the
f.:lllowlong error conditions are encountered:

• Error return from Reverse Pathfinding
(7600)

• Invalid return code from RJE Line Con­
trol (7601)

• Invalid command code (CCW) encountered
(7602)

• Unrecoverable intermittent error
sequence (7603)

• Invalid error condition (no status or
sense) (760S)

• Error return from Pathfinding (7606)

• TSILCK locked more than SO microseconds
(7607)

Operation: On entry, CEABB saves the Chan­
nel Interrupt Processor's registers in an
internal save area and establishes addres­
sability for the RJE portion of the IORCB.
Those 10RCBs associated with remote job
entry operations use the area normally
occupied by the 10RCB data buffer to hold
RJE I/O error retry information. Individu­
al error counters are included for each I/O
error defined as retryable. There are two
sets of retry counters. One set is used to
accumulate the total number of errors of a
particular type that occur for each IORCB.
The second set records the number of errors
occurring in a current intermittent I/O
error retry sequence.

Next, error indicators in the GQE and
IORCB are examined and the appropriate
action is taken.

The only action taken before returning
to the channel interrupt processor (in­
line) for channel or interface control
check is to increment the counter for the
error type in the IORCB.

If sense failure is indicated by the
IORCB sense failed flag, immediate return
to the Channel Interrupt Processor is made
(in-line) •

For Unit Check/Lost Data errors, the
current CSW is compared to the previous
error CSW to determine if this is a new
error. If it is, the previous error CSW
and sense data are replaced by the current
CSW and the retry counters are initialized
to zero. ProceSSing then continues in the
-retry threshold testing- logic described
below.

Section 3: Program Organization 57

Unit Check/Time Out errors are processed
the same as Unit Check/Lost Data until the
retry threshold limit is reached. Then,
the RJE Line Control routine (CEABC) is
.called to reprime the line.

Unit Check/Intervention Required are
processed the same as Unit Check/Lost Data
until the retry threshold limit is reached.
Then the RJE Line Control routine is called
to reenable the line.

Unit Check/Bus Out Check errors are
handled the same as Unit Check/Lost Data.

Unit Check/Data Check errors are handled
the same as Unit check/Lost Data.

Unit Check/Equipment Check errors are
handled the same as Unit Check/Lost Data.

Unit Check/Command Reject errors are
handled the same as Unit Check/Lost Data.

Unit Exception indicates a logical ter­
mination of an I/O operation which must be
communicated to virtual memory. (It is not
a retryable error condition and has a retry
threshold value of zero. This forces a
·solid error- on the first occurrence.)
Unit Exceptions are processed the same as
Unit Check/Lost Data until the solid error
condition is encountered. At this point,
the RJE Line Control routine (CEABC) is
called to reprime the line. On return,
exit is to the calling program with a
return code of zero.

Incorrect Lenqth errors are processed
the same as Unit Check/Data Check, except
for the manipulation of the error counters.
Those Incorrect Length errors that indicate
Unit Check/Data Check conditions result in
incrementation of the appropriate Unit
Check/Data Check counters along with the
current counter for Incorrect Length
errors. In the case where the error
results because less than the maximum numb­
er of cards were ~ead, I/O is restarted on
the next CCW. If during the printer selec­
tion sequence an ENQ (one byte) is read
instead of an ACK 0 (two bytes), RJE Line
Control is called to reprime the line.

Chaininq Check errors are processed the
same as Unit Check/Lost Data.

Program Checks are processed the same as
Unit Check/Lost Data.

Protection Checks are processed the same
. as Unit Check/Lost Data.

Busy indications are handled the same as
Unit Check/Lost Data.

Attention indications are handled the
same as Unit Check/Lost Data.

58

Status Modifier conditions are handled
the same as Unit Check/Lost Data.

Retry Threshold Testing: The appropriate
current error counter (for the error being
processed) is compared to the retry thre~
shold limit. If the limit has not been
reached, the proper total and current error
counters are incremented and the Common
Retry Logic (described below) is executed.
If the limit has been reached, return code
zero is set and control is returned to the
calling program with the error CSW intact.

Common Retry Logic: The Start I/O subrou­
tine (CEAAG) is called to restart the
operation where specif ied and the ret.urned
parameters are examined:

• If the SIO was successful, a return
code of four is set and contiol is
returned to the calling program.

• If a device or control unit busy condi­
tion occurs, the SIO is retried until
successful or the busy condition becom­
es solid. In the latter case, return
parameters from SIO are stored in the
IORCB, return code zero is set, and
control is returned to the calling pro­
gram with the original error CSW
intact.

• When SIO returns a condition code of
one, and the status other than device
or control unit bUSY, the Generate and
Enqueue Interrupt GQE subroutine
(CEABQ) is called to simulate an I/O
interruption with the stored status. A
return code of four is set and control
returned to the calling program.

• A SIO condition code of two or three
results in a limited number of retry
attempts. If unsuccessful, the SIO
return parameters are stored in the
IORCB, a return code of zero is set,
and control returned to the calling
program with the oriqinal error CSW
intact.

Terminal Communications Subprocess or
(CEATC) Chart AM

This subprocessor initiates and pro­
cesses I/O operations for the terminals of
conversational tasks. It is called by the
Channel Interrupt Queue Processor when CIP
finds a GQE representing an I/O interrup­
tion for a terminal on its queue. The fol­
lowing functions are provided by CEATC in
its handling of terminal I/O operations:

• Initially issue channel programs for
dial or dedicated lines to determine
the type of terminal, line code, and
user destination.

• Issue channel programs to MT/T users
and normal TSS users.

• Post attention signaling during 1/0
operations or while processing.

• Post completed I/O operations for
terminals.

• Detect errors or exceptions that ter­
minate the channel program and initiate
recovery action if possible.

• Provide standard translation of input
and output allowing the user the opU 0.;

to specify no translation if he wishes.

• Allocate buffer areas for input and
output operations.

• Place interruptions on the user's TSI,
if required.

• Inform the user if TSS or MTT limits
have been exceeded.

Entries: TCS has two main entry points,
CEATCl and CEATC2. CEATCl is entered from
the Channel Interrupt Queue Processor
whenever it finds an I/O interruption GQE
on its queue for a terminal device sup­
ported by the resident terminal access
method (RTAM). When entered at CEATC1, six
registers contain input data. The regis­
ters and significant data are as follows:

Register 1 - the address of a 64 byte save
area

Register 2 - a pointer to the device group
table

Register 12 - a pointer to the asynchronous
entry

Register 13 - a pointer to the interrupt
GQE

Register 14 - the return address

Register 15 - the calling address

CEATC2 may be entered by the SVC Queue
Processor (CEAHQ) or the Terminal Communi­
cations subprocessor (CEATC1) itself. The
conditions under which these routines enter
CEATC2, .and the parameters passed are as
follows:

• The SVC Queue Processor calls CEATC2
when it is determined that the ATCS
macro (SVC 219) has been validly issued
by an MTT application task. When
entered "from the SVC Queue Processor,
the following registers contain per­
tinent input data:

Register 1 - the address of the SVC
GQE (used as a TIOCB
pointer)

Register 2 - a pointer to the TSI

Register 3 - a pointer to the XTSI

Register 4 - either the VM address of
a TCT slot, or all 'F's
to indicate a FREEQ ALL
operation

Register 5 - the address of the mes­
sage and its length for ~
Free operation. Zero if
no message

Register 6 - low order byte 'F's, if a
physical disconnect is
required or zero if a
logical disconnect or
FREE oper:'tion

Register 15 - called address

• When the terminal communications sub­
processor has been entered at CEATCl
and it encounters a pending I/O opera­
tion during its processing, a call is
made to CEATC2 with the following input
registers:

Register 1 all 'F's

Register 3 - a pointer to the TIoca

Register 5 - a pointer to the TSI

Register 6 - the real core address ,.)f

the TCT slot

Register 9 - a pointer to the MTSCB

Modules Called: Supervisor Core Allocation
(CEAL1 entered at CEAL01) is called to get
a 256 byte buffer area and a 64 byte ter­
minal I/O control block to handle the ini­
tial interrupt from a user terminal.

Pathfinding (CEAA5 entered at CEAA5P)
obtains the device path in initial inter­
rupt processing.

Task Initiation (CEAMC entered at
CEAMT1) is entered to set up a TSI in ini­
tial interrupt processinq.

Queue GQE on TSI (CEAAF entered at
CEAAFQ) puts an asynchronous interrupt GQE
on the TSI as part of task initialization.

Reverse Pathfinding (CEAA5 entered at
CEAA5R) releases the device path.

supervisor Core Release (CEALI entered
at CEAL02) releases unnecessary main

Section 3: Program Organization 59

storage before returning to the Channel
Interrupt Processor.

Start I/O (CEAAG entered at CEAAG1) is
,called to initiate terminal I/O operations.

Halt I/O (CEAAI entered at CEAAIH) halts
terminal I/O during processing of terminal
I/O requests.

Exits: When entered at CEATC1, this sub­
processor exits to the Channel Interrupt
Processor after setting appropriate return
codes i~ register 15.

When entered at CEATC2, exit is to the
Queue Scanner (CEAJQS) if the call was from
the SVC Queue Processor. (When CEATC2 is
called by CEATC1, return is to CEATC1 Which
then returns to the Channel Interr'upt
Processor.)

Operation on entry at CEATC1: There are
three general classifications of terminal
I/O interruptions that result in the Ter­
minal communications Subprocessor being
called by the Channel Interrupt Processor.
These are: the initial interruption from a
user terminal, an interruption from a TSS
user terminal, and an interruption from an
MTT user terminal.

This subprocessor determines that the
initial interruption from a terminal is to
be processed by checking a field in the
device group table (DEVTSI). This flag is
always zero for the initial interruption.

To handle the initial interruption, a
64-byte area is provided by Supervisor Core
Allocation (CEAL1) for a terminal I/O con­
trol block (TIOCB). A 256 byte buffer area
is also obtained from supervisor Core
Allocation.

RTAM locates the appropriate entry in
the terminal device table and saves its
address in the TIOCB (not done for an ini­
tial interruption). For an initial inter­
ruption, a read channel program is
generated for the terminal device line
(according to type of terminal) and a path
to the device is obtained by calling Path­
finding (CEAA5P). Return is then made to
the Channel Interrupt Processor after set­
ting a code of zero in register 15.

When the terminal responds to the read,
,this interruption is again passed to CEATC1
by the Channel Interrupt Processor. At
this point, the input buffer is inspected
to see if the terminal user has entered
either the 'LOGON,' or 'BEGIN' command. If
it is 'LOGON' a test is made to determine
whether the TSS user limit has been
exceeded. If so, a message is issued
informing the user of this; if not, a sys­
tem terminal control table slot (TCT) 'and

60

buffer page slot are allocated to the task.
Task Initiation is then called to set up a
TSI for the task and an asynchronous inter­
ruption GQE is attached to the TSI inter­
ruption queue by calling Queue GQE on TSI.
The operands following the LOGON command ,
are then moved into the buffer page slot.
The TCT pointer is placed in the device
group table (DEVTCT) and the TCT is
initialized.

To specify that the task is operating
under RTAM in TSS mode, a flag is set in
the device group table (DEVRT). Supervisor
Core Release is called to release unneeded
main storage, and the device path is then
released by calling Reverse Pathfinding.
Exit is made to CEAA4 with a return code of
zero after a prepare command has been
placed on the line.

When the command entered by the user is
'BEGIN', the application name specified by
the BEGIN command is checked against the
TSI chain by examining the MTSCB associated
with the TSI of each MTT task. If it is
there, a check is made to see if adding
another user to the application task will
put it over the user limit. If not, a
further check is made to see if the appli­
cation task has a FREEQ ALL operation pend­
ing (MTSFRE on).

If conditions are such that the request
can be met, the 'number of users' count
(MTSCUR) is increased by one; a prepare
command is placed on the line; and a TCT
slot and buffer slot are obtained. The
operands following the application name are
moved into the buffer and the TCT pointer
is placed in the device group table
(DEVTCT) and the TCT is initialized.

A flag (DEVMI') is set in the device
group table to indicate that the terminal
is connected to an MTT task and Reverse
Pathfinding is then called to release the
path.

If the TSI associated with the applica­
tion task is on the inactive list, the
Rescheduling subroutine is called with a
code of one. On return, or if the task was
on the active list, an external interrupt
is placed on the TSI by calling Queue GQE
on TSI with a code of two. Also, if the
task is in delay status, the status is
changed to ready.

A message control block (MCB) is then
generated containing the following
information:

1. Message code -- 255

2. Receiving task ID

3. Relative line number

4. Work byte (located at TCTWWK)

5. Line coded (located at TCTDTY)

6. Symbolic device (located at TCTSDA)

7. Message area

A return code of eight is set for the
Channel Interrupt Processor.

If the application name, specified Ly
the BEGIN command, is not active, a write
"1' with response is placed on the line
and a return code of zero is set for the
Channel Interrupt Processor.

When the interruption that caused the
Channel Interrupt Processor to call CEATC1
was not the initial interruption or one
involved in the initialization phase, it is
checked to see if it is for a HIO opera­
tion. If it is, CEATC2 is called to pro­
cess the interruption, and on return, a
return code of zero is set before exit to
the Channel Interrupt Processor.

If it is for a normally completed 1/0
operation, the completion is posted in the
TCT (the read completion is also posted
when ATTENTION is received); the path is
released by calling Reverse Pathfinding;
and if an external interruption is not
required, the task is made active before
returning to the Channel Interrupt Proces­
sor with a return code of zero. If an
external interruption is required, it is
placed on the TSI by calling uueue GQE on
TSI. The task is then made active and a
return code of eight is set for the Channel
Interrupt Processor. For abnormal comple­
tions, the subroutine CEAlOOO is called to
attempt recovery.

Entry at CEATC2 by CEATC1 is made to
prepare for a terminal I/O request when a
previously pending halt I/O operation has
completed on a terminal line.

A CCW list is generated by CEATC2 corre­
sponding to the I/O requested by virtual
memory (that is, READ, WRITE, or Write with
response). The CCW list depends on the
device type (1050, 2741, TTY35, or 1052-7)
and the 1/0 operation. The I/O operation
is then started by a call to the Start I/O
routine (CEAAG). Upon return, exit is made
to the Channel Interrupt Processor, await­
ing tbe completion of the I/O operation.

Entry at CEATC2 by the SVC Queue Proces­
sor occurs as a result of the ATCS (SVC
219) macro 'instruction having been issuec
during execution of a READQ, WRITEQ,
CLEARQ, or FREEQ macro instruction. ATe

is also issued directly by the GATE, ABEND,
LOGOFF, and RELEASE command routines.

when entered for ATCS processing (in all
cases except for a FREEQ ALL), an immediate
test is made to determine if the operation
requested is a clear or attention. If not
these, tests are made for write-type
operations.

If a clear operation has been requested,
CEATC2 causes th~ buffer slot to be
released, cit;ars TC'l'FL1, releases the mail>
storage for the SVC GQE by calling Supervi­
sor Core Release and exits to the Queue
Scanner.

For a pending attention, the SVC main
storage space is released and exit is taken
to the Queue Scanner. For read and write
operations, a HIO is done first.

When a write is specified, a check is
made to determine if the data to be written
is in main storage, the task ready and
locked. If not, the instruction counter is
decreased by eight (to point it at the ATCS
instruction) and exit is to the Queue
Scanner. Otherwise, a new buffer slot is
obtained and the message moved into the
buffer and translated, if required. If the
length of the message exceeds the specified
buffer length, Supervisor Core Allocation
is called for a section of main storage
four bytes larger than the indicated mes­
sage length.

When a read is specified, the current
buffer slot is released and a new buffer
slot obtained. The necessary channel pro­
grams are then generated and the Start I/O
subroutine (CEAAG) called to start I/O.
Exit is then made to the Queue Scanner.

When a FREEQ ALL operation is specified,
an application TCT slot is located. The
TCTFFR flag is set and the Halt I/O routine
is called. If an interruption is pending,
(TCTHIO on) and it is a FREEQ ALL opera­
tion, a test is made to see if the FREEQ
has been issued to all lines. If not, the
above procedure is repeated. If all lines
are cleared, the task is placed in page
wait and exit is to the Queue Scanner.

When a Free completion is detected for a
TSS user (LOGOFF or ABEND having issued
ATCS), a real time interruption of two
minutes is set for each line. For an ABEND
due to SHUTDOWN, a physical disconnection
takes place. The system TCT slot, the sys­
tem buffer slot and outstanding TIOCBs are
released. DEVTCT, TDELCD, and TDESTA are
cleared and the DEVRT flag is reset. The
task is made active if it is wait status.

Section 3: Program organization 61

For errors occurring on an initial break
of a prepare command, the staeus is checked
for unit exception or unit check. If it is

. a unit check, a sense is issued. When the
interruption for unit check is returned, or
if the original interruption were unit
exception, normal processing is continued
in CEATCS.

Otherwise, an attempt is made to reen­
able the line.

Interruptions fall into two categories:
outboard errors (unit check, unit excep-

, tion) and inboard errors. When a unit
check is encountered, a sense is issued.
Information from the sense is used to
determine what action to take. There are
some additional actions taken because of
design and device dependent situations. A
fUnction byte, corresponding to each CCW,
is located in the TIOCB. One of the fol­
lowing eight fUnctions can be specified in
this byte:

1. Data Out - Data is being written.

2. Data In - Data is being received.

3. Write Addressing - Addressing charac­
ters being written.

4. Write Polling - Polling characters are
being written.

5. Response Polling - Response characters
are being received as a result of a
prior write pOlling.

6. Response Addressing - Response charac­
ters are being received as a result of
a prior write addressing.

7. Control - An operation for line or
channel control.

8. TIC - Transfer in Channel.

When a line is dialed with a 1050 or
2741 terminal connected, a read is put on
the line. The terminal type is unknown but
marked as a 2741. This may result in the
read terminating in an error. If a unit
check, data in, lost data error is fielded
during initialization, it indicates the
device is a 2741; and an inhibit is put on
the line to continue receiving data. If a
unit check, data in, time out error is
'fielded during initialization, the terminal
type will be determined; and this is noted
by turning on the TDES2 flag in TDESTA.
With n6 data in tqe input buffer, the
device is a 1050; and this is flagged by
turning off the initial read operation flag
in TDESTA and switching TDEDEA to a 1050
device type. Control is t.hen passed to the
main routine to put a read on the line~
This condition, but with data in the buff-

62

er, indicates the device is a 2741-; and an
inhibit is put on the line to continue
receiving data •

The follOwing actions are taken when the
sense information is received after unit
check:

• Data Out:

Data Check - Retry the first CCW in the
TIOCB containing the error. This
causes readdressing of the line.

Bus-Out Check - Action same as for data
check.

Intervention Reguired - For 1050 with
intervention required only, signal
attention. For 2741 or TTY35 with
above condition and data has been tran­
sferred, signal attention. If identi­
fied as on MTT terminal, pass attention
to MTT task. If not, write -1- with
response. For 1052-7 if Bell bit
(MTSBEL) is on signal hard I/O Failure.
If bit is not on, set bit and ring
alarm by generating a CCW(OB) in a
TIOCB which is chained to other out­
standing TIOCBs. When an Attention is
received, MISBEL should be set off and
the writer operation resumed.

All others - Signal hard I/O failure.

• Data In:

Time Out - If in initialization proces­
Sing, handle as mentioned above. Else,
process same as overrun.

Lost Data - If the residual count in
the error CCW is zero, the buffer over­
flowed. A flag (TCTWW7) is set in the
TCT if identified as an MTT terminal,
and the ccw following the error CCW is
started. The CCW following the error
CCW is started if not an MTT terminal.
If not buffer overflow, process same as
overrun.

OVerrun - If identified as an MTT ter­
minal, write "REENTER DATA" message.
If not, write _1" with response.

Date Check - For 2741 or TTY/35 process
same as overrun. For 1050, scan input
buffer for X'41'. If not found process
same as overrun. If found, a cancel
has been indicated and the CCW preced­
ing the error CCW is started.

Intervention Reguired - For 1050 or
TTY35 if accompanied by a data check,
signal attention and post length of
message entered for Read complete rou­
tine (CEATC1). If not or if 2741, pro­
cess same as overrun. If this condi-

r"·····

it·

tion occurs on 1QS.~-7, the same proce­
dure is followed as indicated under
DATA OUT; however, the read operation
should be resumed.

All others - Signal hard I/O failure.

• Write Addressing, Write Polling:

Data Check - Retry error CCW.

Bn'3-0ut Check - Retry error CCW.

Intervention Required - Retry error
CCW.

All others - Signal hard I/O failure.

• Response Polling:

Time Out - Retry CCW preceding error
CCW.

Lost Data - Same as for time out.

Overrun - Same as for time out.

Data Check - Same as for time out.

Intervention Required - Same as for
time out.

All others - Signal hard I/O failure.

• Response Addressing:

Time Out - Check CCW preceding error
CCW for write addressing. If it is,
retry preceding CCW. If not, it is an
error in ccw string.

Lost Data - Same as for time out.

Overrun - Same as for time out.

Data Check - Same as for time out.

Intervention Required - Same as for
time out.

All others - Signal hard I/O failure.

• Control:

Time Out - If operation is prepare or
disable, retry error CCW. If operation
is enable, retry error TIOCB at first
CCw (disable). If none of the above,
signal hard I/O failure.

Data Check - If operation is a break,
retry first CCW in TIOCB with error
ccw. If not, signal hard 1/0 failure.

Intervention Required - If data check
also, set attention. If not, check for
prepare or break. If so, retry error
CCW. If not, signal hard I/O failure.

All others - Signal hard I/O failure.

• TIC:

All - Signal hard I/O failure.

The following actions are taken after
unit exception:

Data Out - Retry first CCW in TIOCB
with error CCW.

Data In -
return to
cessing.
operation

Turn off unit exception and
main routine for normal pro­
For 1052-7 reissue the read
at the terminal.

Write Addressing - Retry error CCW.

Write Polling - Same as for write
addressing.

Response Polling - Same as for data in.

Response Addressing - Same as for data
in.

All other functions - Signal hard I/O
failure.

For conditions where retry is attempted,
on the third successive occurrence of.the
condition, retry is aborted and hard I/O
failure is signaled.

For hard I/O failure, if the error is on
a prepare or enable, the interruption is
ignored. Otherwise, if the terminal is
connected to an MTT task, the hard I/O fai­
lure flag (TCTWW5) is set and the task is
i~formed of the condition. If not con­
nected to MTT, the path is released, the
TDE initial interruption flag is reset and
a TIOCB is set up to reenable the line.

STORAGE ALLOCATION PROCESSORS

User Core Allocation Queue Processor
(CEANB) Chart AN

The function of the User Core Allocation
Queue Processor (UCA) is te allocate blocks
of physical storage for user pages. User
page allocation is requested by page con­
trol blocks (PCBs), pointed to by the GQEs,
which in turn are pointed to by the proces­
sor's queue entry in the scan table. PCBs
may request the allocation of any block of
storage for a user's page, or the alloca­
tion of a specific block of storage.

The User Core Release subroutine is log­
ically a part of this module, and is
described immediately following it.

Ent ry: CEANBA

Section 3: Program Organization 63

Modules called: Set Suppress Flag subrou­
tine (CEAJQ entered at CEAJSF)-sets the
appropriate flag in the processor's scan
table entry.

Move GQE subroutine (CEAJQ entered at
CEAJMG) moves or releases the GQE.

Dequeue GQE subroutine (CEAJQ entered at
CEAJDE) removes the GQE pointer from pro­
cessor's queue.

Write Shared Pages subroutine (CEAMW
entered at CEAMWS) scans and/or purges
shared pages as directed.

Page Posting subroutine (CEAMP entered
at CEAMP1) updates page tables associated
with PCBEs.

Set rteal Time Interval subroutine (CEAS7
entered at CEAS7A) cancels pending real
time interrupts before forcing a task to
time slice end.

Enqueue GQE subroutine (CEAJQ entered at
CEAJEN) places a timer interrupt GQE on the
Timer Interrupt Processor queue to force a
task to time slice end.

Supervisor Core Allocation (CEALl
entered at CEAL01), supplies 64 bytes of
rr~in storage for a GQE.

Locate Page subroutine (CEAML entered at
CEAMLP) locates the addresses of the page
table entry and the external shared page
table entry.

Normal - To Queue Scanner.

Error - To System Error Processor.

Operation: The activities of this proces­
sor depend upon the following conditions:

• Requests for previously owned storage
blocks.

• New requests for storage allocation.

• The availability of main storage.

• The existence of partially processed
GQEs.

The process'or's response to each type of
request is described below.

'PREVIOUSLY OWNED STORAGE REQUEST PROCES­
SING: If previously owned storage is
requested, the processor determines whether
the requested page can be reclaimed. This
involves locking the core block table head­
er and computing the address of the appro­
priate core block table (CBT) entry for the

64

previously used storage block and comparing
it to the requested PCB entry testing for
the following:

• Page not presently in use.

• TSI match.

• VM address match.

If the block requested can be reclaimed,
UCA removes it from the unassigned list and
updates the pointers (forward and reverse)
in the list. If the CBT entry is first or
last on the chain, the chain pointer is
also updated. The reclaimed CBT entry is
then marked "in use, user owned" and its
pointers are cleared. UCA then unlocks the
core block header, calls page Posting, and
selects the next PCB entry for processing.

When reclaiming fails, the page is
removed from the top of the chain, and the
chain is updated accordingly. The CBT
entry is marked, and the internal address
is put in the PCB.

When all PCB entries have been processed
the UCA processor then determines if unal­
located main storage is adequate, that is,
it is greater than the minimum allowed. If
not, an indicator is set in the system
table to control the admission of new tasks
to the system.

If all PCB entries have been posted or
bypassed, UCA deletes the device queue str­
ing entry in the GQE. Move GQE is then .
called to move the GQE. On return, exit is
to the Queue Scanner.

NEW REQUEST PROCESSING: When the PCB
requests allocation of storage not pre­
viously owned, the processor locks the core
block table header and checks the core
block table (CBT) list for available
storage. If the requested storage is
available, it is aSSigned and marked "in
use, user-owned". The processor then
unlocks the core block table header and
determines whether a read operation from an
external device is required. If not, the
allocated storage area is cleared to zeros,
and the page Posting subroutine is called.
When control is returned to the processor,
or if a read operation is required, the
processor· checks for more PCB entries in
the GQE. If there are more entries, the
processor selects the next PCB and starts
processing it. If there are no more PCBs
to be processed, the UCA processor compares
the available number of storage blocks
against its minimum reserve storage. If
the available number of storage blocks is
not greater than the minimum reserve
storage, the 'l~w core' flag is set, and
Write Shared Pages is called. When control
returns to the processor, it exits to the

Queue Scanner. If any PCBs have not been
posted, the device queue is not deleted,
the move-GQE subroutine is called, after
which the processo~ exits to the Queue
Scanner.

LOW CORE CONDITIONS: Prior to processing
new requests for storage, a check is made
to determine if enough main storage is
available. If not, an attempt is made by
the processor to free main storage by call­
ing the write Shared Pages subroutine. In
this case, the scan flag in the system
table is turned off -- resulting in a
purge. If this does not solve the low main
storage problem, the processor will select
a task to force to time slice end, pre­
ferably not the requesting task. When a
task, other than the requesting task, is
forced to time slice end, the processor
then attempts to allocate the main storage
block. If the requesting task is forced to
time slice end, the processor immediately
returns to the Queue Scanner. When setting
or testing the 'low core' flag in the sys­
tem table the TSI lock in the system table
must be locked. It must then be unlocked
when the fUnction is completed.

The check of the low core threshold is
made each time a page is assigned. If the
threshold is not reached, the scan flag in
the system table is turned off. When a
task is forced to time slice end because of
a low core condition, the field SSTLCT in
the system statistical table is
incremented.

INCOMPLETE PROCESSING: In the event that a
request cannot be fully satisfied because
there is not enough main storage, the pro­
cessor will lock the lockout area lock and
save all pertinent information in a save
area and lock itself out by setting a sup­
press flag on. After information is stored
in the lockout area, its lock is unlocked.
The saved GQE will be processed before any
new request for main storage. To assure
this, the processor builds and queues a
dummy request (GQE) to itself'which will be
received as soon as User Core Release
causes the UCA suppress flag to be reset
and control returns to UCA. .

FORCED TIME SLICE END: If it becomes
necessary to force a task to time slice
end, UCA will lock the TSI chain and each
individual TSI is then tested before
selecting a task to be forced. (The re­
questing task will not be selected if an
alternative is available.) After selecting
a task to fo~ce to TSE, the TSI chain is
unlocked as are the individual TSIs which
were not selected. A GQE is then built and
placed on the timer interrupt queue. UCA
then attempts to continue. If it cannot,
data is saved as in -INCOMPLETE PROCESSING­
and exit is to the Queue Scanner.

Page Stealing: This portion of UCA is
invoked when the steal request indicator
(STESRI) in the schedule table is on, and
the pages using this time slice (XTSNPG) is
greater than the maximum number permitted
to this task (STEMAXCR). The number of
pages that can be stolen is 100 minus the
percentage of the task's maximum pages that
must be retained (STEST) times the number
of maximum pages [(100 - STEST) • STE­
MAXCR]. If this percentage, divided by
100, is greater than the number of pages
used, this time slice:

STEMAXCR • STEST > XTSNPG
100

a scan is done on all user pages, resetting
the reference bits.

Before a page can be stolen, it is
tested to make certain that it is not:

• An XTSI page.

• An ISA page.

• A PSW page.

• In transit (that is, in the process of
being stolen).

• In I/O or SVC hold •.

Only unreferenced pages may be stolen;
therefore, the task's reference bits are
reset each time page stealing is performed.

Auxiliarv Storage Allocation Queue
Processor (CEAIA) Chart AO

The function of the Auxiliary Storage
Allocation Queue Processor is to allocate
and maintain storage for user pages in
aUXiliary drum and disk devices. This pro­
cessor maintains a count in the system
table of auxiliary storage in use at any
time for the entire system. The amount of
auxiliary storage assigned to each task is
maintained in the task's TSI. Also, if
available drum space falls below a certain
threshold, this processor will cause the
migration of certain tasks from drum to
disk. An additional logical function of
the processor is the Auxiliary Storage
Release subroutine described below.

Entry: CEAIAA

RESTRICTIONS: Auxiliary storage cannot be
extended dynamically and the auxiliary
storage processor can only handle the 2301,
2311, and 2314 devices.

MODULES CALLED: Dequeue GQE subroutine
(CEAJQ entered at CEAJDE) removes the GQE
pOinter from the processor's queue.

Sectio~ 3: Program Organization 65

Enqueue GQE subroutine (CEAJQ entered at
CEAJEN) queues the GQE on the specified
device queue.

Supervisor Core Allocation subroutine
(CEALl entered at CEAL01) allocates main
storage for a temporary save area and for
GQEs and PCBEs when page storage allocation
is from different devices.

Queue GQE on TSI subroutine (CEAAF
entered at CEAAFQ) queues a GQE.on the TSI
representing an interruption to 'cause a
warning or shutdown message to be issued
because of low auxiliary storage.

Supervisor Core Release subroutine
(CEALl entered at CEAL02) releases main
storage used for temporary save area.

Move GQE subroutine (CEAJQ entered at
CEAJMG) causes GQES to be queued on the
proper device queue.

Exits:

Normal - To Queue Scanner.

Error - To System Error Processor.

operation: On entry the Dequeue GQE sub­
routine is called to remove the GQE pointer
from the auxiliary storage allocation queue
entry in the scan table and to enable
interrupts. When control returns to the
processor, the first PCB is located and its
related PCBEs are examined. If at this
point, there still isn't enough auxiliary
storage to satisfy the PCB request, auxi­
liary storage management has failed, and
the System Error Processor is invoked.

When drum space is to be allocated, a
check is made to see if it will cause the
amount of drum space available to fall
below its threshold value. If it will, a
task is chosen to migrate from drum to
disk. The inactive list of tasks is
searched looking for the task with the
largest number of pages on drum in excess
of its fair share (fair share is determined
by the formula ODS-BUFF-3T/T-2, where ODS =
original drum space, BUFF = system buffer
size, and T = number of tasks in the sys­
tem). If no task on the inactive list
exceeds its fair share of drum, the active
list is searched using the same criterion.
When a task has been selected for migration
in this manner, a GQElPCB is created to
page in the first XTSI page. After it has
been read in, and Page Posting brings in
all the XTSI pages, migration of the
selected task's pages will be initiated.

Under certain conditions, consideration
is also given to migrating a task's shared
pages from drum to disk. A field is
checked in the auxiliary storage allocation

66

table (ASATMA) which indicates the number
of drum pages available. If the number is
less than the system buffer requirement,
then the number of tasks already in migra­
tion is checked (SYSMC). If the value in
SYSMC is less than the number of storage
units in the system, minus one, and shared
page migration is not already in progress,
the number of shared pages on drum is com­
pared to the maximum shared pages on drum
threshold (SYSMXD). If the threshold is
exceeded, CEAIA turns on the shared page
migration flag (SYSMG), and a flag in the
GQE (GQEMG) to indicate to the Timer Inter­
rupt Processor that migration of shared
pages is to be initiated.

When available drum space is not below
the threshhold value (and migration not
required) a PCBE is located which requests
drum storage allocation (when no bypass or
suppress indicators are set). The proces­
sor then searches the drum directory slots
for available pages. When available
storage has been found, the processor
updates the relevant auxiliary storage
allocation table (ASA) fields and calcu­
lates the drum page number for the
requested storage.

At this point, the processor inserts the
page number and drum address in the PCBEs
external address field and posts the auxi­
liary page address in all required TSI/XTSI
entries. The processor then selects the
next PCBE for processing and performs auxi­
liary storage location and allocation as
described previously.

When minimum drum availability is
reached, the processor makes a check to
determine if the page is a drum-preference
page. If so, the processor assigns the
page a drum address in the manner described
previously.

The processor allocates disk storage
when the following conditions exist:

• No drum storage is available.

• The requested storage is not a drum­
preference page and the availability of
drum space is minimal.

When these conditions exist, the proces­
sor locates a disk device with available
storage, and then searches the disk direc­
tory until the available space is located.
Auxiliary disk storage is then allocated in
the same manner as drum storage.

When auxiliary storage has been assigned
to the PCBES, the processor sorts them by
assigned-device type. If page storage has
all been allocated from the same device,
the processor inserts the device address in
the affected GQE fields, and calls the

Enqueue GQE subroutine. Enqueue GQE queues
the GQE on the queue of the addressed
device and enables "interruptions as speci­
fied by the processor. When control is
returned to the processor, an exit is made
to the Queue Scanner.

If page storage has been allocated for
the PCBEs from different devices, the pro­
cessor must set up a GQE and PCB for each
addressed device as follows:

• Requesting from the supervisor Core
Allocation (SCA) subroutine a 64-byte
physical storage area for each GQE. At
the same time, a 64-byte physical
storage area is also allocated for a
PCB.

• When SCA has reserved the storage and
returned control, the GQES are set up
by inserting a pointer to the PCB and
the device address in the required
fields.

• The PCBE is then moved to the new PCB,
and the count of PCBEs in the GQE is
then updated. When a PCB is filled,
and another PCBE is found for this
device, SCA is called to provide anoth­
er 64-byte storage area for another
PCB.

• setting bypass flags in the old PCBEs
to prevent allocation to the wrong
device.

• calling the Enqueue GQE sUbroutine to
queue the new GQES on the queues of the
addressed devices.

• Regaining control from the Enqueue
sunroutine.

Whenever auxiliary storage has been
allocated, the total of auxiliary storage
available field, in the system table, is
decremented by the amount assigned. Also,
the count of auxiliary storage assigned
field in the task's TSI is incremented by
the amount.

If the amount of auxiliary storage
assigned to a task exceeds the amount per­
mitted for that task, a warning flag is set
in the task's TSI. If the amount of auxi­
liary storage available to the system falls
below the minimum allowed, the task which
has the greatest amount of auxiliary
storage assigned to it, and its warning
flag on, is terminated by way of a program
interruption.

When allocation is completed, this pro­
cessor exits to the Queue Scanner.

Figure 16 illustrates the activities of
the processor.

,-- CEAJDE

Queue
Dequeue

Scanner

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Select
Available

Location(s)

Past as
Specified

No

I I
I I

I L ______ -..J

CEALOI
Supervisor
Core
Allocation

Figure 16. Activities of the Auxiliary
Storage Allocation Queue
Processor

Contiguous Core Allocation Queue Processor
(CEANF)

This queue processor allocates conti­
guous main storage pages when user virtual
memory expansion requires more than one
segment table page. Hardware limitations
require segment table paqes to be
contiguous.

RESTRICTIONS:

• This routine can only be called by Page
Posting (CEAMP), Add Page (CEAHQ), Add
Shared page (CEAQ6), and Connect Seg-

" ment to Shared Page Table (CEAQ7)
subroutines.

• The GQECNT field in the GQE passed to
this routine must contain the number of
contiguous main storage blocks
requested.

• If entry is from Page Posting, the
internal main storage address of the
segment table used in the previous time

Section 3: Program Organization 67

slice must be contained in the PCBIA
fields of the PCBs attached to the GQE.

Assumptions:

• When this routine is called, the task
has at least one segment table page
outside of the first XTSI page.

• Requests from ADDPG, ADSPG, and Connect
Segment are for only one page of conti­
guous main storage at a time.

• The XTSI ID (VMA) will be provided by
the caller.

Entry: CEANFA

Modules Called: Dequeue GQE subroutine
(CEAJQ entered at CEAJDE) removes GQE poin­
ters from specified queues.

Rescheduling (CEAKZ entered at CEAKZA)
places a task's TSI on the inactive list
when the request for contiguous main
storage cannot be met immediately.

Move GQE subroutine (CEAJQ entered at
CEAJMG) moves a GQE from this processor's
queue to another where processing is to be
done.

Page Posting (CEAMP entered at CEAMP1)
posts user page status information to a
task's TSI, XTSI, and shared page tables
after a paging operation.

User Core Release (CEALl entered at
CEAL04) releases storage for unused pages.

Task Communication Control (CEAAN
entered at CEANNl) sends a message to the
main operator.

Read Time (CEAS6 entered at CRAS6A via
SETTIMER macro) gets the real time in
milliseconds. .

Set Real Time Interrupt (CEAS7 entered
at CEAS7A via SETTIMER macro) sets real
time interrupt for this task.

Queue GQE on TSI (CEAJQ entered at CEA­
JEN) adds a GQE to the TSI queue.

~:

Normal - To Queue Scanner.

Error - To System. Error Processor when the
following situations are
encountered:

68

• The waiting count is exceeded
while testing the locK byte;

• The task does not already have
one segment table page outside
the first XTSI page.

• The condition code setting after
issuing the Load Real Address
instruction indicates unsuccess­
ful translation of the address
of the page to be stolen.

• An invalid instruction length
code is encountered.

• An error is encountered when
converting the core block table
entry address to a main storage
page address.

operation: If this processor is entered
from the Page Posting routine, a task is
starting a new time slice. In this case
(determined by a check on entry), the TSI
is locked and an attempt is made to reclaim
pages used in the task's last time slice.
If successful (all contiguous pages are
obtained), pages will be reposted -- eli­
minating the need for any I/O operation.
The GQE is then destroyed and the TSI lock
reset before exiting to the Queue Scanner.

If previously used pages cannot be reco­
vered, the core block table is locked
(CHBBLK) and the core block table entry
string is scanned from the top seeking the
required number of contiguous main storage
pages.

If found, they are allocated and the
core block table entries are updated and
relinked. Exit is to the Queue Scanner
with the core block table lock reset.

If the request is from one of the
authorized SVC queue processors (CEAMP,
CEAHQ, CEAQ6, or CEAQ7), the task is active
and needs contiguous main storage pages on
demand. To meet the demand, the page fol­
lowing and the page preceding the segment
table page are checked--in that order. If
the trailing page is available, it is used
to fill the request. If the page preceding
the segment table page is to be used, all
segment table page pointers in the core
block table entries are updated to reflect
movement of the segment table to the begin­
ning of this page.

When neither adjacent page is available,
the core block table entry string is
scanned as in the procedure previously
described for handling a call from Page
Posting. If necessary, an available page
can be created to satisfy the request for
contiguous main storage by borrowing one of
the pages currently occupied by the task.
This is done by marking the page ·unavail­
able- in the page table. pages may not be
stolen in this way, however, if they are

PSW, XTSI or changed pages, or if they are
in I/O hold.

If they are shared pages, the sharing
lock (SYSSHALK) is set, and the Inter CPU
Communication subroutine is called to cause
the other CPU's associative registers to be
reset. After the page table has been
updated, the sharing lock is reset.

When a contiguous main storage block has
been allocated, its first page will be used
to contain the beginning of the segment
table. The address of this first page is
returned to the caller.

If a request cannot be satisfied through
these procedures, a retry effort is set up.
First, a message is sent to the main opera­
tor to inform him of the situation; then
the requesting task is deactivated and a
3-second real timer is set to control reac­
tivation of the task. Exit is then made to
the Queue Scanner. After tilree seconds,
the task is reactivated and the request for
contiguous main storage regenerated.

Supervisor Core Allocation Subroutine
(CEALl Entered at CEAL01) Chart AP

This subroutine allocates main storage
for use by the supervisor components.

E;ntry: CEALOl

Modules Called: Inter-CPU Communication
subroutine (CEAIC): resets associative
registers for other CPUs.

Write Shared Pages subroutine (CEAMW
entered at CEAMWS) to free shared pages
when all other means of obtaining main
storage for supervisor use have failed.

Exits: To calling routine:

CC = 0 request fulfilled
CC = 1 core unavailable.

Operation: Supervisor Core Allocation
(SCA) allocates main storage in mUltiples
of 64 bytes for any size request of a full
page or less. Each physical page being
used by SCA is divided into blocks, each
block conSisting of 64 bytes. When a
request for main storage is received, the
nuwber of bytes requested is rounded up to
the nearest multiple of the blocksize, and

that many contiguous blocks are made avail­
able for use by the calling component.

The first block of each SCA page is
never assigned for use, but instead con­
tains control information for the SCA sub­
routine. Forward and backward links chain
it to other SCA pages. All SeA pages con­
tain a unique identification word (GAIL) to
ensure that any release of main storage
references a valid SCA page. Also included
in the control information is a count of
available blocks,left in the page, and a
0;;'::. L:lole .:-ep:.:esenting the current status
of each assignable block in the page, where
a 1 bit indicates an in-use condition, a
zero bit indicates that the block is avail­
able. The control information block of
each SCA page is formatted in the manner
shown in Figure 17.

The one exception to the use of the con­
trol block is when a full page of main
storage is requested. Because of this, a
full page request must be released as a
whole, and never in a series of smaller
blocks.

When SCA is called with an unavailable
return permitted and the 'low core' flag is
on, SCA exits immediately with condition
code = 1. Otherwise the request is filied.
When the request is for one block of main
storage, the quick cell lock is set and a
check is made to see if a block address is
currently in one of the quick cells (words
containing the address of one block of main
storage that was recently released). If
the quick cells are not empty, the request
is filled and exit is made with condition
code = O. If the quick cells are empty,
the lock is reset, and the request is
filled by other means.

Requests for main storage blocks of less
than a page are allocated from three chains
of partially allocated pages:

• Single block chain - requests for
single blocks are allocated from this
chain when the quick cells are empty.

• TSI chain - blocks in this chain are
allocated in groups of three and are
used only when Create TSI calls for
main storage for a TSI.

r---------T----------T---------T--------T--------T-----------r--------------------------,
IForward I Backward tSCA IUnused IFlags tcount I Availability I
I Link ILink tID I I I Available I Bits I
I I I (GAIL) I I I Blocks I I L _________ ~ __________ ~ _________ ~ ________ ~ ________ ~ ___________ ~ __________________________ J

4 bytes 4· bytes 4 bytes 1 byte 1 byte 2 bytes 8 bytes

Figure 17. SCA control information block

Section 3: Program Organization 69

• Other - all other reques~s_ are filled
from this chain.

In all cases, the RSVLK is set and SCA
allocates from the first two if they have
storage available. When the third chain is
used, each SCA page is checked before it is
searched to assure a reasonable probability
of meeting the request in that page. If
the probability is not good, the page is
skipped and the next page is checked. If
all pages are eliminated because of poor
probability, they are then searched in the
normal manner, contingent upon the count of
available blocks being at least as large as
the request.

When SCA cannot find enough blocks of
contiguous main storage in any of the
chains, or if the request is for a full
page, it goes to its list of reserved pages
- a list containing the addresses of a
number of pages kept in reserve to supply
the immediate needs of the supervisor com­
ponents. Whenever the reserved list is
low, the User Core Release subroutine
aSSigns the next user page released to the
reserve list. SCA sets the protection key
to "4" on all new pages it takes.

When the reserve list is empty, the core
block header lock (CHBLOCK) is ~et and an
attempt is made to find available main
storage in the core block header chains.
If none is available, the core block header
lock is unlocked, the TSI lock in the sys­
tem table is set and an attempt is made to
steal pages by scanning through the various
XTSI's segment and page tables.

As each task is checked, the TSI lock
and CHBLOCK are set and then unlocked if no
page can be stolen. Up to three passes are
made on the page tables; if at the end of
any pass a page or pages have been found,
the pages are marked unavailable, assigned
to the reserve list and normal SCA proces­
Sing is resumed.

The first pass on the page tables
searches for available pages that have been
referenced but not changed for tasks not in
the execution state. On the next pass,
available pages that are not referenced and
not changed for tasks not in the execution
state are considered.

The final pass looks at available pages
that are not changed for tasks in the
execution state. When pages for tasks in
the execution state are used, it is neces­
sary to ensure that the page hasn't been
changed between the time it is checked for
a change and the time that it is made.
unavailable. This is done by checking the
page for a change, and marking the page
unavailable. Inter-CPU Communication 1S
called to reset other CPU associative regi-

70

sters. The page is then checked again for
a change.

In the event that a page cannot be sto­
len from another task, the TSI lock in th.e
system table is unlocked and a special call
is made to Write Shared Pages (CEAMW) to
free up unchanged pages. If the first call
is unsuccessful in freeing pages to place
on the reserve list, a second call is made.
If no main storage can be obtained, a major
SYSERR is issued.

The Supervisor Core Allocation subrou­
tine disables all I/O and external inter­
ruptions for the CPU currently executing
the subroutine, in order to inhibit the
interrupt stackers, so that the SCA subrou­
tine will not be called when its pages are
locked. Prior to entering SCA, the calling
program indicates, as one of its calling
parameters, whether these interruptions are
to be enabled on exiting from seA or wheth­
er interruptions are to remain disabled.

supervisor Core Release Subroutine (CEALl
Entered at CEAL02) Chart AP

This subroutine releases main storage
blocks previously held for the use of
supervisor components.

Entry: CEAL02

Exits: To caller - with reserve list lock
(RSVLK) unlocked.

If a full page of main storage is freed
by the release of blocks, exit is to User
Core Release (CEALl entered at CEAL04)
which releases full pages of main storage.

Operation: This subroutine marks available
for use any returned main storage blocks.
To do this, the reserve list lock is set
and the availability bits in the SCA page
are reset, and the count of available
blocks is incremented. If the page is now
composed entirely of available blocks, the
page is returned for general system usage
by calling the User Core Release
SUbroutine.

When a single block of storage is
released to SCR, a check is made to see if
all quick-cells are empty. If they are
full, the availability for this block of
storage in the SCA page is reset, as noted
earlier; if the quick-cells are empty, the
quick-cell lock is set, the address of the
single block of storage being released is
put in it, and its corresponding availabi­
lity bit remains set. The quick cell lock
is unlocked. The quick-cell is used to
speed up the allocation of a Single block
of storage, which is expected to be the
most common type of request.

.r--.

\ ,

SCA disables I/O and external interrup­
tions for the CPU currently executing the
subroutine, to preventthe interrJ.pt stack··
er from entering it while SCA has certain
locks locked. The calling program indi­
cates as one of its calling parameters,
whether these interruptions are to be
enabled on exiting SCR, or are to remain
disabled.

User Core Release Subroutine (CRALl Entered
at CEALO~) Chart AP

This subroutine marks 4,096 bytes of
main storage available for reuse in the
Core block table (CBT).

Assumptions: Startup will initialize the
core block table.

Entry: CEAL04

Exits: To caller except when it was called
by SCR, in which case exit is to the caller
of SCR.

Operation: Upon entry, User Core Release
(UCR) locks the reserve list (RSVLK) and
core block header (CBHLOCK). UCR then
determines whether the address it has
received is that of a page or of a PCB con­
taining a page address. The page address
(whether sent directly or by means of a
PCB), is placed into a register; from this
point forward its origin no longer matters.
UCR then checks to make sure that CBHPXP
(the shared page chain pointer in the core
block header) is not pointing to the page
to be released. If it is, it must be
updated to the next page on the chain, or
zeroed if there are no more pages.

UCR then releases main storage to the
core block table unassigned chain, unless
the reserve list is low, in which case the
page is put in the reserve list if the
flags indicate that this is permitted. UCR
then unlocks the core block header and the
reserve list, and resets the low core flag,
if necessary. If a check indicates that
User Core Allocation is suppressed, the Set
Suppress Flags subroutine is called to
reset the flag, provided Write Shared Pages
is not the caller.

UCR then exits to its caller unless
supervisor Core Release called it to
release a full page, in which case it
returns to SCR's caller.

Auxiliary storage Release Subroutine
(CEAIA) Chart AO

This subroutine releases auxiliary
storage and maintains auxiliary storage
control fields in the system table and
task IS TSIs.

Entry: CEAIAR

~l)dules Callec:!: Supervisor Core Allocation
subroutine (CEALl entered at CEAL01) pro­
vides main storage for use as a register
save area.

Supervisor Core Release subroutine
(CEALl entered at CEAL02) releases main
storage after use.

Set Suppress Flags subroutine (CEAJQ
entered at CEAJSF) sets the suppression
fia'3 off ir. tl.~ Au.xiliary Storage Alloca­
tion Queue Processor's scan table queue.

Exit: To caller.

Operation: The calling routine must supply
three parameters:

• The TSI pointer.

• The number of pages to be released.

• The main storage location of the list
of 4-byte symbolic I/O addresses (one
address for each auxiliary storage page
to be releas ed) •

The subroutine finds the bit for each
symbolic I/O address in the appropriate bit
directory, sets the bit to zero, and raises
the availability count for that device by
one. Each time a page is released, the
count of available auxiliary storage, main­
tained in the system table, is raised. The
TSI pointer is then checked. If it is not
zero, the count of auxiliary storage
assigned to the task, maintained in the
TSI, is lowered. The assigned count of
auxiliary storage for the task is then com­
pared to a field which specifies the limit
of auxiliary storage allocatable to this
task. If the amount of auxiliary storage
actually assigned is equal to or greater
than the limit, the auxiliary storage
requirements exceeded flag is turned on in
the task's TSI. If release of a page
causes the amount of storage allocated to
fall below the limit for the task, the flag
is turned off and the program continues.

Two conditions can cause an entry to the
system error processor:

• One of the symbolic I/O addresses given
does not represent an auxiliary storage
page.

• One of the auxiliary storage pages was
already available.

The processing of the request is com­
plete up to the error entry.

Section 3: Program Organization 71

Suppress Auxiliary Allocation Subroutine
(CEAAP)

This subroutine suppresses external page
allocation on the specified auxiliary
device.

Entry: CEAAPl

Modules Called: Supervisor Core Alloc~tion
subroutine (CEALl entered at CEAL01) allo­
cates all necessary work/save areas.

Supervisor Core Release subroutine
(CEALl entered at CEAL02) releases the
work/save area.

Exit: To caller.

Operation: On entry, processing steps are
performed in the following manner:

• The Supervisor Core Allocation subrou­
tine is called to allocate all neces­
s.ary work/save areas.

• The input general registers are saved.

• A test-and-set instruction is used to
test the auxiliary storage allocation
table lock byte.

• If it is on, a wait loop is entered to
allow a reasonable time for the lock
byte to be reset. If the lock is not
reset during the waiting period, a
minor software SYSERR is reported, and
processing continues as if the lock­
byte had been found off.

• If the lock byte is off the first drum
entry may be referred to via the point­
er in ASAT.

The input symbolic address is compared
to that of the device address field of this
and succeeding drum entries until a match
is found, or until the last drum entry has
been examined. When a match is found, the
drum suppression flag is set, the number of
pages available on the drum subtracted from
the total number of drum pages and control
returns to the caller.

72

• If no matching entry can be found when
the maximum number of drum entries have
been tested, a testis made to deter­
mine if there are any disk entries in
the ASAT.

• If so, the input symbolic device
address is compared to that of the
device address field of successive disk
entries untif a match is found or until
the last disk entry has been examined.

• When a match is found, the drum
suppression flag is set, the number of

pages available on the disk is sub­
tracted from the total number of disk
pages, and control is returned to the
caller.

• If no match can be found when the maxi­
mum number of disk entries have been
tested, a minor software SYSERR is
reported.

