File No.

Program

IBM System/360 Time Sharing System
System Logic Summary

Program Logic Manual

This publication describes the logic of the IBM
System/360 Time Sharing System (TSS/360). The emphasis
is on describing the interrelationship of system
conponents in performing system functions. Where an
individual component is described, only the highest
level of logic is discussed.

This program logic manual is directed to the IBM
customer engineer who is responsible for program
maintenance. It can be used to determine the
interrelationship among the various areas of the
system, and it enables the reader to relate these areas
to the corresgonding rprogram logic manuals.

5360-36

GY28-2009-2

Logic

PREFACE

This publication is divided intc three IBM System/360 Time Sharing System:
parts. The first part contains a Command System User's Guide, Form
systematic description of TSS/360. The Cc28-2001

second part explains various detailed
features of TSS/360 such as allocation

algorithms, sharing, and paging and gives IBM Systenv/ 360 Time Sharing System:
examples of system operation. The third Asserbler Programmer's Guide, Form
part discusses the relationship of language C28-2032
processors and auxiliary programs to the
system.

IBM System/360 Time Sharing System:

There are three appendixes. Cne relates Manager's and Administrator®’s Guide,

major system components toc the appropriate Form C28-2024

Program Logic Manual, the second contains a
summary of imgortant system control klocks,
and the third is a directory listing all IBM System/ 360 Time Sharing System:

modules for which flowcharts exist and the Assemkler langquage, Form C28-2000

PLM which contains each flowchart.

IBM

PREREQUISITE PUBLICATIONS: IPM System/ 360 Time Sharing System:
Assembler User Macro Instructions,
IBM System/360 Time Sharing System: Form C23-2004
Concepts and Facilities, Form
Cc28-2003
IBM System/360 Time Sharing System:
In addition, the following TSS/360 FORTRAN IV, Form C28-2007
publications can be used to supplement an
understanding of the interrelationships IBM System/360 Time Sharing System:
described in this manual: Linkage Editor, Form C28-2005
IBM Systems/360: Model 67 Functional IBM System/360 Time Sharing System:
Characteristics, Form A27-2719 Operator's Guide, Form C28-2033

Third Edition (June 1970)

This is a major revision of, and makes cbsolete, IBM System/360 Time
Sharing System: System Logic Summary, Form Y28-2009-1, and Technical
Newsletters Y28-3094, ¥28-3102, ¥28-3111, and ¥28-3112. Changes to the
text and illustrations have been made throughout and this edition
should be reviewed in its entirety.

This edition is current with Version 7, Modification 0, and remains
in eifect for all subsequent versions or modifications of IBM System/360
Time Sharing System unless otherwise indicated. Significant changes or
additions to this publication will be provided in new editions or
Technical Newsletters. Before using this publication in connection with
the operation of IBM systems, refer to the latest edition cf IBM
System/360 Time Sharing System: Addendum, Form C28-2043, for the
editions of publications that are applicable and current.

This publication was prepared for production using an IBM computer to
update the text and to contrel the page and line fcrmat. Page
impressions for photo-offset printing were cobtained from an IBM 1403
Printer using a special print chain.

Requests for copies of IBM puklications should ke made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's
comments. If the form has been removed, comments may be addressed to
IBM Corporation, Time Sharing System/360 Programming Publications,
Lepartment 643, Neighbcrhood Road, Kingston, New York 12401.

© Copyright International Business Machines Corporation 1967, 1968, 1970

PART I: GENERAL SYSTEM DESCRIPTION

INTRODUCTION e s e s e e e e e
Command Rerertcire

SYSTEM ENVIRONMENT
Operational Enviromment
System Users . . .« . . « « « .

Privilege Classes
Authcrization Ccde« . .
ASKS & v 4 4 e e e e e e e e

Ccnversaticnal Tasks .« . . .
Nonconversational Tasks . . .
System Program Structure . . .
Resident Supervisor e e e e .

Task Mcnitcer and System Service k

IBM-Supplied Problem Programs
Auxiliary Programs
Time Sharing Support System .
Utility Programs .« « « » = =

System Build Program
STARTUP Program « .« « « = =
system Storage« .« . .

Public 5torage . . . o« « . .
Private Storage
System Storage
Multiprogramming Environment . .
Time-Slicing .« . « « « & - .« .
Dynamic Program Relocation . .
Configuration+ . « .

-

« e . B -

Interconnection of System Components . .

System Partiticning
Multiprocessing Features . . .
Signaling . « <« « <« « + .« . .
Malfunction Indication . . .
Programmed Initialization . .
Prefixed Storage Areas . . .
Processor Time Sharing Features
Extended Mode
Storage Protection Extension

CONTROL ARCHITECTURE . . + « « .
Resident SuperviSoOr . . . « « « .
Interrupt Stacker
Queue SCannNer .« -« o« « o « o o =
Dispatcher « « « . .
Queue ProcesSOrS .« « « « « « =
Supervisor Service Subroutines
Majcr Exrror Recovery Routines .

Control Blocks
General Queue Entry {GQE) . .
Scan Table « o

Task Status Index (TSI) . .

Extended Task Status Index (XTSI) e e e .

Page Control Block
Task Monitor ¢ & « o .

Interface With Resident Supervisor

Interruption Processing
Task Integrity . . .« « . « « .

INTERRUPTION HANDLING
Machine Check Interruption . . .

CONTENTS

- . .1
- - . 3
P
« « « 5
-« « 5
<« « . 5
- . 5
e e .17
e
« e .7
- - . 8
.« - 9
<« .« . 10
B i |
- -« < 14
< . . 14
- .« . 18
« . . 14
. < . 14
P)
.
. . - 15
- . . 15
<« « . 15
« - . 16
<« . . 16
O
.« . 22
- . . 22
. . . 23
e < . 24
. . . 27
- - . 27
- . . 27
- <« . 28
« . . 29
- . . 29
-« . 30
- . . 31
. . - 31
- . . 32
< « o« 34
. . . 34
< . . 37
- . . 39
. . - 39
- - . 39
- - - 39
< « . 40
. - . 40
. . . 41
e e . U1
« . . b2
. e . b2
- - . b2
- . . bu
.- . . 47
A Y]

iii

External Interruption « ¢ ¢ « « « <
Timer Interruption . . .« « « « « « « <« =
Write Direct Interrxuptions

Pregram Interruption o . . .

I/C Interruption .« ¢ ¢ 4 o o 2 o 4 o o « o .

Supervisor Call Interruption « . . .

RESIDENT TERMINAL ACCESS METHOD/MULTITERMINAL
RTAM Contrcl Blocks - « . . .
RTAM TSS Initialization
RTAM TSS Mode Cperation . . .« « « « « o .
RTAM MTT Initialization By Administratcr
RTAM MTT Initialization By User
RTAM MTT Mode Operation « . .

DATA MANAGEMENT ACCESS METHODS
Virtual Access Methods
Implementation . « . +¢ ¢ ¢« & & 4 4 « 4 .
Virtual Sequential Data Sets
Virtual Index Sequential Data Sets . . .
Virtual Partitioned Data Sets
Sequential I/0 Access Methods
Basic Sequential I/0 Access Method
Queued Sequential Access Method
Blocking Logical Records . . «
Deblocking Logical Records . o« « o o o &
Buffering Blocks of Data

Issuing 1/0 Requests, Checking, and Positioning

DAta8 & 4« ¢ ¢ 4 4 e e e e e e e e e e e .
Multiple Sequential Access Method
TAM o 4 4 4 4 o« 4 o o o o o s a o « o« « =
JOREQ v« v« v 4« v v 4 o ¢« o o o o « o o =« o
OLTAM . & 24 o o & v o o« a o o« o« o o o « o« =
CRAM <o 4 .+ o o 4 4 4 o o o o o« « o « o =+ =

THE CATALOG . ¢ ¢ o 4 ¢ 2 o o o o o = o o « =

LIBRARIES o ¢ ¢ ¢ o o o« o o o o o o o« « « o =
Object Libraries ¢« & ¢ ¢ & & « o« .
Symbolic Libraries . . . <« .« + « -« 4« « 4 o .

PROTECTION . .+ + ¢ 4 o v v o o o o o o o o =
CPU References . . . ¢« ¢ o o ¢« &« « o &« . .
External and Auxiliary Storage References .
Channel References to Main Storage

Classes of I/C Operation
Classes of Storage . . . ¢ & ¢ ¢ « o o .
Assignment of Keys . . . « . « « . &« .+ .
Oreration . « ¢ « ¢ o « & o o o « & = «

PROGRAM MODULE STRUCTURE « « « . . .
Program Modules . . .« .« ¢« ¢ ¢ o« o o o o o o =
Prototype Control Sections and Reenterabl
CSTORE Macro Imnstruction . . «

COMMUNICATION . . ¢ o « o o o o o o « o o « =

LINKAGE CONVENTIONS . . ¢ v o « « « o« « « =« =
Superviscr Linkage . ¢ « +¢ ¢ 4 4« = e . .
Virtual Storage Linkage « .« « « .« . .
TYEPE I o & « o o o o o o o o o o 2 + =« o =«
Type II « o o o o« o o o o o o = « o o« « « =
Type III . . o ¢ 4« o ¢ o o o o a « o o o
Type IV v & 4 v 6 6 ¢ o e e o o o a o « « =
Fence Sitter Routimes . .« « « <« « « « o« « « =«

DATA MANAGEMEINT ¢ o o 4 o o o o o o =
Example of BSAM Processing .« « « « « « « +

iv

« .
« . .
« o .
« - e
o e e
TASK

“ . .
« e .
.« e e
. e .
« . 0
« .
« o e
« - .
« e .
. e .
. . .
« e .
e o .
« e .
. e e
. . .
« e .
« . .
« o .
.« e .
PR
e o .
o . .
. e .
« . e
e e .
. e .
“ e e
« . e
« ..
« - .
e .
« . .
. o .
. o .
« . e
- . .
e o .
. . .
o e e
“ e .
o o
o .o .
« e .
« e e
« o e
. e =
« = .
o o .

. -
- e
- -
- -
- .
e =
- e
- -
. e
- =
. e
.«
- .
.« -
- -
« .
- .
e
- .
. e
- .
. -
.« .
- e
- e
o o
- e
. -
. .
. e
.- e
- .
- -
. .
« e
. e
- -
« =
o e
a e
- -
. e
- -
.
e =
o
. e
-« e
. e
. -
- -
. .
. e
- .

- - -
- . .
e .
. PR
e« + s
- .« e
e e e
- o -
s s e
- . .
. e 0w
e e« e
- s .
« % e
- e .
- - -
. o a
s e
- a .
- « e
. e s
= e
. o« o
“ e e
- e e
- . e
- . o
« e
. o e
s e =
« ® =
-« e =
¢ & -
" P
« o
« e e
e« « o
« e o«
s e =
e o e
e « =
- & e
e e =
. e e
. e e
- - .
- e o
. e e
« = e
« o
« e o
" e e
- *
« s =
« . .

Example Of Virtual Sequential Processing . . « « « « « « « « « « « .100
PART II: EXTENDED SYSTEM DESCRIPTION e R

RESOURCE ALLOCATION AND CONTROL e v e e s « e« e« o « = <109
Scheduling Overview and the Schedule Table s s N ¢
The Active and Inactive Lists ¢ & ¢« ¢ &« <« <« « « 2113
Task Scheduling . . “ e e e e e a . e e o e e o = « = @« o = 2114
Application cf the Schedullng Algorlthm e e e 4 + 4 s e a e + - 2115
Task Scheduling Walkthrough ¢« « . . .« 117

Main Storage AlloCcation « o « o o« o o o o o o o o » 4 + e o o o = = 120
User Storage AlloCation . . « « o 4 o « o « o « o « « = « « « » 120
Sugerviscr Storage Allocation . . . « . . ¢ 4 e ¢ ¢ e+ . .« . 2121

Virtual Storage Allocation . . « ¢ ¢ ¢ 4 ¢ ¢ 4 4 4« e e 4 o o » o 122
Ncn—-Shared Virtual Storage Functions« <124
Shared Virtual Storage Functions +« <« « « « « « « . 2124

Small Virtual NMemory Allocation . . ¢ « « & ¢ ¢« 4 4 v o o & = « « 2127

Initial Virtual MEmMOTY « + « « o « o o o o o « o « = « = s « = « 128

Auxiliary Storage Allocation ¢ 4 ¢ 4 & 4 4 « .4 « . . J128

External Storage Allocation . . « = . & + 4 o ¢ « « « 2 « o « o « 2130
SAM VOIURES + <« o « = o = o« « o o = o = o =« a« o =« « « = « « « « 2130
VBM VOlUMES .+ « o o ¢ e ¢ o o o o o o o o a o o« o « =« =« o« « « « 2132

Device Allocation « « o ¢ v ¢ ¢ o &« o o 2 o o o o o « = o « o « « <133

Pathfinding . « o ¢ ¢ 4 ¢ v 4 ¢ 4 4 4 4 e 4« = « e e« = = e = « « « 138

Timer Services Allocation . . ¢ « o 4 ¢ o o « = 4 2 o« « = « « « - <181
CPU Interval TimME . . .« . ¢ v o o 4 o o o « « « s« = « « =« « - - 181
CPU Elapsed TIHE . o ¢ o« o o o o o o o o o s =« « « o « = « » - 181
Task Interval TiMe . . « o o ¢« ¢« o o o o o « = = 2 o« « = « = « 2141
Task Elapsed TiME .« « v « 4 o o o o o o o o o a o o o o o « =« « 182

DYNAMIC LOADER « o 2 « o o o o o o« a o 2 o o a o o =« o« = « o« o« « « <143
INtroduCtion .« « o« ¢ ¢ ¢ 4« 2 e 4« o e s e o s 4 e e e s e « = = « = 2143
TasKk LCiCtiONAXY « « « o o o « o o o a = = o o o« o o « o = « o« « « « 21844
Hash Tables « « o 4 o ¢ 4 ¢ o« o o o o a o 2 s = e « » « o o« « =« o« <145
Storage Map Takle ¢ ¢ ¢ ¢ & ¢ 4 4 4« ot o 4 e e 4 s e . - 2147
Control Section Dictionary (CSD) e e e e o o % = w e« » e = e o 2148

CSC Heading © o e = e = 4 w e s 4 @ = = = « = « « « 2148
Definition and Reference Tables . . . ¢ ¢« & « &« ¢ ¢« « o « « « « 2148
Relocation Dicticnaries <« ¢« & & &« & o 2 o = o « « « « « 2150
Dynamic Loader ProCeSSINgG « « « « = « 2 « o« o o« « = o« = « = o« o« « « 151
Invocation .« .« <« « < o 4 & @ 4 4 « 4 4 4 e & s e 2 » « + « » « « 2151
Implicit Linkage . ¢ . v & ¢ ¢ e« o o o 4 e o « 2 e e o + & « « « 2151
Explicit LIinka8ge =« « « « o « « o o o« 4« o« 2 s o o o o =« = = « o o« 2151
ClL COAE .+ 4 & o o « o o « s o o o o a2 a o o o« o« o« =« = o« = « « « 152

C2 COAE . « v o 4 4 o« o o o o o s o o o« o a = « = = « =« « « o« « 2153
Loading ProCesSsS . . « v v « o o o o o o o o o =« o = = = « « « « « «153
Control Section Rejection o ¢ o ¢ o o & ¢ & & o « « « - - .154
control Section Storage Key Assignment « « « + < « . - . 154
ReloCation .« « o v+ o o« o 4« o o o o o o o o o « = o =« v o o « « =+ - 2155
Deleting Program MOAULES . . « « o« o ¢ v o « o o o« « « o« o« « o« « « <155
Unloading Example . . . +. « ¢ ¢ &« « o o 4 & o 4 o o o o + « o« « « « 2157

CATALOG SERVICE ROUTINES =+ « 2 o o « o o s o s » o = s» = o s « « =« 2158
OBTAIN ROULINE + « « 2 o o o « « o = o o o o« = o =« = o« « « « « 2158
RETAIN ROULINEG <« & o « & o« o« o « s « o o o« o o« = « o« o « =« « « 2158
RENAME ROULINE « ¢ « o o o s o o » o o =« s « o« o« s « a » =« =« « «158
INLEX ROULINE . < o o « o o o s = o a o s o« o o = a « o » =« « « 2158
ADDCAT ROULINE .« 2 v 4 o o « s « o = o o o « w o o« o o« » « =« » 2159
DELCAT ROULINE . o ¢ 2 « o « o o o o a o o o « o« o« o o o« o « « 2159
SHARE ROUtINE . ¢ o « o v o o o o o o o a o o o« o« = « « « « =« « 2159
UNSHARE ROULINEG ¢ ©¢ ¢ 4 4 o« « o o o o s o s o s o =« « o =« a » « 159
SHAREUP ROULINE . 2 ¢ « ¢ o o a s« o « o o o s » o« » s« = » « « » «159
LOCATE Routine . e 4 e 4 s e 4 e s e e e e = s e e e + e « 2159
SEARCH SBLOCK Routlne e e e a = s s a s e e« w = o « « o & « « » <159
GET SBLOCK ROULINE ¢ 4 ¢ & o o o « = o o o o o s o« = o« = « + » <160

SHARING « v o ¢ « o o o o o o« o o o o o o o o o « = 2 o« o« « =« « =« = <161
External Sharing =« « « ¢ ¢ ¢ v o« o o o o « o a = 2 « o o« « « « =« « 2161

External Sharing of Data Sets « .
External Sharing of Programs « .
Concurrent External ACCESS .+ . o« ¢ o o o« « =«

External Sharing With Intermnal Control
Internal And External Sharing . . . « « « ¢« « « =
Internal Sharing . « « ¢ « + ¢ o o 2 2 « o « o

PAGING « o 4 o ¢« o 4o o o o o o o = o o =« o s« « =
Drum PAging . « o o« 2 o o + o o o o = o o« = « o =
Paging Relocation Exception Example
Time Slice End Processing Example « ¢« ¢« « « « . .
Disk Paging . « « < « 2 o o« o o o o = = = « o« « »

Example of Disk Paging . .« « « & o o = & o =

ERROR PROCEDURES e o 4 o e o 8 e e s 8 e« o @« o @
Error Reccvery and Recording .« .« « « « « « o o =
Erroxr Definition . . + 4 o ¢ o ¢« v o o o o o o
Exrror RecOTding « « « o« o « o o o o 2 o » o« o « =
Paging I/0 Error Recording . « « o ¢ o = o« o «
Task I/0 Error Recording . « « « « = « « « « «
System Erxor Recording =« « « o o o o « o o o &
Machine Error RecOrding . « « « « « o = o o « =
Error Record Retrieval . . . « e e e o s
Errcr Recovery and Retry Procedures « s e e e
Machine ErXrorsS . o o + o o o o o « o o o s o =
Paging I/0 EXXOXS « o o o o o = s o o o o« « « =
Task I/0 Exrrors e o e e e 4 s
System Error Processor (SYSERR) “ e e s e s e e
Abnormal Task Termination (ABEND)

COMMAND SYSTEM =« o « o o o o o o 2 2 o o « o o
Tailoring the Command System < . .
Command Controller . . . <« « ¢ ¢ ¢ « o o & o & =«
Source List Handler . . . + « ¢ & « o o « « =
Dictionary Handler . . . « ¢« &« « o o« « o « «
GATE ROUtINE . & v o o @ o o o o« o « o « o
Scan Routine . . o ¢ ¢ o ¢ @ v o o o o o = @
User Prompter Routine « . o« + o .
Command Analyzer and Executor . .
Virtual Memory Task Initiation Routlne (VNTI)
Interruption Processing . . . « « o « o o o o o =
Attention Handler ¢ o & ¢ « v o « o o
Initial Attention Interrupt Processor
External Interrupt Processor . . « « « « « » =«
Program Interruprt ProcessSOr . . « « « « « =« « &
Batch Monitor« ¢ o o ¢ ¢ o ¢ ¢ o o o o« o .
System Operator and Administrator Services . . .
System Operation Control . . . ¢ « .+ <« « o <« .
System Operation Command Processing
System Administration < ¢ . ¢ . . .
Accounting Services 4 4 e o s .
Cormand ROUtines .« & ¢ ¢ o ¢ ¢ o o a o o o = « =
Task Management Routines
Data Management Routines . . « s e e e« s
Object Mcdule Handling Routlnes e e e e e e .
Information Request Routines « . o« .
Command Creation Routines + <« +« . « =
Language Processor Control <« < . . .
Text Editor <« ¢ &« ¢ ¢ ¢ o ¢« o + - .
Program Control System - o .
Processing of PCS Statements and Commands o .
Processing of Immediate Statements
Dynamic Statement Processing . - « <« « « o -
PCS ComponentsS .« .« « &+ o o « o o o & 2 o« « =
PCS Interfaces with System Modules and Tables .
The Command Analyzer and Executor (CR&E) . .
User Control Routine« . <« « .
Intervene Routine . . « « « <« « 4« ¢ ¢« « « «

vi

.161
.162
-.163
.163
.166
.168

<171
171
.175
.179
.181
.183

.189
.189
.189
.189
-190
-191
.191
-191
.191
-192
.193
.195
.197
.198
-199

.200
.201
. 202
.203
.2048
.204
. 205
.205
. 205
.205
. 207
.207
. 207
.207
.208
.208
.209
.210
.210
- 211
.211
.211
.211
-213
.216
.216
-216
. 217
.218
. 219
.219
-219
.220
. 220
.223
.223
.223
. 223

Task Monitcr
Data Management
Virtual Mewory Allccaticn . .
Dynamic Loader . . « . .« .« .

Examples Of System Operation . .
Creaticn Of A Conversational Task
Nonconversational Processing . .
Remote Job Entry
RJE User Overview
RJE Control Card Processing .

PART III: LANGUAGE PROCESSOKRS AND

THE TSS/360 ASSEMBIER
Standard Output
Optional Output
System Envircnment . . . -
Organization Of The Assenbler
Syntax Analysis
Macro Instruction Processing

Assignment of Location Counter Values .

Program Reordering
Machine Instruction Synthesis
Postprocessing . . < « . . .
Assembler Functions
Phase I . « « o « 2 « « 4 o o =
Phase II . ¢ & o o o o 2 o =+ =
Phase III . . . & ¢ o o & « o «
Phase IV . . ¢ & ¢ o o« & o o @
Assembler Control Routine . .

TSS/7360 FORTRAN IV Compiler . . .
Organization Of The Compiler
Compiler Executive Routine . .
Phase
Phase
Phase
Phase
Phase

. = e s e e« e « 4 e e -

. - e e ¢ e e e s = e -

nNE W
.
.
.
.
.
.
.

- s &« ® - e e« 2 o « . -

TSS/7360 PL/I COMPILER AND CONTROLS
PL/I Contrcl « . .
PL/I Compiler

Okject Data Set Converter (ODC)
Pseudo Register Vector Data Set

LINKAGE EDITOR . . . « e s e =
Relationship To TSS/360 « e . e .
General Processing Requirements .
Library Calls
Program Modification
Programming Aids
Exrror Detection and NMessages
Linkage Editor Major Divisions .
Control Statement Processing .
Output Processing
Early-End Processing -«

AUXILIARY PROGRANMS . .« « « . . .
Time Sharing Support System . . .
TSSS Language « « « « o « « o = =
Utility Programs . « « « « « « =
System Generation and Malilntenance

System Generation . . .« « . . .

STARTUP . . .« o o « o o o « o .

* e e -
» o e -
« © e« e

(PRVDS)

System Generation Macro Instructions . .

.223
.223
. 223
.223

. 225
.225
.232
.234
.234
.234

.241

. 243
. 243
. 243
. 243
. 243
. 244
.245
. 2046
.246
. 246
. 247
.247
. 247
. 247
. 247
. 248
. 248

. 249
-250
. 250
.251
. 252
.252
.253
.254

. 255
. 255
. 255
. 256
.258

.261
.261
.261
.262
2062
.262
.262
.262
. 263
- 264
.264

. 265
.265
. 265
.271
. 271
271
. 271
.273

vii

APPENLDIX A: PROGR2M LOGIC MANUALS . v 2 « o o o o = s « « o o o« « = 275
APPENLCIX B: CONTROL BLOCK SUMMARY . . &« & ¢ o o o 2 o o « « « o« « o« <276
Resident Supervisor Control BlOCKS .« & v 4 ¢ 4 4 o ¢« ¢« ¢« o = « » « 2276
Virtual Memory Control BloCKkS . <« & &4 o o ¢ ¢ o 4o o o o « o » « « « 2278

APPENDIX C: FLCWCHART DIRECTORY « « & « o « o o o o o o o « « « « - .281

INDEX @ & ¢ 2 o 4 o o o o o o « o o = & o « o « = » a s 2 = o o = « 297

viii

FIGURES

Figure 1. System Devices Availakle for Assignment e e e e e
Figure 2. Inter-Task Relationships &
Figure 3. Relationship of the Resident Supervisor to Tasks
and the Real System Resources B T T e e e e e e s s
Figure 4. Relationship of the Task Mcnitor and System Service
Routine to Non-Privileged Machines and the Resident Supervisor
Figure 5. Example of Dynamic Address Translation
Figure 6. Dynamic Address Translation Process « . . .
Figure 7. Crossbar Interconnections of System components . .
Figure 8. Distributed-Switching Interconnection of System
ComponNENtS . o « « ¢ 4 4 4 4 e« 4 4 s s 6 e e e o ® + e = o <
Figure 9. Sample Simplex IBM Systen/360 Time Sharing System .
Figure 10. Sample Duplex IBM System/360 Time Sharing System .
Figure 11. A Sample Relationship Among Processors, Storage
Elements and Prefixed Storage Areas (PSAS) . . ¢ ¢ + « « « o &
Figure 12. Prefixed Storage Area . . .« . &« ¢ « o « « « o o +
Figure 13. PSW Formats <« o & & ¢ 4 ¢« o o o o o« +» o » =
Figure 14. TSS/360 Program Structure <« ¢ ¢ ¢« « o « =« «
Figure 15. Resident Supervisor Component Structure
Figure 16. Interrupt Storage Area (ISA) Schematic Diagram . .
Figure 17. Compariscn of Standard, Extended, and Virtual PSW
FOrmats .+ « o ¢ o o o o 4 a4 o o o o a 2 2 o o o 4 « o 2 = o o
Figure 18. Main Features of a Programmed Interruption
Figure 19. Schematic View of the Scan Table
Figure 20. Interrupt Processing General Flow « . . .
Figure 21. RTAM System Control Block Relationship
Figure 22. RTAM MTT Control Block Relationship
Figure 23. RTAM Application/System Control Block Relatlonshlp
Figure 24. Summary of Data Management Macro Instructions and
Data Set Organizations . . e 4 e e e & o o « = = . e e s =
Figure 25. Relationship Among RESTBL, Virtual Memory, and Main
Storage « e e e e e e e e e . . . - e e e .
Figure 26. Input/Cutput Request Ccntrol Elock (IORCB) . e e .
Figure 27. cCatalog Index Structure Hierarchy
Figure 28. Catalog Member ¢ . ¢ ¢ ¢ o o 4 4 o 2 o o
Figure 29. Format of an Okject Program NModule
Figure 30. TCata Event Control Block (DECB) . <« . . . « « + « .
Figure 31. <LCata Control Block Takle (DCB) « « . . .
Figure 32. Jcob File Control Block (JFCB) « . « « « .
Figure 33. A General Flow of Open Processing e e e e e e ..
Figure 34. ©Data Flow During Open Processing . . « . « « « « =
Figure 35. C[Cata Extent Block (DEB) « « « ¢ ¢ « « « .
Figure 36. CLOSE ProcessSing . .« o« « v o o o « o = o o s o = =
Figure 37. LDLDEF and OPEN Processing e e e e e e
Figure 38. BSAM Read Walkthrough (Part 1 of 3) e e e e e e .
Figure 39. Overall Processing of Read Request
Figure 40. TAM IORCB Generation .+ « « « « «v 2« o o o o « « « =
Figure 41. CHECK Macro Processing « e e e e
Figure 42. Resident Supervisor Task Monitor Synchronous i/0
Flow (Non-Terminal) o <« & 4« o ¢ & ¢ o 4 ¢ o o o« o« =
Figure 43. Format E DSCB . . « « & o o « 4 o o o« o = o 2 « + =
Figure 44. VSAM Buffer Page After Processing of First Locate
Mode PUT . & & o o o o o « o o o o = 2 o = o s s s o« « = =« o«
Figure 45. VSAM Processing « .« « « « o « o « o = o o o o o« =« =
Figure 46. Schematic of VAM Routines . . . « « e e e e e .
Figure 47. Appearance of the Buffer After the becond PUT Macro
Figure 48. BAprearance of the Buffer After the Third PUT Macro
Figure 49. VAM Format for the IBM 2311
Figure 50. Track Formats for Page-Size Reccrds on Symbolic
Devices No. 7 —=— 2311 Disk Pack - <« « « 4 4 o ¢ o o o o « o = =
Figure 51. Relaticnship Between Virtual Storage Buffer and
External Storage . . . « ¢ ¢ v e 4 e e e e e e 4 s e e s s e e

- 99
.101

.101
-102
.103
.104
.104
.105

.105

.106

-

Figure 52. Ccntents of the Scheduie Table Entry
Figure 53. TSI LiStS .« ¢ &« v ¢ v o o 2 o o o o s o « o o « =
Figure 54. Maintenance Of TSI LiStsS .+ ¢ v v ¢ o o o« o « o« =
Figure 55. Sample Schedule Table Entries +«
Figure 56. Scheduling Walkthrough « e - e s
Figure 57. Sample XTSI With Virtual Storage Allocatlon Tables
Figure 58. Sharing of Segments in the 24-Eit Versions of the
Model 67 ¢ v v @ @ ¢ 4 4 e e 4 4 e 2 e e e e e e e e e e s
Figure 59. Possible Scheme of Virtual Mencry Allocation . .
Figure 60. TCirect Access Device Volume Table of Contents
(VIOC) Format for SAM VOlUmES . « v ¢ o & ¢ o o o « o « = « &
Figure 61. Allocation of External Storage tc a SAM Volume .
Figure 62. Major Virtual Storage Symbolic Device Status Tables
Figure 63. Pathfinding ¢ & ¢ ¢ ¢ ¢ « o « o o « & «
Figure 64. Tape Switch Connected to Four Tape Control Units
with Two-Channel Switch Feature ¢ &« « ¢ « « & . .
Figure 65. Reverse Pathfinding Set Path
Figure 66. Task Dictionary Organization
Figure 67. Hash Table Processing - e e e .
Figure 68. Symbolic Posting Rules for Inserting DEF Into the
Task Dicticnary Hash Chains « ¢ ¢« « ¢ ¢« ¢ o« ¢ o« o & &
Figure 69. Dynamic Loader Symbol lockup Rules for Resolving
Synbols in Either Ekxplicit CALL/LOAD or DELETE Adcon Groups or
in External REFS e e e e e e e e e e e e
Figure 70. RLDs for a Sampie Module “ e e e e e e s e e e
Figure 71. Functional Dynamic Loader Allocation Fhase . . .
Figure 72. Diagram of Sample Module Usage Tabie
Figure 73. Unloading Example -- Before Unloading
Figure 74. Unloading Example —-- After Unloading
Figure 75. Example of External Sharing “ e e e e e e e o
Figure 76. Control Flow for Shared Data Set Program Loading
Figure 77. Relaticnship of Tables Involved in Internal Sharing
Figure 78. Relationship Between Relocation Tables and Resident
Shared Page Index . o o e h e e e e e
Figure 79. 1IBM 2301 Drum Synbollc Address Relatlonshlps .- .
Figure 80. Relationship Among Control Blocks Asscciated With
Drum Paging e e 4 s s = e s e e e s e e s e e e e e e e .
Figure 81. A Possible Channel Program Generated ky the Page
Drum Queue PYOCCESSOY =+ o o 2 = o a o o« o o o o o o« o« o o« o =
Figure 82. Resident Supervisor Paging Kelocation Exception
(Part 1 Of 2) . & v v v v e v v e v v 4 e e e e e e e e e
Figure 83. Resident Supervisor Time Slice End
Figure 84. General Format of DIAB e e e e e e e .
Figure 85. Disk Paging Example (Part 1 of 2) e e e+ e e e e
Figure 86. Error Data Recording Interface
Figure 87. Resident Supervisor Error-Handling Overview .- .
Figure 88. Initial Machine Actions on the Detection of a
Machine Error in a Duplex CPU System . . .« « o o« o ¢ o o« «
Figure 89. Flow of Contrel During Paging Error Handling . .
Figure 90. Task I/0 Error Handling . . . <« « « « « « o « o« =
Figure 91. Command SysStem . . « « « « ¢ o« &« o« o o o o « « »
Figure 92. BAn Overview of the Command Controller “ e e e .
Figure 93. Command Analyzer and Executor -- Operational Flow
Figure 94. Language Processor Control Cverview « e s e e
Figure 95. PCS Processing (Part 1 of 2) «
Figure 96. Resident Superviscr Task Initiation Flow (Initial
INterrupt) & 4 4 4 4 4 4 e e e e e s 4 e e e e e e e e e e
Figure 97. Resident Supervisor Task Initiatiocon Flow (Read
ReSponse) . . v o v 4 v o o e e o 4 « % e s e e e s e a « o
Figure 98. Conversational Task Example
Figure 99. Enabling RJIE LiN€ . « o « o « o o o« o o « « « =« =
Figure 100. RJE Line Preparation . . . c e e e e e e e .
Figure 101. RJE GET Macro and RJSTART Lard Processing . . .
Figure 102. Processing of LOGON and LCGCFF Cards . - « « . .
Figure 103. Termination of RJE Input Card
Figure 104. TSS/360 Assembler Interfaces with LPC
Figure 105. FORTRAN IV Compiler External Interfaces
Figure 106. Ccmpiler Component Organization

-111
-114
.114
.118
.119
.123

.125
.126

.131
.132
.135
.138

.139
.141
.l44
.145

147

.1u48
-150
.153
.156
.157
.157
.162
-167
-168

-170
-172

-173
-175

.176
.180
.182
.184
-190
.193

.194
-195
.197
.202
.203
.206
. 217
. 221

. 226

.227
.228
. 235
.236
. 237
.239
.239
. 244
- 250
.251

Figure 107. Program Language Controller Flow255
Figure 108. Overview of Compiler Flow « « <« . . .259
Figure 109. Relationship Between Control Blocks277

TABLES

Table 1. TSI List and Parameter Changes1l18
Table 2. Data Sets Used by PL/I Compiler256
Table 3. Compiler Logical Phases+ « « + . « 2257

SO——

PART I: GENERAL SYSTEM LCESCRIPTION

Time Sharing is a locgical extension of
the growth in sophistication and scope of
the computing environment since its Legin-
ning nearly two decades ago. In particu-
lar, the IBM Model 67 Tine Sharing System
serves as a logical extension for the pro-
blem solving needs that gave rise to
System/360 hardware and to IBM System/360
Operating Systemn.

The development of systems programming
has been a "“three-generation®™ process.
First, there was the development of trans-
lators, starting with basic assembly lan-
guages and advancing to the higher level,
problem-oriented languages and macro compi-
lers. The major objective of this develop-
ment was to reduce the time required to get
an operation to a computer.

The second generation consisted of mon-
itor systems such as 7090/70%4 IBSYS and
the 1410/7010 Operating System. These sys-
tems were designed to reduce the time
between machine room operations by, for
example, providing the ability to stack
jobs and minimizing dependence on the
machine operator.

IBM System/360 operating system is typ-
ical of the third generation of systems
programming. This can be referred to as
resource allocation. Its major objective
is to maximize the use of system components
during multiprogramming operations. These
resources are CPU time, channel time, main
storage, external storage, and programs.
Under IBM System/360 operating system, each
of these is scheduled and dispatched separ-
ately and asynchronously to satisfy compet-
ing demands.

Time Sharing can be described as the
concurrent use of the resources of a gener-
al purpose computing system by a large
number of users.

In common with other third generation
multiprogramming systems, the accent in
this definiticn is on "resocurce sharing”
rather than time sharing; because a general
purpose time sharing system must be
designed to share main storage, channel
facilities and direct access (disk and
drum) file space among a large number of
users. Strictly speaking, a single CPU
does not share time; it still operates on
only one task at any moment.

Unlike batch multiprogramming systems
whose goal it is to maximize throughput,
the goal of a time sharing system is to

INTRODUCTION

make it easier to use a computer while
rmaintaining a very high degree of utiliza-
tion of the computer system resources.

The reascns for wishing to make a com-
puter system easy to use are:

e To reduce the complexity involved in
rreparing a program for execution on a
computer. This allows scientists,
engineers, and students to explore
potentially rewarding bypaths which are
currently too much trouble to program.
This can be done by performing those
clerical tasks that are so much a part
of problem solving, such as routine
calculations, reducing and plotting
data, text editing, and information
retrieval.

e To allow peorle to interact with the
computer during program preparation and
execution. (In most conventional ap-
plications, the computer is used analy-
tically to provide numeric or textual
answers to problems that have already
been solved, i.e., reduced to
algorithms.)

e To bring the problem solver back into
an intimate association with the com-
puter, eliminating the inconvenience
and confusicn involved in dealing with
a computer through an intermediary, the
progranmer, thus making the answer
returned more often appropriate to the
question asked.

e To increase koth the guality of program
design, and the guantity of outgput,
from the professional programmer.

* To make it more convenient for the user
who has a limited knowledge of program—
ring to use the computer.

To make TSS/360 easy to use, the follow-
ing features are included:

Remote conversational terminails

An on-line command system

Conversational language processors

A conversational program execution

checkout subsystem

Cynaric execution-time program linking

s A cne-level store concept

¢« Protection and sharing for data and
programs

s Large cn-line storage for libraries of

programs and data

Introduction 3

To make efficient use of computer
resources, TSS/360 employs:

e System scheduled multiprogramming
e Dynamic program relocation
s Partition capabilities

Command Repertoire

The commands included in TSS/360 are
described in detail elsewhere and it would
serve no purpose to detail them here.
However, the following is an overview of
that repertoire: TSS/360 provides commands
for managing tasks, managing data, using
language processors, controlling program
execution, and tailoring the Command
System.

The TSS/360 task-management commands let
the user:

e Identify himself to the system

e End his task when he is through using
the system

s Switch a conversational task to noncon-
versational mode

e Initiate a separate,
conversaticnal task

independent non-
* Request any private devices needed for
a nonconversational task

e Cancel a nonconversational task he has
initiated

e Set a time limit for his task
* Restore his task tc its initial status

e Augment the system's initialization of
his task

The TSS/360 data-management commands let
the user:

® Create, modify, and delete data sets

e Edit data sets by context or by line
number

e Define partitioned collections of data
sets (i.e., libraries)

o Define members of a group of data sets
Ly relative generation numkers

e Catalog data sets

e Share data sets universally or only
with specific individuals

e Qualify sharing privileges by catalog
index levels and by individuals

The TSs5/360 language processors let the
user:

e Submit programs conversationally (i.e.,
at the terminal with line-at-a-time
syntax analysis)

¢ Submit programs from prestored data
sets

e Submit programs in TSS/360 Assembly
Language or in FORTRAN IV

e Optionally submit programs to the TSS/
360 Linkage Editor

e Specify a wide variety of language pro-
cesscr output options, including Cross-—
Referenced Symbol Listings and
Internal-Symbol Dictionaries

The TSS/360 program execution-control
commands and macro instructions let the
user:

* Dynamically 1link programs at execution
time (no prior link edit required)

o Specify rrogram library search
hierarchies

e Interrupt rrogram execution and return
to command-mode

e Nest program interruptions to any
desired level

e Dynamically insert and remove program
break-points

e Dynamically display the formatted con-
tents of data locations, instruction
locations, or CPU registers using
source language symbols or FORTRAN line
numbers

* Direct the output from dynamic disglay
or dump commands to the terminal or to
a data set

o Modify the contents of the user's
address space using either source lan-
guage symbols or hexadecimal addressing

s Restart an interrupted program at any
convenient location

¢ Estaklish logical (i.e., true or false)
conditions that allow or inhibit the
execution of other dynamic debugging
commands

e Utilize arithmetic operators, logical
cperators, and counters in constructing
dynamic debugging statements

The architecture of TSS/360 is composed
of the IBM System/360 Model 67 and a com-
prehensive programming system.

The logic of this programming system can
best be understood if the environment in
which it functions is first described.

This environment can be usefully
examined from three points of view:

e Operational environment

e Mutiprogramming environment
e Hardware environment

OPERATIONAL ENVIRONMENT

A conceptual overview of the operational
environment of Time Sharing System/360 is
presented in Figure 1 from the point of
view of an observer standing outside the
system.

The TSS/360 programming system consists
of application programs and service rou-
tines operating under the control of a
supervisory program. TSS/360 provides many
users concurrent access to a general-
purpose computing facility in a conversa-
tional mode, coupled with nonconversational
katch and bulk data handling programs. By
calling on the facilities of the systemn,
users can compile and execute programs,
manipulate data sets and perform a variety
of tasks.

This concertual overview characterizes
TSS/360 in terms of:

e The categories of system users

s The privilege and authorization classes
assignable to system users

e The categcries of tasks that may appear
in the system

¢ The sets cf programs that constitute
TSS/360

e The categories of storage and devices
that are supported by TSS/360

The TSS/360 concepts relevant to this
conceptual overview and the facilities
available to each category of system user
are described in Concegpts and Facilities,
and only those that have a special rele-
vance to system logic are reviewed here.

SYSTEM ENVIRONMENT

SYSTEM USLRS

The administrative structure of a typi-
cal TsSsS/360 installation involves five
types of people. These are called system
ranagers, system administrators, system
operators, system monitors, and users.

1. The system manager has overall resgon-
sibility for his installation. There
is one system manager for each
installation.

2. Each system administrator has adminis-
trative responsibility for a group of
users. He grants those users rermis-
sion to employ the system, and may
withdraw that permission when
necessary.

3. The system operator is responsible for
operaticn of the computer and its
peripheral devices. Although identi-
fied as one person to the syster,
normally three or more individuals
serve as system operator -- one for
each shift.

4. System monitors maintain the system
and analyze and evaluate system per-
forrance. System monitors are usually
customer engineers.

5. The user is anyone who employs the
system. For example, he may be a pro-
granmmer submitting a program for batch
execution, or an engineer typing in
requests from his terminal.

In addition to these five classes, an
installation may set up others, with the
functions of those new classes defined by
that installation. Note that any one indi-
vidual may carry out the functions of sev-
eral classes.

PRIVILEGE CLASSES

A privilege class designates the right
to use a specified set of command system
commands. The time sharing system is
delivered with five such classes defined,
kut provisions exist for the installation
to expand this number up to 26. The five
defined grivilege classes and the indivi-
duals designated are:

System Environment 5

T55/360 Auxiliary Programs

1. SYSBLD/STARTUP Prelude
2. SYSBLD
3. STARTUP

TS5/350 Independent Utilities

Privilege 'D* User Terminals

1. DASDI ;\ux‘Hioxy
2. Dump Restore poging g h—— .
3. Direct Access Device Dump umis
4. Mod 67 Core Dump
5. Error Recording Edit Print (ERFP)
§ Standard
Auxiliary / rer 1
| Paging P
J— L Disk (s} //
Ve
A
\\ s
o Public] ’l
VAM J% = ,
| Volume(s)
\ Other
—e /,/I N — Nanconver-
i : sational Tasks|
Auxiliary | g
Control i
Volume | System
;,(P“bly - boreh \ Monitor
o) e Monifor |
{ e Task !
N P)/ P :
- yd N System e
7 Prgmr Adminste
Contral P st
Volume e e
N, / //)
N y
—__~ .
// { System
/" Main Operator Manager
// Task (MOT) Task
/ I
/ onversational
Privileged /rriual Memory
) Rosident Superyisor P .
o Administer 4
""""" Terminal .
MOT Communication P pemne)
Request Key
TN
(o)
1 =)
Main-Cperotor Begjs)
Terminol
Figure 1. System Devices Available for Assignment

Priv E
User
Terminal

Standard
User N

Tﬂ.pe Devices

9 Track

7 Track

Unit Record Devices

Card
Reader(s)

Card
Punch(es)

Printer(s)

Page of GY28-2009-2, issued September 15,

Privileqge Class Individual Designated
System manager
System administrator
System monitor
System operator

MTT administrator
User

(ol I R

The commands available to privilege
classes F and B are described in Manager's
and Administrator's Guide. Commands avail-
able to privilege class A are described in
Operator's Guide. The commands available
to privilege class D are described in Com-—
mand System User's Guide. The privilege E
commands appear in IBM System/360 Time
Sharing System: System Programmer's Guide.
The privilege class T commands are
described in MTT Programming and Operation.

If anyone enters a command that is not
available to his privilege class or
classes, the system ignores the command and
issues a diagnostic message. There are
certain commands that are available to more
than one privilege class.

AUTHORIZATION CODE

An authorization code designates the
right to use a specified set of system pro-
grams, privileged SVCs, and macro instruc-
tions. The manager may specify an authori-
zation code for each individual he joins.
The code, however, has meaning only for
privilege class D and E individuals, and
designates one of the following:

1. U - a normal user; i.e., a user who
has no direct access to system
programs.

2. P - a system programmer, who has
access to certain system programs
and some privileged SVCs and macro
instructions.

3. O - a privileged system programmer,

who has access to all relevant
system programs, SVCs, and macro
instructions.

The system administrator may specify the
authorization code for a normal user or a
system programmer. Only the system manager
may designate a privileged system programm-
er. A system programmer may be joined more
than once in order to be able to operate at
different times under different authoriza-
tion codes. For a complete description of
the capabilities permitted to system and
privileged system programmers, see System
Programmer‘'s Guide.

1970 by TNL N28-3146

TASKS

An operating system in which only one
program at a time is executed needs rela-
tively simple controls and concepts.
However, in a multi-programming or time
sharing environment, several programs may
operate concurrently. The concept of
"task"™ is introduced to provide for the
orderly management of programs in this
environment. For example, the association
of a priority with a program would be con-
fusing because the same program may be
serving several tasks. Therefore, a
priority is associated with a task instead
of with a program. In TSS/360, a task may
be described as an individual work require-
ment. For example, a task may be a termin-
al session in which a user compiles and
executes two separate programs. Another
example of a task is the compilation and
execution of a program in the nonconversa-
tional mode.

