
IBM System/360 Time Sharing System

System Logic Summary

Program Logic Manual

File No. S360-36
GY28-2009-2

Program Logic

This publication describes the logic of the IBM
System/360 Tirre Sharing System (TSS/360). The emphasis
is on describing the interrelationship of system
components in ferforming systerr, functions. Where an
individual component is described, only the highest
level of logic is discussed.

This program logic manual is directed to the IB~
customer engineer who is responsible for program
maintenance. It can be used to determine the
interrelationshif among the various areas of the
system, and it enables the reader to relate these areas
to the corresfonding program logic manuals.

PREFACE

This Fublication is divided into three
parts. The first Fart contains a
systematic description of TSS/360. The
second part explains various detailed
features of TSS/360 such as allocation
algorithms, sharing, and paging and gives
examples of system operation. The third
part discusses the relationship of language
processors and auxiliary programs to the
system.

IEM System/360 Time Sharing System:
Command System User's Guide, Form
C28-2001

IEM System/360 Time Sharing System:
Asserrcler Programmer's Guide, Form
C28-2032

IBI"] System/360 Time Sharing System:
There are three appendixes. One relates

major system components to the appropriate
Program Logic Manual, the second contains a
summary of iIrfortant system control tlocks,
and the third is a directory listing all
modules for which flowcharts exist and the
PLM which contains each flowchart.

J'iJanager's and Admini-strator's Guide,
Form C28-2024

PREREQUISI'IE PUBLICATIONS:

IBM System/360 Time Sharing System:
Concepts and Facilities, Form
C28-2003

In addition, the following TSS/360
publications can be used to supplement an
understanding of the interrelationships
described in this manual:

IBM systen/360: Model 67 FUnctlonal
Characteristics, Form A27-2719

Third Edition (June 1970)

IEM Systerrif360 Time Sharing System:
Assewc1.er Language, Form C28-2000

IEM System/360 Time Sharing System:
Assembler User Macro Instructions,
Form C28-2004

IBM system/360 Time Sharing System:
FORTRAN IV, Form C28-2007

IBf.l System/360 Time Sharing Systerr,:
Linkage Editor, F~m C28-2005

IEt-l System/360 Time Sharing .§ystem:
Operator's Guide, l"orm C28-2033

This is a major revision of, and makes cbsolete, IE/>, System/360 Time
Sharing System: System Logic Sun,mary, Forn Y28-2009 1, and Technical
Newsletters Y28 3094, Y28 3102, Y28 3111, and Y28-3112. Changes to the
text and illustrations have been made throughout and this edition
should be reviewed in its entirety.

This edition is current with Version 7, Modification 0, and remains
in effect for all subsequent versions or modifications of IBM Systern/360
'lime Sharing System unless otherwise indicated. Significant changes or
additions to this publication will be provided in new editions or
Technical Newsletters. Before using this publication in connection with
the operation of IBM systems, refer to the latest edition of IBM
System/360 Time Sharing System: Addendum, Form C28-2043, for~he
editions of fublications that arE applicable 3nd current.

This publication was prepared for production using an
update the text and t.o control the page and line fcrnat.
impressions fer f-hoto-of£set printing were obtained from
Printer using a special print chain.

IBM computer to
Page

an IBM 1403

Requests fer cOfies of IBM [-ul:lications should ce made to your IBM
representative or to the IEM branch office serving your locality.

A form is provided at the back of this fublication for reader's
comments.. If the form has been removed, comments may be addressed to
IBM Corporation, Time Sharing System/360 Prograrrming Publicaticns,
Cepartrnent 643, Neighberhood Read, Kingston, New York 12401.

© Copyright Internat.ional Business Machines Corporation 1967, 1968, 1970

IBM

PART I: GENERAL SYSTEM D.ESCRIPTION

INTRODUCTION
Command Refertoire

SYSTEM ENVIRONMENT
Operational Environment •

System Users
Privilege Classes .•
Authorization Cede
Tasks .. •••.

Conversational Tasks
Nonconversational Tasks

System Program Structure
Resident Supervisor • . . .
Task Monitor and SySt~1 ServiCE Routines
IBl-l-Supl-'lied Problem Programs .
Auxiliary Programs
Tirne Sharing Support System •
Utili ty P rcgrillEs
System Build Program
STARTUP Prograrr
System Storage
Public Storage
Private Storage .
System St.orage

Multiprogramming Environment
Time-Slicing • " • •
Dynamic Program Relocation
configuration .

Interconnection of System Corrfonents
System Partitioning •

Multiprocessing Features
Signaling • • .
l>IJal£unotion Indication
Programmed Initialization .
Prefixed Storage Areas

Processor Tirre Sharing Features •
Extende(j Mode •
Storage Protection Extension

CONTROL ARCHITECTURE
Resident Supervisor

Interrupt Stacker
Queue Scanner • .
Dispatcher
Queue Processors
Supervisor Service Subroutines
Majer Error Recovery Routines •
Control BlOCKS .•••

General Queue Entry (GQE)
Scan Table • .. • •
Task Status Index (TSI) • •
Extended Task Status Index (XTSI)
Page Control Block

Task Monitor • " •.
Interface With Resident Supervisor
Interruption Processing •
Task Integrity

INTERRUPTION HAN[;LL"IG
Machine Check Interruption

CONTEN'!'S

1

3
4

5
5
5
5
7
7
7
8
9

10
11
14

· 14
14

• 14
· 14

14
• . • 14
• • • 15

15
• • 15

• 16
• 16

17
• 22

22
• 23

24
• 27

• • 27
• • • 27

• 28
• • • 29

29
30

31
· 31

32
• • • 34

34
• • 37

39
• • 39

• • • 39
• • 39

• 40
40

· 41
41

· 42
42

• 42
44

• 47
· 47

iii

External Interru~tion • • . • • .
Timer Interruption .•.•
Write Direct Interruptions

Program Interruption •.•..
I/O Interruption •.•••••
Supervisor Call Interruption

RESIDEN'f TERMINAL ACCESS f.1ETHOD/MULTITERMINAI TASK
RTAi<j Control Blocks . •
RT~1 TSS Initialization ••...••
RTAI-i TSS l"ode Operation •••• • . • .
RT&~ MTT Initialization By Administratcr
RTAM MTT Initialization By User .
RTAM MTT Mode Operation . • • .

DATA ~ANAGEMENT ACCESS METHODS
Virtual Access Methods

Implementation •••.•. •
Virtual Sequential Data Sets
Virtual Index Sequential Data Sets
Virtual Partitioned Data Sets

Sequential I/O Access Methods •
Basic Sequential I/O Access Method
Queued Sequential Access Method •

Blocking Logical Records
Deblocking Logical Records
Buffering Blocks of Data • • • • •

47
· 47

47
47
48
50

• • • • 53
• • • 53

54
• • 54

54
54

· 54

• 56
56

• • • 59
• 59

59
60

· 60
60

· 61
62

· 62
62

Issuing I/O Requests, Checking, and Positioning for Blocks of
Data ••.•.•..•••

Multiple Sequential Access Method •
TAM.
IOIUQ
OLTAM •
:CRAM

THE CATALOG •

LIBRARIES ••
Object Libraries
Symbolic Libraries

PROTECTION
CPU References
External and Auxiliary Storage References
Channel References to Main Storage • • • • • •

Classes of I/O Operation •.••
Classes of Storage • • . •
ASSignment of Keys ••••
Operation . • • • • • •

PROGRAM MODULE STRUCTURE
Program Modules • • • • • • • • • •

Prototype Control Sections and Reenterable Code •
CSTORE Macro Instruction

COMMUNICATION . • • •

LINKAGE CONVENTIONS •
superviscr Linkage
Virtual Storage Linkage

Type I
Type II • •
Type III
Type IV • • • • • •

Fence Sitter Routines •

DATA MANAGEMENT
Example of BSAM Processing

iv

· 62
62
63
64
64

• • • • • • 65

66

69
69
70

71
• • 71

• 71
• 72

• • • • 72
• • • 72

• 72
• • • • 72

74
• • 74

75
76

• 77

• 79
• 79

• • • • 79
• 79
• 79

79
80
80

• • 81
• • • • 87

Example Of Virtual Sequential Processing

PART II: EXTENDED SYSTEM DESCRIPTION

RESOURCE ALLOCATION AND CONTROL • • •
Scheduling Overview and the Schedule Table
The Active and Inactive Lists • • • . . • • • •
Task Scheduling • • • • • • •
A~plication cf the Scheduling Algorithm
Task Scheduling walkthrough •

Main Storage Allocation • • • • • • •
User Storage Allocation • • • • •
Supervisor Storage Allocation •

Virtual Storage Allocation •••••
Nen-Shared Virtual Storage Functions
Shared Virtual Storage Functions

Small Virtual ~emory Allocation •
Initial Virtual Memory
Auxiliary Storage Allocation
External Storage Allocation •

SAM Volumes . • • •
VAM Volumes • •

Device Allocation
Pathfinding • • .
Tirr,er Services Allocation

CPU Interval Time •
CPU Elapsed Tirre
Task Interval Time
Task Elapsed Time

DYNAMIC LOADER
Introduction
Task Cictionary •

Hash Tables • •
Storage Map Tatle • • • • • •

Control section Dictionary (CSr;)
CSC Heading • • • • • • • • • • •
Definition and Reference Tables •
Relocation Dictionaries •

Dynamic Loader ProceSSing
Invocation • • • •
Implicit Linkage
Explicit Linkage

Cl Code . . .
C2 Code . • • • .

Loading Process •
Control Section Rejection
Control Section Storage F:ey Assigmr,ent

Relocation • • • •
Deleting program Modules
Unloading Example • • • • •

CATALOG SERVICE ROUTINES
OBTAIN Routine
RETAIN Routine
RENAME Routine
INCEX Routine . •
ADDCAT Routine . • • •
DEL CAT Routine
SHARE Routine • • • • • • •
UNSHARE Routine • • • • • •
SHAREUP Routine • .
LOCATE Routine • • • •
SEARCH SBLOCK Routine •
GET SBLOCK Routine

SHARING •
External Sharing

.100

• .107

• .109
• • .110

• .113
• •• 114
• •• 115

.117
• ••• 120
· ••. 120

.121
• • • .122

• •• 124
• •• 124

• .127
.128

• .128
. • • • • • .130

• • • .130
· . • .132

· .133
• •• 138

• ••. 141
.141

• •• 141
" • .141

• ••• 142

• • • •• .143
• ••• 143

• • •• .144
.145

· •147
.148

• •• 148
.148

• •• 150
• •• 151

.151
.151

• •• 151
.152

• ••• 153
.153
.154

• .154
• ••• 155

• • . • .155
.157

• .158
.158

• .158
• • • • • • • • 158

· . . .158
.159
.159

• •• 159
.159
.159
.159

• • • . 159
.160

.161
• ••. 161

v

External Sharing of Data Sets • •
External Sharing of Programs ••••
Concurrent External Access •••••

External Sharing With Internal Control
Internal And External sharing • • • • •
Internal Sharing

PAGING
Drum paging • • .

• .16:1
• .162
• .163
• • :163

.166
• .:168

• ••• 171
• .171

Paging Relocation Exception Example
Time Slice End Processing Example •
Disk Paging • • . • . • • .

• • • • • • • • • .:1 75
• • • • .179

• ••• 18:1
Example of Disk paging • • • • • • • • .183

ERROR PROCEDURES
Error Recovery and Recording • • • •
Error Definition •••••.
Error Recording • . • . • •

• .189
• ••• 189
• ••• 189

.189
paging I/O Error Recording • ••••••••• 190

Task I/O Error Recording
System Error Recording
Machine Error Recording •
Error Record Retrieval
Error Recovery and Retry Procedures •
Machine Errors
Paging I/O Errors • • • • • • • • •

• .191
• • • .19:1

• .19:1
• • • .191

.192
• ••• 193

.195
• .197

.198
Task I/O Errors • • • • • • • • • • • •
System Error Processor (SYSERR) •••••
Abnormal Task Termination (ABEND) • • • • • • • • • • .199

COMMAND SYSTEM
Tailoring the Command System

Corr.:mand Controller
Source List Handler • •
Dictionary Handler
GATE Routine
Scan Routine • • • •

• .200
.201

• .202
.203
.204
.204

User Prompter Routine • • • •
• .205

.205
Cowmand Analyzer and Executor • • • • • •
Virtual Memory Task Initiation Routine (VMTI) •••••

Interruption Processing • • • • • • • • . • • • • •
Attention Handler • • • • • • • • • • •
Initial Attention Interrupt Processor •
External Interrupt Processor
Prograw Interrupt Processor • • • • • • • • • • • • • •

Eatch Monitor • • • • • • • . • • • . • •
System Operator and Administrator Services

System Operation Control
System Operation Command Processing • • • •
System Administration • • • • • • • •
Accounting Services • • • . • • • • . . • • .

• .205
• •••. 205

• .207
.207

• .207
.207

• .208
.208

• .209
• •••• 210

• ••• 210
.211

. • .211
Corrmand Routines ••••••• • • • • • • • • • • • • • • • .211

· • • .211 Task Management Routines • • • •
Data Management Routines •••••
Object Module Handling Routines .••••
Information Request Routines
Command Creation Routines ••••••

Language Processor Control
Text Editor • • .• •••• • • • •

Program Control System • • . . • •••••

vi

Processing of PCS Statements and Commands
Processing of Irrmediate Statements • • • • • • •
Dynamic Statement Processing • • • • • • • • • •
PCS Components .•••••••••••• • • • •

pes Interfaces with System Modules and Tables .•••
The Command Analyzer and Executor (CA&E)
User Control Routine
Intervene Routine • . • • • • • • • • • • •

· .213
• .216
• .216

.216
.217
.218
.219
.219

• .219
.220
.220
.223

• • • .223
.223

• .223

Task Monitor
Data Management • • • • .
Virtual ~e~ory Allecation •
Dynamic Loader • • • • • •

Examples Of System Operation
Creaticn Of A Conversational Task
Nonconversa tional Processing
ReI[ote Job Entry .•••...

RJE User Overview • • • • •
RJE Control Card Processing

• • • • 223
.223

• .223
· .223

• ••. 225
.225

. • .• ••• . 232
• • • • • • • • 234

. • • • • .234
.234

PART III: LANGUAGE PROCESSORS AND AUXILIARY PROGRA~S .241

THE TSS/360 ASSE~BIER
Standard Out~ut • •
Optional Output •
System EnVlrCDl[ent
Organization Of The Asse~bler
Syntax Analysis • • • • • • • • • • •
Macro Instruction Processing • • • • • •
Assignment of Location counter Values ••
Program Reordering •• • • •
Machine Instruction Synthesis •
Postprocessing

Assembler FUnctions •
Phase I • • • • • •
Phase II
Phase III
Phase IV

Assembler Control Routine

TSS/360 FORTRAN IV Compiler • •
Organization Of The Compiler

Compiler Executive Routine
Phase 1 .
Phase 2 • .
Phase 3
Phase 4
Phase 5 •

TSS/360 PL/I COMPILER AND CONTROLS
PL/I Control ••• •
PL/I Compiler •
Ol::ject Data set Conver1:er (ODC> •
Pseudo Register Vector Data Set (PRVDS)

LINKAGE EDITOR
Relationship To TSS/360 • • • •
General Processing Requirements

Library Calls • • • . •
Program Modification
Programming Aids
Error Detection and Messages

Linkage Editor Major Divisions
Control Statement Proces~;ing
Output Processing • • • .
Early-End Processing

AUXILIARY PROGRAliS
Time Sharing Support System
TSSS Language • •
Utility Programs
System Generation and Maint.enance ••

System Generation •
STARTUP • • • • .
System Generation l'-lacro Instructions

• ••• 243
• ••• 243

· .243
.243

• ••. 243
.244

· ••• 245
.246

• .246
• .246

• ••• 247
• .247
• .247

.247
.247
.248

• ••• 248

• • • • 249
• .250

• • • • 250
• •• 251

• • 252
.252

• .253
• ••• 254

• • • . .255
• • • • .255

• .255
.256

• .258

• .261
••••• 261

• ••• 261
· ••• 262

.262
• • .262

.262

.262
.263

• ••• 264
.264

• • • • 265
• .265
• .265

• • • . • • .271
. . • • • .271

. • • • • • .271
• • • .271

• • .273

vii

APPENLIX A: PROGRAM LOGIC MANUALS •

APPENLIX B: CONTROL BLOCK SUMMARY •
Resident Supervisor Control Blocks
Virtual Memory Control Blocks .

APPENDIX C: FLCWCHART DIRECTORY •

INDEX • • •

viii

• .275

• • • .276
.276

• • • • • .278

• •. 281

• .297

Figure 1. System Devices Available for Assignment
Figure 2. Inter-Task Relationships •.•••••
Figure 3. Relationship of the Resident Supervisor to Tasks

FIGURES

6
9

and the Real System Resources ..••••..••••••• • 11
Figure 4. Relationship of the Task Mcniter and System Service
Routine to Non-Privileged Machines and the Resident supervisor • 13
Figure 5. Example of Dynamic Address Translation . • • • . •• 19
Figure 6. Dynamic Address Translation Process ••.•••••• 20
Figure 7. Crossbar Interconnections of System components 22
Figure 8. Cistributed-Switching Interconnection of System
Components ••. • • . • • • • • • . • . • . • • • . • • • 22
Figure 9. Sample Simplex IBM systerr/360 Time Sharing System •• 25
Figure 10. Sample Duplex IBM System/360 Time Sharing System •• 26
Figure 11. A Sample Relationship Among Processors, Storage
Elements and Prefixed Storage Areas (PSAs) •••••••• • 28
Figure 12. Prefixed Storage Area . • • ••••••••••• 28
Figure 13. PSW Formats • • • • • • • 29
Figure 14. TSS/360 Program Structure • • • • 31
Figure 15. Resident supervisor Component Structure ••••. 33
Figure 16. Interrupt Storage Area (I SA) Schematic Diagram • 36
Figure 17. Corr.parison of Standard, Extended, and Virtual PSW
Formats • • • • • • • • • • • • • • • . • • . • • • • •
Figure 18. Main Features of a Prograrr.med Interruption
Figure 19. Schematic View of the Scan Table

• • 36
• • 37

• • • • 40
Figure 20. Interrupt Processing General Flow •..
Figure 21. RTAM System Control Block Relationship
Figure 22. RTAM MTT Control Block Relationship ••

. • •• • 43
• 53
• 54

Figure 23. RTAM Application/System Control Block Relationship
Figure 24. Summary of Data Management Macro Instructions and

• 55

Data Set organizations • • . • • • • • • • . • • • • • • • • • • 57
Figure 25. Relationship Among RESTBL, Virtual Memory, and Main
Stor age ...•••••.•••.•• • • . • • • • • • • • . 59

60 Figure 26. Input/Cutput Request Centrel Block (IORCB)
Figure 27. Catalog Index Structure Hierarchy ••
Figure 28. Catalog Member ••••• " .•••
Figure 29. Format of an Ol::j ect Program l"odule
Figure 30. Lata Event Control Block (DECB) •
Figure 31. Lata Control Block Table (DCB) •••••
Figure 32. Job File Control Block (JFCB) .
Figure 33. A General Flow of Open Processing

• • • 66
• 68
· 74
• 81

• • 82
• • 82

Figure 34. Lata Flow During Open Processing •••••••
Figure 35. Lata Extent Block (DEB) • •

· • • 84
• • • 84

• 85
86 Figure 36. CLOSE Processing •••.

Figure 37. DDEF and OPEN Processing
Figure 38. BSAM Read Walkthrough (Part 1 of 3)
Figure 39. Overall Processing of Read Request
Figure 40. TAM IORCB Generation •••...•
Figure 41. CHECK Macro Processing • • • . • •

• 88
. . . • 89

94
95

· • 97
Figure 42. Resident Supervisor Task Monitor Synchronous I/O
Flow (Non-Terminal) . • • • • • • . • • • • • . • • . • • • 99
Figure 43. Format E DSCB •••••.•.•••••••••.•• 101
Figure 44. VSAM Buffer Page After Processing of First Locate
Mode PUT .• . • . . . • . • . • • • • .101
Figure 45. VSAM Processing • • • • • • . • • • • • . .102
Figure 46. Schemati c of VA1'l Routines • . • . • • • • • .103
Figure 47. Ar:;r::earance of the Buffer After the Second PUT fo'.acro .104
Figure 48. Ar:;rearance of the Buffer After the 'Ehird PUT Macro .104
Figure 49. VMl Format for the IBM 2311 . . . • • . . • .• .105
Figure 50. Track Formats for Page-Size l:{ecords on Symbolic
Devices No. 7 -- 2311 Disk Pack • . • • . . . • • • • •
Figure 51. Relatienship Between Virtual Storage Buffer and
External storage •.• • • • . • . . • . . . • . . . •

.105

• •• 106

ix

Figure 52. contents of the Schedule Table Entry
Figure 53. TSI Lists ••..••..••
Figure 54. Maintenance of TSI Lists
Figure 55. Sample Schedule Table Entries •
Figure 56. Scheduling Walkthrough •...

. . • .111
· .114
• .114

• • • • • .118

Figure 57. Sample XTSI With Virtual Storage Allocation Tables
Figure 58. Sharing of Segments in the 24-Eit Versions of the

• .119
.123

Model 67 ••••••••••• . • . • . • • • • • . • .
Figure 59. Possible Scheme of Virtual Merr,cry Allocation
Figure 60. Lirect Access Device Volume Table of Contents

· .125
.126

(VTOC) Forrrat for SAM Volumes • • •••.•••••••••.•• 131
Figure 61. Allocation of External Storage to a SAM Volume ••• 132
Figure 62. Major Virtual Storage Symbolic Device Status Tables .135
Figure 63. Pathfinding •.•.•••••.•..•••• 138
Figure 64. Tape Switch Connected to Four Tape Control Units
with Two-Channel Switch Feature. • • • • • .139
Figure 65. Reverse 2athfinding Set Path •• 141
Figure 66. Task Cictionary organization • .144
Figure 67. Hash Table Processing . . • • • • • • . • . .145
Figure 68. Syrr~olic Posting Rules for Inserting D~'s Into the
Task Dictionary Hash Chains ••..•••..••••••••.• 147
Figure 69. Dynamic Loader Symbol Lookup Rules for Resolving
Syrr.bols in Either Explicit CALL/LOAD or DEL£TE Adcon Groups or
in External REFs .• , • • • • • . • . • . • • . • • • • .148
Figure 70. RLDs for a Sample Module •. • . . • • • • • • .150
Figure 71. Functional Dynamic Loader Allocation Phase ..•.• 153
Figure 72. Diagram of Sample Module Usage Table ••• 156
Figure 73. Unloading Example -- Before Unloading. .157
Figure 74. Unloading Example -- After Unloading .157
Figure 75. Example of External Sharing •••. .162
Figure 76. Control Flow for Shared Data Set Program Loading •• 167
Figure 77. Relationship of Tables Involved in Internal Sharing .168
Figure 78. Relationship Between Relocation Tables and Resident
Shared Page Index .•••••••.••.••••••••..• 170
Figure 79. IBM 2301 Drum Syrrbolic Address Kelationships .172
Figure 80. Relationship Among Control Blocks Associated With
Drum Pag ing •••••.•••••.•..•.•. .173
Figure 81. A Possible Channel Program Generated by the page
Drum Queue Processor • • • • . • • . • . • . • • • • • . • .175
Figure 82. Resident supervisor paging Relocation Exception
(Part 1 of 2) • • • • • • • • . • • . • . . . •
Figure 83. Resident Supervisor Tirre Slice End
Figure 84. General Format of DIAB •••..
Figure 85. Disk Paging Example (Part 1 of 2) •
Figure 86. Error Cata Recording Interface
Figure 87. Resident Supervisor Error-Handling Overview
Figure 88. Initial Machine Actions on the Detection of a

· .176
.180

• .182
• •• 184

.190
• .193

Machine Error in a Duplex CPU System . • . • • . .194
Figure 89. Flow of Control During Pagin9 Error Handling ••. 195
Figure 90. Task I/O Error Handling. .197
Figure 91. Corrmand System • . . • • • ••..•••• 202
Figure 92. An Overview of the Command Controller ...• • .203
Figure 93. Corr.mand Analyzer and Executor -- operational Flow •• 206
Figure 94. Language Processor Control Overview .••.•••• 217
Figure 95. PCS Processing (Part 1 of 2) • • • • • • ••• 221
Figure 96. Resident Supervi::>or Task Initiation Flow (Initial
Interrupt) ...•..••••.... ...•••••.• .226
Figure 97. Resident Superviscr Task Initiation flow (Read
Response) • • • • • . • • . • . • • . . •
Figure 98. Conversational Task Example •
Figure 99. Enabling RJE Line •..••
Figure 100. RJE Line Preparation ...•..
Figure 101. RJE GET Macro and RJSTART Card Processing
Figure 102. Processing of LOGON and LOGOFF Cards .
Figure 103. Termination of RJE Input Card . . •.•
Figure 104. TSS/360 Assembler Interfaces with LPC
Figure 105. FORTRAN IV Compiler External Interfaces
Figure 106. Ccmpiler Component Organization .•..

x

• .227
.228

• •• 235
.236
.237

• .239
.239

•••• 244
.250
.251

Figure 107.
Figure 108.
Figure 109.

TABLES

Table 1.
Table 2.
Table 3.

Prograrr. LanguagE Controller Flow • •
Overview of Compiler Flow '" • • •
Relationship Between Control Blocks

TSI List and Parameter Changes .
Data Sets Used by PL/I Compiler
Compiler Logical Phases

• .255
• •. 259

• .277

.118
• .256

.257

xi

PART I: GENERAL SYSTEM GESCRIPTION

Time Sharing is a logical extension of
the growth in sophistication and scope of
the computing environment since its begin­
ning nearly two decades ago. In particu­
lar, the IBM Model 67 TiRe Sharing System
serves as a logical extension for the pro­
blem solving needs that gave rise to
System/360 hardware and to IBM System/360
Operating System.

The develofment of systems programming
has been a "three-generation" process.
First, there was the development of trans­
lators, starting with basic assembly lan­
guages and advancing to the higher level,
problem-oriented languages and macro compi­
lers. The major objective of this develop­
ment was to reduce the time required to get
an operation to a computer.

The second generation consisted of mon­
itor systems such as 7090/7094 IBSYS and
the 1410/7010 Operating System. These sys­
tems were designed to reduce the time
between machine room oferations by, for
example, providing the ability to stack
jobs and minimizing defendence on the
machine operator.

IBM System/360 operating system is typ­
ical of the third generation of systems
programming. This can be referred to as
resource allocation. Its major objective
is to maximize the use of system components
during multifrogramming operations. These
resources are CPU time, channel time, main
storage, external storage, and programs.
Under IBM System/360 operating system, each
of these is scheduled and dispatched separ­
ately and asynchronously to satisfy compet­
ing demands.

Time Sharing can be described as the
concurrent use of the resources of a gener­
al purpose comfutin9 system by a large
number of users.

In COR,mon with other third generation
multiprogramming systems, the accent in
this definition is on "resource sharing"
rather than time sharing; because a general
purpose time sharing system must be
designed to share main storage, channel
facilities and direct access (disk and
drum) file space among a large number of
users. strictly speaking, a single CPU
does not share time; it still operates on
only one task at any moment.

Unlike batch multiprogramming systems
whose goal it is to maximize throughput,
the goal of a time sharing system is to

INTRODUCTION

make it easier to use a cOlr,puter while
rraintaining a very high degree of utiliza­
tion of the computer system resources.

The reasons for wishing to rr,ake a com­
puter system easy to use are:

• To reduce the complexity involved in
prefaring a frogram for execution on a
computer. This allows scientists,
engineers, and students to explore
potentially rewarding bypaths which are
currently too much trouble to program.
This can be done by performing those
clerical tasks that are so much a part
of problem solVing, such as routine
calculations, reducing and plotting
data, text editing, and information
retrieval.

• To allow peofle to interact with the
computer during program preparation and
execution. (In most conventional ap­
plications, the computer is used analy­
tically to provide numeric or textual
answers to problems that have already
been solved, i.e., reduced to
algorithms.)

• To bring the problem solver back into
an intimate association with the com­
puter, eliminating the inconvenience
and confusion involved in dealing with
a computer through an intermediary, the
frogran.mer, thus making the answer
returned more often appropriate to the
question asked.

• To increase both the quality of program
design, and the quantity of outfut,
from the professional programmer.

• To make it more convenient for the user
who has a limited knowledge of frogram­
Ring to use the computer.

To make TSS/360 easy to use, the follow­
ing features are included:

• Remote conversational terminals
• An on-line command system
• Conversational language processors
• A conversational program execution

checkout subsystem
• Lynarric execution-time program linking
• A one-level store concept
• Protection and sharing for data and

programs
• Large on-line storage for libraries of

programs and data

Introduction 3

To make efficient use of computer
resources, TSS/360 employs:

• System scheduled multiprogramming
• DynarrQc program relocation
• partition capabilities

Command Repertoire

The commands included in TSS/360 are
described in detail elsewhere and it would
serve no purpose to detail them here.
However, the following is an overview of
that repertoire: TSS/360 frovides commands
for managing tasks, managing data, using
language processors, controlling program
execution, and tailoring the Command
Systero.

The TSS/360 task-management commands let
the user:

• Identify himself to the system

• End his task when he is through using
the system

• Switch a conversational task to noncon­
versational mode

• Initiate a separate, independent non­
conversational task

• Request any private devices needed for
a nonconversational task

• Cancel a nonconversational task he has
initiated

• Set a time limit for his task

• Restore his task to its initial status

• Augment the system's initialization of
his task

The TSS/360 data-management commands let
the user:

4

• Create, modify, and delete data sets

• Edit data sets by context or by line
number

• Define partitioned ccllections of data
sets (i.e., libraries)

• Define members of a group of data sets
by relative generation numbers

• Catalog data sets

• Share data sets universally or only
with specific individuals

• Qualify sharing privileges by catalog
index levels and by individuals

The TSS/360 language processors let the
user:

• Submit programs conversationally (i.e.,
at the terminal with line-at-a-time
syntax analysis)

• Submit programs from prestored data
sets

• Submit programs in TSS/360 Assembly
Language or in FORTRAN IV

• Optionally submit programs to the TSS/
360 Linkage Editor

• Specify a wide variety of language pro­
cesser output options, including Cross­
Referenced Symbol Listings and
Internal-Symbol Dictionaries

The TSS/360 program execution-control
commands and macro instructions let the
user:

• Dynamically link programs at execution
time (no prior link edit required)

• Specify prograro library search
hierarchies

• Interrupt program execution and return
to command-mode

• Nest program interruptions to any
desired level

• Dynamically insert and remove program
break-points

• Dynamically display the formatted con­
tents of data locations, instruction
locations, or CPU registers using
source language symbols or FORTRAN line
numbers

• Direct the output from dynamic display
or dump commands to the terminal or to
a data set

• Modify the contents of the user's
address space using either source lan­
guage symbols or hexadecimal addressing

• Restart an interrupted program at any
convenient location

• Establish logical (i.e., true or false)
conditions that allow or inhibit the
execution of other dynamic debugging
commands

• Utilize arithmetic operators, logical
cperators, and counters in constructing
dynamic debugging statements

The architecture of TSS/360 is composed
of the IBM system/360 Model 67 and a com­
prehensive programming system.

The logic of this programming system can
best be understood if the environment in
which it functions is first described.

This environment can be usefully
examined from three ~oints of view:

• Operational environment
• Mutiprogra~ning environment
• Hardware environment

OPERATIONAL ENVIRONMENT

A conceptual overview of the operational
environment of Time Sharing System/360 is
presented in Figure 1 from the point of
view of an observer standing outside the
system.

The TSS/360 programming system consists
of application programs and service rou­
tines operating under the control of a
supervisory prcgram. TSS/360 ~rovides many
users concurrent access to a general­
purpose computing facility in a conversa­
tional mode, coupled with nonconversational
batch and bulk data handling programs. By
calling on the facilities of the system,
users can compile and execute programs,
manipulate data sets and ~erform a variety
of tasks.

This conceptual overview characterizes
TSS/360 in terms of:

• The categories of system users

• The privilege and authorization classes
aSSignable to system users

• The categories of tasks that may appear
in the system

• The sets of prograrrs that constitute
TSS/360

• The categories of storage and devices
that are supported by TSS/360

The TSS/360 concepts relevant to this
conceptual overview and the facilities
available to each category of system user
are described in ConceEts and Facilities.
and only those that have a special rele­
vance to system logic are reviewed here.

SYSTEM ENVIRONMENT

SYSTEM USLRS

The administrative structure of a typi­
cal TS5/360 installation involves five
types of people. These are called system
rranagers. system administrators, system
operators, system monitors. and users.

1. The system manager has overall respon­
sibility for his installation. There
is one system manager for each
installation.

2. Each system administrator has adminis­
trative responsibility for a group of
users. He grants those users permis­
sion to employ the system, and may
withdraw that permiSSion when
necessary.

3. The system operator is responsible for
operation of the computer and its
peripheral devices. Although identi­
fied as one person to the systerr,
normally three or more individuals
serve as system operator -- one for
each shift.

4. System Ironitors maintain the system
and analyze and evaluate system per­
forrrance. System monitors are usually
customer engineers.

5. The user is anyone WhO employs the
system. For example, he may be a pro­
grarrrr,er submitting a program for batch
execution, or an engineer typing in
requests from his terminal.

In addition to these five classes, an
installation may set up others, with the
functions of those new classes defined by
that installation. Note that anyone indi­
vidual may carry out the functions of sev­
eral classes.

PRIVILEGE CLASSES

A privilege class designates the right
to use a specified set of command system
commands. The time sharing system is
delivered with five such classes defined,
rut provisions exist for the installation
to expand this number up to 26. The five
defined privilege classes and the indivi­
duals designated are:

System Environment 5

CI'.

T55,/360 AlJxllimy Programs

SYS BLD,/$ T ARTUP !\e lude
2. SYS8LD
.J. STARTUP

T5S/360 Independent Uti!iHes

I, DASDI

Privilege 'D' User Term;ncl~

• ~? /t? ~~ // I .' /

2. DUr:lp f(f'st~re

3. Dired Acc('s~ Devi~:e Dvrnp
4. ,V,od 67 (crt:
5, Ern)!' ~':'cr:ndil1g Print (EREP) /'._--\

V,:~da~ ~-.)// .. /0/
../ "/./,/

/ ,/,///
/ // />~/ /'

/ ,/ /// /

/ ,~ / // / / / I / /// /
// I B,,-h ~. ~ //»/// / /

// ,,0'''''' />,/ /'

./ ~c'" ~ ?y' /

~ /1
I-:;~" J.

l Dd ... /

'-- --

/' ,J 4 h' ~~, ,/ ,o'; ,/ ' / ~ ... %~?l ///] Pm, / /;./~./ ,/ ,~ ',o'/,o' , '/ ~/,/,//
/ ' I :,~ , / /'," /' / ' '00" .e, ,/ '//,o', 'P ,

// / _ " ~l i "";:, I! M,,>, l'/ //APY ~""" ' 00' (,- ,,7\ .' /' /: / '
?- "",,"oo, -J ~M,"'" l' ,,;tee'l1 IT, .. 71 // ~~./ .. ~ I I '" ,ooon ~'"" I ' / ,/' ,-
1--,_ -_ .. __ ~L - t ,., 1j / ;c'/ ,/
L___ _ "'eO - - C '"""''''0001 "-~=G/ /' // ~ t· /" '/'1

.. , _ _ __ " /;:./>/ .. " / / ,l-.

_ __Pc ~ s,p,- _ , /~"/ ./ ~'~~ c)) _ '1=" --- -- ... / r-r / ',%"M l(,
"01 ,0 I t ~__ _ __ ~- //LY / Teem"al --V/ '-~ ~H'----' - _./ ' -

/ ,'" ,-

<'- ' 7 '",o"k' " J-- ---1' I" L M,,,,,,,, ~, ';, ,,,,,, """, "",M'
,,_ """" '~, Me> eo' -y~) _ . __ --.V./ ,~~

7 Tnxk

Figure 1. System Devices Available for Assignment

Page of GY28-2009-2, issued september 15, 1970 by TNL N28-3146

Privilege Class
F
B
E
A
T
D

Individual Designated
System manager
System administrator
System monitor
System operator
MTT administrator
User

The commands available to privilege
classes F and B are described in Manager's
and Administrator's Guide. Commands avail­
able to privilege class A are described in
Operator's Guide. The commands available
to privilege class D are described in Com­
mand System User's Guide. The privilege E
commands appear in IBM System/360 Time
Sharing System: System programmer's Guide.
The privilege class T commands are
described in MTT Programming and Operation.

If anyone enters a command that is not
available to his privilege class or
classes, the system ignores the command and
issues a diagnostic message. There are
certain commands that are available to more
than one privilege class.

AUTHORIZATION CODE

An authorization code designates the
right to use a specified set of system pro­
grams, privileged SVCs, and macro instruc­
tions. The manager may specify an authori­
zation code for each individual he joins.
The code, however, has meaning only for
privilege class D and E individuals, and
designates one of the following:

1. U - a normal user; i.e., a user who
has no direct access to system
programs.

2. P - a system programmer, who has
access to certain system programs
and some privileged SVCs and macro
instructions.

3. 0 - a privileged system programmer,
who has access to all relevant
system programs, SVCs, and macro
instructions.

The system administrator may specify the
authorization code for a normal user or a
system programmer. Only the system manager
may designate a privileged system programm­
er. A system programmer may be joined more
than once in order to be able to operate at
different times under different authoriza­
tion codes. For a complete description of
the capabilities permitted to system and
privileged system programmers, see System
Programmer's Guide.

TASKS

An operating system in which only one
program at a time is executed needs rela­
tively simple controls and concepts.
However, in a multi-programming or time
sharing environment, several programs may
operate concurrently. The concept of
-task" is introduced to provide for the
orderly management of programs in this
environment. For example, the association
of a priority with a program would be con­
fusing because the same program may be
serving several tasks. Therefore, a
priority is associated with a task instead
of with a program. In TSS/360, a task may
be described as an individual work require­
ment. For example, a task may be a termin­
al session in which a user compiles and
executes two separate programs. Another
example of a task is the compilation and
execution of a program in the nonconversa­
tional mode.

A single task may call for the succes­
sive operation of several independently
named programs. Also, a single program may
be shared. That is, it may be used concur­
rently in support of two or more different
tasks. Furthermore, a system user may have
one conversational task and perhaps several
nonconversational tasks active in the sys­
tem at anyone time.

Externally, a task is identified by a
Task Identification Number (TID) or by a
Batch Sequence Number (BSN).

Internally, the Resident Supervisor
creates a Task Status Index (TSI) which
contains the TID and a description of the
task's characteristics and resources.

The actions that may result in the crea­
tion of a Task Status Index are:

• The LOGON command entered from a
terminal

• ASNBD connnand
• PRINT command
• RT (read tape) command
• EXECUTE command
• WT (write tape) command
• PUNCH command
• STARTUP Routine (creates the Main

Operator Task)

There are two types of tasks: conversa­
tional and nonconversational

Conversational Tasks

A conversational task is characterized
by a user communicating with the system
through a terminal. The user can enter his
communications through the terminal key­
board or through the terminal card reader
if one is available. Before a user can

System Environment 7

Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146

communicate with the system, he must have
been granted access by a system administra­
tor or system manager.

To begin using the time sharing system
in conversational mode, all individuals,
except the main system operator, must
validate their authorization to use the
system by means of the LOGON procedure.

The user dials up and presses the data
button on the Data-Phone. Entry of the
LOGON command from the terminal then
initiates the creation of a conversational
task.

As the user is identifying himself via
his LOGON parameters, the system compares
these parameters with those set up for him
by a JOIN command previously issued by his
system manager. After successful comple­
tion of LOGON, an underscore and backspace
is issued at the user's terminal and the
user is invited to enter his first command.

Immediately after the LOGON command rou­
tine has validated a user and before con­
trol is returned to the terminal, TSS/360
automatically invokes the ZLOGON command.
As initially supplied with TSS/360. ZLOGON
is a "null" command -- it does nothing.
However, either an individual or his
installation may redefine the ZLOGON com­
mand to perform any functions to augment
the initialization of the user's task. For
instance, fUrther protection measures can
be applied at this time, or a particular
subsystem can be automatically invoked at
this time. Thus, "null" commands are con­
ceptually similar to the ·user exits" fre­
quently associated with general-purpose
utility programs.

Each conversational task has a separate
system input stream (SYSIN) and system out­
put stream (SYSOUT). The system input
stream contains the sequence of commands
issued by the user. The system input
stream can also include data dynamically
supplied to user-written programs. The
system output stream consists basically of
system messages. However, it may also
include messages from user-written programs
or actual output data to be printed at the
terminal. A terminal therefore serves as a
combined SYSIN/SYSOUT device.

As an individual enters his commands (by
typing them on his keyboard or by feeding
them in punched-card form through the ter­
minal card-reader) he becomes engaged in a
dialog with the system. In general terms,
he is told of the actions taken by the sys­
tem in response to each command and. when
necessary, he is prompted for additional
non-defaultable information needed to com­
plete an action, is informed of errors (if
his command entry is either incomplete or

8

incorrect), and is told of the options he
may exercise in response to an error. Spe­
cial care has been taken to make the types
of options an individual may exercise
appear consistent for all commands. Noth­
ing, for example, is more frustrating to a
user than to be required to resubmit an
operand with delimiters in one situation
and without delimiters in another.

The conversational task is normally ter­
minated by the user issuing a LOGOFF or
BACK command.

Nonconversational Tasks

There are many applications where dynam­
ic communication with the system is not
required. For such applications, noncon­
versational tasks can be set up.

Nonconversational tasks are just like
conversational tasks, with the exception
that the system can not directly converse
with the user. However, the user can name
a data set from which the system will
obtain data whenever a response from a ter­
minal would normally be required.

When a nonconversational task is
executed, commands are taken from a
command-procedure data set to direct pro­
gram execution. Thus, the command proce­
dure functions as the SYSIN for the non con­
versational task. As such, it can also
contain data required by the nonconversa­
tional task.

Most commands that can be entered from a
terminal can also be invoked as macro
instructions in programs or called from
executing programs.

To minimize setup time, nonconversation­
al jobs may be grouped prior to run time,
and are made available via one input unit.
For example, those nonconversational jobs
requiring input from cards are grouped
together by the Main System Operator and
entered through the card reader.

To start the processing of input cards.
the operator must first have created the
BULKIO task. This could have been done at
startup time or subsequently by means of
the ASNBD command. At the same time the
reader would have been added to the TSDL of
the BULKIO task. Assuming that these
operations have been performed. the opera­
tor need only load the cards in the hopper
and start the reader.

When the reader is started, the asynch­
ronous interrupt results in the activation
of the BULKIO task which accomplishes the
reading of the cards. If these cards con­
tain a LOGON and a LOGOFF command, a SYSIN

Page of GY28-2009-2, issued september 15, 1970 by TNL N28-3146

data set is created and the BULKIO task
issues a request to execute the data set.
When the Batch Monitor receives the requ­
est, it assigns a batch sequence number to
the SYSIN.

The BULKIO task is unique in that it can
recognize two types of data sets on card
input. One type, Signaled by a DATASET
control card, is written into direct access
file and cataloged. The other, which
starts with a LOGON command and ends with a
LOGOFF, is also written into direct access
file storage and cataloged. BULKIO, addi­
tionally, will send a request to the Batch
Monitor to initiate a new non conversational
task.

Optionally, nonconversational or batch
jobs may be entered in EXPRESS or CONTROL
mode. In EXPRESS or CONTROL mode (the
terms are synonomous) several user jobs are
combined and processed as one task. The
total job stream is delimited by an EXPRESS
control card and an END control card. Each
user job or subtask is delimited by the
LOGON and LOGOFF cards but full logon pro­
cessing occurs only for the first subtask
in the stream and full logoff processing
for the last subtask. Logon and logoff
processing for other subtasks in the stream
consists only of minimum task cleanup and
resource control and accounting.

Operation in EXPRESS mode precludes the
creation of data sets by means of the DATA­
SET control card. Any job requiring data
sets while executing in EXPRESS mode can
have the data sets created for them before
the EXPRESS mode is entered.

EXPRESS mode also precludes the execu­
tion of jobs requiring private devices.

The actual processing of a job (such as
a nonconversational FORTRAN compilation) is
thus performed in another nonconversational
task. The data set just read in will serve
as SYSIN for the new task. This task is
initiated by the Batch Monitor, assuming
that a system maximum for such jobs has not
been reached and the necessary system faci­
lities are available.

Each nonconversational task has a corre­
sponding SYSOUT. This SYSOUT must be
printed at the completion of each job. The
SYSIN data set created by BULKIO is
assigned a data set name consisting of the
USERID and the symbol SYSInnnn where nnnn
is a unique identification number. The
SYSOUT print is requested by the system via
the PRINT macro during LOGOFF processing
for the task. The PRINT macro, in turn, by
means of the Bulk I/O Preprocessor routine,
requests the Batch Monitor to inform BULKIO
to print the SYSOUT. A PRINT task for a
private data set is the only nonconversa-

tional task that does not require its SYS­
OUT to be listed because this would result
in an endless loop.

In addition, any job requiring addition­
al output on private unit record devices
(such as Assembler output listings)
requires another nonconversational task.
This type of output to public unit record
devices is performed by the BULKIO II task.

An overview of this relationship is pre­
sented in Figure 2.

SYSTEM PROGRAM STRUCTURE

Any control system performs two general
categories of functions: (1) it provides
the user with programs of general applica­
tion, such as compilers and link editors,
and (2) it provides services that allocate
to operating programs the resources they
require.

Most installation programmers may ignore
the problem of resource allocation. From
the point of view of the problem program­
mer, his own program will be executed using
all those resources that he demands and,
apart from restrictions and conventions
imposed by the computation center, he is in
no way limited as to what resources he can
ask for.

It is primarily the systems designer and
systems programmers who are concerned with
defining the algorithms that apportion the
limited real resources of the system, such
as storage, devices, channels, control
units, and even CPUs, among the operating
tasks whose aggregate demand for resources
may greatly exceed the amount of real
resources available.

The intent is to enable the average user
to work with an abstraction of the computer
whose appearance is much simpler than the
real computer.

ASNSD
Command

4
r----I N\oin Operato~/

Botch N~n it~r
fask (A)

Print Optional
Assembler
output Task (D)
Request from user

Bulk I/o II
Task prints

~ Assembler SYSOUT

I Note: Not a new Task

I
I
I
I
I

__ 3 _...I

Figure 2. Inter-Task Relationships

System Environment 9

Page of GY2B-2009-2, issued September 15, 1970 by TNL N28-3146

Such abstractions are known as virtual
machines or virtual computers. The idea
behind virtual machines is not new, being
the essence of all programming systems
which tend to mask the real computer from
the programmer. However, as computer
operation becomes more complex, the virtual
machine concept becomes increasingly
important.

A virtual computer is an illusion,
created by a combination of hardware fea­
tures and programming systems.

A particular combination of hardware
components and programming systems may be
called a "level" of virtual computer. The
proportion and sophistication of hardware
components and programming systems used in
creating levels of virtual computer and the
degree to which any lower level is aware of
higher levels may vary widely.

Within TSS/360 there are five levels of
virtual computers or levels of abstraction.
To each level, those levels below it appear
as "hardware."

Level 4 is created when users deal with
TSS/360 through the command system and lan­
guage processors. Thus, for instance, it
may appear to a user that he is dealing
with a "FORTRAN computer."

Level 3 is the environment in which the
language processors and user-written pro­
grams operate. This environment is defined
as operating in the hardware problem state
and the software "nonprivileged" or "user­
state. A program operating in this level
may address only that portion of the virtu­
al storage assigned to his task that is
assigned a user hardware storage protection
key. It may execute any non-supervisory
machine instruction, but only a restricted
subset of the supervisor calls (SVCs)
defined in TSS/360.

Level 2 is described as operating not in
the software privileged state, but in the
hardware problem state. A program operat­
ing at this level may execute any non­
supervisory machine instruction and all
supervisor calls (SVCs) defined in TSS/360.
Programs operating at this level are
assigned a protection key of zero, which
makes them capable of accessing any allo­
cated location in the task"s virtual
storage. This key differs from the key
aSsigned to level 3 programs.

Level 1 is described as operating in the
hardware supervisor state (defined as
operating with bit 15 of the PSW set to
zero). Programs operating at this level
are capable of addressing all of real
storage and any I/O device and are capable
of executing any machine instruction.

10

Level 1 programs are not addressable
from virtual storage and are not subject to
time-slicing. Most level 1 programs are
permanently resident in main storage.

Level 0 is the machine microprogram
which operates in a special read-only
storage which is not addressable by pro­
gramming in normal operation.

The terms privileged state and user
state deserve careful attention. Bit 15 in
the PSW determines whether the CPU is in
Supervisor or Problem state. In Supervisor
state all machine operation codes are
valid. In the problem state an attempt to
execute any of the privileged operation
codes, (e.g., Start I/O, Load PSW. Set Sys­
tem Mask, etc.) will cause a hardware
interruption. The problem state is divided
into two software states - Privileged and
User. Neither of these states may use the
privileged operation codes.

Time Sharing Systeffi/360 is composed of
four sets of programs, each designed to
perform unique functions:

• The Resident Supervisor

• Task Monitor and System Service
routines

• IBM-supplied problem programs

• Auxiliary programs

Resident Supervisor

The Resident Supervisor operates in
level 1 in the virtual computer hierarchy
and is responsible for allocating real sys­
tem resources and for performing services
in response to requests originating from
the tasks in the system.

Each task appears to the Resident Super­
visor as a virtual computer system. The
Resident Supervisor is generally unaware of
the fact that each of the tasks that it is
managing may, itself, comprise several
layers of virtual computer or program
hierarchy.

The status of each task is maintained by
the Resident supervisor in Task Status
records which describe the task as a virtu­
al computer system. This includes informa­
tion describing such resources as the vir­
tual storage and symbolic devices assigned
to the task.

This relationship of the Resident Super­
visor to tasks and real system resources is
depicted in Figure 3.

The Resident Supervisor is permanently
resident in core storage after startup.

VIRTUAL COMPUTER SYSTEMS

IT'~~ [,,:,]- - - -- --j Task NJ
i I

I Requests for Supervisor Serv ices and Rea! System Resources I

/ HARDWARE INTERRUPTIONS

I Queue task requests for Supervisor Services and Rea I System Resources]
RESIDENT SUPERVISOR

-------,

L Allocate Reo I System Resources to the Enqueued Requests ~

REAL COMPUTER SYSTEM

r

[D";~] r
I I Centro I I

Auxi liary I Control
I Main

Processirtg I Channels Units I Storage Storage , Un,ts I I I

I
Figure 3. Relationship of the Resident supervisor to Tasks and the Real System

Resources

The Resident Supervisor is nonpageablei
that is, it is not transferred back and
forth between a paging device and main
storage. The Resident Supervisor is nonre­
locatable. Instructions within the Resi­
dent Supervisor have operands which are
main storage addresses, not logical
addresses. The Resident Supervisor
operates in the Supervisor state; that is,
the Resident Supervisor may execute privi­
leged instructions. No location within the
Resident supervisor may £e addressed by a
program operating in virtual storage,
because the result of dynamic address
translation of virtual storage addresses
will never be a main storage address within
the Resident supervisor.

The only entry to the Resident Supervi­
sor is through a hardware interruption.
The Resident Supervisor is not time sliced.
Requests for Resident SUFervisor services
are represented by entries in queues. The
Resident Supervisor runs until it can find
no more work; that is, all the queues have
been examined and emptied out if possible.

~hen there is no more work that can be pro­
cessed, a task is selected to be placed in
execution.

7ask Monitor and System Service Routines

This section discusses the reasons for
including a Task Monitor, a set of system
service routines, and a privileged state in
7SS/360.

The basic function of a control program
is tc control the real system and to pro­
vide services to tasks. The control pro­
gram may itself £e either entirely resident
or nonresident. A nonresident control pro­
gram could have been employed by 7'S8/360 to
provide both task and system oriented ser­
vices for each task that gains control.
However, such a control program is ineffi­
cient because the time spent in reading
sections of the control program into main
storage generally would not be overlapped
}::;y process ing.

System Environment 11

On the other hand, a resident control
program that rrovides both task and system
services would permanently occupy a very
large amount of main storage. Some of this
storage would be occupied by infrequently
used routines.

In either of these cases, it would be
difficult to Kodify the system without
simultaneously making obsolete many of the
object programs contained in the system's
libraries.

There are many possible resolutions to
the question of which prograffis are to be
resident and which are to be non-resident.
In a paging system, an additional division
is possible, for a program may operate
using virtual addressing and still be
locked into main storage through an appro­
priate use of the main storage allocation
tables.

A resolution of this dilemma is to
separate control program fUnctions into a
resident portion and a nonresident portion.
In TSS/360 this resident portion is the
Resident supervisor, which creates a mUlti­
processing, multiprogramrr,ing environment
and provides services for the system as a
whole. The decision to rrake the Resident
supervisor operate in the non-relocation
mode was based upon the efficiency result­
ing from eliminating dynamic address trans­
lation overhead and upon the increased pro­
tection resulting from the fact that no
location within the Resident Supervisor may
be addressed by a channel operating upon a
task I/O request or a program operating in
virtual storage. On the other side of the
coin, the decision to operate the Resident
supervisor in non-relocation mode slightly
increases the complexity involved in making
certain portions of the supervisor non­
resident.

The nonresident or pageable portion con­
sists of a collection of modular virtual
storage service routines under the control
of the Task Monitor. This portion provides
task oriented system services; that is,
those services that are not immediately
dependent upon the hardware resources of
the system.

The Task Monitor and most task service
routines can each be separated into a pro­
cessing part that is common for all tasks
and a part containing data that is unique
to each request for service. All tasks
share the comrron processing parts (reen­
trant code). Each task operates with
unique copies of the data parts of service
routines which the task invokes.

The Task Monitor and its associated ser­
vice routines act as if they constitute a
Resident Supervisor for each task. That

12

is, they process requests for task services
(such as data management services) and
requests for virtual system resources (such
as virtual storage or symbolic devices).

This analogy is quite extensive. For
Example, the Task Monitor receives control
through what appears to it to be a hardware
interrUption complete with simulated old
and new Program Status Words and gives con­
trol to programs in the User state by
executing a macro instruction that is the
equivalent of a Load PSW instruction. In
both cases, this illusion is created by the
Resident supervisor. Figure 4 shows sche­
matically the relationship between the Task
Monitor and the Resident Supervisor in
creating this illusion.

The analogy which compares the interface
between the Resident Supervisor and the
System/360. cn the one hand, and the inter­
face between the Task Monitor and the Resi­
dent Supervisor on the other, is quite
extensive, but it is not exact.

Because programs operating in virtual
storage may use full-word virtual
addresses, it was not possible to make the
Resident-Supervisor/Task-Monitor interface
look like a System/360 Model 65. It would
have been possible to make the interface
look like a System/360 Model 67 so that,
for example, the Task Monitor could run as
a stand-alone program on a Model 67.
However, because the Model 67 is not
entirely compatible with other System/360
CPUs when operating with an Extended PSW,
it was felt that there was an advantage in
customizing the interface to facilitate,
among other things, internal sharing of
Frograrrs and data and intertask
communication.

This design has led to the creation of a
software state called the Privileged state
(level 2). The Task Monitor and most Sys­
tem Service routines operate in the Privi­
leged state. The Privileged state was
created to prevent the Task Monitor and
System Service routines from accidental
destruction and thus to prevent the
ordinary system user (authority code U)
from interfering with other users on the
system. Programs belonging to the ordinary
system user execute in the nonprivileged
state <level. 3).

The system fUnctions that support the
Frivileged state are:

• In a user·s virtual storage those pages
that are allocated to privileged rou­
tines and their associated tables and
work areas are assigned a storage pro­
tection key that differs from that
assigned to problem programs (i.e.,

Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193

Virtual Storage

Task 1 Task 2 Task N

User
Programs

(I)

" >
User
P""ograms

2
••• §? •

User
Programs

ct
I
C
a
Z

Level 3

Requests for Task Services and Virtual System Resources

Request Supervisor Services and Real System Resources

I -- --- ------ -- -- -0

" '" "
1

111 -0 1 Task Jv\on i tor and Task Monitor and Task Monitor and (l)

0 •• ·~I • .;;: Level 2
Service Routines ..c I Service Routines Sef,/ice Routines "-V> 1 V>I

Hardware Task 1 I Task 2 1 TClsK ~J
I

1 nrerruptions
Perform Task Services and Allocate System Resources

_---- Supervisor Call
___ ..L-_____ H"'ardware Interrupti ons

Levell

Resident Supervisor

. ________ ---- ENTER Supervisor Call

Figure 4. Relationship of the Task Monitor and System Service Routine to Nonprivileged
Machines and the Resident Supervisor

level 3 programs). This key will cause
a storage protect interruption if the
privileged part of a task's virtual
storage is addressed by a problem pro­
gram. Privileged routines, on the
other hand, can address all of the
task's virtual storage.

• The Dynamic Loader will not treat
modules from a problem programmer's
library as privileged routines. In
this fashion, a problem programmer can­
not cause his own version of a system
routine to be loaded and executed as a
privileged routine.

• A problem program normally requests
system services through Supervisor
Calls (SVcs) which are contained in
macro instruction expansions. In TSS/
360 these macro instructions collec­
tively are called the Extended Instruc­
tion Set. Many TSS/360 Supervisor
Calls affect data in system tables.
Erroneous information in system tables
may cause incorrect system operation.
Therefore, when a TSS/360 problem pro-

grammer requests virtual system ser­
vices his macro instruction issues an
ENTER SVC. In response to the supervi­
sor call, the Resident Supervisor will
create a simulated interruption that
will cause a privileged system service
routine to be invoked. The privileged
routine can then determine if the
user's request is valid. If it is
valid, the privileged routine may then
invoke other TSS/360 supervisor calls
while in the process of performing ser­
vices. If the request is not valid,
the request will be rejected, thus pre­
venting a nonprivileged routine from
causing incorrect system operation.

The reason for communicating between
problem and privileged state via the Resi­
dent supervisor is that only the Resident
Supervisor can execute the privileged
instruction that alters the PSW Protection
Key field.

The virtual storage system services pro­
vided by TSS/360 fall into two general
categories: (1) shared by all tasks, and

System Environment 13

Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193

(2) located in independent tasks. The dis­
tribution of system services between these
two categories has been made on the basis
of considerations such as frequency of use.
When a function is shared by all tasks, a
delay may occur while one task awaits the
resetting of a programmed interlock set by
another task. When a task uses a function
located in a separate task, a delay may
occur if the task must await the completion
of that fUnction.

System Services shared by all tasks are:

Data Management services
Dynamic Loader services
Catalog Management services
Virtual Storage Allocation
External Storage Allocation
Command System
Program Control System
Private Device Management services
Servicing of task-oriented interrupts by
the Task Monitor

The System Services that operate in
independent tasks are:

Main Operator Control Program
Batch Monitor
Bulk I/O service routines
System Edit program
On-Line Test System

IBM-Supplied Problem Programs

IBM-supplied problem programs also
reside in virtual storage and are time­
sliced. The only major distinction between
these programs and programs written by any
nonprivileged user of the system is that he
cannot modify these programs (as he can his
own programs); he can only transfer control
to them.

IBM-supplied problem programs are:

• Language processors, such as the FOR­
TRAN Compiler and the Assembler.

• Linkage Editor, which allows users to
combine and delete portions of program
modules.

Auxiliary Programs

These programs, with the exception of
the Time Sharing Support System, run as
stand-alone programs and are primarily
designed to aid in the creation and main­
tenance of a running TSS/360.

Time Sharing Support System

TSSS runs with minimum TSS/360 support
and provides system analysis facilities for
the system programmer.

14

Utility Programs

Direct Access Device Initialization
(DASDI)

Dump and Restore a direct access device
[DU~P/RESTORE]

Print the contents of a direct access
device {DADUMP]

Stand-alone Core Dump

System Build Program

SYSBLD is a resident, standalone utility
which operates outside the TSS/360
environment.

STARTUP Program

Startup performs the initial allocation
of main storage and, thereafter, the Super­
visor controls its allocation (see "Main
Storage Allocation").

System Storage

The three categories of storage are main
storage, auxiliary storage, and external
storage.

Main Storage: Main (core) storage is the
only storage in which programs can be
executed. It is initially allocated in
4096 byte units called pages, although pro­
grams (including the Resident Supervisor)
may subdivide pages.

Auxiliary Storage: Auxiliary storage is
storage that is set aside primarily for the
temporary storage of main storage pages
during system operation.

The devices used for auxiliary storage
are specified during System Generation and
must be on-line during TSS/360 operation.
The devices may be either IBM 2301 drum
storage or IBM 2311/2314 disk devices and
fall into two categories that form an
auxiliary storage hierarchy during normal
operation: primary paging device and
auxiliary paging devices.

Auxiliary storage is arranged in a modi­
fied virtual access method format and con­
tains a bit directory, which describes the
availability of each page.

Auxiliary storage is allocated initially
by Startup and thereafter by the Resident
Supervisor (see "Auxiliary Storage
Allocation-).

External Storage: External storage falls
into three categories, which are designated
during system generation and system start­
up: public, private, and system.

Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146

public Storaqe

Public devices are those devices set
aside for public storage contained on publ­
ic volumes.

Public devices are direct access devices
which are defined at system startup time.
Most direct access storage devices, such as
2311s, have removable packs. In TSS/360,
the number of concurrent users is much
greater than the number of separate volumes
available. consequently, most of the
available direct access drives are desig­
nated as public storage devices; their
packs are not removed during normal system
operation. Each public device on the sys­
tem is made available to each user's task
when his task is initialized. Each public
volume is formatted to contain data sets
that can be processed by any of the Virtual
Access Methods (VAM).

Public storage contains only cataloged
data sets. These data sets may be private
or sharable. Public storage is allocated
by the External Storage Allocation system
service routines.

Private Storage

Private devices are devices that are set
aside for mounting private volumes. Priv­
ate volumes need not be on-line when
requested. The use of private volumes,
with associated mounting and demounting,
plays a minor role in TSS/360 operations.
A private volume may be formatted to con­
tain data sets that can be processed by
either the Virtual Access Methods or the
Sequential Access Methods.

Private devices are requested by the
conversational user through the ooEF com­
mand and by the nonconversational user
additionally through the SECURE command.
Private volume moUnting is requested by the
ooEF command. The allocation of private
devices and the management of requests for
private volume mounting and demounting is
performed by the Device Management system
service routines (see "Device Allocation").
Storage allocation within volumes is per­
formed, when necessary, by the External
Storage Allocation system service routines
(see "EXternal Storage Allocation").

Private storage may
uncataloged data sets.
be private or sharable
qualifications) •

system storaqe

contain cataloged or
These data sets may

(see "Sharing" for

System storage consists of two devices
designated during System Generation as con­
taining those system data sets required for
starting up and running TSS/3~O. The two

system volumes are Initial Program Load
(IPL) Control Volume and Auxiliary Control
Volume.

Both volumes must be in a VAM format.
After System Generation, the contents of
these volumes may be modified only by the
SYSBLo (System Build) program, or System
Maintenance. Unused space on the Auxiliary
Control Volume is available for allocation
as part of the system's public storage.

The contents of these two volumes are as
follows:

IPL Control Volume: The first three rec­
ords of track 0 must contain the IPL Con­
trol Record, TSS/360 Startup Prelude, and
the Volume Label. The system data sets
that normally reside on the System Resi­
dence or IPL Control Volume are:

TSS*****.SYSCCB.GXXXXVyy (System Config­
uration Control Block) - A data set used
by Startup containing description of the
system configuration.

TSS*****.STARTUP.GxxxxVyy (System Start­
up Program) - A data set containing the
text of the Startup Program. Organized
as a partitioned data set, but with a
Single member. Partitioned Organization
Directory (POD) is ignored by the Start­
up Prelude which reads in Startup (see
"System Generation and Maintenance").

TSS*****.SYSBLo.GxxxxVyy (System Build
Program) - A data set containing the
text of the SYSBLo program. Organized
in a fashion similar to TSS.STARTUP (see
above) •

TSS*****.RESSuP.GxxxxVyy (System Resi­
dent Supervisor) - A partitioned data
set whose members are the modules of the
Resident Supervisor. These modules are
link-loaded by Startup into available
main storage. Presence in this data set
is a necessary but not sufficient condi­
tion for such link-loading because
Startup will load only those modules
whose names are inCluded in a special
member of RESSUP named LOADLIST and
which have not been loaded during a
STARTUP library search.

TSS*****.SYSIVM.GXXxXVyy (Initial Virtu­
al Memory) - A data set consisting of
those system modules that are automatic­
ally provided for each user's virtual
storage at task initiation time. These
modules are link-loaded by Startup and
written onto the primary paging device.
Startup will load only those CSECTs
whose names are included in a special
member of SYSIVM named LOADLIST (see
"Initial Virtual Memory").

System Environment 15

Page of GY28-2009-2, issued september 15, 1970 by TNL N28-3146

TSS •••••• APGENX - A data set consisting
of commands to the linkage editor.
These commands cause the linkage editor
to replace skeletal control blocks built
by STARTUP with new versions containing
installation parameters defined by means
of SYSGEN macro instructions.

Auxiliary Control Volume: The system data
sets that will normally reside on the
auxiliary control volume are:

16

TSS •••••• SYSCAT (System Catalog) - A
partitioned data set (one member per
system user) containing pointers to
cataloged data sets and information on
ownership and sharing privileges for
such data sets (see "Catalog").

TSS •••••• SYSLIB.GXXxxVyy (System
Library) - A collection of public
modules that are automatically eligible
for loading into each user's virtual
storage by the dynamic loader (see
·Object Program Libraries·).

TSS •••••• SYSMAC.GxXxxVyy (System Macro
Library) - An index sequential data set
containing definitions of the necessary
system macros to support normal nonpri­
vileged user assemblies (see ·Symbolic
Libraries·).

TSS •••••• MACNDX.GXXXXVyy (system Macro
Index) - data set that is an index to
TSS.SYSMAC (see ·Symbolic Libraries·).

TSS •••••• ASMMAC.GxxxxVyy (System
Assembler Macro Library) - An index
sequential data set containing defini­
tions of all system macros not defined
on SYSMAC. This includes system macros
available only to system programs as
well as nonprivileged macros limited to
system programmer operations because of
their function. This data set must be
specified as the second macro library
when assembling system modules (see
·Symbolic Libraries·).

TSS •••••• ASMNDX.GxxxxVyy (System
Assembler Macro Index) - A sequential
data set that is an index to ASMMAC (see
·Symbolic Libraries·).

TSS •••••• USERLIB (System User Library) -
The user library for the privileged sys­
tem programmer user with identification
·TSS". A user library is created for
each authorized user of the system at
JOIN time and is organized as a virtual
partitioned data set.

TSS •••••• SYSUSE (System User Table) - An
index sequential data set containing the
user 10, password, charge number, con­
trol counts governing the limit of sys­
tem resources available to the user,

accounting statistics, and privileged
attributes for each currently authorized
user of the system. This data set is
maintained by the system administrator
JOIN and QUIT commands (see ·System
Operator and Administrator Services" and
"Resource Allocation and Control").

TSS**** •• SYSLIB (SYSMLF) (System Message
Table) - An index sequential data set,
with keys identical to message numbers,
containing system diagnostic/prompting
messages.

SYSOPERO.SYSLOG.GxxxxVyy (System Opera­
tor Log) - A generation data group in
which each virtual sequential data set
contains a record of system-to-operator
and operator-to-systern communications
for a startup to shutdown session. At
each startup, a new SYSLOG data set is
defined. Any extra SYSLOG data sets
(above a maximum of 10) will be erased.

MULTIPROGRAMMING ENVIRONMENT

The TSS/360 multiple access environment
differs from a conventional batch multipro­
gramming environment in significant ways.

In contrast to conventional systems
where work is performed on only a few tasks
in a specific period of time. and where
only one system input (SYSIN) need be
defined in a multiple access system at any
one time, many such tasks are concurrently
processed, and many such SYSIN sources are
defined.

Because of this enVironment, it is
essential that a time sharing system be
able to multiprogram effectively among a
large number of tasks.

The features that assist TSS/360 in mul­
tiprogramming among a large number of tasks
are time-slicing and dynamic address
translation.

TIME-SLICING

TSS/360 allows many users concurrent
access to the system by granting each user,
at frequent intervals, a portion of comput­
er time called a time-slice. During his
time-slice, the user has the resources of
his virtual computer made available to him.
Because these time slices occur frequently,
the user can generally operate as though he
alone is using the system.

The idea of providing users with inter­
vals of computer time one after the other
is not new. Conventional multiprogramming
systems allow a task to be active in the
system until it must wait for system

address segment 3, page 5, byte 256. At
the beginning of a time slice, the segment
and page tables which describe that user's
virtual storage will be loaded into main
storage by the Resident SUfervisor. The
location of the first segment table entry
is stored into a sr:ecial register, called
the table register, by the Resident Super­
visor. This table register is one of 16
control registers provided in the Model 67
hardware.

In the example in Figure 5, the table
register has been loaded with the number
8,192 (200016), rer:resenting the main
storage location of the beginning of the
user's segrrent table. The Dynamic Address
Translation (OAT) unit then locates the
segment table in main storage using this
address and, since we are searching for
segment 3 and each segment table entry is
four bytes, the hardware can automatically
go to core location 8204 (200C 16) to find
the location of the page table for segment
3. The example shows that the page table
is at main storage location 16,384
(400016), The OAT unit thus can go to
location 16,494 (400A1 6) to find the fifth
entry. This is the entry for fage 5 of
segment 3. The entry in the page table
shows the beginning of that fage is in main

Logical Address

Segment Page Byte

Table

Dec Segment Tob!e Hex

8192 2000

8196 2004

8200 2008

8204 16,384 200C

] S imu Jtaneous Page Table
Search

16,384 4000

16,386 4002

16,388 4004

16,490 4006

16,492 4008

16,494 12,288 400A

Associative Register

12,288

Figure 5. Example of Dynamic Address
Translation

256
12,288

12,544

storage location 12,288 (300016), For byte
256 (10016) of that page, the hardware has
only to add that to L~e main storage loca­
tion to find the actual data location 12,
544 (3100 16),

Figure 6 shows the general scherr.e of
dynarric address translation, which follows
the same logic as described in this
examrle.

In r:erforrring dynamic address transla­
tion, the hardware uses binary arithrr.etic.
Thus the finding of the third 4-byte entry
in the segment table, for example, involves
a binary shift of two rather than multipli­
cation by 4. In a similar fashion, fage
table locations are found by a binary shift
of one, and the actual address is con­
structed simfly by appending the displace­
ment to the block address obtained from the
r:age table.

Even though such binary shifts are emp­
loyed, it can be seen that this double
table look ur would be time oonsuming if it
were necessary to do this for every
address. However, it is likely that once
having found the actual core location of
segment 3, page 5, the user's program will
reference this again, perhaps many times,
during the time slice. The full transla­
tion time of 2.1 microseconds then can be
avoided by making a "scratch pad memoran­
dum" of the fact that segment 3, page 5 is
actually located at position 12,288. This
rremorandurr, is made in one of eight associa­
tive registers. The registers are termed
associative since they are content
addressed.

Fer exarrfle, the next time the system
attempts to translate this address, the OAT
unit will begin a simultaneous search of
all eight associative registers in addition
to the regular table search outlined above.
A successful search for segment 3, page 5
can £e accomr:lished in just 150 nanoseconds
regardless of which of the eight registers
rright contain the address. In general, the
associative registers will hold the
addresses of the last eight translations
and a table lookup translation of logical
addresses referencing these pages will not
te necessary.

Because instructions tend to be executed
in linear sequences, the Model 67 Iraintains
both a translated and an untranslated
Instruction counter. Whenever the sequence
of instructions crosses a page boundary or
whenever a branch type instruction is
executed, the OAT unit is used to obtain a
rrain storage address from the virtual
storage address in the untranslated
Instruction Counter. Otherwise, the main
storage address in the translated Instruc­
tion Counter is utilized, thus minimizing

System Environment 19

Table Register Associative Registers

Cen9th I Segment Table Origin
I

[segment--T-~::--~I--~~~C-k ----JI----..,

lagi co I Address

I I I
I

Segment Page Byte I
8 I Add I I

I I 8

Segment Table Page Tobie

i I
L..-..... ~r Page Table Origin

I

I Add

I
Physical Block

Page Table Unchanged

Page Table

,---'-----,--I---'------l MNlOry
Block Byte J Address

'---______ '---______ Register

Main Storage Address

Figure 6. Dynamic Address Translation Process

the time spent in translating the Instruc­
tion Counter.

The mapping of virtual storage to main
storage just described also permits the
relocation of a program between time­
slices. In the Model 67 hardware, addi­
tional bits in the storage protection keys
provide the ability for the system to
deterrrane whether pages have been
referenced or changed. At the end of a
time-slice, all of the task's changed pages
are written out onto the auxiliary drum or
disk. Both changed and unchanged pages are
also retained in main storage where they
may be overwritten should some other task
need more pages than the supervisor has
available. This paging operation may take
place in reverse when a task's new tirne­
slice begins. When a page that has pre­
viously been written out is returned to
core, there is no necessity for the page to
be returned to exactly the same place it
was before. The page rray be relocated by
having the supervisor program post the new

20

location in the taSk's page tables. In the
preceding example, segment 3 page 5 rr1ay be
returned to rrain storage location 24,576
rather than 12,288 and the supervisor has
cnly to change the entry for page 5 of seg­
ment 3 of the page table illustrated.

Thus, any future translations will ITlap
segment 3, page 5 into location 24,576.
Main storage thus becomes fragmented -- at
anyone tine holding a number of pages from
several recently or currently active pro­
grans. However, the ill effects resulting
from main storage fragments of unusable
size is avoided, because fragments in main
storage, auxiliary storaqe, and external
storage are all of a uniform size.

Irrplied by the above description of the
paging process is the ability of the system
to keep track of pages that have currently
been written out to auxiliary storage or
that have never been brought into the sys­
tem at all. Associated with each page is
an external page table which, for each page

of the user's virtual storage, holds the
drum or disk address associated with it.
Thus, if page 5, segment 3 were to be writ­
ten out of storage location 12,288, the
associated external page table entry would
be noted with the temporary drum or disk
location of that page. The page table
entry itself would be marked to indicate
that a good copy of the page may no longer
be available in main storage.

When the next time-slice begins and the
first reference is made to segment 3, page
5, the dynamic address translation
mechanism above would find from the page
table that this page was not available. A
program interruption is then generated so
that the Resident Supervisor may take care
of the situation. The supervisor, in turn,
examines the external page table associated
with segment 3 to find the present location
of the page, and initiates a paging opera­
tion to bring that page back into main
storage so that the task may proceed.

During this period of time the task is
said to be in "page wait" and another task
is given control of CPU, just as in a con­
ventional multiprogramming environment.
pa~e wait is actually just another kind of
I/O wait. When the page is brought into
main storage, the page may be relocated as
previously described. With the completion
of the paging operation the task is now
ready to proceed again.

During the initiation of a paging opera­
tion, it may be found that the main storage
image of the referenced page has not been
overwritten or reassigned. In this case,
the main storage page is reclaimed by the
task and no page-in is necessary.

The technique of grouping pages into
segments has been used to provide:

• A convenient way of sharing programs or
data among tasks. A common page table
can be pointed to by segment table
entries for several different tasks and
each such page table can be restricted
to be shared among different groups of
users.

• A way of reducing the amount of conti­
guous wain storage needed by the relo­
cation tables. The Segment Table must
reside in a contiguous block of main
storage, and each Page Table must
reside in a contiguous block of main
storage. The Segment Table and each
Page Table, however, may reside in dif­
ferent bloCKS of main storage.

• A way of reducing the amount of main
storage required to contain page
tables. The Dynamic Address Transla­
tion unit requires that a task's Seg-

ment Table resides in main storage
while the task is executing. However,
the page tables for a task need not be
kept in rr,ain storage. A page table for
a segment could be brought into rrain
storage when a virtual storage address
within the segment is referenced.

• A convenient way to allocate a conti­
guous data area of unknown length.
Only the area at the beginning of a
segrrent need be allocated. Then data
and page tables can dynamically expand
and fill the segment as required.

A segrrent contains 256 pages. This
number of pages was selected in response to
several considerations.

Since there are 4096 bytes in a page, 12
bits are required for addressing bytes
within a page. The remaining 12 bits of
the logical address may be divided between
segments and pages. Because data is trans­
ferred within the Model 67 and its Dynamic
Address Translation Unit in multiples of
four bits, the only possible choices in the
24-bit version are to divide the remainder
of the logical address into either 16 seg­
rrents of 256 pages each or 256 segments of
16 pages each. Then the 32-bit version
would have a maximum of 4096 segments in
the former case and a maximum of 65,536
segments in the latter case. A large seg­
rrent size minimizes the possibility that a
contiguous data area of unknown length will
grow to exceed the space reserved. On the
other hand, a large number of small seg­
rr.ents would act to increase significantly
the amount of main storage occupied by
tasks' segrr.ent tables.

The former alternative was chosen; that
is, each segment contains 256 pages. Thus,
the 24-bit version has a maximum of 16 seg­
ments, and the 32-bit version has a maximum
of 4096 segments. The way in which these
segments are allocated is discussed in
·Virtual Memory Allocation. w

In surr.mary, the virtual storage concept
of the Model 67 is implemented by a paging
nechanisrr.. This mechanism combines a hard­
ware device called the Dynamic Address
~ranslation Unit with programming in the
Resident Supervisor to map virtual storage
addresses into main storage addresses. The
programming also keeps track of the origin­
al or the temporary drum or disk locations
of each page and permits the relocation of
pages as they are written out and then read
back in again. The net effect is tc ensure
that generally only the pages demanded by a
task are actually in main storage at any
one time, and that many tasks may have such
pages in main storage at one time. The
entire paging rrechanism is not apparent to
the programmer or user. He deals only with

System Environrrent 21

a virtual rrachine and is not dirEctly con­
cerned with what the hardware and software
do to translate the virtual machine into
the real machine.

In a time sharing environment it is
expected that users will most frequently be
concerned with solving a problem easily and
will only infrequently be concErnEd with
improving the efficiency of object program
execution. However, froIT the point of view
of efficiency, it is well to remember that
virtual storage is not the equivalent of
IDClin storage in the sense that a program is
completely resident during its execution.
As the preceding example of dynamic prograrr
relocation has shown, virtual storage is
implemented by an "automatic" or system
controlled overlay schemE based on the
movement of page size fragments into and
out of main storage. ThereforE, when effi­
ciency of execution is an important consi­
deration, the TSS/360 user must take into
account this characteristic of virtual
storage just as the user of a convEntional
system must plan overlays for the efficient
execution of large programs.

CONFIGURATION

Configuration refers to the number and
interrelationship of the various components
in a computer system. The timE sharing
system has been designed to operate in a
wide variety of configurations so that the
requirements of many different types of
installations may be satisfied. The simpl­
est type of installation may have only a
few users and it therefore requires only
one processor and a few input/output
devices. In such an installation, changing
processing requirements may be met by
increasing or decreasing the number of pro­
cessors or storage units or input/output
devices. An installation having a large
number of users may require two processors
as well as several storage units and many
input/output devices. Changing processing
requirements in this case rr:ay cause the
number of processors, in addition to the
nurrber of storage units and input/output
devices, to change. The interconnection of
system corrponents has beEn designed so as
to make the Model 67 easily adaptable to
any required configuration. Configurations
may ce controlled by means of a config­
uration console as described in thE section
on system partitioning.

Interconnection of Systerr Components

A simple interconnecting structure for a
series of processing units and associated
storage units is the crossbar switch arran­
gement shown in Figure 7.

22

Storage Storage Storage

------- ---,
I

-+---i-~
I
I
I
I

f--T---+-----t-------t--1

Figure 7.

Chonnel~

Channels

Figure 8.

_______ J_~
Crossbar Interconnections of
System components

Listributed-Switching Intercon­
nection of System Components

For the time sharing system, however,
the switching arrangement is not a centra­
lized switching point, but is distributed
among the various components that form the
system (see Figure 8).

The reasons for adopting the distributed
approach are improved availability and fle­
xibility. A centralized piece of equipment
represents a crucial link within the sys­
tem, since its failure would cause the
entire systeE to fail. It would be costly
of System Components to remedy this by dup­
licating equipment. The distributed
apfroach is more flexible than the crossbar
approach and facilitates extension cf the
system by addition of more processors or
storage units.

The interccnnecting structure shown in
Figure 8 shows that the necessary switching
equipment is distributed among the system
components, central prccessor, channel con­
troller, and core storage units. Drivers
are added to the processors as required,
and the equipment needed for selection of
any of the processor bus systems is added
to the core storage units. Instead of the
single bus connection (tail) of the simplex
system, multiple tails are provided for a
multiprocessing system. The design of the
circuits that select from among the tails
is such that if a storage unit should fail
(including power failure), the other
storage units connected to the storage bus
would remain operative. When the bus con­
trol unit within a processor fails, the
entire bus driven by this unit is, of
course, inoperative. This bus will not,
however, prevent proper functioning of the
storage units with the remaining
processors.

I/O channels within a multiprocessor
system are flexible in the System/360
design. The channels perform the transmis­
sion function. All controlling functions
for I/O devices are placed within the con­
trol units for these devices. Thus, the
channel deSign is general and applies to
all I/O devices.

As with the processors and core storage
units, a control unit can be attached to
more than one channel J::y means of multiple
tails. The switching equipment is modular,
a design that avoids the problem of cost
and poor reliability of centralized
switches.

A channel operates concurrently with the
processing unit and may J::e treated as an
independent entity within the system. As
shown in Figure 8, the channels may be
grouped into two sets, each provided with
its own channel controller; thus there are
two systems for I/O operations. Storage
units are equipped with the necessary tails
to accomodate the additional busses. Chan­
nels are addressable by either processor
and can return their interruptions to eith­
er unit.

System Partitioning

There are three major machine configura­
tions in which the time sharing system may
operate: Simplex, duplex, and half duplex.
A simplex configuration is characterized by
the presence of one processor. A duplex
configuration is characterized by the pre­
sence of two processors, a configuration
console and one or more channel control­
lers. A half duplex configuration is
characterized by the presence of one pro­
cessor, a configuration console and one
channel controller. A half duplex config-

uration may be part of a duplex config­
uration that is separated or partitioned by
rreans of the configuration console.

The configuraticn console has been
designed to allow a duplex configuration to
be partitioned into a variety of half dup­
lex configurations. The design is based on
the distril::uted interconnection method.
Configurations are determined by the set­
ting of switches. A maximum of eight core
storage units may be connected to a rr,axirrum
of two channel controllers and a maximum of
two processors. The address range (mul­
tiple of 256K l::ytes) of core storage units
connected to the same processor may be set
at the console. The connection of input/
output control units to channel controllers
rray be set. A switch is included which
indicates which channel controller is to be
addressed by a processor during initial
program load (IPL). This switch is neces­
sary because IFL sets the processor to
standard PSW mode and in this mode the pro­
cesser addresses channel controller O. If
channel controller 1 is to be addressed by
a processor during IPL, the switch must be
set accordingly for the processor. (See
section en ·Processor Time Sharing
Features·.)

Figure 9 shows a sample simplex config­
uration. Figure 10 shows a sample duplex
configuration. Each circled X represents a
partition point. A partition pOint is con­
trolled by a switch on the configuration
console. The setting of a configuration
switch is indicated in a control register
and rr.ay be sensed by a program using the
Store Multiple Control instruction.

In a duplex configuration each channel
controller may be controlled by any proces­
sor in the system via busses connecting the
two. A partitioning switch either permits
this control or causes the channel con­
troller to ignore any attempt by this CPU
to initiate an 1/0 function. When the
processor-to-channel controller path is
inactive, commands to the channels and
devices attached to that channel controller
are not executed and causes condition code
3 to be set in the PSW. This indicates to
the processor that the channel is not
operational.

The control units for the high-speed
drum and direct access files can have two
interface connections (tails) each, thus
permitting each control unit to be physic­
ally attached to two channels. The logical
connections between the control units and
the channels is under program control. thus
providing the programming system with the
facility to connect the control unit to any
of its channels. Once a connection is
established, it is preserved until the con­
trol unit is released by a command from the

System Environment 23

connected channel. Release caUSeS the con­
trol unit to assume the neutral state in
which it is available to any channel.

In the IBM 2702 Transmission Control
Unit, which provides for attachment of com­
munication lines to the multiplexor chan­
nel, the switch connecting the control unit
with either of the channels is placed in
the neutral position upon resetting the
control unit. The first programmed selec­
tion of a corr.munication line subsequently
causes the control unit and all associated
communication lines to be switched to the
selecting channel. This connection is
maintained until the control unit is reset
or a release function is performed.

When a control unit has been discon­
nected frorr. a channel by the partitioning
switch, that channel does not have access
to the control unit and all devices on the
control unit appear to the channel to be
non-operational. The not-operational state
of a control unit or device is indicated by
condition code 3 being set in the PSW. To
restore switching under prograrr. control,
the control unit must be reconnected to the
system by the partitioning switch.

MULTIPROCESSING FEATURES

The tirr.e sharing system may operate in
an environment containing rr.ore than one
processor. When this is the case, consi­
deration must be given to the interaction
of processors. Since processors may access
storage, provision must be made to prevent
interference when several processors
attempt to access a common storage medium
at the same time. This safeguard is pro­
vided by interlocks. Communication between
processors is accomplished by the signal­
ling method described below. When a pro­
cessor does not function properly it may
cause the entire system to operate inco­
rrectly. Therefore, the rr:alfunction alert
feature is provided. A malfunctioning pro­
cessor may be taken out of the system and
then reintroduced when repaired. The sys­
tem then starts the processor in operation,
as described belOW in the section on pro­
grammed initialization.

The necessity for interlocking arises
when different processors share a common
storage medium. Interlocks prevent one
processor from interfering with another
processor in the manipulating of shared
data or programs. When a serial input/
output device is the comrr.on storage medium,
interlocks are provided by the operating
nature of the device. such a device can
only maintain one data transfer operation
at a time to or from the storage medium.
This serial transfer of data provides the

24

required interlock. When a direct access
input/output device is the common storage
rredium, interlocks are not provided by the
operating nature of the device. Fcr a
direct access device, several transfer
operations may occur during the tirr,e
between the completion of a seek command
and the read or write cormnand. In this
case, interlocks may be provided by pro­
gramming. The Resident Supervisor provides
prograrrrred interlocks through the use of
pathfinding tables. The method is
described in ftpathfinding. ft

The necessity for interlocking also
arises when the shared storage medium
between Frocessors is core storage. For
example, each processor may simultaneously
atterrpt to update the same record in a
table. Without interlocking, the results
cf the simultaneous update may be
erroneous. With interlocking, one proces­
sor rray reserve the table containing the
record, perform the update, and t.hen
release the table. The second processor
may then perform its update. Thus, there
is no logical interference between
processors.

When two processors simultaneously requ­
est access to core storage, the grant:ing of
access must be done in such a way that one
frocessor does not lock out the other.
Otherwise, the locked out processor will be
effectively halted. A workable interlock
method is as follows: in core storage,
electrical interlocks go into effect for
the period of one storage cycle. When two
processors simultaneously request access to
core storage, a tie breaking priority cir­
cuit grants access to one processor, then
gives the next cycle to the other rroces­
sor. Inrut/output requests are granted
higher priority than processor requests.
Ey this rrethod, both processors receive
access to core storage and neither may be
locked out by the other.

A further interlock is necessary to pre­
vent interference between processors. Even
though access to core storage is granted
for the duration of one storage cycle, the
execution of an entire instruction usually
requires several storage cycles. There­
fore, twc processors may write into the
same location on alternate storage cycles.
To prevent such an occurrence, a programmed
interlock is provided in the form of the
Test and Set instruction. This instruction
sets the condition code according to the
state of the leftmost bit of the addressed
byte and then sets the entire byte to all
cnes. The byte in storage is set to all
ones as it is fetched for the bit test. No
cther access to this byte is permitted
between the moment of fetching and the
rrorr,ent of storing the ones.