When processing is completed, the ASAT
lock byte is reset, general registers are
restored, and the Supervisor Core Release
subroutine is called to release the work/
save areas and control is returned to the
calling program.

SVC QUEUE PROCESSOR AND SERVICE ROUTINES

Supervisor Call Queue Processor (CEAHQ)
Chart AQ

The function of the Supervisor Call
Queue Processor is to assure that the task
issuing the SVC is privileged to do so and
to identify and branch to the proper SVC
processor to service the interrupt.

Attributes: The SVC processor and its pro­
cessor programs are reenterable, reSident,
open, and operate in the privileged state.

Entries: The Supervisor Call Queue Proces­
sor is entered from the SVC interrupt
stacker at CEAHQP2. There are also two
other entry pOints (CEAHQQ and CEAHQR)
which allow the SVC Queue Processor to be
entered as a subroutine to provide GQE
routing service.

Modules Called: Queue GQE on TSI (CEAAF)
queues program interrupts on the task's
interruption queue in the event the task is
not authorized to issue the SVC or if it
has issued too many consecutive TSEND SVCs.

Move GQE subroutine (CEAJQ entered at
CEAJMG) queues the GQE on the next queue
when there is more work to be done or
releases the GQE's storage space when there
is no more work.

In addition to these, the SVC Queue Pro­
cessor calls all of the SVC proceSSing sub­
routines described on the following pages.
These routines perform the work requested
by the task and only one is entered for
each supervisor call (SVC).

Exits: Upon normal completion of its work
the Supervisor Call Queue Processor exits,
by means of a branch, to the individual SVC
subroutine or processor indicated by the
interrupt code. The address of the GQE is
passed, as a parameter, in register one.
In addition, registers two and three will
contain the addresses of the TSI and the

XTSI respectively and the contents' of regi­
sters 0, 1 and 15 at the time the SVC was
issued will be preserved in registers 4, 5
and 6 respectively.

If the task issuing the SVC is found to
be unauthorized to do so, an exit is made
to the Queue Scanner after an appropriate
task interrupt has been set up. Since pro­
grams will issue SVCS as part of macro
instruction expansions, an undefined inter­
rupt code is considered a serious error and
will result in a call to the System Error
Processor with an indication of the nature
of the error from the SVC Interrupt
Stacker.

Operation: The SVC Queue Processor is
initiated either by the Queue Scanner when
a GQE is on the SVC queue or directly by
the interrupt stacker. General register 1
contains the address of the GQE when this
program is entered.

On entry, the lock byte in the TSI of
the task that issued the SVC is set and the
ready bit will be on meaning that until the
lock byte is reset the task will not be
considered for further execution.

If entered from the Queue Scanner, the
SVC Queue Processor first de queues the GQE.
If entry is from the Interrupt Stacker,
this function is skipped. Next, the inter­
ruption code from the GQE is used to locate
an appropriate entry in the SVC flags
table. This entry is one byte of informa­
tion Which includes the privilege status of
the SVC. This privilege status is compared
to that of the task (contained in the TSI).
If the task's privilege does not qualify it
to have issued the SVC, it is treated as a
program error by generating a program error
interruption. The TSI lock byte is then
reset and exit is made to the Queue
Scanner.

For any SVC except TSEND, the time slice
end SVC count field in the TSI (TSITSC) is
set to 1. If the SVC is TSEND, this count
is raised by 1. It is then compared to the
time slice end maximum count (SYSTSEM) in
the system table. If SYSTSEM is exceeded,
the task is terminated by way of a program
interrupt for issuing too many consecutive
TSEND SVCs.

If the task is of a sufficient priority
to have issued the SVC, the SVC Queue Pro­
cessor places the following in general
registers:

• The GQE pointer.

• The TSI -pointer.

• The XTSI pOinter.

• The contents, from the XTSI's save
area, of general registers 0, 1 and 15
when the SVC was issued.

This accomplished, the SVC Queue Proces­
sor uses the interruption code to find the
entry in the SVC address table, which con­
tains the actual main storage address of
the SVC processor required for processing
the SVC. If a corresponding entry is
found, the SVC Queue Processor passes con­
trol to the processor program. If there is
no corresponding entry, the queue processor
branches to an error routine which calls
CEAIS via the ERROR macro instruction.

Two SVC processing routines are internal
subroutines within the SVC Queue Processor,
the Add Page subroutine (CEAHQA) and Time
Slice End subroutine (CEAHQF). They are
branched to by the queue processor whenever
the services they provide are requested.

Add Page Subroutine (CEAHQ entered at
CEAHQA) Chart AR

This subroutine handles SVC requests for
the addition of pages to the calling task's
virtual storage. The Virtual Storage Allo­
cation Service routine normally issues the
SVC, specifying the virtual storage
address, a protection code and the number
of pages to be added. The specified virtu­
alstorage address indicates the segment
and page at which the new page addition is
to begin. In adding a page to a segment,
the subroutine checks the segment and page
tables.

Entry: CEAHQA - in response to the ADDPG
macro instruction.

Modules Called: SVC Queue Processor (CEAHQ
at CEAHQQ) causes a GQE to be put on the
calling task's interruption queue, and
resets the TSI lock and exits to the Queue
Scanner.

Find Page subroutine (CEANC) locates the
segment table, auxiliary segment table,
page table, segment page and external page
table entries.

XTSI Overflow subroutine (CEAMX) is
entered at CEAMXP for page-table expansion;
at CEAMXS for segment-table expansion.

Paging routine (CEAMQ) is called to read
in a page table page, if necessary.

Exits: Upon normal completion the Add Page
subroutine exits to the SVC Queue Proces­
sor. An abnormal condition may result in
an exit to either-the Queue Scanner or the
SYSERR routine.

Section 3: Program Organization 73

------------------------------- -

Operation: The addition of pages .to a seg­
ment in a user's virtual storage may
involve either:

• The addition of a page to a segment
that already has pages assigned to it.

• The addition of pages to an unassigned
segment.

When a page is being added to a segment
which already has pages assigned, the addi­
tion may be made to the end of the segment,
thus expanding the page table and external­
page table of the segment; or, the addition
may be made within the segment to an unas­
signed area which has been freed by the
execution of a Delete Page SVC.

In adding pages, the subroutine must
consider the storage required by the XTSI.
For each page added ten bytes of XTSI space
are required; two bytes for the new page
table entry and eight bytes for the new
external-page table entry. Since the page
table and/or external-page table for any
segment may not overlap the XTSI page boun­
dary, the subroutine must determine whether
or not the addition of table entries would
exceed the first XTSI page. If so, another
page of main storage is requested in which
to place the page table and external-page
table for the segment involved. The number
of allowable XTSI pages is a system value
that is Checked whenever the subroutine
obtains a new page. If this maximum is
exceeded, an interruption must be queued on
the TSI's interruption queue. This is
accomplished by calling the SVC Queue
Processor.

Another consideration in adding pages is
whether a shifting of tables is necessary
in order to accommodate any particular
addition of pages. This shifting may take
one of two forms:

• A ·short push-, which involves moving
the external-page table entries of a
particular segment away from the page
table entries of that same segment in
order to make room for new page table
entries.

• The ·big push-, which involves moving
together the page table and external­
page table of a number of segments in
order to make room for the total addi­
tion of table entries to some other
segment. This action is necessary only
when pages are being added to a segment
whose tables (page and external-page)
reside within the first XTSI page and
are not the l~st set of such tables in
the first XTSI page.

On entry, the Add Page SUbroutine loads
the virtual storage address specified .by

74

the caller into a general register, and
checks contiguous main storage requirements
for segment table entries. If needed, Con­
tiguous Core Allocation is called to get a
new main storage area address. The Add
page subroutine passes this address to the
XTSI Overflow subroutine (at CEAMXS) for.
use in segment table expansion. If there
are no contiguous main storage require­
ments, the Add Page subroutine transfers
control to the Find Page subroutine (at
CEANCA). This subroutine returns to Add
Page a condition code and pointers to the
segment/auxiliary-segment tables, and the
page/external-page table entries involved
in this particular add-page operation. If
the return code from Find Page indicates
that the segment is unavailable, Add Page
checks to see if that segment is in a page
table page. If so, CEAMQ is called to read
in the page table page. When CEAMQ
returns, the page table will be available.

If the segment is available, the proces­
sor tests the condition code to determine
whether the requested page is to be added
to an internal area of a segment, to the
end of a segment to which pages are already
assigned, or to an unassigned segment. In
the latter case, the subroutine issues an
ERROR SVC. In the other two cases, the
subroutine determines whether the current
allocation of tables within the XTSI allows
the selected page table to be expanded as
much as the request requires. 1f not, the
tables are rearranged, or the XTSI is
expanded to another page. If the current
size of the XTSI exceeds the current limit
for the task, or if previously assigned
pages are being reassigned by the SVC, the
SVC Queue Processor is called to queue the
GQE pointer on the TSI's interruption
queue.

If Add Pages was able to allocate the
requested pagers), the following occurs:

• The page-table-length field in the seg­
ment table entry is increased if the
addition was made at the end of a page
table.

• The page-table-availability flag in the
applicable segment table entry is set
to indicate that the page table for
that segment is unavailable.

• The page-assigned indicator in the
external-page-table entry is turned on.

• The appropriate protection keys, speci­
fied by the protection class, are set.

• The page-availability flag in the appl­
icable page-table entry is set to ind­
icate that the page is unavailable.

(.. • The Add Pages subroutine exits to the
Queue Scanner.

Add Shared Pages Subroutine (CEAQ6) Chart
AS

This subroutine handles an SVC re9u7st
for additional shared pages for a pr1v1-
1.eged program's use and tests to determine
'.f a new shared page table must be created
or if it is possible to add to the existing
shared page table of the same number. The
::alling program specifies a virtual storage
;iddress, a number of contiguous pages, a
L,rotection class, and a shared-table
number.

Entry: CEAH26 - in response to the ADSPG
macro instruction.

Modules Called: SVC Queue Processor (CEAHQ
at CEAHQQ) causes a GQE to be put on the
calling task's TSI interruption queue,
resets the task lock, and exits to the
Queue Scanner. .

Locate Page subroutine (CEAML) provides
the location of any page table entry or
external-page table entry when the appro­
priate virtual storage and TSI addresses
are given.

supervisor Core Allocation subroutine
(CEALl entered at CEAL01) allocates new
space.

supervisor Core Release subroutine
(CEALl entered at CEAL02) releases old
storage space.

Exit: To Queue Scanner, with following
output:

Register 1 - Virtual Memory Address.

Register 15 - Protection Class and Shared
page table number.

operation: On entry, the subroutine checks
contiguous main storage requirements for
segment table entries. If needed, Conti­
guous Core Allocation is called to get a
new main storage area address. The Add
Shared Page subroutine passes this address
to the XTSI Overflow subroutine (at CEAMXS)
for use in segment table expansion. If
there are no contiguous main storage
requirements, the Add Shared Pages subrou­
tine tests the shared-page table number
specified by the caller. If the caller
specified a shared-page table na~ber great­
er than zero, the resident-shared-page
index (RSPI) is searched for a matching
entry. If none is found an error has
occurred and the SVC Queue ProceSSQr is
called. On return, the subroutine resets
the TSI lock byte and exits to the-Queue
Scanner.

If a matching RSPI entry is found, the
subroutine sets on the RSPI entry's add­
shared-page bit, and determines whether
there is enough available space in the
indicated shared segment to add the new
shared pages. If so, the subroutine deter­
mines whether the storage currently being
used for page table entries contains enough
space for the new page entries. If it
does, the subroutine then constructs the
new shared-page table entries, marking each
of them as assigned and unavailable, and
setting their external-page locations to
zero. The protection class specified by
the caller is stored in the external­
shared-page table.

At this point, the length and page­
table-origin fields in the RSPI are updated
to refLect the new entries. The processor
then searches through the entire chain of
TSls to update the segment table length
field for those tasks that use this shared­
page page table number. The subroutine
stores the virtual storage address of the
new pages and the shared-page table number
in the general register save area of the
XTSI, and exits to the SVC Queue processor,
which effects the release of the GQE
storage space, resets the TSI lock byte,
and exits to the Queue Scanner.

If a matching shared-page table number
is found by the processor, or if the caller
specified a shared-page table number of
zero, but there is not enough space in the
associated segment to add the new pages,
the subroutine does two things: ASSigns a
new shared table number, and then prepares
to construct new shared-page and external­
page tables. The first step in this proce­
dure is to request main storage from the
supervisor Core Allocation subroutine.
Wnen the storage is allocated, the proces­
sor constructs a shared-page table and an
external-shared-page table. The entries in
these tables are then marked as assigned
and unavailable. The external-page loca­
tion is set to zero, and the protection
class specified by the caller is stored in
the external-shared-page table.

The subroutine then determines, by
searching the RSPI, whether there is room
for another entry in the existing resident­
shared-page index storage area. If not,
the Supervisor Core Allocation subroutine
is called to allocate new space, and a new
RSPI is generated and chained to the pre­
vious RSPI. If a new RSPI entry may be
added to the previous RSPI, a new entry is
constructed and inserted in the previous
RSPI storage area.

In· either of the above cases, the seg­
ment and auxiliary-segment table entries
for the new shared-page table number are
then made in the XTSI of the calling task.

Section 3: Program Organization 75

The virtual storage address and shared-page
table number are then stored in the XTSI's
general register save area, and the subrou­
tine exits to the SVC Queue processor, as
described previously.

If there is not enough space in the cur­
rently used shared-page table entry to add
new page entries, the subroutine calls the
Supervisor Core Allocation subroutine for
more space. When space is allocated, the
sUbroutine moves the old shared-page table
entries to the new storage area and
releases the old space by calling the
Supervisor Core Release subroutine. When
control returns to the subroutine, proces­
Sing continues as described previously.

Delete Page Subroutine (CEAND)

This subroutine handles an SVC request
to release a number of contiguous pages
from virtual storage.

Entry: CEANDA - in response to the DELPG
macro instruction.

Modules Called: Find Page subroutine
(CEANC) locates segment, auxiliary segment,
page, and external page table entries.

SVC Queue Processor (CEAHQ) queues a GQE
on the interruption queue in the TSI and
resets the task lock.

supervisor Core Release subroutine
(CEALl entered at CEAL02) releases old
storage space.

Segment Block Remover subroutine (CEANG)
removes unused segment blocks from the end
of the segment table.

Auxiliary Storage Release subroutine
(CEAIA) releases auxiliary storage.

Search RSPI subroutine (CEAMS) locates
the proper resident-shared-page index
(RSPI) entry for any specific shared-page
table (SFT) number, or locates the address
of the next available entry in the RSPI.

Move GQE subroutine (CEAJQ entered at
CEAJMG) deterrr~nes whether further proces­
sing is specified by the GQE; if not, the
GQE is released. If so, the GQE pointer is
~laced on the appropriate scan table queue.

Paging (CEAMQ) reads a page table page
into main storage.

Exits:

Normal - SVC Queue Processor.

Error - Queue Scanner.

76

Operation: The first step in processing
the request is to transfer control to CEAN­
CA, the Find Page subroutine, which locates
the segment, auxiliary segment, page, and
external-page table entries and returns
their addresses via general registers. If
a page table entry is not assigned to the
calling task, an addressing error has
occurred and an interruption must be passed
on to the task. This is accomplished by
calling the SVC Queue Processor which
queues a GQE on the interruption queue in
the TSI and resets the task lock. If the
page to be deleted is in IVM, exit is to
the SVC Queue Processor.

If Find Page indicates that the segment
is unavailable and the page table is in a
page table page, the Paging routine, CEAMQ,
is called at CEAMQA to read the page table
page into main storage. When control is
returned to Delete Page, if the page table
has been read in without error, Find Page
is called again to return the necessary
addresses. If the page table is not in a
page table page, and the page is marked
unavailable or if the return from CEAMQ
indicates that the page was not read in, a
check is made for a shared page (see below)
and processing continues for that
condition.

If the subroutine finds that the segment
is available and the page is assigned, it
is deleted by setting the unassigned indi­
cator in the corresponding external-page
table entry. If the page to be released is
currently in main storage, the page table
entry is marked unavailable, and the Super­
visor Core Release subroutine is entered at
CEAL02. If the page is currently in auxi­
liary storage, the Auxiliary Storage
Release subroutine is called to release the
assigned auxiliary space. On return to the
subroutine the auxiliary-storage flag is
reset. If there are no more pages to
delete, the subroutine calls the Move GQE
subroutine. If there are more pages to
release, the Find Page subroutine is
called, and the relevant processing steps
are taken.

The sUbroutine then determines whether
an entire segment was deleted. If not, the
length of the remaining page table is
stored in the segment table entry. If the
page table is not in the first XTSI page,
the proGessor determines whether there are
wore pages to be deleted. If so, the Find
Page sUbroutine is called to locate the
pages. If not, the Move GQE sUbroutine is
called to queue the GQE on the next proces­
sor's queue, and on return, an exit is made
to the Queue Scanner.

If the Delete page request specified
that all pages in a segment were to be
released, the auxiliary-segment table is

, ..

marked unassigned, the segment table is
marked unavailable, and the segment indica­
tor in the XTSI is set. If a shared pa~~
is released, the system table lock byt.e is
set on to indicate that a resident-shared­
page index (RSPI) entry is being changed."
The search-RSPI subroutine is called to
locate the shared page. When control
returns, the subroutine uses the shared
page number to delete (set to zero) the
RSPI entry returned h¥ the subroutine. The
system lock byte is then set off. If the
page table was in the first XTSI page, the
subroutine repacks the deleted page and
external-page table entry in the XTSI,
allowing if necessary, for a dummy entry to
keep the length of the segment even. The
location fields of the affected segment
entries are updated. .

If the released pages were not in the
first XTSI page, the subroutine calls the
Supervisor Core Release subroutine to
release the main storage. When control
returns, the subroutine determines whether
more pages are to be released. If so, Find
Page is called, and the appropriate proces­
sing steps are taken. If all specified
pages have been released, the Move GQE sub­
routine is called to move the GQE pointer
to another processor's queue or to release
the storage occupied by the GQE. If, as a
result of this deletion, all entries in the
last segment block (for example, the last
16 entries) are now unused, the Segment
Block Remover subroutine is called to
remove the block. When control returns,
the subroutine resets the TSI lock byte and
exits to the Queue Scanner.

Set External Page Table Entries Subroutine
(CEAH7)

This subroutine handles an SVC request
to set external-page locations within the
selected external-page table entries in the
XTSI to the entries in the given list. The
calling task specifies the following:

• A virtual-storage address

• A parameter count

• A bi'.: flag

• A list of external-storage addresses

RESTRICTIONS:

• The SVC must be on a word boundary.

• The SVC and all required input parame­
ters must be in one page.

• The input parameter must not exceed
1022 (the number of external storage
addresses> •

Entry: CEAR07 - in response to the SETXP
macro instruction.

l·lodules Called: SVC Queue Processor (CEAHQ
at CEAHQQ) causes a task interruption to be
queued on the TSI's interruption queue.

User Core Release (CEALl entered at
CEAL04) releases pages in main storage

Find Pagp subroutine (CEANC) locates
segment, auxiliary-segment, page, and
external-page table entries.

JI.uxiliarj. Storage Release (CEAIA entered
at CEAIAR) releases pages in auxiliary
storage.

Paging (CEAMQ> is called to bring in
page table pages.

Exits:

Normal - SVC Queue Processor.

Error - Queue Scanner or System Error
Processor.

Operation: On entry, the processor
attempts to locate the SVC in main storage.
If either the page table or page containing
the svc is unavailable, an ERROR SVC is
issued. If the SVC is located, the p~oces­
sor tests the count of external-storage
addresses. The count must not exceed 1022.
If this maximum is exceeded, or if the
count is zero, the subroutine calls t.he svc
Queue Processor to cause a task interrup­
tion by queuing a GQE on the TSI's inter­
ruption queue. On return the subroutine
TSI lock byte is reset and an exit is made
to the Queue Scanner.

Other program error conditions handled
in this manner are:

• SVC is not on a word boundary.

• Input specifies illeqal SDA.

• Input parameters are not all in one
page.

• Input specifies IVM page.

• Page to which an external location is
to be added is unassigned.

If none of the above errors exists, the
subroutine computes the virtual storage
address of each page for Which an external
address is to be stored. The corresponding
external-page table entry is then located
by calling the Find Page subroutine. If
the page table page is not in main storage,
Paging (CEAMQ> is called to read in the
page table page. If the page is in main
storage, it is released by User Core

Section 3: Program Organization 77

Release. If the page is in transit, the
instruction counter is backed up and the
routine exits. The subroutine-releases
auxiliary storage indicated in the
external-page table entry, and stores the
external storage address parameter for the
page in the external-page table. If the
bit flag is on, the unprocessed bit in the
external-page table is set.

When all processing is completed, the
subroutine exits to the SVC Queue
Processor.

Move External Paqe Table Entries Subroutine
(CEAPO)

This sUbroutine handles an SVC request
to move entries from one page table to
another or to change the position of an
entry within a page table. The caller spe­
cifies two virtual storage page addresses
and a page count.

Entry: CEAH10 - in response to the MOVXP
macro instruction.

Modules Called: Locate Page subroutine
(CEAML) finds the page table and external­
page table entries for the old and new
addresses.

SVC Queue Processor (CEAHQ entered at
CEAHQQ) causes a GQE to be queued on the
TSI's interruption queue. It is also
entered at CEAHQR to cause the GQE to be
moved or released.

paging (CEAMQ) brings page table pages
into main storage.

Normal - SVC Queue Processor.

Error - Queue Scanner.

Operation: On entry, this subroutine
checks to see if all page table pages to be
used for this SVC are in main storage. If
not, a list is built of the range of page
table pages needed, and their addresses,
and CEAMQ is called to read thereinto main
storage. The subroutine then calls the
Locate Page subroutine to find the page
table and external-page table entries for
the old and new addresses. When this has
been done, the processor moves the page
table and external-page table entries from
the old to the new addresses. As pages are
moved, old page table and external-page
table entries are marked as assigned but
unavailable and the external-page location
fields are set to zero.

If the caller specifies that an entry is
to be moved to a position which is marked
·unassigned-, an addressing error occurs,

78

and the processor exits to the SVC Queue
Processor which calls the Queue GQE on TSI
subroutine to place the GQE pointer on the
TSI's interruption queue.

If no error occurs, the processor com- .
pletes processing and then exits to CEAHQR
to dispose of the GQE pointer or to queue
it elseWhere on the scan table. When con­
trol returns, the TSI lock byte is reset
and the processor exits to the Queue
Scanner.

Connect Segment to Shared Paqe Table
SUbroutine (CEAQ7) Chart AT

This subroutine handles an SVC request
to connect a segment to a shared-page
table. The caller specifies the number of
the segment to be connected, and the number
of the shared-page table to which it is to
be connected.

Entry: CEAH27 - in response to the CNSEG
macro instruction with SYSSHALK set.

Modules Called: XTSI Overflow subroutine
(CEAMX) checks the segment number for va­
lidity, and either expands the size of the
task's segment table or returns an invalid
condition code of nonzero.

SVC Queue Processor (CEAHQ entered at
CEAHQQ) queues the GQE on the TSI's inter­
ruption queue. It is also entered at
CEAHQR to move or release the GQE.

Exits: SVC Queue Processor.

Operation: On entry, the subroutine checks
contiguous main storage requirements for
expanding the XTSI. If needed, Contiguous
Core Allocation is called to get a new main
storage area address. The Connect Segment
to Shared Page Table subroutine passes this
address to the XTSI OVerflow subroutine (at
CEAMXS) for use in expanding the segment
table. If contiguous main storage is not
needed, the subroutine compares the segment
number against the length of the calling
task's segment table. If the number is
greater, the processor transfers control to
CEAMXS of the XTSI Overflow subroutine,
which checks the segment number for validi­
ty, and either expands the size of the
task's segment table or returns an invalid
condition code of nonzero. If a nonzero
code is returned, the processor calls the
SVC Queue Processor which calls the Queue
GQE on TSI subroutine to queue the GQE on
the TSI's interruption queue. This results
in an exit to the Queue Scanner.

If the shared-page table number did not
match any number in the XTSI's entries, the
segment table for the designated segment is
set unavailable, the auxiliary-segment
table entry is marked as assigned and

, ;'." , .~

shared, and the shared-page table number
and variable flag, if present, are ins~rte~
in the entry. Bxit·is then to the SVC
Queue Processor at CEAHQR to dispose of the
GQE and exit to the Queue Scanner. If a
shared page table number match is found,
the segment number is inserted in the XTSI
GPRl save area and the routine exits as
specified above.

Disconnect Segment From Shared Page Table
SubrQutine (CEAQ8)

This subroutine responds to an SVC re­
quest to remove a segment from a shared­
page table. The caller specifies a shared­
page table number.

RESTRICTIONS: There must be a match for
the SPT number in the auxiliary-segment
table.

hntry: CEAH28 - in response to the DSSEG
macro inst.ruction.

1-1odules called: SVC Queue Processor (CEAHQ
entered at CEAHQQ) causes a GQE to be
queued on the task's TSI interruption queue
and resets the task lock. It is also
called at CEAHQR to dispose of tne GQE and
exit to the Queue Scanner.

Segment Block Remover subroutine (CEANG)
removes unused segment blocks from the end
of the table.

Normal - SVC Queue Processor:

Register 1 - number of the segment dis­
connected from SPT

Error - Queue Scanner.

Operation: On entry, t.he SUbroutine com­
pares the specified ·;i.ared-page table num­
ber against the share<.i-page table number in
the Caller's auxiliary-segment table. If
no match is found, the SVC Queue Processor
is called at CEAHQQ to cause the GQE to be
queued on the caller's TSI interruption
queue, after which the TSI lock byte is set
off and the processor exits to the Queue
Scanner.

If a match is found, the corresponding
segment table entry is marked not available
and both words in the auxiliary-segment
table are zeroed. The number of the match­
ing segment is stored in the general
register save area of the XTSI. A check is
wade to determine if the removed segment
table entry was at the end of the table.
If it was, the Segment Block Remover sub­
routine is called. If not, or on return
from the subroutine, the TSI lock byte is

reset, and the subroutine exits to the
Ql}e'},,:, S",:.;:nnt::r.

Check Protection Class Subroutine (CEAQ4)
Chart AU

This subroutine checks the protection
classes of consecutive half pages specified
by the caller. A virtual storage address
and a count of contiguous half-pages are
given by the caller when the SVC is issued.

RESTRICTIONS: All pages checked must be
assigned and within virt.ual memory and the
count of half-pages must not exceed 220.

Entry: CEAQ4A - in response to the CKCLS
macro instruction.

Modules Called: Find Page subroutine
(CEANC entereu at CEANCA) provides the
location of the specified page table entry
or external-page table entry when the
appropriate virtual storage and TSI
addresses are given.

Paging (CEAMQ) reads in page table
pages.

Exits: svc Queue Processor, after plaCing
in XTSI, in area normally reserved for gen­
eral register zero:

Normal - protection class.

Error - zero.

Operation: On entry, the processor checks
to see if it is a variable request. In
this case, the XTSI segment table pointer
sign bit (XT3GOS) is cleared. If it is not
variable, a check is made to see if the
number of half-pages is greater than 8192.
If so, a program interruption of code X'6B'
(extended) is queued for the task. The
Find Page sUbroutine is then called to find
the adjres~es of the page table entries and
external page table entries. If Find Page
indicates that the page table page is not
in main storage, CEAMQ is called to read it
in, and on return Find Page is called
again.

When control return~, the processor
determines whether each page is assigned,
and if so, the processor checks the two
protection key fields for each page and
returns to the caller the protection class
of the half-pages. The protection classes
are:

Class A -- The half-page may be read or
written.

Class B -- The half-page may be read only.

Section 3: Program Organization 79

Class C -- The half-page may not be read or
written by nonpri~ileged
routines.

Thus, if any half-page has a protection
class of C, the processor returns a class C
indicator. If no half-page has protection
class C, but at least one half page is
found with a protection class of B, class B
is returned. Otherwise class A is
returned. Protection class indicators are
assigned as follows:

Class A
Class B
Class C

1
3
7

When the protection classes for all
half-pages have been examined, the indica­
tor for the most restrictive class found is
stored in the general register zero save
area of the caller's XTSI.

If the segment searched was a shared
segment, the system sharing lock (SYSSHALK)
is reset. It was set bY the Find Page sub­
routine if the segment was shared.

If the caller specifies a protection
class check of an unassigned page, the sub­
routine stores a zero in the general
register zero save area of the caller's
XTSI, and exits to CEAHQR.

Create-TSI Subroutine (CEAMC)

This subroutine effects the construction
of a task status index (TSI), and the pla­
cement of a task in the delay state on the
inactive list when a user issues a CRTSI
macro instruction.

Assumptions: The user will issue the VSEND
or VSENDR macro instruction to send infor­
mation to the newly created task.

Lfitry: CEAMCl - in response to, the CRTSI
macro instruction.

Modules Called: Task Initiation subroutine
(CEAMC entered at CEAMT1) performs the
necessary processing to set up a TSI and
initiates a new task.

:E;xit:· SVC Queue Processor.

Operation: On entry, the subroutine estab-.
lishes addressability and calls the task-

. initiation subroutine (CEAMT1) to generate
an initialized TSI. The processor receives
a task iaentification from the Task Initia­
tion subroutine indicating either the crea­
tion of a TSI or that the system limit of
TSI's has been reached. The processor
places this identification in the save area
of the XTSI, resets the lock byte of the
task that issued the SVC, and exits tq t~e
SVC Queue Processor.

80

Special Create TSI Processor (CEAT2)

The fUnction of this processor is to
construct an initialized TSI, regardless of
the system limit on the number of TSIs, and
the setting of the task initiation inhibi~
tion flag, in response to the SCRTSI macro
instruction.

RESTRICTIONS: Any changes on register
usage in this processor will affect its
communication with the Task Initiation sub­
routine (CEAMC).

Assumptions: The user of this SVC will use
VSEND or VSENDR to send information to the
newly created task.

Entries: CEATZA - in response to SCRTSI
macro instruction.

Rl - Location of GQE
R2 - Location of TSI
R3 - Location of XTSI

Modules Called: Task Initiation subroutine
(CEAMC) performs the necessary proceSSing
to set up a TSI and initiate a new task.

Exits: SVC Queue Processor at CEAHQR.

Operation: Special Create TSI calls the
Task Initiation subroutine at a special
entry point (CEAMT2). Task creation is
assured because neither the task­
initiation-inhibition flag nor the system
limit on TSIs is tested. If the TID of the
requesting TSI is 1, indicating a system
operator task, the processor changes the
new TSI's TID to 2. The TID of the created
TSI is stored in the XTSI register save
area of the requesting task.

Delete TSI Processor (CEAMD) Chart AV

This processor causes a task to be
removed from the system by having the
task's TSI removed from either the active
or inactive scheduling lists and by having
all auxiliary and main storage occupied by
the task returned to the system.

Assumptions: It is assumed that the task
issuing the SVC will have disconnected
itself from all shared data sets and will
have unloaded, from its virtual storage,
all shared programs except initial VM. In
addition, all accounting work will be
cleared up by the LOGOFF command program.

Entries: CEAMDT - in response to DLTSI
macro instruction or call from supervisor
routine.

Modules Called: User Core Release Subrou­
tine (CEALl entered at CEAL04) releases
unshared page storage space.

,_

Auxiliary Storage Release Subroutine
(CEAIA entered at CEAIAR) releases auxi­
liary storage occupied by the task's pages.

Supervisor Core Release subroutine
(CEALl entered at CEAL02) releases main
storage occupied by MCBs and/or IORCBs
associated with task interrupt GQE, storage
occupied by the the TSI, and storage used
as a work area by purge I/O. .

Move GQE subroutine (CEAJQ entered at
CEAJMG) determines the sequence of queue
processors required to perform the work
required by the GQE and routes the GQE
pointer from queue to queue until the last
processor has finished the required proces­
sing. It also releases GQEs and associated
PCBs when no more work remains.

Locate Page subroutine (CEAML entered at
CEAMLP) locates unshared pages used by the
task being deleted.

Rescheduling subroutine (CEAKZ entered
at CEAKZA) removes the TSI from the active
list.

Purge I/O subroutine (CEAAL entered at
CEAALQ) inhibits the execution of I/O
requests for all devices assigned to the
task and removes TSDL entries.

supervisor Core Allocation subroutine
(CEALI entered at CEAL01) reserves main
storage for use as a work area.

E.xits:

Normal - Queue Scanner.

Error - System Error Processor.

operation: On entry, after establishing
its base address, the processor disables
any pending real time interrupt for the
task. Then, if the second scan flag is not
on in the GQE, the Rescheduling subroutine
(CEAKZ) is called to remove the task from
the scheduling lists. Any GQE left from an
incomplete time-slice-end operation is dis­
posed of by Move GQE.

The number of main storage blocks avail­
able is increased by TSIPTS. From the seg­
ment table, all available segments are
searched through their page tables in order
to find and release available pages (except
pages in page hold) via User Core Release.
Then the XTSI pages are released through
UCR. Any auxiliary storage is returned to
Auxiliary Storage Release. For available
shared segm~nts, neither main storage nor
auxiliary storage is released. Any main
storage occupied by GQES and associated
IORCBs or MCBs is released. If "any pages
were found in page hold, the GQE created by
the SVC is placed in the TSI and' exit is

made to the Queue Scanner. otherwise the
Supervisor Core Release subroutine is then
called to release the main storage space
occupied by the TSI. The count of TSIs in
the system is decremented, Move GQE is
called to dispose of the GQE, and the pro­
cessor exits to the Queue Scanner.

Set up XTSI Field Subroutine (CEAS4)

This subroutine handles a request to
place information in the XTSI.

The user should refer to the description
of the SETXTS macro expansions in Assembler
User Macro Instructions for information
about what CHAXTS fields may be set up.

Entry: CEAH44 - in response to the SETXTS
macro instruction.

~~dules called: SVC Queue Processor (CEAHQ
at CEAHQQ) causes a program interrupt GQE
to be put on the TSI's interruption queue,
unlocks the TSI lock and exits to the Queue
Scanner. This occurs when a request is
made to set an XTSI field that may not be
set.

Exit: SVC Queue Processor.

Operation: This subroutine handles an SVC
request to place certain information in the
XTSI. The user of the SVC may issue the
SETXTS macro instruction with a mnemonic
code identifying the field to be set up in
the XTSI. The macro assembler substitutes
code values for the set of allowable mne­
monics and expands into the appropriate
SVC. When the SVC is executed the code and
the information to be stored in the XTSI
are loaded into general registers for
access by the subroutine.

On entry, the subroutine checks the
legality of the code. If the code is inva­
lid, the processor calls the SVC Queue Pro­
cessor which passes the interruption on to
the calling task by queuing the GQE on the
TSI's interruption queue.

If the code is valid, the processor
retrieves the length and displacement of
the XTSI field from the table of lengths
and displacements. These values are then
used to store the specified information in
the XTSI field. The processor then makes a
normal exit via the SVC Queue Processor.

Set up TSI Field Subroutine (CEAH2)

This processor handles SVC calls for
placing information in the TSI. To deter­
mine which TSI fields may be set, the user
should refer to the description of the
SETUP macro instruction expansions in
Assembler User Macro Instructions.

Section 3: Program Organization 81

Entry: CEAH02 - in response to the SETUP
macro instruction.

Modules called: SVC Queue Processor (CEAHQ
at CEAHQQ) causes a program interrupt GQE
to be put on the TSI's interruption queue,
unlocks the TSI and exits to the Queue
Scanner. This is done when a request to
set a TSI field, other than those allowed,
is made.

Normal - Queue Scanner.

Error - SVC Queue Processor.

Operation: On entry, the Setup TSI Field
Processor establishes its base address reg­
ister, and then checks the request to
determined if'it is legitimate. If not, an
interruption code is placed in the GQE and
the SVC Queue Processor is called to queue
the GQE on the TSI's interruption queue.
On return, the TSI is unlocked, and exit is
to the Queue Scanner.

If the request is legitimate, the pro­
cessor obtains the length of the field and
its displacement from the beginning of the
TSI, from a table of lengths and displace­
ments and, using these values, the proces­
sor stores the specified data in the TSI;
exit is then made to the SVC Queue Proces­
sor at CEAHND.

Extract TSI Field Subroutine (CEAH2)

This subroutine handles SVC requests for
information from a task's TSI. To deter­
mine which TSI fields may be extracted, a
user should refer to the description of the
XTRCT macro expansion in Assemoler User
Macro Instructions.

Entry: CEAH03 - in response to the XTRCT
macro instruction.

l-lodules Called: SVC Queue Processor (CEAHQ
at CEAHQQ) causes a GQE to be put on the
TSI's interruption queue, unlocks the TSI
and exits to the Queue Scanner.

Exits:

Normal - to svc Queue Processor, with spe­
cified field stored in XTSI field.
normally reserved for saving gen­
eralregisters 0 and 1.

Error - To Queue Scanner, with general
registers unchanged and a task
interrupt pending.

Operation: This subroutine is called when
the user of a service routine issues the
XTRCT macro instruction with a mnemonic
code such as SYSIN. The macro assembier

82

substitutes code values for a set of pre-
viously defined mnemonics. This code is /--
then used by the Extract TSI Field Proces-
sor as an index to a table which contains
the displacement of the indicated field
from the beginning of the TSI, and the
length of the field in bytes.

On entry, the subroutine tests the input
code value against an internal table to
determine its validity. If it is not
valid, the Queue GQE on TSI subroutine is
called to queue the GQE pointer on the TSI
as a program interruption. When control is
returned to the subroutine, the TSI lock
byte is reset and the subroutine exits to
the Queue Scanner.

If the input code value is valid, the
start address and length of the field are
retrieved from the lengths and dispiace­
ments table. The subroutine then locates
the requested field of information and
stores it in the XTSI register save area,
thus ensuring that the requested informa­
tion will be loaded into the appropriate
general register when control returns to
the calling task, and its registers are
restored from the XTSI. Exit is then made
to the SVC Queue Processor at CEAHND.

Extract XTSI Field Subroutine (CEAS4)

This subroutine handles SVC requests for
information to be extracted from the XTSI.
The user should refer to the description of
the XTRXTS macro expansion in Assembler
User Macro Instructions for information
about what CHAXTS fields may be extracted.

Entry: CEAH45 - in response to the XTRXTS
macro instruction.

Modules Called: SVC Queue Processor (CEAHQ
at CEAHQQ) queues the GQE to be put on the
calling task's TSI interruption queue,
resets the TSI lock, and exits to Queue
Scanner.

Normal - To SVC Queue Processor, with spe­
cified field stored in XTSI field
normally reserved for saving gen­
eral registers 0 and 1.

Error -·To SVC Queue Processor.

Operation: This subroutine handles SVC
requests for information extraction from
the XTSI. The user of this SVC may issue
the XTRXTS macro instruction with a mnemon­
ic code identifying the field to be
extracted. The macro assembler substitutes
code values for the set of allowable mne­
monics and expands them into the XTRXTS
SVC. When the SVC is executed the identi-

fication code will be available to the sub­
routine in a general register.

On entry, the subroutine tests-the
legality of the identification code. If
the code is invalid, the SVC Queue Proces­
sor is called to queue the GQE on the cal­
ling task's TSI interruption queue.

If the code is valid, the length and
displacement of the indicated XTSI field
are obtained from a table of lengths and
displacements, and used as the values for
storing the requested information in the
XTSI register save area, thus making it
available to the calling task when it is
restarted and its registers are restored.
The processor exits to the SVC Queue
Processor.

Time Slice End Subroutine CCEAHQ entered at
CEAHQF)

This subroutine responds to an SVC for a
service routine or a system programmer to
force premature time-slice end.

Entry: CEAHQF - in response to the TSEND
macro instruction.

Modules Called: Move GQE subroutine CCEAJQ
entered at CEAJMG) determines whether
further processing is specified by the GQE.
If not, the GQE is released. If so, the
GQL is queued on the appropriate scan table
queue.

Normal - SVC Queue Processor.

~rror - Queue Scanner.

Operation: On entry, the subroutine sets
the forced-TSE indicator in the specified
GQE, and then changes the sequence string
of queue processors' loc-o~-queue values in
the GQE so that the Timer Interrupt Queue
Processor will be the next processor in
line to perfcrm work for the GQE. The Time
Slice End Processor thEOn calls the t<1ove GQE
subroutine, which examines the GQE and
queues it on the Timer Interrupt Queue Pro­
cessor's scan table queue. When control
returns, the Time Slice end subroutine sets
the TSI lock byte off and exits to the
vueue Scanner.

AWAIT SVC Subroutine CCEAP7) ChartAW

This subroutine responds to a taSk's SVC
request to test for completion of.a given
event. If the event is complete, it will
return to the task. If it is not, the task
is put in delay state and an AWAI~r exten­
sion allowed before the task is forced to
time slice end. It also increments two
fields in the system statistical table:

SSTAWT, each time it is called for AWAIT
processing; and SSTTWT, each time it is
called to complete TWAIT processing.

RESTRICTION: The SVC must be the object of
an EX instruction and must be located in
the second half-word of a full word, which
is an event control block CECB). The delay
flag must not be set and the SVC must be
remotely executed.

Assumptions: If Queue GQE on TSI subrou­
tine finds the delay bit on when queueing
an interruption for the task, it willi)
reset the delay bit and turn on the ready
bit in the TSI and, 2) cancel the real time
interruption and turn off the AWAIT flag in
the TSI.

Entries:

CEAH17 - by the SVC Queue Processor in
response to the AWAIT macro
instruction.

by CEARO to complete processing
for the TWAIT macro instruption.

Modules Called: Supervisor Core Allocation
(CEALl entered at CEAL01) to obtain main
storage for a GQE.

Real Time InterrUpt subroutine (CEAS6
entered at CEAS6A) for a reading of the
real time clock.

Set Real Time Interval subroutine (CEAS7
entered at CEAS7A) to set a real time
interruption for the AWAIT extension
period.

Move GQE subroutine (C£AJQ entered at
CEAJMG) to queue up a forced time slice end
on the timer interrupt processor's queue.

~: Upon normal completion the await­
SVC subroutine exits to the SVC Queue Pro­
cessor. Any abnormal condition will result
in an exit to the Queue Scanner.

Operation: On entry, the subroutine deter­
mines whether the requesting SVC was
remotely executed and whether the SVC
instruction was on the second halfword
boundary of a word. The latter is deter­
mined by examining the virtual storage
address stored in the GQB. If both of
these conditions are not satisfied an error
has occurred, in which case the subroutine
calls the Queue GQE on TSI subroutine to
place the GQE pointer on the TSI's program
interruption queue entry. When control
returns to the processor, the TSI lock byte
is turned off and an exit is made to the
Queue Scanner.

If the above conditions are satisfied
the subroutine computes the location of the

Section 3: Program Organization 83

task's event control block (ECB) by doing
an LRA from the location of the SVC speci­
fied in the GQE, and subtracting two. (A
major syser results if the LRA fails.)
When control returns the subroutine tests
the event-completion indicator in the ECB.
If the indicator specifies that tne event
is complete, the subroutine exits to the
SVC Queue Processor.

If the event is not complete, a check is
made to determine whether any interruptions
are pending for the task. If so, CEAP7
exits to the SVC Queue Processor. other­
wise, the delay flag in the TSI is checked;
if it is on, a major syser is issued; if
not, the AWAIT flag is set and a check made
to determine whether the task should be
time-slice ended immediately or a timer
interval set up; exit is then to the SVC
Queue Processor at CEAHND.

'IV/AIT Subprocessor (CEARO)

This subroutine responds to a task's SVC
request to test for the completion of a
given event.

RESTRICTIONS: The SVC must be the object
of an EX instruction and must be located in
the second half-word of a full word, which
is an event control block (ECB). The delay
flag must not be set.

Entries: CEAH30 - in response to the TWAIT
macro instruction.

Exits: AWAIT SVC processor.

Operation: This subroutine sets TWA IT
indicator flags in the TSI and GQE. It
then exits to the AWAIT SVC processor.

Pulse Schedule Table Entry Processor
(CEAR2)

This routine responds to a taSk's re­
quest to aSSign it the schedule table entry
specified in the Pulse level field of its
current STE.

Entry: CEAR2A - in response to the PULSE
macro instruction.

Exit: Queue Scanner.

Operation: This routine extracts the STE"
field (STEPULSE) and then determines its
validity by checking the following two
conditions:

1. Is it within the bounds of the current
schedule table?

2. Is the PULSE level zero?

If it is invalid, the task's STE level is
left unchanged and a return code is set in

84

register 15 to indicate the condition. If
the PULSE level is valid, the contents of /~
STEPULSE are moved to the schedule table
entry field in the task's TSI (TSISTE).
The return code is set in register 15, and
exit is taken to the Queue Scanner.

The return register (GPR 15) reflects
the action taken by this routine as
fOllows:

Byte 0 - Set to 00 if valid change made

Set to 01 if PULSE level out of
schedule table bounds (no change
made to current STE for task)

Set to 02 if PULSE level is zero
(no change made to current STE for
task)

Byte 1 - Contains old STE level for task

Byte 2 - Unused

Byte 3 - Contains level indicated by
STEPULSE.

Change Schedule Table Entry Processor
(CEAR3)

This routine responds to a privileged -
task's request to have a specific schedule. __
table entry level aSSigned to it.

Entry: CEAR3A - in response to the CHANGE
Ir,acro instruction.

Normal - SVC Queue Processor.

Error - Queue Scanner.

Operation: As input, this routine receives
the new schedule table entry level to be
assigned in general register 6 (task
register 15). Then, two conditions are
checked:

1. Is the requested level change outside
the bounds of the current schedule
table?

2. Is the requested entry zero?

If either condition exists, the schedule
table entry level is left unchanged.
Otherwise, the task's STE level is changed
by inserting the contents of the input
register in the schedule table entry field
of the task's TSI (TSISTE). The return
register (15) is then set to indicate what
action was taken as follows:

Byte 0 - Set to 00 if valid change made

set to 01 if requested entty level
out of bounds (No change in level
made)

set to 02 if requested entry was
zero (No change in level made)

Byte 1 - contains old STE level of task

Byte 2 - Unused

Byte 3 - contains requested level (If byte
zero is zero, this will be the new
entry level of the task.)

This routine is also entered to process
requests invoked by issuing the PRESENT
macro instruction. PRESENT requests a
task's current schedule table entry level.
Code in the macro expansion causes the re­
quest for a CHANGE outside of the limits of
the table. CEAR3 processes the request for
case one described above and returns a con­
dition code of 01 in the first byte of
register 15 and the STE level (old) of the
task in byte two.

Set User Interval Timer Subroutine (CEAQ2)

This subroutine responds to a user re­
quest to limit the amount of CPU time to be
utilized on a given task or on some phase
of the task. The user specifies the time
value, in milliseconds, that should be used
to set the user interval timer.

RESTRICTIONS: The limit of the interval
time is 55,364,812 milliseconds and any
attempt to set the timer in excess of this
value will result in the generation of a
task' interrupt.

Entry: CEAH22 - in response to the SETTU
macro instruction.

Modules Called: Queue GQE on TSI subrou­
tine (CEAAF) queues the GQE on the TSI's
interruption queue.

Move GQE subroutine (CEAJQ entered a
CEAJMG) determines whether further proces­
Sing is specified by the GQE. If not, the
GQE is released. If so, the GQE is queued
on the appropriate scan table queue.

Normal - SVC Queue Processor.

Error - Queue Scanner or System Error
Processor.

Operation: On entry, the subroutine estab­
lishes its base register, and then deter­
mines whether the task's XTSI has been
swapped out of main storage. If so, a sys­
tem error SVC is issued.

If theXTSI is in main storage, the sub­
routine tests the specified time value. If
it exceeds ~5,16~,812, a task program
.:.r. •• -.erruption is generated. This is accom­
pl;shed by calling the Queue GQE on TSI
subroutine to queue the GQE on the TSI's
program interruption queue. When control
returns, the subroutine resets the TSI lock
byte and exits to the Queue Scanner.

If the value is within the acceptable
limits, it is converted to an equivalent
number of timer cycles (or -ticks·). The
cOllverted number .is stored in the user
timer "lalne field of the task's XTSI. The
subroutine then calls the Move GQE subrou­
tine to dispose of the GQE, and when con­
trol returns, the TSI lock byte is reset
and the subroutine exits to the Queue
Scanner.

Set Real Time Interval Subroutine (CEAS7)
Chart AX

This subroutine sets up a task timer
interrupt at a specified future time
requested by a task.

RESTRICTIONS:

• If the number of pending real time
interruptions has reached the system
limit, subsequent requests to set
interrupts will be ignored, and a
return code of 0 sent to a virtual
memory task, or 4 to a supervisor task.

• Up to one page (4032 bytes) of supervi­
sor main storage may be used for the
queue of real-time intervals. Current­
ly, each queue entry is 16 bytes long
making the system limit 252 queue
entries.

• Only one real time interrupt may be
pending for anyone virtual memory task
at anyone time.

Entries:

CEAS1A - by the SVC Queue Processor for a
virtual memory request with the
following input:

Register 1 - address of the GQE

Register 2 - address of the TSI

Register 3 - address of the XTSI

Regist~rs 4&5 - a doubleword, fixed-point
timer value.

by a supervisor routine via
the SETTlMER macro instruc­
tion with the following
input:

section 3: Program organization 85

Register 0 - adcon for the entry point of
module to receive control when
interrupt occurs

,Register 1 - all zeros

Register 2 - location of TSI or any value
user wants returned at inter­
rupt time. Doubleword field
in PSA - real time value.

Modules Called: Supervisor Core Allocation
subroutine (CEAL1 entered at CEAL01) when
more space is needed for the queue of real
time i nterva Is.

Supervisor Core Release (CEAL1 entered
at CEAL02) releases the old core block when
a new one has been allocated.

Exits: Normal exit after a virtual memory
request has been handled is to the SVC
queue processor with register 1 containing
the address of the GQE, a return code in
XTSG1S, and the system lock reset.

If the request was from a supervisor
routine, normal exit is made to the caller
after placing a return code in register 1.

Exit is to the system error routine if
the real time interval lock (SYSLCK),
tested at entry; remains set longer than
permitted.

If a virtual memory task requests can­
cellation of a queue entry that cannot be
found on that task's queue, a task error,
program interrupt, is declared. A hexade­
cimal '58' is stored in GQEINT, and Queue
GQE on TSI is called to queue the interrupt
on the appropriate TSI. On return, the TSI
lock and the system lock are reset and con­
trol is transferred to the Queue Scanner.

Operation: When entered, this routine
tests the real time interval lock (SYSLCK).
If it is nonzero, a loop is entered waiting
for the lock to be reset. If the lock is
not reset in time, a system error results.

If SYSLCK is zero, or reset in time,
this routine sets it and checks register 1
to see if the request is from a supervisor
task (register 1 = 0). If it is, general
registers are stored in this routine's own
save area and in PSASCU and PSASCU +4. The
real time value from PSASCU+8 and PSASCU+C
is loaded into registers 4 and 5.

The following conditions are then
checked:

86

• Has the number of pending real time
interrupts reached the system limit?

• Is there more than one interrupt pend­
ing this task?

• Is this a request to cancel a pending
real time interrupt?

If pending real time interrupts are at
the system limit, return codes are: 0 for
a virtual memory task, and 4 for a supervi­
sor task.

The return code for a successful pass
through this subroutine by a supervisor re­
quest is a hex 'C'. For a virtual memory
request, it is an8. A successful pass may
result in one of four possible actions:

• A real time interrupt is set for a task
(supervisor or virtual memory) that did
not have an interrupt pending.

• A real time interrupt is canceled and
not replaced (supervisor or virtual
memory).

• A pending real time interrupt is can­
celed and a new one is set to replace
it (virtual memory only).

Any request from a virtual memory task
to set an interrupt when one is already
pending results in the pending one being
replaced by the new request. If the input
time value is 0, it is assumed that the
task (supervisor or virtual memory) wants
to cancel a previously set interrupt
without replacing it.

This subroutine creates a four-word
entry to be placed in the real-time­
interval-pending queue (CHARTI), in the
order of increaSing real time, with the
most imminent time value at the top of the
queue. The four-word entry includes an
eight-byte time value (RTITIME), a four­
byte address of the TSI, if applicable
(RTITSI), a flag byte (RTIFLAG) containing
the cancel interrupt flag (RTICNCL) and the
ADCON present flag (RTIADP), and a three­
byte address of the ADCON of the supervisor
routine to receive control when the inter­
rupt occurs. The time value in the first
queue entry is compared to the system's
current time at frequent intervals by the
dispatcher (CEAKD). When the dispatcher
finds that the time specified for interrupt
has either arrived or passed, control is
passed to the Create Real Time Interrupt
subroutine (CEAKR) where a task timer
interrupt is queued on the appropriate
task.

Much of the detailed operation of this
portion of the set Real Time Interval sub­
routine is concerned with the maintenance
of three pOinters and three counters in the
system table (CHASYS) which control access
to the real time interval queue (CHART!).
Each entry in the queue is twelve bytes
long. Main storage space for the queue is
obtained from supervisor Core Allocation.