A single task may call for the succes-
sive operation of several independently
named programs. Also, a single program may
be shared. That is, it may be used concur-
rently in support of two or more different
tasks. Furthermore, a system user may have
one conversational task and perhaps several
nonconversational tasks active in the sys-
tem at any one time.

Externally, a task is identified by a
Task Identification Number (TID) or by a
Batch Sequence Number (BSN).

Internally, the Resident Supervisor
creates a Task Status Index (TSI) which
contains the TID and a description of the
task's characteristics and resources.

The actions that may result in the crea-
tion of a Task Status Index are:

®» The LOGON command entered from a
terminal

ASNBD command

PRINT command

RT (read tape) command

EXECUTE command

WT (write tape) command

PUNCH command

STARTUP Routine (creates the Main
Operator Task)

There are two types of tasks: conversa-

tional and nonconversational

Conversational Tasks

A conversational task is characterized
by a user communicating with the system
through a terminal. The user can enter his
communications through the terminal key-
board or through the terminal card reader
if one is available. Before a user can

System Environment 7

Page of GY28-2009-2, issued September 15,

communicate with the system, he must have
been granted access by a system administra-
tor or system manager.

To begin using the time sharing system
in conversational mode, all individuals,
except the main system operator, must
validate their authorization to use the
system by means of the LOGON procedure.

The user dials up and presses the data
button on the Data-Phone. Entry of the
LOGON command from the terminal then
initiates the creation of a conversational
task.

As the user is identifying himself via
his LOGON parameters, the system compares
these parameters with those set up for him
by a JOIN command previously issued by his
system manager. After successful comple-
tion of LOGON, an underscore and backspace
is issued at the user's terminal and the
user is invited to enter his first command.

Immediately after the LOGON command rou-
tine has validated a user and before con-
trol is returned to the terminal, TSS/360
automatically invokes the ZLOGON command.
As initially supplied with TSS/360, ZLOGON
is a "null" command -- it does nothing.
However, either an individual or his
installation may redefine the ZLOGON com-
mand to perform any functions to augment
the initialization of the user's task. For
instance, further protection measures can
be applied at this time, or a particular
subsystem can be automatically invoked at
this time. Thus, "null" commands are con-
ceptually similar to the "user exits" fre-
quently associated with general-purpose
utility programs.

Each conversational task has a separate
system input stream (SYSIN) and system out-
put stream (SYSOUT). The system input
stream contains the sequence of commands
issued by the user. The system input
stream can also include data dynamically
supplied to user-written programs. The
system output stream consists basically of
system messages. However, it may also
include messages from user-written programs
or actual output data to be printed at the
terminal. A terminal therefore serves as a
combined SYSIN/SYSOUT device.

As an individual enters his commands (by
typing them on his keyboard or by feeding
them in punched-card form through the ter-
minal card-reader) he becomes engaged in a
dialog with the system. In general terms,
he is told of the actions taken by the sys-
tem in response to each command and, when
necessary, he is prompted for additional
non-defaultable information needed to com-
plete an action, is informed of errors (if
his command entry is either incomplete or

1970 by TNL N28-3146

incorrect), and is told of the options he
may exercise in response to an error. Spe-
cial care has been taken to make the types
ocf options an individual may exercise
appear consistent for all commands. Noth-
ing, for example, is more frustrating to a
user than to be required to resubmit an
operand with delimiters in one situation
and without delimiters in another.

The conversational task is normally ter-

minated by the user issuing a LOGOFF or
BACK command.

Nonconversational Tasks

There are many applications where dynam-
ic communication with the system is not
required. For such applications, noncon-
versational tasks can be set up.

Nonconversational tasks are just 1like
conversational tasks, with the exception
that the system can not directly converse
with the user. However, the user can name
a data set from which the system will
obtain data whenever a response from a ter-
minal would normally be required.

When a nonconversational task is
executed, commands are taken from a
command-procedure data set to direct pro-
gram execution. Thus, the command proce-
dure functions as the SYSIN for the noncon-
versational task. As such, it can also
contain data required by the nonconversa-
tional task.

Most commands that can be entered from a
terminal can also be invoked as macro
instructions in programs or called from
executing programs.

To minimize setup time, nonconversation-
al jobs may be grouped prior to run time,
and are made available via one input unit.
For example, those nonconversational jobs
requiring input from cards are grouped
together by the Main System Operator and
entered through the card reader.

To start the processing of input cards,
the operator must first have created the
BULKIO task. This could have been done at
startup time oxr subsequently by means of
the ASNBD command. At the same time the
reader would have been added to the TSDL of
the BULKIO task. Assuming that these
operations have been performed, the opera-
tor need only load the cards in the hopper
and start the reader.

When the reader is started, the asynch-
ronous interrupt results in the activation
of the BULKIO task which accomplishes the
reading of the cards. If these cards con-
tain a LOGON and a LOGOFF command, a SYSIN

Page of G¥28-2009-2, issued September 15, 1970 by TNL N28-3146

data set is created and the BULKIO task
issues a request to execute the data set.
When the Batch Monitor receives the requ-
est, it assigns a batch sequence number to
the SYSIN.

The BULKIO task is unique in that it can
recognize two types of data sets on card
input. One type, signaled by a DATASET
control card, is written into direct access
file and cataloged. The other, which
starts with a LOGON command and ends with a
LOGOFF, is also written into direct access
file storage and cataloged. BULKIO, addi-
tionally, will send a request toc the Batch
Monitor to initiate a new nonconversational
task.

Optionally, nonconversational or batch
jobs may be entered in EXPRESS or CONTROL
mode. In EXPRESS or CONTROL mode (the
terms are synonomous) several user jobs are
combined and processed as one task. The
total job stream is delimited by an EXPRESS
control card and an END control card. Each
user job or subtask is delimited by the
LOGON and LOGOFF cards but full logon pro-
cessing occurs only for the first subtask
in the stream and full logoff processing
for the last subtask. Logon and logoff
processing for other subtasks in the stream
consists only of minimum task cleanup and
resource control and accounting.

Operation in EXPRESS mode precludes the
creation of data sets by means of the DATA-
SET control card. Any job requiring data
sets while executing in EXPRESS mode can
have the data sets created for them before
the EXPRESS mode is entered.

EXPRESS mode also precludes the execu-
tion of jobs requiring private devices.

The actual processing of a job {(such as

a nonconversational FORTRAN compilation) is
thus performed in another nonconversational
task. The data set just read in will serve
as SYSIN for the new task. This task is
initiated by the Batch Monitor, assuming
that a system maximum for such jobs has not
been reached and the necessary system faci-
lities are available.

Each nonconversational task has a corre-
sponding SYSOUT. This SYSOUT must be
printed at the completion of each job.
SYSIN data set created by BULKIO is
assigned a data set name consisting of the
USERID and the symbol SYSInnnn where nnnn
is a unique identification number. The
SYSOUT print is requested by the system via
the PRINT macro during LOGOFF processing
for the task. The PRINT macro, in turn, by
means of the Bulk 1/0 Preprocessor routine,
requests the Batch Monitor to inform BULKIO
to print the SYSOUT. A PRINT task for a
private data set is the only nonconversa-

The

tional task that does not require its S¥S-
OUT to be listed because this would result
in an endless loop.

In addition, any job requiring addition-
al output on private unit record devices
(such as Assembler output listings)
requires another nonconversational task.
This type of output to public unit record
devices is performed by the BULKIO II task.

An overview of this relationship is pre-
sented in Figure 2.

SYSTEM PROGRAM STRUCTURE

Any control system performs two general
categories of functions: (1) it provides
the user with programs of general applica-
tion, such as compilers and link editors,
and (2) it provides services that allocate
to operating programs the resources they
require.

Most installation programmers may ignore
the problem of resource allocation. From
the point of view of the problem program-
mer, his own program will be executed using
all those resources that he demands and,
apart from restrictions and conventions
imposed by the computation center, he is in
no way limited as to what resources he can
ask for.

It is primarily the systems designer and
systems programmers who are concerned with
defining the algorithms that apportion the
limited real resources of the system, such
as storage, devices, channels, control
units, and even CPUs, among the operating
tasks whose aggregate demand for resources
may greatly exceed the amount of real
resources available.

The intent is to enable the average user
to work with an abstraction of the computer
whose appearance is much simpler than the
real computer.

ASNBD
Command

Ta
C a7
(B |
4 1

Main Operafor/ == ==
Batch Monitor !

Bulk 1/O li
Task prints
Assembler SYSOUT

Bulk 1/O
Task {B}

Task {A) I r
' l Note: MNot a new Task
2 | i
2
r [
r ! |
Print Optional !
Assembler Assembler - 3
autput Task (D) Task {C) ——
Request from user
Figure 2. Inter-Task Relationships

System Environment 9

Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146

Such abstractions are known as virtual
machines or virtual computers. The idea
behind virtual machines is not new, being
the essence of all programming systems
which tend to mask the real computer from
the programmer. However, as computer
operation becomes more complex, the virtual
machine concept becomes increasingly
important.

A virtual computer is an illusion,
created by a combination of hardware fea-
tures and programming systems.

A particular combination of hardware
components and programming systems may be
called a "level"™ of virtual computer. The
proportion and sophistication of hardware
components and programming systems used in
creating levels of virtual computer and the
degree to which any lower level is aware of
higher levels may vary widely.

Within TSS/360 there are five levels of
virtual computers or levels of abstraction.
To each level, those levels below it appear
as "hardware."

Level 4 is created when users deal with
TSS/360 through the command system and lan-
guage processors. Thus, for instance, it
may appear to a user that he is dealing
with a "FORTRAN computer.”®

Level 3 is the environment in which the
language processors and user-written pro-
grams operate. This environment is defined
as operating in the hardware problem state
and the software "nonprivileged" or "user”
state. A program operating in this level
may address only that portion of the virtu-
al storage assigned to his task that is
assigned a user hardware storage protection
key. It may execute any non-supervisory
machine instruction, but only a restricted
subset of the supervisor calls (SVCs)
defined in TSS/360.

Level 2 is described as operating not in
the software privileged state, but in the
hardware problem state. A program operat-
ing at this level may execute any non-
supervisory machine instruction and all
supervisor calls (SVCs) defined in TSS/360.
Programs operating at this level are
assigned a protection key of zero, which
makes them capable of accessing any allo-
cated location in the task's virtual
storage. This key differs from the key
assigned to level 3 programs.

Level 1 is described as operating in the
hardware supervisor state (defined as
operating with bit 15 of the PSW set to
zero). Programs operating at this level
are capable of addressing all of real
storage and any I/0 device and are capable
of executing any machine instruction.

10

Level 1 programs are not addressable
from virtual storage and are not subject to
time-slicing. Most level 1 programs are
permanently resident in main storage.

Level 0 is the machine microprogram
which operates in a special read-only
storage which is not addressable by pro-
gramming in normal operation.

The terms privileged state and user
state deserve careful attention. Bit 15 in
the PSW determines whether the CPU is in
Supervisor or Problem state. In Supervisor
state all machine operation codes are
valid. In the Problem state an attempt to
execute any of the privileged operation
codes, (e.g., Start 1I/0, Load PSW, Set Sys-
tem Mask, etc.) will cause a hardware
interruption. The problem state is divided
into two software states - Privileged and
User. Neither of these states may use the
privileged operation codes.

Time Sharing System/360 is composed of
four sets of programs, each designed to
perform unigue functions:

* The Resident Supervisor

e Task Monitor and System Service
routines

¢ IBM-supplied problem programs
e Auxiliary programs

Resident Supervisor

The Resident Supervisor operates in
level 1 in the virtual computer hierarchy
and is responsible for allocating real sys-
tem resources and for performing services
in response to requests originating from
the tasks in the system.

Each task appears to the Resident Super-
visor as a virtual computer system. The
Resident Supervisor is generally unaware of
the fact that each of the tasks that it is
managing may, itself, comprise several
layers of virtual computer or program
hierarchy.

The status of each task is maintained by
the Resident Supervisor in Task Status
records which describe the task as a virtu-
al computer system. This includes informa-
tion describing such resources as the vir-
tual storage and symbolic devices assigned
to the task.

This relationship of the Resident Super-
visor to tasks and real system resources is
depicted in Figure 3.

The Resident Supervisor is permanently
resident in core storage after startup.

VIRTUAL COMPUTER SYSTEMS

Task 1

Task 2

Task N

e —— — —

Requests for Supervisor Services and Real System Resources

HARDWARE INTERRUPTIONS

} Queve tosk requests for Supervisor Services and Real System Resources 5

RESIDENT SUPERVISOR

] Allocate Real System Resources to the Enqueued Requests)

REAL COMPUTER SYSTEM 1

[
| Centrai' Main Auxiliary
| Processing

8 Storage Storage
I Units

Control Units Devices

Channels !

Figure 3.
Resources

The Resident Supervisor is nonpageable;
that is, it is not transferred back and
forth between a paging device and main
storage. The Resident Supervisor is nonre-
locatable. Instructions within the Resi-
dent Supervisor have operands which are
main storage addresses, not logical
addresses. The Resident Supervisor
operates in the Supervisor state; that is,
the Resident Supervisor may execute privi-
leged instructions. No location within the
Resident Supervisor may ke addressed by a
program operating in virtual storage,
because the result of dynamic address
translation of virtual storage addresses
will never be a main storage address within
the Resident Supervisor.

The only entry to the Resident Supervi-
sor is through a hardware interruption.
The Resident Supervisor is not time sliced.
Requests for Resident Supervisor services
are represented by entries in queues. The
Resident Supervisor runs until it can find
no more work; that is, all the queues have
been examined and emptied out if possible.

Relationship of the Resident Supervisor to Tasks and the Real System

when there is no more work that can be pro-
cessed, a task is selected to be placed in
execution.

Task Monitor and System Service Routines

This section discusses the reasons for
including a Task Monitor, a set of system
service routines, and a privileged state in
TISS/360.

The basic function of a control program
is tc control the real system and to pro-
vide services to tasks. The control gpro-
gram may itself be either entirely resident
or nonresident. A nonresident contrcl pro-
gram cculd have been employed by TSS/360 to
provide both task and system oriented serxr-
vices for each task that gains control.
However, such a control program is ineffi-
cient because the time spent in reading
sections of the control program into main
storage generally would not be overlapped
by processing.

System Environment 11

On the other hand, a resident control
program that provides toth task and system
services would permanently occupy a very
large amount of main storage. Some of this
storage would be occupied ky infrequently
used routines.

In either of these cases, it would be
difficult to modify the system without
simultaneously making obsolete many of the
object programs contained in the system's
libraries.

There are many possible resolutions to
the question of which programs are to be
resident and which are to be non-resident.
In a paging system, an additional division
is possible, for a program may operate
using virtual addressing and still be
locked into main storage through an appro-
priate use of the main storage allocation
takles.

A resolution of this dilemma is to
separate contrcl program functions into a
resident portion and a nonresident portion.
In TSS/360 this resident pocrtion is the
Resident Supervisor, which creates a multi-
processing, multiprogramring environment
and provides services for the system as a
whole. The decision to make the Resident
Supervisor operate in the non-relocation
rmode was based upon the efficiency result-
ing from eliminating dynamic address trans-
lation overhead and upon the increased pro-
tection resulting from the fact that no
location within the Resident Supervisor may
be addressed by a channel operating upon a
task I/0 request or a program operating in
virtual storage. On the other side of the
coin, the decision to operate the Resident
Supervisor in non-relocation mode slightly
increases the complexity involved in making
certain portions of the supervisor non-
resident.

The nonresident or pageable portion con-
sists of a collection of modular virtual
storage service routines under the control
of the Task Monitor. This portion provides
task oriented system services; that is,
those services that are not immediately
dependent upon the hardware resources of
the system.

The Task Monitor and most task service
routines can each be separated intc a pro-
cessing part that is common for alil tasks
and a part containing data that is unique
to each request for service. B2all tasks
share the comron processing parts {(reen-
trant code). Each task operates with
unique copies of the data parts of service
routines which the task invokes.

The Task Monitor and its associated ser-

vice routines act as if they constitute a
Resident Supervisor for each task. That

12

is, they process requests for task services
(such as data management services) and
requests for virtual system resources (such
as virtual storage or symbolic devices).

This analogy is quite extensive. For
example, the Task Monitor receives control
through what appears to it to be a hardware
interruption complete with simulated old
and new Program Status Words and gives con-
trol to programs in the User state by
executing a macro instruction that is the
equivalent of a ILoad PSW instruction. In
both cases, this illusion is created by the
Resident Supervisor. Figure 4 shows sche-
matically the relationship between the Task
Monitor and the Resident Supervisor in
creating this illusion.

The analogy which compares the interface
between the Resident Supervisor and the
System/360, cn the one hand, and the inter-
face between the Task Monitor and the Resi-
dent Supervisor on the other, is guite
extensive, but it is not exact.

Because programs operating in virtuail
storage may use full-word virtual
addresses, it was not possible to make the
Resident-Supervisor/Task-Monitor interface
look like a System/360 Model 65. It would
have been possible to make the interface
look like a System/360 Model 67 so that,
for examrle, the Task Monitor could run as
a stand-alone program on a Model 67.
However, because the Model 67 is not
entirely compatible with other System/360
CPUs when operating with an Extended PSW,
it was felt that there was an advantage in
customizing the interface to facilitate,
among other things, internal sharing of
programs and data and intertask
communication.

This design has led to the creation of a
software state called the Privileged state
(level 2). The Task Monitor and most Sys-
tem Service routines operate in the Privi-
leged state. The Privileged state was
created tc prevent the Task Monitor and
System Service routines from accidental
destruction and thus to prevent the
ordinary system user (authority code U}
from interfering with other users on the
system. Programs belonging to the oxrdinary
system user execute in the nonprivileged
state (level 3).

The system functions that support the
privileged state are:

¢ In a user's virtual storage those pages
that are allocated to privileged rou-
tines and their associated tables and
work areas are assigned a storage pro-
tection key that differs from that
assigned to problem programs (i.e.,

Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193

Virtual Storage

Task N

Task 1 Task 2

Hardware

Interruptions
P @'—P{ Perform Task Services and Allocate System Resources ‘
T [}
Supervisor Call
Hardware Interruptions

i)
Level 1

Tosk 1 Task 2 Task N
User 2 User 2 User _él;-')
o ees i e
Programs =z Programs .z Programs 2
& e Z Level 3
- — — —— — e iz
1
[
S
z
/ Requests for Task Services and Virtual System Resources
! |
| |
Request Supervisor Services and Real System Resources

! t
| o
| o o — — — — @
| o
. e .) . 2L

Task Monitor and | @ | Task Monitor and JE, Task Menitor and = Level 2

@ Service Routines 21 Service Routines 2l Service Routines &

| !

! |

1 1

3
J

Resident Supervisor

1
J

"\

[&— ENTER Supervisor Call

Figure 4. Relationship of the Task Monitor and System Service Routine to Nonprivileged
Machines and the Resident Supervisor

level 3 programs). This key will cause grammer requests virtual system ser-

a storage protect interruption if the
privileged part of a task's virtual
storage is addressed by a problem pro-
gram. Privileged routines, on the
other hand, can address all of the
task's virtual storage.

The Dynamic Loader will not treat
modules from a problem programmer's
library as privileged routines. 1In
this fashion, a problem programmer can-
not cause his own version of a system
routine to be loaded and executed as a
privileged routine.

A problem program normally requests
system services through Supervisor
Calls (SVCs) which are contained in
macro instruction expansions. In TSS/
360 these macro instructions collec-
tively are called the Extended Instruc-
tion Set. Many TSS/360 Supervisor
Calls affect data in system tables.
Erroneous information in system tables
may cause incorrect system operation.
Therefore, when a TSS/360 problem pro-

vices his macro instruction issues an
ENTER SVC. In response to the supervi-
sor call, the Resident Supervisor will
create a simulated interruption that
will cause a privileged system service
routine to be invoked. The privileged
routine can then determine if the
user's request is valid. If it is
valid, the privileged routine may then
invoke other TSS/360 supervisor calls
while in the process of performing ser-
vices. If the request is not valid,
the request will be rejected, thus pre-
venting a nonprivileged routine from
causing incorrect system operation.

The reason for communicating between
problem and privileged state via the Resi-
dent Supervisor is that only the Resident
Supervisor can execute the privileged
instruction that alters the PSW Protection
Key field.

The virtual storage system services pro-

vided by TSS/360 fall into two general
categories: (1) shared by all tasks, and

System Environment 13

Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193

(2) located in independent tasks. The dis-
tribution of system services between these
two categories has been made on the basis
of considerations such as frequency of use.
When a function is shared by all tasks, a
delay may occur while one task awaits the
resetting of a programmed interlock set by
another task. When a task uses a function
located in a separate task, a delay may
occur if the task must await the completion
of that function.

System Services shared by all tasks are:

Data Management services

Dynamic Loader services

Catalog Management services

Virtual Storage Allocation

External Storage Allocation

Command System

Program Control System

Private Device Management services
Servicing of task-oriented interrupts by
the Task Monitor

The System Services that operate in
independent tasks are:

Main Operator Control Program
Batch Monitor

Bulk I/0 service routines
System Edit program

On-Line Test System

IBM-Supplied Problem Programs

IBM-supplied problem programs also
reside in virtual storage and are time-
sliced. The only major distinction between
these programs and programs written by any
nonprivileged user of the system is that he
cannot modify these programs (as he can his
own programs); he can only transfer control
to them.

IBM-supplied problem programs are:

e Language processors, such as the FOR-
TRAN Compiler and the Assembler.

e Linkage Editor, which allows users to
combine and delete portions of program
modules.

Auxiliary Programs

These programs, with the exception of
the Time Sharing Support System, run as
stand-alone programs and are primarily
designed to aid in the creation and main-
tenance of a running TSS/360.

Time Sharing Support System

TSSS runs with minimum TSS/360 support
and provides system analysis facilities for
the system programmer.

14

Utility Programs

Direct Access Device Initialization
{DASDI)

Dump and Restore a direct access device
[DUMP/RESTORE]

Print the contents of a direct access
device [DADUMP]

Stand-alone Core Dump

System Build Program

SYSBLD is a resident, standalone utility
which operates outside the TSS/360
environment.

STARTUP Program

Startup performs the initial allocation
of main storage and, thereafter, the Super-
visor controls its allocation (see "Main
Storage Allocation").

System Storage

The three categories of storage are main
storage, auxiliary storage, and external
storage.

Main Storage: Main (core) storage is the
only storage in which programs can be
executed. It is initially allocated in
4096 byte units called pages, although pro-
grams (including the Resident Supervisor}
may subdivide pages.

Auxiliary Storage: Auxiliary storage is
storage that is set aside primarily for the
temporary storage of main storage pages
during system operation.

The devices used for auxiliary storage
are specified during System Generation and
must be on-line during TSS/360 operation.
The devices may be either IBM 2301 drum
storage or IBM 2311/2314 disk devices and
fall into two categories that form an
auxiliary storage hierarchy during normal
operation: primary paging device and
auxiliary paging devices.

Auxiliary storage is arranged in a modi-
fied virtual access method format and con-
tains a bit directory, which describes the
availability of each page.

Auxiliary storage is allocated initially
by Startup and thereafter by the Resident
Supervisor (see "Auxiliary Storage
Allocation").

External Storage: External storage falls
into three categories, which are designated
during system generation and system start-
up: public, private, and system.

Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146

Public Storage

Public devices are those devices set
aside for public storage contained on publ-
ic volumes.

Public devices are direct access devices
which are defined at system startup time.
Most direct access storage devices, such as
2311s, have removable packs. 1In TSS/360,
the number of concurrent users is much
greater than the number of separate volumes
available. Consequently, most of the
available direct access drives are desig-
nated as public storage devices; their
packs are not removed during normal system
operation. Each public device on the sys-
tem is made available to each user's task
when his task is initialized. Each public
volume is formatted to contain data sets
that can be processed by any of the Virtual
Access Methods (VAM).

Public storage contains only cataloged
data sets. These data sets may be private
or sharable. Public storage is allocated
by the External Storage Allocation system
service routines.

Private Storage

Private devices are devices that are set
aside for mounting private volumes. Priv-
ate volumes need not be on-line when
requested. The use of private volumes,
with associated mounting and demounting,
plays a minor role in TSS/360 operations.

A private volume may be formatted to con-
tain data sets that can be processed by
either the Virtual Access Methods or the
Sequential Access Methods.

Private devices are requested by the
conversational user through the DDEF com-
mand and by the nonconversational user
additionally through the SECURE command.
Private volume mounting is requested by the
DDEF command. The allocation of private
devices and the management of requests for
private volume mounting and demounting is
performed by the Device Management system
service routines (see "Device Allocation®).
Storage allocation within volumes is per-
formed, when necessary, by the External
Storage Allocation system service routines
(see "External Storage Allocation®).

Private storage may contain cataloged or
uncataloged data sets. These data sets may
be private or sharable (see "Sharing®™ for
qualifications).

System Storaqge

System storage consists of two devices
designated during System Generation as con-
taining those system data sets required for
starting up and running TSS/360. The two

system volumes are Initial Program Load
(IPL) Control Volume and Auxiliary Control
Volume.

Both volumes must be in a VAM format.
After System Generation, the contents of
these volumes may be modified only by the
SYSBLD (System Build) program, or System
Maintenance. Unused space on the Auxiliary
Control Volume is available for allocation
as part of the system's public storage.

The contents of these two volumes are as
follows:

IPL Control Volume: The first three rec-
ords of track 0 must contain the IPL Con-
trol Record, TSS/360 Startup Prelude, and
the Volume Label. The system data sets
that normally reside on the System Resi-
dence or IPL Control Volume are:

TSS*****, SYSCCB.GxxxxVyy (System Config-
uration Control Block) - A data set used
by Startup containing description of the
system configuration.

TSS****¥_, STARTUP.GxxxxVyy (System Start-
up Program) - A data set containing the
text of the Startup Program. Organized
as a partitioned data set, but with a
single member. Partitioned Organization
Directory (POD) is ignored by the Start-
up Prelude which reads in Startup (see
"System Generation and Maintenance®).

TSS**#%* , SYSBLD.GxxxxVyy (System Build
Program) - A data set containing the
text of the SYSBLD program. Organized
in a fashion similar to TSS.STARTUP (see
above).

TSS*#*%%#* RESSUP.GxxxxVyy (System Resi-
dent Supervisor) - A partitioned data
set whose members are the modules of the
Resident Supervisor. These modules are
link-loaded by Startup into available
main storage. Presence in this data set
is a necessary but not sufficient condi-
tion for such link-loading because
Startup will load only those modules
whose names are included in a special
member of RESSUP named LOADLIST and
which have not been loaded during a
STARTUP 1library search.

TSS***%*, SYSIVM.GxxxxVyy (Initial Virtu-
al Memory) - A data set consisting of
those system modules that are automatic-
ally provided for each user's virtual
storage at task initiation time. These
modules are link-loaded by Startup and
written onto the primary paging device.
Startup will load only those CSECTs
whose names are included in a special
member of SYSIVM named LOADLIST (see
"Initial Virtual Memory®").

System Environment 15

Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146

TSS**%+%, APGENX - A data set consisting

of commands to the linkage editor.

These commands cause the linkage editor

to replace skeletal control blocks built
by STARTUP with new versions containing

installation parameters defined by means
of SYSGEN macro instructions.

Auxiliary Control Volume: The system data
sets that will normally reside on the
auxiliary control volume are:

TSS**%*%,SYSCAT (System Catalog) - A
partitioned data set (one member per
system user) containing pointers to
cataloged data sets and information on
ownership and sharing privileges for
such data sets (see "Catalog").

TSS*#*%*, SYSLIB.GxxxxVyy (System
Library) - A collection of public
modules that are automatically eligible
for loading into each user's virtual
storage by the dynamic loader (see
"Object Program Libraries®).

TSS**%** , SYSMAC.GxxxxVyy (System Macro
Library) - An index sequential data set
containing definitions of the necessary
system macros to support normal nonpri-
vileged user assemblies (see "Symbolic
Libraries").

TSS***%%, MACNDX.GxxxxVyy (System Macro
Index) - data set that is an index to
TSS.SYSMAC (see "Symbolic Libraries®).

TSS***%% , ASMMAC.GxxxxVyy (System
Assembler Macro Library) - An index
sequential data set containing defini-
tions of all system macros not defined
on SYSMAC. This includes system macros
available only to system programs as
well as nonprivileged macros limited to
system programmer operations because of
their function. This data set must be
specified as the second macro library
when assembling system modules (see
"Symbolic Libraries®™).

TSS*#*% 4+, ASMNDX.GxxxxVyy (System
Assembler Macro Index) - A sequential
data set that is an index to ASMMAC (see
"Symbolic Libraries").

TSS***#*% USERLIB (System User Library) -
The user library for the privileged sys-
tem programmer user with identification
*TSS"™. A user library is created for
each authorized user of the system at
JOIN time and is organized as a virtual
partitioned data set.

TSS***%% _SYSUSE (System User Table) - An
index sequential data set containing the
user ID, password, charge number, con-
trol counts governing the limit of sys-
tem resources available to the user,

16

accounting statistics, and privileged
attributes for each currently authorized
user of the system. This data set is
maintained by the system administratoxr
JOIN and QUIT commands {(see "System
Operator and Administrator Services™ and
"Resource Allocation and Control™).

TSS****%,SYSLIB (SYSMLF) (System Message
Table) - An index sequential data set,
with keys identical to message numbers,
containing system diagnostic/prompting
messages.

SYSOPERO.SYSLOG.GxxxxVyy (System Opera-
tor Log) - A generation data group in
which each virtual sequential data set
contains a record of system-to-operator
and operator-to-system communications
for a startup to shutdown session. At
each startup, a new SYSLOG data set is
defined. Any extra SYSLOG data sets
(above a maximum of 10) will be erased.

MULTIPROGRAMMING ENVIRONMENT

The TSS/360 multiple access environment
differs from a conventional batch multipro-
gramming environment in significant ways.

In contrast to conventional systems
where work is performed on only a few tasks
in a specific period of time, and where
only one system input (SYSIN) need be
defined in a multiple access system at any
one time, many such tasks are concurrently
processed, and many such SYSIN sources are
defined.

Because of this environment, it is
essential that a time sharing system be
able to multiprogram effectively among a
large number of tasks.

The features that assist TSS/360 in mul-
tiprogramming among a large number of tasks
are time-slicing and dynamic address
translation.

TIME-SLICING

TSS/360 allows many users concurrent
access to the system by granting each user,
at frequent intervals, a portion of comput-
er time called a time-slice. During his
time-slice, the user has the resources of
his virtual computer made available to him.
Because these time slices occur frequently,
the user can generally operate as though he
alone is using the system.

The idea of providing users with inter-
vals of computer time one after the other
is not new. Conventional multiprogramming
systems allow a task to be active in the
system until it must wait for system

address segment 3, page 5, byte 256. At
the beginning of a time slice, the segment
and page tables which describe that user's
virtual storage will be loaded into main
storage by the Resident Supervisor. The
location of the first segment table entry
is stored into a special register, called
the takle register, by the Resident Super-
visor. This table register is one of 16
control registers provided in the NModel 67
hardware.

In the example in Figure 5, the table
register has been loaded with the numrber
8,192 (200016), rerpresenting the main
storage location of the beginning of the
user's segment table. The Dynamic Address
Translation (DAT) unit then locates the
segment table in main stcrage using this
address and, since we are searching for
segment 3 and each segment takle entry is
four bytes, the hardware can automatically
go to core lccation 8204 (200C;¢) to find
the location of the page table for segment
3. The example shows that the page table
is at main storage location 16,384
(400046). The DAT unit thus can go to
location 16,494 (400A,6) to find the fifth
entry. This is the entry for page 5 of
segment 3. The entry in the page table
shows the beginning of that page is in main

logical Address

3J 5! 256 f""‘

Segment Page Byte
Table
Register Dec Segment Table Hex
s 8196 2004
8200 2008
8204 16,384 200C
Simultaneous Page Table
Search 16,384 4000
16,386 4002
16,388 4004
16,490 4006 !
4008
16,492 256
16,494 12,288 400A mmgu—pp- 12,288
12,544
] _

Associative Register
ENE

Figure 5.

12,288 }

txample of Dynamic Address
Translation

stcrage location 12,288 (3000456). For byte
256 (100,6) of that page, the hardware has
only to add that to the main storage loca-
tion to find the actual data location 12,
544 (310036).

Figure 6 shows the general scheme of
dynamic address translation, which follows
the same logic as described in this
examgle.

In performing dynamic address transla-
tion, the hardware uses binary arithmetic.
Thus the finding of the third 4-byte entry
in the segment table, for example, involves
a binary shift of two rather than multipli-
cation by 4. In a similar fashion, fgage
table locaticns are found by a binary shift
of one, and the actual address is con-
structed simply Lky appending the displace-
ment to the block address obtained from the
Fage table.

Even though such binary shifts are emp-
loyed, it can be seen that this double
table loock ur would be time consuming if it
were necessary to do this for every
address. However, it is likely that once
having found the actual core location of
segmrent 3, page 5, the user's program will
reference this again, perhaps many times,
during the time slice. The full transla-
tion time of 2.1 microseconds then can be
avoided by making a "scratch pad memoran-
dum” of the fact that segment 3, page 5 is
actually located at position 12,288. This
remorandum is made in one of eight associa-
tive registers. The registers are termed
associative since they are content
addressed.

Fcr example, the next time the system
attempts to translate this address, the DAT
unit will kegin a simultaneous search of
all eight associative registers in addition
to the regular table search outlined above.
A successful search for segment 3, page 5
can ke accomplished in just 150 nanoseconds
regardless of which of the eight registers
might contain the address. In general, the
associative registers will hold the
addresses of the last eight translations
and a table lookup translation of logical
addresses referencing these pages will not
ke necessary.

Because instructions tend to be executed
in linear sequences, the Model 67 raintains
both a translated and an untranslated
Instruction Counter. Whenever the sequence
cf instructicns crosses a page boundary or
whenever a branch type instruction is
executed, the DAT unit is used to obtain a
wain storage address from the virtual
storage address in the untranslated
Instruction Counter. Otherwise, the main
storage address in the translated Instruc-
tion Counter is utilized, thus minimizing

System Environment 19

Table Register

Length Segment Table Origin

Asscciative Registers

Segment Page Block

Logical Address
Segment Page Byte
® !
Add -
Segment Table Page Table
o
Page Table Origin > Add Physical Block
Page Table Unchanged
Page Table @
i
{ Y Memory
Block Byte Address
Register
~_ Main Storage Address

Figure 6.

the time spent in translating the Instruc-
tion Counter.

The mapping of virtual storage to main
storage just described also permits the
relocation cf a program between time-
slices. 1In the Model 67 hardware, addi-
tional bits in the storage protection keys
provide the ability for the system to
determine whether pages have keen
referenced or changed. At the end of a
time-slice, all of the task's changed pages
are written out onto the auxiliary drum orx
disk. Both changed and unchanged pages are
also retained in main storage where they
may be overwritten should some other task
need more pages than the supervisor has
available. This paging coperation may take
rplace in reverse when a task®s new time-
slice begins. When a page that has pre-
viously been written out is returned to
core, there is no necessity for the page to
ke returned to exactly the same place it
was before. The page may ke relcoccated by
having the supervisor program post the new

20

Dynamic Address Translation Process

location in the task's page tables. In the
rreceding example, segment 3 page 5 may be
returned to wain storage location 24,576
rather than 12,288 and the supervisor has
cnly to change the entry for page S of seg-
ment 3 of the page table illustrated.

Thus, any future translations will marp
segment 3, page 5 into location 24,576.
Main storage thus becomes fragmented -- at
any one time holding a numker of pages from
several recently or currently active pro-
grams. However, the ill effects resulting
from main storage fragments of unusable
size is avoided, because fragments in main
storage, auxiliary storage, and external
storage are all of a uniform size.

Inrpiied by the above description of the
paging process is the ability of the system
to keer track of pages that have currently
keen written out to auxiliary storage or
that have never keen brought into the sys-
tem at all. Associated with each page is
an external page takle which, for each page

of the user's virtual storage, holds the
drum or disk address associated with it.
Thus, if page 5, segment 3 were to be writ-
ten out of storage location 12,288, the
associated external page table entry would
ke noted with the temporary drum or disk
location of that page. The page table
entry itself would be marked to indicate
that a good copy cf the rage may no longer
be available in main storage.

When the next time-slice begins and the
first reference is made to segment 3, page
5, the dynamic address translation
mechanism above would find from the page
takle that this page was not available. A
program interruption is then generated so
that the Resident Supervisor may take care
of the situaticn. The supervisor, in turn,
examines the external page table associated
with segment 3 to find the present location
of the page, and initiates a paging opera-
tion to bring that page kack into main
storage so that the task may proceed.

During this period of time the task is
said to be in "page wait" and another task
is given control of CPU, just as in a con-
ventional multiprogramming environment.
Page wait is actually just another kind of
170 wait. When the page is brought into
main storage, the page may be relocated as
previously described. With the completion
of the paging operation the task is now
ready to proceed again.

During the initiation of a paging opera-
tion, it may be found that the main storage
image of the referenced page has not been
overwritten or reassigned. In this case,
the main storage page is reclaimed by the
task and no page-in is necessary.

The technique of grouping pages into
segments has been used to provide:

* A convenient way of sharing programs orxr
data among tasks. A common page table
can be pointed tc by segment table
entries for several different tasks and
each such page table can be restricted
to be shared among different groups of
users.

e A way of reducing the amount of conti-
guous main storage needed Ly the relo-
cation tables. The Segment Takle must
reside in a contiguous block of main
storage, and each Page Takle must
reside in a contiguous block of main
storage. The Segment Table and each
Page Table, however, may reside in dif-
ferent blocks of main storage.

* A way of reducing the amount of main
storage required toc contain page
takles. The Dynamic Address Transla-
tion unit requires that a task's Seg-

ment Takle resides in main storage
while the task is executing. However,
the page tables for a task need not be
kept in main storage. A page takle for
a segment could be brought intc mwain
storage when a virtual storage address
within the segmwent is referenced.

e A convenient way to allocate a conti-
guous data area of unknown length.
Only the area at the beginning of a
segment need be allocated. Then data
and page tables can dynamically expand
and fill the segment as required.

A segment contains 256 pages. This
number of pages was selected in respcnse to
several considerations.

Since there are 4096 bytes in a page, 12
bits are required for addressing bytes
within a page. The remaining 12 bits of
the logical address may be divided between
segments and pages. Because data is trans-
ferred within the Model 67 and its Dynamic
Address Translation Unit in multiples of
four bits, the only possible choices in the
24-bit version are to divide the remainder
of the logical address into either 16 seg-
nments of 256 pages each or 256 segments of
16 pages each. Then the 32-bit version
would have a maximum of 4096 segments in
the former case and a maximum of 65,536
segments in the latter case. A large seg-
rent size minirizes the possibility that a
contiguous data area of unknown length will
grow tc exceed the space reserved. On the
other hand, a large number of small seg-
nments would act to increase significantly
the amount of main storage occupied by
tasks' segnent tables.

The former alternative was chosen; that
is, each segment contains 256 pages. Thus,
the 24-bit version has a maximum of 16 seg-
ments, and the 32-bit version has a maximum
cf 4096 segments. The way in which these
segments are allocated is discussed in
®"virtual Memcry Allocation.”

In summary, the virtual storage concept
of the Model 67 is implemented by a raging
nechanisn. This mechanism combines a hard-
ware device called the Dynamic Address
Translation Unit with programming in the
Resident Supervisor to map virtual stocrage
addresses into main storage addresses. The
rregramming also keeps track of the origin-
al or the temporary drum or disk locations
of each page and permits the relocation of
rages as they are written out and then read
kack in again. The net effect is tc ensure
that generally only the pages demanded by a
task are actually in main storage at any
cne time, and that many tasks may have such
pages in main storage at one time. The
entire paging mechanism is not apparent to
the programmer or user. He deals cnly with

System Environment 21

a virtual machine and is not directly con-
cerned with what the hardware and software
do to translate the virtual machine into
the real machine.

In a time sharing environment it is
expected that users will most frequently be
concerned with solving a problem easily and
will only infrequently be concerned with
improving the efficiency of object program
execution. Hcwever, fron the point of view
of efficiency, it is well to remember that
virtual storage is not the equivalent of
main storage in the sense that a program is
completely resident during its execution.
As the preceding example of dynamic progranm
relocation has shown, virtual storage is
implemented by an "automatic®™ or system
controlled overlay scheme kased on the
movement of page size fragments into and
out of main storage. Therefore, when effi-
ciency of execution is an important consi-
deration, the TSS/360 user must take into
account this characteristic of virtual
storage just as the user of a conventional
system must plan overlays for the efficient
execution cf large programs.

CONFIGURATICN

Configquration refers to the number and
interrelationship of the various components
in a computer system. The time sharing
system has been designed to operate in a
wide variety of configurations so that the
requirements of many different types of
installations may be satisfied. The simpl-
est type of installation may have only a
few users and it therefore requires only
one processor and a few input/output
devices. In such an installation, changing
processing requirements may be met by
increasing or decreasing the numker of pro-
cessors or storage units or input/output
devices. BAn installation having a large
number of users may require two processors
as well as several storage units and many
input/output devices. Changing processing
requirements in this case may cause the
number of processors, in addition to the
number of storage units and input/cutput
devices, to change. The interconnection of
system components has been designed so as
to make the Model 67 easily adaptable to
any required ccnfiguraticn. Configurations
may ke controlled by means of a config-
uration console as described in the section
on system partitioning.

Interconnection of System Components

A simrple intercconnecting structure for a
series of processing units and associated
storage units is the crossbar switch arran-
gement shown in Figure 7.

22

Storage Storage Storage
e s e I
l |
Processor l
| |
: x
' !
| ;
| !
| |
Processor T |
l i
-y - o 1]

Crossbar Interconnections of
System components

Figure 7.

Storage Storage Storage Storoge

CPU

CPU

Channel
Controller

R

Channels

Channel
Controller

Charnels

Cistrikuted-Switching Intercon-
nection of System Compcnents

Figure 8.

For the time sharing system, however,
the switching arrangement is not a centra-
lized switching point, but is distributed
among the varicus components that form the
system (see Figure 8).

The reasons for adopting the distributed
aprprcach are improved availability and fle-
xibility. A centralized piece of equigment
rerresents a crucial link within the sys-
tem, since 1its failure would cause the
entire system tc fail. It would be costly
of System Components to remedy this by dup-
licating equipment. The distributed
arproach is more flexible than the crossbar
approach and facilitates extension cf the
system by addition of more processors or
storage units.

The interccnnecting structure shown in
Figure 8 shows that the necessary switching
equipment is distributed among the system
components, central prccessor, channel con-
troller, and core storage units. Drivers
are added to the processcrs as required,
and the equipment needed for selection of
any of the processor bus systems is added
to the core storage units. Instead of the
single bus ccnnection (tail) of the simplex
system, multiple tails are provided for a
multiprocessing system. The design of the
circuits that select from among the tails
is such that if a storage unit should fail
(including power failure), the other
storage units connected to the storage bus
would remain operative. When the bus con-
trol unit within a processor fails, the
entire bus driven by this unit is, of
course, inoperative. This bus will not,
however, prevent proper functioning of the
storage units with the remaining
processors.

I/0 channels within a multiprocessor
system are flexible in the System/360
design. The channels perform the transmis-
sion function. All controlling functions
for I/0 devices are placed within the con-
trol units for these devices. Thus, the
channel design is general and applies to
all I/0 devices.

As with the processors and core storage
units, a control unit can be attached to
more than one channel Ly means of multiple
tails. The switching equipment is modular,
a design that avoids the proklem of cost
and poor reliability of centralized
switches.

A channel operates concurrently with the
processing unit and may ke treated as an
independent entity within the system. As
shown in Figure 8, the channels may be
groured into two sets, each provided with
its own channel controller; thus there are
two systems for I/0 operations. Storage
units are equipped with the necessary tails
to accomodate the additional kusses. Chan-
nels are addressable by either processor
and can return their interruptions to eith-
er unit.

System Partitioning

There are three major machine configura-
ticns in which the time sharing system may
operate: simplex, duplex, and half duplex.
A simplex configuration is characterized by
the presence of one processor. A duplex
configuration is characterized by the pre-
sence of two processors, a.configuration
console and one or more channel control-
lers. A half duplex configuration is
characterized by the presence of one pro-
cessor, a configuration console and one
channel contrcller. A half durlex config-

uration may be part of a duplex config-
uration that is separated or partiticned by
neans of the configuration console.

The ccnfiguration console has keen
designed to allow a duplex configuration to
be partitioned into a variety of half dup-
lex configurations. The design is based on
the distrikuted interconnection method.
Configurations are determined by the set-
ting of switches. A maximum of eight core
storage units may be connected to a maximum
cf two channel controllers and a maximum of
two processors. The address range {(mul-
tiple of 256K kytes) of core storage units
connected to the same processor may be set
at the ccnsole. The connection of input/
output control units to channel contrcllers
may ke set. A switch is included which
indicates which channel controller is to be
addressed by a processor during initial
program load (IPL). This switch is neces-
sary because IPL sets the processor to
standard PSW mode and in this mode the pro-
cesscr addresses channel controller 0. If
channel controller 1 is to be addressed by
a prccessor during IPL, the switch must Le
set accordingly for the processor. (See
section cn "Processor Time Sharing
Features".)

Figure 9 shows a sample simplex config-
uration. Figure 10 shows a sample duplex
configuration. Each circled X regpresents a
partition point. A partition point is con-
trolled by a switch on the configuration
conscle. The setting of a configuration
switch is indicated in a control register
and may ke sensed by a program using the
Store Multiple Control instruction.

In a duplex configuration each channel
controller may ke contrciled by any proces-
sor in the system via busses connecting the
two. A partitioning switch either permits
this control or causes the channel ccn-
trcller to igncre any attempt by this CPU
to initiate an I/0 function. When the
processcr-to-channel controller path is
inactive, commands to the channels and
devices attached to that channel controller
are not executed and causes condition code
3 to be set in the PSW. This indicates to
the processor that the channel is not
cperaticnal.