PROCESSOR STORAGE

PROCESSOR

CHAN~JELS

DRUMS
DISKS

TAPES

i052
Printer

_~,"y~oor_d __ J

CARD READERS
PUNCHES
PRINTERS

TERMINALS

2870-cd Multiplexor
Channel
~-,-------

M -' 5

2402
(Tape

~Unit

2365
Processor
Storage

I
____ L __

Tape) ~/ 2402 \

UnitL

~~~ 
~5tEJ° Card Read 

Punch 
--~----

[-

[
,---2702--i 
Transmission jl 

Control 

~-~----.-~ -.~-

2365 
Processor 
Storage 

I 

2860 
Selector 
Channel 

Storage 
Control 

2311 
Disk 

Storage 
Drive 

Figure 9. Sarrple Sirn.~;lEX IBM System/360 Tirre Sharing System 

System Environment 25 



STORAGE' 
UNITS 

PROCESSORS 

CHANNELS 

DRUMS 

DISKS 

CARD READERS 
PRINTERS 
PUNCHES 
TAPES 

2365-2 
Processor 
Ste·rage 

262,144 
Bytes 

2365-2 
Processor 
St-orage 

I 266,144 

~-~ 2365-2 
! Processor 

I Storage 'I 

: 262,144 
i 8 tes 

I-~- ---~ --, --
~-

L-rr~ 
',,- , : 2067 ~--- 1-052-7 I • I 052~7--' 2067 

i Printer ~ Processor i Processor Printer J 
' Keyboara "----r- ~-- -- l--"eybo"-,,,-~ r -- 'T---

r'~ _JL_~I 
I 2846 I 
! Channel Controller ! i---------1-r------~' 
i H:gh Speed I I selector_~1 
1 t,A.J ltipLexor .1 ! C, hanne! 
, Channel ' 
1M LS i3T2fl 

,-----::-:----, 
• 2161-2 ' 
! System I 
i ConfigurJ 
~ontre>.L 

L __ , __ - _'_,---' '-',--,---'..-'---'_ 
~~+I--------------~ 

,----------- '----

, 2702/'2703 I 
i Trans.miss ion i 

T ,crtl· r 
Devices 

2821-5 
Control 

Unit 

J,820 

I Storage 
i Control 
---~ 

I) .. "m ) 
I Drum 

'\L~~~ 

! 

i 

J ~ 

I 
2820 

Storage 

i Control 

I 

I) 2301 
Drum 

Storage 

1 

ChanneI2~~ntroller :-
2860-2 2870 

Selector High,Speed 
Ch I Multiplexor I 

anne Channel 

! 1 I 2 I 3 S I M I 
I I 

! 

I 

I 28G3 I 
Tope 

L-~~ 

iQ) Q ~ape. (;-:lP-~" 
l Unit (~:~) \ Unit \ Unit 

\~ ~ \,~~- ~ 

1-2702~03; 
f Transmission : 

I, fr"t" 
Terminals 

REMOTE TERMI'l,t,LS 
:9 tv"lanual Partitioning Switch 

Figure 10. Sample Duplex IBM System/360 Time Sharing System 

26 



Page of GY28-2009-2, issued september 15, 1970 by TNL N28-3146 

By using this instruction, a program in 
one processor may know that a program in 
another processor is updating a shared data 
area. The first program should then wait 
until the condition code of the byte indi­
cates that the second program has released 
the area. This instruction also provides 
interlocking between programs in a time 
sharing environment. By means of the Test 
and Set instruction a program may interlock 
a data area even at the very end of the 
program's time-slice. No other program may 
then interfere with the data area until the 
interlock is released by the original 
program. 

Signaling 

The Model 67 is provided with a feature 
that allows processors to communicate 
through a common storage facility. For 
example, a p=ocessor may be alerted when a 
message has been prepared for it by another 
processor. This feature consists of 
extended direct control and external inter­
rupt lines. Extended direct control refers 
to the direct control feature augmented by 
the ability to mask external interruptions. 
Associated with the direct control instruc­
tions is an interface at which eight Sig­
nals are made available. A signal from one 
processor is connected to one of the 
external interruption lines of another pro­
cessor. By means of the Write Direct 
instruction, the program in one processor 
may cause an external interruption in 
another processor. 

MalfUnction Indication 

In a multiprocessing system it is neces­
sary for processors to be informed when any 
processor in the system is not performing 
properly. In the Model 67 a malfunction 
signal is issued when a processor malfunc­
tion is detected. This signal is similar 
to the direct control signal and is trans­
mitted to another processor in the system 
using the external interruption inputs of 
the processor. 

The extensive checking included in all 
System/360 equipment is useful not only in 
error detection but also in the improvement 
of fault location. A high degree of check­
ing makes it possible to recognize malfunc­
tions on short notice and thus preserve the 
state of the processor for later diagnosis. 
Furthermore, the detailed error information 
made available to the customer engineer can 
reduce the repair time and contribute to 
the overall system availability. 

Programmed Initialization 

Each IBM System/360 processor uses per­
manently assigned storage locations (0-121) 
for program status words, channel address 

and status words, the timer, and initial 
program loading. During program switching, 
such direct addressing may also be neces­
sary when the supervisor must store the 
general purpose registers. In a TSS/360 
multiprocessor system, if these locations 
were common, they would be shared by both 
processors, and interference among proces­
sors would result. To provide each proces­
sor with separate assigned storage, a quan­
tity called a prefix is automatically used 
by the Model 67 for relocation of addresses 
referring to the first 4096 storage loca­
tions. In a multiprocessor system, each 
processor is normally assigned a different 
prefix, and the sharing of these preferred 
locations is therefore avoided. 

The prefix relocates all storage 
references that can be directly addressed 
(using zero-base specifications) by the 
displacement. Thus, main storage locations 
0-4095 are not used and the prefixed pre­
ferred storage locations can be directly 
referenced by their actual storage 
addresses and indirectly referenced by the 
automatic prefixing of addresses in the 
range 0-4095. 

If a partitioned storage element con­
tains the prefixed storage locations for 
the processor, new locations can be made 
available by introducing an alternate pre­
fix. For this reason, a second (i.e. 
alternate) prefix quantity is supplied for 
a processor. 

Normally, the two prefix quantities 
(i.e. primary and alternate) relocate the 
preferred storage locations to different 
storage units; the processor therefore 
becomes independent of a specific storage 
unit for i.ts operation. This relationship 
is depicted in Figure 11. 

The fact that the preferred locations 
can be normally addressed is useful in con­
nection with start up or reinitialization 
of the system. 

When a processor is starting up the sys­
tem, it may determine its own identity by 
inspecting a specified location in its pre­
fixed storage area. The active CPU accomp­
lishes this by placing into the prefixed 
storage area of each CPU in the system a 
value which uniquely identifies that respe­
ctive CPU and prefixed storage area. This 
is done through normal addressing. Then 
the active CPU inspects the specified loca­
tion using an address in the range 0-4095 
and identifies itself and the prefix cur­
rently being used. 

When a processor is reintroduced into a 
multiprocessor system, operator action 
should be minimized. Introduction of a new 
program status word and the corresponding 

System Environment 21 



Page of GY28-2009-2, issued september 15, 1970 by TNL N28-3146 

o - 256K 256 - 5l2K 512 - 768K 

Primary 
CPUI 
PSA 

4,095 

Primary 

CPU2 
PSA 

Alternate 
CPUI 
PSA 

I Alternate 

I 
CPU2 
PSA 

L 

Storage Element Storage Element Storage Element 

I 1 ~ 

CPU 1 CPU 2 

eFigure 11. A Sample Relationship Among Processors, Storage Elements and Prefixed Storage 
Areas (PSAs) 

instructions may best be performed by the 
still-operating part of the multiprocessor 
system. For this reason, means are pro­
vided for one processor to start another 
processor. Before the external start, the 
still active CPU places a PSW into relative 
location zero of one of the prefixed 
storage areas of the inactive CPU. It then 
issues an external start signal to the 
inactive CPU. 

In this case, the external start con­
sists of loading an initial PSW from loca­
tion 0 and performing the necessary system 
reset. 

This signaling again has been defined 
consistent with the signals of the direct­
control circuits. There are two signal 
inputs, each of which causes an action 
similar to initial program loading. The 
choice between the two signals determines 
which prefix is used, and hence the loca­
tion of the prefixed storage area. 

Prefixed Storage Areas 

The set of 4096 bytes that is directly 
addressable by a CPU (using the low-order 
12 address bits plus a hardware prefix) is 
called a Prefixed Storage Area (PSA). 

A prefixed storage area contains data 
and programs that are unique and private to 
each CPU. While preventing interference 
between processors, the PSA also functions 
as a logical extension of the general regi­
sters that makes it possible for more than 

28 

one CPU to execute a supervisor component 
at the same time. The general format of a 
PSA is described in Figure 12. The first 
128 locations of the PSA are reserved for 
status words, timer, interruption indica­
tors, etc. The next 200 locations are per­
manently assigned to hardware diagnostic 
logouts. The CPU·s private working storage 
area is assigned to selected supervisor 
programs. Some of the private area is used 
for temporary storage of general registers, 
without requiring a base register for 

Hex 
o 

80 

130 

148 

IC8 

200 

228 

800 

BE8 

PSW Area 

CPU logout 

CHANNEL Logout 

CPU Private Working Storage 

CPU Status Table 

CPU Private Working Storage 

RESERVED 

INTER-COM RESIDENCE 

SERR DAMAGE REPORT 

COO 

E2C 

ERROR RECOVERY CONTROL TABLE (SERR) 

CPU Work Area 

E38 RESERVED 

1000 

eFigure 12. Prefixed Storage Area 

Dec 
o 

128 

304 

328 

456 

512 

552 

2048 

3048 

3072 

3628 

3640 

4096 



Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146 

generation of the address of the register 
save area. A special location within the 
PSA is reserved for the inter-CPU communi­
cation subroutine for use as an incoming 
message drop area from a calling CPU. 

Also contained in the PSA is the Error 
Recovery Control Table which provides the 
Recovery Nucleus and the SERR Bootstrap 
with dynamic work areas. It also contains 
the SERR Common pool of adcons, the physic­
al device address, and control data needed 
by the various SERR transient modules. 
This area is not to be confused with the 
SERR communication area located in the last 
256 bytes of the SERR operating area. 

PROCESSOR TIME SHARING FEATURES 

Extended Mode 

In System/360, a program status word 
(PSW) is used to reflect instruction 
sequencing and to hold and indicate the 
status of the system in relation to the 
program currently being executed. The PSW 
contains information such as the instruc­
tion address, condition code, storage pro­
tection key and program mask. 

By loading a new PSW, the state of the 
CPU can be initialized or changed. 

The Model 67 has been designed to oper­
ate under the control of a PSW in two poss-

o 8 12 16 

ible modes. The first mode, standard PSW 
format, is defined in principles of Opera­
tion. The second mode, extended control 
PSW format, is defined in Model 67 Func­
tional Characteristics. A comparison of 
the PSW formats for the two modes is shown 
in Figure 13. The purpose of introducing a 
second mode is to extend the capability of 
the processor to handle the time sharing 
environment. The environment includes 
dynamic address translation, extended chan­
nel masking, and external signal masking. 
The mode is determined by the setting of a 
bit in a control register. Information 
relevant to time sharing contained in the 
PSW in extended mode operation includes the 
following: an indicator enabling reloca­
tion (dynamic address translation), an 
indicator enabling I/O channel masking by 
control registers, an indicator for extern­
al interrupt masking by a control register, 
and the logical instruction address. The 
Extended Control PSW does not contain an 
interrupt code field. When an interrupt 
occurs, the interrupt code is stored in a 
specified storage location as shown in 
Figure 13. 

TSS/360 operates in the extended control 
mode. When the Model 67 is operating in 
the extended mode, the operation of the 
following instructions is slightly modi­
fied: Load PSW, Set Storage Key, Translate 
and Test, Edit and Mark, Load Address, 
Supervisor Call, Branch on Index High, 
Branch on Index Low or Equal, Set System 
Mask. For a discussion of the modified 

S tandord PSW 

32 34 36 40 63 Cont Reg 6 

Bit 8 

o 
System 
lv\osk. 

5tg Key Code ! AMWP Interruption 

I 
I PGM 

ILC CC I Mask 
Instruction Address 

I 

Extended Control PSW 

o 4 6 7 8 12 16 18 20 24 

I t i 
SPARE i Stg Key AMWP LC I CC 

PGM 

j 
SPARE 

i 
Mas~ 

OBit L_ L hternal Interrupts Masked Off (Cont Reg 6") 

Conditions -- L/O Chonne Is Masked au {Control Registers 4 and 5) 

No Relocation 
______ 24 Bit Addressin 9 Ex tended Co 

psw 
ntro:l 

Interrupt Code 

-Figure 13. PSW Formats 

32 

logica I 

TYPE 

Instruction Address 

STORE 
LOCATION 

Ext 14-15 
SVC 16-17 
Prog 18- 19 
Moch 20-21 
I/O 22 - 23 

63 

System Environment 29 



Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146 

functioning of these instructions, see 
Model 67 FUnctional Characteristics. 

The Model 67 contains a set of control 
registers to assist in time sharing and 
multiprocessing operations. A maximum of 
sixteen control registers may be included, 
but at present only twelve have assigned 
fUnctions. The functions are: 

30 

• Table register (for dynamic address 
translation> 

• Relocation exception address register 

• Two extended mask registers for masking 
I/O channels 

• A register containing machine check 
mask extensions for channel control­
lers. extended mode indicator, config­
uration control indicator, external 
interruption mask 

• Two registers containing the status of 
main storage partioning switches 

• A register containing the main storage 
addresses aSSigned to logical processor 
storage units 

• A register containing the states of 
channel controller partitioning 

switches and channel address 
assignments 

• Two registers containing the states of 
control unit partitioning switches 

• A register containing the states of 
direct control partitioning switches 
and the states of prefix deactivation 
switches 

The following new instructions are 
included in the instruction set of the 
Model 67: Branch and Store, Load Real 
Address, Load Multiple Control, and Store 
Multiple Control. For a discussion of 
these new instructions see Model 67 Func­
tional Characteristics. 

Storage Protection Extension 

Additional capability has been imple­
mented in the storage protection circuitry. 
By extending the field of the storage pro­
tection key from 5 to 7 bits, TSS/360 can 
evaluate the utilization of storage. If a 
reference is made to any location within a 
given block of storage or if the contents 
of the block are modified (changed) these 
facts are recorded by the hardware. Using 
these facts, the programming system may 
later analyze the activity of storage 
blocks. 



This section describes the general logic 
of the Resident Supervisor and the Task 
Monitor. A schematic view of the relation­
ship between these components and the rest 
of the system is shown in Figure 14. 
Examples of the use of these components 
within the system are described in other 
sections, particularly "Interruption 
Handling." 

RESIDENT SUPERVISOR 

The main function of the Resident Super­
visor is to process interruptions and in so 

CONTROL ARCHITECTURE 

doing provide management of the system 
facilities. The system facilities include 
Frocessors, n:ain storage, input/output 
devices, and paging devices. 

The sFecific functions performed by the 
Resident Supervisor can be categorized as 
follows: 

• Interception and initial handling of 
all interruptions 

• Concurrent control of a variable number 
of tasks 

Ac,-~,~ ''<'.01 ' '00: 
,"j AM - ---.---- --B"SAff 

, 

~ 
~ 

• A • I 

1 

Res:tore T m.k 

Status 

Figure 14. TSS/360 PrograIl! Structure 

Control Architecture 31 



• Time slicing and task dispatching on 
the basis of a scheduling algorithm 

• Main storage allocation 

• Auxiliary storage allocation 

• Accurrulating task usage cf CPU time for 
accounting 

• Reading and writing pages 

• Perfonring non-paging I/O in response 
to requests from tasks 

• CPU and Paging I/O error retry and 
recovery procedures 

• Systen Restart on a non-correctable 
error 

These are the types of TSS/360 interrup­
tions and their initial classification: 

.Interruption 
Machine Check 

External 
Timer 
Operatcr's Ccnsole Key 
write Direct 
Malfuncticn Alert 

SVC, issued in: 
supervisor State 
Prcblerr State 

PROGRAM, issued in: 
Supervisor State 
Prcblerr Stat e 

Classification 
emergency 

standard 
standard 
emergency 
emergency 

emergency 
standard 

emergency 
standard 

The Resident supervisor has the follow- I/O 
ing components: 

• Interrupt Stacker 
• Queue Scanner 
• Dispatcher 
• Processors 

Interrupt Processcrs 
Request Processors 
SVC Processors 

• Major Error Recovery Routines 
• Supervisor Service Subroutines 

An overview of this ccmponent structure 
is presented in Figure 15. 

INTERRUPT STACKER 

The Interrupt Stacker is the only entry 
point to the Resident Supervisor. The 
function of the Interrupt Stacker is to 
classify interruptions and either enter 
them in queues or pass them to the Time 
Sharing Support System. That is, the 
Interrupt Stacker permits incoming inter­
ruptions to be stacked while previously 
received interruptions are being processed. 
A queue entry contains a forward and back­
ward pointer to entries in the same queue. 
when an entry is to be moved from one queue 
to another, only the pOinters are changed. 
Thus, the entry itself does not have to be 
physically moved. Quite frequently, one 
control block rray belong to several queues 
and contain forward and backward pointers 
to each of them. In proceSSing these mul­
tithreaded lists, the supervisor becomes, 
in effect, a list processor. 

The Interrupt Stacker performs an ini­
tial analysis of the incoming interruptions 
in order to distinguish between software 
defined "emergency" interruptions which 
require imrr-ediate prccessing and • standard" 
interruptions which do not require immedi­
ate processing and alsc to distinguish 
between TSS/360 and TSSS interruptions. 

32 

Frcm paging drum 
From any other device 

standard 
standard 

The Time Sharing Support System services 
a sirrilar set of interruptions (with the 
exception of Machine Check) with its own 
set of interruption processors. These 
interruptions are initially received by the 
Interrupt Stacker and, in the case of the 
Virtual Support System, are eventually 
enqueued on the task's TSI or, in the case 
of the Resident Support System, passed 
directly to the appropriate TSSS interrupt 
processor. 

For emergency interruptions, error con­
trol routines are called (see "Error 
Procedures") • 

For most standard interruptions, the 
Interrupt Stacker builds a record called a 
General Queue Entry (GQE), which describes 
the interruption. The GQE is attached to 
the appropriate interruption processor 
queue. 'I'he GQE is des cribed in a separate 
section. These queues of stacked interrup­
tions are prccessed in a logical order, 
essentially on a first in first out basis 
within each queue. The queues themselves 
are processed on a priority basis. 

Most supervisor call <SVC> and ncn­
Faging Frogram interruptions originating in 
the software non-privileged state are simp­
ly transferred to the Task Monitor, by 
appropriately manipulating Program Status 
words, with immediate return to the task. 

Interruptions are masked during proces­
sing in the Interrupt Stacker. However, in 
contradistinction to most conventional sys­
terr,s, the Resident Supervisor generally 
executes with interruptions unmasked. This 
facilitates the processing of interruption 
queues cn a Friority basis. 



() 
o 
:J 
rt 
I"i 
o 
..... 
:J:; 
I"i 
("l 
CJ 
f-'. 
M­
(1) 
('J 
rt 

R 
(1) 

w 
w 

r---

L ____ _ 

Figure 15. 

111tt'ffLJpt htt;i'llJp' 

~~'~~~_,_l~Cl~II.('rr, 

Prosrorn 

Inter-rl'i' 

I/O IflC,,'II\Jpt 

~-DTs~~;-l 
LJo~ __ J 

Yl'5 

Program 

Interrupt 
Code<16 

yc~ 

Disabled 

Int~~r";ts t-E~ble-d 

No 

- - .- ~- - - - - -- - - ,- QUC:UE SCAN~;~i\ ,'05)- - - - - - - - - - - (Pr;r>r;ty ()f Pro(,!"",ing is Left to Rig!'t:- ~ 

Resident Supervisor Component Structure 

I\~,oc f, 1'1(' 

Interrup~ 

~NAII 
't:-:'f G.f:"l".,r'lI€' 

,~A:.:.1 h,nc : ie 

Ait'r! 

ProC:("~:.OI 

Pogt:' & 

E;'Iception 

Olnel 
SuC)ervis.:)' 

).Jbraurinc,; 

c'.),,~ CI,w')I.,1 

tnqut'ul;: 

DeLJuel"o 

[ "~('rn(11 

Paoe lDCO­

tio~', Addr 
Tr,:mslotor 

Entrance 
Criteria 
Rescheduling 



In addition to creating a GQE and plac­
ing it on the rroper interrupt queue, the 
Interrupt Stacker maintains a log of the 
last 100 interruptions. 

After completing its processing, the 
Interrupt Stacker saves the complete status 
of the interrupted task in the extended 
portion of the table's Task status Index, 
unmasks interruptions, and generally trans­
fers control to the Queue Scanner if the 
CPU was executing in the problem state when 
the interrupt cccurred. Control goes 
directly to the SVC or Program Interrupt 
Cueue Processors in the case of an SVC or 
program interruption for faster processing 
of these types of interruptions which occur 
quite frequently. 

If the CPU was executing in the supervi­
sor state, the Interrupt Stacker returns to 
the point of interruption using the old 
PSW, so that the interrupted supervisor 
routine can complete in an orderly fashion 
the work it began. 

The information that the Resident Super­
visor needs to describe a task may be 
separated into two portions. The first 
portion consists of the information which 
is needed immediately and must therefore be 
always resident in main storage. This por­
tion is called the Task Status Index (TSI), 
and is described in a separate section. 
The second portion consists of information 
which is only needed after processing for a 
task commences. This information need not 
be resident but may be read into main 
storage when needed. This portion of 
information is called the Extended Task 
Status Index (XTSI). The XTSI must be in 
main storage during a task's time slice, 
but is not necessarily resident between a 
task's time slices. The page or pages 
occupied by an XTSI could have been made 
addressable by both the Resident Supervisor 
and by privileged service routines operat­
ing in Virtual storage. However, in TSS/ 
360 these pages do not appear in the task's 
virtual storage. That is, the XTSI is not 
addressable by a dynamic address transla­
tion. This serves to protect the Resident 
Supervisor from being over-written by a 
user program. 

CUEUE SCANNER 

Every systen; needs SOIre facility for 
sequencing the work to be perforn;ed by the 
control program. In systems which operate 
with interruptions masked, the hardware 
priority interruption system provides this 
function for the interrupt handling rou­
tines and some control program routine pro­
vides a similar function for the system's 
resource allocation routines. Within TSS/ 

34 

360, these two fUnctions have been combined 
into one centralized Queue Scanner. 

The purpose of the Queue Scanner is to 
provide a sequencing mechanism responsible 
for deciding the order in which individual 
Queue Processors are to be executed. To 
fulfill this purpose, the Queue Scanner 
uses a Scan Table, whose entries are in 
rricrity order. 

Because the Queue Scanner is a central 
facility within the Resident Supervisor, it 
nust 0Ferate efficiently if the Resident 
Supervisor is to operate efficiently. To 
achieve this efficiency, the sequencing of 
entries in the Scan Table was planned to 
rrinirrize the number of entries that must he 
inspected. Moreover, the design of the 
Scan Table reflects an awareness of the 
possible interactions among queues, so that 
an exit is nct made to a processor only to 
find that a needed facility (such as an I/O 
Fath) has been allocated to some other 
queue. 

There is cne Scan Table entry and a 
corresponding queue for each Queue Proces­
sor, with the exception of the Paging Drum 
and r:evice Queue processors. There may be 
many Scan Table entries, each having corre­
sponding queues, for the Device Queue pro­
cessor. These queues are for the devices 
cn the systen" each device having a separ­
ate queue. The paging drum queues are not 
included in work for the Device Queue pro­
cessor. There is a separate processor for 
the paging drum queues. There is a paging 
drum queue for each paging drum in the sys­
tem. The order in which device entries 
appear in the Scan Table and hence their 
priority is specified from the Symbolic 
Device Address assigned to each device dur­
ing System Generation. 

The Scan Table is further described in 
"Scan Table." 

If available ~ork is found, the Queue 
Scanner passes control to the appropriate 
Queue Processor. 

If the Queue Scanner determines that 
there is no available supervisor work. 
either because there are no more GQEs to 
process cr because all appropriate proces­
sors are "busy", control is transferred to 
the Internal Scheduler which calls the 
Dispatcher. 

DISPATCHER 

The purpose of the Dispatcher is to 
select a task to be given CPU control and 
to place that task in execution. The actu­
al scheduling of the task, the determina­
tion of the length and the frequency of its 



time slices, and the priority a task has 
relative to other tasks in the system are 
factors governed by parameters contained in 
a schedule table and also are governed by 
the processing characteristics of the task 
as interpreted by the Internal Scheduler. 

To select a task to be given CPU con­
trol, the Dispatcher scans a chained list 
of control blecks. This list is called the 
Dispatchable ~SI list. The Dispatchable 
list is a subdivision of the active list. 
The active list consists of all tasks which 
are eligible to use the CPU. The Dispatch­
able list consists of only those eligible 
tasks which have pages in main storage. 
The eligibility of a task is in part deter­
mined by its "priority level." The assign­
ment of priority levels and the scheduling 
algori thm that determines what task, if 
any, is to be given control of the CPU is 
discussed in "Scheduling Algorithm." If a 
task is selected for getting CPU control, 
the Dispatcher enters the Task Interrupt 
Control routine. 

Upon return from Task Interrupt Control, 
the Dispatcher gives CPU control to the 
selected task by the following operations: 

1. sets the task status to "in execution" 

2. sets a pointer in the Prefixed Storage 
Area to identify the current task 

3. sets the interval timer to a value 
determined by the scheduling algori thrr, 

4. Loads the General Purpose I Floating 
Point and Extended Control registers 
from the task's Extended ~ask status 
Index (X 'IS I) , and then loads the 
task's current PSW. This information 
was saved in the task's XTSI by the 
Interrupt Stacker. 

If the Dispatcher scans the entire Dis­
patchable TSI list without finding a ready 
task, the Dispatcher places a value in the 
Interval Timer and the CPU is placed in the 
wait state. Then an exit from the wait 
state occurs upon the next hardware inter­
ruption intercepted by that particular CPU. 

The Dispatcher may exit to the Queue 
Scanner when a condition called forced time 
slice end occurs. This is discussed furth­
er in "Scheduling Algorithm." The Dis­
patcher puts a GQE indicating forced time 
slice end in the Timer Interrupt Queue and 
then exits to the Queue Scanner. 

The list of dispatchable TSIs is main­
tained in proper order by the Internal 
Scheduler which is the interface between 
the Queue Scanner and the Dispatcher. If a 
flag in the TSI indicates that the XTSI is 
not in main storage, the Internal Scheduler 

initiates a paging operation. A GQE and an 
associated Page Control Block are created 
and placed in the User Core Allocation 
Queue to obtain a page of main storage for 
the XTSI. This GQE will eventually be 
placed on a device queue to initiate the 
transfer of the page from auxiliary storage 
to main storage. Eventually, the task's 
XTSI is paged into main storage and the 
Page Posting routine causes the ISA and PSW 
pages to be brought into main storage (see 
"Paginy"). This is the means by which the 
XTSI is brought into main storage even 
though it is not addressable in virtual 
storage. 

A Page Control Block requests the move­
ment of pages between main storage and 
auxiliary or external storage. This move­
ment of pages may consist of reading pages 
into main storage from auxiliary or extern­
al storage, writing pages out of main 
storage to auxiliary or external storage, 
and posting to the program's page tables. 
The Page Control Block is described in a 
separate section. 

The purpose of the Task Interru~t Con­
trol routine is to generate programmed 
interruptions as required. 

The need for a programmed interru~tion 
rrechanisrr arisEs because the Resident 
Supervisor processes requests for system 
services in a logically independent fash­
ion. The processing of system services is 
logically independent in the sense that the 
Resident Supervisor may be concurrently 
Ferforming several services for a task. 
There is no way of ascertaining in what 
order or when the processing of each of 
these services will be completed. 

Therefore, in order for a task to o~er­
ate asynchronously with respect to the com­
pletion of system services, the need arises 
for a ~rograrrmed interruption mechanism 
analagous in concept to the hardware inter­
ruption rrechanism that allows the Resident 
Supervisor to operate asynchronously with 
respect to the real computer system. The 
prograrr.rr.ed interruptions are similar in 
operation to hardware interruptions. The 
rrajor difference between them is that the 
hardware interruptions convey a change in 
the status of the entire system to the 
Resident Supervisor, while the programmed 
interruptions represent a change in status 
of only that portion of the system current­
ly allocated to the task which causes the 
interruption. 

A programmed interruption is initiated 
by the Interrupt Stacker when it discovers 
an interruption that is a task's responsi­
bility, such as a supervisor call request­
ing the services of a virtual storage sys­
ten service routine. 

Control Architecture 35 



In another example, the Resident Super­
visor will request a prograrr~ed interrup­
tion whenever it determines that the furth­
er processing of an I/O interruption is a 
task's responsibility. 

Because a task is not always prepared to 
receive an interruFtion and ~ecause the 
task for whom the interruption is destined 
may not be the next task dispatched, there 
exists a software queuing and masking faci­
lity analogous to the hardware. 

~te 

1688 

1712 

J72C 

~Jnu sed 

Sense Do 10 

Shorl Seve An:-(] 

C:Yltcnts 

----. 
I 

411 

-~ 

A request for a programmed interruption 
is initially handled by enqueuing a GQE on 
the appropriate task's TSI. The programmed 
interruption is implemented ~y the Task 
Interrupt Control subroutine. 

1 ?6G 
N(~npr;,'i !'-'-ged long )G\I€ A:ea 2\ g 
____ .~~~~~ ____ . ___ ~ __________ " 0:. 

pr , Jeg. i l ~ng SOY(' Area I 

r~~~T~~~\~:_V' _---~--~ --=~~_~ 
1880 

Implementation of the programmed inter­
ruption requires the definition of the fol­
lowing prograIrming elements: an Interrupt 
storage Area (ISA) and a virtual PSW 
(VPSW). Diagrams of these elements are 
shown in Figures 16 and 17. The VPSW is 
analogous to the EXtended PSW operated on 
~y the Resident Supervisor. The purpose of 
the instruction address, ILC, interruption 
code, and masking fields in the VPSW remain 
conceptually the same as for the PSW. 

2096 

2176 

4096 

--~jC~;~~~~-~~-~--- -----:--:mJ L 
£' .2 

Figure 16. Interrupt Storage Area (ISA) 
Schematic Diagram 

These fields vary in detail due to the fact 
that program status has two modes - resi-

Std 

Ext 

Virt 

Std 

Ext 

Virt 

System Mask 

( Channe I Masks) Key 

J I i 
_ \.5 i 
V 

~ 
,..C" i 

u 

" :i 

Interrupt Code 

i -8 ~ -'i -'i : I I t I ' j 1 

Unused lEi: B ~ 1 ;g 'I Key I ] I 6 : ~ I ~: ILC I CC I ~ ,~ I '3 ~' 
(Mus t Be 0) ~ro ~ ::: JI :Sf [ :i1 " I " I ~~ I ~ I ~ I • f I 

Spare 

----------. ~ ~m~( 1-,-1--1#~1'-. L"I"I""._1 -------

i~1 Unused '; II ~ i _~ 0 I' ILC I CC i ~ ; 6 II '3 i ~ 1 Interrupt Code 

-=-"'1 ~ I T -I --.-1 ___ U i ~ 1.1 E~ _____ ~ ______ ~ _____ , ________________________ _ 
o I 1 I 2 i 3 , 4 i 5 I 6 I 7 [ 8 1 9 110 I 11 i 12 1'3 114 115 [16 i 17 118 i 19 1 20 121 122 I 23 i 24 ,25 126.27128 I 29130131 

Prag Mo.k 

lLC CC 0:;:;:: ~4= 0-- -- fnstruc ~ion Address 
• > 00 x~ c 

"-0 u.>:::> ,'" '" 
-~~-~-.-.-.-~---~----

Instruction Address 

___ 0' _____ ---

InstrtJction Addre~s 

32 i 33 I 34 135 I 36 I 37138 I 39[40 I 41 1 42 ' 43 144 1 45 146 1 47[48 I 49 1 50 151 I 52 I 53 1 54 I 55 I 56 I 57 I 58 I 59[60 I 61 I 62 I 63 

Figure 17. Comparison of Standard, Extended, and Virtual PSW Formats 

36 



Page of GY28-2009-2, issued september 15, 1970 by TNL N28-3146 

dent and relocated. The VPSW represents 
the state of a task as it appears in a vir­
tual machine at the moment the task is 
interrupted. The ISA is the first page 
(4096 bytes) of a task's virtual storage 
(i.e., segment 0, page 0) and is analogous 
to the Prefixed Storage Area of the Resi­
dent supervisor. The ISA contains many 
analogous elements such as old and new 
VPSWs for programmed interruptions. The 
ISA is brought into main storage, along 
with the task's XTSI pages, before the task 
can be placed in execution. The Interrupt 
Storage Area is discussed in more detail in 
-Task Monitor.-

The main features of a programmed inter­
ruption are depicted schematically in 
Figure 18. The way in which programmed 
interruptions are utilized is described in 
wTask Monitor W and WInterruption Handling.-

The programmed interruption mechanism in 
the Task Interrupt Control routine involves 
the following actions: 

1. The Extended PSW in the task's XTSI 
(which represents the status of the 
real system at the point when the task 
was interrupted) is formed into a VPSW 
and this VPSW is placed in the appro­
priate interruption old VPSW in the 
task's ISA. 

2. The new VPSW is placed in a field in 
the ISA which is called the current 
VPSW and which is used to describe the 
task'S status for the most recent 
interruption presented to the Task 
Monitor. 

3. If the interruption is associated with 
Intertask communication or is an I/O 
interruption, the associated control 
block (IORCB or MCB), if any, is 
placed in the ISA (see ·Communicationw 
and ·Data ManagementW). 

4. The sense data, channel status word, 
and channel logout data are placed 
into the ISA, if appropriate (see 
-Task I/O Errors W). 

5. The interruption mask in the new VPSW 
in the ISA is used to set the pro­
grammed interruption mask in the 
task's Task Status Index (TSI). 

6. The new vpsw, which points to an 
interruption processor of the Task 
Monitor, is obtained from the ISA for­
med into an Extended PSW and stored in 
the task's XTSI. When the Dispatcher 
gains control, it loads the extended 
PSW from the XTSI and thus gives con­
trol to the appropriate Task Monitor 
interruption processor. 

Main Storage Vitural Storage 

ISA 
XTSI 

E -l 8 1 - -[0" """" 
Extended PSW 1_ I 0 

-I-~ 

,--

--Represents Flow of Data 

---- Represents Flow of Control 

i 

I -r--------- ... 
Task Mon it~r 

Interrupt 
Processor 

Figure 18. Main Features of a Programmed 
InterrUption 

The main features of the Task Interrupt 
Control routine's operation are: The Task 
Interrupt Pending flags in the TSI are com­
pared with the Task Interrupt Mask in the 
TSI. If all pending task interruptions are 
masked, control returns to the Dispatcher; 
otherwise, a programmed interruption is 
generated for the highest priority unmasked 
pending interruption. (Note that SVC and 
program interruptions cannot be masked.) 
Control then returns to the Dispatcher. 

The TSS/360 task interruption scheme is 
a priority interruption scheme, as opposed 
to a single-level ·wakeup· scheme because, 
in part, t.his allows for a more graceful 
handling of such events as attention inter­
ruptions and abnormal task terminations. 

QUEUE PROCESSORS 

Each queue processor is responsible for 
processing the GQEs on its queue. In gen­
eral, each processor operates on only one 
GQE and then returns control to the Queue 
Scanner. However, certain processors, for 
example the Page-Drum Interrupt Queue and 
the Channel InterrUpt Queue Processors pro­
cess all the GQEs on their queues before 
returning control to the Queue Scanner. 
The Program Interrupt Queue Processor and 
the SVC Queue Processor are misnamed 
because they do not operate on queues. 
They are linked to directly from the Inter­
rupt Stacker. This allows faster proces­
Sing of these frequently encountered 
interruptions. 

In general, GQEs are only created by the 
Interrupt Stacker and are not destroyed 
until their processing (which may involve 
several processors) is completed. A few 
queue processors (for example, the Auxil­
iary Storage Allocation Queue Processor, 
the Program Interrupt Queue Processor and 

Control Architecture 37 



Page of GY2B-2009-2, issued September 15, 1970 by TNL N28-3146 

I/O Device Queue Processor) may create 
additional GQEs. 

If the processing of a GQE requires the 
attention of several processors, the GQE is 
transferred from one processor's queue to 
the next through the services of one of the 
Queue Control subroutines. 

The Queue Control subroutines examine 
the first routing field in a GQE. This 
field will either contain a location-on­
queue value or all ones. The location-on­
queue value designates the relative loca­
tion on the Queue Scanner's Scan Table of 
the queue to which the GQE is to be trans­
ferred. A value of all ones indicates that 
no further processing is to be performed 
for the GQE and the main storage occupied 
can be released. 

In general, a Queue Processor locks its 
associated queue upon entry and unlocks the 
queue as soon as the processor has dequeued 
a GQE from the queue for processing. 

In certain cases a Queue Processor may 
wish to lock a queue until some specific 
future event or condition has occurred. 
Each Scan Table entry has several indica­
tors reserved for such use. These indica­
tors are called Suppress Flags and are set 
or reset by the Resident Supervisor rou­
tines involved. Both the queue lock byte 
and the Suppress flags are used to prevent 
unwanted recursion. 

The queue processors may be classified 
into two groups: interruption queue pro­
cessors and request queue processors. 

There are five interruption queue pro­
cessors as follows: 

• Timer Interrupt Queue processor 

• Paging Drum Interrupt Queue processor 

• Channel (non-paging-drum) Interrupt 
Queue processor 

• Program Interrupt Queue processor 

• SVC Interrupt Queue processor 

The request queue processors constitute 
a somewhat arbitrary grouping of the 
remaining queue processors. A function of 
these queue processors is to service 
requests made by the interruption queue 
processors and other supervisor routines. 
The request queue processors are: 

• User Core Allocation 
• Contiguous Core Allocation 
• Auxiliary Storage Allocation 
• I/O Devices 
• paging Drums 

38 

The SVC Interrupt Queue processor calls 
upon a particular SVC processor when the 
type of SVC is identified. The SVC proces­
sors are listed below with the names of the 
corresponding macro instructions that issue 
these SVCs. These macro instructions are 
described in System Programmer's Guide. 

• TSI/XTSI Modification/Extraction Group 

Create TSI processor (CRTSI) 

Delete TSI Processor CDLTSI) 

Special Create TSI processor 
(SCRTSI) 

change Priority processor <CHAP) 

setup XTSI Field processor (SETXTS) 

Setup TSI Field processor (SETUP) 

Extract TSI Field processor (XTRCT) 

Extract XTSI Field processor 
(XTRXTS) 

• Virtual storage service group 

Add Pages processor (ADDPG) 

Add Shared pages Processor (ADSPG) 

Delete Page Processor (DELPG) 

Set External Page Table Entries pro­
cessor (SETXP) 

Move Page Table Entries processor 
(MOVXP) 

Connect Segment to Shared Page Table 
processor (CNSEG) 

Disconnect Segment to Shared Page 
Table processor (DSSEG) 

List Changed Pages processor (LSCHP) 

Check Protection Class processor 
(CKCLS) 

Load Virtual Program status Word 
(LVPSW) 

• Timer naintenance/task synchronization 
group 

Time Slice End processor (TSEND) 

Await Interruption SVC processor 
(AWAIT) 

Terminal I/O Wait processor (TWAIT) 

Set User Timer Interval processor 
(SETTU) 



Set Real Time Interval processor 
(SETTR) 

Restore Time processor (RSTTIM) 

Read Time processor (RDTIM) 

• Systerr Table Modification/Extraction 
Group 

Setup System Table Field processor 
(SETSYS) 

Extract System Tarle Field processor 
(XTRSYS) 

Set Time of Day processor (SETTOD) 

Set Year, Month, and Day processor 
(SETYMD) 

• Input/Output and Device Management 
Group 

I/O Call (lOCAL) 

Pageout Service processor (PGOUT) 

Reset Device suppression Fl.ag pro­
cesscr (RESET) 

Set Path processor (SPATH) 

Add Device on Task processor (ADDEV) 

Remove Device From Task processor 
(RMDEV) 

Set Asynchronous Entry processor 
(SETAE) 

SUPERVISOR SERVICE SUBROUTINES 

The Supervisor service subroutines are 
used by the queue processors and other com­
ponents of the Resident Supervisor to pro­
vide various required services. There are 
eight groups of supervisor service 
subroutines: 

• Queue Control. 
• Page Handling 
• I/O service 
• Task Service 
• Main/Auxiliary Storage Al.location 
• Inter-CPU Communication 
• Dispatcher Service 
• Intertask Communication (VSEND and 

XSEND) 

MAJOR ERROR RECOVERY ROUTINES 

The relationship of the major error 
recovery routines to the system is dis­
cussed in the section on Error Procedures. 
The major error recovery routines are: 

• Machine check new PSW 
• Recovery nucleus 
• Reconfiguration 
• External machine check interrupt 
• System Environment Recording and Retry 

(SERR) group 
SERR bootstrap 
Environment recording 
Immediate print 
Checker 
Pointer 
Restore and validate 
Instruction retry execution 
CPU/Storage checkout 

• System Error Processor 

CONTROL ELOCKS 

This section contains fundamental 
descriptions of the important control 
blocks used ty the Resident supervisor. 
'The way in which these control. blocks are 
used and the significance of the various 
fields and flags within these control 
blocks that have not been explained thus 
far, will be explained elsewhere in this 
rranual. 

General Queue Entry (GQE) 

A GQE has a fixed l.ength of 64 bytes and 
contains a description of the work to be 
done by a device or facility controlled by 
the Resident Supervisor. One use of a GQE 
is to save information for an interruption. 

The contents of a GQE depend on the type 
of interruption and generally consist of 
the following: 

• Pointers to: 

Task Status Index (TSI) 

Preceding and succeeding GQEs on the 
same queue 

Page Control Block if the GQE is asso­
ciated with a request to read or 
write a page in main storage 

I/O Request Block (IROCB) or Message 
Control Block (MCB) if the GQE is 
associated with non-paging I/O or 
intertask communication 

• Flags: 

Request for a page in 
Request for a page out 

• Instruction length code from Program 
Status Word 

• GQE movement information 

Control Architecture 39 



• Data oetained by the Sense I/O command 

• Channel Status Word 

• Channel lcgout data 

• Interrupticn code 

• Symbolic device code 

Scan Table 

The Scan Table is a resident control 
taele private to the Queue Scanner. The 
size of the Scan Table is a function of the 
installation configuration and is set dur­
ing System Generation. The Scan Table 
serves as a cemmon anchor point for those 
GQES that represent work for the Resident 
Supervisor. The Scan Tacle determines the 
order in which the queues are processed. 

To achieve efficiency, many of the sys­
ten:'s queues have been organized into 
groups called Device Interaction Groups. A 
Device Interaction Group (LIG) generally 
consists of the set of queues for all I/O 
devices having common I/O access paths. 

The Queue Scanner inspects individual 
queues within a DIG only if a master count 
indicates tnere is work enqueued within the 
DIG, and then only if other flags indicate 
that the apprcpriate queue processor is not 
"busy" and that an I/O path to the device 
is available. Furthermore, in order to 
prevent one active device in a group fran: 
monopolizing an I/O path and greatly delay­
ing the processing of other requests within 
the DIG, the Queue Scanner processes the 

Queue Flags 

Timer 

2301 

Chennel 

Program 

SCAN I ABLE 

Queue 

Processor 
Pointer 

Quene Poirlter 

First 

Figure 19. Schematic View of the Scan Table 

40 

queues within each DIG in a round-robin 
crder. 

There is one entry in the Scan Table for 
each device or supervisor facility. An 
entry has a fixed length of 16 bytes and 
contains the following information: 

• Pointers to: 

First GQE on the queue 
last GQE on the queue 
location of the Queue Processor 

• Flags: 

Queue empty flag 

Device Interaction Group identification 
nunber 

Suppress flags (prevent processing of 
the queue until all Suppress Flags 
are off) 

• Queue processor lock byte 

A schematic diagram of the Scan Table is 
shown in Figure 19. 

Task Status Index (TSI) 

The Task Status Index is the prinCipal 
control block for a task in that it con­
tains task inforrration that must be per­
manently resident. There is one TSI for 
each task in the system and the TSI is 
resident in main storage from LOGON to 
LOGOFF. After LOGOFF, the storage occupied 
~y a TSI is made available for reuse by the 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

supervisor. The TSI has a fixed length of 
128 bytes. 

The contents of a TSI include the 
following: 

• User identification 

• Task identification 

• Task priority 

• SYSIN symbolic device address 

• SYSOUT symbolic device address 

• Pointers to: 

Extended TSI 

Next TSI in the chain of active or 
inactive tasks 

Task interruption queue (GQEs repre­
senting interruptions that will be 
passed to the task) 

Task Symbolic Device List (a list of 
those devices on which the task can 
perform I/O) 

• Flags for task status: 

In-execution 
Ready 
Page wait 
Time slice end 
Delay 

• Lock byte 

• Task interruption mask 

• Task interruption pending flags (one 
for each task interruption queue) 

Extended Task Status Index (XTSI) 

The XTSI contains task information which 
does not have to be permanently resident. 
At least part of the XTSI is resident dur­
ing a task's time slice. The XTSI is 
created at LOGON and released at LOGOFF. 
The XTSI consists of a fixed length of 256 
bytes (of which 208 bytes are used) and a 
variable length portion. The total size 
may vary from one page upward, depending on 
the installation limit placed on the number 
of XTSI pages allowed and on whether the 
system is operating in 24- or 32-bit 
addressing mode. 

The contents of the header include: 

• Extended PSW save area 
• Control register save area 
• General purpose register save area 
• Floating point register save area 

• Pointer to the task's TSI 
• Time slice information 
• Timer information 

The contents of the variable length por­
tion include: 

• Segment Table 
• Auxiliary Segment Table 
• Page Tables (non-shared) 
• External Page Tables (non-shared) 

Page Control Block 

The page control Block is used to con­
trol the movement of virtual storage or 
XTSI pages between main storage and extern­
al or auxiliary storage. A Page Control 
Block entry represents a request for the 
movement of a page. Entries may be 
generated during any of the following 
events: 

• Time slice end interruption processing 

• Page relocation exception interruption 
processing (program interruption code 
17) 

• PAGEOUT or lOCAL SVC processing 

• Dispatcher request for initial XTSI 
page 

• page Posting proceSSing for the remain­
ing XTSI pages and the ISA page 

The contents of an entry include the 
following: 

• Main storage address of page 

• Virtual storage address of page 

• External or auxiliary storage address 
of page 

• Flags: 

Virtual storage or XTSI page 

Paging I/O has been completed 

Put main storage occupied by the page 
in the Preferred Page (XTSI-PSW) 
Pending queue or in the non-XTSI-PSW 
Pending queue 

Drum or disk preference for page resi­
dence when writing a page to auxil­
iary storage. 

A Page Control Block consists of up to 
three entries plus a four byte pointer to 
the next block. Thus, a block may contain 
up to three requests to move pages. Addi­
tional blocks are needed when there are 
more than three requests. 

Control Architecture 41 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

TASK MONITOR 

The Task Monitor handles task oriented 
interruptions that are passed on to it by 
the Resident Supervisor. To accomplish 
this objective, the Task Monitor consists 
of a group of privileged service programs 
that receive and process task oriented 
(programmed) interruptions in a prescribed 
sequence and on a priority basis via queue­
ing, scanning, and dispatching mechanisms. 
These mechanisms are somewhat analogous to 
the stacking, scanning, and dispatching 
mechanisms of the Resident Supervisor 
design. As in the Resident supervisor, a 
queued interruption represents an element 
of work. Such an element may be deferred 
for reasons of priority, efficiency, or 
protection against recursion. 

The Task Monitor performs the following 
major functions: 

• Provides an interface with the Resident 
Supervisor for receiving and analyzing 
task oriented interruptions. 

• Provides linkage to required service 
routines either by immediate dispatch­
ing or by queueing the interruption for 
later dispatChing in a sequence based 
on priority. 

• Maintains the integrity of the task and 
service routines that are dispatched. 

The Task Monitor consists of interrup­
tion processors, a Queue Linkage Entry rou­
tine, a Scanner-Dispatcher, all contained 
in one module, and a separate group of ser­
vice routines. Interruption processing 
proceeds as follows: entry is made into an 
interruption processor from the Resident 
Supervisor. The interruption processor 
either immediately dispatches a service 
routine to handle the interruption or makes 
an entry for the interruption in an Inter­
rupt Table. The entry is made by using the 
Queue Linkage Entry routine. Then control 
goes to the Scanner-Dispatcher which uses 
the Interrupt Table to select and invoke a 
specified service routine to process an 
interruption. 

When the Scanner-Dispatcher determines 
that no more service routines can be dis­
patched, control is returned to the task at 
the point of its last interruption. An 
overview of the general flow of interrup­
tion processing in the Task Monitor is 
shown in Figure 20. 

INTERFACE WITH RESIDENT SUPERVISOR 

Control goes to the Task Monitor from 
the Resident Supervisor when a task inter­
ruption is presented. The Resident Super-

42 

visor Dispatcher always gives control to a 
task at a location specified in the 
Exten;ed PSW saved in the task's XTSI. 
However, before control is given to a task, 
the Dispatcher transfers control to the 
Task Interrupt Control routine. This rou­
tine checks the task's interruption queues 
for unmasked pending interruptions. If 
none are found, control is returned to the 
Dispatcher. In this case, the Dispatcher 
gives control to the task at the point of 
its last hardware interruption. If a pend­
ing interruption is found, the Task Inter­
ruption Control routine changes the 
Extended PSW in the XTSI to point to an 
appropriate interruption processor of the 
Task Monitor. NOW, when the Dispatcher 
gets control, it causes control to go to 
the interruption processor. This action of 
influencing the Dispatcher's transfer of 
control is called a programmed interrup­
tion. The Task Monitor may be considered 
to be a programmed interruption handler, 
whereas the Resident supervisor is a hard­
ware interruption handler. 

INTERRUPTION PROCESSING 

After an entry is made into one of the 
interruption processors, the interruption 
processor checks to determine whether the 
interruption should be processed immediate­
ly or put on a queue for later processing. 
(Both actions are possible for some inter­
ruptions.) The processing of an interrup­
tion entails the eventual invocation of a 
service routine to perform the actions 
required by the interruption. 

An interruption is processed immediately 
when its nature is such that the required 
action to be performed is of the highest 
priority to the task. For example, an 
interruption requiring the invocation of 
the Dynamic Loader must be processed imme­
diately. In the immediate processing case, 
the interruption processor frequently uses 
the Load Virtual PSW SVC to change the pro­
gram mask in the PSW, to set the TSI inter­
ruption mask, and to give control to the 
invoked service routine with a new PSW. 
This process is called immediate dispatch­
ing. When the dispatched service routine 
finishes its processing, it returns control 
to the interruption processor which then 
exits to the Task Monitor Scanner­
Dispatcher. 

When an interruption is to be put on a 
queue, the interruption processor calls the 
Queue Linkage Entry routine. This routine 
creates a Queue Entry in an Interrupt Table 
for the interruption. When control returns 
from the Queue Linkage Entry routine, the 
interruption processor exits to the 
Scanner-Dispatcher. 



Prob I em Program 

solid line indicates 
transfer of control 

Hardware Interruption 

--- dashed line indicates 
transfer of doto only 

Resident 
Supervisor 
Dispatcher 

Queue 
Linkage 

Entry Return 
Routine ~-------"""",~ 

Softvlare fnterruption 

Task 
/'v\onrtor 
Interrupt 

Processors 

Immediate Dispatch 

I Enqueue 
'--__ -y-__ ---.l 

Restore Problem 
Program to S totus 
When Interrupted 

Figure 20. 

t 
Interrupti I 
Table (ITB) 

I Dequeue 
I 

+ 

User Specified 
In terrupt Hand ling 
Routines 

Return 

Scanner - Dispatcher 

Interrupt Processing General Flo~ 

The Task Monitor uses the Interrupt 
~able to hold information concerning ser­
vice routines and interruptions to be pro­
cessed. There are t~o main types of 
entries in the table: Request Entries and 
Queue Entries. There must be a Request 
Entry for every service routine that may be 
dispatched. The Request Entry contains an 
activity indicator, a priority code, a 
pointer to a description of the service 
routine, and a pointer to its Queue Entries 
(if any exist). A Queue Entry generally 
represents an interruption that has not yet 
teen processed. A Queue Entry is chained 
to a Request Entry and contains information 
about the interruption. The activity indi­
cator in a Request Entry is off when there 
are no Queue Entries attached to the Re­
quest Entry, and is on ~hen there is at 
least one Queue Entry attached. A set of 
Request Entries is entered in tne Interrupt 
Table to provide for the dispatching of 

Deferred Dispatch 

r---L--------L _____ _____ 
Privi leged 

Service 

Routines 

Return 

service routines supplied ~ith the system. 
Request Entries IT,ay also be added to the 
Interrupt Table by a user issuing a Specify 
Interrupt Routine (SIR) macro to provide 
for the dispatching of user supplied 
routines. 

Queue Entries are entered in the Inter­
rupt Table and attached to particular Re­
guest Entries l:;y the Queue Linkage Entry 
routine (~hich sets the activity indicator 
in the Request Entry). This routine is 
normally called by a Task Monitor interrup­
tion processor. However, a privileged ser­
vice routine may call the Queue Linkage 
Entry routine in order to cause a Queue 
Entry for a service routine to be enqueued. 
Either another service routine or the orig­
inal service routine may be dispatched in 
this way. The Request Entries are used by 
the Scanner-cispatcher to select a service 
routine for dispatching. To facilitate the 

Control Architecture 43 



selection, the active Request Entries are 
chained together in priority order. Re­
quest Entries may be deleted by a user 
issuing a Delete Interrupt Routine (OIR) 
macro when he no longer wants the corres­
ponding service routines to be dispatched. 
The informaticn contained in Queue ~ntries 
may be inspected by either a privileged cr 
a nonprivileged routine through the use of 
the Interrupt Inquiry (INTINC) macro 
instruction. After a service routine is 
dispatched, the Queue Entry is removed frorr, 
the chain attached to the Request Entry for 
the service routine. 

The purpose of the Scanner-Dispatcher is 
to select a queued interruption or linkage 
request and to dispatch a service routine. 
The selection is made from active Request 
Entries which are chained together in order 
of priority. After the service routine is 
dispatched, the Queue Entry for the inter­
ruption or linkage request is removed frcm 
the Request Entry. If no more Queue 
Entries are attached to the Request Entry, 
the activity indicator is set to indicate 
that the Request Entry is inactive and the 
Request Entry is removed from the active 
chain. When the Scanner-Dispatcher deter­
mines that no more service routines can be 
dispatched, control is returned to the 
point of the last interruption. The 
Scanner-Dispatcher always transfErs control 
by means of the Load Virtual PSW (LVPSW) 
SVC. The LVPSW SVC is used because it per­
mits the Task Monitor to specify the task's 
PSW program maSk, the TSI task interruption 
mask, and the PSW storage protect key. 

The dispatching of service routines 
using the Queue Linkage Entry routine to 
enqueue a request rather than by direct 
calls to the service routines serves three 
purposes. First, the Task Monitor takes 
care of linkage conventions which involve 
providing save areas and return points. 
Second, by this method a service routine 
will be able to gain control at a future 
time. Third, a service routine is able to 
release save areas by returning to the Task 
Monitor. 

In order to eliminate the overhead that 
would be incurred if the Task Monitor had 
to build a Request Entry to handle each 
such linkage request, the Task Monitor 
maintains two general-purpose Request 
Entries upon which all such linkage 
requests can be enqueued. There is one Re­
quest Entry for privileged routines and one 
with a lower priority for non-privileged 
routines. Because these Request Entries 
are general-purpose in nature, the Queue 
Entry for a linkage request must contain 
the address constants for the routine to be 
dispatched. 

44 

Examples of service routines j:rovided 
with the system are Command System routines 
and the Da ta Manag ement access IT.ethods. 
Exarrries of service routines which may be 
supplied by the user include: program 
interrur:t handling routines, routines for 
handling svc codes not recognized by the 
system, routines for handling task time 
interruptions, and routines for handling 
special task I/O interruptions. 

An example of the use of user specified 
interruption handling conditions is as fol­
lows: if a rroLlem is to process program 
interruptions rEsulting from decimal over­
flow, the user must issue a Specify Program 
Interrupt Entry Conditions (SPEC) IT.acro 
instruction to Luild an Interrupt Control 
Block (ICB) that names the routine and 
identifies the interruption type, in this 
case Program interruption code 10. The 
user then issues the Specify Interrupt Rou­
tine (SIR) macro instruction for this ICB 
to enter a Request Entry into the Task Mon­
itor tables with the priority the routine 
is to have relative to all the other inter­
ruption handlers that he may have speci­
fied. If a pr·ogram interruption of code 10 
occurs, the Task Monitor queues the element 
in the Task Monitor Interrupt Table on the 
Request Entry that represents the user's 
ICB, so that the specified routine can be 
dispatched by rriority. At any time, the 
user may delete this routine by using the 
rIR IT.acro instruction and specify another 
routine in its place. 

'TASK INTEGRITY 

Task integrity refers to the preserva­
tion of information which might otherwise 
be lest due to recursive or sequential task 
interruptions. One of the rcajor functions 
of the Task ~onitor is to maintain the 
integrity of service routines. This is 
accorrplished through the management of pro­
gram and machine status data, linkage con­
ventions, and save areas. 

Furtherrrore, the Task Monitor is pro­
vided with a programmed interruption mask­
ing carability analogous in concept to the 
hardware interruption masking capability of 
the Resident Supervisor. 

Mcst task interruptions are independent 
of one another but are not neCEssarily 
ITutually exclusive. That is, several task 
interruptions may be in process simul­
taneously. For example, a nonprivileged 
program may wish to send a message to the 
task's SYSOUT. The Gate Write macro will 
cause an ENTER supervisor call to be 
executed in order to eventually invoke the 
privileged GATE routine. The GATE routine 
will obtain the output line from somewhere 
in the nonprivileged program. If this page 



has never yet been referenced, the Resident 
Supervisor may pass a task program inter­
ruption to the Task ~onitor which, in turn, 
will imn,ediately invoke tne Dynamic Loader. 
While the Dynamic Loader is ~rocessing, it 
is possible that an I/O interru[>tion (sign­
aling the con,pletion of sorr,e previous I/O 
operation for the task) rray be presented to 
the Task Monitor, which will irrmediately 
dispatch the appropriate access method 
posting routine. ThUS, three task inter­
ruptions have occurred concurrently. That 
is, one occurred before the processing of 
another was corr.pleted. The Task Monitor 
has to hold the program and rrachine status 
of three service rcutines. 

Since service routines rray caUSE recur­
sive interruptions but are themselves not 
necessarily written to be recursivE, the 
following protection mechanisms are used 
when there is a possibility of a loss of 
information. Before passing an interrup­
tion to the Task Monitor, the Resident 
supervisor checks the task interruption 
mask field in both the TSI and the ISA wnen 
one of the four maskable task interruptions 
is pending. If either mask field indicates 
inhibit, the task interruption is not pre­
sented to the Task Monitor. The external, 
asynchronous I/O, timer, and synchronous 
I/O interruptions must be rr.askable because 
the time of their occurrence is unpredict­
able and the task might have a vulnerable 
status at the time. Program and SVC task 
interruptions cannot be masked because by 
definition they mean that the issuing task 
cannot or does not wish to continue until 
the interruption has been processed. 

Another situaticn in which interruptions 
may be inhibited occurs during scanning and 
dispatching in the Task Monitor. A routine 
dispatched by the Task Monitor has the 
capability of preventing the Task Monitor 
from dispatching other service routines 
until a previcusly dispatched routine has 
completed its processing and returned. 
This capability is referred to as enabling 
and disabling the scanner-Dispatcher. 
Interruptions may still be presented to the 
'Task Monitor (for either immediate dis­
patching or for queueing), but another ser­
vice routine cannot be dispatched until the 
dispatched routine returns control to the 
scanner-Dispatcher. 

Since task interruptions may be concur­
rent and in some cases may occur recursive­
ly the Task Monitor preserves task integri­
ty by lTdnaging save areas. WhenEver there 
is a possibility that further task inter­
ruptions rr:ay cccur before the current task 
interruption is completely processed, the 
appropriate Task Monitor Interruption pro­
cessor saves the program and machine status 
data that existed when the interruption 
occurred. This process is called a long 

save and the appropriate long save area in 
the ISA or Task ~onitor's PSECT is uti­
lized. The non-privileged long save area 
is generally utilized when the interruption 
cccurred in the User State. The privileged 
long save area is generally utilized if the 
interruption occurred in the Privileged 
state. 

If there is no possibility of further 
interrUptions, the interruption processor 
utilizes only a short save area in the ISA 
in order to free up some registers. For 
exam~le, an access method posting routine 
is dispatched directly by the Task Monitor 
Synchronous I/O processor with no long save 
because interrupts remain masked. 

The interruption processors a1so provide 
any routine that they call or dispatch with 
a Type I linkage save area (19 words). 
These save areas are located in the PSECT. 
Type I linkage and other linkage types are 
described in the section on Linkage Conven­
tions. An interruption processor may imme­
diately dispatch a service routine or it 
nay exit directly to the Scanner­
r:ispatcher. 

It is possitle for task interruptions to 
te presented to the Task Monitor before an 
imn.ediately dispatched routine completes 
processing. I n genera l, this could result 
in a protlem of save area availability 
because there are only two long save areas 
in the ISA. However, in practice ~here are 
only a few cases in which it might be 
necessary to perform a long save when the 
appropriate long save area might not be 
available. These cases are associated with 
supervisor call and program interrUptions 
which can not te masked. The two principle 
situations are associated with a Type III 
linkage and a task page-relocation­
exception interruption. 

If an immediately dispatched service 
routine (such as CHECK) wishes to transfer 
control to a non-privileged routine (such 
as a user's latel handling routine), a Type 
III linkage is employed. On Type III lin­
kages, the Leave Privilege routine of the 
Task Monitor is invoked to (among other 
things) save the non-privileged long save 
area thereby making it available for anoth­
er task interruption such as an ENTER 
supervisor call generated by the non­
privileged routine. 

Any routine, including the Dynamic Load­
er can cause a task page-relocation­
exception interruption. This interruption 
causes an immediate dispatch to the Dynamic 
Loader. Special handling and save area 
management is provided in the case of such 
interruptions (see "Dynamic Loader"). 

Control Architecture 45 



An immediately dispatched routine always 
returns eventually to the Task Monitor 
interruption processor that dispatched it. 

A Task Monitor Interruft Processor 
always exits eventually to the Scanner­
Dispatcher. If a long save was performed, 
the information in the aFpropriate long 
save area is ffioved to the Scanner­
Dispatcher's long save area in the PSECT. 
If there are no further routines to dis­
patch, the scanner-Dispatcher restores the 
task to its status at the time of interrup­
tion. If there are service routines to 
dispatch, the Scanner-risFatcher dynamical­
ly allocates long and 19 word save areas 
for routines that it disFatches. Tnis is 
done to free up the long save areas used by 
the Task Mcniter interruption Frocessors 
and the scanner-Dispatcher in anticipation 
of further task interruptions that may 
occur before the processing of all pending 
task interruptions is completed. 

Both privileged and non-privileged rou­
tines are dispatched via the Load Virtual 
PSW supervisor call. However, privileged 
and non-privileged routines are provided 
different save areas and return points. 

46 

The save area for a privileged routine 
is located in privileged virtual storage 
and a return is normally made directly tc 
the scanner-Lispatcher. 

The save area for a ncn-privileged rcu­
tine is located in non-Frivileged virtual 
storage so that the non-privileged routine 
can access the save area. The general pur­
pose register used for returns is set tc 
point tc a location in the ISA that con­
tains a Restore Privilege (RSPRV) supervi­
sor call. The execution of the RSPRV 
supervisor call results in an indirect 
return tc the Scanner-Dispatcher. The 
RSPRV sUFervisor call is used because a 
direct return from a non-privileged routine 
to a privileged routine would cause a 
storage Frotection exception interruption. 

The scanner-Dispatcher may concurrently 
dispatch a number of routines in the sense 
that a second routine may be dispatched 
refore the first routine has returned. The 
scanner-rispatcher maintains order within 
roth the non-privileged and privileged save 
areas through a push-down list which 
reflects the order of disFatch. 



The basic fUnction of coth tne Resident 
Supervisor and the Task ~onitor is to pro­
cess interru~tions. The furfose of this 
section is to provide an overview of the 
various categories of interruptions pro­
cessed by the system and to designate the 
appropriate sections of this manual whioh 
discuss the processing of some specific 
interruptions associated with each of the 
categories. 

There are five classes of system/360 
hardware interruptions: 

• Machine Check 
• External 
• PrograIT. 
• I/O 
• SUfervisor Call (SVC) 

lVlACHINE CHECK IN'IERRUPTICN 

The Machine Check interruption indicates 
a CPU, storage Element or Channel Control­
ler error and is discussed in the section 
on Error Procedures 

EXTERNAL INTERRUPTION 

External interruptions are initially 
accepted by the Recovery Nucleus routine, 
which saves and resets the timer location 
in the PSA, and checks for and processes 
any malfunction alert interruptions (see 
"Error procedures"). 

If the interruption is the result of the 
interrupt key on the of era tor's console 
ceing depressed, this routine loads the RSS 
External Interrupt PSW froIT, the system 
table. This action results in an entry to 
the Resident Support System and the subse­
quent dedication of the system to the acti­
vity of the master programmer at the opera­
tor's console. 

If the interruption is not the result of 
a malfUnction alert or the interrupt key, 
the Recovery Nucleus transfers control to 
the External Interruft routine of the 
Interrupt Stacker. 

This routine further classifies an 
external interruption as a Timer interrup­
tion or a Write Direct interruption. 

Timer InterruFtion 

This interruption occurs as a result of 
the contents of the timer cell becoming 

INTERRUPTION HANDLING 

negative. The contents of the timer are 
decremented 1::y the hardware approximately 
every 13 microseconds. When the tiIT.er con­
tents change froIT a positive (including 
zero) to a negative number, an interruption 
cccurs. The primary functions of this 
interruption are to signal time slice end 
cf a task, to foroe a timer task interrup­
tion or to activate a CPU that was placed 
in the wait state1::y the Resident supervi­
sor's Dispatcher. 

The processing of a time slice end 
interruption is discussed in the section 
"Time Slice End Processing Example." 

The conaitions under which the Dispatch­
er will place a CPU in the Wait state and 
TSS/360 timer functions, in general, are 
discussed in "Timer Services Allocation." 

Write Direct Interruptions 

The CPU instruction WRITE DIRECT is used 
for inter-CPU communications. The WRITE 
rIRECT instruction forces an external 
interruption in tne destination CPU. A 
special routine (called the Inter-CPU Com­
munication subroutine) is invoked to pro­
cess all inter-CPU communications. This 
routine is used when one CPU wishes to 
issue an External Start (simulated IPL) to 
another CPU. See section on Error Hand­
ling. Another example of the use of this 
routine is to reset the associative regis­
ters in another CPU to prevent residual 
references to a shared page whose main 
storage 1::lock has just been released. 

PROGRAM INTERRUPTION 

There are seventeen program interruption 
oodes generated £y the Systern/360 Model 67. 
If any of these program interruptions are 
caused while a CPU is operating in the 
Supervisor state, i.e., caused by the Resi­
dent supervisor, an error is indicated and 
the Interrupt Stacker invokes the System 
Error Processor (see "Error Procedures·). 

Fifteen of these 17 interrupt codes are 
COIrITiCn to all System/360 systems and are 
specified in principles of Operation. 

If a progran. interruption with a code 
0-15 occurs from the problem state, the 
Interrupt Stacker creates a program inter­
rupt GQE and enqueues this GQE on the 
task's TSI. Just 1::efore the task next 
receives control, the Task Interrupt Con­
trol subroutine creates a programmed inter-

Interruption Handling 47 



ruption which results in the task's being 
dispatched at the entry pOint of the Task 
Mom tor's Prograrr, Interrupt Frocessor. 

If the program interruption occurred in 
a privileged routine, the Task Monitor Pro­
grmn Interrupt Processor issues a System 
Error (SYSER) SVC which will cause the 
Resident supervisor's Interrupt stacker to 
invoke the System Error Processor. Upon 
return the task is abnormally terminated. 

If the program interruption occurred in 
a prohlerr program, two situations are 
possible. 

First, the problem program may have spe­
cified a routine to handle this type of 
program interruption through use of the 
Specify Program Entry Conditions (SPEC) and 
Specify Interrupt Routine (SIR) macros. 

In this case, the Task l'(onitor Program 
Interrupt Processor invokes the Queue Lin­
kage Entry subroutine to activatE the Re­
quest Entry for the routine that is to 
nandle the interruption. later, the Task 
Monitor Scanner - Dispatcher transfers con­
trol to the routine. 

In the second situation, the problerr. 
program has not specified a routinE to 
handle the program interruption. In this 
case, the Task Monitor activates a Request 
Entry for the Command language DIAGNO rou­
tine. The DIAGNO routine will use the Com­
mand System User Prompter routine to obtain 
an appropriate error message from the Sys­
tem Message (SYSMSG) dataset which is then 
placed on the task's SYSOUT using the GATE 
WritE (GATWR) macro. If the task is con­
versational, the user is prompted for 
correct~ve action. If the task is non con­
versational, the task is abnormally ter­
minated (Le., the ABEND routine is 
invoked). (See "Corr@and Controller.") 

Program interruption codes 16 and 17 are 
unique to the System/360 Model 67. 

Program interruption code 16 indicates 
that a page table is unavailable. ~rograrr 

interruption code 16 may Signal that a 
Shared page Table is unavailable. This is 
discussed in "Internal Sharing." 

Prograrr interruption code 17 indicates a 
page relocation exception. That is, the 
Dynamic Address Translation unit found the 
page "unavailable" when the Page Table 
entry associated with a virtual storage 
address was inspected. The ~rocessing of a 
page relocation exception interruption 
within the Resident Supervisor is discussed 
in "Page Relocation Exception Exa~~le.· 

If the Page Posting routine of the Resi­
dent supervisor finds that the ~xternal 

48 

Fage Table entry ior a page that has just 
teen brought into ]Vain storage has an 
"Address Constants Unprocessed by Dynilluic 
Loader" flag turned on, a ~rogram interru~­
tion G~E (with an interruption code of 17) 
is enqueued on the task's TSI. This 
results in a software interruption teing 
passed on to the Task Monitor's 1" regram 
Interru~tion Processor which will, in turn, 
immediately dispatch the Dynamic Leader. 
Tne reascn for this flag and the processing 
of this software program interruption, are 
discussed in the section on thE Dynarric 
Loader. 

If a user attempts to reference a virtu­
al storage address not allocated to him, 
either a code 16 or 17 interru~tion occurs. 
The Resident Su~ervisor detects this error 
and enqueues a program interru[tion GQE on 
the 'Task's TSI. 

The interruption code field of an 
extended or virtual PSw perIni ts the speci­
fication of 65,535 interrUpt codes. Within 
1SS/360, the program interruption codes in 
the range 32 to 65,535 are used in a virtu­
al PSW to designate additional program 
errors and are designated as extended 
interruption codes. Interruption codes 18 
through 31 are resErved for futurE hardware 
interruption expansion, and codes 65,280 
through 65,535 are set aside for te~porary 
definitions for use in the developrrent or 
testing of TSS/360. The extended interrup­
tion codes can be placed into a virtual PSW 
ty either the Resident Supervisor or the 
Task Monitor. 

The Resident supervisor uses extended 
prograrr, interruption codes when it discov­
Ers errors associated with a Supervisor 
Call or permanent hardware errors asso­
ciated with task operations. The Task Mon­
itor will place an extended progran inter­
ruption code into a virtual PSW whEnever 
the 'Iask Monitor discovers errors asso­
ciated with a Supervisor Call that repre­
sents a request for the services of a pri­
vileged routine. If the Task Monitor dis­
covers a virtual PSW containing an inter­
ruption code greater than 31, a SYS£R SVC 
will be issued or the Corrmand Systerr DIAGNO 
routine will be invoked as described for 
progran- interruption codes 1 to 15. A com­
rlete listing of the extended program 
interruption codes defined in TSS/360 is 
contained in System Programmer's Guide. 

I/O INTERRUPTION 

The I/O interruption is the nornal 
rrethod used l:y the input/output 11ardware to 
communicate the termination status of an 
input/output o~eration to a CPU. 



For efficiency, the Interrupt Stacker 
places interruptions asscciated with paging 
drums on the Paging Drum Interrupt Proces­
sor queue and all otner I/C interruptions 
on the Channel Interrupt Processor queue. 

If the appropriate Interrupt Processor 
discovers an I/O error, processing will 
proceed as described in "Error Procedures." 

Apart frolf· error interruptions, an 
interruption GQE on an interrupt processor 
queue can represent either a synchronous 
interruption or an asynchronous 
interrupti on. 

As defined in TSS/360, a synchronous 
interruption is an interruption resulting 
from an I/O operation initiated ty the 
Resident Supervisor. Examples of the pro­
cessing of synchronous inttrruptions are 
presented in "Example of BSAM Prooessing," 
and "Paging." 

An asynchronous interruption is any 
interruption that is not synchronous and 
generally is an interruption resulting from 
a user pressing the attention tutton on his 
terminal. When the Channel Interrupt Pro­
cessor encounters an initial attention 
interruption from a terminal, the Task 
Initialization Routine is called to create 
a new task. Then an asynchronous interrup­
tion GQE is enqueued on the created task's 
TSI. 

This causes a software interruption to 
invoke t'he Task Monitor's Asynchronous 
Interrupt Processor which, in turn, invokes 
the Command System Virtual Memory Task 
Initiation and Intitial Attention Interrupt 
Processing routines to supervise initiali­
zation of the new task. This process is 
described in "Creation of a Conversational 
Task." 

In the case of other asynchronous I/O 
interruptions, the Resident Supervisor 
ignores the interruption unless a task has 
issued a Set Asynchroncus Entry supervisor 
call to direct asynchronous interruptions 
from that device to a particular task. 

If the interruption can be associated 
with a task, the interuption is passed to 
the Task Monitor as an asynchronous inter­
ruption. The Task Monitor ignores the 
interruption unless a Request Entry can be 
found for asynchrcnous interruptions on 
this device. 

In the case of asynchronous interrup­
tions froIT a SYSIN terminal (attention 
interruptions caused by depressing the 
attention key cn the terminal), there will 
always be an appropriate Request Entry. 

Normal processing of attention interrup­
tions is the responsibility of the Command 
System Attention Handler. 

LOGON2 receives control during task 
initialization and issues a SIR If~cro, 
which points to a prebuilt Interrupt Con­
trol Block that identifies the Attention 
Handler as the routine to receive control 
when future attention interruptions are 
received from SYSIN. 

Under these conditions, any attention or 
pseudo-attention interruption causes the 
Task Mcnit.or to invoke the Queue Linkage 
Entry rout:ine to enqueue a linkage request 
on the Request Entry for the Command System 
Attention Handler. When the Attention 
Handler is dispatched by the Task Monitor 
Scanner-Cispatcher, the Attention Handler 
will invi t:e the user to enter a command by 
issuing an exclamation symcol to the 
terminal. 

It is desirable to allow a prcblem rrc­
gram to dynamically pause and seek a new 
command from the task's SYSIN. This can be 
accolfplished through the Read Command from 
SYSIN (CLIP) and Read Command from Conver­
sational SYSIN (CLIC) macro instructions. 

The CLIP Ifacro instruction issues a 
supervisor call which is passed to the Task 
Monitor as a task SVC interruption. The 
Task Monitor creates a pseudo-attention 
interrur;tion by invoking the Queue Linkage 
Entry routine to enqueue a linkage request 
en the Ccmmand System Attention Handler Re­
quest Entry. 

The CIIC macro instruction causes the 
sarre proceSSing except that the SVC 
generated by the macro instruction is 
ignored if the task is nonoonversational. 

A user nay establish routines to process 
attention interrUptions. The routines are 
established through the use of the SAEC and 
SIR macro intructions. The user then 
issues a User Attention (USATT) macro 
instruction. This causes the Attention 
Handler to deactivate its Request Entry for 
attention interruptions, thus leaving the 
problem programs Request Entry as the only 
active Request Entry for SYSIN attention 
interrUptions. All subsequent attention 
interruptions are processed by the speci­
fied routine. If the Attention Handler did 
not deactivate its Request Entry, the 
Attention Handler would receive attention 
interruptions instead of the user's routine 
teoause the Attention Handler's Request 
Entry has a higher priority than a problem 
program's Request Entry. When the user 
wants proceSSing of attention interruptions 
to be resumed by the system he issues a 
Clear Attention (CLATT) wacro instruction. 

Interruption Handling 49 



Use of the CLIP or CLIC macros after a 
USA'I'I rr,acro will cause the Attention Handl­
er (not the user's routine) to receive con­
trol from the Task Monitor. 

User routines to process attention 
interruptions rray also be handled by the 
AE'ID macro instruction. The AETL macro 
instruction allows a user to int_errupt his 
programs during execution via the attention 
key, and thereby enter a fredefined user 
routine for processing of the attention 
interrupt. The execution of the AETD macro 
instruction generates a table (AET) con­
taining the addresses of routines which are 
to be given control when a user presses the 
attention key a specified number of times. 
When the attention key is pressed, the 
Attention Handler first determines whether 
the current value of the attention count 
has a corresponding entry in a connected 
Attention Entry Table (AET). If it does, 
the appropriate user's attention routine is 
executed. If there is no corresponding 
entry in the AET, the Attention Handler 
performs various tests (see "Attention 
Handler") • 

The user rr1ight employ the AETD macro 
instruction to pass control to any user­
provided control systems, or to provide 
partial backup in a current task so that a 
bad error situation does not cause the task 
to require total reconstruction. The AETD 
macro instruction can be used to predefine 
simple automatic debugging procedures by 
using PCS comrands in the user-coded atten­
tion handling routines. 

WIlen the AETD macro instruction is 
issued with no operand, the AE'I, if one was 
previously defined, is disconnected, and 
the Attention Handler will be invoked for 
subsequent handling of attention 
interrufts. 

If a user presses the attention key 
while a message is being printed at his 
terminal, the transmission is terminated. 
An attention interruption which interrupts 
an active channel program for a SYSIN 
device is not an asynchronous interruption. 
It is passed to the Task Monitor as a syn­
chronous interruption (see "Corrmand 
Controller") • 

SUPERVISOR CALL INTERRUPTION 

The supervisor call (SVC) is tne normal 
method of communication between a task and 
the supervisor. The interru~tion is caused 
by the executien of an SVC instruction 
which is usually imbedded in the expansion 
of a macro instruction. An SVC instruction 
has a one byte variable field which is used 
to contain a cede (0 to 255) to indicate 
the operation to be perforrr,ed. In TSS/360, 

50 

an SVC interruption can occur under two 
general cenditicns: 

• The SVC issued frorr. a task in the prob­
l~om state. 

• ~he SVC occurred while the CPU was 
cperating in the Supervisor state. 

If the interruption occurred in the 
problem state, the interruption code in the 
PSA is exarr,ined to determine the type of 
request represented: 

• A request for problem program services 
(SVC codes 0-63) 

• A request for Time Sharing Support Sys­
tem Services (SVC codes 64-95) 

• A request for privileged progralr ser­
vices (SVC codes 96-127) 

• A request for Resident suVervisor ser­
vices (SVC codes 128-255) 

The SVC codes from 0 to 63, reserved for 
requests for the services of problem pro­
grams, are not defined at present. 

When one of the SVC codes from 96 to 
127, reserved for requests for the services 
of routines operating in privileged virtual 
sterage, or SVC 254 (LVPSW) is encountered. 
the SVc-interrupt routine ef the Interrupt 
Stacker checks fer the existence of other 
pending interruptions. If no interruption 
exists, the Interrupt Stacker places the 
address of the appropriate processor in the 
current PSW location of the ISA and issues 
the LPSW instruction which causes the 
interruption to be immediately serviced. 
If another interruption is pending, the 
Interrupt Stacker switches addresses as 
above and transfers control to the Queue 
Scanner. 

Later, the ~ask Interrupt Control sub­
routine of the Dispatcher will create a 
software interruption from the GQE and the 
Dispatcher will place the task in execution 
at the entry to the Task Monitor's SVC 
Interrupt Processor. 

Several of the supervisor calls in this 
range are ~re-defined and thus are net 
available for dynamic interruption specifi­
cation by the task. 

These pre-defined supervisor calls are: 

l"acro ID 
DLINK 

PCSVC 

SVC Code 
127 

125 

Macro Name 
Dynamic Linkage Re­
quest (i.e., load a 
program rr.odule) 

Program Checkout Sub­
system Call 



DELE'!' 123 

RTRN 122 

ENTER 121 

RSPRV 120 

CLIC 119 

CLIP 118 

RAE 117 

EXIT 116 

Celete a program 
Irodule 

Return to calling 
program 

Enter a Privileged 
Service Routine 

~estore Privilege 

Read Command from 
SYSIN (conditionally) 

Read Command from 
SYSIN 

Restore and Enable 
task interrupts 

Writes a message to 
SYSOUT. If the task 
is conversational, 
the task is placed in 
corrmand mode. If 
nonconversational, 
the next command is 
read from SYSIN. 

The DLINK and DELET Su~ervisor calls are 
discussed in the section "r:;ynan,ic Loader". 

The PCSVC is discussed in "Program Con­
trol System." 

The RTRN supervisor call is discussed in 
"Example of System Operation Nonconversa­
tional Processing." 

The RSPRV supervisor call was discussed 
in "Task Integrity" and "Linkage 
Conventions. " 

The ENTER Supervisor call is used to re­
quest the Task Monitor SVC Interrupt Pro­
cessor to immediately dispatch a privileged 
service routine. 

The Task Monitor uses as an argument to 
inspect two Enter Tables an Enter code 
which the execution of the Enter macro 
caused to be placed in general purpose 
register 15. 

The first Enter Table contains entries 
which either point to corresponding entries 
in the second Enter Tatle or indicate that 
the Enter code is unassigned. If the Enter 
code is unassigned this constitutes an 
error and the Request Entry for the Command 
Language DIAGNO routine is activated in the 
'Iask Monitor Interrupt Table. DIAGNO will 
subsequently be invoked ty the Task ~onitor 
Scanner-Dispatcher. If the EN'IER su~ervi­
sor call was issued by a privileged rou­
tine, this constitutes an error and a SYSER 
supervisor call is issued ty the Task Mon-

iter. When control is returned to the Task 
~onitor, the task is atnormally terminated. 

The second Enter Table contains the 
address constants used in invoking the ser­
vice reutine. The Appendix section of the 
'Task Monitor Program Logic l~anual ccntains 
a tatle of systerr, enter codes. 

The LLEF and CATALOG routines are 
Examples of the type of routine dispatched 
in this way. This second Enter Table also 
specifies whether the routine to be entered 
(or a routine the entered routine might 
call) may cause another task interru~tion. 

Another flag in each Enter Table entry 
specifies whether the entered routine can 
be recursively interrupted. currently, all 
TSS/360 service routines specify that they 
cannot be interrupted by interruptions tLat 
would affect the o~eration of the inter­
rupted routine. 

An example of the processing of an Enter 
SVC used to invoke the Basic sequential 
Access Metnod Read/Write routine is 
described in "Example of BSAM Processing." 

In the case of SVC codes from 128 
through 255, requests for the services of 
the Resident su~ervisor, the Interrupt 
Stacker will invoke the SVC Queue Proces­
sor. This direct linkage is possible 
Cecause the processor is never interlocked. 

The Resident Supervisor SVC Processor 
will use the SVC interruption code to 
inspect an entry in the processor's SVC 
Flag Table. Each Flag Table entry contains 
information specifying tne privilege class 
necessary to invoke this SVC. If this 
informa tion is not corr,patible with the 
authority code specified in the task's TSI, 
a task Program Interrupt GQE is placed on 
the 'ISI. If the SVC was issued from a rou­
tine with the proper authority, the SVC 
Queue Processor uses the SVC interruption 
code to obtain a pointer from its SVC 
Address Table. The SVC Queue Processor 
then invokes the proper SVC subprocessor to 
initiate the precessing of the supervisor 
call. 

A list of SVC subprocessors was pre­
sented in the section on "rtesident Supervi­
sor." Examples of the processing of SVC 
requests for Hesident Supervisor services 
are presented throughout t.his rr.anual. An 
especially illustrative example is pre­
sented in the section, "Example of BSAM 
Processing." 

If there is no SVC sucprocessor asso­
ciated with the SVC interrupticn code, a 
prograrr interruption GQE is enqueued on the 
task's TSI. 

Interruption Handling 51 



There is at least one eXdnple of d SVC 
that requires Froces3ing ry toth the Resi­
dent Supervisor and the Task ~onitcr. This 
is the Virtual Memory to Virtual ~Emory 
Send [VSEND] SVC. whenever one task wishes 
to send a Ifessage to anotlJer task, the 
sending task issues a VS.2ND SVC. Aft.er the 
Resident supervisor's VSHU::' SVC sul:proces­
sor has completed processing this Supervi­
sor Call, an External Interrupt GQE is 
enqueued on the receiving task's TSI. This 
Supervisor Call is described in 
"Communication." 

It is Fossible for the Interrupt StaCKer 
to receive an SVC interruption which orig­
inated while the CPU was in thE ;:;uj:ervisor 
state, i.e., the SVC instructicn was 
executed by the Resident Supervisor itself. 
This is generally an ERROR SVC that was 
issued by the Resident Super vi SOL in order 
to invoke the System Error processor. Even 
if the SVC was not an ERRCR SVC, the Inter­
rupt Stacker issues an ERROR SVC cecause 
any other SVC issued in the sUFervisor 
state is an error. 

The processing of such interruptions is 
discussed in "Error Procedures." 

52 



R£SID~NT TERMINAL ACCESS ~ETHCD/MULTITERMINAL TASK 

The Resident Terminal Access Method 
(R1A~) provides a resident metnod for com­
munication with terminals, reducing the 
amount of Faging, and therefore thE amount 
of time, necessary for terrr,inal I/O opera­
tions. RTAM is used by Loth TSS/360 and 
Multiterminal Task (VTT) operation, the 
latter allowing several terminals to use an 
application prog rarr, sirr,ultaneously. The 
term 'system' is used to indicate TSS mode 
operation; the terrr 'aprlication' is used 
for MTT mode operation. 

RTAM Control Blocks 

The two illost ilq=ortant control tlocks 
used with RTAM will be mentioned several 
times throughcut this docUJxent: 

System MTSCB 

System TCT 

• 
• TCT Slot 0 

• TCT 5 lot 1 

• 
• 
• 
• 
• 

System Buffer 

• .tJultiterrr,inal Status Control Block 
(MTSCB) -- The MTSCB is a resident 
table which services TSS/360 or MTT. 
When used in TSS mode, there is a 
single system MTSCB used to service all 
terrr,inals (See Figure 21>. The system 
.tJTSCB contains the virtual storage 
address cf the system TCT and buffer 
pages, along with other information. 
The system MTSCB is addressed with an 
EXTRN. 

n 

When used in l·1TT mode, there is one 
aFFlication MTSCB created for each MTT 
task (see Figure 22). The application 
MTSCE contains the virtual storage 
address of the application TcT and 
tuffer pages, along with other informa-

TSIO 

L 
TSI 1 

TSI n 

Note: The Virtual Storage addresses of 
the System TCT pages are 
contiguous in shared IVM. The 
same is true of S stem Buffer y 
pages. 

Buffer size is dynamic. 

Figure 21.. RTAI-l Systerr. Control Block Relationship 

Resident Terminal Access JoIethod/[V;ulti terminal Task 53 



TSI 

i 
I (Flagged as MTT) 
i 

Application MTSCB 

-- , 

Application TeT 
• 
• I-· ,...-- TCT Slot for 

User Terminal 0 

• · • i Application · I Buffer Page 

------, TCT Slot for ~ ---
I 

User Terminal 9 

~ 
i TCT Slot for ~ I User Terminal 10 l~i __ J 

Note: For relationship to system 
tab! es, see Figure 22 

Figure 22. RTAM MTT Centrel Block 
Relationship 

tion. The address of an application 
MTSCE is contained in the TSI of the 
task that issued the MTT con~and. 

• Terminal Control Table (TCT) -- In TSS 
mode, there is one system TCT with a 
slot containing a TSI fointer for each 
ISS mode task attached to the systen .• 
In MTT mode, the afplication TCT con­
tains one slot for each user terwina 1, 
each slot fainting back to the TSI of 
the task which issued the ~TT. The TCT 
is posted with pointers to the buffer 
pages and the TSI, and control inforn;a­
tion for the terRinal. 

RTAM TSS Initialization 

During the initialization procedure, 
when the Read flaced on the line by TCS 
finds LOGON, the Terminal Cowmunications 
Subprocessor (TCS) will call the TCT Entry 
Allocation Subprocessor to assign a systew 
TCT slct and buffer rages to the task. 
(For detail on the initial interruft, see 
'Creation of a Conversational Task' in this 
Look. ) 

RTAM TSS Mode O~:eration 

Toe LOGON frocessor issues the ATTACH 
n,acro instruction to find the systEm TCT 

54 

entry (assigned during initialization) and 
locate the virtual storage buffer address 
ef the LeGaN parameters. If the parameters 
are valid, a GATWR macro instruction in­
fern,s the user that his LOGON was success­
ful. In response to this GATWR issued by 
LOGON, the GATE processor sets the Read/ 
Write I/O flags in the system TCT slot and 
issues the ATCS IT.acro instruction to call 
TCS. TCS builds appropriate CCWs fer read 
and write reguests to the terminal, cased 
on system TCT settings established by GATE, 
and returns to GATE cefore completion of 
the CC'W execution. Conpletion of the CCW 
caused a synchronous I/O interrupt, which 
allows TCS to post the completion in the 
terrrinal's system TCT slot. Control is 
eventually returned to the task. 

R'IAM MTT Initialization By Administrator 

To estaclish ~TT mode, an r~TT Adminis­
trator with 0 or P authority code and T 
privilege class, issues a LOGON corrrrand and 
ceccrres a system user, as shown under 
'Creation of a Conversational Task' in this 
cook. The Administrator subsequently 
enters the MTT command. The TSI is flagged 
MTT, the application program is loaded, the 
CONN SVC is issued to build the afplication 
MTSCE and allocate storage sufficient for 
application TCT and buffer pages, and the 
afflication program is explicitly called 
(see Access ~ethods PLM, module CZCTC). 
This task is now in MTT mode (see Figure 
23) • 

RTAM MTT Initialization By User 

If the initial interrupt from a terminal 
is for the purpose of using an MTT afplica­
tion, the EEGIN command will ce entered. 
TCS will search the aPE-lication [.'lTSCBs for 
the nodule named in the BEGIN parameters, 
and assign an application TCT slot to this 
MTT user terninal. 

The application TCT slot will point cack 
to the TSI of the task that originally 
issued the MTT command. In fact, this TSI 
will be used by all terminals attached to 
this afflication program (see Figure 23). 

RTAM MTT Mode Cpera tion 

The MTT application program that is 
acti vated l::y the iY,TT command will service 
many remote terminals sirr,ultaneously; but 
within the tiwe slice of a single task, and 
with the system overhead of a single task. 

Within the apflioation program, any 
standard TSS/360 commands may be entered, 
plus a sfecial set of MTT macro instruc­
tions (READQ, WRITE~, FINDQ, etc.) which 
allow the apflication to communicate 
directly with the user terminals. (See 
Multiterminal Task Programming and Of era-



tion and the System Prograrr~er's Guide 
SRLs, and the Access Methods PLM.) 

The user ccnnects tc tht a~[lication 
frogram with the BEGIN corr·mand, using that 
format defined for the aF~lication program. 
<See the Command Systerr, User's Guide SRL.) 

System MTSCB 

System TCT 

• 
• 
• I-- • 

• 
• 
• 
• 
• -

System Buffer 

--

I 

I 

Any sutsequent communication between the 
afflicaticn user terminal ano the afflica­
tion J=Iogram must te with commands defined 
in the application program. The creator of 
the application program must therefore fro­
vide dccurrentation sup[-ort_ for the user. 

J I TSI 
! 

~ 

I 
TS~ (Assume this TSI is 

flagged for MTT) 

J TSI I 

I ! 

Application MTSCB 

- I 
Application TCT 

• 
• . 
• I-- TCT Slot for 

Application User 0 

• 
• 

Application Buffer • 
~ I TCT Slot for I 

Application User n 

I • 
Note: Refer to Figures 21 and 22 

• 
~----- • 

-
Figure 23. RTAf.'J Application/System Control Block Relationship 

Resident Terminal Access ~ethod/«.~ultitenninal Task 55 



LATA MANAGEMENT ACCESS tJETHODS 

Traditionally, Data ~anagemenL access 
methcds have been composed of routines to 
~erforIT two lcgical fUnctions: 

• Effective handling of data structures 
• Effective handling of physical devices 

In TSS/360 tnere are two cateSories of 
access rr.ethods: 

• Virtual Access Methods (VA~) 
• Sequential I/O Access Methods (SAM) 

The Virtual Access i"cethcds have been 
specifically de~igned for a tirr.e-sharing 
environment and present a clear division 
between data set and physical device mana­
gement. There are tnree Virtual Access 
t-iethods each of which r:rovides access and 
~rocessing capanility for a specific type 
of data set organization: 

• Virtual sequential Access ~.ethod 
• Virtual Index Sequential Access Method 
• Virtual Partitioned Access Method 

In all three of these access methods, 
data set IT.anagement is performed in virt.ual 
storage and all physical device management 
(i.e., I/O and error recovery) is performed 
by the Resident Supervisor. 

The SeqUential I/O Access Methods are 
all characterized by the fact that the 
access method specifies the appropriate 
channel program and controls the logic of 
error recovery in addition to perforrring 
data set management. These access methods 
calIon the Resident Supervisor to perform 
the actual execution of the Channel pro­
grams. The sequential I/C access methods 
are: 

• Easic Sequential ACCESS Metaod (BSALVJ) 
• Queued sequential Access ~ethod (QSAl>') 
• ~ultiple Sequential Access MEthod 

(MSAM) 
• Terminal Access Method (TAM) 
• Resident Terminal Access ~ethod (RTAM) 

(see section on RTAM/~TT) 
• I/O Request Facility (IOREQ) 
• On-Line Test Syste~ Access MEthod 

(OLTAM) 
• DrUIf' Access Metnod (DRAM) 

'The Catalog Services Routines OBTAIN and 
RETA.IN whiCh, in effect, make up an access 
method, are discussed in "Catalog Service 
Routines." A summary of the macro instruc­
tions available for the rr.ajor TSS/360 
Access ~ethods is ~resented in FigurE 24. 
An overview of these macros is presented in 

56 

concepts and Facilities. These rr:acrcs are 
described in detail in Asserrbler User ~acro 
Instructions and Progr~.rnmer· s (,uide. 

VIRTUAL ACCESS ~ETHODS 

The Virtual Access Methods cOlTprise rou­
tines especially deSigned for TSS/360. 
Data sets with a virtual storage organiza­
tion resice only on direct acceS~j volumes; 
however, VAM data sets may be copied to 
tape via the VT command to free public 
storage or create backup copies, and may 
then be restored to direct access storage 
via the T'V command when required fer pro­
cessing (see "Corrmand Routines"). Users 
create, read, and process these data sets 
cn the basis of the logical records they 
contain. TSS/360, however, organizes t.hese 
data sets by pages and uses these pages as 
the unit of transfer between the direct 
access device and main storage. 

The nalre "virtual" was given to these 
access methods to reflect the fact that 
they utilize only one physical block size; 
that of a page. 

The direct access volumes, on which TSS/ 
360 virtual organization data sets are 
stored, have fixed-length, page size data 
blocks. No key field is required. The 
record overflow feature is utilized to 
allow data blocks to span tracks, as 
requir ed. The entire volume, with t.he cur­
rent Exception of part of the first cylind­
er, which is used for identification, is 
ferrr·atted into page size blocks. 

The page-sized ~lock for data storage 
was selected for a number of reasons. It. 
is as snaIl as the smallest unit of main 
storage allocation. It is large enough so 
that direct access throughput is high. 
Rotational delay is a significant. factor in 
direct access throughput, sinCE it. cannot. 
be overlapped as mechanical seek time can. 
Any ~lock size significantly smaller than a 
page would be extremely wastefull of tctal 
direct access capacity unless elaborate 
strategies were utilized to avoid rotation­
al delay. 

The need for a large bleck size is also 
aFparent when the simultaneous direct 
access activities of mUltiple users are 
considered. Due to conflicts in demands 
for access arms, a mechanical seek may fre­
quently l:e reguired before accessing a data 
tlock. The larger block size makes better 
use cf the total access cycle while, at the 



General Service Macro Instructions General Service Macro Instructions 
Applicable in All Access Methods Applicable in Virtoo! Access Methods 

• DCB • DUPOPEN 

• DCBD • DUPClOSE 

• OPEN 
• CLOSE 

I 
• VSAM ~ VISAM I VPAM ! BSAM 110REQ ! TAM • MSAM l QSAM 

Virtual Vi rtua I Index Virtual Basic Input/Output Terminal Multiple Queued 

Sequential Sequential Partitioned Sequential Request Facility Macro Sequential Sequential 

,~Aacro rnstructions Macro Instructions Macro Instruction:; Macro Instruction! Macro in.struction!: rnstructions Macro Instructions Macro Instructions 

• GET • GET • FIND • GETPOOl' • 'ICON • DFTRMENT • GET • GET 

• PUT • PUT • STOW • FREEPOOl * • IOREQ • CHECK • PUT • PUT 

• PUTX • READ • GETBUF * • CHECK • READ ** • FINISH • PUTX 

• SETl • WRITE • FREEBUF' • WRITE ** • SETUR 
• TRUNC 

• SETl • FEOV • DIAL ** • RElSE 

• ESETL • CNTRl 
• SETlfR) 

• DElREC • READ 
.SETL(P) 

• RELEX • WRITE 
• SETL(C) 

• CHECK 
• SETL(S) 

• NOTE 
.SETl(E) 

• POINT 
• CNTRL 

j 
• SSP 

• READ*** 

• CLOSE 
• WRITE*** 

• (TYPE"T) 
• CHECK**i< 

• DQDECB • NOTE*"'"* 
• POI NT*** 

L 
• BSP*** 

+ + , 
+ 

, + 
--

+ + 
'virtual Sequential 

Virtual Index Virtual Partitioned 

Dota Set, or 
Sequential Data Data Set, with Sequential Data 

Logical 

Virtual Sequential 
Set I or Vi ftual Virtual Sequential Device Oriented Terminal Records; logical Records 

Index Sequential or Virtual Index Set ~ Usually One Oriented Multiple Unit of 0 Sequential 

Member of a Member of 0 Sequential Membe~ with Unblocked Record Dev; ces DClto Set 

Portioned Data Set Partitioned Data Set or a Mixture of Both Records 

*These routines are primer;!}' designed for use with BSAMi however, they may be used WIth any Access Method. 

dill TAM, only class E privileged programs may issue the READ;Write mocro instructions. t-Jonp(ivileged class D programs issue GATRD/GANIR macro instructions. 

***These BSAM routines are invoked oy Q5AM to perform various operc:tiom. 

Note: For RTAM, See Resident TerT.inal Access Method/Mulriterminal Task 

Figure 24. SUItmary of Data ~anagement Macro Instructions and Data Set Organizations 

same tin,e, reducing the frequency of access 
requests ty each user. 

The direct access volume-packing effi­
ciency is alsc quite high for page-sized 
tlocks. First, the data recording space is 
utilized at better than 90% of its theoret­
ical capacity (if cylider-length tlocks 
were written). Second, the smallest 
external storage allocation unit is a 
single page; so a large numoer of srrall 
data sets can be kept en one volume. Fur­
thermore, the freedom from requirements for 
ph~sically contlgucus external storage 
space leads to higher volume packing 
efficiency. 

The Virtual Access Methods are device 
independent across the range of direct 
access devices. That is, it is perfectly 

feasible for a VAl'J data set to have physic­
al records recorded on, say, both 2311 and 
2314 devices in any mixture. Furthermore, 
user infcrrraticn is referenced ty its loca­
tion relative to the beginning of the data 
set, neVEr by its location with respect to 
external storage. As a result, it is 
entirely practical within VAN operations to 
rrove data sets, either in part or in total, 
among a hierarchy of devices. 

The dataset copy routine of the command 
systeu is able to convert information sirrp­
ly froIT any VA~ organization to any other 
VAM data set organization with a small 
nurrber of instructions. This is because 
the record formats, contents and ccntrol 
fields are identical between all 
organizations. 

Data Management Access Methods 57 



The Virtual Access ~ethcds do not use 
the hardware data-searching facilities of 
the direct access control units. The 
operation cf these searching facilities 
would lengthen the data access cycle and 
thereby reduce direct access throughput. 
In general, it is better to conauct a pro­
gramn,ed search in virtual stcrage. Concep­
tually, this amounts to substituting auxi­
liary storage for external storage. This 
concept of progra~oed searches can be 
extended to secondary indexes. For 
instance, the 'ISS Asserrbler .1:'_acro Library 
is maintained as a line data set for main­
tenance purposes. Major activities against 
this file are, however, rased upon an 
alphabetic search based uFon macro name. 
There are two s~ecific routines that exemp­
lify the type of secondary index processing 
that VAM supports. The first routine, 
called Build Index, is used to scan the 
entire macro file, selecting information as 
to the first occurrence of a given rracro 
name and its line nurr.ber within the file. 
This inforrr,ation is then placed wi thin a 
f'age-oriented data image, sorted l:;y alpha­
.tetic name. The second routine, called 
Search Index, uses VAM to tring this entire 
page-oriented image into Virtual Storage 
and conducts a binary searcn against the 
secondary index, to find the location of a 
macro ext:ansion within the line data set. 

The utilization of the Resident Supervi­
sor's page-oriented I/O facility signifi­
cantly sirr.plifies the implementation of the 
VAM access methods. This is due to the 
elimination of device-dependent operations 
(with complex CCW lists), standardization 
of block size, and elimination of such 
exceptional procedures as end-of-volume 
operations. 

TSS/360 assures that only those pages of 
a data set that are actually required are 
brought into main storage and that only 
those pages containing updated information 
are written back onto external storage. 
VAM organizes data sets by relative page 
number. That is, as each page of a data 
set is created it is assigned a page number 
relative to the beginning of the data set. 
On external storage these relative page 
nurrbers are related to the external storage 
addresses where the pages reside. This 
information is stored in the Data Set Con­
trol Blocks (DSCBs) residing in the volurre. 

In virtual storage, the relative page 
nurr,bers are related to external storage 
addresses through a table which is created 
from the data set page entries contained 
within the DSCBs. This taole is called the 
RelatiVe Page/External Page correspondence 
Table (RESTBL), and is maintained by VAM 
routines (1). As a record is desired, for 
example, using a locate wode GET in the 
most straightforward case, the appropriate 

58 

external storage address of the page in 
which the record is contained is obtained 
from the ~ESTBL and passed to the Resident 
~::upervisor which will place this address in 
an external Page Ta.tle (XPT) entry which is 
associated with a virtual storage page­
sized buffer (2). Note that the page 
itself is not read into main storage at 
this tilTe. 

('-lhen a user addresses a record in his 
virtua~ storage nuffer, a paging relccation 
exception interruption occurs and the Resi­
dent Supervisor paging r::rocessors proceed 
to bring the page into storage frow extern­
al storage (3). 

Frequently, when updating a data set, 
only a portien of the logical records are 
actually updated, alL~ough the entire data 
set is read. 

In VA~, a buffer page is written onto 
external storage only if that page has been 
changed. When it is necessary to write a 
buffer page back onto external storage, the 
afprcpriate VAt! routine obtains the extern­
al storage address of the page froIT the 
RESTEL and passes the virtual storage 
address of the buffer along with tnis 
external storage address to the Resident 
Supervisor. The appropriate Resident 
Supervisor paging processors then proceed 
to write the buffer page back into the data 
set en external storage. 

Fron this it can be seen that the RESTBL 
represents, conceptually, a level cf paging 
control above the relocation tables. The 
function of the relocation tables is the 
rrafr::ing cf t:ages that have been allocated 
virtual storage. The prime fUnctien of the 
RES TEL is to map the pages of a data set 
into virtual storage. 

This is accomplished by mapping the data 
set extents descriring the external storage 
occupied by the data set into a table that 
is ccnstructed in the same order in which 
pages are associated with the data set. 
This tarle is then used to map the external 
storage locations of a given portion of the 
data set into a vlrtual storage buffer. 
The size of tne buffer controls the amount 
ef virtual storage allocated to the data 
set at any point in time. This second 
level of rrapJ=ing allows the user to process 
a VA~ formatted data set that can be as 
large as 65,000 pages, which is a great 
deal larger than 16 rr~llion bytes directly 
addressable by the 24 bit system. 

VA!<i brings into the buffer only those 
pages of the data set which are currently 
needed. The size of this buffer need not 
be limited to one page, but may be as large 
as 256 J=ages, thereby allowing a user to 
efficiently process a sequentially 



Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146 

organized data set containing records that 
are a great deal larger than one page. 

Figure 25 shows the overall concept of 
the Virtual Access Methods. 

IMPLEMENTATION 

The data set structures that each of the 
Virtual Access Methods supports are 
described in concepts and Facilities and 
are briefly summarized here. 

Virtual Sequential Data Sets 

In a virtual sequential data set, the 
order of the logical record is determined 
solely by the order in which the records 
are created. In creating this type of data 
set, the user provides the system with a 
stream of logical records. The system con­
catenates the records, organizes the reco­
rds into pages, and stores the data set 
page by page on a direct access device. 
After each record is stored, the system 
makes its retrieval address available to 
the user's program. Users employing assem­
bler language can form another virtual 
sequential or virtual index sequential data 
set containing these retrieval addresses. 
After the data set has been created, if the 
user wishes to make an orderly sweep 

Virtual Storage Main Storage 

Ma1n Storoge Pages 

I 
0 

I 
I 

1 Suffer f------j-., 

I I Page Tobie 

I 
2 I I -. 

I I - I L_ J 3 c;J I I 
0- I 

I I 

W- I I 
Page T oble~ 

4 RESTBL and Exlernal 

I I Page ;crbles 
-

l- I I 
5 I I 

I 
I I 

i I f 

I I 
I 

I External Page Tobie 

I 
I I 

I 

0 

1 

2 

3 

4 

5 

6 

, 

through it, the records can be read back in 
the order in which they were created merely 
by the user requesting one logical record 
after the other. An assembler user can 
also read and update logical records nonse­
quentially by providing the required 
address of each record involved. 

Virtual Index Sequential Data Sets 

A virtual index sequential data set is 
one in which the logical records are 
organized into an ascending collating 
sequence, based on a data key associated 
with each record. The data key may be a 
control field that is an actual part of the 
record itself, or it may be an arbitrary 
identifier (such as line number) which is 
the beginning of each logical record, and 
is added to each record to give it a unique 
key. A virtual index sequential data set 
that is organized by line number is called 
a line data set. 

In addition to the logical records, vir­
tual index sequential data sets contain a 
page directory and locators that relate the 
keys and physical address of the record in 
the data set. 

The page directory is initially set up 
when the data set is created. The page 
directory gives the value of the key for 

External Storage 

I 
I 
I 
I 
I 
I 0 I 

V I Dlrec.r Accel~ 

I 
Method 

I ~ 

I 
D5C8s 

I 
I 
I ~ 

~ I 
I r 
I 

I 
I 

I I 
I I 

I ~ I I 
I L. 

Exler'>oi Add~eH 

______________ L J 
9 I 

i 

---Represe"tl the 
n f 

- - - - Represe"ts: logical 
Aaociolion 

I 
i I 
i I 
I I 
I 

0 I I I 
I '~ 0",0 I 
I I 

-Figure 25. Relationship Among RESTBL, Virtual Memory, and Main Storage 

Data Management Access Methods 59 



Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146 

the first record in each data page. There 
is no entry in the page directory for the 
first data page. The page directory can 
consist of one or more pages, depending 
upon the size of the data set. 

In each page of the data set is an 
ordered set of locators, one locator per 
record. Each locator specifies either the 
physical location of the record in the 
page, or the position of a corresponding 
locator in an overflow page. Overflow 
pages are provided automatically by the 
system when it is necessary to logically 
insert a record between two existing reco­
rds after the data set has been created and 
there is not enough room to place the reco­
rds on the page on which the record 
belongs. The record is thus available in 
proper logical sequence even though it is 
not physically located in sequence. 

Virtual partitioned Data Sets 

A virtual partitioned data set is used 
to combine individual1y organized data 
groups into a single data set. Each group 
of data is called a member, and each member 
is identified by a unique name. The parti­
tioned organization a1lows the user to 
refer to either the entire data set or to 
any member of that data set. 

References to individual members may be 
made through a directory ca1led the parti­
tioned organization director (POD). When a 
partitioned data set is created, a POD is 
set up to keep track of each member. As 
members are added, deleted, or changed, the 
directory information is automatically 
updated. 

The first entry in the data set is the 
partitioned directory, which is used to 
locate the member of the data set. Each 
member begins on a new page; any space 
remaining on the previous page is unused. 

Provision is made for users to assign 
additional names, called aliases, to each 
member, and for the location of each member 
on the basis of the member name of any of 
its aliases. The partitioned data set 
organization is thus ideally suited for 
storage of libraries of program or other 
groups of data that are referred to 
frequently. 

SEQUENTIAL I/O ACCESS METHODS 

BASIC SEQUENTIAL I/O ACCESS METHOD 

The Basic Sequential Access Method 
(BSAM) is a sequential I/O Access Method 
and performs two major functions in 
TSS/360. 

60 

First, BSAM provides a limited data set 
compatibility with the Operating System/360 
by supporting the direct access or unla­
beled or standard labeled magnetic tape 
data set formats (except for the direct 
access split cylinder format) that are pro­
duced by the OS/360 Basic Sequential and 
Queued sequential Access Methods. 

In this same vein, TSS/360 will accept 
or create data sets recorded using American 
National Standard Code for Information 
Interchange (ASCII) formats. Translation 
tables are used, allowing the internal pro­
cessing to be handled in EBCDIC. 

Secondly, BSAM is the primary means 
within TSS/360 of accessing magnetic tapes. 
BSAM creates the channel programs for 
sequentially accessing tapes or disks, and 
passes a control block called an I/O Re­
quest Control Block (IORCB) containing the 
Channel program and buffer information to 
the Resident Supervisor through a supervi­
sor Call. The Resident Supervisor, in 
turn, executes the channel program, records 
any pertinent error information and passes 
the IORCB control block back to BSAM which 
then attempts error recovery if necessary, 
and informs the user of the results of the 
I/O operation by posting the information in 
a Data Event Control Block (DECB). The 
IORCB format is shown schematically in 
Figure 26. 

Since BSAM is a basic access method, the 
user must determine the outcome of his re­
quest before he can do any processing 
dependent on that request. The DECB pro­
vides a means for making the determination. 

svc 

f----------~-------. ------------- - ------------------~ 

Do to Bu Her 

f- - - - -- - -- --- - - - -- - -- OR-· -- -- - --- ---------

Page Li,' 

r-----~--- ------------- ----~.---------. --- - ---- --.----------

Figure 26. Input/Output Request Control 
Block (IORel3) 



Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146 

The test for completion is made by issuing 
the CHECK macro. If the I/O operation has 
ended satisfactorily, control is given to 
the next sequential instruction following 
the CHECK macro. If the request resulted 
in an error or a special condition, control 
is passed to the user's SYNAD routine if it 

Data Management Access Methods 60.1 





is specified, ctherwise the Abnormal Task 
Termination (ABEND) routine is invoked. If 
the operation is not complete when the 
CHECK is issued, the task will wait until 
it is complete. 

The Resident Supervisor performs the 
actual I/O, because the l10del 67 channels 
and storage busses oferate only on real 
24-bit addresses. The access rrethods are 
located in virtual storage and utilize only 
virtual storage addresses. The Model 67 
channels do not handle virtual storage 
addresses, because channels normally cannot 
stop and wait for Dynamic Address Transla­
tion when an I/O operaticn references a new 
buffer page. 

Thus, the Resident sUfervisor must eith­
er be invoked to translate the virtual 
storage addresses used in creating channel 
programs in virtual storage, or the Resi­
dent Supervisor must itself create channel 
programs, and, thus, lose a great deal of 
device independence. 

The first alternative is preferable and 
is implemented by the creation of an I/O 
Request Control Block (IORCB). 

The IORCB provides a way to reduce the 
amount of main storage and paging required 
to perform an I/O operation. The need of 
the IORCB is based on three observations: 

• Because the channels do not perform 
relocation, all buffer areas that are 
to be referenced during the execution 
of a channel program must be in main 
storage during the entire I/O opera­
tion. However, the task that initiated 
the operation has, frequently, finished 
its time slice and thus the pages may 
no longer be available. 

• There are a nurr~er of control blocks 
(originally defined in OS/360 BSAM) 
involved in a TSS/360 BSAM operation 
and they are usually located in dif­
ferent pages. 

• Most ESAM buffers are expected to be 
much less than a page in length so that 
frequently, an entire page would be 
required to remain in main storage for 
a relatively long period of time when 
only a few hundred bytes of buffer 
space are being used. 

By collecting all the pertinent informa­
tion required to perform an I/C operation 
and the I/O buffer itself into one control 
block, the IORCB, and having the Resident 
Supervisor copy IORCBs (whcse maximum size 
is 1920 bytes) into supervisor storage 
which is allocated in 64 byte increments, a 
saving in paging overhead and rrain storage 
use is obtained. 

The rraximum size of an IORCB is 1920 
bytes becaUSE it must fit into the area of 
the Interrupt Storage Area (ISA) that is 
used for passing information froIT tne Resi­
dent supervisor to virtual storage. 

If a buffer is too large to be contained 
witnin the IORCB, BSAM places pointers in 
the IORCE to tne page or pages containing 
the buffer. 

Error recovery for any of the sequential 
access rr,ethods is performea in virtual 
storage for two rrajor reasons: 

• Error recovery procedures are device 
der:endent. 

• Recovery procedures differ depending on 
the ever-all intent involved in a 
series of I/O operations. The Sequen­
tial Access Methods construct channel 
prcgrarrs and thus this information is 
available only in virtual storage. 

~UEUED SEQUENTIAL ACCESS METHOD 

The Queued Sequential Access Method 
(QSAM) rerrrits the programmer to store and 
retrieve the records of a sequential data 
set without coding blocking/deblocking and 
buffering routines. The programmer can, 
therefore, concentrate all his effcrts on 
processing the data he reads and writes. 
Another major feat.ure of this access method 
is that it provides two tUffering techni­
ques, allowing the programmer to chcose the 
cne most suited to his application. 

QSAM, as designed for use in TSS/360, 
provides the following expanded facilities: 

• Both locate and move mode macrc 
instructions can be intermixed on the 
same data set, except when a printer is 
in use and CNTRL is specified in the 
~ACRF parameter of the DCB macro 
instruction. 

• Variable record formats are allowed on 
a data set opened for RDBACK. 

• A SETL routine is provided tc alter 
sequential processing of a QSAM data 
set. 

QSAM can be divided into four basic 
functions: 

• Elccking logical records. 

• ~eblocking logical records. 

• Euffering blocks of data. 

• Issuing I/C requests, checking, and 
repositioning for blocks of data. 

Data .t-:anagernent Access Methods 61 



Blocking, deblocking, and cuffering are 
performed cy QSAM internally. I/O opera­
tions such as reading, writing, checking, 
and ~ositioning for access to data are per­
formed by the Basic Seguential Access 
l-':ethod (BSAM). 

Elockinq Logical Reccrds 

QSAM will ~lace logical records in a 
clock where the maximum block size is spec­
ified in the DCB. The user issues a PUT 
rr,acro instruction for each logical record 
he wishes to include in the output data 
set. It is the functicn of the PUT subsec­
tion to determine whether or nct each rec­
ord will fit within the current Luffer, 
and, if it will, to add add the logical 
record to the Llock. If not, thE clock is 
considered co~~lete, and the record for 
which the PUT was issued will bE treated as 
the first record of a new block. The user 
may cause a block to be regarded as com­
plete prematurely by issuing a TRUNC macro 
instruction. 

Deblocking Logical Records 

It is the function cf the GET sUbsection 
to return to the user a single logical rec­
ord each time he issues a GETmacro instruc­
tion. When a block of records has been 
read and checked, the address of a logical 
record within the cuffer is returned to the 
user if the GET macro instruction was in 
locate mode. If it was in move mode, the 
logical record is moved to his work area. 
When the current block is completely pro­
cessed, the next GET issued will cause the 
buffer to either ce refilled if the data 
set was opened for INPUT or RDBACK, or to 
be written back, if required, to an update 
data set and then refilled. The user may 
cause processing on a cuffer tc .ce regarded 
as complete at any time by issuing a RELSE 
macro instruction. 

Buffering Elocks of Data 

The norrral buffering facility of QSAM is 
known as double buffering, which involves 
the use of two buffers, one of which will 
be currently in use while I/O activity is 
being performed on the other. Thus, on a 
normal input or readback data set, while 
logical records from one buffer are being 
supplied to the user, the other Luffer will 
ce refilled. On a normal output data set, 
CSAM will continue adding logical records 
to one buffer while the other is being 
wri tten out. 

The decision to use doucle or single 
buffering is cased upon the OPEN option of 
the data set, or upon the comtination of 
device type and macro reference option 
specified in the DCB. Dcuble buffering 
will be done in all cases except: 

62 

• When the data set is opened for UPDATE. 

• When SETL is specified in the macro 
reference field of the DCB. 

Single buffering must be done on an uf­
date data set to allow the user to update 
one tlock of records at a time. Nc reading 
ahead can Le dcne until it is deter&ined 
whether cr not the current block of records 
must be updated, since an update write can 
cnly return the last block read. 

When SETL is utilized, 
operations are possible. 
type C, can cnly be valid 
tuffering. 

various control 
{VJoveover, SETL, 
for single 

Issuing I/O Reguests, Checking, and 
Positioning for Blocks cf Data 

The internal functions of QSAM are per­
formed entirely wi thin storage. Any 1./0 
requests for transfer of data between 
storage and any I/O device, or requests for 
refositicning a data set, are passed on to 
BSAM. The BSAl-': modules invoked by QSAl-j are 
READ/wRITl!., CHECK, POINT, CNTRL, NOTE, and 
ESP. 

~ULTIPLE SEQUENTIAL ACCESS METHOC 

The ~ultiple Sequential Access Method 
(MSAM) is designed for use in TSS/360 to 
provide a fast and efficient mechanisrr for 
simultaneously driving several card 
readers, card punches, and printers under 
the control of a single task. MSAM is cur­
rently used by the TSS/360 Eulk I/O rou­
tines and may be used by any other user 
with the Command Language privilege class 
E. This privilege class allows the user to 
secure unit record equipment tnrcugh the 
Corrmand language. 

The user interface with tlSAM is the GET, 
PUT, DCE, DCED, OPEN, CLOSE, FINISH, and 
SETUR macro instructions. The SITUR rracro 
is used for setting up specific forms on 
the unit record equipment. The use of the 
LCE, DCEL, OPEN, and CLOSE macro instruc­
tions under MSlIM is generally consistent 
with the other access methods. An automat­
ic error retry option is available tc the 
user under the control of the DCB macro 
instruction. For instance, the DCB rr,ay 
sfecify that a print error be handled by 
striking out the erroneous line and repeat­
ing the line. 

MSAM sup~orts both fixed (F) and vari­
able (V> format records and is consistent 
with other Sequential Access Methods in 
this respect. 

Like BSAM, MSAl<i builds the channel pro­
gram to control a data transfer in an IORCB 



and then passes the IORCE to the Resident 
Supervisor. 

MSAM differs from the other sequential 
access methods (such as ESAM and TAM) in 
several significant ways. First, for each 
~SAM I/O request, the system processes a 
Luffer group of physical records, while for 
each BSAM and TAM I/O request the system 
processes only one physical record. Con­
siderable Frocessing is required in the 
supervisor and the access rr,ethods for each 
I/O request regardless of buffer size. 
Usually MSAN will make an I/C request only 
once for processing each buffer, thus mini­
mizing system processing overhead when 
using unit record equipment. For example, 
when generating output in the form of card 
images or listings, the user processes log­
ical records which become separate blocks 
or physical records (i.e., cards or print 
lines) on the unit record equipment. MSAM 
routines buffer these logical records from 
their data set into system provided buf­
fers, each of which resides in a separate 
page of virtual storage. Each MSA~ buffer 
page contains a small fixed Fortion of con­
trol information. The remaining portion of 
the page is packed with format F or format 
V logical records. 

Another way in which tJSAM differs from 
the other sequential access methods is as 
follows: Several data sets may be grouped 
together on anyone device, allowing the 
user to process all of them under the same 
Data Control Elock without having to issue 
an OPEN and CLOSE for the DCB each time a 
data set with different characteristics is 
to be processed. Each of the separate data 
sets is referred to as a data group. Input 