• .'i

The original main storage'requ~~t i~ fc,r 64
bytes. This block is large enough for four
entries. When it is necessary to make a
fifth entry, more maiwstorage is
requested. Since the entries in the queue
are frequently reordered, chronologically,
the 64-byte blocks of main storage are not
chained. Instead, when more space is
needed, N+64 bytes are requested, where N
equals the number of bytes in the existing
main storage block. When the new block is
received, the existing queue is moved into
it from the old block, and the old block
returned to supervisor Core Release. This
f;rocedure simplifies the necessary reorder­
ing because the queue entries remain
cQntiguous.

The three pointers maintained by this
subroutine contain: (1) the aqdress of the
first word of the current block, (2) the
address of the first entry in the queue
(this will differ from the address in the
first pointer when an entry is deleted by
the Create Real Time Interrupt subroutine),
and (3) the address of the word following
the last word of the last queue entry.

The three counters maintained contain,
respectively, the total number of bytes in
the current blcck (always a multiple of
64), the number of bytes being used, and
the number of bytes that have been released
from the top of the block by the Create
Real Time Interrupt subroutine.

Restore Elapsed Time Subroutine (CEAS8)

This subroutine responds to an SVC re­
quest to reset the elapsed time for all
CPUs in the system.

Entry: CEMI48 - in response to the RSTTIM
macro instruction.

Normal - SVC Queue Processor.

Error - Queue Scanner.

operation: On entry, the processor sets to
zero the elapsed timers for all CPUs in the
system. The processor adds the elapsed­
time value for the CPU controlled by the
operative task to the time-oi-day clock
value in the. system table. If the result­
ing value in the time-of-day clock exc~eds
24 hours, the year-month-day field in the
system table is incremented by one and a
value equivalent to 24 hours is subtracted
from the time-of-day clock. The processor
then exits to the SVC Queue Processor.

Read-Time Subroutine (CEAS6)

This subroutine responds to a request to
generate d doubleword, fixed-point number

representing: year, month, day, hour,
minute, second, millisecond, and microsec-
0nd.

Entries: CEAHH47 for a virtual memory re­
quest, control is transferred to this rou­
tine from the SVC Queue Processor (CEAHQ)
with the following general register
configuration:

Register 1 - contains the address of the
GQE.

Fegister 2 - contains the adcress of the
TSI.

Register 3 - holds the address of the
XTSI.

Registers 4, 5 and 6 - contain what were
in registers 0, 1, and 15,
respectively, at the time the
SVC was executed.

For a supervisor task, register 1 con­
tains a code of 0 and register 14 the
return address of the calling routine.

Exits: After normal completion of a re­
quest from Virtual memory, this subroutine
exits to the SVC Queue Processor.

Normal completion for a supervisor re­
quest sees control returned to the calling
routine through a branch to the address
specified by register 14.

Exit is to the System Error routine if
the routine lock byte (tested at entry) is
set too long, or if a negative number or
overflow results from the sum of the con­
tents of the system table's year-month-day
cell (SYSYMO), the time-of-day clock (SYS­
TOO), and the elapsed-time cell of the pre­
fixed storage area (PSAETM).

operation: When entered, this subroutine
tests the routine lock byte (RTLCK). If it
is found to be non-zero, a loop is entered
until it is reset, or the waiting time is
exceeded. If the lock is not reset within
the waiting time, a system error results.

If RTLCK is 0, or reset within the wait­
ing time, general registers are stored in
this routine's save area. The contents of
SYSYMO, SYSTOO, and PSAETM are then added
together, SYSYMO is the year-month-day cell
in the system table; and SYSTOD is the sys­
tem table's time-of-day clock. PSAETM is a
cell in the prefixed storage area of a CPU
containing the elapsed time measured by
that CPU's interval timer.

If a negative number, or one that
exce~ds 2- 1 , results from this addition,
exit is made to the System Error routine.

section 3: Program Organization 87

If a legal sum results, this subroutine
determines whether the request was from a
virtual memory task or a supervisor task.
If general register 1 contains'-a nonzero
code signifying a virtual memory request,
,the calculated system elapsed time is
stored in the doubleword defined by the
juxtaposition of XTSGOS and XTSG1S. The
routine lock byte is reset and exit is made
to the SVC Queue Processor at CEAHQR.

If the request was from a supervisor
task (0 code in register 1), the calculated
number is returned in general registers 0
and 1. Registers 2 through 14 are restored
and the 'routine lock byte reset before
return is made to the address of the cal­
ling task addressed by register 14.

SYSTEM TABLE MODIFICATION AND EXTRACTION
PROCESSORS

Set up System Table Field Subroutine (CEAS2
Entered at CEAH42)

This subroutine responds to a request to
insert certain information into the system
table. The caller specifies a field iden­
tification code and the information to be
inserted in the field. The user may issue
the SETSYS macro with the code in mnemonic
form. Valid mnemonics for designating
fields in the system table are described in
the System Programmer's Guide.

RESTRICTIONS: The system table (CHASYS)
fields which may be set up by this SVC are
intentionally omitted here because the set
of allowable fields may change. These
fields are assigned mnemonics by the macro
assembler and a potential user should refer
to the description of the SETSYS macro
expansion for information about which CHA­
SYS fields may be set up.

Entry: CEAH42 - in response to the SETSYS
macro instruction.

~odules Called: SVC Queue Processor
(CEAHQ) causes a GQE to be queued on the
task's TSI interruption queue.

Normal - SVC Queue Processor.

Error - Queue Scanner.

Operation: On entry, the subroutine tests
the legality of the specified code. If it
is illegal, the SYC Queue Processor is
called to cause the GQE to be moved to the
task's TSI interruption queue, resets the
TSI lock byte and exits to the Queue
Scanner.

88

If the code is legal, the sUbroutine
sets up the field with the required infor­
mation, resets the TSI lock byte and exits
to the SVC Queue Processor. In order to
protect the system table fields (SYSYMD and
SYSTOD) when information is to be inserted
in them, the system table time fields are
set and interrupts disabled. If the field
to be set is time of day (TOO), a call is
made to Restore Elapsed Time (CEASa) to
synchronize elapsed time in all CPUs and
their associated time cells in the PSA. On
return from this call, the time lock is
reset and interrupts enabled.

Extract System Table Field Subroutine
(CEAS2 Entered at CEAH43)

This processor responds to a request to
extract certain information from the system
table. The caller specifies a field iden­
tification code. The caller may issue the
SVC with the code in mnemonic form. The
valid mnemonics for designating fields are
described in the System Programmer's Guide.

The user should refer to the description
of the XTRSYS macro expansion in Assembler
User Macro Instructions for information
about what CHASYS fields may be extracted.

Entry: CEAH43 - in response to the XTRSYS
macro instruction.

Modules Called: None.

Exit: svc Queue Processor.

Operation: On entry, the subroutine tests
the legality of the identification code.
If the code is illegal, the SVC Queue Pro­
cessor is called to cause the GQE to be
queued on the task's TSI interruption
queue.

If the code is legal, the subroutine
obtains the length and displacement of the
indicated field from the table of lengths
and displacements and uses these values to
insert the information in the XTSI's gener­
al register save area. When this is accom­
plished, the subroutine exits to the SVC
Queue Processor.

Whenever the field to be extracted is a
time field, the time lock byte in the sys­
tem table is set and interruptions dis­
abled. When the, operation is complete, the
time lock is reset and interrupts enabled.

Extract Accumulated Time Routine (CEAT1)

This routine computes the accumulated
CPU time used by a task and communicates
this value to the calling routine.

Entry: CEATiA - in response to the XTRTM
macro instruction.

Exit: SVC Queue Processor. "

Operation: This processor is passed the
address of the XTSI in general re~i~tn.r
three. The accumulated time is computed by
subtracting the current timer value from
the last time slice value and adding the
accumulated time value to the difference.
This result is then converted from clock
ticks to milliseconds and is stored in the
save area for general register one in the
XTSI. An exit is then taken to the SVC
Queue Processor at CEAHND. When the task
is reactivated, the accumulated time will
be loaded into register one.

Extract from Auxiliary storage Allocation
Table (CEAT4)

This routine extracts fields from the
auxiliary storage allocation table (ASA)
and presents them to the user on request.
The ASA fields that may be requested are:
The auxiliary drum pages available (ASATMA)
and the auxiliary disk pages available
(ASATKA) •

Entry: CEAT4A

Input

Register 1 - address of the GQE

Register 2 address of the TSI

Register 3 - address of the XTSI

Exit: Queue Scanner.

Operation: On entry, this routine estab­
lishes dddressability and then extracts the
dzum and disk pages available counts from
the ASA. ASATMA is stored into the field
for general register zero of the XTSI
(XTSGOS), and ASATKA is put in the field
for general register one (XTSG1S). Thus,
when the requesting task is reactivated,
its general register fields are restored
from the XTSI and the requested information
will be in general registers one and two.

I/O call Subroutine (CEAAO) Chart AY

This subroutine provides the preliminary
processing for all input/output interrup­
tions caused by the issuance of an SVC
instruction embedded in the first two bytes
of task's IORCB in virtual storage. I/O
Call performs the initial preparation of
the IORCB and queues the GQE pOinter on the
'l'SI or device queue processor's queue.

I/O Call performs the following opera­
tions when it detects an error:

• Places an interruption code in the GQE.

• Calls the Queue GQE on TSI subroutine
to queue the GQE on the TSI's interrup­
tion queue.

& Unlocks the TSI.

• Returns the work area via Supervisor
Core Release.

• Exits to the Queue Scanner.

RESTRICTIONS: The SVC must be in the
IORCB, the task must execute the SVC, and
the 10RCB must be contained in one page.

Entzies: The I/O Call subroutine is
entered, from the SVC Queue Processor, at
CEAA01.

Modules Called: Supervisor Core Allocation
subroutine (CEALl entered at CEAL01)
reserves work storage for the use of the
processor and storage space for the 10RCB.

Queue GQE on TSI subroutine (CEAAF)
places a pointer to the specified GQE on
the queue in the affected task's TSI.

Locate Page subroutine (CEAML) provides
the location of a page table entry or
external page table entry when the appro­
priate virtual storage andTSI addresses
are given.

Supervisor Core Release subroutine
(CEALl entered at CEAL02) releases main
storage after use.

Command Word Relocator (CEAAA) relocates
CCWs in the event of an IORCB chaining
request.

Dequeue I/O Requests (CEAAJ) dequeues
GQEs from a device queue in the event that
IORCB chaining request is successful but
command word relocations fails.

Set Suppress Flags subroutine (CEAJQ
entered at CEAJSF) turns on flag F3 in the
scan table entry for the device on which
the GQE is queued.

Enqueue GQE subroutine (CEAJQ entered at
CEAJEN) places GQE pointers on the speci­
fied scan table queues.

Paging (CEAMQ) brings in all pages
necessary to perform the start-I/O
operation.

Exits: Upon normal completion of its work
the I/O Call subroutine exits to the Queue
Scanner which will eventually invoke the
device queue processor if F3 is set. Any
abnormal condition results in an exit to
the Queue Scanner after first queuing the
GQE on the TSI interruption queue •

Section 3: Program Organization 89

Operation: On entry, I/O Call requests
work space from the Supervisor Core Alloca­
tion subroutine, and calls the Locate Page
subroutine to find the real storage address
of the lOCAL SVC. If the SVC page does not
~xist in main storage or in the task's vir­
tual storage, the I/O SVC is processed as
an error as described above. If the page
does have a main storage address, I/O Call
turns on the I/O page flag in the external
page table, and checks the system-symbolic­
device-address field in the IORCS against
the task-symbolic device list to insure
that the requested device is assigned to
the task. If so, the 'reject I/O requests'
flag is checked to determine whether the
device is suppressed. If the device is
either unassigned or suppressed, the I/O
Call Processor passes the interruption on
to the task. If the device is assigned and
unsuppressed, I/O Call calculates and tests
the IORCS's size. If the IORCS is equal to
zero, or greater than 1,920 bytes, the
interruption is also passed on to the task.
This is also the action if the IORCS
crosses a page boundary or if the page­
list-length is greater than 8.

If no lOCAL errors are detected, the
Supervisor Core Allocation subroutine is
called to obtain the necessary resident
storage space to contain the IORCS. If no
space is available, the task's time slice
is terminated, the task's instruction coun­
ter is reset to the virtual storage loca­
tion from which the lOCAL was issued, the
GQE and work areas are returned, the TSI
unlocked, the page-hold counter in the
external-page table is decremented and an
exit made to the Queue Scanner.

The device type field (IORDT) in the
IORCS is then checked. If the device type
is disk, the disk operations counter
(TSICPR) in the TSI is incremented by one.
This counter is then compared to the maxi­
mum disk operations allowed field (STE­
~~XRD) in the schedule table (CHASTE).

When TSICPR exceeds STEMAXRD, the task
is forced to time slice end by creating a
GQE and queuing it on the Timer Interrupt
Processor's queue via Move GQE (CEAJMG).
Exit is then to the Queue Scanner.

In those cases where the device type is
not disk, or when TSICPR does not exceed
STEMAXRD, the IORCB's 'resident origin of
the buffer' field is set.

If not, the IORCB chaining flag is
checked. If on, lOCAL will chain together
two or more IORCSs for the same device by
overlaying a trans~er in channel onto the
last ccw to the firstcCW in another IORCB,
the I/O-counter in the TSI is incremented
by 1, the TSI's 'I/O wait' flag is set on,
and the Enqueue GQE subroutine is called to

90

place the GQE pointer on the correct device
queue processor's queue. The TSI is
unlocked, the work area is returned and an
exit is made to the Queue Scanner.

paging is then called. The pagelist
pOinter is placed in register 0, and a
pointer to the GQE is placed in register 1.
If Paging is unsuccessful, Start I/O will
create an extended program interruption.
Otherwise, when paging returns, the
requested pages will be in main storage and
in I/O hold.

Note: Since the lOCAL paging operation
proceeds in parallel with lOCAL prepara­
tions it is possible to bring pages into
main storage before the lOCAL operation is
completed. Therefore, lOCAL has to assume
the responsibility for turning off the
page-wait flag and turning on the ready
flag in the TSI and preparing to re-issue
the lOCAL if the paging counter goes to
zero.

The same logic is used when the 'any
page' flag in the IORCB is on. The only
difference is that the 'nUll state' flag in
the PCS entry is set on and the page-in
portion of the operation is consequently
ignored. Processing continues until the
list is exhausted, after which lOCAL exits
to the SVC Queue Processor.

Pageout Service Subroutine (CEAA1) Chart AZ

This processor provides the required
logiC to complete a VAM pageout I/O SVC re­
quest when the task determines that one or
more of its virtual storage pages is to be
returned to external storage.

RESTRICTIONS: . The parameter list (which
includes the SVC) must originate on a doub­
leword boundary and not cross a page boun­
dary. The number of virtual storage pages
returned to external storage by one pageout
SVC call must not exceed 8.

Entry: CEAA11 - in response to the PGOUT
macro instruction.

Modules Called: Queue GQE on TSI subrou­
tine (CEAAF) places the GQE pointer on the
calling task's TSI interruption queue.

supervisor Core Allocation subroutine
(CEALl entered at CEAL01) handles requests
for allocation of working storage.

Locate Page subroutine (CEAML) provides
the location of any page table entry or
external-page-table entry when the appro­
priate virtual storage and TSI addresses
are given.

Enqueue GQ-E subroutine (CEAJQ entered at
CEAJEN) places GQEs on device queues.

Supervisor Core Release subroutine
(CEAL1 entered at CEAL02) releases the
working storage.

Paging (CEAMQ) reads in page table pages
and virtual memory pages.

Exit: Queue Scanner.

operation: When changed virtual storage
pages are returned to external storage,
they are copied from virtual storage to
external storage. Such pages are not
deleted from virtual storage, however,
until the space they occupy is required for
other user pages. The specified virtual­
storage pages may be residing in main
storage, auxiliary storage or both. If any
of the pages reside in auxiliary storage,
they must first be paged into main storage
and then transferred to external storage.
The processor provides the necessary con­
trol to split the pageout operation into
these two logical steps when they are
required. The first step in processing is
to bring all the virtual storage pages into
main storage. Step two effects the transf­
er of the pages to external storage.

Pageout is called when an SVC, contained
in the first two bytes of an I/O-page­
control block (lOPCB) in virtual storage,
is executed. An interruption GQE is
generated and queued on the SVC Queue Pro­
cessor's scan table queue. When the Queue
Scanner actiVates the SVC Queue Processor,
control is transferred to Pageout.

On entry at CEAA11, Pageout requests
working storage from the Supervisor Core
Allocation subroutine. When space is allo­
cated and control returned, pageout tests
the protection key in the program status
word (PSW). If the protection key is non­
zero, a nonprivileged task issued the SVC
call. Hence, Pageout calls the Queue GQE
on TSI subroutine to place the GQE pointer
on the calling task's TSI,interruption
queue. When this is done and control
returns, Pageout unlocks the TSI lock byte,
and calls the Supervisor Core Release sub­
routine to release the working storage.
When control returns Pageout exits to the
Queue Scanner.

If the calling task is privileged, the
virtual address in the GQE is converted to
an actual main-storage address. Pageout
then calls the Locate Page subroutine to
determine the present location of the mpa­
geout SVC. A task program interruption
occurs if any of the following conditions
exist:

• The pageout SVC is not in main storage.

• The pageout SVC is not in the task's
virtual storage.

• The IOPCB crosses a page boundary.

In any of these cases, Pageout calls the
Queue GQE on TSI subroutine and exits as
described previously.

If none of these conditions exists,
pageout retrieves parameter data from the
10PCB and stores it in its work area.
Pageout tests the 'number of pages to be
transferred' parameter. If it is equal to
zero or greater than eight, the task inter­
ruption exit procedure is entered.

If the number of pages to be transferred
to external storage is less than 9 and
greater than zero, pageout checks the
external address against the task-symbolic­
device list to determine whether the
requested devices are assigned to the task.
If a requested symbolic device address is
not found, a page error indicator is placed
in the general register save area of the
XTSI, and the task-I/O-interruption exit
procedure is initiated. The same action is
taken if there is no task-symbolic-device­
list pointer in the calling task's TSl.

pageout then checks to see if the page
tables for the pages to be transferred are
in main storage. If not, the paging sub­
routine (CEAMQ) is called to read in the
page table page. On return from Paging, or
if the page tables were already in main
storage, Pageout makes sure none of the
pages to be transferred were changed since
the request was made (the external
addresses are the same as the ones given in
the SVe). pageout then sets up a para.neter
list and calls the paging subroutine to
read in the virtual memory pages and put
them in I/O hold. On return, all reques~ed
pages are in main storage, and Pageout
begins the second phase of its operation:

• Sets the TSI to the number of pages to
be transferred to external storage.

• Scans the task-symbolic list to insure
that all devices are still assigned to
the task.

If a requested device is not still
assigned and there are unprocessed pages
remaining, the 'page ready' flag is turned
on in the TSI. The Supervisor Core Release
subroutine is called to release the main
storage occupied by the copy GQE. An
interrupt code is then placed in the GQE
and the Queue GQE on TSI subroutine is
called to place the GQE on the interruption
queue in the affected task's TSI. The
Supervisor Core Release subroutine is then
called to release Pageout's work area and
Pageout exits to the Queue Scanner.

If all requested devices are still
assigned to the task, Pageout scans through

section 3: Program Organization 91

the list of external-storage addresses and
constructs GQEs and PCB entries for each
device. For each external address, Pageout
constructs a copy GQE containing pointers
to:

• The TSI.

• The XTSI's save area.

• The PCB.

• The paging and VAM indicators.

A PCB entry is made up containing the
virtual, core block, and external storage
addresses. The Pageout and write flags are
set on and an indicator is set to tell the
Channel Interrupt Queue Processor. which
entry in the list of external-storage
addresses caused this PCB entry to be
generated. All other PCBE fields are set
to zero. The external-storage address from
the original list is zeroed out and the
next external-storage address, referring to
the same symbolic device, is processed. At
this time, the PCB entry count is added to
both the system table counter field and the
PCB entry count in the GQE.

At this point the Move GQE subroutine is
called to place the GQE pointer on the
device queue processor's scan table queue.

The above steps are repeated until all
pages have been processed. When PCB
entries for all pages to be transferred to
the external storage have been made up, the
master-GQE-pointer in the TSI is set to
zero, and the storage space occupied by the
GQE, PCB, and the work area is returned by
calling supervisor Core Release. When con­
trol is returned, Pageout exits to the
Queue Scanner.

Remote Job Entry Line Control Subroutine
(CEABC) Chart BA

The RJE Line Control subroutine performs
three functions for binary synchronous com­
munication between the data adapter unit
and the RJE transmission terminal:

• Enable Line - Activate the specified
line and initialize it for data
transfer.

• Prime Line - Reinitialize the specified
line for data transfer.

• Disable Line - Deactivate the specified
line after either normal or abnormal
job termination.

Entries: CEABC1 - as a result of the RJELC
macro instruction being issued, with the
following input:

92

Register 1 - address of the SVC GQE

Register 2 address of the taSk's TSI

Register 3 - address of the task's XTSI

Register 4 - contents of the task's
register 0:

Byte 0 - Flags:

X'SO' = bypass SCANT clearing

X'40' = bypass calling HID

Bytes 2&3 - Symbolic device
address

Register 5 - contents of task's register 1:

Function code

o = prime line
1 - enable line
2 = disable line

Register 15 - the calling address

CEABC2 - from supervisor routines, with
the following input:

Register 0 - same as register 4 for SVC
entry

Register 1 - input code:

o = prime
1 = enable
2 = disable

Register 14 - return address

Register 15 - calling address

Modules Called: Supervisor Core Allocation
(CEALl entered at CEAL01) is called to get
main storage for a work area when this rou­
tine's work area (CEABCS) is locked (indi­
cating in use by another CPU).

Dequeue GQE subroutine (CEAJQ entered at
CEAJDE) is called to remove GQES (left over
from asynchronous error retry operations)
from the scan table.

Supervisor Core Release (CEALl entered
at CEAL02) is called to release work area
space and space for those GQES dequeued
from the scan table.

Set Suppress Flags subroutine (CEAJQ
entered at CEAJSF) turns off the F4 sup­
press flag after a scan table clearing
operation.

Pathfinding (CEAA5 entered at CEAA5P) to
assign a path to the device for Which the
line control operation is to be performed.

•

Halt I/O (CEAAI entered at CEAAIH) halts
I/O operations on the device to be
serviced.

Start I/O (CEAAG entered at CEAAG1)
starts I/O on the indicated CCW list for
the line control function requested.

Generate and Enqueue Interrupt GQE
(CEABQ entered at CEABQ1) creates a dummy
I/O interruption GQE and puts it on the
channel interrupt processor's queue when
start I/O fail~ with a condition code of
one and a busy condition is not indicated.

Reverse Pathfinding (CEAA5 entered at
CEAASR) is called to release the path when
the disable line function is being per­
formed. Reverse Pathfinding is also called
to locate the device's asynchronous entry
in the device group table after a halt I/O
operation.

Exits: If invoked for SVC processing, exit
is to the SVC Queue Processor at CEAHQR (to
dispose of the SVC GQE before going to the
Queue Scanner) with the fol.lowing output
for the task:

Register 0 - If Start I/O failed, bytes 0
and 1 contain return informa­
tion from the Start I/O sub­
routine's register o. Bytes 2
and 3 contain the physical
path address of the failing
device.

Register 1 - contains a return code:

o = operation successful
4 = start I/O or halt I/O

failure
8 = path unavailable or inva­

lid input
12 = path busy

If entered from the resident supervisor,
exit is to the calling routine with the
same output to the task as described above.

Error Conditions: The System Error Proces­
sing routine (CEAIS entered at CEAIS1) is
invoked through the ERROR SVC when any of
the following error conditions are
encountered:

• Impossible combination of scan table
flags set (7701)

• Illegal Pathfinding request (7702)

• Invalid RJE device type code detected
(7703)

• Invalid input to CEABC (7704)"

• Unable to release physical path (7705)

---------------------.~-~~~

• Work area lock not set when attempt is
made to reset it (7706)

• Path translation error detected (7707)

• DEVLOCK locked more than SO microse­
conds (7708)

• DEVLOCK not set when attempt made to
reset it (7709)

Operation:" On entry, this routine initia­
lizes itself as required for SVC or resi­
dent supervisor ~ubroutine processing. If
a work area is needed, it obtains the space
through Supervisor Core Allocation.

A check of the input is then made to
determine if the scan table should be
cleared. If so, this operation is per­
formed by calling the Dequeue GQE subrou­
tine to remove the GQE from the scan table
entry and then calling supervisor Core
Release to release the GQE core space.

pathfinding is then called to obtain a
physical path to the I/O device. On return
the Halt I/O input parameter is checked to
see whether or not a Halt I/O operation is
required. Halt I/O is called, if neces­
sary, and its return information is checked
to see if an interruption is expected. If
so, the device's asynchronous entry in .the
device group table (DEVAE) is located by a
-translate only· call to Reverse Pathfind­
ing. The flag indicating whether to
enable, prime or disable the line after
Halt I/O is set and a return code of zero
is set in register one before exiting.
When the Halt I/O interruption is pro­
cessed, the RJE Asynchronous Interrupt Sub­
processor (CEABA) will examine the DEVAE
flags and make the appropriate call to this
routine (RJE Line Control) to start I/O for
the desired line function.

If there is no I/O halt I/O operation
required, parameters are set up according
to the line control function requested and
the Start I/O subroutine is called. If the
disable function is requested, the DEVAE is
located as described previously for halt
I/O operations, and the RJE disable flag is
set. When the disable interruption occurs,
the interruption will be discarded by the
RJE Asynchronous Interrupt routine.

The Start I/O return parameters are
checked. If the operation was successful,
a return code of zero is set, the path is
freed by calling reverse pathfinding, and
the appropriate exit taken.

If the Start I/O operation resulted in
status being stored (non-busy), the infor­
mation returned by Start I/O in register
zero is preserved, a return code of four is
set and exit taken.

Section 3: Program Organization 93

For other conditions, the Start 1./0
operation is retried until successful or
until the retry threshold is-reached. If
the retry threshold is reached, the Start

'1/0 return information in register zero is
preserved, return code of four is set, the
path freed, and the proper exit taken.

Reset Device suppression Flag Subroutine
(CEAAH)

This subroutine responds to an SVC re­
quest to zero the suppression flag of a
specific device or of all devices in the
task symbolic device list. The calling
task specifies the system symbolic device
address for a specific device request.

Entry: CEAAHR - in response to the RESET
macro instruction.

Normal - SVC Queue Processor.

Error - SVC Queue Processor

Register 0 - error indication

Operation: On entry, the subroutine
obtains a pointer to the list of devices
assigned to the task from the TSI. Each
device-list entry in the task symbolic
device list contains:

• The device address.

• In-use indicators.

• Queue-device request counts.

• Suppress indicators.

For a specific device, the subroutine
searches the device list for an address
which matches the input address. If none
is found, an error flag is returned to the
calling task via general register zero. If
there is a match, the suppression indicator
for the specified device entry is set to
zero, and the SUbroutine exits to the SVC
Queue Processor at CEAHND. If no TSDL
exists (for suppress all devices requests)

.an error code is returned to the task.

set Path Subroutine (CEAAB)

This subroutine enables virtual storage
tasks to set or reset a malfunctioning sta­
tus indicator for a channel, control unit
or devi~e path. The caller specifies,. via
general registers, the following:

94

register zero
r-------------------~--~---------,
I 0 0 MOO IN I 0 0 I L-___________________ ~ __ ~ __________ J

o 1 2 3 14 15 31

one
r--------------------T--T--T-----T--------,
I IC IC ID I SYMBOLIC I
I 0 0 I H I U I I PATH I L ___________________ ~ __ ~_~ __ ~ ______ _J

, unit flags
16 17 18 19 31

M = set unit malfunctioning: 1 -- malfunc­
tioning, 0 -- OK

N = must equal one, indicates path to be
set is in register one.

Unit Flags = bits 16, 17, 18 indicate which
components of the path, channel, con­
trol Unit, device respectively, are to
be set.

Path = 13 bit physical or actual address if
flag in bit 5 of register zero is off;
if it is on, a symbolic address is
indicated. This address must be com­
plete down to lowest unit being set.

Entry: CEAAB1 - in response to the SPATH
macro instruction. ,"'--

Modules Called: The Set Path portion of
the Pathfinding subroutine (CEAA5S) sets
the requested flags for the path.

Exits:

Normal - SVC Queue Processor.

Error - SVC Queue Processor with error
indication stored in XTSI field
normally reserved for saving gen­
eral registers 0 and 1.

Operation: On entry at CEAAB1, the subrou­
tine sets up the necessary parameters and
linkage, and transfers control to CEAA5S,
the Set Path section of the Pathfinding
subroutine. This procedure returns the
requested indicators to the Set Path rou­
tine, which stores them in the general
register save area of the calling task's

• XTSI in the words normally reserved for
saving registers 0 and 1 and exits to the
SVC Queue Processor.

Queue Device on Task Subroutine (CEAAC)

This SUbroutine responds to a task's re­
quest for the addition of a system­
symbolic-device address to its device list.
The calling task specifies the device
address.

Entry: CEAACQ - in response to the ADDEV
macro instruction.

Modules Called: supervisor Core Allocation
subroutine (CEAL1 entered at CEAL01)
reserves main storage for the TSDL if
needed.

Exits:

Normal - SVC Queue Processor.

Error - SVC Queue Processor with error
indication stored in XTSI field
normally reserved for saving gen­
eral registers 0 and 1.

Operation: On entry, the processor obtains
the address of the task symbolic device
list (TSDL) from the TSI, and searches its
entries for a device address to match the
input address.

If a match of symbolic device addresses
is found, the count of queue device
requests for that address is checked. If
it is less than fifteen, the count is
incremented and the routine exits. If the
count is equal to fifteen, an error flag is
returned to the calling task in general
register zero.

If there is no such symbolic device
address in the device list, a search is
made for a free area. If a free area is
found, the symbolic device address is
placed into it. If no entry with a free
area exists (or there is no device list), a
new entry is created by requesting the
required number of contiguous bytes of main
storage from the supervisor Core Allocation
subroutine which in turn passes back the
pointer to the first byte of the allocated
space. The device address is placed in the
new entry, and the linkage to the old
entries, if any exist, is established. All
TSDL updates are interlocked using the TSI
lock, which was set by the SVC queue pro­
cessor. The subroutine exits to a secon­
dary entry point (CEAHQR) in the SVC Queue
Processor, which resets the TSI lock.

Remove Device From Task Subroutine (CEAAD)

This subroutine responds to a task's re­
quest to remove or suppress a symbolic
device address in its device list in the
task-symbolic device list (TSDL). The sym­
bolic device address is specified by the
caller.

Restrictions: The module calling CEAAD to
remove devices from the task is required to
set the TSI lock before making the call.

Assumptions: If Remove Device from Task is
utilized as a subroutine, it is the calling
routine's responsibility to save all regis-

ters before calling the subroutine.

Entrie~:

CEAADR - from SVC Queue Processor vl.a RMDEV
macro instruction.

- from a resident supervisor module
via a branch and link.

Modules Called: Superv.isor Core Release
subroutine (CEAL1 entered at CEAL02) called
when the device address removed is the last
on the list and the area used by that list
is to be released.

Dequeue 1/0 Requests subroutine (CEAAJ)
suppresses any 1/0 outstanding on the
device.

~:

Normal - entry from SVC Queue Processor -
return to same at'CEAHND.

- entry from resident supervisor
module - address in register 14.

Error - same as normal, except that an
error indication is placed in:

• Save area of XTSI for return to
SVC Queue Processor.

• Register 0 for return to resi­
dent supervisor module.

Operation: On entry, the subroutine
obtains the TSDL pointer from the TSI, and
searches the list of assigned devices for
the calling task for an address that
matches the input address.

If there is no match, an error flag is
returned to the caller. If there is a
match, a test is made to determine the type
of calling task. If the task was a privi­
leged virtual storage program, the count of
requests for this symbolic device address
is checked. If it is not zero, the count
is lowered and the processor exits. If the
count is zero, a call is made to CEAAJ to
suppress the device for that task. Upon
return, if 1/0 is in proqress for that
task, the TSDL is flagged and the processor
exits. Otherwise, the entry for that sym­
bolic device address in the TSDL is
cleared, as are the asynchronous entry bits
in the asynchronous entry portion of the
device group table (DEVI).

If the request was from a supervisor
component, another test is made to deter­
mine the type of request. If the request
was to remove the device, processing is the
same as it is for a virtual storage pro­
gram, except that the count, instead of
being lowered, goes to zero. If the re-

Section 3: Program organization qS

quest was to suppress a device, the
'device-suppression' flag in the TSDL is
set, and the pointer to the lock byte is
,saved. (Note: Only a supervisor component
can request the suppression of a device for
a task by this module.)

If the subroutine finds a TSDL entry in
which all in-use flags are off, indicating
that there are no device addresses left in
the entry, the forward link of the empty
entry is placed in the preceding entry, and
the supervisor Core Release subroutine is
called to release the storage occupied by
the unused block.

When all processing is completed, the
subroutine:

• Exits to the SVC Queue Processor at
CEAHND if the request was from a privi­
leged virtual storage program.

• Returns control to the calling supervi­
sor component.

Set Asychronous Entry Subroutine (CEAAK)

This subroutine receives requests from
any privileged program. It updates the
specified line in the asynchronous-device
entry in the device-group table and updates
the task's task-symbolic-device list
(TSDL). The caller specifies a task iden­
tification parameter and a symbolic device
address.

Entry: CEAAKl - in response to the SETAE
macro instruction.

Modules Called: Supervisor Core Allocation
subroutine (CEALl entered at CEAL01) allo­
cates work area for the SUbroutine.

Supervisor Core Release SUbroutine
. (CEALl entered at CEAL02) releases the sub­
routine's work area upon completion.

Queue GQE on TSI SUbroutine (CEAAF)
queues errors on the TSI as program
interrupts.

Scan on Task ID subroutine (CEAAU)
locates the TSI for the given task.

:t;xits:

Normal - Queue Scanner.

Error - Varies with error conditions:

96

• If the task device list count
has reached its maximum, a
return code of 1 is placed in
general register zero's save
area in the XTSI and control is
transferred to the Queue
Scanner.

• If the device was not assigned
to the old task, or if the TSI
does not exist, return codes of
70 and 71 respectively are
passed to the Queue GQE on TSI
subroutine and a program inter­
rupt is queued on the task's
TSI.

• If the device is not found in
the, system, an exit is made to
SYSERR, passing to it a code of
7901.

• When working with TSIs, this
Subroutine sets and resets the
TSI lock to prevent other CPUs
from referring to the same TSI.

Operation: On entry, the subroutine
obtains a block of main storage from the
Supervisor Core Allocation subroutine for a
work area and register save area. It then
searches the task's TSDL for the requested
device. If it is not assigned to the task,
and the device is not an RTAM terminal, a
program-interrupt code is placed in the
GQE, the GQE is queued on the TSI interrup­
tion queue by calling the Queue GQE on TSI
subroutine, the work area is returned by
calling the Supervisor Core Release subrou­
tine, and an exit is made to the Queue
Scanner.

If the device is aSSigned to the task,
the appropriate device-group table is
located by searching for the correct
symbolic-device address in the symbolic-to­
actual-conversion table. If a match is not
found, a minor system error is reported to
the System Error Processor. If a match is
found, the actual-device address is multip­
lied by eight and added to the
asynchronous-device-entry pointer in the
relevant device-group table. The result is
a pointer to the correct asynchronous­
device entry.

The subroutine then checks the task
identification parameter. If it is zero,
two device group table flags are tested,
DEVT (indicates TSS under user control) and
DEVRT (indicates TSS under RTAM control).
When DEVT is on and DEVRT is off, the fol­
lowing fields in the device group table are
cleared before removing the device from the
task: DEVTSI, DEVC, DEVD, and DEVN. The
device is removed from the task's TSDL by
calling the Remove Device from Task subrou­
tine. The work area is then returned and
an exit is made to the Queue Scanner.

If the task identification parameter is
nonzero, the TSI list is scanned using the
Scan on Task ID subroutine to find the
pointer to the proper TSI. When TSS is
under user control and not RTAM (DEVT on,
DEVRT off), the new TSI pointer is stored

in the terminal control table (TCT) at
TCTTSI. In either case, DEVC, DEVD and
OEVN are cleared in the device group table.
If a match of IO's is not made, a program
interrupt code is placed in the GQE, the
GQE is queued on the TSI interruption
queue, the work area returned, and an exit
is made to the Queue Scanner.

If the correct TSI is found, a pointer
to it is placed in the asynchronous-device
entry for non-terminal or non-RTAM devices.
The device is removed from the old task's
TSOL by calling Remove Oevice from Task
subroutine and the device is added to the
new task's TSDL. The work area is then
returned, and an exit made to the Queue
Scanner.

Terminal SVC Processor (CEAR4) Chart BB

The function of this module is to per­
form the processing for the following resi­
dent terminal access method (RTAM) SVCS:

CONN SVC (207)

DCON SVC (208)

WAIT SVC (204)

CKALOC SVC (203)

LCD SVC (202)

ATTACfl SVC (195)

UFLOW SVC (187)

SETTDE SVC (205)

Entries: A unique entry point is defined
for each of the eight SVC processors as
follow~;:

CONN - CEAR41

DCON - CEAR42

WAIT - CEAR43

CKALOC -" CEAR44

LCD - CEAR45

ATTi\CH - CEAR46

UFLOW - CEAR47

SETTDE - CE.A.R48

i'.odules Called: Supervisor COJ:"e Allocation
(CEALl enter~d at CEALOD is called when
the SVC processing routine requires space
for a multiterminal status control block or
a save area.

>{·f

The Terminal Control Table Entry Alloca­
tion Subp~ocessor (CEATS) is called in the
CoNN and DCON processing to allocate and
release TCT and buffer pages. Entries to
CEATS, for the indicated reasons, are as
follows:

CEATSl to allocate a TCT page.

CEATS2 - to allocate a buffer page.

CEATS3 - to release the first TCT page.

CEATS4 - to release the first buffer page.

The supervisor Core Release routine
(CEALI entered at CEAL02) is called to
release the MTSCB and save area storage.

Operation for CONN: When entered at CEAR41
by the SVC Queue Processor, five parameters
are received in general registers:

RO, Rl

R2

R3

R4

R5

appllcation program name

TCT virtual memory address

Sllffer virtual memory address

maximum lines, buffer length (2 half
words)

number of virtual memory pages

On ent.ry, this processor tests a flag in
th~ TSI (TSIMTT) to determine if the task
is already MTT. If it: is, this processor
sets a return code in register zero (all
'l!" s) and exits to the SVC Queue Processor
at CEAHQR.

If the task is not already MTT, Supervi­
sor Core Allocation is called to obtain 64
bytes of main storage for an MTSCB. The
block is zeroed, and the parameters passed
are retrieved from register storage in the
XTSI and posted in the M'TSCB. A pointer to
the MTSCB is then set in the TSl
(TSlMTSCB) .

Supervisor Core Allocation is again
called fO): ~;ave area space (64 bytes) pre­
paratoryto calling the TeTE Allocation
.::;ubprocesso:t" at CEATSl to allocate a 'reT
page. On r(~turn, from CEAT:c.,l, a call is
made to CJ:.ATS2 to allocate a buffer page.
The save area storage is then released by
calling Supervisor Core F:elease.

Finally, an indicator is set in the TSI
(T;;'IMTT) tc c.;pecify that this is an MTT
task, and ~xit is to the SVC Queue Proces­
sor at CEAHQk.

Sect ;_on): Program Organization 97

Operation for DeON: On entry, a test of
the TSI flag, TSIMTT, is made to see if the
task is MTT. If it is not, there is noth­
ing for this processor to do, and immediate
exit is to the SVC Queue Processor at

·CEAHQR.

If it is an MTT task, save area space is
requested from supervisor Core Allocation
(64 bytes) and general registers are stored
in it.

The TCTE Allocation Subprocessor is then
called at CEATS3 to release the TCT page
for the.task. On return, CEATS4 is called
to release the buffer page.

The registers are then restored and suc­
ceeding calls to Supervisor Core Release
return the save area space and releases the
Ml'SCB space.

The MTSCB pOinter in the TSI (TSIMTSCB)
is then cleared and the flag, TSIMl'T, is
reset before exit to the SVC Queue Proces­
sor at CEAHQR.

Operation for WAIT: On entry, this proces­
sor tests register 4 for zero. If it is
not zero, it will contain a pointer to a
system TeT. The main storage address of
the TCT is then obtained. A flag in the
TCT (TCTTSS) is then tested to see if the
slot is for a TSS user task. If it is not,
it will be for an MTT application task, in
which case a check is made to see if there
is any work pending for the task (TCTWWK
on). If not, the MTT task is placed in the
delay state and exit is to theSVC Queue
Processor at CEAHQR. If work is pending,
immediate exit is to be taken to CEAHQR.

If the TCT is for a TSS user task, and
work is pending for it, exit is to CEAHQR.
If there is no work indicated by TCTWWK, a
test is made to see if there are any
unmasked interrupts pending for the task.
If there are, exit is to CEAHQR,.

When there is no work nor any pending
interrupts for tne task, it is put in the
delay state, and the 'force time slice end'
flag (GQEFT) is set in the GQE. Move GQE
is then called to put the GQE on the Timer
Interrupt Processor's queue and exit is to
the Queue Scanner.

When the parameter (register 4) contains
zeroes on entry to this processor, a test
is made to see if the task is MTT. If not,
there is no work for tile processor to do,
and immediate return is made to the SVC
Queue Processor at CEAHQR.

When the task is MTT, the address of its
first TCT page is obtained, and a scan of
the TCT pages is made to see if any work
has been posted for the task since the. time

98

that the application task issued the WAIT
SVC. If any work is found, exit is made to
CEAHQR, and the task will be redispatched
to process it. When no work can be found,
the processor puts the task in the delay
state and exits to CEAHQR. Any incoming
work from an application user will cause'
the task to be reactivated.

Operation for CKALOC: On entry, this pro­
cessor receives either the positive or
negative symbolic device address value as a
parameter in register 4 (user register 0).
If the parameter is negative, it is made
positive and the device group table pointer
is obtained from the symbolic to actual
table (CHASAC). The asynchronous interrupt
list pointer (DEVAEP) is then obtained from
the device group table and the symbolic
device address is located for the subject
device.

Then, if the device is MTT oriented,
(DEVMT on) a return code of 2 is set in
register zer01 and if a user oriented
device (DEVT on), a return code of zero is
set in register zero. If it is a TSS user
device, under RTAM, and the SOA on entry
was negative, the 'user-oriented device'
flag (DEVT) is turned off and a return code
of 3 is set. If the SDA was positive, DEVT
is turned on and a return code of 1 is set.
Exit from this routine is then made to the
SVC Queue Processor at CEAHQR.

Operation for LCD: This processor receives
the symbolic device address of the subject
terminal in general register four as input.
It scans the terminal device table (CHATDE)
for an entry corresponding to the one spe­
cified. If none is found, a return code of
zero is set in register zero.

If the entry is found, the line code to
be used for the SDA is returned in register
zero. These codes are as follows:

X'Ol' - 1050 PTTC/8

X'02' - 2741 correspondence

X'03' - 2741 PTTC/8

X'04' - TTY35 ASCII

X'05' - 1052-7

Exit is then made to the calling
routine.

Operation for ATTACH: This processor
searchs the TCT for the entry aSSigned to
the subject task, and returns the virtual
memory address of the TCT slot in register
one. A return code of zero is set in
register zero.

If the TCT page is not in main storage,
exit is made to the system Error Processor.

If the entry sought is not in the TCT
page, register one is set to zero, and
register zero is set with a return code of
four. Exit is then made to the calling
routine.

Q£eration for UFLOW: This processor is
entered when a user wants to adjust or
obtain the conversational task limit or MTT
application user limit. An action code is
received in register 1; if it is invalid, a
return code of 8 is passed to the caller.
. 1\ valid action code will cause the follow­
ing action to be taken:

code 1 - If the conversational task limit
specified in register zero is larger than
the value in MTSMAX, a return code of q is
passed to the caller in register 15; other­
wise, the MTSTLM field is updated to
reflect the new limit, and a return code of
zero passed to the caller.

code 2 - The current number and limit of
users is placed in register zero, and a
return code of zero placed in register 15.

Code 3 - This code adjusts ~~ user limits
for different application names. ,On entry,
register zero contains the address of an
input buffer location containing applica­
tion names and user limits. A scan of the
active chain is performed to find applica­
tion names matching those in the buffer.
For each match, the proposed limit is
checked against the maximum. If the new
limit is greater, the buffer is marked in
error; if the new limit is less, the MTSCB
is updated. When a match for the applica­
tion name cannot be found in either the
active or the inactive list, the entry in
the buffer is invalidated. When all FFs
are found in the application name field of
the buffer, the scan is over and a return
code of zero is passed to the calling
routine.

code q - This code obtains the current
nuwber of MTT users, current user limit,
and maximum user limit for each MTT task
now active. The virtual memory address is
register zero points to an output buffer
location that will be updated to contain
the above data for each application name.
When the application name field contains
all FFs, the end of the list is indicated.
and a return code of zero is passed in
register 15.

Operation for SETTOE: This processor will
cause flags to' be turned on and off in the
terminal device table (CHBTOE). On entry,
the TOE is scanned to locate the SDA con­
tained in register 5. Once the entry in
the table is found, the input code ,in

register one is checked: a code of zero
will cause the device held flag (TDEST1) to
be turned on: a code of four will cause the
device held flag to be turned off. In both
cases a return code of zero is passed to
the caller. When the SDA is invalid, no
processing occurs and a return code of -four
is passed to the caller.

Reset Drum Interlock Subroutine (CEAAZ)

This subroutine responds to a task's SVC
request to reset the task/task drum inter­
lock byte in the system table •

Entry: CEAAZl - in response to the RDI
macro instruction.

Exit: SVC Queue Processor

Operation: Upon entry from the svc Queue
Processor, this subroutine matches the task
10 of the calling taskaqainst that of the
TT interlock. Anyone of three conditions
may prevail and the PSW condition code in
the X~SI is set to indicate them as
follows:

code
-0-

Prevailing Condition
The drum interlock (TT) is
cleared.

1 The drum interlock (TT) is not -
cleared because the TID of the
issuing task does not match that
of the TT interlock byte.

2 The drum interlock is not set and
consequently cannot be reset.

Inter-Task Communication Subroutine (CEAQ5)

This subroutine responds to a task's
request to communicate with another task.
Input from the calling task is a message­
control block (MCB) containing:

• The number of doublewords to be trans­
mitted to the receiving task.

• A code field to be used by the communi­
cating tasks.

• The VSENO SVC.

• A halfword of zeros.

• The task identification (TID) of the
sending task.

• The TIO of the receiving task.

• The location of the eVent-control block
(ECB), if a reply message is expected.

• The text of the message.

Section 3: Program Organization 99

RESTRICTIONS: The number of bytes in a
message count may not exceed 190q. The
entire message-control block (MCB) must be
in one page. The virtual storage page must
be in main storage. The length parameter
must be less than 2QO.

Entry: CEAQ5V - in response to the VSEND
macro instruction.

~~dules Called: SVC Queue Processor
(CEAHQ) causes a program interrupt GQE to
be enqueued on the task's TSI if the SVC
was not properly executed.

Queue GQE on TSI (CEAAF) is called to
queue VSEND interruption on receiving task.

Exits: Normal - Queue Scanner with one of
three return codes in XTSI save area for
general registers:

Code 0 - indicates the receiving TSI speci­
fied does not exist.

Code 'Q - indicates that the TSI specified
is not accepting messages.

Code 8 - indicates message successfully
transmi tted.

Error - If the SVC is not executed, or if
the message is either too long or crosses a
page boundary, an exit is made to the Queue
Scanner after placing an interruption code
of 75 or 76 respectively in GQBINT, calling
Queue GQE on TSI, and setting the return
code equal to zero.

Operation: On entry, the subroutine calls
the Locate Page subroutine to locate the
message-control block page. If the page is
not in main storage, an SVC is issued to
call CEAIS.

If the page is in main storage, the sub­
routine determines if the message exceeds
239 double words in length. If it does,
the SVC Queue Processor is called to cause
a program interrupt GQE to be placed on the
task's TSI interrupt queue.

If the message-control block length is
acceptable, the processor performs a test
to determine whether the MCB resides within
one virtual storage page. If not, the task
interruption exit procedures described
above for excessive message length are
entered.

If the MCB resides within one virtual
storage page, the subroutine extracts its
location from the GQB and determines its
main-storage addr-ess. Using the TID of the
receiving task, the subroutine searches the
active and inactive TSI lists. If a TSI
with a matching TID is not found, the sub­
routine indicates this to the calling ,task

100

by placing a return code in the XTSI gener­
al register save area, and exits to the
Queue Scanner.

If a TSI with the correct TID is found,
but its message flag is on, indicating that
the receiving task does not want to acce'pt
messages, the TID of the sending TSI is
checked. If this indicates that the sender
is neither the system operator nor the
batch monitor, a return code of four is
stored in the general register save area of
the XTSI, the'GQE is disposed of, the TSI
lock byte is reset, and an exit to the
Queue Scanner is made.

If the message bit in the receiving
task's TSI is off, or if the sender is the
system operator or batch monitor, main
storage is obtained ands the MCB is moved
into it.

A GQE is then created from the input GQE
with the IORCB pointer field containing a
pointer to the MCB, the GQE is queued on
the TSI interruption queue by calling the
Queue GQE on TSI subroutine, a return code
of 8 is stored in the XTSI, the TSI lock
byte is reset and control passes to the
Queue Scanner.

TSS Dynamic Status (CEASS)

This SVC processing routine performs
either of two functions. When entered in
response to SVC 19Q, it zeroes the system
statistical table (CBBSST) fields. When
entered in. response to SVC 193, it moves
system statistics from main storage loca­
tions to specified virtual memory
locations.

Entries:

CEASS1 - in response to the ZEROSST macro
instruction.

CEASS2 - with a GQE address in register one
in response to the SAMPLE macro
instruction.

Exit: svc Queue Processor.

Operation: When entered to zero system
statistical table fields, it determines the
size of the table and loops through a
series of instructions storing zeros in the
appropriate fields until finiShed. It then
moves the elapsed time from PSAETM into
SSTZET and exits.

When entered to sample system statis-
tics, the SVC, to which the routine is
responding, resides in the first word of a
full page .to which the statistics are to be
moved. The SVC is invoked by an EXECUTE r­
instruction to guarantee that the receiving

page is in main storage when this processor
gets control.

Appropriate information is moved from
the auxiliary storage allocation table, the
system statistical table, and the system
table to the specified page. As the infor­
mation is moved, the receiving page is
checked to determine if it has enough room
to hold the statistics to be transferred.
If not, this routine exits before complet­
ing its processing. otherwise, it exits
when all requested information has been
moved.

SUPERVISOR SUBROUTINES

Several subroutines are used by the
queue processors and other system com­
ponents that provide these major components
with commonly required services. These
subroutines may be logically divided into
five subgroups, based on the type of ser­
vice they perform:

The first of these five groups is the
page handling group which provides for the
location and manipulation of pages within
main storage or between main storage and
virtual storage. With the exception of
Real Core Error Hecording and Real Core
Statistical Recording, which are non­
reentrant, these subroutines are resident
in main storage, reentrant and privileged.

The second group of subroutines deals
with errors which occur during paging
operations. They provide the means by
which errors are classified and retry is
attempted. As with the paging subroutines,
these subroutines are resident in main
storage, reentrant, and privileged.

The I/O services subroutines handle the
queuing of I/O requests, the issuance of
SIO and HIO commands, error handling and
recording and, in general, ,all phases
involved in the completion of an I/O requ­
est. They share the common attributes of
being reside·nt in main storage, reentrant,
non-recursive and privileged.

The special task service subroutines
provide services required by changes in a
user task and include task initiation, task
activation and deactivation and the loca­
tion of a specified TSI. These subroutines
are also resident, reenterable, non­
recursive and privileged.

Finally, there exists a group of subrou­
tines which handle inter-CPU communication,
hardware devi'ce configuration, I/O opera­
tion changes, and deletion of work from all
or a portion of a CPU prior to partition­
ing. Tnese subroutines are nonreentrant,
nonrecursive, resident and privileged.

PAGE-HANDLING SUBROUTINES

Find Page Subroutine (CEANC)

This subroutine locates segment, auxili­
ary segment, page and external page table
entries.

Entry: CEANCA

Modules Called: Search RSPI Table subrou­
tine (CEAMS) locates the proper resident­
shared-page index (RSPI) entry in main
storage for any specific shared-page table
(SPT) nUEber, or locates the address of the
next available entry in the RSPI.

Normal - To caller.

Error - To System Error Processor.