The ccntrel units for the high-speed
drum and direct access files can have two
interface connections (tails) each, thus
permitting each control unit to be physic-
ally attached to two channels. The logical
connections between the control units and
the channels is under program control, thus
providing the programming system with the
facility to connect the control unit to any
of its channels. Once a connection is
estaklished, it is preserved until the con-
trol unit is released by a command from the

System Environment 23

connected channel. Release causes the con-
trol unit to assume the neutral state in
which it is available to any channel.

In the IBM 2702 Transmission Control
Unit, which provides for attachment of com-
munication lines to the multiplexor chan-
nel, the switch connecting the control unit
with either of the channels is placed in
the neutral position ugon resetting the
control unit. The first programmed selec-
tion of a communication line subsequently
causes the control unit and all associated
communication lines to be switched to the
selecting channel. This connection is
maintained until the control unit is reset
or a release function is performed.

When a control unit has been discon-
nected from a channel by the partitioning
switch, that channel dces not have access
to the controcl unit and all devices on the
control unit appear to the channel to be
non-operational. The not-cperational state
of a control unit or device is indicated by
condition code 3 being set in the PSW. To
restore switching under prograr control,
the control unit must be reconnected to the
system by the partitioning switch.

MULTIPROCESSING FEATURES

The time sharing system may operate in
an environment containing more than one
processor. When this is the case, consi-
deration must be given to the interaction
of processocrs. Since processors may access
storage, provision must be made to prevent
interference when several processors
attempt to access a common storage medium
at the same time. This safequard is pro-
vided by interlocks. Communication between
processors is accomplished by the signal-
ling method described below. When a pro-
cessor does not function properly it may
cause the entire system to operate inco-
rrectly. Therefore, the malfunction alert
feature is provided. A malfunctioning pro-
cessor may be taken out of the system and
then reintroduced when repaired. The sys-
tem then starts the processor in operation,
as described below in the section on pro-
grammed initialization.

The necessity for interlocking arises
when different processors share a common
storage medium. Interlocks prevent one
processor from interfering with another
processor in the manipulating of shared
data or programs. When a serial input/
output device is the common storage medium,
interlocks are provided by the operating
nature of the device. Such a device can
only maintain one data transfer operation
at a time to or from the storage medium.
This serial transfer of data provides the

24

required interlock. When a direct access
input/output device is the common storage
redium, interlocks are not provided by the
operating nature of the device. Fcr a
direct access device, several transfer
operations may occur during the time
ketween the completion of a seek command
and the read or write command. In this
case, interlocks may be provided by pro-
gramming. The Resident Supervisor provides
rrogrammed interlocks through the use of
pathfinding tables. The method is
described in "Pathfinding.”

The necessity for interlocking also
arises when the shared storage mediun
ketween processors is core storage. For
example, each processor may simultanecusly
attempt to urdate the same record in a
takle. Without interlocking, the results
cf the simultaneocus update may be
erronecus. With interlocking, one proces-—
sor may reserve the table containing the
record, perform the update, and then
release the takle. The second processor
may then perform its update. Thus, there
is nc logical interference between
processors.

When two processors simultaneocusly requ-
est access tc core storage, the granting of
access must be done in such a way that one
rrocessor does not lock out the other.
Otherwise, the locked out processor will be
effectively halted. A workalkle interlock
method is as follows: 1in core storage,
electrical interlocks go into effect for
the period of one storage cycle. When two
processors simultaneously request access to
core storage, a tie breaking priority cir-
cuit grants access to one processor, then
gives the next cycle to the other prcces-
SOr. Inputsoutput requests are granted
higher priority than processor requests.

By this method, both processors receive
access to core storage and neither may be
locked cut by the other.

A further interlock is necessary to pre-
vent interference between processors. Even
though access to core storage is granted
for the duration of one storage cycle, the
executicn of an entire instruction usually
requires several storage cycles. There-
fore, twc rrocessors may write into the
same location on alternate storage cycles.
To prevent such an occurrence, a programmed
interlock is provided in the form cof the
Test and Set instruction. This instruction
sets the condition code according to the
state of the leftmost bit of the addressed
byte and then sets the entire byte tc all
cnes. The byte in storage is set to all
cnes as it is fetched for the bit test. No
cther access to this byte is permitted
retween the moment of fetching and the
nmorent cf storing the ones.

PROCESSOR STORAGE

PROCESSCR

CHANNELS

DRUMS
DISKS

TAPES

1052

\Lin_fi.r_ -

I
|
! Printer

L Keyboard

CARD READERS
PUNCHES
PRINTERS

TERMINALS

Figure 9.

N

2821
Control
Unit
2540
Card Read
Punch |
1403
Printer

Transmission
Control

Communications
Terminal

|

2365 2365
Processor Processor
Storage Storage
I i
N S
2067
Processor
| 1
2870 2860
Multiplexor Selector
Channel Channel
M [s
2841
Storage
Control
2803 2311
Tape Disk
Control Storage
) Drive |
e
(2402 2402\
{ Tape Tape

Sample Simplex IBM System/360 Time Sharing System

2820
Storage
Control

2301
Drum
Storage

System Environment 25

23¢5-2 } 2352 | 2365-2
| Processor Processor ; Processor
STORAGE St St i
UN%TS orage i { a2iorage ‘ | Srorqge
262,144 | 266,144 U 262,144
Bytes | | Bytes ? Bytes
T 10T — o ree o
e ¢ | 2067 | T 1052-7 L1052-7 T 2067
PROCESSCRS :‘ Processor | Printer [Printer Processor
LW-TV_J" | Keyboars | | Keyboard | |
47 ‘ 2161-2
System
[2846 ! Configur.
Chorinel Commller | Control Channel Controller
o 2860-2 2870
e High Speed § I g High Speed
CHANNELS Mu?hpiemr | Selector Selector Moltiplexor
! Channel Channel
\unnel Channel
T
LM i [2 [| 2] l3 s | om |
i 2820 2820 \
| Storage Storage I
" Control Control E
230] 230]
DRUMS / Drum Drum
‘\ Storage \ Storage
| 2314
DISKS | Disk
N
1
2821-5 | 2803
Control % Tape I
{ Unit J Control
CARD READERS [“'::3~;i[:jI;""“"""‘]
PRINTERS 2540 _ -
PUNCHES B0 1403-N1 1403-I1 /Tape Tape \ [Tape \ / Tape \
TAPES Ponch Printer Printer Gnit)L Unie J o e) Unit |
. /’ AN / \
.
— 5702/ !
f 2702/2703 2702/2703 |
| Transmission | Transmission ‘
Control | Control ‘
Devices Terminals

REMOTE TERMINALS

Figure 10.

26

& Manual Partitioning Switch

Sample Duplex IBM System/360 Time Sharing System

Page of GY28-2009~2, issued September 15, 1970 by TNL N28-3146

By using this instruction, a program in
one processor may know that a program in
another processor is updating a shared data
area. The first program should then wait
until the condition code of the byte indi-
cates that the second program has released
the area. This instruction also provides
interlocking between programs in a time
sharing environment. By means of the Test
and Set instruction a program may interlock
a data area even at the very end of the
program's time-slice. No other program may
then interfere with the data area until the
interlock is released by the original
program.

Signaling

The Model 67 is provided with a feature
that allows processors to communicate
through a common storage facility. For
example, a processor may be alerted when a
message has been prepared for it by another
processor. This feature consists of
extended direct control and external inter-
rupt lines. Extended direct control refers
to the direct control feature augmented by
the ability to mask external interruptions.
Associated with the direct control instruc-
tions is an interface at which eight sig-
nals are made available. A signal from one
processor is connected to one of the
external interruption lines of another pro-
cessor. By means of the Write Direct
instruction, the program in one processor
may cause an external interruption in
another processor.

Malfunction Indication

In a multiprocessing system it is neces-
sary for processors to be informed when any
processor in the system is not performing
properly. In the Model 67 a malfunction
signal is issued when a processor malfunc-
tion is detected. This signal is similar
to the direct control signal and is trans-
mitted to another processor in the system
using the external interruption inputs of
the processor.

The extensive checking included in all
System/360 equipment is useful not only in
error detection but also in the improvement
of fault location. A high degree of check-
ing makes it possible to recognize malfunc-
tions on short notice and thus preserve the
state of the processor for later diagnosis.
Furthermore, the detailed error information
made available to the customer engineer can
reduce the repair time and contribute to
the overall system availability.

Programmed Initialization

Each IBM System/360 processor uses per-—
manently assigned storage locations (0-127)
for program status words, channel address

and status words, the timer, and initial
program loading. During program switching,
such direct addressing may also be neces-
sary when the supervisor must store the
general purpose registers. In a TSS/360
multiprocessor system, if these locations
were common, they would be shared by both
processors, and interference among proces-
sors would result. To provide each proces-
sor with separate assigned storage, a quan-
tity called a prefix is automatically used
by the Model 67 for relocation of addresses
referring to the first 4096 storage loca-
tions. In a multiprocessor system, each
processor is normally assigned a different
prefix, and the sharing of these preferred
locations is therefore avoided.

The prefix relocates all storage
references that can be directly addressed
(using zero-base specifications) by the
displacement. Thus, main storage locations
0-4095 are not used and the prefixed pre-
ferred storage locations can be directly
referenced by their actual storage
addresses and indirectly referenced by the
automatic prefixing of addresses in the
range 0-4095.

If a partitioned storage element con-
tains the prefixed storage locations for
the processor, new locations can be made
available by introducing an alternate pre-
fix. For this reason, a second (i.e.
alternate) prefix quantity is supplied for
a processor.

Normally, the two prefix quantities
(i.e. primary and alternate) relocate the
preferred storage locations to different
storage units; the processor therefore
becomes independent of a specific storage
anit for its operation. This relationship
is depicted in Figure 11.

The fact that the preferred locations
can be normally addressed is useful in con-
nection with start up or reinitialization
of the system.

When a processor is starting up the sys-
tem, it may determine its own identity by
inspecting a specified location in its pre-
fixed storage area. The active CPU accomp-
lishes this by placing into the prefixed
storage area of each CPU in the system a
value which uniquely identifies that respe-
ctive CPU and prefixed storage area. This
is done through normal addressing. Then
the active CPU inspects the specified loca-
tion using an address in the range 0-4095
and identifies itself and the prefix cur-
rently being used.

When a processor is reintroduced into a
multiprocessor system, operator action
should be minimized. Introduction of a new
program status word and the corresponding

System Environment 27

Page of GY28-2009-2, issued September

0 - 256K

256 - 512K

15, 1970 by TNL N28-3146

512 - 768K

Primary
crpUl
PSA

Unused
Real

'\ Core \\

Alternate
cPUl
PSA

Alternate
CPU2
PSA

4,095

Storage Element

Storage Element

Storage Element

CPU 1

e Figure 11.
Areas (PSAs)

instructions may best be performed by the
still-operating part of the multiprocessor
system. For this reason, means are pro-
vided for one processor to start another
processor. Before the external start, the
still active CPU places a PSW into relative
location zero of one of the prefixed
storage areas of the inactive CPU. It then
issues an external start signal to the
inactive CPU.

In this case, the external start con-
sists of loading an initial PSW from loca-
tion 0 and performing the necessary system
reset.

This signaling again has been defined
consistent with the signals of the direct-
control circuits. There are two signal
inputs, each of which causes an action
similar to initial program loading. The
choice between the two signals determines
which prefix is used, and hence the loca-
tion of the prefixed storage area.

Prefixed Storage Areas

The set of #096 bytes that is directly
addressable by a CPU (using the low-order
12 address bits plus a hardware prefix) is
called a Prefixed Storage Area (PSA).

A prefixed storage area contains data
and programs that are unique and private to
each CPU. While preventing interference
between processors, the PSA also functions
as a logical extension of the general regi-
sters that makes it possible for more than

28

CPU 2

A sample Relationship Among Processors, Storage Elements and Prefixed Storage

one CPU to execute a supervisor component
at the same time. The generxral format of a
PSA is described in Figure 12. The first
128 locations of the PSA are reserved for
status words, timer, interruption indica-
tors, etc. The next 200 locations are per-
manently assigned to hardware diagnostic
logouts. The CPU's private working storage
area is assigned to selected supervisor
programs. Some of the private area is used
for temporary storage of general registers,
without requiring a base register for

Hex Dec
PSW Area

80 CPU Logout 128
130 304

CHANNEL Logout

148 328

CPU Private Working Storage

1c8 CPU Status Table 456

200 512

CPU Private Working Storage

228 RESERVED 552
800 2048

INTER-COM RESIDENCE

BES SERR DAMAGE REPORT 3048

C00 3072

ERROR RECOVERY CONTROL TABLE (SERR)

E2¢ CPU Work Area 3628

£38 3640

RESERVED

1000 4096

sFigure 12. Prefixed Storage Area

Page of GY28-2009-2, issued September 15, 1970 by TNIL N28-3146

generation of the address of the register
save area. A special location within the
PSA is reserved for the inter-CPU communi-
cation subroutine for use as an incoming
message drop area from a calling CPU.

Also contained in the PSA is the Error
Recovery Control Table which provides the
Recovery Nucleus and the SERR Bootstrap
with dynamic work areas. It also contains
the SERR Common pool of adcons, the physic-
al device address, and control data needed
by the various SERR transient modules.

This area is not to be confused with the
SERR communication area located in the last
256 bytes of the SERR operating area.

PROCESSOR TIME SHARING FEATURES

Extended Mode

In Systemv/360, a program status word
(PSW) is used to reflect instruction
sequencing and to hold and indicate the
status of the system in relation to the
program currently being executed. The PSW
contains information such as the instruc-
tion address, condition code, storage pro-
tection key and program mask.

By loading a new PSW, the state of the
CPU can be initialized or changed.

The Model 67 has been designed to oper-
ate under the control of a PSW in two poss-

ible modes. The first mode, standard PSW
format, is defined in Principles of Opera-
tion. The second mode, extended control
PSW format, is defined in Model 67 Func-
tional characteristics. A comparison of

the PSW formats for the two modes is shown
in Figure 13. The purpose of introducing a
second mode is to extend the capability of
the processor to handle the time sharing
environment. The environment includes
dynamic address translation, extended chan-
nel masking, and external signal masking.
The mode is determined by the setting of a
bit in a control register. Information
relevant to time sharing contained in the
PSW in extended mode operation includes the
following: an indicator enabling reloca-
tion (dynamic address translation), an
indicator enabling I/0 channel masking by
control registers, an indicator for extern-
al interrupt masking by a control register,
and the logical instruction address. The
Extended Control PSW does not contain an
interrupt code field. When an interrupt
occurs, the interrupt code is stored in a
specified storage location as shown in
Figure 13.

TSS/360 operates in the extended control
mode. When the Model 67 is operating in
the extended mode, the operation of the
following instructions is slightly modi-
fied: Load PSW, Set Storage Key, Translate
and Test, Edit and Mark, Load Address,
Supervisor Call, Branch on Index High,
Branch on Index Low or Equal, Set System
Mask. For a discussion of the modified

Stondard PSW

Cont Reg 6 0 8 12 16

32 34 36 40 63

Bit 8
System

PGM

S - H H
0 Mask Stg Key AMWP Interruption Code ILC CcC Mask Instruction Address
Extended Control PSW
o] 4 5 é 7 8 12 16 18 20 24 32 63
1 l i
| | PGM
SPARE i ;Stg Key | AMWP ILC cc Mask SPARE Logical Instruction Address
| .
0 Bit L—— External Interrupts Masked Off (Cont Reg 6)
Conditinns L /O Channels Masked Off {Control Registers 4 and 5)
L No Relocation
24 Bit Addressing Extended Control
PSW STORE
Interrupt Code : TYPE LOCATION
Ext 14-15
SvC 16-17

eFigure 13. PSW Formats

Prog 18-19
Mach 20-21
/{e] 22-23

System Environment 29

Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146

functioning of these instructions, see
Model 67 Functional Characteristics.

The Model 67 contains a set of control
registers to assist in time sharing and
multiprocessing operations. A maximum of
sixteen control registers may be included,
but at present only twelve have assigned
functions. The functions are:

® Table register (for dynamic address
translation)

e Relocation exception address register

¢ Two extended mask registers for masking
I/0 channels

e A register containing machine check
mask extensions for channel control-
lers, extended mode indicator, config-
uration control indicator, external
interruption mask

* Two registers containing the status of
main storage partioning switches

e A register containing the main storage
addresses assigned to logical processor
storage units

e A register containing the states of
channel controller partitioning

30

switches and channel address
assignments

e Two registers containing the states of
control unit partitioning switches

e A register containing the states of
direct control partitioning switches
and the states of prefix deactivation
switches

The following new instructions are
included in the instruction set of the
Model 67: Branch and Store, Load Real
Address, Load Multiple Control, and Store
Multiple Control. For a discussion of
these new instructions see Model 67 Func-
tional Characteristics.

Storage Protection Extension

Additional capability has been imple-
mented in the storage protection circuitry.
By extending the field of the storage pro-
tection key from 5 to 7 bits, TSS/360 can
evaluate the utilization of storage. If a
reference is made to any location within a
given block of storage or if the contents
of the block are modified (changed) these
facts are recorded by the hardware. Using
these facts, the programming system may
later analyze the activity of storage
blocks.

This section describes the general logic
of the Resident Supervisor and the Task
Monitor. A schematic view of the relation-
ship between these comgonents and the rest
of the system is shown in Figure 14.
Examples of the use of these components
within the system are described in other
sections, particularly "Interruption
Handling.”

RESIDENT SUPERVISOR

The main function of the Resident Super-
visor is to process interruptions and in so

CONTRCL ARCHITECTURE

doing provide management of the system

facilities.
rrocesscrs,

The system facilities include
wain storage,

input/output

devices, and paging devices.

The specific functions performed by the
Resident Supervisor can be categorized as

follows:

e Interception and initial handling of

all interruptions

® Concurrent control of a variable number

of tasks

Attention Inrerroption

level
Four

i
i
|
|
%
x
Three
|
|
i

. Tanguoae Procrsso
- . . reational i .. coControl ____§
v{fe”’ i ‘f""w”“ sotiona ' Commond Language Routines p‘“ T Assembler
Conseat Tosk AMonagement] fogroms o _Forren |
| {iok Editor
ercice Romrines Command Language Interrupt Routines [
- il | Virual Memory |
Catalog Allocation b e e SRR —— i
OUTs_ [svsGEN] toader 1
PCS | Fxternol Storage i
Allocatioo
|
1
Level
: Two
| TASK g MONITOR v
Y [Sconner, Dispatcner] ! Y
| T 7 T T) T ; 3
! i ! i
¢ &y - b wac - H i
Progrom Ve | Extemal | :‘U‘;‘L"‘fg Timer | 5\;":”"‘,‘0 Programmed !
R S S R | : oV i ;
Tosk Manivor tnterrupt Processors | !
1 : |
t
T f
i i i
— ‘ i) S . | _
nterrupticns ' ? ' * intercuptions
Not Recovered i j 1 g }
STARTUP et Maier Systers Mcchine External | 10 | SvC Program [
Ercor Recovery L ;
Interup® Stocker !
T |
Recovered | !
‘ - Y Task
“ 1 Queve Scanner l_,, Interrupt Level
7 T B Contral
i ! | Cne
RESIDENT SUPERVISOR | 1 y ¢ ;
i . . P Storage
! Timer i Poging [o Allacation [sve Restore Task
i Queve Processors Status
l |
Supervisor Service Roufines
Special
Page P . pe Generc!
Hondiing 1O Service Task Greners
Service
Figure 14. TSS/360 Program Structure

Control Architecture 31

e Time slicing and task dispatching on
the kasis of a scheduling algorithm

e Main storage allocaticn
e Auxiliary storage allocation

e Accurulating task usage cf CPU time for
accounting

e Reading and writing pages

e Performing non-paging IL/C in response
to requests from tasks

e CPU and Paging I/0 error retry and
recovery grocedures

e Syster Restart on a non-correctakle
error

The Resident Supervisor has the follow-
ing components:

Interrupt Stacker
Qgueue Scanner
Dispatcher
Processors
Interrurt Processcrs
Request Processors
SVC Prccessors
Major Error Recovery Routines
Supervisor Service Sukxoutines

An overview of this corxponent structure
is presented in Figure 15.

INTERRUPT STACKER

The Interrurt Stacker is the only entry
point to the Resident Supervisor. The
function of the Interrupt Stacker is to
classify interrurtions and either enter
them in queues or pass them to the Time
Sharing Support System. That is, the
Interrupt Stacker permits incoming inter-
ruptions to be stacked while previously
received interruptions are being processed.
A gueue entry contains a forward and back-
ward pointer to entries in the same gueue.
When an entry is to be moved from one gqueue
to another, only the pointers are changed.
Thus, the entry itself does not have to ke
physically moved. Quite frequently, one
control block may belong to several gqueues
and contain forward and backward pointers
to each of them. 1In processing these mul-
tithreaded lists, the supervisor becomes,
in effect, a list processor.

The Interrupt Stacker performs an ini-
tial analysis of the incoming interruptions
in order tc distinguish ketween software
defined ™emergency® interruptions which
require immediate prccessing and "standard”
interruptions which do not require immedi-
ate processing and alsc to distinguish
Letween TSS/360 and TSSS interrurtions.

32

These are the types of TSS/360 interrup-
tions and their initial classification:

interruption Classification
Machine Check emergency
External

Timer standard

Operatcr's Ccnsole Key standard

Write Direct emergency

Malfuncticn Alert emergency
SvC, issued in:

Supervisor State emergency

Prcblenm State standard
PROGRAM, issued in:

Supervisor State emergency

Prcblem State standard
I/0

Frcm paging drum standard

From any other device standard

The Time Sharing Support System services
a similar set cf interruptions (with the
exception cf Machine Check) with its own
set c¢f interrurtion processors. These
interruptions are initially received by the
Interrupt Stacker and, in the case of the
Virtual Support System, are eventually
enqueued on the task's TSI or, in the case
of the Resident Support System, passed
directly tc the appropriate TSSS interrupt
processor.

For emergency interruptions, error con-
trol routines are called (see "Error
Procedures™).

For most standard interruptions, the
Intexrurt Stacker kuilds a record called a
General Queue Entry (GQE), which describes
the interruption. The GQE is attached to
the appropriate interruption processor
gueue. The GQE is described in a separate
section. These queues of stacked interrup-
tions are prccessed in a logical order,
essentially on a first in first out basis
within each queue. The gueues themselves
are processed on a priority basis.

Most supervisor call (SVC) and ncn-
Faging program interruptions originating in
the software non-privileged state are simp-
ly transferred to the Task Monitor, Ly
appropriately manipulating Program Status
Words, with immediate return to the task.

Interruptions are masked during proces-
sing in the Interrupt Stacker. However, in
contradistinction to most conventional sys-—
tems, the Resident Supervisor generally
executes with interruptions unmasked. This
facilitates the processing of interruption
queues on a rriority basis.

2I03093TUDIY TOIAUOD

£e

SYSERR

RECOVERY

SV Program 1O Interiupt
Intarrupt Interrupt
$vC_ | Progam | Paging | Omer |]

INTERRUPT STACKER

System

External
Interiupt

Recovery
Nucfeus

Machine Checl
Interrupt

Generate
Maltunction
Alert

i
1
!
l
|
1
|
1
[
l
|

Other
Supervisor

Subroutines

Yes o opervisary 102 State RSS |
srate ar TSS, long Save
from RSS !
! Buffer Inter-CPU Recaovery |
- Switch 755 to
Return to the Supervisor State [
point and Return to
tnterrupt Point of Interrupt i
I
| SvC i
i
H o Yes No Program |
i prﬁ'mv Jj’é: Interrupt |
i ogram SVC? !
! interruct, Code<16 I
Yes |
! No Swap VPSWS Yes |
N d return to
DISPATCHER j______ and re |
task via LPSW Interrupts | Disabled |
r-—— 1 - -7 - " Tinierrapts | Enabled - T
\ ! .
Tasx | ,
‘ internal N ‘ WAIT
; Scheduler Control '
[—— e ! T T T T T T T e e e e e
| A
| |
e e e QUEUE SCANNER(OS) — o o o e o e e e — — (Priority of Processing is Left to Rigntl— — 4 _
[] [[! [|]
v Y y y
Timer Page Drum - Page Drum Auxi User Core Poge Direct
Interropt Queve Interrupt Sto Allocation Access 1
Pracessor P Processor Allocatien) Subprocessor
Contiguous - Program
Core) Processor Interrupt
v Allocation Decoder Processor
Channel)) Poge &
) Tarminal . Device P
‘;jle’ Core [Interrupt Control Pathiinding Queve XX Segment
elease Processor [— Subprocessors ‘—1 Processor J;slocavfron
xception
 §
Reverse
Pathfinding [® Task Initiotion Pathfinding
Foge Task
=P pogting Initiation

Figure 15.

Resident Supervisor Component Structure

Care Cantre!
Enqueve
Dequeve

External
Poge Loco-
tion Addr
Translator

Entrance
Criteria
Rescheduling

In addition to creating a GQE and plac-
ing it on the gproper interrurt queue, the
Interrupt Stacker maintains a log of the
last 100 interruptions.

After completing its processing, the
Interrupt Stacker saves the complete status
of the interrupted task in the extended
portion of the table's Task Status Index,
unmasks interruptions, and generally trans-
fers contrcl tc the Queue Scanner if the
CPU was executing in the problem state when
the interrupt cccurred. Control goes
directly to the SVC or Program Interrupt
Cueue Processcrs in the case of an SVC or
program interruption for faster processing
of these types of interruptions which occur
quite frequently.

If the CPU was executing in the supervi-
sor state, the Interrupt Stacker returns to
the point of interruption using the old
PSW, so that the interrurted supervisor
routine can complete in an orderly fashion
the work it Lbegan.

The information that the Resident Super-
visor needs to describe a task may be
separated into two portions. The first
portion consists of the information which
is needed imrediately and must therefore be
always resident in main storage. This por-
tion is called the Task Status Index (TSI),
and is described in a separate section.

The second porticn consists of information
which is only needed after processing for a
task commences. This information need not
be resident but may be read into main
storage when needed. This portion of
information is called the Extended Task
Status Index {(XTSI). The XTSI must ke in
main storage during a task's time slice,
but is not necessarily resident ketween a
task's time slices. The page or pages
occuried by an XTSI could have been made
addressable by both the Resident Supervisor
and by privileged service routines operat-
ing in Virtual Storage. However, in TSS/
360 these pages do not appear in the task's
virtual storage. That is, the XTSI is not
addressable by a dynamic address transla-
tion. This serves to protect the Resident
Supervisor from being over-written by a
user program.

CUEUE SCANNER

Every system needs some facility for
sequencing the work to be performed by the
control program. In systems which operate
with interruptions masked, the hardware
priority interruption system provides this
function for the interrupt handling rou-
tines and some contrcl program routine pro-
vides a similar function for the system's
resource allocation routines. Within TSS/

34

360, these two functions have keen corbined
into one centralized Queue Scanner.

The purpose of the Queue Scanner is to
provide a sequencing mechanism resgonsible
for deciding the order in which individual
Queue Processors are to be executed. TO
fulfill this purpose, the Cueue Scanner
uses a Scan Takle, whose entries are in
rricrity order.

BRecause the CQueue Scanner is a central
facility within the Resident Supervisor, it
nmust orerate efficiently if the Resident
Supervisor is to operate efficiently. To
achieve this efficiency, the sequencing of
entries in the Scan Table was planned to
aininize the numker of entries that must be
inspected. Moreover, the design of the
Scan Takble reflects an awareness of the
possible interactions among queues, sc¢ that
an exit is nct made to a processor only to
find that a needed facility (such as an I/0
path) has keen allocated to some other
queue.

Thexe is cne Scan Takle entry and a
corresponding gueue for each Queue Proces-
sor, with the exception of the Paging Crum
and LCevice Queue processors. There may be
many Scan Table entries, each having corre-
sponding queues, for the Device Queue pro-
cessor. These gueues are for the devices
cn the systen, each device having a separ-
ate queue. The paging drum queues are nct
included in work for the Device Queue pro-
cessocr. There is a separate processor for
the raging drum queues. There is a paging
drum queue for each paging drum in the sys-
termr. The order in which device entries
appear in the Scan Table and hence their
rriority is specified from the Symbkolic
Device Address assigned to each device dur-
ing System Generation.

The Scan Takle is further described in
"Scan Takle."

If available work is found, the gueue
Scanner rasses control to the appropriate
gueue Processor.

If the Queue Scanner determines that
there is no availakle supervisor work,
either because there are no more GQEs to
rrocess cr kecause all appropriate proces-
sors are "busy", control is transferred to
the Internal Scheduler which calls the
LCispatcher.

CISPATCHER

The purpose of the Dispatcher is to
select a task to be given CPU control and
to place that task in execution. The actu-
al scheduling of the task, the determina-
tion of the length and the frequency of its

time slices, and the priority a task has
relative to other tasks in the system are
factors governed by parameters contained in
a schedule takle and alsoc are governed by
the processing characteristics of the task
as interpreted by the Internal Scheduler.

To select a task to be given CPU con-
trol, the Dispatcher scans a chained list
of control blccks. This 1ist is called the
Dispatchable TSI list. The Dispatchable
list is a subdivision cof the active list.
The active list consists of all tasks which
are eligible to use the CPU. The Dispatch-
able list consists of only those eligible
tasks which have pages in malin storage.

The eligibility of a task is in part deter-
mined by its "priority level."™ The assign-
ment of priority levels and the scheduling
algorithm that determines what task, if
any, is to be given control of the CPU is
discussed in "Scheduling Algorithm.” If a
task is selected for getting CPU control,
the Dispatcher enters the Task Interrupt
Control routine.

Upon return from Task Interrupt Control,
the Dispatcher gives CPU control to the
selected task by the following operations:

1. sets the task status to "in execution"

2. sets a pointer in the Prefixed Storage
Area to identify the current task

3. sets the interval timer toc a value
determined by the scheduling algorithm

4. Loads the General Purpose, Floating
Point and Extended Control registers
from the task's Extended Task Status
Index (XTSI}, and then loads the
task's current PSW. This information
was saved in the task's XTSI by the
Interrupt Stacker.

If the Dispatcher scans the entire Dis-
patchable TSI 1list without finding a ready
task, the LCispatcher places a value in the
Interval Timer and the CPU is placed in the
wait state. Then an exit from the wait
state occurs upon the next hardware inter-
ruption intercepted by that particular CPU.

The Dispatcher may exit to the Queue
Scanner when a condition called forced time
slice end occurs. This is discussed furth-
er in "Scheduling Algorithm.™ The Dis-
patcher puts a GQE indicating forced time
slice end in the Timer Interrupt Queue and
then exits to the Queue Scanner.

The list of dispatchable TSIs is main-
tained in proper order by the Intexrnal
Scheduler which is the interface between
the Queue Scanner and the Dispatcher. If a
flag in the TSI indicates that the XTSI is
not in main storage, the Internal Scheduler

initiates a paging operation. A GQE and an
associated Page Control Block are created
and placed in the User Core Allocation
Cueue to obtain a page of main storage for
the XTSI. This GQE will eventually be
placed on a device queue to initiate the
transfer of the rage from auxiliary storage
to main storage. Eventually, the task's
XTSI is raged into main storage and the
Page Posting routine causes the ISA and PSW
rages to be krought into main storage (see
"Paging™). This is the means by which the
XTSI is krought into main storage even
though it is not addressable in virtual
storage.

A Page Ccntrol Block requests the move-
ment of pages between main storage and
auxiliary or external storage. This move-
ment of pages may consist of reading pages
intc main stcrage from auxiliary or extern-
al storage, writing pages out of main
storage to auxiliary or external storage,
and posting to the program's page tables.
The Page Control Block is described in a
separate section.

The purpose of the Task Interrurt Con-
trcl routine is to generate programmed
interruptions as required.

The need for a programmed interrurtion
rechanisk arises because the Resident
Supervisor processes requests for system
services in a logically independent fash-
ion. The processing of system services is
logically inderendent in the sense that the
Resident Supervisor may be concurrently
performing several services for a task.
There is no way of ascertaining in what
crder cr when the processing of each of
these services will be completed.

Therefore, in order for a task to oper-
ate asynchronously with respect to the com-
pletion of system services, the need arises
for a prcgrammed interruption mechanism
analagous in concept to the hardware inter-
ruption wechanism that allows the Resident
Supervisor to operate asynchronously with
respect to the real computer system. The
rrcgranmmed interruptions are similar in
operation to hardware interruptions. The
major difference between them is that the
hardware interruptions convey a change in
the status of the entire system to the
Resident Supervisor, while the programmed
interrurtions rerresent a change in status
of only that portion of the system current-
ly allocated to the task which causes the
interruption.

A programmed interruption is initiated
ky the Interrupt Stacker when it discovers
an interruption that is a task's responsi-
kility, such as a supervisor call request-
ing the services of a virtual storage sys-
temr sexrvice routine.

Control Architecture 35

In another example, the Resident Super- Byte Contents Length
visor will request a programmed interrup-
tion whenever it determines that the furth-

Unused

er processing of an I/0 interruption is a % - e
task's responsibility. dense Data
* Channet $1atus Word
Because a task is not always prepared to PYRE —
receive an interruption and kecause the Unused
task for whom the interruption is destined 1o8e Chommel tosont Arem
may not be the next task dispatched, there iz [T T

Minimal Save Arzo Pairter

exists a software queuing and masking faci-
lity analogous to the hardware.

Short Save Aseo 40

Nanprivileged lLong Save Arec 120

Read, Write 1o System

A request for a programmed interruption
is initially handled by enqueuing a GQE on Privileged Long Save Arec 120
the appropriate task's TSI. The programmed 2000

interruption is implemented ky the Task o Ole Tow vowee “ #
Interrupt Control subroutine. 2048 New VPSWs 48 T

209% Flogs o Pointer o | -
Implementation of the programmed inter- S] o e
ruption requires the definition of the fol- ' IORCE or MACE Retwm Arso 1920 &3
lowing programming elements: an Interrupt “ove 22
Storage Area (ISA) and a virtual PSW i3
(VPSW). Diagrams of these elements are f;
shown in Figures 16 and 17. The VPSW is g8

analogous to the Extended PSW operated on

by the Resident Supervisor. The purpose of

the instructicn address, ILC, interruption

code, and masking fields in the VPSW remain Figure 16. Interrupt Storage Area (ISA)
conceptually the same as for the PSW. Schematic Diagram

These fields vary in detail due to the fact

that program status has two modes - resi-

System Mask) (
= 3
— 24
Std { Channel Masks)} - Key Y|« .g 2 Interrupt Code
ol <| g| 3| a
=
- S S -
| ! ! Prog Mask E
| e |
8 | Bl E | i o \
=4 [v i [T _—)
Ext 4UHUSEd . 5*)% 51 2| = Key Tl g %’ % e CC O> RSN Spare
(Must Be 0) |33 <l o0 . s =812) 1 o] - sr
oz S e o 9 x w
. o (%)
. [a)
Task Mask Prog Mask
N E e
[T iz
Virt _E% Urosed N ‘:; qg ol Iic cc 3 } 313 = tnterrupt Code
lad S & 1= R
| ‘ gl A
..... — 1 il L= S S R
01112135415;6;?38§9IIO;NiiQZ!J!IAI]S1]6117i18“9i§20‘21L22123!24L25126;27128129130§33
Prog Mask
Std J - .
iLC CcC T 9| o] = Instruction Address
R SR E
&~
i
Ext Instruction Address
Virt Instruction Address
< | i | f
32 | 33]34]35] 36|37 138139140 | 414243 (44 145 |46 147148[49150[5‘ {1 52]53]54|55] 56| 57]58] 5916016]162{63

Figure 17. Comparison of Standard, Extended, and Virtual PSW Formats

36

Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146

dent and relocated. The VPSW represents
the state of a task as it appears in a vir-
tual machine at the moment the task is
interrupted. The ISA is the first page
{4096 bytes) of a task's virtual storage
(i.e., segment 0, page 0) and is analogous
to the Prefixed Storage Area of the Resi-
dent Supervisor. The ISA contains many
analogous elements such as old and new
VPSWs for programmed interruptions. The
ISA is brought into main storage, along
with the task's XTSI pages, before the task
can be placed in execution. The Interrupt
Storage Area is discussed in more detail in
*Task Monitor."

The main features of a programmed inter-
ruption are depicted schematically in
Figure 18. The way in which programmed
interruptions are utilized is described in
*"Task Monitor" and "Interruption Handling."

The programmed interruption mechanism in
the Task Interrupt Control routine involves
the following actions:

1. The Extended PSW in the task's XTSI
(which represents the status of the
real system at the point when the task
was interrupted) is formed into a VPSW
and this VPSW is placed in the appro-
priate interruption old VPSW in the
task's ISA.

2. The new VPSW is placed in a field in
the ISA which is called the current
VPSW and which is used to describe the
task's status for the most recent
interruption presented to the Task
Monitor.

3. If the interruption is associated with
Intertask Communication or is an I/0
interruption, the associated control
block (IORCB or MCB), if any, is
placed in the ISA (see "Communication"
and “Data Management®).

4. The sense data, channel status word,
and channel logout data are placed
into the ISA, if appropriate (see
"Task I/0 Errors").

5. The interruption mask in the new VPSW
in the ISA is used to set the pro-
grammed interruption mask in the
task's Task Status Index (TSI).

6. The new VPSW, which points to an
interruption processor of the Task
Monitor, is obtained from the ISA for-
med into an Extended PSW and stored in
the task's XTSI. When the Dispatcher
gains control, it loads the extended
PSW from the XTSI and thus gives con-
trol to the appropriate Task Monitor
interruption processor.

Main Storage Vitural Storage

15A
®]
Old VPSW |
]
Extended PSW @
L‘New VPSW

XTSt

Task Monitor
Interrupt
Processor

Represents Flow of Data
== == Represents Flow of Control

Figure 18. Main Features of a Programmed

Interruption

The main features of the Task Interrupt
Control routine's operation are: The Task
Interrupt Pending flags in the TSI are com-
pared with the Task Interrupt Mask in the
TSI. If all pending task interruptions are
masked, control returns to the Dispatcher;
otherwise, a programmed interruption is
generated for the highest priority unmasked
pending interruption. (Note that SVC and
program interruptions cannot be masked.)
Control then returns to the Dispatcher.

The TSS/360 task interruption scheme is
a priority interruption scheme, as opposed
to a single-level "wakeup" scheme because,
in part, this allows for a more graceful
handling of such events as attention inter-
ruptions and abnormal task terminations.

QUEUE PROCESSORS

Each queue processor is responsible for
processing the GQEs on its queue. In gen-
eral, each processor operates on only one
GQE and then returns control to the Queue
Scanner. However, certain processors, for
example the Page-Drum Interrupt Queue and
the Channel Interrupt Queue Processors pro—
cess all the GQEs on their queues before
returning control to the Queue Scanner.

The Program Interrupt Queue Processor and
the SVC Queue Processor are misnamed
because they do not operate on gqueues.

They are linked to directly from the Inter-
rupt Stacker. This allows faster proces-
sing of these frequently encountered
interruptions.

In general, GQEs are only created by the
Interrupt Stacker and are not destroyed
until their processing (which may involve
several processors) is completed. A few
queue processors (for example, the Auxil-
iary Storage Allocation Queue Processor,
the Program Interrupt Queue Processor and

Control Architecture 37

Page of GY¥28-2009-2, issued September 15,

I/0 Device Queue Processor) may create
additional GQEs.

If the processing of a GQE requires the
attention of several processors, the GQE is
transferred from one processor's queue to
the next through the services of one of the
Queue Control subroutines.

The Queue Control subroutines examine
the first routing field in a GQE. This
field will either contain a location-on-
queue value or all ones. The location-on-
queue value designates the relative loca-
tion on the Queue Scanner's Scan Table of
the queue to which the GQE is to be trans-
ferred. A value of all ones indicates that
no further processing is to be performed
for the GQE and the main storage occupied
can be released.

In general, a Queue Processor locks its
associated queue upon entry and unlocks the
queue as soon as the processor has dequeued
a GQE from the queue for processing.

In certain cases a Queue Processor may
wish to lock a queue until some specific
future event or condition has occurred.
Each Scan Table entry has several indica-
tors reserved for such use. These indica-
tors are called Suppress Flags and are set
or reset by the Resident Superviscr rou-
tines involved. Both the queue lock byte
and the Suppress flags are used to prevent
unwanted recursion.

The queue processors may be classified
into two groups: interruption queue pro-
cessors and request queue processors.

There are five interruption queue pro-
cessors as follows:

e Timer Interrupt Queue processor
e Paging Drum Interrupt Queue processor

e Channel (non-paging-drum) Interrupt
Queue processor

® Program Interrupt Queue processor
¢ SVC Interrupt Queue processor

The request queue processors constitute
a somewhat arbitrary grouping of the
remaining queue processors. A function of
these queue processors is to service
requests made by the interruption queue
processors and other supervisor routines.
The request queue processors are:

User Core Allocation
Contiguous Core Allocation
Auxiliary Storage Allocation
I/0 Devices

Paging Drums

38

1970 by TNL N28-3146

The SVC Interrupt Queue processor calls
upon a particular SVC processor when the
type of SVC is identified. The SVC proces-
sors are listed below with the names of the
corresponding macro instructions that issue
these SVCs. These macro instructions are
described in System Programmer's Guide.

e TSI/XTSI Modification/Extraction Group
Create TSI processor (CRTSI)
Delete TSI Processor (DLTSI)

Special Create TSI processor
(SCRTSI)

Change Priority processor (CHAP)
Setup XTSI Field processor (SETXTS)
Setup TSI Field processor (SETUP)
Extract TSI Field processor (XTRCT)

Extract XTSI Field processor
(XTRXTS)

e Virtual storage service group
Add Pages processor (ADDPG)
Add Shared Pages Processor (ADSPG)
Delete Page Processor (DELPG)

Set External Page Table Entries pro-
cessor (SETXP)

Move Page Table Entries processor
(MOVXP)

Connect Segment to Shared Page Table
processor (CNSEG)

Disconnect Segment to Shared Page
Table processor (DSSEG)

List Changed Pages processor (LSCHP)

Check Protection Class processor
(CKCLS)

Load Virtual Program Status Word
(LVPSW)

e Timer maintenance/task synchronization
group

Time Slice End processor (TSEND)

Await Interruption SVC processor
(AWAIT)

Terminal I/0 Wait processor (TWAIT)

Set User Timer Interval processor
(SETTU)

Set Real Time Interval processor
{SETTR)

Restore Time processor (RSTTIM)
Read Time processor (RDTIM)

¢ Syster Table Modification/Extraction
Groug

Setup System Table Field processor
(SETSYS)

Extract System Takle Field processor
(XTRSYS)

Set Time of Day processcor (SETTOD)

Set Year, Month, and Day processor
{SETYMD)

e Input/Cutput and Device Management
Groug

I/0 Call (IOCAL)
Pageout Service processor (PGCUT)

Reset Device Suppression Flag pro-
cesscr (RESET)

Set Path processor (SPATH)
Add Device on Task processor (ADDEV)

Remove Device From Task processor
(RMDEV)

Set Asynchronous Entry processor
(SETAE)

SUPERVISCOR SERVICE SUBROUTINES

The Supervisor service sukroutines are
used by the queue processors and other com-
ponents of the Resident Supervisor to pro-
vide various required services. There are
eight groups of supervisor service
subroutines:

Queue Control

Page Handling

I/0 Service

Task Service

Main/Auxiliary Storage Allocation
Inter-CPU Communication
Dispatcher Sexvice

Intertask Communication (VSEND and
XSEND)

MAJOR ERROR RECOVERY ROUTINES

The relationship of the major error
recovery routines to the system is dis-
cussed in the section on Exror Procedures.
The major error recovery routines are:

Machine check new PSW

Recovery nucleus

Reconfiguration

External machine check interrupt
System Environment Recording and Retry
(SERR) group

SERR bootstrap

Environment recording

Immediate print

Checker

Pointer

Restore and validate

Instruction retry execution
CPU/Storage checkout

s System Erxrror Processor

CONTROL ELOCKS

This section contains fundamental
descriptions of the important control
klocks used ky the Resident Supervisor.
The way in which these control blocks are
used and the significance of the various
fields and flags within these control
blocks that have not been explained thus
far, will be explained elsewhere in this
ranual.

General Queue Entry (GQE)

A GQE has a fixed length of 64 bytes and
contains a description of the work to be
done by a device or facility controlled by
the Resident Supervisor. One use of a GQE
is to save information for an interruption.

The contents of a GQE depend on the type
of interruption and generally consist of
the following:

e Pointers to:

Task Status Index (TSI)

Preceding and succeeding GQEsS on the
same queue

Page Control Block if the GQE is asso-
ciated with a request to read or
write a rage in main storage

170 Request Block (IROCB) or Message
Control Block (MCB) if the GQE is
associated with non-paging 1I/0 or
intertask communication

e Flags:

Request for a page in
Request for a page out

e Instruction length code from Program
Status Word

¢ GQE movement information

Control Architecture 39

e Data oktained by the Sense 1I/0 command

e Channel Status Word
e Channel lcgout data

e Interrupticn code

Symbclic device code
Scan Table

The Scan Table is a resident control
takle private to the Queue Scanner. The
size of the Scan Table is a function of the
installation configuration and is set dur-
ing System Generation. The Scan Table
serves as a ccmmon anchor point for those
GQEs that represent work for the Resident
Supervisor. The Scan Takle determines the
order in which the gueues are processed.

To achieve efficiency, many of the sys-
tem's queues have been organized into
groups called Device Interaction Groups. A
Device Interaction Group (LIG) generally
consists of the set of queves for all I/C
devices having common I/0 access paths.