data groups may be separated by control 
cards. MSAM will recognize these control 
cards and notify the user that a control 
card has been read, allowing him to take 
whatever action is necessary. Output data 
groups on the card punch rr,ay be separated 
by special cards from the card reader by 
specifying the COMEIN option in the DCB 
macro instruction, or they may be removed 
from the stacker by the operator who may be 
instructed to do so when a FINISH rracro is 
issued. The FINISH macro instruction 
allows the task to avoid much of the over­
head involved in closing a data set. 

Also provided by MSAM is the capability 
of efficient accessing of multiple devices 
within one task. While this is possible 
with other sequential access methods, the 
MSAM macro instructions are designed in 
such a manner tnat the system service rou­
tines need not put the task in delay status 
while waiting for an event, such as I/O 
completion, to occur. This efficient 
device managerrent is accomplished by defin­
ing the macro instructions to provide a 
return code to inform the invoking routine 

that a delay is necessary before the requ­
est (such as GET, PUT, or FINISH) can be 
completed for this DCB. This transference 
cf responsibility of waiting from system 
service routines, such as the BSAM check 
routine, to the invoking routine provides 
tne ability for the task to process all its 
cpened ceBs until all DCBs accessed require 
waiting. At this time the task may wait 
for the first I/O interrupt for any DCB in 
the task. 

All messages written to the operator 
from MSA~ service routines are of the WTO 
macro form (see section on Communication>. 
'Ihe ~TO macro does not put a task in delay 
status. A WTOR macro is not used as it 
would put the task in delay status even 
though there may be opened DCBs which may 
be processed. For exarr,ple, if a message 
must be provided to the operator of the 
on-line unit record devices to make a spe­
cific device ready, a WTO is issued and the 
'Iask Moniter is notified to continue with 
the task programs and provide an interrupt 
when that specific device goes from the 
not-ready to the ready condition. 

MSAM processes from one to a maxirrum of 
40 buffer pages cased on an installation 
parameter specified during systerr. genera­
tion. This parameter is set in the Symbol­
ic Device Allocation Table (see section on 
r:evice Allocation) and may be different for 
each device. For example, the value for a 
device can be adjusted so that the device 
will be driven full speed for the maximum 
length of time cetween two consecutive time 
slices. 

TAM 

The purpose of the Terminal Access 
Methed (TAM) is to provide an interface 
with IBM 1050, 1052-7, 2741 or TTY35 ter­
rrinals attached to the IBM/360 Model 67 
through either a 2702 Transmission Control 
Unit or directly attached to a multiplexor 
subchannel. 

As with all access methods, the means by 
which a user invokes TAM is to issue macros 
cf a prescriced form. At the present time, 
however, these macros are not directly 
accessible by the nonprivileged user who 
must use the GATE ffacros to communicate 
with the task's SYSIN/SYSOUT terminal. TAM 
can be used directly only by privileged 
routines. 

The Terminal Access Method belongs to 
the Basic Sequential class. Buffering may 
either be handled by the user or dynamiC 
buffering may be employed as an alterna­
tive. Macros are of the READ-WRITE type, 
and interrogation by means of a CHECK macro 

Data ~anagement Access Methods 63 



is necessary to determine tne corr,rletion of 
the operation being rerforaed. 

Like ESAM, TAM builds the channel pro­
gram to control the data transfer in an 
IORCB. Like BSA1-1, it also locates the o.ata 
which will be transferred in a givEn opera­
tion. However, if the data record is too 
long to be contained in a buffer within the 
IORCB itself. thE action taken by BSAM and 
'lAM is different. In thE ca se of BSAM or 
~SAM, a rointer is provided within the 
IORCB which locates separate pages to carry 
the data. In TAM, long records arE handled 
by constructing additional IeRCBS, and per­
forming serarate I/O operations on each -­
all data is carried within ICRCBs. This 
difference in n,ethods of dealing with long 
data records is one primary difference 
between BSAM and TAM. 

BEcause TAM supports devices and not 
data structures, it does not utilize many 
of the fields contained within the control 
blocks utilized by BSAM, MSAi"- and IOREQ. 
however, as a rratter of dEsign convenience, 
these control blocks have not been re­
defined or consolidated for TAFJ. TAM sup­
ports the Define Data, DCB, OPEN, CLOSE and 
CHECK general service rracros. 

TAM provides its own Error recovery and 
rosting routines. 

ICREQ 

The Input/Output Request Facility 
(IOREQ) is the access method provided by 
'1'S8/360 for handling unsupported devices or 
for handling supported devices in a non­
standard way. 

Since the user of IOREQ can haVE com­
plete control over a device and, perhaps 
monorolized the channel to which thE device 
is attached, the use of ICREQ is restricted 
to devices defined as r-rivate in the Sym­
bolic Device Allocation 'Table. 

In addition, only the BULKIC task and 
users with Privilege class "E" can request 
the allocaticn of a specific private deviCE 
through a Symbolic Device Address (SDA), 
and only the "Eft class user can request the 
allocation of unit record devices. 

Unlike the freceding access mEthods, 
IOREQ has no knowledge of the data set 
organization cr, ferhars, of the device 
teing used. 

64 

To use IOREQ the user must: 

• Be thoroughly familiar with how the 
device interfaces with a channEl 
through its control unit. 

• Handle all exceptional conditions 
through his SYNAD routine. 

• Re-issue all outstanding requests if an 
I/O request is unsuccessful. (In BSAM, 
~SAt', or TAt-', the access method would 
re-initiatE all I/O requests which were 
issued after the one which was 
unsuccessful). 

• Issue the SAEC and SIR macros to handle 
asynchronous interrupts from the device 
if such interrupts are possible and if 
the user wishes to handle such inter­
rufts in a non-standard way. 

• Not exceed the maximum numter of con­
current I/O requests for this device as 
Sfecified in the Symbolic Device Allo­
cation Table (SDAT). 

IOREQ utilitizes the DDEF, DCB, OPEN, 
CLOSE and CHECK macros. 

Like E8AM, the appropriate channel pro­
gram and buffer information is specified in 
an IORCB but, unlike BSAM, the USEr must 
specify the buffer and channel program to 
be used ty building a set of Virtual Chan­
nel Command Words through the VCCW macro. 
The buffer may te contained in the IORCB or 
in user pages, as the user desires. The 
user requests that this channel program be 
Executed by issuing the IOREQ macro. The 
ability to create his own channel programs 
and specify his own buffers allows for 
greater flexibility than is found in BSAM. 
For instance, channel programs can be long­
Er and scatter-read or gather write may be 
used. 

An additional fEature of IOREQ is that 
channel programs may be command chained in 
the channel. This means, for example, that 
when the channel completes the channel pro­
grarr in one IORCB, the channel will Cif 
command chaining was specified) irr.rrediately 
begin executing the channel program estab­
lished in a second IORCB that has been made 
available. 

CLTAM 

The On-Line 'Test Access Method (OLTAM) 
is used in conjunction with the On-Line 
Test System (OLTS) and is available only to 
a user with Privilege class "Eft. 

OITAM is similar to IOREQ in that the 
user must create his own list of virtual 
CCWs which are then passed to the Resident 
supervisor in an ICRCB and in that he rrust 
srecify his own Attention interrupt handl­
ing routines. It differs from IOREQ in 
that: 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

• The DDEF, DCB, OPEN, CLOSE and CHECK 
macros are not supported. The routine 
invoking OLTAM provides the appropriate 
parameters directly. 

• OLTAM permits a test program to specify 
an I/O path of its own chOOSing rather 
than accepting an arbitrary path as 
provided by the other access methods. 
If the specified path is not available. 
the request will be queued by the 
appropriate Supervisor SVC processor 
until the path becomes free. 

• The use of a channel program controlled 
interruption flag within a CCW is not 
restricted and the reservation of a 
malfunctioning device is not 
prohibited. 

• Information describing the results of 
the I/O operation is placed in an OLTAM 
defined Test Event Control Block 
(TECB), instead of the Data Event Con­
trol Block (DECB) used by BSAM, QSAM, 
MSAM, TAM. and IOREQ. 

• The WAITIO macro is used to test for 
completion of an I/O operation. instead 
of the CHECK macro used by BSAM. QSAM. 
MSAM, TAM. and IOREQ. 

DRAM 

The Drum Access Method (DRAM) is a spe­
cial access method used by Virtual Memory 
Error Recording (VMER) to write error 
information into the short records that 
separate each page-sized record on a paging 
drum. This information can then be 
obtained by a system monitor (Privilege 
class E) through DRAM by use of the Virtual 
Memory Environment Recording Edit and Print 
(VMEREP) program. (See "Error 
Procedures.") 

The Drum Access Method is similar to 
OLTAM in that the user creates his own list 
of virtual CCWs which are then passed to 
the Resident Supervisor in an IORCB. A 
special DRAM flag is set in the IORCB to 
notify the Supervisor that the I/O call is 
from DRAM. 

DRAM is allowed to access a paging drum 
even if the device is malfunctioning. 

DRAM is also similar to OLTAM in that it 
employs a special virtual storage routine 
to post the results of an I/O operation. 

Data Management Access Methods 65 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

THE CATALOG 

The catalog is a virtual partitioned 
data set containing the following informa­
tion about data sets: 

• Where the data is physically located. 

• Who can access the data set. 

• How the data set can be accessed. 

The catalog is a hierarchical structure 
of indexes residing on direct access 
external storage devices. Each index has 
an alphameric symbolic name (up to eight 
bytes) associated with it. Each index is 
identified by this symbolic name plus the 
symbolic names of each higher-level index 
in its structure. A data set is uniquely 
identified by listing the symbolic names of 
the index levels (separated by periods) 
starting with the highest level index and 
proceeding to the lowest. Thus, as shown 
in Figure 27, data set 1 can be identified 
by its name A.B.C. and data set 2 can be 
identified by its name A.B.D. All data 
sets in the catalog structure need not have 
the same level of indexing. Data set 3. 
for example, has only two levels of indexes 
in its name (A.E), whereas sets 1 and 2 
have three levels. 

The highest level of index in the cata­
log structure consists of the 8-character 
user-identifications, one for each 
authorized user of the system, which are 

r-- -l 
I A 
, I 

L~r-~ 

Inde., 

Structurp 

Figure 27. Catalog Index Structure 
Hierarchy 

66 

!~:t:-J ! Set 3 

L~ __ 

prefixed automatically by the system to the 
name that the user aSSigns to a data set. 
Thus, if a user identifies a data set as 
A.B.C, the system will retrieve it using 
the name userid.A.B.C. This highest-level 
index is referred to as the Master Index. 
Using the user identification as the high­
est index level ensures each index below 
the Master Index can be identified with a 
user and assures uniqueness of data sets 
given similar names by separate users. 

The collection of indexes below a user 
indentification is called a user catalog. 
Each index name is referred to as a simple 
name. Combining the names, as described 
above, produces a qualified name. If the 
name of each level, from the highest to the 
lowest, is specified, the name is called a 
fully qualified name and identifies a 
single data set. If one or more of the 
lower levels are not included in the name, 
the name is called a partially qualified 
name. A partilly qualified name identifies 
a collection of data sets. For example, 
with the index structure shown in Figure 
24, the partially qualified name A.B iden­
tifies the data sets with the fully quali­
fied names A.B.C and A.B.D. Including all 
Simple names and separating periods (but 
excluding the user identification), the 
length of a data set name may not exceed 35 
characters. The prefixing of the user 
identification gives the name, of a maximum 
length of 44 characters, for catalog 
references. 

The catalog is a virtual partitioned 
data set. The Master Index is the Parti­
tioned organization Directory (POD>, and 
each user catalog constitutes a member of 
the partitioned data set. The user catalog 
can reside on more than one volume. Howev­
er. the volumes on which the catalog 
resides must remain on-line during system 
operation. 

The system catalog (TSS*****.SYSCAT) is 
a dynamic virtual partitioned dataset -- it 
expands as new users log onto the system. 
It is also a ·scratch catalog,· in that 
only members (users) active during a ses­
sion will exist in it. SYSSVCT, a virtual 
indexed dataset, is used by the system to 
keep track of the individual user catalogs 
(USERCATs). SYSSVCT uses the user identi­
fications (userids) as keys, and contains 
pointers to the USERCATs. SYSCAT and SYS­
SVCT are located on the Auxiliary Control 
Volume. The USERCATs are virtual sequen­
tial datasets, residing on public volumes. 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

At startup, the SYSBUILD routine will 
place TSS*****, SYSMANGR, and SYSOPERO in 
both SYSCAT and SYSSVCT. SYSSVCT will also 
contain the user ids of all the users that 
have been joined to the system, and poin­
ters to the DSCBs for their user catalogs. 

When a user logs on, his user catalog 
may not be found in SYSCAT. Using SYSSVCT 
(where he is identified), the system will 
then copy his user catalog into SYSCAT. 
SYSSVCT is then flagged to indicate that 
the user catalog and SYSCAT are identical 
for this user. When the user subsequently 
references his catalog, the copy in SYSCAT 
is used (as when the user adds a new data 
set). During these operations, SYSSVCT is 
flagged to indicate that the copy of the 

user's catalog in SYSCAT is different from 
the copy on external storage. When the 
user logs off, this flag is reset, and the 
system copies the user's catalog member 
from the scratch catalog (SYSCAT) to the 
external residence of the user catalog. 

At system shutdown, the user ids in SYS­
CAT are searched and, if SYSSVCT indicates 
that the USERCAT and SYSCAT are not ident­
ical, the user catalog on external storage 
is updated from SYSCAT for that user. 

When a task is created, a skeletal JFCB 
for the catalog is included in the taSk's 
Initial Virtual Memory. During task 
initialization, the Virtual Memory Task 
Initialization routine is used to open a 

The Catalog 66.1 





skeletal DCB for the catalog, which is a 
shared data set. This causes the RESTBL 
and Partitioned Organization Directory to 
te entered in the user's virtual storage. 

When catalcg data set pages are assigned 
to members, the pages are formatted into 
64-byte blocks called S tlocks. S blocks 
are the basic unit of storage ~ithin the 
catalog and are used tc promote efficient 
storage and retrieval of information. Each 
S block contains inforrration about a logic­
al entity and contains pointers to related 
S Blocks. A logical entity within the 
catalog is composed of one or more chained 
S blocks. These logical entities are: 

• Indexes 

• Generation indexes 

• Data set descriptors 

• Sharing descriptors 

• Sharer 1 ists 

Logical entities are chained together in 
groups called index levels. Within each 
index level are S blocks containing infor­
mation about that index level and the name 
of each subordinate index level. 

For a fully qualified data set name, the 
lowest level in the owner's catalog con­
sists of one or more S blocks which consti­
tute a "Data Set Descriptor." 

The information contained in a Data Set 
Descriptor is included in the following 
fields: 

• Forward and backward pointers to S 
blocks in the same Data Set Descriptor 

• Narre of the Cata Set Descriptor 

• Pointer to Sharer List 

• Identification of volume or vclumes on 
which the data set resides (SAM or 
private VAM data sets only> 

• Public or private data set indicator 

• Label data indicating the type of 
labels, if any 

• Share flags indicating the extent to 
whicb the da ta set is sbared 

• Share privilegEs (if data set Descrip­
tor is universally shareable> indicat­
ing the tYfe of access to the data set 
allowed 

• Owner access privileges 

• Cat a set organization 

Each new rr.errber of a generation data 
group is described by a generaticn index. 
Eharing descriptors and sharer lists are 
discussed in "Sharing." 

Figure 28 provides a schematic cf a 
rrerrber of the catalog partitioned data set. 
Any of the various catalog management 
operations that can be performed on a memb­
er are accomplished through the Catalog 
Services routines. 

The catalog 67 



First 
Level 

Second 
Level 

Third 
Level 

Fourth 
Level 

--_ ... --. 

NICOLL 

Fire ----. 

Tree 

Index Leve I 
SBLOCK 

----
TREE 

Choin('o 
I"de> ,81.00;, . 

! ~~~~. 

t .----..~~ 

.-------~=~~~------';:;-==-~-~=,.-==:- -~8~e-:e~r' :-~----=-~--~--J-,I 
\Va~er -------. .. __. ____ _ 

---- ---------

Index Le'/ei SEilOCK. 

---

----...... 

Data Set 
De~cf' pt.;:>r 

---j 

S:,orer L'~I 

bRANCH t--i _~~_el'Sc~ __ _ 

Data Set 
Descriptor 

TW;9 

I 

--------i 
\/c:I cJrl€ -~ >------'--_______ . .--1 

Anthofly' 
---- ---.---_. -_._--------------

S Pro:.')er 
---------

Dot~) 

Figure 28. catalog Member 

68 



There are two general categories of 
libraries in TSS/360: 

• Object Prcgram Libraries 

• Symbolic (Source Statement) Libraries 

OBJECT LIBRARIES 

There are three types of object program 
libraries available to a user: 

1. The System Library (SYSLIE) is the 
source of all standard system routines 
which are not contained in initial 
virtual storage. The System Library 
is opened for each user during task 
initialization frocessing. 

2. The User Library (SYSULIB) is a priv­
ate library created for each user when 
he first logs on to the system. This 
library is associated with the user's 
IB, and is opened for him during LOGON 
processing. A DDEF macro is issued by 
the Virtual Memory Task Initialization 
routine to make the User Library 
available. The SYSULln for a user is 
released when a QUIT command is issued 
for him. 

3. A Job Library (JOBLIB) is a library 
that the user defines by specifying 
the JOBLIB keyword operand in the DDEF 
command. The user is allowed to 
define any number of JOBLIBs during 
his task, and these are normally used 
for the purpose of stowing away and 
retrieving object program modules 
generated as output by the language 
processors. Job libraries are fre­
quently used to contain programs that 
are undebugged versions of programs in 
an individual's user library or to 
contain programs that are to have 
sharing attributes different from an 
individual's user library. 

To be made accessible to a task, object 
program modules fl,Ust be contained in one of 
these object frogram libraries. 

Each of these libraries must be in the 
form of a VPAM data set. Each program 
module, then, is a member of the parti­
tioned data set, while each entry point and 
control section (i.e., CSECT) name is an 
alias for that member's name. ThUS, a pro­
gram module may be loaded by module (i.e., 
member> name, or by any alias. Cbject pro­
grams created during the process of 

LIERARIES 

asserrbling, corrpiling, or link-editing are 
automatically formed as members of rarti­
tioned data sets. The user's only respon­
sibili ty is to issue a DDEF corrmand or 
nacrc instruction for each Job Library that 
he wishes to establish for his task • 

The DDEF corrrr,and program creates a Job 
File Control Block (JFCB) and places it in 
the Task Definition Table (see "Data Mana­
gement"). If the DDEF command contains thE; 
keywcrd "JOBLIE," control will pass from 
the DDEF command to the "LIBlvI-AINT" rrcdule 
which creates a Data Control Block (DCB) 
from that JFCB, links it into a chain of 
~CBs which describes a library search 
heirarchy, and issues an OPEN macrc to oren 
the LCB for inrut. 

This chain cf library DCBs includes the 
System Library, the User Library, and any 
Job libraries that a user has declared. 
Whenever conditions indicate that user 
libraries are to be searched, the search 
normally begins with the most recently 
defined JOBLIB, or with the user's SYSULIB, 
if no JOBLIBS have been declared. The last 
library to be inspected will be the System 
Library. 

The chain of library DCBs is also used 
by the Langua~e Processor Control (LPC). 
After a compilation or a link edit run, LPC 
cpens the DCB at the head of the library 
search chain by issuing an OPEN macro with 
the keyword CUTPUT. The head of the chain 
is the rrost recently defined JOBLIB or is 
SYSUIIB if no JOBLIB has been specified. 
IPC then issues PUT macros to place the 
virtual storage image of the object Itodule 
into this VPAM library. LPC next issues 
two Stow macros. The first is a Stow macro 
with the module name. This macro creates a 
member entry. The second Stow macro 
creates an alias descriptor for all extern­
al symbol definitions and CSECT narres 
within the module. LPC then closes the 
output DCB. 

For each partitioned data set, there 
exists a Partitioned organization Directory 
(POD). The POD for a partitioned data set 
relates rrerr.ber names to the positions of 
the member within the data set and defines 
the attributes of each member. The POD 
also relates aliases to rr,err,bers. A search 
cf the PCD is effected by the use of FIND, 
and entries are added to, deleted froIt, or 
changed within the POD by use of STOW. 

Whenever a rartitioned data set is 
opened, the POD for the data set is flaced 

Libraries 69 



in an area of virtual storage frotected 
from the user. For a shared data set, the 
POD is also lecated in fages whieh are 
shared among the sharing users. The entire 
POD remains in the user's virtual storage 
fran; open tiIre until close timE. For a 
non-shared data set, the POD is updated on 
the resident device at close time, if eith­
er the data set or the POD has been 
altered. For a shared data set, the POD is 
updat_ed on the resident device only when 
the last sharing user closes the data set. 

SYMBOLIC LIBRARIES 

A symbolic library is organized into two 
fortions: a source portion and an index 
portion. The source portien is a virtual 
indexed data set and consists of a collec­
tion of narred groups of data called ·par­
cels." The source portion is organized as 
a line data set. The index portion is a 
virtual sequential data set and contains 
informatien that relates the name of each 
parcel to the location of that parcel 
within the source portion data SEt. The 
index portion consists of a single record 
in the Undefined (0) ferrrat. 

Symbolic libraries are most frequently 
used as macro libraries. The macro defini-

70 

tions corresponding to the TSS/360 System 
~acro Instructions, together witH any par­
cels to te accessed by means of the COpy 
assembler instruction, form the source por­
tion of the TSS/360 system macro libraries, 
TSS*****.SYS~~C and TSS*****.ASMMAC. 

If a user declares a user macro library 
in response to the prolTlpting f rom a Lan­
guage Run corrmand, his macro library is 
searched first to find macro definitions or 
COpy code. 

The Command System DATA and MODIFY com­
mands can te used to create or mOdify the 
source portien of a Symbolic Library. 

The index can be created either by using 
the Command System RUN command to execute 
SYSINDEX or ty issuing a CALL macro for 
SYSXELD in a program. 

Through the facility of the VT (Copy VAM 
to Tape) corrrrand, a seldom-used macro 
library may be removed from public storage. 
If a systerr IIiacro library is removEd from 
public storage, it must be restored via the 
'IV (Copy TaFe to VAM) command routine 
before performing system maintenance (see 
"CoIIirr.and Routines"). 



As presented in this rranual, the opera­
tion of '188/360 involves a single Resident 
Supervisor and a set of tasks which operate 
concurrently and which share CPU, channel, 
and storage facilities. 

There are protection considerations 
associated with each of these areas: 

• CPU references to rrain storage 

• References through channels to external 
or auxiliary storage 

• Channel references to Rain storage 

CPU REFERENCES 

Protection requirements associated with 
CPU references can be categorized as 
follows: 

• To protect the Resident supervisor from 
actions originating within a task. 

• To protect each task from all others. 

• To provide protection among various 
portions of a single task. 

The basic rrechanism for protection of 
the Resident Supervisor is provided by the 
fact that a task generates virtual 
addresses and cannot, therefore, directly 
address main storage. 

An additional level of protection is 
provided by allowing only privileged rou­
tines to issue supervisor calls which may 
affect system operation. 

The SVC Queue processor checks whether 
the routine which issued the SVC has suffi­
cient privilege, and the SVC processors of 
the Resident Supervisor check the validity 
of the supervisor calls they process. Some 
checking is also done on the correctness of 
the svc parameter list or control block 
involved. However, even with this check­
ing, a privileged routine may issue a 
supervisor call which adversely affects 
system operations. The Resident supervisor 
does not completely check the correctness 
of SVCS in order to allow an installation 
sorr,e flexibility to modify virtual storage 
system services without making correspond­
ing modifications to the Resident 
supervisor. 

PROTECTION 

The basic mechanism that protects each 
task frorr all others is effected through 
the virtual storage concept. 

Each task has its own set of relocation 
tables (except in connection with shared 
virtual storage). These relocation tables 
cannot be addressed from virtual storage. 
The Resident supervisor controls the allo­
cation of main storage to the varicus 
tasks. Thus. unless the system makes an 
error, destructive inter-task interference 
will not occur in main storage. 

To the extent that tasks share reloca­
tion tables and thus share virtual storage, 
it is possible for one task to affect 
another task. 

The considerations involved in sharing 
are discussed in the section on "Sharing. w 

Two aspects deserve further mention in con­
nection with protection: 

1. Shared main storage is normally 
assigned a read-only protection key 
which eliminates the possibility of 
ncnprivileged routines in one task 
affecting other tasks. No such pro­
tection can be afforded against privi­
leged routines because they use a pro­
tection key of zero. 

2. A task can only symbolically reference 
those shared routines whose Program 
Module Lictionaries have been loaded 
into its Task Dictionary. (See sec­
tion on Dynamic Loader). 

The concepts that create the privileged 
state are the mechanisms provided for 
intra-task protection. These concepts are 
described elsewhere in this manual and are 
a consideration whenever a program module 
is inserted into a TSS/360 library. whenev­
er a program module is to be loaded frorr! a 
library, whenever linkages are generated. 
and whenever main storage references are 
generated. 

EXTERNAL AND AUXILIARY STORAGE REFERENCES 

The basic protection mechanisn.s for 
external or auxiliary storage are also 
described elsewhere in this manual, and are 
rrainly frovided by the catalog Services, 
Device Management, External Storage Alloca­
tion, and access methods routines. 

Protection 71 



CHANNEL REFERENCES TO MAIN S~ORAGE 

The I/O channels operate with the 
storage protection feature in the same way 
as CPUs. The protecticn key for each chan­
nel is obtained from the first four bits of 
the Channel Address Word (CAW) when a Start 
I/O (SIO) is issued. ~his key value is 
held by the channel and is applied to all 
storage references. By proper assignment 
of I/O protection keys in CAWs and storage 
keys in storage, protection against 
erroneous rrodification of storage areas due 
to a channel malfunction or a prograrr:med 
error can be provided. 

Classes of I/O Operation 

• I/O to Virtual Storage areas 
• paging to Virtual Storage areas 
• I/O to IORCB Buffers 

Each of these I/O classes involves a 
different requirement for protection and 
will involve different CAW protection keys. 

Classes of Storage 

Main Storage can be grouped into four 
protection classes: 

• Task Virtual Storage 
• Pages in transit (output) 
• IORCB Buffer Areas 
• Resident Supervisor 

Each of these memory classes is distinct 
and will involve one or more different 
storage keys. 

Assignment of Keys 

The assignrrent of storage keys to 
various storage blocks is as follows: 

Task Virtual Storage 
USer State Read/Write 
User State Read Only 
Privileged State 

pages being written out 
IORCB Buffers 
Resident Supervisor 

Key 1 
Key 2 
Key 2 

(Fetch Protected) 
Key 3 
Key 4 
Key 5 

The assignment of PSW protection keys is 
as follows: 

Programs operating in 
the User State Key 1 
Programs operating in 
the Privileged state Key 0 
Programs operating in 
the Supervisor state Key 0 

The assignment of CAW protection keys 
for various I/O operations is as follows: 

72 

I/O to ~ask Areas 

Paging 
I/O to Buffers 

- Key = 1 or 2 
(as appropriate) 

Key 3 
- Key = 4 

No I/C operations after system start up 
are allowed to reference the Resident 
Supervisor (Key = 5). 

Cperaticn 

The operations of the storage safeguards 
during I/O operations are as follows: 

I/O ~O ~ASK AREAS: I/O operations to task 
areas are performed as a result of an lOCAL 
SVC issued by an access method privileged 
routine. When an I/O buffer is not con­
tained within an IORCB, it is normally the 
responsibility of the access method to 
assign the task area involved. The access 
method sets the protection key field of the 
IORCE to 1 or 2, depending on whether the 
task area being used as a buffer is a user 
cr privileged area respectively. 'l'he IORCB 
key field is used by the Resident SUFervi­
sor in specifying the CAW protection key 
for the I/O operation. The task area being 
used as a buffer is not assigned a prctec­
tion key other than user or privileged 
because it is desirable to allow the task 
to reference other data or instructions 
that may be located in the page containing 
the buffer. 

Note: Buffer contents containing constants 
(such as SEEK Addresses) can be read for 
I/O purposes although the keys do not 
match. 

PAGING: Paging operations will always be 
~erforrred with a protection key of 3. It 
is the resFonsibility of the supervisory 
routine which requested the paging of era­
tion to set the storage key to 3 for all 
storage blocks involved in the operation. 
At the cOITpletion of an input paging opera­
tion, the page posting routine will be 
required to set the storage keys to their 
operational value (1, 2, or 2 with fetch 
protect). 

Note: This sf-ecial treatment of paging is 
necessary due to the drum queuing strategy. 
Only one SIO is issued (setting the protec­
tion key) for a series of drum paging 
operations which could involve bot.h storage 
keys 1 and 2. The only protection key that 
could write in both areas is zero which is 
ruled out. Therefore, the only feasible 
solution is to use another key for all pag­
ing cperations. 

INPU~ TO IOReB BUFFERS: This operation is 
Huch like the operation of I/O to task 
areas with one important exception - it is 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

operating with supervisor allocated main 
storage. The areas which hold IORCBs are 
assigned storage key 4. It is the respon­
sibility of the access method preparing an 
10RCB for buffered operation to set the 
protection key field of the 10RCB to the 
value 4. 

The result of this assignment of storage 
keys is as follows: 

• No I/O operation can modify the Resi­
dent Supervisor storage. 

• No I/O operation can inadvertently 
modify a privileged task area utilizing 
an erroneous user supplied address. 

• The probability of detecting I/O 
addressing errors is increased. 

Protection 73 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

PROGRAM MODULE STRUCTURE 

The primary output of all the language 
processors operating in the TSS/360 system 
environment is the program module. The 
input consists of a stream of source lan­
guage statements which may be converted to 
output program modules. The input to the 
Linkage Editor consists of directive state­
ments and a set of program modules to be 
combined into a single program module. 

PROGRAM MODULES 

A program module generated by a language 
processor or the Linkage Editor resides as 
a member of a partitioned data set before 
being loaded, and in this state consists of 
three parts: a Program Module Dictionary 
(PMD), hexadecimal text, and an optional 
Internal Symbol Dictionary (ISD). Figure 
29 illustrates this structure of object 
program modules. 

The ISD contains information which 
describes the values and other attributes 
of the internal symbols (or FORTRAN state­
ment numbers) used in source language 

PMD Header 

1------------------

Control Section Dictionary 1 

Control Section Die tjonar~. __ ~, ____ ~. ___ l 
------------

Program Modu Ie 
Dictionary 

I 
I 

Control Section Die tionory n 1 
-----1 --------t 

Contro I Section 

-----------------

Control Section 2 

I--------------~~--

Control Section n 

Infernal Symbol Dictionary 
(Optional) 

I 
Hexadec :mo! Text 

( Instruction 
and/or 

Data) 

Figure 29. Format of an Object Program 
Module 

74 

statements or generated by the FORTRAN 
compiler. 

If a program module contains an lSD, a 
user can refer to internal symbols when 
using the program Checkout Subsystem (PCS). 
otherwise, he can only reference external 
symbols in PCS statements. 

An external symbol is a symbol defined 
in one program module which can be 
referenced by a separately assembled pro­
gram module. An external symbol can (usu­
ally> also be referenced as an ordinary 
symbol within the module in which it was 
defined. Each external symbol has asso­
ciated with it a V-value and an R-value. 

The Program Module Dictionary consists 
mainly of a group of Control Section Dic­
tionaries. There is a Control Section Dic­
tionary for each control section of the 
program module. A Control Section Dic­
tionary contains information describing a 
control section such as its length, attri­
butes, external symbol references and 
definitions and information to be used in 
relocating address constants contained 
within the control section. Collecting all 
linkage data for a module into one Program 
Module Dictionary allows the TSS/360 Dynam­
ic Loader to dynamically calculate linkage 
addresses without having to bring the text 
portion of the module into main storage. 

The text is divided into sections called 
control sections. The control sections, 
PMD and ISD are all allocated external 
storage beginning on a page boundary and 
for an integral number of pages. However, 
they are not necessarily allocated full 
pages in main storage. 

The way a program module is divided into 
control sections is determined by the 
source language statements in the case of 
output generated by the Assembler and by 
source language statements and the language 
processor in the case of output generated 
by the FORTRAN compiler. The TSS/360 lan­
guage processors assign each control sec­
tion a unique location counter during 
compilation. 

For the system, the purpose of having 
control sections is to allow a program to 
be divided into sections whose virtual 
storage locations can be adjusted (indepen-



uently of other sections) l::y the Linkage 
Editor or Dynamic Loader without altering 
or impairing the G.ferating logic of the 
program. In System/360, this relocation 
involves only the adjustlrent of address 
constant values and does not require the 
direct modification of machine 
instructions. 

For the user, a control section repre­
sents a segment of coding or data that can 
be replaced or modified (within certain 
limitations) without having to re-assemble 
an entire program. A control section also 
represents a segment of coding or data that 
can be independently assigned attributes. 

At the tirr,e the user creates a control 
section, be may assign to it a variety of 
attributes. These attritutes are: fixed 
length, variable length, read-only, privi­
leged, system, public, common, and proto­
type. Only the prototype attribute (PSECT) 
will be discussed in this section. Further 
information about control sections may be 
found in "Dynarr~c Loader" and in Assembler 
Language. 

Frototype Control Sections and Reenterable 
Code 

PSECTs are generally used in programs 
which are designed for simultaneous sharing 
by more than one task. Such programs are 
termed reentrant and are characterized by 
the fact that the shared portions of the 
program do not change in any way during 
execution. 

It is not necessary to use a Prototype 
control section when composing a program to 
run under T5S/360. In special cases, it is 
possible to write reenterable programs 
without using P5ECTs. Such programs do 
exist in 'I5S/360. They may hold all their 
working data in registers or in the direct­
ly addressable ISA or they may acquire vir­
tual storage working space dynamically. In 
general, however, any programs wnich are 
designed for simultaneous sharing by more 
than one task will contain PSECTs. All of 
the TSS Compilers produce such output 
modules, and all of the privileged TSS pro­
grams, and the nonprivileged system pro­
grams use reenterable coding with PSECTs. 

When a reenteratle program is composed, 
all modifiable data, work areas, and 
address constants may be placed within a 
PSECT. 

Allowing the corrposer of a reentrant 
program to create the PSECT relieves the 
caller of that program of the requirement 
to know precisely what address constants 
the called prcgrarr, requires or, alterna­
tively, of having to ensure that the shared 

prograrrs occupy identical virtual storage 
locations within each sharing task. 

Then, whenever a TSS/360 user loads a 
reenterable routine, a copy of the reenter­
able routine's Prototype control section is 
mapped into tne user's private virtual 
storage. On the other hand, all concurrent 
users share a sing Ie copy of the pIogram's 
reenterable control sections. The use of 
PSECTs has the following effect on the 
structure of programs within TSS/360. Pro­
gram sharing is implemented in such a way 
that the PSECT and the reenterable portions 
of the called routine are separately rr,afped 
into a task's virtual storage. This means 
that in order to perform linkage to a reen­
trant reutine, two virtual storage 
addresses must be supplied. 

The first virtual storage address speci­
fies the location at which execution of the 
object program module is to begin when con­
trol is transferred. This is the commonly 
understOOd, conventional external syrrbol 
value and is called the V-value. A V type 
address constant is often used for this 
purpese. 

The second virtual storage address can 
be used to Sf€cify where the prototype con­
trol section has been mapped within the 
task's virtual storage. If this fointeI 
were not supplied, the reentrant module 
would have no way of knowing wheIe its 
rrodifiable data, etc., are located. This 
second value is called the R-value. An R 
type address constant is often used for 
this purpose. 

The reentrant module itself cannet set 
up in a reentera~le control section an 
address constant pointing to its PSECT. 
'Ihe reasen that this cannot be done is that 
the PSECT may be mapped into different vir­
tual storage lccations for each concurrent 
user. An address constant contains data 
that is to ~e used to form a virtual 
storage address. Because all concurrent 
users share the same physical copy of the 
re enterable control section, there would 
be only one copy of the address constant 
which, of course, can not simultaneously 
point to different locations. 

Because virtual storage is allocated 
dynarrically, a reentrant control section 
that is not contained in Initial ViItual 
lo'err.ory rr,ay also be mapped into different 
virtual storage locations for each concur­
rent user, even though there is only one 
physical copy of the control section. 

This explains why all address constants 
rrust be treated as modifiable data when 
creating a reentrant progIaro and, as such, 
lIust be placed in the program's PSECT. 

program Module Structure 75 



Because Initial Virtual f./jemory modules 
occupy identical virtual addresses in every 
task, they may treat their internal address 
constants as unmodifiable or "read-only" 
data. 

Putting all address constants, modifi­
able instruction sequences, etc., into one 
or more PSECTs still dces not guarantee 
that the resulting routine will be reenter­
able under all conditions. This certainly 
takes care of intertask reenterability, 
that is, the sharing of a program by many 
different tasks. However, there is another 
type of reenterability to be considered: 
intra-task reenterability. This refers to 
a single task reentering the samE program. 
As discussed in "Task ~onitor," this can 
occur when a task receives a programmed 
interruption while executing some system 
routine or when a routine is recursively 
called. 

In such a situation, the PSECT will not 
protect task integrity, since within a 
single task there is only one copy of the 
PSECT. This explains why the Resident 
Supervisor does not use PSECTs and why the 
Task Monitor provides either a push down 
save area or a means by which a routine can 
protect itself from unwanted intra-task 
reentrancy. 

A program nodule can contain more than 
one PSECT as long as each is identified by 
a unique name. Multiple PSECTs do not 
appear to be absolutely necessary, but they 
are convenient. 

The contents of a PSECT need be in no 
particular order and can be identical in 
every respect with those of a CSECT. 
However, unlike most other types of control 
sections processed by the TSS/360 Assembl­
er, the PSECT must always be named. 

76 

A PSECT is generally used to held the 
save area for a reentrant routine. The 
save area, and the origin of the PSECT 
itself, are located by separate and inde­
pendent pointers. However, there are 
advantages"in placing the save area at the 
origin of the PSECT, and, in fact, rrest 
system rcutines are written thi::; way. 
Placing a save area within a PSECT, rather 
than a push-down stack, facilitates tracing 
linkages during debugging. 

The Appendix section of Task Monitor 
Progran Logic f.ianual contains a table of 
all systerr enter codes. 

CSTORE Macro Instruction 

The CSTORE nacro instruction enables a 
user to store an area of virtual storage as 
a contrel section, thus bypassing the need 
to store and process this area as a data 
set. 

The use of a CSTORE maero instruction 
causes a control section to be created dur­
ing the execution of a program. Any set of 
contiguous bytes may be transformed into a 
control section. This can be sto~ed as a 
ELOCK CO~MON module, placed on the current 
JOBLIB as a module, and may then be suose­
guently loaded as part of the originating 
program or as part of a late:r fTograrr. 
~hen such a control section is loaded, ne 
relocation takes place. Therefore, it may 
not contain any relocatable items. 

The resulting control section will con­
tain an integral number of pages starting 
at the page boundary preceding the first 
byte address and terminating at the page 
boundary following the last byte address. 



Situations can occur in a time sharing 
environment which necessitate communication 
l::etween tasks. Such communication may be 
required by: 

• The System Operator task to send mes­
sages to user tasks. 

• Device management routines to send 
volume or form mounting messages to the 
system operator and to receive replies. 

• The Batch Monitor task to initiate or 
cancel non conversational tasks. 

• User tasks to enter rressages in the 
systerr log or send messages to the sys­
tem operator terminal. 

• User tasks or the Main Operator Task to 
send requests to the Batch Monitor task 
for the initiation of nonconversational 
tasks. 

A nonprivileged user has at his disposal 
the Write to log (WTL), Write to operator 
(WTO), and Write to operator with reply 
(WTOR) macro instructions. These macros 
expand into a Type II linkage to the Com­
mand Language XWTO routine. 

A privileged user has at his disposal 
the Virtual-Memory-to-virtual-~emory 
(VSEND) and VSEN~-with-reply (VSENDR) macro 
instructions. The VSENDR macro instruction 
causes a Type I linkage to the Command Lan­
guage XWTO routine. 

The system operator has at his disposal 
the BCST, REPLY, and MESSAGE commands. 
~hese commands cause the Command System 
routines of the same name to Le invoked. 

Transrritting a message from one task to 
another involves: identifying the task to 
receive the message; estal::lishing authori­
zation between the sender and receiver; and 
transrr~tting and processing the message. 

In order to communicate with another 
task, two important requirements must be 
met. First, the task to which a message is 
to Le sent must exist at the time the mes­
sage is to be sent; i.e., the task must ce 
represented by a TSI. Second, the destina­
tion task rrust be identified Ly the Task 
Identification Number (TID). 

The Resident Supervisor ensures that a 
task will not receive a rr.essage (whether 
meaningful or not) from another task unless 
the receiving task is prepared to handle 

COMMUNICATION 

the rressage. A flag in the TSI specifies 
whether incoming messages may be accepted. 
If the flag is on, all incoming messages 
except those from the System Operator or 
Eatch Mcnitor tasks will be refused and the 
sender will be notified. If the flag is 
cff, all incoming messages will be allowed 
to interrUpt the task. 

The process of sending a message is as 
follows: 

An intertask message and an identifying 
nessage code are placed in a Message Con­
trol Block (MCB) and transmission is 
initiated by issuing a VSEND SVC. 

The VSEND SVC processor of the Resident 
Supervisor searches the Active and Inactive 
TSI'lists and, if the TSI with the correct 
~ID is found, the ~essage Control Block is 
copied into Supervisor storage in the saIr,e 
rranner as an Input/Output Request Control 
Block (IORCB). 

A GQE is then created containing a 
pointer to the location of the MCB. This 
GQE is then enqueued on the receiving 
task's TSI as an External interruption 
request. 

The VSEND SVC processor passes a return 
code to the sending task through a general 
purpose register to indicate the result cf 
the VSEND request. The code may indicate 
that the destination task does not exist, 
that the destination task does not accept 
messages, or that the destination task has 
accerted t:he message. 

The Task Interrupt Control subroutine 
eventually causes an external interruption 
in the receiving task and places the MCB in 
that task's ISA. 

The External interruption will be ini­
tially processed in the receiving task by 
the External Interrupt Processor (XIP) of 
the Cormand System. 

If the MCB message code indicates the 
message is to be handled by system rou­
tines, XIP oLtains virtual storage, trans­
fers the /vICB out from the ISA, and estab­
lishes a linkage to the proper routine to 
handle the message. 

If the user is expecting to receive such 
rressages and they do not contain message 
codes processed l::y XIP, the user must pro­
vide fcr the processing by issuing the SEEC 
and SIR macro instructions. 

Corr~unication 77 



It is possible to send a message and 
await a reply. 

In this case. the original rr,essage will 
contain a flag indicating that a reply is 
expected and a pOinter to a ~essage Event 
Control Block (MEB). The ~EB is similar to 
the Data Event Control Block (DECB) uti­
lized by the Sequential I/O access methods. 

After the message has £een sent, the 
XWTO routine issues an AWAIT supervisor 
call to place the sending task in delay 
status. 

78 

When a reply is received, XIP will post 
the receipt of the awaited reply in the 
MEB. 

When XWTO next receives control, it 
inspects the MEB and finds that a reply has 
teen received. XWTO then places the reply 
in a user specified area and returns to the 
caller. 

An example of the processing of an 
inter-task message and reply is included in 
the section "Examples of System Operation, 
Nonconversational Processing.-



Programs in TSS/360 can link to each 
other only in certain ways, and under cer­
tain conditions, depending on their priVi­
lege level. These design rules are called 
linkage conventions. They affect the set­
ting up of save areas, the passing of para­
meter lists, and the setting uF of entry 
and return registers. 

Linkage conventions allow the transfer 
of control from one program to another in a 
standard way. This standardization eli­
minates redundant register usage, and 
allows linkages to be generated £y means of 
system macro instructions. 

Linking between modules in 'ISS/360 can 
be divided into two major classes: 

• Linkage between modules of the Resident 
Supervisor 

• Linkage between Virtual storage 
progran.s 

SUPERVISOR LINKAGE 

At Startup, the Resident supervisor is 
link-loaded and thereafter remains self­
contained. Therefore, to increase effi­
ciency, no conventions have been estab­
lished to govern linkages between the 
modules of the Resident Supervisor. Howev­
er, Resident Supervisor routines make 
Extensive use of the standard linkage regi­
sters 0, 1, 14, 15 for linkage purposes. 

VIRTUAL STORAGE LINKAGE 

Within Virtual Storage, there are four 
main classes of linkage called Type I, Type 
II, Type III, and Type IV. 

TYPE I 

The Type I linkage is the most common 
and is, essentially, the traditional form 
of linkage. Its characteristics are: 

• It uses the BASR instruction. 

• The Resident Supervisor does not assist 
in the transfer (i.e., no interruption 
occurs). 

• The two routines involved (i.e., caller 
and called) nust be of the same level -
i.e., two problem programs or two pri­
vileged programs. 

LINKAGE CONVENTIONS 

TYPE II 

Type II linkage enables a problem pro­
gram to communicate with certain privileged 
System Service routines. Its characteris­
tics are: 

• The user generally issues a macro such 
as OPEN, READ, etc., which is expanded 
into an ENTER SVC. 

• The SVC interrUption is passed to the 
Task Monitor by the Resident 
Supervisor. 

• The Task Monitor translates the Type II 
linkage into what appears to the called 
Privileged program as a Type I linkage. 

• It is employed when a nonprivileged 
program uses a CALL macro to link to a 
Privileged program. 

It should be noted that not all privi­
leged routines can be called by a nonprivi­
leged user. certain privileged routines 
(e.g., Allocate, Extend, etc.) can only be 
called by other privileged routines. The 
called routine need not be aware of whether 
a Type I or Type II linkage is employed. 

The Task Monitor saves the called rou­
tine from having to handle two different 
calling sequences by providing a save area 
and making the Type II linkage look like a 
Type I linkage. The language prooessors 
protect the caller from having to con­
sciously set up one of two different cal­
ling sequences, by expanding systen nacros 
differently depending on whether the module 
being compiled is specified as Privileged 
or not. There is, incidentally, no need to 
restrict the use of the Privileged specifi­
cation at compile time, because protection 
control is applied when the module is to be 
loaded. 

TYPE III 

Type III linkage is the reverse of Type 
II linkage. It is infrequently used. 
However, it is used whenever a privileged 
progran. invoked through a Type II linkage 
calls a nonprivileged program. The charac­
teristics of a Type III linkage are: 

• The transfer and save area management 
are assisted by the Leave Privilege 
subroutine of the Task Monitor. 

• The actual linkage is performed via the 
Load Virtual PSW (LVPSW) macro which 

Linkage Conventions 79 



generates a supervisor call of the same 
name. 

• The Resident Supervisor su£sequently 
issues the privileged instruction Load 
PSW and completes the transfer to the 
nonprivileged program. 

• When the nonprivileged program effects 
a return, the address contained in the 
return register causes a Restore Privi­
lege (RSPRV) supervisor call in the 
task's ISA to be executed. 

• The Resident Supervisor passes the 
supervisor call to the Task Monitor as 
a task interruption. 

• The Task Monitor SVC interruption pro­
cessor restores the privileged rou­
tine's status from a protected save 
area and returns control to the privi­
leged routine through the Load Virtual 
PSW supervisor call. 

TYPE IV 

Type IV linkage is used by TSS/360 pro­
grams under restricted circumstances for 
the sake of linkage efficiency. Type IV 
linkage is much more restricted linkage 
than types I. II, and III. Type IV linkage 
is found principally in the coding of the 
language processors. Type IV linkage con­
ventions standardize the use of the general 
registers and the method of transferring 
control from the calling program to the 
called program. No provision is made for a 
standard save area in this convention. The 
characteristics of Type IV linkage are as 
follows: 

• Control is transferred via a BASR 
instruction. 

• General registers 0 through 6 are used 
as parameter registers. 

• The calling program provides a PSECT 
address in general register 13. 

FENCE SITTER ROUTINES 

There is a small class of routines such 
as GETBUF that are called "fence-sitters" 
~ecause they can be called through a Type I 
linkage by either a privileged or a nonpri­
vileged routine. These routines are 
assigned a hardware storage protection key 
that makes them read-only to nonprivileged 
routines. Whenever a Type I linkage is 
performed, the PSW protection key is 
unchanged. Therefore, when called from a 
nonprivileged program, a fence-sitter rou­
tine takes on the characteristics of a non­
privileged routine. Whenever a fence-

80 

sitter service routine is called from a 
privileged routine, the PSW protecticn key 
is zero, and the fence-sitter takes on the 
characteristics of a privileged routine. 

This convention is estatlished for the 
purpose of perrr,itting an efficient transfer 
of ccntrol to those system service routines 
which do not frequently need to link to 
other (privileged) service routines. 

Scme fence-sitter routines have initial 
entry point names beginning with the let­
ters SYS. This distinguishes them from 
service routines that must be linked to 
frcm a ncnprivileged routine through the 
ENTER mechanism. 

Other fence-sitter routines are linked 
to froIT. rracro instruction expansions which 
utilize address constant values which were 
filled into a Data Control Block by a pri­
vileged access method routine. (See sec­
tion on Lata Management.> 

If a fence-sitter routine needs to link 
to a privileged service routine, the fence­
sitter routine utilizes either a Type I or 
a Type II linkage, depending upon the pri­
vilege class of the routine that invoked 
the fence-sitter routine. 

For example, 'I'SS/360 QSAM is designed as 
a fence-sitter routine, and thus will run 
in the same privilege status as the routine 
which invokes it. Since it is most often 
invoked by the problem program, it will 
generally run in the privilege of the user. 
and, as such, mayor may not be of the same 
privilege as the BSAM modules which it 
invokes. All the BSAM modules invoked, 
except NOTE. are privileged routines. As 
NOTE is also constructed as a fence-sitter 
routine, and will take on the privilege 
status of QSAM whenever it is invoked, 
type-I linkage is always established to 
invoke NOTE. 

Before establishing linkage to any of 
the ether BSAM modules. it is necessary to 
determine the status of QSAM SUbsections. 
QSAM routines perform this function with 
respect to their BSAM counterparts by test­
ing the first bit of the VPSW in tne ISA 
table. If QSAM is privileged, type-I lin­
kage is esta£lished, using the address con­
stants defined within the data control 
block. If it is not privileged, type-II 
linkage is establ~shed via the ENTER SVC. 

There are additional slight modifica­
tions of linkage types which are used in 
certain instances. For detailed inforrra­
tion and exarr,ples of the rules governing 
each type of linkage, refer to the IBM 
System/360 Time Sharing System: Syst~~ 
Programmer's Guide. 



The Data Management facilities of TSS/ 
360 can be invoked froIT coth IBM-supplied 
and user-written programs and are used 
extensively by privileged system service 
routines, Command System routines, and the 
TSS/360 language processors. 

Data Management facilities are called 
upon by macro instructions, such as GET and 
PUT, which are included in source prograrrs. 
The TSS/360 language processors expand 
these macro instructions. Their expansions 
introduce instructions into an oeject 
module to provide for completing linkage 
and passing parameters to the appropriate 
Data Management service routines. 

Some macros (such as READIWRITE) include 
a Data Event Control Block (BECB) in their 
expansions. Each DECB contains information 
relative to the specific I/O operation to 
be performed. The access method obtains 
parameters necessary for the execution of 
the I/O operation from the DECB and, upon 
completion of the operation, posts in the 
DECB information such as the Channel Status 
Word (CSW) describing the results and com­
pletion status of the operation. The DECB 
format is shown schematically in Figure 30. 

Dnto Arpa A,dd,E',}' 

Addres<.. of CCV..J LI~l 

ler'9i1, ,cf 
((W l;,l 

f-------------- ---~~--,-- ~------

Chonnel Status Word 
CSW 

---

r-------,---~--,---------~--------~ 

Sense Bytes 

Figure 30. Data Event Ccntrol Block (DECB) 

DATA MANAGEMENT 

The ex~ansion of some Data Management 
macro instructions results only in the 
creation of a control block. For instance, 
the Terminal Access Method DFTRMENT ITacro 
instruction expands into a list of terminal 
dialing, polling and addressing characters. 

In order to use the facilities cf Data 
~anagerrent, the data sets or devices 
involved must be described to TSS/360. 

Parts of this description are generally 
supplied at three different times: 

• ~hen a program is composed. 
• When a program is to be executed. 
• when the data set or device is to be 

proce!3sed. 

Before a data set can be processed, a 
Bata Control Block (DCB) and a Job File 
Control Block (JFCB) must be created. 

The DCB, when it is fully processed, 
tecorr,es the principal control block used to 
supply information describing the data set 
cr device and it is the control block which 
is referenced in all data management macro 
instructions. 

A user or language processor creates a 
DCB by including the DCB macro instruction 
in source coding. 

The Data Control Block (DCB) is created 
in-line wherever the macro instruction is 
placed. The control section containing the 
DCB is assigned main storage in accordance 
with the control section's attributes. 
This means, for instance, that care should 
be taken not to rlace this modifyatle con­
trol block in a section with read-only or 
public attrieutes. 

The DCB has a fixed length and consists 
cf two ccntiguous parts: a common portion 
and an access method dependent portien. 
~he DeB format is shown schematically in 
Figure 31. 

Data set processing flexibility Eay be 
enhanced by not specifying certain DCB 
parameters during prograE composition and 
completing the DCB during or just before 
program execution. Even the data set 
crganization (r;SORG) parameter need not be 
specified during compilation. 

The comfon portion of a Data Control 
Block contains such DeB parameters as buff­
er length and record format as well as 
address constants pointing to user speci-

Data Managerrent 81 



(Common ) 

120 Bytes 

DCB Paromete" 

From : 

DCB Macro 
DD Statement 
DSCB 
User Modifications 

r--------------------------------------------------~ 

Access Dependen t 

Portion 

SAM (16 Bytes) 

Counter Used by Note, Point 

DASD Location 

Printer Overflow Status 

Figure 31. Lata Contrcl Block Table (DCB) 

fied exit routines, such as the SYNAD 
address, and access method routines, such 
as the address of the PUT module. 

Certain information describing a data 
set, such as the data set name (DSNAME), 
cannot be specified in a DCB macro but must 
be supplied before the data set can be pro­
cessed. This information is supplied by 
the Define Data routine, which creates a 
Job File Control Block (JFCB). The JFCB 
format is shown scherr.atically in Figure 32. 

Privileged routines will sometimes use 
the Find JFCB (FINDJFCB) subroutine to loc­
ate a specific JFCB and to prompt a conver­
sational user to issue a DD cOITITIand when he 
has neglected to do so. Privileged rou­
tines also may use the Find Data set 
(FINDDS) SUbroutine to request the Define 
Data routine to directly create a JFCB for 
a cataloged data set if a JFCB does not 
already exist. 

The nonprivileged user or system program 
may create a JFCB by issuing the DDEF corr­
mand or Ifacro instruction or by using the 
CDD command to cause prestored DDEF com­
mands to be issued. 

The DLEF command or macro must supply a 
Define Data Name (DDNA~E) and a Data Set 
Name (DSNAME) in order that the data set 
may later be associated with a Data Control 
Block (DCB). Most other DLEF parameters 
may be omitted under certain conditions. 

82 

There are three claSSES of DD Names: 

• System DD Names that begin with the 
characters SYS. 

• CD Names generated by system routines 
which are formed from the characters 
$$$ concatenated to sequentially higher 
S-digi t numbers. 

• Reserved DD Names, such as PCSCUT, 
which is used by the DUMP routine of 
the Program Checkout Subsystem and 
names beginning with the characters 
LPC, which are reserved for DD Names 
issued by the Language Processor Con­
trel module. 

Within any particular task, only one 
JFCB can exist for a data set. If a data 
set name in a LDEF command matches a data 
set narre in another JFCB for the task, the 
new ddname will be substituted for the cld 
ddnarre and processing for that command will 
be considered completed. 

This could occur, for instance, if dur­
ing a terminal session a data set is pro­
cessed as a new output data set in one pro­
gram and as an old input data set in anoth­
er program. In this case, the first ddname 
rr.ight be CUT and the second ddname IN. 

For additional information concerning 
such data set characteristics as reserved 
data set names, see the Appendix section of 
the Assembler Programmer's Guide. 

There are also four categories of addi­
tional information that may be supplied in 
a JFCB created by the DDEF routine: 

• External storage space allocation 
parameters. 

• Levice Management parameters. 
• Data set disposition parameters. 
• LCB pararr,eters. 

DDNAME 

DSNAME 

~------------------------.-.-.-.-.~---------

Data Set Control fnformotiol1 

f----------------------- -----------.----~ .. ----~-~ ~- ----

Dato Control Block 

(DCB) 
Parometer~ 

Figure 32. Jot File Control Block (JFCB) 



If the data set has been cataloged, the 
appropriate catalog services routines are 
invoked to obtain the data set descriptor. 

The catalog and CDEF values for data set 
organization, data set disposition, device 
class and data set affinity must agree or 
an error is indicated. All other catalog 
information (such as label type) is used in 
filling out the JFCB in preference to 
corres~onding information in the DDEF 
command. 

If a user specifies the *ddname paramet­
er in the DDEF command (or macro) all the 
DCB parameters specified in the ~articular 
previously-issued DD command named by the 
*ddname parameter are placed into this 
JFCB. Any new DCB parameters sutIDitted in 
the current DDEF command overlay parameters 
obtained from the previous DDEF corr~and. 

If conditions are such that a DDEF para­
meter may be omitted, the DDEF routine 
~laces standard values in the JFCB to fill 
out the defaulted fields. Most defaults 
result in placing zeros in the correspond­
ing JFCB field. The a~profriate values for 
the remaining fields are obtained from the 
System Common table. These values, such as 
the data set organization default value, 
are specified during System Generation. 

If a new SAM data set is to reside on a 
direct access device, the ALLOCATE routine 
is invoked to obtain the required amount of 
direct access storage space. (See the sec­
tion on External Storage Allocation.) 

A call is made to Device Management to 
ensure that the proper Private devices are 
on-line for SAM data sets (see "Device 
Allocation"). 

When the JFCB has been completed, it is 
linked into a chain of JFCBs called the 
Task Data Definition Table (TDT). The TDT 
contains all the JFCBs defined for a task 
and resides in virtual storage ottained by 
the privileged DDEF routine. Thus, the TD'!' 
is protected from the nonfrivileged user. 
During LOGOFF processing for SAM data sets 
this TDT chain is searched in order to pro­
mpt the user for the disposition of his new 
and as yet uncataloged data sets. It is 
also used for abnormal task termination 
(ABEND) frocessing to release interlocked 
facilities. No such prompting is required 
for VAN data sets since all such data sets 
are cataloged and the user specifies the 
deletion oFtion by means of DDEF. As with 
most task chains or tables that are used by 
rr.ore than one routine, the TDT anchor is 
fOinted to by a field in the Interrupt 
Storage Area (ISA). 

If the user specifies in the DDEF com­
mand that he wishes the processing of a SAM 

data set concatenated with the processing 
of other data sets, the JFCB is chained to 
the other appropriate JFCBs. All rrerobers 
of a concatenated data set must have the 
same ddname. The CONC parameter of the 
OPTION field is used to specify the conca­
tenation of this data set. 

If a data set is declared to DDEF as a 
JOB LIBRARY, the data set is linked into a 
chain of job libraries within the TDT and 
the routine lIBMAINT is invoked to create a 
CCB from this JFCB. DCBs thus created are 
linked together in a chain and are used 
when library searching is indicated (see 
"Libraries") • 

The REI,EASE macro instruction is used to 
release a data set, or a concatenated 
series of data sets, or a member of a con­
catenation, or a JOB LIBRARY from the pro­
gram library list. 

The next stage in preparing a data set 
for processing is initiated by the execu­
tion of an OPEN macro instruction and is 
called "cpening a DCB." 

Both a DCB and a JFCB must exist for the 
data set before the OPEN macro instruction 
is executed. Any particular DCB may be 
opened for only one data set or data set 
rrember at a time. In separate tasks DCBs 
rray be opened for the same data set or data 
set member at the same time if the data set 
is sharable (see "Sharing"). If multiple 
DCBs within the same task are associated 
with the same data set, they may all use 
the same JFCB. 

OPEN processing consists of processing 
that is corr~on to all access methods (OPEN 
COMMON) and access-method dependent proces­
sing which is performed by one of a set of 
Access-Dependent Open (ADO) routines. This 
is schematically depicted in Figure 33. 

If the data set resides on a direct 
access volume, the appropriate Data Set 
Control Blocks (DSCBs) are read into main 
storage from the volume on which the data 
set resides. 

A DSCB is a control block that describes 
the attributes of a data set and resides on 
the direct access volume with the data set. 

Errpty fields of the DCB are fill.ed with 
information obtained from the JFCB, and any 
remaining emFty fields in the DCB are 
filled in with information from the DSCB. 
~he user may create a routine to mOdify the 
DCB. This routine is given control if the 
routine's name was supplied as a DCB 
parameter. 

This processing is depicted in Figure 34 
and allows great flexibility in specifying 

Data Management 83 



OPEN Mllcro Instruction DUPOPEN Ivbcro instruction (VAM) 
I I 
I I 
I 
I 

I I 

t , 
OPEN COMMOt'-1 DUOPEN 

I 
I 

I I I I OPEN SAM OPEN OPEN I 
I 

I 
TNIi IOREQ OPEN OPEN /I>SAM 

I I 
I VAM 

I I I 
I I 

I 

I I 
OPEN OPEN I I OPEi'~11 I OPEN 
gPE DA I I SEQUENTIAL I~"DEX 

I I I I I SEQUENTIAL 
I I I I I i 
I I I I I I , t t t ---'- i , 

Next Sequential Instruction After OPEN COMtv\Ot'~ f.,/\ocro tnstn;ction 

Figure 33. A General Flow of Open Processing 

DCB parameters. Addresses of the various 
routines which will be used to process the 
open data set are filled into the DCB by 
the Access DeFendent OFen routines. Conse­
quently, the proper routine will be given 
control when the macro instruction operator 
names are identical, e.g., the GET macro 
instruction will produce linkage to the VAM 
SEQUENTIAL routine if VSAM is being used, 
rather than the VAM INCEX SEQUENTIAl, 
routine. 

There is a field in the DCB containing 
the exceedingly rare combination of charac­
ters -*%*%-. This field is known as the 
DCB identifier and is frequently inspected. 
If the field has been altered, this is 
taken as evidence that the integrity of the 
DCB is in doubt and a task is abnormally 
terminated (ABEND). 

Another relevant check made during OPEN 
processing is to ensure that a nonprivi­
leged user is not atterr,pting to access a 
privileged system data set or device 
reserved for system use. 

If aFpropriate volume and data set 
labels are processed, the volume is posi­
tioned. Privilege class is checked, infor­
mation is obtained from the Symbolic Device 
Allocation Table, and various tables are 
tuilt. 

If the access method concerned is TAM, 
BSAM, QSAM, MSAM, or IOREQ, a Data Extent 
Block (DEB) is built. 

If the access method is VSAM, VISAM or 
VPAM, a Relative External storage Corres­
pondence Table (RESTBL) is built. 

Because the location of the DCB is spec­
ified by the user, it rr.ay be modified at 

84 

any tirr,e. This gives added flexibility in 
such areas as specifying buffer lengths. 
However, in a multiprogramming system, no 
user should be able to interfere with 
ethers. Fer this reason, the BSAM, QSAM, 
MSAM, TAM and IOREQ access methods flace 
certain information in what is essentially 
a protected extension of the DCB called the 

Only Direct 
Access Devices 

4 

2 3 

2 

Figure 34. 

3 

s 

4 

Data Flow During Open 
Processing 



Da ta Extent B lock (DEB) and the VAM access 
methods place functionally similar informa­
tion in the RESTBL. 

The Data Extent Block (DEB) is variable 
in length and is logically divided into 
three sections. The first section contains 
information about the data set and devices 
such as the number of tracks per cylinder 
as well as pointers to the other control 
blocks associated with the data set. 

The second section anchors a chain of 
pointers which describes the location of 
each of the user's Data Event Control 
Blocks (DECBs) that have not yet been pro­
cessed. Under some error conditions, suc­
ceeding I/O requests may be queued on the 
DEB pending a resolution of the error. 

The third section exists only for direct 
access volumes and contains information 
such as the size and characteristics of 
each group of contiguous track or cylinders 
(i.e., extents) on which the data set 
resides and the direct access seek and 
search addresses used for the last read or 
write to this data set. The DEB format is 
shown schematically in Figure 35. 

The Relative External Storage Correspon­
dence Table (RESTBL) is composed of three 
parts - a RESTBL header, the page corres­
pondence entries, and the DCB headers and 
VPAM data set member headers. 

The RESTBL header, at the beginning of 
RESTBL, is immediately followed by the data 
set page/external page correspondence 
entries. The DCB headers and member 

Dota Set Characteristics 

Device ChOlocteristics 

Location of Other Control Blocks 

:---~---~------------- ---------------------------------

Number of Unchecked DECSs 

Location of Last Unchecked DECB 

Location of first U.-.checKed DECB 

f-------------~---------~---------

(DASD Only) 

Address of last Write to DASD 

Address of Next Read 

Alternate Track Locations 

Extent Information 

Figure 35. Data Extent Block (DEB) 

headers originate at the end of RESTBL and 
expand toward the external page entries. A 
RESTEL thus has the following organization: 

r-----------------------------------------, 
I RESTBL HEADER I 
t-----------------------------------------~ 
I Dataset Page I 
I vs I 
I EXTERNAL I 
I PAGE I 
I ENTRIES I 
~-----------------------------------------~ 
I Up to one page of I 
I AVAILABLE I 
I SPACE I 
I (all zero bytes) I 
~-----------------------------------------~ 
I DCB HEADERS AND I 
I MEMBER HEADERS I L __________________________________________ J 

The RESTBL header entry contains general 
information about the pages of a data set 
(such as the number of pages occupied by a 

VISAM data set directory) and describes the 
content of the remainder of the RESTBL. 

The DCB header entries summarize DCB 
information for the VAM access methods in 
rruch the same way that the Data Extent 
Elock (DEB) does for the sequential access 
rrethods. The header contains inforrr.ation 
such as the options the user specified in 
the OPEN macro and the location of the 
cuffer. 

Because a VPAM data set is really a 
collection of independently organized data 
grou{:s, there rr,ust be a header for each 
member. These headers are in the same for­
rr_at as the data set information in the 
RESTBL header. 

There is an entry in the middle section 
of the RESTBL for each data page assigned 
to the data set (including all data set 
members). Thus, the fifth data page 
assigned to the data set is the fifth 
entry. 

The general format of each one word 
RESTBL entry is as follows: 

o 2 15 31 
r----T--------------,---------------------, 
IFlaglRelative IExternal Storage I 
I IVolurr.e Numl::er IPage Number I L ____ ~ ______________ ~ ____________________ J 

FLAG: 00 

01 

An External storage page has 
been assigned and there is a 
copy of this data set page on 
External storage. 

Not-in-use. An External 
storage page has been assigned 
to the data set, but the user 

Data Management 85 



has not yet placed a logical 
record in this page. This 
page can, at the user's 
option, be released during 
CLOSE processing. 

10 Data has recently been written 
into a record located in this 
page (which is now in rr,ain or 
auxiliary storage), but the 
page has not yet been written 
to external storage. If a 
logical record spans several 
pages, each page will carry 
this flag, even though the 
user has not necessarily writ­
ten into that portion of the 
logical record continued in 
this page. 

11 A permanent error was encoun­
tered when an attempt was made 
to write on this external 
storage page. The data was 
placed on a substitute page 
and this page is not used 
although it still belongs to a 
DSCB extent allocated to this 
data set. 

Relative Volume Number: This identifies 
the relative number of the volume within 
the PVT. The PVT (public or private volume 
table> contains a list of the symbolic 
device addresses, volume serial numbers, 
and device codes of all devices on which 
the data set may reside. 

External Storage Page Number: The physical 
address of VAM pages on external storage 
can be calculated from knowledge of the 
device type and the relative location of 
the page on the direct access device. A 
Format E or F DSCB is thus able to describe 
external storage by relative page number as 
well as describe a VAM data set by relative 
page number. 

If the data set is sharable, there will 
be another full word entry for each data 
set page containing interlocks. VAM shar­
ing is discussed separately in "Sharing." 

When processing of a data set has been 
completed, the data set rrust be closed. 
The close processing, initiated by the 
execution of a CLOSE macro instruction, may 
be performed any time after open proceSSing 
has been completed. Usually, however, a 
data set is closed after all I/O operations 
have been completed. Close processing is 
initiated when a task is to be abnormally 
terminated (ABEND) or as a result of a 
LOGO FF cornman d. 

Closing a data set rr,ay te thought of as 
a reversal of open processing. Closing a 
data set includes restoring the Data Con-

86 

trol Block (DCE) to its original condition, 
i.e., as it was before open processing. 
Lata Set Control Block (DSCB) processing, 
label processing, disposition of the data 
set volurre, completion of all outstanding 
DECBs and deletion of the DEB are also done 
during closing. TAM CLOSE disables any 
relevant 2702 lines, removes the terrrinal 
from the task and then enatles the 2702 
line once again so that the terrrinal way be 
used again. 

When using the Basic Sequential Access 
Method (BSAM), a CLOSE TYFE=T macro 
instruction may be issued for data sets 
residing on magnetic tape. This causes a 
bit to be set in the parameter list which 
is passed to the CLOSE COMMON routine indi­
cating that a temporary close is to take 
place. The temporary close executes like a 
normal close, except the DCB is not 
restored and the DEB is not deleted so that 
I/O rr,ay be continued without a new OPEN 
macro instruction being issued. It is also 
used for convenient repOSitioning of a 
volume. Figure 36 indicates the overall 
flow of close processing. 

The CLOSE COMMON ~outine performs those 
close processing functions which are neces­
sary no matter which access method is being 
used. CLOSE COMMON branches to the appro­
priate Access Dependent Close (ADC) Rou­
tine. The MAINLINE EOV routine, indicated 
under CLOSE SAM is quite extensive and its 
Rain corrponents are shown in Figure 36. 

CLOSE 
SAM 

Mainl"-.,, 
EOV 

CLOSE i\'\oero instruc!;on DUP(tOSE /'/O(rr:> 
--- ------T------ ---~---,----

CLOSE 
la~EQ 

------

--

t • 
CtOSF COIv',IIAON ~DUPCLOS[ 

Tope OUlput EO',,! 
- ---_.---- ---- -- .... 

DII OJ"pUI EOV 
---------... 

Figure 36. CLOSE Processing 



~lAINLINE EOV may also te called ty the BSAM 
CHECK and Force End-of-Volume (FEOV) 
routines. 

The overall logic of I/C processing can 
test be described through two illustrative 
examples. An example of the processing 
involved in executing a Basic sequential 
Access READ macro instruction is presented 
in -Example of BSAM Processing." The 
action of the system in the creation and 
processing of a three record Virtual 
sequential data set is described in 
"Example of Virtual sequential Processing." 

The REAB example will also give a first 
opportunity to tie together the parts of 
~SS/360 already described. 

~XAMPLE OF BSAM PROCESSING 

This example descrites a read operation. 

In order to read a record from an alrea­
dy existing BSAM data set, the programmer 
must issue a DDEF command and execute the 
CPEN macro instruction for input. This 
processing is summarized in Figure 37. 

The step by step processing in the sys­
tem is shown in Figure 38. The processing 
is described below and is keyed to the 
figure. 

~. When a program executes the READ macro 
instruction a Type II linkage is per­
forrr.ed to invoke the BSAM READ/WRITE 
routine because it is a privileged 
routine. If the READ macro instruc­
tion had been generated in a control 
section with the "Privileged" attri­
bute, a Type I linkage would be per­
formed for a transfer within the same 
privilege level. 

The Type II linkage consists of plac­
ing a code, established by convention, 
in Register 15, which specifies a link 
to the ESAM Read/Write routine, and 
then executing an ENTER Supervisor 
Call which generates a hardware inter­
ruption which will cause the Interrupt 
Stacker module of the Resident SUper­
visor to be invoked. 

When an interruption occurs, the PSW 
Register contains the address of the 
instruction that would have been 
executed next if the interruption had 
not occurred. This extended PSW is 
moved by the Model 67 from the PSW 
register into the appropriate old PSW 
area in the Prefixed Storage Area 
(PSA). The new extended PSW is 
fetched by the Model 67 from the 
corresponding new PSW area in the PSA 
and becorres the machine PSW. 

Tbe address contained in this new PSW 
is the Interrupt Stacker entry point 
which corresponds to the type of 
interruption. 

2. The Interrupt Stacker is the nodule of 
the Supervisor which receives control 
when any hardware interruption is 
taken. The Interrupt Stacker identi­
fies the interrupt type and creates a 
generalized queue entry (GQE), which 
represents a unit of work for other 
parts of the supervisor. In this case 
the stacker is entered at its SVC 
interrupt entry point. The entry 
pOint address is carrled in the 
instruction counter field of the new 
SVC PSW. The Interrupt Stacker tem­
porarily saves General Registers 0 to 
4, 14, and 15 in the PSA since each 
type of interrupt routine has its own 
unique processing before it can enter 
a subroutine to save the status of the 
machine at the time of the interrUpt. 

Supervisor Core Allocation (SCA) is 
called by the Interrupt Stacker to get 
64 bytes in which to build the GQE for 
this interruption. 

Then the Interrupt Stacker proceeds to 
build the G~E. The GQE is initialized 
with the following information: 

• The TSI address and the SVC inter­
rupt code from the PSA. 

• The Instruction Length Code (ILC) 
attained from the Supervisor Call 
old PSW. 

• The symbolic designation (Loc-on-Q> 
of the SVC queue. 

• The virtual storage address of the 
SVC instruction if the SVC was the 
subject of an execute instruction. 

3. At this point a check is made to 
determine if the request is for ser­
vices of a i?,;;j,uiie~ed routine in vir-
tual storage (i.e., SVC<~28). In this ",;;.: 

"exarrple it is and a software interrup- '\'," .J\ 
tion is enqueued for the task by cal- '~~ 
ling the Queue GQE on TSI routine 
which adds the GQE to the TSI's SVC 
queue and turns on the SVC interrup- ,.t 

tion pending bit in t.he TSI. The 
Interrupt Stacker next saves the old 
extended PSW (located now in the PSA) 
in the appropriate location in the } 
task' s Extended TSI (XTSI). In addi- .;,: 
ticn, all General Purpose, Control, 
and Floating Point registers are 
placed in the XTSI. In this fashion, 
the compLete status of the task is 
preserved. The status will be 
restored at some later time. 

Data Management 87 



DDEF Command OPEN Operation 

1. 

2. 

r--- JFCB 

I 
I 

t I 
I 
I 
I 
I 
I 
I .... --~ .'-... ./ 

Volume 
Label 

I 
I 

T , VTOC 
On Disk 

DSCB for VTOC 

DSCB for 
Avai lable Extents 

DSCB for 
Data Set 

Additional 
DSCBs for 
Dota Set 

DDEF Creates JFCB 

To Hold Data Set Attributes 

Volume Is Located and ID Inserted in JFCB 

3. Fields inJFCB Filled from DSCBs 

4. If DISP = NEW, Use External Storage 

Allocation to Obtain First Extent. 
Update VTOC 

Figure 37. DDEF and OPEN Processing 

88 

OPEN DCB oddr 
I 

~ 
DCB 
Created 
by Macro 

VTOC 
Read for 

Disk 

5VC from User OPEN Macro 

Ltser 

Modif 
RGutine 

DEB 

C:Jmmon 

C)ECB 
Queues 

Extent's 

1 . User Open Generates 5 VC Co II to 

Data Management COMMON OPEN 

2. 

3. 

COMMON OPEN Routine 

(a) Completes DeB from J FeB and 

User Routine 

(b) JFCB Completed from DCB 

(c) Calls OPENSAM 

(d) Returns to User 

OPENSAM Routine 

(a) 

(b) 

(c) 

Builds DEB from JFCB and 
DCB Data 

Builds Access Dependent SecHon 
of DCB 

Returns to Common OP t'N 

Legend: ---- Indicates Dato Movement 

- - - Ind;cotes Poi"ters 



1l -~? "'E ..!!o 

11 10 

~ 
J 

o ' 

£~ 

Figure 38. BSAM Read Walkthrough (Part 1 of 3) 

r--
1-: 
I::: I 
I I 
'T 

. 
V 

-
N . 

> 
~ 

~ 

o 
.-: ~ 

~ ~ 8 
~8~ 
~ ~ 

> 
~ 

Data Management 89 



-
~.~ ~ 

rrI'1_ 1 

> 

Figure 3 8. 

..'i ] 

BSAM Read W ~ alkthrough (Part 2 of 3) 

90 



Level 3 

Leve! 2 --------------------+-----

From I 
-------... -1! (35. 

Oueve I 

Sconnf!f I 

Level 3 ____ _ 

(45) 

I ,~::. 
I 

l T _I---------J 

Pathfinding 
?klces Main St~oge Addresses in Chanfiei COJnlTlOnd Words 
!$Sues START VO 
Processes Erron from START I/o 
Locks t~e Appropriate Device Queue 

lVPSW 
svc 

-:~ 
[
' Soocoec !---J 
---~ I 

I 

---11------------------------

Levell 

Figure 38. 

lntefTvpt 

Stacker 

I 
I 
I 

.1 

ESAL'J Read walkthrough (Part 3 of 3) 

Data Management 91 



Having completed its processing, the 
Interrupt Stacker unmasks interrup­
tions and exits to the Queue Scanner. 

4. The fUnction of tne Queue Scanner is 
to look fo.r work which the Supervisor 
can dc. The QueuE Scanner searches 
th", various queues fox GQEs which can 
be j';rocessed.. When one is found, the 
appro'priate Supervisor module (Queue 
Processor) is invcked. 

In this example,'the program has not 
created anywoL··k for a Queue Proces­
sor. However. there may te quite a 
bit of previously queued work. 

When the <;;:ueue Sc'a,mler finds that 
there are .no more GQES that can be 
processeq, it Exits'.to the Internal 
Scheduler which calls·,.the Dispatcher. 

5. The Dispatcher applies its scheduling 
algorithn, to select the next task to 
be pl'<3.ced in execution, since a CPU is 
now aVailable tc do work in the Pro­
blem state. 

, 
Th~ Dispatcher executes with interrup­
tions masked because it normally does 
not return to the Queue Scanner, but 
exits to the Problem state. Operating 
with interruptions masked prevents an 
interruption from being serviced until 
the next interruption from the Problem 
state. 

The task described' in this example may 
not be immediately selected for execu­
tion by the Dispatcher, tut it will 
eventually be considered. 

When the task is selected for execu­
tion, the Dis~atcher wiShes to deter­
mi);!e if there is a task interruption 
pencing for this task. Task Interrupt 
Control (TIC> is called to make this 
deterni nati on. 

6. TIC frovides an important link between 
the Resident Supervisor and the Task 
Monitor. Its function here, since 
there is a pending task interruption, 
is to make sure that when the task is 
placed in executicn, it is started at 
the entrance to the appropriate inter­
rupt processing routine in the Task 
Monitor. In order to do this TIC must 
set up the correct data in the first 
double word (PSW location> in the 
XTSI. This data is ottained from the 
new SVC Virtual PSWin the ISA, which 
is located in a fixed location in vir­
tual storage, segment 0, page O. 

7. TIC invokes the Locate Page routine to 
detern,ine the location of the ISA 
page. In this example, the ISA is 

92 

still in nain storage. Finding that 
the ISA is in main storage, TIC 
obtains the task's PSW from the XTSI 
and places it in the old SVc Virtual 
PSW location in the ISA. 

Next, TIC translates the new SVC Vir­
tual PS,., infcrmation attainEd from the 
ISA into extended PSW fornat, places 
it in t:he XTSI and :3ets the TSI inter­
rupt mask field. It also copies ' 
inicrnatlon from the GCE int.o the ISA. 

8. supervisor Core Release is then called 
to releas E the spacE-,us ed by the GQE. 
Task I'!<tterrupt Control then returns to 
the Dispatcher. 

9. The Dispatcher now sets t.tJe task in 
execution by loading the PSW and the 
General Purpose, Floating Point. and 
Control registers frOID the XTSI. The 
instruction counter in the PSW points 
to the Task I.vjonitor's SVC Int~errurt 

entry point. Tbe.+ask Monitor is 
already addressable in virtual storage 
because it is included in each task's 
Initial Virtual Memory. (See Virtual 
Men,cry Allocation.) 

However, it is quite rossible that the 
referenced virtual storage page is not 
in main storage and must be paged into 
main storage. In this example, tbe 
processing involved in paging is 
igncred. (See Paging.) 

10. When the Task Monitor's SVC Interrupt 
Processor receives control it will 
detect that the VPS'V-l inter:J:"uf,t code 
specifies an ENTER SVC. 

11. The Task ~onitor SVC Interrupt Proces­
sor then links to its own Enter Sub­
processor. 

The BSAM Read/Write modulI," is part of 
IVM, so the Task Monitor will pick up 
the appropriate V-t.ype and R-tYfe 
address constants from an Enter Table 
in its PSECT. The Task ~onitor will ~ 
then rlace the status of the task in a 
save area in the ISA. This long save 
is necessary, l:ecause BSAM Read/Write 
may cause more task interru[<ticns 
before Task Monitor processing is 
complete. 

Finally, the Task Monitor will provide 
a save area for BSAfI Read/Wr it.e and 
execute a Load Virtual PSW surervisor 
call. (,. i 

The LVPSW SVC allows the Task Monitor 
to change the hardware interrurtion 
mask and storage protect.ion key in the 
task's FSW (if needed) as well as set­
ting the software interruption mask in 



the 'lSI to that setting which BSAM 
Read/write requires. 

12. The LVPSW SVC will cause a hardwar'e 
interruption just as the ENTER SVC 
did. 

13. The Interrupt Stacker will again pro­
cess as in step (2). However, this 
time the Interrupt Stacker will con­
tinue precessing Ly placing a pointer 
to the GQE in a register, saving the 
task's status in the XTSI, unmasking 
interruptions, and then exiting 
directly to the SVC Queue Processor. 
This processing reflects the fact that 
this supervisor call is requesting the 
services of the Resident Supervisor. 

14. When the SVC Queue Processor receives 
control from the Interrupt Stacker, 
the interruption code in the GQE is 
inspected. Based on the SVC number, 
the SVC Queue Processor links to the 
LVPSW subprocessor. 

15. This routine, using as input the VPSW 
furnished to it, sets the appropriate 
task interruption mask bits of the TSI 
and places the VPSW <translated into 
Extended PSW format) into the first 
double word of the XTSI. The XTSI now 
points to the virtual address of the 
BSAM Read/Write routine. .' 

.~ . ~J 
16. The GQE is sent to ~OVEGQE to be 

remov~d from the system. ~OVEGQE 
ins[ects a flag in the GQ.E which spe­
cifies that we have finished proces­
sing this GQE. MOVEGQE links to 
Supervisor Core Release (SCR). 

~ - , 
17. scR·v.reclaims the 64 bytes '<;>f core. 

18. The LVPSW sub-processor exits to the 
Queue Scanner. 

1~.. The Q;i..spatcher ultiIr,atel~ sel~cts the 
task to be put in executibn. It rou­

'" tin~ly calls on TIC to set\~~ for task 
'fnterrupts, if any exist. ' 

,\", 

.'. 
20. Ttc finds none pending for this task 

,/and ret urns. 

21. The Dispatcher blindly picks up the 
PSW Save field from the X'ISI and loads 
it as current PSW causing the desired 
transfer back to the f-rotlem state at 
the BSA~ Read/Write entry point. 'The 
overall processing of this Read requ­
est is depicted in Figure 39. 

The BSA~ Read/Write routine uses two 
major subroutines to perform its pro­
cessing, a BUILD subroutine and a CON­
STRUCT subroutine. 

22. The BUILD subroutine builds a skeletal 
Input/Output Request Block (IORCB). 

There is an IORCB built for every I/O 
request that requires a channel pro­
graIL The IORCB contains an lOCAL 
SVC; the address constants for the 
BSAM Posting routine; and the channel 
program, in addition to other data. 

23. The CONSTRUCT routine generates the 
required channel programs in the 
IORCB. The first decision CONSTRUCT 
must rrake is whether to use the IORCB 
as a buffer. For records longer than 
1800 tytes, a flag is set indicating 
that the IORCB is not to be used as a 
buffer and a list of up to eight 
entries is built whic.h provides the 
virtual storage address of each page 
of the Luff er. 

A channel transmits data t.o or from 
main storage, but pages which appear 
contiguously in virtual storage are 
not necessarily contiguous in main 
storage. Therefore, whenever a read 
or a write would span pages, data 
chaining must be used. 

Notice that the page list allows I/O 
from non-contiguous virtual storage, 
since the page list can be any eight 
pages. However, there is no scatter­
read/gather-write facility, unless 
IOREQ is used (scatter-read is the 
technique of reading selected blocks 
of a data set into non-contiguous 
storage locations; gather-write allows 
writing from selected locations in 
core, ski PIing unwanted, in-between 
areas of core). Under IOREQ, the pro­
grarrmer writes his own Virtual CCW 
list, and so data chaining is 
possil:;le. 

Next the channel program is built. 
The channel control words in the chan­
nel control program are not true CCWs 
because they contain virtual storage 
addresses. In point of fact, they 
only contain the low order bits of the 
virtual storage address or a displace­
ment relative to the beginning of the 
IORCB buffer because there is only 
roorr. f or a 24- bit address in a real 
CCW. USing a larger address would 
distort the CCW format. 

The high order portion of each address 
can be obtained from the page list or 
is implied from the virtual storage 
address of the IORCB itself. 

The CONSTRUCT routine uses several 
subroutines to generate the channel 
program. 

Data Managereent 93 



I/O Operation (Basic) 

READ DECB- Addr, Type, DCB- Addr 

+ + 
DECB -----, DCB 

-, I 
~--~--~ I 

I l I SVC User 

DEB 
1. Queue DECB in DEB 

Build 10RCB 2. 
3. lOCAL SVC .... - f-----­

t--
4 Free I ORC B area 

5. Return to user 

Resid~~~tp_~~50r 

1. Move IORCB to supervisor area 

2. Perform pathfinding 

3. Convert CC~jls 

4 lssue start 10 

5. Return to READ routine 

Interruption to Resident Super/isor 

1. Insert sense in IORCS 

2. Move IORCS to ISA 
,ego 0, page 0) 

3. 

4. 

5. 

Free Supervisor area 
Create tcs.k in+erruptiof) 

9:eturn 

TC5~_~_~; tor 

1. Give controf to POST routine located 

b" 10RCB 

2. RETURN to u,er 

POST Routine 

1, Perform error recovery 

2. Insert results in DEC8 

~------

r-'---__ -' 
I 
I 
I 10RCS 

L L_ 
__ _ Common 

r-----
Bu Her 

f--------­

CCW 

10RCS 

10Rca 

i--

3, !,",'ave data from IORCS buffer to u:ierls area 

4. Return to Task Monitor 

Check Operation 

C HEC K DECB - Addr 

SVC User 

1. Check for completion of I/O request. If not cornplete, 

issue WAIT SVC 

2. Complete 

(0) with error-send control to SYNAD, ABEND or 
fOV, depending on error 

(b) No crror 

NOTE: 

(1) Dequeue DECB from DEB 

(2 i Enter READ if more DECBs 
s~oc~,ed in DEB 

(3) Return control to instruction 

after CHECK 

Check performed to wait for 1/0 Post of 
read or 'Nrite request .. 

Legend: __ indicates data movement 

- - - indicates pointers 

L-_______________________________ . __________________ ~ ____________________________________ ~ 

Figure 39. Overall Processing of Read Request 

94 

If the prograrr~er had been using the 
Terminal Access Method (TAM) instead 
of BSAM, a table called the Terminal 
Contrel Program Library (TCPL) would 
specify the channel program. This is 
schematically described in Figure 40. 

A final consideration concerning the 
construction of the lCRCB is the fact 
that a Time Slice End could occur at 
just the wrong time. (That is, after 
the IORCE has been completed t:ut 
before the lOCAL SVC has been 
executed.> This would mean that, at 
the beginning of the next time slice, 
the ICCAL SVC would be executed but 
the IORCB would quite likely not be in 
main storage. To avoid this difficul-

ty, ~he lOCAL svc is placed in the 
first half~word of the IORCE and is 
executed out-of-line t:y using the 
System/360 Execute instruction. This 
accemplishes two things. First, the 
virtual storage address of a svc is 
saved by the Interrupt Stacker when 
the SVC is the subject of an Execute 
instruction. Thus the virtual storage 
address of the rORCB is passed to the 
Resident supervisor in a convenient 
way. Second, the relocation rr.echanislr 
is invoked if the svc is not in main 
storage. This assures that the IORCB 
will be in main storage at the time 
the SVC is executed and will never 
have to be paged in after the SVC has 
been performed. 



S,'!"1 ho I'e 
.t..llocal~0n (SD.ATJ 

spec I ry I ng ter:n ;'10! 
'ype 
I P,ovices code 

'--______ .....J 

J Chonnel PrograrT\ ~E:'lerotor ~ 
l esel TCPL to build IORCB J 

End of buffer c.haracter, 
end of terminal, standard 
terminal entry, tramlate 
table (256 bytes), etc. 

Separate table 

specifying operation 

required for each TAl-A 
()ption. 

CON and Control 
Re1uired for READ r ... -;~ .-'R-ITE--~ 

Program 

1050 

2741 

TTY35 

ttc. 
~~--------------~ 

for WR ITE 
with Response 

IORCB 

Common 

~-----------

Buffer Size for 
Terminal Operation 
P Ius Control Cherne ters 

~-------------

CON Ust 

Figure 40. TAM IORCB Generation 

24. 

25. 

26. 

27 • 

When the lOCAL SVC is executed, the 
Interrupt Stacker is entered at its 
entry pOint for SVC interrupts. 

The Interruft Stacker calls Supervisor 
Core Allocation to get 64 bytes for a 
GQE. 

The GQE is then filled in with the 
interruft code and the virtual storage 
address of the SVC instruction. Pro­
cessing continues as in step (13). 

The Interrupt Stacker gives control to 
the SVC queue processor. 

On the basis of the SVC code, the SVC 
Queue Processor makes a selection of 
the appropriate SVC Subfrocessor to 
continue the frocessing of the GQE. 
In this case, the lOCAL SVC Subproces­
sor is called. 

Example: Must Generate 

{

l' 
2. 
3. 

/ 4. 
/ 5. 

/ 
6. 
7. 

/ 

Dialing and/or addressing 
Validation of addressing 
Transmit message 
Polling terminal 
Va lidotion of poll 
Read of message 
Validation of messoge 

Last CCW w:ll always be PREPARE with PCI 

flog on to rnonitor user attention interrupts. 

28. lOCAL first executes a Test and Set 
instruction to determine if ancther 
CPU is currently executing in the sub­
processor and thus using the sUbfro­
cessor's one permanent work area. In 
this example, this is the case and 
lOCAL invokes Supervisor Core Alloca­
tion to obtain a temporary work area. 
This tYfe of frocessing is common to 
most Resident Supervisor routines. 

29. Then, since lOCAL will be working on 
the IORCB, lOCAL must first find out 
where the IORCB is located in rrain 
storage. The virtual storage address 
of the lOCAL SVc is available in the 
GQE, and this address is also the vir­
tual storage address of the IORCB. 
Since the supervisor operates in non­
relccation mode, this address cannot 
be used directly. The virtual storage 
address must first te translated into 

Data Management 95 



a main storage address. This function 
is j:erforn-,ed with the heIr: of the Loc­
ate Page routine. 

30. Locate Page is called and returns the 
main storage address of the Page Table 
entry for the IORCB r:age. From the 
Page Table entry, the main storage 
address of the IORCE itself is 
determined. 

31. The lOCAL subprocessor then gets main 
storage froIf. Sur:ervisor Core Alloca­
tion and moves the IORCB into the 
sur:ervisor main storage area. If the 
record was so large that BSA~ used a 
page list instead of using the IORCB 
as a buffer, the lOCAL Subprocessor 
would have additional duties, as 
follows. 

Although BSAM provided the virtual 
storage address of each page list 
entry, lOCAL is the routine which must 
obtain a real address for the page. 
If any page is not in main storage, 
lOCAL initiates paging or:erations to 
bring the page into main storage. If 
this buffer has never yet been written 
into, User Core Allocation will supply 
a zeroed-out block of main storage and 
no page in will be necessary. 

32. If the Task Symbolic Levice List indi­
cates that the task is permitted to 
perform I/O on this symtolic device, 
Enqueue is called to place the GQE 
(which ncw points to the IORCB in 
supervisor storage) on the proper 
device queue. (The access method has 
specified the device by furnishing its 
symbolic device address in the IORCB.) 

33. lOCAL invokes Supervisor Core Release 
(SCR) to return the temporary work 
area space. 

34. The standard exit is taken to the 
Queue Scanner. 

35. Since there is still work to be done 
to process the I/O request, the Queue 
Scanner will find the GQE on the 
appropriate devicE queue and call the 
Device Queue Processor to initiate the 
I/O or:eration. 

96 

Recall that for each and every device 
attached to the system, there is an 
entry on the Scan Table. Each entry 
has a pointer to the first GQE, which 
represents a request for I/O to or 
from that device. Succeeding requests 
- GQEs - are chained from the first 
request. The Device Queue processor 
processes these requests for I/O, and 
does this for all of the devices on 
the system except the paging drums. 

The primary fUnction of the Device 
~ueue Processor (DQP) is to initiate a 
successful I/O operation (Start I/O) 
given a G~E and an IORCE. The DQP 
also processes requests to Halt I/O 
and to initiate sense operations. The 
fUnction of the Channel Interrupt Pro­
cessor (CIP) is to process the GQE 
which is created when an I/O interrup­
tion occurs. The D~P and CIP can 
affect each other's operations greatly 
by con-munication with each other. 

The Device Queue Processor must create 
the actual channe1 program. The Path­
finding routine is called for this 
purpose. 

36. Pathfinding converts the symbolic 
device address from the IORCE to an 
available hardware path (Channel Con­
trol Unit - Channel - Control Unit -
Device) and marks those elements busy 
in the various pathfinding tables (see 
"Pathfinding"). 

37. The Device Queue Processor invokes the 
Command Word Relocator routine to com­
plete the channel program by placing 
the proper rrain storage addresses into 
toe CCWs. CCWs created by access 
methods contain components of virtual 
addresses. 

38. The START I/O routine is now called to 
issue the Start I/O instruction to 
initiate the channel program. Upon 
return from Start I/O, the Device 
Queue Processor checks to make sure of 
successful initiation of the I/O 
operation. In this example, a succes­
sful initiation is assumed. 

39. Set Suppress F1ag is called to prevent 
the Device Queue Processor from being 
invoked again to process a GQE en this 
device queue (until the I/O operation 
just started is complete). 

40. Note that the original GQE still 
rerrains on the device queue as exit is 
made to the Scanner. 

41. The Queue Scanner, when it uitimately 
finds no GQE'S that can be processed, 
calls the Dispatcher. 

42. The Dispatcher may choose this task to 
be r:laced in Execution. Before plac­
ing a task in execution, the Lispatch­
er calls Task Interrupt Control (TIC) 
to check for pending task interrupts. 

43. Since none is found for this task, the 
Dispatcher returns control to the task 
(BSAM READ/WRITE) at the point after 
the EXECUTE instruction which invoked 
the lOCAL SVC. 



44. BSAM Read/Write has finished its pro­
cessing and so it returns to the Task 
Monitor SVC Interru~t Processor. 

The Task Monitor SVC Interrupt Proces­
sor merely exits to the Task ~onitor 
Scanner-DisFatcher to look for further 
work. 

The ~ask Monitor Scanner-Dispatcher is 
analagous to the Resident Supervisor's 
Queue Scanner. It scans the Interrupt 
Table looking for work to do and dis­
patches the appropriate routine when 
work is found. 

45. Task Monitor scanner-Dispatcher, find­
ing no further work for the Task Mon­
itor, restores the task's registers 
from the ISA and issues a Load VPSW 
SVC to return control to the last 
interrupted routine. 

46. Processing continues as in steps 
12-18. The LVPSW sutprocessor ,.;ill 
set the PSW in the task's XTSI to 
point to the first instruction follow-

Leve I 3 

level 2 

Cur Program 

READ I 

l-'iJ 
Await 

SVC 

------------------ .-- ._---------- --~- ---~--

Figure 41. CHECK Macrc Precessing 

ing the REAr; macro the program 
executed. 

47. Eventually, the Dispatcher picks up 
the PSW save field from the XTSI and 
loads it as the current PSW for a CPU 
and thus returns control to the 
program. 

Some time later, the program executes 
a CHECK macro to synchronize the READ 
operation, since it can proceed no 
further without the data. (See Figure 
41>. 

Although not explicitly sho,.;n in the 
figure, the CHECK routine is a privi­
leged routine and as such, is invoked 
through an ENTER supervisor call just 
as the BSAM Read/Write routine proces­
sing descrited in steps 1-21. 

The CHECK routine tests the DECB asso­
ciated ,.;ith the READ macro ex~ansion 
and determines, in this case, that the 
I/O operaticn is not complete. CHECK 
then issues an AWAIT SVC to take the 
task out of execution until a software 

~ ~ -~- ---~- ---~ ~---- -----
To Execute a Task Other Than Ours 

Data Management 97 



interruption is presented to the task. 
Depending on the corrflexity of the 
operations, the next interruption pre­
sented to the task nEed not signal the 
completion of this channel program. 
In such a case, the CHECK routine 
would reissue the AWAIT SVC when the 
Task Monitor returns control to thE 
program at the point in the CHECK rou­
tine following the AWAIT SVC. Howev­
er, in this case, the next interrup­
tion presented to the task will signal 
that the channel program has completed 
operation. 

The AWAIT SVC will cause thE Await SVC 
subprocessor of the Resident Supervi­
sor tc be invoked. 

The Await subprocessor will place the 
task in the Inactive list by calling 
Rescheduling and flaces the task in 
delay status (see "Scheduling 
Algorithrr,") • 

Many milliseconds later, the I/O opera­
tion is completed and a channel-end, 
device-end condition causes a hardware I/O 
interruption. The flow of control is now 
shown scherratically in Figure 42, which is 
keyed to the following description. 

1. Recognition of this interruption 
causes entry to the Interruft Stacker 
at its I/O interruption entry point. 

The Interrupt stacker performs stan­
dard functions for an I/O interrup­
tion. The Interrupt Stacker creates a 
GQE and inserts the hardware device 
address (automatically stored with the 
I/O interrupt as the interrupt code), 
the Channel Status Word (CSW), and the 
symbolic designation of the queue on 
which the GQE is to be placed for 
later processing. A test is made to 
see if the interruption came from a 
paging drum since such interruptions 
are handled differently from other I/C 
interruptions. Since this is not a 
paging drum interruption, the Inter­
rupt Stacker designates that this GQE 
is to be placed on the Channel Inter­
rupt Queue. 

2. The Interrupt Stacker ultimately exits 
to the Queue Scanner. If the CPU 
which took the interruption was 
operating in the sUfervisor state 
prior to the interruption, the Inter­
rupt Stacker causes execution to 
resume at the point of interruption. 
The Queue Scanner will be entered 
later, when the Queue Processor cur­
rently in control finishes its work. 
If the CPU was interrupted from the 

98 

problem state, the Interrupt Stacker 
will transfer directly to the Queue 
Scanner. 

3. A GQE is found on the Channel Inter­
rupt Queue by the Queue Scanner. The 
Channel Interrupt Processor (CIP) is 
invoked. 

4. The ClP calls Set Suppress Flag te 
frevent a second CPU front being 
invoked to process the same queue. 

5. The Channel Interrupt Processor then 
calls Reverse Pathfinding to convert 
the actual hardware device address to 
the symbolic device address. 

ClP leoks at the device queue whose 
symbolic number has just been returned 
by Pathfinding. CIP finds at least 
one GQE on the device queue as well as 
a flag set (in the Scan TablE entry 
for that queue) indicating that an I/O 
operation was in progress for that 
device. On this basis CIP decides 
that the interruption is associated 
with a previous lOCAL SVC, and thus 
distinguishes between synchronous and 
asynchronous I/O interruptions. CIP 
then frcceeds to call Reverse Path­
finding again. 

6. The function performed this tirre is to 
remcve the tusy indication in the 
pathfinding tables and thereby free 
the hardware path to the device. 

The Channel Interrupt Processor finds 
through a series of tests that this 
interruftion is to ce given to the 
task for further processing, i.e., 
returned to virtual storage as a task 
interruption. Status inforrration is 
cq::ied frorr. the interruption GQE into 
the device GQE. 

7. Dequeue is called to detach the ori­
ginal GQE from the device queue. 

8. Queue GQE on TSI is then called to 
attach the original GQE to the TSI and 
turn en the TSI's Synchronous I/O 
Interrupt Pending bit. Finding that 
the task that Queue GQE on TSl has 
been called to process is in Delay 
status, Queue GQE on TSI resets the 
task to Ready status and activates the 
task. That is, it places the task's 
TSl on the Active List. 

9. CIP calls Dequeue to detach the inter­
ruption GQE from the Channel Interrupt 
Queue and calls Move GQE (which uses 
Supervisor Core Release> to reIfove 
this GQE from the system. 



To V,rl-uol Storage 

~ I Co::::, 

L~_J 

to reSU'TH' execution "r the To: Virtual Storage 

tosk ot Ihe ;;e:.,J ;nHruc:icn in 
Check ofter the execu(LQ') of the AWAli 5VC. 

Figure 42. Resident Supervisor 'Iask Monitor Synchronous I/O FlolN (Non-,!'errr.inal) 

Data Management 99 



10. CIP then calls Set Suppress Flag 
twice, once to free the device queue 
and again to free the Channel Inter­
rupt Queue. The device queue in ques­
tion must be freed because it has been 
locked during the I/O operation. Con­
trol is then given to the ~ueue 
Scanner. 

11. When no further work is found, the 
Queue Scanner exits to the Internal 
Scheduler which, in turn, calls the 
Dispatcher. 

12. The Dispatcher calls TIC. 

13. TIC, after verifying that the ISA page 
is in main storage via Locate Page, 
moves information from the GQE to the 
ISA. TIC saves the XTSI's PSW data 
in the Synchronous I/O Old VPSW and 
replaces the PSW with the Synchronous 
I/O New VPSW (translated into real 
extended PSW format). 'The instruction 
counter of the new PSW points to the 
Task Monitor's Synchronous I/O Inter­
rupt Processor entry point. TIC then 
removes the GQE from the TSI. Super­
visor Core Release is called to free 
the GQE space. TIC moves the IORCB 
into the ISA and again goes to Super­
visor Core Release to free IORCB space 
before returning to the Dispatcher. 

14. The Dispatcher now loads the registers 
and the PSW from the XTSI, thereby 
giving control to the Task Monitor 
Synchronous I/O Interrupt Processor 
(TMSYNCH) • 

15. This routine first calls Queue Linkage 
Entry (QLE) to see if the user wished 
to have control sent to a routine he 
has specified after the BSAM access 
method Posting routine has processed 
the interruption. In this case nonE 
is found and QLE returns. 

16. TMSYNCH then gives control to BSAM 
Posting (whose address constants are 
obtained from the IORCB). The Task 
Monitor directly calls the BSAM Post­
ing routine, rather than Executing a 
Load Virtual PSW supervisor call, 
because this routine runs with the 
same interruption mask as TMSYNCH. 

BSAM Posting perforrrs standard postinq 
functions, including marking the I/O 
event cOIq::lete in the Data Event Con­
trol Block (DECB) associated with t.he 
READ request in our program. control 
returns to TMSYNCH. 

17. TMSYNCH has finished processing t_he 
interruption and Exits to the·Task 
Monitor Scanner-Disfatcher. 

100 

18. The Task Monitor Scanner-Dispatcher, 
finding no further work fer the Task 
Moniter, restores the task's registers 
fron: the ISA and issues a Load VPSW 
SVC to return control to the last 
interruFted routine. The Load VPSW 
SVC is used to effect the transfer of 
control, in part because it is also 
desired to change the protEction key 
in the task's PSW. 

19. Eventually, the Resident Supervisor 
SVC Processor invokes the LVPSW 
Subprocessor. 

20. The LVPSW subprocessor will set the 
PSW in the task's XTSI to point to the 
first instruction following the AWAIT 
SVC t.hat the CHECK macro in the pro­
grarr, executed. 

21. }:,ventually, the Dispatcher picks up 
the PSW save field from the XTSI and 
loads it as the current PSW fer a CPU 
and thus returns control to the pro­
gram. Control is returned to the 
CHECK routine which, having nothing 
further to do, returns to the Task 
Monitor. If there is no further work 
for the Task Monitor scanner­
dispatcher to dispatch, the Task Mon­
itor restores control to the problem 
program. 

Upon return to the program, a ccde of 
zero in Register 15 signifies a normal 
return, and the program continues with 
the instruction following the CHECK 
macro instruction. A nonzero code 
indicates an exception condition and a 
link to either SYNAD or EODAD occurs. 

The BSAM READ processing is now 
finished. 

EXAMPLE OF VIRTUAL SEQUENTIAL PROCESSING 

In this example, the program is going to 
create a new virtual sequential data set 
consisting of three 11,000 byte logical 
records. At this time. the program is 
going to place some master information in 
the logical records. In processing the 
data s."t, the program will use the OUTPUT 
option in the OPEN macro instruction. The 
data set will be created using Locate Mode 
PUT nacrc instructions. During the OPEN 
processing, primary space allocation (spec­
ified in the JFCB) will be assigned using a 
format E DSCB. In this example, the data 
set is to reside on a 2311 Disk volume. 
The pages ~ill be flagged as assigned to 
the data set, £ut not in use. A schematic 
of the FORl"JAT E DSCB is shown in Figure 43. 

When the Virtual Sequential data set is 
cpened, space will te allocated and this 



Data Set Private Volume I External DSCB 
Name and List for 

I 
Page Chain I 

Properti es Private Data Sets Only I Entries Field 

0-95 96-247 248-255 
-~ ..- I 

I 

--- --- -------- -
F Relative External 
I Volume Page 
a Number Number 
g (12 bits) (16 bits) 

Figure 43. Format E DSCB 

DSCB will be written to external storage 
and the fage entries will be used in creat­
ing RESTBL entries. These pages will 
appear in the RESTEL as not in use pages of 
the form 10 xxxx yyyy where 10 is the flag, 
xxxx is the Relative Volume Number of the 
volume on which the data set resides, and 
yyyy is the relative lecation of this page 
on the direet access volume. At this time, 
the external storage pages contained in the 
DSCE have been assigned to the data set, 
but the fages do not contain any logical 
records. 

GETMAIN (see Virtual Memory Allocation) 
is used to obtain a virtual storage buffer 
area whose size is, in general, dependent 
on the mode of the PUT macro used and on 
the record length. The buffer consists of 
an integral number of pages and controls 
the amount of virtual sterage used by the 
data set. Because the buffer is obtained 
by the GETMAIN macro, the External Page 
Table (XPT) entries for the buffer pages 
are initially zeros. In this example, each 
logical record is 11,000 bytes long. The 
buffer is four pages long because the log­
ical records can cross page boundaries and 
thus require an overflew buffer page. 

When the first PUT (Locate mode) is 
giVen, a Type I linkage is made to the VSAM 
PUT routine which will return, in register 
one, a pOinter to the buffer. In this 
example, it is assumed to be virtual 
storage address 0005EOOO hexadecimal. (See 
Figure 44.) 

In this case, the frogram is creating 
information in the 11,000 byte logical rec­
ord. It is the frograrr's resfonsibility, 
when using Locate mode P~T macro instruc­
tions, to flace the master information in 
the buffer. This is done utilizing the 
Move Characters machine instruction. 

DSCB 
Slot 
No. 
4 bits 

Relative 
Volume 
Number 
(12 bi ts) 

-... -... 
'""­ -

External 
Page 
Number 
(16 bits) 

Invisible to the program, a page reloca­
tion exception is caused the first tirr,e 
each buffer page is referenced. Because 
the buffer pages were just obtained by GET­
~AIN, the Resident Supervisor directly 
assigns a zeroed out main storage fage to 
the task, and no page-in operation is 
necessary. (See "Main Storage Allocation"). 

On the occurrence of the second PUT 
(Locate rrode) the buffer is full and the 

VAM FLUSBBUF routine will be invoked to 
arrange to have the first two buffer pages 
processed before returning control to the 
PUT routine. 'The third buffer page will be 
held, because it is only partially full. 
An overview of this processing is schemat­
ically described in Figure 45. A more 
detailed schematic of the VAM routines 
involved in this processing is presented in 
Figure 46. This schematic emphasizes the 
levels of linkage involved. These routines 
have additional responsibilities for set­
ting and releasing interlocks when a data 
set is sharable. However, these functions 
are not described here. 

Virtual Storage 

Bme Address 

----~----- - 1---------'------
SFOC0 

C)'H' I 

. -~=--=-;~-]~ 

Figure 44. VSAM Buffer Page After Proces­
sing of First Locate Mode PUT 

Data Management 101 



I-' "J 
0 ~. 

tv \Q 
C 
11 
11> 

~ 
t..n 

<! 
C/l 

~ 
"d 
11 
0 
(') 

11> 
Ul 
Ul 
~. 

:l 
\Q 

VAM Output 
Paging Request 

Non-Pri .... ileged User Progrorn Level 3 

Task Data Sets opened for OUTPUT 

Level 2 
Monitor Doto Sets opened for UPDATE ENTER 

sVC 

Interrupt 
Stacker 

Lev€'i 3 

leve I 2 

~ ____ ...;Level 

(~) ",: PGOUT 
WC 

Processor 

Pf:.'rf'o[m~ validity checks 

Queue 
SconnN 

Brings IOPCB into Supervisor core;.> 
Bui Id, Page Control Block, (PCBs) 

SVC 
EnlTy 

Device 
Queue 

Processor 

Initializes. page-in operotions if desired pages ore not in main storage 

Enqueues a GQE on proper device 
Queue to initiate transfer of dote set pages to extemal storage 

INOUT, 
OUTIN 

VAM 
Move 
Page LSCHP 

SVC 
.------~--- . __ ._-- ------------~--~---------

Interrupt 
Stocker 

Pog~ng 

Operations 

VAM 
Movepage 

Dispatcher 

LSCHP 
SVC 

Processor 

lists Changed Pages 

Interrvpt 

Stacker 

"EX" Instruc~ion 

Communication Area Contains: 

VAM PGOUT sVC 

Move Virtual Storage address of 1st 

Page dato se t page 
External storage address list 
for up to 8 pages 

PGOUT SVC 
.+-~--~~~-

Builds lopce 
for Changed 
Poges 

T{0 Dispatcher 
Interrupt 

Stacker 

User 

Dispatcher 



-= ~ rr 
FLUSHBUF 

~ 
INSPAGE 

i 
r 

INSERT 

i 
I REQPl,GE I 

FINDEXPG I I 
i r VOLSRCH 

I I 

I I 

I 
~ WRITEDSCB I 

I 
I L Expand 

I ; I l I i I 

MOVEPAGE 

[ 
! 

I I 

I l I II 
PGOUT 
SVC 242 

Ii 

Figure 46. Schematic of VA~ Routines 

FLUSHBUF will call Insert Page/Delete 
Page (INSPAGE/DELPAGE) to supervise the 
creation of data set relative page entries 
for these two pages. After determining 
that the request is legitimate, INSPAGE 
will call Insert (INSERT). 

INSERT will shift the RESTBL Entries if 
pages are being inserted into a data set as 
opposed to being placed at the end of the 
data set. The former would be the case if 
the program were adding data set pages to a 
member of a VPAM data set. In this case, 
the program is placing the records at the 
end of the data set (PUT defines the end of 
a data set) so INSERT merely calls Request 
Page CREQPAGE). 

REQPAGE determines if the pages can be 
assigned from the not in use RESTBL entries 
created from the prirrary space allocation 
DSCB. In this case, this request is easily 
ulet and REQPAGE n,erely changes the RESTBL 
entry flag for the two pages to an interme­
diate setting that indicates that these two 
pages are now in use and may have been 
written on. The RESTBL entries thus 
flagged are later processed by the MOVEPAGE 

routine. If the program could not satisfy 
the request from the DSCB extents currently 
assigned to the data set, REQPAGE would 
have called the External Storage Allocation 
routine named EXTEND to obtain a secondary 
allocation of external storage on some 
direct access device (see External Storage 
Allocation). If the RESTBL should then not 
have room to hold these new entries 
reflecting the newly allocated external 
storage, REQPAGE would call Virtual Memory 
Allocation at EXPAND to move the RESTBL 
into a larger block of Virtual Memory (see 
"Virtual Memory Allocation"). However, the 
request was satisfied from the current 
Extent. The Move Page (MOVEPAGE) routine 
is invoked next. A flow of the entire pro­
cessing is shown in Figure 46. 

For data sets opened for UPDATE, INOUT, 
and aUTIN, MOVEPAGE implements one of the 
more important prinCiples of VAM; namely, 
that no page will be written back out to 
external storage unless the user has 
updated t.hat page. For data sets opened 
for OUTPUT, as in our case, this test for 
the presence of updated data is bypassed, 
as the assumption is made that all pages 
destined for output contain data. 

MOVEPAGE constructs a small communica­
tion block, called an I/O Page Control 
Elock (IOPCB), which contains a page out 
(PGOUT) Supervisor Call followed by a para­
meter list containing the virtual storage 
and external storage addresses of the buff­
er pages to ~e transferred to external 
storage. This communication block is SOIre­
what analogous to the I/O Request Control 
Block (IORCB) used by other access m,ethods. 
However, the IOPCB does not contain any 
channel program or buffer space. The rag­
ing procedures of the Resident Supervisor 
are to be used to write the two data set 
pages onto external storage. 

After the PGOUT SVC is issued, control 
will eventually be passed to the Page Out 
SVC processor of the Resident supervisor. 
~he Page out svc processor will copy the 
IOPCE parameter list into supervisor 
storage and determine if the two buffer 
pages are in main storage or on auxiliary 
storage. The tuffer pages could be cn 
auxiliary storage if the task completed its 
tirHe slice sometime between the tin.e the 
~uffer pages were written into and the time 
MOVEPAGE issued the PGOUT SVC. 

If the pages are not in n.ain storage, 
they will ~e paged into main storage and 
then paged from rrain storage to external 
storage. The action taken by the Resident 
Supervisor to perform paging operations is 
discussed in "Paging." 

Data Management 103 



Sometime after the paging is corrplete, 
the Dispatcher will return control tack to 
l<OV:E;PAGE. 

In this example, the Resident Supervisor 
encountered a permanent error when attempt­
ing to write out the first buffer page. 
The Resident Supervisor passes this infor­
mation back to MOVEPAGE. l<OVEPAGE flags 
the old Fage in the form "11" and, through 
the services of REQPAGE, assigns a new 
external storage page to the data set page. 
The PGOUT SVC is issued repeatedly until 
~WVEPAGE is inforrr.ed that the pages are 
successfully written. 

The buffer has now been almost complete­
ly processed. When the PUT routine once 
more gets control, it will complete the 
buffer processing by transferring the last 
section of logical record one to the top of 
the buffer (using the Move Characters 
machine instruction). PUT will then return 
with a buffer pointer in Register one for 
use in placing the second logical record in 
the buffer. See Figure 47. 

When the program issues the third PUT 
the remainder of the first logical record 
and Fart of the second logical record will 
be processed. (See Figure 48.) However, 
this time three buffer pages will be pro­
cessed and the fourth buffer page will be 
held because it contains part of the third 
record. 

The part of the logical record contained 
in the fourth page is moved to the top of 
the buffer and an updated buffer pointer is 
returned by PUT. 

After placing the third logical record 
in the buffer, the program decides to CLOSE 
the data set. The VAM CLOSE and VAM SEQC­
LOSE routines will be invoked. The 
remainder of the second logical record and 
the third logical record are still in the 
buffer and are automatically processed by 
the above methods. 

! 
Buffer' Page 

Virtual Storoge 
Bose Address 

Content; 

,eW J ~m -+--6-OC-OO--'-~ -::~~­
---+------+---------I I --J------ -- ---------, 

l'7if 2808 ! 
Byles of Area for Our to i 
Logical Consrruo !w::> I 
Record 1 I 

i 
____ _ ___ ~ ___ ~ ____ , ____ ._._~--.J 

-_-JI~_._~ 
( 

L Gene~o! Reg-,ter One Buffer Poj'1ter 0005fAF3 

Figure 47. Appearance of the Buffer After 
the Second PUT Macro 

104 

Buffer Page 

Virtual Storage 
Base Address 

r-----,r------.-------,----------

5EOOO 5FOOO 60000 
~-------- --

--=-l~:~-T ----- -- ~------ ----
Byt~ 0: J Area for O .... f Program tv 
logical Comtruc~ logical Record Three 
Record 2 

------ --

I ! I I 

I 

I 
_-1 

61000 

Figure 48. Appearance of the Buffer After 
the Third PUT Macro 

Since the program has not specified the 
DDEF HOLD option, the "in use" pages are 
used to forre new Type E DSCB page entries. 

The "not in use" pages are made avail­
able in the Page Assignment Table. 

The bad page that was encountered disap­
pears. It is dropped from the CSCB and 
flagged in error in the Page Assignment 
~able. In this way, it will cause no more 
trouble. 

Had the program specified the HOW 
cption, the unused pages would occupy space 
on external storage and both groups would 
appear in the page entries of a Type E DSCB 
with the appropriate "Use" flags set. It 
is assumed that the external storage is 
located on an IBM 2311 disk pack. Figures 
49 and 50 describe the format of records on 
this disk pack. 

The Virtual Access Method CLOSE routine 
will complete its processing by performing 
the necessary housekeeping of releasing the 
RESTEL and restoring the DCB to the state 
it was in just before OPEN processing, etc. 

During a subsequent run a requirerrent 
nay occur to update the data set by updat­
ing the information in the last two thou­
sand bytes of the first logical record. In 
order to determine which inforrr,ation needs 
updating, sorr,e data located in the second 
four thousand bytes of the logical record 
rr_ust be read. Thus, that part of the log­
ical record contained in the first buffer 
rage is not read. That portion contained 
in the second page is read but not updated, 
and that portion contained in the third 
buffer page is updated but not read. 

Therefore, the UPDATE option would be 
used in the OPEN macro instruction and the 
locate rrode GET macro instruction would be 
used to obtain the first record. 

GET processing can be considered a 
reverse analogy to PUT processing. 



IPl Records 
~----

Cy linde, 
Trod 0 

Record 1,,- 24 F/t,~", ,"<pcord 2, 1".4 Bytes. 

Cy!:nder C 
Track 0 
Record 3 .. 80 Bytes 

Cylinder 0 
Tracks 1 to q 

2ecord 1 b ccc,-ot-CyLnder - 140 Byte Data Set Control Blocks 
Room for Approx 170 DS( BOs. 

Page-size Physical Recolds 

Cy!iqders 1 '0 2()2 
V'/ith 8 PoS)es per Cy\jlJder -=- 1616 pages on Disk 

Figure 49. VAM Format for the IBM 2311 

The program is assigned a three page 
buffer because the largest logical record 
spans close to three pages. 

When the first GET is issued, the VAM 
service routines will obtain the e~ternal 
storage page numbers assigned to the data 
set pages and will use the Set External 
Page Table Entry (SE.TXP) SUfervisor Call to 
instruct the Resident supervisor to place 
these values in the External Page Tatle 
(XPT) entries which maf the buffer pages. 
At this point in time, no main storage has 
been allocated to the buffer and the logic­
al record has not been read from external 
storage (see Figure 51). 

The program now proceeds to update the 
first logical record. As the program 
references the second and third pages of 
the logical record buffer, page relocation 
exception interruptions occur. The Resi­
dent Supervisor processes these interrup­
tions by causing the second and third pages 
of the data set to be read into main 

storage frCID external storage. The first 
page will not be read into rr~in sterage 
tecause it was net referenced. 

When the frograw has finished updating 
the logical record, it executes a FUTX 
nacro instruction. When this happens, the 
processing is similar to the processing 
perfcrrred ufcn creating the data set. 

If a CLOSE macro instruction were issued 
at this time, the system would then write 
out this page. However, if the pregram 
were to issue a second locate mode GET, the 
contents of this buffer page would be writ­
ten into the first buffer page, and the 
External Page Table {XPT) entries mapping 
the buffer would be changed so that the 
buffer will map the external storage pages 
containing the second logical record. 

Fer furf-oses of exposition, consider 
that no further processing is done on the 
data set and that this VAM processing 
Example is comfleted. 

External Data-

(y linder 3 
Data Record Storage Set 
Bytes/ Identification Poge Page 

Ir,,-r;}:~S- Becor<:L (CHHR ~ ~ 

0 3625 ((001 25 
1 471 C(011 Not 
1 3069 ((012 26 Assigned 
'2 1027 ((021 to 
2 2486 (C022 27 Data Set 
3 1610 ((031 
3 1875 ((032 28 
4 2221 ((041 

(1234 Unu,ed Bytes on Track 4) 

5 3625 ((051 29 Bad Page 

6 471 ((061 

6 3069 ((062 30 
7 1027 ((071 

7 2486 C(072 31 2 

8 1610 ((081 

B 1875 ((082 32 3 
9 2221 ((091 

(1234 Unused Bytes on Track 9 ) 

Figure 50. Track Formats for page-Size 
Records on Symbolic Devices 
No. 7 -- 2311 Disk Pack 

Data ~~nagerrent 105 



Virh;ol Storage M,]in Storage Externn I Storage 

Buffer -- ---- XTSI -- -- ... - Page Tobie 

"Not in Core" 

.. Not in Core" 

"Not in Core" 

/' 
/ 

/ External Page Table 
V/ 

0030 

; 
1/ 

/1 
30 

0031 
/ I 

/ 
/ 

31 

32 
/ 

/ 
/ 0032 

/ 
/ 

/ 

1/ 
/ 

Figure 51. Relationship Between Virtual Storage Buffer and External Storage 

106 



PART II: EXTENDED SYSTEM DESCRIPTION 





Because of the potentially large number 
of users concurrently operating on the sys­