Operation: On entry, Find Page expects to
find the task's XTSI address and the
virtual-storage address of the requested
page in general registers. The subroutine
then computes the segment-table-entry
address. Find Page compares the segment
portion of the virtual storage address with
the segment table length. If the segment
portion of the address is greater than the
length of the table, an addressing error
has occurred. Find Page specifies the
error via general register and returns con­
trol to the calling program.

If the specified segment is found in the
segment table, the Find Page subroutine
tests its availability indicator. If the
indicator specifies that the segment is
unavailable, Find Page returns an addres­
sing error via general register, and
returns control to the caller.

If the segment table entry is available,
but the segment is shared, the sharing lock
is set and the RSPI-entry corresponding to
this shared segment is interrogated. This
is done by extracting the shared-page-table
number from the auxiliary-segment-table
entry, placing it in a general register and
calling the Search RSPI Table SUbroutine.
If there is no RSPI entry for this SPT
number a system error SVC is issued. If
the Search RSPI Table subroutine returns
the address of an RSPI entry for this
shared-page table number, Find Page tests
the RSPI-entry lock byte. If it is on, a
delay occurs. If the lock byte is not
turned off within a specified time interv­
al, a call is made to CEAIS. It is then
locked and the content of the segment table
entry in the RSPI is used to compute the
page table and external-page table entries
for the specified page. If the segment was
not shared, Find Page will have previously

Section 3: Program organization 101

placed the segment-table entry from the
XTSI in the proper register for processing.

If the page portion of the virtual
storage address requested is not greater
than the length of the page table, condi­
tion code 1 is set and control is returned
to the calling program. If the length is
exceeded by 1, condition code 0 is set
before returning control. Otherwise a con­
dition code of 3 is set, a general register
is set to one to indicate the specific
error and return is made to the calling
program. The calling routine is respons­
ible for.resetting the sharing lock if the
page was a shared page. The TSI lock is
also set by the calling routine.

Locate Page Subroutine (CEAML)

This subroutine provides the location of
any page table entry or external-page table
entry when the appropriate virtual storage
and TSI addresses are given.

Entry:' CEAMLP

Modules called: Search RSPI Table subrou­
tine (CEAMS) locates the proper resident­
shared-page index (RSPI) entry in main
storage for any specific shared-page table
(SPT) number or locates the address of the
next_available entry in the RSPI.

Supervisor Core Allocation subroutine
(CEAL1 entered at CEAL01) provides 64 bytes
of main storage for use as a register save
area when the save area in the Locate Page
subroutine is in use.

Supervisor Core Release subroutine
(CEAL1 entered at CEAL02) releases the
register save area after use.

Exits:

Normal - To caller.

Error - To System Error Processor.

Operation: Upon entry, Locate page
searches for main-storage addresses asso­
ciated with any virtual storage address in
a task's XTSI. The caller specifies virtu­
al storage and TSI addresses. Locate Page
tests ·the segment and page portions of the
specified virtual storage address for vali­
dity, in order to prevent the modification
of unassigned main storage within the
t.ask's XTSI.

The TSI address is used to locate the
XTSI, which contains control information
associated with the task's virtual storage.
If the XTSI has been nswapped outn of main
storage, a SYSERR will occur. Next the
segment portion of the virtual address is
assigned to the task. If a violation

102

occurs, condition code 1 will exist when
control is returned to the user.

. If the segment is shared (a bit in the
auxiliary segment table is assigned for
this purpose) the system table sharing lock
is set.

The shared-page-table number is
extracted from the auxiliary-segment-table­
entry and placed in a general register for
linkage to the search-RSPI subroutine.

If the segment is unavailable, the seg­
ment table and auxiliary segment table
addresses are placed in registers 0 and 1
respectively and a condition code of 3 is
set. Control is returned to the calling
routine.

If the segment is valid, the page por­
tion of the virtual storage address is
checked for length validity as above. A
violation causes condition code 2 to be
placed in the PSW. If both segment and
page are correct., the condition code is set
to zero.

The segment entry contains the pOinter
to the page table. Using this as a base,
the Locate page subroutine calculates the
location of the page table entry. The
location of the external-page table entry
for this page is also calculated. The page
table (or shared page table) and external­
page table (or shared external page table)
addresses are placed in general registers
for return to the calling program, to which
control is given. The sharing lock remains
on to protect the validity of the pointers
returned. The sharing lock is reset by the
calling program.

Page Posting Subroutine (CEAMP) Chart BC

This subroutine posts information to a
task's TSI. XTSI and shared-page tables to
indicate the status of user pages after a
paging operation. and handles delayed post­
ing of write checks on XTSI pages and vir­
tual memory pages.

Assumptions: It is assumed that a skeleton
XTSI exists according to the TSI and XTSI
formats defined and that the segment and
auxiliary-segment table will occupy the
first XTSI page.

Entry: CEAMP1

Modules Called: Supervisor Core Allocation
subroutine (CEAL1 entered at CEALOl) pro-.
vides 64 bytes of main storage for use in a
register save· area when the save area of
the Page Posting routine is in use. It
also obtains main storage for a GQE/PCB.

r
f

Supervisor Core Release subro'utlil~{"
(CEAL1 entered at CEAL02)' releases the
register save area after use, if the work
area was assigned by . .supervisor COl:oe Allo­
catinn sUbroutine.

Enqueue subroutine (CEAJQ entered at
CEAJEN) queues the master pageout pointer
or any READ/WRITE built by this routine.

Locate Page subroutine (CEAML) locates
the proper page for posting_

User Core Release subroutine (CEALl
entered at CEAL04) releases the main
storage block.

Search RSPI subroutine (CEAMS entered at
CEAMS1) is used to obtain the shared page
table address.

Queue GQE on TSI (CEAAF entered at
CEAAFQ) is called to queue a GQE for a page
to be processed by the dynamic loader on
the TSI.

Normal - To caller.

Error - To System Error Processor.

Operation: On entry, the block page count
(TSIBLK) is checked for zero before
initiating the scan of page tables. If the
count is zero, Page Posting exits. Other­
wise, Page Posting checks for two input
parameters in general registers: the
address of the PCB entry associated with
the completed paging operationi and the GQE
pointer.

Three types of page posting operations
are performed by this subroutine: virtual
storage page posting, XTSI page posting,
and page table page posting.

VIRTUAL STORAGE PAGE POSTING: When Page
Posting finds a virtual storage page indi­
cator in t.he PCB entry, the read indicator
in the GQE is examined to determine whether
the virtual storage page has been read into
a storage area or written out of storage.

If a read operation has taken place, the
TSI is locked via the SETLOCK macro, Page
Posting places the TSI address and the vir­
tual storage address in general registers,
and calls the Locate Page SUbroutine. Loc­
ate page returns to Page Posting the page
table entxy and external-page table entry
addresses associated with the VS page. If
Locate Page returns an invalid address,
Page Posting issues an ERROR SVC.

If the virtual storage address is valid,
Page Posting moves the main-storage block
address from the PCB entry to the page

table entry, and marks the page available.
Page Posting then obtains from the
external-page table the required informa­
ti~n for sett.ing up the pages' storage keY3
ior each half-page.

A four-bit field in the XPT entry is
used to dete.rmine the protection class, 2
bits for each half-page. Each 2 bit field
value is used as a table look-up to extract
the byte content to place in a general
register before issuing the set-storage-key
instruction for each half Page. Page Post­
ing inserts the proper storage-protect keys
at this time. If the page being posted is
the ISA and there is a block paging count,
processing continues as for a block page
read. The XPT entry is then examined to
determine if the page just read in is
marked by the dynamiC loader. If it is,
Page Posting obtains 64-bytes of storage
from the Supervisor Core Allocation subrou­
tine (CEAL1), copies the contents of the
GQE into it, zeroes out the PCB count field
in the new GQE, turns off the unprocessed
bit, and inserts the VSA found in the PCB
in the CSW field of the new GQE. The new
GQE address and a program-interruption
indicator are placed in general registers,
and Page Posting calls the Queue GQE on TSI
subroutine to queue the GQE pointer to the
task's interruption queue, thus informing
the task monitor that the Dynamic Loader
routine must be called to process the-page.
When control returns, Paqe Posting turns
off the unprocessed bit.

page Posting next examines the shared­
page indicator in the XPT entry. If the
page is not shared, the page-I/O-count is
now decreased by one, and the TSI lock is
turned off via the OPENLOCK macro. If the
count does not go to zero, no further
aCtion is taken, registers are restored and
return is made to the calling program. If
the count goes to zero, the GQE is examined
to determine if this is part of a pageout
function. If the master bit in the GQE is
on, pageout is in progress. Under this
condition the 'page-wait' bit remains on in
the TSI, the GQE master-pageout pointer in
the TSI is placed in a general register and
the Enqueue GQE subroutine is called to
queue the GQE on the SVC Queue Processor's
queue. Page Posting then restores all
registers and returns to the calling pro­
gram. If a pageout function was not in
process the page-wait bit in the TSI is
turned off, the ready bit turned on, regis­
ters restored, and return made to the call­
ing program.

If the page is shared, the count of
estimated main storage blocks available
(SYSECB) is lowered, after setting the sys­
tem table lock (SYSTSKLK), which protects
theSYSECB count. The lock is reset after
the count is returned, and the 'in-transit

Section 3: Program Organization 103

in' bit in the shared-XPT entry is turned
off. While this page was being read in,
there may have been other requests for this
page from those sharing it. .. The 'GQE chain
indicator' bit in the shared-XPT entry

. reflects this condition. If the bit is off
no chain exists and page Posting goes to
decrement the page-I/O count, reset the
sharing lock (SYSSHALK) which was set by
Locate Page and returns to the calling pro­
gram as for private pages. If a GQE chain
does exist, Page Posting frees each task's
GQE found in the chain in the following
manner:

• Sets the TSI lock.

• Decrements the task's page-I/O count by
one, tests the new count and performs
as described above.

• Resets the TSI lock.

• Frees the GQE on the chain by calling
the Supervisor Core Release (CEALl.
entered at CEAL02) subroutine.

Page Posting processes other chained
GQEs in the XSPT entry in a similar manner
as described above. When the last GQE has
been proces~ed, the GQE chain indicator in
the XSPT entry is turned off. Page Posting
then proceeds as described previously for
the page that the calling program provided
as input.

When shared chains are examined, Page
Posting locks the 'sharing lock (SYSSHALK)
to ensure that no other CPU may perform the
same function of working off or adding to
shared GQE chains at the same time.

When Page Posting is called to perform a
posting operation for a VS page that has
been written out of storage, ~ test is made
to determine whether the page is shared.
If not, page Posting is only required to
test the TSI lock byte, and when off, to
set it on, and to lower the page-I/O count
field.

If the count did not go to zero, the
lock byte is turned off, all registers
restored, and return is made to the calling
program. If the count goes to zero, the
'page-wait' bit in the TSI is turned off
and the 'time-slice end' indicator is
turned on in the TSI. If this was a
pageout operation, the TSI lock byte is
turned off, all registers restored and

'return is made to the calling program.

Page Posting recognizes a write for a
shared page by te$ting a bit indicator 1n
the GQE. USing the V~~ in the PCB, and the
TSI address in the ~~ as input parameters,
Locate Page is called. The number of pages
written for this shared page is then decre-

l.04

mented by one. If the GQE-chain indicator
is off, there have been no further requests
for this page. If the write count is noW
zero, and this is a pageout operation the
storage block containing this page is not
released, and Page Posting goes to decrease
the page-I/O count as discussed previously.
If the operation was not pageout and the
write count is zero, the storage block is
released, since a supervisor component (the
Write Shared Page subroutine) is performing
the write of a shared page. Page Posting
in this case restores all registers and
returns to the calling program. If the
write count did not go to zero, the page-I/
o count is decreased as described earlier.

If a GQE chain exists for this page, the
Enqueue GQE subroutine is called to start
the write request processing.

The GQE on the chain will have previous­
ly been initialized correctly for this pro­
cedure. If a read request is found, the
TSI associated with the chained GQE is
handled in the same manner as virtual
memory inCOming pages. After the GQE chain
has been worked off, the shared-page table
entry is marked available.

XTSI PAGE POSTING: When the PCB entry con­
tains an XTSI-page indicator, Page Posting
checks if it is for a read or a write
operation. If a write operation is being
processed, the TSI lock is set and the page
is checked to see if it is the first XTSI
page. If it is, the external address of
the XTSI page is updated in the TSI. If
not, it is checked to see if it is a page
table page, a segment table page, or an
auxiliary segment table page. If it is
none of these, a system error is detected.
If yes, the I/O pending count is checked.
If 0, a system error is detected. Other­
wise the count is lowered by one and
checked again for o. If not 0, control is
returned to the calling program.

If it is 0, the task is in page wait.
The task is then made ready and the TSI
lock byte turned off. If there is a
pageout GQE on the TSI, it is queued, the
master pageout pointer cleared, and the
task left in page wait.

If the posting operation follows a read
operation, the TSI lock is set and Page
Posting must also determine if the first
XTSI page is involved. A check then is
made to see if the task has been selected
for migration. If it has, a GQE is built
and queued on the timer-interrupt proces­
sor's queue to trigger migration. If it is
the first XTSI page but doesn't involve
migration, the following operations are
performed:

'" '.\) ::. >;' ','

• If the segment table and auxiliarYseg­
ment table are both in the page, the
internal location of the first XTSI
page is inserted-in the TSI. If the
TSI pointer in the XTSI has not been
inserted, it is inserted. Pointers to
the segment table (control register
zero) and to the auxiliary segment
table (AST) are updated. The number of
pages this time slice is set to one.
The delayed posting queue is then
scanned for page table page entries.
If any are found, the GQE on the
delayed posting queue is changed to
indicate a read; and the GQE/PCB is
queued on a device queue to read in a
page.

The page count is increased, the entry
is dequeued, and the 'processed by
time-slice end' bit in the AST turned
off for that page. This bit indicates
that the AST entry corresponds to the
first segment in the PTP. At this
point, the 'XTSI swapped out' bit is
turned off.

After the delayed posting queue is
scanned, the segment table is scanned
for an ST entry with the availability
flag off. The location of the page
table is then checked. If it is in the
first XTSI page, the PTP block address
is inserted into the ST entry. If the
page table is in other than the first
XTSI page, and the 'time~slice end~ bit
is on, a check is made to determine if
the entire XTSI is to be brought into
main storage. If not, only those page
table pages required to process the
pre-page set are readied for reading
into main storage. If all page table
pages are to be read into main storage
a read is set up for the page and the
I/O count raised. The read is then
queued. If the 'time-slice end' bit is
off, a read has already been built for
that PTP. .

At this point the delayed posting queue
is scanned for any virtual memory
entries. If any are found, the entry
is dequeued, a locate page is issued,
and the external location in theXPT is
updated.

After the VM entry scan, or if the I/O
count was 1, GQE/PCBs are created to
read in the ISA page and all blocked
pages (those with XPTPP on). Then the
I/O count is lowered.

• If the segment table is in the first
XTSI page, but the AST is on another
page or pages, the delayed posting
queue is scanned for entries of AST
pages. If found, the external location

of the page in the XTSI is updated and
the entry dequeued.

When the delayed posting queue has been
scanned, reads are set up for the AST
pages, the I/O count is raised, and the
reads are queued.

At this point, the internal location of
the first XTSI page, the TSI pointer,
and the PTP chain are updated. Control
register 0 is updated with a new block
address, the number of pages is set to
1, the numbe~ of ST and AST pages read
in is set to 0, and the I/O count is
lowered.

• If neither the ST or the AST is in the
first XTSI page, the delayed posting
queue is scanned for entries of AST
pages or ST pages. If any are found,
the external location of the page is
updated in the XTSI, and the entry is
dequeued.

contiguous main storage requirements
for the ST are then Checked. If there
is only one ST page, a GQE is built,
the page I/O count rais ed, and the GQE
is queued on the User Core Allocation
queue entry in the scan table. The AST
pages are then read in.

If contiguous main storage for the-ST
is required, a GQE is built specifying
the number of contiguous main storage
pages needed. It is queued on the Con­
tiguous Core Allocation queue entry in
the scan table after the page I/O count
is increased. The internal location of
the first XTSI page, the TSI pointer,
the PTP chain, the number of ST and AST
pages read in, and the number of pages
this time slice end are initialized.
The I/O count is then lowered.

If the GQE is for an ST page, the number
of pages this time slice end and the number
of ST pages read in are raised. If there
is only one ST page, control register 0 is
updated. If all AST pages are in main
storage, the 'XTSI swapped out' bit is
turned off and the delayed posting queue is
scanned for any PTP entries. If any are
found, a GQE is set up to read in the page,
the 'processed by time-slice end' bit is
turned off, and the page I/O count is
raised. The ST and AST are then scanned to
read -in any other page table pages. The
I/O count is lowered. If there is more
than one ST page, a test is made to see if
this is the first. If it is, control
register 0 is updated. If all ST pages are
not in main storage, the I/O count is
lowered. If all ST pages have been read
in, reads are set up and the I/O count
raised for each AST page. The I/O count is
then lowered.

Section 3: Program organization 105

If the GQE is for an AST page, the numb­
er of pages in this time slice end, and the
number of AST pages read in are increased.
The internal address of the-AST page is
updated in the XTSI. If all the AST pages
have not been read in, the I/O count is
lowered. If all AST pages have been read
in and all ST pages are in main storage,
the 'XTSI swapped out' bit is turned off
and the delayed posting queue is scanned
for PTP entries. If any are found, they
are read in, the I/O count raised, and the
'processed by time-slice end' bit is turned
off. The PTPs are then read in. If all
AST pages have been read in, but not all ST
pages are in core, the I/O count is
lowered.

If the GQE is for a PTP, the PTP chain
in the XTSI is updated, and the number of
pages this time slice end is raised. If
the suppress posting bit in the page con­
trol block entry is on, a write check has
occurred on the page. The PTP is then
scanned, and the internal and external
addresses for every segment in that PTP are
updated (internal is in the ST: external in
the AST). If the 'suppress posting' bit is
not on, only the internal address in the ST
is updated. If at this time there are no
outstanding page table page reads, the VM
delayed posting and the read of the ISA
page are set up. The I/O count is then
lowered.

Write Shared Pages Subroutine (CEAMW)

This subroutine returns storage blocks
occupied by shared pages to the supervisor,
provided the pages have not been referred
to within a specified time period. If
storage is released for any changed pages,
the pages are written out of storage before
their storage space is released.

Entry: CEAMWS

Modules Called: Supervisor Core Allocation
subroutine (CEALl entered at CEAL01) pro­
vides main storage for work areas required.

Supervisor Core Release subroutine
(CEALl entered at CEAL02) releases the work
areas when no longer needed.

Enqueue GQE subroutine (CEAJQ entered at
CEAJEN) queues requests to assign auxiliary
storage areas on the scan table queue.

User Core Release subroutine (CEALl
entered at CEAL04) releases main storage
occupied by user pages which are to be
written out.

Auxiliary Storage Release subroutine
(CEAIA) releases auxiliary .storage pre­
viously occupied by user pages which are to
be written out.

106

Exit: If called to perform the shared page
migration function, exit is to the Queue
Scanner after queuing a GQE on the Program
Interrupt Processor's (CEANB) queue.
Otherwise, exit is to the calling routine.

Operation: On entry, Write Shared Pages
tests a lock byte within its own coding.
If the lock byte is on, control is returned
to the calling program immediately, since
another CPU is performing the write shared
pages function for another program. If the
lock byte is off, it is turned on, the
calling program's registers are saved, and
Write Shared Pages begins processing the
req~.est.

The sharing lock is set to protect the
SPT information. If the RSPI count is zero
in the system table, the lock byte is
turned off, and return is to the calling
program with all input registers restored,
and the scan flag in the system table
turned on.

If there are RSPI entries, the Inter-CPU
Communication subroutine is called to noti­
fy each CPU in the system to reset its
associative registers. This is necessary
to guarantee that no other CPU's are pre­
sently using a shared page whose reference
bit may have been turned off earlier by
Write Shared Pages. When this has been
accomplished and control returns the sub­
routine routine proceeds by checking to see
if the request was from Supervisor Core
Allocation.

If this is the case, no main storage is
available ·for SCA's reserve list and
requests for main storage cannot be met
until some pages become available. In this
situation, Write Shared Pages sets a switch
to indicate that it has been called by SCA:
and, therefore, it cannot call SCA for GQE/
PCB space. To meet this special request, a
dummy PCB is passed to User Core Release
requesting shared pages which are both
unreferenced and unchanged. The scan of
the tables is the same as in normal
processing.

Next, a check is made to see if the call
to Write Shared Pages is from the Timer
Interrupt Processor to obtain pages for
shared page migration. If so, the internal
flag (SCASW-same as switch used for calls
from SCA) is turned on. The scan flag is
then tested to see if the call was just to
reset the reference bits, in which case
they are reset by obtaining the main
storage address from the chain of shared
page core block table entries in the core
block header. Write Shared Pages then
returns to the calling routine.

Otherwise, write Shared pages calls
Supervisor Core Allocation to get 128 bytes

\., ';',' ,',. ':'; ({~' ",~

of main storage for a GQE/PCB ~mbination.
The main storage obtained is zeroed and the
PCB address is placed.ill the GQE. Then, if
it is a migration case, three flags are
turned on in the GQE: GQEPIM, GQEPPM, and
GQESMGM. The scan of RSPI entries is then
started after restoring the registers which
point to where the search ended, the last
time Write Shared pages was called. If
this is the initial call, the registers are
set with one pointing to the RSPI entry and
the other with the RSPI entry count.

If the RSPI entry contains a shared­
page-table number other than zero, and,'if
the RSPI entry lock byte is off, it is
turned on and the shared-page-table scan is
performed. If the SPT number is zero, or
if the lock byte is on, the next RSPI
entry, if any, is examined as above. After
all entries have been examined, Write
Shared Pages turns off the sharing lock
byte and its own lock byte, and calls the
Supervisor Core Release subroutine to
release the last GQE/PCB obtained which was
not used. When processing is complete,
Write Shared Pages restores registers and
returns control to the calling program.

If an active RSPI entry was found, a
scan of the shared-page table (SPT) is
started. If an SPT entry is found unavail­
able, t.he next SPT entry, if any, is
examined for availability until all entries
have been examined. If the PCB count in
the GQE is zero, when all SPT entries have
been examined for a particular RSPI entry,
and the RSPI entry lock byte is turned off,
Write Shared Pages returns to the RSPI
table scan. If any PCBs were built up, the
GQE is initialized as follows before the
GQE is moved to perform the write
operation.

• The loc-on-Q fields are filled with the
Auxiliary Storage Allocation Queue Pro­
ce~sor's scan table queue locations,
followed by four Fs to ensure disposal
of the GQE after processing is
com~leted.

• The PCB count is placed in the GQE
.• count field of the loc-on-Q field in

the GQE. This is required so that the
RSPI entry lock byte can be turned off
at the completion of all writes as~o­
cidted with this GQE. The count field
is lowered by the Page Posting
subroutine.

• The RSPI entry address associated with
these writes is stored in the shared
page table field of the GQE so that the
Page Posting subroutine can determine
which RSPI entry lock byte to turn off
when the write count in the GQEs loc­
on-Q field goes to zero.

• The write bit in the GQE is turned on.

~ The shared page bit in the shared-page
table is turned on.

The count of the number of writes pend­
ing in the system is then incremented by
the number of PCB entries. This count is
located in the system table. A lock-byte
is employed when the count is being raised.
At this point the Enqueue GQE subroutine is
called to queue the GQE on the scan table
queue of the Auxiliary Storage Allocation
Queue Processor. When control returns to
the Write Shared Pages subroutine, the
supervisor Core Allocation subroutine is
called to allocate another GQE/PCB storage
block. When the space is allocated, the
Write Shared Pages subroutine begins scan­
ning the RSPI entries again.

When an SPT entry is found available
(meaning a shared page is in main storage),
Write Shared Pages marks the SPT entry
unavailable by setting on a bit in the page
table. This ensures that if any other CPU
refers to this page a page-relocation
interruption will be queued on the scan
table on the Program Interrupt Queue Pro­
cessor's queue. The Write Shared Pages
subroutine, however, may reset the SPT .
entry to available if the page is found
referenced, as discussed below. The Pro­
gram Interrupt Queue Processor will reco­
gnize this fact when dealing with page­
relocation interrupts for shared pages.

Having found the page available and
marked it unavailable, the subroutine uses
the ISK instruction for each half-page to
gain access to the reference, change, and
hardware indicators. If any reference
indicator is found on, it is turned off.
The SPT entry is then marked available, the
shared-page lock byte in the system table
is turned off, and the SUbroutine continues
scanning the SPT for this RSPI entry.

If the page is unchanged, the storage
block associated with this page is returned
to the system by calling the User Core
Release subroutine.

If the page was found changed, the fol­
lowing steps are taken:

• If the page previously resided in
auxiliary storage, the old auxiliary
location is released.

• The write count in the XSPT entry is
raised.

• If a PCB entry is available, the PCB
count field in the GQE is increased.

Section 3: Program Organization 107

• Space is obtained for a PCB entry by
calling the Supervisor Core Allocation
subroutine.

• The PCB count in the GQE is raised.

• The SXPT-entry address is placed in
PCB.

• The storage block address is placed in
PCB.

• PCB flags are turned on to indicate I/O
and drum-storage respectively.

When the number of shared pages to be
written out of main storage plus those
released from main storage reaches a value
indicated in the system table, no more
purging of main storage takes place. The
write GQE, if one has been set up, is
queued and return is to the calling routine
as above.

When Write Shared Pages is called by
supervisor Core Allocation, a switch is set
to prevent recursive calls to CEALOl and
CEAL02 and to inhibit the setting up of
writes. In this case, only unreferenced,
unchanged pages are released. Otherwise
processing proceeds as described above.

EXternal Page Location Address Translator
Subroutine (CEAAE)

This subroutine translates a two-byte
page-number field of a four-byte symbolic
address into the physical I/O device
address required by a seek or search chan­
nel conunand. 'Ihe symbolic address, the
device type, and a work area pointer are
supplied by the caller in general
registers.

.entry: CEAAEl

Exits:
NOrmal - To caller.

Error - To System Error Processor.

Operation: The subroutine sets up the
device type as a search argument for a
device routine to use in searching a
device-type table in the format shown in
Figure lB.

If a particular device type cannot be
found in the device-type table, a major­
system-error call is issued to SYSERR.

'Each device routine checks to determine if
a symbolic address is in the range of the
disk device with the following ranges
applied:

108

2301
2311
2314

o
o
o

899 1

1623 1

61196 1

o 7 8 31 32 63

Device Type Not Used 2301 Routine Address

L. '--
r-- r-- r--

Device Type Not Used 2321 Routine Address

Figure 18. Device type table format

If a symbolic address is not in an
acceptable range, a major, system-error
call is issued to SYSERR. Each device rou­
tine divides the symbolic-page address by
the number of pages that can be placed on a
cylinder, or in the case of the 2301, the
number of pages that can be placed on a
track. The quotient becomes the cylinder
or track address. The remainder of the
division is used as a search argument to
locate a track and record ID or a record ID
in the case of the '2301. A separate track­
and-record-ID table exists for each type of
device. The format of the table is shown
in Figure 19. If a remainder cannot be
found a major-system-error call is issued
to SYSERR.

0 7 8 23 24 31

I 0 ± Track and 10 or 10 Only I 0 1
T T T
Figure 19. Track and record ID format

Translated symbolic addresses are
returned to the calling program via general
registers, in the format shown in Figure
20.

When processing is completed, the sub­
routine restores the general registers, and
exits to the calling program.

Bin Cylinder
GPRO

B I B C (Subcell) I C (Strip)

O· 8 16 24 31

Head
GPR1 Record

H (Bar) H (Head) ID

0 16 24 31

Figure 20. Format of translated symbolic
addresses

Search-RSPI-Table Subroutine (CEAMS)

This subroutine locates a resident­
shared-page-index (RsPI) entry ill main
storage for any specified shared-page-table
(SPT) number, or locates the address of the
next available entry in the RSPI.

Entry: CEAMSl

~:

Normal - To caller.

Error - To System Error Processor.

Operation: On entry, the subroutine saves
the calling routine's registers, and com­
pares the specified SPT number with the
RSPI-entry count in the system table. If
the count is zero and the input SPT number
is not zero, a system-error-SVc is issued
to CEAIS. The subroutine informs the call­
ing program that the specified address was
that of a chain rather than an RSPI entry.

If t.he RSPI-entry is nonzero, a search
is made through the chained RSPI blocks,
~~amining each successive entry and step­
ping from one block to another as neces­
sary. If a chain address of zero is disco­
vered before the count goes to zero, a
system-error-SVC is issued to call CEAIS.

If a matching SPT number is found in
some RSPI entry, the entry address is
placed in a general register, the calling
program's general registers are restored,
and the subroutine returns control to the
callin9 program.

If. after searching all RSPI ent.ries, no
match is found a zero is returned to the
calling program.

The significance of SPT number zero is
to enable users to locate the first cur­
rently unused RSPI entry if one exists,
~ince all RSPI table entries are set to
zero when unused. In the case where no
available entry exists for SPT number zero,
the cor'rect chain address location is
returnE'd as discussed above. The calling
program is then responsible for acquiring
storage space from the Supervisor Core
Allocation subroutine, storing the address
in the chain field and then constructing an
RSPI entry.

When an RSPI entry is being created,
tested, or deleted, the user is responsinle
for setting the sharing lock (SYSSHALK)
before calling this subroutine and reset­
ting it upon return.

----_._-_._-_ --------

Segment Block Remover Subroutine (CEANG)
Chart BD

Th:.s s~routl.ne removes unused blocks
from the end of the segment table.

Entry: CEANGl

Register 2 - Address of the TSI

Register 3 - Address of the XTSI

Register 7 - Baf'!e address of the calling
l:outine

Register 1I~ - Return Address

Modules Called: Auxiliary Storage Release
(CEAIA entered at CEAIAR) releases auxi­
liary storage when ST and AST pages are no
longer needed-.

User Core Release (CEALl entered at
CEAL04) releases storage for ST and AST
pages when no longer needed.

Exits: To caller - with l:'egisters 2, 3. 7,
and 14 unchanged. All others are changed.

Operation: Segment table blocks are
scanned from the end of the ST seeking an
aSSigned S'!' entry. If an assigned ST entry
is found in the last segment block at the
end of the ST, the Segment Block Remover
returns to the caller because there is no
work.

When an unused ST block is found, the
count of ST blocks is ad;usted. The Ct~rre­
sponding AST block is checked to see if it
is the only one on the AST page. If it is,
User Core Release is called to release the
AST page; and the AST page count is
adjusted. Any auxiliary storage assigned
to the AST page is also released by a call
to auxiliary-storage-release. Then the ST
block is checked to see if it is the only
one on the ST page. If it is, User Core
Release is called to release the ST page;
and the ST page count is adjusted. Any
auxiliary storage assigned to the ST page
is also released by a call to Auxiliary
Storage Release.

This procedure continues until an ST
block containing an assigned entry is
found. The locations of the ST and AST are
then checked. If these tables are not in
the first XTSI page, this I:outine returns
to the caller. If they are, the AST is
moved to the end of the ST, and page tables
in the first XTSI page are moved to the end
of the AST. ST pointers to page tables in
thefl-rst XTSI are adjusted, and the bytes­
available count for the first XTSI page is
updated before returning to the caller.

Section 3: Program Organization 109

XTSI Page packing Subroutine (CEAMYJ

This subroutine optimize& space usage in
page table pages.

Entry: CEAMY

Rl - Address of first XTSI page.

Modules Called: Auxiliary Storage Release
(CEAIA entered at CEAIAR) releases auxi­
liary storage when page table pages are no
longer needed.

User Core Release (CEALI entered at CEA­
LID) releases storage for a page table page
when no longer nee?ed.

Exit: To caller.

Operation: When called, this subroutine
scans the first PTP seeking holes in it
caused by page table deletion. Any holes
found are eliminated by pushing the PT/XPT
entries to. the top of the page. ST
entries, page table headers, and PTP hea­
ders are adjusted to reflect resulting
changes.

When there are no holes in the page
(either because none existed, or because
they have been eliminated by the 'pushing'
procedure), the space available at the bot­
tom of the PTP is calculated. PT/XPT
entries in the other PTPs are then examined
to find one that will fit in the available
space. When one is found, it is moved, and
relevant pointers and headers are updated
accordingly.

If space is still available, the
scanning/moving process continues until no
more PT/XPT can be found that will fit. If
this activity empties an XTSI page, it is
deleted from the XTSI chain by adjusting
appropriate forward and backward links in
the page table headers. Then User Core
Release and Auxiliary Storage Release are
called to release the unused space.

After the first PTP is packed, the pro­
cess continues on any other PTPs until all
have been consolidated before returning to
the caller.

Real Core statistical Data Recording
Subroutine (CEAI6) Chart BE

This subroutine accumulates error sta­
tistics on the I/O outboard failures of the
direct access paging drum or disk devices.
This subroutine is different from other
page-handling subroutines in that it is
nonreentrant.

RESTRICTIONS: Entry is made from the Page
I/O Recovery program or SVC Queue Processor
(SVC 223).

110

Entries: CEAI61, CEAI62

Modules Called: Real Core Error Recording
subroutine (CEAI7) formats an error record
that is output on drum by the preservation
recording portion of SERR.

Exit: To caller.

Operation: Upon entry to CEAI61, the sub­
routine performs the following:

• Identifies the failing paging-I/O
device and locates its table entry.

• For each sense bit which is set to 1 in
the summary-sense-data, raises the
associated statistical data recording
(SDR) bucket by 1 in the table entry,
setting the overflow marker if the SDR
bucket overflows in the process.

• Updates the 'last path', 'total error
count', and 'error time stamp' fields
of the table.

• Checks to see if the call is typed as a
solid outboard failure. If so, the
Real Core Error Recording subroutine is
called.

• Checks the overflow marker to see if an
SDR bucket overflowed. If not, control
is returned to the paging Failure Reco­
very subroutine.

• Generates the call parameters and calls
the Real Core Error Recording subrou­
tine to format and output the SDR data
on the drum device.

• Returns control to the caller after
resetting the table entry and
interlocks.

Upon entry to CEAI62, the subroutine
either turns on (if SETIR) or turns off (if
RESETIR) the PSDIR field in CHAPSD (Direct
Access Paging Statistical Data Record).

Real Core Error Recording Subroutine
(CEAI7) Chart BF

This subroutine formats an error record
that is output on drum by the preservation
recording portion of SERR to preserve rec­
ords of I/O errors occurring on direct
access paging devices in the system. This
subroutine is different from other page­
handling subroutines in that it is
non-reentrant.

Entries:

CEAIPl -on a solid outboard failure.

CEAIP2 - on an inboard failure.

Module~; Called: Inter-CPU Communication
sUbroutine (CEAIC) transmits commands from
one CPU to another in tile TSS domain anl4
emits external signals over the extendoad
direct control in order to have the receiv­
ing CPU perform the functions required for
the coordination of CPUs in a multiproces­
sing system.

SERl~ Bootstrap (CMASAl> provides an
interface between the Real Core Error Re­
cordin~ subroutine and the preservation re­
cordin~1 portion of SERR.

Exit: To caller.

Operat:i.Q!l: This subroutine performs the
follow.;ng functions:

• On entry from the Real Core statistical
Data Recording subroutine it prepares
the outboard error record in the
record-buffer area.

• On entry from the Paging Failure Reco­
vel·Y subroutine it prepares the inboard
err·or record in the record-buffer area.

• Halts other CPUti, if any, in the TSS
don~in, via the Inter-CPU Communication
subroutine.

• Generates the nesessary call parameters
and transfers control to SERR Bcotstrap
which pages in the SERR Preservation
Recording program to write the contents
of the record buffer on the drum
clevice.

• Upon return f rom the r'€covery nucleus,
signals other cPUs, if any, in the TSS
domain to r€,SUme operation, via the
Inter-CPU communication subroutine and
returm; control to the caller.

PAGING ERROR RECC\I F:R/OI/'rINES

pagin'! Failure Fec9very Subroutine (CEAAQ)
chart bG

This subroutine performs three
functiom; :

• Takes remedial action when a path anal­
ysis indicates that no actual I/O path
is available to service a paging
request.

• Takes remedial action when a paging
failure occurs because of a dynamically
defect.ive medium.

• Takes remedial action when a paging
failure is c':'11sed by a dynamically
defective device.

Entry: CEAAQl

:10~ul~~ Called: Supervisor Core Allocation
subroutine (CEAL1 entered at CEAL01) allo­
cates the necessary work/save area(s).

Supervisor core Release subroutine
(CEAL1 entered at CEAL02) releases work/
save areas after use.

Queue GQE on TSI subroutine (CEAAF)
queues the specified GQE on the aff,~ct€d
ti'l.sk's TSI.

Task Communication Control subroutine
(CEAAN) constructs a message control block
(MCB) for a calling task's messdg~ and
attaches it ot the called task's TSI.

Enqueue GQE subroutine (CEAJQ tmteled at
CEAJEN) places a pointer to a GQE on the
specified scan table queue.

Dequeue GQE subroutine (CEAJQ entered at
CEAJDE) dequeues the GQE.

Move GQE subroutine (CEAJQ entered at
CEAJMG) moves a previously dequeued GQE to
the next !::pecified queue or releases its
storage if no work remains.

Suppress Auxiliary Allocation subroutine
(CEAAP) 5uppresses external-page-allocation
of the specified auxiliary device.

Rescheduling subroutine (CEAKZ) moves
task from the dispatchable list to the the
eligible or inactive list and moves tasks
from the inactive list to the eligible
list.

Normal - To caller.

Error - To System Error Processor.

Operation: On entry, the subroutint per­
forms the following:

• Calls the Supervisor Core Allocation
subroutine to allocate the necessary
work/save area(s).

• Saves input general registers.

• Tests an input register flag to deter­
mine the type of table whose address is
specified by the caller. If it is:

1) The SYSARG ent.ry corresponding to
the failing channel program is
located by the pointer in paging
error control block (PECS), whose
·pointer is in the system table. The
PCS entry associated with the fail­
ing channel prcglam is then accessed

Section :3: Prograra Organization 111

from the pointer in the SYSARG
entry.

2) Direct access interface block
(DAIB), the device-GQE is accessed
from the DAIGOF field of the input
DAIB and is dequeued by calling the
dequeue-GQE subroutine. The PCB
entry associated with the failing
channel program is then accessed
from the pointer in the PECB, whose
pOinter is in the input DAlB.

3) General queue entry (GQE), the PECB
. is accessed from the GQESAT field of
the input GQE and the PCB entry is
accessed by. the pointer in GQEPCB.

4) If the GQElPCB are contained within
the SYSARG field of the DAICB, the
failing CCW is computed.

5) When this subroutine accesses the
TSI or auxiliary storage allocation
table, it sets and resets the appro­
priate lock bytes.

At this point, the read/write flag in
the PCB entry is tested and if it is off,
other PCB entry flags are tested to deter­
mine the type of read operation and the
appropriate action to take. These flags
specify the following operations:

• Relocation read

• Dispatcher read

• Page Posting read

• TWAIT read

• Supervisor paging read

If the PCB'S 'relocation read operation'
flag is on, the caller's request indicator
is tested to determine if the defective­
medium-recovery function is requested. If
so, the" relocation page in on defective
volume' program interruption code X'93' is
stored.

If the fUnction was not requested, the
'demountable volume' flag in the direct
access paging statistical data recording
table is tested. If the flag is on, the
failing device is demOUntable, in which
case the 'relocation page-in on moveable
volume' program interruption code X'92' is
stored. If the flag is off, the 'reloca­
tion page-in on permanent volume' program
interruption code X'91' is stored.

At this point, or if a failure occurred
during another READ operation or after a
SYSERR, the subroutine calls the Supervisor
Core Allocation subroutine to allocate
storage for a task program interruption

112

GQE. When storage is returned, the Paging
Failure Recovery subroutine places a pro­
gram interruption code and the TSI address
in the new GQE area, and calls the Queue
GQE on TSI subroutine to place the GQE
pointer on the TSI's program interruption
queue.

The paging count in the TSI is decre­
mented by the paging count in the GQE. If
the result is zero, the task is taken out
of page wait status and placed in ready
status. The subroutine then restores the
general registers of the calling program,
releases the save areas via the Supervisor
Core Release subroutine, and returns con­
trol to the caller.

If the PCB specifies a dispatcher-read
or page-posting-read operation, the task 10
from the TSI pOinted to by the device GQE
is examined. If it is that of an operator
task, the Purge subroutine is called to
purge any outstanding I/O request. The
Reinitialize Operator Task subroutine is
called to create a new operator task. The
Task Communication Control subroutine is
then called to notify the operator of his
new status, after which a program interrup­
tion GQE (code X'97') is generated and
placed on the task's TSI interruption
queue, as described previously.

If the task 10 is not that of an opera­
tor, a time-slice-end is forced on the task
by generating a time-slice-end GQE and cal­
ling Enqueue GQE to place it on the Timer
Interrupt Queue Processor's scan table
queue.

When this is accomplished, the Task Com­
munication Control subroutine is called to
notify the operator of the task's condi­
tion, the operation failed-return code is
set, and control returns to the caller.

If the PCB TWAIT-read operation flag is
on, the operation-failed return code is
saved, and the TSI paging count is adjusted
as above.

If the PCB supervisor paging read opera­
tion flag is on, the caller's request indi­
cator is tested to determine if the
defective-medium-recovery-function is
requested. If so, ~ program interruption
of X'96', specifying a 'supervisor paging
page-in on defective device' error is
saved. If not, and if the device is
demountable, a program interruption code of
X'95', specifying a 'supervisor paging
page-in on moveable volume' error, is
saved. If the device is not demountable, a
program interruption code of X'94', speci­
fying a 'supervisor paging page-in on per­
manent volume' error, is saved.

The subroutine calls the Queue GQE on
TSI subroutine to pass the interruption on
to the task, and processing continues as
described previously.

If none of the above six PCB flags is
on, a minor software SYSERR is reported. A
temporary program interrupt code of X'92',
is set in the temporary code area, and the
Queue GQE on TSI subroutine is called as
described previously.

If the PCB write flag is on Paging Fai­
lure Recovery checks the PCB's 'VAM/SYSTEM
paging' flag. If it indicates VAM paging,
the caller's input request indicator is
check£d to determine whether the defective­
medium-recovery function is requested. If
so, an error code of X'B' is returned to
the task. If not, the 'demounta.ble volume~
flag is tested. If the device is demount­
able, an error code of XIgI, indicating a
'pagout on movable volume' error, is
returned. If the device is not demount­
able, an error code of X'A', indicating a
'pagouton permanent volume' error, is
returned to the task.

If the 'VAM/SYSTEM paging' flag indi­
cates system paging, the 'defective medium
recovery requestedl indicator is checked.
If it is on, the lauxiliary allocation bad
page' counter is incremented by one. If it
is full, or if the above indicator is off,
the Suppress Auxiliary Allocation subrou­
tine is called for this paging device and
the Task Communication Control subroutine
is called to send a message to the opera­
tor •. The PCB chain is scanned for PCBEs
with the lpage I/O complete' flag set.
When such a PC BE is found, its 'bypass'
flag is set. In all other cases the 'sup­
press posting' flag is set.

The Enqueue GQE subroutine is then
called to queue the original device GQE
pointer on the Auxiliary Storage Allocation
Queue Processor's queue.

The SUbroutine restores all registers
and returns control to the calling program.

Paging I/O Error Recovery Routine (CEAAM)

This routine constructs the paging error
control block; it then initiates retry pro­
cedures on the first occurrence of a paging
I/O error and subsequent occurrences of the
same error.

Lfitrv: This routine is entered at CEAAM1
by anyone of five processors:

• The Page Drum Queue Processor when a
desired paging device is unavailable or
when a start I/O operation is
unsuccessful.

• The Device Queue Processor when a
desired paging device is unavailable.

• The Page Direct Access Queue subroutine
when a start I/O operation is
unsuccessful.

• The Page Drum Interrupt or the Page
Direct Access Interrupt Processor when
the CSW indicates that the operation
failed.

• The Page Direct Access Interrupt sub­
routine for the same reason as above.

Exit: To caller.

Modules Called: Supervisor Core Allocation
subroutine (CEALl entered at CEAL01) pro­
vides 192 bytes of main storage for the
construction of a PECB.

supervisor Core Release subroutine
(CEAL1 entered at CEAL02) releases various
control block areas depending on the degree
of retry success and the type of error.

Queue GQE on TSI (CEAAF entered at
CEAAFQ) queues an interruption GQE on the
interruption queue in the TSI.

Alternate Path Retry subroutine (CEAAS)
attempts to start an I/O operation on an
alternate path when an I/O error has been
attributed to a faulty component along the
original path.

Same Path Retry subroutine (CEAAV)
attempts to start an I/O operation along
the original path when no faulty component
is d~tected.

Start Retry Operation subroutine (CEAAX)
initiates a write operation after a read
operation has been successfully retried.

paging Failure Recovery subroutine
(CEAAQ) performs defective medium recovery
when an I/O operation has been successfully
retried on a standard area.

Move GQE subroutine (CEAJQ entered at
CEAJMG) moves the original device GQE after
a retry operation has failed.

Real Core Statistical Data Recording
subroutine (CEAI6) records error data after
a successful retry.

SYSERR (CEAIS) performs error recovery
functions after the occurrence of a minor
software error.

Operation: For an I/O error, or 510 fail­
ure, the address of the failing channel
program is computed from the CSW and is
placed in PECCPS. The number of CCWs is
computed and is placed in PECNCW. The

section.3: Program organization 113

relative number of the failing CCW is com­
puted and is placed in PECRCW, and the
pointer to the PCBE/OIBE foi-the CCW speci­
fied in PECCPS is found and is placed in
PECEPT.

If the I/O error was a channel or inter­
face control check, the command address
portion of the CSW is unpredictable. The
last SIO address is therefore put into
PECCPS, number of CCWs is computed and is
placed in PECNCW, zero is placed in PECRCW,
and the pointer to the PCBE/DIBE for the
CCW specified in PECCPS is placed in
PECEPT~

For unavailable. original path errors, a
pointer to the first PCBE is put in PECEPT
and PECCPS, PECNCW are cleared.

If the seek CCW is not found after
searching through the CCWs, a major soft­
ware system error (code 6602) is reported.

The next step in processing is to find
the displacement to the appropriate device
entry in the direct access paging statist­
ical data recording table (CHAPSO). The
table is referred to, its header informa­
tion is saved, and the first table entry is
accessed. After determining the type of
device (drum or direct access) on which the
error occurred, the device GQE and subse­
quently, the symbolic device address are
retrieved. This address is then matched
against the symbolic device addresses in
the first and succeeding entries in the PSD
until a match is found or until all entries
have been tested. When a matching entry is
found, its displacement from the beginning
of the table is computed and entered in the
PECB. If no match is found, a minor SYSERR
(code 6603) is invoked and processing con­
tinues as in the case of no matching seek
CCW described above.

The final step in processing an initial
entry to this routine is to test the ·SIO
failure·-indicator in general register
zero. If it is on, a component failure is
indicated along the original path, the
alternate path retry flag in the PECB is
turned on. The malfunctioning element flag
in general register zero is tested and,
depending on its setting, the malfunction­
ing device or the malfunctioning channel
flag in the PECB is set on. The Alternate
Path Retry subroutine is called to retry
the operation and when control returns, it
is immediately given over to the end pro­
cessing portion of this routine.

If the 'SIO f~ilure' flag is off, no
device or ,channel failure is indicated.
The 'same path retry' flag in the PECB is
turned on and the Same Path Retry subrou­
tine is called to retry the operation.
When contrQI returns, it is immediately

114

transferred to the end processing portion
of this routine.

If the test for initial entry, described
in the first paragraph, indicates that this
is not the first entry, the input general
registers are saved in the PECE and the
'error sense' flag in the PECB is tested.
If the PECB indicates that Start Retry
Operation has issued a Sense instruction,
Alternate Path Retry is called to allow
checking of the sense data. If the 'error
sense' flag is off, the 'same path retry'
flag is tested. If the 'same path retry'
flag is off a test is made for intervention
required in the PECB. If intervention is
required, a call is made to Alternate Path
Retry.

Note: The 'same path retry' flag and other
pertinent data are available on subsequent
entries since they were provided at the
time of initial entry. If the flag is on,
the PECB corresponding to the failing
op2ration is retrieved.

If the PECB indicates that the paging
operation was not a read the 'previous
retry successful' flag in general register
zero is tested. If the retry was success­
ful and the I/O error was outboard, a call
is made to the Real Core Statistical Data
Recording subroutine and, when control is
returned, this routine enters an operation
successful code in general register zero
and branches to its own end processing por­
tion~ If the retry was unsuccessful, the
sense data applying to the previous retry
operation is ORed into the sense data field
in the PECB and the same path master error
counter in the PECB is incremented by one.
(If this value reaches 255, each of the
error counters in the PECB is filled with
X'FF'.) The Same Path Retry procedure is
then called and upon return, control is
immediately transferred to the end proces­
sing portion of this routine.

If the paging operation is found to have
been read and the I/O error was a data
check, one of six courses may be taken.
This is because on the successful retry of
a data check paging read operation, the
data must be written out to reinforce the
magnetic image and then re-read. Success
of the paging operation is determined by
the success of this re-read operation. A
series of tests is then conducted. The
possible results and the actions they pre­
cipitate are as follows:

If the 'previous retry successful' and
the 'rewrite on successful read' and 'rere­
ad on successful read' flags are both off,
the re-write/re-read procedure must be
started. The rewrite on successful read
flag is set, a write channel program is
constructed, and the Start Retry subroutine

,""--

dynamic occurrence of a defect in the sur­
face of the recording medium; while an
unsuccessful Standard Area Retry indicates
the dynamic occurrence of a defect in the
device.

On entry, the subroutine calls the
Supervisor Core Allocation subroutine to
allocate the necessary work/save areas.
When the space is allocated, the subroutine
saves all input registers, and then deter­
mines what type of table is specified in
the calling program's input register. If
the table is a:

• Drum interface control block, the fail­
ing segment of the drum channel program
is located as' follows: the paging
error control block (PECB) is accessed
from the pointer in system table. The
channel program segment field of the
PECB contains a pointer to the channel
program segment. This segment (4 com­
mand words) is then copied into the
PECB starting at the channel program
word field. The doubleword SEEK argu­
ment, located by the pointer in PECEPT
is moved into PECSAR. The data address
field in each PECB CCW is updated to
reflect the change of channel-program
location and SEEK argument location.
The drum standard area head number
(196) is then inserted into PECSAR+4.

• Direct access interface block, the
'write check option' flag in the DIAB
is tested. If it is off, the 4-
command-word-channel program segment
located by the pointer in the PECB
channel program segment field is copied
into the PECB's channel-command word
field. If the flag is on, the 9-
command-word channel program segment
located by the pointer in PECB is
copied into the channel-command word
field. The doubleword SEEK argument,
located by the 3-byte pointer in
PECCCW+1 thru PECCCW+3, is moved into
PEC~AR. The data-address field in each
PECB CCW is updated to reflect the
change of channel program and SEEK
argument locations. The 2311/2841,
2314 standard area cylinder number
(199) is inserted into PECSAR4.

In either of the above cases, the Start
Retry Operation subroutine is called, the
calling program's registers are restored;
the main storage is released via the Super­
visor Core Release subroutine, and control
is returned to the calling program.

Alternate Path Retry Subroutine (CEAAS)
Chart BH .

This subroutine causes the malfunction­
ing components along the path where a pag­
ing error occurred to be set logically

unavailable and then performs one of the
following:

• Retries along an alternate path if one
can be found, or

• Enables the system and (as far as poss­
ible) the task to recover from the pag­
ing error, if an alternate path cannot
be found.

Entry: CEAAS1

Modules Called: .Supervisor Core Allocation
subroutine (CEALl entered at CEAL01) allo­
cates space for work and save areas.

Reverse pathfinding (CEAAS entered at
CEAASR) is called to release paths to
defective channels, control units, or
devices.

Set path (CEAAS entered at CEAASS) is
called to mark paths unavailable to defec­
tive channels, control units, or devices.

Pathfinding (CEAAS entered at CEAASP) .is
called to obtain alternate paths for retry
operations.

paging FailUre Recovery subroutine
(CEAAQ) performs defective device recovery
when the I/O device is the cause of I/O -
failure.

Start Retry Operation subroutine (CEAAX)
starts a specific paging I/O operation and
informs the caller of the status of the
start I/O operation.

Standard Area Retry subroutine (CEAAT)
retries a paging operation on the standard
area of the recording medium of the speci­
fied device.

Supervisor Core Release subroutine
(CEAL1 entered at CEAL02) releases main
storage after use.

Exit: To caller.

Operation: On entry, the subroutine per­
forms the following:

• Calls the Supervisor Core Allocation
subroutine to allocate space for work
and save areas.

• Saves registers and establishes
addressability.