The Cueue Scanner inspects individual
gqueues within a DIG cnly if a master count
indicates there is work enqueued within the
DIG, and then only if other flags indicate
that the arprcpriate gqueue processor is not
"busy" and that an I/0 path to the device
is available. Furthermore, in order to

prevent one active device in a group from
monopolizing an I/0 rath and greatly delay-
ing the processing of other requests within
the DIG, the Queue Scannexr processes the
SCAN TABLE

Queve Quene Pointer

Processor
Queue Flags Pointer First Last
Timer —
2301
Chennel

e j—

Program

Figure 19. Schematic View of the Scan Table

40

queues within each DIG in a round-rcbin
crger.

There is one entry in the Scan Table for
each device or supervisor facility. BAn
entry has a fixed length of 16 bytes and
contains the following information:

e Pointers to:

First GQE cn the gqueue

Iast GQE on the queue

ILocation of the Queue Processor
e Flags:

Cueue empty flag

Device Interaction Group identification
nurkber

Surrress flags (prevent processing of
the queue until all Sugppress Flags
are off)

¢ Queue processor lock byte
A schematic diagram of the Scan Takle is

shown in Figure 19.

Task Status Index (TSI)

The Task Status Index is the principal
control block for a task in that it con-
tains task infermation that must be per-
manently resident. There is one TSI for
each task in the system and the TSI is
resident in main storage from LOGON to
LOGOFF. After LOGOFF, the storage occupied
ky a TSI is made available for reuse by the

GQE \

PCB

Page of GY28-2009-2,

supervisor.
128 bytes.

The TSI has a fixed length of

The contents of a TSI include the
following:

e User identification

e Task identification

e Task priority

e SYSIN symbolic device address

® SYSOUT symbolic device address

e Pointers to:

Extended TSI

Next TSI in the chain of active or
inactive tasks

Task interruption gqueue (GQEs repre-
senting interruptions that will be
passed to the task)

Task Symbolic Device List (a list of
those devices on which the task can
perform I/0)

e Flags for task status:

In-execution

Ready

Page wait

Time slice end

Delay

e Lock byte
e Task interruption mask

e Task interruption pending flags (one
for each task interruption gqueue)

Extended Task Status Index (XTSI)

The XTSI contains task information which
does not have to be permanently resident.
At least part of the XTSI is resident dur-
ing a task's time slice. The XTSI is
created at LOGON and released at LOGOFF.
The XTSI consists of a fixed length of 256
bytes (of which 208 bytes are used) and a
variable length portion. The total size
may vary from one page upward, depending on
the installation limit placed on the number
of XTSI pages allowed and on whether the
system is operating in 24- or 32-bit
addressing mode.

The contents of the header include:

Extended PSW save area

Control register save area
General purpose register save area
Floating point register save area

Issued September 30, 1971 by TNL GNZ8-3193

s Pointer to the task's TSI
e Time slice information
e Timer information

The contents of the variable length por-
tion include:

* Segment Table

e Auxiliary Segment Table

¢ Page Tables (non-shared)

e External Page Tables (non-shared)

Page Control Block

The Page Control Block is used to con-
trol the movement of virtual storage or
XTSI pages between main storage and extern-
al or auxiliary storage. A Page Control
Block entry represents a request for the
movement of a page. Entries may be
generated during any of the following
events:

e Time slice end interruption processing
e Page relocation exception interruption
processing (program interruption code

17
e PAGEOUT or IOCAL SVC processing

e Dispatcher request for initial XTSI
page

¢ Page Posting processing for the remain-
ing XTSI pages and the ISA page

The contents of an entry include the
following:

¢ Main storage address of page
e Virtual storage address of page

e External or auxiliary storage address
of page

* Flags:
Virtual storage or XTSI page
Paging I/0 has been completed

Put main storage occupied by the page
in the Preferred Page (XTSI-PSW)
Pending queue or in the non-XTSI-PSW
Pending queue

Drum or disk preference for page resi-
dence when writing a page to auxil-
iary storage.

A Page Control Block consists of up to
three entries plus a four byte pointer to
the next block. Thus, a block may contain
up to three requests to move pages. &aAddi-
tional blocks are needed when there are
more than three requests.

Control Architecture 41

Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193

TASK MONITOR

The Task Monitor handles task oriented
interruptions that are passed on to it by
the Resident Supervisor. To accomplish
this objective, the Task Monitor consists
of a group of privileged service programs
that receive and process task oriented
(programmed) interruptions in a prescribed
sequence and on a priority basis via queue-
ing, scanning, and dispatching mechanisms.
These mechanisms are somewhat analogous to
the stacking, scanning, and dispatching
mechanisms of the Resident Supervisor
design. As in the Resident Supervisor, a
queued interruption represents an element
of work. Such an element may be deferred
for reasons of priority, efficiency, or
protection against recursion.

The Task Monitor performs the following
major functions:

e Provides an interface with the Resident
Supervisor for receiving and analyzing
task oriented interruptions.

e Provides linkage to required service
routines either by immediate dispatch-
ing or by queueing the interruption for
later dispatching in a sequence based
on priority.

® Maintains the integrity of the task and
service routines that are dispatched.

The Task Monitor consists of interrup-
tion processors, a Queue Linkage Entry rou-
tine, a Scanner-Dispatcher, all contained
in one module, and a separate group of ser-
vice routines. Interruption processing
proceeds as follows: entry is made into an
interruption processor from the Resident
Supervisor. The interruption processor
either immediately dispatches a service
routine to handle the interruption or makes
an entry for the interruption in an Inter-
rupt Table. The entry is made by using the
Queue Linkage Entry routine. Then control
goes to the Scanner-Dispatcher which uses
the Interrupt Table to select and invoke a
specified service routine to process an
interruption.

When the Scanner-Dispatcher determines
that no more service routines can be dis-—
patched, control is returned to the task at
the point of its last interruption. An
overview of the general flow of interrup-
tion processing in the Task Monitor is
shown in Figure 20.

INTERFACE WITH RESIDENT SUPERVISOR
Control goes to the Task Monitor from

the Resident Supervisor when a task inter-
ruption is presented. The Resident Super-

42

visor Dispatcher always gives control to a
task at a location specified in the
Extensed PSW saved in the task's XTSI.
However, before control is given to a task,
the Dispatcher transfers control to the
Task Interrupt Control routine. This rou-
tine checks the task's interruption queues
for unmasked pending interruptions. If
none are found, control is returned to the
Dispatcher. In this case, the Dispatcher
gives control to the task at the point of
its last hardware interruption. If a pend-
ing interruption is found, the Task Inter-
ruption Control routine changes the
Extended PSW in the XTSI to point to an
appropriate interruption processor of the
Task Monitor. Now, when the Dispatcher
gets control, it causes control to go to
the interruption processor. This action of
influencing the Dispatcher’'s transfer of
control is called a programmed interrup-
tion. The Task Monitor may be considered
to be a programmed interruption handler,
whereas the Resident Supervisor is a hard-
ware interruption handler.

INTERRUPTION PROCESSING

After an entry is made into one of the
interruption processors, the interruption
processor checks to determine whether the
interruption should be processed immediate-
ly or put on a queue for later processing.
(Both actions are possible for some inter-
ruptions.) The processing of an interrup-
tion entails the eventual invocation of a
service routine to perform the actions
required by the interruption.

An interruption is processed immediately
when its nature is such that the required
action to be performed is of the highest
priority to the task. For example, an
interruption requiring the invocation of
the Dynamic Loader must be processed imme-
diately. In the immediate processing case,
the interruption processor frequently uses
the Load Virtual PSW SVC to change the pro-
gram mask in the PSW, to set the TSI inter-
ruption mask, and to give control to the
invoked service routine with a new PSW.
This process is called immediate dispatch-
ing. When the dispatched service routine
finishes its processing, it returns control
to the interruption processor which then
exits to the Task Monitor Scanner-
Dispatcher.

When an interruption is to be put on a
queue, the interruption processor calls the
Queue Linkage Entry routine. This routine
creates a Queue Entry in an Interrupt Table
for the interruption. When control returns
from the Queue Linkage Entry routine, the
interruption processor exits to the
Scanner-Dispatcher.

Problem Program -

solid line indicates

Hardware Interruption

transfer of control

— — = dashed line indicates
transfer of data only

Resident
Supervisor
Dispatcher

J

Software Interruption

Queue - Task .
Linkage Monitor Immediate Dispatch
Entry Return o Interrupt Restore Problem
Routine - Processors Program to Status
— When Interrupted
| Enqueue Deferred Dispatch i
Interrupt
Table (iTB}
} Dequeue
L w
- Scanner-Dispatcher
Yy Y Y
User Specified Privileged
Interrupt Handling Service
Routines Routines
Return Return
Yy Y

Figure 20.

The Task Monitor uses the Interrupt
Table to hcld information concerning ser-
vice routines and interruptions to be pro-
cessed. There are two main types of
entries in the table: Request Entries and
gueue Entries. There must be a Request
Entry for every service routine that may ke
dispatched. The Request Entry contains an
activity indicator, a priority code, a
pointer to a description of the service
routine, and a pointer to its Queue Entries
(if any exist). A Queue Entry generally
represents an interruption that has not yet
keen processed. A Queue Entry is chained
to a Request Entry and contains information
about the interruption. The activity indi-
cator in a Request Entry is off when there
are no Queue Entries attached to the Re-
quest Entry, and is on when there is at
least one Queue Entry attached. A set of
Request Entries is entered in the Interrupt
Takle to provide for the dispatching of

Interrupt Processing General Flow

service routines supplied with the system.
Request Entries may also be added to the
Interrupt Tabkle by a user issuing a Specify
Interrupt Routine (SIR) macro to provide
for the dispatching of user supplied
routines.

Queue Entries are entered in the Inter-
rupt Table and attached to particular Re-
guest Entries Ly the Queue Linkage Entry
routine (which sets the activity indicator
in the Request Entry). This routine is
normally called by a Task Monitor interrup-
ticn processcr. However, a privileged ser-
vice routine may call the Queue Linkage
Entry rcutine in order to cause a gueue
Entry for a service routine to be enqueued.
Fither another service routine or the orig-
inal service routine may be dispatched in
this way. The Request Entries are used by
the Scanner-Cispatcher to select a serxrvice
routine for dispatching. To facilitate the

Control Architecture

43

selection, the active Request Entries are
chained together in priocrity order. Re-
quest Entries may ke deleted ky a user
issuing a Delete Interrupt Routine (DIR)
macro when he no longer wants the corres-
ponding service routines to be dispatched.
The informaticn contained in Queue Entries
may be inspected by either a privileged cr
a nonprivileged routine through the use of
the Interrupt Inquiry (INTINC) macro
instructicn. After a service routine is
dispatched, the Queue Entry is removed from
the chain attached to the Request Entry for
the service routine.

The purpose of the Scanner-LCispatcher is
to select a queued interruption or linkage
request and to dispatch a service routine.
The selection is made from active Request
Entries which are chained together in order
of priority. After the service routine is
dispatched, the Queue Entry for the inter-
ruption or linkage request is removed frcm
the Request Entry. If no more Cueue
Entries are attached to the Request Entry,
the activity indicator is set to indicate
that the Request Entry is inactive and the
Request Entry is removed from the active
chain. When the Scanner-Dispatcher deter-
mines that no more service routines can be
dispatched, control is returned to the
point of the last interruption. The
Scanner-Dispatcher always transfers control
Ly means of the Load Virtual PSW (LVPSW)
SVC. The LVPSW SVC is used kecause it per-
mits the Task Monitor to specify the task's
ESW program mask, the TSI task interruption
mask, and the PSW storage protect key.

The dispatching of service routines
using the Queue Linkage Entry routine to
enqueue a regquest rather than Lky direct
calls to the service routines serves three
purposes. First, the Task Monitor takes
care of linkage conventions which involve
rroviding save areas and return points.
Second, by this method a service routine
will be able to gain ccntrcl at a future
time. Third, a service routine is able to
release save areas by returning to the Task
Monitor.

In order to eliminate the overhead that
would be incurred if the Task Monitor had
to build a Request Entry to handle each
such linkage request, the Task Monitor
maintains two general-purpose Request
Entries upon which all such linkage
requests can be enqueued. There is one Re-
quest Entry for rrivileged routines and one
with a lower priority for non-privileged
routines. Because these Request Entries
are general-purpose in nature, the Queue
Entry for a linkage request must contain
the address constants for the routine to be
dispatched.

44

Examples of service routines prcvided
with the system are Command System routines
and the Data Management access nethods.
Exarples of service routines which may be
supplied by the user include: program
interrupt handling routines, routines for
handling SVC codes not recognized Lty the
system, routines for handling task time
interruptions, and routines for handling
special task I/C interruptions.

An example cf the use of user specified
interruption handling conditions is as fol-
lows: 1if a rrcklem is to process program
interruptions resulting from decimal over-
flcw, the user nust issue a Specify Program
Interrupt Entry Conditions (SPEC) macro
instructicn to kuild an Interrupt Control
Block (ICB) that names the routine ana
identifies the interruption type, in this
case Program interruption code 10. The
user then issues the Specify Interrupt Rou-
tine (SIR) macro instruction for this ICB
to enter a Request Entry into the Task Mon-
itor tables with the priority the rocutine
is to have relative to all the other inter-
ruption handlers that he may have speci-
fied. If a grogram interruption of code 10
occurs, the Task Monitor gueues the element
in the Task Monitor Interrupt Table on the
Request Entry that represents the user's
ICcB, so that the specified routine can be
dispatched by rriority. At any time, the
user may delete this routine by using the
LIR macrc instruction and specify another
routine in its place.

TASK INTEGRITY

Task integrity refers to the preserva-
tion of information which might otherwise
ke lcst due to recursive or sequential task
interruptions. One of the mwajor functions
cf the Task Monitor is to maintain the
integrity of service routines. This is
acconplished through the management of pro-
gram and machine status data, linkage con-
ventions, and save areas.

Furthermore, the Task Monitor is pro-
vided with a programmed interrupticn mask-
ing carakility analogous in concept to the
hardware interruption masking capability of
the Resident Sugpervisor.

Mcst task interruptions are independent
of one another but are not necessarily
rutually exclusive. That is, several task
interruptions may be in process simul-
taneocusly. For example, a nonprivileged
program may wish to send a message tc the
task's SYSCUT. The Gate Write macro will
cause an ENTER supervisor call to ke
executed in crder to eventually invoke the
rrivileged GATE routine. The GATE routine
will obtain the output line from somewhere
in the nonprivileged program. I1f this page

has never yet keen referenced, the Resident
Supervisor may pass a task program inter-
rupticon to the Task Monitor which, in turn,
will immediately invoke the Dynamic Loader.
wWhile the Dynamic lLoader is processing, it
is possible that an 1/C interruption (sign-
aling the completion of some previcus I/0O
operation for the task) ray ke presented to
the Task Monitor, which will immediately
dispatch the arpprorpriate access method
posting routine. Thus, three task inter-
ruptions have occurred concurrently. That
is, one occurred before the processing of
another was ccrmnpleted. The Task Monitor
has to hold the program and machine status
of three service rcutines.

Since service routines may cause recur-
sive interruptions but are themselves not
necessarily written to be recursive, the
following protection mechanisms are used
when there is a possibility of a loss of
information. Before passing an interrup-
tion toc the Task Monitor, the Resident
Supervisor checks the task interruption
mask field in both the TSI and the ISA when
one of the four maskable task interruptions
is pending. If either mask field indicates
inhibit, the task interruption is not pre-
sented to the Task Mcnitor. The external,
asynchronous I/0, timer, and synchronous
I/0 interruptions must be maskable because
the time of their occurrence is unpredict-
able and the task wight have a vulnerable
status at the time. Program and SVC task
interruptions cannot be masked because by
definition they mean that the issuing task
cannot or does not wish to continue until
the interruption has keen processed.

Another situaticn in which interruptions
may be inhibited occurs during scanning and
dispatching in the Task Monitor. A routine
dispatched by the Task Monitor has the
capability of preventing the Task Monitor
from dispatching other service routines
until a previcusly disgatched routine has
completed its processing and returned.

This capability is referred to as enabling
and disabling the Scanner-Dispatcher.
Interruptions may still ke presented to the
Task Monitor (for either immediate dis-
ratching or for queueing), but another ser-
vice routine cannot be dispatched until the
dispatched routine returms control to the
Scanner-Dispatcher.

Since task interruptions may be concur-
rent and in scome cases may OCCUr recursive-
ly the Task Monitor preserves task integri-
ty by managing save areas. Whenever there
is a possibility that further task inter-
ruptions may cccur befcre the current task
interruption is completely processed, the
appropriate Task Mcnitcr Interruption pro-
cessor saves the program and machine status
data that existed when the interruption
occurred. This process is called a long

save and the appropriate long save area in
the ISA or Task Monitor's PSECT is uti-
lized. The non-grivileged long save area
is generally utilized when the interruption
cccurred in the User State. The privileged
long save area is generally utilized if the
interrugtion occurred in the Privileged
state.

If there is no possibility of further
interruptions, the interrugtion prccessor
utilizes only a short save area in the ISA
in order tc free up some registers. For
examrle, an access method posting routine
is dispatched directly by the Task Monitor
Synchronous 1/0 processor with no long save
tecause interrupts remain masked.

The interruption processors also provide
any routine that they call or dispatch with
a Tyre I linkage save area (19 words).
These save areas are located in the PSECT.
Type I linkage and other linkage types are
described in the section on Linkage Conven-
tions. An interruption processor may imme-
diately dispatch a service routine or it
nay exit directly to the Scanner-
Cispatcher.

It is possikle for task interruptions to
ke presented to the Task Monitor before an
immediately dispatched routine completes
processing. In general, this could result
in a proklem of save area availability
kecause there are only two long save areas
in the ISA. However, in practice *here are
only a few cases in which it might be
necessary to perform a long save when the
appropriate long save area might not be
available. These cases are associated with
supervisor call and program interruptions
which can not ke masked. The two principle
situations are associated with a Type III
linkage and a task page-relocation-
exception interruption.

If an immediately dispatched service
routine (such as CHECK) wishes to transfer
control to a non-privileged routine (such
as a user's lakel handling routine), a Type
III linkage is employed. On Type III lin-
kages, the Leave Privilege routine of the
Task Monitor is invoked to (among otherx
things) save the non-privileged long save
area thereby making it available fcr anoth-
er task interruption such as an ENTER
supervisor call generated by the non-
privileged rcutine.

Any routine, including the Dynamic Load-
er can cause a task page-relocation-
excertion interruption. This interruption
causes an immediate dispatch to the Dynamic
ILoader. JSrpecial handling and save area
management is provided in the case of such
interrurtions (see "Dynamic Loader™).

Contrcl Architecture 45

An immediately dispatched routine always
returns eventually tc the Task Monitor
interruption processor that dispatched it.

A Task KMonitor Interrurt Processor
always exits eventually to the Scanner-
Dispatcher. If a long save was performed,
the information in the appropriate long
save area is mcved to the Scanner-
Dispatcher's long save area in the PSECT.
If there are no further routines to dis-
patch, the Scanner-Dispatcher restores the
task to its status at the time of interrup-
tion. If there are service routines to
dispatch, the Scanner-Lispatcher dynamical-
ly allocates long and 19 word save areas
for routines that it dispatches. This is
done to free up the long save areas used by
the Task Mcnitcr interruption processors
and the Scanner-Dispatcher in anticipation
of further task interruptions that may
occur before the processing of all pending
task interruptions is completed.

Both privileged and ncn-privileged rou-
tines are dispatched via the lLoad Virtual
PSW supervisor call. However, privileged
and non-privileged routines are provided
different save areas and return roints.

46

The save area for a privileged routine
is lccated in privileged virtual storage
and a return is normally made directly tc
the Scanner-Cisgatcher.

The save area for a nocn-privileged rcu-
tine is lccated in non-privileged virtual
storage so that the non-privileged routine
can access the save area. The general pur-
pose register used for returns is set tc
roint tc a location in the ISA that con-
tains a Restore Privilege (RSPRV) supervi-
scr call. The execution of the RSPRV
supervisor call results in an indirect
return tc the Scanner-Dispatcher. The
ESPRV supervisor call is used because a
direct return from a non-privileged routine
to a privileged routine would cause a
storage protecticn exception interruption.

The Scanner-Dispatcher may concurrently
dispatch a number of routines in the sense
that a second routine may be dispatched
kefore the first routine has returned. The
Scanner-Lisgpatcher maintains order within
koth the non-privileged and privileged save
areas through a push-down list which
reflects the order of dispatch.

The basic function of kcth tne Resident
Supervisor and the Task NMonitor is to pro-
cess interrurtions. The purpose of this
section is to provide an overview of the
various categories of interruptions pro-
cessed by the system and to designate the
appropriate sections of this manual which
discuss the processing of some specific
interrupticns asscciated with each of the
categories.

There are five classes of System/360
hardware interrurtions:

Machine Check
External

Program

1/0

Sugperviscr Call (SVC)

MACHINE CHECK INTERRUPTICN

The Machine Check interruption indicates
a CPU, Storage Element or Channel Control-
ler error and is discussed in the section
cn Exrror Procedures

EXTERNAL INTERRUPTION

External interruptions are initially
accepted by the Recovery Nucleus routine,
which saves and resets the timer location
in the PSA, and checks for and processes
any malfuncticn alert interruptions (see
"Exrror Procedures").

If the interruption is the result of the
interrupt key cn the orerator's console
Leing depressed, this routine loads the RSS
External Interrupt PSW from the system
table. This action results in an entry to
the Resident Support System and the subse-
quent dedicaticn of the system to the acti-
vity of the master programmer at the opera-
tor's console.

If the interruption is not the result of
a malfunction alert or the interrupt key,
the Recovery Nucleus transfers ccntrol to
the External Interrupt rcutine of the
Interrupt Stacker.

This routine further classifies an
external interrupticon as a Timer interrup-
ticn or a Write Direct interrurtion.

Timer Interruptiocn

This interruption occurs as a result of
the contents of the timer cell becoming

INTERRUPTION HANDLING

negative. The contents of the timer are
decremented ky the hardware approximately
every 13 microseconds. When the timer ccn-
tents change from a positive (including
zero) to a negative number, an interruption
cccurs. The primary functions of this
interruption are tc signal time slice end
cf a task, tc force a timer task interrup-
tion or to activate a CPU that was glaced
in the wait state ky the Resident Supervi-
sor's Dispatcher.

The processing of a time slice end
interrurtion is discussed in the section
"Time Slice End Processing Example.”

The conditions under which the Dispatch-
er will place a CPU in the Wait state and
T35/360 timer functions, in general, are
discussed in "Timer Services Allocation.”™

Write Direct Interruptions

The CPU instruction WRITE DIRECT is used
for inter-CPU communications. The WRITE
LCIRECT instruction forces an external
interruption in the destination CPU. A
special routine (called the Inter-CPU Com-
munication subroutine) is invoked to pro-
cess all inter-CPU communications. This
routine is used when one CPU wishes to
issue an External Start (simulated IPL) to
ancther CPU. See section on Error Hand-
ling. Another example of the use of this
routine is tc reset the associative regis-—
ters in another CPU to prevent residual
references tc a shared page whose main
storage klock has just been released.

PROGRAM INTERRUPTION

There are seventeen program interruption
codes generated ky the System/360 Model 67.
If any of these program interrupticns are
caused while a CPU is operating in the
Supervisor state, i.e., caused by the Resi-
dent Supervisor, an error is indicated and
the Interrupt Stacker invokes the System
Exrror Processor (see "Error Procedures™).

Fifteen of these 17 interrupt codes are
conmen to all System/360 systems and are
specified in Principles of Operation.

If a program interruption with a code
0-15 occurs from the problem state, the
Interrupt Stacker creates a program inter-
rupt GQE and enqueues this GQE on the
task's TSI. Just kefore the task next
receives contrcl, the Task Interrupt Con-
trol subroutine creates a programmed inter-

Interruption Handling 47

ruption which results in the task's Lkeing
dispatched at the entry point of the Task
Mcnitor's Program Interrupt Processor.

If the program interrugption occurred in
a privileged routine, the Task Monitor Pro-
gram Interrupt Processor issues a System
Error (SYSER) SVC which will cause the
Resident Supervisor's Interrupt Stacker to
invoke the System Error Processor. Upon
return the task is abnormally terminated.

If the program interruption occurred in
a problenr program, two situaticns are
rossible.

First, the problem program may have spe-
cified a routine to handle this type of
program interruption through use of the
Specify Prcgram Entry Conditions (SPEC) and
Specify Interrupt Routine (SIR) macros.

In this case, the Task Monitor Program
Interrupt Processor invokes the Queue Lin-
kage Entry subroutine to activate the Re-
quest Entry for the routine that is to
nandle the interruption. Iater, the Task
Monitor Scanner - Dispatcher transfers con-
trol to the routine.

In the second situation, the problem
program has not specified a routine to
handle the program interruption. In this
case, the Task Monitor activates a Reguest
Entry for the Command language DIAGNC rou-
tine. The DIAGNO routine will use the Com-
mand System User Prompter routine to obtain
an approrriate error message from the Sys-
tem Message (SYSMSG) dataset which is then
rplaced on the task's SYSCUT using the GATE
Write (GATWR) macro. If the task is con-
versational, the user is prompted for
corrective action. If the task is non con-
versational, the task is aknormally ter-
minated (i.e., the ABEND routine is
invoked). (See "Command Controller.")

Program interruption codes 16 and 17 are
unique to the Systems/ 360 Model 67.

Program interruption code 16 indicates
that a page table is unavailable. Program
interruption code 16 may signal that a
Shared Page Table is unavailable. This is
discussed in "Internal Sharing."

Progranm interruption code 17 indicates a
page relocation exception. That is, the
Dynamic Address Translation unit found the
page "unavailakle®"™ when the Page Table
entry associated with a virtual storage
address was inspected. The processing of a
page relocation exception interruption
within the Resident Supervisor is discussed
in "Page Relccation Excertion Example."

If the Page Posting rcutine of the Resi-
dent Supervisor finds that the kxternal

48

Page Table entry for a page that has just
keen brought into Main stcrage has an
"Address Constants Unprocessed by Dynamic
Ioader"™ flag turmned on, a program interrup-
tion GUE (with an interruption code of 17)
is enqueued on the task's TSI. This
results in a scftware interruption keing
passed on to the Task Monitor's Prcgram
Interrurticn Processor which will, in turn,
immediately dispatch the Dynamic Lcadex.
The reascn for this flag and the processing
of this software program interruption, are
discussed in the section on the Dynamic
Loader.

If a user attempts to reference a virtu-
al storage address not allocated to him,
either a code 16 or 17 intexrruption cccurs.
The Resident Sugervisor detects this error
and engueues a program interrugtion GQE on
the Task's TSIT.

The intexruption code field of an
extended or virtual PSW permits the speci-
ficaticn of 65,535 intexrrupt codes. Within
1557360, the program interrugtion codes in
the range 32 to 65,535 are used in a virtu-
al PSW to designate additional program
errors and are designated as extended
interruption codes. Interruption codes 18
through 31 are reserved for future hardware
interruption expansion, and codes 65,280
through 65,535 are set aside for temporary
definitions for use in the development or
testing of TS85/360. The extended interrup-
tion codes can be placed into a virtual PSW
ky either the Resident Supervisor or the
Task Monitor.

The Resident Supervisor uses extended
Erogram interruption codes when it discov-
ers errors associated with a Supervisor
Call or rermanent hardware e€rrors asso-
ciated with task operations. The Task Mon-
itor will place an extended program inter-
ruption code into a virtual PSW whenever
the Task Monitor discovers errors asso-
ciated with a Supervisor Call that repre-
sents a request for the services cf a pri-
vileged routine. If the Task Monitor dis-
covers a virtual PSW containing an inter-
ruption code greater than 31, a SYSER SVC
will be issued or the Command Syster DIAGNO
routine will be invoked as described for
program interruption codes 1 to 15. A com-
rlete listing of the extended program
interxrruption codes defined in TSS/360 is
contained in System Programmer's Guide.

I/C INTERRUPTION

The I/0 interruption is the normnal
nethcd used ky the inputsoutput hardware to
communicate the termination status cof an
input/output ogperation to a CPU.

For efficiency, the Interrupt Stacker
places interruptions asscociated with paging
drums on the Paging Lrum Interrugt Proces-
sor queue and all other I/C interruptions
on the Channel Interrugt Processcr queue.

If the appropriate Interrupt Frocessor
discovers an I/0 error, processing will
proceed as described in "Error Procedures."

Apart from error interrugpticns, an
interruption GQE on an interrupt processcr
queue can represent either a synchronous
interruption or an asynchronous
interruption.

As defined in TSS/360, a synchronous
interruption is an interruption resulting
from an I/0 cgreration initiated ky the
Resident Supervisor. Examples of the pro-
cessing of synchronous interrugtions are
presented in “Example of BSAM Processing, "
and "Paging."

An asynchronous interrurtion is any
interruption that is not synchronous and
generally is an interruption resulting from
a user pressing the attention kutton on his
terminal. When the Channel Interrupt Pro-
cessor encounters an initial attention
interruption from a terminal, the Task
Initialization Routine is called to create
a new task. Then an asynchronous interrup-
tion GQE is enqueued on the created task's
TSI.

This causes a software interruption to
invoke the Task Monitor's Asynchronous
Interrupt Processor which, in turn, invokes
the Command System Virtual Memory Task
Initiation and Intitial Attention Interrupt
Processing rcoutines to supervise initiali-
zation of the new task. This process is
described in "Creation of a Conversational
Task."

In the case of other asynchronous I1I/0
interruptions, the Resident Supervisor
ignores the interruption unless a task has
issued a Set Asynchrcncus Entry supervisor
call to direct asynchrcnocus interruptions
from that device to a particular task.

If the interruption can be associated
with a task, the interupticon is gassed to
the Task Monitor as an asynchronous inter-
ruption. The Task Mcnitor ignores the
interruption unless a Reguest Entry can be
found for asynchrcnous interruptions on
this device.

In the case of asynchronous interrup-
tions from a SYSIN terminal (attention
interruptions caused by depressing the
attention key cn the terminal), there will
always be an appropriate Request Entry.

Ncrmal processing of attention interrup-
tions is the responsibility of the Command
System Attention Handler.

LCGON2 receives control during task
initialization and issues a SIR macro,
which points to a prebuilt Interrupt Con-
trol Block that identifies the Attention
Handler as the routine to receive control
when future attention interruptions are
received from SYSIN.

Under these conditions, any attention or
pseudo-attention interruption causes the
Task Mcnitor to invoke the Queue Linkage
Entry routine to engqueue a linkage request
cn the Request Entry for the Command System
2ttention Bandler. When the Attenticn
Bandler is disgpatched by the Task Monitor
Scanner-LCispatcher, the Attention Handler
will invite the user to enter a command by
issuing an exclamation symkol to the
terminal.

It is desirakle to allow a problem prc-
gram to dynamically pause and seek a new
commana from the task's SYSIN. This can be
accorplished through the Read Command from
SYSIN (CIIP) and Read Command from Conver-
saticnal SYSIN (CLIC) macro instructions.

The CLIP macro instruction issues a
supervisor call which is passed to the Task
Monitor as a task SVC interruption. The
Task Monitor creates a pseudo-attenticn
interrugption by invoking the Queue Linkage
Entry routine to enqueue a linkage request
cn the Ccmmand System Attention Handler Re-
quest Entry.

The CIIC macro instruction causes the
same processing except that the SVC
generated by the macro instruction is
ignocred if the task is nonconversational.

A user may estaklish routines to process
attention interruptions. The routines are
established through the use of the SABEC and
SIR macro intructions. Tne user then
issues a User Attention (USATT) macro
instruction. This causes the Attention
Handler to deactivate its Request Entry for
attenticn interruptions, thus leaving the
problem programs Request Entry as the only
active Request Entry for SYSIN attention
interruptions. All subsequent attention
interrupticns are processed by the speci-
fied routine. If the Attention Handler did
not deactivate its Request Entry, the
Attention Handler would receive attention
interruptions instead cf the user's routine
kecause the Attention Handler's Request
Entry has a higher priority than a problem
program's kequest Entry. When the user
wants processing of attention interruptions
to be resumed by the system he issues a
Clear Attention (CLATT) macro instruction.

Interruption Handling 49

Use of the CLIP or CLIC macros after a
USATT macro will cause the Attention Handl-
er (not the user's routine) to receive con-
trcl from the Task Monitor.

User routines to process attenticn
interruptions may also ke handled Ly the
AETD macro instruction. The AETLC macro
instruction allows a user to interrupt his
programs during execution via the attention
key, and thereby enter a predefined user
routine for processing of the attention
interrupt. The execution cof the AETD macro
instruction generates a table (AET) con-
taining the addresses cf rcutines which are
to be given control when a user presses the
attention key a specified numker of times.
When the attention key is pressed, the
Attention Handler first determines whether
the current value of the attention count
has a corresponding entry in a connected
Attention Entry Table (AET). If it does,
the apprcopriate user's attention routine is
executed. If there is no corresponding
entry in the AET, the Attention Handler
performs various tests (see "Attention
Handler™).

The user might emplcy the AETD macro
instruction to pass control to any user-
provided control systems, or tc provide
partial backup in a current task so that a
bad error situation does not cause the task
to require total reconstruction. The AETD
macro instruction can ke used to predefine
simple automatic debugging procedures by
using PCS commands in the user-coded atten-
tion handling routines.

When the AETD macro instruction is
issued with nc operand, the AEI, if one was
previously defined, is disconnected, and
the Attention Bandler will be invoked for
suksequent handling of attention
interrugts.

If a user rresses the attention key
while a message is being printed at his
terminal, the transmissicn is terminated.
An attention interruption which interrupts
an active channel rrogram for a SYSIN
device is not an asynchronous interruption.
It is passed to the Task Monitor as a syn-
chronous interruption (see "Command
Controllexr®).

SUPERVISOR CALL INTERRUPTION

The supervisor call (SVC) is the normal
method of communication between a task and
the superviscr. The interruption is caused
by the executicn of an SVC instruction
which is usually imbedded in the expansion
of a macro instruction. An SVC instruction
has a one byte variable field which is used
tc contain a ccde (0 to 255) to indicate
the operation to be performed. In TSS/360,

50

an SVC interruption can coccur under two
general ccnditicns:

¢ The SVC issued from a task in the prob-
lem state.

¢ The SVC occurred while the CPU was
cperating in the Supervisor state.

If the interruption occurred in the
problem state, the interruption code in the
PSA is examined to determine the type of
request represented:

e A request for problem rrogram services
(SVC codes 0-63)

e 2 request for Time Sharing Support Sys-
tem Services (SVC codes 64-95)

e A request for privileged program ser-
vices (SVC codes 96-127)

e A request for Resident Supervisor ser-
vices (SVC codes 128-255)

The SVC codes from O to 63, reserved for
requests for the services of problem pro-
grams, are not defined at present.

When one of the SVC codes from 96 tco
127, reserved for requests for the services
of routines operating in privileged virtual
stcrage, or SVC 254 (LVPSW) is encountered,
the SVC-interrupt routine cf the Interrugpt
Stacker checks for the existence of other
pending interruptions. If no interrugtion
exists, the Interrupt Stacker places the
address of the appropriate processcr in the
current PSW location of the ISA and issues
the LPSW instruction which causes the
interruption to ke immediately serviced.

If another interruption is pending, the

Interrurt Stacker switches addresses as

above and transfers control to the Queue
Scanner.

Later, the Task Interrupt Control sub-
routine of the Dispatcher will create a
software interruption from the GQE and the
Dispatcher will place the task in execution
at the entry to the Task Monitor's SVC
Interrupt Processor.

Several of the supervisor calls in this
range are pre-defined and thus are nct
available for dynamic interruption specifi-
cation by the task.

These pre-defined supervisor calls are:

Macro ID SVC Code Macro Name

DLINK 127 Dynamic Linkage Re-
quest (i.e., load a
program module)

PCSVC 125 Program Checkout Sub-

system Call

DELET 123 Celete a program
rodule

RTRN 122 Return to calling
program

ENTER 121 Enter a Privileged
Service Routine

RSPRV 120 Restcore Frivilege

CLIC 119 Read Command from
SYSIN (conditionally)

CLIP 118 Read Command from
SYSIN

RAE 117 Restore and Enable
task interrupts

EXIT 116 Writes a message to

SYSOUT. 1f the task
is conversational,
the task is placed in
cormrmand mode. If
nonconvexrsational,
the next command is
read from SYSIN.

The DLINK and DELET Surervisor calls are
discussed in the section "LCynamic Loader".

The PCSVC is discussed in "Program Con-
trol System."”

The RTRN supervisor call is discussed in
"Example cf System Ogeration - Nonconversa-
tional Processing."

The RSPRV supervisor call was discussed
in "Task Integrity”™ and "Linkage
Conventions."

The ENTER Supervisor call is used to re-
quest the Task Monitor SVC Interrupt Pro-
cessor to immediately dispatch a privileged
service routine.

The Task Mcnitor uses as an argument to
inspect two Enter Tables an Enter code
which the execution cof the Enter macro
caused to be placed in general purpose
register 15.

The first Enter Table contains entries
which either point to corresponding entries
in the second Enter Takle or indicate that
the Enter code is unassigned. If the Enter
code is unassigned this constitutes an
error and the Request Entry for the Command
Ianguage DIAGNO rocutine is activated in the
Task Monitor Interrupt Table. DIAGNO will
subsequently ke invoked ky the Task Monitor
Scanner-Dispatcher. If the ENTER supervi-
sor call was issued by a privileged rou-
tine, this constitutes an error and a SYSER
superviscr call is issued ky the Task Mon-

itcr. When control is returned tc the Task
Monitor, the task is aknormally terminated.

The seccond Enter Table contains the
address constants used in invoking the ser-
vice rcutine. The Appendix section of the
Task Monitor Program Logic Manual ccntains
a takle cf system enter codes.

The LCCLEF and CATALOG routines are
examples of the type of routine disgatched
in this way. This second Enter Table also
specifies whether the routine to be entered
(or a routine the entered routine might
call) may cause ancther task interrugtion.

Another flag in each Enter Takle entry
specifies whether the entered routine can
ke recursively interrupted. Currently, all
TSS/360 service routines specify that they
cannot be interrupted by interruptiocns thkat
would affect the operation of the inter-
rupted routine.

An example of the processing of an Enter
SVC used to invoke the Basic Sequential
Access Metncd Read/Write routine is
described in "Example of BSAM Processing."

In the case of SVC codes from 128
thrcugh 255, requests for the services of
the Resident Supervisor, the Interrupt
Stacker will invoke the SVC Queue Frcces-
sor. This direct linkage is possible
kecause the processor is never interlocked.

The Resident Supervisor SVC Processor
will use the SVC interruption code to
inspect an entry in the proccessor's SVC
Flag Takle. Each Flag Table entry contains
information specifying the privilege class
necessary to invoke this sSvC. If this
information is not compatible with the
authority code specified in the task‘'s TSI,
a task Program Interrupt GQE is placed on
the TSI. 1If the SVC was issued from a rou-
tine with the proper authority, the SVC
Cueue Prccessor uses the SVC interruption
code to obtain a pointer from its SVC
Address Takle. The SVC Cueue Processor
then invckes the proper SVC subprocessor to
initiate the prccessing of the supervisor
call.

A list of SVC subprocessors was pre-
sented in the section on "Resident Supervi-
sor." Examples of the processing cf SVC
requests for Resident Supervisor services
are presented throughout this manual. An
especially illustrative example is pre-
sented in the section, "Example of BSAM
Processing."™

If there is no SVC sukprocessor asso-
ciated with the SVC interrupticn ccde, a
Frogram interruption GCE is engueued cn the
task's TSI.

Interruption Handling 51

There is at least one exanmple of a SVC
that requires grocessing cty koth the Resi-
dent Supervisor and the Task Monitcr. This
is the Virtual Memcry tc Virtual Memory
Send [VSEND] SVC. Wwhenever cne task wishes
to send a message tc another task, the
sending task issues a VSEND SVC. After the
Resident Supervisor's VSENL SVC sukproces-
sor has completed processing this Supervi-
sor Call, an External Interrupt GQE is
enqueued on the receiving task®s TsSI. This
Supervisor Call is described in
"Communication."

It is pcssible for the Interrupt Stacker
to receive an SVC interruption which orig-
inated while the CPU was in the Supervisor
state, i.e., the SVC instructicn was
executed by the Resident Superviscr itself.
This is generally an ERROR SVC that was
issued by the Resident Supervisor in order
to invoke the System Errcr processor. Even
if the SVC was not an ERRCR SVC, the Inter-
rupt Stacker issues an ERROR SVC Lkecause
any other SVC issued in the supervisor
state is an exror.

The processing of such interruptions is
discussed in "Errcr Prccedures.”

52

RESIDENT

TERMINAL ACCESS METHCD/MULTITERMINAL TASK

The Resident Terminal Access Method .
(RTAM) provides a resident metnod for com-
munication with terminals, reducing the

amount of raging,

of time,
tions.

and therefore the amount

necessary for terminal 1I/0 opera-
RTAM is used by toth TSS/360 and
Multiterminal Task (MTT) operation,

the

latter allowing several terminals to use an

application program simultaneously.
‘system*

term
operation;

The
is used to indicate TSS mode
the term 'application' is used

for MTT mode operation.

RTAM Control Blocks

The two most important control klocks
used with RTAM will be mentioned several
times throughcut this document:

System MTSCB

Multiterminal Status Control Block
(MTSCB) -- The MTSCB is a resident
table which services TSS/360 or MTT.
When used in TSS meode, there is a
single system MTSCRB used tc sexrvice all
terminals (See Figure 21). The system
MTSCB contains the virtual storage
address cf the system TCT and buffer
pages, along with other information.
The system MTSCB is addressed with an
EXTRN.

When used in MTT mode, there is cne
application MISCB created for each MTT
task (see Figure 22). The application
MTSCE contains the virtual storage
address of the application TCT and
kuffer pages, along with other informa-

Figure 21.

System Buffer

System TCT TSI 0
TCT Slot 0 -
TCT Slot 1 TSI
[]
®
L
®
®
T~— | TSI n
—

Note: The Virtual Storage oddresses of
the System TCT pages are
contiguous in shared IVM. The

RTAM Systen Control Block Relationship

Resident

Terminal Access NMethod/Multiterminal Task

same is true of System Buffer
pages.

Buffer size is dynamic.

53

TSI

(Flagged as MTT)

[

Application MTSCB

R

]

Application TCT

TCT Slot for

User Terminal 0

Note:

Application
Buffer Page

1 TCT Slot for

User Terminal ¢

TCT Slot for

User Terminal 10

For relationship to system
tables, see Figure 22

Figure 22. RTAM MTIT Ccntrcl Block

Relationship

tion. The address of an application
MTSCRE is ccntained in the TSI of the
task that issued the MTT command.

e Terminal Contrcl Table (TCT) -- In TSS

mode, there is one system TCT with a
slot containing a TSI pointer for each
TSS mode task attached to the system.
In MTT mode, the arplication TCT con-
tains one slot for each user terminal,
each slot pointing back to the TSI of
the task which issued the MTT. The TICT
is posted with pointers to the kuffer
pages and the TSI, and contrcl informa-
tion for the terminal.

RTAM TSS Initialization

During the initialization procedure,

when the Read placed on the line by TCS
finds LOGON, the Terminal Communications
Subprocessor (ICS) will call the TCT Entry
Allocation Subprocessor to assign a system
ICT slct and kuffer pages to the task.

(For detail on the initial interrupt, see
'Creation of a Conversational Task® in this
kook.)

RTAM TSS Mode Ogeration

Tne LOGON fprocessor issues the ATTACH

macro instruction to find the system TCT

54

entry (assigned during initializaticn) and
locate the virtual storage puffer address
cf the LCGON parameters. If the parameters
are valid, a GATWR macro instruction in-
forns the user that his LOGON was success-—
ful. 1In response to this GATWR issued by
ILOGON, the GATE processor sets the Reads/
Write I/0 flags in the system TCT slct and
issues the ATCS macro instruction tc call
TCS. TCS builds appropriate CCWs fcr read
and write requests to the terminal, Lkased
on system TCT settings established by GATE,
and returns to GATE kefore completion of
the CCW execution. Corpletion of the CCW
caused a synchrcnous I/0 interrupt, which
allows TCS to post the completion in the
termrinal's system TCT slot. Control is
eventually returned to the task.

RTAM MTT Initialization By Administrator

To estaklish NMTT mode, an MTT Adminis-
tratcr with O cr P authority code and T
privilege class, issues a LOGON command and
beccres a system user, as shown under
'‘Creation of a Conversational Task' in this
ktock. The Administrator suksequently
enters the MTT command. The TSI is flagged
MIT, the aprlication program is loaded, the
CONN SVC is issued to build the applicaticn
MTSCR and allocate storage sufficient for
application TCT and buffer pages, and the
arrlication rrogram is explicitly called
(see Access FMethods PLFM, module CZCTC).
This task is now in MTT mode (see Figure
23).

RTAM MTT Initialization By User

If the initial interrupt from a terminal
is for the purpose of using an MTT agpgplica-
ticn, the EEGIN command will ke entered.
TCS will search the application MTSCBs for
the module named in the BEGIN parameters,
and assign an application TCT slot tc this
MTT user terminal.

The arplication TCT slot will point kack
to the TSI of the task that originally
issued the MTT command. In fact, this TSI
will be used by all terminals attached tc
this agprlication program (see Figure 23).

RTAM MTIT Mode Cperation

The MTT application program that is
activated Ly the MTT command will service
many remote terminals simultaneously; but
within the time slice cf a single task, and
with the system overhead of a single task.

Within the agplication program, any
standard TSS/360 commands may be entered,
rlus a special set of MTT macro instruc-
tions (READ¢, WRITEC, FINDC, etc.) which
allcw the application to communicate
directly with the user terminals. ({See
Multiterminal Task Programming and Opera-

tion and the System Programmer's Guide
SRLs, and the Access Methods PLM.)

The user ccnnects tc the application
rrogram with the BEGIN comrmand, using that
format defined for the arprlication prograrm.
(See the Command Systen User's Guide SRL.)

System MTSCB

Any suksequent communication between the
aprlication user terminal and the arplica-
tion program must ke with commands defined
in the applicaticn program. The creator of
the application program wust therefecre gpro-
vide dccurentaticn support for the user.