tem and the limited availability of 
resources, it is desirable and, in some 
cases necessary, to limit the amount of a 
given resource which a user may have at his 
disposal at any given time. The system 
exercises control over the user's access to 
these resources by means of the RCR wacro 
instruction, a frivileged macro instruc­
tion, and a portion of the user table entry 
(TSS*****.SYSUSE) which indicates the maxi­

mum amount of a resource which is available 
to the user at anyone time. 

Within the data set TSS*****.SYSLIB) is 
an indexed sequential member called the 
User Limits Table data set (SYSULT). This 
member contains sets of parameters which 
list the maximum amount of each resource 
which is to be allowed to each user 
assigned to that set of parameters. Each 
set of parameters or entry is a 64 byte 
long keyed record and contains these 
resource limits: 

1. Maximum CPU time -- this is the total 
amount of CPU time allowed the user 
for all tasks he runs during one 
accounting period. 

2. Maximum connect time -- the total ter­
minal tiwe allowed for all the user's 
conversational tasks during one 
accounting period. 

3. Task count -- the total number of non­
conversational tasks a user may 
execute concurrently. 

4. Maximum auxiliary storage allowed the 
user at a given time. 

5. Total pages of temporary storage 
allowed a user at a time. 

6. Total pages of permanent storage 
allowed the user during one accounting 
period. 

7. Total number of direct access devices 
that n.ay be allocated to a user at one 
time. 

8. Total number of tape drives allowed a 
user at one time. 

9. Total nurrber of high speed printers 
allowed a user at one time. 

10. Total number of reader-punches allowed 
a user at one time. 

rtESCURCE ALLOCATION ANC CONTROL 

Several sets of parameters may exist in 
the User Limit.s Table for any installation 
and each user is assigned one set or entry 
at JOIN tirr.e based on the key in the JOIN 
corrrrand. The entry assigned to the user 
becomes a part of his User Table entry and 
governs the allocation of the various 
resources during his execution tirr,e. 

In addition to these rraximurr, lirrits or 
ratiens, the user table contains allocation 
count fields which are maintained with the 
current t.otal allocation of eaeh resource 
for all the user's tasks. Note that fer 
devices, t.his represents, for example, the 
total number of tape drives the user has 
assigned to all his active tasks. The per­
manent storage field represents the total 
number cf external storage pages allocated 
to the user's da ta sets. 'Ihese tot a Is may 
not exceed the If,aximum limits indicated in 
the ration fields. For ot.her resouces such 
as CPU time, this count field contains the 
accumulated time since the last accounting 
pericd. The [-reduct fields contain the 
accumulated time product that a resource 
has ~een used by the user during the 
accounting period. The length of these 
accounting periods varies from one instal­
lation to another. 

When a user logs on the system, his user 
table entry is located and read into shared 
virtual storage. If he already has a task 
active in the system, the new task will 
simply be connected to the user table in 
shared virtual storage. Each task in the 
system is also assigned an Active User List 
entry. This entry is analogous to the 
device count fields of the User 'fable entry 
but keeps separate counts of device alloca­
tion for each of the user's tasks. The 
device counts in the Active User List entry 
enable the system to maintain proper counts 
of the devices allocated to all of a user's 
tasks when one of the tasks is abnormally 
terminated. Under certain conditions it is 
possible that the count of devices allo­
cated tc the user's tasks will not be 
updated to reflect the release of the 
devices used by that task ~eing terminated. 
If this occurs, ABEND will find a nonzero 
count in one or more fields in the Active 
User List entry for the task. ABEND can 
then decrement the corresponding count in 
the User Table entry so tilat the user will 
not continue to be charged for the device. 

Fer accounting purposes, a count is also 
kept of the total time each resource is 
used. The time is accounted for in units 
of resource seconds. That is, if a user 

Resource Allocation and Contrel 109 



has access to three ta~e drives for six 
minutes he is charged with 1080 resource 
seconds for the devices. CPU time is 
accounted for in milliseconds. 

Allocation control and accounting is 
accomplished by means of the privileged 
macro instruction RCR which is executed by 
the system routines which actually allocate 
resources. This instruction o~erates in 
six distinct modes which are: 

1. OPEN 
2. CLOSE 
3. UPDATE 
4. RATION 
5. VACATE 
6. LOGOFF 

The OPEN mode of RCR finds the User 
Table entry or provides one for the user in 
shared virtual storage. If the user alrea­
dy has an active task, the entry exists in 
shared virtual storage and need only be 
found; if there is no active task, the 
entry must be retrieved from the User Table 
data set and read into shared virtual 
storage. 

The CLOSE mode updates the User Table 
entry to reflect the resource usage, writes 
the entry from shared virtual storage to 
the User Table, and either disconnects the 
task from the entry if other tasks are 
active or releases the shared virtual 
storage if no other tasks are active. 

The UPBATE mode calculates the products 
which are added to the accounting fields in 
the User Table. These products are the 
resource second counts described above. 
The RCR macro instruction in the UPDATE 
mode is used by the CLOSE mode prior to 
updating the User Table entry. 

The RATION mode is used to determine the 
right of the user to the requested resource 
and, if he is entitled to it, ados the new 
allocation to the total current allocation 
in the User Table entry and, in the case of 
private devices, to the Active User List 
entry. The determination of the right of 
the user to a resource consists of adding 
the new request to the total current allo­
cation of that resource and cOIf,paring the 
new total to the maximum allowable limit. 
If the new allocation would exceed the 
maximum allowed, control is transferred to 
a specified error routine. 

The VACATE mode is used to decrement the 
count of rescurces currently allocated to 
the user and the task. The count fields in 
the User Table entry and, for private 
devices, in the Active User List entry are 
updated by this mode. 

110 

The LOGOFF If.ode extracts information 
from the XTSI for statistical analySis and 
writes it to the System Log. The informa­
tion which may be extracted is: 

• The nurrber of TWAITs issued 

• The number of AWAITs issued 

• The number of time slices used 

• The nurrber of page-in operations from 
auxiliary storage 

• The nurrber of ~age-in operations from 
external storage 

• The number of page-out operations to 
auxiliary storage 

• The number of page-out operations to 
external storage 

• The maximum number of pages used on 
auxiliary disk 

After extracting the information, the 
LOGOFF mode updates the total CPU tirre and, 
for conversational tasks, the total termin­
al time, in the User Table entry and decre­
rrents the device allocations in the User 
Table entry and the Active User List entry. 
This latter function is performed by issu­
ing the RCR macro instruction in the VACATE 
rrode. Finally, the RCR CLOSE mode is 
issued to update the User Table entry. 

The USAGE command and macro instruction 
are rrovided to enable a user to read the 
data on system resources. The USAGE com­
rrand writes this information to SYSOUT 
while the macro instruction must be ~ro­
vided with an area into which the data may 
be read. A nonprivileged user may only 
read data ~ertaining to his own tasks but a 
privileged user has access to all such data 
in the systerr. 

This corrmand and macro instruction may 
be used for accounting pur~oses or, for an 
individual user, to determine the advisabi­
lity of requesting more of a given 
resource. 

An additional command, the UPLTUSER com­
mand, is provided for privileged users. 
This corr.rrand enal::les the user to update the 
count of external storage ~ages in use by 
all users. The information concerning 
usage is extracted from the format E DSCB 
for each data set and is used to update the 
page counts in the User Table for each 
user. 

Scheduling Overview and the Schedule Table 

The scheduling of jobs in a tirre sharing 
system is sorrewhat more com~lex than in a 



Page of GY28-2009-2, Issued February 1, 1972 by TNL GN28-3219 

simple batch-processing system. Numerous 
good arguments can be advanced for various 
scheduling algorithms. Ultimately, only 
continued use of the time sharing system in 
an installation's own environment will 
determine what scheduling algorithm is best 
adapted to the particular installation. 

The scheduling of tasks in TSS/360 is 
governed by a group of rules, which consti­
tute the scheduling algorithm, and several 
sets of parameters known as the schedule 
table. Each task in the system is assigned 
a set of parameters based on the user's 
priority (USEPRI) and the task type (batch 
or conversational). Various components of 
the Resident supervisor make use of these 
parameters and rules to determine the fre­
quency with which the task executes and the 
duration of each execution. The set of 
parameters may be varied according to the 
amount of paging or execution a task does 
but the rules remain constant. A given 
installation may achieve optimum system 
performance by the judicious alteration of 
parameters based on an analysis of its own 
job mix and the quality of performance 
achieved with previously tested sets of 
parameters. 

The ultimate purpose of the TSS/360 
scheduling algorithm is to select a task to 
be placed in execution in an available CPU. 
The algorithm attempts to allocate CPU time 
to tasks in the most efficient manner as 
defined by the algorithm. 

The schedule table consists of a vari­
able number (256 maximum). of 2a-byte sche­
dule table entries. Each entry consists of 
26 parameters which govern the frequency 
and length of time a task is given a CPU. 
Figure 52 depicts the format of the sche­
dule table entry. The figure and the fol­
lowing description detail the contents of 
the schedule table and the function of each 

1 byte 1 byte i--:;'h"s 2 bytes 

,:DTR) ~Acx Max 
Level Prioriti 

Quantul"' 
Dpl~:l Reloccfions 

(STELEVELl (STEPRIOR) Len9tl' to R.;n Per 
(STESVAL: (STEDELTA) ;'STEMRQ'~ 

leve I Recompute S,lbtract 
(STET\VAln Flag 

I 

I.evel 

parameter. For the current format of each 
entry see System Control Blocks PLM. 

Level: This field indicates the relative 
location of the given schedUle table entry 
(STE) within the schedule table. The first 
entry is assigned level zero and the level 
is incremented by one for each succeeding 
entry. This field is the level number to 
which other fields, such as Pulse level and 
Time Slice End (TSE) level, refer but the 
level plays no part in the scheduling of 
tasks. 

priority: This field contains the priority 
assigned to all tasks using this entry as 
its set of scheduling parameters. The 
priority associated with each STE, as well 
as all remaining parameters, is specified 
by the system administrator in the schedule 
table CSECT which is loaded at STARTUP. It 
may have any value from 0-255. The priori­
ty determines the position a task assumes 
within a list of eligible tasks; low 
priority numbers are given preference over 
higher priority numbers. 

Quanta Count and Quantum Length: These two 
parameters determine the duration of the 
time slice for tasks assigned to this 
entry. Time slice duration = Quanta count 
X Quantum Length X 3.33 milliseconds. Each 
time a task is placed in execution, the 
value Quantum length X 3.33 is computed and 
added to the current time. A timer inter­
rupt is then created which will cause the 
task to be interrupted and examined. This 
procedure is repeated the number of times 
indicated in Quanta count after which the 
task wi~l be brought to time slice end. 

Maximum Pages Allowed: This field contains 
a count of the maximum number of pages a 
task may have in main storage at one time 
(maxcr). If the task exceeds this value, 
it is forced to time slice end or page 
stealing occurs. 

2 bytes 1 byte I b,..te 7 bytes 1 byte I , byte 1 bvte 

Max 1imc Max 

Disc Scan Pulse Pages AWAIT 

1,'0 Threshold Level TSE level 

ISTEMAXRD) 
(STESn (STEPULSE" Leve! tSTEAL,VAln 

(STEMPRE) 

1 hyte J Gyre 1 byte 2 bytes 

Low Cere Maximum 

Force beh'nd ~ext 
Drum 

Only TSE Schedule Steal 
Share 

Level 
Level level 6.7 seconds rSTEDSHI 

(STERCMP) 

Preem~t 

Flag 
ISTEP~MP1) I 

DTP 
(STESDTR i I (STElC"LI ISTECWOI (STElCfl (5TEMBS l (STEi'CSL\ 

Figure 52. contents of the Schedule Table Entry 

Resource Allocation and Control 111 



Page of GY28-2009-2, Issued February 1, 1972 by TNL GN28-3219 

Maximum Disk I/O: This field represents 
the maximum disk reads or writes a task 
will be allowed before a time-slice end 
will occur. Reads and writes as a result 
of migration, purging shared pages, or 
time-slice ends do not count toward this 
limit. 

Scan Threshold: If the Steal Request Flag 
is on, the Resident supervisor will release 
Some of a task's pages when the page count 
equals MAXCR. The Scan Threshold is the 
percentage of MAXCR pages to be retained. 
This percentage is specified in hex (SO%= 
SO=X'50'). When stealing occurs, the task 
is not time sliced, but stays in the dis­
patchable list. However, the Schedule 
Table Entry in the TSI is changed to the 
value in the Next Steal Level field. 

Pulse Level: This field contains a level 
number which will be assigned to a user 
when he issues the PULSE macro instruction. 
It may be determined at an installation 
that one group of parameters provides maxi­
mum throughput for an I/O-bound task but 
that a second set is better for compute­
bound tasks. The user can be given the 
facility to select the best set of parame­
ters by use of the PULSE macro instruction 
each time the processing characteristics of 
his task change. An installation may 
deprive certain classes of users this faci­
lity by setting the Pulse Level field equal 
to the Level field thereby locking him into 
one schedule table entry. 

AWAIT Extension: This field contains a 
value which represents a period of time a 
task may remain in the list of dispatchable 
tasks while awaiting the completion of an 
I/O operation. A task in AWAIT status is 
normally removed from the list of dispatch­
able tasks. Since this causes a delay in 
redispatching the task, it may be desirable 
to permit high priority tasks performing 
I/O on a high speed device to' remain on the 
dispatchable list. This can be accomp­
liShed by making the AWAIT extension large 
enough to allow for the completion of the 
I/O operation. 

Delta to Run (DTR): This field contains a 
factor which is used in calculating a new 
scheduled start time for a task as it moves 
from one state to another (i.e., as the 
task becomes ready, in AWAIT, in TWAIT). 
The value in this field is multiplied by 
852.5 milliseconds and may be combined with 
the master clock or the old scheduled start 
time (SST) if old SST is negative to deter­
mine the task's new SST. These other fac­
tors and the manner in which they are com­
bined will'be discussed later. If this 
field is zero, tasks are serviced on a LIFO 
(last in-first out) queue within the 
priori ty level. 

112 

TSE Level: This field represents the sche­
dule table level entry to be used when a 
time-slice end occurs because of the maxi­
mum number of quanta or maximum disk I/O 
being reached. 

Maximum Pages TSE Level: This field con­
tains the level number of the STE which 
will be assigned to the task when the num­
ber of pages the task has in main storage 
exceeds the value contained in the Maximum 
pages Allowed field. 

TWAIT Level and AWAIT Level: These fieldS 
contain the level numbers of the STEs which 
will be assigned to the task when it leaves 
TWAIT or AWAIT status respectively. 

Recompute Flag: If the Recompute byte is 
X'SO' and a task enters the eligible list, 
then: 

SST = PSAETM + STEDELTA 

where SST Scheduled Start Time 

PSAETM Current Clock Value 

STEDELTA = Delta-to-Run from Schedule Table 

If the Recompute byte is X·OO· and a 
task is coming from the inactive list to 
the eligible list, then: 

SST = PSAETM + STEDELTA -
(amount behind schedule) 

or 

SST = PSAETM + STEDELTA • 
if ahead of schedule 

preempt Flag: If the byte value is X'40' 
for a task in the dispatchable list, and a 
behind schedule task of higher priority 
resides in the eligible list, the task in 
the dispatchable list can be preempted by 
forcing it prematurely to time slice end. 

Steal Reguest Flag: A task on the dis­
patchable list with this flag set (X'20'), 
will have pages released when its private 
pages in core reach the MAXCR limit. If 
pages are brought in faster than they can 
be released so that the MAXCR limit is 
exceeded. the task will be time sliced. 

Subtract DTR Flag: If this flag (SDESDTR) 
is set (X'10') when the task is being 
placed in the eligible list, delta-to-run 
(STEDELTA) is subtracted from Master Clock 
(PSAETM) in the calculation which sets the 
Scheduled Start Time. This allows FIFO 
(first in, first out) ordering, with a 
negative DTR. 



Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146 

Maximum Page Relocations per Quantum: The 
value contained in this field is the 
threshold value which is used to distin­
guish between execute-bound and paging­
bound tasks. If a task has more than this 
number of page relocations in one quantum 
it is paging-bound, otherwise it is 
execute-bound. 

Holding Interlock Level and Low Core/ 
Holding Interlock Level: These two fields 
contain the level number of the STE which 
is assigned to a task which has placed an 
interlock on a shared data set or data set 
page when being time-sliced under normal or 
low core conditions respectively. The pur­
pose of changing the level under these con­
ditions is to expedite the release of the 
interlock. 

Waiting on Interlock Level: This field 
contains the level number of the STE which 
is assigned to a task which is waiting for 
the release of an interlock placed on 
shared data by another task. This change 
in level enables a task to check the inter­
lock from a level of lower priority than 
the task which holds the interlock. 

Conversational Write Only: This field 
represents the Schedule Table level to be 
used when a write without response message 
is sent to the terminal. The level change 
occurs without a time slice end. 

Low Core Forced Time Slice End: This field 
represents the Schedule Table Entry to be 
used when a task is forced to time slice 
end for low core and it is not holding an 
interlock. 

Next Steal Level: This field represents 
the Schedule Table Entry to be used when 
stealing (releasing of pages) occurs. The 
task is not time sliced. 

Drum Share: This is the number of drum 
pages reserved for a task. There are about 
500 pages available after startup in a one 
drum system. and 1400 pages in a two drum 
system. In general, the number of a task's 
private pages on drum is a function of the 
number of tasks logged on, the number of 
drums, and the time from last time-slice. 
If the number of unassigned drum pages 
falls below a predetermined limit, some 
pages are moved from drum to disk. Each 
task receives a system calculated minimum 
drum space. The Drum Share field allows a 
task to keep a larger drum share. A zero 
value defaults to the system calculated 
minimum. 

Task Scheduling: The rescheduling of a 
task has a precedence order for assigning 
Schedule Table exit. Some of the following 
can occur simultaneously, some are mutually 
exclusive: 

1. TWAIT 

2. AWAIT 

3. Low core holding interlock 

4. Holding interlock 

5. Low core 

6. Waiting on interlock 

7. Maximum disk I/O 

8. Maximum pages in core 

9. Maximum quanta 

10. Preempt 

Conversational write-only and Next Steal 
Level are two fields which provide a level 
change without time slicing. In both 
cases, the task remains in the dispatchable 
list until time sliced for some cause 
listed above. 

Each task which enters the system is 
represented by a Task Status Index (TSI). 
These TSIs remain resident in main storage 
and contain the nucleus of information 
required to keep track of the task and its 
current status in the system. Among other 
things, the TSI contains the task identifi­
cation number (TID), a pointer to the 
Extended Task Status Index (XTSI). which 
contains more voluminous task information, 
the task's current schedule table entry (in 
the field TSISTE). and the task's scheduled 
start time (TSISST). These latter two 
fields contain the information required to 
schedule and dispatch the task. 

The Active and Inactive Lists 

All TSIs in the system are chained 
together on one of two lists (see Figure 
53), the Active list and the Illactive list. 
The Active list is subdivided into the Dis­
patchable list and the Eligible list. The 
Dispatchable list consists of tasks which 
are in main storage attempting to compete 
for CPU time and, in most cases, whose 
scheduled start time is less than the mast­
er clock. (The master clock (MC> is 
defined as bytes 3-6 of PSAETM.) When the 
SST ask is less than the Master 
Clock, the task is sa~ to ~n sche-
dule. Under certain circumstances it is 
possible for a task which is not behind 
schedule to be placed on the Dispatchable 
list. This situation arises when there are 
no behind schedule tasks awaiting entry to 
the Dispatchable list but there is room in 
main storage for another task or when the 
number of tasks on the Dispatchable list is 
below the system minimum. 

Resource Allocation and Control 113 



Page of GY28-2009-2, issued September 15~ 1970 by TNL N28-3146 

Act ive List System T"ble Pointer 

Dispotchable list 

r---:T~SI:-:-----,...t4---tI----- SYSPEC 

TSI 2 

TSI 3 

TSI 4 

151 5 

151 6 

Eligible List 
L--r---=-=----l4-f---"---- SYSFW 

TSI 7 

151 8 

TSI 9 

151 10 
)---------i-...,j..---1~---- SYSLT 

ISI II 

Ina ct ive List ,--=---:-::---l---.J...---- SYSFIT 
TSI 12 

151 13 
r--~=_-:-:----l---..... ---- SYSLIT 

151 14 

Figure 53. TSI Lists 

The Eligible list consists of tasks 
which are ready to execute but have not yet 
been brought into main storage. Tasks on 
the Eligible list are ordered by priority 
with the lowest priority number first on 
the list. Tasks with the same priority 
number are ordered by SST with tasks furth­
est behind schedule (i.e., lowest SST) hav­
ing priority. Tasks on the Eligible list 
are moved to the Dispatchable list when 
conditions permit and so become candidates 
for use of a CPU. The manner in which this 
is done will be discussed later. 

The Inactive list consists of tasks 
which are in AWAIT or TWAIT status or have 
issued a TSEND SVC. These tasks are incap­
able of continuing execution until a parti­
cular interruption occurs. When the 
awaited interruption occurs, the task is 
moved from the Inactive list to the Elig­
ible list in its proper order as explained 
above. Figure 54 depicts the movement of 
tasks among these three lists. 

Task scheduling 

conversational tasks or 10 for nonconversa­
tiona I tasks. Note that USEPRI cannot be 0 
since this would result in the task being 
assigned the STE reserved for the operator 
task or the BULKIO task. The new task is 
then filed in the Eligible list on the 
basis of its priority (as shown in its STE) 
and its scheduled start time (SST). All 
newly created tasks are given an SST equal 
to the sum of the master clock (bytes 3-6 
of PSAETM and the delta to run (DTR) para­
meter from the STE. If the DTR is 0, the 
SST will be 0 regardless of the master 
clock. The manner in which this is accomp­
lished is described in the section 
"Examples of System Operation -- creation 
of a Conversational Task." 

When the Queue Scanner finds that there 
is no work which it can perform. it calls 
the Internal Scheduler. This module is 
responsible for moving tasks from the Elig­
ible list to the Dispatchable list and 
maintaining the Dispatchable list in its 
proper order. In this case, the Internal 
Scheduler starts at the beginning of the 
eligible list (SYSFW) and scans all TSIs 
looking for behind-schedule tasks (i.e., 
tasks for which SST<MC). As each task is 
examined, the system table (SYSLSST) is 
updated to reflect the lowest SST ahead of 
schedule (i.e., the lowest SST>MC). 

interlocks 

Yes 

Is 
Time Slice 

End 
Forced ? 

Redispatch? 

Task 

lask reaches 
Norma I or Forced 
Time Slice End 

Yes 

Task becomes 
dispatchable 

Initiation 
Process 

Leaves 

A'NAIT, 
TWA IT 

or 
delay 

When a task first enters the system it status 

is assigned a schedule table entry (STE) 
which is the Level number. This value is 
stored in the task's TSI (field TSISTE). 
The Bulk I/O task is assigned STE level 10 
and all other tasks are assigned to the 
level which equals the decimal sum of their 
user priority (USEPRI) and either 0 for -Figure S4. Maintenance of TSI Lists 

114 



Page of GY28-2009-2, Issued February 1, 1972 by TNL GN28-3219 

Once a task falls behind schedule, there 
is a limit on how long it must wait to be 
dispatched. When it exceeds this ·maximum­
behind-schedule" value (computed from 

I STEMBS), it will be submitted to the 
Entrance Criteria module regardless of its 
normal priority. If no task has exceeded 
maximum-behind-schedule. the highest­
priority behind-schedule task is submitted 
to the Entrance Criteria module which 
determines whether or not the task may 
actually be placed on the Dispatchable 
list. If the task in question is waiting 
for the completion of a paging operation, 
it cannot be placed on the Dispatchable 
list. If the task is ready to execute. a 
comparison is made between the pages used 
last time slice (TSIPTS> and the system 
estimate of available core blocks (SYSECB). 
If the comparison shows that room exists in 
main storage. the task is placed on the 
Dispatchable list. If the comparison shows 
that main storage space does not exist but 
there are fewer than the system minimum 
number of tasks on the Dispatchable list. 
the results of the comparison are ignored 
and the task is moved to the Dispatchable 
list. 

The Internal Scheduler continues to scan 
the Eligible list looking for behind sche­
dule tasks. As each such task is found, 
its TSI is placed on the chain of Dispatch­
able TSIs ahead of all TSIs belonging to 
execute-bound tasks, and behind the TSIs of 
tasks in page wait, and the task's XTSI 
page is brought into main storage. If the 
task's current SST=O, it remains O. If the 
task's SST*O, a new SST is computed as the 
difference between old SST and MC. The 
scan of the Eligible list continues until 
the Entrance Criteria module rejects a task 
or until the end of the list is reached. 

In the latter case the scan begins again 
at the beginning of the Eligible list and 
each task is submitted to the Entrance Cri­
teria module regardless of its SST. This 
second scan continues until a task is 
rejected by Entrance criteria or until the 
Eligible list is exhausted. 

When a task is rejected by Entrance Cri­
teria before the first scan of the Eligible 
list is completed, the task is flagged as 
the first task to be considered the next 
time the Internal Scheduler is entered and 
the Dispatchable list is searched for a 
lower priority task with its STE preempt 
flag on. When such a task is found, time 
slice end is forced on it, the task is 
filed in the Eligible list, and its pages 
are removed from main storage. This 
ensures that there will be room when the 
task just rejected is resubmitted to 
Entrance criteria. 

If a task is rejected during the second 
scan, no attempt is made to add more tasks 
to the Dispatchable list and the first 
phase of internal scheduling terminates. 

During the first scan, all possible 
behind-schedule tasks have been placed in 
the Dispatchable list. If a behind­
schedule task is rejected, it receives pre­
ference during the next pass through the 
Internal Scheduler because it will be the 
first task checked. Tasks following the 
last rejected task will be examined next 
followed by tasks at the head of the Elig­
ible list. This first phase of the Intern­
al Scheduler places the maximum possible 
number of tasks on the Dispatchable list 
thereby decreasing the possibility of the 
Dispatcher running out of dispatchable 
tasks. 

The second phase of the Internal Sche­
duler is devoted to ordering tasks in the 
dispatchable list. Tasks on this list are 
classified as ·paging-bound" or ·execute­
bound." Paging-bound tasks are those 
Which, in one quantum, cause more page 
relocation exceptions than they are 
allowed, as indicated in the field Maximum 
Page Relocation Exceptions per Quantum in 
the STE. Tasks which do not exceed this 
limit are classified as execute-bound. The 
second phase of the Internal Scheduler 
moves all execute-bound tasks to the end of 
the Dispatchable list. This ordering of 
tasks on the Dispatchable list improves 
multiprogramming by causing tasks with high 
paging requirements to be dispatched first. 
This increases the overlap of CPU and chan­
nel operations. When the Internal Schedul­
er concludes its work it exits to the 
Dispatcher. 

Application of the Scheduling Algorithm 

As previously stated, the scheduling 
algorithm consists primarily of a group of 
formulae and a set of parameters contained 
in the schedule table entry. In addition, 
certain system constants, which may be 
varied when the schedule table is con­
structed, are used to govern the length and 
frequency of a task's time slice. The STE 
parameters whiCh are used to govern a 
task's scheduling are priority, delta-to­
run and recompute. The various level 
fields in each entry dictate changes in the 
STE assigned to a task because of certain 
characteristics of its execution, such as 
excessive use of main storage, excessive 
paging, and performance of I/O. The 
remainder of the parameters are maximum 
values permitted for certain operations. 

The existence of level change fields in 
the STE makes it possible for an installa­
tion to vary the scheduling algorithm for a 
task as its performance characteristics 
dictate. The assignment of a schedule 
table entry on the basis of task priority 
and task type has the effect of creating 
several scheduling algorithms for tasks 
entering the system. An installation has 
the capability of constructing a similar 
number of sets of variable scheduling 
algorithms based on a task's priority. For 

Resource Allocation and Control 115 



Page of GY28-2009-2, Issued February 1, 1972 by TNL GN28-3219 

example, conversational tasks with user 
priority of 3. are assigned STE 3 on entry 
to the system. The installation may 
reserve entries 30 through 39 for this type 
of task. By setting all level fields in 
STE 3 to pOint to a level in the range 
30-39 and levels in the range to point to 
level 3 or another level in the range, 
these tasks are locked into the eleven 
entries 3 and 30 through 39. Once this is 
done, scheduling of tasks of one type can 
be controlled in one manner and tasks of 
other types in other manners. High priori­
ty. conversational tasks might be allowed 
more main storage each time slice than non­
conversational tasks and penalized less 
when they exceed it. The following para­
graphs list the formulae which are used in 
calculating the task"s SST and the routines 
which use them. 

When a task first enters the system, the 
Task Initiation routine calls the Resche­
duling routine which enters the task in 
Delay status and sets SST=O. When Task 
Initiation regains control, it assigns STE 
20 to the new task. This entry remains in 
effect until the LOGON process is completed 
and governs task activity in the early 
stages of its existence. 

The Channel Interrupt Processor calls 
the Queue-GQE-on-TSI routine to queue an 
asynchronous I/O interruption on the task"s 
TSI. When this interruption is processed 
by the Task Monitor, the Command System 
will be invoked to complete the task 
initiation processing. When Queue-GQE-on­
TSI is called, it finds the task on the 
Inactive list and calls the Rescheduling 
routine. 

The Rescheduling routine recomputes the 
SST using one of three formulae: 

1. In all cases where DTR=O, SST is set 
to O. 

2. If DTR * 0 and the old SST<O, the new 
SST=DTR+MC+(l-R)SSTo where R is 1 if 
the Recompute flag is on and 0 if it 
is off and SSTo is the old scheduled 
start time. 

3. If DTR*O and SSTo ~O, the new 
SST=DTR+MC. 

In the case of this newly created task, 
formula 3 is used and the new SST is stored 
in the TSI (TSISST). Rescheduling then 
places the task on the Eligible list in its 
proper order according to priority and SST. 

At some later point in time the Queue 
Scanner will find that there is no more 
work which it can process and will call the 
Internal Scheduler. Depending on how heav­
ily the system is loaded, the new task may 
be behind schedule (SST<MC). Eventually, 

116 

the Internal Scheduler and Entrance Cri­
teria modules determine that the new task 
should be added to the Dispatchable list. 
At this time, the Internal Scheduler recal­
culates the SST according to one of two 
formulae: 

1. If SSTo = 0, SST~ 0 

2. If SSTo * 0, SST~ = SSTo-MC 

For this new task assume formula 2 is used. 
If the current system load is light. SST 
will be greater than MC and SST~ will have 
some small positive value. If the system 
load is heavy, SST~ will be negative. The 
Internal Scheduler then adds the new task 
to the beginning of the Dispatchable list 
and enters the sort phase of its operation. 
New tasks are classified as paging-bound 
(TSIEB=O) and so this task will remain 
first on the Dispatchable list and be the 
first to be dispatched when a CPU is 
available. 

The next change which occurs is a change 
in the task's STE. When the Command System 
processes the LOGON command, it issues the 
SCHED macro instruction. This macro 
instruction assigns STE 10 to the BULKIO 
task and calculates a new STE for all other 
tasks by taking the decimal sum of the 
external priority (USEPRI) and 0 for con­
versational tasks or 10 for nonconversa­
tional tasks. The task operates with this 
STE until it causes one of the level para­
meters to be employed to change the level 
number. 

As the task receives time slices and 
performs various operations its scheduling 
is affected by further changes to its SST, 
by changes in the STE level assigned to it, 
and by the list to which it is moved as 
various events occur. The following para­
graphs list the events which can cause 
these changes and describe the manner in 
which the task is affected by each. 

Time Slice End (TSE): When the task 
attempts to exceed its allotted time (quan­
tum length X quanta count), a normal TSE 
occurs. All other TSE conditions are con­
sidered forced. 

When normal time slice end occurs, the 
quanta count (TSIQCT) is decremented by 
one. This field is initialized to the 
value in the Quanta count field in the 
task"s STE. If the count has not reached 
zero, the task is given another quantum of 
CPU time. The task is left on the Dis­
patchable list and no change is made to its 
SST or STE. If the count does reach zero, 
the Rescheduling routine is called. 
Rescheduling changes the STE level (TSISTE) 
to the level indicated in the TSE level 
field of the old STE and recomputes the SST 
according to one of three formulae: 



Page of GY28-2009-2, issued september 15, 1970 by TNL N28-3146 

1. If DTR = 0, SST1 = 0 

2. If DTR * 0 and SSTo <0, SST 1 

DTR+MC+SST o 

3. If DTR * 0 and SSTo ~O. SST1 = DTR+MC 

Each time the quantum count is decremented, 
a comparison is made between the number of 
page relocations which occurred during the 
quantum and the maximum allowed the task 
per quantum. If the task has exceeded the 
maximum, it is classified as paging-bound 
(TSIEB=O). Since this test is made and the 
field updated at the end of each quantum, 
only the paging history of the last quantum 
is significant. 

If time slice end is forced on a task 
via a TSEND issued for interlocks. the task 
is placed on the Inactive list and in the 
delay state for the period of time speci­
fied in the system table field SYSDLY. The 
length of this delay can be altered at an 
installation in order to achieve better 
scheduling. The end of the delay is sig­
nalled by a timer interruption which 
results in a call to Queue-GQE-on-TSI. The 
Rescheduling routine is called to move the 
task to the Eligible list and the task's 
SST is recomputed using one of the three 
formulae listed above in the description of 
the task initiation procedure. 

If a task timer interruption occurs. it 
is enqueued on the TSI; no change occurs to 
the STE or SST and the task is filed on the 
Eligible list. 

AWAIT: When a task enters AWAIT status. 
pending the completion of an I/O operation, 
the AWAIT extension in the task's STE is 
used to create a timer interruption for 
some future time. When the interruption 
occurs or if the extension is zero, the 
task is placed on the Inactive list until 
the I/O operation is completed. If the I/O 
operation is completed before the timer 
interruption occurs, the pending interrup­
tion is cancelled and the task is allowed 
to remain on the Dispatchable list. 

If the completion of an I/O operation is 
signalled for a task on the Inactive list. 
Queue-GQE-on-TSI calls Rescheduling which 
substitutes the AWAIT level from the cur­
rent STE in the task's TSI and recomputes 
the SST according to one of the three for­
mulae used in the task initiation proce­
dure. For a task which has been granted an 
AWAIT extension. the AWAIT level is also 
substituted on I/O completion. 

TWAIT: Since no TWAIT extension exists, a 
task which enters TWAIT status is moved 
directly to the Inactive list. The comple­
tion of the operation results in the move-

ment of the task to the Eligible list and 
the recomputation of the SST in the same 
manner as for tasks in AWAIT status. The 
current STE is replaced with the entry 
indicated in the TWAIT level field of the 
current STE. 

Table 1 summarizes these stimuli and the 
changes they effect in the scheduling of 
the task. 

Task Scheduling Walkthrough 

The following discussion and diagram 
depict the movement of tasks among the 
lists of all tasks in the system and the 
changes in their scheduled start times as 
various phases of the scheduling algorithm 
are applied. For the sake of simplicity 
only three tasks are shown and only three 
schedule table entries are used. Also, the 
tests for level changes are only mentioned. 

Figure 55 shows the content of the sche­
dule table. The values shown have been 
arbitrarily chosen and should not be inter­
preted as recommended or suitable values in 
any real environment. Note that gaps have 
been left in the sample schedule table. 
This cannot be done in an actual working 
table. 

In this example (see Figure 56>, task A 
is the BULKIO task and is assigned STE 10. 
Since the DTR in this entry is zero, the 
SST is always zero. Task B is a nonconver­
sational task with user priority 3 and is 
assigned STE 13. Task C will be shown log­
ging on as a conversational task with user 
priority 3; it will be assigned STE 3. 

In the initial system state, task A is 
the only task on the Dispatchable list and 
is in execution. Task B is the only other 
task in the system and is on the Eligible 
list, ready, and behind schedule (SST<MC). 

The first event which occurs is a timer 
interruption which occurs to signal the end 
of task A's first quantum. The interrup­
tion is handled by the Resident SUpervisor 
which updates task status information and 
determines that the task should be given 
another quantum. The task is left on the 
dispatchable list and the Internal Schedul­
er is entered. 

The Internal Scheduler finds task B on 
the Eligible list and moves it to the Dis­
patchable list. At this point task B's SST 
is recomputed and set to -2. Assuming that 
task A has been classified execute bound 
and task B has been classified paging 
bound. task B will become first on the Dis­
patchable list and state 2 in the diagram 
will exist. 

Resource Allocation and Control 117 



Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146 

• Table 1. TSI List and Parameter Changes 

List Stimulus Special Conditions Move TSI to Recompute SST Change STE to 

None Async. Interrupt None Inactive list Do not recompute Do not change 
unowned terminal 
or CRTSI SVC 

Inactive Queue Asynch. None Eligible list 5ST=0 20 
Interrupt GQE 
on TSI 

Channel Interrupt Task in AWAIT status Eligible list If DTR=O, 55T=0 AWAIT level 
If DTR/O & SST < 0 
If DTR/O & SST 2:0 
5ST1=DTR+MC 

Eligible Task becomes TSI moved by Dispatchable If DTR = 0, 55T1= 0 Do not change 
dispatchable Interna I Sc heduler list If SSTo=O, 55T1= 

SSTo-MC 

Dispatchable Time slice end Forced TSE SVC Inactive list Do not recompute Do not change 

with delay= 
SYSDlY 

Norma!, TSIQCT/O Do not move Do not recompute Do not change 

Normal, TSIQCT=O E I ig ibl e list If SSTo < 0, TSE level 
SSTI = DTR+MC+SSTo 
If 55 To 2: 0, 
SST1 = DTR+MC 

LOGON BUlK!/O task Do not move Do not recompute 10 

Conversational task Do not move Do not recompute U5EPRI 

Nonconversotiona I task Do not move Do not recompute USEPRI+10 

Timer interrupt AWAIT extension expired Inactive list Do not recompute Do not change 

Task enters AWAIT AWAIT extension/O Do not move Do not recompute Do not change 

AWAIT extension=O Inactive list Do not recompu te Do not change 

Task enters TWAIT None Inactive list Do not recompute Do not change 

I 
NK:Jximum 

I I I 
All 

Quanta Quantum Page Pulse Await TSE Other 
level Priority Count Length Reeds Level Extension DTR level Recompute Preempt levels 

03 4 1 20 70 13 I 0 J 5 03 0 o _~_ 03 f-- ::t ~ , ~ ~ 

10 ! ~ 
---

10 5 2 20 70 0 i 0 I 10 0 =J=V · ___ -0-- -t 10 

~ * ~ * 
.-+------

131 ;.y "" 
13 10 4 20 70 0 I 5 13 1 1 t-13 

Task A - STE 10 
Task B - STE 13 
Task C - STE 3 

Figure 55. sample Schedule Table Entries 

1.18 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

.------DISPATCHABLE liST ELIGIBLE LIST ~ INACTIVE LIST 
System 
State 1st on list 2nd on fist 3rd on list lst on list 2nd on list 3rd on list II 1st on fist 2nd on list 3rd on list 

Task SST Task SST Task SST Task 

Initial Task A 0 
Task B 

MC=lOO in execution ready 

2 Task B 
-2 

Task A 
0 

MC= 102 ready ready 

3 Task B 
-2 

Task A 
0 

MC= 103 ready ready 

4 Task B 
-2 

Task A 
0 

Task C 
MC= 104 ready ready ready 

5 Task C 
0 

Task B 
-2 

Task A 
0 

MC=106 page wait ready ready 

6 Task C 
0 

Task A 
0 

Task B 
MC=lJO page wait ready ready 

7 Task A 0 
Task B 

MC= ]20 ready ready 

8 Task B -9 
Task A 0 

MC=]22 ready ready 

9 Task A 
0 

Task C 
MC= 124 ready ready 

Figure 56. Scheduling walkthrough 

At this point, an asynchronous interrup­
tion is received from an unowned terminal 
and a new TSI is created and placed on the 
Inactive list placing the system in state 
3. The Channel Interrupt processor 
enqueues an asynchronous interrupt GQE on 
the new TSI. Among other things, this 
results in a call to Rescheduling which 
places the new TSI on the Eligible list 
with SST=O and STE=20 as shown in state 4 
in the diagram. 

Once this initiation procedure is com­
pleted, the Queue Scanner is entered and it 
passes control to the Internal Scheduler. 
The Scheduler finds task C on the Eligible 
list and, after determining that there is 
room for the task in main storage, places 
the task at the head of the Dispatchable 
list. The task is placed in page wait sta­
tus, its SST remains 0, and a request is 
enqueued to bring the task's XTSI page into 
main storage. At the end of this proce­
dure, the system lists are in state 5. 

Following the initiation of the paging 
operation, the Queue Scanner gets control 
and, finding no work, calls the Internal 
Scheduler. The Scheduler finds no tasks on 

I the Eligible list and the Dispatcher is 
called. 

The Dispatcher begins at the head of the 
Dispatchable list looking for a task to 
place in execution. It bypasses task C 
which is in page wait and selects task B 

SST Task SST Task SST I Task SST Task SST Task SST 
I 

98 I ---

Task C 

0 

I 

113 I 

113 
I Task C 

!WAlT 
0 

Task C a 
TWAIT 

129 
Task B 

-9 , 
AWAIT 

which is ready. Assuming that the paging 
operation is not completed, Task B will 
execute for one quantum. It will then be 
classified as execute bound and the Queue 
Scanner, Internal Scheduler, and Dispatcher 
will be called. The Dispatchable list is 
rearranged just before the Dispatcher is 
called and task B, which is now execute 
bound, is placed at the bottom of the Dis­
patchable list. Task A will now be placed 
in execution, and tasks B and A will 
alternate until one of them has received 
its full quanta. On the fourth interrup­
tion the task will have reached normal time 
slice end. Assuming this was task B, it 
will be removed from the Dispatchable list 
and placed on the Eligible list in ready 
status. Its SST will be recomputed accord­
ing to the formula SST1 =DTR+MC+SSTo=113. 
At this point, the system lists are in 
state 6. 

At this point the first XTSI page has 
been brought into main storage. Other 
initialization procedures are required but 
eventually task C is placed in execution 
and the user issues the LOGON command. 
Part of the system processing of LOGON is a 
recomputation of the STE assigned to the 
task. In this case the new STE is 3 and 
replaces the 20 aSSigned to the task 
initially. 

Task C is using this terminal session to 
run a prestored program. In these initial 
stages the task goes through several checks 

Resource Allocation and Control 119 



page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

and changes which are being omitted from 
this example for purposes of simplicity. 
The next event of significance is the 
occurrence of a TWAIT. When this SVC is 
issued, the task is placed on the Inactive 
list with its SST and STE unchanged. The 
system lists now appear in state 7. 

Task A has now worked its way to the top 
of the Dispatchable list. Before the Dis­
patcher is entered, the Internal Scheduler 
receives control and begins scanning the 
Eligible list. It finds task B which is 
now ready and behind schedule and moves it 
to the head of the Dispatchable list (A 
task is always entered at the head of the 
dispatchable list.) Task B's SST is recal­
culated as -9 and the system lists are in 
state 8. 

When the Dispatcher gets control it 
places task B in execution. Task B per­
forms an I/O operation. followed by an 
AWAIT which causes task B to be placed on 
the Inactive list. Task C receives an 
interruption indicating the completion of 
the operation for which it was waiting. 
Task C is moved to the Eligible list and 
its SST is recalculated at 129. Assuming 
that no conditions exist which will force 
task C to be placed on the Dispatchable 
list, the lists will be in state 9 and task 
A will again be dispatched. 

MAIN STORAGE ALLOCATION 

The allocation of main storage is con­
trolled by the following supervisor 
routines: 

• User Core Allocation Queue Processor. 

• Contiguous Core Allocation Queue 
Processor. 

• User Core Release Subroutine. 

• Supervisor Core Allocation Subroutine. 

• supervisor Core Release Subroutine. 

The allocation of main storage is reco­
rded in a Core Block Table which is created 
during System Generation and initialized by 
STARTUP. The Core Block Table contains one 
entry for each page of main storage in the 
system. There are three major categories 
of pages: 

• ASSigned for user core allocation. 

• Assigned to the Resident Supervisor. 

• Non-operational pages (i.e., defective 
or partitioned pages). 

120 

STARTUP initializes the Core Block table 
by testing main storage and marking any 
partitioned or defective pages as wnon-
operational". It then aSSigns the pages 
occupied by the following to the Resident 
Supervisor: 

• Active Prefix Storage Areas (PSAs). 

• SERR/RECONFIGURATION buffers (two pages 
for each active PSA). 

• Resident Supervisor. 

In addition, five pages immediately fol­
lowing the Resident Supervisor are assigned 
to the Resident Supervisor. They consti­
tute a Reserve List and are used as an ini­
tial pool of pages for satisfying Resident 
Supervisor requirements for temporary 
storage (such as space needed for TSIs, 
GOEs. and PCBs). All other pages (called 
User Core) are made available to tasks. 

User Storage Allocation 

User storage is requested in connection 
with page-in operations or when any virtual 
storage page allocated by GETMAIN is 
referenced. The former case includes any 
paging-in operation associated with proces­
sing the TWAIT and PGOUT SVcs or with pag­
ing in XTSI pages. The processing of the 
TWAIT SVC may require obtaining a 3 page 
buffer for use in moving pages from drum to 
disk auxiliary storage (see "Paging"). 

The two major categories of user storage 
are in use and not in use. 

The Core Block Table (CBT) entries 
representing not-in-use user storage are 
organized into three lists: 

• Available list -- not currently 
assigned to a task. 

• Pending list -- those pages assigned to 
tasks that are in Time Slice End, TWAIT 
or AWAIT status. 

• Preferred Page-Pending list -- those 
pages assigned to tasks in Time Slice 
End, TWAIT or AWAIT, that a task must 
have in main storage to begin executing 
again when the task next becomes 
active. Currently this is defined as 
consisting of only the particular page 
in which a task was executing when 
interrupted (PSW page) and those XTSI 
pages which are currently necessary for 
task processing. 

It should be noted that a page is not 
returned to the not-in-use lists until all 
user I/O or paging operations on it are 



completed. In addition, a task's XTSI 
rages are not returned until all paging or 
user I/O is ccmpleted on the rest of the 
task's pages. 

Requests for user storage pages are of 
two types: 

• A request to reclaim a specific page 
previously assigned to a task. 

• A request for an initial assignment of 
a page to a task. 

If the request is to reclairr, a page that 
previously belonged to the same taSk, the 
Core Block Table entry for the page is 
checked to see if the page has, in the 
meantime, been aSSigned to another task. 

If it has not, the page (i.e., CBT 
entry) is removed from the not-in-use list 
to which it is attached and is assigned to 
the current task. Reclaiming the page 
avoids the necessity of having to read in 
the page from drum or disk storage. 

On the other hand, the page may have 
already been assigned to another task or 
the request may be for the initial assign­
ment of a core block (i.e., page) to a 
task. 

In this case, the first page in the 
"Available" list is assigned to the task. 
If this list is empty, the first page in 
the "Pending" list is taken; or, if that 
list is also empty, the first page in the 
"Preferred Page" (XTSI/PSW) list is 
assigned. 

If a page is found, it is removed from 
the "not-in-use" list to which it is 
attached and assigned to the requesting 
task. In addition, if this page represents 
storage aSSigned to a virtual storage page 
obtained by GETMAIN, the page is cleared to 
zero and no page read in is required. 

If the rages just assigned reduce the 
amount of assignable storage blocks below 
the value of the "high" Low Core Threshold 
Parameter, the Low Core Indicator is set 
(see "Scheduling Algorithm"). This indica­
tor will be reset when the number of 
aSSignable storage blocks again rises above 
the value cf the "high" Low Core Threshold 
Parameter. Values are aSSigned to the 
threshold parameters at startup. 

If no page is available or a "low-core­
low" condition exists, the request for user 
storage (represented by one or more Page 
Control Blocks attached to a GQE) is saved 
and user core allocation is suppressed. An 
attempt will be made to process the request 
again after seme in-use rages are reclaimed 
by releasing shared pages or, as a last 

resort, by forcing time-slice-end on the 
task nearest the commutator that is not 
already in time-slice-end status. 

Whenever a page is released, it is 
placed in the appropriate not-in-use list 
unless the Resident Supervisor Reserve List 
has decreased below five pages. In this 
case, either the returned page or a less 
preferred not-in-use page is transferred to 
the Reserve List. Thus, in effect, the 
Reserve Li.st is the highest priority not­
in-use list. 

Whenever a page is returned to one of 
the User Core not-in-use lists, the 
suppression of user core allocation is 
turned off, if allocation was suppressed. 

When a user's task is sufficiently 
large, it is possible for the segment 
tables te exceed one page. When this 
occurs, it is necessary for the several 
segment table pages to be allocated contig­
uous pages in main storage. This restric­
tion arises from the fact that the Dynamic 
Address Translation unit locates relative 
J;age table entries in the segment table by 
simply indexing into the table from its 
tase address. 

If the task is starting on a new time 
slice, contiguous pages are allocated from 
J;reviously owned pages, if possible, or new 
pages are assigned. If the task is dynarr.­
ically expanding its segment table size, 
the page follo,,"ing the current segrrent 
tatle page, the page preceding the current 
segment table page, or a sufficiently large 
block of new pages is allocated in that 
order of preference. In all cases except 
for the page following the current segment 
table page, the segment table pointer in 
the XTSI is updated. 

Supervisor Storage Allocation 

The only SUJ;ervisor storage that is 
allocated after Startup is obtained from 
the Reserve List. 

The Reserve List itself is composed of 
unfragmented pages. Requests for storage 
in less than page size blocks are sub­
allocated from pages obtained from the 
Reserve List. Once a page is obtained from 
the Reserve List for sub-allocation, the 
page is nc lenger chained to the Reserve 
List. 

Pages used for sub-allocation are 
chained together and are divided into 64-
byte b~ocks. The first block of each J;age 
contains an ·avai~able block counter" and a 
tit map whioh indicates which 64-byte 
tlocks wi thin the page are available. 

Resource Allocation ana Control 121 



Requests for SUperviscr storage fall 
into three categories: 

1. Requests for one 64-byte block. 

2. Requests for several contiguous 
blocks. 

3. Requests for a full page. 

Requests for one blcck (for instance, to 
build a GQE) are expected to be the most 
common type of request. Therefore, to 
speed up the allocation of a single block 
of storage and to reduce the fragmentation 
of the pages obtained for sub-allocation, 
six "quick cells" are rraintained. They 
point to the most recently returned single 
blocks. 

When these cells are empty, the first 
available blocks found are assigned. 

If the request is for contiguous blocks, 
the bit rraps of those pages whose available 
block counters indicate a good probability 
that the request can be satisfied are 
searched before the bit maps of the other 
pages. 

If the request is for an entire page, an 
unfragmented page is allocated from the 
Reserve List, if possible. 

If a reguest for Supervisor Storage can­
not be satisfied, an unavailable indication 
is returned if the request specifies that 
it would accept such an answer. If the re­
quest specifies that an unavailable indica­
tion is not acceptable, an in-use page is 
borrowed frorr, user core. An example of 
such a case is a request for storage during 
interruption stacking. The page tables of 
the XTSIs in main storage are searched 
rather than the not in use user core allo­
cation lists in the Core Block Table. This 
is because the Reserve List is auton.atical­
ly replenished from these "not in use" 
lists and thus, whenever the Reserve List 
is empty, there is a high probability that 
the "not-in-use" lists are also empty. The 
search for a user page to borrow involves 
up to three passes over the XTSIs, looking 
for: 

• First Pass - An unreferenced page 
belonging to a task that is not "in 
execution" 

• Second Pass - A page that has been 
referenced but not changed belonging to 
a task that is not in EXecution 

• Third Pass - An unchanged page belong­
ing to a task that is in execution. 
(The dynamic address translation unit's 
associative registers are reset in this 
case.) 

122 

Whenever a full page is returned or 
whenever all the tlocks in a page have been 
returned, the rage is placed in the User 
Core Available sUblist. 

VIRTUAL STORAGE ALLOCATION 

In TSS/360 each task operates in a 
unique virtual storage. That is, (except 
in the case of shared virtual storage) each 
user's virtual storage references corres­
pond to storage locations within pages 
unique to the user and which, at the time 
of the references, may be located in ccre, 
cn auxiliary storage or on external 
storage. 

A discussion of those aspects of virtual 
storage which concern sharing can best be 
understood in the context of a discussion 
of all aspects of sharing within TSS/360 
and will be described in depth in a later 
section, Sharing, and only briefly dis­
cussed here. 

Virtual storage is allocated when a task 
is created and whenever a task wishes to 
dynamically increase the amount of virtual 
storage in which the task is operating. 
For example, the Dynamic Loader frequently 
requests virtual storage allocation when 
mapping a user's program module intc virtu­
al storage. System service routines 
require virtual storage allocation to 
cbtain working space for tables. 

When a task asks to have its virtual 
storage extended it really requires two 
things: 

• The virtual storage address at which 
the allocation begins. 

• The modification of the tables describ­
ing the task's virtual storage. 

Because each task obtains and releases 
virtual storage in an essentially unpre­
dictable fashion, the determining cf where 
a virtual storage allocation should be 
assigned within a task's virtual storage is 
considered to te a task oriented function 
and, as such, is performed by a system ser­
vice routine. The actual modification of a 
task's page tables is performed by the 
appropriate supervisor routines. 

The storage allocated to a task's virtu­
al machine is described ny tables residing 
in the variable portion of the task's 
Extended Task Status Index (XTSI). These 
tables ccnsist of: 

segrrent 'Table 
Auxiliary Segment Table 
Page Tables 
External Page Tables 



Figure 57 scnematically shows these 
tables in a samt,le XTSI. 

The Segrrent Table afpears first in the 
X~SI. Each segment table entry is one word 
in length. The first byte of the entry 
contains the length of the page table for 
that segrrent. The remainder of the entry, 
except for the last bit, contains the ori­
gin of that fage table in real storage. 
The last bit in the entry is an "availabi­
lity" bit which indicates whether the page 
table is in real storage. Immediately fol­
lowing the Segrr.ent Table is the Auxiliary 
Segment 'Table. For each entry in the Seg­
ment Table, there is a double word Auxi­
liary Segment Table entry in the same rela­
tive position within its table as the 
corresponding Segment Table entry is witnin 
the Segment Table. Each Auxiliary Segment 
Table entry contains the auxiliary storage 
location of the corresfonding Page Table if 
this segment is allocated, and some flags 
concerning the status of this segment. 

Irrmediately following the last Auxiliary 
Segment Table 61try are the individual Page 
Tables and External Page Tables. The page 
Table entries are half-word entries and the 
External page Table entries are double word 
entries on word boundaries. 

Each Page Table entry contains the 
storage block (i.e., page> address of this 
page if it is in core, and an availability 
tit. Each External Page Table Entry con-

SA\:'[ AREAS and Constant Information 

Segment Tobie 

Auxitior'l Segment Tobie 

f---~~------ ~~-------------------j 

Poge Tobie for Segment (0) 

fxter'lol Poge Tobie for Segment (0) 

Page To~le for Seg:Tent (2)'~ flO Entries-20 Bytes·) 

----------------------------------1 
:::x'ernol Page Table for Segmenr (2) 
i I:} Entries - 80 Bytes "\ 

f---------

tains the auxiliary or external storage 
address for this page, if applicable, and 
varicus flags concerning the status of this 
page (e.g., unprocessed by the Dynardc 
Loader, storage protection class). 

In order to keef the External Page Table 
entries on word boundaries, a dumrr.y Page 
Table entry and External Page Table entry 
is created whenever a segment contains an 
odd nurrber of pages. This dummy entry is 
not reflected in the length of the page­
table-field of the corresponding Segment 
Table entry but is reflected in an XT'SI 
field which specifies the number of bytes 
available in the bottom of the first XTSI 
fage. The External Page Table for any par­
ticular segment immediately follows the 
Page Table fcr the segment. However, these 
tables are not necessarily in order (i.e., 
the Page rrable and External-Page-Table for 
segment 3 may appear in the XTSI befcre the 
Page Table and External-page-Table for seg­
ment 2). The primary reason for placing 
the External-Page-Table for a segrr-ent iIUl'e­
diately following the page Table for that 
segment is so that the pair of tables can 
be lccated using one pointer. 

The virtual storage allocation opera­
tions concerned with modifying the tables 
describing a task's non-shared virtual 
storage arc perforued by the following SVCs 
and their corresfonding Supervisor SVC 
Processors: 

ADDPG - Assign additional contiguous pages 
to a task's virtual storage and 
create any necessary page table and 
External Page Table entries. 

DELPG - Release a contiguous set of pages 
from a task's virtual storage and 
delete the associated page table 
entries, when possible. 

MOVXP - Move the contents of a ccntiguous 
set of page table entries and 
external page table entries to a 
new location in the task's page 
~ables and External Page Tables. 

Briefly, tne addition of pages to a seg­
ment in a user's virtual storage may 
involve either the addition of a page to a 
segment that already has pages aSSigned to 
it or the addition of pages to an unas-

.... Signed segment. 

"'The Page Table and External Page Tobie for Segment One (s c 
Shared Page Tabie and does not op?€or ;n the XTS!. 

Figure 57. Sample XTSI Witn Virtual 
Storage Allocation Tables 

J 
When a ~age is being added to a segment 

which already has pages assigned, the addi­
tion may be made to the end of the segment, 
thUS eXfanding the corresponding Page Table 
and External Page Table of the segrrent, or 
the addition may be made within the seg­
ment. An addition within a segment is an 
insertion in unassigned table entries 
(i.e., PT/XPT) which have been released by 

Resource Allocation and Control 123 



the execution of a Delete-Page (DELPG) SVC 
but which could not be physically deleted 
because they were not at the end of a page 
table. 

If no s~ace is available in an existing 
segment, a new Page Table will be created. 
In the 32-bit system, the Segment Table is 
expanded in blocks of 16 entries. 

The management of page and segment 
tables requires some algorithm to prevent 
the continual obtaining and releasing of 
virtual memory from resulting in excessive 
fragmentation within XTSI pages. Excessive 
fragmentation could lead to a large number 
of sparsely utilized X'ISI pages. 

Whenever the size of relocation tables 
within the first XTSI ~age is changed, the 
XTSI page will be repacked so that empty 
bytes are located at the end of the page. 

If there is not sufficient space in the 
first XTSI page to expand a relocation 
table, the expanding Page Table and Extern­
al Page Table will be rroved to another XTSI 
page where space is available and the first 
XTSI page will be repacked, if necessary. 

Space with XTSI pages beyond the task's 
first page, however, is not reclaimed until 
the entire page becomes free or until a 
limit on the number of XTSI pages the task 
may have is reached. The logic here is 
that the algorithm for Virtual Memory allo­
cation makes it more likely that only the 
last Page Table/External Page Table pair in 
the first XTSI page is likely to grow and 
Shrink; whereas the pattern is not likely 
to be so neat when a large number of seg­
ments is used. 

The assignment of virtual storage is 
performed by the Virtual t-:emory Allocation 
system service routine. 

The entry points of this module which 
are concerned with page allocation are as 
follows: 

~on-Shared Virtual Storage Functions 

GETMAIN - get private virtual storage by 
pages. 

FREEt-'AIN - free virtual storage by pages. 

EXPAND - expand an existing clock of con­
tiguous virtual storage. 

Shared Virtual storage Functions 

GETSMAIN 

CONNECT 

124 

- get shared virtual storage. 

- connect a Segment Table entry 
to a particular Shared Page 
Table. 

IISCONNECT - DISCONNECT A segment Table 
entry from directly pOinting 
tc a Shared Page Table. 

The GETMAIN and FREEMAIN entry points 
correspond to user macro instructions cf 
the sarre name. 

GETMAIN obtains virtual storage for a 
user's program or a system service routine. 
'Ihe ADDPG supervisor call is used to per­
form the actual allocation. 

FREEMAIN releases virtual storage pre­
viously allocated ty GET~AIN; the supervi­
sor call DELPG is used to release the area. 

A nonprivileged routine uses GET~~IN to 
acquire contiguous pages of virtual 
storage. If additional contiguous pages 
are required, a second use of GETMAIN will 
not in general provide pages contiguous 
with pages obtained from the first use of 
GETMAIN. Thus, a nonprivileged routine 
must either request sufficient contiguous 
storage through GETMAIN at the outset, or 
else chain together groups of contiguous 
pages obtained through successive uses of 
GETMAIN. ,A privileged routine, on the 
cther hand, rray acquire additional pages 
contiguous with an existing group by using 
EXPAND. For example, VAM may request addi­
tional virtual storage in order to enlarge 
a RESTBL. EXPAND is used for this purpose. 
EXPAND normally allocates pages for the 
expanded RESTBL in a manner similar to GET­
MAIN. EXPAND then uses the Move External 
Page (MOVXP) supervisor call to rrove the 
contents of the associated Page and Extern­
al Page Table entries to their new posi­
tions. This gives the RESTBL a new loca­
tion in virtual storage. The Delete Page 
supervisor call is then used t.O release the 
old group of virtual storage pages from the 
task's virtual storage and if possible to 
physically delete the associated table 
entries. 

There are two versions of t.he Model 67 
dynamic address translation. One version 
allows the generation of 24-bit virtual 
storage addresses, while the seccnd allows 
the generation of 32-bit virtual storage 
addresses. The difference between the two 
versions, as supported in TSS/360, is that 
the 24-bit version perrr,its utilization of 
up to 16 segments, while the 32-bit version 
permits the utilization of 4096 segments. 

In TSS/360, the smallest quantity of 
virtual storage that can be shared is a 
segment. The reason for this is that the 
manner in which virtual memory is shared is 
for each task to share a page table which 
rraps into rrain storage tbe program or data 
being shared. That is, each task which 
shares pages within that segment has one of 
its Segment Table entries pointing tc the 



Page Table for the segment and thus has 
access to all pages allocated for the seg­
ment. A Page Table thus shared is called a 
shared page table. This is shown in Figure 
58. 

In the 32-bit system, it is possible to 
~lace each data element to be shared all 
alone in a se~arate segment. In this fash­
ion, User A and User B can share Program Y, 
and User B and User C can share Program X, 
but User A does not have access to Progra~ 
X. 

On the other hand, this is not possible 
in the 24-bit system since there are only 
16 segments. 

Thus, the greater number of seg~ents in 
the 32-bit system permits a greater number 
of categories of sharing, for those instal­
lations that have a need for this extended 
capal;ility. 

User A User B 

A basic design goal of TSS/360 is to 
isolate in one module the need to be aware 
whether the hardware is 24 or 32 bit; and 
to provide a mechanism which satisfies the 
desire for segrrentation on the part of 
those installations employing the 32-bit 
system, while allOwing for more dense pack­
ing of virtual storage on the 24-bit sys­
tem. This is acco~plished l;y presenting to 
the system, during System Generation, a 
series of ~arameters which are interrogated 
by the Virtual Memory Allocation module in 
the course of responding to a request for 
virtual storage allocation. 

The rrajor virtual storage allocation 
parameters are: 

• SYSTEM PACKING INDICATOR - If this is 
cn, all requests for private virtual 
storage are to be ~age packed into 
available segments. 

u'er C 

.----•.•.. 3~'=~~ -------------~ 

t---------

Segment Table 

u'er A 

--

f----

Segment Table 

Segmen· Tobie 

Shored Page Tobie 

~
----- -----------
------~-~---- --

-.~-~~~~-=~-;;~--=-=-~ 
-----------------

-------
I 

F=-~::::=:---·:::=:::-:··:::.:::::::-r_ 

U<,er B 

~:i~~~-~~=l\ 
l==----------­
~-=---------~-----------

Segrnent Tab!e 
Shared Page Table Shored Page Table e-

Segmen t Table 

u'er C 

---~-------i 

Segment Tobie 

Figure 58. Sharing of Segments in the 24-Bit Versions of the Model 67 

Resource Allocation and Control 125 



• PUBLIC SEGMENT INDICATOR - If this is 
on, sharatle control sections are to be 
packed into a shared segment known as a 
Putlic Segwent. If that segment be­
comes full, additional segrr,ents are 
allocated, as necessary. 

When there are several public segments a 
user does not autorratically have more than 
one public segment allocated to his virtual 
storage. Only if the user's task links to 
a prograrr, in a public segment will that 
fublic segment be allocated to his virtual 
storage. Thus, even a 24 tit system allows 
a more flexible handling of shared virtual 
storage than is possible in an unsegmented 
system. The first public segment is auto­
matically referenced during task initiali­
zation (see "Initial Virtual Storage"). 

Packing refers to the assignment of suc­
cessive pages of a segment until all 256 
pages bave been allocated, not to the con­
densing of information. 

Normally, a 24-bit installation chooses 
system packing and Public Segments. A 32-
bit installation may choose to have each 
request for virtual storage assigned to a 
separate segment. Figure 59 shows how vir­
tual storage is allocated under such 
conditions. 

TYPE OF SEGMENT 

There is, hcwever, no finn division 
between the two systems in regard to virtu­
al storage allecation. For instance, priv­
ate PSECTs are always packed regardless of 
system type. 

The selection of these system pararreters 
is at the discretion of the installation. 
It is dependent on the hardware (24- or 
32-bit system) only in a logical sense. A 
public segment can exist in either a 24- or 
32-bit system; a 24-bit system does not 
have to pack control section, etc; there­
fore the comtination of parameters which 
are logically best suited to the installa­
tion's needs can be selected. 

Furthermore, Virtual Memory Allocation 
supports the ability to alter the basic 
assignrrent method to meet different 
requirements. The GETMAIN macro may speci­
fy pararreters which override, for that 
allocation, those which System Generation 
presented to the system. For example, in a 
system where packing has been indicated, 
the GETMAIN issued by Data Management to 
obtain space for the RESTBL associated with 
a private data set might contain a paramet­
er which instructs VMA to override the sys­
tem packing parameter and allocate virtual 
storage on a segment boundary. 

DEFINITIONS; 
TYPE OF DATA -~---------144- b,' System-+-- 32- bit System 

Each group of Private COf"ltrol Sections Packed I Private 
.v;t~I'l one Program ModJle that have Private Segment 

identical control section attributes ,Segment 

______ ~ __ ---1 I 
Shored 

within one program module that hove Public Segment 

;den"fco! control se:::tion anrlbutes Segment! 

.... Each group of Pubflc Contro! sectlon+i Packed 

-~ ----r- ---~ 
Private Prototype COr)frol Sections 'Pac-ked i Packed 
PSECTS Private Private 

Segment I Segment 
--------------------------+---"'-------+-----------

Ii Private VAM 
Dolo Set (RESTBL) and 

Packed 
Private 

Private 
Segrr,ent 

Requests for Private work areas and [ Segment I,., 

buffers 

Publ ic \-1 A-M--------------i---p-:-c~:_----t-~"ar:~--
I Public ! Segment Dato Set 

RESTBL I Segment I 

Packed - Each Request is allocated on a page bounda,'Y 
in a segment that may already have pages al­
located to a previous request. 

Private- - Pages Tabies are in the tasks XTSI and ore 
therefore available only to this. task. 

Public - Page Table /s in supervisor storage ond is 
pointed to b>' a segment fob!.:.:. entry for all 
tosks wishing to reference it. Packed by page 
boundary. 

Shared - Page Tobie exists in main storage :::md is 
pointed to by a segment table entry for all 
tasks ',vho wish to reference it. 

*If a Public control section is loaded by a User with an 0 or P Authority Code or from 0 privote library, the Public 
attribute is erased. by the Dynamic Loader, and VIVA will treat the control section as Private. 

Figure 59. Pcssible Scheme of Virtual Memory Allocation 

1.26 



If a GE'IMAIN request sfecifies the vari­
able length parameter, the arr,ount of virtu­
al storage tc be allocated is determined by 
the "variable allocation" system parameter 
which is s&,ecified during Systew Genera­
tion. The awount of virtual storage allo­
cated is either a segment or an integral 
number of fages (less than 256) in addition 
to the specific amount of virtual storage 
requested by the GETMAIN macro. In conven­
tional systems, the reservation of address 
space is tightly bound with the reservation 
of main storage. With variable-length 
allocation of virtual storage, a TSS/360 
user can reserve a large address space in 
which a dynarr:ic table can grow without hav­
ing to make a "worst case" claim upon main 
storage. 

Once Virtual Memory Allocation has 
determined whether a particular request is 
to be packed or not, it rrust then determine 
where to place the allocation. 

If the request is to be packed and will 
fit in the available space remaining in the 
current segment, it is placed in that seg­
ment. No attempt is made to fill in holes 
within a segment. 

If the request is to be packed, but 
can't fit in the current segment, or if the 
request is to be allocated on a segment 
boundary, the lowest numbered available 
segment is generally used. 

It is possible, on the 24-bit system, 
that no free segment exists. In this case, 
Virtual Memory Allocation consults a map 
which specifies the availability or non­
availability of each of the task's 4096 
pages, to find a group of contiguous pages 
large enough to satisfy the request. 

If a request can not be satisfied, the 
user has the option of regaining control or 
of having his task abnormally terminated 
(ABEND> • 

SMALL VIRTUAL MEMORY ALLOCATION 

Through use of the "R" option of the 
GETMAIN and FREEMAIN macros, virtual 
storage rray be assigned and freed in mul­
tiples of bytes (as cowpared to pages). 

Small Virtual Memory Allocation (SVMA) 
can be used by all systerr service routines 
and users for dynamic virtual storage allo­
cation. Fer instance, most PSECTs are con-­
siderably less than a page in length. TSS/ 
360 conserves main storage and auxiliary 
storage by packing PSECTs cn double-word 
boundaries, whenever pOSSible, through tne 
services ef SVMA. 

Operationally, SVMA may be thought of as 
a subset of large VMA, in that storage is 
first allocated by GETMAIN (pages) and then 
sub-allocated as aI-~propriate Dy SVMA. SVMA 
rraintains control information about each 
page in page headers which are placed in 
either of two types of allocation chains 
depending on the type of user: privileged 
cr ncnprivileged. This ensures that the 
virtual storage of the system service rou­
tines is not available for use by user pro­
grams, nor can it be freed by therr,. 

Each page header contains all the infcr­
naticn atout its corresponding page of vir­
tual storage, including a unit table, con­
sisting cf one tit for each doubleword 
(unit) of the defined page to indicate 
which units of the page have been 
allocated. 

Requests for virtual storage are classi­
fied by SVt!:A into those for less than one 
page and those of one page or more. 
Requests for a page or more are always page 
aligned, while those for less than one page 
are aligned on a doubleword boundary. 
Allocations of the latter type are assigned 
areas within the same page if possicle. 
The requestor can never assume that two 
requests for virtual storage back to back 
will necessarily result in a contiguous 
allocation of roth requests. The only way 
to ensure a contiguous allocation of N 
cytes is through one GETMAIN of N bytes. 
This is because, transparent to the user, a 
task interru[tion may have occurred between 
the two apparently successive uses of GET­
MAIN. If such an interruption did occur, a 
privileged routine may have invoked GETMAIN 
between the user's first and second invoca­
tions of GETMAIN. 

For operating within the boundaries of a 
page, SVMA maintains a next available unit 
(NAU) address, which refers to the next 
available doucleword on the page. The NAU 
is advanced by the amount of each GETMAIN 
(bytes) request; when combined with the 
page address it forms the address returned 
to the user. 

For FREEMAIN requests, the NAU is COffl­

pared with the maximum address to be freed. 
Except for requests for IT,ore than cne page 
to be released, the maximum address to be 
freed rrust net exceed the NAU address, or 
an error condition results. 

FREEt!:AIN frees the requested units by 
updating the corresponding bits in the unit 
table. The portions of the page released 
will not be reassigned until all units of 
the page which were allocated through SVMA 
are freed. When all units are free for a 
page, as indicated in the unit table, the 
page is freed via FREEMAIN (pages) before 
returning to the calling prograw. 

Resource Allocation and Control 127 



Because virtual storage is not actually 
released until it is freed by FREEMAIN 
(pages), the user may ~e a~le to retrieve 
data from an area allocated using SVMA 
after he has given a FREEl'AIN (bytes) re­
quest for the area. Likewise, since SV~lli 
initially allocates virtual storage by 
pages, and subsequently operates on each 
page in byte requests, the user can poten­
tially reference more virtual storage than 
he requests through Small Virtual ~errory 
Allocation. 

INITIAL VIRTUAL MEMORY 

There are certain system service rou­
tines which must reside in a task's virtual 
storage when the task is initiated in order 
to prevent recursion; e.g., the Lynamic 
Loader calling the Dynamic Loader to load 
the Lynam.ie Loader. There are a large num­
ber of other system routines for which it 
is desirable to perform a full linkage at 
startup to reduce the overhead involved in 
linking between routines during system 
operation. By tightly binding most system 
programs once at system, startup, the over­
head in conventional systems associated 
with library searches, binding, and unbind­
ing can be Significantly decreased. The 
trade-off here is time versus the auxiliary 
storage space necessary to hold the IVM. 

The routines making up IVl' consist of 
control sections with various attributes. 
All the tables and private control sections 
are packed segment (segment 0). All the 
Public control sections are m,apped into 
shared segrrents 1 and 2. These segments 
become the initial Public Segments if the 
"Public Segment" Indicator is on. Unused 
space in either segment 0 or 2 is eligible 
for allocation after Startup. Virtual 
.tI:emory Allocation is notified of the virtu­
al storage allocated by Startup through 
information left in the ISA. 

Initial Virtual l>1emory is defined as the 
total collection of privileged service rou­
tines and their tables including fence sit­
ters and those programs which Ferform the 
functions indicated by the various TSS/360 
commands. In addition, Initial Virtual 
l'emory contains such ncn-privileged system 
programs as the Language Processor Control 
module. the TSS/360 FORTRAN IV Compiler, 
and the TSS/360 Assembler. The exact con­
tent of Initial Virtual l'emory is specified 
at system startup (see "System Generation") 

Additional Significant characteristics 
of IVM are: 

• The routines comprising IVM are mapped 
into identical virtual storage loca­
tions within each task. Tnis is 
because Startup constructs a skeletal 

128 

XTSI which reflects the virtual storage 
allocated to IVM pages. This skeletal 
XTSI is assigned to each task as it is 
created (see "Examples of Systerr Opera­
tion - Creation of a Conversational 
Task") • 

• The only read-only control secticns 
that will ce accessed from the primary 
paging drurr. are those included in IVM. 
This is tecause unchanged pages are 
only paged into the system; they are 
never paged out. The pages containing 
the IV~ read-only control sections are 
placed on the drum during system 
startup. 

• 'rhe user cannot unload from his virtual 
storage routines cont.ained within the 
task's IVM (see "Dynamic Loader"). 

• Because IVM routines are bound only 
cnce, it is reasonable to pack them so 
that the total number of pages occupied 
is minimized (see System Startup). 

• The crder in which system programs are 
allocated virtual memory address space 
affects system performance. This is 
because paging can be decreased by 
placing groups of control sections that 
tend to be referenced together, into a 
minimum nurr.ber of pages. In TSS/360. 
this ordering is based upon a contrcl 
section name list which can be easily 
altered (see System Startup). 

The following programming conventions 
are cbserved by most programs operating as 
part of Initial Virtual Memory: 

1. All linkages among programs contained 
in Initial Virtual Memory should be 
implicit (i.e., fully resolved by 
STARTUP time) . 

2. All linkages from programs contained 
in Initial Virtual Memory to prograllis 
not in Initial Virtual Memory must be 
explicit. 

There are a few routines which do not 
fully observe the first convention. Expli­
cit linkage m.ay not be used by VAM. GATE, 
TAM or Virtual Memory Allocation because of 
recursion considerations. Explicit and 
Implicit linkages are described in "Dynamic 
Loader." 

AUXILIARY STORAGE ALLOCATION 

Auxiliary storage plays an important 
role within a time sharing system. For 
instance, if the effective access speed of 
the primary auxiliary storage device is too 
slow relative to the speed of rrain storage, 
the CPU cannot be used effectively. The 



Page of GY2B-2009-2, Issued september 30, 1971 by TNL GN28-3193 

effective access speed of a device is, in 
part, dependent upon the way in which the 
device is formatted and the fashion in 
which the I/O queue for the device is pro­
cessed. In addition, the total capacity of 
auxiliary storage is directly related to 
the amount of virtual storage that the sys­
tem as a whole can allocate. For instance, 
in TSS/360, much of Initial Virtual Memory 
and all of a task's changed pages are con­
tained within the system's auxiliary 
storage. If more than one class of device 
is utilized for auxiliary storage, consi­
deration must be given to the distribution 
of pages among the various devices. In 
TSS/360 auxiliary storage is confined to 
drum whenever possible. This is done 
because the drum is the fastest of all 
auxiliary devices on the system. When 
auxiliary storage is allocated to a task, 
the count of available storage space 
remaining is updated and checked. If the 
space falls below a system minimum, a task 
is selected for page migration. This pro­
cess removes some of the task's pages from 
the drum and moves them to auxiliary disk 
thereby freeing drum space. Pages 
referenced during the last time slice are 
allowed to remain on the drum up to a maxi­
mum of the task's fair share. The task 
selected for this migration is the task on 
the inactive list with the most pages on 
the drum in excess of its fair share. If 
no task is found on the inactive list, the 
active list is searched. 

As mentioned previously, auxiliary pag­
ing devices are specified at System Genera­
tion and may consist of drums and/or disks. 

STARTUP creates an Auxiliary Storage 
Allocation Table (ASAT) which contains a 
bit directory, for each auxiliary device be 
it drum or disk, on the system. Each bit 
represents one page. The directories for 
the drums and disks are chained separately 
wi thin the ASAT. 

Each paging drum is formatted so that it 
logically appears to contain 100 tracks of 
9 pages in its bit directory. 

The bit directory of each drum has the 
pages allocated for the following purposes 
set as unavailable by STARTUP: 

• Drum bit map 

• Initial Virtual Memory (if this drum is 
the Primary paging Volume) 

• SERR/RECONFIGURATION Modules 

• Standard surface test track (pages 
882-890) 

• Skeletal XTSI 

• Any defective pages encountered in 
writing out IVM and SERR/ 
RECONFIGURATION 

The bit directory of each disk has the 
following pages set as unavailable: 

• PAGE Assignment Table page or pages 

• Initial Virtual Memory (IVM) and any 
tad pages found while writing out the 
IVM pages, if the disk is the primary 
Paging Volume 

• IPL Volume data sets if the disk is 
also the IPL volume 

• Standard surface test cylinder 

For a 2311, there are 203 
rr.atted for 8 pages/cylinder. 
there are 203 cylinders with 
cylinder. 

cylinders for­
For a 2314, 

32 pages/ 

After Startup, Auxiliary Storage alloca­
tion is performed by the Resident Supervi­
sor Auxiliary Storage Allocation Queue Pro­
cessor, and the Auxiliary Storage Alloca­
tion Release and the Suppress Auxiliary 
Storage Allocation subroutines. 

When a task enters the system, its auxi­
liary storage requirements are compared 
with the available auxiliary storage count. 
The task is not allowed on the system if 
there is not sufficient auxiliary storage 
available. If the task should exceed its 
limit of auxiliary storage during execu­
tion, and available auxiliary storage is 
less than the installation minimum, it is 
first warned, if conversational, and then 
terminated. Under these conditions, non­
conversational tasks are terminated at 
once. 

Auxiliary storage is obtained whenever 
it is necessary to write a page out to 
auxiliary drum or disk. Auxiliary storage 
is released, as appropriate, whenever FREE­
MAIN issues the Delete Pages (DELPG) SVC, 
whenever a Task Status Index (TSI) is to be 
deleted (DELTSI SVC), for example, at 
LOGOFF time, and whenever a changed page 
which already has an old copy on auxiliary 
storage is ready to be written back out to 
auxiliary storage (see "Paging-). 

A request for auxiliary storage alloca­
tion is represented by one or more Page­
Control Blocks pointed to by a GQE. 

Requests for auxiliary storage alloca­
tion are assigned from a drum except when: 

• The request for auxiliary storage has 
specified a "drum preference" and no 
drum storage is available. 

Resource Allocation and Control 129 



Page of GY28-2009-2, Issued september 30, 1971 by TNL GN28-3193 

• The request for storage has not speci­
fied a "drum preference" and available 
drum space has reached a minimal level. 
This minimal drum space threshold is a 
system parameter specified at System 
Generation and contained in the System 
Table. 

currently, the page containing the 
task's Extended Task Status Index, the page 
in which a task was executing just before 
it became dormant (PSW page), and the ISA 
page are represented by a drum preference 
request. 

If there is no auxiliary storage of any 
sort available, the Auxiliary Allocation 
Queue Processor declares a major SYSER. If 
there is more than one drum on the system, 
each page is allocated space on a different 
drum, in rotating fashion. Disk pages are 
allocated, when possible, from the same 
cylinder. 

In performing the Time-Slice-End proces­
Sing associated with TWAIT, an algorithm is 
applied to determine if a task has utilized 
more than its "fair share" of high-speed 
drum space. If the task has not exceeded 
its fair share of drum space, normal time­
slice-end processing is followed and all of 
the task's changed pages are written out to 
the drum. If the task has exceeded its 
fair share of drum space. all of the drum 
pages belonging to the task are migrated to 
an auxiliary disk. The intent is to pre­
vent any task from building up too large a 
page image on the highest speed auxiliary 
device. 

The method of allocating and accessing 
pages on drum and disk is further described 
in "Paging." 

EXTERNAL STORAGE ALLOCATION 

External storage allocation (ESA) con­
sists of those service routines that alloc­
ate storage on direct access volumes used 
for external storage. ESA routines are 
privileged and can only be called by other 
privileged routines. In general, ESA is 
responsible for initial and secondary allo­
cation of external storage to a data set 
and partial and total return of external 
storage allocated to data sets. Addition­
ally, ESA routines provide the maintainance 
of those control blocks which describe the 
availability of external storage pages on a 
volume. For SAM data sets these control 
blocks are the Volume Table of Contents 
(VTOC) and the format 1, 3, 4. and 5 Data 
Set Control Blocks (DSCBs); for VAM data 
sets a Page Assignment Table (PAT) and for­
mat E and F DSCBs are used. The routines 
which perform these functions are: 

130 

Routine 
ALLOCATE 

EXTEND 

FINDEXPG 

GIVBRS 

RELEXPG 

SCRATCH 

DELVAM 

SAM SEARCH 

All SAM 
Routines 

DSCB Handling 

Function 
Initial Allocation for SAM 
Data Sets 

Secondary Allocation for SAM 
Data Sets 

Primary and Secondary Allo­
cation for VAM Data Sets 

Partial Return for SAM Data 
Sets 

Partial or total Return for 
VAM Data Sets 

Total Return for SAM Data 
Sets 

Total Return for VAM Data 
Sets via RELEXPG 

Scan DADSM DSCBs for space 
to allocate 

Maintain VTOC on SAM Volume 

OBTAIN, RETAIN, and RENAME routines 
handle Data Set Control Blocks for external 
storage allocation. 

OBTAIN performs the following functions: 

• Retrieves data set control blocks 
(DSCBs) from the VTOC of a direct 
access device and places them into a 
designated virtual storage location. 

• Reads the volume label of a direct 
access device, or a data set label. and 
places it in a specified virtual 
storage location. 

A DCB and DECB are constructed to main­
tain compatible linkage with common system 
hardware error routines and the Task Mon­
itor. The locations of the symbolic device 
address and the VTOC DSCB are computed and 
placed in an IORCB. A channel program is 
then developed within the IORCB to perform 
the request specified. When the IROCB is 
complete, an lOCAL SVC is executed, fol­
lowed by the OBTAIN CHECK routine and an 
AWAIT. When the I/O operations are com­
pleted. the Task Monitor links to the 
OBTAIN posting routine, which checks for 
errors. When the posting operation is com­
plete, control returns to OBTAIN. On exit. 
OBTAIN indicates the status of the opera­
tion in a return code. 

The function of RETAIN is to write one 
or more DSCBs or data set labels to speci­
fied addresses. An end-of-file marker can 
also be written with this routine. RETAIN, 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

like OBTAIN, must construct a DeB and DECB 
to maintain compatibility with the Task 
Monitor and system error routines. RETAIN 
places in an IORCB the appropriate symbolic 
device address and other necessary informa­
tion. When the IORCB is complete, an lOCAL 
SVC is executed, followed by the RETAIN 
CHECK routine that branches to an AWAIT 
macro instruction if the I/O is not com­
plete. When I/O operations are complete, 
the RETAIN posting routine is invoked by 
the Task Monitor to check for hardware 
errors. Then the Task Monitor returns con­
trol to RETAIN. (If posting had detected 
errors it links to common system error rou­
tines for retry.) Although the RETAIN 
macro instruction can specify any number of 
records, the RETAIN routine handles them 
one at a time to facilitate error recovery 
procedures. 

RENAME changes the fully qualified name 
in the key field of a Type 1 or Type A DSCB 
for all volumes specified in the JFCB to 
the name specified by the calling program. 
The routine uses OBTAIN to search the VTOC 
to determine if there is already a DSCB 
with the new name and the retrieve the DSCB 
with the data set name to be changed. If 
any of the volumes on which the data set 
resides is not mounted, the BUMP routine is 
called to dismount a volume on which RENAME 
has already been performed and to mount the 
unmounted volume on that device. After 
changing the key (the data set name), the 
DSCB is rewritten by use of RETAIN. 

The organization of direct access 
volumes differs for SAM data sets and VAM 

data sets. As a result of this the follow­
ing description of the allocation of 
storage is divided into two parts: the 
allocation of storage on SAM volumes and 
the allocation of storage on VAM volumes. 

SAM Volumes 

Each Direct Access SAM volume has a 
Volume Label in a standard location which 
points to the Volume Table of contents 
(VTOC). The VTOC size is specified when 
the device is formatted during direct 
access storage device initialization. The 
VTOC contains Data Set Control Blocks 
(DSCBs) of which there are four types as 
follows: 

~ 
1 

3 

Use 
Defines SAM data sets within a 
volume. 

Extends Type 1 when additional space 
is needed. 

4 First record in VTOC. Describes the 
VTOC. 

5 Second record in a SAM volume. 
Direct Access Device Space Management 
(DADSM) DSCB. 

Thus, the general arrangement of a VTOC 
consists of a OSCB describing the VTOC, one 
or more DADSM DSCBs, and a list of all SAM 
DSCBs. DADSM OSCBs describe the unused 
space on the volume that is available for 
allocation. 

Resource Allocation and Control 130.1 





Figure 60 shows a diagram of the general 
arrangement of a VTOC. 

The CLEF ceKmand frecessor (discussed 
under "Command system") calls ALLOCATE when 
a new data set is to be created. ALLOCATE 
inspects the Job File Control Block (JFCB) 
supplied by DLEF to determine the size of 
the initial allocation, and makes the total 
allocation on one voluKe. For SAM data 
sets, ALLOCATE calls SEARCH (described 
below), to assign the space to the data 
set. After ufdating afprofriate tables, 
ALLOCATE returns to the caller. 

EXTENL is called when a SAM access 
method requires additional space for a data 
set on direct access vclumes. EXTEND 
obtains the relevant inforrration (space 
required, volume available, etc.) from the 
input pararr,eter list, rrakes the allocation 
(from one volume only), and updates the 

Dato Set Control Block (DSCB) 

Record Format for DSCB 

Key - 44 Bytes Data - 96 Bytes 

Data Set Nome 

VTOC 

DSCB for VTOC 

DSC B for Space 
Management 

DSCB for Data Set' 

----
DSCB for Cont;nuation 
Ex tents 

Type 5 

1 ~I Type 5 

Type 1 

·1 
Type 3 

VTOC, Jet File Control Block (JFCB), and 
Symbclic Device Allocation Table (SDAT). 

The Symbolic Device Allocation Table 
(SDAT) contains an entry which, when 
initialized, sfecifies the gross space 
available for each volume. This field is 
initialized during Startup for Public 
volumes and by the Device Management rou­
tine PAUSE when a private volume is 
nounted. This gross space field indicates 
the total number of available cylinders and 
tracks on SAM formatted volumes. 

There is another SDAT entry that speci­
fies the number of available (unused) DSCBs 
left in the VTOC. 

Figure 61 describes the algorithm for 
determining on which volume the external 
storage will be allocated. 

SAM Type Codes 

4 

3 

·1 
Type 5 Space Managemen t 

~I Type 3 Data Sets 

.Figure 60. Direct Access Device Volume Table cf Ccntents (VTOC) Format for SAM Volumes 

Resource Allocation and Control 131 



r----------T------------------------------l 
I I Request for SAM Private I 
t----------+------------------------------~ 
I ALLOCATE I JFCB will indicate one I 
I I mounted volume. Space can I 
I I be allocated only from that I 
I I volume. I 
t----------+------------------------------~ 
I EXTEND I JFCB will indicate one I 
I I mounted volume. Space can I 
I I be allocated only from that I 
I I volume. If there is not I 
I I sufficient space available, I 
I I Extend will link to the cal- I 
I I ling program (EOV) for label I 
I I processing and the mounting I 
I I of a new volume. EOV will I 
I I return to Extend for the I 
I I allocation from the new I 
I I vol ume. I L __________ ~ ______________________________ J 

Figure 61. Allocation of External Storage 
to a SAM Volume 

Two areas in this algorithm deserve 
further explanation. 

The space to be allocated to a VTOC is 
specified when the volume is formatted. 
Any given VTOC size can contain only a 
fixed maximum of DSCBs. 

If External Storage Allocation requires 
the creation of additional DSCBs, but there 
is no VTOC space left in which to create 
the DSCB (even though there may be plenty 
of data set space on the volume), the allo­
cation cannot be made on that volume. If 
this is the only volume on which the allo­
cation can be made, the task is abnormally 
terminated. 

For a SAM data set, space can be allo­
cated only on the volume in which the last 
allocation for that data set was made, 
because SAM volumes are processed serially 
and any other external storage allocation 
arrangement would result in parts of a SAM 
data set being processed out of sequence. 

SAM SEARCH is used by the other External 
Storage Allocation routines to search the 
DADSM DSCBs on the particular volume 
selected for extents to be allocated. 

SAM SEARCH, during its scan, creates a 
list of the five largest extents. If an 
extent equal to or larger than the request 
is not found, space is allocated from the 
extents in this list. If sufficient space 
still cannot be found, a return is made 
with a "No SFace ft indication. 

When Standard User Labeling (SUL) is 
requested and the allocation request is for 
cylinders, an extra track is allocated any­
where in the volume to be used for labels. 
When the request is for track allocation, 

132 

the SUL Track is assigned to the data set 
allecation. 

All SAM routines use OBTAIN and RETAIN 
(catalog service routines) to read and 
write the DADSM r;SCBs. 

GIVBKS re~rites DSCBs for SAM data sets 
and, if necessary, returns unused space cn 
volultes. 

MERGE SAM adds returned extents (i.e., 
unused space) to the list of available 
extents in the DADSM DSCBS, maintaining the 
order of available extents by volurre loca­
tion and comtining extents whenever 
possible. 

SCRATCH is called to remove frorr. a 
volurre a data set the user wishes to erase. 
SCRATCH is also called when a generation 
data set overflow is found by the catalog 
services Ar;OCAT routine. SCRATCH merges 
the just released extents back into the 
[SCEs for direct access device space man­
agement (DADSM) located in the VTOC. 
SCRATCH also zeroes the just erased data 
set's DSCBs. 

TSS/360 External Storage Allocation does 
not support the following OS/360 DEFINE 
DATA parameters for SAM formatted data 
sets: Absolute Requests, contiguous, sub­
allocation, split cylinders, MIXIG. ALX. 

VAM Volumes 

The format of VAM volumes and the manner 
in which data is transmitted give the vir­
tual access methods and the external 
storage allocation routines a great deal of 
flexibility in obtaining and allocating 
external storage for VAM data sets. VAM 
data sets are organized in physical units 
of 4096 bytes called pages. Consequently, 
each VAM volume is also divided inte pages. 
A 2311 disk pack contains 1620 allocatable 
pages and a 2314 disk pack 6492 allocatable 
pages. Each volume contains a Page Assign­
ment Table (PAT) which is pointed to by the 
volurre label and which describes the status 
of each allocatable page on the volume. A 
page may be available for assignment, 
assigned as a DSCB page, assigned as a data 
set page, or in error and Unassignable. At 
the end of the PAT, error page control and 
relocation entries are maintained. when a 
page is round to be in error, it is so 
marked and a replacement page is selected 
from the available pages on the volume. In 
order for the access method routines to 
locate the new entry when they discover the 
old page in error, a relocation entry is 
created at the end of the PAT. This entry 
contains the address of the original page 
and the address of the new page. Up to 96 
such entries can be contained in the PAT. 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

A DSCB page can contain 16 DSCBs. Only 
DSCBs are written on DSCB pages and they 
may describe more than one data set. That 
is, a DSCB for data set A and a DSCB for 
data set B may be found on the same DSCB 
page. Since DSCBs may be placed on any 
page on the volume, the condition will 
never arise in which allocatable pages are 
available but no DSCB space remains as in 
the case of SAM data sets. 

Two types of DSCB exist for VAM data 
sets: 

1YE§. 
E 
F 

Use 
First DSCB for the data set 
Continuation DSCBs for the data set 

In general, the format E DSCB contains 
the data set name and properties. For mul­
tivolume private data sets, the format E 
DSCB also contains a list of the volumes 
which contain the data set. For single 
volume private data sets, the volume 10 is 
contained in the Data Set Descriptor. For 
all public data sets, a list of public 
volumes called the Public Volume Table 
(PVT) is maintained. This table contains 
the volume IDs of all volumes dedicated to 
public storage. 

A format E DSCB can contain a list of up 
to 25 private volumes. If more space is 
required, a format F DSCB is used. Immedi­
ately following the volume list is a list 
of the external page entries for the data 
set. For single volume private data sets 
and for public data sets in which there is 
no volume list, the external page entries 
begin in the format E DSCB and, if needed, 
continue in the format F DSCBs. The page 
entries for a multivolume private data set 
may begin in the format E or a subsequent 
format F DSCB depending on the number of 
volumes the data set occupies. 

External page entries for all data sets 
consist of a relative volume number and a 
relative page number. The relative volume 
number is an index into the PVT for public 
volumes. 

Note: For private volumes an analogous 
list is maintained even though the volume 
IDs are contained in the DSD or the DSCBs. 
This is done to provide similarity of pro­
cessing for all data sets. 

The initial allocation of external 
storage for new VAM data sets is done when 
the data set is first opened. Space is 
assigned by the service routine FINDEXPG. 
Secondary allocation of space is also per­
formed by FINDEXPG. ADDDSCB allocates 
space for DSCBs when necessary. The par­
tial return of pages is accomplished by the 
service routine RELEXPG and total return by 
DELVAM which deletes a data set catalog 
entry and returns all space by means of 

RELEXPG. All modules manipulating the DSCB 
or PAT call READWRIT to read or write a 
DSCB, or to write a PAT to external 
storage. ESA LOCK effects the handling of 
interlocks on the SDAT table. 

DEVICE ALLOCATION 

There are three characteristics of the 
TSS/36Q resource sharing environment that 
are especially significant in relation to 
device allocation: 

• A device may have several hardware 
addresses. 

• In a time sharing environment, quick 
access to data structures is highly 
desirable. 

• A conversational session should not 
require the user to extensively pre­
plan the demands he will place on the 
system's resources. 

A device may have several hardware 
addresses because, for one thing, control 
units may be attached to more than one 
Channel. In order to allow a user's pro­
gram to be highly device independent and to 
allow the Resident Supervisor to remain 
relatively insensitive to dynamic changes 
in system configuration, the TSS/360 access 
methods employ a syrr~olic device address to 
designate each device, and TSS/360 users 
employ device class codes that can be used 
to describe a device as a member of a class 
of like devices. The one exception to 
this: a Command System Privilege Class E 
user may specify devices by their symbolic 
device address. 

The Resident supervisor recognizes these 
symbolic device addresses and uses a group 
of tables called Pathfinding tables to 
translate a symbolic device address into a 
specific hardware address that specifies a 
path through a Channel Control Unit, Chan­
nel, and Device Control Unit to the device. 
In a multiple-access environment, where 
there are a large number of concurrent 
users, device allocation must be carefully 
controlled to prevent a situation in which 
an installation might be required to main­
tain a large number of tape units or estab­
lish elaborate queuing conventions in order 
to ensure that each concurrent user can 
have access to his own private storage on 
short notice. 

In TSS/360, all devices fall into one of 
two major categories: 

• Reserved for system use 
• Available to system users 

Devices reserved for system use, such as 
auxiliary storage devices and the IPL 

Resource Allocation and Control 133 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

volume, are specified during System Genera­
tion and are assumed to be on-line at all 
times and unavailable for allocation to 
system users (with the exception of the 
system programmer who has joined with a 
Command Language Privilege Class of E). 

Devices available for allocation to sys­
tem users can be usefully separated into 
two classes: 

• Terminals 
• Media-oriented devices 

Strictly speaking, communications lines, 
not terminals, are allocated in TSS/360. 
'Ihis is because a complete TSS/360 I/O 
address consists of 13 bits: a 2-bit Chan­
nel Controller address, channel address (3 
bits), control unit address (4 bits) and. 
finally, the device address (4 bits). This 
addressing structure only allows specifica­
tion down to the line adaptor on a 2702 
Transmission Control Unit. 

Furthermore, terminals are not allocated 
in TSS/360 because, in general, terminals 
may be dial-up. A dial-up terminal may be 
connected to any system and cannot be 
uniquely identified with a particular 
system. 

TSS/360 only allocates terminals as 
SYSIN/SYSOUT devices and does not support 
more than one SYSIN/SYSOUT terminal per 
task. However, a privileged user may, 
through the facilities of several privi­
leged SVcs and by programming using the 
privileged facilities of the Terminal 
Access Method, allocate slave terminals to 
his task provided they can be reached eith­
er via a dedicated line or via an autocall 
unit. 

Media-oriented devices are separated 
into two major classes: 

• Public 
• Private 

Public devices are, in general, direct 
access devices which are defined as such 
during system generation. However, if a 
volume is mounted on a device at Startup, 
the device is classified as public or Pri­
vate according to a Public/Private field in 
the Volume Label. Each public device on 
the system is made available to each user's 
task when his task is initialized. Public 
devices are used to mount Public volumes. 

public volumes are meant to contain that 
part of a computation center's on-line 
storage which is to be shared among the 
users of the system, as well as containing 
cataloged private data sets. After Start­
up, public volumes are assumed to be per­
manently mounted, and the specification of 
any particular public volume from which to 

134 

allocate a request for external storage is 
controlled by the TSS/360 External Storage 
Allocation routines. This is the means 
TSS/360 provides to ensure a user rapid 
access to his data sets. 

Private devices are used to mount pri­
vate volumes. A private volume may only be 
used by one task at a time. However, it is 
expected that in the typical time sharing 
installation. a large proportion of the 
total users will not use private volumes or 
devices. 

The major virtual storage tables 
responsible for maintaining the description 
and status of the system's devices are the 
Symbolic Device Allocation Table and the 
Available Device Table. The relationship 
of these tables is shown in Figure 62. 

Both these tables are created from the 
symbolic device addresses and device names 
(e.g., 2311, 2314, 2403, etc.) supplied in 
the Device Group macro instruction during 
System Generation. Each device has only 
one symbolic device address, although it 
may possess several phySical addresses. 
The assignment of symboli~ device addresses 
is not arbitrary in TSS/360, inasmuch as 
the symbolic address of a device specifies 
the relative position of the device'S queue 
entry on the Resident Supervisor's Queue 
Scanner Table (SCANT). This arrangement 
provides a straightforward way of determin­
ing the priority for servicing a device, 
and also permits a change in system config­
uration without a corresponding change in 
the SCANT. Device independence for the 
user is obtained primarily through the DDEF 
command and, for the system, device inde­
pendence may be obtained by suitably modi­
fying the Pathfinding tables of the Resi­
dent Supervisor. 

The Symbolic Device Allocation Table 
(SDAT) is located in shared virtual storage 
and has entries, sorted by symbolic device 
address (low to high). for each device on 
the system. For a Symbolic Device Address 
for which a device does not exist, a dummy 
entry is included. The SDAT entries for 
Public devices are linked together in a 
chain to facilitate searching these entries 
in connection with external storage 
allocation. 

Each entry is divided into a fixed for­
mat area and a device dependent area. The 
fixed area specifies information such as 
device status, maximum number of concurrent 
I/O requests allowed for this device, and a 
count of the number of concurrent users of 
the device. 

The device dependent area specifies 
information such as the gross space on this 
volume available for allocation, the 



Sytr,\x;I;c Device Allocation Table 

Prirlte! 1 
Private 

Disk 1 
Public. 

Disk 2 
Private 

Disk 3 
P~,blic 

Tope 1 
Private 

Disk 4 

Ava; lable Device Table 

~~:;~_iC_2 ~--~ L----------------------------
~~_ri_va_t_e ______ ~l._-----------------------------------Printer 2 

Privote 

Figure 62. Major Virtual Storage Symbolic Device Status Tables 

address of the volume's VTOC, and the nUm­
Ler of logical cylinders per volume. 

The Available Device Table (ADn has an 
entry for every device that was not 
declared during System Generation to be a 
system, auxiliary storage or public device. 
'These entries are grouped by device class 
and each entry points to its ccrresponding 
SDAT entry. In addition, a count is con­
stantly rr,aintained of the numl:;er of devices 
within each group that are tentatively 
available for allocation to USers request­
ing private devices. Each major device 
class recognized by the DDEF command and 
each class of unit record device corres­
ponds to an Available Device Table group 
entry. 

Startup marks each SCAT entry as one of 
the following: 

• Partitioned off from the system 
• Nonexistent 
• Unavailable (device is malfunctioning) 
• Available 

Device status is thereafter maintained 
by the HOLD and DROP command routines and 
the Private Device Managerroent routines. 

Startup also initializes the device 
dependent area of SDAT entries for Public 
devices and Auxiliary paging disks. The 
Private Device Management routine named 
PAUSE initializes this area for £rivate 
devices when they are mounted. The Command 
System routine GATE performs an equivalent 
service for terminals during task 
ini tialization. 

The major functions performed in rr,anag­
ing private devices can be categorized as 
follows: 

• Ascertaining the availal:ility of a 
device by device class or symbolic 
device address. 

• Obtaining the device. 

• Mounting a specific volume or printer 
form. 

• Verifying that the correct volume has 
teen mount ed. 

The handling cf requests for private 
devices from a conversational task is func­
tionally different from the handling of 
requests for private devices fron, a noncon­
versational task. 

The ccnversational user requests private 
storage by means of a DDEF comrrand. The 
DDEF cOIHland may be issued at any time dur­
ing the terminal session before the device 
cr data set is tc l:;e used (i.e., before 
OPEN). This allows the conversaticnal user 
flexibility in structuring his terminal 
session. Device and data set inforrration 
is obtained from the Catalog for a cata­
loged data set and from the DDEF COIr.roand if 
the data set is not cataloged. 

If a SAM crganized data set is speci­
fied, only the first volume of a rr,ulti­
volurr:e data set is mounted. If the command 
specified a VAM data set, all volUIres are 
rrounted. If the user did not specify data 
set organization, an installation assigned 
default value for data set organization is 
assumed (see "r:;ata Management"). 

Resource Allocation and Control 135 



Devices are allocated and mounted one at 
a time, as they becorre availal::le. 

The DDEF routine invokes the Device Man­
agement routine named MOUNT REQUEST for 
both Public and Private devices. For Pub­
lic devices, MOUNT REQUEST verifies that 
the volume is on-line and that the alloca­
tion of the device will not exceed the 
user's limit for that type of device. It 
then returns to the DDEF routine. For pri­
vate devices, MOUNT REQUEST is invoked to 
determine if an appropriate drive is avail­
able and, if it is, to reserve it. If the 
specific volume the user requests is alrea­
dy mounted, MOUNT REQUEST reserves that 
device provided it is availal:;le. The 
Device Management routine PAUSE is then 
invoked, if necessary. 

PAUSE sends a message to the ~ain Opera­
tor Task to instruct the operator to mount 
the user's medium - a volume or printer 
form (see "Communication"). The task is 
then placed in delay status (t:y issuing the 
AWAIT macro). If the user specified the 
SCRATCH keyword parameter in his DDEF com­
mand, the operator will select an appropri­
ate scratch volume to mount. When the 
medium is mounted, the Main Operator Task 
sends a message back to the task and the 
task proceeds. 

If the device or devices were not avail­
able, or the requested volume is being used 
by another task, the user's requEst is 
separated into device classes, sorted into 
appropriate subqueues within the Request 
Queue Table, and the task is placed in 
delay status. 

The Request Queue table is located in 
shared virtual storage and contains a sut:­
queue for each device class - much as the 
Available Device Table (ADT) does. 

Entries within each subqueue are ordered 
t:y three categories of priority: 

• Requests for a specific device or for a 
specific volume that is mounted but 
being used by another task. 

• Requests t:y device class from conversa­
tional tasks. 

• Requests by device class from noncon­
versational tasks. 

Within each of these categories, entries 
are ordered on a first-in first-out basis. 

As devices become available, either 
through tasks logging off or issuing 
RELEASE commands, the Device ~anagement 
RELEAS routine searches the appropriate Re­
quest Queue table subqueues to find the 
highest priority request for eacn device or 
volume being released. 

136 

If REI.EAS finds an outstandin9 request, 
the ~aiting task is informed that a device 
the task wants is availal:;le. (See the 
descrifticn cf the Command System External 
Interrupt Processor.) 

Volumes are not demounted when the 
device is released. 

The Nount Request routine in t:he reacti­
vated task proceeds to reserve the device 
and, if necessary, requests the Levice Man­
agement PAUSE routine to issue messages to 
have the volume rr,ounted. 

PAUSE sends messages to the operator 
requesting him to mount volumes or ready 
unit record devices. 

After PAUSE receives the operator's 
reply, PAUSE verifies the volurr,e labels of 
direct access volumes and labeled tapes and 
verifies that unlabeled tapes are indeed 
unlabeled. A tape that is specified and 
found to be unlabeled will be accepted. 

When all the devices requested by the 
DDEF command have been reserved and 
rrounted, control is returned to the user. 

At any time while the task is in delay 
status, the user may cancel his request by 
pressing the attention button on his ter­
minal. This will result in control return­
ing to the CDEF routine. 

The ncnconversational user presents spe­
cial problems for private Device Management 
because of the system's inability to con­
verse with the user. 

Whenever devices are allocated dynarric­
ally, a possibility always exists that an 
interlock may develop between contending 
users. The follOwing situation is an 
example. Two users are each using one of 
the twc available tape units on a system. 
Both now require another drive to continue. 
The cnly way that either task can proceed 
is for one task to rescind its request. If 
either or both of the users are conversa­
tional, this is a readily available alter­
native. If a siwilar situation develops 
l:;etween nonconversational tasks, it could 
result in an endless wait in the queue. 
Indeed, because nonconversational tasks 
frequently haVE low dispatching priority 
~ithin TSS/360, any wait for devices can 
result in a low priority task tying up 
other scarce system resources such as auxi­
liary storage for a prolonged period of 
time. 

TSS/360 has attempted to resolve this 
[rcblerr by establishing the rule that a 
non conversational user must state his total 
private device requirements through a 
SECURE ccmmand issued irrJLediately after the 
lOGON corrmand. 



It might be possible to scan the input 
to the Batch Moniter tc determine what 
devices a task will use. However, certain 
situations cannot easily be determined by 
examining the input. Exarr,ples are commands 
in the form of macros and the requirement 
for additional external storage extents. 
If all the devices requested in a SECURE 
command are not imlIediately availaLle, the 
request is sorted into the Request ~ueue 
and the task is placed in delay status 
until all the requested devices have been 
reserved. 

When the nonconversational user later 
issues DDEF commands, his private device 
requests will be allocated from his pool 
of already reserved devices (Reserve List) 
and his volumes or forns will l::e If,ounted as 
with conversational tasks. 

If for any reason a nonconversational 
task requires reore devices than it has 
reserved, the task will be abnorrrally ter­
minated (ABENB). 

Unit record devices are allocated in the 
same fashion as other private devices with 
a few excepticns. 

First, any unit record devices specified 
in the SECURE command are not actively 
requested until all other needed devices 
have been reserved, making unit record 
devices the last devices a task ol::tains. 

Second, only Command System Privilege 
Class E users or the BULKIO task may re­
quest unit record devices. 

Bulk data transfers (such as printing 
data sets produced by language processors) 
are requested in TSS/360 through BULKIO 
issued by system users, language proces­
sors, etc. 

These commands result in a work request 
being queued in a data set called the Batch 
Work Queue. 

This queue is administered l:;y the Batch 
Monitor task which creates nonconversation­
al tasks to handle some entries and assigns 
those entries requiring public unit record 
devices to the nULKIO II task (task 002). 

If the Batch Monitor creates a private 
background task (i.e., Print, Funch, RT, 
WT), this background task must issue its 
LOGON and DDEF commands. However, as with 
all nonccnversational tasks, if the input 
or output is on private volumes, the pri­
vate background task will be placed in 
delay status until all required devices are 
obtained. 

The private Device Management routine 
BUMP is used by the BSAM end-of-volume rou­
tines, or when BSAM invokes the External 

Storage Allocation EXTEND routine. BUMP 
nay also be required by the External 
Storage Allocation SCRATCH routine. 

BUMF is used to demount a specific pri­
vate volun:e and mount another volume on the 
same device. (BUMP can also be used Iferely 
to reverify the label of a mounted tape 
volume.) If a demount-and-n,ount operation 
is required, BUMP verifies its input param­
eters and instructs the system operator, 
via PAUSE, to mount the second volume. A 
user may concurrently process more than one 
data set on a private volume.This also app­
lies to mUlti-volume VAM formatted data 
sets because all VAM volumes are mounted 
before processing begins. 

On the other hand, SAM formatted volumes 
are l(ounted cne at a time. Therefore, BUMP 
will abnormally terminate a task if the 
volurre to be demounted contains an active 
data set other than the multi-volun.e data 
set on whose behalf the BUMP operation is 
being performed. In this case, the phrase 
"active data set" means a data set for 
whicb a DDEF command has been issued, but 
which has not been released through use of 
the RELEASE command. 

'Ihere are two major Resident SUfervisor 
tables ccncerned with device allocation: 

• Task Symbolic Device List 
• Pathfinding Tables 

The Task Syrrbolic Device List (TSDL) 
contains an entry for each symbolic device 
assigned to a task. All I/O requests are 
cnecked against the TSDL. If the 
referenced device has no TSDL entry for 
this task, the Resident Supervisor rejects 
the request. 

During virtual storage task initializa­
tion, the Add Cevice (ADDEV) SVC is used to 
place an entry for each Public device into 
the task's TSDI. 

Whenever the allocation and mounting of 
a private device is completed, MOUNT RE­
~UEST issues an Add Device SVC for the 
device. 

Whenever the Resident Supervisor 
receives an initial attention interruption 
from a terminal, the Resident Supervisor 
creates a task for that terminal. In so 
doing, the Resident Supervisor places an 
entry in the task's TSDL and a pointer to 
the new task's 'lSI in the Pathfinding 
Device Group Table entry for the terminal. 
Thereafter, unsolicited interrupts from the 
terminal will be properly routed to the 
task. 

During the final stages of LOGOFF pro­
ceSSing, the TAM CLOSE routine will issue a 
Set Asynchronous Entry (SETAE) SVC to 

Resource Allocation and control 137 



remove the terminal froIT. the task' s TSDL 
and to remove the TSI pointer from the ter­
minal's Pathfinding entry. 

PATHFINDING 

The status of the actual devices, con­
trol units and channels of the system is 
described and maintained by the Pathfinding 
tables. 

The Pathfinding tables are constructed 
during System Generation from information 
supplied in the Configuration macro 
instructions. These tables are initialized 
by the Startup program to reflect system 
components which are partitioned, nonexis­
tent or malfunctioning. 

The status of these system components is 
thereafter maintained by the pathfinding 
subroutine. This sUbrcutine is primarily 
used by the Device Queue and Channel Inter­
rupt processors of the Resident Supervisor 
and by the Configuration Control Subsystem 
in response to HOLD or DROP commands. The 
Configuration Control subsysterr invokes the 
Pathfinding subroutine through the Set Path 
(SPATH) SVC. 

The Pathfinding subroutine performs four 
major functions: 

• Finds and reserves 
a device, normally 
one I/O operation. 
Pathfinding. 

an available path to 
for the duration of 
This is call ed 

• Releases all or a part of a path when 
an I/O operation is completed. This is 
called Reverse Pathfinding. 

• Sets all or part of a path to parti­
tioned or rralfunctioning status. This 
is called Set Path processing. 

• Deterrr.ines if a terminal is attached to 
a task and obtains a symbolic device 
address from a hardware device address. 
This is called Translate-only Reverse 
Pathfinding. 

The Pathfinding group of ta~les consists 
of: 

• A Symbolic-to-Actual-Address Conversion 
table 

• One Device Group table for each device 
control unit or switch unit 

• A Channel Table 

• One control-Unit-Assigned-to-Channel 
table for each channel 

• A Control Unit Table 

138 

These tables can best be understood if a 
walk-through of the operations for locating 
an availaJ:le !=ath to a device is performed. 
This operation is schematically depicted in 
Figure 63. 

TSS/360 uses the program maintained 
Pathfinding tables to deterrrQne if a device 
is busy instead of merely attempting to 
physically address a device. This is 
because it is ex!=ected that in a typical 
environment there will exist multiple paths 
to most devices. In such a situation, the 
efficiency of I/O proceSSing can be 
increased by reducing the number of ftbusyft 
or "unavailable" conditions encountered 
during an attempt to initiate an I/O opera­
tion. In addition, the use of corrmen path­
finding taJ:les assists in synchronizing 1/0 
processing in a multiprocessing environ­
rrent. This is because an 1/0 interruption 
may be accepted by an available CPU, net 
just the CPU that initiated the I/O. 

The TSS/360 access Ir.ethods deal only 
with symbolic device addresses. Tnerefore, 
the first function of the Pathfinding sub­
routine is to convert this symbolic address 
to a hardware device address. 

The Syrnbolic-to-Actual Address Conver­
sion table is used for this purpose. This 
table contains fixed length entries and 
there is an entry for each symbolic device 
address. The Furpose of this arrangement 
is to enable symbolic device addresses to 
be cenverted to actual addresses by a 
direct look-up scheme. Each entry contains 
an actual device address corresponding to 
the symbolic device address and a Fainter 
to the Device Group TaJ:le associated with 
the device. 

I Symoolic I I~:i:---I 
Eto Actual f-I -----------1 .. ..,. Group 

conversioJ I Tobie 

l ________ .....J 

I r·~----: I H Control Unir; i . I 
Channel Assigned ~ 

~~.~ i Table ~ 

Figure 63. Pathfinding 

Control 
Unit 

Tobie 



A Device Greu~ tatle contains entries 
for each device that is addressable through 
a particular centrel or switch unit (e.g. 
2816 Tape Switch Unit) and a listing of one 
or more 9 bit paths to that control unit. 

A complete physical address can be 
separated inte one or rrore 9-bit paths to a 
control unit or switch unit and a 4-bit 
device address. The reason for organizing 
device status information in such a fashion 
is merely to save having to re~eat the 
9-bit path information in each device 
entry. 

The maximuIr number of device entries in 
a Device Group table is 16. Few control 
units can handle 16 I/O units. HowEver, 
the IBM 2702 Transmission Control Unit is 
an example of such a control unit. Most 

control units can access up to Eight 
devices or access arms. 

If the control unit for the device or 
devices is eguiffed with a two-channel 
switch, then all the devices on that con­
trol unit can te reached via their control 
unit from either of two channels. That is, 
there are twe faths to the devices. 

The Ir'aximum numter of paths that can be 
specified in a Device Grouf table is eight. 
Eight ~aths to a device could arise in the 
case where an IBM 2316 Tape Switch is con­
nected te four tape control units, each of 
which has the two-channel switch feature. 
(See Figure 64). 

The device entry in a Device Group table 
indicates whether the device is parti-

Each CU with 
2-Channe' Switch L' Control Ji 

Unit 0 

~-

I-contro-' -] 

LUnit 1 

:=T--

tia Addresses 

Allows Any Device to Use ---~.--_~ 
Any Ava; loble CU 

r------
Dev 

CCOl 
0011 
0021 
0031 
0101 
e11 1 

O12'i 
0131 

~ __ =r 
2316 

T ope Drives 

~ 

0007 
0017 
0027 
0037 
0107 
0117 
0127 
0137 

Figure 64. Tafe Switch Connected to Four Tape Control Units with Two-Channel Switch 
Feature 

Reseurce Allocation and Control 139 



tioned, nonexistent, malfunctioning or 
busy. If the device is available, it is 
marked bUSY and a 9-bit r::ath to the de­
vice's control unit is selected. 

The first five bits of a 13-bit address 
are used to locate the ar::r::ropriate channel 
entry in the Channel Table. The availabi­
lity of the IEM 2846 Channel Control Unit 
(CCU) is not specifically checked, because 
if a channel is ebtained for use, the Chan­
nel Control Unit to which the channel is 
attached is also available. 

There is ene entry in the Channel Table 
for each channel on the system. If the 
channel is not available, the search will 
return to the appropriate Device Group 
table and select another path, if possible. 

If the channel is available, it is 
marked busy (unless it is a multiplexor 
channel) and a pointer to the Control Units 
Assigned to Channel table associated witn 
the channel is picked up. 