• Locates the paging error control block
and tests its 'previous retry success­
ful' and 'control under standard area
retry' flags in order to determine
whether this is the result of an unsuc­
cessful standard area retry. If so,
the entry is processed as a device

Section 3: Program Organization 117

failure as described below. I(not,
the 'alternate path busy' flag is
tested to determine if t~i~ entry is
the result of an I/O path having been
freed. If so, the appropriate 'altern­
ate path busy' flags are reset and the
Pathfinding subroutine is called as
described below. If not, the 'malfunc­
tioning channel detected' flag is
tested to determine if the channel
failed. If so, the Reverse Pathfinding
portion of the pathfinding SUbroutine
is called to release the entire input
path.

When control returns to Alternate Path
Retry, the Pathfinding subroutine is called
to mark down the failing path and find an
alternate path to the paging device, if one
exists. Pathfinding's return code is
tested to determine which of the three fol­
lowing conditions exists, and the appropri­
ate actions to take:

• Path-Unavailable. The Paging Failure
Recovery subroutine is called and its
unavailable-alternate path-recovery
function is requested. The Alternate
Path Retry subroutine then returns con­
trol to the calling program.

• Path-BUSY. The calling program's input
register is checked for a pointer to a
SYSDIC. If one is present, the PECB's
'alternate path busy' flags are set on
in the PECB and the SYSDIC, and the
drum involved is put in a hold state by
turning on a flag in the page drum
directory. If no SYSDIC pointer is
given, the 'path busy' flags in the
PECB and the device GQE are set on.
The DIG busy flag in the scan-table
entry for the device is set on (via Set
Suppress Flags), and the subroutine
returns control to the calling program
as described above.

• Path-Available. The Start Retry Opera­
tion subroutine is called and the
returned code is tested to determine if
the start was successful. If so, the
PECB's 'alternate retry' flag is set
off, the 'control under same path
retry' flag is set on, the PECAPM field
is zeroed out, and control is returned
to the caller. If the start was not
successful, the PECAPM field is tested.
to see if this is the first restart
failure. If so, the field is increased
by one and the subroutine goes back to
the path-available procedure. If not,
the start-retry-operation return code
is tested for. a defective channel indi­
cator •. If one is present, the proces­
sing described previously is performed.
If one is not present, a
malfunctioning-device check is per-

118

formed and the subsequent proceSSing
steps are followed.

If the malfunctioning-channel flag is
not on, the malfunctioning-DCU-detected
flag in the PECB is tested. If a device­
control-unit-failure is indicated, the suh
routine performs the following:

• Calls the Reverse pathfinding portion
of the Pathfinding subroutine to
release the entire input path.

• Calls the Pathfinding subroutine and
proceeds as described above.

If a DCU failure was not indicated, the
PEcBs'malfunctioning device detected' flag
is tested. If a device failure is indi­
cated, the subroutine performs the
following:

• Calls the Reverse Pathfinding portion
of the pathfinding subroutine to
release the entire input path.

• Calls the Pathfinding subroutine to
mark down the failing path and to find
an alternate path to the device. Pro­
cessing continues as described above.

If no malfunctioning device condition
existed indicating that, the defect may be
either the I/O device or the recording
medium, the subroutine calls the Standard
Area Retry subroutine to initiate the pag­
ing operation on the standard area thereby
determining whether the device or the
medium is defective, and the return code is
tested to determine if the retry was
started successfully. If so, the PECB's
'alternate-retry' flag is set off, the
'control under standard area retry' flag is
set on, a retry-in-progress return code is
set, registers are restored and control is
returned to the caller.

If the retry was not successful, the
'alternate path retry master error' counter
in the PECB is tested. If it is zero,
indicating the first restart failure, it is
incremented by one and the Standard Area
Retry subroutine is recalled. If the coun­
ter is not zero, the return code is checked
for a defective-channel indicator. If one
is present, the defective-channel procedure
described previously is entered. If no
indicator is present, the malfunction­
device check is performed.

If the original test of the PECB's 'pre­
vious retry successful' and 'control under
standard area retry' flags indicate that
this entry is the result of an unsuccessful
standard area retry, the latter flag is set
off, the 'control under alternative path

('

'"t""

is called to start the write operation. If
the restart is unsuccessful, the failing
element is noted and the Alternate Path
Retry subroutine is called.

If the 'previous retry successful' and
the 'rewrite on successful read' flags are
on, and the 'reread on successful read'
flag is off, the write-back operation suc­
ceeded and the re-read operation must be
performed. A re-read channel program is
constructed and initiated as described
above.

If the 'previous retry successful' flag
is on and the re-read and rewrite on suc­
cessful read flags are on the original I/O
error was outboard, the retry is considered
successful and a call is made to the Real
Core Statistical Data Recording subroutine.

If the previous retry was unsuccessful,
the 'rewrite on successful read' flags are
on and the 're-read on successful read'
flag is off, the rewrite operation failed
and the device is considered defective. A
call is therefore wade to the Alternate
Path Retry subroutine as 1escribed above.

If the previous retry was unsuccessful,
and both the re-write dnd reread on suc­
cessful read flags are on, the reread after
a successful re-write failed. The paging
operation is deemed a failure; all PECB
~rror counters are filled and the same path
r~try ~ubroutine is called as described
above.

~2te: If the 'previouG retry successful'
flag is off, and the 'rewrite on successful
r~ad' and 'reread on successful read' flags
are off, a normal unsuccessful retry is
indicated, and a call is made to the Same
¥ath Retry subroutine.

The preceding paragraphs uescribe pro­
cess ing "'hen the • sallIe path retry' flag in
the PECB is on after restoring the regis­
ters which point to where the search ended
the last time Write Shared Pages was
called. If this is the initial call, the
regist€rs are set with one pointing to the
KSPI entry and the other with the RSPI
er,tr"y count. If this flag is off and the
'standard area retry' flag is on, the 'pre­
vious retry 5uccessful' flag is tested. If
it is on, the paging Failure Recovery sub­
routine is called to perform its defective
medium recovery function. When control
returns, this routine enters its end pro­
cessing portion.

If standard area retry is indicated but
the 'previous retry successful' flag is
off, the 'malfunctioning device' and the
'alternate patn retry' flags are set on and
the 'same £latn retry' flag is set off. A
call i5 made to the Alternate Path Retry

subroutine and, when it returns control,
,this routine enters its end processing
portion.

Ii neither same path retry nor standard
area retry are indicated in the PECB the
'alternate path retry' flag is tested. If
it is on, the Alternate Path Retry subrou­
tine is called and, when it returns, this
routine enters its end"processing portion.
If the alternate path retry flag is also
off, a minor software SYSERR (code 6601) is
issued.

The end processing portion of this rou­
tine is entered with.a return code indicat­
ing one of four conditions in general
register zero. These codes are generaterl
by one of the routines called or by the
Paging I/O Recovery routine itself and
reflect the status of retry operations.
The conditions which may exist and the pro­
cessing they require are as follows:

Of'eration successful - all l-'agin9 error
retry flags in the D~.IB are reset to zero,
the address of the PECB is placed in gE'ner­
al register one, general registers 2-15 dre
restored.

Operation reinitiated - if the error
occurred on a drum, SYSDIC is set to zl'~ro,
and the Supervisor Core Release subroutine
is called to release the main storage OCC\!­

pied on a drum. If the error occurred·on a
direct access device, the Supervisor ·:::ore
Release subroutine is called to release thE
main storage occupied by the DAIB. In
either of the above cases th£ address c·t
the PECB iz entered in general regi.Bter onf­
and processing proceeds af~ for op€l:at.ior.
successful above.

Retry in progress - general registers
2-15 are restored from the PEes and control
returns to the calling routine.

Operation failed - processing is the
same as for operation reinitiated above
except that prior to placing the address or
the PECB in general register one, the Move
GQE sUhroutine is called to move t.he orig­
inal device GQE.

If an invalid return code is found in
general register one, a minor software SYS­
ERR (code 6604) is issued, a call is made
to the Supervisor Core Allocation subrou­
tine and processing continues as for seek
CCW not found described above.

Start Retry Operation Subroutine (CEAAX)

This subroutine starts a spe:·cific paging
I/O operation, and informs the caller of
the status of the Start I/O operation.

Section 3: Program Orgi:lnization 115

Entry: CEAAXl

Modules Called: supervisor Core Allocation
sUbroutine (CEALl entered at CEAL01) allo­
cates main storage work/save areas.

Start I/O subroutine (CEAAG) issues a
start I/O instruction for all calling
programs.

Supervisor Core Release subroutine
(CEALl entered at CEAL02) releases main
storage after use.

set Suppress Flag sUbroutine (CEAJQ
entered at CEAJSF) ~ets the specified flag
in the specified scan table entry.

Exit: To caller.

Operation: On entry, the subroutine calls
the supervisor Core Allocation subroutine
to allocate main storage work-save areas.
When this has been done, the sUbroutine
saves the calling program's input regis­
ters. The input parameter register is
tested to determine whether the channel
program to be started is located in the
paging-error-control block (PECB). If so,
the address of the PECB channel-command
word (CCW) is placed in the command address
field of the channel-address word (CAW) to
be used to start the I/O operation. The
start Retry Operation subroutine deter­
mines, from the input register, whether a
drum-interface control (DIC) is specified.
If so, the physical device address to be
passed to the start I/O subroutine is
obtained from the system table.

If no DIC is specified, the physical­
device address is obtained from the
symbolic-device address field of the device
queue. The 'error sense' flag in the PECB
is tested to determine if Start Retry
Operation had previously issued a Sense
command._ If so, the call to Start I/O is
skipped and the sense data are tested. If
intervention is required, a return code of
12 is set (otherwise the return code is 4)
and control is returned to the calling rou­
tine. If there was no previous Sense com­
mand, the channel-address word and the
device address are loaded into general
registers and the start I/O subroutine is
called.

Start I/O returns the results of its
attempts in a general register. The start
Retry Operation subroutine tests the
returned-result indicators and sets up
return codes for' the calling program. If
start I/O'indicated a successful restart,
·the subroutine specifies a return code of 0
to the caller. If Start I/O was unsuccess­
ful, one of the following codes is
returned:

116

• If a defective channel caused the fail­
ure, the return code is 8.

• If a defective device caused the fail­
ure, the return code is 4.

These codes are loaded into the return
register, all other registers are restored
from the save area, the storage is released
by calling the Supervisor Core Release sub­
routine, and control is returned to the
calling program.

If channel status is zero and 'unit
check' is set, a Sense command is executed
by calling the Start I/O routine. On
return, if Start I/O was successful, the
'error sense' flag is set in the PECB and a
'retry in progress' indication is returned
to the calling routine.

If the channel program to be started was
not located in the paging error control
block, Start Retry operation determines
whether a DIC pointer is specified in the
input register. If not, the subroutine
places a pOinter to the original, failing
channel progran segment field (obtained
from the paging error control block) in the
command-address field of the CAW. The
phYSical-device address is obtained as
described previously and Start I/O is
called.

If there is a DIC pointer specified,
processing is the same as above, except
that the physical device address is
obtained as described previously, under no
DIC specified and Start I/O is called.

ProceSSing continues as described above.

Standard Area Retry Subroutine (CEAAT)

This subroutine retries a paging opera­
tion on the standard area of the recording
medium of the specified device.

Entry: CEAATl

Modules Called: Supervisor Core Allocation
subroutine (CEALl entered at CEAL01) allo­
cates the necessary work/save areas.

Start Retry Operation subroutine (CEAAX)
starts a specific paging I/O operation and
informs the caller of the status of the
start-I/O operation.

Supervisor Core Release subroutine
(CEALl entered at CEAL02) releases main
storage after use.

Exit: To caller.

Operation: A successful Standard Area
Retry, when used as a part of the Paging
Error Recovery subroutine, indicates the

,---'

/---'.

retry' flag is set on, and the Standard
Area Retry subroutine is called as
described above. If not, and the 'alter­
nate path busy' flag ~~dicated that the
entry was a result of an I/O path having
been freed, the 'paging error busy path'
and 'alternate path busy' flags are set
off, and the Pathfinding subroutine is
called as described earlier.

In all cases, the Alternate Path Retry
subroutine performs the following exit:

• Indicates a return condition code in a
general register.

• Restores the calling program's
registers.

• calls the Supervisor Core Release sub­
routine to release the work/save area.

• Returns control to the calling program.

Same Path Retry Subroutine (CEAAV) Chart BI

Entry: CEAAV1

Modules Called: Supervisor Core Allocation
subroutine (CEAL1 entered at CEAL01) for
the use of the Generate and Enqueue Inter­
rupt GQE and Dequeue I/O Requests
Subroutines.

Supervisor Core Release subroutine
(CEAL1 entered at CEAL02) releas~s the work
and save areas after processing has been
completed.

Alternate Path Retry subroutine (CEAAS)
attempts retry along an alternate path when
it cannot be accomplished along the same
path.

Task Communication Control subroutine
(CEAAN) attaches any required messages to
the operator task.

Stqrt Retry Operation subroutine (CEAAX)
restarts all I/O retry operations whether
along the same or alternate paths.

Paging Failure Recovery subroutine
(CEAAQ) performs clean up procedures when
an alternate path is not available or when
a defective medium condition exists.

Statistical Data Recording subroutine
(CEAI6) saves sense and status data for
later diagnostic use.

Real Core Error Recording (CEAI7) rec­
ords inboard errors.

Move GQE subroutine (CEAJQ entered at
CEAJMG) removes a GQE from one queue and
adds it to another.

Exits:

Normal - Paging I/O Error Recovery (CEAAM)

Error - No major software system error is
issued.

Operation: On entry at CEAAV1, the follow­
ing action is taken:

• The Supervisor Core Allocation subrou­
tine is called to obtain all necessary
work/save area(s) space.

• The input general registers are saved.

• The SYSDIC flag in the input register
is tested to determine if a drum inter­
face control block pointer was speci­
fied and therefore the failing paging
device was a drum.

1) If so, the 82301/2820 recovery pro­
cedure- is invoked.

2) If not, the 82311/2841, 2311 reco­
very procedure" is invoked.

• Recovery procedures are invoked accord­
ing to error type.

• General registers 2 through 14 are
restored. Supervisor Core Release is
called to release the save area, and
control is returned to the caller. -

2301/2820 ERROR RECOVERY PROCEDURE: Error
recovery procedures for drum when status
data indicates error follow.

Channel Control Check:

• Retry threshhold not reached - the
original operation is retried as
described in -Restart- (a).

• Retry threshhold reached - Real Core
Error Recording is called. On return,
the System Error Processor is called to
report the error. Alternate Path Retry
is then called.

Interface Control Check: P-rocedure is the
same as for Channel Control Check.

Channel Data Check:

• Retry threshold not reached - the orig­
inal operation is retried as described
in "Restart- (a).

• Retry threshold reached - The System
Error Processor is called to output
operator message 12. A minor software
system error (Code 7412) is reported.
Real Core Error Recording is called.
paging Failure Recovery is called for

Section 3: Program Organization 119

its ·Unavailable Original Path Reco­
very· function.

Unit Check: The 'outboard error' flag
(PECOE) is set on. The 'await from sense'
flag (SYSSN) is set off. The sense data is
placed into the PECB and tested. The sense
data testing is covered in "Error Recovery
Procedures for Drum When Sense Data Indi­
cates Error."

Chaininq Check:

• Retry threshold not reached - the orig­
inal operation is retried as described
in GRestart" (a).

• Retry threshold reached - The System
Error Processor "is called to output
operator message 12. A minor'software
system error (Code 7412) is reported.
Real Core Error Recording is called.
Paging Failure Recovery is called for
its "Unavailable Original Path Reco­
very" function.

Program Check: The System Error Processor
is called to output operator message 13. A
minor software SYSERR (Code 7413) is
reported. Real Core Error Recording is
called. paging Failure Recovery is called
for its ·Unavailable Original Path Reco­
very" function.

Protection Check: The System Error Proces­
sor is called to output operator message
14. A minor software SYSERR (Code 7417) is
reported. Real Core Error Recording is
called. Paging Failure Recovery is called
for its ·Unavailable Original Path Reco­
very" function.

Unit Exception: The system Error Processor
is called to output operator message is. A
minor software SYSERR (Code 741S) is
reported. Real Core Error Recording is
called. Paging Failure Recovery is called
for its -Defective Medium Recovery"
function.

Incorrect Lenqth: The System Error Proces­
sor is called to output operator message
16. A minor software SYSERR (Code 7416) is
reported. Real Core Error Recording is

,called. Paging Failure Recovery is called
for its -Defective Medium Recovery·
function.

Attention:

• Retry threshold not reached - the orig­
inal operation is retried as described
in "Restart" (a).

• Retry threshold reached - The System
Error Processor is called to output
operator message 28. (See -Flag Set­
ting" (b).) Real Core Error Recording

120

is called. Alternate Path Retry is
called.

No Status Data Present:

• Sense data present - processing con­
tinues as described in "Unit Check.·

• Sense data not present:

1} Retry threshold not reached - the
original operation is retried as
described in "Restart- (a).

2) Retry threshold reached - The Sys­
tem Error Processor is called to
output operator message 1. A minor
software SYSERR (Code 7401) is
reported. (See "Flag Settings"
(a).) Real Core Error Recording is
called. Alternate Path Retry is
called.

Error recovery procedures for drum when
sense data indicates error follow.

Equipment Check:

• Retry threshold not reached - the orig­
inal operation is retried as described
in "Restart" (a).

• Retry threshold reached - The System
Error Processor is called to output
operator message 19. (See "Flag Set­
tings" (d).) Real Core Statistical
Data Recording is called. Alternate
Path Retry is called.

No Record Found:

• Retry threshold not reached - the orig­
inal operation is retried as described
in "Restart- (a).

• Retry threshold reached - The System
Error Processor is called to output
operator message 3. A minor software
SYSERR (Code 7403) is reported. (See
-Flag Settings· (c).) Real Core Sta­
tistical Data Recording is called.
Alternate Path Retry is called.

Invalid Address: The System Error Proces­
sor is called to output operator message 6.
A minor software SYSERR (Code 7406) is
reported. (See "Flag Settings" (d).) Real
Core Statistical Data Recording is called.
Alternate Path Retry is called.

Intervention Required:

• Retry threshold not reached - the orig­
inal operation is retried as described
in "Restart" (a).

• The System Error Processor is called to
output operator message 20. Real Core

r"

statistical Data Recording is called.
paging Failure Recovery is called for
its ·Defective Device Recovery.-

Bus Out check:

• Retry threshold not reached - the orig­
inal operation is retried as described
in ·Restart· (a).

• Retry threshold reached - The System
Error Processor is called to output
operator message 21. (See ·Flag Set­
tings· (b).) Real Core statistical
Data Recording is called. Alternate
Path Retry is called.

Data Check:

• Retry threshold not reached - the orig­
inal operation is retried as described
in ·Restart- (a).

• The System Error Processor is called to
output operator message 22. (See ·Flag
Settings· (c).) Real Core Statistical
Recording is called. Alternate Path
Retry is called.

Overrun:

• Retry threshold not reached - the orig­
inal operation is retried as described
in -Restart- (a).

• The System Error Processor is called to
output operator message 7. A minor
software SYSERR (Code 7407) is
reported. Real Core statistical Data
Recording is called. Paging Failure
Recovery is called for its ·Unavailable
Original Path Recovery· function.

Command Reject: The System Error Processor
is called to output operator Message 6. A
minor software SYSERR (Code 7408) is
reported. Real Core Statistical Data Re­
cording is called. Paging Failure Recovery
is called for its ·Unavailable Original
Path Recovery· function.

Byte 0, Bit 6: (See ·Flag Settings· (b).)
Real Core statistical Data Recording is
called. Alternate Path Retry is called.

Track OVerrun: The System Error Processor
called to output operator message 9. A
minor software SYSERR (Code 7409) is
reported. Real Core Statistical Data Re­
cording is called. Paging Failure Recovery
is called for its ·Unavailable Original
Path Recovery· function.

End of Cylinder: The System Error Proces­
sor is called to output operator message
10, A minor software SYSFRR (Code 1410) is
reported. Real Core Statistical Data Re­
cording is called. Paging Failure Recovery

is called for its ·Unavailable original
Path Recovery· function.

File Protect: The System Error Processor
is called to output operator message 11. A
minor software SYSERR (Code 7411) is
reported. Real Core Statistical Data Re­
cording is called. paging Failure Recovery
is called for its ·Unavailable Original
Path Recovery- function.

Overflow Incomplete: The System Error PI:')­
cessor is called ,to output operator me!';!; a ~\,~
17. A Idnur software SYSERR (code 1417; .;.~,
reported. Real Core Statistical Data Re­
cording is called. Paging Failure Recovery
is called for its -Unavailable Originai
Path Recovery· function.

No Sense Data Present:

• Retry threshold not reacbed - the ori~­
inal operation is retried as described
in -Restart- (al.

• Retry threshold,reached - The System
Error Processor is called to output
operator message 2. A minor SYSERR
(Code 7402) is reported. (See -Flag
Settings· (b).) Real Core Statistical
Data Recording is called. Alternate
Path Retry is called.

2311/2841, 2314 ERROR RECOVERY PROCEDURE:
The recovery procedures for disk when sta­
tus indicator error are the same as those
for drum, excepting Unit Check.

Unit Check: The 'outboard error' flag
(PECOE) is set on. The 'AWAIT from sense·
flag (SYSSN) is set off. The sense data is
placed into the PECB and tested. The sense
data testing is covered in the next
section.

Error recovery procedures for disk when
sense error data indicated error follow.

Equipment Check:

• Retry threshhold not reached - the
original operation is retried as
described in -Restart- (a).

• Retry threshhold reached - a message
requesting that the disk pack be moved
is sent to the operator.

No Record Found:

• No missing address marker - A read home
address channel program is constructed
in the PECB. Following the read home

'address, a check is made to see if this
is the correct track.

Section 3: Program Organization 121

1) Correct Track - 'l'he System Error
Processor is called to output
operator message 24.···A minor soft­
ware SYSERR (Cede 7424) is
reported. (See "Flag Settings·
(c).) Real Core Statistical Data
Recording is called. Alternate
Path Retry is called.

2) Incorrect Track - Retry threshold
not reached - the .original opera­
tion is retried as described in
"Restart" (b).

3) Incorrect Track - Retry threshold
'reached - The System Error Proces­
sor is called to output operator
message 4. .(See "Flag Settings"
(d).) Real Core Statistical Data
Recording is called. Alternate
Path Retry is called.

• Missing address marker - Retry thre­
shold not reached - the original opera­
tion is retried as described in
"Restart· (b). A read home address
channel program is constructed to do a
read home address on a different track.

1) Successful - processing continues
as described under "~issing Address
Marker. "

2) Unsuccessful - operation is retried
if the retry threshold is not
reached. If the retry threshold is
reached, the System Error Processor
is called to output operator mes­
sage 27. (See "Flag Settings·
(d).) Real Core statistical Data
Recording is called and Alternate
Path Retry is called.

Seek Check: A check is made to see if
there was also a command reject. If yes,
the system Error Processor is called to
output operator message 25. A minor soft­
ware SYSERR (Code 7425) is reperted. Pag­
ing Failure Recovery is called for its
·Unavailab~e Original Path Recovery·
function.

If no, and retry threshold is net
reached, the .original operation is retried
as described in "Restart" (b).

If retry threshold is reached, the Sys­
tem Error Processor is called to output
operator message 5. (See "Flag Settings"
(d).) A message requesting that the disk
pack be meved is sent te the operator.
Real Core Statistical Data Recording is
called. Alternate Path Retry is called.

Intervention Required:

• Retry threshold not reached - the orig­
inal operation is retried as described

122

in "Restart" (a).

• Retry threshold reached - The System
Error Processer is called to output
operator message 20. Real Core Sta­
tistical Data Recerding is called.
paging Failure Recovery is called for
its "Defective Device Recovery."

Bus Out Check:

• Retry threshold not reached - the orig­
inal operation is retried as described
in "Restart" (a).

• Retry threshold reached - The System
Error Processor is called to output
operator message 21. (See "Flag Set­
tings" (b).) Real Core Statistical
Data Recording is called. Alternate
Path Retry is called.

Data Check: If the retry thresheld is not
reached, the original operatien is retried
as described in "Restart" (a). Otherwise,
reset counter to zero and check the reca­
librate counter:

• Retry threshold not reached - the orig­
inal operation is retried as described
in "Restart" (b).

• Retry threshold reached - A read home
address is constructed in the PECB and
executed.

The System Error Processor is called to
output operator message 22 (see ·Flag Set­
tings· (c» for Standard Area Retry. Real
Core Statistical Data Recording is called.
Alternate Path Retry is called.

Overrun:

• Retry threshold not reached - the orig­
inal operation is retried as described
in "Restart" (a).

• Retry threshold reached - The System
Error Processar is called to .output
.operator message 7. A minor software
SYSERR (Code 7407) is reported. Real
Core statistical Data Recording is
called. paging Failure Recovery is
called far its "Unavailable Original
Path Recovery· functian.

Missing Address Marker:

• Retry threshold nat reached - the .orig­
inal operation is retried as described
in "Restart" (a).

• Retry threshald reached - A RHA channel
pragram is canstructed in the PECB and
executed~ The System Errar Pracessar
is called to .output .operator message 26
(see "Flag Settings" (c» far Standard

Area Retry. Real Core statistical Data
Recording is called.

Command Reject: Same as for the 2301.

Track Condition Check: The System Error
Processor is called to output operator mes­
sage 18. A minor software SYSERR (Code
7418) is reported. Real Core Statistical
Data Recording is called. Paging Failure
Recovery is called for its ·Unavailable
original Path Recovery- function.

Track overrun: Same as for the 2301.

End Of Cylinder: Same as for the 2301.

File Protect: • Same as for the 2301.

No Sense Data Present:

• Retry threshold not reached - the orig­
inal operation is retried as described
in -Restart- (a).

• Retry threshold reached - The System
Error Processor is called to output
operator message 2. A minor SYSERR
(Code 7402) is reported. (See -Flag
Settings- (b).) Real Core Statistical
Data Recording is called. Alternate
Path Retry is called.

RESTART SUBROUTINE: Start Retry Operation
is called to start the specific retry
operation.

(a) The original operation is retried.

(b) A recalibrate command for disk is
issued followed by a seek to the
original address and transfer in
channel to the failing program
segment.

The return code is tested. If
restarted, the ftretry in progress· return
code is tested to see if:

(1) Malfunction Channel. (See -Flag Set­
tings· (a).) Real Core Statistical
Data Recording is called. Alternate
Path Retry is called.

(2) Malfunctioning Device. (See -Flag
Settings· (d).) Real Core Statistic­
al Data Recording is called. Alter­
nate Path Retry is called.

FLAG SETTINGS:

(a) Malfunctioning Channel: The 'same
path retry' flag (PECSR) is set off.
The 'malfunctioning device detected'

"flag (PECDV) is set off. "rhe 'mal­
functioning control unit detected'
flag (PECCU) is set off. The 'mal­
functioning channel detected' flag

(PECCH) is set on. The 'alternate
path retry' flag (PECAR) is set on.

(b) Malfunctioning Control Unit: The
'same path retry' flag (PECSR) is set
off. The 'malfunctioning device
detected' flag (PECDV) is set off.
The 'malfunctioning channel detected'
flag (PECCS) is set off. The 'mal­
functioning control unit detected'
flag (PECCU) is set on. The 'alter­
nate path retry' flag (PECAR) is set
on.

(c) Standard Area Retry: The 'same path
retry' flag (PECSR) is set off. The
'malfunctioning device detected'
(PECDV) flag is set off. The 'mal­
functioning control unit detected'
flag (PECCU) is set off. The 'mal­
functioning channel detected' (PECCS)
flag is set off. The 'alternate path
retry' flag (PECAR) is set on.

(d) Malfunctioning Device: The 'same
path retry' flag (PECSR) is set off.
The 'malfunctioning control unit
detected' flag (PECCU) is set off.
The 'malfunctioning channel detected'
flag (PECCS) is set off. "The' mal­
functioning device detected' flag
(PECDV) is set on. The 'alternate
path retry' flag (PECAR) is se~ on.

I/O SERVICE SUBROUTINES

Pathfinding Subroutine (CEAAS) Chart BJ

The pathfinding subroutine determines
which of one or more data paths is avail­
able to an I/O device. A section of the
subroutine is responsible for reverse­
pathfinding and partitioning.

The SETLOCK macro is used to insure that
only one CPU is accessing the pathfinder
tables at a time.

Hardware configuration Reguirements: Each
selector subchannel on a multiplexor chan­
nel is allowed a maximum of one control
unit. Actual addressing for each section
(channel, control unit, device) must be
numbered consecutively from zero.

Entries: The pathfinding subroutine has
one distinct entry point for each of the
three functions it performs:

1. pathfinding (CEAASP).

2. Reverse pathfinding (CEAASR).

3. Set Path (CEAASS).

Section 3: Program Organization 123

19 31

Gen. Reg. 1 Actual Dev Addr (Path)

Figure 21. Format of path availability
check results

Modules Called: Supervisor Core Allocation
subroutine (CEAL1 entered at CEAL01) allo­
cates main storage for register save areas
and work areas, if needed.

Supervisor Core Release subroutine
(CEAL1 entered at CEAL02) frees the main
storage allocated by SCA.

Set Suppress Flag subroutine (CEAJSF)
sets DIG busy flag.

Exit: To caller.

Operation: The operation of this subrou­
tine depends on the entry point used.

pathfinding (CEAA5P): When pathfinding is
called, the channel table lock (CHLLOCK) is
set and the path availability is checked by
the subroutine, and the results are
returned to the calling program in the for­
mat shown in Figure 21.

A specific path to a device may be
requested by setting an input flag to the
Pathfinding subroutine. The caller may
also specify that a specific path be dis­
abled and an alternate path assigned.

When a specific path to an I/O device is
not requested by the caller, the Pathfind­
ing subroutine searches for the first
available path to that device. A path com­
prises three components: the channel, con­
trol unit, and the device.

Pathfinding expects to find the system
symbolic-device-address in the caller's
input register. This address is converted
to an actual-path-address and a list of all
possible paths is then scanned. If the
system-symbolic-device-address passed to
Pathfinding does not match a system device
address in the pathfinding tables, the
'illegal' flag is set on in the return gen­
eral register. If all units of a path are
available, the 'busy' flags in the appro­
priate table entries are set on, and the
complete dev·ice address is sent to the
caller via a general register. Another
general register contains the device type
as specified by the device-group table.

124

In order to have an available path, each
unit along a given path must be free and
not be partitioned, malfunctioning, in
sense-hold, or reserved. Pathfinding
checks this by first scanning the device­
group table for the specific device. The
device group table is protected in duplex
operations by setting and resetting the
device group table lock (DEVLOCK). If this
specific device is found to be unavailable
(for example, Partitioned), Pathfinding
sets the 'busy' or 'not available' error
flag in the return general register and
returns control to the caller.

If the device is available, the device
entry in the device table is marked as
being busy. A check is made to see if a
channel is available. If no channel is
available, the 'device-busy state' flag is
reset and Pathfinding returns to the caller
with the 'busy' flag set on in the return
register.

If the channel is available the availa­
bility of the associated control unit is
checked. If the control unit is available,
its entry in the control-unit table
(CHACUT) is set busy, the symbolic device
address is entered into the control unit
table, and Pathfinding returns to the ~al­
ling program with the actual-path-assigned
contained in the return register.

If the control unit is not available,
the 'channel busy' state is reset and
another complete path is tested as outlined
above. If no path is available, the device
busy state is also reset and the appropri­
ate error bit in the return general regis­
ter is set on. If all available paths to
the device are currently busy, the 'busy'
flag is set on. If all existing paths to
the device have units malfunctioning persi­
stently, in sense-hold, reserved, or are
partitioned out of the system the 'not
available' flag is set on. After setting
and resetting the appropriate flags, Path­
finding returns to the calling program.

If the requested symbolic-device address
is not recognized as having an equivalent
actual-device address, the illegal bit in
the return general register is set on.

Reverse pathfinding (CEAA5R): On entry for
Reverse Pathfinding , the channel table
lock is set, and an indicator bit is
checked in the caller's input register. If
the bit is on (signifying translate-only)
the 'symbolic-device address is returned via
general register, and the busy flags are
not changed. If the bit is off the appro­
priate busy flags are reset. If an
addressed channel or control unit is found
not to exist (for example, if a channel
with three ass'ociated control units 0, 1
and 2 is specified by the caller as having

a control unit 4) or is partitioned, the
request is considered illegal, and an
appropriate bit ina-.return register is S€'~
on to identify this error for the caller.
Depending upon the type of interruption,
the symbolic-device address mayor may not
be placed in a register. If the actual
address is illegal (does not exist in the
pathfinder tables), an indicator in the
return general register is set on. The
pointer to the associated asynchronous
interruption entry is placed in a return
general register, and if the device is cap­
able of receiving asynchronous interrup­
tions, a 'valid asynchronous interruption
entry' flag is set in the return register.

The 'DIG busy' flag mayor may not be
turned on, depending on an input parameter.

The device group table is protected in
duplex operations by the device group table
lock (DEVLOCK).

set Path (CEAA5S): When partitioning is
needed, entrance is through Set Path
(CEAA5S). A test is made to determine
whether the path to be set is in register
one~ if it is, the path may be actual or
symbolic, depending on the setting of the
SDA flag. If it is not, an input register
points to the first-partioned-device
address (actual path). The number of par­
titioned addresses and the appropriate flag
settings are assumed to be in an input gen­
eral register. This will result in updat­
ing the availability flags of the sections
involved (for example, setting on a tape
drive's 'partitioned' or 'unit down' flag).
For any specific unit only one flag may be
set on at one time.

In addition to setting the status flags
(partitioned or down) for each device, it
is also possible to inhibit or restore an
actual path at the control unit level.
This action permits or inhibits the usage
of a specific path without reactivating or
deactivating any units. Such a request is
only valid if the path to be restored or
inhibited is one that intersects a control
unit which has the two-tail-channel switch
feature. In this case, the specified path
is made available or non-available to the
TSS/360 system, but the status of the other
path through the control unit is unaf­
fected. Use of this capability for paths
that do not intersect a control unit with
the two-tail-channel switch feature results
in the setting off or on of the partition­
ing flag for that control unit.

If the two paths through a control unit
with a two-tail-channel switch feature are
inhibited independently rather than by par­
titioning out the control unit, then they
must be restored independently (that is,
when the two paths through a control unit

are inhibited, they cannot be restored by
issuing a cancel partitiOning request to
che '~Pf"c0pri::.te control unit on O!l~ p::.-_"::;.

Note: The channel table lock (CHLLOCKI is
reset upon exit from any of these routines.

Start I/O Subroutine (CEAAG) Chart BK

The Start I/O subroutine issues a start­
I/O inst~uction for all calling programs.
It investigates start-I/O failures and
delivers error information to the caller.
The caller program specifies the physical
device ~Qdr~ss, symbolic device address
protection key, and a CCW list pointer, ap]
an input bit in register one which, if on.
enhances disk I/O operations.

Entry: CEAAGl

Modules Called: Supervisor Core Allocation
subroutine (CEALl entered at CEAL01) pro­
vides main storage for the construction of
a GQE.

Enqueue GQE subroutine (CEAJQ entered at
CEAJEN) places a pointer to the GQE on the
channel interrupt processor's scan table
queue.

Supervisor Core Release subroutine
(CEALl entered at CEAL02) frees the main
storage after use.

Exit: To caller.

Operation: On entry the subroutine creates
a CAW (channel address word) for the speci­
fied CCW (channel command word) list and
places it in the PSA. The I/O PSW inter­
ruption code is zeroed and then its high
order bit is turned on. If after a start­
I/O operation or a test-I/O operation, this
bit is found to be off, it will be assumed
that status was stored for a device other
than the one addressed. The start-I/O
instruction is then issued.

When the resultant condition code is
zero, indicating the successful initiation
of the start I/O instruction, the input bit
for enhanced disk operations is tested. If
it is on, a test I/O loop is entered until
status is stored or the device is
available.

If the device becomes available, bit 26
of register zero-is set to one and proces­
Sing continues. If the status is stored
and only channel end has occurred, no bit
setting takes place and processing con­
tinues. If status is stored and both chan­
nel end and device end have occurred, bit
26 of register zero is set to one, the CCW
address portion of the CAW is increased by
eight, and the start I/O instruction is
reissued. If status is stored and the

Section): Program Organization 125

device is busy, bit 26 of register zero is
set to one and processing continues.

If status other than the above is
stored, an error condition exists and the
interruption is recreated. This is done by
setting the interruption code field of the
PSA to the device address; setting the pro­
blem program bit in the I/O old PSW to
zero; setting the system mask, protection
key, and program mask to the appropriate
settings; and branching to the I/O portion
of the interrupt stacker.

After·the above processing is complete
or if the input bit for enhanced disk
operations was not o~, control is returned
to the calling program with a successful
start-I/O indicated by a condition code of
zero. A condition code of 1 with only the
channel-end bit on in the status or with
the status all zero is also treated as a
successful start-I/O procedure.

Error flags are used to provide the cal­
ling program with information related to
t,le unsuccessful initiation of the start-
1/0 instruction.

When the resultant condition code from
the start-I/O instruction is' 1, 2, or 3,
additional investigation is undertaken to
determine the cause of the start-I/O fail­
ure by the use of test-channel (TCH) and
test-I/O (TIO) instructions. Resultant
condition codes from SIO TIO, and TeH are
delivered at exit time to the calling pro­
gram. Tests made on the SIO status yield
the following conclusions, which are deli­
vered to the calling program:

• Start-I/O condition code is 1 and the
modifier bit only is on, or only the
modifier and busy bits are on in the
status indicates that the control unit
is busy.

• start-I/O condition code is 1; test-I/O
condition code is 1; and status was
stored for a device other than the one
addressed and the I/O retry count is
greater than 17: indicates that the
channel is down, and too many interrup­
tion codes are stored for the device
other than the one addressed,
respectively.

If SIO or TIO return a condition code of
three, a check is made to determine if a
channel control check or interface control
check has .occurred. If either has, sense
information in the PSA is saved for later
diagnosis.

If the investigation shows the device to
be busy, Which is an impossible situation
because of the existence of pathfinding,
the start-I/O operation is attempted 17

126

times before declaring that a device is in
the down condition.

If status was stored for another device
(not the one addressed), a GQE·will be
queued on the appropriate interrupt queue
processor's queue before SIO is retried.

These errors are by no means a complete
list of all error combinations that could
occur. They are only those error condi­
tions which when analyzed in the light of
the retry procedures attempted, permit the
Start I/O subroutine to make a reasonable
determination of the cause of the 1/0
failure.

Any time the content of the return gen­
eral register is other than zero on return
from the Start I/O subroutine, the SIO step
has failed, except when the second SIO con­
dition code is 1 and only the channel end
bit is on in the status (indicating an
immediate operation), or the SIO condition
code is 1 and the status is all zero. This
applies to failures that Start I/O makes no
attempt to analyze (for example, condition
code 1 from SIO followed by a condition
code 3 from TCH). This type of error is
returned to the calling program by using
separate bits of the return general regiS­
ter to contain the condition codes for the
SIO, TCH, and TIO instructions.

Halt I/O Subroutine (CEAAI)

This subroutine terminates input/output
operations on specified line adapters. The
only devices supported by this module are
start/stop line adapters in. the 2702 trans­
mission control unit, type II synchronous
line adapters in the 2701 data adapter unit
start/stop line adapter in the 2703, and
type II synchronous line adapters in the
2703. If I/O cannot be halted, status
information regarding the I/O operation is
returned to the caller •

Entry Point: CEAAIH, with the following
input:

GRO

GR1

Flags:
bits 16-23 (X'20', leave I/O inter­
rupts disabled on return)

device type code (bits 24-31)

Physical path address (bits 16-31)

GR14
Return address

Exit: To caller. When unable to halt I/O,
output information is passed to the calling
routine in registers 0 and 1 as follOWS:

GRO

GR1

Bits 2-3: TIO condition code

Bits 4-5: TCH condition code

Bits 6-7: HIO condition code

Bits 8-15: I/O select instructions
issued

Bits 16-23: Flags

X'80' - Information is stored for 2nd
TIO

X'40' - CEAAI called for nonsupported
device

X'20' - I/O interrupts are disabled

Bits 0-15:

Bits 16-31:

CSW status from TIO condi­
tion code 1

CSW status from HIO condi­
tion code 1

Operation: This subroutine determines the
condition of an addressed device path. If
any unit (channel, subchannel, or device)
of a path is busy, a halt-I/O instruction
is issued to terminate the I/O operation.
The calling program passes the device type
code and physical path address to halt I/O.

I/O interruptions are masked off at
entry to Halt I/O and unmasked at exit,
unless the caller requests that they be
left disabled. The channel status word
(CSW) is cleared before the device path is
tested. The interruption code in the pro­
gram status word (PSW) is cleared and its
high-order bit is set on. This setting of
the interruption code does not change if
the test-I/O instruction produces a
response for the addressed device. The
code changes if the response pertained to
other than the addressed device.

A test-I/O (TIO) instruction is issued
to check the condition of the addressed
device path. The CSW and condition code
are saved. The setting of the condition
code determines whether a halt-I/O is
issued or not.

The condition code setting of zero indi­
cates that all units of the device path are
available. The subroutine then transfers
control back to the calling program.

For a condition code setting of one, the
status bits' are tested to further define
the hardware response to test-I/O. When

the CS~l status bits indicate a channel
interface control check, return condition
codes are set to two and one for TIO and
HIO instructions respectively when the
device is a 2702 control unit. otherwise,
return condition codes-are set to one for
TIO and zero for HIO instructions. CEAAI
then returns to the calling program with
interrupts enabled or disabled as requested
by the caller. If the channel and subchan­
nel are available and the device and/or the
control unit is busy, the status is saved
and the subroutine issues a halt-I/O. For'
all other indications when the condition
code is one, the routine saves the status
and returns to the calling program.

An indication of channel or subchannel
busy, via a condition code setting of two,
means the subroutine must issue a halt-I/O
instruction.

A test-channel (TCH) instruction is
issued if the condition code is set to
three (meaning a unit on the path is not
operational) to ascertain if the unit is
the channel or not. The condition code
setting resulting from the test-channel is
saved, and the subroutine exits to the cal­
ling program.

When a halt-I/O (HIO) is to be issued,
the status save area is cleared to prepare
for possible new status bit settings.
After issuing halt-I/O, the condition code
is saved and checked.

For a condition code equal to three, the
TCH instruction is issued as detailed in a
preceding paragraph. For a condition code
equal to one, if the status is not zero, it
is saved and the subroutine exits to the
calling program. If the status is zero, a
second TIO instruction is issued, the con­
dition code and status are saved, and the
subroutine exits to the calling program.

If a channel control check or interface
control check is detected during proces­
sing, PSA sense information is saved for
later diagnosis.

For all other condition code settings,
the subroutine exits to the calling
program.

The outputs for this subroutine are con­
dition codes for TIO, TeH, HIO~ status bits
for TIO and HIO and, interruption code for
TIO. These outputs are returned via gener­
al register as shown in Figure 22. The TIO
status bits are returned in the GQE's CSW
field and the interruption code is returned
in the GQESAT field of the GQE.

section 3: Program Organization 127

GRO

TlO TCH ·HIO System Mask
Condition Condition Condition for Flags

Code Code Code Select I/o
0' 2

GRI

o

3 4

CSW Status fronl
TlO Condition Code

5 6 78

15 16

15 16

CSW Status from
HIO Condition Code

23

31

Figure 22. contents of Halt I/O' return registers

Dequeue I/O Requests Subroutine (CEAAJ)
Chart BL

This subroutine suppresses or removes
pointers to GQEs in a device queue for a
particular task. Many GQE pointers may
appear in a device queue. These pointers
may be associated with many tasks. The
Dequeue I/O Requests subroutine removes or
suppresses only those associated with the
specified task.

Assumptions: The scan table entry lock
byte (SCNF3LOK) for the device queue in
question is locked by the calling routine
using the SETLOCK macro.

Note: It is the responsibility of the cal­
ling routine to reset the lock using the
OPENLOCK macro after exit except in the
case of drums. CEAAJ will open the lock
prior to exiting for drum operations.) A
work area of 32 words must be supplied by
the calling routine.

Entry: CEAAJD

Modules Called: Set Suppress Flags subrou­
tine (CEAJQ entered at CEAJSF) resets I/O
active flag when I/O is halted.

Move GQE subroutine (CEAJQ entered at
CEAJMG) releases the space occupied by the
GQE when processing is complete.

Locate Page subroutine (CEAML entered at
CEAMLP) provides the location of page hold
flags which are to ,be reset.

Supervisor Core Release subroutine
(CEALl entered at CEAL02) releases the main
storage occupied by IORCBs which are no
longer requir~d.

128

Dequeue GQE subroutine (CEAJQ entered at
CEAJDE) dequeues the first GQE from the
device queue on which it appears.

Queue GQE on TSI (CEAAF entered at
CEAAFQ) causes a GQE to be put on the TSI
interruption queue and exit to the Queue
Scanner.

Reverse Pathfinding subroutine (CEAA5
entered at CEAASR) determines the symbolic
device address for an I/O interruption
associated with a halt I/O instruction.

Halt I/O subroutine (CEAAI entered at
CEAAIH) halts an active I/O operation so
that its associated GQE can be removed on a
2702 terminal device.

Generate and Enqueue Interrupt GQE sub­
routine (CEABQ) creates an interruption GQE
for a halt I/O operation on another device.

Pathfinding (CEAA5 entered at CEAA5P)
determines if the device is a 2702 terminal
by checking the device group table.

Search RSPI (CEAMS) uses the shared page
number passed to it to determine the shared
page table address.

Exit: To caller.

Operation: Dequeue I/O Requests is called
by resident supervisor modules with the
address of a 128-byte work area in Register
1 and the TSI pOinter for the task involved
in Register O. The first word of the work
areas contains the Symbolic Device Address
of the device involved and the first byte '
of the following word contains a flag requ­
esting one of the following functions:

Purge: Halt all possible I/O on this
device

Suppress: Halt no I/O but allow no new I/O

The caller may also set a flag in this byte
identifying the request as -lOS Request-.

On entry the work area is zeroed leaving
only the required input, the registers are
saved in the work area, and the scan table
entry for the device involved is located.

The first GQE in the scan table for 'this
device, if any, is located and the first
GQE flag in the work area is turned on to
prevent the removal of a channel program in
progress. It is turned off when the next
GQE not software chained to the first GQE
in the scan ta~le is found. (Software
chaining will cause the resident supervisor
to link the channel programs in the IORCB's
involved by means of a TIC command.)

If the function is purge, the GQE is
flagged as such. If the symbolic device
address is less than that of User Core
Allocation th~ device is assumed to be a
drum and the special drum processing
described below is used. otherwise, if the
Fl suppress flag is on in the scan table
and the first GQE flag is on, the I/O must
be in progress on this GQE. A call to
Pathfinding (CEAASP) is made to convert the
symbolic device address into a device type.
If the device is not a terminal and the GQE
is not a paging GQE, the count of outstand­
ing I/O is raised and the next GQE pro­
cessed. If the device is a terminal, Halt
I/O (CEAAIH) is called to halt the device.
If the GQE is a paging GQE, the I/O out­
standing count is not incremented in the
work area, and the next GQE is processed.

Upon return from Halt I/O, Reverse Path­
finding (CEAASR) is called to locate the
DEV entry for this device. If the halt I/O
condition code was two, the halt I/O was
successful and the Fl suppress flag is
turned off in the Scan Table via a call to
set Suppress Flag (CEAJSF). If the condi­
tion code was not 2, the 'ignore device
end' flag is set in the DEV to prevent a
subsequent interrupt, if any, from being
processed and the path is cleared via a
call to Reverse pathfinding (CEAASR). The
Fl suppress flag is then reset on the scan
table via a call to Set Suppress Flag
(CEAJSF) •

The GQE for the terminal can now be dis­
carded. Subsequent processing is also done
if either the first GQE flag or the Fl sup­
press flag is off and the fUnction is eith­
er Suppress or Purge.

If 'there are any pages in page hold, the
page hold counts are decremented. If any
private page has come out of page hold, the
TSI is checked for a. second scan time slice
end GQE. When one is present, it is queued

on Time Slice End via a call to Move GQE
(CEAMG). The main storage for the IORCB or
DAIB is released unless the request is
flagged as from 105. If the 'skip dequeue'
flag is not on, the GQE is dequeued; and,
if the request is flagged as from 105, is
sent to the task via a call to Queue GQE on
TSI (CEAAF). If the request is not flagged
as from lOS, the dequeued GQE is released
via Move GQE (CEAMG).

The remaining GQE's are then processed.
If the original request had been 'sup­
press', the proce,ssing would have been
identical except that a different flag
(SKIP Flag) would have been set in each
GQE r no call to Halt I/O would have been
considered even for a terminal, and the
'skip dequeue' flag would have been set in
the work area.

In all functions, it is assumed that if
the symbolic device address is less than
that of User Core Allocation, the request
is to suppress the dram GQE's outstanding.
Dram records on the drum are provided for
the purpose of aiding the Customer Engineer
in maintaining the hardware at an installa­
tion. For this reason, it is assumed that
there is no case in which it is advisable
to abort the writing of a dram record, even
if I/O hasn't been started on it.

The first GQE founq on the scan table
for this TSI causes a check for a drum sym­
bolic device address. If the device is a
drum, the address of the SYSDIC for this
drum is found in the paging drum directory
in the system table and SYS89 is locked in
the SYSDIC to prevent duplex problems. A
flag is set in the work area so that CEAAJ
will lock SYS89 only on the first GQE.

If the GQE does not have an associated
IORCB, it is ignored. Each GQE in the scan
table for this drum and each GQE in the
SYSDIC is flagged so that the GQE will be
discarded when the drum I/O is complete.

Finally SYS89 is unlocked, SCNF3LOK is
unlocked, and return is to the caller.

Generate and Enqueue Interrupt-GQE
Subroutine (CEABQ)

This subroutine sets up a GQB containing
the information specified by the cal~er and
effects its placement on the appropriate
processor's scan table queue.

Entry: CEABQl

MOdules Called: Supervisor Core ~l~ocation
subroutine (CEALl entered at ~L01)
reserves main storage for constructing the
GQE.

Section 3: Program Organization 129

Enqueue GQE subroutine (CEAJQ entered at
CEAJEN) places pointers to the various GQEs
on the specified scan table queues.

~: To caller.

Operation: On entry, the subroutine per­
forms the following:

• Saves the input registers of the call­
ing program in a work area provided by
the .calling program.

• Establishes addressability for itself
and all referended tables.

• Calls the Supervisor Core Allocation
subroutine to allocate a 64-byte
storage space for the new GQE.

• Using a parameter list supplied by the
caller, sets up the appropriate fields
of the interruption GQE with the
following:

Channel log-out data (if supplied)
Location on queue value
The CSW
Interruption code

• Calls the Enqueue GQE subroutine to
place the interruption GQE pointer on
the appropriate interrupt processor's
scan table queue.

• Restores the calling program's regis­
ters and returns control.

Note: It must be remembered that the con­
tents of the hardware location of the chan­
nel log-out data, CSW, and interruption
code are continuously subject to change due
to incoming interruptions, and therefore
these locations should not be used to pass
information to this routine.

Command Word Relocator Subroutine (CEAAA)

This subroutine performs the operations
required to relocate the channel command
word (CCW) addresses from a virtual storage
location to a main storage location.

Assumption: General registers 0, 3, 11,
and 12 can be used to perform the channel
command word relocation.

Entry: CEAAAR

Exit: To calling 'routine.

Operation: On entry, a test is made for a
CCW list length of zero. If the result is
positive, an error exit is taken, with a
return code ef 4 in general register 15.

130

The virtual storage CCWs and the related
page lists are structured as shown in
Figure 23.

7 B 15 16 17 19 20 31 32 39 40 47 48 63

OP
Page L.iiot Rl:!served Res.

Code
pointer Must '" ~ero Displacement Flags Must::: Count

i I01PP)
4--IORfD

Zero

~No ~elocot I e F 09

cind the page list contains from 0- B of the, following entries:

19 20 21 39 40 63

Virtual Memory Address Reserved ~eol Core Address
(High Order 20 bit's) Must--=Zero [\ORCA)

LA!l Po e Y 9

Figure 23. ccw - page list structure

The object of the address relocation
operation is to replace the information
contained in bits 8 thru 19 of each channel
command word with the main storage address
of the page. The first step in the reloca­
tion process is to examine the page-list
pointer field in the IORCB. A nonzero
value indicates that this channel command
word references a user's virtual-storage­
buffer page. If the value is greater than
the IORCB's page-list-length parameter, a
return code of 4 is placed in the return
general register, the IORCB CCW 'specifica­
tion error' flag is set on and the Command
Word Relocator returns to the calling pro­
gram. This error exit procedure is also
invoked if .the IORCB CCW list-length para­
meter is equal to zero.

An acceptable nonzero value is used to
denote which page entry in the page list is
to be used to relocate the channel-command
word's address. For example, a value of 1
specifies the first entry in the page list,
2 the second entry, and so on. One is sub­
tracted from the value (to adjust for the
fact that the list entries begin relative
to zero rather than one and as a conse­
quence entry 1 is in list position zero,
etc.) and the value is adjusted to its
equavalent byte count value.