System TCT
]

*

. . i TSI
-
.
L 2
. - TSt
. N ——

System Buffer > 51 {Assume this TSI is
. flagged for MTT)

TSI

Application MTSCB

Application TCT

-
TCT Slot for -
Application User O
o —

Application Buffer

Note: Refer to Figures 21 and 22

TCT Slot for
Application User n

Figure 23.

.

RTAM Applicaticn/System Control Block Relationship

Resident Terminal Access Method/Multiterminal Task 55

LATA MANAGEMENT ACCESS METHCDS

Traditiocnally, Data Management access
methcds have been ccmpcsed of routines to
perform twc lcgical functions:

s Effective handling of data structures
o Effective handling of physical devices

In TSsS/360 tnere are twoe categories of
access methods:

e Virtual Access Methods (VAN)
e Sequential I/0 Access Methods (SAM)

The Virtual Access Methods have been
specifically designed for a time-sharing
environment and rresent a clear division
ketween data set and physical device mana-
gement. There are three Virtual Access
methods each of which provides access and
processing carability for a specific type
of data set organization:

s Virtual Sequential Access Method
e Virtual Index Sequential Access Method
e Virtual FPartitioned Access Method

In all three of these access methads,
data set management is performed in virtual
storage and all physical device management
(i.e., 1/0 and error recovery) is performed
ky the Resident Supervisor.

The Sequential I/0 Access Methods are
all characterized by the fact that the
access method specifies the aprropriate
channel program and controls the logic of
error recovery in addition to performing
data set management. These access methods
call on the Resident Supervisor to perform
the actual executicn of the Channel pro-
grams. The sequential I/C access methods
are:

Pasic Sequential Access Metinod (BSAM)
e Queued Sequential Access NMethod (QSAM)
Multiple Sequential Access Method
{MSAM)
Terminal Access Method (TAM)
Resident Terminal Access Method (RTAM)
(see secticn on RTAM/NTT)
I/0 Request Facility (IOREQC)
On-Line Test Systen Access Method
(OLTAM)
e Drum Access Metncd (DRAM)

The Catalog Services Routines CBTAIN and
RETAIN which, in effect, make up an access
method, are discussed in "Catalog Service
Foutines.™ 2 summary cf the macrc instruc-
tions available for the major TSsS/360
Access Methods is presented in Figure 24.
An overview of these macros is presented in

56

Concepts and Facilities. These macrces are

described in detail in Assembler Userxr Macro
Instructions and Programmer's Guide.

VIRTUAL ACCESS METHODS

The Virtual Access Methcds comprise rcu-
tines especially designed for TS5/360.
Data sets with a virtual storage crganiza-
ticn reside cnly on direct access volumes;
bowever, VAM data sets may be copied tc
tapre via the VT command toc free puklic
storage or create backup copies, and may
then be restored to direct access storage
via the TV command when required fcr gro-
cessing (see "Command Routines"). Users
create, read, and process these data sets
¢n the basis of the logical records they
contain. T835/360, however, organizes these
data sets ky pages and uses these pages as
the unit of transfer between the direct
access device and main storage.

The nare "virtual™ was given to these
access methods to reflect the fact that
they utilize only cone physical block size;
that of a page.

The direct access volumes, on which TSS/
360 virtual crganization data sets are
stored, have fixed-length, page size data
biocks. No key field is required. The
record overflow feature is utilized to
allow data blocks to span tracks, as
required. The entire volume, with the cur-
rent excepticn of part of the first cylind-
er, which is used for identification, is
formatted intoc page size blocks.

The page-sized klock for data storage
was selected for a number of reascns. It
is as small as the smallest unit of main
storage allocation. It is large encugh so
that direct access throughput is high.
Rotational delay is a significant factcr in
direct access throughput, since it cannot
ke overlapped as mechanical seek time can.
Any klock size significantly smaller than a
page would be extremely wastefull of tctal
direct access capacity unless elaborate
strategies were utilized to avoid rotation-
al delay.

The need for a large block size is also
apparent when the simultaneous direct
access activities of multiple users are
considered. ©Due to conflicts in demands
for access arms, a mechanical seek may fre-
guently ke required before accessing a data
tlock. Tne larger block size makes better
use cf the tctal access cycle while, at the

General Service Macro Instructions
Applicable in All Access Methods

General Service Macro Instructions
Applicable in Virtual Access Methods

* DCB * DUPOPEN
¢ DCBD * DUPCLOSE
* OPEN
e CLOSE
rVSAM ‘ VISAM VPAM ‘ BSAM ‘ IOREQ ‘ TAM * MSAM ; QSAM
Virtual Virtual Index Virtual Basic lnpuf/Ourpuf Terminal Multiple Queuved
Sequential Sequential Partitioned Sequential Reqguest Facility Macro Sequential Sequential
Macro Instructions Macro Instructions Macro Instructions Macro Instructions Macro Instructions Instructions Macro Instructions Macra Instructions
* GET s GET * FIND * GETPOOL * * VCCW *® DFTRMENT * GET « GET
e PUT * PUT s STOW s FREEPOOL * * |[OREQ e CHECK e PUT o PUT
* PUTX ® READ e GETBUF * ® CHECK * READ ** s FINISH o PUTX
* SETL * WRITE e FREEBUF * ® WRITE ** e SETUR * TRUNC
. SETL o FEOV « DIAL** » RELSE
» ESETL * CNTRL o SETLR)
* DELREC * READ * SETL(P)
o RELEX « WRITE o SETL(C)
o CHECK o SETL(B)
* NOTE » SETL(E)
o POINT e CNTRL
« BSP o READ***
o CLOSE o WRITE™"
o (TYPE=T) o CHECK***
« DQDECB » NOTE**
o POINT***
| o BSPEYE
. . Virtual Index irtual Partitioned ‘{ ‘
gwmasi ?equermcl Sequential Data \D/ava Set, with © s wl Logical
f:m et, or Set, or Virtual Virtual Sequential equential Data Device Oriented Terminal Records; Logical Records
Virtual Sequential Index Sequential or Virtual Index Set, Usually One Oriented Moltiple Unit of o Sequential
Member of a Member of a Sequential Members| |with Unblocked Record Devices Data Set
Partioned Data Set Partitioned Data Set] jor a Mixture of Bothl |Records

*These routines are primarily designed for use with BSAM; however, they may be used with any Access Method.

**In TAM, only closs E privileged programs may issue the READ/Write macro instructions,
***These BSAM routines are invoked by Q5AM to perform various operctions.

Note: For RTAM, See Resident Terminal Access Method/Moultiterminal Task

Figure 244.

same time, reducing the frequency of access
requests ky each user.

The direct access volume-packing effi-
ciency is alsc gquite high for page-sized
klocks. First, the data recording space is
utilized at better than 90% of its theoret-
ical capacity (if cylider—length klocks
were written). Second, the smallest
external storage allocation unit is a
single page; so a large number of small
data sets can be kept cn one volume. Fur-
thermore, the freedom from requirements for
physically contigucus external storage
space leads to higher volume packing
efficiency.

The Virtual Access Methcds are device
independent across the range of direct
access devices. That is, it is perfectly

Nonprivileged class D programs issue GATRD/GATWR mocro instructions.

Sunmary of Data Management Macro Instructions and Data Set Organizations

feasible for a VAM data set to have physic-
al records reccrded on, say, bkoth 2311 and
2314 devices in any mixture. Furthermore,
user infcrraticn is referenced by its loca-
ticn relative to the beginning of the data
set, never by its location with resgect to
external stcrage. As a result, it is
entirely practical within VAM operations to
wrove data sets, either in part or in total,
among a hierarchy of devices.

The dataset ccpy routine of the command
system is able to convert information simp-
ly fror any VAM organization to any other
VAM data set organization with a small
nurber of instructions. This is Lecause
the record formats, contents and ccntrol
fields are identical between all
organizations.

Data Management Access Methods 57

The Virtual Access FMethcds do not use
the hardware data-searching facilities of
the direct access control units. The
operation cf these searching facilities
would lengthen the data access cycle and
thereby reduce direct access throughput.

In general, it is better to conduct a pro-
grammed search in virtual stcrage. Concep-
tually, this amounts to substituting auxi-
liary stcrage for external storage. This
concept of programmed searches can be
extended tc secondary indexes. For
instance, the TSS Assembler Macro Library
is maintained as a line data set for main-
tenance purposes. Major activities against
this file are, however, kased upon an
alphabetic search based upcn macro name.
There are twc specific routines that exemp-
1ify the type of secondary index processing
that VAM supprcrts. The first routine,
called Build Index, is used to scan the
entire macro file, selecting infcormation as
to the first occurrence of a given macro
name and its line number within the file.
This information is then placed within a
page-oriented data image, sorted Ly alpha-
tetic name. The second routine, called
Search Index, uses VAM tc kring this entire
page-oriented image into Virtual Storage
and conducts a binary search against the
secondary index, to find the lccation of a
macro exgansicn within the line data set.

The utilization of the Resident Supervi-
sor's page-oriented I/0 facility signifi-
cantly simplifies the implementation of the
VAM access methods. This is due to the
elimination cf device-derendent cperations
(with complex CCW lists), standardization
of block size, and eliminaticn of such
exceptional procedures as end-of-volume
cperaticns.

TSS/360 assures that cnly those pages of
a data set that are actually required are
brought intoc wain storage and that only
those pages containing updated information
are written back onto external storage.
VANM organizes data sets by relative page
number. That is, as each rage of a data
set is created it 1s assigned a page number
relative to the beginning of the data set.
On external storage these relative page
nurbers are related to the external storage
addresses where the pages reside. This
information is stored in the Data Set Con-
trol Blocks (DSCBs) residing in the volure.

In virtual storage, the relative page
nunbers are related to external storage
addresses through a table which is created
from the data set page entries contained
within the DSCBs. This taple is called the
kelative Page/External Page Correspondence
Takle (RESTBL), and is maintained by VAM
routines (1). As a record is desired, for
example, using a locate mode GET in the
most straightforward case, the appropriate

58

external stcrage address of the page in
which the record is contained is oktained
frcm the RESTBL and passed to the Resident
Supervisor which will place this address in
an external Page Takle (XPT) entry which is
associated with a virtual storage page-
sized buffer (2). Note that the page
itself is not read into main storage at
this time.

When a user addresses a record in his
virtuai storage buffer, a paging relccation
excertion interruption occurs and the Resi-
dent Supervisor paging processors prcceed
to bring the page into storage from extern-
al storage (3).

Frequently, when updating a data set,
cnly a porticnm of the logical records are
actually updated, although the entire data
set is read.

In VAN, a buffer page is written onto
external storage only if that page has Leen
changed. When it is necessary to write a
kuffer page back onto external storage, the
apprcpriate VAM routine obtains the extern-
al storage address of the page from the
RESTEL and rasses the virtual storage
address of the buffer along with tnis
external storage address to the Resident
Supervisor. The appropriate Resident
Surerviscr paging processors then proceed
to write the buffer page back into the data
set c¢n external storage.

Fror this it can be seen that the RESTBL
represents, conceptually, a level cf raging
control above the relocation tables. The
function of the relocation tables is the
nagrgping cf pages that have been allocated
virtuval storage. The prime functicn of the
RESTPL is to map the pages of a data set
into virtual storage.

This is accomplished ky mapping the data
set extents descriking the external storage
occupied by the data set into a table that
is ccnstructed in the same order in which
pages are associated with the data set.
This takle is then used to map the external
storage locations of a given porticn of the
data set intc a virtual storage buffer.

The size of the buffer controls the amount
cf wvirtual storage allocated to the data
set at any point in time. This second
level of marping allows the user to process
a VAM formatted data set that can be as
large as 65,000 pages, which is a great
deal larger than 16 million bytes directly
addressakle ky the 24 kit system.