A Control Units ASSigned to Channel 
table has entries for each device control 
unit on the channel (as rer::resented by the 
low-order four bits of the 9-bit path 
obtained from the r;evice Group table>. 

A device control unit equipr:;ed with a 
two-channel switch may be logically discon­
nected frorr one of the channels to which it 
is attached through a flag in the appropri­
ate Control Units Assigned to Channel 
table. This facility to logically discon­
nect a device control unit frorr, a channel 
without physical partitioning is a useful 
feature when error control routines are 
attempting to pinpoint the source of an I/O 
error. 

ThUS, the r:;rimary function of Control 
Units Assigned to Channel table is to main­
tain the status of the connection between a 
r:;articular multiplexor or selector channel 
on the one hand, and each control unit 
attached to the channel, on the other hand. 

The Control Units ASSigned to Channel 
table for a multir:;lexor channel contains, 
in addition, an entry from which the cumu­
lative total of the data rates for each 
subchannel currently in use can be 
inferred. The "weight" that each newly 
activated device will add to the multiplex­
or channel is obtained froIT the Device 
Group table entry for that device. With 
this inforrration, it is r::ossible to keep 
from overloading a multiplexor channel. 

If the control unit is logically con­
nected to the channel, a pointer to a con­
trol unit entry in the Control Unit Table 
is picked up. The infcrrration contained in 
each Control Units Assigned to Channel 

140 

table could have been placed in the Contrel 
Unit Table. It was organized separately 
because space is saved by not having te 
rraintain two entries for control units 
which are permanently attached to enly one 
channel. 

The Control Unit Table has an entry for 
each centrol unit in the system. Each Con­
trol Unit Table entry contains status 
information and a pointer tack to the 
Device Group Table associated with the con­
trol unit. The r;evice Group Tatle pointer 
will be used to mark the device not busy 
after the I/O operation is completed. 
Because device status information is 
crganized around Device Group Tables, only 
one pointer is needed to locate the status 
entry for any device on the control unit. 

Under certain conditions, the device 
address stored upon a Control Unit End 
interrur::tion can not be relied upon. 
Therefore, the symbolic device address 
associated with an I/O operation is tem­
porarily placed in a field within the 
aFprepriate control unit entry. This sym­
bolic device address will be retrieved dur­
ing reverse r::athfinding. 

One aspect of the forffiat of the control 
Unit Table is connected with the fact that 
2702 Transmission Control Unit may have up 
to 31 lines on it. Since the 13-bit Fhys­
ieal I/O address only allows four bits for 
a device address such control units are 
given twe addresses in order to provide a 
unique address for each device att.ached to 
the control unit. 

Maintaining the status of one control 
unit in two Control Unit Table entries is 
awkward. So, ene of the entries (called 
the "Child" entry) n;erely points tc the 
other entry - called the "Parent" entry, 
which contains the status inforrraticn for 
the control unit. 

If the control unit is not availatle, we 
return to the Device Group table and select 
another path, if possitle. 

If the centrol unit is available, it is 
marked busy and pathfinding is eomFlete. 

After an I/O operation is complete, it 
is desirable tc free the units that were 
flagged as "busy." This process is called 
Reverse Pathfinding and is depicted in 
Figure 65. Reverse Pathfinding, dS its 
name implies, is just the reverse of the 
processing performed during Pathfinding. 
If the I/O operation encountered an error, 
the system may wish to obtain rr,ore inforrr.a­
tion atout the error. In such a case, only 
parts of the path will be irrJ{1.ediately 
releas ed. 



! 

i 
I 

I 
(',,-111r,el 

J 

Te"le 

Control 
nit U s 

TaDie 

I 
I 

Control 
Unit, ~ 

A"igned 

Device 

Grou p 
Tobie 

Figure 65. Reverse Pathfinding Set Path 

TIMER SERVICES ALLOCATION 

There is a requirement within a time 
sharing system for the maintainance of 
various forms of elapsed time. The user 
requires the ability to set a timer which 
will measure the time of his task's execu­
tion or the elapsed calendar time. The 
system requires the measurement of time 
slices and of an interval of time that a 
CPU may be allowed to remain in wait state 
before going to the Queue Scanner. 

There is one hardware timer for each CPU 
in the system. TSS/360 uses the services 
of those timers in maintaining four classes 
of time: 

• CPU interval time 
• CPU elapsed time 
• Task interval time 
• Task elapsed time 

CPU Interval Time 

Intervals of time are needed by the sys­
tem to measure time-slices for tasks, to 
measure user tDne intervals, and to limit 
the time that a CPU may remain in wait 
state. These intervals are measured by 
setting the timer to the required value and 
letting an interruption Signal the end of 
the time interval. If a task is running 
and is interrupted, the value in the timer 
is saved in the current timer cell in the 
task's XTSI for use the next time the task 
gains control of a CPU. However, if the 
interruption signals time slice end or the 
end of a user specified time interval, the 
current timer must be re-initialized. 

When the Dispatcher determines that it 
has no work fcr a CPU, the timer is set to 
a predetermined value and the CPU is put in 
the wait state. This allows an outstanding 

event or the timer to cause an interrupt. 
Thus, for a multi-CPU system, an idle CPU 
may be re-activated by an interrupt so that 
any GQES generated by other CPUs can be 
processed. 

CPU Elapsed Time 

The Y.odel 67 timer is an interval timer. 
Therefore, it is necessary that the elapsed 
time since system startup be updated each 
time the timer is reset with a new inter­
val. This resetting happens whenever an 
interrupt occurs, whenever a task is put in 
execution, and whenever the CPU enters wait 
state. For any interrupt the timer value 
is saved and a new timer base value is 
stored in the timer. Then the saved value 
of the tirLer is subtracted from the timer's 
old ~ase value (the value last set before 
interruption). This result is then added 
to the elapsed time as measured by the CPU 
which was interrupted. The above procedure 
is performed by the Interrupt Stacker. 

Any time that the Interrupt Stacker 
gains control, the maximum value is set in 
the timer. This is done to prevent a timer 
interrupt from occurring while the Resident 
Supervisor is processing work. The Dis­
patcher will place a new base value in the 
tiRer and update the CPU elapsed time 
~efore giving the CPU to a task or flacing 
the CPU in the Wait state. Whenever a 
timer interrUpt occurs, a test is rr.ade of 
the Old External PSW to determine if the 
CPU was in the Supervisor state. If the 
CPU was in Supervisor state, an error 
Exists unless the CPU was also in the wait 
state. If the CPU was in both Supervisor 
and wait states, the increment of elapsed 
time is added to a cell in the PSA in order 
to record the time spent in wait state. 
1hen control passes to the Queue Scanner to 
search for outstanding work. 

Task Interval Time 

The Task Monitor Timer Interrupt Proces­
sor provides the processing of the two 
types of task timer interruptions "real 
time" and "task time." Real time refers to 
an actual time of day value. Task time 
refers to the accumulated task time, a 
value rr,aintained in the XTSI of each task 
ty the Resident Supervisor. 

The task can have 32 timer interrupts 
queued uf for processing, 16 real time and 
16 task time types. However, to eliminate 
the unwarranted amount of overhead that 
could exist if the Resident Supervisor had 
to maintain 32 timer values for each task, 
the Task Monitor Interrupt Processor main­
tains the 32 clock values (timer interrupt 
intervals desired) in its PSECT and Fre­
sents them to the Resident Supervisor one 
at a time. That is, a second timer inter-

Resource Allocation and Control 141 



ru~t request is Fresented to the Resident 
Supervisor only after the first timer 
interrupt is received ty the Task ~onitor. 
This scheduling is ~ossibl€ because of the 
sequential nature of timer interrupts. 

A privileged prograrr· rray request a 
futUre real time or task time interruption 
through use of the Specify Timer Entry Con­
dition (STEC), S~ecify Interru~t Routine 
(SIR) and Interrupt Inquiry (INTINQ) rr~cro 
instructions. 

If a nonprivileged routine USES these 
macros an ENTER SVC is generated when each 
macro is executed. The amount of time 
required to process all these supervisor 
calls might be sufficient to distort a 
request for an interru~t after a small time 
interval. Therefore, nonprivileged rou­
tines use the Set Timer (STIMER) or Test 
Timer ('I'TIMER) macro instructions. Both 
macros expand into an ENTER SVC linkage to 
the STIMER-TTIMER system service routine 
which issues the STEC, SIR or INTINQ rracros 
on behalf of the non~rivileged routine. 

In order that the user may specify at 
any time a new time interval value repre­
senting the time that the task will run, 
the TIME command may be used. Upon elapse 
of the specified time interval, this rou­
tine will ABEND a task in background mode 
or notify the user in conversational mode 
(see "Command Routines"). 

For tasks to be able to set their own 
CPU interval, a cell in each task's XTSI is 
defined which contains the time r€lllaining 
in a task's specified interval. This in­
terval is set by means of a Set User Inter­
val Timer (SETTU) SVC issued from the Task 
Moni tor. 

142 

When such an interval is defined, the 
length of time for the task's execution is 
taken as the srraller of the system time 
sliCE value (in the System Table) and the 
tirre rerraining in an interval specified by 
the task. Thus a task may actually get 
less than the CPU interval specified. 

The Timer Interrupt Processor recognizes 
a user tin'er interruption and causes a Task 
Timer Interrupt GQE to be enqueued on the 
task's TSI. The Timer Interru~t Processcr 
must also adjust the user's last time slice 
value to indicate the amount of tirre 
rerr,aining in his time slice and update the 
user's accumulated CPU time. Both of these 
values are kept in the task's XTSI. 

Task Ela~sed Time 

A request for a Real Tinie task timer 
interrUption will cause the Set Real Time 
Interval (SETTR) SVC to be executed by the 
Task Monitor. An entry in a list in super­
visor storage will be constructed which 
will identify the task which issued the svc 
and the time at which a task timer inter­
rupt should te constructed. This list is 
called the real time interrupt pending 
queue. The qUEue entries are arranged in 
order of increasing real time. The entry 
whose tirre value is closest to the present 
time is first in the queue. The Dis~atcher 
rrust corr~are the first queue entry with the 
system elapsed time and link to its Create 
Real Tirre Interrupt Subroutine if the crea­
tion of a task interruption is indicated. 
This subroutine will remove the first entry 
in the queue, adjust the list, and create a 
task timer interruption for the proper TSI. 



IN'IRODUC'IION 

This section is presented in three 
~arts. Part one presents an overview of 
the Dyna~ic Loader, part two an overview of 
the Task Dictionary Table, and part three 
describes the Cynamic Loader processing in 
more depth. 

The traditional function of a loader has 
been to cause object program modules to £e 
read from external storage into n,ain 
storage before program execution Legins. 
This involves the allocation of rr.ain 
storage to the program. The loading pro­
cess usually resulted in the object prog raIT. 
being loaded into a location other than 
that specified by the language processor. 
This process is called relocation. In IBM 
System/360 systems, relocation involves 
only the adjustment of values contained in 
address constants. 

Thus, the loading process can usefully 
te characterized in terms of thrEe 
functions: 

• When loading is performed. 
• How allocation is performed. 
• How relocation is performed. 

In TSS/360 the loading function may be 
Ferformed dynamically. That is, during 
execution one program may reference another 
program not previously processed by the 
Dynamic Loader. This is another of the 
IT,eans by which a TSS/360 user is given 
flexibility in conducting a terminal 
session. 

The TSS/360 Dynamic leader resides in 
virtual storage. The basic function of the 
loader is to load prograrrs into virtual, 
not main, storage and to reloeate only 
those address constants contained in pages 
of text actually referenced during execu­
tion of the program. 

The process of loading a program into 
virtual storage does net involve the move­
ment of any text and is performed by the 
Allocation phase of the cynarnic Loader. 

Loading a program into virtual storage 
consists, in large part, of establishing 
the addressability of the f:rograIT, within 
virtual storage. 

This is done by calculating the virtual 
storage addresses (i.e., the V and R 
values) by which the program is to be 
referenced; LY modifying the task's reloca-

DYNAMIC LOADER 

tion tables so that they map the external 
storage locations of the oDject module text 
into virtual storage; and by calculating 
the virtual storage address used in adjust­
ing address constants. 

When the Dynamic Loader (Allocation 
r:hase) is invoked, it utilizes the services 
of the Virtual Access Method to locate the 
r:artitioned data set containing the wanted 
object program module and to cause the 
nedule's Program Module Dictionary (PMD) to 
te mapped into virtual storage. The con­
tents of this FMD are placed in a private 
task table called Task Dictionary. 

Utilizing information from the PMD, the 
loader invokes the services of the Virtual 
Memory Allocation to allocate virtual 
storage for the object module text. The 
Dynamic Loader then utilizes the services 
cf the Virtual Access 1-'lethod MOVEPAGE Rou­
tine to place the external storage 
addresses of the module's text pages into 
the appropriate External Page Table 
entries. For each text page that contains 
address constants, an "unprocessed by load­
er" flag will te set on in the page's 
External Page Table entry. 

During this Allocation phase, the Dynam­
ic Lcader, areong other functions, examines 
all external references of the module and 
cbtains and Frocesses the PMDs for any 
additional object program modules required 
to satisfy these external references. 

This frocess results in the Dynamic 
Loader recursively invoking itself if addi­
ticnal P~Ds must be obtained. This recur­
sive processing will continue as lcng as 
the resolution of external references 
requires loading the PMDs for additional 
cbject IT.odules. 

When the allocation phase is cOITFlete, 
the Cynanic Loader exits, supplying the V 
and R values which point to entry points in 
the loaded program. Further references 
using these values are direct. That is, 
they do not require the services of the 
Dynamic Loader or the use of indirect 
addressing. 

The actual relocation of address con­
stants is performed on one page at a time 
when that page is referenced and conse­
quently paged into main storage during pro­
gram executicn. The process of relocating 
address constants involves applying the 
values calculated during the allocation 
phase of the loader. This second Fhase of 

Dynamic Loader 143 



the Dynamic Loader is called the Relocation 
phase. 

As pages of the loaded program are 
referenced for the first time, relocation 
exception interruptions will occur, because 
the referenced pages are still on external 
storage. 

After the Resident Supervisor has caused 
a referenced page to be brought into main 
storage, a flag in the External Page Table 
entry for this page is inspected. 

The MOVEPAGE routine sets this flag via 
the Set External Page Table Entry (SETXP) 
supervisor call during the Dynamic Loader's 
allocation phase if the PMD indicated that 
the page contains one or more address 
constants. 

If the flag is off, no special proces­
Sing is performed by the loader and this 
relocation exception is treated as any 
other (see "Paging"). 

If the flag is on, this indicates that 
the page contains address constants. In 
this case, the Resident supervisor will 
create a task interruption that will result 
in the invocation of the Dynamic Loader. 

Because this page has never been in main 
storage until now, the address constants 
contain whatever values were placed in therr 
by the language processor. 

In order to place the proper values into 
each address constant, the Dynamic Loader 
is invoked at its Relocation phase entry 
point. 

After all address constants on the page 
have been relocated, control is returned to 
the point in virtual storage where the page 
was referenced. 

In surrmary, the prirrary functions of the 
Dynamic Loader include allocating virtual 
storage for a task's programs and relocat­
ing address constants for only those pages 
of text actually referenced during execu­
tion. The Dynamic Loader never loads pro­
gram text into main storage. Text is 
brought into main storage by paging 
operations. 

A secondary function of the Dynamic 
Loader is to enforce certain TSS/360 pro­
tection rules concerning t.he loading and 
referencing of program modules. This is 
discussed in the following sections. 

As mentioned above, the Dynamic Loader 
loads and processes all needed PMDs during 
the Allocation phase. An alternative 
scheme would be to lead and precess all 
PMDs after the first one only during the 

144 

Relocation phase, and then only if the PMDs 
are actually needed to satisfy an address 
constant located in the page being pro­
cessed. This scheme was rejected in faver 
ef the current design for the following 
reasons: 

• Most system service routines used by 
the Dynarric Loader also frequently 
reference user pages. Because any user 
page could contain unprocessed address 
constants, these system routines would 
have to ce recursively written. 

• Paging would be increased if the Task 
Dictionary had to ce searched by both 
rynanic Loader phases. 

'TASK DICTIONARY 

In performing its functions, the Dynarric 
Loader uses a tatle called a Task Dic­
tionary (TDY)_ 

The TDY contains the information needed 
to load (and unload) modules for a particu­
lar task. The organization of a TDY is 
shown scherratically in Figure 66. 

TDY Heading 

Privileged Sys.tem Hmh Tobie 
--~~--~---~~ -~ ~-~-- -

Nonprivileged System Hash Tol,le 

Uspr Hmh Tobie 
~-~~ 

MAP 

~-----------------~---------------~-

PMD Grollp 

---~~----~-. ---

Free Space 

PMD Group 

PMD Group 

---~-----~.- ~- ~~.- ~ - ~-

free Space 

Figure 66. Task Dictionary Organization 



A TDY consists of a heading, three hash 
tables, a storage Map tat-le (MAP), and one 
program Module Dictionary for each module 
loaded for this task. 

The PMOs are placed in the TOY in the 
same order that the modules are loaded by 
the loader (and STARTUP). Because of the 
variable length of each PMD, they are 
chained together. 

An extensive TDY, built by STARTUP, 
describes a task's Initial Virtual Memory 
(IVM). This TOY is stored on auxiliary 
storage by STARTUP and its location is 
described in an External Page Table con­
tained in the skeletal XTSI assigned to a 
task ~hen it is created. The pages occu­
pied by this initial TDY are not normally 
referenced after system startup. 

PMO space is allocated within the TOY on 
a group basis. The primary purpose of 
grouping PMOs is to conserve storage. An 
integral number of pages of virtual storage 
is obtained for the first PMD of a group. 
Ho~ever, this PML may not occupy all of the 
space in the last (or only> page so 
obtained. If the next PMD is less than a 
page in size, it may fit into the space 
bet~een the end of the preceding PMO and 
the end of the page. Otherwise, GETMAIN is 
called to obtain storage for this PMO which 
becomes the first member of a new PMO 
group. 

The TLY heading defines the beginning of 
the TOY and contains pointers to the User, 
and System, hash tables; and to the Storage 
Map Table. 

HASH TABLES 

In order to link programs dynamically, 
the Oynarr.ic Lcader must te atle to look up 
all external symbol definitions. 

To make the process of looking up 
external symbol definitions rr,ore efficient, 
hash tables are used. A hash table con­
sists of a header and a number of hash 
chains. 

A hash table header consists of a number 
of word length entries which either contain 
zeros or a pointer to an external symbol 
definition entry in a PMC. 

Whenever a new PMD is to be placed into 
a task's TLY, an arithrretic or logical 
operation ("hashing") is performed on the 
alphanumeric name of each external symbol 
definition. This operation is such that 
the result will be a whole numl:er that is 
not larger than the number of word length 
entries in the hash table header. This 
number is then used to form an index to 

inspect cne of the haSh table header 
entries. If the entry is zero, a pointer 
is placed in this hash table header entry. 
Tnis pointer will identify the location of 
the external symbol definition entry asso­
ciated with this symbol. (See Figure 67.) 

If the entry is not zero, this means 
that the hashing algorithm has already pro­
duced the same whole number for some pre­
viously processed external symbol 
definition. 

In this case, the PMO entry for each 
such external syrrhol definition (called 
"synonyrr") will be chained to the previous 
entry. In this fashion, the TOY can be 
treated as a large number of small tables 
and the entry for any external symbcl 
definition can be found by inspecting only 
one of these small tables. 

To make this process even more efficient 
and to frevent a nonprivileged user from 
accidentally linking to a system routine, 
or a system routine from erroneously link-

Hash 
Table 

Figure 67. 

I I I 
Hashing Algorithm 

Hash Value 

Hash Table Processing 

Dynamic Loader 145 



ing to a nonprivileged user routine, three 
hash table headers are defined: Frivileged 
System, Nonprivileged System, and User hash 
tables. 

Two of these tables are used for systerr: 
symbols (i.e., external sym£ols found in 
routines extracted from SYSLIB or SYSIVM 
whose control sections are marked "System" 
or "Privileged"). External symbols defined 
in control sections with the ~rivileged 
attribute must begin with the letters Cz or 
CBB and will be ~rocessed in the Privileged 
System bash table (SYSHASHP). All privi­
leged system routines Frcvided by IBM are 
contained in the Initial Virtual Memory 
dataset (SYSIVM) which is link-loaded at 
syst em start up. 

The Nonpri vileged Systerr, hash table 
(SYSHASHNP) will contain nonprivileged sys­
tem symbols. A convention has been adopted 
that the initial entry points ef those non­
privileged routines that are to be directly 
invoked by a nonprivileged user, must begin 
with the letters SYS. An example of such a 
nonprivileged system routine is the Lan­
guage Processor Control module, which con­
tains such initial entry peints as SYSASM 
and SYSFTN used for invoking the TSS/360 
Asserr.bler and Fort ran language processors. 

Systerr, efficiency is enhanced ty provid­
ing twa system hash tables - Privileged and 
Nonprivileged - instead of just one system 
hash table. As a result, the Dynarric Load­
er does not have to search through a hash 
chain containing a large number of privi­
leged syn:bols defined in Privileged Initial 
Virtual Memory routines when it is attempt­
ing to resolve references to nonprivileged 
system symbols. 

In addition to the system tables, a 
third hash tatle is constructed for the 
normal user (authority U). The use of this 
additional table gives rise to the term 
"split hash." The purpose of this hash 
table is primarily one of protection. It 
is employed to provide close control over 
the interface between the normal user and 
system routines. This control is effected 
by separating the normal user' s syrr,bols 
from system symbols. The normal user's 
external symbol definitions may begin with 
any characters (including CZ and CBB) 
except SYS and are processed in the User 
hash table (USERHASB). 

The general rules for processing extern­
al definitions and references are as 
follows. 

The norrr.al user's external syrrtol 
definitions are pl.aced in the User nash 
table and the external syrr:bol definitions 
from system control sections are placed in 
the appropriate system hash tatle. 

146 

Systen symtol definitions can only be 
inserted in the System hash tables if the 
program rr,oQule .. ith the "system" attribute 
was loaded from ttle system Library or the 
System IV~ datasets. 

Only a r:rivileged systerr, programmer is 
pE'rmitted to sto .. an object progran !fodule 
in these data sets. This means that a non 
privileged user may not directly substitute 
his own cory of a system routine. 

External symbol references (excer:t those 
beginning with the letters SYS) are satis­
fied fran: the hash table with the sarre name 
as the rrivilege attribute of the control 
section containing the reference. 

Thus, a privileged routine can not 
directly link to a user routine, but must 
use the Type III (Leave Privilege) linkage 
rrechanisrr or the Load Virtual PSW supervi­
sor call. There is a special provision 
that allows the r:rivileged Command System 
LOAD routine to load a nonprivileged user 
routine on behalf of the user. 

A user program can not directly link to 
a privileged routine, but must use the Type 
II (Enter) linkage mechanism. 

A ncnprivileged system program, such as 
the TSS/360 Assembler, can only directly 
link t.o another nonprivileged system rou­
tine. A nonprivileged system routine can 
not link to a user routine and can only 
link to a privileged routine through a Tyre 
II linkage. 

User routines and privileged routines 
can only link to nonprivileged systerr rou­
tines through external symbol references 
beginning with the letters SYS. 

For instance, whenever a nonprivileged 
rrograrr rrakes an external reference to a 
system syn·bol beginning with the letters 
SYS, the Nonprivileged System hash table 
(not tne User hasn table) will be used in 
atterrpting to locate the external symbol 
definition entry. If the symbol is not 
contained in the hash tatle, the Dynamic 
Loader knows froIT, the letters SYS that only 
the Systerr. library need be searched, not 
the entire heirachy of open libraries. 

In addition to the protection function, 
the presence of a nonprivileged Systerr hash 
table and the rest.riction on defining SYS 
symbols relieves the user of the necessity 
of knowing what external sym£ols are used 
ey modules contained in the systerr library. 
That is, the user can en:pioy an External 
symbol with the same narr.e as an external 
syrr.bol definition in the System lierary 
without fear of confusion. 



For a r;rivileged user, (i.e., "0" or "P" 
authority oodes> only the two System hash 
tables are constructed. The User hash 
table pointer in the TLY heading is set to 
point to the System Hash tables. In this 
fashion, protection is relaxed for the pri­
vileged user and all external symbol 
I:eferences are resolved in the two systerr; 
hash tables. The ~rimary [urpose for 
relaxing protection is to allow system pro­
gramrr,ers greater latitude in testing system 
programs. These extended capabilities 
apply only to system routines loaded by the 
Dynamic Loader. All Initial Virtual Memory 
modules are loaded by the Startup program 
and are insensitive to authority codes. 

The rules for posting external symbol 
definitions in hash tables are summarized 
in Figure 68. The rules for searching 
these hash tables in order to resolve 
external symbol references are described in 
Figure 69. Those terms and relationships 
which have not yet been defined are dis-

cussed in the following sections. A few 
additional considerations, involving 
internal labels used in expansion of macro 
instructions, are contained in the appendix 
section of Assembler Programmer's Guide. 

STORAGE I'AP TABLE 

The Storage Map Table is an ordered 
table which contains the virtual storage 
address of each control section which has 
been loaded into the user's virtual storage 
and the virtual storage address of the Con­
trol Section Dictionary for that control 
section. 

The Storage Map Table is maintained in 
ascending order of virtual storage 
addresses, thus facilitating a binary 
search for lookup purposes. For example, 
this table is used during the relocation 
phase of the Dynamic Loader to find the 
Control Section Lictionary associated with 

r---------T-------------T-----------------T--------------------r-----------r------------, 
111 2 ! 3 I 4 15 I 6 I 
t---------t-------------t-----------------t--------------------t-----------t------------~ 
I if I and I then I and if I then I and I 
t---------t-------------t-----------------+---------------------t-----------t------------~ 
lauthoritylcontrol sec- Icontrol section Icentrol section thatlDEFs may lall legal I 
Iclass is: Ition that lattril:utes may Icontains DEF has Ibegin with Isymbols froml 
I Icontains DEF Ibe altered: lattributes: !only the Icontrol sec-I 
I Icaffe from: I I I symbols: Ition are I 
I I I I I I posted in: I 
t---------t-------------t-----------------t---------T----------+-----------+------------~ 
I I I If control sec- I I PRVLGD I CZ, CHB I SYSHASHP I 
I I Ition is PRVLGD, ISYSTEM t----------+-----------+------------~ 
I I Iloader sets I INONPRVLGD ICZ, CHB !SYSHASHNP I 
I I ISYSTEM attribute; I I r-----------t------------1 
I I I I I IAll others ISYSHASHNP I 
I I SYSLIB I hEnce, NON- ~---------.L-----------+-----------t------------1 
I U I I SYSTEM and I NONSYSTEM I I I 
I I I PRVLGD is I I I I 
I I I impossible. I I I I 
I t-------------+-----------------+--------------------~Any but SYSIUSERHASH I 
I IUSERLIB or IPRVLGD and I NA* I I I 
I I JOBLIB I SYSTEM erased. I I I I 
~---------t-------------+-----------------+--------------------+-----------t------------~ 
I I SYSLIB I PUEL IC and I I Any I SYSHASHP or I 
I I I READONLY erased. I I I SYSHASP I 
I t-------------+-----------------~ NA* t-----------+------------~ 
I P I I I I I SYSHASHNP I 
I I USERLIB or I PUBLIC, READONLY f I I Any but I I 
I IJOELIE I PRVLGD, I I CZ, CHB I I 
I I I SYSTEM erased. I I I I 
~---------t-------------+-----------------+--------------------+-----------+------------~ 
I I I PUBLIC and I I I SYSHASHP or I 
I 0 I NA* I READONLY erased. I NA* I Any I SYSHASHNP I 
t---------.L--------------.L-----------------.L----------__________ .L ___________ .L ____________ ~ 
I *NA - not a~plicatle, in the SEnse that the condition is not tested by the loader. I l ______________________________________________________________________________________ ~ 

Figure 68. Symbolic Posting Rules for Inserting DEFs Into the 'rask Dictionary Hash 
Chains 

Dynamic Loader 147 



I I 2 I I 3 i 4 5 
1-----------+-----------+------ - - -------- ---i-------------lj--------------------------

IF i AND i AND 1 AND THEN 
~=====-~~=~~==~-T~~-~~-~~~~~40----·----~~======~====~==========1 = 

Au thori ty e loss is Loader is resorving 

symbol from 

: 
I 

High-order bit of C J ,)r 
C3 byte of adeon group 
is 

Control section containing Look up symbols in 
adeon group or REF is I! which hash table (or) 

II 

, SYSHASHNP 

Search which 
libraries if symbol 
not found in hash 
toble. 

_________ ~~-SYSTEM I; USERHASH*'* _ -~Lt::· -_-== 
I NON-SYSTEM i SYSHASHP or I SYSUB 

1

- Explicit LOAD/ 
CALL or DELETE 

I ""00 ,'00,. 
0 

L 
I 
I 

"U" I J L-- SYSHASHNP 1 __________ _ 
_____________ )_ SYSTEM USERHASH*** t- ALL-' __ 

, SYSTEM I SYSHASHP or I 
II External REF 1:1 II,', SYSHASHNP =_-+-___ ~S_LIB_= __ _ 

T 
NA-

_ NON-SYSTEM USERHASH*"* - ALL" 
~==========~==========*==============F============~==~~======F===F' =====~=======~ 

f-_"_P_"_o_r_'_'O_'_' __ Lil ____ N_A_* _____ L ____ ~A* _____ ~_~ ____ NA* ii ~~;~~~~~;r ___ l_~L~~ __ _ 
I 

Nates: *NA means not applicable in the sense that the condition is not tested by the loader. 

**ALL means the entire hierarchy of open I,brarie, beginning at the l<Y.,t defined JOBUB and ending with SYSLIB (or with that lib,ary 

yielding a valid definition)' 

*"If the symbol to be resolved begins with the letters "SY5," the loader will always look only in SYSHASHP or SYSHASHNP (and SYSLIB 
if not found in SYSHASHP or SYSHASHNP)_ 

Figure 69. Dynamic Loader Symrol Lookup Rules for Resclving Symbols in Either Explicit 
CALL/LOAC or DELETE Adcon Groups or in External REFs 

the virtual storage address at which a 
relocation exception interruption occurred. 
A Control Section Cictionary will contain 
the Relocation Dictionaries needed to prop­
erly relocate the address constants con­
tained in the text associated with the con­
trol section. The Storage Nap Table may 
also be used by the Program Control System. 

Control Section Dictionary (C8r;> 

Contained within each P~D are one or 
more Control Section Dictionaries (CSD). 

Each CSC is made up of the following 
components: 

• CSD Heading 
• Definition Tables 
• Reference Table 
• Relocation Dictionaries 
• Virtual Memory page Table (V~PT) 

CSD Heading 

The CSD heading contains general infor­
rr~tion such as the attritutes possessed by 
the control section and the length of the 
control section. 

148 

Definiticn and Reference Tatles 

When a T88/360 user issues a LOAD or RUN 
command, he specifies a symbol naming an 
entry point in the module to be loaded. 
'Ihis symbol may be the module name, a con­
trol section name, or an ENTRY syrr.bol. 

When a '1S8/360 user compiles a program 
he SUbmits a list of parameters for the 
language processor. One of these parame­
ters is a narr:e for the object module. This 
module name is automatically treated by the 
language processor as an external symbol. 
'The Ii value associated with the rcodule name 
is called the standard entry point of the 
module. 

The name of each control section defined 
in a module is also automatically treated 
ty the '188/360 Language Processors as an 
external symbol. 

ThE T8S/360 Assembler user may explicit­
ly request that a symbol defined in that 
asserrbly be treated as an external symbol 
ty naming the symbol in the operand of an 
ENTRY statement. 



For each external symbol defined in a 
module, the Language Processors create an 
external symbol definition entry (DEF). 
Thus, DEFs generally represent points 
~ithin a module at which data is to be 
accessed or to which control is to be 
transfered. 

There are three types of DEF: Absolute, 
Relocatable, and Com~lex. 

An absolute DEF is an external symbol 
~hose value is not dependent u~on the vir­
tual storage location of the module. An 
external symbol defined by an assembly lan­
guage Equate (EQU) statement ~hose operand 
is an absolute expression would cause the 
creation of an absolute DEF. For an abso­
lute DEF, the language processor places the 
value of the symbol in the DEF. The Dynam­
ic Loader does not modify this value in any 
way. 

Relocatable DEFs are those whose values 
are virtual storage location-dependent. 
For example, a relocatable DEF will be 
created for a control section narr,e. 

For a relocatable DEF, the language pro­
cessor places a value representing the sym­
bol's displacement from the origin of its 
control section into the value field of the 
DEF. The R value field will be zero. 

Af~er the Dynamic Loader has established 
the virtual storage address of the control 
section, the V and R value fields of the 
relocatable DEF are processed by adding the 
base address of the control section to the 
values assigned by the language processor. 

A complex DEF is one which requires 
information concerning the relocation of 
one or more control sections other than the 
one in whose CSD the DEF resides. 

Before further describing a complex DEF, 
it is necessary to discuss external symbol 
reference entries (REFs). 

A language ~rocessor will create an 
external symbol reference entry (REF) for 
each symbol named in the operand field of 
an EXTERN statement or in V and R type 
address constants. Such REFs are called 
external REFs and represent symbols 
referrred to within that program module but 
defined in another. (i.e., separately 
assembled) program module. 

A language processor may also create a 
REF for a control section name within the 
module in connection with a corrplex DEF or 
for an internal symbol defined in one con­
trol section but used in an address con­
stant in another control section within the 
same module. Such a REF is called an 
internal REF. 

The Dynamic Loader tries to satisfy each 
REF by obtaining the appro~riate V and R 
values from a corresponding DEF. The DEF 
which satisfies a REF may be located in the 
same or another PMD. The V and R value 
fields of REFs are generally used for relo­
cating address constants. 

DEFs are contained in DEF tables and 
REFs are contained in REF tables within the 
appropriate control section dictionaries, 
with one exception. One complex DEF and an 
associated REF are placed in the PMD head­
ing. This is the complex DEF for the stan­
dard entry point associated with the module 
narre. 

A complex DEF is also constructed for a 
symbol defined by an Equate (EQU) statement 
whose operand field contains one or more 
external symbols. However, of more inter­
est is the fact that a complex DEF is 
created for a relocatable DEF whose asso­
ciated ENTRY statement appears in a control 
section other than the one in which the 
symbcl itself is defined. This is the 
means by which a user causes association of 
a particular Prototype control section 
(PSECT) with an entry point name. 

For example, consider the following 
asserrbler language statements: 

PSEC'IAA PSEC'!, 
ENTRY JOE 

CSECTBB CSECT 

JOE LR 3,4 

A corr,plex DEF will te created for JOE 
and placed in the CSD of PSECTAA. Note 
that the DEF is placed in the CSD of the 
control section is which the entry state­
Ilent appears, not the CSD in which JOE is 
defined. The language processor ~ill place 
a value .:repres enting the displacement of 
JOE from the beginning of CSEC'IBB into the 
V-value field ef the complex DEF. The R­
value field ~ill be zero. 

In addition, b~e language processor will 
construct a REF for the control section 
name CSECTBB which will also be placed in 
the CSD of PSECTAA. 

The language processor automatically 
constructs relocatable DEFs for the two 
control section names and ~laces therr in 
the CSDs for their respective control 
section. 

Dynamic Leader 149 



During the loading preCESS, the Dynamic 
Loader will first process relocatable DEFs. 
As previously described, this involves 
adding the base address of each control 
section to the relocatacle DEFs in that 
control secticn's es~. At this time, the 
loader will also partially process complex 
CEFs by adding the base for the control 
section to the R-value entries only of the 
complex DEFs in the esc. (The R-value for 
the module name is obtained somewhat dif­
ferently and is not discussed here). 

Thus, the R-value field for the complex 
DEF created fer JOE will contain tne base 
address of control section PSECTAA. 

The Dynamic Loader next processes REFs 
and then completes the processing of com­
plex DEFs. The REF for eSECTBB will have 
its V and R-value fields filled in from the 
DEF for eSECTBB. 

Lastly, the V-value of the complex DEF 
will be adjusted by adding the V-value froIT 
the REF for eSECTBB to the V-value field in 
the complex DEF. 

The Dynamic Loader knows that the V­
value of this particular REF is to be app­
lied to this particular field in the com­
plex DEF in the same way that it knows what 
values to use in adjusting address con­
stants. In this sense, the V-value field 
of a complex DEF can be considered to be an 
address constant. 

Relocation Dictionaries 

Relocation Dictionaries are used cy the 
Dynamic Loader's Allocation phase to modify 
complex DEFs and by the loader's Relocation 
i=,hase to relocate address constants. 

Three Relocation Lictionaries (RLDs) 
appear in each control section dictionary. 
The three RLDs are, in order, for RbFs 
associated with complex DEFs, for external 
REFs, and for internal REFs. 

Figure 70 depicts sample RLLs for a con­
trol section. Each RLD consists of a head­
er and modifiers. The header consists of 
modifier pointers which describe which 
modifiers are associated with which page of 
the PMD or text. This is necessary because 
address constants are modified on a page 
only as it is referenced. 

The first word of each modifier pOinter 
describes the number of modifiers for that 
page. The second word points to the first 
modifier for that page. If there are no 
modifiers for that page, the second word 
points to the end of the header. This 
second word pointer represents the number 
of bytes from the beginning of the second 
word. 

150 

Complex 
OfF RLD 

External 
REF RLD 

Internol 
REF RLD 

Conplex 
DE F Po;nte, 

External 

RE F Pointers 

Internal 
REF Po;nter 

{ 
>-

J 
l 

0000 COO} 1. 

0000 OOOA 2. 
----- -- --------------~ 

0001 0006 3. 
----------

0002 0006 

f------ --------------

!v\od;f;er for Puye I 

f--------- ------- -- -----

Modifier for Page 2 

f------ ---------- - --
Modifier for Page- 2 

6. 

7. 

1. i'Jo complex DEh 

2. No External t·Acdit:f:rs. r::>r Page 0 

3. External Modifier for Page 1 

4. 2 Externol !v\od;f;e<s for Page 2 

5. External Modifier 7, 

6. 2 Interl)ci tv'<odif;~_'rs for POgE 0 

7. fnterna! Modifiers 

Figure 70. RLDs for a Sample Module 

Modifiers are used to resolve address 
constants on pages of text, or on pages of 
the PMC itself (in the case of a complex 
DEF). 

These modifiers are constructed and 
filled by the language processors for use 
cy the Dynamic Loader. The Dynam.i c Loader 
uses these modifiers after all REF's have 
ceen resolved. 

Each page of the eSD, if it contains a 
oon-plex DEF and each page of the text for 
that control section, if it contains 
address constants, will have associated 
with it one or more modifiers. There will 
be at least one modifier for each address 
constant. The modifier to be used in 
resolving the complex DEF for the standard 
entry pOint is located in the PMD Heading. 

The rrodifier will contain the following 
information: 

1. The length of the adcon to be 
resolved. 



2. The identification nmrber of the REF 
whose value is to be applied to 
resolve the adcon. 

3. The action of the application (addi­
tion, subtraction, or substitution of 
R value). 

4. The byte location on the page of the 
adcon or complex DEF to be resolved. 

The Virtual Memory page Table (VMPT) is 
the means by which the external storage 
pages containing the text of a control sec­
tion are related to the virtual storage 
assigned to the control section. This is 
necessitated by the fact that the TSS/360 
language processors do not generate a blank 
page of text when a large ORG or DS state­
ment results in one or more completely 
skipped pages. 

The reason that blank pages are handled 
in this fashion is that the language pro­
cessors build the object program in storage 
obtained by use of the GET~AIN macro. Not 
creating blank pages thus conserves main 
and external storage. 

DYNAMIC LOADER PROCESSING 

Now that the construction of the Task 
Dictionary has been described, it is poss­
ible to describe the loading process in a 
little more detail. The loading process is 
composed of a number of steps: 

• INVOCATION 
Implicit linkage 
Explicit linkage 

• ALLOCATION 

Determining if the program module con­
taining the referenced symbol is alrea­
dy mapped into the task's virtual 
memory. 

Initiating a library search if the sym­
bol cannot be found in the task's Task 
Dictionary (TDY). 

Determining whether or not a found 
member of a library is a valid module, 
and if not, rejecting the meml::;er as 
invalid. 

If a module is found that defines the 
symbol, its PMC is placed into the 
task's TDY. 

Determining if the Dynamic Loader 
should reject any control sections 
described in the module's PMD. 

Mapping the control sections composing 
the program module into the user's vir­
tual storage. 

Processing the external symbol defini­
tions (DEFs) and references (REFs) 
described in the PMD. 

Repeating all the above steps (except 
for the first) for any external symbol 
references that cannot be found in the 
TDY. 

• RELOCATION 

Computing the correct value for each 
address constant contained in the page. 

INVOCA'I'ICN 

The user rr,ay invoke the loading process 
through the LOAD and RUN commands, through 
the LOAD and CALL macro instruction, or 
thorugh in-line statements in assembler 
language. 

IMPLICIT LINKAGE 

If an external symbol is referenced by 
including V and R-type address constants in 
a program during language processing (for 
instance, through usage of the implicit 
form of the CALL macro instruction) the 
reference constitutes a request for iIr,pli­
cit linkage. Program modules containing 
external symbol definitions satisfying 
these address constants are implicitly 
loaded whenever the module containing the 
address constants is loaded. Program 
modules that are implicitly loaded cannot 
be explicitly unloaded from a task's virtu­
al storage. 

EXPLICIT LINKAGE 

Within a given program there may be 
references to a number of different subpro­
grams. However, the situation could arise 
that a given execution of the program 
requires the presence of only a few of the 
subprograms. Since dependence on normal 
implicit linkage would require the presence 
cf adcons in the calling program for all 
the subprograms, some unnecessary overhead 
would be experienced in preparing the 
unused subprograms for linking. 

It is also possible that the external 
name of the module or the entry pOint which 
is to be explicitly linked is developed 
during program execution. In this case, it 
may not be possible to specify the reodules 
to be linked at assembly time. 

Dynamic Loader 151 



To allow for these situations, two 
explicit fUnctions are provided which cause 
the desired subprogram to be retrieved at 
object time: (1) The LOAD !facro instruc­
tion loads the desired program. (2) The 
explicit CALL macro instruction causes the 
program to be loaded and the necessary lin­
kage to it established. 

The Corrmand Analyzer and EXEcutor uses 
the LOAD and CALL statements in processing 
the LOAD and RUN terminal commands. 

The CALL and LOAD macros are generally 
expanded in line as follows: 

CALL 

DS OH 

L 15,CHD&SYSNDX+12 

L 14,CHD&SYSNDX+16 

ST 14,72(0,13) 

BASR 14,15 

LOAD 

LA 15,CHD&SYSNDX 

EX 0,0(0,15) 

As a result of these macros an adcon 
group is generated in the user's first 
declared PSECT. 

ADCON 

CNOP 0,4 

CHD&SYSNDX SVC 127 

DC 

DC 

DC 

DC 

DLINK SVC for explicit 
loading 

H'C1C2 
Option codes 

CL8'name' 
Module namel (or alias) 
of module to be loaded 

A(*-12) 
V-value of "name" 
filled in here by 
loader 

F 
R-value of "name" 
filled in here by 
loader 

When the DLINK SVC is executed, the 
Resident supervisor will pass the interrup­
tion to the Task Monitor as a program 
interrupt. The Task Monitor SVC Interrupt 
Processor will immediately dispatch the 

152 

Dynarric Loader. It will appear to the 
[ynarric Loader tnat it has bEen called by a 
~ype I linkage. The virtual storage 
address of the adcon group is placed in a 
general purpose register by the Task Mon­
itor. The leader then allocates virtual 
storage for the named module and places the 
V and R value in the adcon group, loading 
any and all modules required to resolve 
external syml::ols. The DLINK SVC is changed 
to a no-operation instruction (for LOAD) or 
a Branch and Store Register instruction 
(for CALL) by the Dynamic Loader so that it 
will net be invoked unnecessarily should 
the LOAD or CALL macro be executed again. 
~his is called disarming an adcon group. 

When the loader has completed the reso­
lution of the adcon group, control returns 
to the Task Monitor. In the case of error­
free processing, the Task Monitor then 
determines whether an explicit CALL or LOAD 
was executed. (The Loader's return code 
indicates beth error condition and type of 
adcon group, i.e., CALL or LOAD.) In the 
case of a LOAD the Task Monitor merely 
returns control to that point in virtual 
storage irr~ediately following the EX 
instruction that caused the DLINK SVC to be 
executed. In the case of a CALL, the Task 
Monitor picks up the resolved R-con and 
places it in the 19th word of the calling 
program's save area, i.e., in the 19th word 
following the address contained in register 
13. The Task Monitor then effects linkage 
l::y placing the resolved V-value into the 
instruction counter field of the user's old 
SVC Virtual PSW, such that when control is 
returned to the interrupted prograrr (via 
the Load Vil~ual PSW SVC), the called rou­
tine is entered at the V-value location. 

At the point of entry, register 13 will 
be Fcinting to the caller's save area, the 
19th word of which will contain the R­
value, by convention the PSECT origin, of 
the called routine. Register 15 will also 
contain the V-value. This makes the DLINK 
SVC invisible to the calling routine. The 
linkage will aFFear to l::e a simple Type-I 
linkage. 

In the case of an error return from the 
loader while in the conversational mode, 
the 'Task Monitor will effect linkage to the 
Command Analyzer and Executor to prompt the 
user. The Task ~Qnitor disregards error 
codes in the nonconversational mode. 

The option codes, C1 and C2, are inter­
Freted by the loader a s follows: 

C1 Code 

If the low-order bit is a 1, this indi­
cates a CALL. 



If the low-order bit is a 0, this indi­
cat es a LOAD. 

The high-order bit of Cl may be set to 
alter the norrral symbol lookup algorithm in 
the loader. If this bit is set, the loader 
will resolve Adcon groups located in SYSTEM 
CSECTs in the user hash table, rather than 
in the systerr. hash table which is the usual 
case. This feature is implemented so that 
the Dynamic Leader will properly load user 
routines when invoked by the Command System 
LOAD corr~and routine, which is a system 
routine. The LOAD command routine is 
invoked by the LOAD corr~and. 

C2 Code 

The C2 code governs the loader's actions 
in the case of serious load errors encoun­
tered during the response to a LOAD macro. 
For example, if the loader is unable to 
locate the module named in a LOAD macro 
instruction. ) 

Control over this additional load error 
indication is in the hands of the user in 
the case of the LOAD macro. The C2 code 
within the LOAD adcon group may be set by 
the user. In the normal case, this code is 
set to zero. Should a serious error occur, 
the user is given the appropriate diagnost­
ic by the loader, after which control is 
returned with an error indication to the 
task Monitor. If the task is conversation­
al, the user is then queried by the Command 
System Director and given the option of 
entering new command statements that might 
correct the error situation (such as a new 
DDEF statement to define a library that 
contains a symbol previously undefinable by 
the loader). In the nonconversational 
environment, such error conditions are 
ignored. 

If the user should set the C2 code to 
one, prior to executing a LOAD or CALL 
macro, and the loader should detect a 
serious error, a diagnostic is issued and 
the C2 code set to seven as the error indi­
cation to the calling program (which may 
initiate program checks for such condi­
tion). In this case, the loader will 
return to the Task Monitor without error 
indication and the user will not be pro­
mpted by the Command Analyzer and Executor. 

LOADING PROCESS 

The Allocation phase begins with the 
looking up of the symbol to be loaded. 
(See Figure 71 which provides an overview 
of the Allocation phase of the Dynamic 
Loader.) The appropriate hash chain in the 
TDY is searched first. The module defining 
the syrr~ol is already a part of the task. 
In this case, the loader merely fills in 

(' ENTER J 

Look Up SYMBOL Found 
Set up V-Con 
and R-Con in 
CALL/LOAD 
Calling Sequence 

in TDY 

Not 
Found 

Look Up Symbol 
in Externa I 
Libraries 

Found 

Load Defining 
Module's PMD 
into TDY 

Allocate Storage I 
for Module 

Compute Value 
of and link all 
DEFs in PMD 

Define all 
REFs in PMD 

Determine 

If Member 
Valid Module 

L-___ .... Valid 

Invalid Reject 
Member 

Figure 71. Functional Dynamic Loader Allo­
ca tion Pha se 

the V-value and R-value in the adcon group 
associated with the calling sequence, and 
returns to the user via the Task Monitor. 

If the symbol cannot be found in the 
TDY, a library search is initiated. 

If the symbol cannot be found in this 
instance, an error condition exists, i.e., 
the symbol is undefinable for this task. 

Realizing that partitioned data sets may 
contain other than object modules, the 
Dynarric Loader ascertains, during the load­
ing process, whether or not a found member 
is actually a module. The relative page 
pOSition of the module's PMD, text, and 
lSD, as well as the respective length in 
bytes of these items, are used in this 
verification process. If the member retri­
eved cannot be verified as a module, the 
rreffiber is rejected as being inva1id. 

It is possible that a symbol may be 
defined in the TDY and yet be unavailable 
to a task. For example, suppose that a 

Dynamic Loader 153 



nonprivileged user loads a module from SYS­
LIB and the control section in which an 
external symbol 'CZEYK' is defined has the 
privileged attribute. The dynamic loader 
will put CZEYK in the privileged system 
hash table. Now suppose that the user 
references CZEYK from another module. The 
dynamic loader will search the user hash 
table because the user is nonprivileged and 
the symbol does not begin with SYS. CZEYK 
will not be fcund in the user hash table 
and will be declared unavailable. 

If a library is found that defines 
"name," toe defining module's PML is now 
transferred from external storage into the 
TDY, which is maintained in each task's 
virtual storage. 

The rules governing which hash tables 
and which libraries are searched by the 
Dynamic Loader are described in Figure 67. 

CONTROL SECTION REJECTION 

After the PMD is loaded into the TDY, 
each control section name within the module 
is checked. Those control sections whose 
names either duplicate entry point names 
already within the TDY or whose names are 
determined to be illegal are rejected. 
When a control section is rejected none of 
the entry points defined by the control 
section are entered into a TDY hash table. 
References to these entry points must be 
satisfied elsewhere or not at all. control 
section rejection finds its primary appli­
cation in the treatment of COMMON control 
sections. The loader will accept the first 
COMMON control sections of a given name (or 
blank), reject all subsequent CO~MON con­
trol sections of the same name (or blank), 
and tie all common references to the loaded 
corr~on control sections. 

The treatment of unnarred control sec­
tions deserves some special corr~ent here. 
Unnamed corr~on control sections are 
assigned a name of eight alphameric blanks. 
After the first common control section is 
loaded, subsequent unnamed common control 
sections will be rejected as discussed 
above. 

Unnamed uncommon CSEC'I's are aSSigned a 
name of 16 hexadecimal zeros by the 
assembler. In order to render such names 
unique to the module in which they were 
declared, the loader places a module 
sequence nureber in the two low-order bytes 
of the first word of the name part of the 
DEF entry and all REFs of the same "zero" 
name within the module. This technique 
eliminates control section rejection for 
unnamed CSEC'I's since unnamed CSECTs from 
different modules will be distinguishable 
one from another. 

154 

CONTROL SECTION STORAGE KEY ASSIGNMENT 

Virtual storage and storage protection 
keys are assigned for each nonrejecteJ con­
trol section. 

Fixed length control sections with 
identical attributes are allocated storage 
as a group. This grouping of control sec­
tions is done to reduce the number of calls 
on Virtual Memory Allocation. Variable 
length ccntrol sections are individually 
allocated virtual storage by using the 
"variable" parameter when invoking GETMAIN. 
Common control sections are systematically 
assigned the variable length control sec­
tion attribute by the TSS/360 language 
processors. 

Storage protection key codes are 
assigned to each control section group at 
the time storage is requested for that 
group. The Resident Supervisor will mark 
each External page Table entry with a code 
representing the appropriate storage key. 
Whenever the page corresponding to an entry 
is brought into main storage, the appropri­
ate hardware storage key is set up for that 
page. Read-only sections are assigned a 
storage key that will not allow the user to 
store in the storage assigned. Privileged 
control sections are assigned a storage key 
that will not allow the user to stcre into 
or tc read the assigned storage. Privileged 
control sections will only be found in cer­
tain systelf service routines. All other 
control sections are assigned a storage key 
that allows unlimited user reading and 
writing of the assigned storage. 

Public control sections in IT;odules 
loaded from shared data sets are assigned 
shared storage so as to make such control 
sections potentially available to other 
tasks. If some particular public control 
section has not previously been loaded by 
some other task, the loader will assign 
shared virtual storage such that this 
task's copy of the CSECT will be loaded 
into shared virtual storage. If some publ­
ic control section has already been allo­
cated shared storage by another task, then 
the current task is merely "connected" to 
such shared storage, i.e., all references 
to such public storage will be tied to the 
already loaded control section (see 
"Sharing"). 

Page table entries are set up fcr each 
of the ncnrejected CSECT's text pages. The 
external library storage address is asso­
ciated with each page table entry and each 
page is marked "unavailable." Any user 
reference to any byte on the page will 
cause interruption. This interruption will 
cause the Resident Supervisor's paging rou­
tines to transfer the page from external 
storage into main storage. 



At the time the page tables are set up, 
the loader checks each page for the pre­
sence of adcons. Those pages containing 
adcons are marked "unprocessed by loader" 
in addition tc "unavailable." The 
referencing of pages marked "unprocessed by 
ioader n will cause the Supervisor to effect 
a call via the Task ~onitor to the page 
relocation entrance of the loader. This 
action is described more fully under 
"Relocaticn." 

Now the value of all DEFs in the nonre­
jected control sections of the module are 
corr,puted except those DEFs whose names 
duplicate previously loaded LEFs or whose 
narr,es are judged illegal. 

Duplicate or illegal DEFs are rejected 
with diagnostics. Relccatable DEFs are 
computed by adding to the DEF value the 
base address allocated by the loader to the 
containing control section. Absolute DEFs 
require no corr,put_ation. Complex DEFs are 
computed last. Recall that complex DEFs 
have associated with them REFs to other 
control sections. If the external name to 
which such a REF refers is not found in the 
TDY, the entire loading process is 
initiated again in order to load a PMD that 
will so define the REF. After the complex 
DEFs are computed, all of the rerr,aining 
REFs in the module are satisfied. Some or 
all of the rerraining REFs may effect the 
loading of additional modules' PMDs. Load­
ing of additicnal PMDs will repeat until 
all REFs in all modules have either been 
satisfied or have been marked undefinable. 

It is quite possible for the loader to 
satisfy SOme REF by locating an entry point 
in some external library only to have that 
entry point lost in the allocation process 
due to control section rejection. For 
examrle, some module has a HEF to symbol X 
which is found in CSECT C in module A in 
some library. During allocation CSECT C is 
rejected by the prior occurrence of some 
other CSECT C, such that wnen allocation 
for module A is completed, symbol X is 
still unsatisfied. The loader checks for 
this condition and acconm.oda tes it by 
initiating the symbol search (and alloca­
tion cycle) once again, this time in the 
next library in the hierarchy. A symbol is 
determined to be undefined when all 
libraries frorr the hierarchy starting point 
up to and including SYSLIB have been 
searched, yielding no definition. 

RELOCATION 

Whenever a "page unavailable" interrup­
tion occurs, the Resident Supervisor Page 
~osting routine checks the "unprocessed by 
loader ft bit in the page table. If this bit 
is not set, no loader action is required. 
If the Dit is set, blt R€sident Supervi::ior 

enqueues a J:rogram code 17 GQE on the 
task's TSI. When the Task Monitor Program 
Interrupt processor receives control it 
will irrrrediately dispatch the Dynamic Load­
er at its page relocation entry. The loa­
der's action in this event is merely to 
con,pute the correct value of each ad con on 
the page triggering the interruption. The 
processing of adcons will always involve 
the application of some REF value to that 
portion of the text occupied by the adcon. 
There are three possible applications: 

1. Add the V-value of the REF to the text 
value. 

2. Subtract the V-value of the REF from 
the text value. 

3. Store the R-value of the REF into the 
text. 

At t_he tirre this relocation occurs, all 
REF values will have been satisfied (during 
the allocation phase of the loader). Once 
all adcons have been relocated, the loader 
returns to the Task Monitor and eventually 
to the point in virtual storage where the 
relocated page was originally referenced. 

There is a special exception in proces­
sing a page relocation program interrupt, 
and, though it is a rare occurI-ence, the 
Task l"'lonitor must deal with it. The Dynam­
ic Loader Eage relocation processing it is 
not recursive, i.e., it cannot be entered 
to process a second interrupt until it has 
returned from its first dispatch. However, 
the Relocation Phase of the Dynarric Loader 
itself can cause a software relocation 
exception. This occurs when two contiguous 
pages are both "unprocessed by loader" 
because an adcon group crosses the page 
boundary between them. That is, the word 
in which the R-value is to be placed falls 
at the beginning of the next page. Howev­
er, the second page relocation interrupt 
does not have to be processed in order for 
the Dynamic Loader to complete the proces­
sing of the first page. When this second 
interrupt occurs, the Task Monitor's pro­
gram Interrupt Processor saves the excep­
tion address and then restores control to 
the loader. When the Dynamic Loader 
returns the first time, it is reinvcked 
with the seccnd exception addrESS, and 
normal processing continues. The Task Mon­
itor's Prograrr- Interrupt Processor main­
tains flags in the ISA to indicate these 
circumstances. 

DELE'II NG PROGRA~ MODULES 

The ExUiicit Unlinkinq entrance to the 
Dynarric Loader is called whenever a DELETE 
macro is executed either as a result of the 
corrmand UNLOAD or as inline code. The 
Ilajor argurr.ent is either a module name or 

Dynamic Loader 155 



alias (control section name or other entry 
roint narr.e) whose containing module is to 
be unlinked from all other programs and 
deleted from the task. 

Modules included in a task's Initial 
Virtual /Vl€IDOry are not loaded by the Dynam­
ic Loader and hence can not t:e deleted or 
unlinked by the Dynamic Loader. 

Unloading is, in general, infrequently 
used in TS8/360 because cf the large virtu­
al storage environment. However, if a user 
compiles the same module a second time dur­
ing a terminal session, he must unload the 
first cOJ;y of the module before attempting 
to run his revised version. Otherwise, the 
DynaKic Loader will transfer control to the 
first version of his module because it is 
still loaded in virtual rr.err.ory. 

Module deletion, or unlinking, involves 
several processes: 

1. Locating all exrlicit references to 
the module to be deleted and wrearm­
inga then .• 

2. Tracing explicit references from this 
module to identify subordinate modules 
that rray be deleted as well. 

3. Tracing implicit references from this 
module for the same purpose as (2). 

4. Deleting all control sections and fre­
eing allocated storage. 

PMD A. 

5. Deleting all deletable modules' PMDs 
from the 'ILY. This r:;rocessing 
includes removing all DEFs for these 
modules from the 'ICY. 

A deletion candidate, then, is either a 
rrodu Ie whos E narr,e (or alias) appears in the 
DELETE sta ten,ent (primary candidate) cr 
sorre other mcdule (secondary candidate) 
that is referenced by the primary cr by a 
secondary candidate. There are two ways in 
which a module may reference another 
rrodule. An exr:;licit reference is effected 
t:y a module's executing a LOAD or CALL 
nacre narring an external symbol defined as 
another module. An implicit reference is 
effected by a rrodule's having a REF entry 
that is satisfied by a DEF entry in another 
rrodule. The allocation phase of the load­
ing process sets up appropriate explicit 
and implicit chains linking referenced with 
referencing PMDs. These chains are con­
tained in a /V.odule Usage Table OWT). Each 
task has its own MUT. A MUT entry is 
linked into two chains which have their 
origin in two different Proms. A MUT entry 
serves to tie together a called rr.odule and 
its exrlicit caller. When a MUT entry is 
created, it is linked into the calling PMDs 
PAPA chain and into the called PMDs EABY 
chain. Thus, if A calls Band C, two MUT 
entries and three chains are created. (See 
Figure 72.> 

Secondary deletion candidates are 
located during the unloading process by 
tracing these chains and placing every 

Calling Sequence: 

-----.~-.----__l 
A calls B 
A calls C 

BABY Chain Head 
1-------------

PAPA Chain Head 
---.... ---.. ~----j~------ ..-----

PMD B 

BABY Chain Head 

PAPA Chain Head 

MUT 

MUT 
Entry for 

A calls C 

PMA. __ 

BABY-- _ 

Address of PMD B 

PAPA __ 

BABY-___ 
1------------ --

BABY ___ -

Address of PMD C 

Figure 72. Diagra~ of Sample ~odule Usage Tatle 

156 

PMD C 

BABY Cha i n Head __ -----r--~----
PAPA Chain Head 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

referenced module on a candidate list. 
This tracing process repeats until all 
modules referenced by the primary and 
secondary deletion candidates have them­
selves become deletion candidates. 

only those deletion candidates that have 
no outstanding explicit or implicit 
references to them are retained on the can­
didate list. The removal of any candidate 
on the list may result in the removal of a 
previous candidate from the list. Now this 
process is reiterated until a stable can­
didate list results and all those modules 
remaining on the list may be deleted from 
the task. 

There is one exception to the foregoing 
algorithm. The primary deletion candidate 
is deleted so long as there are no out­
standing implicit references to it. Expli­
cit references to the primary candidate are 
traced to their source (CALL or LOAD adcon 
group) and the original SVC is Rrearmed­
such that subsequent execution thereof will 
cause reloading of the deleted module. At 
this point storage is released for all nOn­
rejected control sections of all modules to 
be deleted. The DEFs in each control sec­
tion are removed from the TDY DEF chains, 
and finally the PMD itself is deleted from 
the TDY. This process is repeated for each 
module to be deleted. Unloading is com­
plete when the last module on the deletion 
list has been removed from the task. 

The user may specify in a DELETE macro 
or UNLOAD command that only the module 
named is to be unloaded. In this case no 
attempt will be made to delete modules 
referenced by this Rnamed- module -- only 

c 

,----I i'- _ , 

_~----+1 i 
I 

L ____ ~ 

I 

Lege.....d ind;cale~ exp!;<.:;'t refer!"r'lce 

Figure 73. Unloading Example -- Before 
Unloading 

the primary deletion candidate 
entered on the candidate list. 
of implicit and explicit links 
eliminat ed. 

UNLOADING EXAMPLE 

is ever 
The tracing 

is 

Figure 73 shows the allocation for six 
rr.odules. Module A has explicit links to B 
and E. Module B has explicit links to C 
and F. Note that module C implicitly links 
to D, which implicitly links to E, which 
implicitly links to F. If the statement 
DELETE B is executed from within module A, 
the following unloading action will occur: 

B is placed on the candidate list. B'S 
references are now traced; this results 
in C and F being added to the candidate 
list. C's references are now traced; 
this results in D being added to the 
list. F has no references, so it causes 
no new secondary candidates to be added. 
Now D's references are traced, resulting 
in E being added to the list. E 
references only F, which is already on 
the list. 

Now all modules are checked for out­
standing references. B has one out­
standing reference from Ai but since B 
is the primary deletion candidate, this 
explicit linkage in A is rearmed such 
that B remains on the list. Modules C 
and D have no outstanding references, so 
they also remain. However, E has an 
explicit link from A which is outstand­
ing. Thus, E is removed from the list, 
reestablishing the implicit link between 
E and F. Now F is examined, and it is 
discovered that F has an outstanding 
implicit reference (just reestablished 
from E). Thus, F is removed from the 
list. 

At this point, modules B, C, and Dare 
deletion candidates, and none bas any 
outstanding references. Unloading pro­
ceeds, then, with the removing of 
modules B, C, and D from the task. This 
results in the allocation diagrarnrr.ed in 
Figure 74. 

A E F 

r------- ----f--------+i, r---l i-l 
L ______ J _____ J-------~ ___ J 
Legend indicates explicit reference 

__ ___ indicates implicit reference 

Figure 74. Unloading Example -- After 
Unloading 

Dynamic Loader 157 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

CATALOG SERVICE ROUTINES 

Time Sharing System/360 contains catalog 
service routines designed to allow the user 
to update, add to, and delete from his 
private catalog. catalog service routines 
are directly entered only from a privileged 
program. An example of the use of various 
catalog service routines is provided in the 
section "External Sharing." 

Catalog service routines are divided 
into those that are invoked by the user's 
program, and those that are called by other 
catalog service routines. Those service 
routines invoked by the user are: ADDCAT, 
DELCAT. SHARE. UNSHARE. SHAREUP, CAT FLUSH , 
DSCB/CATALOG Recovery, and USERCAT SCAN. 
SEARCHSBLOCK, GETSBLOCK, and INDEX provide 
services for other catalog routines. A 
brief description of each of the catalog 
service routines follows. 

INDEX Routine 

This routine constructs chained index 
levels in the catalog and creates new mem­
bers within the catalog data set. The 
names of the indexes are defined by the 
fully qualified name supplied by the user. 
INDEX also checks for sharer updating pri­
vileges. upon locating some, but not all, 
levels of the fully qualified name. 

The fully qualified name is inspected to 
determine if a new use is being created, or 
if a new index level is to be added to the 
user. When a new user is to be added, the 
catalog is opened in the update mode and 
INDEX uses LOCATE to determine that the ID 
is unique. When index levels are to be 
chained for the user, the lowest level 
found is searched for an empty pointer, and 
a pointer is constructed to the first 
SBLOCK of the level being created. 

ADDCAT Routine 

This routine performs the following 
functions: 

• Creates a data set descriptor in the 
user's catalog which points to the 
format-E DSCB and gives volume 
information. 

• Creates any index levels defined by the 
fully qualified name, which must pre­
cede the data set descriptors and do 
not presently exist. 

• Allows updating of a data set 
descriptor. 

158 

• Controls the number of generations 
allowed under a generation index by 
performing deletion of out-moded 
generations. as required. 

DELCAT Routine 

This routine performs the following 
functions: 

• Deletes index levels from the catalog 
structure. 

• Recatalogs index levels under a dif­
ferent fully qualified name. 

DELCAT calls LOCATE to get the specified 
index level, and then determines if an 
owner's catalog is referred to by checking 
the first byte of the 45-byte buffer used 
as an entry parameter to LOCATE. If the 
flag is set, the sharer disposition flag in 
the 64-byte SBLOCK retrieval buffer is 
checked. 

SHARE Routine 

This routine adds sharing privileges to 
a catalog level. 

An unshared level can be set to shar­
able. or a shared level can have its shar­
ing access modified. Sharing can be 
universal (meaning that any user may 
share). or selective (meaning that only 
those users whose user-IDs are included in 
the input parameter lists are allowed to 
share). LOCATE is called to retrieve the 
proper level for the fully qualified name 
supplied. For selective sharing, a sharing 
list is created or updated, depending on 
the type of request. 

UNSHARE Routine 

This routine removes sharing privileges 
from a catalog level. 

First the proper level is located and 
checks are made to see that the sharing 
mode of the level is compatible with the 
type requested. If the sharing mode is 
universal and the request is to delete all 
sharers. the sharing flag is set to priv­
ate. and the new index level is updated in 
the catalog. If the sharing mode is selec­
tive and the request is to delete all 
sharers, the additional operation of delet­
ing the sharer's list is performed. When 
the sharing mode is selective and the requ­
est is not to delete all members, the 
sharer's list is searched and only the mem-



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

bers passed in the parameter list are 
deleted. 

SHAREUP Routine 

This routine links one user's private 
catalog to a level in another user's shar­
able catalog, by constructing a sharing 
descriptor in the sharer's catalog that 
points to a level in a user's catalog that 
was previously designated as sharable. The 
shared index level is retrieved to deter­
mine if the calling program is allowed to 
share. If the calling program or user is 
allowed to share and his fully qualified 
name is unique, a sharing descriptor is 
constructed by the INDEX routine. 

CATFLUSH Routine 

This routine copies: 

• Specified members to USERCAT without 
deleting them from SYSCAT. 

• Inactive members to USERCAT, deleting 
them from SYSCAT. 

• All members to USERCAT, erasing SYSCAT. 

• SYSOPERO if SYSCAT exists at startup. 

Prior to any copy, SYSSVCT is tested to 
determine whether the user catalog and the 
system scratch catalog (SYSCAT) are already 
identical. If so, the copy is not made. 

DSCB/CATALOG Recovery Routine 

This routine resynchronizes a user cata­
log if the current member in SYSCAT cannot 
be used. It also rebuilds a user catalog 
from public DSCBs should no member exist in 
SYSCAT and the user catalog becomes unus­
able. In this instance, all sharing infor­
mation is lost. This routine assumes that 
the USERCAT member is locked in SYSCAT, 
preventing multiple users from attempting 
recovery of a user catalog. 

USERCAT SCAN 

This routine rebuilds the SYSSVCT. Such 
an operation becomes necessary if the Auxi-

liary Volume is restored, or if SYSSVCT is 
corrupted in some manner. The new SYSSVCT 
is built from the User Table and a scan of 
public storage for user catalogs. 

LOCATE Routine 

This routine determines the location of 
SBLOCKs within the catalog, either by name 
or relative address, and retrieves them. 
lOCATE then attempts to find the first 
SBLOCK for the last level pointed to by the 
fully qualified name. 

When the SBLOCK has been located, it is 
moved into the calling routine's buffer 
area (given to LOCATE as an entry 
parameter). 

SEARCH SBLOCK Routine 

This routine acquires and chains an 
empty SBLOCK as either an extended SBLOCK 
of a cataloged entity or the first SBLOCK 
of a cataloged entity. 

The count of SBLOCKs in each page is 
checked until an available SBLOCK is found. 
The relative address of the SBLOCK within 
the page is then located by searching for a 
block containing all zeros. The new SBLOCK 
is retrieved by GET SBLOCK, and its virtual 
storage address is returned to the user. 
The new SBLOCK is linked to the parent 
SBLOCK before returning control to the 
user. 

GET SBLOCK Routine 

This routine locates a specific SBLOCK 
from a pointer address and calculates the 
virtual storage address of the block for 
the using program. 

If the requested SBLOCK is already in 
the page buffer, the virtual memory address 
is calculated and returned to the user. If 
the requested SBLOCK is not in the page 
buffer, the GET macro instruction is 
executed to read the proper page into the 
page buffer. The virtual storage address 
of the SBLOCK is then calculated and 
returned to the user. 

Catalog Service Routines 159 



Page of GY28-2009-2, Deleted September 30, 1971 by TNL GN28-3193 

160 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

Sharing is defined as the permission for 
more than one user to access a program or 
data set. There are four major types of 
sharing: 

1. External - there exists one copy of 
the data set externally, and each user 
receives his own copy internally. 
Examples: SAM data sets, object pro­
gram modules with only ·private" con­
trol sections. 

2. External with internal control - one 
copy of a VAM data set exists extern­
ally and each user receives his own 
copy internally. However, as opposed 
to EXTERNAL above, all concurrent 
users do share a RESTBL, and control 
of the external copy is via this 
shared table. 

3. Internal and external - part of a data 
set is shared internally by all users, 
and each user gets his own copy of 
another part. Example: program 
modules with public CSECTs and proto­
type CSECTs. 

4. Internal - only one copy exists 
internally for all users. Example: 
Shared Page Tables, Shared Data Set 
Tables. 

EXTERNAL SHARING 

EXTERNAL SHARING OF DATA SETS 

External Sharing of Data Sets is imple­
mented in the catalog. A user can allow 
any portion of his catalog to be shared. 
He can specify a particular data set to be 
shared, or he can specify an index level 
(part of a fully qualified name) to be 
shared. In the latter case, all index 
levels belOW the shared index are sharable. 

The user who authorizes the sharing of a 
portion of his catalog is referred to as 
the owner; those authorized by the owner to 
share are sharers. 

The owner has the option of specifying 
the accessing privilege of those who are 
allowed to share a data set or index level. 
The classes of accessing privilege are: 

SHARING 

• A Sharer has unlimited access to shared 
data sets and to the shared portion of 
the catalog. 

• A Sharer can read and write data sets 
cataloged in shared portions of cata­
log, but cannot make changes to the 
owner's catalog entry. He cannot ERASE 
the data set. 

• A Sharer can read only the data sets 
cataloged in the shared portion of the 
catalog, but cannot make changes to the 
catalog. 

The owner can specify a data set or 
index level as universally sharable, or he 
can specify explicitly those users who are 
allowed to share. The list of permissable 
sharers is in the Catalog. If the owner 
specifies universal sharing, any user is 
allowed to share provided he completes the 
required linkage (by using the SHARE 
command) • 

The owner permits sharing through the 
PERMIT command, but the sharer must provide 
for the linkage between his catalog and the 
owner's catalog. The sharer does this 
through the SHARE command, providing to the 
system: 

• The owner's identity. 

• The fully qualified name assigned by 
the owner to the data set or index 
level. 

• The fully qualified name assigned by 
the sharer. 

To indicate how the sharing linkage is 
accomplished, consider the following 
example. The owner, User 1, whose identity 
is USER1. specifies that he will allow 
other users to share index level A. User 2 
wishes to access User l's data set A.B and 
call it X.Y. User 2 must then provide 
USER1. A.B and X.Y as parameters for the 
SHARE command. 

A subsequent access to the data set X.Y 
would cause a catalog search through index 
levels X.Y.USERl.A.B to reach a catalog 
entry in User l's catalog (see Figure 75). 

Sharing 161 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

Master Index (POD) 

USER) Index Po in ter 
;------i------------

USER2 Index Po in ter 
;------t--------~-

USER) Index USER2 Index 

A Index Pointer X Index Poirlttr 
-----~-

M· lndex Pointer Q Index Pointer 
------~-,-------

N Index Pointer R Index Pointer 

A Index X Index 

Index Po in ter 

P Index Pointer 

B Index 

Indicates B }, _______ --j is Shamble r Sharing Control 

Do ta Se t Desc ri pror 

Sharer List 
Descr!ptor 

USER2 

Figure 75. Example of External Sharing 

That is how the catalog is searched. 
Let us now see how it is built. 

1. User 1. creates his data set. 

162 

ADDCAT is called to add a new data set 
to the catalog. Its input is the 
fully qualified name A.B. ADDCAT 
calls INDEX which in turn calls LOCATE 
to make sure the data set is not 
already in the catalog. If it is not, 
INDEX will look for the lowest level 
of fully qualified name already in the 
catalog (in this case there are no 
previous entries). INDEX will call 
SEARCH SBLOCK to retrieve unused 
SBLOCKS (one for each index level) and 

chain them together. When INDEX 
returns to ADDCAT, ADDCAT will take 
the lowest level SBLOCK and create a 
Data Set Descriptor which points to 
the volume on which the data set 
resides. 

2. User 1 issues a PERMIT command: 

SHARE will call LOCATE to retrieve the 
lowest level of SBLOCK (the Data Set 
Descriptor). SHARE will insert in the 
sharing flag the indication that there 
is a sharing list. SEARCH SBLOCK will 
be called to obtain an unused SBLOCK 
(for the sharing list) and chain it to 
the Data Set Descriptor. Finally 
SHARE will insert the sharer's userid 
and the sharing disposition (read 
only, read/write, or unlimited> in the 
sharing list. 

3. User 2 issues a SHARE command. 

SHAREUP is called to link the sharer's 
catalog to the owner's catalog. 
SHAREUP then calls INDEX to create the 
index levels for the sharer. SHAREUP 
also calls LOCATE again to make sure 
the sharer's fully qualified name is 
unique (i.e., he doesn't already have 
a data set called X.Y. Finally 
SHAREUP creates the sharing descriptor 
from the lowest level of SBLOCK set up 
by INDEX. 

4. User 1 later decides to delete User 2 
from the sharing list. 

UNSHARE calls LOCATE to retrieve the 
lowest level of SBLOCK in the fully 
qualified name (A.B.). UNSHARE calls 
GETSBL to get the sharing list and 
removes Us~r 2 from the list. Since 
User 2 was the only userid in the 
sharing list, this SBLOCK is now freed 
and designated as unused. 

Finally DELCAT will be called to free 
the sharing descriptor in the sharer's 
(User 2's ) catalog. (DELCAT will 
call LOCATE to retrieve this sharing 
descriptor.) DELCAT will also remove 
the pointers X. & Y. from the higher 
levels of indexing. 

External Sharing of Proqrams 

Sharing of access to progr-am modules is 
facilitated primarily through the System 
Library (SYSLIB). SYSLIB is automatically 
opened for all users during Virtual Memory 
Task Initiation and will contain, in addi­
tion to privileged system modules, the com­
monly used problem programs which the 
installation wishes to make available to 



ctll users, such as language frocEssors, 
mathematical subroutines, etc. 

'Two considerations exist in sharing pro­
grams through the system licrary. 

"t. Only the system frogramrner with the 
User Iv of TSS***** (C Authority 
Class) rray stcw into S1SLIB. 

2. Any module flaced in SYSLIB is avail­
atle to all users. 

A user may allow restricted sharing by 
placing a module in SYSUIIB or in a JOBLIB 
and issuing a .. perrr.i t n on that data set to 
anyone he chooses. This rr.akes all members 
of that data set (i.e., litrary) available 
to the sharer, providing he issues a DDEF 
cOITIDand defining that data set as a JOBLIB 
so that the LIBMAINT module will create and 
open a DCB for him which is linked to the 
litrary search chain. 

If an owner wishes to share only one 
frograrr, he must create a JOBLIE in which 
that program is the only member. 

A program (object module) is a member of 
a particular VPAM data set which may have 
been defined as a library. Since entries 
are made in the catalog only for data sets, 
no entries for frogram modules (or their 
components) are found in the catalog. 
These entries are found in the Partitioned 
Organization Directory (PCD) associated 
with that particular data set. 

Concurrent External Access 

For any data set to be shared concur­
rently among users (in the sense that User 
B can access the data set while User A is 
still frocessing it) the data set must be 
contained in the system's public storage. 

The sequential Access ~ethod (SAM) is 
supported under TSS/360 in order to provide 
a limited data set compatibility with 
Cperating Systern/360 and is, consequently, 
not designed to take full advantage of the 
time sharing environment. Because of this, 
TSS/360 permits concurrent external access 
to SAM organized data sets, tut does not 
provide any interlocks beyond the access 
privilege class sfecified in the catalog 
and checked when the OPEN rracro is issued. 
The Virtual Access Methods, on the other 
hand, are designed to facilitate concurrent 
sharing among users. 

EXTERNAL SHARING WITH INTERNAL CONTROL 

This type of sharing is unique to the 
rrocessing of Virtual Access MEthod (VAM) 
formatted data sets. Internal control of 
E;hared VAM da t_a sets f unc tions pr irr:a ri 1 y 

through two tYfes of interlocks: Read 
Interlocks and Write Interlocks. 

A Read Interlock (RI) is imposed to pre­
vent another user from writing into a data 
set or r:age of a data set. A Read Inter­
lock cannot be set if a Write Interlock has 
already been set. 

A Write Interlock (WI> inhitits any 
user, other than the user who set the Write 
Interlock, from reading or writing into a 
data set or fage. Only a single Write 
Interlock can be set at one time which 
imrlies that once set, neither Read nor 
~rite Interlocks can be applied thereafter 
until the existing Write Interlock is 
reset. 

There are three levels at which Read or 
~rite Interlocks can be set: 

• Lata set level 
• Partitioned data set member level 
• Data set rage level 

DATA SET INTERLOCKS: A Data Set Interlock 
is set according to OPEN oftions (INPUT, 
OUTPUT, INOUT, OUTIN, UPDATE) and restricts 
the kind of OPEN options that will be 
accefted from future concurrent users 
according to the following rules: 

INPUT 

A Read Interlock is set for VSAM and 
VISAlV data sets. A Read Interlock will 
be set for a VPAM member when the FIND 
macro instruction is issued. 

OUTPUT 

A Write Interlock is set for VSAM and 
VISAM data sets. A Write Interlock will 
bE set for a VPAM member when the FIND 
rracro instruction is used. 

INOUT, OUTIN, UPDATE 

A Write Interlock is set for VSAM data 
sets. A Read Interlock is set for VISAM 
data sets. VPA~ members are Read or 
Write interlocked according to their 
status upon issuance of the FIND macro. 

Data set interlocks are reset when the 
CLOSE macro is issued. 

MEMBER INTERLOCKS: A VPAM data set is not 
interlocked at the data set level as is the 
case with VSAl", and VISAM data sets. VPAM 
data sets are interlocked at the member 
level upon issuance of the FIND macro. The 
Partitioned Organization Directory (POD) is 
interlocked only during the execution of 
the FIND and STOW macros. Member Inter­
locks are set within the POD and are 

Sharing 163 



imposed by the FINL and released by the 
STOW or CLOSE macros. 

Interlocks are placed at the data set or 
data set nember level when the INPUT or 
OUTPUT options are used and, for VSAl>', 
whenever INOUT, OUTIN cr UPDATE are used 
because the access method interprets each 
PUT macro instruction as an end-of-data set 
indicator. This means that a PU1 issued 
within a data set truncates the data set 
and, in effect, deletes all the following 
records. This is a useful feature in 
updating data sets. 

However, if a Read or write Interlock were 
not imposed during sharing, one user could 
attempt to read or write to a portion of a 
data set that was just deleted by another 
user. 

Shared VISAM data sets opened for UPDATE 
are forbidden to use the PUT macro instruc­
tion and, in return, are assigned only a 
Read Interlock at the data set level. 

PAGE INTERLOCK: When shared VISAM data 
sets are opened with either UPDATE, INOUT, 
or OUTIN opticns, only a data set or memi;er 
level Read Interlock is set. Therefore it 
is necessary to provide additional Read and 
Write Interlocks at the page level. 
Although the macros which set these inter­
locks reference individual records, the 
interlocks set as a result of executing 
these macros apply tc all records contained 
within the referenced page. Page level 
Read and Write Interlocks fer a VISAM data 
set are set as follows: 

• Page level Read Interlocks are imposed 
on the page referenced by execution of 
the GET or the Read-according-to­
specified-key (type NY) macro. Neither 
SETL nor OPEN impose any page level 
Read Interlocks. 

• Page level Write Interlocks are imposed 
only by a READ-exclusive (type KX) 
macro. Neither SETL nor OPEN impose 
any page level Write Interlocks. 

• page level Read Interlocks are released 
by a READ (type KX), WRITE, ESETL, 
DELREC or RELEX if issued against the 
DCB which caused these interlocks to i;e 
set. They are also released by execu­
tion ef a CLOSE or any other macro 
which references a page other than the 
page referenced by the macro instruc­
tion which caused the interlock to be 
set. 

• Page level write Interlocks are 
released by the GET, READ (type KY), 
RELEX, WRITE, DELREC, or CLOSE macros 
or by execution of any other macro 
which references a page other than the 

164 

fage referenced by the macro instruc­
tion , .... hich caused the interlock to be 
set. 

Read or Write Interlocks on the data set or 
fage levels rray only be released by using 
the appropriate DeB within the ta~,k which 
criginally set the interlock. Only a 
single Read or Write Interlock may be 
irrfosed i;y a given DCB. 

~here is a trade-off between sharing a com­
mon control mechanism (i.e., RESTBL) and 
giving each user a private image of the 
physical page as is done in TSS/360 and 
sharing the tuffer contents themselves. In 
the former case, control of access is 
siIllfle and efficient, but cannot be safely 
brought down to the record level. The 
latter case implies a more complex control 
mechanism and still does not guarantee a 
Significant imfrovement in the accessabili­
ty of shared data. This is because there 
is little frebability that two or more 
users will wish to refer to the sarre page 
cf a large data set at the same time. 

USER CONSIDERATIONS: 

1. The only way a user can gain exclusive 
control of a shared VISAM data set is 
te use the OUTPUT keyword when the 
data set is opened. It should be 
noted that although the data set is 
opened for output, a user can, in 
fact, read the data set. 

2. If updating of a VISAM data set is to 
be effected, the record to be ufdated 
should have been obtained by a READ­
exclusive (type KX) macro. If users 
of a shared data set do not employ 
this procedure, two tasks rray cencur­
rently reference the same pagE, using 
either the GET or READ by key (tn:e 
KY) n,aeros and decide that a record 
within the page should be uFdated. 
Since both tasks use WRITEs to the 
same page, the task which last issues 
the WRITE te the page in question will 
cancel the effects of the previously 
executed WRITE. 

3. A READ (tYfe KZ) by retrieval address 
should not be employed ty users of 
VISAM shared data sets since the 
desired record can l::;e shared i;y anoth­
er task. 

4. coding sequences within a task rray 
preduce an intra-task interlock that 
cannot be detected by the access 
method. For example, the sequence 

READ DECB. KX , (1) , (0) , (2) 

GE'I (D 



where the REAL and GET macros reference 
different DeBs within the same task will 
produce a task loop, since the GET will 
cause the task to become dormant while 
waiting for the WI set by the frevious READ 
to be reset. The WI will not be reset 
since the sarr,et.as k is ncw dormant awaiting 
resetting of the WI. The user should pay 
close attenticn to the rules of interlock 
set/reset when dealing with multiple opened 
LCBs within a given task. 

The system's use cf interlocks for sharing 
requires careful control. For instance, 
system operation can be affected if one 
task sets an interlock in a system table 
and then becorres inactive for a long time. 
Furthermore, sUbstantial system overhead is 
incurred if those tasks waiting for an 
interlock to be re-set are continually 
being dispatched only to find that the 
interlock is still set. 

PROCESSING 

When the DLEE' routine creates the Job 
File Control Block (JFCB), the following 
two indicators are set that reflect the 
sharing access privilege class described in 
the catalog: 

• A flag that indicates whether the data 
set may be shared. 

• A flag that indicates whether a data 
set is to be write protected. 

Whenever an OPEN macro is issued on a 
VAM DCB, COMMON OPEN will invoke OPEN VAM. 
OPEN VAM first checks the JFCB to determine 
if the data set is a sharable one. If the 
data set is sharable, the user's OPEN 
option is checked against the security 
indication in the JFCB tc see if the user 
is authorized to perform the functions 
(read or write) that he is requesting. If 
he is not authorized, control is returned 
to the COMMON OPEN routine and a diagnostic 
is issued. 

System data sets (i.e., those data sets 
with the User ID of TSS*****> are univers­
ally sharable. 

There is a special entry point in the 
Define Data routine that allows a priVi­
leged system routine to specify a User ID 
other than the User ID for the task. For 
example, this allows systerr. routines to 
create Jl'CBs for system data sets without 
having tc first issue a SHARE com~and. 
However, OPEN VAM applies protection for 
these data sets. The Catalog and User 
Table data sets are considered privileged 
data sets. Only a user with an "0" 
Authority Code and certain system routines, 
such as Virtual Mallory Task Initialization, 
are allowed tc access these data sets. A 
non-privileged user can read all other sys-

terr data sets, while privileged systelL rou­
tines and users with "0" or "P" Authority 
Codes are allo~ed read/write access to such 
data sets. 

If the user is authorized to perform the 
requested operation on a shared data set, 
the Search the Shared Data Set Table 
(SRCHSDST) routine is entered to determine 
if the shared data set is already open. 

When users share a program or a data set 
control table, they share a common page 
table. However, the virtual storage ser­
vice routines cannot directly address 
shared rage tables. This means that the 
Resident Supervisor must provide a m.ethod 
of symbolically associating the shared item 
with the page table that maps it. 

The Shared Data Set Table <SDST) is the 
means by which Shared page Table (SPT) 
entries mapping the control tables for 
shared data sets and data set members are 
located. The SDST also keeps a count of 
the concurrent users of shared data sets 
and is the repository for data set inter­
locks. A skeleton SDST is created by Star­
tup. The SDST is processed by the Search 
Shared Data Set Table (SRCHSDST) routine. 

If the SRCHSDST routine does not find an 
entry for the data set in the SDST, the 
routine assumes that the sharable data set 
has not yet teen opened. 

If the data set is not yet open, the 
follcwing operations are performed: 

• All Data Set Control Blocks (DSCEs) 
describing the extent of this data set 
are read f rom, external storage. 

• The amount of virtual storage required 
by the RESTBL and, if required, by the 
POD and Index Sequential Directory is 
determined and GETSMAIN is used to 
obtain shared virtual storage for that 
number of shared pages. 

• For a sharable data set, the skeletal 
SDST entry created by the SRCHSDST rou­
tine is completed by filling in a 
Shared Page Table (SPT) identification 
num,r.,er, the number of pages obtained 
through GETSMAIN, and the relatiVe 
position within the Shared page Table 
~here the virtual storage allocated by 
GETSII.AIN begins. 

• The RESTBL is built. 

RESTBL: While the sharing of VAM data sets 
is ccntrolled rrincipally through the 
Shared Gata Set Table, the RESTBL (Relative 
Page External Storage Correspondence Table) 
also plays a major role in internal 
sharing. 

Sharing 165 



Each RESTEL is contained in an area of 
virtual storage protected from the user. 
This virtual storage area has the read-only 
protection key. For a sharable data set, 
the RESTBL is contained in pages which are 
shared among the tasks using it. The 
RESTBL and the SDST are the only data set 
information mapped into Shared Page Tables. 
'Ihe sharers of a data set do not share 
JFCBs, DCBs or buffers. 

The page entries within the RES'IBL are 
ordered by page nurrber relative to the data 
set. For a sharable data set, there are 
two four-byte words per entry as follows: 

r---------T-------------------------------, 
IWORD 0 IINTERLOCK CONTROL WORD I 
t---------t-------------------------------1 
IWORD 1 !EXTERNAL PAGE ADDRESS WORD I L _________ ~ _______________________________ J 

The format of the interlock control word 
is as follows: 

r---T---T---T---' 
I W I R I N I I I l ___ L ___ L ___ L ___ J 

VI - Write Interlock indicator 
R - Read Interlock indicator 
N - Read Interlock counter. The number of 

tiwes the Read Interlock is imposed. 
I - Read Interlock control flag. If on, a 

Read Interlock is in the process of 
£eing imposed or released, and a subse­
quent request to irr,pcs e or rel eas e an 
interlock must wait. 

If the data set is a shared one and has 
already been q:ened, the following steps 
are performed during OPEN processing rather 
than those mentioned previously: 

• A check is made to see if the data set 
is open in this task. If it is, the 
following step is not performed • 

• CONNECT is used to allocate virtual 
storage space for the shared RESTBL 
and, if required, for the FOD and Index 
Sequential Di rectory, .ty connecting one 
of this task's segments to the existing 
Shared Page Table(s) which already 
describe the RESTBr, POD, and Index 
Sequential directory. Once these steps 
have been performed, VA~ OPEN proces­
sing continues essentially as it does 
for non shared VA~ data sets. 

INTERNAL AND EXTERNAL SHARlliG 

This class ef sharing is imr:;lemented by 
the Dynamic Loader. The Dynamic Loader 
places a control section containing the 
Public attribute in shared virtual storage, 
if the control section fulfills all t.he 
following conditions: 

166 

• The Public control section must, in 
general l:e named. 

• ThE Public control section comes frorr a 
shared library. 

• The user's Authority Code is U. 
• If a centrol section cant.ains the Publ­

ic attribute, it must not contain 
address constants CADCONs). 

If a control section with a ·pul:lic" 
attribute fails to fulfill any of these 
requirerrents (except the last) it is placed 
in rrivate virtual storage. The Dynamic 
Loader will not load a Public contrel sec­
tion containing address constants. 

Because shared pages remain in rrain 
storage for relatively long periods of 
tirre, internal sharing through the use of 
the Public contrel section attribute only 
conserves main storage and paging overhead 
if the Public part of the program. rrodule is 
concurrently referenced with high frequen­
cy. An example of such a routine rr.ight be 
the virtual rrerrory allocation module. 
Auxiliary storage space is conserved by 
virtue of a control section £eing read­
only; not by virtue of its ·public· 
attribute. 

The main storage residence of shared 
pages is monitored in the following 
fashion: 

Once every n time slices, the storage 
protect key reference £its for shared pages 
are inspected and re-set. The value n is a 
system rarameter specified during system 
generation. If a shared page has not been 
referenced since the previous inspection, 
it is placed on the User Core Allocation 
pending list. If the page has not been 
referenced during the preceeding n tirre­
slices, but has l:een changed since it was 
trought into main storage, it is paged out 
to auxiliary storage. 

The centrol flow involved in loading a 
rrograrr: from a shared dataset is der:;icted 
in Figure 76. When a user requests linkage 
to a routine, the Dynamic Loader searches 
the user's Task Dictionary to SEe if the 
module has already been loaded by the user. 
If the nodule has been loaded, the appro­
priate V type and R type address constants 
have already teen defined, and the loader 
simply returns to the Task Moniter with a 
fointer to these values. 

If thE module has not been loaded, the 
Dynarric Loader calls its LIBE SEARCH tc 
search the PODs of open libraries until the 
nodule is found. I-ihen the module or its 
alias is found in a POD, the Dynarric Leader 
takes the Program Module Dictionary address 
from the member entry and issues a VSAM 
SETL and a VSAl.'J GET to l;ring the PMD into 
wain storage. The Dynamic Loader then 



---. 
TDY 

L;brory 

------ ~ ~ 
Seo(ch 
Hash 
Tobie 

Hash 
Table 

~---

Publ ic 

Data Set Name Nol Found 

Move PMD 

Shared Dato Set 

Header 

I---

r--~hored 
Dato Set Poge 

NamE Table No. 

Searc\r 
ot'";d Fir'!d 
Dot.:J Set 

Nome 

-

Tuble 

I 
--

I 
NU01be, cf 1st User 

GETSMAIN 
Us-ten 

1------ I _______ L --

I 2nd and Subsequent Users 
CONNECT 

Figure 76. Control Flow for Shared Data Set Program Leading 

links to its Allocate routine which, 
together with its subroutines, adjusts con­
trol section attributes based on the user's 
authority code and whether the library is 
shared, and verifies the aoceptability of 
the control section narre. The Public 
attribute is erased if the user authority 
code is P or 0 in order to allow a system 
programmer to receive private copies of any 
(virtual storage) system routines not 
included in Initial Virtual Memory. If the 
Public control section was obtained from a 
private library, the Public attribute will 
be erased so that shared virtual storage is 
not needlessly allocated. 

The Dynamic Loader then proceeds to 
allocate shared or private virtual storage 
on the basis cf groups of control sections 
with similar attributes. The control sec­
tions are grouped in order to minirrize the 
number of calls that must be made on Virtu­
al Memory Allocation. 

The Dynamic Loader calls its Get Storage 
routine to select the proper entry point to 
the Virtual Merr.ory Allocation. If Get 
Storage discovers that the public bit is 
ontor the group of contrel sections being 
allocated, Get Storage calls SRCHSDST to 
see if an entry exists in the Shared Data 
Set Table for this member. If an entry 
does exist, Get Storage calls Virtual 
Memory Allocation at the entry point CON­
NECT. The function of CCNN.c;CT is to assign 
a segment to the shared page table which 

naps the control sections to bE shared. If 
there is no entry corresponding to this 
rrember, SRCHSDST creates a skeletal entry 
and notifies Get Storage. Get Storage then 
calls Virtual ~emory Allocation at the GET­
SMAIN entry point. The fUnction of GETS­
MAIN is to allocate shared virtual storage. 
GETSMAIN returns to Get storage with the 
Shared Page Table identification number and 
the relative location of the allocation 
",ithin the shared segment. Get Storage 
uses this information to complete the 
Shared Data Set Table merrber entry. 

Get Storage goes through this procedure 
for each group of public CSECTS to be allo­
cated. For the first grouJ::, the rr,odule 
narre is used as a search argument. For 
each subsequent group, the search argument 
is the name of the first control section 
within the group. 

Consider, for example, a module, M, of 
the following control section structure: 

CSEC'I A (READ ONLY, PUBLIC) 
CSECT (unnamed) (PUBLIC) 
CSEC'I B (READ ONLY) 
CSECT c (READ ONLY, PUBLIC) 
CSEC'I D (PUBLIC) 
FSECT E (PROTOTYPE) 
CSECT F (PUBLIC, VARIABLE) 
CSECT G (PUBLIC, VARIABLE) 

These SLST entries would appear as a 
result of public storage allocation for M: 

Sharing 167 



• An entry named M describing the control 
section group composed of A and C. 

• An entry named D describing the control 
section grour: composed of the unnamed 
CSECT and D. 

• An entry named F describing the vari­
able length CSECT F. 

• An entry named G describing the vari­
able length CSECT G. 

Note that the :rr.odule narr,€ 11- is used to 
identify the first control section group, 
while the seccnd group is identified by the 
first named CSECT in the group, D. If the 
unnamed CSECT had been the only one in the 
module with just the Public attribute, the 
CSECT would not have been allocated to 
public storage. Variable length control 
sections F and G are allocated storage 
individually, hence the unique SDST entries 
for them. 

INTERNAL SHARING 

certain tables exist in Initial virtual 
Memory which are available to all tasks. 
An exa:rr.ple of such a table is the Shared 
Data Set Table (SDST). There is only one 
copy of the Shared Data Set Table and all 
tasks reference this copy. Internal shar­
ing is also used for the RESTBrs of shared 

I 
TSI 
NO.1 

Systen" To!)je 

I 

+ 

~ 
~l t I 

TSI 
NO.2 ~ 

D 
~ 

TS I 
No. (,,-1) 

t 

I 

TS I 
No. n 

I 

(~ 

t , 
t 

I I 

data sets and for Public control sections. 
Internal sharing is implemented in virtual 
storage thrcugh various facilities of the 
Virtual lJ.emory Allocation IT,odule and by 
several Resident supervisor modules and 
tables. Before discussing the virtual 
storage interface, an examination of the 
Resident Supervisor sharing mechanisrr is 
necessary. 

The key tc understanding sharing at the 
supervisor level is to know the functions 
and relationships of the: 

Segment Table (ST) < 

Auxiliary Segment Table CAST) 
Shared Page Tables (SPT) 
External Shared Page Tables (ESPT) 
Resident Shared Page Index (RSPI) 

The general relationship of these tables is 
shown in Figure 77. 

Private page tatles are kept in the 
task's XTSI. Since a shared segment is, by 
definition, used by more than one task, 
keeping a cor;y of the Shared page Table in 
every sharing task's XTSI would involve 
excessive overhead when modifying the seg­
ment's contents. Therefore, Shared Page 
Tables are ccntained in Supervisor storage. 

XTSI 
No.2 

RSP I 

SPT!XSPT 

Figure 77. Relationship of Tables Involved in Internal Sharing 

168 



Segment Tacle entries are identical 
whether the segment is shared er private. 
A segment Table entry either contains the 
Shared Page Table address or indicates that 
the address is unavailable. 

The Auxiliary Segment Table is examined 
only it the Segment Table indicates that 
the associated page table is unavailable. 
In this case a program interruf:t ot code 16 
is caused. The Auxiliary Segment Table 
plays an important role in sharing. First 
ot all, it indicates whether or not the 
segment is assigned and if the segment is 
shared. If it is shared, the identifica­
tion number of the Shared Page Table (SPT#) 
which describes the segment will be in the 
AST entry. The SPT# is used by the Super­
visor as a search argument to locate an 
entry in the Resident Shared Page Index 
(RSPI). The Resident Shared Page Index is 
located through a f:ointer in the System 
Table and is used to update Segment Table 
entries when they have been marked "page 
tacle unavailable." 

The RSPI has an entry for each Shared 
Page Table in the system. Each entry indi­
cates the length, main storage address and 
SPT#. The RSPI is essential to maintain a 
continuous description ot each Shared page 
Table. This is because a Shared Page Tacle 
occupies an integral number of contiguous 
64 byte blocks obtained from Supervisor 
Core Allocation. If it is necessary to 
expand a Shared Page Table (for instance, 
to load a new module into the Public Seg­
ment). it is frequently necessary to obtain 
a new, larger supervisor storage allocation 
and to move the to-be-exf:anded Shared Page 
Table to this new location. There must 
then be SOrr,e method to associate a segment 
with its Shared page Table that is more 
f:errnanent than the Shared Page Table's 
address in main storage. This is accomp­
lished through the unique identification 
number (SPT#) assigned to each Shared Page 
Table. The Shared Page Table is identical 
to a private Page Table. It either indi­
cates the rrain storage address for a page 
or else that the address is not available. 
The External Shared Page Table (XSPT) is 
identical to the private External Page 
Table (XPT) excef:t the fermer has an addi­
tional word fer each entry. This is used, 
when needed, to pOint to a chain of GQEs. 
It is used to enqueue a GQE for any user 
who wants to access a shared page that is 
not in main storage but which is already 
i:;eing brought in by another user. while 
the page is in transit each user's task 
that tries to reference the page is placed 
in the page wait status. When the page is 
finally in main storage the GQES are again 
used to locate the waiting task's Task Sta­
tus Index in order to rerr,ove each task f roll, 
the page wait status. 

The relationship of these tables is 
shown in Figure 78. Control Register 0 
points to the beginning of the Segment 
Tatle. After the proper Segment Table 
entry is located, a hardware check is made 
to deterrrine if the main storage address of 
the page table is available. (All this is 
the Lynarric Address Translation (DAT) 
unit's function.) 

If the Shared Page Table is not avail­
able, a code 16 f:rogram interrupt occurs. 
To handle the interrupt, the Auxiliary Seg­
rrent Tatle entry is examined to determine 
the proper identification number of the 
Shared Page Tatle that describes this seg­
ment. The RSPI is then searched on SPT# to 
find the length and location of the Shared 
Page Table. This information is then 
placed in the Segment Table entry. 

Whenever a task is in time slice end 
processing, the Segment Table entry for 
each shared segment is set to "unavailable" 
since the Shared Page Table address and 
length could be changed before this task is 
given another time slice. 

If the Shared Page Table is available, 
it is inspected by the DAT unit to deter­
mine if the shared page itself is in main 
storage. If the page is available, then 
the address translation is complete. If 
the page is not available, a code 17 pro­
gram interrupt occurs. To handle this 
interruf:t, a page-in procedure is started 
if it has not already been initiated. The 
page can be located on auxiliary or extern­
al storage by the address stored in the 
associated External Shared Page Table 
entry. 

The Virtual Memory Allocation routines 
that are concerned with shared virtual 
storage are GETSMAIN, CONNECT, and 
DISCONNECT. 

GETS~AIN is the routine used by VAM and 
the Lynamic Loader to obtain shared virtual 
storage. GETS~AIN and the Add Shared Pages 
SVC [ADSPG] that GETSMAIN invokes are used 
to create a Shared Page Table when one does 
not exist or to obtain additional space in 
a segment whose Shared Page Table has 
already been created. The input parameters 
to GETSfw'AIN consist of the number of f:ages, 
the type, protection class, Shared page 
Table number (SPT#), and a variable alloca­
tion indicator. The number of pages is the 
amount of shared virtual storage requested. 
The type is either data set, CSECT. or 
PSECT. The protection class is either 
Read/Write, Read Only, or Read Protected. 
The shared page table number is either an 
existing SPT# or an SPT# of zero. 

An existing SPT# is used in cases where 
data sets are being packed into a shared 

Sharing 169 



segment and the SPT# is known frolli the 
first GETSMAIN. 

An SPT# of zero is used when oata is to 
be placed in a new segment. If a Public 
segment exists and the tYr:€ is CSECT, GETS­
~~IN locates and uses the SPT# of the most 
recently allocated Public segment. 

When t.he request is for a new segment, 
GETS~~IN checks to see whether a freed seg­
ment exists. If so, it will te used. If 
not, the next available segment is used. 

GETSMAIN does not keer track of where a 
new request in a packed or Public segment 
is to be allocated. This is handled by the 
Resident supervisor Add Shared Pages 
(ADSPG) SVC processor. If the request does 
not fit in at the end of the current seg­
ment (no attempt is made to fill in holes 
within a segment), ADSPG creates a new 
Shared page Table and External Shared page 
T'able, Ii nks the next av ailatl e segment to 
the new Shared Page Table, and informs GET­
SMAIN of this fact. 

Segment Tobie 

Auxiliary 
Segment Table 

Res.ident 

Control Register 0 

I Po;cter to I 
Segment Table 

t y~s 
L. - - f- ~-~ - t - - -----.J 

Page Page I Is Pcge 

::"b;;, J;::;:" I ;::':~'M-, 
No 

Program Interruption, Code 16 

No .-.. SYSFRR 

Not Used SPT No. 

Seorch RSPI on SPT No. 
Yes 

I 

Shared Page Index 
SPT 

Length 
5 PT 

Locotior 
)PI No. 

CONNECT is used to allocate shared vir­
tual storage when a Shared Page Table 
already exists for the data object. The 
input parameters to CONNECT consist cf a 
shared rage tatle number and a relative 
page location. CONNECT first checks for a 
deleted segment and, if IounJ, uses this as 
the segment numJ:::er for input to the Connect 
Segrrent (CNSEG) SVC. If not, CONNECT uses 
the next available segment. The shared 
rage table numter and relative page loca­
tion are also used as input to CNSEG. 

If a segment is already connected to the 
Shared Page Tatle, the corresponding seg­
rrent nUIliber is noted. If not, CNSEG 
creates a segment table and auxiliary seg­
rrent table entry and connects these to the 
Shared Page Table. In either case, the 
segrr'ent address us ed is passed to CONNECT 
as output by CNSEG. 

DISCONNECT is used to unlink a task's 
segrr.ent table entry from an existing Shared 
Page Table. 

I 
Yes 

I 

Main Storage Address Is Page Avai labl€' ? 

Prograrr. Interruption, Code 17 

External 

PagE 
Loco'ion 

Fetch 
Page 

Flag5 

I 
No 

Shared Page Table 

External 
Soared Poge Tobie 

Figure 78. RelationshiF BetWEen Relocation Tables and Resident Shared Page Index 

170 



Paging can be initiated in TSS/J60 by 
the occurrence of any of the following 
events: 

• A Page Relccation exce~tion interrup­
tion caused when a task attellipts to 
reference a Fage nct currently in main 
storage (see "Paging Relocation Excep­
tion Example"). 

• The Internal Scheduler discovers that 
the first XTSI page, which contains the 
PSW and relocation tables for a task tc 
be dispatched, is not in main storage. 

• After the first XTSI page has been 
brought into main storage, the Page 
Posting routine will initiate a paging 
operation to bring in any additional 
XTSI pages which exist, and the ISA 
page. 

• 'Ihe Page Out (PGOUT) SVC is invoked to 
write one or more data set pages out to 
external storage (see "Disk paging" and 
"Exarr.ple of Virtual sequential 
Processing"). 

• 'Ihe Page Out (PGOU'I) SVC processor dis­
covers that one or more pages destined 
for external storage are currently 
residing on auxiliary storage. These 
pages must be read into main storage 
before being written out to external 
storage. 

• The I/O Call (lOCAL) SVC processor dis­
covers that one or more buffer pages 
for an I/O operaticn are on auxiliary 
storage. These pages must be brought 
into main storage for the duration of 
the I/C operation. 

• The Tillier Interrupt Processor receives 
a time slice end interruption (see 
"Tillie Slice End Precessing Example"). 

• The Tirrer Interrupt Processor is 
invoked to process a forced time slice 
end or TWAIT SVC. In these cases a 
modified time slice end processing will 
be perforned. 

• The Write-Shared-Pages subroutine is 
invoked by User Core Allocation to 
page-out all changed shared pages t.hat 
have not been referenced since the last 
time the subroutine was invoked. 

Each of these events, triefly described 
elsewhere in this manual, has much proces­
sing that is unique to the event. However, 

PAGING 

all have in commcn the fact that they may 
initiate paging operations, and this is the 
aSfect with which this section is concerned 

The basic control block representing a 
unit of work within the TSS/360 Resident 
SUfervlscr is the GQE. Whenever the work 
associated with a GQE is a paging cfera­
tien, ene or mere additional control 
blocks, called Paging Control Blocks (PCBs) 
are constructed and linked to the parent 
GQE. 

Each PCB can contain up to three Page 
control Blcck entries (PCBES). Each PCBE 
represents a request to move one page. 

The types of paging operations that may 
be refresented by a PCBE are disk paging 
operations and drum paging operations. 

Each of these types of oferations can be 
further classified according to whether the 
request is for paging into main storage or 
for paging frorr rr,ain storage to auxiliary 
or external storage. 

To present the overall logic of faging 
cperations, three examples are presented: 

1. page relocation exception (Page-in, 
drum) . 

2. Time slice end interruption (Page-out, 
drun). 

3. PGOUT SVC processing (Page-out, disk). 

DRUM PAGING 

Before aiscussing the two drurr paging 
examfles, the strategy and tables used in 
1SS/360 to maximize the rate at which fages 
are rroved t,o or from the IBN 2301 drmfls 
used for auxiliary storage must be 
exarrined. 

The basic strategy used to maximize drum 
throughput is called slot sorting and this 
defends on the fellowing organization of 
the drum. Each pair of tracks is formatted 
to ccntain nine page-size records (4-1/2 
pages on pach track and the track overflow 
feature ut,ilized between tracks of a pair). 
Durr@¥ records are written between the page 
recorus to allow time for track-to-track 
electronic head switching. These dunmy 
records are used in recording errors. (See 
"Error Handling"). Each of the nine pages 
uay be called a ·position." Thus, each 
pair of tracks has nine positions. Since 

Paging' 171 



the drum contains 200 tracks or 100 pairs, 
there are altogether 900 rositions on the 
drum. corresponding positions may be 
grouped together. A group of corresponding 
~ositions is called a slot. Thus, there 
are 100 rositicns in a slot and 9 slots on 
a drum. 

The purpose of this slot organization is 
to have rages transferred at the maximum 
transfer rate of the drurr (1. 2 million 
bytes per second). A maximum of nine posi­
tions may be read from the drum in two drum 
revolutions. A maximum of nine pages may 
be written to the druIT: in two drum revolu­
tions if each of nine slots has an avail­
able position. Figure 79 shows the rela­
tionship between slot number, and hardware 
drum addresses. The physical address of a 
record on a direct access device is com­
posed of a bin, cylinder, head, and record 
number (BBCCHHiU. The bin number is not 
used on direct access devices supported by 
T8S/360. 

To conserve srace, TSS/360 routines and 
tables (such as the RESTEL), use a relative 
page number and a symbolic device address 
to represent the location of a page on a 
direct access device. The relative page 
number can be translated into the physical 
page address when the rhysical address is 
needed in a channel program (e.g., in a 
SEEK or SEARCH command). 

When the PCB is associated with a drum, 
the relative page number is replaced by a 
one-byte head number and a one-byte slot 
number. For IVM pages, Startup rlaces a 
one-byte slot number and a one-oyte head 
number into the two-byte field of the 
External Page Table or External Shared Page 
Table entry normally reserved for the rela­
tive page number. 

Slot sorting may be d~scribed as fol­
lows: Assume there are a number of drum 
access requests pending and that a channel 
program n:ust be constructed to service the 
requests. For a write request, auxiliary 
storage rrust be allocated. Auxiliary 
storage is allocated in suc~ a way that 
pages are assigned by slot number in cyclic 
order. A drum access request indicates 
whether the oreration is read or write and 
gives a slot number for the page to be 
accessed. The channel program is con­
structed in sucn a way that requests are 
selected by slot number in cyclic order 
from the queue of drum paging requests. 
This process cf arranging the requests is 
called slot sorting. 

The two queue processcrs of the Resident 
supervisor that are exclusively concerned 
with drun: paging oFerations are the Paging 
Lrum Queue Processor and the Paging Drum 
Interrupt Processor. 

172 

r--------T----T---------------------------, 
I I I Hardware Address I 
I ISlott----T-----T-----T----------~ 
IHead No.INo. IBin I Cyl·ITrackl Record* I 
.--------+----+----+-----+-----+----------~ 
I 0 1110! 0 10 I 1 
I 0 1210 I 0 101 3 
I 0 1310 I 0 0 I 5 
I 0 I 4 I 0 100 7 
i 0 1510 I 0 0 9 
1111010 1 1 
I 1 1610 I 0 1 3 
I 11 7 1 0 I 0 1 5 
I 1 1810 I 0 1 7 
I 1 191 0 101 9 
I 2 I 110 I 0 2 1 
I 2 121 0 I 0 2 3 
I 2 I 3 101 0 2 5 
I 2 1410 I 0 2 7 
I 2 1510 I 0 2 9 
I 3 I 10 I 0 3 1 
I 3 1610 I 0 3 3 
I 3 1710 I 0 3 5 
I 3 I 8 I 0 I 0 3 7 
I 3 1910! 0 3 9 
I I I· I 
I I I· I 
I I I· I 
I 199 I 9 I 0 I 0 1199 9 1 • ________ ~ ____ ~ ____ i _____ ~ _____ i __________ ~ 

1* The even numbered records are not I 
I shown. They are dummy records used fori 
I head switching and error recording. I l _________________________________________ J 

Figure 79. IB~ 2301 Drum Symbolic Address 
Relationships 

The primary fUnction of the Paging DrUID 
(;ueue Prccessor is to Perform slot sorting 
and construct channel programs. 

Each drum has associated with it two 
chains of nine channel programs each (one 
channel program for each slot on the druIT.), 
anchcred in thE System Table. 

EaCh System Table anchor is a work area 
that contains information describing tne 
status of the drum as well as pointers to 
the PCBEs, IORCBS, and associated GQEs. 
These Systen: Tatle anchors are called Drum 
Interface Control Blocks and are used by 
both the Paging Drum Queue and the Paging 
Drum Interrupt processors. 

The System Table DICB contains status 
indicators plus 18 two-doubleword fields 
where each field contains the follo",ing: 

• first doubleword -- complete 7-byte 
seek argument (BBCCHHR). 

• second dcutleword -- PCBE/IORCB and GQE 
address. 

An overview of this relationship between 
control blocks is shown in Figure 80. 



1 

'---

9 

9 

Figure 80. 

System T obi e 

Drum Interface 

Control Block 

Seek Argument 

I PCBE IORCE 
OOE Address 

Address 

Seek Argument 

PCBE, IORCE 
Address 

TIC COV 

Seek CC\V 

TIC CCW 

Seek CCW 

TIC CCW 

Seek CCW 

TIC CCW 

I OOE Address 

Search CCVv 

Read/Write CCW 

Read/Write CCW 

Search CCW 

Read/Write CCVI 

Scan Table 

Page Drum ~~ 
Device Queu~ 

GQEl 1--

GQE2 1--

'---

j.--. 

GQEn 

PCBEl 1---

- PCBE2 f'4----

PCBE3 1----

////// 1---

Relationship Among Control Blocks Associated With Drum paging 

PCBEl ~---

PC8E2 1--... 

PCBE3 

Paging 173 



The pr unary function of the paging Drum 
Interrupt Queue processor is to process 
interruptions from the one or rr,ore paging 
drums on the system. 

These interruptions can generally indic­
ate one of three conditions: 

• An error condition 

• A channel program controlled 
interruption 

• The drum has reached the end of its 
channel program 

An overview of error handling for paging 
operations is presented in "Error Control ft 

and will not be discussed nere. 

The drum channel program is constructed 
in such a way that each set of Channel Com­
mand Words (CCWs) is command chained to the 
next. This is done in an effort to keep 
the drum continually running. 

However, when the paging queue proces­
sors cannot keep ahead of the drum, it is 
necessary to invoke the Start I/O subrou­
tine to restart the drum. 

Because the intent is to keep the druIT 
continuously running, there must be some 
way to notify the Paging Drum Interrupt 
Processor whenever a maxirroum number of 
pages has been transferred. Among other 
reasons, this is done cecause a task cannot 
make use of a page that has been brought 
into main storage until the page's new 
location has been posted in its page 
tables. Similarly, the main storage occu­
pied by a page written out to a drum cannot 
be released until the results of the opera­
tion have been posted. 

Therefore, the drum channel programs are 
constructed in such a way that a channel 
program controlled interrupt (PCI) flag is 
used to rr.ake nine pages the maximum that 
may be posted for any given interrupt. 

If the paging Drum Queue Processor 
determines fron: the System 'Iatle that a GQE 
representing a program controlled interrup­
tion has been stacked on a paging drum 
interrupt queue, the processor will exit to 
the C,ueue Scanner t.o give the Paging Drum 
Interrupt Processor a chance to post the 
completed paging operations as quickly as 
possible. 

When the paging Drum Interrupt Processor 
has completed its duties, it exits to the 
Queue Scanner. 

The Paging Drum Queue processor performs 
slot sortiny and channel program 
construction. 

174 

Upon entry, the Page ~rum Queue Proces­
sor sets the DICE slot ma~>k to all ones. 
Tne GQ£-PCBs are then scanned in a sequen­
tial wanner starting with the fil:st GQE. 
The first time each G~E is processed, the 
FCE count will te copied to the PCB unpro­
cessed anu unposted fields. When a PCEE is 
found for which a channel program can l::e 
tuilt, (i.e., slot is available) the chan­
nel r:rograrc, will be built in the DICB area 
immediately, using the slot nunber as a 
pointer tc the f;roper program. 

Each channel program is cuil t ty merely 
setting the proper opcode and address in 
the Read/Write corrmands. If the channel 
program involves a write check or:eration, 
the nontransmit cit must be set. If the 
channel program is for d DRAM operation, 
the sUfpress incorrect length tit must be 
set on. As each Read or Write without 
validity check PCBE is processed, the GQE 
and CICE slot masks will be updated by 
turning the corresr:onding slot bit off, 
reducing the PCBE unprocessed count by one, 
and setting the PCEE processed bit cn. As 
Each write with validity check PC BE is pro­
cessed, the DICB slot mask is updated, and 
the PCEE write check flag is turned on. As 
each channel program is generated, the DICB 
"HIGHEST SLOT ASSIGNED" field for the com­
mand chain being built il'ust be maintained. 

When all available slots are filled 
(i.e., the DICE slot mask goes to zero), 
the scan must continue to the end cf the 
GQE currently ceing processed, in order to 
maintain the GQE slot mask properly. For 
each PCBE which is passed over (e.g., non­
processed because the corresponding slot 
has already teen taken), the program must 
set on the corresponding slot bit in the 
GQE slot rrask. 

Any PCREs encountered which have the 
cypass flag on are ignored, with the excer:­
tion that the PCEE unprocessed and unposted 
counts are reduced by one, and the PCEE 
processed flag is turned on. 

When all peEEs for a GgE have been pro­
cessed (i.e., the PCBE unprocessed count is 
zero), the GQE will be dequeued from the 
Page Drun: Queue. 

The four CCWs required for any drun, pag­
ing are a Seek (this corrmand switches the 
heads to the f)roper track), a Sea rch on ID 
equal (leoking for the correct record on a 
track), a TIC (to branch back for an unsuc­
cessful search), and a Read or Write, 
depending on the particular PCBE being rro­
cessed. The CCWs are all corr~and Chained. 

A corrrrand chain is completed in the fol­
lowing cases: 

All slots havp been filled. If the corrrnand 
chain just tuilt is the first of the two, 



the last CON generated (Read,~rite) will 
have its carrmand chain bit turned off. In 
addition, if the drUID is running (i.e., the 
second chain is being ~rocEssed), the first 
CCW following the channel progra~ of the 
last slot used in tne second chain must be 
set to a TIC pointing to the first ccw of 
the channel fragrarr for the first slot used 
in the first chain. 

If the cormand chain just r:rocessed was the 
second of the two, the ending CCW (TIC/NOP) 
will be set tc a NOP. In addition, if the 
drum is running (i.e., the first chain is 
being processed), the last generated CCW of 
the first chain will have its cormnand chain 
bit turned on, and if it is not the last 
CCW of the chain, the next CCW will gener­
ate a 'TIC command pointing to t-l1e first CCW 
of the channel program for the first slot 
used in the second chain. 

No more work to be done, or more work to be 
done but not for any available slot. In 
addition to the r:rocessing described above, 