This adjusted value is added to the page
list beginning address to get the base
address of the required page list entry.
Once the entry is located, its main storage
address in the IORCB put into the channel
command word without destroying the exist­
ing displacement value.

The location of the page list is calcu­
lated by taking the IORCB's 'relative­
origin of page list' field, shifting it
left 3 positions to develop 3 low-order

zeros, and then addi~g. the beginning
storage address of the IORCB to it.

If the IORCB's 'page list pointer' field
is zero, then the channel-command-word
address is relocated to an address within
the IORCB's data buffer. The only excep­
tions to this rule are TIC commands which
are relocated relative to the origin of the
channel command word list rather than the
data buffer. To relocate all channel­
command words except TIC, the beginning
main storage address of the 10RCB's data
buffer is added to the content of the
lORCB's CCW displacement field and the
resultant sum replaces the entire contents
of the page lis~ (IORPP) and displacement
fields in the IORCB. For TIC commands, the
processing is exactly the same with one
minor exception: the beginning main
storage address of the CCW list is used in
place of the beginning main storage address
of the data buffer.

The channel-command word contains a no­
relocation flag. This is to prevent the
address relocation of control commands in
those cases where address relocation would
destroy the command itself. If the flag is
set on, the address is not relocated
regardless of the type of command being
processed.

The beginning main storage address of
the data buffer is calculated by taking the
contents of the IORCB's 'relative origin of
data buffer' field, shifting it left 3
places to develop 3 low-order zeros, and
then adding the beginning main storage
address of the lORCB to it. The beginning
main storage address of the CCW list is
calculated in the same manner except that
the 'relative origin of the CCW list'
(lORCS) is used in place of that of the
data buffer.

.If the 'page list pointer' (lORPP) in
the channel-command word is greater then
IORGL, or if the CCW list length (IORCL)
value is equal to zero, an error return
code of 4 is 'placed in the error-return
general register and the Command Word Relo­
cator SUbroutine exits to the calling
program.

Purge Subroutine (CEAAL) Chart BM

This subroutine inhibits the execution
of an I/O request for one or all tasks. If
the I/O request is in execution it may
either be stopped immediately or allowed to
quiesce. If'it is stopped immediately tne
task symbolic device list (TSDL) entries
can be removed either with the same call
for all other purge activity or with a
separate call. The calling routine speci­
fies which action is to be taken.

Entries:

CEAALQ - as a subroutine.

CEAALP - as an SVC processor.

Modules Called: Supervisor Core Allocation
subroutine (CEALl entered at CEAL01)
reserves storage for use as a work area and
for the use of Dequeue I/O Requests subrou­
tines; if Purge is entered as an SVC
subprocessor.

Supervisor Core Release subroutine
(CEAL1 entered at CEAL01) - releases
storage used as a work area if Purge is
entered as an SVC subprocessor.

Remove Device from Task Processor (CEAAD
entered at CEAAD2) either suppresses or
removes a specific device from the TSDL for
a specified task.

Dequeue I/O Requests subroutine (CEAAJ
entered at CEAAJD) suppresses or removes
pointers to GQEs in a device queue for a
particular task and maintains a master I/O
outstanding count.

Set Suppress Flag subroutine (CEAJQ
entered at CEAJSF) sets the appropriate
flag in the flag byte of the I/O Devic€
Queue Processor's scan table entry.

Enqueue GQE subroutine (CEAJQ entered at
CEAJEN)-queues GQE on Scan Table.

Pathfinding (CEAA5 entered at CEAA5R)
obtains. device type code from the device
group table'S asynchronous entry pointer.

Exits:

Subroutine - To caller.

SVC routine - To Queue Scanner or SVC Queue
Processor.

Operation: When entered as a subroutine, a
pointer to a 256-byte work area must be
supplied by the caller, and the return is
locaL

When entered by the SVc·Queue Processor,
Purge obtains the work area space by cal­
ling the Supervisor Core Allocation subrou­
tine. If space is not allocated. Purge
resets the task to reissue the purge call
by calling the Enqueue GQE routine to place
a force-time-slice-end GQE pointer on the
Timer Interrupt Queue processor's scan
table queue. When control returns to
Purge, the task's instruction counter,
located in the PSW save area of the XTSI,
is backed up by two times the instruction
length count to enable the SVC to be
issued. Return is then made to the Queue
Scanner.

Section 3: Program Organization 131

On entry the Purge subroutine expects to
find the following parameters.in the work
area:

• A GQE pointer.

• One of the following action codes:

AR - Purge all devices immediately,
removing the TSDL entries.

AL - Purge all devices immediately,
leaving the TSDL alone.

AD - For all devices, remove the TSDL
only.

AS - Purge all devices, letting active
devices quiesce.

SL - Purge single device immediately,
leaving TSDL alone.

SD - Remove TSDL for single device.

SR - Purge device specified in parame­
ter 2 immediately, removing the
TSDL entry.

SS - Purge device specified in parame­
ter 2 letting the device quiesce
if active.

• A symbolic device address (if the re­
quest is to purge one device).

• One of two type-of-action codes:

AT - Purge for all tasks
ST - Purge for one task

• A task identification if the request is
to purge I/O requests for one task.

purging of I/O requests may be for one
of four combinations:

• One device for one task.

• All devices for one task.

• One device for all tasks.

• All devices for all tasks.

The entry parameter code, type and task
ID are checked for valid entries. A system
error with code 6101 is called for an inva­
lid code. If the request affects any tasks
(either singly or collectively) other than
the calling task, the calling task must be
the operator. Otherwise, system error with
a code of 6107 is ,called. The same error
code is used for an invalid type code.

Before processing the request, purge
locates the necessary information about the
task and ass9ciated devices.

132

The TSI is located either via the param­
eter list (for purging the calling task) or
the TSI list of both active and inactive
tasks. Before accessing the TSI list, the
TSI chain lock byte (SYSTSIAD) is set using
the SETLOCK macro. If the lock byte is not
free within a specified amount of time,
SYSERR is called with a code of 6103, and
an error exit is made. For an all-task re­
quest each TSI is used, but for a single
task request the list is scanned until the
appropriate TSI is found. If no TSI is
found SYSERR is called, with a code 6105,
the work area released and purge returns to
the calling routine or to the SVC Queue
Processor.

Once the TSI is located the appropriate
symbolic-device address is accessed either
in the entry parameter list (for a single
request) or the task's task-symbolic-device
list (TSDL) (for an all-device request),
and the TSI lock is set.

At this point unless the request code
wasAL, purge calls the Remove Device from
Task-Subroutine at CEAADR to either sup­
press or remove a specified device from the
TSDL for the specified task, or for all
tasks. Removing an entry consists of
clearing the device entry, while s~ppres­
sing consists of clearing the device entry
lock byte and the device entry suppress
flag in the TSDL. If the request is to
suppress, the TSDL entry remains locked and
will be unlocked by Purge after the 1/0-
request is dequeued.

Upon a successful return from the Remove
Device from Task subroutine, the Dequeue
I/O Request subroutine is called. Before
calling the Dequeue I/O Request subroutine,
the affected scan table entry lock byte
(SCNF3LOK) is locked using the SETLOCK
macro. If the lock byte is not free, SYS­
ERR is invoked with a RC minor code 6131
and an error exit is made. This lock byte
is used to preserve exclusive use of the
queue entry in a duplex environment (that
is, to prevent any other supervisor com­
ponent from processing the queue). The
Dequeue I/O Requests subroutine suppresses
or removes all GQE's and IORCB's associated
with the specified task in the locked
queue. Upon return, the scan table entry
lock byte (SCNF3LOK) is reset using OPEN­
LOCK to again free the entry.

After a device has been removed or sup­
pressed, Purge determines if more than one
device was specified. If so, the basic
procedure is repeated for each entry in the
TSDL. Next purge determines whether more
than one task was specified. If so, the
next TSI in the list is accessed in order
to purge the associated device(s), and the
TSI lock is set for the next task (after
unlocking the preceding one). Once the

entire TSI list has been scanned the list
lock byte (SYSTSIAD) is turned off.

Before exiting, Purge checks to see
whether any devices were purged for any
tasks. If none were, an error indication
is set in a return register. Registers are
restored and the work area is released for
purge SVC processing. Exit is made to the
calling program, or the SVC Queue Processor
at CEAHQQ.

Terminal control Table Entry Slot
Allocation Subroutine (CEATS) Chart BN

This module allocates and releases ter­
minal control table (TCT) slots and buffers
for CEATC, acqUiring and releasing pages of
main storage as required to fill the
request.

Entries:

CEATS1 - TCT slot allocation
CEATS2 - Buffer allocation
CEATS3 - TCT slot release
CEATS4 - Buffer release.

Input

R3 - one word save area
RS - TSI pointer
R9 - MTSCB pointer
R14 - return address.

Input for CEATS3 is TCT address to be
released in register 6.

Input for CEATS4 is buffer address to be
released in register 13.

f'lOdules Called:

Supervisor Core Allocation (CEAL01)
supervisor Core Release (CEAL04)
Locate Page (CEAMLP)

OUtput for CEATSl is TCT address in regist­
er 6-.

Output for CEATS2 is buffer address in
register 13.

Exit: Return to the calling routine.

Operation:

CEATSl - This subroutine allocates TCT
entries for TSS users and Mr/T
users. If all slots are in use
within a TCT page, an additional
page is obtained and placed in a
chain, in the CBT chain and
entered in the page tables. The
ECB count, if required, is updated
and other counts in the TSI and
XTSI for MT/T are updated to
reflect the added page.

CEATS2 - This subroutine allocates buffer
slots for TSS users and MT/T
users. The size of the buffer is
contained in the MTSCB in field
MTSBLH. If all slots are in,use
within a buffer page, an addition­
al page is obtained and placed in
a chain, in the CBT chain and
entered in the page tableS. The
ECB count, if reqUired, is updated
and other counts in the TSI and
XTSI for MT/T are updated to
reflect the added page.

CEATS3 - This subroutine will release TCT
entries for TSS and MT/T users.
If none of the entries are being
used within a TCT page except for
the first page, the page is
released and removed from the TCT
page chain, the CBT chain and the
page table. The ECB count, if
required, is updated and other
counts in the TSI and XTSI for
MT/T are modified to reflect the
released page.

The first page for MT/T tasks is
released only when specified by CEATS3
being called with Register 6 containing all
FF's. The first page for TSS is never
released.

CEATS4 - This subroutine will release buff­
er slots for MT/T and TSS users. If none
of the entries are being used within a
buffer page except for the first page, the
page is released and removed from the Buff­
er page chain, the CBT chain and the page
table. The ECB count, if required, is
updat,ed and other counts in the TSI and
XTSI for MT/T are modified to reflect the
released page.

The first page for.MT/T tasks is
released only when specified by CEATS4
being called with register 13 containing
all FF's. The first page for TSS is never
released.

SPECIAL TASK SERVICE SUBROUTINES

This group of subroutines provides such
services as task initiation, activation and
deactivation of TSIS, task ID scanning,
XTSI-page expansion, task interruption
queuing, and communication control via mes­
sage block construction. The activities
and functions of individual task service
SUbroutines are described on the following
pages. Attributes of the Special Task Ser­
vicestibroutines, except where otherwise
noted, are reentrant, nonrecursive, resi­
dent, and operate in the privileged state.

Section.3: Program Organization 133

Task Initiation Subroutine (CEAMC)·Chart BO

This subroutine sets up an initialized
TSI and assigns a unique task ID (TID)
number to the TSI, provided the number of

'TSls presently in the system is less than
the maximum number allowed.

Entries:

CEAMT1

CEAMT2 - a special entry point, used by the
Special create TSl subroutine to
insure that a TSI is created.
This entry point bypasses the
logic that.might give an ·unavail­
able· return.

Modules Called: Supervisor Core Allocation
subroutine (CEAL1 entered at CEAL01)
reserves main storage for the use of the
Generate and Enqueue Interrupt GQE and
Dequeue I/O Requests subroutines.

Rescheduling (CEAKZ entered at CEAKZA)
is called with the address of the created
TSI in general register 1 and a code of 8
in general register 4 in order to add the
TSI to the inactive list.

Exit: To caller.

operation: On entry, the subroutine inter­
rogates the TSI indicator bit in the system
table to make sure that tasks can be
initiated into the system at this time. If
task initiation is inhibited, a task ID
number of zero is placed in the return
register and control is returned to the
calling program.

If task-initiation is not inhibited, the
subroutine examines the TSI count in the
system table to determine if any more TSls
can be created at this time. If the count
has reached its maximum limit, no TSI is
created, a task-IDnumber of zero is placed
in the return register, and control is
returned to the calling program.

If the count is less than the maximum it
is incremented by one and the new count is
stored in the system table. The count lock
oyte is then reset to allow another CPU to
enter the same logic if required. Linkage
is then made to the Supervisor Core Alloca­
tion subroutine to obtain 128 bytes of
storage for a TSI and 64 bytes for tem­
porary work storage to save the calling
program registers. The storage obtained
for the TSI is initialized in the following
manner.

• All 12S bytes are set to zero.

• The count of the number of XTSI pages
for this TSI is set to 1.

134

• The location of the skeleton XTSI is
obtained from the system table and
placed in the TSI.

• All task interruption bits in the TSI
are enabled.

• The 'conversational' bit is set on.

• The 'XTSl swapped out' bit is set on.

• The 'delay' bit is set on.

• The 'inactive status' bit is set on.

• The task identification (TID) number in
the system table is incremented by one.
If no overflow occurs, this new number
is placed in the TSI as the TID as well
as in the system table. If overflow
occurs, the TSI and the system table
are assigned a TID number of 17, since
a TID of zero indicates an error and
TID numbers 1-16 are reserved for spe­
cial system tasks.

• The initial task level from the system
table is placed in the TSI schedule
table index (TSISTE).

Rescheduling is then called to add the
TSI to the inactive list. The 'pages used
last time-slice' field (TSIPTS) is set to
15 (hex F). The subroutine then places the
aSSigned TSI address and TID number in the
return registers, restores all other regiS­
ters, and returns to the calling program.

XTSI Overflow Subroutine (CEAMX)

This subroutine expands the number of
XTSI pages needed for a task because of
either page-table overflow or a segment­
table overflow. An XTSI-overflow can occur
because of a page-table expansion beyond
the capacity of the first XTSI page or
because of a segment table expansion within
the first XTSI page.

Assumptions: Not more than 512 new seg­
ments will be added for each call to this
routine.

Entries:

CEAMXP - for page-table expansion.

CEAMXS - for segment-table expansion.

Modules Called: Supervisor Core Allocation
subroutine (CEAL1 entered at CEAL01) pro­
vides main storage for use as a register
save area for page tables and auxiliary
page tables.

Supervisor Core Release (CEALl entered
at CEAL02) releases main storage after use.

.~

/.....-.

, '~

XTSI Page packing (CEAMY) consolidates
page table pages that have become frag­
mented because of page table deletion.

Paging (CEAMQ) reads a page table into
main storage.

Exit: Upon completion the XTSI OVerflow
subroutine exits to the calling routine by
means of an unconditional branch to the
address provided in register 14.

Error Checks: segment number validity is
verified in CEAMXS.

operation: When entered at CEAMXP, this
routine will perform the operation
described under ·Page Table Expansion~· its
operation at CEAMX is described under ·Seg­
ment Table Expansion.-

PAGE TABLE EXPANSION: This portion of the
XTSI Overflow subroutine allows the calling
program to find room outside the first XTSI
page for a page table associated with a
specific segment within a task's virtual
storage. The caller specifies the follow­
ing parameters to this portion of the
SUbroutine:

• The segment number.

• The number of pages required, where the
specified number is equal to the number
of entries presently assigned to the
segment, plus the number of entries
being added to this number.

• A pointer to the task's XTSI.

On entry, Expand Page first determines
if the segment presently has a page table
in a page table page (PTP). This is deter­
mined by examining the ASTP bit in the
auxiliary-segment table entry for this seg­
ment. If the bit is zero the page table
does not reside in a page table page and
one must be found to handle the required
page table expansion. Two fields within
the XTSI are used to describe the PTP
chain: XTSPTF and XTSPTL, designating,
respectively, the first and last page table
pages.

A check is made to see if there is any
room in any page table page, in or out of
main storage. Page table pages in main
storage are checked first. If they are
filled, page table pages not in main '
storage will be read in by the Paging rou­
tine (CEAMQ) and checked for unused space
by XTSI Page Packing. This check is
repeated until room is found.

If no PTP chain exists, a call is made
to Paging (CEAMQ) to obtain a page from
User Core Allocation for a page table. The
PTP chain in the XTSI is then updated to

,," \

reflect the inclusion of this page. The
header for the new PTP is then initialized
with the following information:

• The forward and backward PTP pointers
in the header are set to zero since
there is only 1 page in the PTP chain.

• The number of segment fields in this
PTP is set to one.

• The number of bytes in the PTP header,
plus the number of bytes required for
the expanded-page table and its header
with room for ten (10) spare table
entries, is deducted from the page size
to determine the number of bytes avail­
able in the PTP. This field is then
filled in.

• The location of the next available byte
is inserted.

• The pointer to the first segment in
this PTP is set to the byte following
the PTP header field.

Following the initialization of the PTP
header, the segment header for the page
table to be placed in this PTP is initia­
lized as follows:

• The segment number is inserted.

• The pointer to the segment table entry
is inserted.

.• The block size (header + PT + spares),
is set.

• The number of bytes available in this
block is set.

• The segment availability bit is set to
1.

Having completed the initialization of
the PTP, this portion of the subroutine
sets up the new page table origin in a
return register. The calling program's
registers are restored and control is
returned.

If a PTP chain existed, ·it would be
scanned to locate a PTP with adequate space
to handle the expansion. If no room is
found in any of the PTPs, and the XTSI page
limit would be exceeded if a new PTP were
added, XTSI Page packing (CEAMY) is called
to clean up the PTPs. On return from
CEAMY, the PTPs are rescanned. If no room
is found on the second scan, the XTSI page
limit is checked. If at the limit, return
is made with a nonzero return code. If the
XTSI page limit will not be exceeded, a new
page of main storage is requested from
Supervisor Core Allocation. Forward and
backward pointers are set up between this

section 3: Program Organization 135

new PTP and the existing PTP chain. Other­
wise, the PTP header and segment header
information are handled as though no other
PTP chain existed.

If room is found in one of the PTPs, the
PTP-header information is updated to
reflect the new-page expansion to PTP. The
segment header for the page table is
initialized as described earlier. The new
PT origin is placed in the return register
as before, all registers are restored, work
areas are released, and control is returned
to the calling program.

The la·st condition involves the expan­
sion of a page table which already occupies
a PTP. In this case, the table's present
location is expanded to determine if there
are enough bytes available in the' storage
block assigned to this segment to handle
the request. If there are, the expansion
is made, the segment header is updated, the
output parameter set up and the normal
return is made. If there is not enough
room in the present block, but the segment
in question is the last segment in this
PTP, the number of bytes remaining in the
page is examined to determine if the page
expansion will fit with 10 or fewer spares.
If it will, the expansion is made within
this PTP, the PTP header and segment hea­
derfields are updated as required, and con­
trol is returned to the caller.

If this segment must be moved to another
PTP, the PTP and segment headers must be
updated to reflect the deletion of this
segment from its present PTP. The fields
are updated and then the PTP chain in the
XTSI is scanned in an attempt to find room
as before. The location of the new PT ori­
gin is set up as before, registers restored
and return made to the calling program.

SEGMENT TABLE EXPANSION: There are three
states in which the XTSI can exist: '00',
'01', and '02'. The state of an XTSI page
is indicated in the flag byte XTSF2.
Figure 24 illustrates these.

'00 '

FIXED AREA

ST

AST

PT

'01'

FIXED AREA

ST

~
~

Figure 24. XTSI states

136

, 02'

FIXED AREA

PTO

1-4
Contiguous
ST Pages

1-8
AST Pages

The skeleton XTSI initialized by system~
startup contains only 16 segment-table and
auxiliary-segment-table entries. Any
expansion beyond this number is accomp­
lished by the segment table expansion por­
tion of the XTSI Overflow subroutine.

On entry, this portion of the subroutine
expects to find, in general registers, the
following input parameters:

• The segment number.

• The address of the task's XTSI.

Expand Segment first establishes the
validity of the segment number (that is,
greater than 15). If the segment number is
invalid, the condition code is set to non­
zero and the routine returns to the calling
program.

For XTSI state '00' the number of bytes
required for expansion is calculated and
compared to the number of bytes available
in the first XTSI page. If room is avail­
able the following steps are taken:

• All page tables within the first XTSI
page are 'pushed down' by the amount
required for the segment table and
auxiliary-segment table expansion.

• The segment-table entries of all
'pushed down' page tables are then
updated to reflect thei~ new page table
origins.

• The present auxiliary segment table
area is pushed down by the size of the
segment table expansion.

• The new segment-table entries are
initialized to indicate that no page
table is available. The ADDPG routine
will add the page table pointers as
required.

• The auxiliary-segment-table entries are
zeroed out, except for the ASTA bit, to
signify that the segment is assigned.
The ADDPG routine will fill in the AST
entries as required.

• The save area in the XTSI for control
register zero is then Updated to
reflect the new length of the segment
table.

• The number of bytes available for XTSI
expansion is reduced by the amount
required for the segment expansion.

• Control is then given back to the cal­
ling routine.

If the number of bytes available in the
first XTSI is insufficient to handle the

segment expansion, the existing segment
table is scanned to locate the last page in
the first XTSI page. The input parameters
needed by Expand Page (CEAMXP) are then set
up and CEAMXP is called to move the page
table out of the first XTSI page. Upon
regaining control, Expand segment updates
the entry whose page table was just moved
out to reflect its new page table location.

This process continues until the amount
of main storage reclaimed, when added to
the number of bytes available, is suffi­
cient to handle the segment expansion. At
this time, Expand Segment begins the 'push­
down' operation described previously.

If moving all PTs out of the first XTSI
page fails to provide enough space for seg­
ment table expansion, a new XTSI page is
requested from supervisor Core Allocation
and the auxiliary segment table moved to
it. The XTSI page limit count governs this
action, and the same procedures used in
page table expansion are followed; that is,
page-packing tries to clean up the XTSI
pages to provide needed space.

Moving the AST out of the first XTSI
page puts the XTSI in state '01' and
requires updating the first AST page point­
er and the XTSI state flag (located in the
fixed area of the first XTSI page). The
available byte indicator in the XTSI page
count is also updated and the ST/AST
entries initialized.

If segment table expansion in XTSI state
'01' would cause the ST to overflow the
first XTSI page, the same procedure is fol­
lowed to locate space for it as in relocat­
ing the PT and AST; that is, Page Packing
tries to clean up XTSI pages to provide
needed space. When the segment table is
moved out of the first XTSI page, the page
table for segment 0 is moved in from its
PTP, and the appropriate pointers and flags
adjusted accordingly. This provides for
more efficient operation of the system.
Moving the ST out of the first XTSI page
puts the XTSI in state '02'.

If the segment table requires more than
one page, these pages must be contiguous to
meet hardware requirements. The routines
that call Expand Segment (ADDPG and ADSPG)
anticipate and meet this requirement. Con­
tiguousmain storage is obtained by que~ing
a GQE for the request and queuing the Add
page request again. On return, this causes
ADDPG to be re-entered with the address of
the contiguous main storage in the GQE.
This address is passed in register 0 to
Expand Segment. Subject to the XTSI page
count limit, 'contiguous Core Allocation is
called' to get a new page. It will try to
allocate the page following the existing ST
pages. If it cannot, another group of con-

tiguous pages is allocated and Expand Seg­
ment moves the ST to the new ST pages,
releases the old ST pages, updates the ST
pointer, and initializes the new ST/AST
entries. If the XTSI page limit would be
exceeded, the new ST pages are returned to
User Core Allocation before Expand Segment
returns.

Note: Pages obtained for additional auxi­
liary segment tables and page tables need
not be contiguous. They are obtained, as
needed, from Supervisor Core Allocation and
marked as user main storage with the appro­
priate pointers inserted.

Queue GQE on TSI Subroutine (CEAAF) Chart
BP

This subroutine queues a GQE, represent­
ing a specified interruption, on a queue
off the appropriate task status index
(TSl) •

RESTRICTIONS: No information may be saved
in bytes 28 to 35 of the GQE by the calling
routine since this subroutine saves regis­
ters 2 and 3 in those bytes. The GQE must
be dequeued from the scan table by the cal­
ling routine.

Entries: CEAAFQ is used by TSS routines;
CEAAF2 is used by VSS routines to force the
GQE to be queued directly on the regular
TSI queue.

Exits:

Normal - To caller.

Error - To System Error Processor.

When an alternate TSI is to be con­
structed, exit is to the resident support
system (RSS) via LPSW.

Modules Called: Rescheduling subroutine
(CEAKZ entered at CEAKZA) puts the TSI in
the active list.

Supervisor Core Release (CEALI entered
at CEAL02) releases GQE core before exit to
RSS.

Operation: On entry at CEAAFQ, the subrou­
tine expects the following parameters to be
specified by the caller in general
registers:

- The GQE pointer.

-One of the following interruption type
codes:

Section ,3: Program Organization 137

r------T-------------------------------,
I Binaryl I
I Code , Interruption Type ,
.------+------------------~------------~ o 'Program interruption pending

1 'SVC interruption pending
2, External interruption pending

, (Task)
3 1 Asynchronous I/O interruption

I pending
4 I Timer interruption pending

, (Task)
5 I Synchronous I/O interruption

, pending
6 'VSS activate interruption

1 pending
'1 I Invalid

land up' L ______ ~ ___________________________ ~ __ _

The subroutine inserts the binary inter­
ruption code into the task interruption
code field (GQETIC) of the GQE. These
codes establish a priority for queuing the
GQE. GQES with codes zero and 1 are
chained onto the top of the queue: those
with codes 2 through 5 are chained onto the
bottom.

Interruption code 6 is always queued at
the top of the queue. It is the interrup­
tion that occurs when a task system pro­
grammer connects to a task and activates
the virtual support system (VSS). Wnen
this interruption is processed, the VSS
active flag in the TSI is set on. Two
other flags in the TSI may also be set
indicating that a task system programmer is

connected and two terminals are in use for
the task. When the TSI has the VSS active
flag on, a pointer in that TSI pOints to an
alternate TSI for the task. Subsequent
interruptions are then handled according to
their type and the various combinations of
the TSI flag settings. (See Figure 25.)

Alphabetic characters in Figure 25 spe­
cify the action to be taken and correspond
to the letters below.

A. The interruption GQE is queued on
the regular TSI interruption queue
(TSITIP): and appropriate counts,
flags, and interruption code are set
in the GQE.

B. If the external interruption code is
zero, the GQE L~ queued on the
alternate TSI queue. Otherwise, it
is queued on the regular TSI queue.

C. If the IORCB VSS flag is on, the GQE
is queued on the regular TSI queue.
Otherwise, it is queued on the
alternate queue.

D. These interruption GQEs are all
queued on the alternate TSI queue.

E. The PSW is loaded with the pointer
to the ftRSS activate VSS because of
TSP attentionW entry point. The
interruption GQE and TSI pointers
are left intact in their registers.

r---,
1 Flags 1

~------------------------T-------T-------T-------T-------T------T-------T-------T-------~
IVSS ACTIVE I yes , yes I yes I yes I no I no I no I no I
~------------------------+-------+-------+-------+-------+------+-------+-------+-------~
ITSP CONNECTED I yes 1 yes 1 no I no 1 no 1 no I yes I yes ,
.--------------------~---+-------+-------+-------+-------+------+-------+-------+-------~
,TWO TE~INALS I yes I no I yes , no I no , yes I yes 1 no I
r------------------------+-------+-------+-------+-------+------+-------+--~----+-------~ 1\\\\\\\\\\\\\\\\\\""\'1 1 , , I 1 1 , I
.-------~----------------+-------+-------+-------+-------+------+-------+-------+-------~
I Interruption Type I I 1 1 1 , , I I
.---------------~--------+-------+-------+-------+-------+------+-------t-------+-------~
IVSS Activate (6) I A 'A I A 1 A I A I A I A I A I
.------------------------+-------+-------+-------+-------+------+-------+-------+------~
1 Prog ram (0) I A I A ,A 1 A I A 'A I A I A I
.------------------------+-------+-------+-----~-+-------+------t-------+-------t-------~
1 SVC (1) 1 A 1 A 1 A 'A 1 A 1 A 1 A I A I
r------------------------+-------+-------+~------+-------+------+-------+-------+-------~
IExternal Task (2) 1 BIB 'B I A I A I A I A 1 A I
.------------------------+-------+-------+-------+-------+------+-------+-------+-------~
'Asynchronous I/O (3) 'D 1 E I DID 1 A 1 A 1 FIE ,
r------------------------+-------+-~-----+-------+-------+------+-------+-------+-------~
ITimer Task (4) I DID 1 DID 1 A 1 A I A 'A 1
.---------------~--------+-------+-------+-------+-------+------+-------+-------+-------~ 1 Synchronous I/O (5) 'C 'C I C 1 C,. A 1 A 'A ,A 1 L ________________________ ~ _______ ~ _______ ~ _______ ~ _______ ~ ______ ~ _______ ~ _______ ~ _______ J

Figure 25. Action Matrix for TSI Flag Settings

138

F. If the TSI's SYSINterminal and the
terminal causing the interruption
are the same, the interruption is
queued on the regular TSI interrup­
tion queue. If they are not the
same, the action described in E
(above) is taken.

This subroutine checks for: more than
one program interrupt type 3; more than one
SVC; and the interrupt counter for type of
interrupt overflow. On finding any of
these, a program interrupt is queued on the
task and a resident supervisor minor syserr
is, declared.

If an interruption-type code greater
than 6 is encountered, an interruption code
is placed in the GQE, the error flag is
set, and the GQE is queued on the TSI.

If the interruption-type code is valid,
the corresponding interrupt-counter field
in the TSI is checked. If it is at its
maximum value, the queue-error flag field
in the GQE is checked. If off, it is
turned on, the proper interruption code is
stored in the GQE, and the GQE is queued on
the TSI. If it is on, an exit is made to
SYSERR.

If the counter value is correct, the
counter is incremented by 1 and the appro­
priate 'software interrupt pending' flag in
the Tsr is turned on. The 'queue error'
flag in the GQE is then checked to see if
an error was encountered. If so, the SYS­
ERR exit is taken.

If a pending interruption is enabled,
the TSI is checked to see if it is on the
active list. If it is, the TSI is checked
to see if it is in AWAIT. If the TSI is in
AWAIT, the AWAI'l' and real time clock are
cancelled before setting the task to ready
and returning to the calling routine.

If the TSI is on the inactive list, it
is caecked to see if it is in migration.
If so, a bit is turned on in the TSI
(TSIST) which will cause the Time Slice End
Subroutine to determine whether or not
migration will continue and when the task
will be activated, and a return is made to
the calling routine. If the migration flag
is not on and the interruption is not a
program controlled interruption (instead it
is from an IORCB other than the last
chained IORCB), Rescheduling is called to
put the TSI on the active list, the task is
placed in ready state, and a return is made
to the calling routine.

Task communication Control Subroutine
(CEAAln

This subroutine constructs a message
control block (l<lCB) for a calling task's

message and attaches it to the called
task's TSI.

Entry: CEAAN1

Modules Called: supervisor Core Allocatior
subroutine (CEAL1 entered at CEAL01)
reserves main storage for the use of the
Generate and Enqueue Interrupt GQE and
Dequeue I/O Requests subroutines.

Scan on Task ID subroutine (CEAAU)
searches the active and inactive lists of
TSls for a task identification number that
matches a number specified by the calling
program.

Queue GQE on TSI (CEAAF) places a point­
er to the specified GQE on the interruption
queue in the affected task's TSI.

Supervisor Core Release'subroutine
(CEAL1 entered at CEAL02) releases main
storage after use.

~: To caller.

Operation: On entry, the subroutine pe~­
forms in the following manner:

• The supervisor Core Allocation subrQu­
tine is called to allQcate storage for
all necessary work/save areas.

• The caller's input general registers
are saved.

• The Scan on Task ID subroutine is
called to locate the addressed task's
TSI. If no TSI can be. found, a minor
software SYSERR is invoked and an
appropriate call code is set. If the
TSI is found, the size of the MCB is
computed by:

a. Testing the specified message size
and if it exceeds 238, truncating
it to 238.

b. converting the message size from
double words to bytes.

c. Adding 16, the length of the MeB
header, to the message size.

d. If the message is being sent to the
operator a 16 byte operator header
is also generated following the MCB
header and preceding the text.

e. Rounding off the message size to
the nearest multiple of 64.

• The Supervisor Core Allocation subrou­
tine is called to allocate enough main
storage to contain the MCB and the GQE.

Section 3: Program Organization 139

• Inserts the following in the MCB as
well as the operator header (OPH) when
necessary.

a. The message length

b. The message byte conversion

c. The message text

• The GQE fields are established as
follows:

a. The TSI pOinter returned from the
Scan on Task 10 subroutine is
inserted.

b. The MCB pointer is placed in the
GQE.

c. Various OPrl fields are filled in if
the operator is to receive the
message.

• The TSI lock byte is set on to prevent
the task from beinq activated until the
queuing process is-complete. The Queue
GQE on TSI subroutine is called to
place the MCB GQE on the TSI-external­
interruption queue, after which the TSI
lock byte is set off.

• The calling program's general registers
are restored, the supervisor Core
Release subroutine is called to release
the work/save areas, and control is
returned to the calling program.

GENERAL SERVICE SUBROUTINES

Inter-CPU Communication Subroutine (CEAIC)
Chart BQ

This subroutine transmits commands from
one CPU to another in the TSS domain and
emits external signals over the extended
direct control in order to have the receiv­
ing CPU perform the functions required for
the coordination of CPUs in a multiproces­
sing system. Intercom is resident in the
PSA and operates in supervisor state.

RESTRICTIONS:

1. The intercom text transmitted from one
CPU to another via the drop area is
limited to 12 bytes in length.

2. Entry into the subject intercom is
solely by the external signals across
the extended direct control.

Assumptions:

1. Since 'Intercom and the drop area are
resident in the PSA, each CPU has a
unique copy.

140

2. Upon entry into the subject intercom,
the intercom lock byte is set to pre­
vent any other CPU from placing anoth­
er message in the drop area until the
current message has been removed by
the subject CPU.

Entries:

CEAIC1 - for the object Intercom.

CEAIC2 - for the subject Intercom.

Exit: To caller.

Operation: On entry, Intercom performs the
following:

• Transmits communication data from an
object CPU's drop area (12 bytes of
text and 2 bytes of control informa­
tion) into the receiving (subject)
CPU's drop area.

• Emits an external signal (external­
start or external-interruption) over
the extended direct control to the spe­
cified subject CPU.

There are two subroutines that comprise
Intercom: the Object Intercom is a subrou­
tine that can be called by a resident pro­
gram operating in the supervisor state.
The Subject Intercom is triggered into
action solely by the external signal
emitted across the extended direct control
by the object CPU that is executing the
Object Intercom. A functional description
of each of these subroutines is presented
on the following pages.

Ob;ect Intercom: This subroutine expects
the following input parameters:

• The text of the Intercom message.

• One of the following Intercom message
codes (II>1C):

IMC Message

00 Invalid

01 External
Start

02 Halt

03 Resume

04 Halt {;,
Transfer

Operation Performed by
Subject CPU

Switch Prefix and/or LPSW
from Words 1 and 2 of
text (byte of Word 3 used
as data byte)

Go into the Wait state
(text ignored)

Resume at the Point of
Halt (text ignored)

Save CPU status and
transfer to the address
given in Word 2 of Text

05 Reset Reset Associative
Register

06
to Invalid
FF

• The identity (ID) of the subject CPU,
as follows:

If IMC is 01, ID is:

08 for CPU1
04 for CPU2

.If fMC is 02 to 05, ID is:

80 for CPU1
40 for CPU2

• Return address

• Base address

Upon entry, Object Intercom performs the
following:

• Checks the IMC in the input parameter
to see if it falls within the valid
range of values. If not, the return­
code 1 (invalid IMC) is generated to
reject the call, and control is
returned to the caller.

• Identifies the subject CPU by scanning
the ID byte of the input parameter
(starting with CPUl) and when an asso­
ciated bit of 1 is found, the CPU sta­
tus table is checked to determine
whether or not tne subject CPU is cur­
rently active in the TSS domain. If
not, control is returned to the caller,
with return-code 2 or 4 depending upon
whether the specified CPU is non­
existent in the installation or cur­
rently partitioned out of the TSS
domain.

If the CPU is currently active, its pre­
fixed-storage area is located. The inter­
com lock byte of the subject CPU's drop
area is tested, and a wait loop is entered
if the lock is on. When, and if, the lock
is turned off, it is turned on. The text
and IMC of the input parameters and the
object CPU's 10 are then placed in the sub­
ject CPU's drop area.

At this point the IMC is checked. If it
is not one, the subroutine scans the 10
byte for the next CPU and repeats the pro­
cessing described above. If the IMC is
one, the subject CPU's new prefix (whether
primary or alternate as specified in the
input parameters) is determined. The pre­
fix fields of the status tables in every
active PSA are Updated, if necessary, and
the IPL PSW of the subject CPU is set up

-----------------------_._---_.

with the Subject Intercom subroutine's
entry point (CEAIC2) in the instruction
address. The subroutine then scans the
input 10 byte for the next CPU and repeats
the processing described previously.

When an 10 bit of one is not found as so­
ciated with a CPU, or when all processing
is complete the subroutine issues the Write
Direct instruction to generate the signal
specified by the IMC, (external start, or
external interruption) and returns a return
code of 0 and control to the caller.

pubject Intercom: Entry into the Subject
Intercom subroutine at CEAIC2 is made eith­
er by an external-start, issued by the
object CPU, or from the recovery nucleus on
an external-interruption caused by the
execution of a Write Direct instruction.

When the subroutine is entered, the sub­
ject CPU, with external interruptions dis­
abled, transfers the communication data
from its drop-area into working storage and
releases the intercom lock in order that
another CPU may place messages in the drop
area. The following functions are then
performed as specified by the intercom code
given by the object CPU.

IMC 1

IMC 2

External Start: Switch to the
extended-PSW mode, and place the first
two words of the text into the PSW.

Halt: Check the external-old-PSW in
the PSA to see if the external­
interruption occurred while in the
wait state. If not, save the
extended-old-PSW and timer, and go
into the wait state. If the CPU was
in the wait state, update the elapsed
timer field in the PSA and go back to
the wait state.

IMC 3

IMC 4

Resume: Update the elapsed timer,
restore the timer from the timer value
saved by the halt, and load the saved
external-old-PSW into the PSW to
resume at the point of the halt.

Note: A Resume is required to con­
tinue operation in a HALTed CPU. Halt
commands received while the subject
CPU is in the wait state are effec­
tively ignored in order that the sub­
ject CPU may always resume its opera­
tions at the point of the first halt.
A Resume command does not put the sub­
ject CPU into the wait state regard­
less of the number of intervening halt
commands it may have received.

Halt and Transfer: Save the general

Section 3: Program Organization 141

IMC 5

and floating point registers in the
Subject Intercom's save a~~a, and
transfer control to the address given
in the second work area of the text.
If control is returned, update the
elapsed timer, restore the general and
floating point registers and timer,
and resume at the point of the extern­
al interruption.

Reset: Store the extended control
register 0 into a temporary working
area in main storage and load it back
into the extended control register to
cause the reset of its associative
registers.

create Real Time ~nterrupt Subroutine
(CEAKR) Chart BR

This subroutine sets up a task timer
interruption when the dispatcher finds that
the system's elapsed time matches or
exceeds the time interval value in the
first entry of the real-time-interval­
pending queue.

Entry: CEAKRT

Modules Called: Supervisor Core Allocation
subroutine (CEALl entered at CEAL01) pro­
vides main storage for the purpose of con­
structing a GQE.

Queue GQE on TSI subroutine (CEAAF
entered at CEAAFQ) queues the GQE on the
TSI.

Supervisor Core Release subroutine
(CEALl entered at CEAL02) releases 64 byte
blocks of storage when a sufficient number
of entries have been worked off the top of
the queue.

142

Exi t: Queue Scanner.

Operation: On entry, the subroutine checks
the cancel flag (RTICNCL) in the RTI flag
byte. This flag is set by the Delete TSI
subroutine (CEAMD). If it is on, the RTI
entry is ignored. If the RTIADM flag is
on, it is a supervisor request. If not,
the subroutine requests a 64-byte storage
area for a GQE from the Supervisor Core
Allocation subroutine. This storage block
is initialized as a GQE which is used to
create a task timer interruption. The TSI
for the affected task is addressed by the
third word of the first queue entry in the
real-time-interval-pending queue. The
address of the TSI and an interruption code
are stored in appropriate fields in the new
GQE and a call is made to Queue GQE on TSI
subroutine to place the GQE pointer on the
interruption queue in the TSI.

If the request is from the supervisor,
the address constant of the calling routine
must be in the RTI ADDRESS. After this
routine creates the interrupt, it branches
to the address specified by the ADCON.

The remainder of this subroutine's func­
tions are concerned with the maintenance of
the configurations of both the system table
pointers and counts, and the maintenance of
the real-time-interval-pending queue confi­
guration. Each time the subroutine is
activated, the pointer-to-first-queue-entry
in the system table is incremented, as is
the count of the number of bytes released.
When this count reaches 64 the subroutine
returns the first 64 bytes in the existing
main storage block by calling the Supervi­
sor Core ReI ease subroutine and updates
the appropriate pointers and counts. The
exit from this subroutine involves reset­
ting the lock and branching to the Queue
Scanner.

TASK SELECTION AND SCEHDULING ROUTINES

The supervisor routines which comprise
the task selection and scheduling mechanism
are: the Internal Scheduler which receives
control from the Queue Scanner when there
is no work to do on the scan table and
which maintains the order of tasks on the
dispatchable portion of the active list;
the Entrance Criteria subroutine which
determines whether a task can be moved from
the eligible list to the dispatchable list~
Reschedulinq which moves tasks from the
dispatchable to the eligible or inactive
list and from the inactive list to the
eligible list and computes the task SST;
the Dispatcher which selects a task to be
given CPU time and calls Task Interrupt
Control to check for pending task inter­
rupts and arrange for them to be serviced
by the task monitor before dispatching the
task. A detailed description of these rou­
tines can be found in the following pages.

Internal Scheduler (CEAKI) Chart BS

The Internal Scheduler serves as an
interface between the queue scanning func­
tion of the resident supervisor and the
Dispatcher. It selects and moves tasks
from the eligible list to the dispatchable
list.

Entry: The Internal Scheduler is entered
at CEAKIA by the Queue Scanner when there
is no processable work on the scan table.

Modules Called: Supervisor Core Allocation
(CEAL1 entered at CEAL01) to obtain main
storage for a GQE to force time slice end
or for a GQElPCB.

Enqueue GQE subroutine (CEAJQ entered at
CEAJEN) to put a GQE on the User Core Allo­
cation queue and the Timer Interrupt Pro­
cessQr queue.

Entrance criteria subroutine (CEAKE
entered at CEAKEA) to determine if a task
may be moved from the eligible to the dis­
patchable list.

Exits: Exit is to the Queue Scanner when a
task is to be forced to time-slice end or
when the first XTSI page must be read in
for a task moved to thedispatchable list.

Exit is to the Dispatcher when no work
has been placed on the scan table.

Operation: The Queue. Scanner enters the
Internal Scheduler with interrupts disabled
when there is no processable work on the

scan table. The first function performed
by this routine is to test the flag CEAKIS
(Sleep flag). This flag is set by RSS to
signal that hardware partitioning is to
take place. When the flag is on, the
Internal Scheduler puts the system into a
wait state via an LPSW instruction. Other­
wise, the Internal Scheduler sets the dis­
patching algorithm lock. It then checks
the system table field SYSCTP. If not
zero, it will contain a task ID in the
first halfword and a schedule table entry
level in the second halfword. The active
list is scanned looking for the task speci­
fied by the TID. If it is found, and it is
on the dispatchable list, its STE level is
changed in the TSI (TSISTE) to that speci­
fied in the second halfword of SYSCTP.
SYSCTP is then set to zero and control
passes to Step 1. If the task is on the
eligible list, its STE level is changed,
and the Entrance Criteria subroutine is
called to determine if the task can be
added to the dispatchable·list. If not,
control passed to Step 2 to assure that
this task will be the first moved to the
dispatchable list. If accepted, SYSCTP is
set to zero and control passes to Step 4.

If SYSCTP is zero, processing is as
follows:

Step 1
The 'internal scheduler no work' flag
(SYSNWK) is checked.· If off, the
master clock (MC) is compared to the
lowest ahead of schedule SST (SYSLSST)
found in the last pass through the
Internal Scheduler. If this task is
presently behind schedule, SYSLSST is
set to zero and the eligible list is
scanned from the top. otherwise scan­
ning begins at the next task to check
as specified by SYSNTSI. During this
scan to the end of the eligible list,
SYSLSST is updated as necessary.

When a behind schedule task is found a
check is made to see if it is in
migration (TSIMG=1). If not, it is
compared with the Schedule Table
wmaximum behind schedulew field. If
it is above its maximum and ready, it
is submitted to Entrance Criteria. If
not, the search continues. If no task
is above maximum, the first task
behind schedule any amount is sub­
mitted to Entrance Criteria. If it is
rejected, SYSNWK is set on, SYSNTSI is
set to point to the rejected TSI and
control passes to Step 3. If accepted
by Entrance criteria, control passes
to Step s.
If no behind schedule task is found
during the scan, the first task in the
eligible list that is not in migration
(TSIMG=O) is submitted to the Entrance

Section 3: Program Organization 143

Criteria subroutine. If rejected, or
if all eligible tasks are-in migra­
tion, SYSNWK is set on and control
passes to Step 3. If accepted, con­
trol passes to Step 5.

Step 2
If Entrance Criteri~ rejects an elig­
ible task specified by SYSCTP or a
behind schedule task, the dispatchable
list is searched to find an unlocked
task in delay or ready status with the
preempt flag on in its STE. If one is
found with a lower priority than the
rejected task, time slice end is for­
ced, SYSTSILK is unlocked, interrupts
are enabled, and exit is to the Queue
Scanner. If no preemptable task is
found, control passes to Step 4.

Step 3
Exit is to the Dispatcher with inter­
rupts disabled and SYSTSILK locked.

Step 4

144

This portion of the Internal Scheduler
is entered when the Entrance Criteria
subroutine determines that the TSI
submitted to it for evaluation can be
added to the dispatchable list.
First, parameters in the affected
entries in the eligible list are
adjusted; and, if necessary so are the
system pointers (SYSFW and SYSLT).
The TSI is then added to the dispatch­
able list ahead of all execute-bound
tasks and behind tasks in page wait by
modifying dispatchable list entry
pointers and the system pointer (SYS­
PEC). The count of eligible tasks
(SYSELG) is increased by one.

The TSI just added to the dispatchable
list is then modified by setting the
TSI quantum count (TSIQCT) to the
value specified in the schedule table
for this TSI's STE level. If the
scheduled start time (SST) is not
zero, indicating that the task is
behind schedule, the master clock
value is subtracted from the SST and
the result stored in TSISST. This
negative value will be used by Resche­
duling to compute the task's new SST
and bring it back on schedule. If the
SST is zero it is not modified.

A check is then made to see if the
first XTSI page is in main storage.
If it is, processing in the Internal
Scheduler continues at Step 2.

If the first XTSI page is not in main
storage, Supervisor Core Allocation is
called for GQE/PCB space. The GQE and
PCB are initialized and Enqueue GQE is
called to bring the first XTSI into
core. Interrupts are then enabled,
TSILOCK unlocked and exit is to the
Queue Scanner.

The Dispatcher (CEAKD) Chart BT

This routine selects a task to be given
CPU control when no work has been created
for the Queue Scanner by the Internal
Scheduler.

Entry: CEAKDl - with SYSTSILK locked and
interrupts disabled.

Modules Called: Task Interrupt Control
(CEAA2 entered at CEAA20) to allow the task
being put in execution to receive
interrupts.

Exits: Exit is to the task by loading the
task's PSW.

If the Dispatcher finds that the sys­
tem's elapsed time equals or exceeds the
time interval value specified in the first
entry of the real-time-interval-pending
queue, exit is to the Create Real Time
Interrupt subroutine with SYSTSILK
unlocked, SYSTIMLK locked and interrupts
enabled.

The Dispatcher can also enter a wait
state (by loading a PSW) when there are no
tasks that can be dispatched. This, in
effect, is an exit to the Queue Scanner.

Operation: On entry, the Dispatcher checks
for real time interrupts due. If there is
one, the Dispatcher exits to Create Real
Time Interrupt.

If none is due, the dispatchable list is
scanned from SYSPEC looking. for an unlocked
~ask in ready status with no paging
requests pending (TSICP=O). If found, the
user timer (XTSUTI) is compared to the cur­
rent timer (XTSCTI). If the user timer is
the lesser, the task's accumulated time is
updat.ed, and the current timer value set to
the user timer value. Otherwise, the cur­
rent timer remains unchanged. The task is
then set in execution status and unlocked.
SYSTSILK is reset and Task Interrupt Con­
trol is called to process any task inter­
rupts. On return, the system elapsed time
is updated, the task's registers are loaded

from the XTSI and control is given to the
task by loading the task'.s current PSW.

If the Dispatcher cannot find a task to
put in execution, the CPU will be put in
the wait state. The timer value for the
wait is determined by calculating the dif­
ference between the present time and the
first entry in the real time interrupt
pending queue (SYSRT2). If this value is
greater than the idle timer setting (SYS­
lDL), or if the real time interrupt pending
queue is empty, SYSIDL is used. System
elapsed time is updated, SYSTSILK is reset,
and the CPU is put in the wait state via
LPSW.

Task Interrupt Control Subroutine (CEAA2)
Chart BU

This subroutine checks for pending
interruptions to a ready task prior to giv­
ing the task CPU control. If no interrup­
tion is found pending, TIC returns to the
dispatcher. If an interruption is found
pending, it is serviced and control is
returned to the Dispatcher.

Entry: CEAA20

Modules called: Supervisor Core Allocation
subroutine (CEALl entered at CEAL01) pro­
vides space for the GQE and the PCB, when
the ISA must be brought into main storage.

Supervisor Core Release subroutine
(CEALl entered at CEAL02) releases the
space occupied by the IORCB at the time a
solicited I/O interrupt was recognized by
the MCB for a VSEND, and releases the
interrupt GQE space.

Enqueue GQE subroutine (CEAJQ.entered at
CEAJEN) queues the GQE on the User Core
Allocation Queue Processor's queue.

Exits: The Task Interrupt Control subrou­
tine ~xits to the Dispatcher. If anasyn­
chronous interruption is pending in VSS
mode, exit is to the resident support sys­
tem (RSS) via LPSW.

When the ISA or first page table is not
in main storage, exit is to CEAMQ, the Pag­
ing subroutine, at CEAMQA.

operation: The Task Interrupt Control.
(TIC) subroutine provides the software
required to relay ~ selected set of hard­
ware interruptions, received by the resi­
dent supervisor, to a predefined task
interruption processor. TIC is a re­
enterable, resident, closed subroutine
operating in the privileged state with I/O
interruptions masked.

TIC provides user tasks with a software­
interruption mechanism similar in many

aspects to the hardware interruption sys­
tem. The major difference between the two
types of interruptions is that a hardware
interruption conveys a change in status of
the entire system to the supervisor, while
a software interruption conveys a change in
status of only that portion of the system
currently allotted to a given task.

There are eight types of hardware inter­
ruptions that can have a direct influence
on the processing flow of a task. These,
in the order in which they are processed by
TIC, are:

1. VSS Activate interruption resulting
when a task system programmer (TSP)
connects to a task and activates the
virtual support system (VSS).

2. Program interruptions resulting from
task program and supervisor-detected
task errors.

3. Recoverable data set paging interrup­
tions (a special set of program inter­
ruptions detected by the I/O routines
and processed by recovery modules in
virtual memory.

4. SVC interruptions resulting from an
SVC interruption originated by the
erroneous execution of an SVC instruc­
tion by a task.

S. External interruptions resulting from
inter-task communication.

6. Asynchronous I/O interruptions result­
ing from asynchronous Signals usually
associated with terminal devices.

7. Timer interruptions resulting from the
expiration of a task-specified time
interval.

8. I/O interruptions resulting from the
termination of a task-oriented I/O
operation.

The basic software interruption mechanism
consists of an interruption queue in the
task's TSI; an interrupt storage area (ISA)
in the task's virtual storage which is
defined as segment 0, paqe 0; eight inter­
ruption pending bits in the TSI, one for
each type of interruption; and the Task
InterrUpt control subroutine.