VAM krings into the buffer only those
pages of the data set which are currently
needed. The size of this buffer need not
ke limited to one page, but may be as large
as 256 rages, thereky allowing a user to
efficiently process a sequentially


~~~~~~~~

Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146

organized data set containing records that
are a great deal larger than one page.

Figure 25 shows the overall concept of
the Virtual Access Methods.

IMPLEMENTATION

The data set structures that each of the
Virtual Access Methods supports are
described in Concepts and Facilities and
are briefly summarized here.

Virtual Sequential Data Sets

In a virtual sequential data set, the
order of the logical record is determined
solely by the order in which the records
are created. In creating this type of data
set, the user provides the system with a
stream of logical records. The system con-
catenates the records, organizes the reco-
rds into pages, and stores the data set
page by page on a direct access device.
After each record is stored, the system
makes its retrieval address available to
the user's program. Users employing assem-
bler language can form another virtual
sequential or virtual index sequential data
set containing these retrieval addresses.
After the data set has been created, if the
user wishes to make an orderly sweep

Virtoal Starage Main Storage

Main Storoge Pages

1 Buffes
Page Table

through it, the records can be read back in
the order in which they were created merely
by the user requesting one logical record
after the other. An assembler user can
also read and update logical records nonse-
quentially by providing the required
address of each record involved.

Virtual Index Sequential Data Sets

A virtual index sequential data set is
one in which the logical records are
organized into an ascending collating
sequence, based on a data key associated
with each record. The data key may be a
control field that is an actual part of the
record itself, or it may be an arbitrary
jdentifier (such as line number) which is
the beginning of each logical record, and
is added to each record to give it a unique
key. A virtual index sequential data set
that is organized by line number is called
a line data set.

In addition to the logical records, vir-
tual index sequential data sets contain a
page directory and locators that relate the
keys and physical address of the record in
the data set.

The page directory is initially set up

when the data set is created. The page
directory gives the value of the key for

External Storage

L1

Page Tobles
ond External

4 RESTBL
t Page Tables

Externol Page Table

| Open

External Address — f= = am m mmeem e e o —

©

" Direct Access
Method

bem— 1

the
Transfer of Dato

— = — — Represents Logical
Association

eFigure 25.

Relationship Among RESTBL, Virtual Memory, and Main Storage

Data Management Access Methods 59



Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146

the first record in each data page. There
is no entry in the page directory for the
first data page. The page directory can
consist of one or more pages, depending
upon the size of the data set.

In each page of the data set is an
ordered set of locators, one locator per
record. Each locator specifies either the
physical location of the record in the
page, or the position of a corresponding
locator in an overflow page. Overflow
pages are provided automatically by the
system when it is necessary to logically
insert a record between two existing reco-
rds after the data set has been created and
there is not enough room to place the reco-
rds on the page on which the record
belongs. The record is thus available in
proper logical sequence even though it is
not physically located in sequence.

Virtual Partitioned Data Sets

A virtual partitioned data set is used
to combine individually organized data
groups into a single data set. Each group
of data is called a member, and each member
is identified by a unique name. The parti-
tioned organization allows the user to
refer to either the entire data set or to
any member of that data set.

References to individual members may be
made through a directory called the parti-
tioned organization director (POD). When a
partitioned data set is created, a POD is
set up to keep track of each member. As
members are added, deleted, or changed, the
directory information is automatically
updated.

The first entry in the data set is the
partitioned directory, which is used to
locate the member of the data set. Each
member begins on a new page; any space
remaining on the previous page is unused.

Provision is made for users to assign
additional names, called aliases, to each
membexr, and for the location of each member
on the basis of the member name of any of
its aliases. The partitioned data set
organization is thus ideally suited for
storage of libraries of program or other
groups of data that are referred to
frequently.

SEQUENTIAL I/0 ACCESS METHODS

BASIC SEQUENTIAL I/0 ACCESS METHOD

The Basic Sequential Access Method
(BSAM) is a Sequential I/0 Access Method
and performs two major functions in
TSS/360.

60

First, BSAM provides a limited data set
compatibility with the Operating System/360
by supporting the direct access or unla-
beled or standard labeled magnetic tape
data set formats (except for the direct
access split cylinder format) that are pro-
duced by the 0S/360 Basic Sequential and
Queued Sequential Access Methods.

In this same vein, TSS/360 will accept
or create data sets recorded using American
National Standard Code for Information
Interchange (ASCII) formats. Translation
tables are used, allowing the internal pro-
cessing to be handled in EBCDIC.

Secondly, BSAM is the primary means
within TSS/360 of accessing magnetic tapes.
BSAM creates the channel programs for
sequentially accessing tapes or disks, and
passes a control block called an I1/0 Re-
quest Control Block (IORCB) containing the
Channel program and buffer information to
the Resident Supervisor through a Supervi-
sor Call. The Resident Supervisor, in
turn, executes the channel program, records
any pertinent error information and passes
the IORCB control block back to BSAM which
then attempts error recovery if necessary,
and informs the user of the results of the
I/0 operation by posting the information in
a Data Event Control Block (DECB). The
IORCB format is shown schematically in
Figure 26.

Since BSAM is a basic access method, the
user must determine the outcome of his re-
quest before he can do any processing
dependent on that request. The DECB pro-
vides a means for making the determination.

SvC 1
1 Header

Symbelic
Device Address
B

Data Buffer

o e ORe — — ]

Page List

CCW List

Figure 26. Input/Output Request Control

Block (IORCRE)



Page of GY28-2009-2, issued September 15, 1970 by TNL N28-31u46

The test for completion is made by issuing
the CHECK macro. If the I/O operation has
ended satisfactorily, control is given to
the next seguential instruction following
the CHECK macro. If the request resulted
in an error or a special condition, control
is passed to the user's SYNAD routine if it

Data Management Access Methods 60.1






is specified, ctherwise the Aknormal Task
Termination (AEBEND) routine is invoked. If
the operation is not complete when the
CHECK is issued, the task will wait until
it is complete.

The Resident Sugpervisor performs the
actual I/C, because the Model 67 channels
and storage busses orerate only on real
24-bit addresses. The access methods are
located in virtual storage and utilize only
virtual storage addresses. The Model 67
channels do not handle virtual storage
addresses, because channels normally cannot
stop and wait for Dynamic Address Transla-
tion when an I/0 operaticn references a new
buffer page.

Thus, the Resident Surerviscr must eith-
er be invoked to translate the virtual
storage addresses used in creating channel
programs in virtual storage, or the Resi-
dent Supervisor must itself create channel
programs, and, thus, lose a great deal of
device independence.

The first alternative is preferakble and
is implemented by the creation of an 1I/0
Request Contrcl Block (IORCB).

The IORCB provides a way to reduce the
amount of main storage and paging required
to perform an I/0 operation. The need of
the IORCEB is based on three okservations:

e Because the channels do not perform
relocation, all buffer areas that are
to be referenced during the execution
of a channel program must be in main
storage during the entire 1/0 opera-
tion. However, the task that initiated
the operation has, frequently, finished
its time slice and thus the pages may
no longer be available.

e There are a number of control klocks
(originally defined in 0S/360 BSAM)
involved in a TSS/360 BSAM operation
and they are usually located in dif-
ferent pages.

e Most BSAM buffers are expected to be
much less than a page in length so that
frequently, an entire page would be
required to remain in main storage for
a relatively long period of time when
only a few hundred bytes of buffer
space are being used.

By collecting all the pertinent informa-
tion required to perform an I/C operation
and the I/0 buffer itself into one control
tlock, the I0ORCB, and having the Resident
Supervisor copy IORCBs (whose maximum size
is 1920 bytes) into Supervisor storage
which is allocated in 64 Lyte increments, a
saving in paging overhead and main storage
use is cbtained.

The maximum size of an IORCB is 1920
tytes because it must fit into the area of
the Interxrurt Storage Area (ISA) that is
used for passing information from tne Resi-
dent Supervisor to virtual storage.

If a buffer is too large to be contained
within the IORCB, BSAM places pointers in
the IORCE tc the page or pages containing
the buffer.

Error recovery for any of the sequential
access methods is performed in virtual
storage for two ma jor reasons:

e Error recovery procedures are device
dependent.

e Recovery procedures differ depending on
the cver-all intent involved in a
series of 1/0 operations. The Seguen-
tial Access Methods construct channel
prcgrans and thus this information is
available only in virtual storage.

CUEUED SEQUENTIAL ACCESS METHOD

The Queued Sequential Access Method
(QSANM) rermits the programmer to store and
retrieve the records of a sequential data
set without coding blocking/deblocking and
kuffering routines. The programmer can,
therefore, concentrate all his effcrts on
processing the data he reads and writes.
Another major feature of this access method
is that it provides two kuffering techni-
ques, allowing the programmer to chcose the
cne most suited to his application.

QSAM, as designed for use in TSS/360,
provides the following expanded facilities:

e Both locate and move mode macro
instructions can be intermixed on the
same data set, except when a printer is
in use and CNTRL is specified in the
MACRF parameter of the DCB macrc
instruction.

e Variable recocrd formats are allowed on
a data set opened for RDBACK.

e A SETL routine is provided tc alter
sequential processing of a CSAM data
set.

QSAM can be divided into four basic
functions:

e Blccking logical records.

s LCeblccking logical records.

e Puffering klocks of data.

e Issuing 1/0 reguests, checking, and

repositioning for blocks of data.

Data NManagement Access Methods 61



Blocking, deblocking, and kuffering are
performed by QSAM internally. I/O opera-
tions such as reading, writing, checking,
and pcsitioning for access to data are per-
formed by the Basic Sequential Access
¥ethod (BS2M).

Blocking Logical Reccrds

QSAM will place lcgical records in a
klock where the maximum block size is spec-
ified in the DCB. The user issues a PUT
macro instruction for each logical record
ne wishes to include in the output data
set. It is the functicn of the PUT subsec-
tion to determine whether or nct each rec-
ord will fit within the current Lkuffer,
and, if it will, to add add the logical
record to the klock. If not, the klock is
considered comrlete, and the record for
which the PUT was issued will ke treated as
the first record of a new block. The user
may cause a block to be regarded as com-
plete prematurely by issuing a TRUNC macro
instructicn.

Deblocking Locgical Records

It is the function cf the GET suksection
to return to the user a single logical rec-
ord each time he issues a GETmacro instruc-
tion. When a blecck of recocrds has keen
read and checked, the address of a logical
record within the buffer is returned to the
user if the GET macro instruction was in
locate mode. If it was in move mode, the
logical record is moved to his work area.
When the current block is completely pro-
cessed, the next GET issued will cause the
buffer to either ke refilled if the data
set was opened for INPUT or RDBACK, or to
be written back, if required, to an update
data set and then refilled. The user may
cause processing on a kuffer tc ke regarded
as complete at any time by issuing a RELSE
macro instruction.

Buffering Blccks of Data

The norral buffering facility of ¢SAM is
known as double buffering, which involves
the use of two buffers, one of which will
ke currently in use while I/0 activity is
teing performed on the other. Thus, on a
normal input or readback data set, while
logical records from one buffer are being
supplied to the user, the other kuffer will
ke refilled. O©On a normal output data set,
CSAM will continue adding logical recorxrds
to one buffer while the other is being
written out.

The decision to use doukle or single
kuffering is kased upon the CPEN option of
the data set, or upon the comkination of
device type and macro reference option
specified in the DCB. Dcukle kuffering
will be done in all cases except:

62

* When the data set is opened for UPDATE.

s When SETL is specified in the macro
reference field of the DCB.

Single buffering must be done on an ugp-
date data set to allow the user to update
one klock of records at a time. Nc reading
ahead can ke dcne until it is determined
whether cr not the current block of records
must be updated, since an update write can
cnly return the last block read.

When SETL is utilized, various control
operations are pcssible. Moveover, SETL,
tyre C, can cnly be valid for single
kuffering.

Issuing I/0 Requests, Checking, and
Positioning for Blocks cof Data

The internal functions of (SAM are per-
formed entirely within storage. Any 1/0
requests for transfer of data between
storage and any 1I/0 device, or requests for
repositicning a data set, are passed on to
BSAM. The BSAM modules invcked by (SAM are
READ/WRITE, CHECK, POINT, CNTRL, NOTE, and
ESP.

MULTIPLE SEQUENTIAL ACCESS METHOD

The Multiple Sequential Access Method
(M5AFM) is designed for use in TSS/360 to
provide a fast and efficient mechanisr for
simultaneously driving several card
readers, card punches, and printers under
the control of a single task. MSAM is cur-
rently used by the TSS/360 Bulk I/0 rou-
tines and may ke used by any other user
with the Command Language privilege class
E. This privilege class allcws the user to
secure unit record equipment tanrcugh the
Comrmand Language.

The user interface with MSAM is the GET,
PUT, DCB, DCRBD, OPEN, CLOSE, FINISH, and
SETUR macro instructions. The SETUR macro
is used for setting up specific forms on
the unit record equipment. The use of the
LCB, DCBL, OPEN, and CLOSE macro instruc-
tions under MSAM is generally consistent
with the other access methods. An automat-
ic error retry option is available tc the
user under the control of the DCB macro
instruction. For instance, the DCB may
srecify that a print error ke handled by
striking out the erroneous line and repeat-—
ing the line.

MSAM suprorts both fixed (F) and vari-
able (V) format records and is consistent
with other Sequential Access NMethods in
this resgpect.

Like BSAM, MSAM builds the channel pro-
gram to control a data transfer in an IORCB



and then passes the IORCE to the Resident
Supervisor.

MSAM differs from the other sequentiai
access methods (such as BSAM and TAM) in
several significant ways. First, for each
MSAM 1/0 request, the system processes a
ruffer group of physical records, while for
each BSAM and TAM 1L/0 request tne system
processes only one physical record. cCon-
siderable processing is required in the
supervisor and the access methods for each
170 request regardless of kuffer size.
Usually MSAM will make an I/C request only
once for rrocessing each buffer, thus mini-
mizing system processing overhead when
using unit record equipment. For example,
when generating output in the form of card
images or listings, the user processes log-
ical records which become separate blocks
or physical records (i.e., cards or print
lines) on the unit record equipment. MSAM
routines buffer these lcgical records from
their data set into system provided buf-
fers, each of which resides in a separate
page of virtual storage. Each MSAN buffer
rage contains a small fixed portion of con-
trol information. The remaining portion of
the page is packed with format ¥ or format
V logical records.

Anothexr way in which MSAM differs from
the other sequential access methcds is as
follows: Several data sets may be grouped
together on any one device, allowing the
user to process all of them under the same
Data Control Block without having to issue
an OPEN and CLOSE for the DCB each time a
data set with different characteristics is
to be processed. Each of the separate data
sets is referred to as a data group. Input
data groups may be separated by control
cards. MSAM will recognize these control
cards and notify the user that a control
card has been read, allowing him to take
whatever action is necessary. Output data
groups on the card punch may ke separated
ky special cards from the card reader by
specifying the COMRIN option in the DCB
macro instruction, or they may be removed
from the stacker by the cperator who may be
instructed to do so when a FINISH macro is
issued. The FINISH macro instruction
allows the task to avoid much cf the over-
head involved in closing a data set.

Also provided by MSAM is the capability
of efficient accessing of multiple devices
within one task. While this is possible
with other sequential access methods, the
MSAM macro instructions are designed in
such a manner that the system service rou-
tines need not put the task in delay status
while waiting for an event, such as 1/0
completion, to occur. This efficient
device managerment is accompiished by defin-
ing the macro instructions to provide a
return code to inform the invoking routine

that a delay is necessary tkefore the requ-
est (such as GET, PUT, or FINISH} can be
completed for this DCB. This transference
cf respeonsikility of waiting from system
service routines, such as the BSAM check
routine, to the invoking routine provides
the ability for the task to process all its
cpened DCBs until all DCBs accessed require
waiting. At this time the task may wait
for the first I/C interrupt for any DCB in
the task.

All messages written to the operator
from MSAM service routines are of the WTO
macrc form (see section on Communication).
The WTO macrc does not put a task in delay
status. A WTOR macro is not used as it
would rut the task in delay status even
though there may be opened DCBs which may
be processed. For exanple, if a message
must be provided to tne operator of the
cn-line unit record devices to make a spe-
cific device ready, a WTO is issued and the
Task Monitcr is notified to continue with
the task programs and provide an interrupt
when that specific device goes from the
not-ready to the ready condition.

MSAM processes from one to a maximum of
40 buffer rages kased on an installation
parameter specified during system genera-
tion. This parameter is set in the Symbol-
ic Device Allocation Table (see secticn cn
Levice Rllocation) and may ke different for
each device. For example, the value for a
device can be adjusted so that the device
will be driven full speed for the maximum
length of time ketween two consecutive time
slices.

TAM

The purpose of the Terminal Access
Methcd (TAM) is to provide an interface
with IBM 1050, 1052-7, 2741 or TTY35 ter-
ninals attached to the IBM/360 Model 67
through either a 2702 Transmission Ccntrol
Unit or dirxectly attached to a multiplexor
sukchannel.

As with all access methods, the means by
which a user invokes TAM is to issue macros
cf a prescriked form. At the present time,
however, these macros are not directly
accessible by the nonprivileged user who
must use the GATE macros to communicate
with the task's SYSIN/SYSOUT terminal. TAM
can be used directly only by privileged
routines.

The Terminal Access Method belongs to
the Basic Sequential class. Buffering may
either be handled ky the user or dynamic
ktuffering may be employed as an alterna-
tive. Macros are of the READ-WRITE type,
and interrogation by means of a CHECK macro

flata Management Access Methcds 63




is necessary to determine the completion of
the operation keing perforned.

Like ESAM, TAM builds the channel pro-
gram to ccntrcl the data transfer in an
IORCE. Like BSAM, it also locates the aata
which will be transferred in a given opera-
tion. However, if the data record is too
long to Le contained in a buffer within the
ICORCE itself, the acticn taken by BSAM and
TAM is different. In the case of BSAM or
MSAM, a pointer is provided within the
IORCB which locates separate pages to carry
the data. In TAM, lcng records are handled
Ly constructing additional ICRCBs, and per-
forming serarate I1/0 ogeraticons on each --
all data is carried within ICRCBs. This
difference in methods c¢f dealing with long
data records is one primary difference
between BSAM and TAM.

Because TAM supports devices and not
data structures, it dces not utilize many
of the fields contained within the control
blocks utilized by BSANM, MSAM and IOREQ.
however, as a matter cf design convenience,
these control blocks have not been re-
defined or consclidated for TAM. TAM sup-
ports the pDefine Data, DCB, OPEN, CLOSE and
CHECK general service macros.

TAM provides its own error recovery and
posting routines.

ICREC

The Input/COutput Request Facility
(IOREQ) is the access method provided by
TSS/360 for handling unsupported devices or
for handling supported devices in a non-
standard way.

Since the user of IOREQ can have com-
plete control over a device and, perhaps
monopolized the channel to which the device
is attached, the use of ICREC is restricted
to devices defined as private in the Sym-
kolic Device Allocation Table.

In addition, only the BULKIC task and
users with Privilege class "E" can request
the allocaticn of a specific private device
through a Symkolic Device Address (SBA),
and only the "E" class user can request the
allocation of unit record devices.

Unlike the preceding access methods,
IOREQ has no knowledge of the data set
organization cr, perhags, of the device
keing used.

Tc use ICREQ the user must:
s Be thoroughly familiar with how the

device interfaces with a channel
through its control unit.

64

¢ Handle all exceptional conditions
thrcugh his SYNAD routine.

e Re-issue all outstanding requests if an
1/0 request is unsuccessful. (In BSAM,
NMSANM, or TAM, the access method wculd
re—initiate all I/0 requests which were
issued after the one which was
unsuccessful).

e Issue the SAEC and SIR macros to handle
asynchronous interrupts from the device
if such interrupts are possible and if
the user wishes to handle such inter-
rurts in a non-standard way.

¢ Not exceed the maximum numker of con-
current I/0 requests for this device as
srecified in the Symbolic Device Allo-
cation Table (SDAT).

IOREQ utilitizes the DDEF, DCB, OPEN,
CLOSE and CHECK macros.

Like BSAM, the arpropriate channel pro-
gram and buffer information is specified in
an IORCB but, unlike BSAN, the user must
specify the buffer and channel prcgram tc
ke used Lky kuilding a set of Virtual Chan-
nel Command Words through the VCCW macrc.
The kuffer may ke contained in the IORCB ox
in user pages, as the user desires. The
user requests that this cnannel program be
executed by issuing the IOREQ macro. The
ability to create his own channel prcgrams
and specify his own buffers allows for
greater flexibility than is found in BSAM.
For instance, channel programs can be long-
er and scatter-read or gather write may be
used.

An additicnal feature of ICRE(G is that
channel programs may be command chained in
the channel. This means, for example, that
when the channel completes the channel pro-
gram in cne IORCB, the channel will (if
command chaining was specified) inmmediately
kegin executing the channel program estab-
lished in a second IORCB that has been mwade
available.

CLTIAM

The On-Line Test Access Method (OLTAM)
is used in ccnjunction with the On-Line
Test System (OLTS) and is available cnly to
a user with Privilege class "E".

OILTAM is similar to IOREQ in that the
user must create his own list of virtual
CCWs which are then passed to the Resident
Supervisor in an ICRCE and in that he must
specify his own Attention interrupt handl-
ing routines. It differs from IOREC in
that:



Page of GY28-2009-2,

The DDEF, DCB, OPEN, CLOSE and CHECK
macros are not supported. The routine
invoking OLTAM provides the appropriate
parameters directly.

OLTAM permits a test program to specify
an I/0 path of its own choosing rather
than accepting an arbitrary path as
provided by the other access methods.
If the specified path is not available,
the request will be gueued by the
appropriate Supervisor SVC processor
until the path becomes free.

The use of a channel program controlled
interruption flag within a CCW is not
restricted and the reservation of a
malfunctioning device is not
prohibited.

Information describing the results of
the 1/0 operation is placed in an OLTAM
defined Test Event Control Block
(TECB), instead of the Data Event Con-
trol Block (DECB) used by BSAM, QSAM,
MSAM, TAM, and IOREQ.

The WAITIO macro is used to test for
completion of an I/0 operation, instead
of the CHECK macro used by BSAM, QSAM,
MSAM, TAM, and IOREQ.

Issued September 30, 1971 by TNL GN28-3193

DRAM

The Drum Access Method (DRAM) is a spe-
cial access method used by Virtual Memory
Exrror Recording (VMER) to write error
information into the short records that
separate each page-sized record on a paging
drum. This information can then be
obtained by a system monitor (Privilege
class E) through DRAM by use of the Virtual
Memory Environment Recording Edit and Print
(VMEREP) program. (See "“"Error
Procedures.")

The Drum Access Method is similar to
OLTAM in that the user creates his own list
of virtual CCWs which are then passed to
the Resident Supervisor in an IORCEB. A
special DRAM flag is set in the IORCB to
notify the Supervisor that the I/O call is
from DRAM.

DRAM is allowed to access a paging drum
even if the device is malfunctioning.

DRAM is also similar to OLTAM in that it
employs a special virtual storage routine
to post the results of an I/0 operation.

Data Management Access Methods 65



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193

THE CATALOG

The catalog is a virtual partitioned
data set containing the following informa-
tion about data sets:

e Where the data is physically located.
e Who can access the data set.
e How the data set can be accessed.

The catalog is a hierarchical structure
of indexes residing on direct access
external storage devices. Each index has
an alphameric symbolic name (up to eight
bytes) associated with it. Each index is
identified by this symbolic name plus the
symbolic names of each higher-level index
in its structure. A data set is uniquely
identified by listing the symbolic names of
the index levels (separated by periods)
starting with the highest level index and
proceeding to the lowest. Thus, as shown
in Figure 27, data set 1 can be identified
by its name A.B.C. and data set 2 can be
identified by its name A.B.D. All data
sets in the catalog structure need not have
the same level of indexing. Data set 3,
for example, has only two levels of indexes
in its name (A.E), whereas sets 1 and 2
have three levels.

The highest level of index in the cata-
log structure consists of the 8-character
user—-identifications, one for each
authorized user of the system, which are

— —

Index ;r G T
Structure i B / ' E J
i 1
L_1_J L
b _
Lo
i ~ | D
L ! | L
4
Y . Y
Data Sets ! ! i 1
i Doata l Data ! Data
‘ ' et 1) Set 2 | Set 3 _j
1 - ]
Figure 27. Catalog Index Structure

Hierarchy

66

prefixed automatically by the system to the
name that the user assigns to a data set.
Thus, if a user identifies a data set as
A.B.C, the system will retrieve it using
the name userid.A.B.C. This highest-level
index is referred to as the Master Index.
Using the user identification as the high-
est index level ensures each index below
the Master Index can be identified with a
user and assures uniqueness of data sets
given similar names by separate users.

The collection of indexes below a user
indentification is called a user catalog.
Each index name is referred to as a simple
name. Combining the names, as described
above, produces a qualified name. If the
name of each level, from the highest to the
lowest, is specified, the name is called a
fully qualified name and identifies a
single data set. If one or more of the
lower levels are not included in the name,
the name is called a partially qualified
name. A partilly qualified name identifies
a collection of data sets. For example,
with the index structure shown in Figure
24, the partially qualified name A.B iden-
tifies the data sets with the fully gquali-
fied names A.B.C and A.B.D. Including all
simple names and separating periods (but
excluding the user identification), the
length of a data set name may not exceed 35
characters. The prefixing of the user
jdentification gives the name, of a maximum
length of 44 characters, for catalog
references.

The catalog is a virtual partitioned
data set. The Master Index is the Parti-
tioned Organization Directory (POD), and
each user catalog constitutes a member of
the partitioned data set. The user catalog
can reside on more than one volume. Howev-
er, the volumes on which the catalog
resides must remain on-line during system
operation.

The system catalog (TSS**%*%_ SYSCAT) is
a dynamic virtual partitioned dataset -- it
expands as new users log onto the system.
It is also a "scratch catalog,”™ in that
only members (users) active during a ses-
sion will exist in it. SYSSVCT, a virtual
indexed dataset, is used by the system to
keep track of the individual user catalogs
{USERCATs). SYSSVCT uses the user identi-
fications (userids) as keys, and contains
pointers to the USERCATs. SYSCAT and SYS-
SVCT are located on the Auxiliary Control
Volume. The USERCATs are virtual sequen-
tial datasets, residing on public volumes.



Page of GY28-2009-2,

At startup, the SYSBUILD routine will
place TSS#*#%**, SYSMANGR, and SYSOPERO in
both SYSCAT and SYSSVCT. SYSSVCT will also
contain the userids of all the users that
have been joined to the system, and poin-
ters to the DSCBs for their user catalogs.

When a user logs on, his user catalog
may not be found in SYSCAT. Using SYSSVCT
{(where he is identified), the system will
then copy his user catalog into SYSCAT.
SYSSVCT is then flagged to indicate that
the user catalog and SYSCAT are identical
for this user. When the user subsequently
references his catalog, the copy in SYSCAT
is used (as when the user adds a new data
set). During these operations, SYSSVCT is
flagged to indicate that the copy of the

Issued September 30, 1971 by TNL GN28-3193

user's catalog in SYSCAT is different from
the copy on external storage. When the
user logs off, this flag is reset, and the
system copies the user's catalog member
from the scratch catalog (SYSCAT) to the
external residence of the user catalog.

At system shutdown, the userids in SYS-
CAT are searched and, if SYSSVCT indicates
that the USERCAT and SYSCAT are not ident-
ical, the user catalog on external storage
is updated from SYSCAT for that user.

When a task is created, a skeletal JFCB
for the catalog is included in the task's
Initial Virtual Memory. During task
initialization, the Virtual Memory Task
Initialization routine is used to open a

The Catalog 66.1







skeletal DCB for the catalog, which is a
shared data set. This causes the RESTBL
and Partitioned Organization Directory to
ke entered in the user's virtual storage.

When catalcg data set pages are assigned
to members, the pages are formatted into
64-byte blocks called S klocks. S klocks
are the basic unit of storage within the
catalog and are used tc promote efficient
storage and retrieval of information. Each
S block contains inforration akout a logic-
al entity and contains pointers to related
S Blocks. A logical entity within the
catalog is composed of one or more chained
S blocks. These logical entities are:

e Indexes

e Generation indexes

e Data set descriptors
e Sharing descriptors
e Sharer lists

Logical entities are chained together in
groups called index levels. Within each
index level are S blocks containing infor-
mation about that index level and the name
of each subordinate index level.

For a fully qualified data set name, the
lowest level in the owner's catalcg con-
sists of one or more S klocks which consti-
tute a "Data Set Descriptor.”

The information contained in a Data Set
Descriptor is included in the following
fields:

e Forward and backward pointers to S
klocks in the same Data Set Descrirtor

e Nane of the Lata Set Descriptor

e Pointer to Sharer List

¢ Identification of volume or vclumes on
which the data set resides (SAM or
private VAM data sets only)

s Public or private data set indicator

e Tabel data indicating the type of
labels, if any

s Share flags indicating the extent to
which the data set is shared

e Share privileges (if data set Descrip-
tor is universally shareable) indicat-
ing the tyre of access to the data set
allowed

s Owner access privileges
s LCata set orxrganization

Each new mwernker of a generation data
group is described by a generaticn index.
Sharing descrirtors and sharer lists are
discussed in "Sharing."”

Figure 28 provides a schematic cf a
nexrber of the catalog partitioned data set.
Any of the various catalog management
cperaticns that can be performed on a memb-
er are accomplished through the Catalcg
Services routines.

The Cataloy 67




-
Master Index - Chained -
" Jndex SBLOCKs ™
/A///lr ] \\
_— | T~
- ; \\
— - e ] —
- e o e — -«
Firet NICOLL Alr I Bread S
Level — Water Beer —g-
- Farth -
Grass e
Index Level SBLOCK
-
REE
Second TREE
Level Branch —
Root —
Data Set
\ Descriptor Snarer List
Index Level
SBLOCK . — .
g -
Third BRANCH L Anderson
Level Twig [ Sharer List  ——p Arthony
S Prosser
Volume —
Data Set
Descriptor
Fourth
Level

Figure 28.

68

Catalog Member




There are two general categories of
libraries in TSS/360:

e Object Prcgram Libraries

e Symbolic (Source Statement) Likraries

OBJECT LIBRARIES

There are three types of object program
libraries available to a user:

1. The System Library (SYSLIB) is the
scurce cf all standard system routines
which are not contained in initial
virtual storage. The System Likrary
is opened for each user during task
initialization gprocessing.

2. The User Library (SYSULIB) is a priv-
ate library created for each user when
he first logs on to the system. This
library is associated with the user's
IC, and is opened fcr him during LOGON
processing. A DDEF macro is issued by
the Virtual Memcry Task Initialization
routine to make the User Library
available. The SYSULIS for a user is
released when a QUIT command 1s issued
for him.

3. A Job Likrary (JOBLIB) is a library
that the user defines by specifying
the JOBLIB keyword operand in the DDEF
command. The user is allowed to
define any number of JOBLIBs during
his task, and these are normally used
for the purpose of stowing away and
retrieving object program modules
generated as output by the language
processors. Job litraries are fre-
quently used to contain programs that
are undebugged versions c¢f programs in
an individual's user library or to
contain programs that are to have
sharing attributes different from an
individual's user likbrary.

To be made accessible to a task, object
program modules mnust be contained in one of
these cbject program libraries.

Each of these libraries must ke in the
form of a VPAM data set. Each program
module, then, is a memker of the parti-
tioned data set, while each entry point and
control secticn (i.e., CSECT) name is an
alias for that member's name. Thus, a pro-
gram module may be lcaded ky module (i.e.,
member) name, or by any alias. Cbject pro-
grams created during the process of

LIBRARIES

asserxbling, compiling, or link-editing are
automatically formed as members of parti-
tioned data sets. The user's only respon-
sibkbility is to issue a DLDEF command ocx
racrc instruction for each Job Library that
he wishes to establish for his task.

The DLDEF cormmand program creates a Jck
File Control Block (JFCB) and places it in
the Task Definition Tabkle (see "Data Mana-
gement"). If the DDEF command contains the
keywcrd "JOBLIE," contrcl will pass from
the DDEF command to the "LIBMAINT"™ mcdule
which creates a LCata Control Block (DCB)
from that JFCB, links it into a chain cf
LCCBs which describes a library search
heirarchy, and issues an OPEN macroc to oren
the LCB for inrut.

This chain cf library DCBs includes the
System Library, the User Library, and any
Jdob libraries that a user has declared.
Whenever conditions indicate that user
likraries are to be searched, the search
normally begins with the most recently
defined JOBLIB, or with the user's SYSULIB,
if no JOBLIBS have been declared. The last
likrary to ke inspected will be the System
Library.

The chain of library DCBs is alsc used
ky the Ianguaye Processor Control (LPC).
Rfter a compilation or a link edit run, LPC
cpens the DCB at the head of the library
search chain ky issuing an OPEN macro with
the keyword CUTPUT. The head of the chain
is the most recently defined JOBLIB or is
SYSUILIB if no JOBLIB has been specified.
1PC then issues PUT macros to place the
virtual storage image of the object mcdule
intc this VPAM library. LPC next issues
two Stow macros. The first is a Stow macro
with the mcdule name. This macroc creates a
member entry. The second Stow macrc
creates an alias descriptor for all extern-
al symbol definitions and CSECT nanes
within the mcdule. LPC then closes the
output LCEB.

For each partitioned aata set, there
exists a Partitioned Crganization Directory
(POD). The PCD for a partitioned data set
relates mexker names to the positions of
the member within the data set and defines
the attributes of each memker. The POD
also relates aliases to members. A search
cf the PCD is effected ky the use of FINL,
and entries are added to, deleted from, or
changed within the POD by use of STOW.

Whenever a rartitioned data set is
opened, the POD for the data set is glaced

Libraries 69




in an area of virtual storage protected
from the user. For a shared data set, the
POD is also lccated in pages which are
shared amcng the sharing users. The entire
FOD remains in the user's virtual storage
frcm open time until close time. For a
non-shared data set, the POD is updated on
the resident device at close time, if eith-
er the data set or the PCD has been
altered. For a shared data set, the POD is
updated on the resident device only when
the last sharing user closes the data set.

SYMBOLIC LIBRARIES

A symbolic library is organized into two
portions: a source portion and an index
portion. The source porticn is a virtual
indexed data set and consists of a collec-
tion of namwed groups of data called "par-
cels." The source portion is organized as
a line data set. The index portion is a
virtual sequential data set and contains
informaticn that relates the name of each
parcel to the location of that parcel
within the source portion data set. The
index portion consists of a single record
in the Undefined (U) fcrrat.

Symbolic libraries are most freguently
used as macro libraries. The macro defini-

70

tions corresponding to the TSS/360 System
Macro Instructions, together with any par-
cels to ke accessed by means cof the COPY
assembler instruction, form the source por-
tion of the TSS/360 system macro libraries,
TSS***%*%  SYSMAC and TSS***** ASMMAC.

If a user declares a user macro library
in response to the prompting from a Lan-
guage Run cormand, his macro library is
searched first to find macro definitions ox
COPY code.

The Command System DATA and MODIFY com-
mands can ke used to create or modify the
source porticn of a Symkolic Library.

The index can be created either by using
the Command System RUN command to execute
SYSINDEX or ky issuing a CALL macro for
SYSXBLD in a program.

Through the facility of the VT (Copy VAM
tc Tape) command, a seldom-used macro
library may be removed from public storage.
If a syster macro library is removed from
public storage, it must be restored via the
TV (Copy Tape toc VAM) command routine
Lefore performing system maintenance (see
"Commrand Routines™).



As presented in this mwanual, the opera-
tion of TSS/360 involves a single Resident
Supervisor and a set of tasks which operate
concurrently and which share CPU, channel,
and storage facilities.

There are protection considerations
associated with each of these areas:

e CPU references tc main storage

¢ References through channels to external
or auxiliary storage

e Channel references to main sStorage

CPU REFERENCES

Protection requirements associated with
CPU references can be categorized as
follows:

e To protect the Resident Supervisor from
acticons criginating within a task.

e To protect each task from all others.

e To provide protection among various
portions of a single task.

The basic mwechanism for protection of
the Resident Supervisor is provided by the
fact that a task generates virtual
addresses and cannot, therefore, directly
address main storage.

An additional level cf protection is
provided by allowing only privileged rou-
tines to issue supervisor calls which may
affect system operation.

The SVC Queue processor checks whether
the routine whicn issued the SVC has suffi-
cient privilege, and the SVC processors of
the Resident Supervisor check the validity
of the supervisor calls they process. Some
checking is also done on the correctness of
the SVC parameter list or control block
involved. However, even with this check-
ing, a privileged routine may issue a
supervisor call which adversely affects
system operations. The Resident Supervisor
does not completely check the correctness
of SVCs in order to allow an installation
some flexibility to modify virtual storage
system services without making correspond-
ing modifications to the Resident
Supervisor.

PROTECTION

The basic mechanism that protects each
task from all others is effected through
the virtual storage concept.

Each task has its own set of relocation
tables (except in comnection with shared
virtual storage). These relocation tables
cannot be addressed from virtual storage.
The Resident Sugpervisor controls the allo-
cation of main storage to the varicus
tasks. Thus, unless the system makes an
error, destructive inter-task interference
will not occur in main storage.

To the extent that tasks share reloca-
tion takles and thus share virtual storage,
it is possible for one task to affect
another task.

The ccnsiderations involved in sharing
are discussed in the section on "Sharing."
Two aspects deserve further mention in con-
nection with protection:

1. Shared main storage is normally
assigned a read-only protection key
which eliminates the possibility of
ncngprivileged routines in one task
affecting other tasks. No such pro-
tection can be afforded against privi-
leged routines because they use a pro-
tection key of zero.

2. A task can only symbolically reference
those shared routines whose Program
Module LCictionaries have lkeen loaded
into its Task Dictionary. (See sec-
ticn on Dynamic Loader).

The concepts that create the privileged
state are the mechanisms provided for
intra-task protection. These concepts are
described elsewhere in this manual and are
a consideration whenever a program module
is inserted into a TSS/360 library, whenev-
er a program module is to be loaded from a
library, whenever linkages are generated,
and whenever main storage references are
generated.

EXTERNAL AND AUXILIARY STORAGE REFERENCES

The basic protection mechanisms for
external or auxiliary storage are also
described elsewhere in this manual, and are
nmainly provided Ly the Catalog Services,
Device Management, External Storage Alloca-
tion, and access methods routines.

Protection 71




CHANNEL REFERENCES TO MAIN STORAGE

The I/0 channels operate with the
storage protection feature in the same way
as CPUs. The protecticn key for each chan-
nel is obtained from the first four bits of
the Channel Address Word (CAW) when a Start
170 (SIO) is issued. This key value is
held by the channel and is applied to all
storage references. By proper assignment
cf I/0 prctection keys in CAWs and storage
keys in storage, protection against
erroneous rodification of storage areas due
to a channel malfunction or a prograrmmed
error can be rrovided.

Classes of I/0 Operation

e I/0 tc Virtual Storage areas
e Paging to Virtual Storage areas
e T/70 to IORCB Buffers

Each of these I/0O classes involves a
different requirement for protection and
will involve different CAW protection keys.

Classes of Storage

Main Storage can be grouped into four
protecticn classes:

Task Virtual Storage
Pages in transit (cutput)
IORCB Buffer Areas
Resident Supervisor

Each of these memory classes is distinct
and will involve one or more different
storage keys.

Assignment of Keys

The assignment of storage keys to
various storage blocks is as follows:

Task Virtual Storage

User State Read/Write - Key =1
User State Read Only - RKey = 2
Privileged State - RKey = 2

(Fetch Protected)
Pages being written out - Key = 3
ICRCB Buffers - Key = 4
Resident Supervisor - Key = 5

The assignment of PSW protection keys is
as follows:

Programs operating in

the User State - Key = 1
Programs operating in
the Privileged state - Key = 0
Programs operating in
the Superviscr state - Key = 0

The assignment of CAW protection keys
for varicus I/0 operations is as follows:

72

I/C to Task Areas - Key = 1 or 2

(as appropriate)
Paging ~ Key
I/C to Buffers - Key

Iwn

n

No I/C operations after system start up
are allowed to reference the Resident
Supervisor (Key = 5).

Cperaticn

The cperations of the storage safeguards
during I/O operations are as fcllows:

I/C_TO TASK AREAS: I/0 operations tc task
areas are perfcrmed as a result of an IOCAL
SVC issued by an access method privileged
routine. When an I/0 buffer is nct con-
tained within an IORCB, it is normally the
responsibility of the access method to
assign the task area involved. The access
method sets the protection key field of the
IORCE to 1 or 2, depending on whether the
task area being used as a buffer is a user
cr privileged area respectively. The IORCR
key field is used by the Resident Surexvi-
sor in specifying the CAW protection key
for the I/0 operation. The task area being
used as a kuffer is not assigned a protec-
tion key other than user or privileged
Lecause it is desirable to allow the task
to reference other data or instructions
that may be located in the page containing
the kuffer.

Note: Buffer contents containing constants
(such as SEFEK Addresses) can be read for
I/0 purpcses although the keys do not
mwatch.

PAGING: Paging operations will always be
rerfcrred with a protection key of 3. It
is the responsibility of the supervisory
routine which requested the paging opera-
tion to set the storage key to 3 for all
storage blocks involved in the operaticn.
At the corpletion of an input paging opera-
tion, the page posting routine will be
regquired to set the storage keys to their
operational value (1, 2, or 2 with fetch
protect).

Note: This sgpecial treatment of paging is
necessary due to the drum queuing strategy.
Cnly one SIO is issued (setting the protec-
ticn key) for a series of drum paging
operations which could involve both storage
keys 1 and 2. The only protection key that
could write in both areas is zexo which is
ruled cut. Thnerefore, the only feasible
solution is to use another key for all rag-
ing cperations.

INPUT TC IORCB BUFFERS: This operation is
nuch like the cperation of I/0 to task
areas with one important exceptiocn - it is




Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193

operating with supervisor allocated main
storage. The areas which hold IORCBs are
assigned storage key 4. It is the respon-
sibility of the access method preparing an
IORCB for buffered operation to set the

protection key field of the IORCB to the
value 4.

The result of this assignment of storage
keys is as follows:

* No I/0 operation can modify the Resi-
dent Supervisor storage.

s No I/0 operation can inadvertently
modify a privileged task area utilizing
an erroneous user supplied address.

e The probability of detecting I/O
addressing errors is increased.

Protection 73




Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193

PROGRAM MODULE STRUCTURE

The primary output of all the language
processors operating in the TSS/360 system
environment is the program module. The
input consists of a stream of source lan-
guage statements which may be converted to
output program modules. The input to the
Linkage Editor consists of directive state-
ments and a set of program modules to be
combined into a single program module.

PROGRAM MODULES

A program module generated by a language
processor or the Linkage Editor resides as
a member of a partitioned data set before
being loaded, and in this state consists of
three parts: a Program Module Dictionary
(PMD) , hexadecimal text, and an optional
Internal Symbol Dictionary (ISD). Figure
29 illustrates this structure of object
program modules.

The ISD contains information which
describes the values and other attributes
of the internal symbols (or FORTRAN state-
ment numbers) used in source language

PMD Header

Control Section Dictionary 1 i
|
i

Program Module

Control Section Dictionary 2 Dictionary
L T 4 i
!
Control Section Dictionary n i
) s
Control Section 1 |1
Hexadecimal Text
Control Section 2 (Instruction
5 and/or
-~ o Data)
— T g
E
Control Section n '
4
Internal Symbol Dictionary
{Optional)
Figure 29. Format of an Object Program

Module

74

statements or generated by the FORTRAN
compiler.

If a program module contains an ISD, a
user can refer to internal symbols when
using the Program Checkout Subsystem (PCS).
Otherwise, he can only reference external
symbols in PCS statements.

An external symbol is a symbol defined
in one program module which can be
referenced by a separately assembled pro-
gram module. An external symbol can (usu-
ally) also be referenced as an ordinary
symbol within the module in which it was
defined. Each external symbol has asso-
ciated with it a V-value and an R-value.

The Program Module Dictionary consists
mainly of a group of Control Section Dic-
tionaries. There is a Control Section Dic-
tionary for each control section of the
program module. A Control Section Dic-
tionary contains information describing a
control section such as its length, attri-
butes, external symbol references and
definitions and information to be used in
relocating address constants contained
within the control section. Collecting all
linkage data for a module into one Program
Module Dictionary allows the TSS/360 Dynam-
ic Loader to dynamically calculate linkage
addresses without having to bring the text
portion of the module into main storage.

The text is divided into sections called
control sections. The control sections,
PMD and ISD are all allocated external
storage beginning on a page boundary and
for an integral number of pages. However,
they are not necessarily allocated full
pages in main storage.

The way a program module is divided into
control sections is determined by the
source language statements in the case of
output generated by the Assembler and by
source language statements and the language
processor in the case of output generated
by the FORTRAN compiler. The TSS/360 lan-
guage processors assign each control sec-
tion a unique location counter during
compilation.

For the system, the purpose of having
control sections is to allow a program to
be divided into sections whose virtual
storage locations can be adjusted (indepen-



aently of other sections) ky the Linkage
Editor or Dynamic Loader without altering
or impairing the cperating lcgic of the
program. In Systems/ 360, this relocation
involves only the adjustment of address
constant values and does not require the
direct modification of machine
instructicns.

For the user, a control section repre-
sents a segment of cocding or data that can
be replaced or modified (within certain
limitations) without having to re-assemble
an entire program. A control section also
represents a segment of coding or data that
can be independently assigned attributes.

At the time the user creates a control
section, he may assign to it a variety of
attributes. These attrikutes are: fixead
length, variakle length, read-only, privi-
leged, system, public, common, and proto-
type. Only the prototype attribute (PSECT)
will be discussed in this section. Further
information about control sections may be
found in "Dynamic Loader" and in Assembler

Language.

Frototype Control Sections and Reenterable
Code

PSECTs are generally used in programs
which are designed for simultaneous sharing
by more than one task. Such programs are
termed reentrant and are characterized by
the fact that the shared portions of the
program do not change in any way during
execution.

It is not necessary to use a Prototype
control secticn when composing a program to
run under TSS/360. In special cases, it is
possible to write reenterakle programs
without using PSECTs. Such programs do
exist in TSS/360. They may hold all their
working data in registers or in the direct-
ly addressable ISA or they may acquire vir-
tual storage working space dynamically. In
general, however, any fprograms winich are
designed for simultaneous sharing by more
than one task will contain PSECTs. BAll of
the TSS Compilers produce such output
modules, and all of the privileged TSS pro-
grams, and the nongrivileged system pro-
grams use reenterable coding with PSECTs.

When a reenterakle program is composed,
all modifiable data, work areas, and
address constants may be placed within a
PSECT.

Allowing the composer of a reentrant
program to create the PSECT relieves the
caller of that program of the reguirement
to know precisely what address constants
the called prcgram requires or, alterna-
tively, of having to ensure that the shared

programs occupy identical virtual storage
locations within each sharing task.

Then, wnenever a TSS5/360 user loads a
reenterable routine, a copy of the reenter-
able routine's Prototype control section is
mapped intc the user's private virtual
storage. On the other hand, all concurrent
users share a single copy of the program's
reenterakle control sections. The use of
PSECTs has the following effect on the
structure of programs within TSS/360. Pro-
gram sharing is implemented in such a way
that the PSECT and the reenterable portions
of the called routine are separately magred
into a task's virtual storage. This means
that in order to perform linkage tc a reen-
trant rcutine, two virtual storage
addresses must be supplied.

The first virtual storage address speci-
fies the lccation at which execution of the
object program module is to begin when con-
txrcl is transferred. This is the commonly
understood, conventional external symbol
value and is called the V-value. B V type
address cconstant is often used for this
purgcse.

The second virtual storage address can
ke used to specify where the prototyge con-
trol section has been mapped within the
task's virtual storage. I1If this pocinter
were not supplied, the reentrant module
would have no way of knowing where its
nodifiable data, etc., are located. This
second value is called the R-value. An R
type address constant is often used for
this purpose.

The reentrant module itself cannct set
up in a reenterakle control section an
address constant pointing to its PSECT.

The reascn that this cannot be done is that
the PSECT may be mapped into different vir-
tual storage locations for each concurrent
user. BAn address constant contains data
that is to ke used to form a virtual
storage address. Because all concurrent
users share the same physical copy of the
re enterakle control section, there would
ke only one copy of the address constant
which, of course, can not simultaneously
point to different locations.

Because virtual storage is allocated
dynamically, a reentrant control section
that is not contained in Initial Virtual
Memory may also ke mapped into different
virtual storage locations for each concur-
rent user, even though there is only one
physical copy of the control section.

This explains why all address ccnstants
nust be treated as modifiakle data when
creating a reentrant prograr and, as such,
must be placed in the program's PSECT.

Program Module Structure 75




Because Initial Virtual Memory modules
occupy identical virtual addresses in every
task, they may treat their internal address
constants as unmodifiable or "read-only”
data.

Putting all address constants, modifi-
able instruction sequences, etc., into one
or more PSECTs still dces ncot guarantee
that the resulting routine will be reenter-
able under all conditicns. This certainly
takes care of intertask reenterability,
that is, the sharing cof a rrogram Lty many
different tasks. However, there is another
type of reenterability to ke considered:
intra-task reenterability. This refers to
a single task reentering the same program.
As discussed in "Task Monitor,™ this can
occur when a task receives a rrogrammed
interrupticn while executing scme system
routine or when a routine is recursively
called.

In such a situation, the PSECT will not
protect task integrity, since within a
single task there is only one copy of the
PSECT. This explains why the Resident
Supervisor does not use PSECTs and why the
Task Monitor provides either a push down
Save area or a means by which a routine can
protect itself from unwanted intra-task
reentrancy.

A program module can contain more than
one PSECT as long as each is identified by
a unique name. Multiple PSECTs do not
appear to be absolutely necessary, but they
are convenient.

The ccntents of a PSECT need ke in no
particular order and can be identical in
every respect with those of a CSECT.
However, unlike most other types of control
sections processed by the TSS/360 Assembl-
er, the PSECT must always kte named.

76

A PSECT 1is generally used tc hcld the
save area for a reentrant routine. The
save area, and the origin of the PSECT
itself, are located by separate and inde-
rendent pointers. However, there axre
advantages”in placing the save area at the
origin of the PSECT, and, in fact, mcst
system rcutines are written this way.
Placing a save area within a PSECT, rather
than a rpush-down stack, facilitates tracing
linkages during debugging.

The Arpendix section cf Task Monitor
Program I1ogic Manual contains a takle of

all systemr enter codes.

CSTORE Macro Instruction

The CSTORE macro instruction enakles a
user to store an area of virtual stcrage as
a control section, thus bypassing the need
to store and process this area as a data
set.

The use of a CSTORE macro instruction
causes a control section to be created dur-
ing the execution of a program. Any set of
contigucus bytes may be transformed into a
control section. This can be stowed as a
BLOCK COMMON module, placed on the current
JOBLIB as a module, and may then be supse-
quently lcaded as part of the originating
program or as part of a later prograr.
kWhen such a control section is loaded, no
relocation takes place. Therefore, it may
not contain any relocatable items.

The resulting control secticn will con-
tain an integral number of pages starting
at the page boundary preceding the first
tyte address and terminating at the page
koundary following the last byte address.



Situations can occur in a time sharing
environment which necessitate communication
ketween tasks. Such communication may be
required by:

e The System Operator task to send mes-
sages to user tasks.

e Device management routines to send
volume or form mounting messages to the
system operator and to receive replies.

e The Batch Monitor task to initiate or
cancel non conversational tasks.

¢ User tasks to enter messages in the
systenr log or send messages to the sys-
tem cperator terminal.

e User tasks or the Main Operator Task to
send requests to the Batch Monitor task
for the initiation of nonconversational
tasks.

A nonprivileged user has at his disposal
the Write to log (WTL), Write to operator
{(WTO), and Write to operator with reply
(WTOR) macro instructions. These macros
expand into a Type II linkage to the Com-
mand Language XWTO routine.

A privileged user has at his disposal
the Virtual-Memory-to-Virtual-Memory
(VSEND) and VSEND-with-reply (VSENDR) macro
instructions. The VSENDR macro instruction
causes a Type I linkage to the Command Lan-
guage XWTO routine.

The system operator has at his disposal
the BCST, REPLY, and MESSAGE commands.
These commands cause the Command System
routines cof the same name to ke invoked.

Transmitting a message from one task to
another involves: 1identifying the task to
receive the message; estaklishing authori-
zation between the sender and receiver; and
transmitting and processing the message.

In order to communicate with another
task, two important requirements must be
met. First, the task to which a message is
to be sent must exist at the time the mes-
sage is to be sent; i.e., the task must re
represented by a TSI. Second, the destina-
tion task must be identified ky the Task
Identification Number (TID).

The Resident Superviscr ensures that a
task will not receive a nessage (whether
meaningful or not) from another task unless
the receiving task is prepared to handle

COMMUNICATION

the message. A flag in the TSI specifies
whether incoming messages may be accerted.
1f the flag is on, all incoming messages
except those from the System Operator or
Batch Mcnitor tasks will be refused and the
sender will be notified. If the flag is
cff, all incoming messages will be allowed
to interrupt the task.

The process of sending a message is as
follows:

An intertask message and an identifying
nessage code are placed in a Message Con-—
trol Block (MCB) and transmission is
initiated by issuing a VSEND SVC.

The VSEND SVC processor of the Resident
Supervisor searches the Active and Inactive
TSI lists and, if the TSI with the correct
TIC is found, the Message Control Block is
copied into Supervisor storage in the same
wanner as an Input/0utput Request Control
Block (IORCB).

A GQE is then created containing a
rointer to the location of the MCB.
GCE is then enqueued on the receiving
task's TSI as an External interruption
reqguest.

This

The VSEND SVC processor passes a return
code tc the sending task through a general
purpose register to indicate the result cf
the VSEND reguest. The code may indicate
that the destination task does not exist,