a check will be made to ensure that a drum 
revolution will not be wasted. The DICE 
"HIGHEST SLOT USED" fields for chains I and 
II, and the DICE slot rrask may be used to 
determine the first and last slot used of 
the chain just Duilt, and the last slot 
used in the previous chain, if any. This 
information can be used to connect the two 
chains, if possible, or to set the CAW if 
an SIO is necessary. 

If the drurr is not running <i.e., the Rdrum 
is currently running" flag is not on), the 
Pathfinding subroutine is callEd and the 
symbolic device address of the drum is 
fassed to it. Pathfinding responds by 
returning the address of a physical device 
path. The Paging r:rum Queue processor then 
initiates the channel program execution by 
calling the Start I/O sutroutine, and pro­
cessing continues as previously described. 

Figure 81 depicts a drUID program that 
rr~ght be generated. 

PAGING RELOCATION EXCEPTION EXAMPLE 

The flow through the system for this 
example is shown in Figure 82 which is 
keyed to the following description. 

1. This example describes a typical 
paging-in operation resulting from a 
relocation exception, and drum paging 
is assumed. This particular situation 
might arise for a conversational task 
on its first entry into the Task Mon­
itor. Previous page-in situations for 
the task may have already occurred 
(e.g., the Dispatcher bringing in the 
X'TSI page and Page Posting causing the 

S!·ek r-=: ~~~rch tquol 

Rend Dato 

Sl"ek 

[: ~~~rch Equal D 
Write 510:;)' 8 

Write Dnto 

Seek 

L ~~~r(h Eq'.Jol 10 

rrac~ 1 
Re(:.)rd 9 '"V,-,;~, C'le(~ fer SkI 

9 rf0! (1 wr,'F 10 a 

pfcV;O'.;~ (h'::)(-'~,ei 

Pf(:9'O(~ " 

Read Dota ISkip', 

r- TIC 

L ..... Seek r'Q·:\" 0 

L: ~~tch Equa! iD r'ccord : 

Write Date 

NO? Last CCW il" chain 

Figure 81. A Possible Channel Program 
Generated by the Page Drlli~ 
Queue Processor 

ISA to be read in). However, these 
paging eperat ions do not involve a 
page relocation exception interruption 
(cede 17). 

Moreover, we assume for this example 
that both chains of channel programs 
are running, and that both chains are 
busy performing Write operations, due 
to Tirr,e Slice End paging operations. 

2. Entry to "the Resident Supervisor is at 
the Program Interrupt routine of the 
InterruFt Stacker. 

3. Supervisor Core Allocation is invoked 
to get main storage for the GQE. 

4. The Interrupt Stacker determines that 
the interruFtion code is greater than 
15 and so directly links to the Pro­
gran Interrupt Processor. The Program 
Interrupt Processor is never sup­
pressed and is re-enterable. By link­
ing directly, faster service can be 
provided for this type of interruption 
which occurs frequently. (Interrup­
tions with codes 1-15 are sent back to 
the task as software interruptions 
without being touched by a Supervisor 
Queue Processor). 

5. Having determined that this is a code 
17 interruption, the Program Interrupt 
processcr (PIP) picks up the virtual 
storage address that caused the inter­
rupticn (fram ~ontrol Register 2) and 
calls FINI;PAGE. ~ <" ,'!' 

Paging 175 



(l) Program 

Interruption 

12\ 

!nteirupt 
Stocker 

115 ) 

I/o Interruption 

\ /' 
VI" 

Interrupt 

Stacker 

:3', 

.-.. 

(1O) 

(16 ) 

Queue f-- Page 
Scanner Drum 

Interrupt 

Droce5sor 

111 ; 

• Set 

~-
Suppr·ess 

Flog 

• Page 

'-- Posting 

-. Use; 
Core -- Rei ea'5e 

~ 
Dequeue 

In+er-r-upt 

~ COE 

t--- t"'ove 
Interrupt 

~ GOE 

~--
tv"JV€ 

~-
De',;ice 

GQE 

f 
~ese~ 

Suppress 
Flog 

--. ~e5et 

PDOP 

---
Supp~ess 

Flog 

1121 114) 

1171 

, . Queue f--- Page - Set 

ScoC'ner Drum 
~ 

Suppress 

Queue 
Flag 

Processor 

- Scan 
118\ GOE 
~ PCBEs 

Construct 

r-- Cncnne! 
1]9'; Plog 

~ Eo61 
PCBE 

~ 
COl'1mand 

Chain h:) 

I-- Running 
Choin 

I I -. Dequeue I 
i ReQuest (20) I-- GOE 

1-----------

Figure 82. Resident Supervisor Paging Relocation Exception (Part 1 of 2) 

176 

12]\ 

,. Queue 

Scanner 



('22) I/O Interruption 

\ ~ 
VI 

\ 

Interrupt 

Stocker 

(32) I/O interruption 

\~ 
\ 

Interruot 

Stacker 

Figure 82. 

(30) 

Queue -------1l 
Sconner 

~ Queue 

Scanner 

(341 

I r--j---
I '11'lSJflJ( t7ol"l 
j at which 

I relocation 

J
I I exception 

j occurred 

-- \ 

Resident Supervisor Paging Relocation Exception (Part 2 of 2) 

Paging 177 



6. E'INDPAGE returns the main storage 
location of the Page Table entry and 
External Page Table (XPT) entry for 
the virtual storage address furnished 
to it. 

7. PIP checks the Page Table entry and 
finds the page still not available. 
PIP backs up the instruction counter 
in the PSW stored in the XTSI such 
that the instruction counter now 
points to the first byte of the 
instruction that incurred the reloca­
tion exception, rather than the first 
byte of the following instruction. 
PIP then goes to surervisor Core Allo­
cation to get 64 bytes in which to 
build a Page Control Block (PCB). 

8. The PCB is linked to the GeE and PCB 
fields are filled. (External location 
frorrthe XPT entry and virtual storage 
address from Control Register 2.) PIP 
places in the first GQE routing field 
the queue number cf the User Core 
Allocation QUEue, and, in the second 
routing field, the number of the Drum 
Device Queue. 

9. ENQUEUE places the GQE on the User 
Core Allccation Queue to attain a page 
of main storage into which the page 
may be read. 

10. PIP changes the task status in the 
task's TSI to page wait, and then 
exits to the Queue Scanner. 

11. User Core Allocation searches the Core 
Block Table, finds an available block, 
and puts its address in the Internal 
Address field of the PCB. This is the 
location into which the page will be 
read. 

12. MOVE GQE shifts the routing fields in 
the GQE and finds the druID queue numb­
er now in the first GQE routing field 
and calls ENQUEUE to fut the GQE on 
that queue. 

13. MOVE GQE then returns to User Core 
Allocaticn which, in turn, exits to 
the Queue Scanner. 

14. The Queue Scanner will not invoke the 
Page r:rurr Queue Processor because the 
suppress flag is on since both chains 
are busy. As scan as one chain com­
pletes, the suppress flag will be 
reset by the Page Drum Interrupt 
Processor. 

15. At some later point, a PCI interrup­
tion, designating completion of one of 
the chains invokes the page Drum 
Interrupt Processor (PDIP). 

178 

16. PDIP calls Page Posting to rost com­
pletion of the WritEs fron, that. chain. 
In additicn, PDIP resEts thE Page Drum 
uueue suppress flag, and Exits to the 
QUEue Scanner'. 

17. The Queue Scanner invokes the Page 
Drum Queue Processor (PDQO. PLQP 
first invokes the Set Suppress Flag 
routine to prevent entry into the 
queuE .ty another CPU. The Set Sup­
press Flag routine sets the appropri­
ate flag in the Scan Table entry for 
this queue. 

18. The Page Drun; Queue Processor scans 
the GQE-PCBs in a sequential manner in 
order to locate a PCBE for which u 

channel program can be tuilt. 

19. When an appropriate PCBE is found. the 
channel program is built in the DICB 
area immediately, using the slot nUIf,b­
er as a point er to t.he proper program. 
Associated with each slot nUlrber is a 
two-doubleword field containing the 
complete 7-byte seek argument 
(BECCEHR), the PCBE or IORCB address, 
and the GQE address. 

20. When all PCBEs for a GQE have been 
processed, the GQE is dequeued from 
the Page Drum Queue. 

21. Since this paging oferation will be 
chained to the chain currently run­
ning, i.e., both chains will be cur­
rently running, the suppress flag is 
not reset. The Page Drum Queue Pro­
cessor then exits to the Queue 
Scanner. 

Ultimately, when all processable GQEs 
have .teen handled, the Dispatcher will 
be invoked to select a task for execu­
tion. However, since the task which 
just experienced the page relocaticn 
exception is in page Wait status, the 
task is not eligible for considera­
tion. Some other ready task will be 
chosen. 

22. At SOIf,e later point the channel will 
reach the CCW containing the PCI flag. 
This will generate an I/O interrup­
tion, taking the CPU away from which­
ever task was operating in Frcblerr, 
state. 

23. Standard Interrupt Stacker processing 
is performed for an I/O interruption. 
HcwEver, since the Interrupt Stacker 
determines in tilis situation that the 
interruption came from a paging drum, 
the GQE is sent to the appropriate 
Page Crum Interrupt Queue. (There is 
one such queue for each drum.) 



24. The Page Drurr InterruI,'t processor 
(PDIP) interlocks its queue. 

25. Assuming that the pages whose I/O com­
pletion was signalled by the PCl were 
being written out, Page Posting will 
merely decrement the Page I/O Count in 
the TSIs for the tasks to which the 
pages belcng. No further processing 
will be done until the count reaches 
zero. 

26. Since pages were just written out, the 
main storage blocks they occupied can 
be released. A call to User Core 
Release accomplishes this. 

27. The interruption GQE is removed from 
the Page Crum Interrurt Queue (PDIQ> 
and erased via r-:,OVE GQE. 

28. The device GQE and associated PCB are 
removed. 

29. This PDIQ is now unlocked since the 
GQE that had been enqueued there has 
been Frccessed. 

30. The chain is now free, so PDIP resets 
the suppress flag for the Page Drun: 
Queue Processor, and EXits to the 
Queue Scanner. 

31. The Dispatcher is invoked to select a 
task for execution, and, as the task 
is still in Page Wait status, some 
other ready task is selected. One 
more Fass through the series of steps 
will ce made before the page required 
is Fosted as being in main storage, 
and the task changed from Page Wait to 
Ready status. 

32. Sometime later the Interrupt Stacker 
will receive the I/O interruption 
indicating channel Frogram termina­
tion. The Interrupt Stacker will send 
the interruFtion GQE to the Page Drum 
Interrupt Queue. 

33. The Page Drum Interrupt Processor 
interlocks its queue and calls page 
posting to post completion of the 
Read. Since the count has reached 
zero, page Posting will mark the task 
Ready. PLIP then releases the inter­
ruption GQE and the device GQE and its 
associated PCBS, unlocks the Page Drun:: 
Interrupt ~ueue, and exits to the 
Queue Scanner. 

34. When the task is finally selected for 
execution again, TIC will find no task 
interrurtions pending. 

35. Consequently, the task will te started 
once again and will attempt to perforn 
the instruction which originally 

caused the relocation exception (since 
PIP had moved the instruction counter 
back frcm the succeeaing instruction). 

IIE£: SLICE ENG PROCESSING EX~PLE 

The flow tnrough the system for this 
example is shown in Figure 83 which is 
keyed to the following description. 

1. The situation described herein occurs 
at the end of a time slice for a task. 
It is triggered by the tirrer value 
decrerrenting l::elow zero, generating an 
external interruption. 

2. The Interrupt Stacker is entered at 
tne External Interrupt Processing 
R.outine. 

3. A GCcE is created and placed on the 
Tirrer Interrupt Queue. 

4. The ~ueue Scanner finds work to do in 
the Time.r Interrupt Queue and invokes 
the Tim<':'r Interrupt Processor (TIP). 

5. The Timer Interrupt Processor deter­
mines if the task should be removed 
from the Dispatchable list. If the 
task's scheduling parameters indicate 
that it would be immediately returned 
to the Lispatchable list, the TIP 
saves time by orratting its paging and 
time slice end processing and Simply 
releases the space occupied by the GQE 
and returns t.O the Queue Scanner. 

If TIP determines that. t.he task will 
not be returned to the Dispatchable 
list right away, it calls Rescheduling 
which recomputes the task's scheduled 
start tirr,e and places the task on the 
Eligible list. 

6. The task status in the t.ask's 'lSI is 
changed to time slice end. Supervisor 
Core Allocation [SCAl is called to get 
s~ace for the PCB(s) needed to control 
the paging-out process. 

7. TIP ~;cans all main storage pages cf 
tne task. When it finds a nonshared 
page that has not been changed since 
it was crought in, the main storage is 
returned to the appropriate core block 
Fending queue via Oser Core Release 
(since a good copy is still available 
on auxiliary or external storage). 
TIP decrements a system count of tiRer 
interru[tions. If it cecomes zero, it 
is reset and the Write Shared Pages 
sul:::routine is called to initiate page­
out operations on al~ shared fages 
that have net been referenced since 
the last tiRe the count was reset. 

Paging 179 



~ (I) Timer 

~~ Interruption 

~ rs;::sor I (2) r--1 ~::rvl 
Allocation 

Interrupt 

Stacker 
, 

~ eO,,"""' 

I 
(3)~----------------~ 

From: T;mer Interrupt Processor 

Queue 

Scanner 

(12 ) 

Queue 
Scanner 

(4 ) 

Auxi I iary 
Storage 
Allocation 

Figure 83. Resident Supervisor Time Slice End 

180 

Timer 
In terrupt 
Processor 

1 50 r~--:=--l 

~ 

(II )1---------..... 

Supervisor 
Core 
Allocation 

Enqueue 

To: Queue Scanner 

Queue 
Scanner 

1-----1 
(17) i 

I 

Page 
Drum 

Queue 
Processor 

Phase I 

I 

I 

I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

L ______ -.J 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

8. When a changed page that came in from 
auxiliary storage is found. a call is 
made to Auxiliary Storage Release to 
make available the auxiliary storage 
location which now contains an obso­
lete version of the page. 

9. TIP constructs a PCB entry for each 
changed page. TIP fills in the 
Internal Address field with the cur­
rent main storage location of the 
page. The PCB(S) are then linked to 
the GQE. TIP places t,he symbolic 
queue number of the Auxiliary Storage 
Allocation(ASA) Queue in the second 
field of the GQE routing area. 

10. MOVE GQE shifts the routing fields and 
consequently calls ENQUEUE to place 
the GQE on the ASA Queue. 

11. TIP has now set up the paging opera­
tions and so exits to the Queue 
Scanner. 

12. The Queue Scanner, finding a GQE on 
the ASA queue, invokes the Auxiliary 
Storage Allocation Queue Processor to 
handle the GQE on its queue. 

13. Auxiliary Storage Allocation calls 
DEQUEUE to remove the GQE from its 
queue for processing. 

14. The ASA Queue Processor assigns a drum 
location for each page and fills the 
PCBE External Location field with the 
address chosen. The ASA queue proces­
sor also posts this value to the 
appropriate XPT entry, the address of 
which has been furnished to the queue 
processor by TIP. 

15. When more than one paging drum is 
available, the Time Slice End Proces­
sor, CEAKT, will set a pointer into 
the ASA Table to the drum with the 
greater available page count. ASA 
will use this pointer and allocate all 
storage requests to this drum. 

116. ASA then calls ENQUEUE to place the 
GQE on the appropriate Page Drum 
Device Queue. 

17. From this point the drum I/O operation 
is identical with the paging-in pro­
cess described in the section: Paging 
Relocation Exception Example. 

DISK PAGING 

This section describes how disk paging 
differs from drum paging. It also 
describes the specific manner in which disk 
paging is performed and presents an example 
of disk paging flow. 

The three instances in which disk paging 
may be necessary are the occurrence of a 
Program Interruption Code 17 (Relocation 
Exception), page migration and VAM Page Out 
(PGOUT). The example which is presented 
here is for the last case, a VAM PGOUT. 

In drum paging, an extensive effort is 
made to maximize the rate at which pages 
are moved to or from the drum by slot sort­
ing. The resulting channel program which 
performs the paging, transfers up to nine 
pages with a minimum amount of rotational 
delay. 

In disk paging, there is no process ana­
logous to slot sorting. Disk paging is 
performed for one GQE at a time in order 
that the transfer of the page can be posted 
as soon as possible. Furthermore. not only 
are disk paging request GQEs handled seri­
ally (one at a time and in order), but so 
are the PCBEs associated with the GQE being 
processed. For example, the first PCBE may 
specify a read from cylinder 5 of the 
device. the second PCBE a read from cylind­
er 6, and the third PCBE another read from 
cylinder 5. That is precisely the order in 
which the channel program would read the 
pages into main storage. No attempt would 
be made to sort together the two reads from 
cylinder 5 to lower the seek time. 

If the paging request concerns writing 
to an auxiliary storage disk (as in TWAIT 
processing), the PCBEs associated with the 
paging request GQE will contain contiguous 
disk storage addresses if such storage was 
available. This will result in a fairly 
efficient channel program with a minimum of 
seek time (cylinder-to-cylinder arm move­
ment). The reason for this efficiency is 
that Auxiliary Storage Allocation attempts 
to allocate auxiliary disk storage from one 
cylinder, if possible. 

Disk paging requires the services of the 
Resident Supervisor to build and initiate 
the execution of a channel program to per­
form the I/O to or from a non-drum direct 
access device (e.g., 2311. 2314). The two 
Resident Supervisor queue processors which 
are primarily concerned with processing 
non-paging I/O request (see -Example of 
BSAM Processing") are also the queue pro­
cessors that coordinate disk paging opera­
tions. These are the Device Queue proces­
sor and the Channel Interrupt processor. 
While it is true that these two queue pro­
cessors are called to process disk paging 
request and interruption GQES, they perform 
only minimal functions for disk paging, and 
rely heavily on sub-processors called the 
Page Direct Access Queue subroutine (PDAQS) 
and the Page Direct Access Interrupt sub­
routine (PDAIS>. 

Paging 181 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

The Device Queue Processor (DQP), when 
given control by the Queue Scanner, immedi­
ately checks to see if the first GQE in the 
queue has an I/O Request Control Block 
(IORCB) associated with it. The absence of 
an 10RCB for a GQE is taken by the DQP to 
mean that the GQE is a request for disk 
paging. In this case the DQP calls the 
Pathfinding routine to obtain an available 
channel and control unit to the device spe­
cified by the GQE. Once a path is found, 
the DQP passes control to the Page Direct 
Access Queue Subroutine. 

The main functions of the Page Direct 
Access Queue Subroutine are to: 

• Build a Direct Access Interface Block. 

• Call the Start I/O subroutine to initi­
ate the paging I/O. 

The Direct Access Interface Block (DAlB) 
built for the GQE contains four subareas: 

1. Header (pointers to the other parts of 
the DAIB and a save area) 

2. Seek and Search Argument Table (used 
to obtain parameters for building the 
CCWs. ) 

3. Channel Program Area 

4. Entry Area (contains one-far-one 
entries each pointing to the PCBE for 
each single paging operation in the 
channel program; used for posting to 
the page tables.) 

The DAIB format is shown schematically 
in Figure 84. 

The PDAQS builds a skeleton header for 
the DAIB then calls the External Page Loca­
tion Address Translator (EPLAT), passing it 
a pointer to the PCB for the GQE; the 
pointer is in the GQE itself. The EPLA'l' 
routine converts the symbolic address in 
the PCBE (symbolic device address, relative 
page number) into a physical address: 
i.e., bin-cylinder-head-record number 
(BBCCHHR). Storage areas of direct access 
devices are organized into records, tracks 
and cylinders. Based on the type of device 
on which the paging is to be done, the 
EPLAT routine calculates a unique record. 
head and cylinder number for the relative 
page number it has been given. The bin 
number is not used for direct access 
devices supported by TSS/360. The BBCCHHR 
for each PCBE constitutes, when returned to 

182 

DA 10 Header 

(Pointers to O'her Fields) 

Register Save Area 

Seek and Search Argument Table 

, l+_ -~l l_ + --C~:e'eeo"om Ae~ _~ __ -1 
t . ec",~~'",~o"~" A_rea ____ =n 
T Last PCB Entry J.~ 

Figure 84. General Format of DIAB 

PDAQS, the entry for that PCBE in the DAIB 
Seek and Search Argument Table. When all 
of the PCBEs of the GQE have been processed 
through EPLAT, PDAQS builds the channel 
program, using the information in the Seek 
and Search Argument Table to construct the 
CCws. For each channel program built to 
transfer a page to or from the address spe­
cified in an entry in the Seek and Search 
Argument Table (SSAT), PDAQS places a 
pointer to the pertinent PC BE (that PCBE 
which contains the symbolic address from 
which the SSAT entry being processed was 
translated> into the next consecutive posi­
tion in the DAIB Entry Area. The entries 
in the Entry Area are therefore in the same 
order as the channel programs. To complete 
the bookkeeping, a pointer to the "last PCB 
entry posted" is maintained by the page 
Direct Access Interrupt subroutine so that, 
as interruptions occur for the device, the 
correct page table can be posted. The use­
fulness of the Entry Area can be seen by 
looking at a disk paging channel program 
for two pages as constructed by PDAQS: 

Seek (not command chained - I/O inter­
ruption occurs) 

Seek 

Search on ID equal 

Transfer in Channel (TIC> 

Read or Write Data (first page 
transferred) 



Seek (net ccrr,mand chained - I/O inter­
rUftion occurs) 

Seek 

Search en ID egual 

TIC 

Read cr Write Data (second page 
transferred) 

The significant detail is the use of two 
seeks that are not cOIDIlland chained to each 
other. This is done sc that the channel 
will not be tied up waiting for an access 
arm to find the correct cylinder. After 
the device end I/O interruption occurs sig­
nifying the corrpletion of the seek opera­
tion, the Page Direct Access Interrupt Sub­
routine, will eventually receive control 
and will know by inspecting the DAIB that 
it is to execute Start I/O on the channel 
program at the point of the second seek. 
The device is still marked busy, so no 
other I/O operation can cause the access 
arm to move. Therefore, the second seek 
aoes not cause the access arm to move and 
is necessary cnly to set up the internal 
register of the device control unit since 
it is entirely possible that another device 
has used the control unit since the first 
seek. 

The sarr,e technigue is used for each pag­
ing operation in the channel program. 
Thus, an I/O interruption occurs after each 
page is transferred. This allows page 
tables to be updated as soen as possible. 
Page Posting is called for this purpose. 
Page Posting is supplied with a pointer to 
the Entry Area so that Page Posting can 
find the correct PCBE (the one which is 
associated with the just completed paging 
operation). After each page posting,the 
Page Direct Access Interruft subroutine 
checks the DAIB for remaining channel pro­
grams. If there are any remaining, they 
will be initiated by calling Start I/O. If 
there are no more pages to te transferred 
for the DAlB, PDAIS exits to Queue Scanner. 

In discussing the PDAQS and DAIB, the 
Eage Direct Access Interrupt Subroutine 
(PDAlS) was described indirectly. To reit­
erate, PDIUS: 

• Calls Start I/O to initiate the next 
paging operation in the DAIB,if there 
is one. 

• Calls Page Posting tc update the Page 
Tal:les. 

• Maintains the entry area pointer so 
that it always points to the PCBE asso­
ciated with the next paging operation. 

Example of Disk Paging 

In the following example, the Page Out 
Routine (PGOUT), called by the SVC Queue 
Processor at the time of the PGOUT SVC, has 
just completed its function of validity 
checki ng the I/O page control Block passed 
to it ty the VAM I"iOVEPAGE routine and fOs­
sitly bringing in pages from auxiliary 
storage, if any were found to be on the 
drum and not in main storage. The PGOUT 
routine then enqueues GQES upon the device 
queues of the device or devices tc which 
the VAM fages are to be transferred. PGOUT 
obtains the symbolic addresses of the loca­
tions to which the paging is to take place 
from the entries in the IOPCB passed to it 
by the VAM. 

The flow through the system for this 
exaurle is shown in Figure 85 which is 
keyed to the following description. For 
the furfcses of the example, it is assumed 
that there is only one active task in the 
system at t.he time of the PGOUT SVC. 

1. The PGOUT Routine is called by the SVC 
Queue Processor to check the IOPCB 
built by the VAM routine Move Page for 
certain errors. Assuming the page to 
be paged out is in main storage at the 
time of the SVC. PGOUT will call the 
Enqueue routine to place the GQE en 
t.he queue of the device to which the 
page is to be written. The PGOUT rou­
tine then exits to the Queue Scanner. 

2. The ("ueue Scanner invokes the Device 
Queue ProceS30r. This GQE is a paging 
request. 

3. The Device Queue Processor invokes the 
Pathfinding Subroutine to find and 
assign a real path (device, centrol 
unit, channel, channel controller) to 
the device. 

Upon return from Pathfinding, the 
Device Queue Processor checks the 
IORCB flag in the GQE to determine if 
this is a paging or nonpaging request 
(raging, in this example). 

The Device Queue Processor then checks 
tne flag in GQE indicating whether the 
Channel Interrupt Processor has just 
finiShed frocessing a paging interrup­
tion on this device. 

At the present point such processing 
has net been finished. 

Paging 183 



..... "'1 
(X) fJ· 
.c <.Q Pageout 

>:: Service 
rj 
(0 Routine 

(PGOUT) 
(X) 
(J1 

(1 ) 

0 
fJ· 
()l 

~ 

'1j 
OJ 

<.Q 
fJ· 
!:l 

c.C 

/"l' 
l<: 
OJ 
i3 

'CI 
i-' 
It 

'1j 
OJ 
rj 
rt 

..... 
0 
", 

N 

Frorr: Queue Scanner 

, 

~ 

EnGueue 

Interrupt 

Stacker 

(10 ) 

Device 
Queue 
Processor 

(15 ) 

Queue 
Scanner 

Supervisor 
Core 
Allocation 

Enqueue 

Pathfinding 

(16 ) 

.----. 

Device 
Queue 
Processor 

(2 ) 

Queue 
Scanner 

Queue 

Scanner 

(17) 

Pathfinding 

(3) 

Page 
Direct 
Access 
Subroutine 

i--
(4 ) 

.......... Queue 
Sconner 

(7 ) 

Channel 
Interrupt 

Processor 

...... 

--

Externa I Page 
Location 
Address 
Tran,lator 

(5 ) 

Start I/o 
(6 ) 

Dispatcher 

(8) 

Reverse 
Pathfinding 

(12 ) 

Reverse 
Pathfinding 

Move 
GQE 

(13) 

(14 ) 

Wait State 

(9) 

L _____________ ........ To Queue Scanner 



~ I/o Interruption 

From Queue Scanner 

From Queue Scanner 

Interrupt 

Stacker 

Device 
Queue 
Processor 

(19) 

(26) 

I/o Interruption 

Interrupt 
Stacker 

Device 

Queue 
Processor 

(32) 

(34) 

Page Direct 
Access 
Interrupt 
Subroutine 

(28) 

Page 
Direct 
Acces.s. 
Interrupt 

Subroutine 

Queue 
Scanner 

Start 1/0(29) I 

Figure 85. Disk Paging EXarn~l€ (Part 2 of 2) 

Channel 
Interrupt 
Queve 
Processor 

Dispatcher 

(31) 

Channel 
Interrupt 
Processor 

i--------t~ Wait State 

SCR 

(33) 
To Queue Scanner 

TIC 

I-_______ .... ~ Put Task ;n 
L.. _____ ..:(4_1...:)...J Execution 

Paging 185 



4. The Levice ~ueue Processor then links 
to the Page Direct Access QUEue Sub­
routine (PDAQS). It is the responsi­
bility of this routine to build the 
channel corrmand sequences and issue a 
call to START I/O. 'Tue PDACS builds a 
Direct Access Interface Elock (DAIB) 
for each PCB. (The DAIB holds the 
corrrrand sequence.) The DAIB is fUnc­
tionally quite similar to the Drum 
Interface BlOCK. 

5. U~;ing the rela-tive r:;agE' number dnd 
device ty[e, the External Page loca­
tion Address Translator calculates the 
proper~ address (cylinder,head, 
record) of the rage. 

The Page Lirect Access Queue subrou­
tine then cOITlrletes the command 
se4uence. The resulting channel pro­
grarr for a one rage I/O transfer would 
look. like this: 

.::S:...:e=-e=-:k. _______ not corrmand chained 

Seek 

Search on IL equal 

Transfer in Channel (TIC) 

Read cr Write Lata 

Notice that omitting the command chain 
flag between the two seeks prevents 
the channel frorr being tied up while 
the access arm is moving to the 
desired track. The second seek is 
necessary only to set up the internal 
address registers of the device con­
trol unit, since the arm should be 
correctly positioned due to the first 
seek. 

6. The Page Direct Access Queue Subrou­
tine now sets an in[ut switch and 
calls the Start I/O Routine to initi­
ate the execution of the channel pro­
gram in the DAIB. 

7. The Page Direct Access Queue Subrou­
tine then exits to the \:;ueue Scanner. 
The PDAQS has done all possible work 
at this time for the paging G\:;E. 
Under the specific case where this is 
the only task in the system, there are 
no other GQEs to [rocess so the Queue 
Scanner exits to the Dispatcher. 

8. The Queue Scanner calls the Dispatch­
er, where, in this case, no other 
active tasks are found. 

9. Since there is no other task to use 
the system, the Dispatcher places the 
system in wait state with all inter­
ruptions [ermitted. 

186 

10. The I/O interruption for the channel 
end occurs indicating that the seek is 
now under way. A GQE will be built 
and placed upon the Channel Interrupt 
queue since ~he interruption carre froffi 
a disk. 

11. The Channel Interrupt Processor (CIP) 
is invoked and it uses DEQUEUE GQE to 
reffiove the GQE frOlr: the Channel Inter­
rupt Queue. 

12. CIP then invokes Reverse Pathfinding 
to translate the haroware device 
address stored by the channel end 
interruption into the appropriate sym­
bolic device number. 

The Channel Interrupt Processor then 
determines if the I/O interruption is 
solicited (in this example it is). 
This is accomplished by check"ingthe 
Device \:;ueue for this symbolic device 
and finding the proper flag set indi­
cating that an I/O operation has been 
started. Note: the first G\:;E on the 
Device Queue is the soliciting GQE. 

13. ~everse Pathfinding is invoked to make 
the channel and the control unit free 
in the Pathfinding Table. As a result 
of the single seek of the first part 
of the channel program, a channel end 
is indicated in the cnarulel status 
word stored as a result of the I/O 
interru[tion. The eIP sees the chan­
nel end indicator, and calls Reverse 
Pathfinding to free the channel and 
control unit. The device is still 
working at this time, and since no 
device end was received, the device 
will not te freed at this time. The 
CIP then continues processing. It 
uses the symbolic device address to 
determine the soliciting GQE. CIP 
resets a suppress flag in the Scan 
Table entry for the Device Queue to 
allcw the Device Queue Processor to 
process the GQE on its queue a second 
tirre. CIP then moves the CSW informa­
tion from the GQE which was attached 
to the Channel Interrupt Queue to the 
device GQE (attached to the Device 
Queue), and sets a flag in the device 
GQE to indicate a paging interruption 
has occurred. 

14. ClP next invokes Move GQE to release 
the GQE by calling on Supervisor Core 
Release. Note: The GQE IToverrent 
field should contain 'FF' as the next 
location for this GQE. The 'FF' 
causes ~ove GQE to release the GQE. 

15. The CIP has completed its processing 
for now and exits to the Queue Scan­
ner. The Queue Scanner eventually 
invokes the Device \:;ueue Processor. 



16. 

17. 

18. 

19. 

The Device Queue Processor notes that 
only channel end has occurred, not 
device end. Tnis implies that the 
seek is under way. 

The Cevice Queue Processor then calls 
Pathfinding to obtain a path once 
again to the paging device. The full 
path is not available because the 
device is still busy. The Cevice 
Queue Processor then sets a suppress 
flag in the Scan Tatle entry to indic­
ate 1/0 is under way for this device. 

Exits to tne Queue Scanner, since, 
until an I/O interruption occurs sign­
alling device end, execution of the 
DAIB cannot continue tecause the 
device is still busy (seek operation 
going on). 

In this example there is nothing left 
to do but wait. The TSI is in page 
wait and the only queue with a GQE is 
locked so there is nothing for the 
system to do. 

An I/O interrupticn will cccur with 
device end indicating that the seek is 
complete. It will te necessary to 
issue another Start I/O to begin the 
actual paging operation. A GQE is 
created and stacked on the Channel 
Interrupt Queue. 

20. The Channel Interrupt Processor pro­
cesses the device end interruption. 

21. The Channel Interrupt Processor links 
to Dequeue GQE to remove tne GQE frorr 
the Channel Interrupt Queue. 

22. Then, CIP links to Reverse Pathfinding 
to translate the hardware device 
address into a symbolic address. 
Using the Symbolic Device Address as a 
queue nunber, CIP deterrr,ines if this 
is a solicited 1/0 interruption. 

23. eIP links to Reverse pathfinding 
again, this time to free the device. 
Having determined the soliciting GQE 
the ClP resets a flag in the Scan 
Table to allow processing by the 
Device Queue Processor. elP then 
moves the esw information from the 
GI,;E, forrrerly on the CIP queue, to the 
soliciting GQE on the Device Queue. 
Next, elP sets a flag in the solicit­
ing GQB to indicate that a paging 
interruption has cccurred. 

24. elP finally links to ~ove GQE to 
release the interruption GQE through 
Supervisor Core Release. 

25. Exit to the Queue Scanner. 

26. The Device Queue Processor is invoked. 

27 • 

28. 

29. 

It recognizes the completion of the 
seek and wishes to initiate a Start 
IIC sequence that will perforn, the 
data trans'fer. 

Pathfinding is invoked to find and 
assign a real path to the device. 
(Device, control unit, channel, chan­
nel controller.) Now the entire path 
is available, since the first seek is 
cOIl'flete. The {~F; flag in theGQE 
is checked to deterroine if this is a 
paging or nonpaging request. It is a 
paging request. The flag is checked 
to determine if a paging interruption 
has occurred. In this example it has. 

The Device Queue Processor then links 
to the Page Direct Access Interrupt 
Subroutine (PDAlS) to test to see if 
an additional channel program in the 
DAlE should be initiated (it should). 

Start I/O is invoked to start the I/O 
to execute the channel prograrr. for the 
actual r::aging. 

30. The PDAlS is finished for now and 
Eexi ts to the Queue Scanner. 

31. Again, because there is only one task 
in tne system and because the task is 
in page wait and the queue with the 
GQ~ is locked, the wait state is 
entered. 

32. Channel end and device end are 
received indicating the completion of 
the paging operation. A GQE is 
created and stacked on the Channel 
Interrupt Queue. 

33. The lnterruFt Stacker exits to the 
Queue Scanner. The Channel Interrupt 
Processor is invoked. Note that the 
sequence here is the same as previous­
ly occurred involving reverse Fath­
finding and then the releasing of the 
GQE. (Steps 19 to 25.) 

34. elP exits to the Queue Scanner. The 
Queue Scanner invokes the Device Queue 
Processor. At this point it is recog­
nized that the paging I/O has been 
completed. 

35. Pathfinding is invoked to obtain a 
path. The path will not be used since 
there are no more paging operations to 
be executed in the DAlB. The PDAlS 
will free the path later through 
Reverse Pathfinding. The Device Queue 
Processor makes several checks: pag­
ing or non-paging check (in this 
exanple, paging). Is there a flag 
indicating paging interruption? 
(Yes) . 

Paging 187 



36. The Page Cirect Access Interrupt Sub­
routine is entered to determine if the 
paging operation is complete. It is. 

37. Page Posting i$called to post the 
page (mark i t ~ii vailable) in the proper 
location in the XTSI. 

38. Dequeue GQE is called to remove the 
GQE fron; the chain of G~Es attached to 
tLe device queue of tne direct access 
device tc which faging has just been 
completed. 

39. Move GQE is called to remove the 
device GQE and associated PCBs through 
supervisor Core Release. 

188 

40. Since the Page Direct Access ~ueue 
Subroutine has completed its proces­
sing, the Queue Scanner is calleo to 
look for cther work to perform. For 
this example there are no other GQEs 
tc frocess and Queue Scanner exits to 
the Dispatcher. 

41. This time the Dispatcher will find the 
task ready to use a CPU and will dis­
patch the task, thm; ending this disk 
paging example. 



ERROR RECOVERY AND RECORrING 

TSS/360 prcvides the If,eans for attempt­
ing recovery from several types of errors 
and for the recording of a variety of data 
pertaining tc certain errer conditions. 
Provision has also been made for the re­
trieval of this error data for analysis by 
responsible system personnel. 

ERROR LEFINITION 

TSS/360 defines errors according to four 
basic types. Each type is handled indivi­
dually and in a unique manner. The four 
classifications of error are: 

1. Machine errors 

2. paging I/O errors 

3. Task I/O errors 

4. Systerr, errors 

Machine errors are caused by hardware 
malfunctions in central processing units, 
storage elements, or channel control units 
and are detected by the checking circuits 
of the unit involved. These errors are 
indicated by the generation of a machine 
check interruption. 

Hardware malfunctions are further 
divided into internal and EXternal machine 
check errors. The former type occurs in a 
CPU or a storage element while the latter 
occurs in a channel control unit. 

Task and paging I/O errors arE the 
result of hardware failures in devices, 
device control units, and channels and are 
detected by checking for abnormal end indi­
cators in the Channel status Word (CSW). 

I/O errors are called task I/C errors 
when they are associated with a channel 
program constructed in a task's virtual 
storage and passed to the Resident supervi­
sor through the lOCAL supervisor call. I/O 
errors are called paging I/O errors whenev­
er they are associated with paging channel 
programs. 

This distinction is made because the 
bulk of error processing logic is perforrred 
by virtual storage routines in the case of 
task I/O errors and by Resident Supervisor 
routines in the case of paging l/G errors. 

ERROR PROCEDURES 

A system error occurs when some system 
function in TSS/360 cannot operate as 
expected. Errors of this type are detected 
by the Resident sUpervisor, which reports 
the error by means of the ERROR macro 
instruction, or by a privileged virtual 
storage f:rogram, which reports the error by 
means of the SYSER macro instruction. The 
SVC interruption which results from the 
Execution of one of these SVC instructions 
will cause control to be transferred to the 
system error processor with the contents of 
the CPU registers preserved. 

Included in these macro instructions is 
an indication of the nature of the error. 
Three classifications are used: 

tJajor 

Minor 

an error detected by programming or 
signalled by a program interruption, 
the effect of which is assumed to be 
global or is unknown. 

an error detected by programming or 
signalled by a program interruption, 
the effect of which is assumed to be 
lecalized to a task. 

Hardware 
an error detected by programming, 
which is assumed to be the result of a 
machine error (CPU or rrain storage) 
that was not detected by the machine. 
<System routines do not normally 
aSSUIf,e that an error condition is the 
result of an undetected hardware 
failure. ) 

ERROR RECORDING 

Error handling rr,eohanisms are imple­
mented in order to minimize the impact of 
errors on the overall operating environ­
nent. The various mechanisms, while dif­
fering in detail, all adhere to the same 
general procedure. The immediate reaction 
to an error signal is the analysis of the 
error conjition. If retry of the failing 
operation is possible, it is attempted. 

In all cases the error environment is 
recorded in sorre manner. This information 
is then made available to qua1ified system 
personnel. Some I/O errors are not impor­
tant enough to be recorded permanently 
unless they occur an excessive number of 
times on a single device. Taking this into 
account, certain errors, if successfully 
retried, are duly noted internally. Only 

Error Procedures 189 



when the same (successfully retried) error 
occurs 16 times on one device (over a 
period of time) is it ~ermanently recorded. 
This type of errcr is called intermittent. 

Other errors are of such a nature that 
they cannot be retried. These errors and 
errors which are unsuccessfully retried are 
called solid and are permanently recorded 
whenever they occur. 

Error recording is performed differently 
according to whether the error is paging 
I/O, task I/O, systerr. or rr,achine. 

The separation of task and paging I/O 
errors is continued in the error recording 
portion of the system. Those errors per-

taining to paging operations are recorded 
Ly the Real Core statistical Data ~ecording 
(RCSLR) routine and the ~eal Core Error Re­
cording (ReER) routint-. Task I/O E'rrors 
are recorded by the Virtual Memory Statist­
ical Data Recording (VMSDR) routine and the 
Virtual ~errcry Error Recordiny (VMER) rou­
tine). The logic of these errcrreccrding 
procedures is sirrilar. Figure 86 depicts 
the error data recording interface. 

PAGING I/O ERROR RECORDING 

The cccurrenCE of an I/O error on an 
auxiliary paging device or a VAM f orrratted 
External storage device may result in an 
Entry to RCER. Before this entry is rrade, 

SuperY'isor 
Tssi360 

Error Recording 

RCER 

I Progrom I 
ljReceiVing 

Machine 
Check , 
_-----i 

Recovery 

Nucleus 

ERROR RECORDING 

.~ 
TANVBSAM I 
Posting 

Virtual Srorage 

I 
VMcRfP J 

Error Record;ng 
'-----'-----"'-------l------~--------

External 

Mach ine Check 1

_--

fnterruption ! 

! Hand!er 
~J 

--------------~I 

EREP/67 i..., ..... .--________ ~~"'~;:----- /\ 
l ________ J s: -( ) r;~ic~9 

\/ 

Figure 86. Error Lata Recording Interface 

190 

Supervisor 

1 

___ J 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

the error will have been analyzed and pos­
sibly retried. 

If the error was not successfully re­
tried or could not be retried at all, con­
trol is directly passed to the Real Core 
Error Recording routine. RCER formats an 
error record containing a full description 
of error. 

RCER then invokes the SERR Bootstrap 
module, which pages-in Environment Record­
ing to place the error record in those 
areas of the paging drum not required for 
paging (i.e., the inter-page gaps). 

If an error has been successfully re­
tried, its occurrence will be noted in the 
Paging Direct Access Statistical Data Re­
cording Table. Each device has its own 
entry in this table and each type of error 
is assigned a four bit entry or "bucket". 
One of the functions of the Real Core Sta­
tistical Data Recording Routine is to 
increment the error count in the appropri­
ate bucket as each error occurs. If the 
bucket overflows (i.e., the error recorded 
is the sixteenth of its type to occur on 
the device), a call is made to the Real 
Core Error Recording Routine for record 
formatting and for permanent recording. 

TASK I/O ERROR RECORDING 

The logic of task I/O error recording is 
very similar to that of paging I/O error 
recording. I/O errors occurring on task 
I/O devices are passed by the appropriate 
posting routine to the Virtual Memory Sta­
tistical Data Recording Routine. This rou­
tine is analogous to the Real Core Statist­
ical Data Recording Routine. VMSDR accumu­
lates statistics on intermittent task I/O 
errors and calls the Virtual Memory Error 
Recording Routine on bucket overflow or 
solid failures. 

Virtual Memory Error Recording formats 
the error record and writes it to the drum 
via DRAM (Drum Access Method). 

SYSTEM ERROR RECORDING 

The detection of a programming or a sus­
pected hardware error by the Resident 
Supervisor or by a privileged virtual 
storage program will eventually result in 
an error indication message to the opera­
tor's terminal and, possibly the generation 
of a dump to tape. 

The data supplied to the operator's ter­
minal includes a code representing the 
source, nature, and severity of the error; 
and the ID of the user whose task was in 
execution when the error occurred. 

An error processed by the system error 
processor may te one of five types: 

• Real core minor software 

• Real core major software 

• Virtual memory minor software 

• Virtual memory major software 

• Hardware 

For each type, a switch may be set indi­
cating that control be given to the Time 
Sharing Support System. In this case, sys­
tem error analysis can be conducted and a 
dump taken. 

If the switch is not set, processing 
continues by: 

• Resuming at the point of interruption 
in the case of real core minor software 
errors. 

• System restart via the Recovery Nucleus 
in the case of real core major software 
errors or hardware errors. 

• A return to the caller in the case of 
virtual memory minor software errors. 

• Abnormal task termination of the 
offending task in the case of virtual 
memory major software errors. 

~ACHINE ERROR RECORDING 

Machine check errors are recorded by the 
Environment Recording Program of the System 
Environment Recording and Retry (SERR) 
group. Such information as channel logout 
data, machine register status and user 
identification is recorded on the interpage 
gaps of the paging drum or drums. 

An immediate print program in the SERR 
group records a limited amount of informa­
tion on the operator's terminal when a 
machine check error occurs. The single 
line message this program delivers includes 
such information as the ID of the failing 
CPU or storage element and the type of 
error. 

ERROR RECORD RETRIEVAL 

Two means are provided for retrieving 
task and paging I/O errors and machine 
check error records from the drum. Virtual 
Memory Error Recording Edit and Print 
(VMEREP) is a virtual storage program which 
runs under TSS/360. It can selectively 
retrieve records from the drum and print 
them and also release the drum space for 

Error Procedures 191 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

further recording. VMEREP accesses the 
drum via DRAM. 

The Error Recording Edit and Print 
(EREP/67) program provides the same ser­
vices as VMEREP but is a stand-alone pro­
gram and is not run under TSS/360. 

In addition to these, a stand-alone pro­
gram is provided which is capable of dump­
ing the machine check environment in edited 
format. This program is known as System 
Environment Recording, Edit, and Print 
(SEREP). This program may be invoked when 
the system is unable to perform any error 
recording function. 

ERROR RECOVERY AND RETRY PROCEDURES 

TSS/360 error recovery and retry proce­
dures are designed to dynamically correct 
errors or to minimize the effect of errors 
on the system as a whole. Although the 
specific recovery procedures differ for 
each type of error. the general approach to 
recovery is the same. Failing operations 
are retried where possible, failing hard­
ware devices are checked and intermittent 
failures retried. System errors are ana­
lyzed to determine their impact. Where an 
operation cannot be retried at all or is 
retried without success. and when a hard­
ware element cannot be made to perform 
correctly, the failing element or device is 
removed from the system in an orderly mann­
er so as not to disrupt system operation. 
It is only as a last resort. when recovery 
is not possible and when removal of the 
failing component would render the system 
inoperative. that the system is shut down. 

In the case of errors resulting from I/O 
operations, if the retry fails, even after 
repetitive attempts, or if a necessary 
retry operation exceeds the capabilities of 
the analysis program, a "hard" failure is 
recognized and fault localization, to the 
component level. is invoked. The malfunc­
tioning component is set unavailable and an 
environment record is generated for later 
analysis by customer Engineering personnel. 

CPU, storage element or channel control 
unit failures are indicated by a machine 
check or malfunction alert. The occurrence 
of a machine check in duplex mode will 
result in the failing CPU being placed in 
the wait state and a malfunction alert 
being sent to the other CPU. The occur­
rence of a machine check in simplex mode or 
the receipt of a malfUnction alert in dup­
lex mode results in an entry to the Recov­
ery Nucleus. 

The error environment is recorded by 
SERR which also analyzes retry possibility. 
(Note: A maximum of two simultaneous 

192 

machine check interruptions will be 
accepted in an attempt at recovery. 
occurrence of a machine error during 
operation will result in retry being 
dered not possible.) 

The 
SERR 
consi-

If SERR successfully retries the 
instruction on which the machine check 
occurred, the affected task or the Resident 
Supervisor is resumed at the point of 
interruption. If retry is not possible or 
the error is solid, the offending CPU, 
storage element or channel control unit 
will be set unavailable. The system, in 
its reduced configuration. may be restarted 
or system operation may resume depending on 
the circumstances at the time the machine 
check error occurred. 

The term I/O retry. when used in this 
document in connection with I/O errors, is 
defined ty the following rule: I/O retry 
shall proceed along the control path which 
initially produced the error incident in an 
attempt to hold the error environment con­
stant. The retry procedure shall continue 
until: (a) the I/O sequence is executed 
without error. or (b) a maximum number of 
retry operations have been attempted, 
whichever occurs first. The maximum number 
of retries is a device dependent number 
obtained from a system table. 

I/O fault localization is performed 
along an alternate data path or paths, by 
executing the failing I/O sequence (CCW 
list) as though it were the original 
attempt. 

All components of the Resident Supervi­
sor associated with error control are resi­
dent in main storage with the exception of 
the SERR and Reconfiguration modules which 
normally reside on all the IBM 2301 paging 
drums in the system and which operate in an 
overlay area assigned at system startup. 
There exists only one copy of the Recovery 
Nucleus and SERR Bootstrap modules in TSS/ 
360. However, each PSA (one exists per 
CPU) contains an Error Recovery Control 
Tahle which provides the CPU with unique 
work and control areas for these modules. 
Thus, the integrity of multi-CPU operations 
is preserved. The Recovery Nucleus identi­
fies the various types of machine check 
interruptions which may occur and directs 
processing of the recovery procedures. The 
SERR Bootstrap program is charged with the 
responsibility of cal~ing the Reconfigura­
tion or other SERR modules for the purpose 
of error recording, instruction analysis 
and retry. CPU/storage checkout, and ~ogic­
al partitioning of CPUs, storage e~ements, 
and channel control units. 

Figure 87 represents the overall rela­
tionship between the Supervisor Error Con­
trol modules. Four entries are shown, each 



SYSERR Machine Check Machine Check Molfunction Paging 

Hardware or (Simpex or (Duplex) Alert Error 

Major Software Half Duplex) (Duplex) Recording 

l-:RR 2301 
Recovery 

Nuc leus 
Drum 

EMCI 
Process-or 

Retry 
Successfu I 

No ~ ______ .b~ ~.~rSokr i). ~_N_o ____ ~"~1 Reconfiouration 1- - (~r ~ 
--------~ "'", '---------' 

Startup 

Channel Control Unit Error Yes Yes 

r---------r 
I Ge>,Nate 

1 ~~~?Iom 
~rruPt 

r-- -- - -- - - --- --l 
! Virtual Storog~_ I 

r--~~s-patc:-lr------+l ...... ~~minate Task l 
L _____ --.J : L .J 

Figure 87. Resident Supervisor Error-Handling Overview 

of which reflects the occurrence of a spe­
cific interruption. Three exits are poss­
ible: either system operation resumes, an 
automatic system restart <simulated IPL 
sequence) is initiated, or the affected 
task is abnormally terminated and system 
operation continues. 

MACHINE ERRORS 

When a machine error is detected, cer­
tain actions are automatically carried out 
by the hardware. First, the CPU which is 
involved is interrupted by a machine check 
interruption and hardware status informa­
tion is logged out into the prefixed 
storage area (PSA) for that cPU. If there 
is another CPU in the system, a malfunction 
alert is sent to this CPU as an external 
interruption. The sending CPU then enters 
the wait state and becomes the test CPU. 
The receiving CPU enters its own Recovery 
Nucleus routine which resides in its PSA 
and becorres the controlling CPU. This pro­
cessing is described schematically in 
Figure 88. 

If there is only one CPU available in 
the systerr., a machine check interruption 
will cause CPU control to pass directly to 
the Recovery Nucleus. The Machine Check 
New PSW for the single CPU situation would 
have been initialized to effect this 
transfer, whereas in the two CPU case, the 
Machine Check New PSW for each CPU would 
have had the proper bit in the Machine 
Check New PSW set in order to cause the 
affected CPU to enter the wait state. (The 
sending of a malfunction alert and the log­
ging out function are both automatically 
generated by the hardware at the time of 
the machine check.> 

Once the CPU is in the Recovery Nucleus, 
the interruption code associated with the 
Old (Machine Check) PSW in the failing CPU 
is exarrined to determine whether the inter­
ruption was caused by an internal rrachine 
check or by an external machine check. 

If the interruftion was caused cyan 
external machine check, control is trans­
ferred to the External Machine Check Inter­
rUFt processcr which attempts to pinpoint 

Error procedures 193 



CD 
CD 
CD 
8 
CD 

Storcge Unit 1 Storage Unit 2 

PSA PSA 2 

CPU 1 CPU 2 

Malfunctioning CPU is interrupted 

Malfunction alert (as on external interruption) broadcast to CPU 2 

CPU 1 logs out hardware sfatu'i information (on an internal machine 

check) 

CPU j enters wait state and becomes test CPU 

CPU 2 €l1ters recovery nuc feus where external interrupt is identified 
as c malfunction alert, and CPU 2 becomes the controlling CPU. 

Figure 88. Initial Machine Actions on the 
Detection of a Machine Error in 
a Duplex CPU System 

the error and to take appropriate correc­
tive action which ~ill cause the error and 
its consequences to be invisible to the 
system. If this cannot be done, it may be 
necessary to create GQES to simulate I/O 
interruptions for all I/O being processed 
by the Channel Control Unit and then reset 
the CCU. Additionally, it may be necessary 
to issue Prepare commands for 2702 terminal 
lines controlled through the CCU. ~his 

~ill result in ~hat ~ill appear to the rou­
tines involved as a channel error. The 
External Machine Check Interrur:t processor 
then invokes the error recording module of 
SERR (systerr. Environment Recording and 
Retry> to record information on the error. 
After recording, system or:eration is 
resumed. If the error is a solid error the 
CCU ~ill be marked unavailable and the sys­
tem will be re-started. 

If the interruption was an internal 
machine check, SERR is called via the SERR 
Bootstrap module for recording and retry 
analysis. 

194 

SERR is a collection of routines that 
assess the error and record the error 
environment. Each of the SERl<. routines 
operate in the same overlay area and are 
brought into main storage by the Bootstrap 
rrodule. 

The follo~ing is a simplified example of 
SERR operations. The first routine invoked 
is the Checker routine. The Checker rou­
tine will save key portions of the error 
Env ironmen t. Then, the CPU Merr,ory Checkout 
routines will be invoked. The first is an 
instruction checkout routine which uses all 
the instructions of the Systern/360 instruc­
tion set and compares functional answers. 
The seoond routine checks out the CPU's 
read-only store (i.e., ReS) and local store 
control circuitry. The next routine to be 
invoked is the Pointer routine whose func­
tion is to locate the failing instruction. 
This routine is necessary, because the 
Instruction Counter may not be valid. 
Next, the Restore and Validate routine will 
analyze ~hether the instruction can possib­
ly be retried. For inst.ance, an ROS f:arity 
error can usually be retried. On the other 
hand, a bad parity indication in a critical 
register ~ill r:revent the instruction from 
being retried because there is no way to 
reconstruct the correct data. The Memory 
Checkout rout.ine ~ould next be invoked to 
determine whether a particular path to a 
memory from a CPU is faulty or ~hether 
there are any memory bytes with l::ad parity. 
Following the memory checkout, the 
Instruction-Execution-Retry routine is 
invoked. This routine forms a damage 
rer:ort which will be used ty the Recovery 
Nucleus to determine what further action 
should be taken. The Environment Recording 
routine next preserves the appropriate 
error information, as discussed in -Error 
Recording.- Following the environment re­
cording, the Instruction-Execution-Retry 
routine is invoked a second time to deter­
nine whether the elapsed time l::et~een the 
current error and the last previous error 
is short enough to indicate a solid error 
condition. Lastly, the Immediate Print 
routine sends a message to the system 
operator and the Checker routine restores 
the saved system environment and restores 
control to the Recovery Nucleus. 

If the instruction is retryable, the Re­
covery Nucleus attempts to continue system 
operation from the instruction at which the 
rrachine check occurred. If the instruction 
is not retryable, or the failure is solid, 
the Reconfiguration routine is invoked. 
The Reconfiguration routine determines, 
mostly on the basis of the SERR analysis, 
whether system operation can resume or 
whether the system must Le restarted. If 
(as in a simplex system) an autorr.atic 
restart is irrpossitle, Reconfiguration 
places the system in the Wait state and 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

awaits operator intervention. If a solid 
error occurred while the system was in the 
Supervisor state, the system must be 
restarted. If the problem state, system 
operations can generally continue. 

Reconfiguration sets any solidly failing 
hardware device logically unavailable. 
Reconfiguration then sends a message 
describing the extent of the damage to the 
system operator. If the system is to be 
restarted, Startup Prelude is read in and 
the system is restarted. However, if sys­
tem operation can be resumed without logic­
al partitioning, STARTUP is not called and 
system operations resume. For instance. if 
less than four User Core pages are faulty, 
they can be set unavailable in the Core 
Block table and partitioning is not 
necessary. 

If the failure occurred in the problem 
state, Reconfiguration will set up the 
necessary control blocks and information 
for notifying the affected task or tasks 
and then will cause system operations to 
resume. As part of this procedure, Recon­
figuration will queue an ABEND request in 
the SERR Auxiliary Queue for the affected 
task. After control has been returned to 
the system, the Interrupt Stacker will 
remove the request and build a GQE on the 

From Paging Queue Processors Record 
Error 

Paging I/O 
Error 

~ Recovery 

Same Alternate 

Patl'l Pat~ 

Retcy Retry 

St:Jndaro 
Area 

Retry 

SVC Queue Processor requesting that the 
affected task be abnormally terminated. 

PAGING I/O ERRORS 

Paging I/O errors can occur either dur­
ing the process of starting a paging opera­
tion (i.e., when Start I/O is issued) or 
during the operation itself. The former 
are called immediate failures and the lat­
ter are called delayed failures. An over­
view of paging error handling is presented 
in Figure 89. In either event, a module 
called Paging I/O Error Recovery Control is 
entered. The purpose of this module is to 
identify the component inVOlved, record the 
error, and initiate appropriate recovery 
procedures. If the failure is immediate it 
Ray be either an inboard or an outboard 
failure. An inboard failure is a channel 
failure. An outboard failure is a failure 
associated with a control unit or device. 
If the Start I/O operation has been retried 
a prescribed number of times without suc­
cess, paging I/O ERROR Recovery Control 
calls the Alternate Path Retry routine 
which will make part of the first path 
unavailatle and retry the operation along 
an alternate path to the component if one 
can te found. 

Retry Yes 

T "k 

Pag ing 

Foi lure 
Recovery 

Criticc:! Yes 

Error ? 

No 

Error Ye<:: 
ISO b~e to 

To')v ? 

No 

Cor.;-~ nue 

Processing 

Without 
Def!ective Unit 

Continue 
Processing 

t·Aoior 
Systern 

Error 

Generate 
Progrom 

In terrupr i0n 

Dispotcher 

r--- r--- --, 
I 
I 
I 
I 
I 
I 
I 

I Virtual Storoge 

I 
I DIAGNO 

I or 

I 
ABEND 

or 
I ,\'!ave Page 
I L ________ ...J 

Figure 89. Flow of Control During Paging Error Handling 

Error Procedures 195 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

A delayed paging failure is detected by 
checking the CSW stored upon an I/O inter­
ruption. A delayed paging failure may be 
either an inboard or an outboard failure. 
Paging I/O Error Recovery Control will call 
the Same Path Retry routine to perform 
error recovery procedures. These proce­
dures involve retrying the paging operation 
along the same path a (device-dependent) 
number of times. 

For some errors, including channel-check 
conditions, if retry is unsuccessful, and 
an alternate path is available, retries are 
made along the alternate path until the 
threshold value is reached. If the error 
cannot be attributed to a defective device 
or recording medium, the failing path is 
marked defective. 

The Paging Failure Recovery module is 
invoked whenever retry is unsuccessful. 

When it is not clear whether the cause 
of the paging failure is due to a defective 
device, a defective volume, or a bad page, 
the Standard Area Retry routine is invoked. 

The Standard Area Retry routine retries 
the paging operation along the same path on 
the standard area of the recording medium 
of the device. If this procedure is suc­
cessful, a defective page is implied. 

If the standard area retry is not suc­
cessful, the cause of the paging failure 
can be distinguished as a defective device. 

If the cause of the paging failure is 
determined to be a defective channel or 
control unit, the system will attempt to 
continue without the path or paths that 
have been set unavailable. 

If no good path to the device can be 
obtained, the Paging Failure Recovery 
module will perform processing similar to 
that for a defective device and a defective 
page. 

If the cause of the paging failure is 
determined to be a defective device, the 
device is set unavailable and processing 
similar to that for a defective page is 
performed. If the defective device is the 
primary paging device, Paging Failure Re­
covery issues a major system error SVC. 

If the cause of the paging failure is a 
defective page, the operation could have 
been either a page-in or page-out. 

If the operation was a page-out to a 
system or auxiliary stor:. ,e device, another 

196 

page will be allocated and the paging 
operation retried. If necessary, all 
further auxiliary storage allocation on the 
device will be suppressed. 

If the paging operation was either a 
page-in or page-out associated with a Vir­
tual Access Method PGOUT request, a return 
code is stored in the appropriate task's 
XTSI. When the Dispatcher eventually tran­
sfers control back to the VAM MOVE PAGE rou­
tine, the return code will be passed in a 
register. 

For a page-out operation, MOVEPAGE will 
select a new page and retry the operation 
(see -Example of Virtual Sequential Proces­
sing-). For a page-in, MOVEPAGE will 
invoke ABEND to abnormally terminate the 
task. 

If the operation was a page-in opera­
tion, it may be associated with a reloca­
tion interruption, an lOCAL SVC, a TWAlT 
operation or a Dispatcher or Page Posting 
read operation. 

For TWAlT, the page is left dormant 
until it is required, since it is entirely 
possible that the task can continue proces­
Sing without reading the page. 

Should the page-in be as a result of a 
relocation interruption, a task program 
interruption is generally generated. It 
will be processed by DIAGNO as a program 
error, unless the error affects a privi­
leged routine. If the error effects a pri­
vileged routine, the task is abnormally 
terminated. However, if the page-in error 
is for a shared page, Paging Failure Recov­
ery will issue a major system error SVC. 

If the operation brings in a buffer page 
required as the result of an lOCAL, the 
instruction counter will have been backed 
up so that the lOCAL will again be 
initiated and further processing as speci­
fied above for a relocation interrupt 
follows. 

The last and most catastrophic case is 
when the paging was initiated by the Dis 
patcher or Page Posting routine. In either 
case, the task generally cannot accept a 
programmed interruption. The only choice 
is to deactivate the task, mask off task 
interrupts and inform the operator. He 
caninitiate proper action (perhaps includ­
ing cancellation of the task). If it is 
the operator task which is so affected, a 
major system error is issued. 



Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146 

When a return code or program interrup­
tion code is passed to virtual storage, the 
code specifies whether the error is asso­
ciated with a defective device, volume or 
page. If the error is associated with a 
volume, the code indicates whether or not 
the volume is demountable. 

Whenever a solid I/O error occurs or a 
defective channel, control unit, or device 
is involved. the Resident Supervisor Task 
COmmunication control subroutine is invoked 
to enqueue a Message Control Block (MCB) on 
the Main Operator Task TSI. This will 
result in a message to the operator's con­
sole informing him of the situation. If 
the cause of the error was a defective 
demountable volume, the operator may be 
able to take corrective action. 

TASK I/O ERRORS 

Task I/O errors, like paging errors, can 
be either immediate or delayed failures. 
The processing of task I/O errors within 
the Resident Supervisor is supervised by 
the Device Queue Processor and the Channel 
Interrupt Processor. An overview of task 
I/O error handling is presented in Figure 
90. 

I 
a 

~ 
a 
;t 

Device 
Queue 

Processor 

Select 

Channel 
Interrupt 

Processor 

from 
l ___ to ____ -yy __ ln_re_r_ru_p~tJ 

Device 

User Program 

lOCAL 
with 10RCB 

Dequeue lOCAL 
I/o Subprocessor 
Requests 

Subroutine 

Figure 90. Task I/O Error Handling 

For an immediate failure, the Device 
Queue processor will retry the Start I/O 
operation a specified number of times. 
This failing, the processor will set a flag 
in the GQE and initiate a sense operation. 
The Channel Interrupt processor will 
receive an interruption when this operation 
is completed. After inspecting the flag 
set by the Device Queue processor, the 
Channel Interrupt processor invokes the 
Dequeue I/O Requests (DQIOR) routine to 
dequeue and release all other requests from 
this task for this particular device. An 
interlock will be set to prevent any new 
requests from being accepted from this 
task, the path will be released, and all 
the infomation the access method needs will 
be placed in the IORCB for this operation. 
The IORCB will be passed back to the task 
and the appropriate access method will 
attempt error recovery. 

The proceSSing for delayed failures is 
essentially the same as that for immediate 
failures except that the Channel Interrupt 
Processor first becomes aware of the error 
condition. The Channel Interrupt Processor 
will ask to have a sense operation 
initiated by setting a flag in the device 
GQE (not the interrupt GQE). When the 
Device Queue Processor is next invoked by 

~ 

Q 

"" " r. 
0 
a 
::; 

'" 9 
0.. 

'" ~ . 
." 
< 
Q 

VMSDR 

VMER 

DRAM 

VMEREP 

SDR 

Extension 

of SDAT 

~---~---~-------------

Pathfinding 

Get Path 

Clear Path 

Pathfind ing 
Table, 

-----~-----------------

Error Procedures 197 



Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146 

the Queue Scanner, it will initiate a sense 
operation and further processing will pro­
ceed as in the case of an immediate error. 

The access methods each differ in their 
recovery procedures, but the procedures 
will generally involve several retries. 
Depending upon the type of error, there may 
be no retry (e.g., equipment check from a 
tape unit); there may be retries only along 
the original path to the device (e.g., seek 
check on a direct access operation); or 
there may follow retries along the original 
and alternate paths to the device (e.g., 
channel data check on a direct access 
operation). Further reads or writes issued 
by the user will be queued on the Data 
Extent Block until the error is resolved. 
(This is true for all access methods except 
IOREQ, and OLTAM). 

An lOCAL supervisor call is most fre­
quently associated with MSAM, BSAM, and TAM 
services. When a synchronous I/O interrup­
tion is passed to the Task Monitor, the 
appropriate posting routine is immediately 
dispatched by the Task Monitor. The IORCB 
associated with the operation is moved from 
the ISA and examined. Successful opera­
tions are posted as complete in the Data 
Event Control Block (DECB). If an error 
can not be retried at all or if it is 
unsuccessfully retried, the user's Synch­
ronous Error routine (i.e., SYNAD) will be 
entered when the CHECK macro is executed, 
or if appropriate, the task will be abnorm­
ally terminated. This procedure is based 
on the assumption that SAM and 10REQ are 
never used for system functions. MSAM has 
its own posting routine but performs func­
tions analogous to SAM. 

Synchronous interruptions, resulting 
from SAM or OBTAIN/RETAIN operations on a 
direct access device, are processed by the 
Direct Access Error Retry routine. This 
routine makes appropriate modifications in 
channel programs and rebuilds the 10RCB so 
that the I/O request can be issued (via 
lOCAL) • 

TAM posting processes all I/O interrup­
tions resulting from the termination of a 
TAM generated channel program. TAM Posting 
consists of two main sections: a common 
section, which processes the CCW list and 
posts data, and an exception and error sec­
tion, which provides error analysis and re­
covery actions. The failure of an lOCAL 
operation issued by TAM, which indicates 
the unavailability of the SYSIN/SYSOUT 
device, is treated as an ABEND. 

Input errors occurring on VAM data sets 
result in an entry to the Virtual Memory 
Input Error Recovery (VMIER) routine via 
the Task Monitor. VMIER marks the appro­
priate page in error on the volume and 

198 

either abnormally terminates the task or 
performs recovery. Recovery is only pos­
sible if the data set is duplexed. Duplex­
ing is an option, available to users, which 
maintains two identical copies of the data 
set. When an error occurs on the primary 
page of this type of data set, the second­
ary or backup copy can be used to recover. 

The error page in the primary copy is 
marked in error on the volume as in other 
cases. Then the secondary copy is read and 
a replacement page is assigned to the pri­
mary copy of the data set. A relocation 
entry is made in the PAT to enable the 
access method to locate the replacement 
page and the secondary copy is written to 
the new primary page. At this point both 
copies are correct and the user is free to 
continue. 

Recovery is also attempted when proces­
sing error conditions resulting from VAM 
data set manipulation. This type of error 
may not be serious enough to warrant the 
destruction of the user's task. The VAM 
Data Management Error Processor (VDMEP) 
routine, if possible to do so, closes out 
the data set in question, generates appro­
priate diagnostics, and returns control to 
the user. The user may then attempt error 
recovery using available system facilities. 

SYSTEM ERROR PROCESSOR (SYSERR) 

The System Error Processor (SYSERR) can 
be invoked by either Resident Supervisor 
routines or privileged virtual storage ser­
vice routines. The purpose of SYSERR is to 
provide a system dump facility after the 
detection of a system error, and to initi­
ate a recovery procedure appropriate to the 
error classification. In calling SYSERR, 
the following parameters are specified: 

• classification of the error 

• dumping option 

• identification of the calling module 

• an error code to identify the error 
condition 

For minor errors that may be pinpointed 
to a task, SYSERR returns control to the 
calling program. If the calling program is 
a privileged virtual storage service rou­
tine, it can then invoke the ABEND routine 
to dispose of the task in a manner consis­
tent with a completion code which is speci­
fied as a parameter to ABEND. 

For major errors (such as a program 
interruption occuring while a CPU was 
operating in the Resident Supervisor), the 
Recovery Nucleus and the Reconfiguration 



Page of GY28-2009-2. issued September 15, 1970 by TNL N28-3146 

routine is invoked. A message is sent to 
the system operator and Startup Prelude is 
invoked to restart the system. 

For a hardware suspected system error, 
the Recovery Nucleus and SERR are invoked. 
SERR will check out the system's CPUs and 
storage elements. If a CPU or storage ele­
ment error is discovered, the unit is set 
logically unavailable and the system is 
restarted. If no error is found, the sys­
tem is restarted. 

Error Procedures 198.1 





ABNORMAL TASK TERMINATICN (ABEf'D) 

The ABEND routine is invoked for task 
Error situations such as invalid submission 
of parameters or commands. ABENL consists 
of SEveral ~rivileged service routines. 
These routines are a part of initial virtu­
al storage and o~erate as ~rivilEgEd rou­
tines. Service routines calling ABEND may 
use com~leticn codes 1, 2, or 3. 

The completion code values may be gener­
ally characterized as follows: 

completion code 1 
the logical task sequence is ter­
minated at the foint the ABEND condi­
tion occurs and control is returned to 
the user. Completicn COdE 1 is 
declared for those conditions caused 
by the user programs on the premise 
that he should either remove the cause 
of the error and/or direct the task 
t ermina t ion. 

completion Code 2 
the logical task sequence is ter­
minated at. the point the ABEND condi­
tion occurs and the system attempts to 
terminate the task in an orderly fash­
ion. Recurrent ABEND conditions cause 
the system to abandon the associated 
phase of the termination (e.g., the 
closing cf a data set) and go onto the 
next phase. completion code 2 is 
declared either fer localized condi­
tions caused by a system error or 
recurring comrletion code 1 
conditions. 

completion Code 3 
processed the same as comrletion code 
2 except no new task is logged on. 

The actions associated with these com­
pletion codes are as follows: 

Corrpletien Code 1: 

Conversaticnal Task 

• Task I/O i's terminated 

• System interlocks se·t by the task 
being abnormally terminated are 
released. (Each component which may 
have system interlocks set at the 
tirre AEENL is called must provide a 
routine to reset the interlocks. It 
rl'ay also r.e necessary to initialize 
data fields associated with the 
interlccks) • 

• A nessage indicating abnormal ter­
mination is issued to the user and an 
EXIT is used to return control to the 
user program. 

Nonconversational Task: 

• The procedures are the same as for 
the conversational task up to the 
EXIT point. At this ~oint ABEND 
locks for a new SYSIN data set with 
ddname SYSABEND. Subsequent corrrrands 
are then taken from SYSABEND if it 
exists. If it does not exist, then 
LOGOFF is called to terminate the 
task. 

CorrEleticn Code 2: 
nonconversational) 

(conversational or 

• The procedures are the same as for 
ccrrFleticn code 1 up to the point 
where control is turned over tc the 
user program (conversational) or SYS­
ABEND (nonconversational). 

• Close data sets. 
• Erase uncataloged data sets and 

release rrivate devices. 
• Unlink shared modules. 
• Call LOGOFF. 
• Logon a new task for the user. 

Error Procedures 199 



COMMAND SYSTEM 

The Comrand System rerresents the prin­
ciple interface between a time-sharing sys­
tem and its users. Because of this, the 
Command System achieves a position of spe­
cial im~ortance in any attempt to make the 
facilities of a general-purpose operating 
system like TSS/360 easy to use. 

In designing a command system, there are 
two fundamentally different approaches that 
can be taken. The first is to use a small 
basic vocabulary, which tends to produce 
long expressions. The second is to enlarge 
the basic vocabulary to obtain shorter 
expressions. The latter approach tends to 
increase the number of corrmands that must 
be learned and remembered in order to use 
the system but simplifies its use as each 
command is less complex. 

In TSS/360, the approach taken is that 
of constructing a Command System which is 
delivered with a large set of simple com­
mands tilat can either be employed as is or 
completely replaced or expanded in a strai­
ghtforward fashion. Such an approach 
allows each installation and each user the 
flexibility needed to customize the system­
user interface. The key external charac­
teristics of this Command System are: 

• Regularized syntax 

• Default-override facility 

• systerr,-supplied "null" commands 

• Personalized user profile 

• Macro-command definitional capability 

• Facility to easily define new command 
primitives 

• Dynamic facility to tailor system­
supplied messages 

• Flexible attention-handling and command 
push-dcwn procedure 

The TSS/360 ComIrand Systerr syntax is 
simple and natural. Each individual com­
mand consists ot an operation name followed 
ty operands; a command statement co~prises 
one or more commands. The delimit_ing 
character for the operation narre is a 
blank; the delimiter between cFerands is a 
comma; the delimiter between comrr.ands in a 
statement is either a serricolon or the end 
of a line of input; and the line continua­
tion flag is a hyphen entered as the last 
text character of a line. 

200 

The operation name can be either the 
narr'e of a oorrrr.and prOCEssing routine or the 
name of a stored command procedure. If the 
operation is the name of a routine, the 
Corrrrand Systerr basically proceSSES the 
input string into a parameter list. of 
cFerands fcr the invoked routine. If the 
operation is the name of a stored proce­
dure, the corrrrand system proceSSES the 
input string in conjunction with the stored 
procedure tc produce new command statements 
for processing. 

Each user can establish his own spel­
lings, atbreviations, cr operation names 
for commands through a SYNONYM facility. 
Use cf this facility sets up one or more 
Equivalances for the oriqinal nailie but does 
nct destroy it. Interestin~ly enough, the 
inclusion of the SYNONYM faclli ty has Silq::­
lified irrplerrentation of the Command System 
because it is only necessary for a corrmand 
routine to recognize a single nailie -- the 
string substitution is done before the corr­
Kand routine receives control. 

Any ccrrrrand operand is represented in 
two ways: by position and by keyword. 
Keywords may appear in any order and have 
the general form: KEYWORD = value, where 
KEYWCRI:: is the name of the cperand and 
nvalue " is the actual value of the operand. 

In contrast to many other systems, 
almost every command operand has a default 
value. Furthenr.cre, in TSS/360, tlle user 
does not have to accept rigid default 
values fcr operands, for he can oVE.rride 
the system-supplied default values if he so 
wishes. Every user has the ability to 
establish the values to be used when he 
chooses not to enter those values Explicit­
ly. Tne SYNONYM facil_i ty, available for 
corrrrand oreraticn names, is also available 
for keywords. Thus, the use of keywcrds 
achieves more flexibility than the use of 
reserved words as proposed in other rroce­
dural syntaxes. In TSS/360, a keyword may 
be thought of as a global, reserved word. 
The frinciple reason for this design is 
that a key~ord is associated with a value 
to be passed, not witb the command invoked. 

The sequence of events that the system 
goes through to resclve operands is as 
follows: 

1. The list cf synonym values is searched 
for equivalent terrrs. 

2. If synonym values exist, they are 
inserted; if not -



3. The list of user-specified default 
values is searched. 

4. If default values exist. they are 
inserted; if not -

5. User-sup~lied default values are 
inserted ~henever they exist. If any 
are not supplied 

6. The operand is not filled in; it is 
given a null string. 

Tailoring the Conunand System 

The capabilities available to a user or 
his installation for tailoring the Co~mand 
System ~ill be partially covered in the 
following paragraphs and will be more fully 
described later in this chapter. 

TSS/360 maintains a special prototype 
data set that is copied into the User 
Library for an individual ~hen he is ini­
tially joined to the system. This data 
set, called a User Profile, contains three 
tatles. The first specifies the initial 
default values for camIrand or:erands. The 
second, called the Character and Switch 
Table, contains the defined character tran­
slation list (to allo~ redefinition of 
printing characters, and control charac­
ters, such as the New line control charact­
er). The third, called the Primary Dic­
tionary, contallls command operation names 
and equivalances. 

Whenever a user initiates a t.erminal 
session or a nonconversational task, a copy 
of the User Profile data set fro~, his user 
library is placed into the Combined Dic­
tionary used ty the Corr~and System for pro­
cessing his system input stream. During a 
session, an individual can change and 
delete entries in the Combined Dictionary. 
These changes exist only for the duration 
of the terminal session, unless the user 
wishes to ~ake them a part of his permanent 
User Profile. 

The power of the Command System is 
further enhanced by a command procedure 
facility. This permits the user to create 
and store a r:rocedure, named ty use of the 
PROCDEF command, ~hich consists of commands 
and of logical (e.g., IF) statements which 
control the flow of command execution. The 
FROCDEF corrmand invokes the Text Editor, 
enabling the user to utilize any of the 
text editing commands while he is defining 
a procedure. After a procedure has been 
written, it rray be edited or shared, etc., 
as with any other data set. 

The invocation of a co~mand procedure is 
identical to the rreans of invoking a 
system-supplied command. The con;mand sta­
tement consists of the procedure name fo1-

lowed ty a series of parameters. The para­
rreter values are inserted at the proper 
points in the procedure. The Co~,rnand Sys­
ten; then interp:r.ets the resultant state­
ments as though they had originated in the 
input strearr. For rr.aximum power, TSS/360 
allowS procedures to be nested and/or 
recursive. 

The BUILTIN command and an assemtly lan­
guage macro instruction (BPKD) make the 
full power of the Command System available 
to any user-written routine. They sr:ecify 
to the Ccrrrnand System the positional and 
keyword parameters that are to be asso­
ciated with input parameters. Performance 
is enhanced using this BUILTIN facility as 
the Command System can directly by~ass much 
of the interFretive processing required in 
the exfpansion for normal command 
frccedures. 

A user may augment the system message­
handling facility by use of the CorIII'and 
System in several ways: 

• He can request explanations of system 
messages or key words within a systerr 
rressage. Word explanations may con­
tinue to a large number of levels. 

• He can dynamically specify the particu­
lar classification of messages he 
wishes to receive. This filtering or 
nasking cafatility recognizes five 
levels of severity of messages and 
three different lengths of messages. 

• He can use the facilities of the Text 
Editor to construct a personalized file 
of messages that will be issued in lieu 
of any system messages with the sarre 
rressage identification codes. 

There is a flexible system for handling 
attention interruptions. For instance, 
sur:pcse a user ha;3 forgotten to identify a 
library containing a particular subroutine 
required by his main line program. When 
the user receives the systen; diagnostic 
rressage at his terminal, he can use the 
attention button to re-enter the corr.mand 
rrode, define the library, and then continue 
processing from the point at which the dia­
gnostic nessage was issued. 

The routines that constitute the Command 
System are: 

• Command Controller 
• Progran Control System 
• Interruption Processors 
• COIrrrand Routines 
• Batch Monitor 
• Systerr Operator and Administrator 

Routines 
• Accounting Services 
• Language Processor Control 

Comnand System 201 



Figure 91 shows in tatular forw the 
major components of the Command System and 
some of the Command System routines. The 
Corr,mand Systerr is structured so that the 
user can initiate commands either conversa­
tionally or nonconversationally. A user 
may also initiate a nwnber of corrman.Js 
through macro instructions contained in an 
object program. The expansion of these 
macro instructions results in object code 
that will link to the proper Command Systerr 
routine at execution time. 

COMMAND CONTROLLER 

The Command Controller serves as a 
central link between the user and the sys­
tem. It provides an interface tetween the 
remainder of the Command System and the 
SYSIN and SYSOUT data streams. The Command 
Controller consists of the Command Analyzer 
and Executor (CA&E) and the following sys­
tem support routines: 

• Source List 
Handler 

• Dictionary 
Handler 

• GATE 

• SCAN 

• User PronFter 

Used to service the 
source list. 

Used to access the com­
bined dictionary. 

Used to access SYSIN and 
SYSGUT for Doth conver­
sational and nonconver­
sa tional ta sks. 

Used by command routines 
to fetch and validate 
command parameters. 

Used to communicate with 
external users. 

CperatDr (ardral 

MOCF 

• Virtual Memory Used to r:erf0rm func­
Task Initial- tions required to in­
ization (VMTI) itiate a task. 

• Attention 
Handler 

Used to accept and to 
interpret attention 
int erruFtions from the 
Task 1'1oni tor. 

The Command Analyzer and Executor 
cbtains the next command to be processed, 
and uses the verb scanner to deterrrine the 
verb tYFe from the control dictionaries 
located in the combined dictionary. The 
verb tYFe dictates the remaining scan to be 
used for each verb. When each cOIHrand has 
been cOIq::leted or terminated, control 
returns to the Command Analyzer and Execu­
tor. The support routines are employed as 
needed. 

The usual flow of control within a task 
in the command mode is from the Task Mon­
itor Scanner-Dis [:atcher to the command Ana­
lyzer and Executor (CA&E), which calls the 
Source List Handler to check the source 
list for a command. The Source List Handl­
er calls GATE to attain a command from the 
user's SYSIN by issuing an underscore and 
backspace. 

Once the corrmand has been obtained from 
SYSIN, GATE futs it in the source list via 
the Source List Handler, and control is 
returned through the Source List Handler to 
CA&E. The CamIrand Analyzer and Executor 
then isolates the command verb by calling 
the Verb Scanner and gives control to the 
appropriate command routine. Before Fro­
cessing the comrrand, each cow.rnand routine 
checks the authority of the user to issue 
the corrrr.and. 

The command routine uses the SCAN rou­
tines to validate command parameters as 

lan;lUCl~;e Processor C'~n'r.:J! 

l.PC .~ .... ~a i il 

1

_-------.-----------

i GETLINF PUTDIAG 

H-:.ncor"ier"ot iono) 

TO~h' ;"v~anGgerTl,:;n I 
Command Control ler 

CA and E 
Command L':Jnguoge 

Routines 
.----T 
GATE SCAN User Prompter 

i--~~--!LoAD --~ 

r--~~~.----r----------,..---~~-.--
; LOGON ,,,, ::-1,"" '0 ","',,0< 

Source List 
Control f -·-----------t--L-=O--=GOFF - i---' . !-SEC-l~ 
Dictionary 

, 
Handler 

I VMTI 
Handler ; 

r-------+------- ---+----~---
i I CALL i 

·---:;tt~~~~-~-:-n-----I--·---------!A-·I-P------~cOr.lmland language 1.-'.n'.c,e'-rru-=-c..p~-I-.:.:'-ouc-t-:n-e-s------'I'------------x--I-IS--------··~ 

Handler I i 

Figure 91. Command System 

202 



well as to fetch those parameters. The 
corr~and routine then ~erforms tnE requested 
actions which may necessitate using other 
Corrmand System and system service routines. 
The corr,mand rout-ine then returns control 
cack to the Command Analyzer and the Task 
Iv.oni tor. 

If errors are discovered during the pro­
cessing or if the user is to be prompted 
for parameters, the User Prompter routine 
will be used to obtain a message from the 
System Message data set and to invoke GATE 
to issue the message to the user's SYSOUT. 
In conversational mode, the user may make 
corrections when responding to system mes­
sages or rray reenter the command. Since 
the user is not present for a nonconversa­
tional task, any message that requires a 
user response results in termination of the 
nonconversational task. 

The PUNCH, RT, WT, and PRINT commands 
are an irrportant exception to the usual 
pattern of performing command functions 
within the invoking task. When the Command 
Analyzer and Executor encounters one of 
these corr'rrands, it calls the Bulk I/O pre­
processor oo~and routine. The Preproces­
sor then validates the command operands 
and, if they are acceptable, sends a mes­
sage requesting task initiation to the 
Batch Monitor. Acting upon this request, 
the Batch Monitor will enter this request 
into a data set called the Batch Work 

User 
Prompter ---. 1 

Gate 

User Program 
or Languoge 

Processor 
Control 

• 

1----

,-----~ 

Queue. If the data set involved resides on 
a ~rivate volurr'e and system resources per­
mit, the Batch ~onitor initiates the PUNCH, 
PRINT, WT, or RT command routine as a new 
noncoIlversationa'l task, independent from 
the task that originally issued the com­
mand. If the data set involves a public 
device, the request is aSSigned to the BUL­
KIO II task (task 002). In this way PUNCH, 
RT, WT, and PRINT functions -- which depend 
upon the availability of input/output 
devices -- can be perforrr,ed at the system's 
convenience, and the user's task does not 
have to wait. 

An overview of the Command Controller is 
~resented in Figure 92. 

Sou roe List Handler 

As corrmands are entered into the system, 
they are recorded in the source list. The 
Source List Handler processes all entries 
and deletions to the source list, which 
operates through a pushdown, popup struc­
ture, containing a sequenced list of events 
which are to happen in the future. The 
user may change the sequence of events in 
the source list ~y invoking an OBEY macro 
instruction or an expanded procedure. 

Whenever a procedural verb is encoun­
tered, the commands to be inserted in its 
place are placed in a sublist, and a point­
er tc the sutlist is placed in the original 

+---------

+----------. 

R 

Non-

Conve fsati onal 
SYSI N/ 

UT SYSO 

Source 
Commnnd 

Source 
List List --Handler 

~------.. 
Analyzer 

I--"~'~------and 
Executor 

i 
i 

l_~ __ Verb 
-~ 

Scanner 

Figure 92. An overview of the Corr,mand Controller 

Dieti onory 

dler Han 
-- Combined 

Dictionary 

Corrrnand Systerr, 203 



Frocedural verb position. These sublists 
can be generated almost indefinitely. 

The Command Analyzer and Executor always 
checks the source list fcr the ntxt com­
mand. When the source list is empty, the 
Source List Handler calls GATE to prompt 
the user for additional input. 

Dictionary Handler 

The Dictionary Handler contains routines 
for processing entries for the combined 
dictionary, which is the source of the 
names of all procedures, synonyms, and 
defaults. The combined dictionary contains 
the following control dictionaries: 
synonym dictionary, defa u1 t dictiona.ry, 
builtin procedure dictionary, textual pro­
cedure dictionary, and comn0nd module 
dictionary. 

The system library prcvides a source of 
information for the combined dictionary. A 
dictionary of system procedures and system 
builtin procedures is established at the 
same time the system 1ibrary is estab­
lished, and it becomes part of the combined 
dictionary every time LOGON occurs. If thE 
user adds any dictionary entries in the 
form of procedures or cui1tins to his user 
library, these entries wi11 become part of 
the combined dictionary the next time this 
user logs on. The dictionary search logic 
allows a search of either the system 
library version or the user library ver­
sion; the user lliay designate the user 
library in preference to the system 
library. 

If the user has created his own profile, 
his user library will contain a copy of the 
system prototype file (SYSP~X). This data 
set, along with the synonyms, defaults, and 
command variables are added to the combined 
dictionary. If the user does not have a 
profile, his user library will contain no 
SYSPRX member. 

GATE Routine 

The GATE rcutine is used to access SYSIN 
and SYSOUT for both conversational and non­
conversational tasks. For a conversational 
task, SYSIN and SYSOUT are the same termin­
al device. For a nonconversational task, 
each is a Virtual Access Method format data 
set. 

GATE is invoked by Command System rou­
tines, by the Language Processor Control 
(LPC) routines, and by User Prompter and is 
invoked indirectly by user Frograms to 
access the task's SYSIN/SYSOUT. GATE is 
norrr:ally invoked through one of thE GATE 
macro instructions. 

204 

The GATE rracro instructions arE: 

• GATE Read (GATRD) 

• GATE Write (GATWR) 

• GATE Write with carriage control 
(GTWRC) 

• GATE Write with available response 
(GTWAR) 

• GATE Write with spontaneous resfcnse 
(GTWSR) 

For privileged and nonprivileged rou­
tines, GATE receives control at its proper 
Entry point in the GATE supervisor, which 
analyzes the parameter list. If a valid 
call requires output, GATE fon-rats the out­
fut, if required, and writes each line seg­
ment if SYSOUT is a VAM data set. If a 
valid call requires only reading, the Ter­
minal Communications Subprocessor (TCS> is 
invoked. 

The Format and VAN Output Routine 
sequence replaces all internal line divide 
(breakpoint) characters Witll space charac­
ters. For ccnversational tasks it replaces 
terminal breakpoint characters with new 
line characters; for nonconversational 
tasks, it discards terrr,inal breakfcint 
characters. If the requestea output mes­
sage is larger than the maximurr SYSOUT line 
for the task, thE message is broken into 
device-sized lines or into line segrr,ents, 
and, for nonconvErsational tasks, VAM is 
used to write each line segment. For con­
versaticnal tasks, GATE issues the ATCS SVC 
to accomplish read/write 0Ferations. 

If an attention interruFtion is pending, 
the Conversational Write and Read sequence 
first determines if the caller's program is 
Frivileged or nonprivileged. For a privi­
leged call, the USEr's input length is set 
to zero for GATRD, GTWAR, or GTWSR calls, 
the attention return code is set, and 
return is made to the caller's program. 

If an attention interruption is not 
pending, the SYSIN device is SEt to the 
keyword for a GTWSR call if the value of 
the RSVP parameter in the Profile is not 
set. Otherwise the SYSIN device is set 
according to the keyboard/card reader 
switch of the Profile. TCS then builds and 
dispatches the froper CCws. 

Finally, GATE processes the end condi­
tions accompanying completion of the 
transmission. 



Page of GY28-2009-2, Issued september 30, 1971 by TNL GN28-3193 

Scan Routine 

SCAN consists of a set of subroutines 
used by other command routines to isolate 
and validate input parameters. 

The six major SUbroutines of the set are 

Routine Name 
NEXTPAR 

CHEKDS 

ALFNUM 

NUMSTG 

CHKNUM 

ALFBET 

Function 
To locate the next parameter 
field and inspect it for 
invalid characters. 

To check a data set name for 
valid form and characters. 

To check for a valid symbol. 

To check for a string of 
valid numeric characters. 

To check a string of numeric 
characters and convert them 
to a binary value. 

To check for a string of 
valid alphabetic characters. 

User Prompter Routine 

The User Prompter is a centralized mes­
sage locator, display, explanation, and 
response handling facility. It uses a 
user-defined message file and/or the system 
supplied message file to perform its 
fUnctions. 

Upon receiving a PRMPT macro call, the 
User Prompter locates the message in the 
message file, and inserts parameters as 
required, after checking with the filter in 
the User Profile. If a response is 
required the prompter displays the message 
and reads the response via GTWSR. This 
initial response is checked to see if 
further explanation is required. If so, 
the type of explanation is determined, and 
the explanatory message required is re­
trieved, using GTWSR until the user is 
satisfied. If no explanation is required, 
the response is checked against valid 
responses, or it is stored if the unpre­
dictable response option has been used. 

Command Analyzer and Executor 

Command analysis and execution is gener­
ally done in the following manner: the 
verb is recognized, the verb operands are 
translated, the verb is executed. The Com­
mand Analyzer and Executor (CA&E) is 
invoked upon initial task entry. In addi­
tion, it may be invoked recursively by a 
user, upon intervention of an object pro­
gram, or during control of language proces­
sors. Verb resolution is performed by the 
Command Controller after calling the Verb 
Scanner. 

A user or system procedure verb calls 
the Procedure Parameter List Analyzer and 
the Procedure Expander. The output from 
the procedure expansion is added to the 
source lists. 

An IF verb invokes the PCS Phase 1 IF 
routine to expand the condition, and calls 
the Object Executor to determine the value 
of the IF condition. If the condition was 
not true, a special scanner is invoked to 
find the end of the sentence. Otherwise, 
the next clause is begun by CA&E. An AT 
verb invokes the AT Analyzer and enables 
the dynamic statement switch so that the 
remaining statements in the line are ana­
lyzed but not executed until the AT is 
satisfied. Statements which are not 
executable dynamically are recognized and 
appropriate diagnostics are produced. 

If the verb is DISPLAY, DUMP, SET, or a 
program call. the Program Parameter List 
Analyzer (PCS FORMLIST and PCS Phase 2 
parameter processing) is called to analyze 
the parameters; the commands are then 
invoked by the appropriate routine 
(DISPLAY/DUMP, SET or LINK). A DEFAULT or 
SYN verb calls the DEFAULT/SYN processor to 
make the appropriate changes to the combi­
ned dictionary. 

If the verb is GO, then the last inter­
rupted program will be resumed. Any com­
mands still not executed in the source list 
at the time of intervention become eligicle 
for execution upon completion of the inter­
vening routine. Any commands in the source 
list following GO will be discarded. 

When a program issues an ENTER LPCINIT, 
the Edit Conroller is initialized, and the 
calling program is treated as a Language 
Processor Controller. Subsequent ENTER 
LPCEDIT statements invoke the Edit Con­
troller, which may in turn transfer control 
to the Command Analyzer and Executor. Any 
edit commands recognized by CA&E cause it 
to recall the Edit Controller. The Edit 
Controller in turn calls the appropriate 
edit routines, and exits to the Language 
Processor Controller upon completion. 

An overview of the Command Analyzer and 
Executor is presented in Figure 93. 

Virtual Memory Task Initiation Routine 
(VMTI) 

VMTI is a Command System service routine 
that performs many of the first initializa­
tion functions required to prepare a task 
for lOGON processing. 

For conversational tasks, VMTl is 
entered from lAIP when the initial atten­
tion interruption is received by the task 
(see "Creation of a Conversational Task"). 

Command System 205 



Page of GY28-2009-2, Issued September 30, 1911 by TNL GN28-3193 

Scan Verb 

t 

Scan Re~t of 

Statement 

Accord; ng to 
Verb T'y"pe 

--------.,: 
(~---~ 

I 
I 

Markos 
Dynamic 

Sentence 

Expand 
Procedvre 

-----~'---A_T1. }.-- L-{~rX~IT ) 
L _______ __ 

DEFAUL T/ 
SVN -.-------( __ EX_IT __ ) 

Re!ote 
Parameters 

Get Fird 
Pcrometen-

DIRECT CALL, SET, DISPLAY!D_U_M_P .. ____ ._ . .,J 

PCS PHASE II 

Analyze 

Active 
Language 

Proce5sof? 

lYe! 

.. 
LCP 

Cell Language 

Procenor 

I 

Figure 93. Command Analyzer and Executor -- Operational Flow 

For nonconversational tasks, VMTI is 
invoked as a result of an external task 
interruption (see RNonconversational 
ProcessingR). 

This external task interruption is asso­
ciated with a task initialization message 
sent via the VSEND supervisor call (see 
"Communication"). This message originated 
with either the Main Operator Task or the 
Batch Monitor task. 

The (conversational) Main Operator task 
is created by Startup. The Main Operator 
Task, in turn, issues a Create TSI supervi­
sor call to create the BULKIO task and 
sends an initialization message to the 
Batch Monitor task. 

I In the course of its processing, BULKIO 
issues the Create TSI supervisor call and 
task initialization messages for Bulk I/O 
and other nonconversational tasks. 

In response to an external task inter­
ruption, the Task Monitor External Inter­
rupt processor calls the Command System 
External Interrupt processor (XIP). 

206 

XIP inspects the Task Identification 
code (TID) and message code, and, from 
this, determines to invoke VMTI. 

VMTI performs the following functions 
that are required to initiate a task: 

• Adds to the Task Symbolic Device List 
all those devices which contain public 
volumes (see "Device Allocation"). 

• Issues an OPEN macro to open the cata­
log in UPDAT mode to allow the updating 
of the data set from virtual storage 
and to prevent two tasks from accessing 
the same user catalog simultaneously. 
The user's catalog is obtained by means 
of the VPAM FIND routine which is supp­
lied with the user's identification as 
a parameter. The user's identification 
is always tbe first component of a 
fully qualified name (see ·Catalogn ). 

• Makes successive calls to DDEF to cre­
ate and fill in the JFCBs for the Sys­
tem Message Data Set, the System 
library, the User Table, the System 
Accounting Table, the system macro 
library, and the macro library index. 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3l93 

INTERRUPTION PROCESSING 

Interruptions that the Task Monitor (or 
one of its routines) determines must be 
brought to the attention of a task are gen­
erally processed by the following Command 
System routines: 

• Attention Handler Command routine. 
• Initial Attention Interrupt Processor 

(IAIP) • 
• External Interrupt Processor 

(X IP/XIIS} • 
• Program Interrupt Processor (DIAGNO). 

ATTENTION HANDLER 

Normal asynchronous interrupts are 
handled by the Attention Handler command 
routine. This routine allows user rou­
tines, specified in an AETD macro instruc­
tion, to process attentions; or it obtains 
a command from the terminal and processes 
the command so that the command Analyzer 
and Executor will execute it; or it obtains 
and acts upon a terminal direction to 
ignore the attention, or to invoke the 
ABEND procedure. 

For actual attentions, this routine 
first determines if the user wishes the 
attention suppressed. If so, an attention 
SVC is armed. When executed it will pro­
vide a simulated attention. For either 
real or simulated attentions, the Attention 
Handler determines whether the current 
attention count has a corresponding, valid 
entry in a connected Attention Entry Table 
(AET). If it does. the user's attention 
routine is executed, with help from the 
User Controller. If no routine is indi­
cated in a connected AET for the attention, 
the Attention Handler tests the attention 
count to direct its continued action. 

The attention count is decremented on 
entry to the Attention Handler for a real 
attention. If it tests out other than zero 
at this point. the Attention Handler 
returns to the Task Monitor, from which it 
will be redispatched until the count is 
zero. 

When the count is zero, the Attention 
Handler uses GTWSR to print the attention 
character on the terminal. Further action 
by the Attention Handler depends upon the 
response detected. Another attention 
causes immediate exit to the Task Monitor. 
A continuation response causes the Atten­
tion Handler to issue a GATRD until it 
detects another response. If input is 
null, the Attention Handler also exits. 
The other possible responses involve the 
"attention responseP commands -- STRING, 
RTRN, EXIT, STACK, and PUSH. If the 
response is STRING. the Attention Handler 
displays the source list. If it is one of 

the others, the Attention Handler uses User 
Control to take the appropriate action. 
(For a complete description of the atten­
tion response commands. see the Command 
System User's Guide, GC28-2001.) 

INITIAL ATTENTION INTERRUPT PROCESSOR 

The Initial Attention Interrupt Proces­
sor (IAIP) performs certain initialization 
functions for conversational tasks. 

Initially IAIP uses the Find JFCB rou­
tine to locate the skeletal SYSIN/SYSOUT 
Job File Control Blocks that are automatic­
ally included in the skeletal Task Data 
Definition Table (TOT) created at Startup 
and included in each task's Initial Virtual 
Memory. IAIP places a pointer to the SDAT 
entry for this terminal in each JFCB, thus 
completing the JFCB. 

Then IAIP sets a flag in Task Common to 
indicate that the new task is conversation­

lal. Lastly, IAIP calls VMTI which provides 
further initialization functions for the 
task. 

EXTERNAL INTERRUPT PROCESSOR 

The External Interrupt Processor con­
sists of two principal routines: the 
External Interrupt Processor (XIP) proper, 
and the External Interrupt Initializat.ion 
Subprocessor (XIIS). 

XIP receives intertask messages, checks 
their validity. copies them from the ISA. 
and enqueues a linkage request to the 
aFpropriate Command System routine or the 
appropriate XIP subprocessor. If the mes­
sage is an awaited reply, XIP moves the 
message to the designated reply area, and 
returns control to the Task Monitor. If 
the message is not a reply, XIP tests for a 
code indicating that the Device Management 
RELEAS routine has sent a message both to 
take the task out of delay status and to 
inform the task that a device the task 
needs has just been released (see "Device 
Allocation"). This special function has 
been placed in XIP so that Device Manage­
ment does not have to maintain the coding 
to handle this sort of message. If the 
message is from RELEAS. control is returned 
to the Task Monitor Scanner-Dispatcher. 
Eventually, the Device Management MOUNT 
REQUEST routine will be dispatched. 

For all other messages, XIP calls GET­
~AIN to allocate storage into whioh XIP can 
move the message control block from the 
ISA. The code in the message is used as an 
index to locate an entry in a table which 
describes the routines to be invoked for 
those message codes that are predefined 
within TSS/360. 

Command System 207 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

There are 256 possible message codes. 
Message codes with a value less than 128 
are processed by XIP. Of these, approxim­
ately 26 message codes are defined in this 
table. The message codes from 128 to 255 
are available for dynamic definition by 
TSS/360 users. 

Among the messages processed by XIP are 
the following: messages from the Main 
operator's task specifying that tne system 
is being shutdown, messages to the Main 
operator's task, and messages to invoke 
initialization of nonconversational tasks. 

If the appropriate routine to handle the 
message is already loaded, XIP invokes the 
Queue Linkage Entry (QLE) routine to 
enqueue a linkage request for the routine. 
XIP then exits to the scanner-Dispatcher. 

If the appropriate routine has not been 
loaded, XIP uses the QLE routine to enqueue 
a linkage request to a second XIP entry 
point. At this entry point, the required 
routine will be loaded. XIP uses this 
method of linking to its second entry point 
because XIP does not know when, if ever, 
control will return. By enqueuing a lin­
kage request and returning to the Task Mon­
tor scanner-Dispatcher, orderly save area 
management is preserved. 

A message to invoke nonconversational 
task initialization results in the eventual 
invocation of the External Interrupt 
Initialization Subprocessor (XIIS). 

XIIS performs initialization functions 
for nonconversational, Batch Monitor, and 
Bulk I/O tasks. For the Batch Monitor or a 
Bulk I/O task, XIIS loads the specified 
routine and places the Batch Sequence Numb­
er into Task Common. A linkage entry to 
the routine just loaded is enqueued and 
FREEMAIN is called to release the storage 
occupied by the message. Control is then 
returned to the Task Monitor. 

For normal nonconversational tasks, XIIS 
creates a nonconversational SYSIN JFCB con­
taining the SYSIN data set name from the 
task initialization Message Control Block. 

Included in the Task Data Definition 
Table assigned to a task as part of its 
Initial Virtual Memory are prebuilt Job 
File Control Blocks (JFCB) for a conversa­
tional SYSIN and SYSOUT. Because this is a 
nonconversational task, XIIS uses the 
RELEASE macro to release the conversational 
SYSIN JF'CB and then uses the DDEF macro to 
create a nonconversational SYSIN JFCB. 
GATE performs a similar function for the 
nonconversational task's SYSOUT. 

XIIS then sets a flag in Task Common to 
indicate that the task is nonconversation-

208 

ale The User ID is also placed in Task 
Common. 

Finally, XI IS calls the Attention Handl­
er for further task initialization. XIIS 
then exits to the Scanner-Dispatcher. 

PROGRAM INTERRUPT PROCESSOR 

The Program Interrupt Processor (DIAGNO) 
informs the conversational user that a pro­
gram interruption has occurred within his 
task. A message is sent to SYSOUT contain­
ing the interrupted instruction, its virtu­
al storage location, and a specific 
description of the cause of the 
interruption. 

Entry to this processor is made from the 
Task Monitor SVC or Program Interrupt Pro­
cessor. The Dynamic Loader routine MAP­
SEARCH is called to search the Storage Map 
Table to get the name and base address of 
the CSECT in which the interruption 
occurred. This base address, together with 
the interruption address given in the VPSW, 
is used to develop the location of the 
interruption. Using User Prompter the rou­
tine now issues to SYSOUT the diagnostic 
message, the old VPSW, the CSECT name, and 
the displacement of the interruption. 
After processing the interruption, this 
processor exits to the Command Analyzer if 
the task is conversational. Otherwise, the 
Abnormal Task Termination (ABEND) Routine 
is invoked. 

BATCH MONITOR 

The Batch Monitor is a part of the 
Operator Task and is created at startup 
time. The Batch Monitor runs with the same 
schedule table entry as the main operator 
task. In addition, three other parameters 
that govern the activities of the Batch 
Monitor are specified at each installation 
at system generation time: 

• The maximum number of nonconversational 
(non-BULKIO ) tasks that may be concur­
rently multiprograrnrned. 

• The maximum number of background tasks 
(i.e., tasks which have been placed in 
the nonconversational mode by means of 
the BACK command) that may be concur­
rently miltiprograrnrned. 

• An indication of whether BULKIO jobs or 
batch tasks should be given preference 
for selection from the Batch Work Queue 
by the Batch Monitor. 

The principal functions of the Batch 
Monitor are: 



Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146 

• To initiate all nonconversational tasks 
except those started by the BACK 
cormnand. 

• To assign a batch sequence number (BSN) 
to each nonconversational task. 

• To scan the Batch Work Queue (BWQ) for 
initiation requests from the BULKIO 
preprocessor and EXECUTE routines. 

The Batch Monitor task is initialized in 
response to a call from the Main Operator 
Housekeeping Routine. 

The Batch Monitor creates the Active 
Remote Task (ART) table. The ART table is 
initially empty and is used to maintain the 
status and number of active tasks which 
have been placed in the nonconversational 
mode through the BACK command. 

After creating the ART table, the Batch I Monitor invokes DDEF to define the Batch 
Work Queue (BWQ). The Batch Work Queue is 
a shared VISAM data set that contains 
entries representing requests for the crea­
tion of nonconversational tasks sent to the 
Batch Monitor by the BULKIO preprocessor, I the EXECUTE command, and the BULKIO task. 

The Batch Monitor then opens the BWQ, 
insures that it is shared, and examines 
each entry to determine the appropriate 
corrective action to take as a result of a 
previous system failure or normal shutdown. 

If a task had not yet been created for 
the entry when the system stopped, the 
entry is retained in the BWQ. Thus, the 
request is preserved even though the system 
was restarted. 

If a task had been created, the task 
will be restarted provided it is a PRINT, 
PUNCH, or WT task. 

All other entries are removed from the 
BWQ. These entries generally represented 
input Bulk I/O operations that may be 
restarted at the discretion of the system 
operator, and nonconversational jobs in I execution at the time of the system failure 
or shutdown. 

Once this initial processing is com-I plete, the Batch Monitor Initialization 
routine exits to its caller, the Main 
Operator Housekeeping routine (MOHR). 

There are a number of entry points to 
the Batch Monitor. Most of them are asso­
ciated with subprocessors of the Batch Mon­
itor Which handle the messages received by 
the Batch Monitor. For the most part, 
these are messages requesting the creation 
or cancelation of a background task. 

At its normal entry point, the Batch 
Monitor processes requests entered in the 
BWQ. The presence of requests in the BWQ 
is indicated by an interruption flag set by 
one of the Batch Monitor subprocessors each 
time a subprocessor receives a request from 
a Cormnand System routine to initiate a non­
conversational task. The Batch Monitor I checks for pending requests essentially 
each time the Operator Task is awakened by 
an interrupt and, when resources and system 
parameter limits permit, invokes either its 
Batch or BULKIO subroutine to complete the 
processing of all pending requests. When 
processing is completed, or, if there is no 
work to process, the Batch Monitor invokes 
the Task Monitor to enqueue an entry to the 
Batch Monitor. 

The BULKIO subroutine selects entries 
from the BWQ and determines if the entry 
involves a public or private device. If 
the device is private, a new task is 
created and BULKIO initiates the task by 
means of a VSEND to its ext.ernal interrupt 
processor. If the entry involves a public 
device, the subroutine selects an available 
device by searching the S entries in the 
BULKCOMM table. When an available device 
is found, the data from the BWQ entry is 
moved into the corresponding S entry and 
the BWQ entry is marked in service. The 
actual work is performed by the BULKIO 
task. 

The Batch subroutine determines whether 
the system limit of nonconversational tasks 
has been reached, and issues a supervisor 
call to create a TSI for the new task. It 
then sends a task initialization message. 

SYSTEM OPERATOR AND ADMINISTRATOR SERVICES 

System operation involves the interac­
tion between the system operator and the 
time sharing system. System administration 
involves the granting and withdrawal by a 
system administrator of permission to use 
the time sharing system and the establish­
ment of accounting records covering use of 
the system. System operators and adminis­
trators have at their disposal commands 
which are not made available to other 
users. 

The functions that support these ser­
vices can be grouped as: 

• System operation control 

• System operation command processing 

• System administration 

• Accounting services 

Command System 209 



Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146 

SYSTEM OPERATION CONTROL 

The system operation control fUnction is 
centered in the Main Operator Task. The 
Main Operator Task is a conversational task 
created during system startup. The STARTUP 
program simulates an initial attention 
interruption from the operator's terminal 
by creating and enqueuing a GQE on the 
interruption queue for the Channel Inter­
rupt Processor. (See "Creation of a Con­
versational Task"). 

During the initialization of the Main 
Operator Task, the Command Controller 
invokes the Main Operator Housekeeping rou­
tine (MOHR) after LOGON is complete. MOHR 
performs fUnctions such as opening the Sys­
tem Log data set and setting a flag which 
allows other tasks to be created. This 
flag prevents a user from logging onto the 
system before the Main Operator Task has 
completed initialization processing. After 
setting this flag, MOHR issues a supervisor 
call to create the Batch Monitor task and 
sends a task initialization message to the 
Batch Monitor task. The Main Operator Task 
is interruption driven. That is, it only 
receives CPU time when there is a task 
interruption to be processed. 

The Main Operator Communications Program 
(MOCP) processes messages from other tasks 
to the operator, and the operator's replies 
to those messages. MOCP processes, in 
three separate routines, incoming messages, 
operator replies to messages, and overdue 
replies. MOCP is initially entered with 
the MCB for the message, and assigns a 
reply number for any message requiring a 
reply (WTOR messages). The message is then 
written to SYSLOG. If a reply is requested, 
MOCP queues the MCB on the Reply Queue. 

Later, at MOCP's second entry, reply 
numbers and text are checked for validity. 
MOCP dequeues the MCB from the Reply Queue, 
writes the reply to SYSLOG data set, and 
sends the reply to the task. If, as is 
usual, the reply is to a task other than 
the Main Operator task, MOCP uses the VSEND 
SVC to send the reply. MOHR is called when 
answering the System Configuration Message 
at STARTUP time. 

When a message is sent to the system 
operator, it mayor may not require a 
reply. If the message requires a reply, 
the operator will answer by using the REPLY 
command. The REPLY command routine corre­
lates the reply with a message that had 
been previously sent to the operator. 

The reply to a message may be either 
specific or general. A specific reply con-

210 

sists of a combination of characters such a 
YES or NO that is specified as acceptable 
in a Reply Checking Table. The Reply 
Checking Table is created during system 
generation. An index contained in the ori­
ginal message specifies which entries in 
the Reply Checking Table constitute valid 
replies to the message. A general reply 
consists of any arbitrary combination of 
valid characters entered by the system 
operator. For instance, it may be the sym­
bolic device address of a tape unit on 
which the operator has just mounted a tape 
volume. 

If a message requires a specific reply, 
the REPLY command routine checks the reply 
and stores the reply in the original mes­
sage entry in the Reply Queue. REPLY also 
sets a flag in the original message entry 
to indicate that a specific reply has been 
received. 

If a general reply is required, the 
REPLY command sets a flag in the original 
message entry in the Reply Queue to indic­
ate that a general reply has been received. 
The REPLY command routine then passes the 
reply on to the MOCP through the VSEND 
supervisor call. This method of communica­
tion is used as a convenient way of posting 
the reply even though the REPLY and MOCP 
routines both reside in the Main operator 
Task. 

SYSTEM OPERATION COMMAND PROCESSING 

System operation commands are processed 
by routines that perform such functions as: 

• Verifying the parameters contained in 
an operator's reply to a message (REPLY 
Command). 

• Writing messages from the system opera­
tor to conversational tasks (MESSAGE 
and BCST). If the Message Broadcast 
routine is called via MESSAGE, the rou­
tine sends a message to a specified 
conversational user; if called via 
BCST, the routine sends a message to 
all currently active conversational 
users. The message is also written in 
the operator's log (SYSLOG). 

• Terminating a user's conversational 
task (FORCE). 

• Terminating a user's nonconversational 
task (CANCEL). The Batch Monitor is 
called as requested to cancel a non con­
versational task that is executing or 
awaiting execution. 



• Adding devices to, and removing devices 
from the system (LROP and HOLD). The 
HOLD routine removes a hardware element 
froIr. the time sharing system configura­
tion; the DROP routine cancels the 
effects of a previous HOLD. 

• Terminating operation of the system 
(SHUTDOWN). The Batch Monitor is 
called to terminate all nonconversa­
tional tasks in the system. 

• Reading batched data sets into the sys­
tero frem a card reader or unstacked 
data sets from magnetic tafe (RT). 

• Initializing the BULKIO task and adding 
or deleting devices assigned to that 
task by rr,eans of the ASNBD command. 

SYSTEM ADMINISTRATION 

The systero administration function is 
performed by the JOIN and QUIT routines. 
The JOIN routine operates only in conversa­
tional mode to define a legitimate new user 
to the systero, and to create a user library 
for this new user. The QUIT routine 
removes a specified user from the system, 
and erases, reassigns, or stores his data 
sets on a private voluroe. 

ACCOUNTING SERVICES 

Accounting services are performed by 
various system routines. At the end of a 
task, the accuroulated CPU tirr,e the task has 
used from its initiation to its conclusion 
is obtained and stored in the User Table. 
Terminal time, storage time, and device 
usage is also recorded. The time is stored 
as an accumulated count in an entry keyed 
by the user's user identification and 
charge nurrber in SYSUSE (see "Resource 
Allocation and Control"). 

COMMAND ROUTINES 

The command routines that support com­
mands available to the user (not including 
those reserved for systerr operators and 
administrators> can be divided into eight 
fUnctional grou~s: 

• Task management routines 

• Data management routines 

• Object module handling routines 

• Inforrraticn request routines 

• Command creation routines 

• Language Processor Control routines 

• Text Editor corrmand routines 

• Pregrarr, Control System (PCS) routines 

Task Managerrent Routines 

These routines allow the user te initi­
ate, terrrinate, or change the system's 
operation in his task. Three of them 
(EXECUTE, BACKGROUND, and CANCEL) are used 
in conjunctien with the Batch ~onitor. 

LOGON: identifies the user to the system 
for task initiation by validating his cre­
dentials and performing certain other task 
initialization functions. 

LOGON uses the SCAN routines to fetch and 
validate each operand. As each operand is 
validated, the operand's contents are 
stored in Task Common. 

Additional task initialization functions of 
LOGON are: 

• Updating the User Table entry for this 
user to shew the number of tasks cur­
rently in execution for this user and 
to indicate whether the new task is 
conversational. Only one conversation­
al task rray exist for each user. 

• Completing fields in the Task Status 
Index by using the SETUP SVc to insert 
userid, external priority, and authori­
zaticn values. 

• Adding further information to Task Corr­
IT,on. ValUES are set to show the user's 
privilege class, completion of logging 
cn, and whether the task is a Bulk I/O 
task. 

• USing the AVAUX and AUXSET macro 
instructions to test for the availabi­
lity of auxiliary storage and to warn 
er terrr.inate a task when it exceeds its 
limit. 

• Using the SCHED macro instruction to 
calculate thE schedule table entry 
assigned to the task. 

• creating the JFCB for the User Library 
via DDEF. 

• ~arking the date and time of LOGON on 
the t~ask' s SYSOUT via User Prompter. 

• Indicating in Task Common and in the 
Dynamic loader PSECT, if CSECT Facking 
is requested. 

Control t,hen ~asses to the Command 
Controller. 

COlf,mand System 211 



LOGOFF: terminates a user's current task. 
~hat ~s, it disposes of any uncataloged 
data sets that were defined by the task, 
releases all devices allocated to the task, 
and releases the task's virtual storage and 
auxiliary storage. When reX;OFF is com­
pleted. the task no longer exists. 

LOGOFF processing consists of two major 
sections. The first is always performed. 
The second is only performed for uncata­
loged data sets that have teen defined for 
the task by DDEF. 

LOGOFF functions in the first section 
include: 

• Blocking any recursions of the Atnormal 
Task Termination (ABEND) routine. 

• Informing the Batch ~onitor when a non­
conversational task is logging off so 
that the Batch Work Queue rray be 
updated. 

• Indicating logoff in the User Tatle 
entry. 

• Closing the SYSIN and SYSOUT data sets 
via GATE. For a non conversational 
task, LOGOFF w~ll issue a PRINT command 
to request the listing of the SYSOUT 
data set. 

• Using RELEASE to release all the task's 
data sets and private devices. 

• Using the RCR macro instruction to com­
pute the task's CPU time and charges. 

• Using LOADER LOGOFF to release the 
task's virtual storage. 

• Using the DLTSI SVC to elim~nate the 
task entirely by releaSing the Task 
status Index. 

The second LOGOFF section disposes of un­
cataloged, defined data sets ty using ERASE 
for erasing them or CATALOG for cataloging 
them depending on such factors as data set 
type, task mode, whether the system is 
being shutdown, and/or user response. 

SECURE: This routine is called once by a 
nonconversational task to reserve all 
devices that will be needed during execu­
tion of that task. The Device Management 
Mount Request (MTREQ) routine is invoked to 
allocate the requested device. If the 
requested device is not available, the 
request rerrains unqueued and the task is 
suspended until the device is available. 
The SECURE corr~and is discussed ~n "Device 
Allocation." 

212 

EXECUTE: This routine sends a message to 
the Eatch Monitor asking it to initiate a 
ncnconversational task and telling it what 
the task's SYSIN will bE. After the data 
set name has been fully valida t.ed, EXECUTE 
bUlld~ a request message and sends it, via 
VSEND, to the Batch l"onitor which assigns 
t.he task a Batch Sequence Number (BSN) and 
adds an entry for the task in the Batch 
work Queue, after writing the BSN assigned 
to SYSOUT. When this data has been fassed 
to the Batch Monitor. EXECUTE returns to 
the I:IRECTOR. 

BACK: This routine changes a conversation­
al task to ncnconversational mode. 

The BACK routine first invokes the Find 
.Lata Set (FINDLS) routine to ascertain that 
the new SYSIN data set name (supplied as an 
oferand in the BACK command) is either 
cataloged or has already been defined in 
the task through a DDEF command. If the 
data set has not been defined during this 
task, FINLDS will create a job file control 
block (JFCB) for the data set, provided the 
SYSIN data set name has been cataloged. 
The RCR macro instruction is issued twice. 
The first tirr,e it is ~ssued ill UPDATE mode 
to update the User Table entry; the second 
time in RATION mode to determine if the 
user has exceeded his limit of nonconversa­
tional tasks. Next, the Batch Monitor is 
called to check that the systerr can accept 
a new background task at this t~e. The 
Batch Monitor will return a Batch Sequence 
Number if a new task is acceptable, and 
EACK will then wr~te that number on the 
conversational user's terminal, confirming 
the acceptance. 

The remaining operations switch the task's 
mode. The SYSIN and SYSOUT of the conver­
sational task are closed and the terminal 
device allocated to them is released. The 
user's entry in the User Tacle is then 
updated to show that the user no longer has 
an active conversational task, and the mode 
indicator in the Task Status Index ('lSI) is 
reset accordingly. The new nonconversa­
tional SYSIN and SYSOUT are set up for use, 
and cpened. Finally, the routine issues 
the SCHEC macro instruction, changing the 
task's schedule table entry to reflect the 
new mode. Further execut~on of the noncon­
versational task is controlled by the 
scheuling algorithrr,. 

CANCEL: This routine terminates the speci­
fied task by creating a request message and 
passing it via VSEND to the Batch Monitor. 
The routine ~n£orms the Batch Monitor of 
the command issuer's privilege class to 
determine whether he has the right to can­
cel the spec~fied task. If he has, the 
Eatch Monitor canCEls the task. If not, 
the command is rejected. At the end of its 
frocessing. CANCEL returns to thE Command 



Controller. Eefore sending the request 
message to the Batch Mcnitor, CANCEL deter­
mines if, during its processing, an atten­
tion interruption has Leen enqueued by the 
Task Monitor. If one occurred, CANCEL 
immediately returns control to the Atten­
tion Handler. 

TIME: This routine enables a user to spe­
cify a time interval at any time for a 
task. The interval must not te less than 
zero nor more than 450 minutes. Upon norm­
al entry, the time parameter is validated 