The logical sequence which terminates in
a task interruption commences when a queue
processor determines that an interruption
condition must be brought to the attention
of the task. At this point a general queue
entry .(GQE) pertinent to the condition is
referenced by a pointer in the appropriate
queue processor's queue. The Queue GQE on
TSI subroutine is called to attach the GQE

Section 3: Program organization 145

pointer to the TSI's task-interruption
queue, update the queue pOinters and count,
and set the queue's interruption-pending
bit to one.

The interruption queue contains a chain
of zeroes or GQES. New GQES are added to
the chain by priority identical to that of
the interruption type descriptions. Each
GQE pointed to by the task-interruption­
queue entries contain the following
information:

• Interrupt code.

• Instruction length code (ILC).

• Sense data for I/O interruptions with
unit check or unit exception only.

• Channel status word (CSW) for I/O or
asynchronous interruptions only.

The interrupt storage area (ISA) con­
tains preassigned areas for old-virtual­
program-status-words (OLD VPSWs), several
register save areas, and NEW VPSWs.

At task selection time, the Dispatcher
loads the TSI and the XTSI pointers into
general registers, locks the TSI and trans­
fers control to TIC.

On entry at CEAA20, TIC tests to see if
the ISA page is in main storage. If it is
not, Task Interrupt Control exits to the
Paging subroutine (CEAMQ at CEAMQA) to read
it (and its page tables, if necessary) into
main storage. TIC matches the flags
against the interrupt mask in the task's
TSI. The VSS activate, program, and SVC
interruption mask flags are always on
(these interruptions can never be masked
out). This is a left-to-right match1
therefore, the priority for concurrently
unmasked pending interruptions is deter­
mined by the order of the interruption
flags (VSS activate, program, SVC, extern­
al, asynchronous, timer, I/O). For those
cases where the software interruption pend­
ing flags are a complement of the interrup­
tion mask (all pending software interrup­
tions are masked), TIC returns to the
Dispatcher.

If there is an unmasked software inter­
ruption pending, TIC determines whether the
VSS flag is on in the TSI. If yes, the
GQES to be serviced will come from the VSS
queue instead of from the normal queue of
task interruptions (the 'regular' TSI
queue, instead of the 'alternate'). A
check is then made to determine if it is an
SVC or external interruption. If it is and
a message control block (MCB) exists asso­
ciated with it, the MCB size is checked. A
size of zero is treated as 64 and anything
over the maximum is treated as the maximum,

146

or 1920 bytes. The size is then saved for
later reference. If the pending interrup- ,
tion is not an SVC or external interrup­
tion, TIC checks to see whether it is an
I/O interruption. If it is and an IORCB
exists associated with it, the lORCB size
is checked and treated in the same manner
as described above for the MCB. If the
interruption is neither external nor I/O,
or if an MCB or IORCB does not exist as
tested above, or if the size check is com­
plete, processing continues.

The ISA page flag is set on, and the ISA
lock byte is tested. If it is nonzero, all
interruptions are masked off except program
and SVC. If neither of these interruptions
are pending, the page-hold flag is turned
off and TIC exits to the dispatcher. If
there are interruptions pending, or the ISA
lock byte is equal to zero, the XTSI's PSW
data for the interrupt is saved in the
correct interruption-old-VPSW location of
segment 0, page 0; the current VPSW is set
equal to the old VPSW1 the interruption
mask from the new VPSW is moved to the TSI,
and the XTSI's PSW is set to the new VPSW.
The sense data and channel status word
(CSW) are transferred from the GQE to seg­
ment 0, page 0; the TSI is updated, and a
flag setting in the GQE is checked to
determine if the GQE is to be returned in
the IORCB. This is done, if indicated,
(flag off) or else the processed GQE'S
storage space is returned by calling the
Supervisor Core Release subroutine. At
this time, the IORCB or MCB, if one exists,
is moved into the interrupt storage area
and the space it occupied is returned by
calling the supervisor Core Release subrou­
tine. TIC then returns to the dispatcher
after turning off the page-hold flag in the
task's XTSI. .

Entrance Criteria Subroutine (CEAKE) Chart
BV

This subroutine determines if the task
submitted to it by the Internal Scheduler
meets the necessary conditions to allow it
to be moved from the eligible list to the
dispatchable list, and passes notice of the
task's acceptance or rejection back to the
Internal Scheduler.

Assumption: SYSFW will be zero if no TSls
are in the eligible list.

Entry: CEAKEA

RlO - address of TSI

Rl4 - return address

Exit: To Internal Scheduler

Rl5 - Code 0 = task accepted
Code 1 = task rejected.

,.-

r--

operation: On entry, this subroutine first
checks the page pending count of the task
whose TSI is passed to-it in register 10.
If the page pending count is not zero, the
task cannot be added to the dispatchable
list. A code of one is loaded into regist­
er 15 and immediate return is made to the
Internal Scheduler.

If the page pending count is zero, a
test is made to see if the system is in a
low core state (SYSteM=l). If it is, the
task will not be accepted -- unless there
are fewer than the minimum number of tasks
in-the dispatchable list.

If the system is not in a low core
state, the number of pages used by the task
during its previous time slice (TSIPTS),
plus a buffer value, is compared to the
count of estimated main storage blocks
available (SYSECB). If TSIPTS is the less­
er, indicating sufficient main storage
available, register 15 is loaded with a
code of zero to indicate that the task is
acceptable. Return is then made to the
Internal Scheduler.

If there is not enough main storage, the
number of tasks currently on the dispatch­
able and eligible lists is determined. If
the count is less than the minimum per­
mitted, the task is accepted anyway. If it
is at the limit, the task is rejected.

Whenever a task meets the conditions for
admission to the dispatchable list, the
count of estimated main storage blocks
available is decremented by the task's
count of pages used last time slice, and
the time slice end flag (TSITSE) is turned
off before returning to the Internal Sche­
duler via register 14.

rteschedulinq Subroutine (CEAKZ) Chart BW

This subroutine is called when a task
reaches time slice end (forced or normal)
to change the task's STE level, if neces­
sary, and to determine whether the task is
to be placed on the eligible list, the
inactive list, left in the diapatchable
list, or deleted from all of the scheduling
lists. This sUbroutine also moves tasks
from the inactive list to the eligible
list. Whenever a task is moved from one
scheduling list to another (or if it
remains in the dispatchable list), resche­
duling recomputes the task's schedule start
time (SST). System table fields are also
maintained to reflect the rr.ovement of a
task from one list to another. SYSELG is
incremented each time a task enters the
eligible list; SYSINA is lowered when a
task is moved from the inactive list and
raised when a task enters the inactive
list.

Entry: CEAKZ1

R1 - address of TSI

R4 -

Code 1 - move TSI from inactive to
eligible list. eligible
list.

Code

Code

2 - call from Timer Interrupt
Queue Processor.

8 put TSI on the inactive list

Code 16 - remove TSI from the dis­
patchable list (LOGOFF).

Exit: To caller.

R15 -

Code 0 - task remains in the dis-
patchable list.

Code 1 - task put in eligible list.

Code 2 - task put in inactive list.

If register 4, on entry, does not con­
tain a code of 1, 2, 8, or 16, exit is
taken to the system error processor
(SYSERR) •

Operation: On entry, a save area is
obtained and general registers are saved.
The entry parameter is then checked for
validity. If invalid, exit is to SYSERR.

If the parameter in register 4 is a 1,
the task is checked to see if it is in
TWAIT, then AWAIT. If in TWAIT, the task
is assigned the STE specified by the STET­
WAIT level in its current STE. If AWAIT,
the STEAWAIT level is used. The appropri­
ate level is put in the task's TSI
(TSISTE) •

If the task is in neither TWAIT nor
AWAIT, the TSEND level (STETSEND) is used.

The task's scheduled start time (SST) is
then computed. If the delta to run (DTR)
value in the STE is zero, the SST is set to
zero. If DTR is positive, the new SST is
set to equal: DTR+MC+(l - R)SST. If DTR
is negative, STEDELTA is subtracted from
the master clock to calculate the new SST.

The task is then placed on the eligible
list according to its internal priority
level and SST. The 'no work for internal
scheduler' flag (SYSNWK) in the system
table is set to zero. The 'lowest ahead of
schedule SST' field (SYSLSST) is reset to
zero, and Rescheduling sets a return code
of 1 in general register 15 and exits.

Section 3: Program Organization 147

If general register q contains a code of
2 on entry. the call is from the Timer
Interrupt Processor and is not the result
of a TSEND SVC. If the task is in delay
status, it is placed at the head of the
·inactive list, and the return code set to 2
in general register 15.

If the task is not in delay status, a
subroutine within Rescheduling is called to
check the following:

• Was the task holding an interlock and
forced to TSE because of low main
sto:r:age?

• Was the task holding an interlock (not
low main storage)?

• Was the task waiting on an interlock?

If any of these situations are verified,
as checked in the order given, the task is
assigned the appropriate STE level. Other­
wise the task is checked for forced time
slice end due to maximum page reads
exceeded. If this condition exists, the
STE specified in STE~WRE is assigned to the
task.

The task's new SST is then computed to
be equal to MC+DTR.unless the old SST was
negative. If it was negative. then the new
SST becomes l-lC+DTR+the old SST.

The task is then put on the eligible
list in its proper place.

If the code in register 4 is an 8. the
SST is set to zero, the task is placed at
the head of the inactive list, and the
return code in register 15 set to 2.

If the code in register q is a 16, the
task is removed from the dispatchable list
and not added to any of the scheduling
lists. No return code is set, and exit is
to the calling routine.

~~JOR ERROR RECOVERY PROCEDURES

An important function of the TSS/360
resident supervisor is to process hardware
interruptions that affect total system
operation, and software interruptions that
occur in the supervisor state. The proces­
Sing capability for performing this func­
tion is provided by three groups of
procedures:

• The recovery nucleus and two related
procedures: the Reconfiguration rou­
tine; and the. External Machine Check
Interrupt Processor. The Recovery Nuc­
leus routine aids in anondisruptive
degradation of the system in the event
of a CPU or storage malfunction, thus

148

attempting to prevent the system from
coming to a halt or going into an
unending loop because of a single­
machine-error situation. The Reconfi­
guration routine provides recovery
capability after an internal machine­
check interruption. The External
Machine Check Interrupt Processor per­
forms the function of making a
hardware-detected inboard error involv­
ing a channel control unit transparent
to the system.

• The System Environment Recording and
Retry (SERR) programs, which provide
error recording capabilities. and mini­
mize the effect of hardware malfunc­
tions on system performance.

• The system Error Processor. which pro­
vides the capability for handling con­
ditions caused by system software
errors and hardware errors detected by
the supervisor components and privi­
leged service routines.

These procedures are discussed individU­
ally on the following pages.

Recovery Nucleus-67 (CEAIR) Chart BX

The Recovery Nucleus routine aids in a
nondisruptive degradation of the system in
the event of a CPU or storage element mal­
function. The primary function of the
Recovery Nucleus is to prevent the system
from coming to a halt or going into an
unending loop because of a single-machine­
error situation.

Attributes: The Recovery Nucleus is pr~v~­
leged, read only and reentrant. It resides
permanently in main storage.

Entries:

CEAIR1 - for duplex mode operation, via an
external interruption. All mask­
able interruptions. except machine
check. are disabled by means of
the external interrupt new PSW.

CEAIR3 - for simplex mode operation. All
maskable interruptions are dis­
abled by means of the machine
check new PSW.

CEAIR2 - by System Error Processor, when a
program-detected error occurs in a
CPU or storage element, or when a
major software error occurs in a
TSS/360 program.

RESTRICTIONS: No CPU in the TSS/360 domain
operates with its prefix set to zero or
deactivated in a multiprocessing configura­
tion. This enables every CPU to have
access to any other CPU's prefixed storage

area. Each CPU has its own copy of the
error recovery control_~able (ERC) in the
PSA. This table contains a work area for
the Recovery Nucleus. Thus unique work
areas are provided for each CPU. This is
critical to error recovery in a multi­
processing environment.

Assumptions: The recovery strategy is
based on the assumption that only a single
nachine error can occur at anyone time.
For instance, a machine check is due to
either a storage failure or a CPU failure,
but never both, and a second machine error
does not occur until the first one is com­
pletely processed. However, this recovery
strategy can handle double indications from
the same error.

A 5120-byte block of main storage is
reserved for the SERR operating area and
remains unassigned at all times. This pro­
vides operating space for the SERR modules
(overlayed) and space to save the system
environment.

Modules Called: SERR Bootstrap program
(CMASA) loads the modules needed to record
errors, analyze retry possibilities, and
load the Reconfiguration routine (CGCMA).

External Machine Check Interrupt proces­
sor (CEABE) records information pertaining
to an external machine check interruption,
identifies its source, and sets up for
Instruction Retry or Reconfiguration.

Inter-CPU Communication subroutine
(CEAIC) restarts a specified CPU from the
controlling CPU. It also restarts the con­
trolling CPU's clock and updates the
elapsed time when called at CEAIC2.

Reconfiguration routine (CGCMA) removes
a malfunctioning unit from the system and
continues or restarts the remaining system.

~:_ Successful completion of recovery
results in an exit to the interrupted pro­
gram at the point of interruption. An exit
may be taken to the Reconfiguration routine
when a unit must be removed from the
system.

Abnormal conditions result in a TSS/360
abort.

Operation: The Recovery Nucleus is a body
of code which is universally valid for all
TSS/360 configurations up to duplex. In
the simplex mode, recovery and retry are
attempted by the failing CPU. In duplex
mode, recove~ and retry analysis are
attempted by a CPU other than the failing
CPU. When a CPU executing recovery is sub­
sequently interrupted by a hardware fail­
ure, recovery is attempted by the CPU which
was originally interrupted. In the event

--------------------------- -- -- ~-~---~

that two CPUs receive simultaneous inter­
ruptions, the higher priority CPU executes
recovery for the lower priority CPU and, if
successful, Signals the lower priority CPU
to execute recovery for it.

This module is valid for any initial or
subsequent configuration (perhaps a config­
uration reduced in complexity as a result
of previous machine checks and
reconfigurations).

Entry to the Recovery Nucleus is made by
means of the machine check new PSW. In
simplex mode, this interface is direct
(that is, the address portion of the
machine check new PSW transfers control
directly to the Recovery Nucleus at
CEAIR3). In duplex mode the interface is
indirect. The machine check new PSW, when
loaded, places the affected CPU in the wait
state. A malfunction alert (a hardware
generated machine check-out signal) is sent
to a second CPU, which receives it as an
external interruption. The loading of the
external new PSW results in a transfer of
control to the Recovery Nucleus at CEAIR1.

Note: When reconfiguration degrades a sys­
tem from duplex to simplex mode, the Recon­
figuration routine replaces the duplex
mode, machine check new PSW with the simp-
lex version. -

The Recovery Nucleus is divided into
three major sections which service hardware
malfunctions in the simplex mode, hardware
malfunctions in the duplex mode, and SYSERR
calls resulting from major software or pro­
gram detected hardware errors. Each of
these major sections can be logically
divided into two phases. The first phase
is concerned with error classification,
while the second phase handles the actual
processing of analYSis, recovery, and
retry.

Simplex Mode: -- In simplex mode, three
types of errors may occur, all of which
result in an entry to the recovery nucleus
at CEAIR3. These errors are a Simple
machine check, an external machine check,
and a dual-accept failure. This latter
error involves a malfunction in a storage
switching unit, and is processed as a
simple machine check.

On entry at CEAIR3, the registers are
saved and the timer is reset and saved.
The saved timer is adjusted to prevent a
timer interruption and the CPU's active
prefix is located. When the prefix is
located, it is saved in an area known as
-TEMP.- An area is then cleared and a
damage report is set up in it. The SERR
save area is located and the logout data is
moved to it. If the prefix cannot be
found, a message is printed at the console,

Section .3: Program Organization 149

an audio alarm is sounded, and the -system
is placed in a manual state loop. In
short, TSS/360 is aborted.

If the error is an external machine
check, the External Machine Check Interrupt
Processor is called and, upon return, a
call code of X'29' is placed in the param­
eter register. If the error is a simple
machine check or a dual-accept failure, a
call code of X'Ol' is placed in the param­
eter register and the CPU's IV is placed in
another parameter register.

An operating area and a register save
area are provided for the SERR Bootstrap
program, which is then called and passed
the above parameters. If SERR Bootstrap
encounters errors in the arrangement of
SERR modules on the drum, the Recovery Nuc­
leus treats it as a "retry not possible"
condition, discussed below. Any paging
errors encountered by SERR Bootstrap, will
result in a TSS/360 abort as described
above.

• Retry Possible -- When SERR indicates
that retry is possible, the machine
check new PSW and the logout areas are
cleared, the timer is reset, all regis­
ters are restored, the test bytes are
cleared and execution continues by
loading the PSW returned by SERR in
"DMPMOP."

• Retry Not Possible -- If SERR indicates
that retry is not possible, the machine
check old PSW, the logout area, and the
test bytes are cleared. A work area
and a register save area are provided
and another call is made to SERR Boots­
trap passing it a code of X'SO'. If
SERR Bootstrap encounters a paging
error, TSS/360 will be aborted as
described above. Otherwise, the recon­
figuration routine will be called for
corrective action as indicated.

Duplex Mode: -- In duplex mode, four types
of errors, in addition to those discussed
aboVe, may occur. These four errors are
unique to a multi-CPU environment and the
TSS/360 Recovery Nucleus is designed to
cope with these errors in any system com­
priSing two CPUs. These errors are:

• Machine check in recovery execution.

150

CPU2, while executing recovery for
CPUi, receives a machine check inter­
ruption. (The error is assumed to be
common to the error first found in
CPUi). Control is passed back to CPUi,
which begins execution of recovery for
itself. If retry is possible CPU1 is
retried and CPU2 is restarted from the
point at which it received the malfunc­
tion alert from CPU1.

• Dual-accept failure in two CPUs. CPU1
and CPU2 receive machine check inter­
ruptions as a result of malfunctioning
storage switching units. The higher
priority CPU is determined and is given
control. If it successfully executes
recovery, the lower priority CPU is
given control and it begins execution
of recovery.

• Double machine check. CPU1 and CPU2
receive simultaneous machine check
interruptions in the same cycle of
instruction execution. Recovery is
executed on a priority basis as
described in dual accept failure above.

• Machine check during execution of
recovery from a double machine check.
CPU1 and CPU2 receive machine check
interruptions as described in double
machine check above. While in execu­
tion of recovery and prior to determin­
ing which is the higher priority CPU,
CPU1 receives another machine check.
CPU2 gains control and begins execution
of recovery nucleus again; no retry
will be attempted and control will pass
to the Reconfiguration routine for sys­
tem restart after SERR has operated.

Note: Instruction retry is not poss­
ible in this case since the second
interruption will have destroyed the
machine check old PSW. -

Initial Entry to the Recovery Nucleus: The
occurrence of a machine check interruption
in the duplex mode results in the affected
CPU being placed in the wait state and in a
hardware generated malfunction alert being
sent to another CPU. This malfunction
alert, which is an external interruption,
causes the receiving CPU to enter recovery
nucleus at CEAIR1.

Since all external interruptions follow
this path, the recovery nucleus sorts out
normal interruptions. If an external
interruption, other than a malfunction
alert, is received by a CPU in which no
previous machine check has occurred, the
timer is reset and saved and either the
Subject Intercom routine or the External
Interrupt Stacker is given control for
normal processing. If a machine check has
occurred in this cpu, the external inter­
ruption is effectively ignored by reloading
the machine check new PSW, which returns
the CPU to the wait state.

If the interruption is the result of a
malfunction alert, the timer is reset and
saved, the registers are saved, and the
test bytes are cleared. If this is the
third malfunction alert in this CPu, TSS/
360 is aborted. This is done to prevent a
solid failure from resulting in an endless

series of machine check and external
interruptions.

The first malfunction alert, received by
a CPU, indicates a simple machine check or
an external machine check in another CPU
and the saved timer is adjusted so there
will be no timer interruption while recov­
ery is being attempted.

If a second malfunction alert is
received and no machine check interruption
has occurred in the receiving CPU, TSS/360
is aborted. If a machine check has pre­
viously occurred in the receiving CPU, a
machine check during execution of recovery
from a double machine check has occurred
and a flag is set to indicate this.

In both of the above cases, the external
old PSW is saved, the address portion of
the LPSW instruction is adjusted to reflect
the save address, and the CPU status table
(CST) entry for the failing CPU is located.

If the CST entry is not found, TSS/360
is aborted.

If the CST entry is found, the prefix of
the active CPU is located, the failing
CPU's prefix and the active prefix are
saved.

When no previous machine check has
occurred in the CPU receiving the malfunc­
tion alert, (indicating that the error is a
simple machine check or a simple external
machine check) machine checks are disabled,
the timer, in the failing CPU, is reset and
saved, a damage report is set up, and the
logout data is moved to the SERR save area.
The machine check new PSW is saved and,
after issuing the DIAGNOSE instruction to
clear pending machine check interruptions,
it is restored. Processing then continues
as described under ·Error Type and Retry
Analysis· below.

If, after locating the CST, the CPU
determines that a previous machine check
has occurred, it enables external interrup­
tions and disables machine check interrup­
tions. The other CPU's timer is reset and
saved, if necessary, and an indicator is
set. A delay then occurs to allow the
other CPU to set this CPU's indicator.
These bytes, when set in both CPUs, indic­
ate that both CPUs are simultaneously
executing recovery for each other or, if
not set in both CPUs, serve to identify
machine check errors encountered in execu­
tion of recovery from single and double
machine checks.

Following the delay, this CPU tests its
indicator. If it is not on the other CPU's
indicator is· cleared: if it is on, this CPU
sets its own ·PING- byte to X'02' and

clears its indicator. In both cases the
active CPU temporarily marks itself as the
failing CPU.

If the ·PING· byte is X'·02', recovery
from a double machine check is indicated
and the priority of CPUs is determined.
The lower priority CPU sets its priority
byte, saves its saved timer, resets its
saved timer, and enters the wait state by
loading its machine check new PSW. The
higher priority CPU continues to execute
recovery and, upon completion, will restart
the lower priority CPU and the lower
priority CPU continues recovery execution.

Machine check and external interruptions
are enabled, the damage report is prepared,
and the logout data is moved to the SERR
save area. Processing then continues as
follows:

External machine check interruptions are
turned over to the External Machine Check
Interrupt Processor and, upon return, are
assigned a call code of X'29'. Dual-accept
errors and errors occurring in execution of
recovery are given a call code of X'09' and
the ID of the active CPU is placed in a pa­
rameter register. Simple machine check
interruptions are assigned a call code of
X'Ol' and the ID of the failing CPU is
placed in the parameter register. After
setting up ~10rk and save areas, the SERR
Bootstrap program is called and is passed
the above parameters. SERR modules out_of
order on the drum and paging errors are
handled as in previous calls: otherwise,
SERR returns an indication of retry poss­
ible or not possible.

If retry is not possible, double machine
check errors and errors occurring in execu­
tion of recovery are given codes of X'SO'
(this will force Reconfiquration to call
for a system restart) and the prefix of the
failing CPU is retrieved. For all errors
which cannot be retried, the machine check
old PSW and the logout data of both CPUs
are cleared, call code of X' SO' is placed
in the parameter register and the test
bytes are cleared. Work and save areas are
setup and SERR Bootstrap is called. Paging
errors encountered by SERR·result in an
abort; otherwise, the Reconfiguration rou­
tine is called to perform degradation as
discussed under -Retry Not Possible- for
simplex mode.

If retry is possible, and the error was
a machine check in execution of recovery
from other than a double machine check, the
prefix of CPU2 is retrieved, CPU2's extern­
al old PSW is saved. CPUl then saves its
own retry machine check old PSWs and the
logout areas are cleared in both CPUs. The
clock is adjusted in CPU2, to preclude a
timer interruption, and is then restored.

Section 3: Program Organization 151

The ETM is calculated and the clock is
resaved. CPU1 then sets up for and calls
the Intercom routine to start CPU2 at a
point at which it will restore its timer
and its registers, clear its test bytes,
and resume execution at the point of the
original interruption by loading a PSW.
Upon return from Intercom, CPU1 resets and
restores its own timer, restores its regiS­
ters, clears its test bytes, and attempts
to retry the failing instruction by loading
a PSW.

If a retry possible indication is
returned from SERR but the error is a
machine check during execution of recovery
from a double machine check, it is treated
as a retry not possible condition discussed
above.

If retry is possible and the error did
not occur during execution of recovery, the
machine check old PSW and the logout areas
are cleared in both CPUs and the prefix of
the failing CPU is retrieved. If the error
was a double machine check and this is the
priority CPU, the retry machine check old
PSW, .. returned by SERR, is moved and the
original changed to continue recovery.

If a double machine check has occurred
and this is not the priority CPu, the
machine check old PSW is saved, and the
original set to continue the other CPU
recovery. The saved clock is moved and the
·PING- byte is reset. At this point, or if
the error was not a dOUble machine check,
the other CPU's clock is adjusted to pre­
vent a timer interruption and it is
restored. The ETM is computed and the
timer is resaved.

The Intercom routine is called to
restart the other CPU and to restore its
clock. If this is the priority ~PU, it
places itself in the wait state by loading
its machine check new PSW. When the lower
priority.CPU restarts this CPU, this CPU
will restore its own registers, clear its
test bytes, and resume execution, at the
retry point by loading a PSW which now con­
tains the' retry machine check old PSW
returned by SERR. If this is the lower
priority CPU issuing the restart, or if
priority was not a relevant factor in pro­
cessing, the CPU resets and restores its
timer, restores its registers and clear its
test bytes. It then resumes execution, at
the point of the original interruption or
retry by loading a PSW.

SYSERR CALLS: The Recovery Nucleus is
entered at .CEAIR2 when SYSERR detects a
major software error or on a program
detected hardware error. The registers are
saved, the test bytes are cleared, and the
active prefix is located and saved. If the
error is a major software error, a code of

152

X'SO' is placed in a parameter register and
the Recovery Nucleus exits to the Reconfi­
guration routine for system restart.

If the error is a hardware malfunction
detected by the software, a code of X'41'
is placed in a parameter register and this
CPU's ID is placed in a second parameter
register. SERR Bootstrap is called and,
upon return, the code is tested. If the
code is zero, the registers are restored
and control is returned to SYSERR. If the
code is nonzero, a value of X'SO' is set,
and the Recovery Nucleus exits to the
Reconfiguration routine for system restart.

Reconfiquration Routine (CGCMA)

The reconfiguration routine performs
recovery functions after an internal
machine check. It results in either, (1)
notification to a user that his task has
been affected, (2) a system restart on a
degraded system, or (3) a system interrup­
tion due to insufficient hardware.

Attributes: The Reconfiguration routine is
privileged, reSident, nonreenterable and
operates with all interruptions, except
machine check disabled. Time sharing
operations are suspended during execution
of the Reconfiquration routine.

Assumptions: Only one machine check may
occur at anyone time. The SERR Bootstrap
routine will be capable of reading in the
Reconfiguration routine. The maximum sys­
tem configuration is duplex.

Entry: CGCMAC - by Recovery Nucleus via
SERR Bootstrap.

Modules Called: Supervisor Core Allocation
subroutine (CEAL! entered at CEALOl)
reserves main storage for a task program
interruption GQE.

Queue GQE on TSI subroutine (CEAAF)
places a pOinter to the specified GQE on
the affected task's TSI interruption queue.

Exit: The Reconfiguration routine exits to
one of the following:

• The point of interruption by loading
the external interrUpt old PSW and
pointing other CPU to the Dispatcher.

• Startup, if an automatic restart is
necessary.

• The wait state, if insufficient hard­
ware is available to permitsystern
operation.

Operation: On entry to Reconfiguration,
the failure classification code in the
damage report is examined and a message is

sent to the operator specifying the nature
of the malfunction. Since time sharing is
not being performed during the execution of
Reconfiguration, the.f~cilities of the com­
mand language system are not available.
Reconfiguration contains the code necessary
to perform all input/output functions
required, such as communication with the
operator.

Prior to calling Reconfiguration, SERR
has diagnosed some failures as requiring a
system restart. These failures have clas­
sification codes beginning with X'SO'. '
When a system restart is necessary, Recon­
figuration stores, in the PSA of the
operating CPU, the word RESTART followed by
the damage report and the latest effective
settings of the configuration console
switches. Reconfiguration then reads the
startup prelude and transfers control to
it.

If the damage report i~cates a storage
element has more than 3 solid failing pages
the S.E. is marked out of the effective
configuration console switches and a system
restart is performed as described above.
It is assumed that the loss of an entire
storage element implies the loss of super­
visor information.

If the DAMAGE REPORT indicates more than
3 failing pages or a page of supervisor
information, a system restart is preformed
as described above.

If the damage report indicates fewer
than q solid failing nonsupervisor pages
they are marked ·not operational-,
·unavailable-, and -reserved-.

If the damage report indicates fewer
than q intermittent failing nonsupervisor
pages, the tasks to which they belong are
aSsigned a program interruption as
described below. The other active CPU (if
any) is sent to the Dispatcher and the con­
trolling CPU continues operation at the
poi~t of original M.A. However, if the
system is an effective simplex it will go
to the Dispatcher itself.

If a CPU has failed, the machine-check­
old PSW is examined to determine in which
state the failure took place. If it
occurred in the supervisor state, Reconfi­
guration initiates an automatic restart.

If the only CPU failed, it will drop
into the wait state.

If the CPU failure occurred in the pro­
blem state, the Reconfiguration routine
locates the-task status index of the
affected task. This is accomplished by
using the TSI pointer from the prefix area
of the CPU. The supervisor Core Allocation

subroutine is then called to reserve
storage for a GQE. When the storage has
been reserved, Reconfiguration constructs a
program interruption GQB and places the TSI
pointer and a program interruption code in
it. This interruption code will subse­
quently be interpreted by the task program
interrupt processor, operating in virtual
storage, as a notification that a hardware
failure occurred during the execution of
the user's task. The Queue GQE on TSI sub­
routine is then called to place a pointer
to the GQE on the task's TSI-program­
interruption queu~. The TSI lock byte is
set to zero, to permit the interruption to
be processed, the ready bit is set on and
the in-execution bit is set off. When this
has been accomplished, Reconfiguration
updates the CPU status tables and system
configuration console switch words (SYSCCS)
to indicate that the CPU is no longer in
use. The machine-check-new PSW is altered
to reflect the correct entry point for sim­
plex mode. Time sharing operations are
resumed in the current CPU by restoring
general registers and loading the external­
interrupt-old PSW.

If it is determined that the machine
check was caused by a page of main storage
belonging to the supervisor, automatic
restart is initiated. Should a solid fail­
ing page in an effective 1/2 duplex contain
the active PSA, the prefix is switched and
startup is read into the new PSA. There­
fore when possible restart is performed
from a good prefix area, if for any reason
the alternate PSA is not available (for
example, if it is partitioned out), the CPU·
is treated as though it were failing.

If the damage report specifies a failing
CCU the corresponding items are marked out
of the configuration console switch words
that are placed in the restart drop area
and startup is read into the system and
receives control.

External Machine Check Interrupt Processor
(CEASE) Chart BY

The External Machine Check Interrupt
Processor is a routine called by the Reco­
very Nucleus (CEAIR) when it has detected
an external machine check interrupt. The
processor records the circumstances of the
error in the system environment recording
and retry table (CHAERE) for later use by
the Recovery Nucleus. It then attempts to
make the error transparent to the system by
resetting error-old-PSWs to retry the I/O
instruction. EMCIP also maintains failure
count information on failing channels and
CCUs so that a failing CCU can be identi­
fied and reconfigured out of the system.

Entry: CEABEM.

Section 3: Program organization 153

Modules Called: System Error Processor
(CEAIS) given control when an interruption
indicating a system error condition occurs.

Exit: To Recovery Nucleus.

Operation: If the entry is recursive, the
routine will return to the calling module
after setting up the recursive entry return
parameters. Otherwise, the routine initia­
lizes itself by saving the input registers
and establishing the base registers.

The routine then fills into the system
environment recording and retry data reco­
rding table information common to all types
of EMCIs. This includes:

• Inserting table length.

• Inserting 5/360 model number.

• Inserting the call type code.

• Setting the 'record entry complete'
flag.

• Resetting the 'retry successful' flag.

• Inserting the ID of the offending CPU.

• Inserting the address of the primary or
secondary PSA, as appropriate.

• Recording the PSW.

• Inserting the PSAMOP interrupt code.

• Recording the ID of the current user.

• Inserting the time.

EMCIP then determines the error type by
checking the EMCI code. The following
error types are recognized:

1. Multiple CPU Recognition

2. Multiple Interrupt Recognition

3. Multiple ccu

4. Channel Address-Bus-Out

5. Channel Address-Bus-Out and Unit
Address-Bus-Out

6. Unit Address Bus-out

7. Multiple Channel Recognition

8. Storage Interface Time out

9. CSW Store

10. CPU Prefix 1D - Parity Check

154

11. Multi-Storage Element Selection

12. Channel Interface Time Out

13. storage Address BUS-Parity Check

Once the type of error is determined,
EMCIP completes the necessary processing
and fills in the rest of the table (CHAERE)
accordingly. In each case (except CSW
Store and CPU Pre-fix 10 errors), the rou­
tine checks to see if the error occurred on
an SIO instruction. If yes, flags are set
for CSW present, channel logout data pre­
sent, SIO failure, and actual device
address present. The old PSW is changed to
indicate a retry SIO. If no (this includes
CSW store and CPU Pre-fix 10), the routine
marks the instruction as not retryable.

EMCIP also maintains a failure count for
each channel connected to a CCU. If the
failure count for a channel reaches the
limit, the instruction is marked as not
retryable. If the failure count on all
channels connected to a CCU reaches the
limit, the CCU itself is then identified as
the faulty unit. Exit to the Recovery Nuc­
leus then includes information telling it
to call Reconfiguration to eliminate the
bad CCU from the system.

Before exiting to the Recovery Nucleus,
EMCIP fills in the channel activity map
which records the channel types, and flags
a channel which was active at the time of
the error.

SYSTEM ENVIRONMENT RECORDING AND RETRY
PROGRAMS

The System Environment Recording and
Retry (SERR) programs are provided to per­
form error recording and to minimize the
effect of hardware malfunctions on system
performance. The heart of SERR is a com­
prehensive error analysis capability which
supports the following functions:

• Instruction retry: Whenever
the failing instruction will
under controlled conditions.
retry attempt is successful,
may continue with no loss in
performance.

pOSSible,
be retried
If the

processing

• Isolation of the failing element: If
the retry cannot be attempted or is
unsuccessful, information is made
available to the resident supervisor
and to the operator which facilitates
graceful degradation and reconfigura­
tion of the system. This information
includes a description of the failure
(solid or· intermittent) and identifica­
tion of the failing CPU or storage
element.

-'-< S
. ,

.); , '- "~

• Environment recording: SERR maintains
a continuous error history on the pag­
ing drum for subsequent use by the cus­
tomer engineer. This data includes the
complete hardware environment at time
of failure. An edit and print program
allows the customer engineer to retri­
eve this data selectively.

SERR processes information relating to
the following types of malfunction:

• Internal machine check (CPU/memory):
error recording, analysis (including
C/M checkout), instruction retry and
element isolation.

• External machine check (failure
detected by·channel controller) and
paging I/O errors: error recording
only.

• System error: error recording and C/M
checkout.

SERR consists of ten basic programs,
nine of which reside in modular form on the
paging drum(s). These programs are:

SERR Bootstrap (SERRB): A small main
storage resident executive routine which
provides the interface between SERR and the
Recovery Nucleus. It calls in the various
SERR modules as required from the paging
drum.

Environment Recording (ER): This pro­
gram performs preservation recording on all
failures. It collects and formats the
error environment (logout, register con­
tents, etc.) and other data, and writes an
error record on the paging drum for subse­
quent edit and print.

Immediate Print (IP): This program pro­
. vides for immediate console messages to the
operator or customer engineer whenever
required by SERR.

'Checker (CHKER): This program saves the
system environment (logout local store,
etc.) and checks this data for parity and
a valid log. At the conclusion of SERR
operation, CSKER is again called to restore
the environment.

Pointer (PNTR): This program determines
the address of the instruction that was
interrupted by a machine check.

Restore and Validate (R/V): This pro­
gram indicates whether or ,not the retry
threshold has been exceeded and restores
general purpose registers if needed for
retry'.

Instruction Retry Execution (IRE): This
program determines (from reports of the

other SERR modules) whether or not retry
should be attempted, and combines the SERR
reports into a damage report to recovery
nucleus.

CPU/Memory Checkout 1 (CM1): This pro­
gram provides a cursory check of the CPU
hardware in each processor by performing an
instruction test.

CPU/Memory Checkout 2 (CM2): This pro­
gram checks the data paths from each CPU to
each storage element and also scans all of
storage, testing for bad parity.

CPU/Memory Checkout 3 (CM3): This pro­
gram provides additional hardware testing
by performing a check-sum of the ROS words
and exercising local store.

The paging drums provide residence for
the SERR routines and are also the media
for environment recording. The paging
drums are formatted into 4K byte records
(pages), separated by unused spaces of
approximately 246 bytes. These spaces are
used as the error recording area by ER.

SERR is broken down into 4K modules.
Startup moves the SERR modules from systems
residence to the paging drum using a drum
address available to the Recovery Nucleus.

SERR operates in either a multiproces­
sing or single-CpU environment. In a mul­
tiprocessing environment, SERR operates in
a good CPU and storage element. Other
CPU's, including the malfunctioning one,
are placed in the WAIT state, enabled only
for external interruptions. The malfunc­
tioning CPU is activated occaSionally
(under controlled conditions via the write­
direct instruction) to test itself or to
store its own registers.

SERR is entered from the Recovery Nuc­
leus which provides a 1 page overlay (SERR
operating area) for the SERR routines and,
for a multiprocessing system, sets up SERR
in a good CPU and storage unit. The Reco­
very Nucleus will branch to SERR Bootstrap
with a call-type code describing the type
of error. After clearing a path to the
paging drum and saving the hardware
environment, SERR Bootstrap will call the
first required SERR module from the paging
drum into the SERR operating area. Flow
through the various SERR modules, illus­
trated in Figure 26, is then controlled by
the'modules themselVes. Most modules, upon
their return to SERR Bootstrap, specify the
next module to be called.

Section 3: Program organization 155

Recovery ,
Nucleus SERR Checker

(CHKER) --Bootstrap
(SERRB)

• • Immediate Checker
Print (CHKER)
(IP)

• +
Instruction C/M
Retry Execu- Checkout)
tion (IRE) (CM))

• t
Environment elM
Recording Checkout 3
(ER) (CM3)

• _t
Instruction
Re try Execu- Pain ter

tion (IRE) (PNTR)

t t
C/M Restore and

Checkout 2 Validate
(CM2) (R/V)

Figure 26. General flow through SERR after
a machine-check interruption

The following is a simplified account of
a typical SERR operation following a
machine check interruption:

Upon receiving control from the Recovery
Nucleus following a malfunction alert,
SERRB calls CHKER from the paging device to
save key portions of the system environ­
ment. CM! and CM3 then check out each CPU,
after which PNTR is called to analyze the
logout of the failing CPU to determine the
address of the instruction being executed
at the time of the failure. R/V is called
next, to find out if the instruction has
passed a threShold beyond which retry can­
not be performed. CM2 then scans each
storage element to insure that all storage
data is valid.

The next module called is IRE Which com­
bines the reports of the various modules
into a damage report, and indicates in this
report whether or not retry can be
attempted. IRE is recalled to determine if
the two sets of failure data indicate a
solid failure.

Following the second IRE run, IP is
called to send an error summary message to
the operatort and CHKER is called to
restore the system environment. SERRB then
returns control to the Recovery Nucleus.
If a retry is possible, the Recovery Nuc-

156

leus then causes the failing CPU to be
restarted at the address determined by
PNTR. If retry is not poSSible, the Reco­
very Nucleus must take whatever action is
appropriate to recover from the error •

Various tables are used by the SERR pro­
grams, as follows:

SERR SAVE AREA: This table contains a
record of the hardware environment at the
time of failure, including contents of
registers, prefix storage area and logout
area of both the failing CPU and the con­
trolling CPU. This table is set up by SERR
Bootstrap.

SERR. AUXILIARY QUEUE: Contains status
information (from pending interruptions) on
the devices used by SERR (the paging drum
and operator's console). This table is
updated by SERR Bootstrap.

DAMAGE REPORT: This table contains a
summary of the results of the analYSis
including identification of failing ele­
ment. It is updated by various SERR
modules.

CPU STATUS TABLE: This table allows
SERR to determine the environment in which
it is operating.

SYSTEM TABLE: This table provides SERR
with access to system information.

The SERR programs are described indivi­
dually on the following pages.

SERR Bootstrap (CMASA) Chart BZ

The function of SERR bootstrap is to
selectively call the SERR/reconfiguration
modules into main storage from the paging
drum(s) for the purpose of one or more of
the following:

• Error recording.

• Instruction retry analysis.

• CPU/memory checkout.

• Reconfiguration.

Attributes: SERR Bootstrap is reentrant
and read only. It resides permanently in
main storage and runs with interruptions
masked or controlled to prevent recursive
entry.

Restrictions: There is only one copy of
CMASA within the TSS/360 system. Each CPU
must, however, have an error recovery con­
trol table in its PSA. This table contains
the SERR common pool and SERR Bootstrap
work area. The table provides CMASA with a
unique work area for each processor in a

multi-processing environment. Each CPU'.S.
PSA must be available to any other C~U.
Therefore, no CPU prefix can be set to
zero.

Assumptions: In case of a CPU failure in a
multiprocessing configuration, the Recovery
Nucleus gives control to SERR Bootstrap in
an operative CPU. In case of a storage
element failure, the Recovery Nucleus desi-
gnates the SERR/reconfiguration operating
(overlay) area and SERR save area in an
operative storage element, if available.
Control unit/device reservation (if avail­
able for paging drum operations) will not
be utilized.

Entries: CMASA1 - by the Recovery Nucleus
(CEAIR) as a result of the following:

• Internal machine check

• External machine check

• System error

• External interruption machine checkout
signal (malfunction alert)

This entry point is also used by Real Core
Error Recording (CEAI7) to load the
Environment Recording routine (CMASB).
Paging I/O error records are recorded by
Environment Recording for the Real Core
Error Recording routine.

Modules Called: All other SERR programs,
as required.

Exits: The SERR bootstrap exits to the
recovery nucleus or the SERR/
reconfiguration subroutine. For paging I/O
error recording calls, control is returned
to CEAI7.

operation: On entry from the Recovery Nuc­
leus, SERR Bootstrap assumes that the Reco­
very Nucleus has saved the controlling
CPU's general registers, and the machine­
check-logout data, if any, in the SERR save
area.

SERR Bootstrap saves the controlling
CPU's PSA-hardware area and then performs
the following:

• Obtains an I/O path to the paging drum
(or drums) via adrum-path-table point­
er established in the system table.

• Clears the path by means of the test­
I/O instruction, which causes a channel
status word (CSW) to be stored (if an
interruption was pending) thus freeing
the path for subsequent use.

• If a unit-check indicator is present in
the CSt~, executes a sense command to
obtain sense data.

• "'he f'SW ':lnd sense data (if any) are
placed in the auxiliary queue for later
processing.

Once a path is cleared to the paging
drum(s), SERR Bootstrap examines the Reco­
very Nucleus call type to determine the
type of error and consequently Which pro­
gram module to load into main storage.

When the desired SERR or reconfiguration
Vrogram is loaded, SERR Bootstrap turns
control over to that program with general
register 15 containing the object program's
base address.

Upon entry from SERR programs, SERR
Bootstrap either:

• Calls another SERR program if requested
by the current SERR module.

• Restores the system environment to its
original state at the time of entry
from the Recovery Nucleus, and exits to
the Recovery Nucleus.

SERR bootstrap maintains a common pool
of address constants via the use of a DSECT
(CHAERC), defining areas of interest to the
SEIL~/reconfiguration program complex. -
These address constants are resolved at
startup time and are pOSitioned in the SERR
Common Pool area in the error recovery con­
trol table (CHBER) beginning at hexadecimal
location coo in the PSA.

SERRB Symbolic Address

Address
ERCSYS
ERCPLS

ERCPLR

ERCSAQ
ERCDPP

ERCDPL
'ERCODP

ERCODL

ERCPDA
ERCODA

Address Constant Definitions
Pointer to System Table
SERR page locations
(BBCCHHR)
Reconfiguration page
locations (BBCCHHR)
Auxiliary Queue Pointer
Paging Drum Adr. TBL.
Pointer
paging Drum Adr. TBL. Length
Operator Dev. Path TBL.
Pointer
Operator Dev. Path TBL.
Length
Drum Path
Operator Dev. Path

The following address pointers and/or
constants are maintained by SERR Bootstrap
for SERR program use only:

SERRB Adr/Bytes
ERCSSA
ERCSRT
ERCSP1

Definitions
Pointer to SERR save area
SERRB Return Adr.
Special Control Reg

Section 3: Program Organization 157

ERCR14
ERCROO
ERCR01
ERCR02
ERCR03
ERCR04

RN Return Address
Call Type
SE/CPU ID's
Failing' CPU Prefix
SERR Operating Area Addr.
CTL CPU GPR Save Addr.

Environment Recording Program (CMASB)

The Environment Recording program reco­
rds machine check and paging I/O error
records on the drum. These error records
are placed in chronological order on the
interpage gaps of the paging drum. This
information can be retrieved at a later
time by a customer engineer via VMEREP or
stand-alone EREP which will format and
print it. Thus, error incident information
is accumulated for the customer engineer
until he requests this information for
analysis.

~ttributes: The program is resident in
ecuxiliary storage, nonreentrant, ,and
operates in the privileged state.

Entry: CMASB1

RESTRICTIONS: Approximately 192,000 bytes
are available for information recording in
the unused dummy slots on a paging drum.
When this area is filled, -drum-overflow·
occurs and no more information will be
recorded until the recorded information is
printed.

Assumptions: A paging drum will be avail­
able upon which information may be recor­
ded. The device address of the paging
drum(s) will not be changed without notify­
ing the SERR program.

Exit: To SERR Bootstrap.

operation: On entry, the Environment Reco­
rding program collects data on error inci­
dents and writes this information onto pag-
ing drum slots unused by the system.
Approximately 500 incidents can be recorded
on a paging drum. The different incident
reports contain some or all of the
following:

• Identification of the CPU that received
a machine check.

• Time, date, and program-user ID.

• Channel information (CSW, channel map,
channel activity, channel log).

• CPU env~ronment (log, contents of local
store) •

• Analysis and retry information (counts
paths, instructions, storage).

158

The Environment Recording program rec­
ords the information on the paging drum
itself since it has complete control over
the system when it is operating. There is,
therefore, no danger of interference with
normal monitor usage of the paging drum.

The format used for these reports is
determined by the call-type received from
the Recovery Nucleus, as illustrated in
Figures 27 through 31 on the following
pages.

Immediate Print Program (CMASC)

The Immediate Print program is called
upon to record failure data on the system
console typewriter. This data is intended
to alert the customer engineer to machine
errors and is condensed in order to have a
minimum effect on TSS operations.

Attributes: The program is resident in
auxiliary storage, nonreenterable, and
privileged.

Entry: CMASC1

Restriction: No message will be typed if
an operator's device is not available.

Exit: To SERR Bootstrap.

Operation: The immediate print program
types one line on the operator's device
whenever the Recovery Nucleus calls SERR
because of a machine-check interruption or
a system error. The information presented
is:

• Time of day.

• Cause of error.

• CPU in error (if applicable).

• Storage element in error (if
applicable).

• E-Reg. contents (if applicable).

• ROS address at time of failure.

'.,Failure classification code ID of error
record (for retrieval by VMEREP or
IPL-EREP) •

The program is also used to type unex­
pected errors within SERR. In the event of
a machine-check or program-check interrup­
tion, the program is called to notify the
operator. The line types in the following
format:

• ·SERR MESSAGE-.

• Error code and ID of SERR module that
detected the error.

/,--,

(~'
o 2 3 4 5 6 7

0 CPU 10 I"· SE ID I Byte Count i v,<Y.i r-IR I (ell Type I Spore

8 Date and Time

16 Program 10
-,

24 Mochine Check Old PSW

32 Int. Code I Prefix 'T Spare

40 Spare

48 General Purpose Regs

112 Floating Point Regs

Extended Con tro I Regs

208 CPU Logout

3S4 SERR Module Reports

Fig.lre '-1. f{ecord format for an internal machine check (call types 01 and 09 from the
recovery nucleus)

o

8

16

24

32

40

48

56

64

88

o

CPU 10 I

CUA

2

Sf'. I Byte

Prefix

I

3

Count I Mod

Date and Ti me

Program ID

Machine Check Old

I
Channel Map

.
I SDA

C.SW

Chonnel Log

4 5 6 7

NR I Coli Type I Flogs

PSW

CCU-Chan, Activity

Interruption Code I

,-
F~gure 28. R.:!cord format tor an ext",cnal machine check (call type 29)

Section 3: Program Organization 159

o 2 3 4

o Spore Byte Coun t- .. - SP.

8 SYMB. DVC. ADDR. Alt. Path

16 Lost Seek Address

24 Lost Poth Tot. Error. Cnt. Tot.

32 Retry Thresholds

48 Time of Error N - 1

56 SDR Buckets

88 No. of CCWs Spore

CCW List
96

(Up to 10 CCWs)

5 6

I Coli Type I Spore

Spore

Retry Cont. I Spore

Time of Error N-2

Time of Error N

Pointer to Falling CCW

7

Call
Type 28
Only

Figure 29. Record format for a paging device SDR overflow or a solid paging I/O outboard
error (call types 21. 28. and 2E) ."'---

o 2 3 4 5 6 7

o CPU 10 I SP. I Byte Count I SP. I Call Type I Spore

8 Dote and Time

16 Used 10

24 Prefix I Spore I
-

32
SERR Moc!ule Reports

(11 Double Words)

112 r

Figure 30. Record format for a system error (call type q1)

160

('
0 2 3 4 5 6 7

... ~ I ! I C '! I Spare 8yte Count I Sp.
a,

0 Spare
i Type

8 SYMB. DYC. ADDR All. Path Last Path Used Spare

16 Last Seek Address

24 Date and Time

--
32 Program ID

-
40 CSW

48 Channel Log

72 Channel Map

80 No. of CCUS Spare Pointer to Failing CCW

88
CCW List

(Max. 9 Doub Ie Words)

Figure 31. Record format for a paging I/O inboard failure (call type 20)

• A message explaining the error (32
character.s maximum).

• A program check, machine check or SVC
old PSW, as applicable.

The SERR operation is aborted following
the typeout and control is returned to the
Recovery Nucleus via SERR Bootstrap.

Checker Program (CMASO) Chart CA

This_program performs three functions:

• Saves the system environment before a
SERR operation.

• Check the environment for a good logout
and good parity log and registers.

• Restores the environment before control
is returned to the Recovery Nucleu~.

Attributes: The program is resident in
auxiliary storage, nonreenterable, and
operates in the privileged state.

Entry: CMAS01

RESTRICTIONS: The ability of the Checker
program to detect incorrect data in a
register is restricted to determining
whether. parity is good or bad. Errors that

cause an even number of bits to be picked
or dropped will therefore not be detected.

Exit: To SERR Bootstrap.

Operation: The Checker program is called
by Bootstrap itself, to save the machine
environment. It is, then, the first pro­
gram called each time SERR is operated .
because of a machine check. At the conclu­
sion of the SERR operation, the prograht is
again called, this time to restore the
environment.

The environment saved by the program
includes the general, floating point, and
extended control registers of each CPU; the
logout from the failing CPU; and the first
128 bytes of each CPU's PSA. Registers are
saved by causing each CPU, in turn, to go
through a register save routine in the
checker program. This is initiated by
means of external starts.

The checker program then verifies the
validity of the data being saved. In the
case of the logout, this is accomplished by
checking for the existence of certain indi­
cators which should be set, and also by
counting the number of 'one' bits in each
register logged pnd comparing this count
with the logged parity. Register parity
for all the registers is verified by bring­
ing the saved register from memory to the

Section 3: Program Organization 161

CPU and then performing a diagnose instruc­
tion. The diagnose is used to provide a
log-on-count function which maKes the error
,indicators available to the program. These
are then checked to insure that no error
indicator is set. Existence of a storage
data check would indicate that the saved
register had incorrect parity.

Errors found by the checker program are
recorded in its report area for use by the
other SERR programs. The existence of bad
parity data in a 'key' register, for
example,' is grounds in many cases for indi­
cating 'no-retry'.

Pointer Program (CMASE)

This program locates the address of an
instruction which has been interrupted by a
machine check.

Attributes: The program is resident in
auxiliary storage, is non-reenterable, and
operates in the privileged state.

Entry: CMASEl

Assumptions: The operation of the program
is contingent upon a Checker program report
indicating the existence of a valid log.

RESTRICTIONS: Because of the CPU hardware
characteristics, an identification of the
address of the interrupted instruction is
not always possible. The program indicates
a no-retry in this case.

Exit: To SERR Bootstrap.