that the destination task does not accept
messages, or that the destination task has
accerted the message.

The Task Interrupt Control subroutine
eventually causes an external interrurtion
in the receiving task and places the MCB in
that task's ISA.

The External interruption will be ini-
tially processed in the receiving task by
the External Interrupt Processor (XIP) of
the Comrmand System.

If the MCE message code indicates the
message is to be handled by systemr rou-
tines, XIP cktains wvirtual storage, trans-
fers the MCB out from the ISA, and estab-
lishes a linkage to the proper routine to
handle the message.

If the user is expecting to receive such
nessages and they do not contain message
codes processed by XIP, the user must pro-
vide for the processing by issuing the SEEC
and SIR macro instructions.

Communication 77




It is possible to send a message and
await a reply.

In this case, the original message will
contain a flag indicating that a reply is
expected and a pointer to a MNessage Event
Control Block (MEB). The MEB is similar to
the Data Event Control Block (DECB) uti-
lized by the Sequential I/0O access methods.

After the message has keen sent, the
XWTO routine issues an AWAIT supervisor
call to place the sending task in delay
status.

78

When a reply is received, XIP will post
the receipt of the awaited reply in the
MEB.

When XWTO next receives control, it
insgects the MEB and finds that a rerly has
keen received. XWTO then places the regly
in a user specified area and returns to the
caller.

An example of the processing of an
inter-task message and reply is included in
the section "Examples of System Operation,
Nonccnversational Processing.”




Programs in TSS/360 can link to each
other only in certain ways, and under cer-
tain conditions, depending on their privi-
lege level. These design rules are called
linkage conventions. They affect the set-
ting ur of save areas, the passing of para-
meter lists, and the setting up of entry
and return registers.

Linkage conventions allow the transfer
of control from one program to another in a
standard way. This standardization eli-
minates redundant register usage, and
allows linkages to be generated Ly means of
system macro instructions.

Linking between modules in TSS/360 can
be divided into two major classes:

e Linkage between modules of the Resident
Supervisor

e Linkage between Virtual Storage
prograns

SUPERVISCR LINKAGE

At Startup, the Resident Supervisor is
link-locaded and thereafter remains self-
contained. Therefcre, to increase effi-
ciency, no conventions have been estab-
lished tc govern linkages ketween the
modules of the Resident Supervisor.
er, Resident Supervisor routines make
extensive use of the standard linkage regi-
sters 0, 1, 14, 15 for linkage purposes.

Howev-

VIRTUAL STORAGE LINKAGE

Within Virtual Storage, there are four
main classes cf linkage called Type I, Type
11, Type III, and Type IV.

TYPE I

The Type I linkage is the most common
and is, essentially, the traditional form
of linkage. 1Its characterxristics are:

s It uses the BASR instruction.

* The Resident Supervisor does not assist
in the transfer (i.e., no interruption
occurs) .

¢ The two routines involved (i.e., caller
and called) must ke cof the same level -
i.e., two problem programs or two pri-
vileged programs.

LINKAGE CONVENTIONS

TYPE II

Type II linkage enakles a proklem pro-
gram to communicate with certain privileged
System Service routines. Its characteris-
tics are:

e The user generally issues a macro such
as OPEN, READ, etc., which is expanded
into an ENTER SVC.

¢ The SVC interruption is passed to the
Task Monitor by the Resident
Supervisor.

e The Task Monitor translates the Type II
linkage intoc what appears to the called
Privileged program as a Type I linkage.

e It is employed when a nonprivileged
Erogram uses a CALL macro to link to a
Privileged program.

It should be noted that not all privi-
leged routines can ke called by a nonprivi-
leged user. Certain privileged routines
(e.g., Allccate, Extend, etc.) can only be
called by other privileged routines. The
called routine need not be aware of whether
a Tyre I or Type II linkage is employed.

The Task Monitor saves the called rou-
tine from having to handle two different
calling sequences by providing a save area
and making the Type II linkage look like a
Type I linkage. The language processors
protect the caller from having to con-
sciously set up one of two different cal-
ling sequences, by expanding syster macros
differently derending on whether the module
keing compiled is specified as Privileged
or not. There is, incidentally, no need to
restrict the use of the Privileged specifi-
cation at compile time, because protection
control is arplied when the module is to be
loaded.

TYPE III

Type III linkage is the reverse of Type
1I linkage. It is infrequently used.
However, it is used whenever a privileged
progran invoked through a Type II linkage
calls a nonprivileged program. The charac-
teristics of a Type III linkage are:

¢ The transfer and save area management
are assisted by the Leave Privilege
subroutine of the Task Monitor.

¢ The actual linkage is performed via the
Load Virtual PSW (LVPSW) macro which

Linkage Conventions 79




generates a supervisor call cf the same
name.

e The Resident Supervisor suksequently
issues the privileged instruction Load
PSW and ccmpletes the transfer to the
nonprivileged program.

s When the nonprivileged program effects
a return, the address contained in the
return register causes a Restore Privi-
lege (RSPRV) supervisor call in the
task’s ISA to be executed.

e The Resident Supervisor passes the
supervisor call to the Task Monitor as
a task interruption.

e The Task Monitor SVC interruption pro-
cesscr restores the privileged rou-
tine's status from a protected save
area and returns ccntrol to the privi-
leged routine through the Ioad Virtual
PSW sugpexvisor call.

TYPE IV

Type IV linkage is used by TSS/360 pro-
grams under restricted circumstances for
the sake of linkage efficiency. Type IV
linkage is much more restricted linkage
than types I, II, and III. Type IV linkage
is found principally in the coding of the
language processors. Type IV linkage con-
ventions standardize the use of the general
registers and the method of transferring
control from the calling program to the
called program. No provision is made for a
standard save area in this convention. The
characteristics of Type IV linkage are as
follows:

e Control is transferred via a BASR
instruction.

e General registers 0 through 6 are used
as parameter registers.

¢ The calling prograrx provides a PSECT
address in general register 13.

FENCE SITTER ROUTINES

There is a small class of routines such
as GETBUF that are called "fence-sitters"”
ktecause they can be called through a Type I
linkage by either a privileged or a nonpri-
vileged routine. These routines are
assigned a hardware storage protection key
that makes them read-only to nonprivileged
routines. Whenever a Type I linkage is
pexfcrmed, the PSW protection key is
unchanged. Therefore, when called from a
nonprivileged program, a fence-sitter rou-
tine takes on the characteristics of a non-
privileged rcutine. Whenever a fence-

sitter service routine is called from a
privileged routine, the PSW protecticn key
is zerc, and the fence-sitter takes on the
characteristics of a privileged routine.

This conventicn is estaklished for the
purpose of permitting an efficient tramnsfer
cf ccntrol to those system service routines
which do not frequently need to 1link tc
other (privileged) service routines.

Scme fence-sitter routines have initial
entry point names beginning with the let-
ters SYS. This distinguishes them from
service routines that must be linked to
frem a ncnprivileged routine through the
ENTER mechanism.

Other fence-sitter routines are linked
to from macro instruction expansions which
utilize address constant values which were
filled into a Data Control Block by a pri-
vileged access method routine. (See sec-
tion on Lata Management.)

If a fence-sitter routine needs to link
to a privileged service routine, the fence-
sitter rcutine utilizes either a Type I or
a Type II linkage, depending upon the pri-
vilege class of the routine that invoked
the fence-sitter routine.

For example, TSS/360 (SAM is designed as
a fence-sitter routine, and thus will run
in the same privilege status as the routine
which invokes it. Since it is most often
invoked by the problem program, it will
generally run in the privilege of the user,
and, as such, may or may not be of the same
Frivilege as the BSAM modules which it
invokes. 3all the BSAM modules invoked,
excert NOTE, are privileged routines. As
NOTE is also constructed as a fence-sitter
routine, and will take on the privilege
status of QSAM whenever it is invoked,
type-I linkage is always established to
invcke NOTE.

Before establishing linkage to any of
the cther BSAM modules, it is necessary to
determine the status of (QSAM subsecticns.
OSAM rcutines rerform this function with
respect to their BSAM counterparts by test-
ing the first bit of the VPSW in tne ISA
takle. If QSAM is privileged, type-I 1in-
kage is estaklished, using the address con-
stants defined within the data control
block. 1If it is not privileged, type-II
linkage is established via the ENTER SVC.

There are additional slight modifica-
ticns of linkage types which are used in
certain instances. For detailed informa-
tion and examples of the rules governing
each type of linkage, refer to the IBM
System/360 Time Sharing System: System

Programmer's Guide.




The Data Management facilities of TSS/
360 can be invoked fror ktoth IBM-supplied
and user-written programs and are used
extensively by privileged system service
routines, Command System routines, and the
TSS/360 language processors.

Data Management facilities are called
upon by macro instructions, such as GET and
PUT, which are included in source prograns.
The TSS/360 language processors expand
these macro instructions. Their expansions
introduce instructions into an okject
module to provide for completing linkage
and passing parameters to the appropriate
Data Management service routines.

Some macros (such as READ/WRITE) include
a Data Event Control Block (LECB) in their
expansions. Each DECB contains information
relative tc the specific I/0 operation to
be performed. The access method cbtains
paraneters necessary for the execution of
the I/0 operation from the DECB and, upon
completion of the operation, posts in the
DECB information such as the Channel Status
Word {(CSW) describing the results and com-
pletion status of the operation. The DECB
format is shown schematically in Figure 30.

Data Area lenagth

DCB Address

Address of CCW List

Lergth of
CCW  List

Channel Status Word
CSW

Sense Bytes

Figure 30. Data Event Ccntrol Biocck (DECB)

DATA MANAGEMENT

The expansion of some Data Management
macro instructions results only in the
creation of a ccntrol klock. For instance,
the Terminal Access Method DFTRMENT macrc
instructicn expands into a list of terminal
dialing, polling and addressing characters.

In order to use the facilities of Data
Management, the data sets or devices
involved must be described to TSS/360.

Parts of this description are generally
supplied at three different times:

¢ When a program is composed.

s When a program is to be executed.

e When the data set or device is to be
processed.

Before a data set can be prccessed, a
LCata Contrcl Block (DCB) and a Job File
Control Block (JFCB) must be created.

The DCB, when it is fully processed,
keconmes the gprincipal control block used to
supply information describing the data set
cr device and it is the control block which
is referenced in all data management macro
instructions.

A user or language processor creates a
DCB by including the DCB macro instruction
in scurce coding.

The Data Control Block (DCB) is created

in-line wherever the macro instruction is
placed. The control section containing the
DCB is assigned main storage in accordance
with the contrcl section's attributes.
This means, for instance, that care should
ke taken not toc rlace this modifyakle con-
trol block in a section with read-only or
rublic attrikutes.

The LCB has a fixed length and consists
cf two ccntiguous parts: a common portion
and an access method dependent porticn.
The DCB format is shown schematically in
Figure 31.

Data set processing flexibility may be
enhanced by not specifying certain DCB
parameters during rrogram composition and
completing the DCB during or just kefore
program execution. Even the data set
crganization (LCSORG) parameter need not be
specified during compilation.

The conrmcn porticon of a Data Control
Block contains such DCB parameters as buff-
er length and record format as well as
address constants pointing to user sgpeci-

Data Management 81




( Commeon )
120 Bytes
DCB Parameters
From :
DCB Macro
DD Statement
DSCB

User Modifications

Access Dependent
Portion
SAM (16 Bytes)

Counter Used by Note, Point
DASD location

Printer Overflow Status

Figure 31. LCata Contrcl Block Takle (DCB)
fied exit routines, such as the SYNAD
address, and access method routines, such
as the address of the PUT module.

Certain information descriking a data
set, such as the data set name (DSNAME),
cannot be specified in a DCB macro but must
be supplied before the data set can be pro-
cessed. This information is supplied by
the Define Data routine, which creates a
Jobk File Control Block (JFCB). The JFCB
format is shcwn schermatically in Figqgure 32.

Privileged routines will sometimes use
the Find JFPCB (FINDJFCB)} subroutine to loc-
ate a specific JFCBR and to prompt a conver-
sational user to issue a DD command when he
has neglected to do so. Privileged rou-
tines alsc may use the Find Data set
(FINDDS) subroutine to request the Define
Data routine to directly create a JFCB for
a cataloged data set if a JFCB does not
already exist.

The nonprivileged user or system program
may create a JFCB by issuing the DDEF con-
mand or macro instruction or Ly using the
CDD command to cause prestored DDEF com-
mands to be issued.

The DLCEF command or macro must supply a
Define Data Name (DDNAME) and a Data Set
Name (DSNAME) in order that the data set
may later be asscciated with a Data Control
Block (DCB). Most other LLCEF parameters
may be omitted under certain conditions.

There are three classes of DD Names:
e System DD Names that begin with the

characters SYS.

82

¢ D Nawes generated by system routines
which are formed from the characters
$$$ concatenated to sequentially higher
5-digit numbers.

e Reserved DD Names, such as PCSCUT,
which is used by the DUMP routine of
the Program Checkout Subsystem and
names beginning with the characters
LPC, which are reserved for DD Names
issued by the language Processor Con-
trcl module.

Within any particular task, only cne
JFCRBR can exist for a data set. If a data
set name in a LCDEF command matches a data
set name in ancther JFCB for the task, the
new ddname will be substituted for the c¢ld
ddname and gprocessing for that compand will
Le considered completed.

This could occur, for instance, if dur-~
ing a terminal session a data set is pro-
cessed as a new output data set in one pro-
gram and as an old input data set in anoth-
er program. In this case, the first ddname
nmight be OUT and the second ddname IN.

For additional information concerning
such data set characteristics as reserved
data set names, see the Appendix section of
the Assembler Programmer's Guide.

There are also four categories of addi-
tional information that may be supplied in
a JFCB created by the DDEF routine:

e External storage space allocation
parameters.

s Levice Management parameters.
Data set disposition parameters.

s CCB rarameters.

DDNAME

DSNAME

Data Set Control Information

Dota Centrol Block
(DCB)

Parameters

Figure 32. Jok File Control Block (JFCB)



If the data set has been cataloged, the
appropriate catalog services routines are
invoked to obtain the data set descriptor.

The Catalog and LDEF values for data set
organization, data set disposition, device
class and data set affinity must agree or
an error is indicated. All other catalog
information (such as 1label type) is used in
filling out the JFCB in preference to
corresponding information in the DDEF
command .

If a user specifies the *ddname paramet-
er in the CDEF ccmmand (or macro) all the
DCE parameters specified in the particular
previcusly-issued DD ccmmand named by the
*ddname parameter are placed into this
JFCB. Any new DCB parameters sukmitted in
the current DLCEF command overlay parameters
obtained from the previous DDEF command.

If conditions are such that a DDEF para-
meter may be omitted, the DDEF routine
places standard values in the JFCB to fill
out the defaulted fields. Most defaults
result in placing zeros in the correspond-
ing JFCB field. The appropriate values for
the remaining fields are obtained from the
System Common table. These values, such as
the data set organization default value,
are specified during System Generation.

If a new SAM data set is to reside on a
direct access device, the ALLOCATE routine
is invoked to obtain the required amount of
direct access storage space. (See the sec-
tion on Extermnal Storage Allocation.)

A call is made to Device Management to
ensure that the proper Private devices are
on-line for SAM data sets (see "Device
Allocation"™).

When the JFCB has been completed, it is
linked into a chain of JFCBs called the
Task Data Definition Table (TDT). The TDT
contains all the JFCBs defined for a task
and resides in virtual storage oktained by
the privileged DDEF routine. Thus, the TDT
is protected from the nonprivileged user.
During LOGOFF processing for SAM data sets
this TET chain is searched in order to pro-
mpt the user for the disposition of his new
and as yet uncataloged data sets. It is
also used for abnormal task termination
(ABEND) prccessing to release interlocked
facilities. ©No such prompting is required
for VAM data sets since all such data sets
are cataloged and the user specifies the
deletion ortion by means of DDEF. As with
most task chains or tables that are used by
nore than cne routine, the TDT anchor is
rointed to by a field in the Interrupt
Storage Area (ISAa).

If the user specifies in the DDEF com-
mand that he wishes the processing of a SAM

data set concatenated with the processing
cf other data sets, the JFCB is chained to
the other appropriate JFCBs. All rembers
cf a cconcatenated data set must have the
same ddname. The CONC parameter of the
CPTION field is used to specify the conca-
tenation of this data set.

If a data set is declared to DDEF as a
JOB LIBRARY, the data set is linked into a
chain of job libraries within the TDT and
the routine LIBMAINT is invoked to create a
CCB from this JFCB. DCBs thus created are
linked together in a chain and are used
when library searching is indicated (see
"Libraries").

The RELEASE
release a data

macro instruction is used to
set, Oor a concatenated
series of data sets, or a member of a con-
catenaticn, or a JOB LIBRARY from the pro-
gram library list.

The next stage in preparing a data set
for prccessing is initiated by the execu-
tion of an OPEN macro instruction and is
called "cpening a DCB."

Both a DCB and a JFCB must exist for the
data set before the OPEN macro instruction
is executed. Any particular DCB may be
opened for only one data set or data set
nember at a time. In separate tasks DCBs
may be orened for the same data set or data
set member at the same time if the data set
is sharakle (see "Sharing"). If multiple
DCBs within the same task are associated
with the same data set, they may all use
the same JFCB.

OPEN processing consists of processing
that is common to all access methods (OPEN
COMMON) and access-method dependent proces-
sing which is performed by one of a set of
Access-Dependent Open (ADO) routines. This
is schematically depicted in Figure 33.

If the data set resides on a direct
access volume, the appropriate Data Set
Control Blocks (DSCBs) are read into main
storage from the vclume on which the data
set resides.

A DSCE is a control block that describes
the attributes of a data set and resides on
the direct access volume with the data set.

Enpty fields of the DCB are filled with
information obtained from the JFCB, and any
remaining empty fields in the DCB are
filled in with information from the DSCB.
The user may create a routine to modify the
DCB. This routine is given control if the
routine®s name was supplied as a DCB
parameter.

This processing is depicted in Figure 34
and allows great flexibility in specifying

Data Management 83




OPEN Macre Instruction

- ——

DUPOPEN Macro instruction (VAMY)
!

|
|
[

SEQ%}ENT(AL
|

OPEN COMMON DUOPEN
l
| T [ T
OPEN SAM OPEN OPEN ' ?
E TA,M IOREQ OPEN COPEN MSAM
! VAM
I v AS
! | ! | |
| ’ i !
. f
OPEN OPEN i | OPEN opEn’
TAPE DA | : SEQUENTIAL INDEX |
| | ! :
| ] i ‘ i

i !

Next Sequential Instruction After OPEN COMMON Macro Instruction

Figure 33.

DCB parameters. Addresses of the various
routines which will be used to process the
open data set are filled into the DCB by
the Access Dependent Orpen routines. Conse-
quently, the proper routine will be given
control when the macro instruction operator
names are identical, e.g., the GET macro
instruction will produce linkage to the VAM
SEQUENTIAL routine if VSAM is being used,
rather than the VAM INLCEX SEQUENTIAL
routine.

There is a field in the DCB containing
the exceedingly rare combination of charac-
ters "*%*%". This field is known as the
DCB identifier and is frequently inspected.
If the field has been altered, this is
taken as evidence that the integrity of the
DCB is in doubt and a task is abnormally
terminated (ABEND).

Another relevant check made during OPEN
processing is to ensure that a nonprivi-
leged user is not attempting to access a
privileged system data set or device
reserved for system use.

If appropriate volume and data set
labels are processed, the volume is posi-
tioned. Privilege class is checked, infor-
mation is obtained from the Symbolic Device
Allocation Table, and various takles are
kuilt.

If the access method concerned is TAM,
BSAM, QSAM, MSAM, or IOREQ, a Data Extent
Block (DEB) is built.

If the access method is VSAM, VISAM or
VPAM, a Relative External Storage Corres-
pondence Table (RESTBL) is built.

Because the location of the DCB is spec-
ified by the user, it may ke modified at

84

A General Flow of Open Processing

any time. This gives added flexibility in
such areas as specifying buffer lengths.
However, in a multiprogramming system, no
user should be able to interfere with
cthers. Fcr this reason, the BSAM, (CSAM,
MSAM, TAM and IOREQ access methods place
certain information in what is essentially
a protected extension of the DCB called the

BSAM User
Routine

Only Direct

Access Devices

DEB

DsCB -

o

vy

@] 5

) 4

JFCB

VSAM

RESTBL

DCB -

Y

JFCB -t DsCe

Data Flow During Open
Processing

Figure 34.



Data Extent Block (DEB) and the VAM access
methods place functionally similar informa-
tion in the RESTBL.

The Data Extent Block (LEB) is variable
in length and is logically divided into
three sections. The first section contains
informaticn about the data set and devices
such as the number of tracks per cylinder
as well as pointers to the other control
blocks associated with the data set.

The second section anchors a chain of
pointers which describes the location of
each of the user's Data Event Control
Blocks (LDECBs) that have not yet keen pro-
cessed. Under some error conditions, suc-
ceeding I/C requests may be queued on the
DEB pending a resoluticn of the error.

The third section exists only for direct
access volumes and contains information
such as the size and characteristics of
each group of contiguous track or cylinders
(i.e., extents) on which the data set
resides and the direct access seek and
search addresses used for the last read or
write tc this data set. The DEB format is
shown schematically in Figure 35.

The Relative External Storage Correspon-
dence Table (RESTBL) is composed of three
parts - a RESTBL header, the page corres-
pondence entries, and the DCB headers and
VPAM data set member headers.

The RESTBL header, at the keginning of
RESTBL, is immediately followed by the data
set page/external page correspondence
entries. The DCB headers and member

Data Set Characteristics
Device Characteristics

Location of Other Control Blocks

Number of Unchecked DECBs
Location of Last Unchecked DECB

Location of first Unchecked DECB

(DASD Only)

Address of Last Write to DASD
Address of Next Read
Alternate Track Locations

Extent Information

Figure 35. Data Extent Block (DEB)

headers coriginate at the end of RESTBL and
expand toward the external page entries. A
RESTEL thus has the following organization:

RESTBL HEADER
Dataset Page
vs
EXTERNAL
PAGE

ENTRIES

Up to one page of
AVAILABLE
SPACE
(all zero bytes)

DCB HEADERS AND
MEMBER HEADERS

.._aa--r-__.—......-.-r__—._...-—.,_..,..__.-_‘
i
|
|
|
|
|
|
|
i
b e e i s s e e b e s e e e bt e

The RESTBL header entry contains general
information about the pages of a data set
(such as the number of pages occupied by a
VISAM data set directory) and descrikes the
content ¢f the remainder of the RESTEL.

The DCB header entries summarize DCB
information for the VAM access methods in
nuch the same way that the Data Extent
Block (DEB) does for the sequential access
nethods. The header contains information
such as the cortions the user specified in
the OPEN macro and the location of the
tuffer.

Because a VPAM data set is really a
collection of independently organized data
grougrs, there must be a header for each
member. These headers are in the same for-
rat as the data set information in the
RESTBL header.

There is an entry in the middle section
of the RESTBL for each data page assigned
to the data set (including all data set
members). Thus, the fifth data page
assigned to the data set is the fifth
entry.

The general format of each one word
RESTBL entry is as follows:

0 2 15 31
- T 1
|Flag|Relative |External Storage |
| jVvolune Numker |Page Number |
| SN - 4 4
FLAG: 00 - An External storage page has

been assigned and there is a
copy of this data set page on
External storage.

01 - Not-in-use. An External

storage page has been assigned
to the data set, but the user

Data Management 85




has not yet placed a logical
record in this page. This
rpage can, at the user's
option, be released during
CLOSE processing.
10 - Data has recently been written
into a record located in this
page (which is now in main or
auxiliary storage), but the
page has not yet been written
to external storage. If a
logical record spans several
rages, each page will carry
this flag, even though the
user has not necessarily writ-
ten into that portion of the
logical record continued in
this page.
11 - A permanent error was encoun-
tered when an attempt was made
to write on this external
storage page. The data was
placed on a substitute page
and this rpage is not used
although it still belongs tc a
DSCB extent allocated to this
data set.

Relative Volume Number: This identifies
the relative number of the volume within
the PVT. The PVT (public or private volume
table) contains a list of the symbolic
device addresses, volume serial numbers,
and device codes of all devices on which
the data set may reside.

External Storage Page Number: The physical
address of VAM pages on external storage
can be calculated from knowledge ©f the
device type and the relative location of
the page on the direct access device. A
Format E or F DSCB is thus able to describe
external storage by relative page number as
well as describe a VAM data set by relative
page numkber.

If the data set is sharable, there will
be another full word entry for each data
set page containing interlocks. VAM shar-
ing is discussed separately in "Sharing.”

When processing of a data set has been
completed, the data set must ke closed.
The close processing, initiated by the
execution of a CLOSE macro instruction, may
be performed any time after open processing
has been completed. Usually, however, a
data set is closed after all I/O operations
have been completed. Close processing is
initiated when a task is to be abnormally
terminated (ABEND) or as a result of a
LOGOFF command.

Closing a data set may ke thought of as

a reversal of open processing. Closing a
data set includes restoring the Data Con-

86

trol Block (DCE) to its original condition,
i.e., as it was Lkefore open processing.
Lata Set Contreol Block (DSCB) processing,
label processing, disposition cf the data
set volure, completion of all outstanding
DECBs and deletion of the DEB are alsc done
during closing. TAM CLOSE disables any
relevant 2702 lines, removes the terminal
from the task and then enakles the 2702
line once again so that the terminal may be
used again.

When using the Basic Sequential Access
Method (BSAM), a CLOSE TYPE=T macrc
instruction may ke issued for data sets
residing on magnetic tape. This causes a
kit to be set in the parameter list which
is passed to the CLOSE COMMON routine indi-
cating that a temporary close is to take
rlace. The temporary close executes like a
normal close, except the DCB is not
restored and the DEB is not deleted so that
I/0 may ke continued without a new OPEN
macro instruction being issued. It is also
used for convenient repositioning of a
volume. Figure 36 indicates the overall
flow of close processing.

The CLOSE COMMON Routine performs those
close processing functions which are neces-
sary no matter which access method is being

used. CLOSE COMMON branches to the appro-
priate Access Dependent Close (ADC) Rou-
tine. The MAINLINE EOV routine, indicated

under CLOSE SAM is quite extensive and its
main components are shown in Figure 36.

CLOSE Macro Instruction DUPCLOSE Macro Instruction (VAM}
— - SRR

v \

CLOSE COMMON  €—————DUPILOSE

! T [
| | |
H I [
I I CLOSE !
CLOSE  CLOSE  CLOSE Vam cLosE
SAM TAM IOREG o
| | e - |
i !
! i l’ ! E
Mainline | I e CLOSE
o LLose ndex |
0y i 1 Seguential < ) |
! ! , Sequentis]
| ' ! !
x
| 1 ‘ [ ; !
I : ‘ ! [ |
| I i { |
i ¢ i ! | \
I Next Sequential Instruction after CLOSE Macro tnstruction |
cLose
sAM
Mainline EQV
r — : AN .
|
|
| Concatenation __Tope mpor FOV_
| Processor
——————e
D4 Ouiput FOV
!
[ EQV Housekeeping ;
i for DA Volumes DA fnput EOV
| _for DA Molumes m ) _ DA DY e

Figure 36. CLOSE Processing



MAINLINE EOV may alsc ke called ky the BSAM
CHECK and Force End-of-Volume (FEOV)
routines.

The overall logic of I/C processing can
rest be described through two illustrative
examples. An example of the processing
involved in executing a Basic Sequential
Access READ macro instruction is presented
in "Example of BSAM Processing." The
action of the system in the creation and
processing of a three record Virtual
Sequential data set is described in
"Example of Virtual Sequential Processing.”

The REAL example will also give a first

opportunity to tie together the parts of
TSS/360 already descriked.

EXAMPLE OF BSAM PROCESSING

This example descrikes a read operation.

In order tc read a record from an alrea-
dy existing BSAM data set, the programmer
must issue a DDEF command and execute the
CPEN macrc instruction for input. This
processing is summarized in Figure 37.

The step by ster prccessing in the sys-
tem is shown in Figure 38. The processing
is described below and is keyed to the
figure.

1. When a program executes the READ macro
instruction a Type II linkage is per-
formed tc invoke the BSAM READ/WRITE
routine because it is a privileged
routine. If the READ macro instruc-
tion had been generated in a control
section with the "Privileged” attri-
bute, a Type I linkage would be per-
formed for a transfer within the same
privilege level.

The Type I1 linkage consists of plac-
ing a ccde, established ky convention,
in Register 15, which specirfies a link
to the BSAM Read/Write routine, and
then executing an ENTER Supervisor
Call which generates a hardware inter-
ruption which will cause the Interrupt
Stacker module cf the Resident Super-
visor to be invoked.

When an interruption occurs, the PSW
Register contains the address of the
instruction that would have been
executed next if the interruption had
not occurred. This extended PSW is
moved by the Model 67 from the PSW
register into the appropriate cld PSW
area in the Prefixed Storage Area
(PSA). The new extended PSW is
fetched ky the Model 67 from the
corresponding new PSW area in the PSA
and becores the machine PSW.

‘tual storage (i.e., SVC<128).
"exanple it is and a software interrup-
. tion is enqueued for the task by cal- x?

'1ling the Queue GQE on TSI routine NS
{which adds the GQE to the TSi's SVC v

' queue and turns on the SVC interrup- —.¥
: tion pending bit in the TSI. The :

The address contained in this new PSW
is the Interrupt Stacker entry point
which corresponds to the type of
interruption.

The Interrupt Stacker is the ncdule of
the Supervisor which receives control
when any hardware interruption is
taken. The Interrupt Stacker identi-
fies the interrupt type and creates a
generalized queue entry (GQE), which
represents a unit of work for other
parts of the Supervisor. In this case
the stacker is entered at its 3VC
interrurt entry point. The entry
point address is carried in the
instruction counter field of the new
SVC PSW. The Interrupt Stacker tem-
porarily saves General Registers 0 to
4, 14, and 15 in the PSA since each
type of interrupt routine has its own
unique prccessing kefore it can enter
a subroutine to save the status of the
machine at the time of the interrupt.

Supervisor Core Allocation (SC2) is
called by the Interrupt Stacker to get
64 bytes in which to build the GQE for
this interruptiom.

Then the Interrupt Stacker proceeds to
build the GCE. The GCE is initialized
with the following information:

e The TSI address and the SVC inter-
rupt code from the PSA.

e The Instruction Length Code (ILC)
oktained from the Supervisor Call
old PSW.

e The symbolic designation (Loc-on-Q)
of the SVC queue.

e The virtual storage address of the
SVC instruction if the SVC was the
subject of an execute instruction.

At this pcint a check is made to

determine if the request is for ser- "
vices of a gxiwiteged routine in vir- . S
In this ‘

&5
B
L.

N

Interrurt Stacker next saves the old
extended PSW (located now in the PSAa)
in the aprropriate location in the
task's Extended TSI (XTSI). In addi-
ticn, all General Purpose, Control,
and Floating Point registers are
placed in the XTSI. In this fashion,
the compiete status of the task is
preserved. The status will be
restored at some later time.

Data Management 87




DDEF Command

OPEN Operation

OPEN D(i‘B addr

1
DCB User
'_ R JFCB T Created -l Modif
by Macro Routine
\‘ DEB
VT1OC Common
L R(Eu-dq, for - DECE
18 ! Queuves
Extents
SVC from User OPEN Macro
| vroc
' On Disk 1. User Open Generates SVC Call to
Data Management COMMON CPEN
DSCB for VTOC
DSCB for 2. COMMON OPEN Routine
Available Extents (a) Completes DCB from JFCB and
DSCB £ User Routine
or \
Data Set (b) JFCB Completed from DCB
{c) Calls OPENSAM
Additional (d) Returns to User
DSCBs for
Data Set 3. OPENSAM Routine
(a) Builds DEB from JFCB and
D
DDEF Creates JFCB - E?ij 1“’ Seoardens Sacr
To Hold Data Set Attributes i vilds Access Depencent section
of DCB
(c) Returns to Common OPEN
Volume Is located and 1D Inserted in JFCB
Fields in JFCB Filled from DSCBs
If DISP=NEW, Use External Storage
Allocation to Obtain First Extent.
Update VTOC
Legend: Indicates Data Movement

Indicates Pointers

Figure 37. DDEF and OPEN Processing

88




g g
(£1) osoajay | (91) "
203 309 =t
sosiasadng el Sron @
&
0]
— 3
An:_ozooo& r m nv‘__v&tuai m [(€D | m
199,
- MSd (e | o | st =
[P pROT v SAS 7
| [
I o - y 2
]
[
JAS 13897
MSIAT
te1)
€ 1983
L 1eney
ey
Pouyd gSL
(8) 2ena |
a _Um 7 e — ey . . R
a0 | | (L) 9By | R e e !
sosiasadng pl 840207 | 151X _ 151 g — —_—— j51 uo 3OO an2nD :
| R . L= i ”
t J | =
! _ P e ~
. - i
| i P ] "
_ / { _ P ” 0
|
_Aﬂ: jo3u0)y o : i _ Q{SL!], { — . -
| ae;“os - W lagsiodsiq e ...ll_. ﬂllnlli | :oﬂwﬂunw - w‘ﬁ.mv 1933045 jdnuaiu| rv —_——— .llL VSd M
W ¥50) | o | i —_ +
T i | A M
| b & «
| ! () ¢ ) - i
i 1 b
‘‘‘‘‘‘‘‘ X o
! ﬁxt_mhx | o
| S =]
_ ]
AR
R A b
Poes +
e . B m
[T ———y a
i - i [V i
-+ d M»Bmvwm ] 40559 doadgng W =
L adn \
 sopuew 18y ﬁlllcl'w gszW M
- _ @
[»4
€ j9na .
P
DAS ¥ILN3 %
jus]

.ﬁ/.l
jo B

|

|
M avay |
ﬂ W
N

woiBouy 195
paBajiniig uoN

Figure 38.




| jeney

anangy ad1as(Q

123007 e 30O senanbuy

63 sabng 4ayyng oy
7 asoa|ay ‘Aipssadap 3| ‘aBLio)§ uiow suipiqo
2403 | 3107y Jos1AsRdng ojul @y Bulig

} 1051 M2dNng i
— e 99843 AIpioA swiopiag

[(e)

ananbug

(LE ;
uoHpo|y 0!
2107
sosiasadng T
—_— i
.ﬁ (0g)
3bpg 240207 g B
(ve) W - 62 (92) ,
L i
_ ARsse 504y W
- J9uUROG oy anang _
30853004g 8NANQ 321A3(Q O} 1_ 290 mﬂmﬁco:nuo__( 1 . IAS |
i i
m - ﬁ .u...UU H 1
I L omeens [ Loy —
[ L]
£ 13437
112437
T Ty
) W (81)
- J 1943036 Jsuunsg <
U 1dnssagu) W anang |
DAS PAEELCE]
11201
N r\ 3414 /POSY
i .
1 Wvs8
| tve) | hﬁ
1 |
| )
J
| =
B
(£2)
ueiyansu| X3 fonnsuely |
S|
PRELS]

(part 2 cf 3)

BSAM Read wWalkthrough

Figure 38.

90




Level 3

BSAM - Tosk | S
Read/Write Manitor
(43) (44)
Level 2
I 1
i —_— — P
rom .
— e (35} > o
Oueve Pathfinding > | ‘ » Dispatch
Scanner (36) Quese | | (41)
Sconner | | [
Commond | i -
- Word L (40) ‘i . i
Relocator 7 1 e
{
e I (42)
Device
Queve ey |
Processor —
Start 'O
(38)
7 — H
o] Set
Suppress Flag
(39}
Pathfinding
Places Main Storage Addresses in Channel Commond Words
Issues START 1/O
Processes Errors from START /O
Level } Locks the Appropriate Device Queue
User
Program
Level 3 1
e, (45)
LVPSW
Level 2 sve )
[
[
et . - P
l Interrupt | L [ SYC Queve | o pay Dispotch
| Stacker V‘ f Processor ! irtual PSW n—-—{j — ispatcher (
| B Processorl‘v i ‘
[ b2 (e7y |
| |
I
I
] Tic |
Level 1

Figure 38. BESAM Read Walkthrough (Part 3 of 3)

Data Management 91




92

Having completed its processing, the
Interrupt Stacker unmasks interrup-
tions and exits to the (Queue Scanner.

The function of tne Queue Scanner is

~to look for work which the sSuperviscr

can dc. The Queue Scanner searches
the various queues for GQEs which can
be processed. When one is found, the
appropriate Supervisor module (Queue
Processor) is lnvcksd.

In this example, the program has not
created any .work for a Queue Proces- 8.
sSor. However, there may ke quite a

bit of previocusly gqueued work.

When the Cueue Scanner finds that

there are no more GQ;’:u that can be 9.
processed, it exits to the Internal
Scheduler which callssthe Dispatcher.

The Dispatcher applies its scheduling
algorithm to select the next task to
be placed in execution, singe a CPU is
now available tc do work in the Pro-
blem state.

The‘Dispatcher executes with interrup-
tions masked because it normally does
not return to the Queue Scanner, but
exits to the Problem state. Cperating
with interruptions masked prevents an
interruption from being serviced until
the next interrurticn from the Problem
state.

The task described in this example may 10.
not be immediately selected for execu-

tion by the Dispatcher, but it will
eventually be considered.

When the task is selecied for execu- 11.

tion, the Dispatcher wishes to deter-
mine if there is a task interruption
pendlng for this task. Task Interrupt
Control (TIC) is called to make this
determination. :

TIC provides an important link between
the Resident Superviscr and the Task
Monitor. - Its function here, since
there is a pending task interruption,
is to make sure that when the task is
placed in executicn, it is started at
the entrance to the appropriate inter-
rupt processing rcutine in the Task
Monitor. In order to do this TIC must
set up the correct data in the first
doukle word (PSW location) in the
XTSI. This data is oktained from the
new SVC Virtual PSW ‘in the ISA, which
is located in a fixed location in vir-
tual storage, segment 0, page 0.

TIC invokes the Locate Fage routine tc
determine the location cof the ISA
page. In this example, the ISA is

_ISA inte extended P3SW format,
“4t in the XTSI and

still in main storage.
the ISA is in main stcorage, TIC
obtains the task's PSW from the XTSI
and places it in the old SVC Virtual
PSW location in the IShA.

Finding that.

Next, TIC translates the new SVC Vir-
tual PSW infcrmation okbtained from the
places
sets the TSI inter-—
rupt mask field. It also cories :
infcrmation from the GCE into the ISA.

Supervisor Core Release is then called
tc TE}Edat the space used by the GQE.
Task Interrupt Contr01 then returns to
the Disgatcher.

The Dispatcher now sets the task in
execution by loading the PSW and the
General Purpose, Floating Point and
Control registers from the XTSI. The
instructiocn counter in the PSW points
to the Task Monitor's SVC Interrurt
entry point. The Task Monitor is
already addressable in virtual storage
because it is included in each task's
Initial Virtual Memory. (See Virtual
Memory Allocation.)

However, it is quite possible that the
referenced virtual storage page is not
in main storage and must be paged into
main stcrage. In this example, the
processing involved in paging is
igncred. (See Paging.)

When the Task Monitor'®s SVC Interrupt
Processor receives control it will
detect that the VPSW interrupt code
specifies an ENTER SVC.

The Task Monitor SVC Intexrrupt Proces-—
sor then links to its own Enter Sub-
processcr.

The BSAM Read/Write module is part cf
IVM, so the Task Monitor will pick up
the appropriate V-type and R-tyge
address constants from an Enter Table
in its PSECT. The Task Monitcr will
then place the status of the task in a
save area in the ISA. This lcng save
is necessary, kecause BSAM Read/Write
may cause more task interrupticns
befcre Task Monitor processing is
complete.

Finally, the Task Monitor will provide
a save area for BSAM Read/Write and
execute a Load Vlrtual PSwW supeIV1scr

call. s i . ;} {

The LVPSW SVC allows the Task Monitor
to change the hardware interrurticn
mask and stcrage protection key in the
task's FSW (if needed) as well as set-
ting the software interruption mask in

4



12.

13.

14.

15.

17.

18.

1§\.\

20.

21.

the TSI to that setting which BSAM
Read/Write requires.

The LVPSW SVC will cause a hardware
interruption just as the ENTER SVC
did.

The Interrupt Stacker will again pro-
cess as in step (2). However, this
time the Interrupt Stacker will con-
tinue prccessing ky placing a pointer
to the GQE in a register, saving the
task's status in the XTSI, unmasking
interruptions, and then exiting
directly to the SVC Queue Processor.
This processing reflects the fact that
this sugervisor call is regquesting the
services of the Resident Supervisor.

23.

When the SVC Queue Processor receives
contrcl from the Interrupt Stacker,
the interruption code in the GQE is
inspected. Based on the SVC number,
the SVC Queue Processor links to the
LVPSW subprocessor.

This routine, using as input the VPSW
furnished to it, sets the appropriate
task interruption mask bits of the TSI
and rlaces the VPSW (translated into
Extended PSW format) into the first
docuble word of the XTSI. The XTSI now
points to the virtual address of the
BSAM Read/Write rcut1§e. { b

A w_@\{( y oos ST
The GQE is-sent to NOVhGQE to be
removed from the system. MCVEGQE
inspeécts a flag in the GQE which spe-
cifies that we have finished proces-
sing this GQE. MOVEGQE links to
Supervisor Core Release (SCR).

Sciafeclaims the 64 bytes“of core.

The LVPSW sub-processor exits to the
Queue Scanner.

The Disgpatcher ultimately selects the
task’ to be put in executxcn.A~It rou-

. tinély calls on TIC to setwup for task
\lnﬁerrupts,

if any exist.

TIC finds none pending for this task

/and” returns.

The Dispatcher blindly picks up the
PSW Save field from the XTSI and loads
it as current PSW causing the desired
transfer back to the gproklem state at
the BSAM Read/Write entry point. The
overall processing cf this Read requ-
est is depicted in Figure 39.

The BSAM Read/Write routine uses two
major subroutines to perform its pro-
cessing, a BUILD subroutine and a CON-
STRUCT subroutine.

The BUILD subroutine builds a skeletal
Input/Output Request Block (IORCB).

There 1is an IORCB built for every I/O
request that requires a channel pro-
gran. The IORCB contains an IOCAL
SVC; the address constants for the
BSAM Posting routine; and the channel
program, in addition to other data.

The CONSTRUCT routine generates the
required channel programs in the
IORCB. The first decision CONSTRUCT
must make is whether to use the IORCE
as a buffer. For records longer than
1800 kytes, a flag is set indicating
that the IORCE is not to be used as a
buffer and a list of up to eight
entries is built whicn provides the
virtual storage address of each page
of the kuffer.

A channel transmits data to or from
main storage, but pages which agpear
contiguously in virtual storage are
not necessarily contiguous in main
storage. Therefore, whenever a read
or a write would span pages, data
chaining must be used.

Notice that the page list allows 1I/0
from non-contigucus virtual stcorage,
since the page list can be any eight
pages. However, there is no scatter-
read/gather-write facility, unless
IOREQ is used (scatter-read is the
technique of reading selected Lblocks
of a data set into non-contiguous
storage locations; gather-write allows
writing from selected locations in
ccre, skirpping unwanted, in-between
areas of core). Under IOREQ, the pro-
grammey writes his own Virtual CCW
list, and so data chaining is
pcssikle.

Next the channel program is built.

The channel control words in the chan-
nel control program are not true CCWs
because they contain virtual storage
addresses. In point of fact, they
only contain the low order bits of the
virtual storage address or a displace-
ment relative to the keginning of the
ICRCE buffer because there is only
rcor for a 24-bit address in a real
CCW. Using a larger address would
distort the CCW format.

The high order portion of each address
can be obtained from the page 1list or
is implied from the wvirtual storage
address of the IORCB itself.

The CONSTRUCT routine uses several

subroutines to generate the channel
program.

Data Management 93




I/C Operation (Basic)

Check Operation

READ DECB- Addr, Type, DCB- Addr

Y ¥

DECB DCB

SVC User l

READ routine

Queve DECB in DEB Dte

Build IORCB

JOCAL SVC
Free IORCB area

Return to user

bW N e

Resident Supervisor

Move IORCB to supervisor area IORCB

Perform pathfinding
Convert CCW's -

Common

r—-u — o v— —— —— o o— v S w— ool
-
|

Issue start 1O Buffer

[ NN N

Return to READ routine
ccw

Interruption to Resident Supervisor

1. Insert sense in |ORCB
2. Move IORCE to ISA |

{seg. 0, page 0)

3. Free Supervisor area 1ORCB
Create tosk interruption

CHECK DECB- Addr

DECB

SVC User
1.  Check for completion of 1/0 reauest, If not complete,
issue WAIT SVC
2.  Complete
{a) with error-send control to SYNAD, ABEND or
EQV, depending on error
(b) No Error
(1) Dequeue DECB from DEB

(2) Enter READ if more DECBs
stacked in DEB

(3) Return control to instruction

after CHECK

Return

Task Monitor ]

1. Give control to POST routine located
by IORCB

2. RETURN to user

{ORCB

POST Routine

1. Perform error recovery

2. Insert results in DECB

3. Move data from IORCB buffer to user's area
4

Return to Task Monitor

NOTE: Check performed to wait for 170 Post of
read or write request.

Legend: indicates data movement

— — — indicates pointers

Figure 39.

94

If the programmer had keen using the
Terminal Access Method (TAM) instead
of BSAM, a table called the Terminal
contrcl Program Library (ICPL) would
specify the channel program. This is
schematically descriked in Figure 40.

A final consideraticn concerning the
construction of the ICRCB is the fact
that a Time Slice End could occur at
just the wrong time. (That is, after
the IORCE has been completed kut
before the IOCAL SVC has been
executed.) This would mean that, at
the beginning of the next time slice,
the IOCAL SVC would ke executed but
the IORCB would quite likely not be in
main storage. To avoid this difficul-

Overall Prccessing of Read Request

ty, the IOCAL SVC is placed in the
first half-word of the IOKCB and is
executed out-of-line ky using the
System/360 Execute instruction. This
acccrplishes two things. First, the
virtual storage address of a SVC is
saved bty the Interrupt Stacker when
the SVC is the subject of an Execute
instruction. Thus the virtual storage
address of the IORCB is passed to the
Resident Supervisor in a convenient
way. Second, the relocation mechanism
is invoked if the SVC is not in main
storage. This assures that the IORCB
will ke in main storage at the time
the SVC is executed and will never
have to ke paged in after the SVC has
been performed.



Symbol'c Device
Allocation Table (SDAT)

Provides code
specifying terminal
type

{ Channel Program Generator 1 TCPL Entry

| uses TCPL to build JORCB | Expansion T

End of buffer character,
end of terminal, standard

terminal entry, translate Common Data
table (256 bytes), etc.

CCW and Control
Required for READ

Separate table

specifying operation
required for each TAM for WRITE
option.

-~

for WRITE

with Response

1ORCB

Common

Buffer Size for
Terminal Operation
Plus Control Chaoracters

— ]

CCW List

Figure 40. TAM IORCB Generation

24,

25.

26.

27.

When the IOCAL SVC is executed, the 28.
Interrupt Stacker is entered at its
entry point for SVC interrupts.

The Interrupt Stacker calls Supervisor
Core Allccation to get 64 bytes for a
GQE.

The GQE is then filled in with the
interrupt code and the virtual storage
address of the SVC instruction. Pro-
cessing continues as in step (13). 29.

The Interrupt Stacker gives control to
the SVC queue processor.

On the basis of the SVC code, the SVC
Queue Processor makes a selection of
the appropriate SVC Subprccessor to
continue the processing of the GQE.

In this case, the IOCAL SVC Subproces-
sor is called.

Terminal Control Program

Ubrory TCPL
\\\\\\\\\\\. (
.‘\
1 1050
2741
TTY35
Etc .

See Exomple

Example : Must Generate

Dialing and/or addressing
Validation of addressing
Transmit message

Polling terminal
Validation of poll

Reod of message
Validation of message

NS WON -

/

Last CCW will always be PREPARE with PC}

flag on to monitor user attention interrupts.

JOCAL first executes a Test and Set
instruction to determine if ancther
CPU is currently executing in the sub-
processor and thus using the subpro-
cessor's one permanent work area. In
this example, this is the case and
IOCRL invokes Supervisor Core Alloca-
tion to obtain a temporary work area.
This type of processing is common to
most Resident Supervisor routines.

Then, since IOCAL will be working on
the IORCB, IOCAL must first find out
where the IORCB is located in main
storage. The virtual storage address
of the IOCAL SVC is available in the
GCE, and this address is also the vir-
tual storage address of the IORCE.
Since the supervisor cperates in non-
relccation mode, this address cannot
be used directly. The virtual storage
address must first ke translated into

Data Management 95




30.

31.

32.

33.

34.

35.

96

a main storage address. This function
is performed with the help of the Loc-
ate Page routine.

Locate Page is callied and returns the
main storage address of the Page Table
entry for the IORCB page. From the
Page Table entry, the main storage
address cf the IORCE itself is
determined.

The IOCAL Subprocessor then gets main
storage from Superviscr Core Alloca-
tion and moves the IORCB into the
supervisor main storage area. If the
record was so large that BSANM used a
page list instead of using the IORCB
as a buffer, the IOCAL Subprocessor
would have additiocnal duties, as
follows.

Although BSAM provided the virtual
storage address c¢f each page list
entry, IOCAL is tne routine which must
obtain a real address for the page.

If any page is not in main storage,
IOCAL initiates paging orerations to
kring the page into main storage. If
this buffer has never yet been written
into, User Core Allccation will supply
a zeroed-out block of main storage and
nc page in will be necessary.

If the Task Symbolic Device List indi-
cates that the task is permitted to
perform I1I/0 on this symkolic device,
Enqueue is called to place the GQE
(which ncw points to the IORCB in
supervisor storage) on the proper
device gueue. (The access method has
specified the device by furnishing its
symbolic device address in the IORCB.)

IOCAL invokes Supervisor Core Release
(SCR} to return the temporary work
area space.

The standard exit is taken to the
Queue Scanner.

Since there is still work tc be done
to process the I/0 request, the Queue
Scanner will find the GCE on the
approrriate device queue and call the
Device Queue Processor to initiate the
I/0 creration.

Recall that for each and every device
attached to the system, there is an
entry on the Scan Table. Each entry
has a pointer to the first GQE, which
represents a request for 1I/0 to or
from that device. Succeeding requests
- GCEs - are chained from the first
request. The Device (ueue processor
processes these requests for I/0, and
does this for all of the devices on
the system excert the paging drums.

36.

37.

38.

39.

40.

41.

42.

43.

The primary function of the Device
gueue Processor (DQP) is to initiate a
successful I/0 operation (Start I1I/0)
given a GuE and an IORCB. The DQP
also processes requests to Halt I/0
and to initiate sense operations. The
function of the Channel Interrupt Pro-
cessor (CIP) is to process the GQE
which is created when an I/0 interxrup-
ticn cccurs. The DCP and CIP can
affect each other's corerations greatly
by communication with each other.

The Device Queue Processor must create
the actual channel program. The Path-
finding routine is called for this
purpose.

Pathfinding converts the symbolic
device address from the IORCEB to an
available hardware path (Channel Ccn-
trol Unit - Channel - Control Unit -
Device) and marks those elements busy
in the variocus pathfinding tables (see
"pPathfinding®).

The Device Queue Processor invokes the
Command Word Relocator routine to com-
plete the channel program by placing
the proper main storage addresses into
the CCWs. CCWs created by access
methods contain components of virtual
addresses.

The START I/0 routine is now called to
issue the Start I/0 instruction to
initiate the channel program. Upon
return from Start I/0, the Device
Queue Processor checks to make sure of
successful initiation of the I/0
operaticn. In this example, a succes-
sful initiation is assumed.

Set Suppress Flag is called tc prevent
the Device Queue Processor from being
invoked again to process a GQE cn this
device queue (until the I/0 operation
just started is complete).

Note that the original GQE still
remains on the device queue as exit is
made to the Scanner.

The Cueue Scanner, when it uitimately
finds no GQE's that can be processed,
calls the Dispatcher.

The Dispatcher may choose this task to
be placed in Execution. Before plac-
ing a task in execution, the Dispatch-
er calls Task Interrupt Control (TIC)
to check for pending task interrupts.

Since none is found for this task, the
Disgatcher returmns control to the task
{BSAM READ/WRITE) at the point after
the EXECUTE instruction which invoked
the IOCAL SVC.



Lo,

45.

4e6.

Level 3

BSAM Read/Write has finished its pro-
cessing and so it returns to the Task
Monitcr SVC Interrurpt Processor.

et '\,,,-, o \‘:’\“ ‘"“? i TR

i o e

The Task Monitor SVC Interrupt Proces-
sor merely exits to the Task Monitor
Scanner-Cisgatcher to lcok for further
work.

The Task Monitor Scanner-Dispatcher is
analagous to the Resident Supervisor's
Queue Scanner. It scans the Interrupt
Table locking fcr wcrk to do and dis-
patches the appropriate routine when
work is fcund.

Task Monitor Scanner-Dispatcher, find-
ing no further work for the Task Mon-
itor, restores the task's registers
from the ISA and issues a Load VPSW
SVC to return control tc the last
interrupted routine.

Processing continues as in steps
12-18. The LVPSW sukprocessor will
set the PSW in the task's XTSI to
point tc the first instruction follow-

Cur Program
READ

CHECK

ing the REAL macro the program
executed.

47. Eventually, the Dispatcher picks up
the PSW save field from the XTSI and
loads it as the current PSW for a CPU
and thus returns control to the
program.

Some time later, the program executes
a CHECK macro to synchronize the RERD
operation, since it can proceed no
further without the data. (See Figure
41).

Although not explicitly shown in the
figure, the CHECK routine is a privi-
leged@ routine and as such, is invocked
through an ENTER supervisor call just
as the BSAM Read/Write routine grcces-
sing descriked in steps 1-21.

The CHECK routine tests the DECB asso-
ciated with the READ macro expansion
and determines, in this case, that the
1/0 coperatiocn is not complete. CHECK
then issues an AWAIT SVC to take the
task out cf execution until a software

Level 2

Await
svC

SVC Queue

To Execute o Task Other Than Ours

________ - }

[ i

Await SVC

Interrupt Stacker - Processor

Figure 41. CHECK Macrc Prccessing

Processcr

Queve - Dispatcher l

L Scanner
— \

i y

3 [ ]

Data Management 97




Many milliseconds later,

interruption is presented to the task.
Depending on the cormplexity of the
operations, the next interruption pre-
sented tc the task need not signal the
completion of this channel program. 3.
In such a case, the CHECK routine

would reissue the AWAIT SVC when the

Task Monitor returns control to the

program at the point in the CHECK rcu-

tine following the AWAIT SVC. Howev- 4.
er, in this case, the next interrup-

tion presented to the task will signal

that the channel program has completed
operaticn. 5.

The AWAIT SVC will cause the Await SVC
subprocessor of the Resident Supervi-
sor tc be invoked.

The Await subprocessor will place the
task in the Inactive list by calling
Rescheduling and rlaces the task in
delay status (see "Scheduling
Algorithr").

the I/0 opera-

tion is completed and a channel-end,
device-end condition causes a hardware I/0

interruption.

The flow of control is now

shown schematically in Figure 42, which is
keyed to the following description.

1.

98

Recognition of this interruption
causes entry to the Interrupt Stacker 6.
at its I/0O interruption entry point.

The Interrupt Stacker performs stan-

dard functions for an I/0 interrup-

tion. The Interrupt Stacker creates a

GCE and inserts the hardware device

address (automatically stored with the

I/0 interrupt as the interrupt code),

the Channel Status Word (CSW), and the
symbolic designation of the queue on

which the GQE is to be placed for

later prccessing. A test is made to

see if the interruption came from a

paging drum since such interruptions 7.
are handled differently from other 1/C
interruptions. Since this is not a

paging drum interruption, the Inter- 8.
rupt Stacker designates that this GCE

is to be placed on the Channel Inter-

rupt Queue.

The Interrupt Stacker ultimately exits
to the Queue Scanner. If the CPU
which took the interruption was
orperating in the Supervisor state
prior to the interruption, the Inter-
rupt Stacker causes execution to
resume at the point of interruption. 9.
The Queue Scanner will ke entered
later, when the Queue Processor cur-
rently in control finishes its work.
If the CPU was interrupted from the

proklem state, the Interrupt Stacker
will transfer directly to the Queue
Scanner.

A GQE is found on the Channel Inter-

rupt Queue by the Queue Scanner. The
Channel Interrupt Processor (CIP) is

invoked.

The CIP calls Set Suppress Flag tc
prevent a seccnd CPU from being
invoked to process the same queue.

The Channel Interrupt Processcr then
calls Reverse Pathfinding to convert
the actual hardware device address to
the symkolic device address.

CIP lcoks at the device queue whose
symbolic number has just been returned
by Pathfinding. CIP finds at least
one GQE on the device queue as well as
a flag set (in the Scan Takle entry
for that queue) indicating that an I/0
operation was in progress for that
device. Cn this basis CIP decides
that the interruption is associated
with a previous IOCAL SVC, and thus
distinguishes ketween synchronous and
asynchronous I/0 interruptions. CIP
then prcceeds to call Reverse Path-
finding again.

The function performed this time is to
remcve the kusy indication in the
pathfinding tables and thereby free
the hardware path to the device.

The Channel Interrupt Processor finds
through a series of tests that this
interrugtion is to ke given to the
task for further processing, i.e.,
returned to virtual storage as a task
interruption. Status informaticn is
ccpied from the interruption GQE into
the device GQE.

Dequeue is called to detach the ori-
ginal GQE from the device queue.

Queue GCE on TSI is then called to
attach the original GQE to the TSI and
turn con the TSI's Synchronous I/0
Interrupt Pending bit. Finding that
the task that Queue GCE on TSI nas
been called to process is in Delay
status, Queue GQE on TSI resets the
task to Ready status and activates the
task. That is, it places the task's
TSI on the Active List.

CIP calls Dequeue to detach the inter-
ruption GQE from the Channel Interrugt
Queue and calls Move GQE (which uses
Supervisor Core Release) to remcve
this GQE from the system.



Level 1

AN
N

x
N0 Interruprion

Interrupt
Stacker

Supervisor
Core
Allocation

i,
—
Queve
Scanner
|
| — R
N o Set
(23 Suppress
Floa  (4)
‘ ‘\,._,J ! e
(A { | — . Reverse
NG Pathfinding
' | Locate (5)
| Page L
= R
| . Reverse
| - Supcm;m, v.:»‘,—a‘.na;?(g:)
ore
| Dispatcher Interrupt g | pelease i
[ Control |
| Dequeue
F—{ Supervisor )
Core {7)
[ Releose r
(13), l”:“"“e" Cueve GQE [~ Activare
1 nterry
| (12) Pmces;r on TSI TSt
e — 2 S |
To Virtual Sterage _
to begin execution of the Dequeue
entry point of the Task Monitor T (9)
Synchronous Y/Q Intermipt r 0 — 7
Processor. : | [
| [ | > Supervisor
| o | Move GQE Core
I { Monitor | Release
Synchronous |
] 1/O Interrupt Reset
| | Procesocr SAM | Suppress
Posting flag
| " e ! L% g0
—— 03); f : -
&N | ! —————t=! Reset
i | Suppress
l | H [ Flag
| Gueve . S N N (D e — -
Scanner | i (3) |
| Task | |
| ‘ Moenitor SVC Interruption
! Scamner- | | T .
i | Dispatcher Queve _
— | | poL Seonner oternal (T2 37,
! Level 2 a7 | Allocation jJ i Scheduler D
i ~ e Jporeh
. e dpotcher
| B inrerrupt L,,_,‘,‘ m
Stacker > Enqueve
e
[ I ——
— Dequeue w\,
|
e (+)
(18)
| e
SVC LVPswW 7 N .1
Queve . Sub-Processor | Dispotcher
Internat
I ey {20
| e - Scheduler A B
{ Oueue
| ] b Supervisor Scanner
Move GOE Core r
[ F—  Release Task
i Interrupt (21
(19) ] | Contol

to resume execution of the To: Virtvol Storage

task at the next instruction in
Check ofter the execution of the AWAIT SVC.

Figure 42. Resident Supervisor Task Monitcr Synchronous I/0 Flow {(Non-Terminal)

99

Data Management




10.

11.

12.

13.

14.

15.

16.

17.

100

CIP then calls Set Sugpress Flag
twice, once to free the device gueue
and again to free the Channel Inter-
rupt Queue. The device queue in gques-
tion must be freed because it has been
locked during the I/0 operation. Con-
trol is then given to the (ueue
Scanner.

When no further work is found, the

Queue Scanner exits to the Internal
Scheduler which, in turn, calls the
Dispatcher.

The Cispatcher calls TIC.

TIC, after verifying that the ISA page
is in main storage via Locate Page,