and converted from milliseconds to a binary 
number. Timer interrupt handling is estab­
lished via DIR, SIR, and STEC macros. Upon 
entry from VMTI, timer clock #14 is initia­
lized to a default value s~ecified by the 
SCMTIM field of System Common (CHASCM). 
When the time interval ex~ires, an inter­
rupt occurs and control is passed to the 
interrupt routine, which issues another 
DIR, STEC, and SIR macro to reset clock #14 
to one minute. It then issues a message 
declaring the time interval elapsed and 
ABENDs the task if it is in nonconversa­
tional mode. Finally it will link to the 
director via queued linkage entry, and 
return to the task monitor. 

Data Management Routines 

The data management command routines 
allow the user to operate on his data sets. 
Eleven of the routines are for general data 
management. The three remaining routines 
(PUNCH, PRINT, and WT) are for bulk output 
capabilities. 

CATALOG: Using the Catalog Services rou­
tines, CATALOG enters or changes SAM data 
set names in a user's catalog. For VAM 
data sets, CATALOG may only be used to 
change a data set name in the catalog or 
specify a generation data grou~. CATALOG 
invokes the FINDDS routine to locate the 
Job File Centrol Block (JFCB) for the cur­
rent data set name operand and checks to 
ensure that the state ef the data set 
(cataloged or not cataloged) as specified 
by the operand agrees with the state shown 
in the JFCE. If the data set is to be 
added to the user's catalog under its cur­
rent name (or an existing catalog entry 
with this name is to be updated without 
changing the data set name). the entry is 
created (or updated) by calling ADDCAT. 

When a new data set name o~erand is entered 
in addition to the current name, the same 
check is made to determine if the current 
data set name is already cataloged. If the 
data set is cataloged and not currently in 
use. the current name in the catalog data 
set descriptor is replaced with the new 
name (via DELCAT). If the data set resides 
on direct access, the current name in the 
data set centrol block (rSCB) is changed by 

RENAME. Then ADDCAT is called to change 
fields within the catalog, and control 
returns to the caller. 

when the catalog entry and the appropriate 
control clocks (JFCB and DSCB) have been 
updated, control returns to the caller. 

CELE'IE: used to remove (via DELCAT) one or 
rrore data set names from the user's catalog 
without affecting the data set in storage. 

rATA: enacles a user to create a data set 
or a member of a partitioned data set by 
entering data from SYSIN. The records can 
be of variable length and the user can spe­
Cify either a VISAM line data set or virtu­
al sequential (VSAM) organization. If a 
line data set is being created, the user 
can modify, insert, or delete entries. 
This routine, after obtaining and validat­
ing input parameters, creates a JFCB and 
then opens a data set. The routine 
requests data one line at a time from 
SYSIN. In a conversational task, GATE is 
used to fetch the lines. 

rATA checks for attention interruptions 
before and after each call to GATE. The 
rath taken when an attention interruption 
occurs depends on the type of data set 
being built, as well as how far processing 
has advanced. If the data set has not yet 
been opened, DATA merely returns control, 
leaving the JFCB set up Cif it was 
generated). If a VAM data set has been 
cpened, the routine erases it, by a call to 
ERASE, before returning control. For a 
VISAM data set, the routine closes the data 
set in normal fashion and then returns con­
trol to its caller. The VISAM data set, 
cnce opened. thus exists and may be added 
to later, if desired, by means of the MODI­
FY cemn-and routine. 

BDEF: Defines a data set (either existing 
or one being created) and describes its 
characteristics to the system by creating a 
JFCB entry in the Task Data Definition 
Table. In addition, the routine issues 
requests for device allocation. External 
storage is allocated for a new data set on 
direct access external storage. The DDEF 
command is described in WData Management. ft 

The operation of this routine n.ay be 
divided into four steps: 

1. Read the command (or macro) operands 
and move these operand values to the 
new JFCB. During this step, if con­
firmation has been requested the rou­
tine will prompt for every omitted 
operand. 

2. Move default values (where indicated) 
into the new JFCB. If the data set 
being defined is cataloged, values 

Command System 213 



available in the catalog entry for 
that data set are also rr,oved to the 
JFCB. 

3. Distinguish between data sets on a 
private or putlic volume. A data set 
on a private volume results in a requ­
est for device and space allocation. 
A new data set on a public volume 
causes a request for space allocation 
and the creation of a catalog entry 
for the data set. 

4. Link the newly created JFCB into the 
proper chain or chains in the Task 
Data Definition Table. 

CDD: Processes prestored DDEF commands 
from a line data set, thus permitting the 
user to establish the DDEF comrrands once 
and reference them later either individual­
ly or as a set. 

If the command operand field does not 
include ddnames, this routine will fetch 
all commands in the prestored data set and 
present them one by one to the appropriate 
routines for execution. When one or more 
ddnames are supplied as operands, the rou­
tine scans sequentially through the pre­
stored data set looking for a match. As 
each match is found, the prestored DDEF 
command is readied and passed to the DDEF 
command routine for execution. 

CDS: Copies logical records of a specified 
data set. The new data set can be created 
for a different device type if the organi­
zation of the original data set is per­
mitted on that device. For VAl-" partitioned 
data sets, the CDS routine copies one memb­
er at a time into another partitioned data 
set. l!Ierrbers which are load modules must 
be copied by the Linkage Editor. To copy 
complete data sets, including those of par­
titioned organization, regardless of con­
tents, the VV (VAM to VAM) command entry of 
the VAM Tape routine should be used. 

The CDS routine obtains a JFCB for the ori­
ginal data set and one for the data set to 
be created and compares the two. Norrrally, 
both data sets must have the same kind of 
organization; i.e., VAM or SAM. Any comti­
nation of VAM data sets can be copied 
(e.g •• VSAM to VISAM, VISAl!I to VPAl!I). The 
single requirement is that a new data set 
can be changed from VSAl!I to VISAM organiza­
tion only if the key is defined to be a 
field already in the record. If this type 
of change is requested and the user has 
omitted any required key inforrration. he is 
prompted to enter the necessary DCB fields. 
When the copy is complete, or when an 
attention interrupt is detected, the data 
sets are closed and control returns to the 
calling program. 

214 

ERASE: ~he operation of ERASE varies for 
SAM and V AM da ta sets. For SA!>] data sets, 
ERASE releases external storage occupied by 
a data set on direct access volumes and/or 
rerroves their entries from the catalog fer 
a data set owner or user with the proper 
access privilege. If the data set is par­
titicned and fcllowed ty member names, 
ERASE opens the data set, deletes the memb­
er (l:;y issuing a STOW macro instruction), 
and closes the data set. For data sets 
ether than Fartitioned, ERASE obtains a 
list of data set names whose leftmost qua­
lifiers rratch the input name and processes 
the names one at a time. The External 
Storage Allocation routine SCRATCH is then 
called to delete the Data Set Control 
Blocks <DSCBs) from the Volume Tatle of 
Contents. If the data set is cataloged, 
the Catalog Services routine, DELCAT is 
called to delete the various index levels 
from the catalog structure. If a data set 
has been oFened by other sharers, the ERASE 
command is ignored. 

For VAM data sets, ERASE only deletes a 
rrelliber of a partitioned data set. It does 
this in the same way as for SAM data sets 
above. The actual deletion of a VAM data 
set or member is done by DELVAN. 

DELVAM: Deletes a Vfu~ data set by calling 
rELCAT to delete its catalog and by calling 
RELEXPG to release its DSCB and data page 
entries on the volume. 

RET: Alters the data set attributes speci­
fied in the DDEF command and contained in 
the catalog. 

MODIFY: Inserts, deletes, Fresents, or 
replaces lines of a VISAM data set. Modi­
fications are effected by employing the 
user supplied key (a line number if the 
data set is in line format) to point out 
the location of the specified record 
Cline) • Input records containing the 
user's modifications are obtained one at a 
tine until the end-of-input record is 
reached. When this indication is reached, 
the data set is closed. For a partitioned 
data set, the POD is updated to reflect any 
alterations before the data set is closed. 

PERMIT: Enables a catalog owner tc 
authorize some or all other users to have 
access to some or all of his cataloged data 
sets, or to withdraw such authorization. 
The PERMIT routine sets up a parameter area 
for either the SHARE or UNSHARE routine of 
catalog services. If the sharing access 
qualifier is "R" (meaning that sharing pri­
vileges are teing revoked) PERMIT calls 
UNSHARE rather than SHARE. If the access 
gualifier is defaulted, the read and write 
(RW) option is assumed. An exanple cf the 
use of this corrmand is presented in 
"External Sharing." 



Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146 

SHARE: Links a data set name in the 
sharer's catalog with an index level or 
data set descriptior in the owner's cata­
log. The routine obtains the input parame­
ters, checks them for validity by calling 
SCAN, and then calls the Catalog Services 
SHARUP routine to make the necessary shar­
ing descriptor entries in the catalog. An 
example of the use of this routine is pre­
sented in -External Sharing.-

RELEASE: Deletes Job File Control Blocks 
(JFCBs) from the Task Definition Table. If 
the volume is private and the last of sev­
eral users is releasing the volume, RELEASE 
will also free the space occupied by the 
Private Volume Table. RELEASE may be used 
to release the devices associated with a 
dataset, to deconcatenate one or all data 
sets of a given concatenation, and to 
remove a specified job library from the 
program library list maintained by LIB­
MAINT. When the data set (or job library) 
is located, the JFCB will be deleted. The 
device management RELEAS routine is called 
if the data set is on a private device. 
Devices for public, uncataloged data sets 
are not released unless ERASE/DELETE has 
made the request. 

PUNCH: Punches a set of cards from a spe­
cified VSAM or VISAM data set. PUNCH dif­
ferentiates between public and private data 
sets, and performs approximately the same 
steps as PRINT (described below). 

PRINT: Prints a public or private data set 
in nonconversational mode on a high-speed 
printer. The operation is somewhat dif­
ferent for public and private data sets. 

For a data set residing in private 
storage, PRINT operates as a separate task, 
independent of the task that issued the 
PRINT command. A new task is therefore 
initiated. PRINT calls Virtual Memory Task 
Initialization, opens the SYSOUT data set 
via GATE, issues DDEFs for the input data 
set and printer (devices reserved by the 
Batch Monitor), opens the DCBs, and obtains 
buffers. 

For a data set residing in public 
storage, no new task is created. The BUL­
KIO task is invoked to put the data set out 
to the printer. 

For both private and public storage the 
input data set is read, one logical record 
at a time. After each read, the edit 
option is tested to see if the record has 
an ASA control character (or, in the case 
of PUNCH, if a specific stacker was 
requested). When all input data has been 
processed, PRINT frees buffers and closes 
tne data set. 

For private data sets, exit is to the 
LOGOFF command routine which terminates the 
task. 
VSEND 
Batch 

For public data sets, exit is a 
to the LOGOFF subprocessor in the 
Monitor. 

WT (BULK I/O): Writes a data set onto mag­
netic tape in proper format for off-line I printing. An independent task is created 
to process WT, as is done for a PRINT or 
PUNCH of a private data set. The routine 
then builds a blank print line to provide 
for initial page positioning. The routine 
tests if editing has been specified, con­
verting each ASA code to machine code, and 
moving it to the output record for writing. 
The data in the output record is from the 
previously read input record. This order 
is necessary since machine code control 
characters cause a print then space, but 
ASA codes specify space then print. By 
stepping a record ahead, the routine 
achieves proper spacing. 

VT (COPY VAM TO TAPE): Copies a VAM data 
set on tape as a physical sequential data 
set. This routine may also be initiated 
from privileged modules via the CALL macro, 
the operand field of which specifies the 
entry point and the input and output 
dsnames. The input dsname must be the name 
of a VAM data set. For the output data 
set, a JFCB must be found with the ddname 
of DDVTOUT. Specified within this JFCB 
must be physical sequential organization 
and a tape volume on a nine-track drive. 
The first record on the output tape will 
contain the input JFCB and the common por­
tion of the input data set's Format-E DSCB. 
Data pages are located by indexing through 
the RESTBL for the input data set, and are 
written to tape as a 4096-byte record by 
BSAM WRITE. After the tape operation is 
completed, both data sets are closed, and 
the output data set is cataloged. catalog­
ing will not be performed for the output 
data set where the dsname was preceded by 
an asterisk (*>. 

TV (COPY TAPE TO VAM): Restores a physical 
sequential copy of a VAM data set from tape 
to direct access storage. Like the VT com­
mand, this routine may also be initiated 
from privileged modules via the CALL macro. 
The output name must be for a new VAM data 
set. An output JFCB is required only if 
the data set is to be restored to a private 
VAM volume. Records from tape are input 
byBSAM READ and output by VSAM PUT. After 
the tape to VAM operation is completed, 
both data sets are closed, the new data 
set's Format-E OSCB is updated from the 
OSCB data retained from the original data 
set, and the output data set is cataloged. 

VV (COpy VAM TO VAM): Produces an identic­
al copy of a VAM data set on direct access 
storage. Like VT and TV, this routine may 

Command System 215 



Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146 

also be initiated from privileged modules 
via the CALL macro. The input dsname must 
be the name of a VAM data set. The output 
dsname must be for a new VAM data set. An 
output JFCB is required only if the data 
set is to be copied to a private VAM 
volume. The common portion of the input 
data set.'s Format-E OSCB is retained to 
describe the new data set once the copy 
operation is completed. Records are writ­
ten into the output data set by VSAM PUT. 
The output data set at this point is 
treated as a VAM sequential Format 'U' data 
set. When the copy operation is complete, 
both data sets are closed, the new data 
set's Format-E DSCB is updated from the 
DSCB data retained from the original data 
set, and the output data set is cataloged. 
Processing concludes by RELEASEing any 
JFCBs created by this routine. 

Object Module Handling Routines 

These routines allow the user to call 
and initiate execution of nonprivileged 
object modules stored within the system. 

LOAD: Places a specified object module in 
the user's virtual storage thereby allowing 
its execution. A minimal save area is 
allocated. This save area contains the 
location of the PSECT (working storage 
address constants) required by the object 
module. Upon completion of a successful 
load, this routine issues a confirmation 
message and returns to the caller. This 
command is described in "Dynamic Loader". 

RUN: Loads a problem program into the 
user's virtual storage, if it is not alrea­
dy there, and initiates execution of the 
program. Messages and diagnostics are 
issued to the user through GATE. When pro­
cessing has been completed successfully, 
RUN transfers control to the Command Ana­
lyzer, which transfers control to the pro­
blem program via the Task Monitor. This 
command is discussed in "Nonconversational 
Processing." 

UNLOAD: Removes a specified object module 
from the user's virtual storage and closes 
all user-defined data sets associated with 
the module. However, the data set remains 
open if it has a reserved ddname. This 
command is discussed in "Dynamic Loader.-

The BRANCH command causes the VSPW, con­
taining the location in the user's program 
from which execution will start or be 
resumed, to be altered to an operand speci­
fied in the command. The Command Analyzer 
and Executor is notified of an end of sta­
tement or end of sUblist. 

The CALL command initiates program 
execution. If the module has not been 
loaded, PCS will request the dynamic loader 

216 

to load it. The VPSW is then modified to 
start execution at the module entry point, 
and the contents of the user's linkage 
registers are set so that type-I linkage 
can be achieved. Control is given to the 
user control routine for this. 

The user also has the facility of 
directly calling an object program or a 
procedure. By entering the name of the 
module and the parameters it requires, the 
user can cause the system to load the 
module, together with any implicitly 
referenced modules, and to transfer control 
to the module. This facility is restricted 
in that it cannot be employed in a dynamic 
statement. If a module and a procedure 
have the same name, the procedure is 
called. 

When a GO command is entered, PCS noti­
fies the Command Analyzer and Executor of 
an end of line and end of sUblist. Since 
the location of the VPSW was not altered, 
execution will start or resume at the cur­
rent address. 

Information Request Routines 

These routines enable the user to access 
certain system information. 

DSS?: Presents the fully qualified name 
and certain attributes of a cataloged data 
set (or sets), as specified by the user. 
Attributes that are presented are: (1) 
sharing status, (2) Access status, (3) 
device type and volume number, (4) creation 
and expiration dates, (5) data set organi­
zation, and (6) data set length (for VAM 
data sets only). 

LINE?: Presents the contents of a line (or 
lines) of a line data set, as specified by 
the user. It writes the lines on SYSOUT, 
using GATE. 

POD?: Presents the member names (and 
optionally, the aliases and other member­
oriented data> of individual members of a 
cataloged VPAM data set. 

Command Creation Routines 

The Command Creation routines. PROCDEF 
and BUILTIN, provide the user with the abi­
lity to create new commands from a combina­
tion of system supplied commands and/or 
object coding, permitting him to define his 
own parameters and establish the desired 
defaults for these parameters. 

PROCDEF: This command routine defines a 
command constituting a combination of other 
system-supplied commands. In issuing PRO­
CDEF, the user must specify, as a paramet­
er, the name to be assigned to the new 
User-defined command. The user may then 



Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146 

call his procedure by issuing the procedure 
name, which will result in a two-stage pro­
cess. In the first stage, dummy parameter 
replacement is done where specified; in the 
second stage, the lines of the procedure 
are scanned and executed in the same manner 
as a system-supplied command. 

BUILTIN: This command routine creates a 
command procedure which will accomplish 
actions not achieved by any current system­
supplied commands or combination of system-

Command System 216.1 





supplied commands. The user creates an 
object program and defines the object code 
as a command by use of BUILTIN. A call cn 
a BUILTIN procedure is just like that on a 
normal command. It differs from a normal 
object module call in that parameters may 
be supplied which follow normal corr~and 
parameter rules, rather than normal program 
call rules. 

LANGUAGE PROCESSOR CONTROL 

The Language Processor Control (LPC) is 
the interface between the Cororoand Controll­
er and the TSS/360 language processors. 
LPC gathers input parameters from the RUN 
cororoand for a language processor, loads the 
language processor, and passes parameters 
to it. The language processor calls upon 
LPC for source lines, and uses LPC to out­
put diagnosics and obtain correction. LPC 
consists of three routines: LPC MAIN, GET­
LINE, and PUTDIAG. Figure 94 shows the 
f low of control. LPC fo:AIN operates at the 

Source 
Statements 

GETUNE 

start of language processing, at the end of 
the input scan phase, and at the end of 
processing. It is started by the RUN com­
mand, collects and verifies input parame­
ters, issues DLEF (Define Data) instruc­
tions and opens the source data set. It 
then calls the language processor. 

If input is from a terminal, each source 
line will be placed in this line data set 
and passed to the language processor. When 
the language processor has scanned the 
source data (for which it uses GETLINE) it 
returns control to LPC MAIN with a code 
indicating the next step, which may be to 
continue processing, terminate, or modify 
the source data set and restart processing. 
(In nonconversational mode, processing con­
tinues unless the language processor indi­
cates that termination is necessary because 
of source errors.) When the language pro­
cessor finishes, LPC MAIN stows the new 
rrodule. Control returns to the caller. 

PUTDIAG 

L-____________________ .-____ ~ ____ _.------------------------------~ 

Language Processor Phase 1 

!ritiolizatior1 

• Process ParamE'ters 

• Open S oure e 
Data Set 

Source 
Dala Sel 

Modifications 
? 

No 

',,-. 
Termi'1ate~ 
PrOct~ssi n9 ? 

No 

Yes 

Yes 

~----------------------+---------~ Language Processor Phase 2 

Figure 94. Language Processor Control Overview 

Final -.proceSSin g:: 
• Place Objec I 

Module in Library 
---- --~ 

cororoand System 217 



GETLINE operates only when it is called 
£y a language processor during source data 
set processing. It fetches input records 
either from SYSIN or from the source data 
set, depending on whether or not the data 
set is prestored. In conversational opera­
tion, GETLINE also issues to the terminal 
user any diagnostic messages stacked by 
PUTDIAG before getting the next input line. 

PUTDIAG receives diagnostic messages 
from the language processor and either 
writ.es them via the GATE routine or stacks 
them for output by the GETLINE or LPC MAIN 
routine. 

There is a trade-off involved between a 
system/language-processor interface that 
utilizes a lirrdted interface such as that 
represented by LPC and one which allows a 
more general interface with system facili­
ties such as the text editor. The latter 
requires more knowledge of the system to be 
built into the language processor. Thus, 
TSS/360 has chosen to utilize the type of 
interface represented by LPC. 

Text Editor 

The Text Editor provides a facility for 
editing lines of information in an existing 
VISAM data set, or as they are entered into 
the VISAM data set. It also provides the 
communications necessary to permit editing 
to be performed at the same time that a 
language processor is compiling or assembl­
ing from the data set. 

The Edit Controller provides an inter­
face with the other modules of the system. 
Its function is similar to the LPC function 
for assembler, FORTRAN, and linkage editor. 

With the text editing commands, the user 
can create and edit data sets at the same 
time. He can correct, insert and delete 
lines; he can segment a data set; and he 
can transfer lines from one dataset to 
another. The user can also display lines 
of data set at this terminal, and nullify 
previous changes that were made by the text 
editing commands. 

CONTEXT: Replaces a specified string of 
characters within a line or range of lines 
with another specified character string. 

CORRECT: Initializes the text editor to 
accept correction lines from SYSIN, and to 
make corrections on a line or range of 
lines from the object data set. 

EDIT: Invokes the Edit Initialization rou­
tine to initialize the text editor and the 
transaction table for a new data set, and 
to locate and open the data set. This com­
mand must precede the other text editing 
commands. 

218 

LX~ERPT: Incorporates a range of lines 
frorr another data set into the data set 
currently being edited. It uses, as entry 
Fararreters, the name of the data set to be 
sampled, and the numbers of the first and 
last lines to be included. 

EXCISE: Deletes a range of lines from the 
obJect data set, using the first and last 
lines to be deleted as entry parameters. 

INSERT: Prerares the text editor to accept 
data lines for insertion following a given 
line in t.he source data set. 

LIST: Cisrlays a range of lines from the 
object data set at the user's SYSOUT. 

LOCATE: Searches a range of lines in the 
o£ject data set for a given character str­
ing, using as entry parameters the first 
and last line numbers to be searched and 
the string to £e located. 

NUMBER: Renumters a specified line or 
range of lines in the object data set. 

REGION: Creates a subset of specified 
lines of data set to be located as an enti­
ty known as a region. The entry pararr,eter 
is a character string that is saved in the 
transaction table as a region name, and is 
rrefixed to all sutsequent line numbers 
until another REGICN command is encoun­
tered. If the entry parameter is 
defaulted, a null string prefixes to the 
subsequent line numbers, provided that the 
data set has regions. 

REVISE: Replaces a specified line or group 
of lines with those entered following the 
command. 

STET: Restores the object data set to its 
condition prior to the most recent set of 
unprocessed transactions. If the language 
processor is disabled, all the editing com­
rrands entered since it was last enabled 
will be reversed. If the language proces­
sor is enabled, only the last transaction 
is reversitle. 

UPDATE: Updates the current region with 
input lines read by SYSIN. The data set 
must have been opened prior to entry and 
the DCB address stored in the transaction 
table. 

Thecorrmands END, ENABLE, and DISABLE do 
not have separate text editor routines, but 
have entry pOints in the User Control rou­
tine which provides the principal interface 
to the text editor. 

END: Terminates processing by PRocr;EF and/ 
or the text editor. 



tISAELE: Restores a data set to its ori­
ginal state if requested. Revisions to d 

data set are recorded in a table and are 
not made permanent until an ENABLE command 
freceded by a previous DISABLE is issued. 
LISABLE, ENABLE, and S'1f'I allow the user to 
enter all or part of his revisions hefore 
they are Rade [:ermanent. 

ENABLE: Reverses the effect of a ~revious 
DISABLE command. 

PROGRAM CONTROL SYSTEM 

The Program Control System (PCS) of Time 
Sharing Systerr/360 perrrits tile user to 
check the status of his r;rcgrarr, after it is 
loaded or at any stage of its execution, to 
modify the prcgrarr during execution, and to 
pinpoint errors. These checking facilities 
eliminate the need for user-written debug­
ging instructions that must be built into 
the user's prcgraIl's and later rerr,oved when 
the program is debugged. 

PCS commands can refer to data by either 
symbolic names or virtual storage 
addresses. The user can use PCS commands 
to: 

• Request at any time during execution of 
a program, output of the contents of 
data fields, instruction locations, and 
registers. 

• Modify the contents of the user's vir­
tual storage. 

• Specify lecations within his program 
where execution is to be stopped or 
started. When execution has been 
stopped, the user can issue additional 
PCS corrroands before he resumes 
execution. 

• Establish logical (i.e., true or false) 
conditions that allow or inhibit the 
execution of other PCS commands. 

These centrol and checkout services are 
requested by rr.eans of the following PCS 
commands: 

• AT 
• DISPLAY, LUMP, and SET 
• IF 
• QUALIFY and REMOVE 

The following restrictions apfly to the 
above commands: 

• 'Ihe nonprivileged user may modify only 
virtual sterage locations classified as 
read/write. 

• An A'I command may never reference publ­
ic storage. 

• The nonprivileged user may make symbol­
ic references only to programs loaded 
frcrr the User Library (SYSULIB) or a 
Jot LiLrary (JOBLIB). 

Processing of PCS Statements and Ccrrrrands 

PCS statements may require immediate or 
deferred execution depending on the pre­
sence of an AT command. Those statements 
which do not contain an AT command are 
executed immediately. Those statements 
which do contain an AT command are executed 
ufon arrival at the location specified in 
the AT command. This latter deferred type 
ef execution is said to be dynamic and is 
accorrplished by the insertion of a PCSVC 
supervisor call in the issuing task's pro­
grarr at the Foints specified in the AT com­
mand. In order to complete the precessing 
specified ty the other commands included in 
the statement Ioiith the AT command, the user 
rrust issue the RUN command. 

pcs ccmmand~; and statements may te 
issued in conversational or nonconversa­
tional rr.cde. In the conversational. mode, a 
syntax check is made, symbolic references 
are validated, and diagnostic messages are 
delivered to the user assuring a valid set 
ef pes ccmmands. In the nonconversational. 
mode, the same checks as in tl,e conversa­
tional rrcde are made but no diagnostic pro­
mpting is possible. Diagnostics are deli­
vered to the t~ask' s SYSOU'l' data set togeth­
er with the PCS output, and incorrect com­
rrands are ignored. OUtput from the dump 
command is always written to the PCSOUT 
data set. 

Processing of Irr.xuediate Statements 

Phrases in immediate statements are pro­
cessed individually, one at a tiffte. Con­
trol is always returned to the Command Ana­
lyzer and Executor at the completion of 
frocessing for a phrase, unless otherwise 
noted. 

One or more operands are allowed in both 
the CISPLAY and LUMP cofftrnands. The encoded 
information for each of the operands is 
flaced in a f.tnase list. This information 
eonsists of the starting and ending virtual 
storage locations to be displayed, the type 
of symtol that the user referenced in the 
operand, and the location of the appropri­
ate dictionary entry where the syrrbol was 
found. Any object code that was generated 
is located by linkages in the phrase list. 
The fhrase list is then presented to the 
appropriate subroutines for displaying or 
durrfing. 

The SE'I corr,rrand allows a data location 
to be set equal to an expression. The 
information rertaining to the data location 
to the left of the equal sign is tabu-

Command System 219 



larized into a phrase list, as in the DIS­
PLAY corrmand. Object code is cowpiled to 
compute the result of the expression to the 
right of the equal sign. The code is 
linked to via the phrase list. When the 
list is presented to the subroutine that 
performs the SET action, the object code is 
executed. The result cf the evaluation is 
then returned from the generated code to 
the SET rcutine, which stores the result 
into the data location specified by the 
phrase list. 

The presence of an IF expression in a 
statemer,t makes its execution conditional. 
PCS corrpiles object code to evaluate the 
result of the expressicn, executes this 
code, and then notifies the CorrIDand Analyz­
er and Executor of the result of the logic­
al evaluation. If the condition is false, 
the remainder of the statement is ignored; 
if true, the Command Analyzer and Executor 
calls the appropriate PCS routinES to pro­
cess the commands, one at a time. 

The QUALIFY command allows the user tc 
specify the name of the J=rogram module to 
which his internal symbols apply. Proces­
sing of the directive includes locating the 
internal symbol dictionary for the module, 
and storing the necessary information into 
its internal tables. 

The REMOVE command permits the user to 
deactivate selected dynan:ic statements per­
manently. PCS processing consists of 
delinking and removing the aJ=proJ=riate 
tatle entries for the statements, and 
removing PCSVCs if required. 

The STOP command in an immediate state­
ment causes the user to be notified of the 
current status of his J=rograrn. The Command 
Analyzer and Executor is notified that an 
end of line condition is met. 

Dynamic Statement Processing 

Dynamic statements are those whose 
execution has been deferred until a speci­
fied location in the user's program is 
reached during program execution. This is 
accomplished ty means of the AT command. 

PCS irr,plements the AT command by insert­
ing a PCSVC into the user's J=rcgram at the 
location specified in the comwand operand. 
The user's instruction at that location is 
saved in internal tables. PCS then noti­
fies the Cowmand Analyzer and :Executor that 
the statement is dynamic. 

When the PCSVC is executed in the user's 
program, the Task ~onitor recognizes it and 
enters PCS for processing. PCS searches 

220 

its internal ta~les for the information 
pertaining to the SVC at that locaticn. 
All the frccessing is then done tor the 
actions requested at that event, as 
described in the paragraphs on processing 
of immediate statements, except as indi­
cated Lelow. 

The ccndition imposed by an IF command 
is evaluated by executinq the code 
generated during the irr,ILediate processing 
fhase. If the result is false, the next 
staterr.ent effective at this locaticn is 
processed. If the result is true, the 
remaining phrases in the current staterr.ent 
are ferfcrrred. 

When the STOP command is dynamically 
Executed, the user is notified of the loca­
tion of his J=rograrr,. and control is given 
to the Intervene systen: routine to halt the 
user's prograrr, and to place thE task in the 
command mode. 

Dynamic processing of the BRANCH corrmand 
causes the VPSW in the ISA to be modified, 
and control is returned to the Task Monitor 
to resurre program execution. 

When the CALL cOIIlmand is dynamically 
processed, control is given to the user 
control system routine, which initiates 
Execution of the called prograrr. When con­
trol returns frorr, the program, the remain­
ing actions in the dynarr,ic statement are 
ferfcrrred. 

PCS Components 

PCS is divided into three major 
corr,pcnents : 

• InJ=ut component - accepts and analyzes 
PeS statements. 

• output ccmJ=onent - performs the indi­
cated action and generates outJ=ut eith­
er synchronously for immediate state­
II1ents or asynchronously for deferred, 
dynarric statements. 

• [ISPLAY/LUMP cowponent - called by the 
Output component for Di splay, Durr'J=, and 
Set functions. 

Figure 95 shows the relationships 
tetween these components and the logic of 
J=rccessing PCS statements. 

PCS INPUT C01>!PO};ENT: The PCS infut COIr­

J=onent ccnsists of subroutines for the ini­
tial processing of all PCS staterr,ents. Two 
functional pnasEs of this component are 
distinguisned. 



Entered from 

CA and E 

En' ered from 
CA and E 

Entered from 

CA and 

IF, CALL r-.----- .. --.-----------------~.-.---------------------.-.-.~ 
DISPLAY 
DUMP 
SET 

Build 
Phrase Li s ts 

AT 

Bui Id Phrase 
List, Generate 
Code, Inform 
CA and E af 
Dyn Statement 

I 

REMOVE .- .-------.~-----___i__------
Remove 

PCSVC from 
User Program 

Return to 

CA and E 

Issue 
Diagnostic 

Return to \ 

~ 

Yes 

Figure 95. pes Processing (Part 1 of 2) 

Return to 

CA and E 

Fatol 
Errors? 

No 

Generate 

Code 

Dynamic 
Statement? 

'{ es 

Place PCSVC 
in U~er 
Prog~om 

No 

STOP, GO; 
BRANCH t 

~~otify 

CA and E of 
End-of-Statement 
ond Build 
Phrase Lists_ 

! 

QUALIFY ~ 

Retrieve 
ISO 

Return to 

CA and E 

To pce; 
Olltput 

Command System 221 



Entered from 
PCS Input {II) 

.. --- ~~---~~--- -,-------,-.~ -~---~ 

I DISPLAY 
! DUMP 

End of 
Statement? 

I Yes 

r ------

Dynamic 

Statement? 

I Yes 

Another 
Dynamic 

Statement? 

No 

No 

Dynamic 
Statement? 

t 

GO 

No 

Notify 
CA. and E 
at end of 
Subli" Le~Jel 

( Return ) 

~-

----{ Return ) 

Figure 95. PCS Processing (Part 2 of 2) 

Phase I accepts control from the Command 
Analyzer and Executor, evaluates operands 
into encoded forms, forms a phrase list, 
and makes necessary error checks. CA&E 
initializes a source list each time a user 
logs on. It cbtains a user's command and 
places it in a level one suclist from which 
it then executes the command, calling the 
apprcpriate Phase I su~routine. 

CA&E calls Phase II routines of the PCS 
input component to provide the final pro­
cessing for irrlliediate and dynamic state­
ments. ~hese routines scan the phrdse 
lists generated during Phase 1 and generate 
all necessary code. If the statement is 
immediate, Phase II then calls the PCS out­
put component to perform the actions indi-

222 

Entered from 

Task Monitor 

Locate Internal 

j nformotion 

for this AT 
Operand 

AT 

Locate Next 
Dynamic 
Statement 

CALL 

Dynamic 

Statement? 

Yes 

User Control 

I o 

No 

, BRANCH 

Dynamic 

Statement? 

~ 
L~ 

User Control 

No 
--l 

8 

, STOP 

Dynamic 
Stotement? 

Yes 

Intervene 

C_R_etur~n }--

cated, and all storage is released. If the 
statement is dynamic, Phase II stores a 
PCSVC in the user's program, at the address 
specified by the AT comrrand operand. 

PCS CUTPUT Cor~PONENT: 'The PCS outfUT_ COH­

ponent contains subroutines which rerfcrm 
the final [recessing for irr.mediat~E' and 
dynamic statemEnt~. PCS output is entered 
either froR the Task ~onitor, as the result 
of a PCSVC having been executed in the 
user's r:rogram, or, in the case of an imme­
diate statement, directly from Phase II. 
After frccessing of immediate statements, 
control is returned to Phase II. After the 
frocessing of dynal1lic statements, tefore 
control is returned to the Task ~onitor, 
the instruction in the user's program tI~Jat 



was overlaid by the PCSVC is recomposed in 
working storage and followed by a return 
PCSVC. The VPSW is modified tc point to 
thE reCOnlfOsed instruction. Centro I is 
then returned to the Task JIo'onitor. When 
PCS output is again entered as the result 
of the return PCSVC, it clears the instruc­
tion, resets the VPSW to resume execution 
at the proper location in the user's pro­
gram, and returns to the Task Monitor. 

DISPLAY/f.;UMP COMPONENT: This component of 
rcs is called by the PCS output con,ponent 
whenever DISPLAY, DUJIo'P, or SET functions 
are to be performed. The output component 
passes the address of the first phrase list 
as an arguKent. If [;ISPLAY is specified, 
the DISPLAY/DUMP component transmits values 
of i terr.s in a list to the user's SYSOUT. 
If DUMP is specified, it generates the same 
values onto a data set referenced as 
FCSOUT. This component also modifies and 
displays the contents of a data location 
referenced by a SET corrmand. 

The DISPLAY/DUMP corrponent picks up suc­
cessive item references from the phrase 
list, obtains the address and attributes of 
E:ach item, converts the contents of each 
item according to its attributes, and 
places it in an area for output. Only one 
display list is processed for each entry 
into the DISPLAY/DUMP component. Each 
entry in the phrase list is processed and 
two display items are formed to define the 
attribute cf the phrase list entry data. 
These attributes determine the output 
fornlat. 

PCS INTERFACES WITH SYSTEM MODULES AND 
TABLES 

During the processing phase of its 
operation, PCS makes use of system modules 
and tables. 'The following paragraphs 
describe the interface of PCS with the 
system. 

'I'he Corrmand Analyzer and Executor (CA&E) 

The Corurand Analyzer and Executor (CA&E) 
serves as the primary link between PCS and 
the user's program. CA&E ottains the 
user's PCS staten,ents fron: SYSIN in exactly 
the same way as for other con,manas. CA&E 
scans the statement and, detecting a PCS 
command, calls the appropria te PCS "t',odule 
to perforrr the required precessing. The 
COIT~and Analyzer and Executor also serves 
as a superviscr Frograrr: for PCS, exercising 
control over the flow cf worK retwEen PCS 
f<hases. 

User Control Routine 

When processing the CALL conmand, PCS 
gives control to the User Control service 

routine to initiate execution of the user's 
prcgrarr. 

Intervene Routine 

During the processing of a dynamic sta­
tement, PCS determines if the task should 
te returnee to the command mode. This 
could result from the processing of a 
dynamic STOP command or fron, an error con­
diticn recognized t:y PCS. Control is given 
to the Intervene system routine to halt the 
execution of the user program and give con­
trel to CA&E, thus f<lacing the task in com­
mand mode. 

'Iask Monitor 

When the CALL corr,mand is issued, the 
task is put in execution via the Task Mon­
itor. The Task Monitor also provides the 
processing required to call PCS when a 
PC~jVC is encountered. 

[;uring its execution, PCS utilizes two 
'Iask Monitor subroutines. The Queue Link­
age Entry (QLE) routine is called to place 
the task in command mode when a STOP con:­
nand is dynarr.ically executed or when cer­
tain error conditions are encountered by 
PCS. Queue Linkage Entry enqueues a Queue 
Entry on the Attention Handler Request 
Entry. when PCS processing is completed 
and control is returned to the Task Mon­
itor, the Attention Handler will be called 
prior to task execution being resumed. 

[;ata l"lanagenent 

PCS rrakes use of VPAM FIND to locate a 
program's Internal Symbol Dictionary (ISD) 
and VAM MOVE PAGE to read the ISD. PCS 
also uses VISAM for off-line output in 
respcnse to thE DUMP command. 

Virtual Menory Allocation 

The GETMAIN and FREEMAIN routines are 
used for the allocation and release of 
working storage. The CKCLS SVC processor 
is used to determine the storage protection 
and privilege associated with a virtual 
storage address. 

Dynamic Loader 

When a module must be loaded, PCS issues 
a DLINK [:.iVC which results in an entry to 
the [ynarric Loader. 

The MAPSEARCH subroutine of the Dynamic 
Loader is used when PCS is searching for a 
virtual storage address. PCS also uses the 
HASHSEARCH subroutine to .r·esolve a nodule 
nane or external reference in a PCS state­
ment. When a referenced module is 
unloaded, the Dynamic Loader calls on PCS 
to remove from all modules which remain, 

Command System 223 



all PCSVCs in the module being unloaded, 
and to clEar the PCS tables. In this mann­
er, rerraining rrodules can te eXEcutEd 
without portions of checkout statements 
rewaining. 

In addition to these rrodules and subrou­
tines, PCS also accesses certain common 
data areas to extract data to te displayed 
or data required for execution of PCS com­
mands. ~hese data areas are: 

DYNAMIC LOADER'S TASK DICTIONARY (TDY): 
'Ihe 'IDY contains a task's virtual storage 
n;ap and thE Program Module Dictionaries. 
~his inforrration is requirEd ty PCS when it 
resolVES External references into virtual 
storage locations. 

INTERNAL SYMBOL DICTIONARY (ISD): This is 
an optionally availatle tatle which the 
user must request at assembly or compile 
tirre if he intends to reference internal 
symbols in PCS corr'mands. PCS locates 
internal references by use of this table. 

224 

IN~ERRUP~ STORAGE AREA (ISA): A user's 
general and floating point registers are 
saved in t.he ISA. When the contents of 
these rEgisters are referenced for display 
or alteration, P-CS finds the inforrraticn in 
the ISA. 

The ISA alsc contains the virtual pro­
gram status word (VPSW) which PCS lfust 
rrodify in response to a RUN command. 

PCS also perforrrs some validity checks 
which depend on user type and authority 
codes. PCS finds this information in the 
ISA. 

TASK COMMON (TCM): PCS finds the task's 
operating environment described in TCM 
(i.e., conversational or nonconversational 
rrode, confirrr,ation or nonconfirmation 
wode) • 



CREATION OF A CONVERSATIONAL TASK 

A conversational task is created when 
the user enters the LOGON command. 

1. This exarrple descrices the creation 
and initialization of a conversational 
task frorr the paint at which the Resi­
dent supervisor receives the attention 
interruption, through task initializa­
tion and LOGON processing performed by 
the Task Monitor and Command System. 

The flow for this example is described 
in three charts which are keyed to the 
following description. The first two 
charts, Figures 96 and 97, cover the 
Resident Supervisor and Task ~onitor 
processing up to the point at which 
the Command System is first invoked. 
The third chart, Figure 98, is pre­
sented in a style that more graphical­
ly depicts the levels of linkage 
involved in task initialization in 
virtual storage. 

2. The Interrupt Stacker is the routine 
of the Resident Supervisor which 
receives control when any hardware 
interruption occurs. The Interrupt 
Stacker identifies the interruption 
type and creates a GQE. In this 
example the Interrupt Stacker is 
entered at its I/O interruption entry 
point. The entry point address is 
carried in the instruction counter 
field of the new PS~. 

3. Supervisor Core Allocation is called 
to get 64 bytes in which to l:uild the 
GQE for this interruption. 

4. At this pOint the Interrupt Stacker 
proceeds to build the GQE. The Inter­
rupt Stacker inserts the hardware 
device address autorratically stored 
with the I/O interruption as the 
interruption code), the Channel Status 
Word, and the symbolic designation of 
the queue on which the GQE is to be 
placed for later processing. A test 
is rrade to see if the interruption 
came from a paging drum since such 
interruptions are handled differently 
from other I/O interruptions. Since 
this is not a paging drum interrup­
tion, the Interrupt Stacker designates 
that this GQE is to Le placed on the 
Channel Interrupt Queue. 

5. The Enqueue routine is called by the 
Interrupt Stacker to attach the GQE to 

£XAt-'PLE.S Cf SYSTbM CPERATION 

the Channel Interrupt Queue as speci­
fied by the symbolic queue number 
inserted in the GQE by the InterrUpt 
Stacker. 

6. The Interruf-t Stacker has completed 
processing this interruption and exits 
to the Queue Scanner. 

7. The function of the Queue Scanner is 
to look for a GQB which can be pro­
cessed. When one is found, the a~pro­
priat.e sUFervisor routine (Queue Pro­
cessor) is invoked. In this instance 
a GQE is found on the Channel Inter­
rUFt Queue and the Channel Interrupt 
Processor (CIP) is called. 

8. The CIP calls Set SUPFress Flag to 
prevent a second CPU from being 
invoked to process the saIDe queue. 

9. The Channel Interrupt Processcr deter­
mines that this is a Terminal I/O 
interruFt. 

10. The Channel Interrupt Processor calls 
Supervisor Core Allocation to obtain a 
save area for use by the Terminal Con­
trol sutprocessor (TCS) and calls TCS. 

lL TCS determines that this is the ini­
tial interrupt from the terminal 
(DEVTSI pointer = 0) and calls Super­
viscr Core Allocation for 64 bytes 
(TICCB) and 256 bytes (Input Buffer) 
of core. 

12. TCS generates a Read channel program 
for the terminal device, and calls 
~athfinding to oLtain the device path. 

13. TCS returns to the CIP. 

14. CIP calls requeue to remove the GQE 
from the queue of the CIP. 

15. ClP calls Move-GQE to dispose of the 
G~E. 

16. CIP calls Set Suppress Flag to reset 
the suppress flag. 

17. CIP calls Su~ervisor Core Release to 
release the save area core, and CIP 
then exits to the Queue Scanner. 

18. Queue Scanner finds no GQE in its Scan 
Table and exits to the Internal 
Scheduler. 

Exam~les of System Operation 225 



Initial I/O Interrupt 

(1)~ 
,---

(2) - ....... 
Supervisor 

$0< ] Care 
Queue 

Suppress 
Allocation Flag 

(4) (3) Scanner (9) (8) 

Interrupt (7) ,.-
Stacker --

Enqueue 
Supervisor 
Core 

(5) Allacatian 
(10) 

(6) 
I 

OJ) 

Terminal 
Communication 

Subpracessor 

(12) 

Channel 
Interrupt (13) 
Processor 

(14) 
Dequeue 

(15) Move 
GQE 

------
(16) Set 

Suppress 
Flag 
(Reset) 

--

I 
I 

(17) 

5"~""J Disoatcher 
Internal Queue Core 
Scheduler Scanner I Release 

(20) (19) (] 8) ._--

(Wait) 

Figure 96. Resident Supervisor 'Iask Initiation Flow <Initial Interrupt) 

226 

-

r i 
! 
i 
I 
i 

, 
~l 

I 

Suoervlsor I 
Core 
Allocation ____ -.-J 



(21 ) ~ I/O Interrupt 
(response to read 
generated in step 12) 

~------, 

Interrupt 
Stocker 

I--

I 
f---

Supervisor 
Core 
Allocation 

L-____ -' 

, 
I 

Engueue J 
(22)f-------....J 

I Internal 
(41)~ Schedules -1,--1 ___ (4_0~) 

Dispatcher 

(42)f---
I~ 

(43)-

Task 
Interrupt 
Control 

(48)1-- (47) 
(45)r----

Queue 
Scanner 

(23) 

Queue 

Scanner 

Locate 
Page 

(39) 

(44) 

Supervisor 
Core 
Release 

I 

f-

L-____ ~~L---~(_46~) 

Level 1 

_.- ------------

(49) f-----. 
Task 

QLE 

Monitor ~ (50) 
'------'---'-' 

Asynchronous 
Interrupt 
Processor 

(51)~ 

r--+' ~ 
Set 
Suppress 

f-- Flag 

-- Supervisor 
Core 

f-- Allocation 

(24)~ (25) ]-.. TCT Entry 

I Allocation 

Channel 
Interrupt 
Pr·:)cessor 

(35 

(36 

(37 

L- (38) 

i Subprocessor 
i--'---____ '--(26-'.j) 

(27) f---+ (28)~ Supervisor 
Core 

Task 
(29) f.4- L-_A_"_o_ca_t_i o_n--..J 

Initiation 
i (30)f-----

Terminal I 
Communications f-+-- ~ 

Reschedu ling 
(Inactive) 

I 
L-. ____ -', L-____ -' 

Subprocessor 

~--------- I 
(31) ~ Queue (32)f- Rescheduling 

I GQE ) 
(EI ;gible J 

On f4-r--- TSI 

(33)~ Supervisor 
Core 

f.4- Release 

I 
(34) I----

Reverse -- f4- Pathfinding 
'--____ --..J 

)f-----
Dequeue I 

f-- I 
)~ Set Suppress 

r-- Flag (Reset) 

)f----o Supervisor I 
Core I f-- Release I 

Figure 97. Resident Supervisor ~ask Initiation Flew (Read R€s~onse) 

Exarnrles of System Operaticn 227 



[ Task Monitor 

t53) 

em'AM I 

L'i ! rR'::i::,,>e· 
i I: 

,I 

~--~ 

Figure 98. Conversational Task Example 

228 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

19. Internal Scheduler finds no work and 
exits to the Dispatcher. 

20. Dispatcher has nothing to dispatch and 
enters the Wait state. 

21. EVentually the terminal responds to 
the Read on its line (generated in 
step 12) and another I/O interrupt 
occurs. (Assume this is LOGON) 

22. Interrupt Stacker (as in steps 2-6) 
identifies the interrupt and creates 
the GQE after calling SCA for the 
space in which to build it. Enqueue 
attaches the GQE to the Channel Inter­
rupt Queue, and the Interrupt Stacker 
exits to the Queue Scanner. 

23. Queue Scanner finds the GQE on CIP's 
queue, and activates CIP. 

24. CIP (as in steps 8-10) determines that 
this is a Terminal I/O interrupt, 
calls SSF to set the Suppress Flag, 
calls SCA to obtain save area core, 
and calls TCS. 

25. TCS findS DEVTSI non-zero this time 
(points to TIOCB), finds the LOGON 
command in the input buffer obtained 
previously (step 11), and calls TCT 
Entry Allocation Subprocessor. 

26. TCT Entry Allocation subprocessor 
assigns a system TCT slot and a Buffer 
Page slot to the task. 

27. TCS calls Task Initiation to create a 
new task. 

28. Task Initiation calls Supervisor Core 
Allocation to get 128 bytes of core in 
which to build a Task Status Index 
(TSI) • 

29. Task Initiation then constructs the 
Task Interrupt Mask field in the TSI 
such that task interruptions are 
enabled, finds the address of the 
skeleton XTSI in the System Table and 
places this external address in the 
TSI, makes the task status "delay·, 
assigns the task identification, 
assigns the schedule table entry of 
20, and places the symbolic device 
address of the SYSIN/SYSOUT terminal 
in the TSI. 

30. Task Initiation calls Rescheduling to 
place the TSI in the Inactive Lists in 
ready status, and returns through Task 
Initiation to TCS. 

31. TCS calls Queue-GQE-on-TSI to place 
the asynchronous (this interrupt does 
not meet the Synchronous criteria) I/O 
interrupt on the tasks' TSI. 

32. Queue GQE on TSI calls Rescheduling to 
move the TSlfrom the Inactive List to 
the Eligible List, and then returns to 
TCS. 

33. TCS initializes the TCT and places the 
TCT pointer in the Device Group Table. 
TCS sets the RTAM flag, and calls 
Supervisor Core Release to release the 
buffer (obtained in step 11) core. 

34. TCS calls Reverse Pathfinding to 
release the device path, then TCS 
exits to the CIP. 

35. CIP calls Dequeue to logically discon­
nect the GQE from the channel inter­
rupt queue. 

36. ClP calls Set Suppress Flag to reset 
the flag originally set in step 24 and 
thus enables processing of the Channel 
Interrupt Queue when subsequent GQEs 
are placed on it. 

37. CIP calls Supervisor Core Release to 
release the save area obtained when 
CIP called TCS. 

38. CIP at this point has finished proces­
sing the attention interruption and 
exits to the Queue Scanner. 

39. The Queue Scanner searches for any 
pending GQEs. For this example, it 
will be assumed that there is none. 
Finding no work, the Queue Scanner 
exits to the Internal Scheduler. 

40. The Internal Scheduler finds the new 
task and submits it to the Entrance 
Criteria module to determine if the 
task can be brought into main storage. 
In this case we will assume that there 
is room and the task is moved to the 
Dispatchable list. In order for the 
task to execute, the Internal Schedul­
er must first cause the XTSI page to 
be brought in. For this newly created 
task this will be the skeleton XTSI. 
The paging activity of the supervisor 
is omitted here and is shown in anoth­
er flow example. (See Paging.) The 
Internal Scheduler also reorders the 
Dispatchable list so the Dispatcher is 
presented with the proper task to 
place in execution. 

41. When the Internal Scheduler is 
finiShed. it exits to the Dispatcher. 
The Dispatcher selects the first 
"ready" task from the Dispatchable 
list and proceeds to place it in 
execution. 

42. The Dispatcher now wishes to determine 
if there is a task interruption pend­
ing for this task. Task Interrupt 

Examples of System Operation 229 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

control (TIC) is called to make this 
determination. 

43. TIC provides an important link between 
the Resident Supervisor and the Task 
Monitor. Since there is a pending 
task interrupt, the function of TIC 
here is to make sure that when the 
task is placed in execution, it is 
started at the appropriate interrup­
tion processing routine in the Task 
Monitor. In order to do this it must 
set up the correct data in the first 
double word (PSW location) in the 
XTSI. This data is obtained from the 
new Asynchronous I/O Virtual PSW in 
the ISA. 

44. TIC invokes Locate Page to find the 
main storage address of the ISA. 

45. TIC translates the VPSW information in 
the ISA into extended PSW format, 
places it in the XTSI, and sets the 
TSI interruption mask field. TIC also 
copies information from the GQE into 
the ISA. 

46. Supervisor Core Release is then called 
to release the space used by the GQE. 

47. Task Interrupt Control then returns to 
the Dispatcher. 

48. The Dispatcher now sets the new task 
in execution by loading the PSW and 
registers from the XTSI. The instruc­
tion counter in the PSW points to the 
Task Monitor's Asynchronous I/O Inter­
rupt entry pOint. (The page pointed 
to by the PSW will now be paged in if 
it is not already in main storage.) 

49. The Task Monitor Asynchronous I/O 
Interrupt Processor discovers that it 
is processing an initial attention 
interrUption by noting that the Task 
Initiation Complete Flag in the ISA is 
not on. It thus knows that it must 
set up a task initialization sequence. 

50. Queue Linkage Entry (QLE) is the rou-­
tine used by the Task Monitor to cre­
ate an element of work (i.e., a Queue 
Entry) to be done later by the Task 
Monitor. QLE is analogous in function 
to the Resident Supervisor's Enqueue 
routine. The Queue Entry is created 
and an entry in the Task Monitor 
Interrupt Table, called a Request 
Entry, is activated. A Request Entry 
describes the routine that will pro­
cess the work represented by the queue 
entry. The Request Entry in this case 
will contain a control block that 
identifies a Command System routine 
that will supervise task initiation. 

230 

51. Control is returned to the Task Mon­
itor Asynchronous I/O Interrupt Pro­
cessor, which in turn exits to the 
scanner/Dispatcher. 

52. The Task Monitor scanner/Dispatcher is 
analogous to the Resident supervisor's 
Queue Scanner. The Scanner/Dispatcher 
scans the Interrupt Table looking for 
a Request Entry with work that can be 
processed, and dispatches the appro­
priate routine when such a Request 
Entry is found. In this case it finds 
an active Request Entry for the Ini­
tial Attention Interrupt routine and 
calls that routine. 

53. The Initial Attention Interrupt Pro­
cessor performs initialization func­
tions for conversational tasks. After 
setting a flag in Task Cornmon to ind­
icate that the task is conversational, 
IAIP makes an explicit CALL to load 
and transfer control to the Virtual 
Memory Task Initialization routine. 

54. Virtual Memory Task Initiation pro­
ceeds with initialization functions 
for the Command System. 

The SDAT is scanned for all devices 
that carry public volumes. As each 
public device is found, VMTI uses the 
ADDEV SVC to add each device to the 
Task Symbolic Device List. This list 
is used by the Resident supervisor to 
determine on which devices the task is 
allowed to request I/O operations. 

The Data Control Block (DCB) and Jot 
File Control Block (JFCB) for the 
Catalog are included in each task's 
Initial Virtual Memory. VMTI opens a 
DCB for SYSSVCT -- a VI dataset con­
taining pointers to USERCATs. It then 
issues FINDJFCB for SYSSVCT, opens the 
two SYSCAT DCBs, DDEFs USERCAT for the 
user, and issues FINDJFCB for USERCAT. 

As part of its processing, VMTI super­
vises the creation of the JFCBs neces­
sary for each task to operate in the 
system. 

There is a special entry point in the 
DDEF routine that allows privileged 
routines to specify a User ID other 
than the User ID associated with the 
task. Thus, system data sets, which 
are cataloged under the user ID of 
TSS*****, can be accessed by privi­
leged programs without having to first 

I issue a SHARE command. VMTI then 
issues another call to DDEF to create 
the JFCB for the System User (SYSUSE) 
data set. This data set contains a 
list of all legal TSS/360 users and 
describes their attributes. Part of 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

the LOGON command functions is to open 
this VISAM data set. 

VMTI also issues the DDEF macro 
instruction to create the JFCB for the 
System Accounting Table. This table 
contains the accumulated rrain storage 
time used by tasks. At the completion 
of each task, this data set is opened 
by the LOGOFF command and is then 
updated by the Accounting Routine. 

VMTI next issues DDEF macro instruc­
tions for the System Macro Library and 
System Macro Library Index. These 
data sets are used by the TSS/360 lan­
guage processors. 

VMTI issues its final DDEF to create 
the System Library (SYSLIB) JFCB. The 
LIBMAINT routine is then called by 
VMTI with a pOinter to the SYSLIB DCB 
contained in the task's Initial Virtu­
al Memory. LIBMAINT opens the System 
Library. 

VMTI calls TIME to initialize the task 
timer and continues the task initiali­
zation sequence by calling VMTI II. 

55. The fUnction of VMTI II is to complete 
the initiation process. VMTI II first 
calls OPEN to open the DCE for the 
system message file (SYSMLF). FIND is 
issued to open that member. VMTI II 
next turns on a flag in New Task Com­
mon showing that the task is conversa­
tional. It then moves the task ID 
from the TSI into Task Cornmon and New 
Task Common and calls LOGON. 

56. The LOGON command is the mechanism by 
which the system validates the user's 
credentials and performs various 
initialization functions for the task. 
LOGON issues an ATTACH SVC, which 
returns the address of the TCT slot 
assigned to the task. The TCT con­
tains the address of the buffer where 
LOGON obtains the parameters which 
were entered with the user's LOGON 
command. An initial message is issued 
via User Prompter to let the user know 
that his parameters have been 
received. 

In order to analyze the input parame­
ter string. LOGON calls SCAN. SCAN is 
a set of subroutines used by command 
programs to isolate and validate input 
parameters. 

LOGON calls SCAN to validate the 
USERID. Once SCAN is completed, LOGON 
calls COMMON OPEN to open the SYSUSE 
data set. LOGON, issues an RCR OPEN 
macro using the USERID as the key, and 
calls VISAM Read/Write to read the 

legal user attributes associated with 
the USERID. These attributes are each 
checked and placed in Task Cornmon. 

Three conditions must exist before the 
LOGON processing for this task can be 
completed. The USERID of the conver­
sational task being logged on must not 
already have a conversational task in 
the system, and the user must not have 
been quit from the system. and suffi­
cient auxiliary storage must be avail­
able. Assuming these conditions 
exist, RCR sets the activity flag in 
the SYSUSE record indicating that 
there is now a conversational task for 
this USERID and increments by one of 
the total number of tasks currently in 
the system for this user. In addi­
tion, the nonconversational print flag 
in Task Common is turned off. This 
flag is used to instruct the LOGOFF 
routine to issue a PRINT Command to 
cause the SYSOUT data set to be 
printed for nonconversational tasks. 
The USERID is stored in Task Common, 
and an AUL entry for the task is 
placed in the UAL table. 

RCR RATION macros are then issued to 
check the user's CPU time and CONNECT 
time to be sure he has not exceeded 
his ration. 

Once completed, LOGON calls VISAM 
Read/Write to update SYSUSE. A prompt 
is issued (via MSGWR) if the user has 
a password and has defaulted it. Once 
the password has been verified, all 
other parameters are validated with 
system default values for those param­
eters omitted. 

LOGON then sets a flag in Task Common 
indicating LOGON processing has been 
successfully completed. By means of 
the SCHED macro instruction, the 
task's schedule table entry is 
updated. 

LOGON proceeds to call DDEF to create 
the JFCE for USERLIB. After creating 
the JFCE, DDEF calls LIB MAINT to 
build and open the DCB for the user 
library (USERLIB). LOGON then returns 
control to VMTI II after issuing the 
salutation message. 

57. VMTI II determines the SDA for the 
SYSIN and SYSOUT device from the TCT. 
Next it sets up an SDAT entry showing 
the device type and maximum line 
length of the terminal for the buffer 
in GATE'S PSECT. VMTI II, at this 
point, constructs a dummy MCB and 
calls LOGON2. LOGON2 initializes 
fields in New Task Cornmon and issues 
OPEN macros for the DCBs of USERLIB 

Examples of System Operation 231 



Page of GY28-2009-2, Issued september 30, 1971 by TNL GN28-3193 

and SYSLIB. Next it issues FIND 
macros for the SYSPRO and SYSPRD mem­
bers of USERLIB and SYSLIB, and for 
SYSMLF in USERLIB (SYSMLF in SYSLIB 
has already been opened). LOGON2 then 
creates the combined dictionary by 
copying the user profile or the system 
prototype profile and the user and 
system procedure libraries. It sets 
up the input and output Character 
Translation Tables and the Profile 
Character and Switch Table for GATE. 
Finally LOGON2 issues the SIR macro 
instruction to enable the Attention 
Handler and returns to VMTI II. 

58. VAMTI II issues ZLOGON via the OBEY 
macro. ZLOGON, in USERLIB, is ini­
tially a null procedure to which the 
user can all commands he wishes to be 
executed at this point. VMTI II calls 
QLE to queue an entry to the Command 
analyzer and Executor and then begins 
a chain of returns which proceeds to 
VMTI. the Initial Attention Interrupt 
Processor, and the Task Monitor. 

59. When the Command Analyzer and Executor 
is entered, it determines that the 
task is conversational and calls GATE 
via the GTWAR macro instruction to 
issue an underscore and backspace. 
The user is now free to enter 
commands. 

NONCONVERSATIONAL PROCESSING 

Next, a walk-through of the system 
operations involved in a nonconversational 
assembly is presented. The processing of 
RJE Control Cards is presented in the sec­
tion on "Remote Job Entry." 

At startup time the main system operator 
is given the opportunity to create the BUL­
KIO task. If he declines at startup time 
he may create the task at any later time by 
issuing the ASNBD command. As operands, 
the operator enters the symbolic device 
addresses of the various unit record 
devices he wants used in BULKIO processing. 
These operands are sent via VSEND to the 
BULKIO task which constructs a list of S 
entries in the BULKCOMM table. Each of 
these entries represents one unit record 
device and contains space for input and 
output DCBs plus information concerning the 
type and availability of the device. 

The BULKIO task in conjunction with the 
Batch Monitor provides the processing 

232 

needed to create, schedule, and dispatch 
jobs requiring unit record devices. These 
jobs are initiated in response to the com­
mands PRINT, PUNCH, RT, and WT. A job is 
also initiated to read cards but no command 
is required. The reading of cards is 
accomplished by loading the cards into the 
reader and starting the reader. The 
resulting asynchronous interruption is 
recognized as a request to read cards and 
the required job is initiated by the BULKIO 
task. 

The Batch Monitor task causes creation 
of another Bulk I/O job to list the SYSOUT 
of the first Bulk I/O job. 

The Batch Monitor then causes creation 
of the assembly task and sends a message to 
initialize it. 

The Language Processor Control {LPC> of 
the Command System is loaded into the As­
sembler task's virtual storage when the 
desired language processor is requested via 
the LOAD command. LPC performs those func­
tions and relationships common to all lan­
guage processors and serves as the link 
between the language processors and the 
user. 

The final command in all cataloged com­
mand procedure data sets is LOGOFF. The 
final exit for the Assembler Task is to the 
LOGOFF command routine, which in addition 
to terminating the task, requests another 
non conversational Bulk I/O job to list the 
Assembler task's SYSOUT. 

The Bulk I/O jobs to list source list­
ings and printouts of the Assembler task's 
SYSOUT are subsequently initiated by the 
Batch Monitor Task when the PRINT command 
is issued. Because the processing for 
these jobs is in many ways similar to the 
read cards job, these jobs are not 
described in this example. 

The relationships among the routines 
involved in the processing of this read 
cards job and the significant work they 
perform are presented in the following step 
by step description. 

1. To initiate the reading of cards the 
system operator must first ensure that 
the BULKIO task exists. This task is 
created by the main operator house­
keeping routine at startup time or 
subsequently by means of the ASNBD 
command. The operator must also have 
assigned the reader to the BULKIO 



task. This is done either when the 
task is created or by adding the 
device to the TSDL of the BULKIO task 
at SOffle later time by issuing the 
ASNBD command. If both these condi­
tions have been met, the operator need 
only load the cards in the reader and 
start the reader. 

2. The asynchronous interruption which 
occurs when the reader is started is 
received by the channel interrupt pro­
cessor of the resident supervisor. 
The channel interrupt processor recog­
nizes that a task, the BULKIO task, 
already exists for this device and 
simply queues a GQE in the asynch­
ronous interrupt queue of the BULKIO 
task's TSI. 

3. When the EULKIO task was created, an 
ICB was built in BULKCOMM by weans of 
the SAEC macro instruction and enabled 
by the SIR macro instruction. When 
Task Monitor goes to service this 
interruption, it recognizes the exis­
tence of the routine specified in the 
SIR macro instruction and passes con­
trol to it. 

4. The routine which services the asynch­
ronous interruption is the Input Start 
routine. It deletes the ICB by means 
of the DIR macro instruction and calls 
the Input service routine to initiate 
the new job. 

5. Input Service reads the first card 
from the reader. SYSIN data sets such 
as the one in this example must begin 
with a LOGON command. Data sets are 
delirrited by a DATASET card. when the 
LOGON card is read, Input Service 
calls In~ut Start at a secondary entry 
point. 

6. Input Start validates the userid and 
places it in the S entry associated 
with the reader. A call is then made 
to the DDEF routine to create a JFCB 
defining the output data set. Input 
Start then opens the output data set. 

7. Input Start calls Input Service which 
continues reading cards. Cards are 
read by means of the GET macro 
instruction and are placed in the VAM 
output data set by means of the PUT 
macro instruction. This operation 
continues in a loop until the LOGOFF 
card is read or no more tuffering can 
be performed. When the LOGOFF card is 
detected, Input Closeout is called. 

8. Input Closeout closes the output data 
set and issues a VSEND to the Batch 
Monitor task to create a task to pro­
cess the SYSIN data set just read. 

Input Closeout returns to Input Ser­
vice which begins looking for another 
task. Our example will continue with 
the processing of the SYS1N data set. 

9. The message which Input Closeout sends 
to the Batch MoDi tor is an l'JCB in the 
forn of a Batch Work Queue entry which 
Input Closeout had previously con­
structed. The VSEND is queued as an 
external interruption on the Batch 
Monitor's (Operator 'rask's) T51. When 
tile Batch Monitor task (Operator Task) 
is placed in execution again by tne 
DisFatcher, 'Task Interrupt Control 
will find the interruption pending and 
will give control to the external 
interrupt processor which links to the 
Batch Monitor (operator) task at a 
point where it will create a BwQ 
entry. 

10. At the point of entry to the Batch 
Monitor, a BSN is assigned, the Batch 
Work Queue is opened, and the new 
entry is written to the queue. The 
queue is then closed and a flag is set 
to indicate to the Batch Monitor Pro­
cessor (OFerator) that there is work 
in the queue. 

11. When the Batch Monitor (Operator) task 
finds the entry in the BWQ it creates 
a new task to process the SYSIN data 
set Ly Heans of a call to Create TSI. 
When a task has been created, the 
Batch Monitor issues a VSEND to the 
TID of the task just created; the MCB 
associated with the VSEND contains the 
necessary information from the BWQ 
entry. The Batch Monitor then con­
tinues creating tasks for each entry 
in the BWQ. When the BWQ is enpty or 
the maximum number of nonbackground 
tasks in the system is reached, the 
Batch Mcnitor calls Close Common to 
close the BWQ data set and returns to 
the Batch Monitor processor. 

12. 'lhe Batch l"onitor processor will 
initiate all possible Batch and BULKIO 
jobs (depending on device availabili­
ty). Once it has done this, it will 
call the Task Monitor to queue a link­
age entry to itself. This will enable 
the Batch Monitor to repeat the proce­
dure of initiating tasks should any 
more entries be made in the BWQ 
between this time and the next time 
slice the Batch Monitor receives. 

13. When the Dispatcher selects this new 
task for execution the SYSIN data set 
created by BULKIO is read. The LOGON 
connand is read and the LOGON routine 
is called to process it. 

Examples of System Operation 233 



14. The next cen-mand read in this Exampl E 
is the ASM command. When this command 
is processed, the AssEmbler will be 
dynarrically loaded into the new tasK's 
virtual storage and will begin reading 
and processing the source statements 
which follow. 

15. Following the source statements to be 
asserrbled the user rray issue any of 
several commands. He may choose to 
execute the just asserrJ::led program l:y 
issuing the CALL, RUN, or LCAD and 
CALL corrrrands. Fer this example we 
assume that the user wishes to check 
his asserrbly for errors and issues the 
PRIN'I command. 

16. The PRINT command will cause an entry 
to the BULKIO preprocessor in the Com­
mand System. This routine will issue 
a VSENDR to the Batch Monitor task to 
create a BWQ entry for the print job. 

17. When this is done the Batch Monitor 
reactivates the task which entered the 
PRINT command, the SYSIN task, via a 
VSEND. This task may now issue more 
corr.mands since the [Tinting of its as­
sembly listing will be done by another 
task, the BULKIO task. Assume that 
this task issues LOGOFF and leaves the 
systerr • 

18. When the Batch Monitor (Operator) task 
receives another time slice, it will 
find the newly created BWQ entry and 
will initiate it. Unlike the assembly 
task, no new task is created for the 
printing of the assembly listing since 
it resides on public storage. This 
job is performed l:;y the BULKIO task. 
The Batch Monitor calls its BULKIO 
subroutine which calls CPEN to open 
the EWQ data set. 

19. When the data set is open and the new 
entry is found, the list of sentries 
in BULKCO~~ will be searched for an 
available printer. When one is found, 
it is narked unavailal:;le and the 
information in the BWQ entry is moved 
to the S entry. The Eatch Monitor 
then continues searching for more 
tasks to initiate. 

20. When the EULKIO task is again placed 
in execution, its Master Services rou­
tine calls Output Service. Output 
Service enters a loop in whch it first 
issued a GET to retrieve the record 
from the VAM data set and then issues 
an MSA~ PUT to write the record to the 
printer. This process continues until 
the end cf the VA~ data set is reached 
at which time MSAM FINISH is issued, a 
VSENC is sent to the Batch Monitor 
informing it that the job is complete, 

234 

and the operator is also informed by 
means of the WTO macro instruction. 

~EMOTE JOB ENTRY 

Rerr,ete Jot: Entry (RJE) provides the user 
at a rerrote terminal, all the facilities of 
EULKIO II and nonconversational task execu­
tion. Except for control card processing, 
the logic is generally common for RJE and 
nonconversational users. The rerrote sta­
tien has a printer, and a card reader with 
which to ini tia te batch jobs in the sarr,e 
rranner as the central installation. All 
input from remote stations is compatible 
with the local card reader, with the excep­
tion of the RJE control cards. 

The control card processing for RJE is 
described in the system logic flow that 
follows. For nonconversational processing 
generally, see the section on "Nonconversa­
tional Processing." 

RJE User Overview 

The ASNBD command is issued to enable a 
line for the remote station. A JOINRJE 
command, issued l:;y the system manager or 
administrator, verifies the station ID and 
adds it to the Validation Data Set parti­
tion of the Acknowledgment Data Set. 
QUITRJE removes the station ID frou. this 
data set. 

An operand of the JOIN and PRINT com­
mands allows the user to print his job at a 
station other than his own. The DIRECT 
command is used by the system operator to 
route the RJE output to a local printer or 
another RJE station. 

The control cards entered from the 
rerrote staticn are the RJSTART card - iden­
tifying the station; the RJEND card -
detaching the station from the system; and 
tne CONTINUE card - which requests the sys­
tem to continue, cancel, or rerun a trans­
rrission to the remote printer. 

RJE Control Card Processing 

If the line to the RJE station is not 
dedicated, the user must communicate with 
the Central Operator to enable the line. 
'Ihe operator will issue the ASNBL corr.mand 
with an SDA as the operand and the system 
flow will proceed as shown in these nUIT,­
bered steps (keyed to Figures 100 through 
104). 

1. The ASNBD command will cause a VSEND 
thrcugh the Resident Supervisor to the 
BULKIO Initialization Routine. 

2. BULKIO Initialization initializes the 
S-entrie3 for the input/output func-



tions of the RJE station, calls SIR to 
establish BULKIO Inrut start as the 
processor for asynchronous interrupts, 
and issues the RJELC macro. 

3. The RJELC macro expands to issue the 
ENABLE SVC, which is fielded in the 
Resident Superviscr by the Interrupt 
Stacker and passed to the svc Queue 
Processcr. 

4. The SVC QUEue Processor dEtermines the 
task is authorized to issue the SVC, 
and calls RJE Line Control (RJELC>. 

5. RJELC determines that the function to 
be performed is ENAELE. 

6. RJELC calls pathfinding for the phys­
ical I/O path. 

ASNBD 
Command 

Vi rtua I Storage 

I (1 ) 1---' 

I 
1>, I 
I VSEND I 

I I SVC Processor I 
i I 

I L ____ J 
(2) 

I SIR 

7. RJEIC calls HIO to insure that the 
line is inactive. The com~letion of 
this HIO ~ill cause an asynchrcncus 
i nterrurt, which will be passed back 
to RJELC through the Channel Interrupt 
Processcr (CIP) and RJE Asynchronous 
Interrupt Subprocessor (RJEAIS). 
(This interrupt is not shown in Figure 
99.) 

8. SIO is called to start I/O on a 
Disable/Set Mode/Enable channEl 
program. 

9. Reverse Pathfinding is called to 
release the device path. 

10. RJELC returns to the SVC Queue Proces­
scr, then rEturns normally through the 
~ueue Scanner, Internal Scheduler, and 
Dispatcher, t.o BULKIO Initialization. 
(We assume no interrupts pending.) 

Real Core 

- SVC Queue 
Processor 

(4) 

RJE Line 
Control 

(5) 

I Interrupt f----- Pathfindi ng I Stacker 

I 
BULKIO 

I Initialization Queue 
Routine Scanner 

I ~ 

I Intemal 
Scheduler 

I ! 
I Dispatcher 

I (10) 

I l t 

~ Monitor 

I 
TIC 

Figure 99. Enabling RJE Line 

J---

L.......-

(6) 

HALTIO 

(7) 

SIO 'Enable' 

(8) 

Reverse 
Pothfi ndi ng 

(9) 

(10) 

} 
Start' Enab Ie' 
Cha nne I Program 

Examples of System Operation 235 



At completion of the ENABLE (immediately 
on a dedicated line - or by dial-up on a 
switched line), an asynchronous interrupt 
occurs and the processing continuES in 
order to prepare the line for input from 
the Card Reader. (See F igur e 100.) 

11. The asynchronous interrupt (channel 
end, device end) is fielded by the 
Interrupt Stacker which creates the 
GQE and places it on the Channel 
Interrupt Queue. 

12. The Queue Scanner finds the GQE on the 
Channel Interrupt Queue and invokes 
the CIP. 

I 
Line Enabled ~ Interrupt 

(CE , DE) lst Stacker 

Asynchronous I ( 11) 

! Interrupt 

I Queue 
Scanner 

I (12) 

I 
I 
I 
I Queue 

I 
Scanner 

l I 
Internal 

I Scheduler 

I ~ 
I BULKIO (21 ) 

Dispatcher 
Input Start I 

(22) I t ! ! I Task 
Monitor 

I 
TIC 

-

Figure 100. RJE Line Preparation 

236 

13. The elP Calls Set Su~press Flag (SSF) 
to prevent another CPU from processing 
this queue. 

14. Reverse Pathfinding is called to con­
vert the hardware address to an SDA. 

15. The ClP calls RJEAIS, which sets the 
code for priming the line, for bypas­
sing HALTIO and the clearing cf the 
device's scan table entry, then calls 
RJELC. 

16. RJEIC gets the SDA of the device and 
calls pathfinding to aSSign the hard­
ware path. 

SSF 

Channel 
Interrupt 

(13) 

Processor 

~ 
Reverse 
Pathfinding 

RJE (14) 

Asynchronous 
Interrupt 
Subprocessor 

(15) 

RJE 
Line 
Control 

Pathfj ndi ng 

( 16) 

} STARTIO 
'PREPARE' 
Line 

( 17) 

Reverse 
Pathfinding 

(18) 

(21) 
(19) 

(20) 

SSF 



17. RJELC gets the CAW fcr friming the 
line and calls STARTIO to start the 
channel frog ram for a Prepare/Read 
ENQ/Write ACRO sequence. 

18. RJELC calls Reverse Pathfinding to 
release the hardware fath and then 
returns to RJEAIS. 

19. RJEAIS restores the CIP registers 
(this example assumes no errors) and 
returns to the CIF. 

20. The CIP resets the sUfpress flag. 

21. A normal exit is made through the 
Queue Scanner, Internal Scheduler, 
Dispatcher, Task Interrupt Control, 
and back to the Disratcher which will 
pass control to BULKIC Input Start via 
the Task Monitor Asynchronous I/O 
Interrupt Processor and Scanner/ 
Dispatcher mechanisms. 

22. BULRIO Input Start recognizes this as 
the first asynchronous interrupt for 
the RJE task, and initializes a switch 
which will allow the next asynchronous 
interrupt to be passed to BULKIO Input 
Service. Control is passed to the 
Task Monitor Scanner Dispatcher. 

When the Card Reader is readied (place 
cards in the hopper and hit START.), an ENe 
character is transmitted to the CPU. Esta­
blishment of character phase at the 2701 
treaks the Prepare command, the ENQ is 
read, and an ACRO is returned to the 2780 -
initiating a 48-second tiree-out period. 
The channel prograrr. then terminates with a 
channel end/device end. When this second 
asynchronous interrupt is received, an MSAM 
Read Cards job will be initiated as follows 
(see Figure 101). 

23. The interrupt is fielded and passed to 
the CIP as above. RJEAIS determines 
that the prime was coropleted normally 
and returns to the CIP, which passes 
the interrupt to BULRIO Input Start 
through standard Resident supervisor 
linkages and the Task Monitor's Asyn­
chronous I/O Interrupt Processor and 
Scanner/Dispatcher mechanisms. 

24. Since the switch is initialiZEd (see 
step 22), Input Start calls Input Ser­
vice, which will control tne ~SAM card 
reading through the EOF. 

25. Input Service issues a GET macro 
instruction which calls DOMSAM to 
initialize the Read. 

26. DOMSAM calls MSAM Read/Write to set 
the IORCB fields and execute the lOCAL 
SVC, which will be handled by the 
Resident Supervisor. 

>10"""" 
I BULKIO 

Input Start 

I 
(24) 

BUlKIO 

t 
Input Service 

(25) 
GET macro 

RJE (23) 
Asynchronous 

DOMSAM Interrupt 
Subprocessor (26) 

I MSAM 
(Standard Reod/V/rite 
Resident 

I Supervisor 
li~kages 'j lOCAL SVC 

I 
I RJSTART 

I 
Card Process i 1')9 

FIND 

I 
(27) f------

Statior· In 
ACK Data Set 

I SETl 

(28) -----

I 
Validate 
Station ID 

I ESETl 
t-------

I 
(29) Free Interlock 

on Member 

I (30) BIO MeS50ge 

I 
WTO 

(31) ~----
Inform 

I 
Operator 

I (32) 
B10 A.CK 
Message 

I 
SETl 

(33) f------
Position 

I 
for Write 

I 
VISAM WRITE 

(34) f------

I 
RJ E !Vessoge ; n 
ACK Dato Set 

I 
I 
I 

Figure 101. RJE GET f'lacro and RJS'IART Card 
Processing 

£xaroFles of System Operation 237 



27. EULKIO In"fut Service continues issuing 
GETs until a return code of zero is 
recognized, and then searches for the 
RJSTART card. Card~ are flushed 
through the reader until the RJSTART 
card is recognized. When Input Ser­
vice recognizes RJSTART, the FIND 
macrc is issued to locate the VALIDSTA 
member of the Acknowledgment Data Set. 

28. A SETL macro is issued to validate the 
station II::, and 

29. The ESETL macro is issued to free t.he 
interlock on the member. 

30. EULKIO Message is passed a code indi­
cating the System Operator and the RJE 
station are both to te informed that 
the RJSTART card has been received and 
validated. 

31. WTO is called to inform the System 
Operator. 

32. BULKIO ACK Message is called to pre­
pare for the Write of the RJE acknow­
ledgerrent message, ty calling 

33. SETL to "fosition to the end of the 
last message in the Acknowledgement 
Data Set, and 

34. VISAM Read/Write to write the message 
into this data set. 

The RJE job is now initiated. BULKIO 
In"fut Service will control tne card input, 
issuing a series of GET rr.acros until EOF is 
recognized. An overview of rOGON card and 
LOGOFF card processing is shown in Figure 
102. 

When an EOF occurs, the RJELC routine in 
the Resident Supervisor is called, prepar­
ing the line with the PREPARE/READ ENQ/ 
w'RITE .ACKO channel program. Processing 
will subsequently be resurred at step 23 
al:;ove, if the station has further card 
input. 

The end of the terminal session for RJE 
is signalled by the RJEND card. Processing 
is as shown in Figure 103, and as follows. 

35. Input Service issues a GET rracro which 
reads in the RJENL card. Input Ser­
vice recognizes RJEND, sets the End 
Card flag, and issues the G£T macro 
again. 

36. A Unit Exceftion frcm the Card Reader 
should terminate the Read Cards job 
with an EOF condition. 

37. In~ut Service reccgnizes EOF and calls 
MSA~ Finish to perform housekeeping 
for the Card Reader. 

238 

38. Input Service cleans up the infut and 
out"fut S-entries, and the SDA if the 
line is not dedicated. A Disable/ 
Enable (RJELC) SVC is issued to re­
enable the line, completing the input 
portion of the RJE task. 

output fer RJE, other than from the Ack­
nowledgement Data Set, is accomplished 
through BIO Outfut Service in essentially 
the same manner as for any batch job. A 
VISAM GET en the user's data set locates 
the record, an MSAM PUT on the device data 
set locates space for the output record, 
and the VAM record is moved into the MSAM 
record with the required formatting. A 
BALTIO is issued terminating the PREPARE on 
the transmission line. A STARTIO is issued 
en the write channel program as for any 
other IORCB. At the end of transmission to 
the RJE station RJELC is called to again 
FREPARE the line for input. 



Input Senri ce Input Service 

r------ f------

MS/'\M GET MSAM GET 

1------- r------

LOGON Card LOGOFF Card 

LOGON Card 

I Recognized 
LOGOFF Card 
Recognized 

Input Start VISAM PUT 

1------ f-----

Called at Place In Data Set 

CZAWXZ 

DATADEF 

1------

Define Data Input ctoseout 

f------

OPEN 
CLOSE 

I 

1------- f-------

Output DCB 
Output DCB 

RtLEASE 

r-----
VISAM PUT JFCB 

1------

Store In Output 1 
Data Set 

RCR 

1------

Issue Next GET Accounting 

1 
BIO Message 

1------

WTO and VISAM 
PUT Into ACK 
Data Set 

J 
I 

Figure 102. Processing of LOGON and LOGOFF 
Cards 

Input Service 

(35) 

(36) 

(37) 

(38) 

MSAM GET 

1--------

(RJEND Card) 

MSAM GET 

1--------

(EOF) 

MSAM FINISH 

~--------

Card Reader 
Housekeeping 

RJELC Macro 

1---- ---

Disab le/Enab Ie 
Line 

Figure 103. Termination of RJE Input Card 

Stream 

Examples of System Operation 239 





PART III: LANGUAGE PROCESSORS AND AUXILIARY PROGRA~S 





The purpose of the TSS/360 Assembler is 
to produce frorr source programs written in 
the Assembler language, rf,achine language 
prograrrs in a format suitable for operation 
under the Time sharing System. The Asserr­
bIer produces standard output and optional 
output. 

Standard Cut put 

Program Module Dictionary 
Hexadecirral Text 
External Name List 

Optional Output 

Internal Symbol Dictionary 
Source program listing 
Object program listing 
Cross-reference listing 
Symbol Table listing 
Internal Symbol Dictionary listing 
Program ~odule Dictionary listing 

The Assembler allows source programs to 
be submitted in either conversational or 
nonconversational mode. 

In the conversational mode. the assem­
bler produces some syntax diagnostics line 
by line as the source ~rograrr is submitted. 
The user nay resubmit an erroneous state­
ment or restart the assembly process. 
After the source program has been complete­
ly submitted, the asserr.bler produces addi­
tional syntax diagnostics and allows the 
user a choice of continuing, correcting, or 
aborting the assembly. 

In nonconversational ITode, this interac­
tion is not possible and diagnostics are 
produced only with the optional output 
listing data set. 

For further information concerning use 
of the assembler and output from the assem­
bIer, see Assembler Prcgram,mer's Guide. 

System Environment 

The initial request by the user to 
secure the Assembler is processed by the 
Command Language Interrreter (CLI), which 
calls the Language Processor Control (LPC). 
The Language Processor Control calls the 
Assembler, which is a part of the task's 
Initial Virtual Memory. 

The Assembler maKes u:.;e of: 

THE TSS/360 ASSEMBLER 

• Language Processor Control to supply 
user program source statements. 

• Symbolic Library Service Routines to 
secure macro definitions and COpy 
parcels. 

• Data Management services to process 
eutput list data sets and output 
modules. 

The Assembler is called by and exits to 
Language Processor Control (LPC). The GET­
LINE function of LPC receives source lan­
guage statements from the SYSIN terminal or 
oata set and directs them to the Asserr,bler 
for t:recessing. Conversely. t.he symbolic 
listing and diagnostic messages are routed 
from the Assemtler to the same terrr.inal or 
to the task's SYSOUT data set via the PUT­
LIAG function of LPC. 

To process COPY statements and rr.acro 
instruct.ions not defined in the user's 
source program, tne Asserr,bler searches 
rracre lil:raries. The Assembler always 
Searches the system macro library but may 
precede this with a search of a user macro 
library if the user has requested this 
cptien. The symbolic libr·ary service rou­
tines are used to accomplish this function. 

The source program listing, Program 
~odule Dictienary listing, cross-reference 
listing, Symbol 'fable listing, object pro­
gram listing, and the Internal Symbol Dic­
tionary listing are created if requested 
using Virtual Access Methods. 

Virtual sterage dynamically acquired by 
the Assembler is secured by the GET MAIN 
rracre and released by the FREE~AIN macro. 

Organization Of The Asserrbler 

As shOwn in Figure 104 the Assembler is 
divided into feur major components or 
phases plus an Assembler Control module 
which interfaces with LPC. 

The rrincipal function of the Assembler 
is to translate machine instruction state­
ments which have been written in a symbolic 
language which has mnemonic significance to 
the t:regrarrrrer into tbe numeric language of 
the computer. This is accomplished prin­
cipall] ty allowing alphameric symtols of 
the programmer's choice to represent the 
nurrerically address ed storage locations in 
the con.put.er. The Assembler's primary task 
is tc deterrrine which symbols have teen 
defined according to the rules of the As-

The TSS/360 Assembler 243 



r Input/Output -\ 
Device I 

-

1--- -- --~-- --- ---

I 

I 

i 

-- ---

Language 

Processor 
Control 

-----

Assembler 
Control 

i 

--- -- -- -- -

-l 
j 

I 

---- ----- - - ---

TSS/360 Assembler 

- -'~- - -- ---- ---- ---1 

I 
! 

I 
I 
I 

I '----l ~---I I 

1 I i I Phose ! PI 3 Phose Phase Phase Phose 4 i I 2C I lose 
i 

2A i 2B 

----------1 I ~ J i 

I 
L __ _ _________________ J 

Figure 104. TSS/360 Assembler Interfaces with L~C 

sembler language, assign a corresponQ~ng 
machine language value to the symbol, and 
to substitute the machine language value 
whenever the symbol is used in the con­
struction of a machine language 
instruction. 

In addition to translating rr.achine 
instruction statements, the Assembler also 
processes Assembler instruction statements. 
Assembler instruction statements are 
requests to the Assembler to perform opera­
tions during the assembly. Machine 
instructions may not be generated in the 
assembled program as a result o£ assembler 
instruction statements. The functions pro­
vided by Assembler instruction statements 
are: 

• Symbol Definition (Equate Symbol 
instruction> • 

• Data Definition (e.g., Lefine constant 
instruction) • 

• Program Sectioning and Linking (e.g., 
Start Assembly instruct_ion and Identify 
Entry-Point Symbol instruction). 

• Base register Specification (e.g., Use 
Base Address Register instruction). 

• Listing Ccntrol (e.g., Identify Assem­
bly Output instruction). 

• Prograrr Control (e.g., Input Format 
Control instruction). 

The Assen,bler also [rocesses macro lan­
guage and conditional asserr_bly statements. 
By means of such staterrents, sequences of 

244 

rrachine or assembler statements may be 
dynamically generated at specific points in 
the input to the Assembler. 

The macro language perrrQts macro 
instruction t:arameters to l;e identified by 
either positional or keyword notation. The 
Hacro language also permits a macro 
instruction to be utilized within a rracro 
definition. For example, this permits a 
macro definition to recursively call 
itself. The TSS/360 Assembler macro lan­
guage also perrrits a macro instruction to 
terr.porarily redefine a machine instruction 
mnemonic. 

The conditional assembly statements con­
tained in the TSS/360 Assembly Language 
permit the specification of arithmetic, 
logical and character variable symtols. 
such varial:;le symbols may be subscri];:ted 
and local or glotal in nature. The Assem­
tIer assigns attributes such as tyre and 
length to ordinary symtols and macro 
instruction operands. These attributes may 
te referred to in conditional assembly 
statements. The lanugage provide~ for ccn­
ditional and aisolute tranch statements 
and for user-controlled generation of error 
statements referencing macro instructions. 

The rrethod and order l;y which the Assem­
tIer implements Ulese features is described 
in general terms below. 

Syntax Analysis 

In order for the Assembler to interpret 
a statement ~ithout ambiquity, the rro­
graHrrer nust follow certain rules in writ­
ing thE source statement with regard to 



separation of fiElds, Flacement of symbols 
and delimiters, proper choice of mnemonic 
operation codes, and the like. The some­
what mechanical inspection of the source 
statement to determine whether the rules 
have been observed is generally called 
"syntax analysis", and is the first opera­
tion performed by the Assembler on each 
statement. The analysis is achieved by a 
character-by-character scan of the incoming 
statement. Since this method of analysis 
is time consuning, the Assem1:ler usually 
converts the information ~hich has been 
extracted from the staterrent into a more 
convenient internal form and places it in 
one of the various tables which are kept 
for this purpose. The principal tables 
include a table which contains a condensed 
summary of each statement (the Logical 
Order File or LOF), and a ta1:le which con­
tains the name and characteristics of each 
programmer-defined sym1:01 (the symbol table 
or dictionary). 

The definition of a symbol must be known 
to the Assembler before it can construct a 
machine instruction which requires the 
value of the symbol. However, the rules of 
the '1SS/360 Assembler language permit a 
symbol to be referred to before it is 
defined. If the Assembler attempted to 
construct the rr.achine language program con­
currently with syntax analysis it would 
find itself frequently una1:le to do so for 
lack of information about symbols which had 
not yet been encountered. For this reason, 
construction of machine instructions is 
postponed until the entire source program 
has been syntactically analyzed and all 
symbols have been entered into the 
dictionary. 

Macro Instruction ProceSSing 

A macro instruction is the invocation of 
a fully or partially predefined sequence of 
source statements through the use of a mne­
monic operation code which has been 
declared for that purpos e. The rr,nemonics 
of macro operations may be specified by the 
programmer himself, alcng with the sequence 
of statements which the operation repre­
sents, or, failing that, in the table-of­
contents of a library of predefined macro 
operations which has been rr.ade available to 
the Assembler program. In either case, the 
Asserr,bler's dictionary of syrr:1:ols cannot be 
considered complete until the sequence of 
statements rerresented by rracro instruc­
tions haVE been syntactically analyzed. 

Macro instruction sequences may be pro­
cessed either (1) [rior to processing 
user"s stat€rnents (by first searching the 
source program only for Racro instructions 
and then merging their expansion into the 
user's staterrents); (2) concurrently witn 
the user's statements (by incorporating the 

expansion into t~he program as encountered); 
or (3) after the user's st.atements. The 
first nethod is used by other System/360 
asserublers. The TSS/360 Assembler, howev­
er, is corrmitted to producing diagnostic 
messages of syntax errors as each source 
statement is sul::rr,itted. This is for the 
cenefit of a conversational user, and this 
requirerrent forces the Assemtler to process 
the user's statements first, as received. 
Eecause systerr IT.acros require the attri­
tutes of the user's symbols, and because 
there is no ordering rule (requiring the 
user's symbols to precede system nacro 
calls), exransion of macros concurrently 
with the user's statement is also ruled 
cut. ~acros are therefore expanded by a 
second phase (Phase IIA) of the Asserrbler 
after the user's statements have been syn­
tactically analyzed. 

Expansion of source statements contained 
in a rr·acro definition involves the recogni­
tion of a class of symbols <variable syrr­
boIs and parameters) which are independent 
of the symbols used in machine language 
statements. Since these symbolS are used 
only temporarily (and may be used repeti­
tively with different meanings) it is to 
the assembler's advantage to maintain them 
in a Rdictionary" which is separate from 
the one used for machine language symbols. 

In addition, the expansion of one nacro 
instruction frequently results in the invo­
cation of some inner or nested macro 
instruction. The rules of the macro lan­
guage are such that it is desirable for the 
asserrbler to maintain a separate dictionary 
for each nested macro level. The rules of 
the Hacro language are also such that once 
the instructions have been generated for a 
given nacro level, the dictionary for that 
level is no longer required and can be dis­
carded, since symbols defined at each level 
are independent. For this reason, macro 
level dictionaries are constructed linearly 
in working storage, and maintained by push­
dOwn-stack logic. 

Since the definitions of systerr. rracros 
are not part of the original user's source 
language input, they must be retrieved from 
a library and added to the source program 
at the aFpropriate time. Since library re­
trieval is tirr,e consuming, it is desirable 
to avoid retrieVing a macro unnecessarily 
and to retrieve each definition only once. 
This is achieved by performing library re­
trieval during the second phase (Phase IIA) 
of the Assembler. At this time those 
nested rracro calls that are to be bypassed 
1:ecause cf conditional assembly techniques 
are discarded, t.hus preventing their 
definitions from being unnecessarily retri­
eved. The ccnditional assembly instruc­
tions defined by the Assembler language 
allow scurce statements to be bypassed or 

The TSS/360 Assembler 245 



included in the frcgrarr. Moreover, a reco­
rd is kept (in a special dictionary of 
rracro nalles) whenever a definition is first 
retrieved. The definition is condensed 
into the internal forre com[,on to all state­
ments and need not be retrieved again 
should the macro instruction ce reinvoked. 
This technique prevents ll,ultiple retrievals 
of the sarre definition. 

Assignment of Location counter Values 

Once the additional statements generated 
ty macro instructions nave been inco­
rporated into the source program, all poss­
itle and potential definitions of symbols 
are present in the dictionary. Before 
rrachine inst.ruction syntbesis can tegin, 
however, the (relative) machine address 
~hich each syrrbol represents must be deter­
mined. The val ue of the rr,achine address is 
arrived at by maintaining a location count­
er for each control section in the assem­
tly. The counter is set te zero initially 
and is increased at each statement by the 
nurrber of bytes of machine storage repre­
sented (or bypassed) by the preceding 
instruction, constant, or storage reserva­
tion. Since macro instructions may gener­
ate instructions, constants, and storage 
reservations, the location counter cannot 
te assigned until macros have been 
expanded. In those assemtlers which expand 
macros first, the locatien counter can be 
assigned during syntax analysis. Since the 
~SS/360 Assembler defers macro expansion 
until Phase IIA (for the reasons previously 
noted), location counter assignment is also 
deferred. To limit paging and to increase 
ease of maintenance, Phase IIA is limited 
solely to rracre expansion actiVity, and a 
separate phase, Phase lIB, is used to per­
form the location counter assignrrent. As a 
byproduct of its principal activity, Phase 
lIB also resolves expressions which are 
dependent upon location counter values, and 
collects literal constants into literal 
pools and assigns location counter values 
to the literal constants. 

Program Reordering 

It is a requirement of TSS/360 object 
program modules that, to facilitate load­
ing, all text and relocation inforrration 
pertaining to a given control section be 
grouped contiguously in the object illodule. 
It is also a language rul~ that control 
sections may be written discontinously in 
the source pregram, and that CErtain state­
ments in the language (USING, DROP, LTORG, 
PRIN~. etc.) have effect over a range of 
source statements irrespective of the nurr,b­
er of different control sections repre­
sented by that range of statements. 

The TSS/360 Assembler is therefore faced 
with a reordering requirement. It rrust 

246 

collect the scattered portions of a given 
control section without lOSing the effect 
of certain staterr,ents that are centrcl sec­
tion independent. It is the function of 
PhaSE IIC to determine whether a centrol 
section has teen broken into discontinui­
ties, and to prepare for each such break a 
table surrrrarizing the effects of those 
statements which are independent of control 
section order. This analysis enables the 
machine instruction synthesis phase (Phase 
III) to collect the portions of a given 
control section and produce contiguous out­
put text in the program module. 

Graphically, Phase IIC would transform a 
sarrple scurce };rogram containing the fol­
lowing USING statements and control section 
discentinuities from: 

r-------------------------------, 
ISection 1 I USING-l 
t-------------------------------~ 
I Section 2 I 
t-------------------------------~ USING-2 
ISection 1 I 
~-------------------------------~ 
I Section 3 I 
t-------------------------------~ USING-3 
ISection 2 I l _______________________________ J 

to: 

r-------------------------------, 
ISecticn 1 I 
I I 
I I 
I I 
I I 
t-------------------------------~ 
I Section 2 I 
I I 
I I 
I I 
t-------------------------------~ 
I Section 3 I 
I I l _______________________________ J 

Machine Instruction Synthesis 

USING-l 

USING-2 

USING-l 
USING-2 

USING-3 

USING-2 
USING-3 

When the reordering requirements have 
teen resolved, the )\ssembler is ready te 
tegin thE ccnstruction of machine language 
instructions from their source language 
equivalents. Phase III performs this syn­
thesis. working from a list of control sec­
tions in such a way that each control sec­
tion, however discontinously written, [ro­
duces contiguous output text and relocation 
information for the Dynamic Loader. An 
expression evaluation routine, using infor­
mation stored in the symbol dictionary, 
rEsolves each n:achine instruction operand 
to either a relocatable or atsolut.e value, 
and the appropriatE text and relocation 
lnforn,a.tion is entered into the object 



~odule. Source and object listings are a 
byproduct of this phase. 

postprocessing 

When the assembly is complete and the 
object ~odule has been produced, a series 
of postprocessing routines may be called to 
operate upon the dicticnary dnd other 
information left by preceding phases to 
produce sorted listings cf the symbol dic­
tionary, cross references to symbols, and 
analytical printouts of the various output 
TIlodules. For convenience these routines 
are collected into Phase IV cf the 
Assembler. 

ASSEMBLER FUNCTIONS 

A brief description of each phase is 
given below. The Assembler Control module 
is desoribed last. 

PHASE I 

Phase I accomplishes the following: 

• Copies the source language line supp­
lied by LPC into internal working 
storage. 

• Maintains the sequence of the source 
language lines through a series of 
pointers. 

• Establishes a partially encoded version 
of the source language statements to 
establish the logical order of 
asserrbly. 

• In conversational mode, scans all sta­
tement operands and prcduces diagnostic 
messages. In batch mode, statement 
operands are not scanned until Phase 
III. 

• Enters skeletal definitions for all 
symbols in a dictionary. 

• Processes macro definitions defined in 
the user's source program. 

• Retains statements skipped by a condi­
tional branch instruction (i.e., AIF) 
in the sequential crder, but does not 
analyze or process then unless the log­
ical order includes them later. 

• Adds statements generated by uncondi­
tional Dranch statements (i.e., AGO) 
not defined in macro definitions. 

• Keeps a record of all macro instruc­
tions, global symbol declarations (e.g. 
GBLA), SET instructions involving g lob­
al synbols, section nane changes, and 

PRINT, USING, DROP, LTORG, and ENTRY 
instructions. Each of these instruc­
tions is processed further in later 
r=hases. 

When the END statement is processed, 
control is immediately transferred to Phase 
IIA. If a scurce file is derived from a 
data set and has no END statement, an end­
cf-file indication causes an END statement 
to be generated, resulting in transfer to 
Phase IIA. 

PtiASE II 

Phase IIA accomplishes the following: 

• Expands all macro instructions. 

• In conversational mode, looks for unde­
fined symbols and gives an error indi­
cation if found. 

At the end of Phase IIA control is tran­
sferred tack to the LPC. In batch mode, 
LPC returns control immediately to Phase 
lIB. In conversational mode, the user may 
stop, correct, or continue the assembly at 
this pcint. 

Phase lIB accomplishes the following: 

• Processes literals and enters them in 
the symbol table. 

• Processes all Equate [EQUJ and Define 
constant [ce) statements not previously 
resolved. 

• Computes the location counter value for 
all symbols. 

Phase IIC accomplishes the following: 

• PreFares tables summarizing the USING 
status of all registers. Entries are 
rrade in these tables at each occurrence 
of a control section, USING, or CROP 
instruction so that the program may be 
processed in control section order dur­
ing Phase III. 

• Associates the name of each ENTRY 
instruction operand with the proFer 
control section. 

PHASE III 

Phase III produces the following out­
futs, in order by control section: 

• Machine language texts (left in virtual 
storage). 

The TSS/360 Assembler 247 



• Program Module Dictionary and list of 
external symbols (left in virtual 
storage). 

• Optional listing data set, consisting 
of source statements, if selected, and 
object program, if selected. 

PHASE IV 

Phase IV produces the following outputs 
at the user's option: 

• Listing data sets: 

Cross-reference index 
Sorted symbol table 
Internal Symbol ~ictionary 
Program Module Dictionary 

• An optional Internal Syml::ol Dictionary 
for the Program Checkout Subsystem 
(left in virtual storage). 

Assembler Control Routine 

The Assembler Control Routine acts as an 
interface with LPC. The Asseml::lEr has 
three entry points from lPC. Each entry 
point is to a location in the Assembler 
Control Routine from which control is tran­
sferred to the Assembler location wnere the 
function is accomplished. Similarly, the 
two exits froTh Assembler to LPC are also 
via the Assembler Control Routine. 

The three entry points to the Assembler 
Control Routine are: (I) Phase I Control 
(Initiation), (2) Phase lIB Control <Con­
tinuation}. and (3) abnormal termination 
(Early-End) • 

The two entry pOints of LPC are: (1) 
when the next line is desired and (2) when 
a diagnostic message is to be printed. 

The user informs lPC that an assembly is 
requested through the Corrmand Language. 
LPC then solicits the necessary operating 
parameters and enters the Assembler at 
Phase I Control for initialization. Then 
the Asseffibler enters LPC to obtain the 
first source statement and LPC returns with 
the statement. The Asseffibler processes the 
source statement and enters lPC for the 
next statement. In an error-free assembly, 
this process is continued until and END 

248 

statement is read, at which time entry is 
made from Phase I Control directly to Phase 
IIA Control. 

UEon corrpletion of Phase IIA, control is 
transferred to LPC. If the assembly is in 
conversational mode, LFC queries the ter­
minal user whether to continue with the as­
seffibly. correct the source program and 
restart, or to terminate the assembly. 

If the user wishes to continue, Phase 
lIE Control is entered and the Assembler 
proceeds to completion without further con­
versational interaction. 

If the user makes corrections and wishes 
to restart, LPC reenters Phase I Control to 
restart the assembly. 

If user wishes to stop assembly, lPC 
enters the Asseml::ler Control Routine at the 
early-end entry, which releases all dynam­
ically acquired virtual storage and returns 
the call. 

The processing described above is 
altered when Lf'C determines that a source 
line has been corrected, or the Assembler 
discovers a source statement error. 

When the Assembler di2,covers an error in 
conversational mode, it calls LPC with a 
diagnostic message, and LPC transmits the 
rressage to SYSOUT. lPC then returns and 
Assembler again calls LPC for the next 

If LPC determines that a source line has 
been corrected, it enters Phase I Control 
with a special return code and the lOwest 
line nurrber to which corrections have been 
rrade. If the line number which LPC returns 
is equal to tbat of the last statement pro­
cessed, the Assembler processes the 
corrected statement and then requests the 
next source statement from LPC. In general 
if the line number is less than that of the 
last statement processed, the Assembler 
reinitializes itself and starts over again 
l::y requesting the first source statement 
from LPC. 

If the job is to l::e terminated abnormal­
ly, the early-end entry of the As~;err;bler 
Control Routine is called to release work­
ing storage in virtual storage. Return is 
then made to LPC. 



The purpose of the FORTRAN IV compiler 
is to ~roduce object programs, for execu­
tion under '155/360, from source ~rograms 
written in the FORTRAN language, as 
described in IBM System/360 Time Sharing 
System: IBM FORTRAN IV. 

The cOIr.~i ler ~roduc€s an ol:ject program 
module consisting of a Program Module Dic­
tionary (PMD). an optional Internal Symbol 
Dictionary (I5D). text, and a list of 
external names. 

In addition to the production of execut­
able programs. the compiler also detects 
and gives notification of source program 
errors, and produces various optional docu­
mentation describing the object program. 
The compiler produces the following 
documentation: 

• A listing of the source program. 

• An object prograIf storage nidp giving 
the storage layout of the object 
prograIf. 

• A list of source program symtols and 
their storage assignments. 

• A cross-reference listing relating sym­
bols and statement nurr,bers to the 
source line nmnbers of the statements 
in which they were referenced or 
defined. 

• A listing of the object module in a 
symbolic and numeric representation 
very nearly in a form that might have 
been produced by the Assemtler. 

The compiler organization and informa­
tion flow are designed particularly for 
processing in the time sharing environment. 
wherever pOSSible, to reduce page-turning, 
the interrr,ediate data have .teen organized 
and processed serially, in file form, rath­
er than in a form requiring random access. 
The presence of the entire file in virtual 
storage ensures fast access to its con­
tents, while repeated references to the 
same storage page, inherent in serial pro­
cessing, relieve the Resident supervisor of 
the necessity for making available a number 
of different pages in rapid succession. 

While primarily a conventional batch 
pl.-ocessor, the cOIf~iler contains special 
features making it especially suitable for 
conversational, terminal oriented opera­
tion. The compiler syntax analysis per­
forms a thorough error checking of the 

T5S/360 FORTRAN IV COMPILER 

source program, statement-by-statement, as 
it is input through the Language Processor 
Control Program (LPC). Diagnostic messages 
are returned to the user's terminal via 
LPC, and each appears at the terminal fol­
lowing t~he listing of the statement in 
which the error was detected. At such 
tirre, LPC gives the user the opportunity to 
correct the error, whether it be in the 
last state~ent processed or in some earlier 
statement. Then LPC informs the compiler 
of whether a change was made and if so, 
which lines are affected. If only the last 
statement was changed, the compiler "for­
gets" the effect of the last statement and 
begins compilation with the statement 
replacing it. Otherwise, the compiler 
restarts comrilation from the beginning of 
the sour·ce program module. In this rr,anner 
the rrost comIfon errors, those local to the 
last statement processed, may be corrected 
with a Il.inimal time penalty. 

After the END statement has been pro­
cessed by the first phase, the cOITriler's 
second phase, during the course of its pro­
cessing, may detect errors of a more global 
nature (e.g., undefined statement labels, 
illegal DO-loop flow). The resulting error 
rressages are passed to LPC as before, but 
now LPC does not allow the user to supply 
correction lines. When the compiler's 
second phase is complete, LPC gives the 
user the opportunity to correct errors or 
to go on. If errors are corrected, the 
corrpiler will, under the direction of LPC, 
recompile from the beginning of the stored 
source data set, and another conversation 
is possible. Otherwise, compilaticn pro­
ceeds to terrr,ination through the remaining 
compiler phases. 

The cCIfipiler is designed to produce com­
pact, efficient object programs in a forIf. 
suitable for loading and executing by TSS/ 
360. All object programs (both main and 
subprograms) are relocatable, reentrant 
subroutines. 

Much of the processing done during com­
pilation is devoted to improving the speed 
of execution of thE object program. Some 
of the more significant optimizations may 
be menticned hEre. The memory organization 
of data is designed to maximize the sharing 
of base and index registers to avoid exces­
sive reloading. Expressions occurring more 
tnan once ("corr~on expressions·) are 
detected and evaluated only at the first 

TSS/360 FORTRAN IV Compiler 249 



occurrence. Unchanging expressions used 
~ithin an iterative locf are evaluated out­
side the loop. Subscripts within a loop 
~hich depend cn the nurrl::er of iterations 
are computed by recursion. Registers for 
frequently used address constants or sub­
script expressions are given permanent as­
signments over 100fS, avciding load 
instructions within the loop. Common 
expressions or fartial results are left in 
registers for later use after evaluation, 
unless or until prcgrarr flow or the need 
for registers makes storing necessary. 
Instr~cticns tc be generated are selected 
to fit each individual situation. The 
order of generat.ion within an eXfression is 
chosen to minimize the number of partial 
results ~hich cannot be immediately used. 
Advantage is taken of commutative opera­
tions and equivalences between certain com­
binations of operations to obtain the most 
efficient code. 

Organizaticn Of The Conpiler 

The cOlq:i ler consists of six major com­
ponents: a multifunction compiler Execu­
tive and five compiler phases. The major 
fUnctions cf each corr-ponent are summarized 
here. 

I 

Initial Continue 

Entry Entry 

GETMAIN FREEMAIN OPEN SETL 

COt-1PILER EiECUTIVE ROU'ID1L 

The Ccrrfiler Execut.ive (EXEC) has six 
broad and distinct functions: 

1. To int.erface with the compiler's 
envircnrrent. 

2. To prepare the source statements for 
processing by Phase 1. 

3. To control and order the operation of 
the phases. 

4. To frtfare edited lines for output. 

5. To provide compiler diagnostic 
information. 

6. To provide miscellaneous services. 

All interfaces between the FORTRAN corr­
filer and LPC, as well as interfaces with 
other external routines exist in the Corn­
Filer Executive Routine. 

The compiler Executive Routine rray be 
called by LPC at either of two points and 
may itself call LPC at either of two foints 
(see Figure 105). 

GETLINE PUTDIAG 

I 
PUT CLOSE EBCDTIME REDTIM 

i 

I 
I 

I 
LPC 

FORTRAN 
Compiler 

Other Rout;nes 
Extema I to 

the Compi ler 

Virtual M mar e y All cati n o 0 D t \ n a a Iv o00geme t 01 AM) TIme ServIce Rouhnes c 

(Direction of arrow indfcates sense of subroutine call.) 

figure 105. FORTRAN IV Con:piler External Interfaces 

250 



The two ccrrr:iler entry roints arE: called 
INITIAL and CCNTINUE. LPC calls the INI­
TIAL entry to r:ass the user options to the 
compiler and to initiate the first stage of 
the compilation (Phases 1 and 2). LPC 
calls CONTINUE to complete the compilation 
after the first stage is finished. The 
compiler return from CONTINUE informs LPC 
of the extent at the elements of the outf:ut 
module so that I,PC may disrose of them. 

The compiler calls LPC at either of two 
roints during the first stage (eefore the 
compiler returns to LPC from the INITIAL 
call). The first, GETLINE, is used to 
obtain a source line. The second, PUTDIAG, 
is used to pass a source error diagnostic 
message to LPC. PUTDIAG may also be used 
after the first stage. 

The compiler also uses other TSS/360 
service routines. The TSS/3bO Data ~anage­
ment routines are used to uaintain a List 
data set; the Virtual IVerrory Allocation 
routines are used to obtain space for thE 
Symbol Table and certain other tables; and 
the timer service routines are used by the 
compiler to time stamp the listing and 
object prograrr. modules control sections. 

A schematic diagram of the organization 
of the corrriler is shown in Figure 106. 

PHASE 1 

Phase 1 scans the source rrogram a sta­
tement at a time as obtained from the Corr,­
riler Phase 1 Executive. Compiler Phase 1 
analyzes the source program, detects 
errors, and encodes the information in 
various tables and files for processing by 
later phases of the corrpiler. Information 
generated by Phase 1 includes: 

• Symbol Table information about symbolic 
narres. 

• An internal rerresentation of the 
executable part of the program. 

• Lists containing the information frorr 
COMMON and E{.,UIVALENCE statef(lEnts. 

Each distinct identifier or constant is 
given an entry in the Symbol 'Table. Ini­
tial values from LATA and Type statements, 
dimension information for arrays, NAMELIST 
information, and alpharreric constants are 
stored in a table. Information concerning 
references to and definitions of symbols 
and statement numbers is stored in the 
Cross-reference Table. Information 
collected from COMMON and E~UIVALENCE 
statements is stored in the Storage speci­
fication List. 

Executive Phase 
Controller­
Initial Entry 

Enter 

Initialize 
Compiler, 
Open List 
Doto Set 

Phose 1 
Translate Source, 
Find Errors 

Phose 2 

Make Storage 
ASSignment, 

find Global 
Error5 

Exit 

to LPC 

Figure 106. 

Exec.~tive Phose 
Con tro! ier-
Con tinu€ tn try 

No 

Phose 3 

Perform Globa! 
Optimizations 

Phose 4 

Generate 
Code 

Bui Id Obiect 
Program and 

Cbiect 
Program Listing 

Wrap-up 
Campi I er, Close 
List Dora Set 

compiler Corr,ponent 
Organization 

to LPC 

The rrost significant processing from the 
point of view of later optimization and 
code generation concerns the treatment of 
executable staterr,ents, statement nurrbers, 
and arithrretic expressions. 

Each executable statement and statement 
number is placed in the Prograrr Rerresenta­
tion File (PRF) which, when scanned in the 
order it was formed, is a skeletal eutline­
representation of the source program. In 
addition to the fields that distinguish the 
iterrs from each ether, the PRF entries con­
tain pointers to the appropriate Expression 
File (EF) entries (see below), to Symbol 
Table entries for variables, constants, and 
statement numbers, and to other PRF entries 
as appropriate to the individual type of 
tent ry. 

Each exrression is placed in the Expres­
sion rtepresentation File (ERF) in tabular 
form. 'The ERF term of the expression is a 
parenthesis-free notation in wnich, reading 
froIT left to right, each orerand occurs in 

TSS/360 }~RTRAN IV Compiler 251 



the order in which it occurred in tne ori­
ginal expression and each operation follows 
its as~c;ociated or:;erand pair. 'Hie form is 
referred to as Righthand polish, or simply 
Polish. 

EaCH of the orerator it_ems includes 
information aoout its type and code to ind­
icate Ylhich oreration is rerresented. Each 
variable or constant. i terr' includes inforroa­
tion about its type and a Symbol Table 
pointer. This pointer is the rreans of 
reaching the associated Symtol Table entry 
and serves both to associate this term with 
etner iterrs rEpresenting t_he salTie variable 
or constant and t:o distinguish it from 
others. 

PHASE 2 

Phase 2 has five broad functions: 

1. Assign storage locations to all source 
j::rogram variables that are not forrral 
arguments of a subprogram. The 
effects of COMMON, equivalence, and 
DIMENSION statements are taken into 
account. 

2. Detect illegal flcYi in DO nests and 
issue diagnostics. 

3. Indicate that the DO-loop index vari­
able requires materialization (must 
bemaintained in its storage cell) in a 
loor:; that contains an exit. 

4. Detect and diagnose statement numbers 
{labels} that are referenced but never 
defined. 

5. Deterrr.ine definition j::oints <points at 
which a value may possibly be changed) 
of CO~MON variables and subprogram 
arguments. 

COMMON variables are assigned storage in 
the order dictated by their arrearance in 
the source program in their appropriate 
COMMCN blocks and are given as much space 
as indicated by their individual DIMENSION/ 
'Iype combinations. 

NonCOMMON variables which do not appear 
in EC;UIVALENC:E statements are assigned 
storage such that all scalars appear first, 
followed cy all 1- then 2- dimensional 
arrays, etc. For any given dimensionality, 
variables of the same tyre arr:;ear together. 
Those requiring less storage preceding 
those requiring more. In this manner, a 
maximum of address constant sharing may be 
obtained in the object prograu!. 

The relative relationships of storage 
assignments of variables a!=pearing in EQUI­
VALENCE statements is determined, and tnese 

252 

variables are assigned storage within the 
a!=~ro!=riate COMMON block or at the end of 
the nonCC~MON group as required. Variables 
which do not occur in COMMON statements, 
J::ut which appeared in EQUIVALENCE state­
rrents in conjunction with COMMON variables, 
are flagged as appearing in COMMON. 

After a storage assignment has been 
rrade, its assignment within storage class 
is recorded in the S~nbol Table. Non­
COt-'MON varia.tles are assigned storage class 
6, blank COMMON storage class 9, and 
labeled CO~MCN storage class 10 to as high 
as 127 in the order of first arrearance of 
the corresronding laJ::eled J::locks in the 
source program. 

Storage classes 3 through 8 will be 
accurrulated by Fhase 5 and become the modu­
classes include alphameric constants, 
address constants, NAME LISTs and parameter 
lists, nonCO~MCN variables, global (unre­
leasable) terr,r:;orary storage, and local tem­
porary storage, in that order. The COMMON 
blccks (storage classes greater than 8) 
cecome bldividual control sections in the 
object rrogram module where the block name 
becowes the control section nane. Such 
control sections are combined with control 
sections of like name from other modules 
before execution during the linkage editing 
or loading process. 

PHASE 3 

Phase 3 is devoted mainly to global 
optimizations, being charged with the 
detection of common expressions, the remov­
al of exr:;ressicns from DO loops, the choice 
of address-modifying quantities for 100r­
wide register assignment, and the preparing 
of loop-variable-dependent subscripts for 
recursive evaluation. This phase also 
transforms storage references into lI,achine­
oriented address constants and 
displacements. 

Phase 3 determines which ari thrr'etic 
exr:;ressicns need to be computed only once 
and then saved for later use. In addition, 
it deterrrines the range of statements over 
which eXFressions are not redefined by the 
definition of one or more of their ccnsti­
tuents. If the occurrence of an expression 
in that range is contained in one or more 
LO lCOFS which are also entirely contained 
in that range, Phase 3 determines the out­
errr,ost such loor outside which such an 
expression may be computed, and physically 
rroves the exrression to the front of that 
DO loop. Only the evaluation process is 
removed from the loop. Any statement numb­
er and/or store process is retained in its 
original j::osition. The moved expression is 
linked to a place reserved for that rurrose 



in the Proqrarr Representation File entries 
corresponding to the beginning of DO loops. 

In the statements 

1 A=B+C 
2 D=A+E 
3 A=A*2 
4 Z=A+E 
5 X=B+C 

the occurrences of the expression B+C in 
statements 1 and 5 are determined to be 
cornmon because neither of the constituents 
B or C has an intervening definition. The 
expression identification corresponding to 
the plus operator will be changed from 
"operator" to "cornmon expression". A corr.­
mon expression identifier has the proper­
ties of the original operator (e.g., here 
the plus operator code is retained), with 
the additional property that a "named" 
expression is identified. The cornman 
expression identifier item contains a field 
reserved for the expression name (actually 
a monotonically increased number) which 
will be identical only fer identical 
expressions. 

In statements 2 and 4 above the expres­
sion A+B is not a common expression becausE 
of the intervening definition of A in sta­
tement nurrber 3. Eoth ~lus operators 
retain their "operator" identity. Neither 
becomes a "narr,ed" expression. 

In the statements 

DO 1 1=1, 10 
A B+C 
Y E+F 

1 F A 

there are definitions of neither B nor C 
within the DO loop, thus, the Expression 
B+C is given a "name", and the named expre­
ssion is linked to the beginning of t.he DO 
statement, so that Phase 4 will generate 
the expression once, outside the loop. The 
occurrence of the expression inside the 
loop is replaced by a "residue item" that 
has the same "name" as the removed expres­
sion. Note that expression E+F is neither 
named nor removed because of the definition 
of F in staterrent 1. 

Phase 3 creates two new operators, both 
arising only frorr, subscr ipts. The first, 
called a base/index split operator or "? 
operator", is such that its ric;ht operanG 
is a residue (computed outside a DO loop) 
and its left is an expression that is local 
to the DO loop. Phase 4 will place one 
quantity in a base register and the other 
in an index register when generating a 
storage reference to the subscripted 
quantity. 

The second operator is called the recur­
sive operator or "! operator". It has the 
property that its right operand is the ini­
tial value of a subscript (induction vari­
able dependent) constituent that is to be 
computed recursiVely over a DO loop; and 
its left operand is the "step expression", 
a quantity to be added to the recursive 
expression after each pass through the 
loop. (The induction variable is the vari­
able referenced in the DO statement of the 
loop. In the DC statement shown above, I 
is the induction variable.) 

Phase 3 merges the Expression Represen­
tation File and Program Representation 
Files with some modification to forrr the 
Program File. This file is the primary 
output of Phase 3. 

PHASE 4 

Phase 4 selects the instructions to be 
generated for the executable object program 
and perfcrrrs local opt imiz ations such as 
determining best order of computaticn 
within expressions, taking advantage of 
existing register contents, and recognizing 
special situations where particularly effi­
cient code can be produced. 

Phase 4 is a collection of Program File 
entry processing routines, arithmetic 
generators tailored to the various opera­
tors and expression types, and service rou­
tines to rraintain register contents, par­
tial results, and cornmon expressions, to 
select and assign registers, to determine 
when operands are no longer needed, to 
assign and release temporary storage, etc. 
Processing is triggered by the various file 
iterrs and by the expressions they may 
reference. 

A set of tacles is maintained that 
reflects the contents of the various gener­
al and floating point registers at any 
time. When the generation of an ex[ression 
is required, the register tables are 
searched, and if any constituent operand of 
the expression is in a register, it is gen­
erally used from that register, rather than 
frore storage. Partial results are stored 
in tEmpol:ary storage only when a register 
is needed for some other purpose and there 
is no better choice of register than the 
cne contGlining the partial result, or when 
the partial result is a common expression 
which has later uses and the operation 
about to be performed will change the value 