Operation: The primary task for the pro­
gram is to examine the saved environment of
the failing CPU and determine the address
of the instruction in operation at the time
of the failure. This address is used by
the Restore and Validate program to deter­
mine the type of instruction (and therefore
choose tb~ appropriate analysis routine),
and by the Instruction Retry Execu~ion pro­
gram to make up the damage report. The
address found, therefore, is the address at
which the failing CPU is restarted, if it
is found that retry is possible.

Since neither the machine-check-old PSW
nor the logged IC necessarily reflect the
true location of the failing instruction,

, it is necessary for the Pointer program to
make an analysis of the log in order to
obtain the desired address.

The POinterprqgram relies for the most
part on the, IC, E-register and current ROS
address, all from the saved log. If the
"IC in LSWR- latch was set, the program
uses the address in the local-store-working
register as the IC value. The Pointer pro­
gram also uses a diagnose instruction to

162

extract the current ROS word. The ROS word
is examined and the results of the various
tests are used to obtain a value which must
be added to, or subtracted from, the IC in
order to determine the exact location of
the failing instruction.

The Pointer program also determines if
the error that occurred was a storage data
error during a store operation. If so, the
field stored is cleared so that the CPU/
Memory Checkout 2 program will not indicate
no-retry. If the instruction is otherwise
retryable, this will allow the instruction
to be retried. Items considered during the
analysiS include:

• Was an 'End-OP' cycle in progress?

• Was a 'byte-update' cycle in progress?

• Was an execute instruction in progress?

• Was an active branch instruction in
progress?

• Was an interruption in progress?

Each item above will cause a different
routine to be executed in order to deter­
mine the instruction address.

Restore and Validate Program (CMASF) Chart
CB

This program determines whether a retry
threshold exists for the interrupted
instruction, and indicates -no-retry- if
such a threshold has been passed. The pro­
gram also restores registers if necessary.

Attributes: The program is resident in
auxiliary storage, nonreenterable, and
operates in the privileged state.

Entry: CMASFl

Assumptions: The program is to some extent
micro-program dependent. Changes to the
ROS commands of any instruction may require
corresponding changes to the program.

Exit: To SERR Bootstrap.

Operation: This program receives control
from the SERR Bootstrap program, following
the operation of the pointer program. If
the no-retry trigger (in the saved logout)
is off, restoration is not needed. If the
trigger is on, the program extracts the Op.
code and the R1 and R2 fields of the inter­
rupted instruction from the pointer pro­
gram's damage report. The Op. code is then
used to index into a subroutine which does
analysis and restoration appropriate to the
particular instruction. If restoration is
indicated, the original contents of the R1
register are retrieved from a saved hard-

r-'

,r-"

, <,'

ware register (A regl, S reg., etc.) in
the logout. This data is then placed in
the correct slot in the saved general
register area. When the general registers
are restored at the end of SERR operation,
the Rl register will have been restored to
the value it contained prior to executing
the interrupted instruction.

In addition to analysis and restoration,
this program also tests the Checker pro­
gram's report to determine if any key regi­
sters had bad parity at the time of the
interruption. A bad parity indication for
a critical register will force a no-retry
condition.

Instruction Retry Execution Program (CY~G)
Chart CC

This program determines if retry is
possible (following a machine check inter­
ruption), forms a damage report, and
increases a statistical element count.

Attributes: The program is resident in
auxiliary storage, is nonreenterable, and
operates in the privileged state.

Entry: CMASGl

Exit: To SERR Bootstrap.

Operation: This program performs a number
of bookkeeping functions necessary to the
completion of a SERR operation. The prime
function is the generation of a damage
report, used by the Recovery Nucleus to
determine what action should be taken after
a malfunction alert. The damage report is
made up following an analysis of the
reports of the various SERR programs.
(Retry is considered possible unless a pro­
gram reports a no-retry condition).

This program contributes to the retry
decision by means of its report. The pro­
gram that effects retry is the test for a
recu~ring error. On its second pass, (fol­
lowing environment recording), the program
matches its report on the current error
with its report on the preceding error. If
the failure indicatons and the time dura­
tion between the two failures are such as
to indicate the probability of a solid
error condition, the no-retry flag is set
in the damage report.

Whenever SERR operates without a mal­
function being detected by a CPU/Memory
Checkout program, this program updates sta­
tistical element counters. These counters
(one for each CPU and storage element) are
incremented by the program and later stored
on the paging drum by the environment­
recording program. The customer engineer
may retrieve them with either VMEREP or
IPL-EREP. The update is performed by

adding a one to the counter for the mal­
functioning CPU and for each storage ele­
ment ;nvolved in the instruction.

This program also saves the operand
addresses and th~ first eight bytes of each
operand used by the failing instruction.
This data is also recorded on the ,paging
drum and may be retrieved by either EREP
program.

CPU/Memory Checkout 1 Program (CMASH) Chart
CD

This progrnm performs a cursory check of
one or more CPUs. The objective of the
program is to uncover machine malfunctions
while performing a controlled check of the
hardware. In this way, hardware malfunc­
tions that are not detected by error cir­
cuitry can be uncovered and the element can
be isolated.

Attributes: The program is resident in
auxiliary storage, non-reenterable, and
operates in the privileged state.

Entry: CMASHl

RESTRICTIONS: Testing is restricted to a
cursory test. This program should not be
considered a substitute for the normal dia­
gnostic package.

Exit: To SERR Bootstrap.

Operation: The CPU/Memory Checkout 1 pro­
gram receives control from the SERR Boot­
strap program. Its job is to exercise
CPU(s) while enabled for machine checks.
The program is limited in its exercise
since certain instructions cannot be
executed. It can, however, use and verify
the operation of all but a few special '
instructions.

Any error checks uncovered by validity
or machine check interruptions are recor­
ded, along with the CPU that is being exer­
cised. If an error is found, the recorded
information is used when the damage report
is formed. This program, alon~ with the
other two checkout programs of SERR, may be
thought of as having two logical parts.
The first, a control section, runs only in
the CPU that has gained control following a
malfunction alert. The second section con­
tains the testing facilities and is run
(from the same pOint in memory) by all
CPU's. It is a function of the control
section to initiate the execution of the
test section by each CPU (via an external
start) to monitor its operation, and to
report on errors discovered, if any.

The test section of this program con­
sists'of a CPU instruction test which is
similar in operation to most standard CPU

Section 3: Program organization 163

diagnostics. Each instruction to be tested
is executed and the resulting data is ana­
lyzed to determine whether or-not the
instruction was executed correctly. Each

. instruction is tested, with the exception
of I/O instructions and certain set status
switching instructions.

While a particular CPU is exercised by
the program, the controlled CPU is standing
by in a time-out loop waiting to hear from
the CPU doing checkout. Appropriate action
is taken if the CPU doing checkout is not
heard from in an alloted time.

CPU/Memory Checkout 2 Program (CMASI) Chart
CE

The function of this program is to check
each SSU and to scan each storage element
from each CPU, looking for possible bad
parity data. Bad parity locations are
exercised and the results of the tests are
left in a report area for analysis by the
Instruction Retry Execution program.

Attributes: The program is resident in
auxiliary storage, nonreenterable, and
operates in the privileged state.

Entry: CMASI1

Exit: To SERR Bootstrap.

Operation: This program runs in each CPU
in the system whenever called during a SERR
operation. When called, it performs a cur­
sory SSU test by saving 16 bytes in each
storage element and exercising the 16 byte
test area with various patterns. Assuming
the SSU test is successful, each test area
is restored with its original contents.

Following the SSU test, all storage ele­
ments are scanned in a test which looks for
bad pari~y data. In the event that a bad
parity word is found, that particular area
is also exercised to determine if the fai­
lure was solid or intermittent. In either
case the word is cleared (to good parity if
possible) at the conclusion of the
exercise.

The results of the tests are left in the
program's report area for analysis by the
instruction-retry-execution program and
inclusion in ~he damage report.

Scanning storage is accomplished by suc­
cessive 256-byte CLC instructions. Follow­
ing each 'compare', a DIAG instruction is
executed which causes a logout. The error
triggers in the log are then examined to
determine if a storage failure has been
detected.

164

CPU/Memory Checkout 3 Program (CMASJ) Chart
CF

l'he function of this program is to check
ROS and local store circuitry in each CPU.

Attributes: The program is resident in
auxiliary storage, non-reenterable, and
operates in the privileged state.

Entry: CMASJ1

Exit: To SERR Bootstrap.

Operation: This program consists of a con­
trol section and a test section as
described for the CPU/Memory Checkout 1
program.

The test portion of the program is
designed to check ROS and local store cir­
cuitry. The ROStest consists of a ROS
check-sum routine which uses a diagnose
instruction to logout each ROS word. The
100 bits in a particular ROS word are com­
bined to form a check sum which is tem­
porarily stored. The test procedure is
performed three times and the three results
are compared. A non-comparison results in
an error report. This procedure is
repeated for all ROS words which can safely
be tested in this fashion. (Certain ROS
words, such as those involved in a power­
on-reset, cause undesirable functions to be
initiated.)

The local-store test loads each of the
general registers with patterns which are
then compared with the original data words.
Again, non-comparison results in an error
report.

While a particular CPU is performing the
local-store test, the controlling CPU is
standing by in a time-out loop waiting to
hear from the CPU under test. Appropriate
action is taken if the CPU being tested
does not respond in an allotted time.

system Error Processor (CEAIS) Chart CG

The function of the System Error Proces­
sor (SYSERR) is to provide a central rou­
tine for handling the conditions caused by
system software errors and hardware errors
detected by the supervisor modules and pri­
vileged service routines. It is called to
output an error message, or handle any of
five types of errors:

eMain storage minor software errors.

e Main storage major software errors.

e Virtual memory minor software errors.

e Virtual memory major software errors.

(' .•..

• Hardware failure for resident or virtu-
al memory.

Restrictions: Entry into SYSERR is made
solely from the interrupt stacker area when
an SVC interruption is invoked by either
supervisor modules or privileged service
routines. These SVC interruptions are not
queued on the system queues.

Entries:

CEASl - resident supervisor call

CEAS2 - virtual memory privileged service
routine call. Input parameters

.from either source include an error
severity code, a dump operation
code, a module code, and an error
condition code.

Modules Called: RSS Inter-CPU Communica­
tion (CEHCC entered at CEHCCA) calls TSS
Inter-CPU Communication subroutine (CEAIC)
to halt and transfer other active CPUs when
TSS/360 is operating with more than one
active CPU in the system.

Supervisor Core Allocation (CEALI
entered at CEAL01) gets main storage for a
task interrupt GQE.

Interrupt Stacker (CEAJI entered at CEA­
JIL) stacks pending interrupts from devices
used by SYSERR.

Queue GQE on TSI (CEAAF entered at
CEAAFQ) queues the task interrupt GQE.

Recovery Nucleus (CEAIR entered at
CEAIR2) initiates system restart when a
major resident system error or hardware
failure is encountered.

Task communication Control subroutine
(CEAAN) builds a message control block
(MCa) and queues it onto the operator task
when overlapping of SYSERR messages is
allowed.

Exit: After handling a minor resident
error, control is returned to the caller.

After writing a message to the opera­
tor's console, control is returned to the
calling routine.

After handling a major or minor virtual
memory error, SYSERR exits to the Queue
Scanner (CEAJQ at CEAJQS). In the case of
a major VM error, the task interrupt GQE is
processed causing the task to be deleted
from the system.

A task which has issued more than two
consecutive minor VM errors in a period of
two minutes will also be deleted from the
system.

Operation: When entered, SYSERR first
saves the registers it needs in order to
operate, then immediately checks, via the
SETLOCK macro, to see if it is handling a
previous call by the same cPU. (Is the
SYSERR lock-byte on?) If yes, SYSERR then
checks to see whether this is a recursive
call by the CPU which initiated the pre­
vious SYSERR. If a recursive call has
occurred, SYSERR builds and transmits a
message to the operator's console declaring
the situation. The wait state is then
entered to allow the operator to call the
support system. Recovery from this type of
error is impossible.

If not a recursive entry, the SYSERR
lock-byte is set and the system status is
saved. SYSERR then checks to see if other
CPUsare active in the system. If yes, the
Inter-CPU Communication subroutine is
called to halt and transfer other CPUs.
The transfer address points to a SETLOCK
macro instruction loop. Since the lock
byte being tested is on, any other CPU that
may have gotten through the Interrupt
Stacker (which disables external inter­
rupts), before the halt and transfer took
effect, will loop on the SYSERR lock byte.
After SYSERR finishes processing an error,
this lock byte is turned off via the OPEN­
LOCK macro instruction to allow pending
SYSERR SVcs through.

On return from CEAIC, or if no other
active CPUs are involved, SYSERR builds a
message from information received in the
input parameters and contained in the TSI,
system table, and ISA. The type of error
is then checked. For message output only,
the message is transmitted to the opera­
tor's console for immediate printing. Con­
t~ol is then returned to the calling rou­
tine. For resident SYSERs, the 'real core
wait' flag (CEAISR1) is tested and the mes­
sage transmitted to the operator's console
via immediate print. For virtual memory
SYSERs, the appropriate wait flag and the
'SYSER overlap print' flag are tested for
'00'. When both conditions are met, a
check is made for two or more errors in the
last two minutes by this task.

When there have not been two or more
errors, an Mca is built by Task Communica­
tionand queued onto the operator task, and
the message printed from SYSLOG as just
another message to the operator. If there
have been two or more errors in two minutes
from the same TID, the flag CEAISV3 is set
to 'FF' and the SYSERR message is printed
via immediate print. A message is also
sent to the operator informing him that the
task has exceeded two SYSERs; he then has
the option of forcing the task or allowing
it to continue. However, he must use the
support system to set CEAISV3 = '00' in
order to again use the message overlap fea-

Section 3: Program Organization 165

ture. The message is transmitted to'the
operator's console in the following format:

<ER> ,type, error-number, severity, user ID,
task ID, conv/non-conv,symbolic device
address, HH:MM, [VPSW wd. 1, VPSW wd. 2]

Where:

type
RC for a real core SYSERR

VM ,for a virtual memory SYSERR

error-number
a four digit number identifying the
error number for resident SYSERRs.

a nine digit number identifying the
error number for virtual memory
SYSERRs.

severity
MIN for minor software code 1

MAJ for major software code 2

BAR for hardware code 3

user ID
the 8 character user ID taken from the
TSI.

task ID
the 4 character task 1D taken from the
TSI.

CONV/NON-CONV
C for conversational

N for nonconversational

symbolic device address
the 4 character symbolic device
address for sysin taken from the TSI.

HH:MM
hours and minutes where 0 ~ HH ~ 23
and 0 ~ MM ~ 59.

VPSW word 1 and VPSW word 2

166

the first and second words of the vir­
tual program old PSW from the tasks
1SA. This information will only be
printed if a 081302502 or 081302508
SYSERR is declared.

The following flags are external symbols
and are initially set to '00':

CEA1SR1 - For minor resident errors.

CEAISVl - For minor virtual memory errors.

CEAISV2 - For major virtual memory errors.

CEAISV3 - For SYSERR message overlap print.

With the exception of CEAISV3, if the flag
tested is set to 'FF', SYSERR enters the
WAIT state allowing the operator to call
the support system. If the operator then
responds with a 'RUN CEA1S3', processing
continues in SYSERR. If they are set to
'00', processing continues as follows:

• Minor resident - resume system opera­
tion at the point of interrupt by
returning to the caller.

• Major resident - No flag is tested for
a major RC SYSERR and SYSERR always
goes to a wait. If the operator
responds with 'Run CEAIS3', the follow­
ing message is printed: 'CEA1S002 REAL
CORE MAJOR SOFTWARE ERROR - RESTART
CANNOT BE ACCOMPLISHED - RE-IPL'.

• Major virtual memory - A call is made
to supervisor Core Allocatio~ to get
main storage for a task interrupt GQE.
The GQE is created with a program
interrupt code of 202, a call is made
to Queue GQE on TSI to queue it on the
affecetd task, and exit is to the Queue
Scanner.

• Minor virtual memory - If the VM minor
ABEND flag is set, a call is made to
Supervisor Core Allocation to get main
storage for a task interrupt GQE. The
GQE is created with a program interrupt
code of 201, a call is made to Queue
GQE-on-TS1 to queue it onto the
affected task and an exit is made to
the Queue Scanner.

• Hardware failure - (main storage) call
the recovery nucleus. On return, if
recovery is successful, theSYSERR is
treated as a minor error and return is
made to the caller. If VM, it is
treated as a minor VM error and exit is
to the Queue Scanner.

("

SECTION 4: FLOWCHARTS

The Flowcharts in this manual have been produced by an IBM program, using ANSI sym­
bols. The symbols are defined in the left column below, and examples of their use are
shown at the right.

SYMBOL

ONPAGf.:
CON\lf::c.roR · ·
uFfPAGE

rnNNEC'TuR · · . . .

DEFINITION

iNDICATES AN ENTRY OR
TERMINAL POINT IN Po 'LOW~
CHART; SHOWS STARTt STOP,

m~: D~WAL~~ I~Df~m-
RETURN TO THE CALLING
PROGRAM.

INDICATES A PROCESSING
FUNCTION OR A DEFINED op­
ERATION CAUSING CHANGE IN
~~LY~to~~~~tg~. LOCAT I 0t:'

[NDlr.ATES A DECISION OR
SWITCHING-TVPE OPERATION
THAT DETERMINES WHICH OF
A NUMBER OF ALTERNATE
PATHS SHOULD BE FOLLOWED.

INDICATES A SUBROUTINE OR
MODULE THAT IS DESCRIBED
IN THIS MANUAL

IND[CATES A SUBROUTINE OR
MOCULE THAT IS INCLUOED
IN THE FLOWCHARTS OF AN­
OTHEFI MANUAL.

INDICATES A PROCESS THAT

~tl~Ni~~~ll~E~E~~£~A§~?~CH ,
MnDIFIES AN INDEX REGISTER.
OR INITIALIZES A ROUTH..JE.

[NDICATES ENTRY TO OR EXIT·
FPOM ANOTHEP BLOC~ ON THE
SAME f'LOWCH~T PAGE.

INDICATES ENTRY TO OR EXIT
fROM A BLOCK ON ANOTHER
PAGE OF THE SAME SET OF
fLOWCHARTS •

EXAMPLE

MODNAME

C~~~ t5POM: OTHERMOD
CHART AZ

CS[CT
LABELl J

5~ ES t.::\
~

LABEL2 ENTRYPT

r:~~AGI I VIA:

LABErLJ F3 II
-PDPNM- _.

PASSMECH

Bl:

CJ:

03:

El:

COMMENTS

MODNAME IS THE LOAD MODULE OR Ll aRMY
NAME Of' THE ROUTINE DESCRIBED BY THIS
FLOWCHART.

COMNAME IS THE COMMON NAME 0f THE
ROUTINE.

OTHERMOD INDICATES THE MODULES PASSING
CONTROL TO THIS MODULE AND THEIR FLOW­
CHARTS.

eSEeT IS THE CSECT NAME OR OTHER ENTRY
POINT AT WHICH PROCESSING BEGINS.

LABEL 1 IS THE LABEL OF THE FIRST
INSTRUCTION.

LABEL2 IS THE LABEL
CODE IN THIS ROUTINE
IS PASSED TO THE SUBR
RETURNS TO THE NEXT I
INC THE SUBROUTINE CA

SECTION OF
WHICH CONTROL
E. CON'I'ROL
CTtON FOLLOW-

ENTRYPT IS THE ENTRY POINT.

SUBRTN I S THE COMMON NAME DF THE SUB­
fi:OUTINE IN FLOWCHART AG.

VIA: PASSMECH INDICATES HuW CDN':'ROL
PASSES FROM COMNAM.[TO SUBRTN.

F): LABELl IS THE LABEL OF THE SECTION OF
CODE fROM WHICH CONTROL IS PASSE:> TO THE

Gl:

HJ:

Jl:

~BA~~~~g i~~~5¥H~~p~n~LI~~tl~NIS
(-PDPNM- MAY ALSO BE USED IN A PROCESS~
ING BLOCK). \,

~~~cgie?~lg~NI~N~~~ W6~HW't:~~~KW~lNON 
PAGE 2 OF THIS SET 6r FLOWCHARTS WHEN 
THE OECISION IS NO. 

THE OFFPAGE 
CATES THA.T 
H3 FROM AN 
CHARTS. TH 
WITH THE ON 

XED 01Hl INDI­
NUES WITH BLOCK 
1 S SET OF f'LOW­

ALSO PAIRED 
FROM BLOCK OJ. 

LABEL4 [S THE LABEL OF A SECTION OF CODE 
OF THIS ROUTINE THAT INITIATES I/O. 

N[XTRTN IS THE COMMON NAME OF THE ROUT­
INE THAT EXECUTES AFTER THIS ROUTINE. 

ENTR'tPT IS THE ENTRY POINT Of' NEXTRTN, 
WHICH IS OESCRIBED IN CHART AC. 

VIA: PASSMECH INDICATES HOW CONTROL 
PASSES FROM COMNAME TO NEXTRTN. 

Section 4: Flowcharts 167 



Chart AA. Interrupt Stacker (CEAJI) (page 1 of 6) 

('EM! PIOOA 

>N:::o~--E~:3 
CEAIS CG 

PI06 

CK!=;=) 
CEArs CG 

168 



Program Logic Manual·· 

GY28-2012-5 

Resident Supervisor 

Flowcharts on pages 169-312 were not scanned. 



MOdule ID 
CEAAA 

CEAAB 

CEAAC 

CEAAD 

CEAAE 

CEAAF 

CEAAG 

CEAAH 

CEAAI 

CEAAJ 

CEAAK 

CEAAL 

CEAAM 

CEAAN 

CEAAP 

CEAAQ 

CEAAS 

CEAAT 

CEAAV 

CEAAX 

CEAAZ 

CEAAO 

CEAAl 

CEAA2 

CEAA3 

CEAA4 

CEAAS 

CEAA6 

CEAA7 

Entry Point(s) 
CEAAAR 

CEAABl 

CEAACQ 

CEAADR 

CEAAEl 

CEAAFQ 

CEAAGl 

CEAAHR 

CEAAIB 

CEAAJD 

CEAAKl 

CEAALQ; CEAALP 

CEAAMl 

CEAANl 

CEAAPl 

CEAAQl 

CEAASl 

CEAATl 

CEAAVl 

CEAAXl 

CEAAZl 

CEAAOl 

CEAA11 

CEAA20 

CEAA31 

CEAA41 

CEAASP: CEAASR; 
CEAASS 

CEAA61 

CEAA71 

APPENDIX A: MODULE IDS AND NAMES 

Module Name 
Command Hord Relocator Subroutine 

Set Path Subroutine 

Queue Device on Task Subroutine 

Remove Device from Task Subroutine 

External Page Location Address Translator 
SUbroutine 

Queue GQE on TSI Subroutine 

Start I/O Subroutine 

Reset Device Suppression Flag Subroutine 

Halt I/O Subroutine 

Dequeue I/O Requests Subroutine 

Set Asynchronous Entry Subroutine 

Purge Subroutine and SVC Processor 

Paging I/O Error Recovery Routine 

Task Communication Control Subroutine 

Suppress Auxiliary Allocation Subroutine 

Paging Failure Recovery Subroutine 

Alternate Path Retry Subroutine 

Standard Area Retry Subroutine 

Same Path Retry Subroutine 

Start Retry Operation Subroutine 

Reset Drum Interlock Subroutine 

I/O Call Subroutine 

Pageout Processor 

:ask Interrupt Control Subroutine 

I/O Device Queue Processor 

Channel Interrupt Queue Processor 

Pathfinding Subroutine 

Page Direct Access Queue subprocessor 

Page Direct Access Interrupt Subprocessor 

Appendix A: Module IDS and Names 313 



Module ID 
CEAA8 

CEAA9 

CEABA 

CEABB 

CEABC 

CEABE 

CEABQ 

CEAHQ 

CEAHQ 

CEAHQ 

CEAHQ 

CEAH2 

CEAH2 

CEAH7 

CEAIA 

CEAIA 

CEAIC 

CEAIR 

CEAIS 

CEAI6 

CEAI7 

CEAJI 

CEAJQ 

CEAJQ 

CEAJQ 

CEAJQ 

CEAJQ 

CEAKD 

CEAKE 

CEAKI 

CEAKR 

314 

Entry Point(s) 
CEAAB 1; CEAAS"O; 
CEAAB2 

CEAA91 

CEABA1; CEABA2; 
CEABA3 

CEABBl 

CEABC1; CEABC2 

CEABEM 

CEABQl 

CEAHQA 

CEAHQP 

CEAHQF 

CEAHQG 

CEAH02 

CEAH03 

CEAH07 

CEAlAA 

CEAIAR 

CEAIC1; CEAIC2 

CEAIR1; CEAIR2; 
CEAIR3 

CEAIS1; CEAIS2 

CEAI61; CEAI62 

CEAIP1; CEAIP2; 
CEAIP3 

CEAJIP; CEAJIS; 
CEAJIE; CEAJII 

CEAJDE 

CE.AJEN 

CEAJMG 

CEAJQS 

CEAJSF 

CEAKDl 

CEAKEA 

CEAKIA; CEAKIB 

CEAKRT 

Module Name 
Page Drum Queue Processor 

Page Drum Interrupt Queue Processor 

RJE Asynchronous I/O Interrupt Subroutine 

RJE Synchronous I/O Interrupt Subroutine 

RJE Line Control Subroutine and SVC Processor 

External Machine Check I~terrupt Processor 

Generate and Enqueue Interrupt GQE Subroutine 

Add Page Subroutine 

Supervisor Call Queue Processor 

Time Slice End Subroutine 

Categorize Paging Requirements Subroutine 

Setup TSI Field Subroutine 

Extract TSI Field Subroutine 

Set External page Table Entries Subroutine 

Auxiliary Storage Allocation Queue Processor 

Auxiliary Storage Release Subroutine 

Inter-CPU Communication Subroutine 

Recovery Nucleus 

System Error Processor 

Real Core Statistical Data Recording Subroutine 

Real Core Error Recording Subroutine 

Interrupt Stacker Module 

Dequeue GQE Subroutine 

Enqueue GQE Subroutine 

Move GQE Subroutine 

Queue Scanner 

Set Suppress Flag Subroutine 

The Dispatcher 

Entrance Criteria Subroutine 

Internal Scheduler 

Create Real Time Interrupt Subroutine 



Module ID Ent!Y --Point (s) 
CEAKT CEAKTl 

CEAKZ CEAKZA 

CEALl CEALOl 

CEALl CEAL02 

CEALl CEAL04 

CEAMC CEAMCl 

CEAMC CEAMTl 

CEAMD CEAMDT 

CEAML CEAMLP 

CEAMP CEAMPl 

CEAMS CEAMSl 

CEAMW CEAMWS 

CEAMX CEAMXP 

CEAMY CEAMY 

CEANA CEANAA 

CEANB CEANBA 

CEANC CEANCA 

CEAND CEANDA 

CEANF CEANFA 

CEANG CEANGl 

CEAPO CEAH10 

CEAP7 CEAH17 

CEAQ2 CEAH22 

CEAQ4 CEAQ4A 

CEAQ5 CEAH25 

CEAQ6 CEAH26 

CEAQ7 CEAH27 

CEAQ8 CEAH28 

CEARO CEAH30 

CEARl CEARlA 

CEAR2 CEAR2A 

CEAR3 CEAR3A 

CEAR4 CEAR41 

Module Name 
Timer Interrupt Queue (TIQ) Processor 

Rescheduling Subroutine 

Supervisor Core Allocation Subroutine 

Supervisor Core Release Subroutine 

User Core Release Subroutine 

Create TSI Subroutine 

Task Initiation Subroutine 

Delete TSI Processor 

Locate Page Subroutine 

Page Posting Subroutine 

Search RSPI Table Subroutine 

Write Shared Pages Subroutine 

XTSI Overflow Subroutine 

XTSI Page packing Subroutine 

Program Interrupt Queue Processor 

User Core Allocation Queue Processor 

Find Page Subroutine 

Delete Page Subroutine 

Contiguous Core Allocation Queue Processor 

Segment Block Remover subroutine 

Move External Page Table Entries Subroutine 

AWAIT SVC Subroutine 

Set User Interval Timer Subroutine 

Check Protection Class Subroutine 

Inter-Task Communication Subroutine 

Add Shared Pages Subroutine 

Connect Segment to Shared Page Table Subroutine 

Disconnect Segment from Shared Page Table 
Subroutine 

TWAIT Subprocessor 

Present Schedule Table Entry Processor 

Pulse Schedule Table Entry Processor 

Change Schedule Table Entry Processor 

Terminal SVC Processor (CONN) 

Appendix A: Module IDS and Names 315 



Module ID 
CEAR4 

CEAR4 

CEAR4 

CEAR4 

CEAR4 

CFAR4 

CEAR4 

CEASS 

CEAS2 

CEAS2 

CFAS4 

CEAS4 

CFAS6 

CEAS7 

CEAS8 

CEATC 

CEATS 

CEATl 

CEAT2 

CEAT4 

CGCMA 

CMASA 

CMASB 

CMASC 

CMASD 

CMASE 

CMASA 

CMASF 

CMASG 

CMASH 

CMASI 

CMASJ 

316 

Entry Point(s) 
CEAR42 

CEAR43 

CEAR44 

CEAR45 

CEAR46 

CEAR47 

CEAR48 

CEASS1; CEASS2 

CEAH42 

CEAH43 

CEAH44 

CEAH45 

CEAH46 

CEAH47 

CEAH48 

CEATC1,CEATC2 

CEATS1,CEATS2 
CEATS3,CEATS4 

CEAT2A 

CEAH52 

CEAT4A 

CGC!1AC 

CMASAl 

CMASBl 

CMASCl 

CMASDl 

CMASEl 

CMASAl 

CMASFl 

CMASGl 

CMASHl 

CMASIl 

CMASJl 

Module Name 
Terminal SVC Processor (DCON) 

Terminal SVC Processor (WAIT) 

Terminal SVC Processor (CKALOC) 

Terminal SVC Processor (LCD) 

Terminal SVC Processor (ATTACH) 

Terminal SVC Processor (UFLOW) 

Terminal SVC Processor (SETTDE) 

TSS Dynamic status SVC Processor 

Setup System Table Field Subroutine 

Extract System Table Field Subroutine 

Setup XTSI Field Subroutine 

Extract XTSI Field Subroutine 

Read Time Subroutine 

Set Real Time Interval Subroutine 

Restore Elapsed Time Subroutine 

Terminal Communication Subprocessor, ATCS Processor 

Terminal Control Table Entry 
Allocation Subprocessor 

Extract Accumulated Time Subroutine 

Special Create TSI Processor 

Extract from Auxiliary Storage Allocation Table 

Reconfiguration Routine 

SERR Bootstrap 

Environment Recording Program 

Immediate Print Program 

Checker Program 

Pointer Program 

SERR Bootstrap 

Restore .and Validate Program 

Instruction Retry Execution Program 

CPU/Memory Checkout 1 Program 

CPU/Memory Checkout 2 Program 

CPU/Memory Checkout 3 Program 



There are 256 SVC codes in TSS/360. 
They are divided into four groups: 

1. SVC codes 000-063 

These are undefined and reserved for 
users who wish to specify the1r own 
SVC handling routines. 

2. SVC codes 064-095 

These codes are reserved for. SVCS 
handled by the Time Sharing System 
support System. Of these, codes 64, 
74-79, and 85-95 are not defined. 

3. SVC codes 096-127 

Module 
SVC Code SVC Code Module Entry 
in Hex. in Dec. Macro ID ~ Point 

41 65 N/A CEHDR ~RA 

42 66 N/A CEBDR CEBDRA 

43 67 N/A CEBDR CEHDRA 

44 68 N/A CEHDR CEHDRA 

45 69 N/A CEBDR CEHDRA 

46 70 N/A CEHDR CEHDRA 

47 71 N/A CEHDR CEHDRA 

48 72 N/A CEBDR CEHDRA 

49 73 N/A CEBDR CEBDRA 

50 80 N/A CEBDA CEHDAA 

51 81 N/A CEHDL CEHDLA 

52 82 N/A CEHDE CEHDEA 

53 83 N/A CEHDV CEHDVA 

54 84 N/A CEHDA CEHDAA 

55 85 N/A CEHDA CEHDAA 

APPENDIX B: .TSS/360 SVC CODES 

These codes are reserved for task­
oriented SVcs handled by the Task Mon­
itor. Of these, codes 96-116, 124, 
and 126 are not defined. 

4. SVC codes 128-255 

These are.reserved for svcs handled by 
the Resident Supervisor. Of these, 
codes 128-186, 188-192, 220, 224-225, 
239, and 247 are not defined. Codes 
128-143 are reserved for installation 
use. The installation may also set 
the privilege level required for use 
of these SVcs. 

SVC codes which are defined are listed 
below: 

°Eeration 
Get real storage for VSS 

Put real storage for VSS 

AT SVC execution in real storage completed 

ass AT SVC execution in virtual storage 
completed 

Execute AT SVC in real storage for RSS or 
VSS 

Process VSS-supplied command string 

Execute AT in private virtual storage for 
RSS 

Execute AT in shared virtual storage for 
ass 

Determine if input virtual storage page is 
shared 

Execute AT in private virtual storage for 
VSS 

Logon MSP or TSP as indicated in message 
control block 

Deactivate VSS 

Activate VSS 

VSS AT execution in virtual storage 
cOJDPleted. 

Execute AT in shared virtual storage for 
VSS 

Appendix B: TSS/360 SVC Codes 317 

---------------------------------------------_. 



SVC Code 
in Hex. 

74 

318 

75 

76 

77 

78 

79 

7A 

7B 

7D 

7F 

BB 

Cl 

C2 

C3 

C9 

CA 

CB 

CC 

CD 

CE 

CF 

00 

01 

02 

03 

D4 

D5 

D6 

D7 

08 

D9 

SVC Code Module 
in Dec. Macro IO Name 

116 EXIT CZCJT 

117 RAE CZCJT 

118 CLIP CZCJT 

119 CLIC CZCJT 

120 RSPRV CZCJT 

121 ENTER CZCJT 

122 RTRN CZCJT 

123 DELET CZCJT 

125 PCSVC CZCJT 

127 DLINK CZCJT 

187 UFLOW CEAR4 

193 SAMPLE CEASS 

194 ZEROSST CEASS 

195 ATTACH CEAR4 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

212 

213 

214 

215 

216 

217 

'ROI 

LCO 

CKALOC 

WAIT 

SETTOE 

SCRTSI 

CONN 

DCON 

XTRTM 

SETAE 

SPATH 

RSTTIM 

XTRXTS 

SETXTS 

XTRSYS 

SETSYS 

SETTR 

CEAAZ 

CEAR4 

CEAR4 

CEAR4 

CEAR4 

CEAT2 

CEAR4 

CEAR4 

CEATl 

CEAAK 

CEAAB 

CEAS8 

CEAS4 

CEAS3 

CEAS2 

CEAS2 

CEAS7 

Module 
Entry 
Point 
CZCJTS 

CZCJTS 

CZCJTS 

CZCJTS 

CZCJTS 

CZCJTS 

CZCJTS 

CZCJTS 

CZCJTS 

CZCJTS 

CEAR47 

CEASS2 

CEASSl 

CEAR46 

Operation 
Return to Command System 

Restore and enable 

Read command from SYSIN (uncond.) 

Read command from SYSIN (cond.) 

Restore Privilege 

Enter privilege~ service routine 

Final return to Task Monitor from user code 

Invoke dynamic loader delete routine 

Invoke program control system 

Transfer to dynamic loader for external 
symbol resolution 

Adjust or obtain conversational or MTT task 
limit 

sample System Statistics Table 

Zero System Statistics Table 

Obtain TCT slot for TSS user 

CEAAZl Reset drum interlock 

CEAR45 Indicate line code for terminal 

CEAR44 Check for terminal in use by MTT 

CEAR43 Wait for terminal stimuli 

CEAR48 Turn off HELD flag in CHBTOE 

CEAT2A Special create TSI 

CEAR41 Connect a task to the MTT subsystem 

CEAR42 Disconnect a task from the MTT subsystem 

CEATlA Extract accumulated time 

CEAAKl Set asynchronous entry 

CEAABl Set Path 

CEAH48 Restore elapsed time 

CEAH45 Extract XTSI field 

CEAH44 Set up XTSlfield 

CEAH43 Extract system table field 

CEAH42 Set up system table field 

CEAS7A Set or cancel real core time interval 
requested by supervisor routine 

,,--' 



SVC Code 
in Hex. 

09 

DA 

DB 

DO 

DE 

OF 

EO 

E2 

E3 

E4 

E5 

E6 

E7 

E8 

E9 

EA 

EB 

EC 

ED 

EE 

FO 

F1 

F2 

F3 

F4 

F5 

F6 

F8 

F9 

FA 

FB 

SVC Code 
in Dec. 

217 

218 

219 

221 

222 

223 

224 

226 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

240 

2 III 

242 

243 

244 

245 

246 

248 

249 

250 

251 

Module 
Macro 10 Name 
SETTIMER CEAS7 

Module 
Entry 
Point 
CEAS7A 

Operation 
Set Virtual memory time interval 

REDTIM CEAS6 CEAS6A Read Time 

ATCS CEATC CEATC2 Activate terminal communications 
subprocess or 

RESET CEAAH CEAAHR Reset device suppression flag 

PURGE CEAAL CEAALP Purge I/O requests 

SETIR CEAI6 CEAI62 Set on or off the Immediate Report flag 
RESETIR (PSDIR) 

N/A CEAHQ CEAHQG Categorize paging requirements 

PULSE CEAR2 CEAR2A Pulse schedule table entry 

CHANGE CEAR3 CEAR3A Change schedule table entry 

SYSER CEAIS CEAIS1 system error processing call from nonresi-
dent task 

TWAIT CEARO CEAH30 Terminal I/O wait 

AUXPG CEAT4 CEAT4A Extract auxiliary disk and 4rum page counts 

lOCAL 

RJELC 

RMDEV 

ADDEV 

SETUP 

ADSPG 

DSSEG 

CNSEG 

VSEND 

CKCLS 

PGOUT 

TSEND 

SETXP 

MOVXP 

XTRCT 

AWAIT 

DELPG 

ADDPG 

SETTU 

CEAAO CEAA01 I/O call 

CEASC CEABC1 RJE line control processing 

CEAAD CEAADR Remove device from task 

CEAAC CEAACQ Add device to task 

CEAH2 CEAH02 Set up TSI field 

CEAQ6 CEAH26 Add shared page 

CEAQ8 CEAH28 Disconnect segment from shared page table 

CEAQ7 CEAH27 Connect segment to shared page table 

CEAQ5 CEAQ5V Inter-task communication from TSS 

CEAQ4 CEAQ4A Check protection class 

CEAA1 CEAA11 Page out VS pages to external storage 

CEAHQ CEAHQF Force time slice end 

CEAH7 CEAH07 Set external page table entry 

CEAPO CEAH10 Move external page table entry 

CEAH3 CEAH03 Extract TSI field 

CEAP7 CEAH17 Await an interrupt 

CEAND 

CEAHQ 

CEAQ2 

CEANDA Delete pages 

CEAHQA Add pages 

CEAH22 Set user interval timer 

Appendix B: TSS/360 SVC codes 319 



Module 
.~ 

SVC Code SVC Code Module Entry 
in Hex. in Dec. Macro 10 ~ Point °Eeration 

FC 252 DLTS1 CEAMD CEAMDT DeleteTSI 

FD 253 CRTSI CEAMC CEAMCl Create TSI 

FE 254 LVPSW CEAJI CEAJ1S Load virtual PSW 

FE 254 ERROR CEA1S CEA1S2 System error processing call from 
supervisor 

FF 255 CEABZ Move error simulation table to real one. 

320 





" 

Active list 143 
chart 236-238 

Add page subroutine 73~'75 
Add shared pages subroutine 75-76 

chart' ,·239 
ADDEV 95,319 
ADDPG 73,319 
Address marker missing 122-123 
ADSPG 75,319 
Alternate path retry subroutine 117-119 

chart 264 
Asynchronous channel interruption 49 
ATCS 59,61',319 
ATTACH 98-99,318 
Attention 120 
Auxiliary storage allocation queue 

processor 65-67 
chart 227-229 

Auxiliary storage release/subroutine 71 
chart 230 

AWAIT SVC subroutine 83-84 
chart 245 

Bus out check 
BUsy condition 
Byte 0, bit'-{. 

CBT 

121,122 
37,42 

121 

(see core block table) 
Chaining check 37,120 
CHANGE 84,319 
change schedule table entry 

processor 84-85 
Channel control check 37,119 
Channel data check 37,119-120 
channel end 37,42-43 
Channel interrupt 

(see interruption) 
Channel int~rrupt queue processor 47-53 

chart 194-199 
Check protection class SUbroutine 79-80 

chart 241 
Checker program 161~162 

chart 304 
CKALOC 97,98,290,318 
CKCLS 79,290,319 
CNSEG 78,291,319 ;r-, 
Command reject 121,123 
Command word relocator subroutine 130-131 
CONN 97,318: ... 1 
Connect segment to,shared page table 
subroutine - 78-19" ':" , 

chart 240 
contt'cjuous . core"allo6ation' queue 
processor 68-69 

Control blocks, sup~rvi§&r 7 
Control unit1end 37 ;'lfl " i~( 
Core block table (CBTf 64 
CPU/memory checkout 1 program 163-164 

chart 307 

322 

CPU/memory checkout 2 program 164 
chart 308 

CPU/memory checkout 3 program 164 
chart 309 

Create real time interrupt 142 
chart 288 . 

Create TSI subroutine 80 
CRTSI 80,320 

Data check 121,122 
DCON 97,98,318 
Delete page subroutine 76-77 
Delete TSI subroutine 80-81 

chart 242-244 
DELPG 76,319 
Delta to run 147 
Dequeue GQE subroutine 27-28 
Dequeue I/O requests subroutine 128-129 

chart 275 
Device end 37,42 
Device interaction group 8 
Device type table 108 
DIG 

(see Device interaction group) 
Disconnect segment from shared page table 
subroutine 79 

Dispatchable list 143,144 
Dispatcher 144-145 

chart 290 
DLTSI 80,320 
DRAM operations 38 
DSSEG 79,319 
DTR 

(see Delta to Run) 

Eligible list 143,144,146 
End of cylinder 121,123 
Enqueue GQE subroutine 26-27 
Entrance criteria subroutine': ·146-147 

chart 292 
Environment recording program 158 
Equipment check 120,121 
Error recovery procedures 4,148 

Recovery nucleus 4,148 
Event control block (ECB) 83 
Execute bound 144 
Extended task status index (XTSI) 9,82 
External interruption 

(see interruption) 
External machine check interrupt 

processor 153-154 
chart 302 

External page location address translator 
subroutine 108 

Extract accumulated time subroutine 88-89 
Extract from auxiliary storage allocation 
table 89 ' . 

Extract system table field subroutine 88 
Extract TSI field subroutine 82 
Extract XTSI field subroutine 82-83 

./"'"'""" 

.--



File protect 121,123-
Find page subroutine 101-102 

General queue entry 4,5 
General service subroutines 101,140 
Generate and enqueue interrupt GQE 
subroutine 129-130 

GQE 
(see general queue entry) 

Halt I/O request processing 42 
Halt I/O subroutine 126-127 

I/O bound 117 
I/O call subroutine 89-90 

chart 247 
I/O device queue processor 41-43 

chart 188-191 
I/O interruption 

(see interruption) 
I/O page control block (IOPCB) 91 
I/O request initiation 43 
I/O service subroutines 123 
Immediate print program 158,161 
Inactive list 17,143,141 
Incorrect length 37,120 
Instruction retry execution program 163 

chart 306 
Inter-CPU communication subroutine 140-142 

chart 287 
object intercom 140 
subject intercom 141 

Interface control check 37,119 
Internal scheduler 143-144 

chart 289 
Interrupt log 21 
Interrupt stacker 1,4,20 

chart 167-173 
external 24 
I/O 24-25 
program 22 
supervisor call (SVC) 22-24 

Interruption 
channel 47 
classification 1,7,20 
external 7 
I/O 5,6,11 
machine check 7,153 
paging disk (direct access) 13 
program 5,6,10 
stacking 1,7,20 
supervisor call (SVC) 5,6-7,15 
timer 9 

Intertask communication subroutine 99-100 
Intervention required 120,122 . 
Invalid address 120 
lOCAL 89,291,319 
IOPCB 

(see I/O page control block) 

LCD 98,318 
Loc-on-Q 22,27 
Locate page subroutine 102 

Long save subroutine 22 
LVPSW 23-24,320 

Machine check 
(see interruption) 

Main storage allocation. subroutines 
13-15,63-69 

Main storage release subroutines 70-71 
Master clock 17,143,147 
Message control block 99,146 
Migration function 32 
Move external page table entries 
subroutine 78 

Move GQE subroutine 28 
MOVXP 78,319 
MTT (Multiterminal task) 59-60,97-99,133 

Normal end processing 51 

Overflow incomplete 121 
Overrun 121,122 

Page control block (PCB) 8 
Page direct access interrupt subprocess or 

43-45 
chart 194-199 

Page direct access queue subprocessor _ 
45-47 

chart 192 
Page drum interrupt queue processor 35-38 

chart 184-185 
Page drum queue processor 33-35 

chart 182-183 
Page handling subroutines 101 
Page posting subroutine 102-106 

chart 257-259 
virtual storage pages 103-104 
XTSI pages 104-105 

Page relocation error processing 40 
Page table expansion 

(seeXTSI overflow subroutine) 
Page table scan function 32 
Paging failure recovery subroutine 111-113 

chart 263 
Paging I/O error·recovery subroutine 

113-115 
Pageout service subroutine 90-92 

chart 248 
Pathfinding subroutine 123-125 

chart 267-273 

PCB 

PCI 

reverse p~thfinding 124 
set path 125 

(see page control'·block)": 

(see program controlled interruption) 
PGOUT 90,319 ,. <. '. 
Pointer program 162 ' 
Prefixed storage'area'(PSA) 140,141 
Priority level '6~147 
Program check 31,120 
Program controlled interruption (PCI) 

35,37 
Program interrupt queue processor 38-41 

Index 323 



chart 186-1.e1 
Program interr.uptiQru'!. 

(see interruption).t. 
Protection check 37,120 
PSA 

(see prefixed, .storage.,_arefl) 
pulse schedule.Htable ent~ l?~cessor 
Purge subroutine 131-133' 

chart 276 

Q flag 26 
Quantum 11,32 
Queue control subroutines 26 
Queue device on task subrAutine 94-95 
Queue GQE on TSI subroutine '137-139 

chart 284!"'286, 
Queue processors 9,29 

auxiliary storage allocation 65-67 
channel interrupt 41-~~J.: 
contiguous core allocatiqn. 68-69 
I/O device 41-43 
paging 33-38,43-47 
program interrupt 38-41 
supervisor call (SVC) 72-73 
timer interrupt 29-33 
user core allocation 63-65 

Queue scanner 25-26 
chart 174 

Queue scanning and processing 25 
Quick cell 69 

RCSDR c'<' 
(see real core statistical data 

recording subrouti~e) 
RDI 99,318;'1. 
Read time sUbroutine 87-88 
Real core error recording subroutine 

110-111 
chart 261-262 

Real core statistical data recording 
sUbroutline 110 :)-

chart 260 .. ..: rill; 
Reconfiguration routine ;: 152-153 
Record not found 120,121-122 
Recovery nucleus· 148-152 

chart 297-301 
REDTIM 319 
Remote job entry 53-58,92-94 

84 

Remove device from task subroutine 95-96 
Rescheduling subroutine 147-148 

chart 293-296 
RESET 94,319 
Reset device suppression flag subroutine 

94 
Reset drum interlock subroutine 99-100 
Resident terminal access method 

(RTAM) 97,98 
Restart subroutine 123 
Restore elapsed time subroutine 87 
Restore and vali9ate program 162-163 

chart 305 
Return from sense processing 51 
Reverse pathfinding 

(see pathfinding) 
RJE (see remote job entry) 
RJE asynchronous interrupt 

subroutine 53-56 
RJE line controL 92-94 
RJE synchronous I/O error subroutine 56-58 
RJELC 92,319 
RMDEV 95,319 
RSTTIM 87,318 
RTAM (see resident terminal access method) 

Same path retry subroutine 119-123 
chart 265- 266 

SAMPLE 100,318 
Scan table 8 . 
Scan table master c'ontrol table 8 
Schedule table 16,143 
Scheduled start ti~e 16-17,144 
Scheduling mech~nism 17 
SCRTSI 80,318" 
Sea~9h RSPI table subroutine 109 
seek' check 122 
Segment block remover subroutine 109 

chart 259 
Segment relocation error processing 40 
Segment table overflow 

(see XTSI overflow subroutine) 
Sense data not present 121,123 
Sense request processing 42 
SERR 

(see system environment recording and 
retry) 

SERR auxiliary queue 156 
SERR bootstrap 156-158 

chart 303 
SERR bootstrap 156-158 

chart 304 
Set asynchronous entry subroutine 96-97 
Set external page table entries 
subroutine 77-78 

Set path subroutine (see also 
pathfinding) 94 

Set real time interval subroutine 85-86 
chart 246 

Set suppress flag subroutine 28-29 
chart 175 

Set up system table field .,subroutine'88 
Set up TSI field subroutirie 81-82 
Set up XTSI field subroutine 81 
Set user interval timer subroutine 85 
SETAE 96,318 
SETSYS 88,318 
SETTDE 99,318 
SETTINER 85,319 
SETTR 85,318 
SETTU 85,319 
SETUP 82,319 
SETXP 77,319 
SETXTS 81,318 
SMC (see scan table master control table) 
SPATH 94,318 
Special create TSI subroutine 80 
Special task service subroutines 133 
SST (see scheduled start time) 
Standard area retry subroutine 116-117 
Start I/O subroutine 125-126 

chart 274 
Start retry operation subroutine 115-116 
Status data not present 120 
Status modifier condition 37,42 



STE (see schedule tabLe) 
Storage allocation and.release 
subroutines 63-72 !, 

Supervisor call interruption 
(see interruption) 

Supervisor call queue processor 73-74 
Chart 235 

Supervisor core allocation subroutine 
(SCA) 69-70 

chart 231-234 
supervisor core release subroutine 70-71 

chart' 231-234 . 
Suppress auxiliary allocation 
subroutine 72 

SVC 
(see supervisor <?all> .' " 

Synchronous channel interruption '49-50 
SYSER ,164,319 
System environment recording and, !,etry 154 
System error processor 164-166 -".- . -= .. ~ 

chart 310-311 ' . -, 
System taple (CHASYS) 7,143-145" 

Task communication control subroutine 
139-140 

Task initiation subroutine 134 
chart 283 

Task interrupt control 145-146 
chart 2.91 

Task interruption 4-5 
Task selection and 

scheduling 16-17,143-148 
Task service subroutines 133 
Task status index (TSI) 8 
Terminal communication subprocessor 58-63 

chart 204-222 
Terminal control table 48,70 

_,Terminal SVC processor 97-98 
chart 250-255 

Timer interrupt queue processor 29-33 
chart 

. Time slice. 1,9-10,29-33 
Time slice~nd processing 30-32 '. 

.' ! 

, . 

"·C:· 

Time slice end subroutin-e 83 
Track condition check. 123 
Track overrun 121,123>-
TSEND 30,83,319, --,. 
TSI 

(see task status index) 'c' 
TWAIT SVC subprocessor 84 , .. ' 

UFLOW 99 
Unit check 42,120,121 
Unit exception 42,120 
User core allocation queue processor 

chart 223-226 
User core re~ease subroutine' 71 

chart 234, -. 
User timer in~errupt processing 30 

~.; J.: 
Virtual storage tasks 1 ' . ., 
VSEND 99,319 " 

WAIT 98,318 

63-65 

Write shared pages subroutine 10~-108 

XTRCT 
XTRSYS 
XTRTM 
XTRXTS 
XTSI 

82,319 
88,318 

88,318 
82,318 

(see extended task status index) 
XTSI overflow subroutine 134-137 

page table expansion 135 
segment table expansion 136 

XTSI page packing subroutine 110 

ZEROSST 100,318 

2301/2820 error recovery procedfire 
2311/284~, 2314 error recovery 
procedure 121-123 

l' 

• '1"1: 

119-121 

325 



GY28-2012-5 

International Business Machineil Corporation 
Data .Pro.cessing;Division 
1133 Westchester Avenue, White 'Plains, New York 10804 
[U.S..A. only] 

IBM WDdd Trade Corporation 
Bal United Nations Plaza, New York, New York 10017 
[International] 

'"'l 
u: 
Ul 
"-
W 
0'\ 
0 

" (1) 
(Il 
1-" 

.~ P-
(1) 
;:J 
rr 
~~ 
c 
'0 
(1) 
11 
<: 
1-" 
(Il 

0 
11 

'CI 
11 
1-" 
;:J 
rr 
(l) 
P-

I-" 
::J 

c: 
Ul 

» 

Gl 
>< 
IV 
CO 
I 

IV 
0 

IV 
I 

\.11 