moves information from the GQE to the
ISA. TIC saves the XTSI's PESW data

in the Synchronous I/0 0ld VPSW and
replaces the PSW with the Synchronous
I/0 New VPSW (translated into real
extended PSW format). The instruction
counter cf the new PSW roints to the
Task Monitor's Synchronous I/0 Inter-
rupt Processor entry roint. TIC then
removes the GQE from the TSI. Super-
visor Core Release is called to free
the GQE space. TIC moves the IORCB
into the ISA and again goes to Super-
visor Core Release to free IORCB space
before returning to the Dispatcher.

The Dispatcher now loads the registers
and the PSW from the XTSI, thereby
giving control to the Task Monitor
Synchronous I1/0 Interrupt Processor
(TMSYNCH) .

This routine first calls Queue Linkage
Entry (QLE) to see if the user wished
to have control sent to a routine he
has stecified after the BSANM access
method Posting routine has processed
the interruption. In this case none
is fcund and QLE returns.

TMSYNCH then gives control to BSAM
Posting (whose address constants are
obtained from the IOCRCB). The Task
Monitor directly calls the BSAM Post-
ing routine, rather than executing a
Load Virtual PSW surerviscr call,
because this routine runs with the
same interruption mask as TMSYNCH.

BSAM Posting rerforms standard posting
functions, including marking the I/O
event corplete in the Data Event Con-
trol Block (DECB) associated with the
READ request in our program. Control
returns to TMSYNCH.

TMSYNCH has finished processing the
interruption and exits to the Task
Monitor Scanner-Disratcher.

2

oo T

i18.

19.

20.

21.

The Task Monitor Scanner-Dispatcher,
finding no further work fcr the Task
Monitcr, restcres the task's registers
from the ISA and issues a Load VPSW

SVC tce return control to the last
interrupted routine. The Load VPSW

SVC is used to effect the transfer of
control, in part because it is also ’
desired to change the protection key

in the task's PSW.

Eventually, the Resident Supervisocr
5VC Processor invokes the LVPSW
Subprocessor.

the
to the
AWAIT
pro-

The LVPSW subprocessor will set
PSW in the task's XTSI to point
first instruction following the
SVC that the CHECK macro in the
gram executed.

Lventually, the Dispatcher picks up
the PSW save field from the XTSI and
loads it as the current PSW fcr a CPU
and thus returns contrxol to the pro-
gram. Control is returned to the
CHECK rcutine which, having nothing
further to do, returns to the Task
Mcnitor. If there is no further work
for the Task Monitor scanner-
dispatcher to dispatch, the Task Mon-
itor restcres control to the problem
program.

Upon return to the program, a ccde cf
zerc in Register 15 signifies a normal
return, and the program continues with
the instruction following the CHECK
macro instruction. A nonzerc ccde
indicates an exception condition and a
link to either SYNAD or EODAD occurs.

The BSAM READ processing is now
finished.

EXAMPLE OF VIRTUAL SEQUENTIAL PROCESSING

In this examgle,

the program is going to

create a new virtual sequential data set
consisting of three 11,000 Lbyte logical

records.

At this time, the program is

going to place some master informaticn in

the logical recorxds.

data

cpticn in the OPEN macro instruction.

data

FUT macrc instructions.

In processing the
the program will use the OUTPUT
The
set will be created using Locate Mcde
During the OPEN

set,

processing, primary space allocaticn {(spec-
ified in the JFCB) will be assigned using a

format E DSCB.

In this example, the data

set is tc reside on a 2311 Disk volume.
The pages will be flagged as assigned to

the data set,

kut not in use. A schematic

of the FORMAT E DSCB is shown in Figure u43.

When the Virtual Sequential data set is

cpened,

space will ke allocated and this



Data Set Private Volume U External DSCB

Name and | List for Page Chain

Properties Private Data Sets Only § Entries Field

0-95 96-247 248-255
—_—-— - - /I ~~
e - | ~~
a— =

F |{Relative External DSCB  Relative External
I | Volume Page Slot Volume Page
a | Number Number No. Number Number
g | (12 bits) (16 bits) 4 bits (12 bits) (16 bits)

Figure 43. Format E DSCB

DSCB will be written to external storage
and the page entries will ke used in creat-
ing RESTBL entries. These pages will
appear in the RESTEL as not in use pages of
the form 10 xxxx yyyy where 10 is the flag,
xxxx is the Relative Volume Number of the
volume on which the data set resides, and
yYyY is the relative lccation of this page
on the direct access volume. At this time,
the external storage pages contained in the
DSCB have been assigned to the data set,
but the pages do not contain any logical
records.

GETMAIN (see Virtual Memory Allocation)
is used to obtain a virtual storage buffer
area whose size is, in general, dependent
on the mode of the PUT macro used and on
the record length. The kuffer consists of
an integral number of pages and controls
the amount of virtual stcrage used Ly the
data set. Because the buffer is obtained
by the GETMAIN macro, the External Page
Takle (XPT) entries for the buffer pages
are initially zeros. In this example, each
logical record is 11,000 bytes long. The
buffer is four pages lcng kecause the log-
ical records can cross page boundaries and
thus require an overflcw kuffer page.

When the first PUT (Locate mode) is
given, a Type I linkage is made to the VSAN
PUT routine which will return, in register
one, a pointer to the kuffer. In this
example, it is assumed to be virtual
storage address 0005E000 hexadecimal.
Figure 44.)

(See

In this case, the program is creating
information in the 11,000 byte logical rec-
ord. It is the progran's responsikility,
when using Locate mode PUT macro instruc-
tions, to place the master information in
the buffer. This is done utilizing the
Move Characters machine instruction.

Invisible to the program, a page reloca-
tion exception is caused the first time
each buffer rage is referenced. Because
the buffer pages were just cobtained by GET-
MAIN, the Resident Supervisor directly
assigns a zeroed out main storage page to
the task, and no page-in operation is
necessary. (See "Main Storage Allocation").

On the occurrence of the second PUT
(Locate rode) the kuffer is full and the
VAM FLUSHBUF routine will be invoked to
arrange to have the first two buffer rages
grocessed kefore returning control to the
PUT routine. The third buffer page will be
held, because it is only partially full.

An overview of this processing is schemat-
ically descriked in Figure 45. A more
detailed schematic of the VAM routines
invcoclved in this processing is presented in
Figure 46. This schematic emphasizes the
levels of linkage involved. These routines
have additional responsibilities for set-
ting and releasing interlocks when a data
set is sharable. However, these functions
are not descriked here.

Buffer Page ! 2 3 | 4

Virtua! Storoge s£00C 5F0C0 £0000 41000
Bose Address

Area for Qur Pragrae to

Contents Construct Logicst Record One

1
i
{
i
|
i
I
!
— e e

? |

i i

~._

General Register One Buffer Pointer

Figure bu4. VSAM Buffer Page After Proces-

sing of First Locate Mcde PUT

Data Management 101




e o VAM Output
N o] Paging Request
ﬁ Non-Privileged User Program Level 3
(]
VAM PUT
= VAM
b pUT
Routine
&
VAM Data Sets opened for OUTPUT v .
E 'Lcsk.' b Service EX" Instruction
ENTER Level 2 oniter Routines | Data sets opened for UPDATE Communication Area Contains:
S sve o, PGOUT SVC
o sV 4 OUTIN VAM C
a Entry Move > Virtual Storage address of lst
[0} VAM Page SvC data set page )
0 Move 1OPCE Extemal storage address list
8. Page LSCHE 4 L for up to 8 pages
= SVC PGOQUT SVC
a Load Builds 1OPCB
PSW for Changed
Interrupt Queuve L . Pages
Stacker Scanner Dispatcher L ] Y
Swap LSCHP
VPSWs Interrupt iy Y bl #w Dispatcher tnterrupt -gb@
Queve Task Stacker Processor P Stacker
GQE on Interrupt i
TSI Level 1 Control
¢ Lists Changed Pages Tic
VAM - User
Level 3 PUT gl Program
]
Level 2 VAM Rin Task
Movepage Monitor
LVPSW
e SVC
tevel 1 y
r
(j I pGOUT Device )
1 ! > Queuve > Paging 3 . Interrupt N
l Pri:\:/ecssor Scanner Prg:::rir Operations Dispatcher Stacker e, (et Dispatcher

Performs validity checks

Brings IOPCB into Supervisor core

Builds Page Control Blocks (PCBs)

Initializes page-in operations if desired pages are not in main storage
Enqueues a GQE on proper device

Queve 1o initiate transfer of date set pages to extemal storage



FLUSHBUF
INSPAGE
INSERT
nREQPAGE
FINDEXPG

VOLSRCH

WRITEDSCB

Expand

MOVEPAGE

PGOUT
SVC 242

Figure 46. Schematic of VAM Routines

FLUSHBUF will call Insert Page/Delete
Page (INSPAGE/LCELPAGE) tc supervise the
creation of data set relative page entries
for these two pages. After determining
that the request is legitimate, INSPAGE
will call Insert (INSERT).

INSERT will shift the RESTBL entries if
pages are being inserted into a data set as
oprposed tc being placed at the end of the
data set. The former would be the case if
the program were adding data set pages to a
member of a VPAM data set. 1In this case,
the program is placing the records at the
end of the data set (PUT defines the end of
a data set) sc INSERT merely calls Request
Page (RECPAGE).

REQPAGE determines if the pages can be
assigned from the not in use RESTBL entries
created from the primary space allocation
DSCB. In this case, this request is easily
met and REQPAGE merely changes the RESTBL
entry flag for the two pages tc an interme-
diate setting that indicates that these two
rages are now in use and may have been
written on. The RESTBL entries thus
flagged are later processed by the MOVEPAGE

routine. If the program could not satisfy
the request from the DSCB extents currently
assigned to the data set, REQPAGE would
have called the External Storage Allccation
routine named EXTEND to cbtain a secondary
allocation of external storage on some
direct access device (see External Storage
Allocation). If the RESTBL should then not
have rcom to hold these new entries
reflecting the newly allocated external
storage, REQPAGE would call Virtual Memory
Allocation at EXPAND to move the RESTBL
into a larger klock of Virtual Memory {see
"Virtual Memory Allocation"). However, the
request was satisfied from the current
extent. The Move Page (MOVEPAGE) rocutine
is invoked next. A flow of the entire pro-
cessing is shown in Figure 46.

For data sets opened for UPDATE, INOUT,
and OUTIN, MOVEPAGE implements one of the
more important principles of VAM; namely,
that no page will ke written back out to
external storage unless the user has
updated that page. For data sets opened
for OUTPUT, as in our case, this test for
the rresence of updated data is kypassed,
as the assumption is made that all pages
destined for output contain data.

MOV EPAGE constructs a small communica-
tion plock, called an I/0 Page Contrcl
BPlock (IOPCB), which contains a Page Qut
(PGOUT) Supervisor Call followed by a para-
meter list containing the virtual storage
and external storage addresses of the buff-
er pages to ke transferred to external
storage. This communication block is somre-
what analogous to the I/0 Request Controcl
Block (IORCB) used by other access methods.
However, the IOPCB does not contain any
channel program or buffer space. The pag-
ing procedures of the Resident Supervisor
are to be used to write the two data set
rages cnto external storage.

After the PGOUT SVC is issued, control
will eventually ke passed to the Page Out
SVC processor of the Resident Supervisor.
The Page Out SVC processor will copy the
IOPCE parameter list into supervisor
stcrage and determine if the two buffer
pages are in main storage or on auxiliary
storage. The kuffer pages could be c¢cn
auxiliary storage if the task completed its
time slice sometime between the time the
kFuffer pages were written into and the time
MOVEPAGE issued the PGOUT SVC.

If the pages are not in main stcrage,
they will ke paged into main storage and
then paged from main storage to external
stcrage. The action taken by the Resident
Supervisor to perform paging operations is
discussed in "Paging.”

Data Management 103




Sometime after the paging is complete,
the Dispatcner will return control kack to
MOVEPAGE.

In this example, the Resident Supervisor
encountered a permanent error when attempt-
ing to write out the first buffer page.

The Resident Supervisor passes this infor-
mation back to MOVEPAGE. NOVEEAGE flags
the ©ld page in the form "11" and, through
the services of REQPAGE, assigns a new
external storage page tc the data set page.
The PGOUT SVC 1is issued repeatedly until
MCVEPAGE is informed that the pages are
successfully written.

The buffer has now been almost complete-
1y processed. When the PUT routine once
more gets control, it will complete the
buffer processing by transferring the last
section of logical record cne to the top of
the buffer (using the Move Characters
machine instruction). PUT will then return
with a buffer pointer in Register one for
use in placing the second logical record in
the buffer. See Figure u47.

When the program issues the third PUT
the remainder of the first logical record
and part of the second logical record will
ke processed. (See Figure 48.) However,
this time three buffer pages will ke pro-
cessed and the fourth buffer page will be
held because it contains part of the third
record.

The part of the logical record contained
in the fourth page is moved to the top of
the buffer and an updated buffer pointer is
returned by PUT.

After placing the third logical record
in the buffer, the program decides to CLOSE
the data set. The VAM CLOSE and VAM SEQC-
LOSE routines will be invoked. The
remainder of the second logical record and
the third logical record are still in the
buffer and are automatically processed by
the above methods.

'
Buffer’ Page \ 2 3 4
Virtuo!l Storage SEQOC 5F000 60000 ! 41000

Base Address B
e e e
Last 2508 |
Bytes of Aren for Our Program to |
Contents Logical Comstruc: Logicol Record Two }
Record 1 |
|
S N —p——
1
// N
[ | | 1

/

L General Register One Buffer Pointer = 00USEAFS

Figure 47. Appearance of the Buffer After

the Second PUT Macro

104

Buffer Page 1 2 3 4

Virtval Storage £ N
Bose Address 5E000 5F000 60000 61000

TN
Last 1520 !
Bytes of Area for Cur Program to |

Logical Construct Logical Record Three |
Record 2 |

Contents

General Register One Boffer Pointes = 0005f5F0

Figure 48.

Appearance of the Buffer After
the Third PUT Macro

Since the program has not specified the
DDEF HOLD option, the "in use"™ pages are
used tc form new Type E DSCB page entries.

The "not in use"™ pages are made avail-
able in the Page Assignment Table.

The bad page that was encountered disap-
pears. It is dropred from the DSCB and
flagged in error in the Page Assignment
Table. 1In this way, it will cause no more
troukle.

Had the program specified the HOLD
cpticn, the unused pages would occupy space
on external storage and both groups would
appear in the page entries of a Type E DSCB
with the appropriate "Use" flags set. It
is assumed that the external storage is
located on an IBM 2311 disk pack. Figures
49 and 50 descrike the format of records on
this disk pack.

The Virtual Access Method CLOSE routine
will complete its processing by performing
the necessary housekeeping of releasing the
RESTEBL and restoring the DCB to the state
it was in just before OPEN processing, etc.

During a subsequent run a requirement
may cccur to urdate the data set by updat-
ing the information in the last two thou-
sand bytes of the first logical record. In
order to determine which information needs
updating, some data located in the second
four thousand bytes of the logical record
nmust be read. Thus, that part of the log-
ical record contained in the first buffer
rage is nct read. That portion contained
in the second page is read but not ugdated,
and that pocrtion contained in the third
kuffer page is updated but not read.

Therefore, the UPDATE option would be
used in the OPEN macro instruction and the
Locate mecde GET macro instruction would be
used to obtain the first record.

GET processing can ke considered a
reverse analogy to PUT processing.



IPL Records

Cylinder O
Track O
Record 1, - 24 Bytes, Record 2, 144 Bytes

Standard Volume Label

Cylinder ©

Track 0

Record 3, 80 Bytes
Volume Toble of Contents (VTIQC)

Cylinder O

Tracks 1 to ¢

Record 1 ts End-of-Cylinder - 140 Byte Dato Set Control Blocks

Room for Approx 170 DSCB's.

Page-size Physical Records

Cylinders 1 0 202

With & Pages per Cylinder = 1616 pages on Disk

Figure 49. VBAM Format for the IBM 2311

The program is assigned a three page
buffer because the largest logical record
spans close to three pages.

When the first GET is issued, the VAM
service routines will obtain the external
storage page numbers assigned to the data
set pages and will use the Set External
Page Table Entry (SETXP) Supervisor Call to
instruct the Resident Supervisor to place
these values in the Extexrnal Page Takle
(XPT) entries which map the buffer pages.
At this point in time, no main storage has
bkeen allocated to the buffer and the logic-
al record has not been read from external
storage (see Figure 51).

The program now proceeds to update the
first logical record. As the program
references the second and third pages of
the logical record buffer, page relocation
exception interruptions cccur. The Resi-
dent Supervisor processes these interrup-
tions by causing the second and third pages
of the data set to be read into main

storage frcm external storage. The first
page will not ke read into main stcrage
kecause it was not referenced.

When the gregram has finished updating
the logical record, it executes a PUTX
macrc instruction. When this happens, the
processing is similar to the processing
perfcrred ugcn creating the data set.

If a CLOSE macro instruction were issued
at this time, the system would then write
out this page. However, if the program
were tc issue a second locate mode GET, the
contents of this buffer page would be writ-
ten into the first buffer page, and the
¥xternal Page Takle (XPT) entries mapping
the buffer would be changed so that the
buffer will mar the external storage pages
containing the second logical record.

Fecr purposes of exposition, consider
that no further processing is done on the
data set and that this VAM processing
example is completed.

Extemal Data-

. Data Record Storage Set
Cylinder 3 By tes/ Identification Pageg Page
Track No. Record CCHHR No. No.

0 3625 CCo001 25

i 473 cecon Not

1 3069 cCcolz 26 Assigned

2 1027 CCozl to

2 2486 CCo22 27 Data Set

3 1610 CCo3t

3 1875 CCo32 28

4 2221 CCo4)

(1234 Unused Bytes on Track 4)

5 3625 CCosl 29 Bad Page

6 471 ccosl

6 3069 CC062 30 1

7 1027 CCo71

7 2486 CC072 31 2

8 1610 CCo8!

8 1875 CCo82 32 3

9 2221 CCo91

{1234 Unused Bytes on Track 9)

Figure 50. Track Formats for Page-Size
Records on Symbolic Devices

Noc. 7 -- 2311 Disk Pack

Data Management 105




Virtual Storage

Buffer

Main Storage

XTs4

~ Page Table

“Not in Core"

"Not in Core"

"“Not in Core”

External Page Table

External Storage

— 0030

30

0031

31

0032

32

Figure 51.

106

Relationship Between Virtual Storage Buffer and External Storage



PART II: EXTENDED SYSTEM DESCRIPTICN







Because of the potentially large number
of users concurrently operating on the sys-
tem and the limited availability of
resources, it is desirakle and, in some
cases necessary, to limit the amount of a
given resource which a user may have at his
disposal at any given time. The system
exercises control over the user's access to
these resources by means of the RCR macro
instruction, a privileged macro instruc-
tion, and a portion of the user table entry
(TSS*****_ SYSUSE) which indicates the maxi-
mum amount of a resource which is available
to the user at any one time.

Within the data set TSS***¥* SYSLIB) is
an indexed sequential member called the
User Limits Table data set (SYSULT). This
member contains sets of parameters which
list the maximum amcunt cf each resource
which is to be allowed to each user
assigned to that set of parameters. Each
set of parameters or entry is a 64 byte
long keyed record and contains these
resource limits:

1. Maximum CPU time -- this is the total
amount of CPU time allowed the user
for all tasks he runs during one
accounting periocd.

2. Maximum connect time -- the total ter-
minal time allowed for all the user's
conversational tasks during one
accounting periocd.

3. Task count -- the total number of non-
conversational tasks a user may
execute concurrently.

4. Maximum auxiliary storage allowed the
user at a given time.

5. Total pages of tempcrary storage
allowed a user at a time.

6. Total pages of permanent storage
allowed the user during one accounting
period.

7. Total number of direct access devices
that nmay be allocated to a user at one
time.

8. Total number of tape drives allowed a
user at cne time.

9. Total number cf high speed printers
allowed a user at cone time.

10. Toctal number of reader-punches allowed
a user at one time.

RESCURCE AILCCATION ANL CONTRCL

Several sets of parameters may exist in
the User Limits Table for any installation
and each user is assigned one set or entry
at JCIN time based on the key in the JOIN
conrmand. The entry assigned to the user
Lecomes a part of his User Table entry and
governs the allocation of the various
resources during his execution time.

In addition to these maximum limits cx
raticns, the user takle contains allocation
count fields which are maintained with the
current total allocation of each resource
for all the user's tasks. Note that fcr
devices, this represents, for example, the
total number of tape drives the user has
assigned to all his active tasks. The per-
manent storage field represents the total
number cf external storage pages allocated
to the user®s data sets. These totals may
not exceed the maximum limits indicated in
the ration fields. For other rescuces such
as CPU time, this count field contains the
accumulated time since the last acccunting
pericd. The product fields contain the
accumulated time product that a resource
has been used ky the user during the
accounting period. The length of these
accounting periods varies from one instal-
lation tc another.

When a user logs on the system, his user
table entry is located and read into shared
virtual storage. If he already has a task
active in the system, the new task will
simply be connected to the user table in
shared virtual storage. Each task in the
system is also assigned an Active User List
entry. This entry is analogous to the
device count fields of the User Table entry
but keeps serarate counts of device alloca-
tion for each of the user's tasks. The
device counts in the Active User List entry
enable the system to maintain proper counts
cf the devices allocated to all of a usexr's
tasks when one of the tasks is abnormally
terminated. Under certain conditions it is
possible that the count of devices allo-
cated tc the user's tasks will not be
updated to reflect the release of the
devices used by that task keing terminated.
If this occurs, ABEND will find a nonzerc
count in one oxr more fields in the Active
User List entry for the task. ABEND can
then decrement the corresponding count in
the User Table entry so that the user will
not continue to ke charged for the device.

Fcr accounting purposes, a count is aiso
kept of the total time each resource is
used. The time is accounted for in units
of resource seconds. That is, if a user

Resource Allocation and Contrcli 109




has access to three tare drives for six
minutes he is charged with 1080 resource
seconds for the devices. CPU time is
accounted for in milliseconds.

Allocation control and accounting is
accomplished by means of the privileged
macro instruction RCR which is executed Ly
the system routines which actually allocate
resources. This instructiocn operates in
six distinct modes which are:

1. OPEN
2. CLOSE
3. UPDATE

4. RATION
5. VACATE
6. LOGCFF

The OPEN mcde of RCR finds the User
Table entry or provides one for the user in
shared virtual storage. If the user alrea-
dy has an active task, the entry exists in
shared virtual storage and need only be
found; if there is no active task, the
entry must be retrieved from the User Takle
data set and read into shared virtual
storage.

The CLOSE mode updates the User Table
entry to refiect the resource usage, writes
the entry from shared virtual storage to
the User Table, and either disconnects the
task from the entry if other tasks are
active or releases the shared virtual
storage if nc other tasks are active.

The UPLATE mode calculates the products
which are added to the accounting fields in
the User Table. These products are the
resource second counts described above.

The RCR macro instruction in the UPDATE
mode is used by the CLOSE mode prior to
updating the User Takle entry.

The RATION mode is used to determine the
right of the user to the requested resource
and, if he is entitled to it, adds the new
allocation to the total current allocation
in the User Table entry and, in the case of
private devices, to the Active User List
entry. The determination of the right of
the user to a resource consists of adding
the new request to the total current allo-
cation of that resource and comparing the
new total to the maximum allowakle limit.
If the new allocation would exceed the
maximum allowed, contrcl is transferred to
a specified error routine.

The VACATE mode is used to decrement the
count of resources currently allocated to
the user and the task. The count fields in
the User Table entry and, for private
devices, in the Active User list entry are
updated by this mode.

110

The LOGOFF mode extracts information
from the XTSI for statistical analysis and
writes it to the System Log. The informa-
tion which may be extracted is:

s The numker of TWAITs issued
s The nunmker of AWAITs issued
e The numker of time slices used

e The nunker of page-in operations from
auxiliary storage

¢ The nurker of page-in operations from
external storage

e The number of page-out operations to
auxiliary storage

e The numker of page-out operations to
external storage

» The maximum number of pages used on
auxiliary disk

After extracting the information, the
LOGOFF mode updates the total CPU time and,
for conversational tasks, the total termin-
al time, in the User Table entry and decre-
rments the device allocations in the User
Takle entry and the Active User List entry.
This latter function is performed by issu-
ing the RCR macro instruction in the VACATE
rode. Finally, the RCR CLOSE mode is
issued to update the User Table entry.

The USAGE command and macro instruction
are provided to enakle a user to read the
data on system resources. The USAGE com-
pand writes this information tco SYSOUT
while the macro instruction must be pro-
vided with an area into which the data may
ke read. A nonprivileged user may cnly
read data pertaining to his own tasks but a
privileged user has access to all such data
in the syster.

This command and macro instruction may
ke used for accounting purposes or, for an
individual user, to determine the advisabi-
lity of requesting more of a given
resource.

An additicnal command, the UPLTUSER com-
mand, is provided for privileged users.
This ccmmand enakles the user to update the
count of extermnal storage pages in use by
all users. The information concerning
usage is extracted from the format E DSCB
for each data set and is used to update the
page counts in the User Table for each
user.

Scheduling Overview and the Schedule Table

The scheduling of jobs in a time sharing
system is somewhat more complex than in a



Page of GY28-2009-2,

simple batch-processing system. Numerous
good arguments can be advanced for various
scheduling algorithms. Ultimately, only
continued use of the time sharing system in
an installation's own environment will
determine what scheduling algorithm is best
adapted to the particular installation.

The scheduling of tasks in TSS/360 is
governed by a group of rules, which consti-
tute the scheduling algorithm, and several
sets of parameters known as the schedule
table. Each task in the system is assigned
a set of parameters based on the user's
priority (USEPRI) and the task type (batch
or conversational). Various components of
the Resident Supervisor make use of these
parameters and rules to determine the fre-
quency with which the task executes and the
duration of each execution. The set of
parameters may be varied according to the
amount of paging or execution a task does
but the rules remain constant. A given
installation may achieve optimum system
performance by the judicious alteration of
parameters based on an analysis of its own
job mix and the quality of performance
achieved with previously tested sets of
parameters.

The ultimate purpose of the TSS/360
scheduling algorithm is to select a task to
be placed in executicn in an available CPU.
The algorithm attempts to allocate CPU time
to tasks in the most efficient manner as
defined by the algorithm.

The schedule table consists of a vari-
able number (256 maximum). of 28-byte sche-
dule table entries. Each entry consists of
26 parameters which govern the frequency
and length of time a task is given a CPU.
Figure 52 depicts the format of the sche-
dule table entry. The figure and the fol-
lowing description detail the contents of
the schedule table and the function of each

Priority:

Issued February 1, 1972 by TNL GN28-3219

parameter. For the current format of each
entry see System Control Blocks PLM.

Level: This field indicates the relative
location of the given schedule table entry
(STE) within the schedule table. The first
entry is assigned level zero and the level
is incremented by one for each succeeding
entry. This field is the level number to
which other fields, such as Pulse level and
Time Slice End (TSE) level, refer but the
level plays no part in the scheduling of
tasks.

This field contains the priority
assigned to all tasks using this entry as
its set of scheduling parameters. The
priority associated with each STE, as well
as all remaining parameters, is specified
by the system administrator in the schedule
table CSECT which is loaded at STARTUP. It
may have any value from 0-255. The priori-
ty determines the position a task assumes
within a list of eligible tasks; low
priority numbers are given preference over
higher priority numbers.

Quanta Count and Quantum Length: These two
parameters determine the duration of the
time slice for tasks assigned to this
entry. Time slice duration = Quanta count
X Quantum Length X 3.33 milliseconds. Each
time a task is placed in execution, the
value Quantum length X 3.33 is computed and
added to the current time. A timer inter-
rupt is then created which will cause the
task to be interrupted and examined. This
procedure is repeated the number of times
indicated in Quanta count after which the
task will be brought to time slice end.

Maximum Pages Allowed: This field contains

a count of the maximum number of pages a
task may have in main storage at one time
(maxcr). If the task exceeds this value,
it is forced to time slice end or page
stealing occurs.

1 byte 1 byre 2 b tes i byte 2 bytes 2 bytes

T
2 bytes 1 byte Thyte | 2 byses thyte | 1byte 1 byte

.

Level

{STELEVEL}

Priority
{STEPRICR)

Quantum
Length
{STESVAL)

Max
Quanto
Count
(STEQUANT)

(DTR)

Delta

to Run
(STEDELTA)

1byte I
I
|
|

| Mox

| .

| Relocations
‘ Per Quantum

Max
Pnges
Allowed

(STEMAXRD)

| (STEMRQ)
i

(STEMAXCR}

Mex
Disc
L0

Scan
Threshold
{STEST}

Pulse
Level

{STEPULSE)

AWAIT |
Extension ‘
(STEAWTEX)

Time
Slice
End

Level

(STETSEND)

Max
Pages
TSE
Leve!
(STEMPRE)

AWAIT
Level
{STEAWAIT)

1 byte

1 byte

1 byte

1 byte

1 byte

1 byte

T
|

1 byte

1byte

2 bytes

TWAIT
Leve!

1 bit

1 bit

1hbir

{STETWAITY

Recompute
Flag
(STERCMP}

Preemnt
Flag
(STEPRMPT)

Steal
Request
{STESRI}

DTR

Subtract

{STESDTR)

Holding
interlock
Level
(STEHLCK ¥

Low Core

Holding

Irterlock
tevet

{STELCHL)

Waiting
on

Level

Interlock

(STEWLCK) |

Conversational
Write
Only
Level

{(STECWO?

|
1

[

Low Core ¢

Force
TSE
Level

(STELCF)

Moximum |

behind
Schedule
6.7 seconds
(STEMBS)

{

Next
Steal
Leve!

(STENSLY

Drum
Share
(STEDSH)

Figure

52.

Contents of the Schedule Table Entry

Resource Allocation and Control 111




Page of GY28-2009-2, Issued February 1,

Maximum Disk I/0: This field represents
the maximum disk reads or writes a task
will be allowed before a time-slice end
will occur. Reads and writes as a result
of migration, purging shared pages, or
time-slice ends do not count toward this
limit.

Scan Threshold: If the Steal Request Flag
is on, the Resident Supervisor will release
some of a task's pages when the page count
equals MAXCR. The Scan Threshold is the
percentage of MAXCR pages to be retained.
This percentage is specified in hex (80%=
80=X"50"'). When stealing occurs, the task
is not time sliced, but stays in the dis-
patchable list. However, the Schedule
Table Entry in the TSI is changed to the
value in the Next Steal Level field.

Pulse Level: This field contains a level
number which will be assigned to a user
when he issues the PULSE macro instruction.
It may be determined at an installation
that one group of parameters provides maxi-
mum throughput for an I/O-bound task but
that a second set is better for compute-
bound tasks. The user can be given the
facility to select the best set of parame-
ters by use of the PULSE macro instruction
each time the processing characteristics of
his task change. BAn installation may
deprive certain classes of users this faci-
lity by setting the Pulse Level field equal
to the Level field thereby locking him into
one schedule table entry.

AWAIT Extension: This field contains a
value which represents a period of time a
task may remain in the list of dispatchable
tasks while awaiting the completion of an
I/0 operation. A task in AWAIT status is
normally removed from the list of dispatch-
able tasks. Since this causes a delay in
redispatching the task, it may be desirable
to permit high priority tasks performing
I/0 on a high speed device to - remain on the
dispatchable list. This can be accomp-
lished by making the AWAIT extension large
enough to allow for the completion of the
170 operation.

Delta to Run (DTR): This field contains a
factor which is used in calculating a new
scheduled start time for a task as it moves
from one state to another (i.e., as the
task becomes ready, in AWAIT, in TWAIT).
The value in this field is multiplied by
852.5 milliseconds and may be combined with
the master clock or the o0ld scheduled start
time (SST) if old SST is negative to deter-
mine the task's new SST. These other fac-
tors and the manner in which they are com—
bined will -be discussed later. If this
field is zero, tasks are serviced on a LIFO
(last in-first out) queue within the
priority level.

112

1972 by TNL GN28-3219

TSE Level: This field represents the sche-
dule table level entry to be used when a
time-slice end occurs because of the maxi-
mum number of guanta or maximum disk I/O
being reached.

Maximum Pages TSE Level: This field con-
tains the level number of the STE which
will be assigned to the task when the num-
ber of pages the task has in main storage
exceeds the value contained in the Maximum
Pages Allowed field.

TWAIT Level and AWAIT Level: These fields
contain the level numbers of the STEs which
will be assigned to the task when it leaves
TWAIT or AWAIT status respectively.

Recompute Flag: If the Recompute byte is
X*'80"' and a task enters the eligible list,
then:

SST = PSAETM + STEDELTA

where SST Scheduled Start Time

PSAETM Current Clock Value

STEDELTA = Delta-to-Run from Schedule Table

If the Recompute byte is X*00' and a
task is coming from the inactive 1list to
the eligible list, then:

SST = PSAETM + STEDELTA -
(amount behind schedule)

or

SST = PSAETM + STEDELTA ,
if ahead of schedule

Preempt Flag: If the byte value is X*'40°
for a task in the dispatchable 1list, and a
behind schedule task of higher priority
resides in the eligible 1list, the task in
the dispatchable list can be preempted by
forcing it prematurely to time slice end.

Steal Request Flag: A task on the dis-
patchable list with this flag set (X'20'),
will have pages released when its private
pages in core reach the MAXCR limit. If
pages are brought in faster than they can
be released so that the MAXCR limit is
exceeded, the task will be time sliced.

Subtract DTR Flag: If this flag (SDESDTR)
is set (X'10*') when the task is being
placed in the eligible list, delta-to-run
(STEDELTA) is subtracted from Master Clock
(PSAETM) in the calculation which sets the
Scheduled Start Time. This allows FIFO
(first in, first out) ordering, with a
negative DTR.




Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146

Maximum Page Relocations per Quantum: The
value contained in this field is the
threshold value which is used to distin-
guish between execute-bound and paging-
bound tasks. If a task has more than this
number of page relocations in one quantum
it is paging-bound, otherwise it is
execute-bound.

Holding Interlock Level and Low Core/
Holding Interlock Level: These two fields
contain the level number of the STE which
is assigned to a task which has placed an
interlock on a shared data set or data set
page when being time-sliced under normal or
low core conditions respectively. The pur-
pose of changing the level under these con-
ditions is to expedite the release of the
interlock.

Waiting on Interlock Level: This field
contains the level number of the STE which
is assigned to a task which is waiting for
the release of an interlock placed on
shared data by another task. This change
in level enables a task to check the inter-
lock from a level of lower priority than
the task which holds the interlock.

Conversational Write Only: This field
represents the Schedule Table level to be
used when a write without response message
is sent to the terminal. The level change
occurs without a time slice end.

Low Core Forced Time Slice End: This field
represents the Schedule Table Entry to be
used when a task is forced to time slice
end for low core and it is not holding an
interlock.

Next Steal Level: This field represents
the Schedule Table Entry to be used when
stealing (releasing of pages) occurs. The
task is not time sliced.

Drum Share: This is the number of drum
pages reserved for a task. There are about
500 pages available after startup in a one
drum system, and 1400 pages in a two drum
system. In general, the number of a task's
private pages on drum is a function of the
number of tasks logged on, the number of
drums, and the time from last time-slice.
If the number of unassigned drum pages
falls below a predetermined limit, some
pages are moved from drum to disk. Each
task receives a system calculated minimum
drum space. The Drum Share field allows a
task to keep a larger drum share. A zero
value defaults to the system calculated
minimum.

Task Scheduling: The rescheduling of a
task has a precedence order for assigning
Schedule Table exit. Some of the following
can occur simultaneously, some are mutually
exclusive:

1. TWAIT

2. AWAIT

3. Low core holding interlock
4. Holding interlock

5. Low core

6. Waiting on interlock

7. Maximum disk I/0

8. Maximum pages in core

9. Maximum quanta
10. Preempt

Conversational write-only and Next Steal
Level are two fields which provide a level
change without time slicing. In both
cases, the task remains in the dispatchable
list until time sliced for some cause
listed above.

Each task which enters the system is
represented by a Task Status Index (TSI).
These TSIs remain resident in main storage
and contain the nucleus of information
required to keep track of the task and its
current status in the system. Among other
things, the TSI contains the task identifi-
cation number (TID), a pointer to the
Extended Task Status Index (XTSI), which
contains more voluminous task information,
the task's current schedule table entry (in
the field TSISTE), and the task's scheduled
start time (TSISST). These latter two
fields contain the information required to
schedule and dispatch the task.

The Active and Inactive Lists

All TSIs in the system are chained
together on one of two lists (see Figure
53), the Active list and the Inactive list.
The Active list is subdivided into the Dis-
patchable list and the Eligible list. The
Dispatchable list consists of tasks which
are in main storage attempting to compete
for CPU time and, in most cases, whose
scheduled start time is less than the mast-
er clock. (The master clock (MC) is
defined as bytes 3-6 of PSAETM.) When the
SST ask is less than the Master
Clock, the task 15 said to ind sche-

ule. nder certain circumstances it 1is
possible for a task which is not behind
schedule to be placed on the Dispatchable
list. This situation arises when there are
no behind schedule tasks awaiting entry to
the Dispatchable list but there is room in
main storage for another task or when the
number of tasks on the Dispatchable list is
below the system minimum.

Resource Allocation and Control 113




Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146

Active List
Dispatchable List

System Table Pointer

TSI 1 SYSPEC

TSI 2

TSI 3
TSI 4

1515

00 A8 ]

TSt 6

Eligible List
TSI 7

SYSFW

751 8

TS1 9

TSi 10

(L]

SYS
TSE 11 t

inactive List
TSI 12
51 13

SYSFIT

(il

SYSLIT

TSI 14

—J-—-— o o — e —— — o— -————-————-—r-——

Figure 53. TSI Lists

The Eligible list consists of tasks
which are ready to execute but have not yet
been brought into main storage. Tasks on
the Eligible list are ordered by priority
with the lowest priority number first on
the list. Tasks with the same priority
number are ordered by SST with tasks furth-
est behind schedule (i.e., lowest SST) hav-
ing priority. Tasks on the Eligible list
are moved to the Dispatchable list when
conditions permit and so become candidates
for use of a CPU. The manner in which this
is done will be discussed later.

The Inactive list consists of tasks
which are in AWAIT or TWAIT status or have
issued a TSEND SVC. These tasks are incap-
able of continuing execution until a parti-
cular interruption occurs. When the
awaited interruption occurs, the task is
moved from the Inactive list to the Elig-
ible list in its proper orxrder as explained
above. Figure 54 depicts the movement of
tasks among these three lists.

Task Scheduling

When a task first enters the system it
is assigned a schedule table entry (STE)
which is the Level number. This value is
stored in the task's TSI (field TSISTE).
The Bulk I/0 task is assigned STE level 10
and all other tasks are assigned to the
level which equals the decimal sum of their
user priority (USEPRI) and either 0 for

114

esFigure 54.

conversational tasks or 10 for nonconversa-
tional tasks. Note that USEPRI cannot be 0
since this would result in the task being
assigned the STE reserved for the operator
task or the BULKIO task. The new task is
then filed in the Eligible list on the
basis of its priority (as shown in its STE)
and its scheduled start time (SST). all
newly created tasks are given an SST equal
to the sum of the master clock (bytes 3-6
of PSAETM and the delta to run (DTR) para-
meter from the STE. If the DTR is 0, the
SST will be 0 regardless of the master
clock. The manner in which this is accomp-
lished is described in the section
"Examples of System Operation -- Creation
of a Conversational Task."

When the Queue Scanner finds that there
is no work which it can perform, it calls
the Internal Scheduler. This module is
responsible for moving tasks from the Elig-
ible list to the Dispatchable list and
maintaining the Dispatchable list in its
proper order. In this case, the Internal
Scheduler starts at the beginning of the
eligible list (SYSFW) and scans all TSIs
looking for behind-schedule tasks (i.e.,
tasks for which SST<MC). As each task is
examined, the system table (SYSLSST) is
updated to reflect the lowest SST ahead of
schedule (i.e., the lowest SST>MC).

Task reaches
Normal or Forced
Time Slice End

Dispatchable
List

Is

Time Slice
End

Forced ?

Task becomes
dispatchable

Redispatch?

AWAIT
TWAIT or
TSEND
interlocks

/Eligible

List

Task
Yes Initiation
Process

Task

Leaves

AWALT,

TWAIT
or

delay
status

Inactive
List

Maintenance of TSI Lists



Page of GY28-2009-2, Issued February 1, 1972 by TNL GN28-3219

Once a task falls behind schedule, there
is a limit on how long it must wait to be
dispatched. When it exceeds this "maximum-
behind-schedule" value (computed from
STEMBS), it will be submitted to the
Entrance Criteria module regardless of its
normal priority. If no task has exceeded
maximum—-behind-schedule, the highest-
priority behind-schedule task is submitted
to the Entrance Criteria module which
determines whether or not the task may
actually be placed on the Dispatchable
list. If the task in question is waiting
for the completion of a paging operation,
it cannot be placed on the Dispatchable
list. If the task is ready to execute, a
comparison is made between the pages used
last time slice (TSIPTS) and the system
estimate of available core blocks (SYSECB).
If the comparison shows that room exists in
main storage, the task is placed on the
Dispatchable list. If the comparison shows
that main storage space does not exist but
there are fewer than the system minimum
number of tasks on the Dispatchable list,
the results of the comparison are ignored
and the task is moved to the Dispatchable
list.

The Internal Scheduler continues to scan
the Eligible list looking for behind sche-
dule tasks. As each such task is found,
its TSI is placed on the chain of Dispatch-
able TSIs ahead of all TSIs belonging to.
execute-bound tasks, and behind the TSIs of
tasks in page wait, and the task®s XTSI
page is brought into main storage. If the
task's current SST=0, it remains 0. If the
task's SST#0, a new SST is computed as the
difference between old SST and MC. The
scan of the Eligible list continues until
the Entrance Criteria module rejects a task
or until the end of the list is reached.

In the latter case the scan begins again
at the beginning of the Eligible list and
each task is submitted to the Entrance Cri-
teria module regardless of its SST. This
second scan continues until a task is
rejected by Entrance Criteria or until the
Eligible 1list is exhausted.

When a task is rejected by Entrance Cri-
teria before the first scan of the Eligible
list is completed, the task is flagged as
the first task to be considered the next
time the Internal Scheduler is entered and
the Dispatchable list is searched for a
lower priority task with its STE preempt
flag on. When such a task is found, time
slice end is forced on it, the task is
filed in the Eligible 1list, and its pages
are removed from main storage. This
ensures that there will be room when the
task just rejected is resubmitted to
Entrance Criteria.

If a task is rejected during the second
scan, no attempt is made to add more tasks
to the Dispatchable list and the first
phase of internal scheduling terminates.

During the first scan, all possible
behind-schedule tasks have been placed in
the Dispatchable list. If a behind-
schedule task is rejected, it receives pre-
ference during the next pass through the
Internal Scheduler because it will be the
first task checked. Tasks following the
last rejected task will be examined next
followed by tasks at the head of the Elig-
ible list. This first phase of the Intern-
al Scheduler places the maximum possible
number of tasks on the Dispatchable list
thereby decreasing the possibility of the
Dispatcher running out of dispatchable
tasks.

The second phase of the Internal Sche-
duler is devoted to ordering tasks in the
dispatchable list. Tasks on this list are
classified as "paging-bound"™ or “execute-
bound." Paging-bound tasks are those
which, in one quantum, cause more page
relocation exceptions than they are
allowed, as indicated in the field Maximum
Page Relocation Exceptions per Quantum in
the STE. Tasks which do not exceed this
limit are classified as execute-bound.
second phase of the Internal Scheduler
moves all execute-bound tasks to the end of
the Dispatchable list. This ordering of
tasks on the Dispatchable list improves
multiprogramming by causing tasks with high
raging requirements to be dispatched first.
This increases the overlap of CPU and chan-
nel operations. When the Internal Schedul-
er concludes its work it exits to the
Dispatcher.

The

Application of the Scheduling Algorithm

As previously stated, the scheduling
algorithm consists primarily of a group of
formulae and a set of parameters contained
in the schedule table entry. In addition,
certain system constants, which may be
varied when the schedule table is con-
structed, are used to govern the length and
frequency of a task's time slice. The STE
parameters which are used to govern a
task's scheduling are priority, delta-to-
run and recompute. The various level
fields in each entry dictate changes in the
STE assigned to a task because of certain
characteristics of its execution, such as
excessive use of main storage, excessive
paging, and performance of I/0. The
remainder of the parameters are maximum
values permitted for certain operations.

The existence of level change fields in
the STE makes it possible for an installa-
tion to vary the scheduling algorithm for a
task as its performance characteristics
dictate. The assignment of a schedule
table entry on the basis of task priority
and task type has the effect of creating
several scheduling algorithms for tasks
entering the system. An installation has
the capability of constructing a similar
number of sets of variable scheduling

algorithms based on a task's priority. For

Resource Allocation and Control 115




Page of GY28-2009-2, Issued February 1,

example, conversational tasks with user
priority of 3, are assigned STE 3 on entry
to the system. The installation may
reserve entries 30 through 39 for this type
of task. By setting all level fields in
STE 3 to point to a level in the range
30-39 and levels in the range to point to
level 3 or another level in the range,
these tasks are locked into the eleven
entries 3 and 30 through 39. Once this is
done, scheduling of tasks of one type can
be controlled in one manner and tasks of
other types in other manners. High priori-
ty, conversational tasks might be allowed
more main storage each time slice than non-
conversational tasks and penalized less
when they exceed it. The following para-
graphs list the formulae which are used in
calculating the task's SST and the routines
which use themn.

When a task first enters the system, the
Task Initiation routine calls the Resche-
duling routine which enters the task in
Delay status and sets SST=0. When Task
Initiation regains control, it assigns STE
20 to the new task. This entry remains in
effect until the LOGON process is completed
and governs task activity in the early
stages of its existence.

The Channel Interrupt Processor calls
the Queue-GQE-on-TSI routine to gueue an
asynchronous I/0 interruption on the task's
TSI. When this interruption is processed
by the Task Monitor, the Command System
will be invoked to complete the task
initiation processing. When Queue-GQE-on-
TSI is called, it finds the task on the
Inactive list and calls the Rescheduling
routine.

The Rescheduling routine recomputes the
SST using one of three formulae:

1. In all cases where DTR=0, SST is set
to 0.

2. If DTR # 0 and the old SST<0, the new
SST=DTR+MC+ (1-R)SST, where R is 1 if
the Recompute flag is on and 0 if it
is off and SST,; is the o0ld scheduled
start time.

3. If DTR#0 and SST,
SST=DTR+MC.

20, the new

In the case of this newly created task,
formula 3 is used and the new SST is stored
in the TSI (TSISST). Rescheduling then
places the task on the Eligible list in its
proper order according to priority and SST.

At some later point in time the Queue
Scanner will find that there is no more
work which it can process and will call the
Internal Scheduler. Depending on how heav-
ily the system is loaded, the new task may
be behind schedule (SST<MC). Eventually,

116

1972 by TNL GN28-3219

the Internal Scheduler and Entrance Cri-
teria modules determine that the new task
should be added to the Dispatchable 1list.
At this time, the Internal Scheduler recal-
culates the SST according to one of two
formulae:

0

1. If ssT, = 0, SST,y

2. If SST, # 0, SSTy = SST,-MC
For this new task assume formula 2 is used.
If the current system load is 1light, SST
will be greater than MC and SST, will have
some small positive value. If the system
load is heavy, SST; will be negative. The
Internal Scheduler then adds the new task
to the beginning of the Dispatchable list
and enters the sort phase of its operation.
New tasks are classified as paging-bound
(TSIEB=0) and so this task will remain
first on the Dispatchable 1list and be the
first to be dispatched when a CPU is
available.

The next change which occurs is a change
in the task's STE. When the Command System
processes the IOGON command, it issues the
SCHED macro instruction. This macro
instruction assigns STE 10 to the BULKIO
task and calculates a new STE for all other
tasks by taking the decimal sum of the
external priority (USEPRI) and 0 for con-
versational tasks or 10 for nonconversa-
tional tasks. The task operates with this
STE until it causes one of the level para-
meters to be employed to change the level
number.

As the task receives time slices and
performs various operations its scheduling
is affected by further changes to its SST,
ky changes in the STE level assigned to it,
and by the list to which it is moved as
various events occur. The following para-
graphs list the events which can cause
these changes and describe the manner in
which the task is affected by each.

Time Slice End (TSE): When the task
attempts to exceed its allotted time (gquan-
tum length X quanta count), a normal TSE
occurs. All other TSE conditions are con-
sidered forced.

When normal time slice end occurs, the
quanta count (TSIQCT) is decremented by
one. This field is initialized to the
value in the Quanta count field in the
task’s STE. If the count has not reached
zero, the task is given another quantum of
CPU time. The task is left on the Dis-
patchable 1list and no change is made to its
SST or STE. If the count does reach zero,
the Rescheduling routine is called.
Rescheduling changes the STE level (TSISTE)
to the level indicated in the TSE level
field of the o0ld STE and recomputes the SST
according to one of three formulae:



Page of

1. If DTR = 0, SST, = O

2. If DTR # 0 and SST, <0, SST, =
DTR+MC+SST,
3. If DTR # 0 and SST, 20, SST, = DTR+MC

Each time the quantum count is decremented,
a comparison is made between the number of
page relocations which occurred during the
quantum and the maximum allowed the task
per quantum. If the task has exceeded the
maximum, it is classified as paging-bound
(PSIEB=0). Since this test is made and the
field updated at the end of each gquantum,
only the paging history of the last quantum
is significant.

If time slice end is forced on a task
via a TSEND issued for interlocks, the task
is placed on the Inactive 1list and in the
delay state for the period of time speci-
fied in the system table field SYSDLY. The
length of this delay can be altered at an
installation in order to achieve better
scheduling. The end of the delay is sig-
nalled by a timer interruption which
results in a call to Queue-GQE-on-TSI. The
Rescheduling routine is called to move the
task to the Eligible 1ist and the task's
SST is recomputed using one of the three
formulae listed above in the description of
the task initiation procedure.

If a task timer interruption occurs, it
is enqueued on the TSI; no change occurs to
the STE or SST and the task is filed on the
Eligible 1list.

AWAIT: When a task enters AWAIT status,
pending the completion of an I/0 operation,
the AWAIT extension in the task®'s STE is
used to create a timer interruption for
some future time. When the interruption
occurs or if the extension is zero, the
task is placed on the Inactive list until
the I/0 operation is completed. If the I1I/0
operation is completed before the timer
interruption occurs, the pending interrup-
tion is cancelled and the task is allowed
to remain on the Dispatchable list.

If the completion of an I/0 operation is
signalled for a task on the Inactive list,
Queue-GQE-on-TSI calls Rescheduling which
substitutes the AWAIT level from the cur-
rent STE in the task's TSI and recomputes
the SST according to one of the three for-
mulae used in the task initiation proce-
dure. For a task which has been granted an
AWAIT extension, the AWAIT level is also
substituted on I/0 completion.

TWAIT: Since no TWAIT extension exists, a
task which enters TWAIT status is moved

directly to the Inactive list. The comple-
tion of the operation results in the move-

GY28-2009-2, issued September 15,

1970 by TNL N28-3146

ment of the task to the Eligible list and
the recomputation of the SST in the same
manner as for tasks in AWAIT status. The
current STE is replaced with the entry
indicated in the TWAIT level field of the
current STE.

Table 1 summarizes these stimuli and the

changes they effect in the scheduling of
the task.

Task Scheduling Walkthrough

The following discussion and diagram
depict the movement of tasks among the
lists of all tasks in the system and the
changes in their scheduled start times as
various phases of the scheduling algorithm
are applied. For the sake of simplicity
only three tasks are shown and only three
schedule table entries are used. Also, the
tests for level changes are only mentioned.

Figure 55 shows the content of the sche-
dule table. The values shown have been
arbitrarily chosen and should not be inter-
preted as recommended or suitable values in
any real environment. Note that gaps have
been left in the sample schedule table.
This cannot be done in an actual working
table.

In this example (see Figure 56), task A
is the BULKIO task and is assigned STE 10.
Since the DTR in this entry is zero, the
SST is always zero. Task B is a nonconver-
sational task with user priority 3 and is
assigned STE 13. Task C will be shown log-
ging on as a conversational task with user
priority 3; it will be assigned STE 3.

In the initial system state, task A is
the only task on the Dispatchable list and
is in execution. Task B is the only other
task in the system and is on the Eligible
list, ready, and behind schedule (SST<MC).

The first event which occurs is a timer
interruption which occurs to signal the end
of task A’s first quantum. The interrup-
tion is handled by the Resident Supervisor
which updates task status information and
determines that the task should be given
another quantum. The task is left on the
dispatchable list and the Internal Schedul-
er is entered.

The Internal Scheduler finds task B on
the Eligible list and moves it to the Dis-
patchable list. At this point task B's SST
is recomputed and set to -2. Assuming that
task A has been classified execute bound
and task B has been classified paging
bound, task B will become first on the Dis-
patchable list and state 2 in the diagram
will exist.

Resource Allocation and Control 117



Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146

eTable 1. TSI List and Parameter Changes
List Stimulus Special Conditions Move TSI to Recompute SST Change STE to
None Async. Interrupt None Inactive list Do not recompute Do not change
unowned terminal
or CRTSI SVC
Inactive Queue Asynch. None Eligible list SST=0 20
Interrupt GQE
on TSI
Channel Interrupt Task in AWAIT status Eligible list If DTR=0, SST=0 AWAIT level
If DTR#0 & 55T<0
If DTR#0 & SST >0
SSTy=DTR+MC
Eligible Task becomes TS1 moved by Dispatchable 1f DTR =0, SSTy= 0 Do not change
dispatchable Internal Scheduler list If SST,=0, SSTy=
S5To=MC
Dispatchable Time slice end Forced TSE SVC Inactive list Do not recompute Do not change
with delay =
SYSDLY
Normal, TSIQCT#0 Do not move Do not recompute Do not change
Normal, TSIQCT=0 Eligible Iist If SST,< 0, TSE level
$STy=DTREMCHS5To
If 55T, >0,
SSTy=DTR+MC
LOGON BULKY/O task Do not move Do not recompute 10
Conversational task Do not move Do not recompute USEPRI
Nonconversational task Do not move Do not recompute USEPRIH+10
Timer interrupt AWAIT extension expired Inactive list Do not recompute Do not change
Task enters AWAIT AWAIT extension#0 Do not move Do not recompute Do not change
AWAIT extension=0 nactive list Do not recompute Do not change
Task enters TWAIT None Inactive list Do not recompute Do not change
! Maximum { AH
Quanta Quantum Page Pulse Await TSE Other
Level Priority Count Length Reads Level Extension DTR Level Recompute Preempt Levels
03 4 1 20 70 13 0 5 03 0 0 03
~ A ~~ ~ ~ N ;N ~ ~ ~
10 5 2 20 70 10 0 o} 10 0 Q 10
13 10 4 20 70 13 0 5 13 1 1 13
Task A - STE 10
Task B --STE 13
Task C - STE 3

Figure 55.

118

Sample Schedule

Table Entries




Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193

r¢—————————D|SPATCHABLE LIST Lot ELIGIBLE LIST— — [ ——————INACTIVE LIST———————»
System
State st on list 2nd on list 3rd on list Ist on list 2nd on list | 3rd on list Ist on list 2nd on list 3rd on list
Task SST Task SST Task S5T Task SST | Task | SST | Task | SST Task SST | Task | SST | Tesk { SST
Initial Task A 0 Task B 98
MC=100 | in execution ready
2 Task B 2 Task A 0
MC=102 || ready ready
3 Task B Task A ,
MC=103 | ready 2 ety |0 Task C
4 Task B 2 Task A 0 Task C 0
MC=104 [ ready ready ready
5 Task C 0 Task B _2 Task A 0
MC=106 || page wait ready ready
6 Task C o Task A 0 Task B 13
MC=110 || page wait ready ready
7 Task A 0 Task B 113 Task C 0
MC=120 | ready ready TWAIT
8 Task B 9 Task A 0 Task C 0
MC=122 || ready ready TWAIT
9 Task A Task C Task B
MC=124 | ready 0 ready | 1% Awarr | =7
Figure 56. Scheduling Walkthrough

At this point, an asynchronous interrup-
tion is received from an unowned terminal
and a new TSI is created and placed on the
Inactive list placing the system in state
3. The Channel Interrupt processor
enqueues an asynchronous interrupt GQE on
the new TSI. Among other things, this
results in a call tc Rescheduling which
places the new TSI on the Eligible list
with SST=0 and STE=20 as shown in state 4
in the diagram.

Once this initiation procedure is com-
pleted, the Queue Scanner is entered and it
passes control to the Internal Scheduler.
The Scheduler finds task C on the Eligible
list and, after determining that there is
room for the task in main storage, places
the task at the head of the Dispatchable
list. The task is placed in page wait sta-
tus, its SST remains 0, and a request is
enqueued to bring the task's XTSI page into
main storage. At the end of this proce-
dure, the system lists are in state 5.

Following the initiation of the paging
operation, the Queue Scanner gets control
and, finding no work, calls the Internal
Scheduler. The Scheduler finds no tasks on
the Eligible list and the Dispatcher is
called.

The Dispatcher begins at the head of the
Dispatchable 1list looking for a task to
place in execution. It bypasses task C
which is in page wait and selects task B

which is ready. Assuming that the paging
operation is not completed, Task B will
execute for one quantum. It will then be
classified as execute bound and the Queue
Scanner, Internal Scheduler, and Dispatcher
will be called. The Dispatchable list is
rearranged just before the Dispatcher is
called and task B, which is now execute
bound<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>