cf the register containing the common 
expression. 

TSS/360 FORTRAN IV Corepiler 253 



PHASE 5 

Phase 5 collects the information from 
the various compiler-generated storage 
classes and forms a sharable CSECT, a 
PSECT, and as many COMMON CSECTs as there 
are declared COMMON blocks. This informa­
tion and a description of internal names 
and labels placed in the (optional) ISD 
constitute the Object Program Module. 

254 

Optionally Phase 5 will also produce an 
assembler-like listing of the object prc­
gram code obtained from the Coce File, a 
storage map, and a cross reference list_ing 
indicating the various source program iden­
tifiers and the lines in which they were 
referenced or defined. The user selection 
of these options is passed from LPC to the 
Compiler Executive and thence through a 
cOITIpil~'r intercommunication table to Phase 
5. 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

The TSS/360 PL/I compiler analyzes and 
processes source programs written in PL/I 
(See IBM System/360 Time Sharing System: 
PL/I Language Reference Manual and PL/I 
Programmer's Guide) translating them into 
object data sets. The code in these object 
data sets is not suitable for execution by 
TSS/360 and must be processed by the object 
data set converter (ODC) into TSS/360 
executable code. The main services per­
formed for the PL/I user are by the program 
language controller, the PL/I compiler, and 
the object data set converter. 

PL/I Control 

The PLI command invokes the program lan­
guage controller (PLC) which acts as the 
interface with the system. PLC acts as a 
communications area for user-specified 
options, and controls the sequence of 
events from the invocation of the PL/I 
compiler. 

The PL/I compiler, unlike the TSS/360 
assembler and the FORTRAN compiler, cannot 
function until the source data set has been 
fully entered. Therefore, if the named 
data set does not exist, PLC inVOkes the 
text editor to create the PL/I source data 
set. Once the source data set exists, con­
trol passes back to PLC, which then calls 
the PL/I compiler. (See Figure 107) 

PLC contains recovery facilities in case 
of interruptions, which permit completion 
to proceed from the point of interruption 
or from the beginning. 

User options may cause PLC to act as an 
interface to perform any of the following 
functions, as well as to create the source 
data set mentioned above: 

1. Convert separately created PL/I object 
data sets to TSS/360 code. 

2. Combine a list of PL/I Object data 
sets for conversion to executable 
code. 

3. Perform multiple compilation within a 
single invocation of the compiler. 

4. Print compiler-generated listings. 

PL/I Compiler 

The source data set, which is input to 
the compiler, is given the name the user 
specifies, or SOURCE. XXX. The data sets 
that constitute possible output from the 

PROGRAM 
LANGUAGE 
CONTROLLER 

TSS/360 PL/I COMPILER AND CONTROLS 

f--s;,;-;;"---l 
~ _J Reentrant I 

L __ R!.c~v:!l __ J 

TEXT EDITOR 
(Build Source) 

r-- - DATAsETs----l 
1---------- ----I 

I I 
I I 
I I 
I I 
I 1 
I I 
I I 
I 
I 
I 
I 
I 
I 
I SOURCE, XXX 

, I 

PL/I 
COMPILER 

II 
E:l 

'--____ ---J /1 
MACRO,XXX(O) (Optional) 
LIST ,XXX(O) 
LOAD,XXX(O) 

OBJECT DATA 
SET CONVERTER 

r---------, 
_J Print Listing : 

I Dolo Set I I... ________ J 

I JOBLlB(XXXl 

I 
1 
I 
I 
I 1 
I I L... __________ J 

Figure 107. Program Language Controller 
Flow 

compiler are: a list data set, named LIST. 
XXX(O); a load data set, named LOAD.XXX(O); 
and a macro data set, named MAC.XXX(O). 
Refer to Table 2 for compiler data sets. 

The source program to be compiled 
appears as input to the compiler on the 
PLIINPUT data set. If one of the prepro­
cessors is called prior to compilation, a 
macro data set is created with the ddname 
of PLIMAC. When preprocessing is com­
pleted, PLIMAC replaces PLIINPUT as input 
to the compiler. The PLILIST data set is 
opened by PLC unless the user specifies 
that a separate listing is unnecessary, in 
which case the listing is placed on SYSOUT 
and no record of it is retained in the sys­
tem after printout. 

The PLILOAD data set containing compiler 
output, and the PLIMAC data set containing 
intermediate text, are optional and are 
opened by control routines in the compiler. 
The PLIINPUT data set is always used by the 
compiler, and is opened by PLC. 

COMPILER PHYSICAL AND LOGICAL PHASES: The 
PL/I compiler is comprised of 12 logical 
phases, each of which consists of several 
physical phases, and all under the control 
of the compiler control routines. These 

TSS/360 PL/I Compiler and Controls 255 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

Table 2. Data Sets Used by PL/I Compiler 
r---------------T---------------T--------T----------------------------------------------, 
I I I ACCESS I I 
I DDNAME I DSNAME I METHOD I COMMENT I 
~-.--------------+---------------+--------+-----------------------------------------------~ 
I PLIINPUT or I SOURCE.XXX(O) I VISAM I Source input to compiler--user-supplied or I 
I user-supplied I or I I created by text editor before I 
I $$$nnnnn I user-supplied I I com~ilation is initiated I 
~---------------+---------------+--------+-----------------------------------------------~ 
I PLILIST I LIST.XXX(O) I VSAM I List data set -- built unless user options I 
I I I I indicate none is necessary I 
~---------------+---------------+--------+----------------------------------------------~ 
I PLILOAD I LOAD.XXX(O) I VSAM I Load data set -- output from compiler and I 
I I I I input to ODC I 
~---------------+---------------+--------+----------------------------------------------~ 
I PLIMAC I MAC.XXX(o) or I VISAM I Intermediate source text -- created whenever I 
I I user-supplied I I preprocessing is specified I 
~---------------+---------------+--------+----------------------------------------------~ 
I SYSULIB or I USERLIB or I VPAM/ I Member of library used by macro-phase I 
I user-supplied I user-supplied I VISAM I %INCLUDE verb. I l _______________ i _______________ i ________ i ______________________________________________ J 

compiler modules are link edited into six 
output modules as follows: 

1. Control Output Module - contains all 
of the control modules except those 
responsible for initialization. The 
code in this output module is reus­
able; it therefore remains resident 
during multiple compilations. 

2. Main Output Module - contains the 
modules responsible for initializa­
tion, along with all of the logical 
phases except those responsible for 
preprocessing, optimization (option 
OPT=2), and interphase dumping and 
tracing routines. 

3. First Proprecessing output Module -
contains the modules required for 
macro and/or 48-character preproces­
Sing, with the exclusion of modules 
which are reused in the processing of 
the macro option. 

4. Second Preprocessing Output Module -
contains those modules of the macro 
preprocessor that may be reused in the 
processing of the macro option. 

5. Optimization output Module - contains 
those modules which are required when 
the option OPT=2 is specified by the 
user. 

6. Interphase Dumping and Tracing output 
Module - contains all of the modules 
required for interphase dumping and 
tracing. 

Control of the compiler is implemented 
as shown under control Output Module and 
Main Output Module above. The logical 
phases of the compiler are as shown in 
Table 3. 

256 

The following overview of compiler flow 
(see Figure 108) depicts, at the system 
level, compiler logic including the poss­
ible use of a 48-character preprocessor. 
This preprocessor is called only when the 
compiler is in the 48-character set and the 
compile-time preprocessor is not needed. 
The user indicates this by specifying the 
CHAR48 option. This preprocessor is not 
included in the 12 logical phases above. 

Object Data Set Converter· (ODC) 

The TSS/360 PL/I compiler produces an 
output load data set which contains code 
similar to the OS/360 PL/I object text out­
put. To transform this load data set into 
a TSS/360 loadable module, the object data 
set converter (ODC) is used. ODC also pro­
vides some of the functions of the OS/360 
linkage editor by resolving some QCONs 
(commonly called pseudo-registers vectors). 

ODC is invoked by PLC to convert load 
modules if either the MERGELST or the MER­
GEDS parameters have been specified. or if 
the PL/I compiler was invoked and has 
created an internal merge list. 

Input to ODC consists of the 08/360 
object data set (normally in OS/360 used as 
input to the linkage editor); Output from 
ODC consists of the TSS/360 load modules 
which are STOWed into the current job 
library. 

ODC deals with pseudo-registers as fol­
lows: It builds REFs for the pseudo­
registers which must follow the other REFs 
in the CSD. The REF numbers assigned by 
ODC are independent of their pOSition on 
ODC's internal text chain of REFs. Modi­
fiers for pseudo-registers have a ty~e-4 
operation code. Each PL/I program will 
have its pseudo-registers resolved by the 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

Loader. ODC also generates a cumulative 
Q-length fUnction (CXD) field in an initia­
lization control section. This field is 
also resolved by the loader. 

Unlike the other QCONs, the 28 standard 
pseudo-registers used within the library 

Table 3. Compiler Logical Phases 

are resolved by ODC -- they do not appear 
as REFs nor do any pseudonyms appear as 
REFs. These QCONs are used by the PL/I 
subroutine library to ensure that reference 
to a program block, file, or controlled 
variable remains constant between PL/I 
modules. 

r------------------------T--------------------------------------------------------------, 
I Logical Phase I Function I 
~-----------------------+--------------------------------------------------------------~ 
I Compile-time Processor I Reads input text, executes any compile-time statements con- I 
I I tained in it, and modifies text as directed, producing modi- I 
I I fied text for further processing. I 
t------------------------+--------------------------------------------------------------~ 
I Read-In I Checks source program syntax and removes all superfluous I 
I I characters, such as comments and non-significant blanks, I 
I I from the text string. I 
~------------------------+--------------------------------------------------------------~ 
I Dictionary I Removes all BCD identifiers and attribute declarations from I 
I I the source string, and replaces them by symbolic references I 
I I to dictionary entries. The dictionary entries contain all I 
I I the consistent declared attributes. and all the attributes I 
I I specified in the language in default of source program spe- I 
I I cifications. Error messages are generated for all inconsis- I 
I I tent attributes. I 
~-----------------------+--------------------------------------------------------------~ 
I Pretranslator I Processes those features of the language that are more easi- I 
I I ly processed in their original PL/I form, than when the ori- I 
I I ginal syntactic form has been lost in later phases. The I 
I I Pretranslator carries out these modifications which include I 
I I the rearranging of the order of certain I/O statements, the I 
I I creation of temporary variables for procedure arguments I 
I I which are expressions, the conversion of array and structure I 
I I assignments to a series of DO-loops surrounding scalar as- I 
I I signments, and the removal of iSUB expressions. I 
~------------------------+--------------------------------------------------------------~ 
I Translator I Converts the original PL/I syntactic form to an internal I 
I I syntatic form, referred to as "triples". Triples consist of I 
I I the original source program operators and operands, but I 
I I rearranged so that the operations specified in the source I 
I I string may be carried out in their proper order. I 
~-----------------------+------------------.--------------------------------------------~ 
I Aggregates I Carries out all structure and array mapping, so that ele- I 
I I ments are aligned on the correct virtual storage boundaries. I 
I I When it is not possible to carry out the mapping at compila- I 
I I tion time, such as when the aggregates contain string I 
I I lengths or array bounds which are specified by expressions, I 
I I object code is produced to do it at object time. This phase I 
I I also checks that items DEFINED on arrays and structures can I 
I I be mapped consistently. I 
~-----------------------+--------------------------------------------------------------~ I Optimization I If optimization is requested, the optimization phases I 
I I attempt to reorder triples for subscript address calcula- I 
I I tions and generate efficient pseudo-code for DO-loop con- I 
I I trol. This enables some PL/I programs to compile into fast- I 
I I er object code at the cost of extra compile time. I 
~------------------------+--------------------------------------------------------------1 
I Pseudo-Code I Converts the triples to a form closely resembling machine I 
I I instructions, in which registers are represented symbolical- I 
I I ly, and storage locations are represented by dictionary I 
I I references with offsets. The final pseudo-code version of I 
I I the text also contains a number of special pseudo-code items I 
I I for the guidance of later phases. , l ________________________ ~ ______________________________________________________________ J 

TSS/360 PL/I Compiler and Controls 257 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

Table 3. Compiler Logical Phases (continued) 
r------------------------T--------------------------------------------------------------, 
I Logical Phase I Function I 
~------------------------+--------------------------------------------------------------~ 
I Storage Allocation I Searches the dictionary for all entries requiring storage, I 
I I and allocates offsets to each item, either within its AUTO- I 
I I MATIC block, or within the STATIC storage area. Code is I 
I I compiled to set up dope vectors and pointers at object time, I 
I I for allocations of controlled variables and temporaries, the I 
I I storage for which must be obtained during the execution of I 
i I the object program. Prologue code is generated for each I 
I I block of the object program. I 
~------------------------+--------------------------------------------------------------1 
I Register Allocation I Allocates physical registers to the symbolic registers which ! 
I I have been requested by earlier phases, and also ensures that I 
I I all the storage location offsets allocated in previous I 
I I phases can be addressed by the insertion of additional I 
I I instructions, where necessary. I 
r------------------------+--------------------------------------------------------------~ 
I Final Assembly I Completes the translation to machine code instructions, by I 
I I calculating branch destination addresses inserted symbolic- I 
I I ally by earlier phases. Loader text is then produced for I 
I I the machine instructions, constants, INITIAL values in STAT- I 
I I IC storage, and all the constant data required for block I 
I I initialization. An External Symbol Dictionary (ESD) and a I 
I I Relocation Dictionary (RLD) are produced to enable the ! 
I I object program to be converted by the Object Data Set Con- I 
I I verter (ODC). The Final Assembly Phase also produces a I 
I I listing of the object code produced. I 
~------------------------+--------------------------------------------------------------~ 
I Error Editor I Entered at the end of every compilation. The dictionary is I 
I I examined to determine whether there are any diagnostic mes- I 
I I sages to be printed out. If there are none, the compilation I 
I I is terminated by the compiler control. If there are diag- I 
I I nostic messages to be printed out, the error dictionary I 
I I entries are processed and the messages are printed. The I 
I I texts of all the diagnostic messages are held in modules XG I 
I I through YY. I L-_______________________ ~ ______________________________________________________________ J 

258 



NU 

Figure 108. 

IS HArRO 
OF T [()I~ ('N 

L. IT 
rr~ '>R4g 

tiC) 

P~E-TRANSU\TC;~ 

COPPllER CONT~OL P~RFO~MS INIT!AL 
OV~PSEES PHAS~ LGADI RESOLVES 
TEXT AND: lUN~Dv tRENCES A~ CONTROLS 
j,LL !.'-.:TERft,(tS SFT'i'J[:EN Tr [ COMPIL !? AN[' 

-JM~ SHARING SYSTEM. 

THE C(I"",PiLE-TIM[ PRE-p~or_[:,'~c 

iHE Cl),')P;U: TII-H: SL-,\l£::l,n::tn:; c 
,;::'Pr:SENTS T'-E U)HP I LfR ;oj: T'~ ,to 
Rr:SULTH'.jG rkorc', CXC~I)T[')H :):-

i''.r>:cp rs 1 C::-.. '-,T;, I '< 
PL,' .. "'ND 
S'UF.Ct: Tt:;q 

ST,"'TE,'<El~r~;. 

[He: H.;RTY r:iGHT CHJ\RU~-rC SE.T P~l 

A,CCfPTS SOUR::E P~OGR;\I·jS ~'liK;TTlN 1~1 

E: !(~IIT ChAR/\CT[I~ SVNT'-·;< Tr~U~ 

I SlXTY C!iAP.!\CT[R s'''~nAX. IS 
PEkfO;.{M[D l3Y iHe C(I''\PILf-'' P~')I:!::,S(,'P ',.jHUJ 
MACRO AND ~8 AP[ 5P~C ~IEU. 

THE SY\ OF 
MO'-jc:l S'JI)[Rf-'LU.')US 
CERTA]\ CH!I Ih flj[ 

ll~. PHA';lS. 

THE )](T I LO(-;i':J'.L :>H/'Sf 
D]CTlm~L\RY Dr !~)lJ~flr !-RO,v 
)E(L/\R[ S - !\T~~E\llS Fi<{jM 
Rf:PLACE$ BCl) IDlNTlfIE~':: 1\) -t1::. 
TO 'I~~ DICTIONARv, 

TI":' PRI:--1R,\NS1, TDR 
, Rf:!-\RRM~(; 

:',EU:S Wf-lfR 
CUC{krSPOND1NG 
~n:Ull Jkt ASS I 

EXPRESS: 

1m) Lu:;I~'/~l ':>li!\SC: C')~~\y'[~TS THE 
Tt:YT A UYvjP\...~TER--OR, I [~~llD r )R~1 

(7cr-·lcR]C SEL[C T ] ! S 1\1 SO 

1 j-IE P--!ASf 

STRUC1URf·.S I\'W 4~P"-,Y':; L._ Al_l(,r~ f_E:rhiS 
CC)RPECT STORAGE 80U~!ARltS. 

Il) PRODUC:'fj TO C<\fi_Pi 
r TP·',l'. 

Overview or CcmFiler Flow 

'ISS/360 FL/I compiler and Contrcls 259 



A1 

OGA2 

;1 -:-p op"T j :)N 

YES 

Figure 108. 

260 

PSEUDO-CORE 
LOGIC.\L PH,L>'SE 

B2 

STOR,AGE 
ALLOCAT I :"!N 

LOGICAL P~ASE 

FIN/\.L ASSEMBLY 
Ln(;. I C/I,L PHASE 

yes 

G2 

NO AN'" 
DIAGNOSTICS 

YES 

THE PSEUDO-CORE LOGICAL PHASE PER DRMS MA~Y 

PASSES OVER THE TEST. EACH PASS OhVE~TS SO~~ 

OF THE TEXT CONTEXT TO A FORM AI_L ED TO 
ASSEM8LY LANGUAGE, CAL_ED P5EUDC- ORE. 

TI~E STORAGE ALLOC4TI0N LOG1CAL PHASE SCANS THE 
DICTIONARY AND ALLOCA~E5 OL~EC7 ~i~E STOR~GE FOR 
ALL IDENTIFIERS, 1E~PORARIE5 AND AD~:N!srpAT 
REGIQ~S. PROLOGLES ~RE CONSTRUCTED. 

T~E ~FGISTER ALL2CATJ LaGIC~L PHASE PERFORM~ AN 
AI\ALYSIS OF ')BJECT 1lt-'IE A,[)r)PESSIBILlri ,"::'J-iS, ~'\L_U C.':"'E'::, 

THE ~INAL ASSE~BLY L0GICA PHASE ESTAELlS~E5 

OBJECT TIM~ ~RANC~ A)~~ES ES A~D CO~PL~TES 

TRANS;.J'~TIOI~ ro HN:hfHE C~ _. LD.i.DER: TEXT 1:;: 
PRODUCeD. 

Overview of CCll!filer Flow (Continued) 



The Linkage Editor, one of tne IBM sUfP­
lied user programs, statically combines 
(links) different object program rrodules 
for eventual input tc the Lynarr·ic Loader. 
l'iodules to be linked and edited by the 
Linkage Editor are the prcduct of the TS5/ 
360 FORTRAN IV and Assembler language prc­
cessors, or the froduct cf a previous Link­
age Editor operation. These medules are 
contained in libraries (fartitioned data 
sets). The output (object module) of a 
language processor rr,ay contain unresolved 
external references. External references 
are these that make references to entry 
:point names, CSECT names, or rr,odule names 
that are net present in the output module 
created by the language processor. If 
possible, such symbols are resolved by the 
inclusion of modules from the libraries 
available to the Linkage Editor. 

With the exception cf error condition 
treatment, processing by the Linkage Editor 
is the sarr.e in conversational and non con­
versational modes of operation, and does 
not depend on the physical origin of source 
statements. 

RELATIONSHIP TO T85/360 

The Linkage Editor is classified as a 
user prograrr" and, as such, it has the same 
relationship (including restrictions and 
conventions) to the IB~ TSS/360 as any 
other user prcgram. Being a shared. non­
privileged, reenterable service program, 
the Linkage Editor receives its inputs from 
virtual storage, places its output in vir­
tual storage, and has no hardware require­
ments of its own. (Hardware requirements 
for the systerr data sets are under the con­
trol of catalog services and data 
management. ) 

GENERAL PROCESSING REQUIRE~~NTS 

Certain requirements rrust be satisfied 
by the Linkage Editor user. Each library 
except SYSLIB and SYSULIE to be used during 
the Linkage Editor run must be defined by 
the user with a :CDEF ccrr,rrand. If the con­
trol statements are not to be input via a 
SYSIN device, the user must prestore them 
within a cataloged data set. Linkage Edi­
tor parameters must ce given following a 
RUN LNK command when commencing a Linkage 
Editor run. If no parameters are supplied, 
the user is prompted for thelT,. These para­
meters deterrrine the characteristics of the 
Linkage Editor'S output by specifying: 

LINKAGE EDITOR 

• The name of the object module to be 
created 

• 1f<hether. the control statements are 
prestored 

• Line and increment numbers for LPC 

• The narre of the library in which the 
object module is to be cataloged 

• Version identification 

• Whether an ISD is to De produced 

• Whether a PMD listing is to be prepared 

LPC, a component of the Command Language 
Interpreter, serves as the link between the 
user and the Linkage Editor. LPC gathers 
the input parameters for the Linkage Edi­
tor, loads the Linkage Editor, and passes 
it the parameters. The Linkage Editor 
calls upon LPC for source lines (control 
statements) and uses LPC to output diag­
nostic messages. 

The RUN LNK command starts LPC ~l\IN. 

LPC MAIN then collects the parameters 
required, either by prompting the terminal 
user or by fetching them from SYSIN. In 
either case, the parameters are verified. 
The user is asked to correct any errors in 
the input parameters if the mode is conver­
saticnal. Errcrs in the Linkage Editor 
input parameters processed by the LPC when 
the rrode is nonconversational result in 
task termination, via the ABEND routine. 
LPC I>'AIN places the valid parameters in a 
list, calls the Linkage Editor, and passes 
the address of the list to it. 

At the end of the Control Statement Pro­
cessing phase, the Linkage Editor sets a 
return code and returns control to LPC 
MAIN. A code of 0 means that an object 
module has been created. A code of 4 means 
that errcrs in the source data set prohibi­
ted creation of an object module. 

If a return code of 4 is returned after 
the first phase, LPC MAIN issues any 
remaining diagnostics and a confirmation 
rressage, if appropriate. If the mode is 
nonconversational, LPC MAIN terminates pro­
cessing. If the mode is conversational, 
LPC MAIN asks the user if he wants to ter­
rrinate processing or modify his source data 
set; the user cannot just continue if the 
return code is 4. 

Linkage Editor 261 



When normal processing ends, the LinKage 
Editor returns control from its continua­
tion entry point to LPC !:'lAIN. Ll-'C ~AIN now 
stows the object mod~le (if one was 
created) and opLionally issues a PRINT com­
n,and to print tIle contents of the listing 
data set. LPC ~~IN then returns control to 
its caller. 

connecting modules is one of the basic 
functions of the Linkage Edltor. Previous­
ly assembled, compiled, or link edited pro­
grams may be included as subprograms of 
new, more complex progran-,s with no unre­
solved symbols. Each rr.odule to l:e con­
nected (linked) by the Linkage Editor may 
be the output of a different language pro­
cessor. However, it is the user's respon­
siLility to provide adequate linkage con­
ventions and compatible data forms for pro­
grams composed in such a way. 

Another basic function of the Linkage 
Editor is editing. Editing consists pri­
marily of modifying, deleting, or replacing 
control secticns located in any of the 
input modules. Both linking and editing 
are directed by Linkage Editer control 
statements. However, the Linkage Editor 
provides autorratic editing of duplicate 
external symbols. That is, duplicate 
external symbcls are removed and duplicate 
control sections are rejected. 

During the process of linking and edit­
ing object modules, the Linkage Editor per­
forms the following functions. 

Library Calls 

Object program ITodules are included in 
the output of the Linkage Editor upon requ­
est of the user. Object program modules 
are stored in the TSS/360 program libraries 
- System Library (SYSLIB), User Library 
(SYSULIS), and Job Libraries - as members 
of partitioned data sets. The Linkage Edi­
tor user rrust s~ecify the ddnames of those 
Job libraries from which he intends to 
retrieve nodules, Frior to the Linkage Edi­
tor run, througn the use of DDEF cOThmands. 

Program Modification 

The Linkage Editor ;:ermits thE user to 
statically modify modules without having to 
reassemble, recompile, or reexecute. The 
Linkage Editor can reflace, delete or com­
rine control sections as directed by con­
trol staterrents, and can also change the 
attributes of a control section. External 
symbols (DEFs) can be reflaceo r deleted, or 
renamed as directed by Linkage Editor con­
trol staterr,ents. Also external references 
can be renamed. 

262 

Programming Aids 

A list of all outstanding unresolved 
external references (REFs), plus a list of 
those resolvable from the System library, 
is prepared upon completion of Linkage Edi­
tor frccessing. Also, the user may direct 
that an optional Program Nodule Dictionary 
(PMD) listing cf the program module be 
prepared. 

Error Detection and Messages 

During Linkage Editor processing, errors 
cr possitle error conditions are detected 
in both conversational and nonconversatien­
al rrcdes. Four diagnostic levels are 
available to TSS/360 language processors: 

Diagnostic 
Level Value 

o 
1 
2 
3 

li:Eaning 
No error:;;; 
At least one minor error 
At least one major error 
A catastrophic error, nc 
module created 

Before its termination, the Linkage Edi­
tor assigns to the output module the high­
est diagnostic level code encountered. 
Only diagnostic level codes 0 and 2 are 
generated by the Linkage Editor. I,evel 
codes are also received as part of an inFut 
nodule. However, only code levels 1 and 2 
IOay be passed on to the output module 
because there is no module to contain the 
code when thE diagnostic level code is 3. 

Errors detected during Linkage Editor 
rrocessing do not terminate processing, but 
cause a response which is deterffiined by the 
node of operation. While operating in con­
versational mode, the Linkage Editor trans­
mits diagnostic messages to the terminal 
and the user may correct the error, using 
applicable recovery procedures (such as 
nodifying statements previously entered). 
In nonconversational mode, a standard 
response is Thade for the default condition. 
The diagnostic message is sent to the SYS­
OUT dataset and processing continues. 

LINKAGE EDITOR MAJOR DIVISIONS 

The Linkage Editor consists of three 
rrajor divisions: Control Statement Proces­
sing, Output Processing, and Early-End 
Processing. 

The Linkage Lditor is called by Language 
Processor Control (LPC). 

LPC receives Command System corrrr,ands 
frcm the user, and afteL processing them, 
calls the Linkage Editor at one cf three 
entry foints. These entry points are 



• Initiation (Control Statement 
Processing) • 

• Continuation (output Processing). 

• Early-End (Early-End Processing). 

Upon request for service of the Linkage 
Editor by a user, LPC calls the Linkage 
Editor at the Initiation entry point. Con­
trol is returned to LPC after control sta­
tement processing is performed; LPC then 
calls the Linkage Editor at the continua­
tion entry point to deliver the final 
ffiodule, after which control is returned to 
LPC. If it is necessary to prematurely 
terminate Linkage Editor ~rocessing, LPC 
enters the early-end entry point. 

CONTROL STATEMEN'f PROCESSING 

The control stateffients frocessed by the 
Linkage Editor are as follows: 

INCLUDE (FORM 1): Obtains program modules 
froffi a library and places them in the out­
put program module, linking them to any 
modules which have previously ieen 
included. 

INCLUDE (FORM 2): Instructs the Linkage 
Editor to scan and include from a specified 
library other program Rodules whose entry 
narres satisfy unresolved external 
references in an (as yet inccmflete) output 
prograffi module. If one of the newly 
included rr,odules contains unresolved 
external references, the specified library 
is again scanned for modules which resolve 
these names. This continues until no new 
modules can be included. 

INCLUDE (FORM 3): Functionally identical 
to INCLUDE (FOrIi! 2), except that the user 
supplies a list of external references 
which are not be resolved by the specified 
library. 

RENAME: Provides a means of deleting or 
renarr~ng control sections and entry namES, 
and of renaming external references which 
are to be included in the output prograffi 
module. 

TRAITS: Provides the user with the facili­
ty to redefine attributes of a control sec­
tion and causes the attributes assigned Ly 
a language processor to be removed. Thus, 
only those attributes mentioned in the 
'I'RAITS statement will be assigned to the 
specified control section. 

COMBINE: Provides the a~ility to combine 
two or more ccntrol sections of a module 
into a single control section. thus possib­
ly reducing the number of pages of virtual 
storage required. 

H,u: ~'isnals the 'cnd of the Linkage Editor 
contro~ stdtement and causes the Program 
librar~ List to be searched for any unre­
solved referEnc"s not specifically 
excluded. 

The linkage Editor processors used to 
precess the control statements are: 
INCLUDE, RENAME, TRAITS, CCI-::EINE, and ENL 

During initialization, storage required 
for prcgram rr.odule rrocessing is ol::tained, 
switches and tables are initialized, and 
the control statement is ol::tained from LPC. 
The control statement is checked fcr corre­
ctness, and its sequenCE of execution, 
which is governed by tne following hierar­
chy, is checkEd. 

1. 

2. 

INCLULE (Form-l) control statements 
are executed before, between, cr after 
any of thE other control statements 
except END. 

INCLUDE (torm-2 and Form-3) control 
staterrents are executed after the 
appearance of at least one INCLUDE 
(Form 1). 'Iney may never irrwediately 
fcllow a RENM'JE, TRAITS, or COl'iJBINE 
control statement. 

J. :e.ENAlvJE cont rol statements are executed 
befcre an INCLUDE (Form-l) control 
statement. 

4. TRAITS control statements are executed 
befcre an INCLUDE (F'orm-l) control 
statement. 

5. COMBINE control statements are 
executed iefore an INCLUDE (Form-i) 
control statement. 

6. The :END control statement is executed 
after all other control staterrents are 
execut.ed. 

When an INCLULE or END control statement 
is received in the input strearr,. the prc­
cesscr to rrocess the control stdtement is 
called imlGediately. When a COMBINE, 
'b-<AI'IS, or RENAME statement is received, 
the statement is stacked until an INCLUDE 
statEIlIent is received. The INCLUDE state­
rrent processcr is ther, called to initlate 
processing of the INCLUDE staterr,ent and to 
call the processors which frocess the 
stacked statement"". Each processor checks 
the format of its related statement and 
then perforrr,s the required function. 

The TRAITS, COMBINE, and RENAME state­
ment processors return control to the 
INCLUDE statement processor after conclud­
ing processing. When all stacked state­
ments have Leen processed, processing of 
the INCLUDE statement is completed, and 
control is returned to the Control State-

Linkage Editor 263 



l[.ent Input/Analyze (INANAL) Frocessor 
module. 

T he END statement Frocessor receives 
control directly from INANAL, and after 
frocessing the END staterrent, IEeturns con­
trol to the LPC. 

The Form-l INCLUDE statement causes the 
Linkage Editcr to obtain one or more pro­
gram modules from a specified library and 
place theIl in the output program module, 
linking them to any modules which have pre­
viously been included. The Form-2 INCLUDE 
statement causes the Linkage Editor to 
search a specified library, other than SYS­
LIB, and from it include other program 
modules whose entry narles satisfy unre­
solved external references in an (as yet 
incomplete) output program module. If one 
of the newly included modules contains 
unresolved external references, the speci­
fied library is again scanned for modules 
which resolve these narres. This continues 
until no new modules can be included. The 
Forrn-3 INCLUDE statement is functionally 
identical to the Form-2 INCLUDE statement, 
except that the user supplies a list of 
external references which are not to be 
resolved by the specified li~rary. Names 
not appearing in this list will be 
resolved, if possible, by the inclusion of 
the program modules from the specified 
library. The excluded names are presumably 
to be resolved by subsequent INCLUDE state­
ments. If not, they will remain unresolved 
in the output program module and be 
resolved by the Dynamic Loaoer when the 
output program module is loaded. 

264 

An ERROR Processor routine is used by 
the Control Statement Input/Analyze Proces­
sor routine and ty the control statement 
processing routines to process errors 
resulting from incorrect statements (illeg­
al operation symbols, illegal delirriter, 
etc.) and/or statements in the wrong 
sequence (e.g., INCLUDE statement not yet 
given). A diagnostic code (highest diag­
nostic level number> is assigned to the 
cutput mcdule when major errors are 
detected in nonconversational mcde. The 
diagnostic cede is placed in the Program 
Module Dictionary. During the COIlVersa­
tional rrcde the user is notified of an 
error and invited to correct the error 
condition. 

OUTPUT PROCESSING 

After all statements have been pro­
cessed, LPC calls for Output Processing 
which generates the final output module, 
including PMD, text, and the ISD if 
required. Output Processing also prepares 
the external name list and P~ill Listing and 
returns control to LPC. 

EARLY-END PROCESSING 

Early-end processing consists of releas­
ing storage areas and closing any open 
libraries. It is entered if the Linkage 
Editor is to be terminated before normal 
completion. Return to the LPC is rr.ade with 
exit parameters. 



TIME SHARING SUPPORT SYSThM 

The Tirre Sharing SUI=port Systull (TSSS) 
provides a facility whereby th~ system pro­
grarnrr,er may selectively gather data for 
analysis of aI=parent system software 
errors, and dynamically correct those 
errors. This system also I=rovides capabi­
lities whereby the systew prograrrmer may 
monitor and test TSS/360. TSSS resides 
within the Time Sharing System Dut its 
operation is only minirr.ally dependent upon 
the larger system. Conversely, when TSSS 
is not in use, the Time Sharing System 
operates without TSSS participation. 

TSSS comprises two separate systems: 
the Resident SUpI=ort System (RSS) and the 
Virtual Support System (VSS). They share a 
control nucleus that is loaded together 
with the Resident Supervisor by Startup. 
This control nucleus processes interrupts 
and activates either RSS or VSS, as 
requested. All SVC interrupts in the range 
64-95 and all rranual key external inter­
rupts are delivered to the TSSS control 
nucleus for I=rocessing. In addition, after 
RSS has been activated, RSS I/C and all 
program interrupts are directed to the con­
trol nucleus. 

RSS includes routines for independent 
language processing and inI=ut output that 
enable it to operate on a stand-alone, non­
time shared basis. The RSS USEr is called 
a Master Systems Programmer (MSP). VSS is 
a virtual version of RSS; it executes in 
virtual storage with similar language pro­
cessing and I/O routines. The VSS user is 
called a Task Systems Programmer ('I'SP). 
RSS is derendent only on hardware and on a 
minimal interface with TSS/360, while VSS 
is dependent primarily on the Resident 
Supervisor and minimally on the Task Mon­
itor. VSS is independent of other virtual 
storage programs, both privileged and non­
privileged. RSS I/O is independent of TSS/ 
360; it perforrr.s I/O by issuing the SIO 
instruction. VSS I/O performs I/O opera­
tions by means of the lOCAL macro 
instruction. 

RSS is not tinie sliced, whereas VSS 
executes within a task that is time sliced. 
However, VSS can call upon RSS to perform 
certain functions that it cannot perform 
for itself. In this case RSS is activated 
and TSS/360 execution is suspended for the 
ti~e required to Ferfor~ the requested 
operation. RSS executes in supervisor 
state, employing only one CPU. In a duplex 

AUXILIARY PROGRAMS 

system, the other CPU is placed in a wait 
state. VSS executES in privileged rrode. 

The circumstances under which RSS is 
activated are: 

• The }'aster Syste~ Programmer (MSP) has 
initiated RSS activation or has sig­
naled RSS to reactivate and accept 
in~ut from his terminal. 

.. An SVC implanted by RSS, or by VSS in 
real storage, has been executed, which 
requires RSS to be active in order to 
process a corrmand statemEmt. 

• VSS has signaled that it requires ser­
vice from RSS. 

VSS may be initiated for the purpose of 
connecting a Task System Programmer (TSP) 
to a task by: 

.. The VSS command of the 'ISS/360 command 
system, uSEd at the SYSIN terminal of a 
logged-on task. 

• The CONNECT comillEnd of RSS, used by the 
connected Master System Programmer, 
specifying an active task to which a 
Task System Programmer will te con­
nected. A Task System Programmer can­
not te connected to an idle terminal by 
the CONNEC'I command. 

• The LOGON command of TSS/360, issued at 
an idle terminal, supplying parameters 
for connecting the 'Task System Pro­
gramner to a logged-on task. 

TSSS LANGUAGE 

The routines that make up TSSS language 
~erfcrrr the functions requested by the Sys­
tem Programmer, calling upon TSSS I/O and 
environment routines for service as needed. 
The TSSS comrran6s specify the external 
functions, which can be performed on requ­
est frorr a terminal or dynamically. These 
commands and their functions are as 
follows: 

Corrrrand 
AT 

CALL 

function 
Designates a dynarr~c statement 
and the point in TSS/360 at 
which execution is to occur. 

Initiates the execution of a 
prestored set of command 
statements. 

Auxiliary Programs 265 



COLLECT Moves data from a specified area 
into a sFecified collection 
area. 

DEFINE Enables the System Programmer to 
define temporary sywbols and 
allocates storage when 
necessary. 

DISCONNECT Removes the System Programmer 
caFability frorr, the terminal, 
restores TSS/360 (except for 
changes made through use of the 
PATCB command), and permanently 
transfers control to TSS/360. 

DISPLAY Writes data requested by a Sys­
terr Programmer on his terminal. 

LUMP Writes data requested J:::y a Sys­
tem J?rogramrrler on a specified 
outFut device. 

ENL Terminates reading of a device 
being used for input of pre­
stored statement sets. 

IF Designates a conditional state­
ment, whereby execution of the 
comlwnd st.ateIPent following it 
is dependent on the evaluation 
of the predefined condition. 
Altbough IF is treated external­
ly as a command, internal pro­
cessing treats it as an 
oFerator. 

PATCH Alters the contents of a speci­
fied data field and keeps a 
reccrd of the Fatch. 

CUALIFY Establishes implicit real 
storage, virtual storage, or 
global <i.e., affecting all 
users of the system) qualifica­
tion for subsequent operands. 

REMOVE Deletes ATs and their associated 
dynamic statements, or deletes 
patches. 

RUN Causes control to revert to TSS/ 
360. AT SVCs can then be 
executed. 

SE~ Alters the contents of a speci­
fied data field. 

STDP Causes TSS/360 or a s~ecific 

task to nalt and control to be 
given to the issuing system 
progran:nier. 

In the general operation cf TSSS lan­
guage, an input corrmand string is accepted 
and translated into polish notation. The 
elements in this polisn string are then 
executed. Although the language routines 

266 

are functionally identical for RSS and VSS, 
some differences in operation and output 
exist. A complete description of the TSSS 
language routines is provided in the publi­
cation IB:t-~ System/360 'I'iree Sharing System: 
Tine Sharing SUFPort Systen Program Logic 
Manudl. The following example describes a 
typical TSP session at a user's terminal. 

A system user is experiencing difficulty 
in executing his program. The particular 
program has been run successfully in the 
past and the user is at a loss to explain 
his fresent difficulty. He, therefore, 
enlists the aid of a Systerr Programmer at 
his installation. 

-With the user's terminal in command mode 
the System Programmer enters the corrrrand 

VSS SYSPROG 

and presses the return key. At this point 
tne Corrrrand System processes the VSS com­
mand. TSSS subsequently connects the sUF­
port system to the user's task and prints $ 
at the terminal; this is the TSSS invita­
tion to enter TSSS commands. 

Fcr the I,:urpose of this example assume 
that the System Programmer suspects that. 
after executing for some period of time, 
the user's PSW is being altered in such a 
way that processing continues but erroneous 
results are obtained. In an effort to con­
firm his suspicions the System Programmer 
enters the command strinq: 

AT SUSPECT IF $R(10)=X'OA' DISPLAY $PSW 

In this corr~and string, he is using a loop 
counter included in the user's program to 
Signal the expiration of a sufficient 
amount of time. Each time the point 
labeled SUSPECT is reached, TSSS will 
examine general purpose register 10. When 
that register contains the value ten, TSSS 
wi 11 print the current PSW at the terminal. 

In discussing this example, only one 
task, the task to which the System Pro­
grammer is attached, is assumed, for the 
sake of simplicity. Not all of the several 
interfaces with the Resident Supervisor are 
fully detailed but the work which that body 
cf code performs for the Time Sharing Sup­
port System is clearly indicated. 

Operation begins with the user logged on 
and his task actiVE and in command mode. 
The System Programwer enters the corrreand: 

1. 

VSS SYSPROG 

This command is processed by the TSS/ 
360 cOHmand system which issues the 
instruction: SVC 83. The execution 



of this svc triggers the ~rocessing 
which results in vss activation. 

2. The hardware interruption is received 
by the Resident Supervisor which re­
cogni~es it as an RSS interruption and 
passes control to the RSS SVC Inter­
rupt .Processor by loading a PSW frOlI 
the System Table. 

3. The RSS SVC Interrupt Processor recog­
nizes the SVC code as the one for vss 
activation and merely passes control 
to the VSS Command SVC Interrupt 
Processor. 

4. The VSS Command SVC Interrupt Proces­
sor sets ~arameters locates the TSI 
and calls the RSS Interrupt Switching 
routine. The RSS Interrupt switching 
Routine builds a duplicate TSI for the 
task and saves the current TSI in it. 
The routine chains the original and 
duplicate TSls, sets the VSS active 
flag, dequeues all pending task inter­
rupts from the original TSI and queues 
them on the alternate TSI, and returns 
control to the VSS Command svc Inter­
rupt Processor. 

5. Next, the VSS Command SVC Interrupt 
Processor calls the Queue VSS Inter­
rupt Routine which builds and enqueues 
an activate interrupt on the task's 
TSI. It accomplishes this by calls to 
the Resident supervisor routines, 
Supervisor Core Allocation and Queue 
GQE on TSI. Having accomplished this, 
control is returned to the VSS Command 
Interrupt Processor. 

6. The VSS Command SVC Interrupt Proces­
sor calls the Queue VSS Interrupt rou­
tine a second time at a second entry 
point to build and enqueue an external 
interrupt with a rr,essage control block 
(MCB) attached. By calls to supervi­
sor Core Allocation and Queue GQE on 
TSI the Queue VSS Interrupt module 
constructs an MCB and enqueues an 
external interruption GQE on the 
task's TSI. This MCB contains infor­
mation which defines the 'ISP and the 
terminal to the system. Control is 
then returned to the VSS Command 
Interrupt Processor. 

7. The VSS Command SVC Interrupt Proces­
sor exits to the Queue Scanner, which, 
finding no work to process, transfers 
control to the Dispatcher. The Dis­
patcher starts the task on a new time 
slice reSUlting in a task interrup­
tion, the VSS Activate interruption 
that was just queued by the Queue VSS 
Interrupt routine. 

8. The occurrence of this interruption 
results in a call to the VSS Activate 
Interrupt Processor. This routine 
sets "VSS activation sequence in prc­
gress" and "vss active" flags in the 
VSS Status 0a ve Area, and links to the 
VSS Status Save koutine. 

9. 'The VSS Status ~dve Routine saVES the 
entire ISA and associated task status 
since its contents will be overlaid by 
subsequent processors. This rcutine 
returns control to thE VSS Activate 
Interrupt Processor. 

10. At this point, the Activate Interrupt 
Processor issues the LVPSW instruction 
which enables interrupts. The extern­
al interrupt enqueued by the VSS Com­
mand Interrupt Processor occurs at 
this point, resulting in an entry to 
the VSS External Interrupt Processor 
f ron the Dispatcher. 

11. The VSS External Interrupt Processor 
tests the "vss activation sequence in 
progress" flag in the VSS Status Save 
drea and, finding it on, passes con­
trol to the VSS Activate Interrupt 
Processor at a secondary entry point. 

12. The VSS Activate Interrupt Processor 
sets the "VSS activation sequence in 
progress" flag off and transfers the 
TSP terrr-inal information from the ISA 
to the VSS Status Save Area. The rou­
tine then sets flags indicating that 
VSS is active and also indicating the 
mode of activation and exits to the 
Language Control Routine to invite 
input by printing $ at the terminal. 

At this point VSS is active and, after 
the $ is printed, the System Prograrrrr-er may 
begin issuing commands in an effort to loc­
ate the source of the trouble. In this 
example it was assumed that the TSP sus­
pects that the user"s PSW is being altered 
after a certain period of execution time. 
He, therefore, decides to allow the user's 
task to run for a short time and then to 
display the PSW to determine if, in fact, 
it has been changed. The following steps 
describe the processing from the pcint at 
which Language Control receives control 
from tile VSS Activation Interrupt Prcces­
sor. 'IhE function of Language Control on 
tnis, its first activation, is to invite 
input by printing "$" at the terminal. 
'Ihis involves the support system I/O rou­
tines and, therefore, a call is made to I/O 
Control. 

13. The I/O Control Routine initializes 
the TSSS I/O Request Control Block 
(SIORCB), determines the proper access 
method to call (in this caSE the VSS 
Telecommunications access method>, and 

Auxiliary Prograns 267 



transfers control to it. (The SIORCB 
used by the Time Sharing Support Sys­
tem is analogous to the IORCB used by 
the other Time Sharing access 
methods. ) 

14. VSS Telecommunications access mEthod 
builds a channel program to perform 
the I/O operation required (writing $ 
at the terminal), and transfers con­
trol to the VSS I/O Initiation/Posting 
routine. 

15. The VSS I/O Initiation/Posting routine 
creates an IORCB from the information 
in the SIORCB created by thE access 
method. It then issues the lOCAL 
macro instruction which causes the 
TSS/360 Supervisor to perform the 
actual I/O operation for it. Follow­
ing the issuance of lOCAL, VSS I/O 
Initiation forces Time Slice End. 

16. After a period of time, the I/O opera­
tion is completed (the $ has been 
printed at the terminal), and a chan­
nel interruption occurs. This inter­
ruption is received and enqueued on 
the scan table by the Interrupt Stack­
er. The Stacker then gives control 
the Queue Scanner. 

17. The Queue Scanner dequeues the inter­
ruption GQE and passes it to the Chan­
nel Interrupt Queue Processor which 
enqueues it on the task's TSI as a VSS 
interruption. 

18. After a time delay, during which, 
under normal operating circumstances, 
other tasks would receive a time 
slice, the Dispatcher gains control 
and, prior to setting the task in 
execution, calls Task Interruption 
Control (TIC). 

19. TIC deterrr~nes that an interruption is 
enqueued for the task and that the 
interruption is a VSS channel inter­
rupt. TIC therefore switches PSWs so 
that the current PSW in the ISA 
directs the Dispatcher to the secon­
dary entry point in VSS I/O 
Initiation/Posting. 

20. When the Dispatcher regains control, 
it issues the LPSW instruction giving 
control to VSS I/O Initiation/Posting. 

21. VSS I/O Initiation/Posting examines 
the ISA to determine the results of 
the I/O operation, and, finding the 
results to be satisfactory, exits to 
I/O Completion. 

22. Following successful printing of the 
$, VSS I/O Completion transfers con-

268 

trol to the I/O Calling routine -­
Language Control. 

At this pOint, VSS is prepared to accept 
command input fr0m the TSP. The programmer 
Enters the command string: 

AT SUSPECT IF $R(10}=X'OA' DISPLAY $PSW 

23. Language Control calls I/O Control to 
read the input device. (The input 
device terminal must be read to be 
able to process the command string.) 

24. I/O Control sets up the SIORCB, deter­
mines that the Telecommunications 
access method is the correct one to 
use, and calls it. 

25. The Telecommunications access method 
builds a read channel program, sets 
appropriate pointers and flags, and 
calls VSS I/O Initiation/Posting. 

26. VSS I/O Initiation/Posting sets up the 
IORCB and issues the lOCAL Thacro 
instruction. Processing continues as 
in steps 16 through 22 above except 
for the fact that this is a read 
operation. 

27. I/O completion returns to the I/O Edi­
tor following a read operation with 
TAM as the access method. 

28. The I/O Editor converts the device 
standard character codes to EBCDIC, 
and exits directly to Language 
Control. 

29. Language Control now has a command 
string in EBCDIC. In order to convert 
this to executable code, Language Con­
trol calls the Source to Polish 
module. 

30. Source to Polish converts the input 
string to polish notation which is a 
string of symbols, literals, and 
operators that defines the operations 
to be performed and the order in which 
they are to be performed. 

31. When Source to Polish is finished it 
returns to Language Control which 
immediately calls Scan Control. 

32. Scan Control examines the Polish Str­
ing, determines the proper keyword 
execution subroutine (in this case the 
AT COIrimand Processor), and passes con­
trol to it. 

33. The AT Command Processor saves the 
original instruction code located at 
the point where the AT SVC (SVC 80) is 
to be implanted, implants the AT SVC, 
stores the source statement, (i.e., 



the command string to be dynamically 
executed) at the end of the AT table, 
and returns control to the Scan Con­
trol routine with a return code of 4 
and a zero in GPR O. 

34. The Scan Control routine returns a 
code of zero to the Language Control 
routine indicating that processing is 
complete and further input can be 
accepted. 

35. Language Control requests further 
input by repeating steps 13 through 22 
to print $ at the TSP's terminal. At 
this time the TSP has completed his 
input of diagnostic commands and simp­
ly issues the command: 

RUN START 

which causes the user's task to begin 
execution from its first instruction 
labeled S'IART. 

36. Processing of the RUN command is the 
same as for the AT command (steps 25 
through 34 above). 

37. The RUN Command Processor computes the 
start address at which processing is 
to be resumed and inserts that address 
as the current PSW in the VSS save 
area. Control is then returned to 
Scan Control with a return code of 
eight. 

38. Scan Control returns control to the 
Language Control routine with an indi­
cation that a RUN command has been 
processed (RC=8). 

39. Language Control converts the return 
code of eight to a return code of zero 
and returns to the VSS ActiVate Inter­
rupt Routine. 

40. VSS Activate passes control and the 
return code to the vss Restore Status 
routine. 

41. Restore Status restores the saved ISA 
and remotely executes SVC 82. 

42. The execution of this SVc causes an 
entry to the RSS SVC Interrupt Proces­
sor via the Resident Supervisor Inter­
rupt Stacker. The SVC Interrupt Pro­
cessor transfers control to the VSS 
Exit routine (a real core module). 

43. The VSS Exit routine calls the RSS 
Interrupt Switching routine, and 
passes it a deactivation indicator. 

44. Interrupt SWitching restores the task 
to its original state, i.e., the state 
prior to VSS activation, resetting the 

·VSS active" flag and restoring the 
original 'lSI. The routine then 
returns to VSS Exit. 

45. VSS hxit stores the task status from 
the VSS paging buffer into the XTSI, 
and exits to the Queue Scanner. 

46. The ~ueue Scanner, finding no work, 
calls the Dispatcher, which sets the 
task in execution. 

Each time the instruction labeled sus­
PECT is €x,,;cuted, VSS is reactivated by 
execution of the SVC. The first nine times 
this occurs, the IF clause returns a false 
indication and TSS/360 is reactivated after 
the instruction overlaid by the AT SVC is 
executed. The tenth time the AT SVC is 
encountered, the execution of the IF clause 
returns a true indication and the rerr.ainder 
of the corrmand string is executed. The 
processing of these commands is described 
below: 

47. The occurrence of the SVc interruption 
results in an entry to the TSS Inter­
rupt Stacker. ThE Stacker recognizes 
tne interruption as one belonging to 
TSSS and transfers control to the RSS 
SVC Interrupt Processor. 

48. The RSS SVC Interrupt Processor deter­
mines that the VM AT Execution SVC 
Processor should receive control, and 
calls that routine. 

49. The AT Execution SVC Processor pro­
vides the processing required to reac­
tivate VSS. The first step in this 
reactivation is to call the RSS Inter­
rUFt switching routine. 

50. Interrupt Switching saves the input 
TSI by building a copy of it, dequeues 
all pending interruptions for the 
task, and returns to VM AT Execution. 

51. VM AT Execution calls the Queue VSS 
Interrupt routine to enqueue a code 2 
interruption on the task's TSI. When 
this is accomplished, Queue VSS Inter­
rupt returns control to VM AT 
Executicn. 

52. VM AT Execution now calls the Queue 
VSS Interrupt routine at a secondary 
entry pCint to construct an MCB and 
enqueue an external interrupt. The 
NCB contains information which defines 
tne terminal and TSP to the systerr.. 
When control returns, VM AT Execution 
exits to the Queue Scanner. 

53. Processing continues as in steps 7-12 
above in order to reactivate VSS. At 
the end of the reactivation process, 
the VSS Activate Interrupt Processor, 

Auxiliary Programs 269 



recognizes a code 2 interruft and 
exits to the VSS AT SVC Processor. 

54. The A'I SVC Processor locates the 
source string which was stored in step 
35 above, reads the string into the 
Language Control inFut buffer setting 
the "input in storage" flag, and calls 
Language Control. 

55. Language Control l:YFasses the read 
instruction to I/O Control and calis 
Source to Polish and Scan Control as 
above to convert the input string to 
executable form. Among the sut:rou­
tines which Scan Control uses in this 
conversicn is one called Operator 
Functions which performs such func­
tions as co~pariscn and subscripting. 
This subroutine also treats the IF 
command as an oFerator and makes the 
comparison specified. On each of the 
first nine Fasses through this loop 
the comparison fails and scan control 
ignores the remainder of the input 
string. On the tenth pass the com­
parison results in the setting of a 
"true" indicator and Scan Control con­
tinues scanning the f:olisn st.ring. If 
this is not the 10th time, step up to 
#69 and continue. 

56. Scan Control next encounters the DIS­
PLAY command and calls the DUMP and 
DISPLAY Command Processor to perform 
the necessary operations. DUMP/ 
DISPLAY first calls VSS Real Core 
Access to get a page of real core. 

57. VSS Real COre Access tests the get/Fut 
indicator, implants the proFer SVC 
(SVC 65) at the beginning of the VSS 
paging buffer and executes it remote­
ly. Note that VSS ~ay not access real 
core directly, and that RSS must per­
form this function. 

58. The SVC interruption is received by 
the Interrupt Stacker which issues the 
LPSw instruction to load the appropri­
ate RSS PSW from the system table and 
transfer control to the RSS SVC Inter­
rupt Processor. 

59. The SVC Interrupt Processor sets the 
"activation in Frogress n indicator, 
performs an LRA on the addresses 
passed to it from VSS, and exits to 
the RSS SVC Service Processors 
routine. 

60. The interrupt processor for SVC 65 
sets up the proFer Farameters and 
calls the RSS Real Core Access 
routine. 

61. RSS Real Core Access determines that 
the area to be displayed is in rrain 

270 

storage and moves it into the RSS pag­
ing buffer. RSS Real Core Access then 
returns to the RSS SVC Service Proces­
sor for SVC 65. 

62. The SVC Service Processor Il,oves the 
requested page from the RSS paging 
buffer into the VSS paging buffer and 
exits to RSS Exit which deactivates 
RSS and restores control to TSS/360 
via LPSW. 

63. When the task within which VSS has 
been activated receives its next t~,e 
slice, control is returned to the VSS 
Real Core Access routine at the next 
sequential instruction following the 
execution of the SVC 65. The 
requested page of real storage is in 
the VSS paging buffer and VSS Real 
Core Access then returns to the DUMP/ 
DISPLAY Corr~and Processor. 

64. DUMP/LISPIAY initializes an SIORCE to 
write the contents of the buffer at 
the terminal and calls I/O Control. 

65. As in steps 13-22, the VSS I/O rou­
tines cause the contents at the buffer 
to be written at the terminal. 

66. When the DISPLAY has ~€en completed 
(the I/O system returns to the DISPLAY 
co~rrand processor), the DISPLAY com­
mand processor returns to Scan Control 
which returns to Language Control to 
invite new input. 

67. Language Control, recognizing A'I" mode, 
does not invite new inFut but returns 
to the VSS AT SVC Processor. 

68. The VSS AT SVC Processor, recognizing 
that no more ATs are to be prccessed 
at this time implants the original, 
overlaid TSS/360 instruction in a spe­
cial CSEC'I and implants an SVC 84 
immediately following it. It then 
sets the current PSW instruction coun­
ter (IC> to point to the new lccaticn 
and returns to the VSS Activate Inter­
rupt processor with an implied RUN 
return code. The RUN return code is 
processed as shown in steps 25-34. 

69. The current PSW now contains the 
address of the overlaid instruction. 
When the task within which VSS has 
been activated is dispatched, this 
instruction will be executed, and 
immediately thereupon the SVC 84 will 
be executed, causing reactivation of 
VSS as snown in steps 49-55. 

70. The AT SVC Processor, recognizing an 
SVC 84 (a "returnM SVC) will restore 
the PSW Ie, remove the SVC 84 frorr, the 
srecial CSECT and return a RUN return 



Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146 

code to the VSS Activate Interrupt 
Processor. 

Now do steps 42-48 

control has been returned to TSS/360. 

(Note, however, that the AT SVC is still 
there and will be executed each time it is 
encountered.) 

UTILITY PROGRAMS 

The utility programs are a group of 
stand-alone programs that support the time 
sharing system but operate outside of the 
system. The utility programs will run on a 
Model 67 in the standard PSW mode. The 
utility programs include: 

• DASDI - Direct Access Storage Device 
Initialization. Initializes the IBM 
2311 and IBM 2314 disk storage units in 
either SAM or VAM format, and the IBM 
2301 drum storage unit in paging for­
mat; assigns alternate tracks, if any 
defective tracks are discovered, to the 
SAM formatted disks; and makes defec­
tive pages unavailable for VAM for­
matted disks. 

• DUMP/RESTORE - transfers the contents 
of a direct access device to a tape or 
another direct access device of the 
same model. capable of restoring the 
data from the tape to a direct access 
device. 

• DIRECT ACCESS PRINT - prints the con­
tents of direct access devices. 

• STAND ALONE CORE DUMP - prints the con­
tents of main storage. 

• PATFIX - prints diagnostic and/or 
updates the Page Assignment Tables. 

SYSTEM GENERATION AND MAINTENANCE 

The generation and maintenance of IBM 
TSS/360 is a process by which a specific 
installation may initialize or alter its 
system with respect to its hardware confi­
guration, task management requirements, and 
command language default options. The 
generation process is also used to initia­
lize those system tables, control blocks, 
and data sets which are universal and com­
mon to all installations. 

SYSTEM GENERATION 

The system generation process is com­
posed of three major parts: 

• System Build (SYSBLD) 

• STARTUP 

• System Generation (SYSGEN) and support­
ing macro instructions 

System Build (SYSBLD) consists of a SYS­
BLD PRELUDE and SYSBLD proper. The prelude 
is read in from the IPL volume by the Ini­
tial Program Load (IPL) hardware micro pro­
gram. This micro program is is activated 
when the operator depresses the CPU console 
LOAD key. The sole function of the prelude 
is to read in SYSBLD proper. 

SYSBLD is a resident, nonreenterable, 
standalone utility which operates outside 
of the TSS/360 environment. The primary 
function of SYSBLD is to set system tables 
with data required for the operation of 
STARTUP. 

SYSBLD locates the operator's terminal 
and interrogates the operator for certain 
parameters. From the parameters given, 
SYSBLD initializes: 

• The Pathfinding Tables 

• The Symbolic Device Allocation Table 

• The Configuration Control Block 

• The User Table (SYSUSE) 

• The Accounting Table (SYSACCT) 

• The Catalog (SYSCAT) 

The last function of SYSBLD is to reread 
the prelude, alter it, and rewrite it to 
the IPL Control Volume. The prelude is 
altered to read in the STARTUP module 
instead of SYSBLD. Finally, the operator 
is notified to perform an initial program 
load that causes STARTUP PRELUDE to be read 
in. 

STARTUP 

STARTUP, like SYSBLD, consists of a pre­
lude and STARTUP proper. STARTUP is called 
by means of an initial program load, but it 
may be called later by the Reconfiguration 
routine of the Resident Supervisor. In 
this latter case STARTUP is used to perform 
a system restart following the occurrence 
of a system error (see "Error Handling-). 

The functions of STARTUP PRELUDE are: 

• Determines the physical address of the 
IPL volume. 

• Determines the physical address of the 
operator's terminal. 

Auxiliary Programs 271 



Page of GY28-2009-2, issued september 15, 1970 by TNL N28-3146 

• Identifies its own CPU. 

• Generates a list of partitioned or 
defective main storage pages. 

The physical address of the IPL volume 
is either passed to STARTUP PRELUDE by the 
Reconfiguration routine or is stored as an 
I/O interrupt code by the IPL micro 
program. 

STARTUP PRELUDE puts the CPU into the 
wait state and waits for an asynchronous 
interrupt caused by the operator pressing 
the REQUEST key on his terminal. 

STARTUP PRELUDE then searches for a 
location into which to read the Configura­
tion Control Block (CCB) data set. The CCB 
is a group of tables containing installa­
tion dependent information describing the 
hardware configuration. The main storage 
location of the CCB must be dynamically 
determined for the following two reasons. 
First, care must be taken not to overlay a 
Prefixed Storage Area (PSA). Second, it is 
not necessary that the storage units be 
assigned contiguously. The beginning 
address for each storage unit is indepen­
dently set by a Floating Storage Address 
switch and, hence, any given address may 
not be addressable by the system. 

In a multiple CPU environment, STARTUP 
PRELUDE determines which PSA is active (see 
·Prefixed Storage Area") and determines the 
identification of the CPU that is executing 
STARTUP PRELUDE. This is done by placing 
each CPU's identification into the CPU's 
primary and alternate PSAs, using normal 
addressing. STARTUP PRELUDE then directly 
addresses location zero and identifies the 
CPU and active PSA. 

In a duplex or half-duplex environment, 
STARTUP PRELUDE does a configuration analy­
sis to determine if any units are parti­
tioned or if any configuration switches are 
invalid. 

STARTUP PRELUDE then generates a list of 
partitioned or defective main storage 
pages, locates STARTUP proper on the IPL 
volume, reads in STARTUP Proper into conse­
cutive pages, and transfers control to 
STARTUP proper. 

A basic function of STARTUP proper is to 
link load Initial Virtual Memory and the 
Resident Supervisor. These components are 
contained on the IPL control volume. 
However. prior to the link load phase of 
STARTUP, the operator is asked whether he 
wishes to establish a library hierarchy for 
including installation supplied modules to 
the link loading process. If not, modules 
are link loaded from the IPL control volume 
according to load lists contained therein. 

272 

(The operator is asked for the codes of 
those modules or functions to be excluded 
from loading -- the last byte of the last 
word of each entry in the load list con­
tains a preassigned code>. If the library 
hierarchy option is taken, the operator 
designates a private volume which contains 
the data sets to be used as libraries. 
Then the link load phase of STARTUP proper 
uses a library search analagous to that 
used by the Dynamic Loader as follows: 
Observing the order of library hierarchy, 
STARTUP proper locates the appropriate load 
list and then, for each CSECT in the load 
list, retrieves the module defining the 
named CSECT from the first library in the 
hierarchy which contains the CSECT. After 
the link load phase of STARTUP proper is 
completed, the operator is permitted to 
remove the private volume. The data sets 
used as libraries during STARTUP are called 
-delta" data sets. They are defined to be 
TSS/360 VPAM data sets with sequential mem­
bers. All delta data sets to be used in a 
single STARTUP session must be completely 
contained within one private volume. 

Startup link-loads control sections in 
the order in which they are named in the 
load list. In contradistinction to dynam­
ically loaded modules, link-loaded control 
sections of like attributes are allocated 
virtual storage on the next available 
double word boundary whenever this will not 
cause a control section to cross a page 
boundary. Otherwise, control sections are 
allocated on page boundaries as in dynamic 
loading. Thus, the order in which names 
appear in the load list controls which con­
trol sections are contained within any IVM 
page. System efficiency can be enhanced by 
organizing the load list in such a fashion 
that the number of pages required for sys­
tem functions (such as opening a data set) 
are minimized. 

Additional functions of STARTUP proper 
include: 

• Determines auxiliary device on which to 
place Initial Virtual Memory (IVM)~ 

• Constructs a skeletal Shared Data Set 
Table (SDST). 

• Constructs a skeletal XTSI which 
describes the status and location of 
IVM in its segment and page tables. 

• Constructs Shared Page Tables for publ­
ic CSECTs. 

• Initializes the skeletal ISA. 

• Checks to see if Interval Timer has 
been activated. If not, STARTUP pro­
mpts for that action. 



• Writes the pages containing IVM PSECTs, 
the IVM Task Dictionary, the skeletal 
Shared Data Set Table, the skeletal 
ISA, and the skeletal XTSI out to the 
auxiliary ~aging device (usually a 
disk) . 

• Places slot and head numbers into XPT 
and XSPT fcr drurr [recessing. 

• writes the pages containing IVM (read­
only) CSECTS to the primary raging 
device (usually a drum). 

• constructs a storage Map for the Dynam­
ic Leader. 

• Initializes the Core Block Table. 

• Sets the storage protection keys. 

• Starts up other CPUs when they are 
present. 

• Initializes the System Table. 

• Creates the Main Operator task. 

• Enqueues an Attention Interrupt GQE on 
the Main Operator task's TSI. 

• Exits to the Resident supervisor. 

SYSTEM GENERATION MACRO INSTRUCTIONS 

Once STARTUP completes its processing, 
an operable tirr:e sharing system exists and 
the following functions may be performed 
within the tiwe sharing environment. 

The balance of the system generation 
[rocess is devoted to defining the specific 
system configuration and parameters. Once 
STARTUP has provided the basic systerr" the 
system manager logs on and may join other 
users. specifically, he jOins a system 

frograrr.roer ""hose duty is to define the con­
figuration and system parameters. 

By the use of specific macro instruc­
tions, the system programmer compiles a 
source mOQule that defines: 

• The number of channel control units 

• The address of multiplexor and selector 
channels 

• The number and model of storage units 

• The characteristics of each CPU 

• The type, model, and address of device 
control units 

• Grou~s of similar devices connected to 
each channel 

• The symbolic and actual addresses of 
cperator consoles 

• Command language default options 

• The scheduling algorithm parameters 

• The limit on size and number of tasks 
allowed to o~erate concurrently 

• Virtual storage allocation and manipu­
lation parameters 

The last macro instruction, GENSCE, in 
this source module generates the systerr. 
control tlocks which contain the parameters 
specified in the other macro instructicns. 
Using the otject module produced from these 
source statements, the system programmer 
can now use the system maintenance proce­
dure to update the system. The parameters 
cr the new data sets specified are made a 
part of the system thereby replacing or 
augmenting portions of the existing system. 

Auxiliary Programs 273 





Page of GY28-2009-2, issued September 15, 1970 by TNL N28-3146 

This section contains a list of the TSS/ 
360 Program Logic Manuals and identifies 
the manuals in which major system com­
ponents are described. 

System Control Blocks, Form Y28-2011 

Resident Supervisor, Form Y28-2012 

Interrupt Stacker 
Queue Scanner 
Queue Control Subroutines 
Queue Processors 
Page Handling Subroutines 
I/O Service Subroutines 
Storage Allocation and Release 
Subroutine 
Dispatcher 
Major Error Recovery Routines 

Command System Form Y28-2013 

Command Controller 
Command Analyzer and Executor (CAiE) 
SCAN 
GATE 
User Prompter 
Virtual Memory Task Initialization 
(VMTI) 

Interruption Processors 
Command Routines 
System Operation and Administrator 
Routines 
Language Processor control (LPC> 

Program Control System, Form Y28-2014 

System Generation and Maintenance, Form 
Y28-2015 

SYSBLD PRELUDE 
SYSBLD 
STARTUP PRELUDE 
STARTUP 

Access Methods, Form Y28-2016 

General Services 
GETPOOL, FREEPOOL, GETBUF, FREEBUF 

Open Processing 
Close Processing 
BSAM 
QSAM 
MSAM 
TAM 
RTAM 
MTT 
IOREQ 
VAM 
Posting 

APPENDIX A: PROGRAM LOGIC MANUALS 

System Service Routines, Form Y28-2018 

Catalog Services 
External Storage Allocation 
Device Management 
Virtual Storage Allocation 
Symbolic Library Services 
Control Section Store 

FORTRAN IV, Form Y28-2019 

FORTRAN IV Library, Form Y28-2020 

Assembler, Form Y28-2021 

Time Sharing sUpport system, Form Y28-2022 

Linkage Editor, Form Y28-2030 

Dynamic Loader, Form Y28-2031 

The Loading Process 
The Unloading Process 
Loader LOGOFF routine 
Library Search Hierarchy Maintenance 

Independent Utilities, Form Y28-2039 

Direct Access Storage Device 
Initialization 
Dump Restore 
Core Dump 
Direct Access Dump 
VAM Utility Program 

Task Monitor, Form Y28-2041 

Interrupt Processors 
Queue Linkage Entry 
Scanner-Dispatcher 
Specify Interrupt Routine 
Delete Interrupt Routine 

On Line Test Control Program, Form Y28-2042 

Operator Task Bulk I/O, Form Y28-2047 

Operator Task 
Batch Monitor 
Bulk I/O Preprocessor 
Bulk I/O Task 
Operator Commands 
Batch Work Commands 

PL/I Compiler, Form Y28-2051 

PL/I Library, Form Y28-2052 

Appendix A: program Logic Manuals 275 



Page of GY28-2009-2, issued September 15. 1970 by TNL N28-3146 

APPENDIX B: CONTROL BLOCK SUMMARY 

This section contains a list of the 
important system control blocks and a brief 
description of each. 

Figure 109 shows schematically the flow 
of information among control blocks. 

RESIDENT SUPERVISOR CONTROL BLOCKS 

ASAT--Auxiliary Storage Allocation Table: 
Contains lock byte, symbolic device address 
for first drum directory, pointer to next 
drum directory, disk symbolic device 
address and pointer to disk directory. 

AST--AUXiliary Segment Table: In XTSI for 
each task. Indicates classification of 
segment (shared or private) and location of 
segment on auxiliary storage. 

CBT--Core Block Table: Main mechanism for 
keeping track of main storage use and avai­
lability. One entry for each main storage 
page (4096 bytes), set up in available and 
pending chains. Position of each entry 
references main storage page. Each entry 
(20 bytes) contains TSI pointer, virtual 
memory address and chain pointers to addi­
tional blocks for task. Startup assigns 
pages to Resident Supervisor which are not 
available to user Core Allocation. Those 
pages temporarily used (assigned by Super­
visor Core Allocation> are assignable. 
This table is maintained by User Core Allo­
cation and Release. 

DAlB--Direct Access Interface Block: Maxi­
mum size, one page. Serves as interface 
between Page Direct Access Queue and Page 
Direct Access Interrupt subroutines. In 
supervisor storage, contains one DAlB for 
each paging GQE and exists for duration of 
paging operation. Contains save area, seek 
and search arguments, PCB pointers, and 
actual channel program. 

DICB--Drum Interface Control Block: One 
page per drum. A work area for the Drum 
Queue Processor. 

GQE--Generalized Queue Entry (64 bytes): 
Represents a unit of work to be performed 
by supervisor. summary of information per­
tinent to five types of interruptions. 
Contains pointer to TSli pointers to GQE 
Chain; pointers to PCB, IORCB, GQE movement 
information; symbolic device address. 

IOPCB--I/O paging Control Block: A parame­
ter list which provides communication link 
between VAM and the Supervisor. contains 

276 

PGOUT svc, number of entries in external 
storage address list, virtual storage 
address, external storage address list, 
symbolic device address and external page 
number. 

IORCB--Input/Output Request Control Block: 
Basic control element for any I/O opera­
tion. Maximum size: 1920 bytes, wholly 
within one page. contains User TD, symbol­
ic device address, the channel program, 
pseudo-ccW list (with logical addresses), 
self-buffer area or page list, pointer to 
DCB. The I/O CALL SVC is imbedded within 
the IORCB to force it to be in main storage 
when the svc is executed. Transferred 
between virtual storage and the Resident 
Supervisor. 

I MCB--Message Control Block: Varies from 16 
to 1920 bytes. For inter-task communica­
tion, used by VSEND SVC users: Device 
Management, Batch Monitor, CLI. Contains 
length of message, type of message, whether 
reply is expected or whether this is a 
reply, task ID of sender and receiver, and 
contains VSEND SVC. If reply is expected, 
contains address of MEB (Message Event Con­
trol Block). 

Pathfinding and Reconfiguration Tables: 
Channel Table 
Control Unit Table 
Device Group Table 
Multiplexor Channel Table 
Symbolic to Actual Address Conversion Table 
Selector Channel Table 

PCB--Paqe Control Block (64 bytes): Con­
trols paging. Pointed to by GQE. Contains 
virtual memory address, external address, 
main storage address, flags, PCB chain 
address. 

PSA--Prefixed Storage Area (4096 bytes): 
Contains: pointer to current task (for 
that CPU), PSW area, CPU Logout area, Chan­
nel Logout area, Supervisor Private Working 
Storage, CPU status table, Damage Report 
(SERR), Intercom routine, Error Recovery 
Control Table (SERR), SIPE and CRM work 
area. 

PGT--Page Table: One per segment table 
entry. Describes page locations in 
storage. 

RSPI--Resident Shared-Page Index: Records 
the status of SPTs. Indicates location in 



Page of GY28-2009-2, issued September 15, 1910 by TNL N28-3146 

storage, in-transit condition (table coming 
in or going out), length of table, and 
indicates GQE chain of TSls waiting for an 
in-transit condition to end. Used by 

Appendix B: Control Block Summary 216.1 





r--- - ---- --- - --- -----1 
I G 0 ;:~~:\nd'ng I 
! Thm tobl., 0« ,",emed by me=t I 
I of addr~H con>t~nl\ in the 

LP:p=te~Ul:~S. ___ ~ __ _ _ J 

library 
H;en:nchy 

Virtuol Storage 

tSA 

1-------
~G()E 

I 

DAIB 

~ I PMD I 

I I 

~ 
• The~e !oble~ or;:o ncces~ed \::/' 

addreB (.;on5~ont! : n the 

opPlor'; o~e r()uline~ 

Figure 109. Relationshi~ Between Control Blocks 

Apr;:endix B: Control Block Summary 277 



ADSPG, Page Posting, Page 'lurning and Timer 
Interrupt Processor. 

RSV--Reserve List cf Pages 'l'al::le (20 
tytes): Contains up to five addresses of 
main storage pages held in reserve for 
supervisor core allocation. 

SCANT--Scan Tal::le: A commcn anchor point 
for all GQEs. Queue Summary. Pointers to 
fiIst and last GQE and location of queue 
processor. Flags: suppress (don't worK on 
GQEs), processor lock byte (one CPU at a 
time). 16 bytes per entry, one entry for 
each device or supervisor facility. 

SPT--Shared Page Table: Basic element for 
hardware lookup of shared pages. Entries 
identical to page tal::le entries. 

SGT--Seqment Table: Groups of sixteen 4-
byte entries. There is one entry for each 
segment of the program. Each entry con­
tains a pointer to the beginning of a page 
table and the count of the numl::er of 
entries in that page table. 

STE--Schedule Table: Contains fields whi.ch 
control the order in which tasks are 
brought into the dispatchable list and con­
ditions under which the task must leave. 

SYS--System Table: Contains various system 
and installation parameters. Anchor point 
for the chain cf TSIs (pointer to first 
task in active list) and for RSPI. Con­
tains time-of-day clock. Parameters and 
pointers used by scheduling algorithm, such 
as commutator and front wall, reside here. 

'lSI--Task status Index 028 l::ytes): Con­
tains userid, privilege, priority, terminal 
address, pointers to X'ISI, next 'ISI in 
chain, GQEs for task interruptions, task 
device list, SYSIN, and SYSOUT device 
addresses. Flags: ready, page wait, 
await, in execution, time-slice-end. Also, 
contains XTSI external location; lock byte 
to prevent two CPUs in single task; count 
of pages used last time slice, task ID 
(TID), BSN, I/O awaiting paging pointer, 
quantum counter. 

XP'I--External page Table: Descrites auxi­
liary storage. Contains 2301, 2311 or 2314 
stcrage addresses for each virtual storage 
page. Contains page status, unprocesseJ 
flag, page hold flag, bold count. 

XSPT--'External Shared Page 'Table el2-byte 
entries}: Contains external location of 
page, write count, GQE chain address, and 
flags: uFdate in Flace, preferred ~agin9 
device. page changed, assigned, shared, 
unprocessed, held, auxiliary storage, pro­
tect class and in-transit indications. 

278 

ccntains 

VIRTUAL ~E~ORL CONTROL BLOCKS 

Available Device Table: Used by Device 
~anagement as a d1.rectory of SDA'r entries. 

EWQ--Batcn Work Queue: Stores requests for 
nonconversational tasks until they can be 
initiated and contains record of active 
nonconversational tasks. 

Cataloy SBlock: The catalog SBlock is the 
basic unit of storage within the catalog 
data set. SBlocks are chained together to 
rrake up indexes, generation indexes, data 
set descriptors, sharing descriptors, or 
sharer lists. Data is retrieved from the 
catalog via catalog services in the form of 
SBlocks. 

DCB--Data Control Block: Major ~eans of 
corrmunication between Data Management and 
the user. Also provides the principal 
rreans of achieving device independent 
coding. 

LeE (VAM): Cen,pes ed of five parts. DeB 
common; transfer list for macros corrrr,on to 
VAM; organization independent working 
storage, extended VISA~ transfer list or 
extended VSAM working; and extended VISAM 
working storage. 

DCE (VISArl:)--Indexed Seguential Data Cen­
tral Block: Primary user communication 
with data set. Contains DCE macro parame­
ters for VISh1: (V or F), lOJical record 
length (max. 4000), record key position 
(RKP), key lEngth (KEYLEN) max. 255, 
address of end-of-data-set routine (EDDAD), 
address of synchronous error exit (SYNAD) 
routine, percent pad to be left in page. 

LEB--Data Extent Block: This ta~le pro­
vides the required attributes of both a 
data set and the device on which the volume 
for that data set resides. It also con­
tains pointers to other control blccks 
associated with the data SEt (CHA'TDT, 
CHADCB, and unchecked CHADECS). If a 
direct access volume is used, then it con­
tains CERDEB. Also contains information 
about the VOlumE extents. 

DECB--Data Event Control Block: The DECE 
is a table of information pertaining to the 
status of an I/C 0Feration. Inforrraticn in 
the DECB is set ty macro supplied pararre­
ters and the posting routine. Information 
in the DECB is used by the problerr proqraro 
and by the Read/Write, check and control 
(CN'rO routines. 



DSCB--Data Set Control Block: Used to 
describe data sets. Has the following 
types: 

Types 1 and 3 ~ata Set Control Blocks make 
up that part of the volurre Table of Con­
tents that describes the residence of SAM 
data sets. 

~ype 4 Data Set Control Block describes the 
Volume Table of Contents and also contains 
the device ccnstants for the volume it 
resides on. 

Type 5 DSCBs are used for direct access 
device space management (DADSM). They con­
tain inforrration of the availa~ility of SAM 
volume. 

Types E and F Da ta Set Contro1 Blocks con.­
pose that part of the volume used to 
describe the residence of VAM data sets. 

Hash Table~: privi1eged and NonErivileged 
System Hash Table ana User Hash Tat1e: The 
Hash Tables contain the heads of a number 
of search chains which expedite the locat­
ing of a specific external name. The 
tables are indexed by a hash fUnction 
aerived from the name to be found. 

ICB--Interrupt Control Block: The user's 
u,eans of specifying the interruption infor­
mation needed to make an interruption 
handling routine available to the Task Mon­
itor. Built by the SPEC, SSEC, SEEC, SAEC, 
STEC, and SIEC macro expansions. The ICB 
can point to a Communications Area (COM) 
(in the user virtual storage) when parame­
ters and data are presented to thE inter­
rupt handling routine represented ty this 
ICB. The ICB is made availab1e to the Task 
Monitor via the SIR macro, and a Request 
Entry is placed in the ITB as a result of 
SIR. The ICB is a part of the problem pro­
gram's virtual storage. 

ISA--Interrupt Storage Area: The task's 
analogous "PSA" storage area. (Segment 0, 
Page 0). Contains old and new VPSWs for 
each of the six types of task interrup­
tions. Contains three save areas and Vir­
tual Memory Allocation tables. 

ISD--Internal Symbol Dictionary: This 
table is created by the language processors 
and used by the Program Checkout Subsystem 
to process checkout statements with the 
user's internal symbols. 

ITB--Interrupt Tab1e: A block of virtual 
storage built. up by the Task I'onitor as it 
creates REs, and QEs for interruption pro­
cessing. The size of the ITB depends on 
the number of REs and ~~s that it contains. 

JFCB--Jci:: l'ile Control Block: Created by 
LATACEF. Contains volume numbers and other 
information al:;out a data set for use by the 
access nethods and volume mounting 
routiIles. 

LDS--Line Data Set Forrr,at (VISAfJl): Maxirrum 
132 chars./record. Format: 4 bytes-length 
of record, 7 bytes-1ine no., 1 byte-card 
reader/ keyboard, 120 bytes-text. 

MAP--Memory Map Table: Contains an entry 
for each control section involved in allo­
cation. The entry contains the virtual 
storage address of the control secticn ori­
gin and the virtual storage address of the 
corresponding control section dictionary 
(CSD). ~~p is used to locate the PMD of 

modules which have issued loads and 
unloads. 

MEB-- Message Event Control Block: Con­
trols reFly to an intertask message in con­
junction with MCB. Inbedded AWAIT or TWAIT 
svc is remotely executed when task wants to 
delay processing until message is received. 
Also contains event completion bit, receiv­
ing task ID, sending task address of MCE. 

MSG--System Message Record: Describes log­
ical record forrrat of VISAM SYSMSG data set 
(a collection of all system messages issued 
by Comnand Language System to users). Max. 
262 i::ytes. Accessed by MSGWR routine, 
which can insert variable text. 

FAT -- Page Assignment Table: Indicates 
the availability of pages on a VAM volume. 
~he rages nay l::e available, assigned, or in 
error. 

PMD--Proqram Module Dictionary: Each PMD 
consists of one module heading plus as nany 
Control Section Dictionaries (CSDs) as 
there are control sections in the module. 
Address rointers in the rrodule are initial­
ly relative to the beginning of the module 
itself, except where otherwise specified. 

POC--PartitioneQ Organization Directory: 
Located in user's virtual storage. Relates 
nenber nalI,es to the position of members 
within the data set and defines each mem­
ber's attritute. 

PVT -- Public Volume Table: A 1ist of all 
devices in the systerr. which have been desi­
gnated as public devices. 

QE--Queue Bntry: Built by the Queue Link­
age Entry routine in the Task Monitor each 
time an interrUption occurs and there is a 
routine defined to handle the interruption. 
The QE is queued on the Hequest Entry for 
that routine. The QE contains the neces­
sary interruption information fron the VPSW 
and the sense and status information from 
the ISA required by the Task Monitor's 

Appendix B: Control Block Sunnary 279 



scanner-Dispatcher at dispatch time. Some 
of the information in the QE is moved to a 
user defined Communication Area (COM) at 
dispatch time so that he may analyze the 
conditions and status at the time of the 
interrupt. The QE represents the occur­
rence of an interruption of the type speci­
fied in the RE to which the QE is attached 
(chained) • 

RDS -- Region Data Set: Maximum 256 
characters/record. Format: 4 byte-length 
of record, 1 byte-card reader/keyboard, 7 
cyte key length, 0-247 byte region name, 
unused bytes-text. 

RE--Request Entry: Built by the SIR (Spe­
cify InterruFt Routine) module in the Task 
~onitor. Each time an ICB (Interrupt Con­
trol Block) is made availacle to the systerT 
via the SIR macro instruction, a Request 
Entry is Guilt and queued on the appropri­
ate entry in the Task Monitor's Interrupt 
'Iacle (ITB). The RE contains all necessary 
information regarding the priority, status 
and mode of operation for the routine spe­
cified in the ICB. The RE is the means of 
placing the ICE data into the Task Monitor 
ITB and is dynamic with the task. ICBs on 
the other hand, are a static part of the 
problem program. The RE points to the QES 
on its chain and contains the Friority and 
masking conditions of the interruption 
handling routine the RE represents. 

RESTBL--Relative External Storage Corres­
pondence Table: Variacle length. Contains 
information on external location of VAM 
data set pages. Created at open time from 
DSCBs. 

RESTBL--Relative External Storaqe Corres­
pondence Table Header: contains informa­
tion describing RESTBL itself. Pointers to 
beginning and end of data set and pointer 
to end of assignable pages. 

~E~n~t~r~i~e~s~~(~4~b~y~t~e~s~)~: One entry per VAM data 
set page. Each entry contains flags, 
device and external page nurncer (if page 
defined). Flags: not in use; no page 
assigned. 

RQU--Request Queue: Used by Device Manage­
ment to suspend a task requiring an 
unavailable device until device becomes 
available. 

SAT--System Accounting Table: Contains the 
accumulated CPU time used by tasks. A 
separate record is kept for all tasks that 
log on under the same charge number and 
user identification. The SAT resides on a 
system residence volume as a VISAM data set 
with a key of charge number, userid. 
Entries are added by the Accounting Routine 
the first time it encounters a new charge 
number, userid combination. Updates are 

280 

made by the Accounting Routine at the com­
pletion of each task. 

SDAT--Symbolic Device Allocation Table: 
Descrices the characteristics and status of 
each separately allocable I/O device in 
system. Consists of an 8-byte header and a 
variable number of 64-byte entries. 

SDST -- Shared Data Set Table: Used for 
controlling the use of shared data sets and 
shared data set members. Contains count of 
current users and the names of data sets. 

SLX -- Symbolic Library Index: For re­
trieval of inforrration from a symbolic 
library. DDname-INDEX. Sequential organi­
zation. Contains names and aliases of all 
~arcels in the associated library. For 
examFle, an SLX may contain a list of macro 
names (GET~AIN, GET, PUT, etc.) and poin­
ters to the first statement of macro dfini­
tion in the library associated with the 
SLX. 

TCM -- Task Common Table: Contains those 
system values referenced in a single task 
by more than one Command Language object 
rrodule. Task Common is a control section 
(PS ECT) . It has user read only protection 
status (storage key B) which implies that 
nonprivileged routines may read the page 
but cannot write into it, while privileged 
routines rray do eoth reading and writing. 
It is necessary that TCM remain in virtual 
storage from LOGON to LOGOFF time. For 
this reason, its control section definition 
is included as part of task initiation. 

TDT -- Task Data Definition Table: The TDT 
contains one JFCB for each data set in use 
by a particular task. 

'IDY -- Task Dictionary Table: Contains 
information needed to load or unload 
modules in a particular task. Contains 
headings, two hash tables, the Memory Map 
Table, and a PMD for each module loaded. 
'The TDY is initialized by STARTUP and main­
tained by the Dynamic Loader. 

User Table: VISAM data set describing 
attributes of all legal users. Contains 
one entry for each user joined to the sys­
tem. The entries are in userid sequence 
and are variable in length, up to a maximum 
of 256 bytes. Entries are added by the 
JOIN Comrr.and and removed by the QUIT Com­
mand (except for the entries for the main 
system orerator and the system manager, 
which are created at System Build time). 

VPSW -- Virtual Program Status Word: For 
each task, analogous to machine PSW. 
Represents state of machine when task was 
interrupted. Contains logical instruction 
address, instruction length, interrUpt 
code, storage keys and task masks. 



This appendix lists all the modules in 
the Time Sharing System for which descrip­
tive flowcharts exist and gives the form 
number of the PLM in which each flowchart 
can be found. The modules are listed 
alphabetically by module ID. See Appendix 
A for the PLM or system component name 
associated with the form number. 

CEAAF 
Queue GQE on TSI ••••••••••••• Y28-2012 

CEAAG 
Start I/O •••••••••••••••••••• Y28-2012 

CEAAJ 
Dequeue I/O Requests ••••••••• Y28-2012 

CEAAL 
Purge •••••••••••••••••••••••• Y28-2012 

CEAAQ 
Paging Failure Recovery •••••• Y28-2012 

CEAAS 
Alternate Path Retry ••••••••• Y28-2012 

CEAAV 
Same Path Retry •••••••••••••• Y28- 2012 

CEAAO 
lOCAL. • • • • • • • • • • • • • • • • • • • • • •• Y 2 8- 2 0 12 

CEAAl 
Pageout Service •••..••••••••. Y28-2012 

CEAA2 
Task Interrupt Control ••••••• Y28-2012 

CEAA3 
I/O Device Queue Processor ••• Y28-2012 

CEAA4 
Channel Interrupt Processor •• Y28- 2012 

CEAA5 
Pathfinding •••••••••••••••••• Y28-2012 

CEAA6 

CEAA7 

CEAA8 

Page Direct Access Queue 
Processor •••••••••••••••••••• Y28-2012 

Page Direct Access Interrupt 
Subroutine ••••••••••••••••••• Y28-2012 

Page Drurr, Queue Processor •••• Y28- 2012 
CEAA9 

Page Drum Interrupt 
Processor •••••••••••••••••••• Y28-2012 

CEABA 
RJE Asynchronous I/O 
Interrupt •••••••••••••••••••• Y28-2012 

CEABB 
RJE Synchronous I/O 
Interrupt •••••••••••••••••••• Y28-2012 

CEABC 
RJE Line Control ••••••••••••• Y28-2012 

CEABE 
External Machine Check 
Interrupt Processor •••••••••• Y28-2012 

CEAHQ 
SVC Queue Processor •••••••••• Y28-2012 

APPEN~IX C: FLOWCHART DIRECTORY 

CEAHQA 
Add Pages ••••••••••••.••••••• Y28-2012 

CEAH2 
Add Shared Pages ••••••••••••• Y28-2012 

CEAR8 
Check Protection class ••••••• Y28-2012 

CEAIC 
Inter-CPU Communication •••••• Y28-2012 

CEAIR 
Recovery Nucleus •••••.•.••••. Y28-2012 

CEAIS 
System Error Processor ••••••• Y28-2012 

CEAK~ 

Dispatcher ••••••••••••••••••• Y28-2012 
CEAKE 

Entrance Criteria •••••••••••• Y28-2012 
CEAKI 

Internal Scheduler ••••••••••. Y28-2012 
CEAKR 

Create Real Time InterrUpt ••. Y28-2012 
CEAKT 

Timer Interrupt Queue 
Processor •••••••.•••••••••••• Y28-2012 

CEAKZ 
Rescheduling ••••• " •..•••••••• Y28-2012 

CEAJI 
Interrupt Stacker •••••••••••• Y28-2012 

CEAJQ 
~ueue Scanner ••.••••••••••••• Y28-2012 

CEAJSF 
Set Suppress Flag •••••••••••• Y28-2012 

CEALI 
Core Control Subrout.ines •.••• Y28-2012 

CEAMC 
Task Initiation •••••••••••••• Y28-2012 

CEAMD 
Delete TSI ••••••••••••••••••• Y28-2012 

CEAMP 
page Posting ••••••••••••••••• Y28-2012 

CEANA 
Program Interrupt Queue 
Processor •••••••••••••••••••. Y28-2012 

CEANE 
User Core Allocation ••••••••• Y28-2012 

CEANG 
Segrr.ent Block Remover •••••••• Y28-2012 

CEAP7 
AwAIT SVC Processor ••.••••••• Y28-2012 

CEAQ7 
Connect Segment to Shared 
SegIrent •••••••••••••••••.•••• Y28-2012 

CEAR4 
Terrrinal SVC Processor •••••.• Y28-2012 

CEASS 
TSS Dynamic Status ••••••••••• Y28-2012 

CEAS7 
Set Real Time Interval ••••••• Y28-2012 

CEATC 
Terrrinal Control 
Subprocessor •.••••••••••••••• Y28-2012 

CEBCP 

Affendix C: Flowchart Directory 281 



Core I:wnp ••.•••••••••••••••.. Y 28- 2039 
CEBDI 

Direct Access Storage Device 
Initialization (DASDI) ..••.•. Y28-2039 

CEBDP 
Direct Access Dump (DADUMP) •• £28-2039 

CEBDR 
DUMP/RESTO~E ••.••.•.••.•.•••• Y28-2039 

CEBVI' 
VAf.12UT ••••••••••••...••..•••• Y28-2039 

CEHl>.C 
RSS Channel Interru~t 
Processor. .••.•.•. , •••.•.•••. Y28-2022 

CEBAD 
RSS I/O Interrupt Processor .• Y28-2022 

CEBAE 
RSS External Interrupt 
Pl:ocessor ••••••.••..••••• " .• Y 28- 2022 

CEHAP 
RSS Program Interrur:t 
Processor •••••••......•••••.• Y28-2022 

CEllA\.; 
TSP Asynchronous Interrupt 
Process cr •. " ..••••..•.•••. " Y28-2022 

CEHA.S 
RSS SVC Interrupt Processor •. Y28-2022 

CEHBD 
RSS Lisconnect ••••••••••.••.• Y28-2022 

CEHBE 
RSS Eyit ••••••••••••••••••.•• Y28- 2022 

CEHBL 
HSS Loader •••••••.••.••.•••.• Y28-2022 

CEHBT 
RSS External Page Location 
Address Translator .•.••••••.• Y28-2022 

CERBD 
RSS Unloader................. Y 2 8- 2022 

CEHCA 
RSS Real Core Access ••••••••. Y28-2022 

CEHCB 
RSS Virtual Memory Access •••. Y28-2022 

CEHCC 
RSS Inter-CPU ccmrrunication •. Y28-2022 

CEHCF 
Find TSI ..................... Y28-2022 

CEHCH 
RSS Status Save ••••.••.•••••. Y28-2022 

CEHCM 
RSS Message ••.......•.•.••..• Y28-2022 

CEHCQ 
Queue VSS Interrupt .••••.•••• Y28-2022 

CEHCS 
RSS Interruft Switching •••••• Y28-2022 

CEHDA 
Virtual Memcry AT Execution 
SVC Processor .••••••••••.••.• Y28-2022 

CEHDE 
VSS Exit ...........•......... Y28-2022 

CEHDL 
LOGON RSS/vSS SVC Processor •• Y28-2022 

CEHDR 
RSS SVC Service Processor •.•• Y28-2022 

CEHDV 
VSS Co~nand SVC Processor •..• Y28-2022 

CEHEA 
RSS I/O Control .•.••.•...•••• Y28-2022 

CEHEB 
RSS 1/0 Initiation .•.••••.••• Y28-2022 

282 

CEHFA 
RSS Direct Access Device 
Access Method ..•.••••••.••••• Y28-2022 

CEI:IFE 
RSS Console Access Method •••• Y28-2022 

CEHFC 
RSS Sequential Access Method. Y28-2022 

CEbFC 
RSS 'l'elecOIrmunica tions 
Access Method •••.•..•••••••.• Y28-2022 

CEHFE 
RSS I/O Editor ••••••••••••••• Y28-2022 

CEHGA 
RSS Direct Access Device 
Error Reccvery ••••••••••••••. Y28-2022 

CEriGB 
RSS Console Error Recovery ••• Y28-2022 

CEHGC 
RSS sequential Access Device 
Error Recovery ••••••••••••••• Y28-2022 

CEHGI: 
RSS Telecommunications 
Error Recovery •••••.••••••••• Y28-2022 

CEHGE 
RSS Error Scan and Recovery .• Y28-2022 

CEHGF 
RSS Storage Print Routine •••• Y28-2022 

CEHHA 
RSS I/C Completion ••••••.•••. Y28-2022 

CEHJA 
RSS AT SVC Processor ••••••••. Y28-2022 

CEHJF 
RSS $AT/$PATCH Format .••.•••. Y28-2022 

CEHJH 
RSS $STATUS/$TASK Format •••.. Y28-2022 

CEHKA 
RSS AT Command Processor .•.•. Y28-2022 

CEHKC 
RSS Collect COInlland 
Process cr. . • . • • • . • • . . • • • • • . •. Y28- 2022 

CEHKD 
RSS DUMP/DISPLAY 
Commands Processor •.•••••.••• Y28-2022 

CEHKE 
RSS DEFINE Command 
Processor. • • • • • • . • • • • • • • • • • •. Y28- 2022 

CEHKL 
RSS CALL/END Commands 
Processor •..•• " •••.••••••••. Y28-2022 

CEHKM 
RSS DISCONNECT Comrr~nd 
Processor ..••••••.•.••••••••. Y28-2022 

CEHKN 
RSS RUN Command Processor •••. Y28-2022 

CEHKP 
RSS PATCH Command Processor •• Y28-2022 

CEHKQ 
RSS QUALIFY Command Processor Y28-2022 

CEHKR 
RSS REMOVE Command 
Processor •.••.•••••••••••.••• Y28-2022 

CEHKS 
RSS SET Corr~and Processor ••.• Y28-2022 

CEHK'I 
RSS STOP Command Processor ••. Y28-2022 

CEHKW 
RSS CONNECT Corr~and 
Processor .•••.•••..•••••••••• Y28-2022 



CEHLA 
RSS O~erator Functions ••••••• Y28-2022 

CEHLC 
RSS Language Control •••••••.• Y28-2022 

CEHLL 
RSS Literal Resolution •••••.. Y28-2022 

CEHLP 
RSS Source to Polish •••.•.••• Y28-2022 

CEHLS 
RSS Scan Control ••••••••••••• Y28-2022 

CEHMA 
RSS Address to symbol 
Resolution ••••••••••••••••• " Y28-2022 

CEHMM 
RSS Memory Mar Format •••••••• Y28-2022 

CEHMS 
RSS Symbol Resolution •••••••• Y28-2022 

CEHWS 
VSS Symbol Resolution •••••••. Y28-2022 

CEIAA 
STARTUP ••••.••••• '" ••••••••• Y28-2015 

CEIAP 
SYSBLD/STARTUP Prelude •.•••.• Y28-2015 

CEIDA 
SYSGEN .•••••••.••••• '" •••• " Y28-2015 

CEIFA 
SYSBLD ••••••••••••••••••••••• Y28-2015 

CEKAB 
Extract Source Character 
(ESC) •.•••••••••••••••••••••• Y28- 2019 

CEKAC 
Statement of Identification 
(SID) ••••••••••••••••••••••.• Y2B-2019 

CEKAD 
Phase 1 Main Loop (PHIM) ••••• Y28-2019 

CEKAE 
Assemble Components (ACOMP) •. Y28-2019 

CEKAF 
Array Dimension 
specificationsProcessor •••••• Y28-2019 

CEKAG 
Subscript Processor (SUBS} ••• Y28-2019 

CEKAH 

CEKAI 

Initial Value Data 
Specification Processor 
UDA'I'A) •••••••••••••••••••••. Y28-2019 

Expression Processor (EXPR) •• Y28-2019 
CEKAJ 

Staterrent Label Processor 
(LABL} .•••••••••••••••••••••• Y28-2019 

CEKAK 
Assignment Statement PrOCEssor 
(EQUA) •.•••••••••••.••••••••• Y28-2019 

CEKAL 
END Statement Processor 
(END) •••••••••••••••..••••••• Y28-2019 

CEKAM 
External Statement 
Processor •••••••••••••••••••• Y28-2019 

CEKAN 
ConvErsion Subroutine 
(CNVRT) .••••••••••••••••••••• Y28-2019 

CEKAQ 
GO TO Statement Processor 
( GOT 0) • • • • • • • • • • • • • • • • • • • • • •• Y 2 8- 201 9 

CEKAR 
IF Staterrent Processor (IF) •• Y28-2019 

CEKAS 
TYPE Statements Processor 
(TyPE) ••••••.•••••.••••••••.• Y28-2019 

CEKAU 
DIMENSION Statement 
Processor (LIfoIN) •••.•••••••.• Y28-2019 

CEKAV 
COMf"ON Statement Processor 
(COMM) • • • . • • • • • • • • • • • • . . . . • •• Y 2 8 - 2 019 

CEKAX 
Executable Statements, 
Pass 2 (EXEC2) .•.••.••••••••• Y2B-2019 

CEKAY 
EQUIVALENCE statement 
Processor (EQUI) ••••••••••••• Y28-2019 

CEKAZ 
DO Statement Processor (DO) •• Y28-2019 

CEKBA 
Begin LooF Processor 
(BGNLP) ••• '" •.••• '" •••••••• Y28-201.9 

CEKBE 
End Loop Frocessor (ENDLP) ••• Y28-2019 

CEKBC 
ASSIGN Statement Processor 
(ASSI) •••.••••••.•••••••••••• Y28-201.9 

CEKBD 
File Control statement 
Processor (FCON) .•••••••••••• Y28-2019 

CEKBE 
Input/Output Statement 
Prccessor (RWIO) ••.•.•••••••• Y28-201.9 

CEKBF 
FORMAT Statement 
Processor (FOR.M} ••••.••••.••• Y28-2019 

CEKBG 
PAUSE, STOP, RETURN Statement 
Processor (PSR) •••••••••••••• Y28-2019 

CEKBE 
NA~ELIST Statement 
Processor (NAML) .•••••••••••• Y28-2019 

CEKBI 
BLOCK DATA Statement 
Processor (BLDA) •••.••••••••• Y28-2019 

CEKBK 
Statement Function 
Definition (SFDEF) ••••••••••• Y28-2019 

CERBI. 
statements Function 
Expansion (SFEXB) •••.•••••••• Y28-2019 

CEKBM 
DATA Statement 
Processor (~ATA} ••••••••••••. Y2B-2019 

CEKBN 
IMPLICIT Statement 
Processor (IMPL) .•••.•••.•••. Y28-2019 

CEKBQ 
Fallthrough Determination 
(FALTH) •••••••••••••••••••••• Y28-2019 

CEKBS 
subFrograrr Entry Statement 
Processor (SUBE) ••••••••.•••• Y28-2019 

CEKB'I 
Subprogram Entry Statements, 
Pass 2 (SUBE2) ••••••••.•••••• Y2B-2019 

CEKBV 
CALL Statement, 
Pass 2 (CALL2) ••••••••.•••••• Y28-2019 

CEKBW 

Appendix C: Flo-wchart Directory 283 



I/O List 
Processor (IOLST) •.•.•.••••.• Y28-2019 

CEKBX 
Function Classifier (FNCLS) .• Y28-2019 

CEKB'l 
Library Function Selector 
(LIEN) •••.••.•••••...•.•.•••. Y28-2019 

CEKCA 
Diagnostic Message Generator 
(ERR) •••••.•• " ••••••..•••••. Y28- 2019 

CEKCB 
Constant Arithmetic 
Subroutine (ARITH) ••••••••••• Y28-2019 

CEKCC 
Label String Processor 
(LBSTR) ••.••••••••.•••••••••• Y28-2019 

CEKCD 
Forwat Label Processor for 
I/O Statements (FLABL) ••••••• Y28-2019 

CEKCE 
Read Transfer Processor 
for I/O Statements (RTRAN) ••• Y28-2019 

CEKCF 
FOR1":AT or NA{IIIELIST 
Processor (FNAME) .••••••••••• Y28-2019 

CEKCG 
Term Processor (TEMPRO) •••••• Y28-2019 

CEKCH 
File Real Constant (FLRC) •••• Y28-2019 

CEKCI 
Insert Variable in Syrr~ol 
Table (IVST) ••••••••••••••••• Y28-2019 

CEKCJ 
Check Lirr,its (CKLIM) ••••••••• Y28-2019 

CEKCL 
Initial Value Processor 
( IV AL) • • • • • • • • • • • • • • • • • • • • • •• Y 2 8- 2019 

CEKCN 
Decimal to Binary Integer 
Conversion (ICNV) •••••••••••• Y28-2019 

CEKCP 
Decimal to Floating Binary 
Conversion (FCNV} •••••••••••• Y28-2019 

CEKCR 
Actual Argument Service 
Routine (AARG} ••••••••••••••• Y28-2019 

CEKCS 
constant Arithmetic 
Interrupt (CHKINT) ••••••••••• Y28-2019 

CEKJB 
Process Label References 
and Definitions (FSCAN} •••••• Y28-2019 

CEKJC 
Memory Assignments for 
Variables (VSCAN) •••••••••••• Y28-2019 

CEKJD 
Label Reference Processor 
(RTN1) •••••.••••••••••••••••• Y28-2019 

CEKJE 
Label Reference Processor 
(LAE) • . • • • . • • • • • • • • • • • • • • • • •• Y 28- 2019 

CEKJH 
Diagnostic Message 
Generator (DX) •••.••••••••••• Y28-2019 

CEKRA 
Acquire Entry From Compute 
and Removal Table •••.•••••••• Y28-2019 

CEKKB 

284 

Polish Expression Generator 
Routine •••••••••••••••••••••• Y28-2019 

CEKKC 
End Loop PRF Entry Routine ••• Y28-2019 

CEKKE 
Expression Scan Routine .••••• Y28-2019 

CEKKF 
Push DOwn Primi ti ve. Operand 
Rcutine •••••••••••••••••••••• Y28-2019 

CEKKG 
Variable Compute Point and 
Remove I-evel Routine ••••••••• Y28-2019 

CEKKH 

CEKKI 

CEKKJ 

Trial File Manipulation 
Routine •••••••••••••••••••••• Y28-2019 

Expression Removal and 
Commonality Determination 
Routine •••••••••••••••••••••• Y28-2019 

Check Commonality •••••••••••• Y28-2019 
CEKKK 

Establish Common Expression 
Routine •••••••••••••••••••••• Y28-2019 

CEKKL 
Operand List Expression 
Formation Routine •••••••••••• Y28-2019 

CEKKM 
Subscript Expression Revision 
Routine •••••••••••••••••••••• Y28-2019 

CEKKN 
Cancnical Form Routine ••••••• Y28-2019 

CEKKO 
Save Popularity Counts for 
Register Assignment •••••••••• Y28-2019 

CEKKP 
Search and Insert Triads ••••• Y28-2019 

CEKKR 
Phase 3 Master 
Control Routine •••••••••••••• Y28-2019 

CEKKU 
PRF Processing Routine ••••••• Y28-2019 

CEKKV 
Begin Loop 1 PRF Processor ••• Y28-2019 

CEKKw 
Begin Loop 2 PRF Processor ••• Y28-2019 

CEKLA 
Label Common Expressions ••••• Y28-2019 

CEKLB 
File Constant and covering 
Adcon •••••••••••••••••••••••• Y28-2019 

CEKLD 
Expunge a Removable 
Subexpression •••••••••••••••• Y28-2019 

CEKLE 
File CRT Entries ••••••••••••• Y28-2019 

CEKLF 
Copy and Edit an Expression •. Y28-2019 

CEKLI 
Loop Test-Expression 
Generator •••••••.•••••••••••• Y28-2019 

CERNA 
Real Divide Generator 
(RDIV) ••••••••••••••••••••••• Y28-2019 

CEKME 
Real Multiply 
Generator CSRMUL) •••••••••••• Y28-2019 

CEKMC 



Real Plus Generator •••••••••• Y28-2019 
CEKMD 

Integer Livide Generator 
(IDVDE) .•.••••••••••.•.•.•••. Y28-2019 

CEKME 
Integer Multiply Generator 
(IMPLy) ••••••••••••••••.••••• Y28-2019 

CEKMF 
Integer Plus Generator 
(IPLUS) ••••••••••.•••••••.••• Y28-2019 

CEKMG 
complex Plus Generator 
(CPLUS) ••••••••••.••••••••••• Y28-2019 

CEKMH 
Relational Ex~ressicn 
Generator (RLTNL) ••..•••••••• Y28-2019 

CEKMI 
Logical Expression Generator 
(ANDOR) ••••.•.••••••.•••••••• Y28-2019 

CEKMJ 
Equation PF Entry Processor 
(EQUAT) .••.•••••••••••••••••• Y28-2019 

CEKMK 
External F·unction Generator 
(FUNC) •.••••••••••.••••.••••• Y28-2019 

CEKML 
Expression Tree Builder 
(TRBLD) •••••••••••••••••••••• Y28-2019 

CEKMM 
Make Initial Assignment to 
General Register (ASAR) •••••• Y28-2019 

CEKMN 
Make SYNONYM Assignment to 
General Register (ASARS) •••.. Y28-2019 

CEKMP 
Make Synonyrr Assignment to 
Floating Register (ASFRS) •••• Y28-2019 

CEKMQ 
Select Floating Register 
(SELFR) ••••••••.•• , •..•••.••. Y28-2019 

CEKMR 
Search General Registers 
(FNDAR) •••••••••••••••••••••• Y28-2019 

CEKMS 
Search Floating Registers 
(FNDFR) •••••••••••••••••••••• Y28-2019 

CEKMT 
Find Temporary Storage 
(FNDWS) •••••••.•••••••••••••• Y28-2019 

CEKMU 
MaxiIflum 0Ferator Generator 
(MAX) •••••••••••••••••••••••• Y28-2019 

CEKMV 
Memory Access Routine 
(MEMAC) •.•.•••••.• , •.•••••..• Y28-2019 

CEKMW 

CEKMX 

CEKMY 

CEKMZ 

Operand Processing Routine 
(OPND) ••••••••••••••••••••••• Y28-2019 

Release Temporary Storage 
(RLSWS) •••.••••.••••••••••••. t28-2019 

Result-Register Operand 
Processing Subroutine 
(RSLT) •••••••••.••••••••••••• Y28-2019 

Local Branch Generator 
(SADDR) •••••.•••.••••.••••••• Y28-2019 

CEKNA 
General Register Avai~ability 
for Integer Divide (SELGD) .•• Y28-2019 

CEKNE 

CEKNI: 

Determine Availability of 
Register for Multiplication 
(SELGM) ••.••..••••••••.•••.•• Y28-2019 

Select Cperand Routine 
(SELOP) •••••.••.••••..••••••. Y28-2019 

CEKNE 
Weight Subroutine (WGHT)..... Y28- 2019 

CEI<NF 
Select Position for 
Operand (SLPOS) •••.••.••••••• Y28-2019 

CEKNG 
Select Single General 
Register (SELSR) ••••••••••••• Y28-2019 

CEKNH 
Select Even/Odd General 
Register Pair (SELDR) •••••••• Y28-2019 

CEKNI 
Code File Output Subroutine 
(INSOT) ••.••••••••••••••.•••• Y28-2019 

CEKNJ 
Corr~a Operator Processing 
Subroutine (COMMA) ••.•••••••• Y28-2019 

CEKNK 
ArithIr.etic IF PF Entry 
Processor (AIF) ••••••••••••.• Y28-2019 

CEKNL 
Logical IF PF Entry Processor 
(LIF) .••..•••••••••.••••••••• Y28-2019 

CEKNM 
Begin Loof 1 PF Entry 
Processor (BLU ••.•••••.•.••. Y28-2019 

CEKNN 
Begin Loop 2 PF Entry 
Processcr (EL2) •.••••••.••••. Y28-2019 

CERNO 
Begin Loop :I PF Entry 
Processor (BL3} •••.•.•••••••• Y28-2019 

CEKNP 
End LOaf PF Entry 
Processor •••••••••••••.•••••• Y28-2019 

CEKNQ 
Assigned GO TO PF Entry 
Processor (AGO) •••••••••••••• Y28-2019 

CEKNR 
comfuted GO TO PF Entry 
Processor (CGO) •••••••••••••• Y28-2019 

CEKNS 
ASSIGN PE' Entry Processor 
(ASSGN) •••••••••••••••••••••• Y28-2019 

CEKNU 
Referenced Iatel PF Entry 
Processor (LABEL) •••••••••••• Y28-2019 

CEKNV 
Lateled Branch Generator 
(LEI) •••.•••••••••••.•••••••• Y28-2019 

CEKNW 
Arithmetic Expression 
Generation (AGEN} •••.•••.•.•• Y28-2019 

CEROB 
COITIfOn EXfression Usage 
Count •.•••••••••••••••••••• " Y28-2019 

CEKOC 
Operand Status Routine 

Appendix C: Flowchart Directory 285 



(KEy) .••••.•...•...•......... Y28-2019 
CEKOI.; 

Entry Point Processor 
( ENT) . • • . . . . . • . . • . • • . . . . . . . •. Y 2 8- 201 '3 

CEKOE 
RETUKN Processor (RTRN) .•.••. Y2B-2019 

CEKOF 
Complex ~ultiply Generator 
(CNUL} ...•.••.••.••.••...••.• Y28-2019 

CEKOG 
Complex Divide Generator 
(DDIV) ...•...•...••.....•••.. Y28-2019 

C£KOH 
I/O Statement PF Entry 
Processor (:&[;) ••••••••••••••• Y28-2019 

CEKOI 
I/O List Element flF Entry 
Processor (ILIST) ••••..•.•.•• Y28-2019 

CEKOJ 
End List pF Entry Processor 
(NDLST) .••••••..•..•. " ..•... Y28- 2019 

CEKOK 
STOP and PAUSE Statement 
PF Entry Processor (STOF) .••• Y28-2019 

CEKOL 
CALi. Staterr.ent Processor 
(CALL) ••••••...•••••••••.••.. Y28-2019 

CEKOM 
Open Function Control Routine 
(DCeM) • • • . • . . . . . • • . . • • • . • • . •. Y28 - 2019 

CEKOM2 
Open Function Processing 
Routine (OPEN6} •••••••.•••••. Y28-2019 

CEKON 
Register Merrory Clear Routine 
(FLUSH) •••••••••••••••••••••• Y28- 2019 

CEKOR 
Single Operand Locating 
Routine (KEY1) .•••••••••••••• Y28-2019 

CEKOS 
Operand Fetch Corr.r::lement/Store 
Routine (FETCH) •••••••.••.••• Y28-2019 

CEKOT 
Open Function Control Routine 
(OpEN1) .••..•••..•.....•••••. Y28-2019 

CEROU 
Open Function Processing 
Routi ne (OpEN2).............. Y2B- 2 019 

CEKOV 
Add by Load Address (LADDR) •. Y28-2019 

CEKOW 
Select One Operand in 
a Register (SLONE). .••••••••. Y28-2019 

CEKOX 
Open Function Processing 
Routine (OPEN3) ••.•..•..••.•. Y28-2019 

CEKOY 
Open Function Processing 
Routine (OPEN4) ••••••••.••.•• Y28-2019 

CEKOZ 
Open FUnction Processing 
Routine (OPENS) .••••.....•••. Y28-2019 

CEKSB 
Object Prograrr Module 
Builder (BUILD) ••.••..•....•• Y28-2019 

CEKSC 
Corrrron Ccntrol Section 
Generator (Cf>'JSEC>. ..••••.••.• Y28-2019 

286 

CEKsr 
Preset Data Processor 
(SPECS) •..••••••••.••••..•••. Y28-2019 

CEKSF 
Code Control Section 
Generator (COSEC) ..••••••.•.• Y28-2019 

CEKSG 
PSECT Builder (PRSEC) •....•.• Y2B-2019 

CEKSl:l 
Internal Symbol Dictionary 
Generator (ASSIST) .•.•.•.•••. Y28-2019 

CEKSJ 
Syrr,tol Tatle Sort (SYMSRT) ••• Y28-2019 

CEKSK 
Cross Reference List Routine 
(CRFSRT) .••..•••••..•.•.••••. Y28-2019 

CEKSI. 
Constant Conversion (CONCV) •. Y28-2019 

CEKTA 
Pnase ccntroller (PHC) ••••••• Y28-2019 

CEKTC 
Get Next Source Statement 
(GNSS) ••..••.•••••••.•••..•.. Y28-2019 

CEKT:C 
Process Terminal 
Mcdifications (~DD) •••••••••. Y28-2019 

CEKTE 
Receive Diagnostic Message 
(RDM) .•.••••••••.•.•.•••.•••. Y28-2019 

CEKTF 
Constant Filers (CONFILJ ••••. Y28-2019 

CEKTH 
l"laster Input/Output Routine 
(~IC) .•••••••••••••.•••.••..• Y28-2019 

CEKTI 
Analyze Console Source Line 
(ANALYZ) ••••••••••..•••••...• Y28-2019 

CEKTJ 
Inspect a Console Character 
(INSCON) ••••••••••••••••..••• Y28-2019 

CEKTK 
Move a Line to a List Data 
Set CLDfWVE). •••••••..••..••. Y28-2019 

CEKTL 
Build a List Data Set Buffer 
(EUILD) ••..•...••••••••••.••• Y28-2019 

CEKTl': 
Flush a List Data Set Buffer 
(FLUSH) •.•••.•••••••.•••..••. Y28-2019 

CEKUA 
Executive Overall Flow •.•.••• Y28-2019 

CEVAC 
Assembler Control •••..••••••• Y28-2021 

CEVAr:: 
Address Constant Processor ••• Y28-2021 

CEVAN 
ANOP Instruction Scan ••...•.. Y28-2021 

CEVBS 
Basic Scan Routine •••••.••••. Y28-2021 

CEVCC 
CCW Text Processor ••••••••••• Y28-2021 

CEVCD 
CSD Frocesscr ••••••..•..•.••. Y28-2021 

CEVCE 
SPACE Instruction Scan .•••..• Y28-2021 

CEVCN 
eNOl' Instruction Scan .••.•••• Y28-2021 

CEVCP 



page of GY2B-2009-2, Issued September 30, 1971 by TNL GN28-3193 

Substitution Control 
Routine •••••••••••••••••••••• Y28-2021 

CEVCS 
Constant Scan Routine •••••.•• Y28-2021 

CEVCT 
Control Section Instruction 
Scan. • • • • • • • • • • • • • • • • • • • • • • •• Y28- 2 021 

CEVCW 
CCW Instruction Scan ••••••••• Y28-2021 

CEVCY 
COPY Instruction Scan •••••••• Y28-2021 

CEVDC 
DC/DS Instruction Scan ••••••• Y28-2021 

CEVDF 
Macro Definition Processor ••• Y28-2021 

CEVDP 
DC Constant Processor •••••••• Y28-2021 

CEVDR 
DROP Statement Processor ••••• Y28-2021 

CEVDX 
Diagnostic Message 
Processor •••••••••••••••••••• Y28-2021 

CEVEJ 
EJECT Instruction Scan ••••••• Y2B-2021 

CEVEP 
Entry Point Processor •••••••• Y28-2021 

CEVEQ 
Assign Value to Name 
Routine •••••••••••••••••••••• Y28-2016 

CEVET 
Interface with EBCDTIME 
Macro •••••••••••••••••••••••• Y28-2021 

CEVEV 
Expression EValuation •••••••• Y28-2021 

CEVEY 
ENTRY Instruction Scan ••••••• Y28-2021 

CEVGB 
Binary Self-defining Term 
Generator •••••••••••••••••••• Y28-2021 

CEVGC 
character Self-defining Term 
Generator •••••••••••••••••••• Y28-2021 

CEVGD 
Decimal Self-defining Terrr 
Generator •••••••••••••••••••• Y28-2021 

CEVGH 
Hexadecimal Self-defining 
Term Generator ••••••••••••••• Y28-2021 

CEVGL 
Global/Local Symbol Scan ••••• Y28-2021 

CEVGN 
Location Counter Reset 
Routine. • • • • • • • • • • • • • • • • • • • •• Y28- 2 021 

CEVGO 
AGO/AIF Instruction Scan ••••• Y28-2021 

CEVGP 
Identify Operation Code •••••• Y28-2021 

CEVGV 
Get Relocatable Value 
Routine •••••••••••••••••••••• Y28-2021 

CEVGW 
Interface with VISAM PUT 
Macro •••••••••••••••••••••••• Y28-2021 

CEVIC 
ICTL Instruction Scan •••••••• Y28-2021 

CEVIQ 
ISEQ Instruction Scan •••••••• Y28-2021 

CEVKM 

Lookup Dictionary Item ••••••• Y28-2021 
CEVLG 

LTORG Instruction Scan ••••••• Y28-2021 
CEVLM 

Macro name Item Look-up •••••• Y28-2021 
CEVLP 

Dictionary Lookup and Put •••• Y28-2021 
CEVLS 

Object Program Listing 
Routine •••••••••••••••••••••• Y28-2021 

CEVLT 
Literal Text Processor ••••••• Y28-2021 

CEVMC 
MACRO Instruction Scan ••••••• Y28-2021 

CEVMD 
PMD Listing Routine •••••••••• Y28-2021 

CEVMN 
MNOTE Instruction Scan ••••••• Y28-2021 

CE'vMO 
Machine-Operations 
Processor •••••••••••••••••••• Y28-2021 

CEVMP 
Machine Instruction Scan ••••• Y28-2021 

CEVMX 
MEND/MEXIT Instruction Scan •• Y28-2021 

CEVND 
END Instruction Scan ••••••••• Y28-2021 

CEVPA 
Phase I Control •••••••••••••• Y28-2021 

CEVPB 
Phase IIA Control •••••••••••• Y28-2021 

CEVPC 
Phase lIB Control •••••••••••• Y28-2021 

CEVPD 
Phase IIC Control •••••••••••• Y28-2021 

CEVPE 
Phase III Control •••••••••••• Y28-2021 

CEVPF 
Phase IV Control ••••••••••••• Y28-2021 

CEVPL 
Literal Pooling Processor •••• Y28-2021 

CEVPM 
Macro Parameter Processor •••• Y28-2021 

CEVPR 
PRINT Instruction Scan ••••••• Y28-2021 

CEVPS 
Parameter Item Analyzer •••••• Y28-2021 

CEVPV 
Output Relocatable Value 
Routine •••••••••••••••••••••• Y28-2021 

CEVQU 
EQU Instruction Scan ••••••••• Y28-2021 

CEVRD 
Obtain Next Source 
Statement •••••••••••••••••••• Y28-2021 

CEVRF 
Macro Reference Processor •••• Y28-2021 

CEVRG 
ORG Instruction Scan ••••••••• Y28-2021 

CEVRL 
Literal Resolution 
Processor •••••••••••••••••••• Y28-2021 

CEVRS 
Alignment Resolution 
Routine •••••••••••••••••••••• Y28-2021 

CEVSA 
ISD Listing Routine •••••••••• Y28-2021 

CEVSD 

Appendix C: Flowchart Directory 287 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

ISD Processor •••••••••••••••• Y28-2021 
CEVSE 

SET Statement Scan ••••••••••• Y28-2021 
CEVSL 

Literal Operand Scan ••••••••• Y28-2021 
CEVSP 

substitute into Operation 
Code ••••••••••••••••••••••••• Y28-2021 

CEVSR 
Symbol Table Edit Routine •••• Y28-2021 

CEVSS 
String substitution Routine •• Y28-2021 

CEVST 
Statement Analyzer ••••••••••• Y28-2021 

CEVSX 
Source Listing Processor ••••• Y28-2021 

CEVSY 
Define Location Symbol ••••••• Y28-2021 

CEVTI 
TITLE Instruction Scan ••••••• Y28-2021 

CEVTK 
Macro dictionary lookup •••••• Y28-2021 

CEVTM 
Macro name Item Insert ••••••• Y28-2021 

CEVTP 
Macro dictionary Insert •••••• Y28-2021 

CEVUD 
USING/DROP Instruction Scan •• Y28-2021 

CEVUP 
USING Table Processor •••••••• Y28-2021 

CEVUV 
Using-Register Routine ••••••• Y28-2021 

CEVXF 
Cross Reference Listing 
Routine •••••••••••••••••••••• Y28-2021 

CEVXN 
EXTRN Instruction Scan ••••••• Y28-2021 

CEYTS 
Linkage Editor ••••••••••••••• Y28-2030 

CFADA 
LPCMAIN •••••••••••••••••••••. Y28-2013 

CFADB 
GETLINE •••••••••••••••••••••• Y28-2013 

CFADC 
PUTDIAG •••••••••••••••••••••• Y28-2013 

CGCCA 
Allocate Module •••••••••••••• Y28-2031 

CGCCB 
Select HASH •••••••••••••••••• Y28-2031 

CGCCC 
SRCHPACK ••••••••••••••••••••• Y28-2031 

CGCCE 
Resolve Symbol ••••••••••••••• Y28-2031 

CGCCH 
Load PMD ••••••••••••••••••••• Y28-2031 

CGCCJ 
Fix PMD •••••••••••••••••••••• Y28-2031 

CGCCK 
Attach Text •••••••••••••••••• Y28-2031 

CGCCL 
Fix •••••••••••••••••••••••••• Y28-2031 

CGCCN 
Add PMD •••••••••••••.•••••••• Y28-2031 

CGCCO 
Drop PMD ••••••••••••••••••••• Y28-2031 

CGCCP 
Reject DIAG •••••••••••••••••• Y28-2031 

CGCCR 

288 

BISEARCH ••••••••••••••••••••• Y28-2031 
CGCCT 

PCSA ••••••••••••••••••••••••• Y28-2031 
CGCCU 

Check DEF Legal •••••••••••••• Y28-2031 
CGCCV 

Link DEFs •••••••••••••••••••• Y28-2031 
CGCCY 

Define REF ••••••••••••••••••• Y28-2031 
CGCDA 

Modify MUT Counts •••••••••••• Y28-2031 
CGCDB 

Delete Caller MUTEs •••••••••• Y28-2031 
CGCDC 

Delete Selected MUTEs •••••••• Y28-2031 
CGCDD 

Modify Use Counts •••••••••••• Y28-2031 
CGCDE 

Test User Counts ••••••••••••• Y28-2031 
CGCDG 

Add MUTE ••••••••••••••••••••• Y28-2031 
CGCDPR 

Loader PROMPT •••••••••••••••• Y28-2031 
CGCKA 

SYSINDEX ••••••••••••••••••••• Y28-2018 
CGCKB 

SYSXBLD •••••••••••••••••••••• Y28-2018 
CGCKC 

SYSEARCH ••••••••••••••••••••• Y28-2018 

I ::::: Q-CHAIN. • • • • • • • • • • • • • • • • • • • •• Y28- 2031 

RESOLVE Q-REF •••••••••••••••• Y28-2031 
CHCBD 

I/O Initialization and 
Machine Interrupt Enabler •••• Y28-2020 

CHCBE 
Interrupt and Machine 
Indicator Subprograms •••••••• Y28-2020 

CHCBZ 
Error Processor (LIBER) •••••• Y28-2020 

CHCIA 
I/O Initialization ••••••••••• Y28-2020 

CHCIB 
DCB Maintenance •••••••••••••. Y28-2020 

CHCIC 
I/O Control •••••••••••••••••• Y28-2020 

CHCID 
NAMELIST Processor ••••••••••• Y28-2020 

CHCIE 
List Item Processor •••••••••• Y28-2020 

CHCIF 
E'ORMAT Processor............. Y28- 2020 

CHCIH 
Integer Output Conversion •••• Y28-2020 

CHCII 
Real and Integer Input 
Conversion ••••••••••••••••••• Y28-2020 

CHCIJ 
Real output Conversion ••••••. Y28-2020 

CHCIM 
Complex Input Conversion ••••• Y28-2020 

CHCIN 
complex output Conversion •••• Y28-2020 

CHCIO 
Alphameric Input Conversion •• Y28-2020 

CHCIF 
Alphameric Output 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

conversion ••••••••••••••••••• Y28-2020 
CHCIQ 

Logical Input Conversion ••••• Y28-2020 
CHCIR 

Logical output Conversion •••• Y28-2020 
CHCIS 

General Input Conversion ••••• Y28-2020 
CHCIT 

General OUtput Conversion •••• Y28-2020 
CHCIU 

List Termination ••••••••••••• Y28-2020 
CHCIV 

Dump Routine ••••••••••••••••• Y28-2020 
CHCIW 

I Exit Routine ••••••••••••••••• Y28-2020 
CMASA 

SERR Bootstrap ••••••••••••••• Y28-2012 
CMASD 

Checker Program •••••••••••••• Y28-2012 
CMASF 

Restore and Validate ••••••••• Y28-2012 
CMASG 

Instruction Retry •••••••••••• Y28-2012 
CMASH 

CPU Memory Checkout 1 •••••••• Y28-2012 
CMASI 

CPU Memory Checkout 2 •••••••• Y28-2012 
CMASJ 

CPU Memory Checkout 3 •••••••• Y28-2012 
CMASN 

EREP67 ••••••••••••••••••••••• Y28-2018 
CMATC 

OLTS Print ••••••••••••••••••• Y28-2042 
CMATD 

OLTS Compare ••••••••••••••••• Y28-2042 
CMATE 

OLTS Conversion •••••••••••••• Y28-2042 
CMATF 

CZAAC 

CZAAD 

OLTS: setup Control, Attention 
Processor, Section Selection, 
Routine Selection, Job Option 
Selection, Sequencer ••••••••• Y28-2042 

SCAN ••••••••••••••••••••••••• Y28-2013 

MSGWR •••••••••••••••••••••••• Y28-2013 
CZAAF 

VMTI. • • • • • • • • • • • • • • • • • • • • • • •• Y28- 2013 
CZABA 

Batch Monitor •••••••••••••••• Y28-2047 
CZABB 

EXECUTE •••••••••••••••••••••• Y28-2013 
CZABC 

BACK ••••••••••••••••••••••••• Y28-2013 
CZABD 

Bulk I/O Preprocessor •••••••• Y28-2047 
CZABF 

Read Tape (RT) ••••••••••••••• Y28-2041 
CZABG 

PRINT •••••••••••••••••••••••• Y28-2041 
CZABH 

PUNCH •••••••••••••••••••••••• Y28-2047 
CZABI 

Write Tape (WT) •••••••••••••• Y28-2047 
CZABJ 

CANCEL.. ••• •• •• •• •• •••••• •• •• Y28-2013 
CZABK 

Assign Batch Device (ASNBD) •• Y28-2047 

CZABL 
TWA IT •••••••••••••••••••••••• Y28-2047 

CZABQ 
XWTO ••••••••••••••••••••••••• Y28-2047 

CZABS 
QUI'I'/ JOIN R.::JE •••••••••••••••• Y28-2013 

I CZABX LABEL •••••••••••••••••••••••• Y28-2047 
CZACA 

Main Operator Control Program 
(MOCP) ••••••••••••••••••••••• Y28-2047 

CZACB 
Main Operator Housekeeping 

I Routine (MOHR) ••••••••••••••• 
CZACD 

Y28-2047 

REPLY •••••••••••••••••••••••• Y28-2047 
CZACF 

Message/Broadcast •••••••••••• Y28-2047 
CZACG 

FORCE •••••••••••••••••••••••• Y28-2047 
CZACN 

SHUTDOWN ••••••••••••••••••••• Y28-2047 
CZACP 

ABEND (Completion Code 1) •••• Y28-2013 
CZACQ 
.- ... ~ .. - ABEND (Completion Code 2) •••• Y28-2013 
CZACR 

ABEND (Completion Code 3) •••• Y28-2013 
CZACS 

PAIR ••••••••••••••••••••••••• Y28-2013 
CZADF 

DATA ••••••••••••••••••••••••• Y28-2013 
CZAEA 

DDEF ••••••••••••••••••••••••• Y28-2013 
CZAEB 

FINDJFCB ••••••••••••••••••••• Y28-2013 
CZAEC 

FINDDS ••••••••••••••••••••••• Y28-2013 
CZAEG 

MODIFy ••••••••••••••••••••••• Y28-2013 
CZAEH 

LOCFQN ••••••••••••••••••••••• Y28-2013 
CZAEI 

CATALOG •••••••••••••••••••••• Y28-2013 
CZAEJ 

ERASE/DELETE ••••••••••••••••• Y28-2013 
CZAEK 

JOBLIB/DDNAME? •••••••••••••• Y28-2013 
CZAEL 

DSS?/PC? •••••••••••••••••••• Y28-2013 
CZAEM 

LINE? ••••••••••••••••••••••• Y28-2013 
CZAEN 

RET •••••••••••••••••••••••••• Y28-2013 
CZAET 

VAM Tape ••••••••••••••••••••• Y28-2013 
CZAFH 

PERMIT ••••••••••••••••••••••• Y28-2013 
CZAFI 

SHARE •••••••••••••••••••••••• Y28-2013 
CZAFJ 

RELEASE •••••••••••••••••••••• Y28-2013 
CZAFK 

JOIN ••••••••••••••••••••••••• Y28-2013 
CZAFL 

QUIT ••••••••••••••••••••••••• Y28-2013 
CZAFM 

LOGON •••••••••••••••••••••••• Y28-2013 

Appendix C: Flowchart Directory 289 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

CZAFN 
LOGOFF ••••••••••••••••••••••• Y28-2013 

CZAFS 
CDD •••••••••••••••••••••••••• Y28-2013 

CZAFU 
SECURE ••••••••••••••••••••••• Y28-2013 

CZAFV 
CDS. • • • • • • • • • • • • • • • • • •• • • • • •• Y28- 2013 

CZAGB 
USAGE •••••••••••••••••••••••• Y28-2013 

CZAGC 
UPDTUSER ••••••••••••••••••••• Y28-2013 

I C ZAGD FLOW ••••••••••••••••••••••••• Y28-2013 
CZAHA 

DIAGNO ••••••••••••••••••••••• Y28-2013 
CZAHB 

IAIP ••••••••••••••••••••••••• Y28-2013 
CZAHC 

XIP/XIIS ••••••••••••••••••••• Y28-2013 
CZAHD 

XIMS ••••••••••••••••••••••••• Y28-2013 
CZAMA 

SET •••••••••••••••••••••••••• Y28-2013 
CZAMB 

BRANCH •••••••••••••••••••• _ •• Y28- 2014 
CZAMC 

STOP and GO •••.•••••••••••••• Y28-2014 
CZAMD 

DISPLAY and DUMP ••••••••••••• 
CZAME 

Y28-2014 

IF ••••••••••••••••••••••••••• Y28-2014 
CZAMF 

AT. • • • • • • • • • • • • • • • • • • • • • • • • •• Y 28- 2014 
CZAMG 

CALL ••••••••••••••••••••••••• Y28-2014 
CZAMH 

Expression Scan (EXPSCAN) •••• Y28-2014 
CZAMI 

Form Data Field Definition 
(DATAFLD) •••••••••••••••••••• Y28-2014 

CZAMJ 
subscript to polish 
(SUBPOL) ••••••••••••••••••••• Y28-2014 

CZAML 
Form Data Location Definition 
(DATALOC) •••••••••••••••••••• Y28-2014 

CZAMO 
Form External Symbol 
Definition (EXTERNAL) •••••••• Y28-2014 

CZAMQ 
Scan Field to Delimiter 
(SCANFLD & GETCHAR) •••••••••• Y28-2014 

CZAMR 
QUALIFY ••••••••••••.••••••••• Y28-2014 

CZAMS 
REMOVE ••••••••••••••••••••••• Y28-2014 

CZAMT 
UNLOAD •.••••••••••••••••••••• Y28-2014 

CZAMZ 
User Control ••••••••••••••••• Y28-2013 

CZANA 
Phase II Control (PHASE2) •••. Y28-2014 

CZANF 
Code Generator (CODEGEN) ••••• Y28-2014 

CZANG 
Subscript Generator 
(SUBGEN) ••••••••••••••••••••• Y28-2014 

290 

CZANH 
Combine Constants (COMCON) ••• Y28-2014 

CZANI 
Operator Code Generator 
(OPGEN) •••••••••••••••••••••• Y28-2014 

CZANT 
Load Operand (LOADOP) •••••••• Y28-2014 

CZANV 
Base Register Assignment 
(GETBASE} •••••••••••••••••••• Y28-2014 

CZANW 
Issue Diagnostics (DIAGNO) ••• Y28-2014 

CZANX 
User Prompting (PROMPT) •••••• Y28-2014 

CZAOA 
Evaluate Module Name 
(VALMODE) •••••••••••••••••••• Y28-2014 

CZAOB 
EValuate Symbol (VALSYM) ••••• Y28-2014 

CZAOD 
GETREG ••••••••••••••••••••••• Y28-2014 

CZAPB 
Phase III Control (PCSPUT) ••• Y28-2014 

CZAPC 
Location Table Scan 
(FINDLOC) •••••••••••••••••••• Y28-2014 

CZAPG 
Symbol Generator {SYMGEN) •••• Y28-2014 

CZAPI 
FORMDIAG ••••••••••••••••••••. Y28-2014 

CZAPK 
Saved Instruction Execution 
{SAVIX) •••••••••••••••••••••• Y28-2014 

CZAPN 
Call Generated Code 
(GENCALL) •••••••••••••••••••• Y28-2014 

CZAQA 
Display/Dump Control 
(DISPDUMP) ••••••••••••••••••• Y28-2014 

CZAQB 
Process Phrase List 
(NEXTLIST) ••••••••••••••••••• Y28-2014 

CZAQC 
Process Display List 
(NEXTITEM) ••••••••••••••••••• Y28-2014 

CZAQD 
Process Next ISD Entry ••••••• Y28-2014 

CZAQF 
Display Register {DISREG) •••• Y28-2014 

CZAQG 
Display Simple Variable 
(SIMVAR) ••••••••••••••••••••• Y28-2014 

CZAQH 
Convert Item by Data Type 
(ADDITEM) •••••••••••••••••••• Y28-2014 

CZAQI 
Display an Instruction 
{DISINST) •••••••••••••••••••• Y28-2014 

CZAQJ 
Display an Array (DISARAY) ••• Y28-2014 

CZAQK 
Display a Line of an Array 
(DISALINE} ••••••••••••••••••. Y28-2014 

CZAQM 
Display a Range in Hexadecimal 
(DISHEX) ••••••••••••••••••••• Y28-2014 

CZAQN 
Display a Hexadecimal Line 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

(DISHLINE) ••••••••••••••••••• Y28-2014 
CZAQQ 

DISRHEAD •••.••••.•••••••••••• Y28-2014 
CZAQR 

Format a symbol (DISYM) •••••• Y28-2014 
CZAQU 

output a Line (DISOUT) ••••••• Y28-2014 
CZAQV 

Real Number Conversion 
(REALCON) •••••••••••••••••••• Y28-2014 

CZASA 
Command Analyzer and Executor Y28-2013 

CZASB 
Attention Handler •••••••••••• Y28-2013 

CZASC 
Source List Handler •••••••••• Y28-2013 

CZASD 
Source List Handler •••••••••• Y28-2013 

CZASE 
Virtual Memory Error Recording 
Edit and Print (VMEREP) •••••• Y28-2013 

CZASF 
REGION ••••••••••••••••••••••• Y28-2013 

CZASG 
DATA LINE •••••••••••••••••••• Y28-2013 

CZASH 
REVISE •••••••••••••••..•••••• Y28-2013 

CZASJ 
INSERT ••••••••••••••••••••••• Y28-2013 

CZASK 
EXCERPT •••••••••••••••••••••• Y28-2013 

CZASL 
EXCISE ••••••••••••••••••••••• Y28-2013 

CZASM 
CONTEXT •••••••••••••••••••••• Y28-2013 

CZASN 
LOCATE •••••••••••••••••••••.• Y28-2013 

CZASP 
LIST ••••••••••••••••••••••••• Y28-2013 

CZASQ 
CORRECT ••••••••••.••••••••••• Y28-2013 

CZASR 
UPDATE ••••••••••••••••••••••• Y28-2013 

CZASS 
Transaction Table Updater •••• Y28-2013 

CZAST 
MATCH •••••••••••••••••••••••• Y28-2013 

CZASU 
NUMBER ••••••••••.•••••••••••• Y28-2013 

CZASV 
STET ••••••••••••••••••••••••• Y28-2013 

CZASY 
Drum Access Module (DRAM) ••.• Y28-2018 

CZASZ 
PROFILE HANDLER •••••••••••••• Y28-2013 

CZATA 
OLTAM EXIO and Data 
Integrity ••••••••••.••••••••• Y28-2042 

CZATB 
OLTAM Posting •••••••••••••••• Y28-2042 

CZATC. 
CATE ••••••••••••••••.•••••••• Y28-2013 

CZATD 
VMTI-2 ••••••••••••••••••••••• Y28-2013 

CZATE 
Procedure Expander ••••••••••• Y28-2013 

CZATF 
SYSXPAT •••••••••••••••••••••• Y28-2013 

CZATG 
OLTS Device Allocation ••••••• Y28-2042 

KEYWORD •••••••••••••••••••••• I CZATH 
Y28-2013 

CZATICHGPAS ••••••••••••••••••••••• Y28-2013 
CZATJ 

User Prompter •••••••••••••••• Y28-2013 
CZATP 

PROCDEF •••••••••••••••••••••• Y28-2013 
CZART 

SYNONyM/DEFAULT •••••••••••••• Y28-2013 
CZATS 

Text Editor Controller ••••••• Y28-2013 
CZATU 

MCAST •••••••••••••••••••••••• Y28-2013 
CZAVB 

TIME ••••••••••••••••••••••••• Y28-2013 
CZAVR 

VSS •••••••••••••••••••••••••• Y28-2013 
CZAWA 

Bulk I/O ABEND ••••••••••••••• Y28-2047 
CZAWC 

FORTRAN Data Set Converter ••• Y28-2047 
CZAWM 

Bulk I/O Message Handler ••••• Y28-2047 
CZAWN 

ACK Data Set Handler ••••••••• Y28-2047 
CZAWS 

Bulk I/O Initialization •••••• Y28-2047 
CZAWT 

Bulk I/O Control ••••••••••••• Y28-2047 
CZAWU 

Bulk I/O Attend Alert •••••••• Y28-2047 
CZAWV 

Bulk I/O Input Closeout •••••• Y28-2047 
CZAWW 

Bulk I/O Master Service •••••• Y28-2047 
CZAWX 

Bulk I/O Input Start ••••••••• Y28-2047 
CZAWY 

Bulk I/O Output Service •••••. Y28-2047 
CZAWZ 

Bulk I/O Input Service ••••••• Y28-2047 
CZAXX 

RPS/CVV •••••••••••••••••••.•. Y28-2013 
CZBLT 

String Comparison •••••••••••• Y28-2013 
CZBSE 

Edit Initialization •••••••••• Y28-2013 
CZBTA 

TRIN •••.••••••••••••••••••••• Y28-2013 
CZBTB 

LOGCN2 ••••••••••••••••••••••• Y28-2013 
CZBTC 

PRMPT Command •••••••••••••••• Y28-2013 
CZCAA 

MTREQ ••••••••••••••••••••••.• Y28-2018 
CZCAB 

BUMP ••••••••••••••••••••••••• Y28-2018 
CZCAC 

PAUSE ••••.•••••••••••.••••.•• Y28-2018 
CZCAD 

RELEAS ••••••••••••••••••••••• Y28-2018 
CZCAM 

MOUNT VOL •••••••••••••••••••• Y28-2018 
CZCCD1 

Loader Logoff •••••••••••••••• Y28-2031 

Appendix C: Flowchart Directory 291 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

CZCCD2 
Loader Release ••••••••••••••• Y28-2031 

CZCCD4 
Loader Cleanup ••••••••••••••• Y28-2031 

CZCDH1 
LIBE MAINT ••••••••••••••••••• Y28-2031 

CZCDL1 
Explicit Link •••••••••••••••• Y28-2031 

CZCDL2 
HASH Search •••••••••••••••••• Y28-2031 

CZCDL3 
LIBE Search •••••••••••••••••• Y28-2031 

CZCDL4 
Page Relocation •••••••••••••• Y28-2031 

CZCDL5 
MAPSEARCH •••••••••••••••••••• Y28-2031 

CZCDL6 
Set Search Flags ••••••••••••• Y28-2031 

CZCDUl 
Explicit Unlink •••••••••••••• Y28-2031 

CZCDU2 
Delete Module •••••••••••••••• Y28-2031 

CZCEA 
ALLOCATE ••••••••••••••••••••• Y28-2018 

CZCEB 
SAM Search ••••••••••••••••••• Y28-2018 

CZCEF 
DSCBREC •••••••••••••••••••••• Y28-2018 

CZCEG 
GIVBK SAM •••••••••••••••••••• Y28-2018 

CZCEH 
VOLSRCH •••••••••••••••••••••• Y28-2018 

CZCEI 
Virtual Memory Input Error 
Recovery ••••••••••••••••••••• Y28-2016 

CZCEJ 
ESA Lock •••.••••••••••••••••• Y28-2018 

CZCEK 
ADDSCB ••••••••••••••.•••••••• Y28-2018 

CZCEL 
FINDEXPG ••••••••••••••••••••• Y28-2018 

CZCEM 
READWRIT ••••••••••••••••••••• Y28-2018 

CZCEN 
RELEXPG •••••••••••••.•••••••• Y28-2018 

CZCEQ 
VAMINIT ••••.••••••••••••••••• Y28-2018 

CZCES 
SCRATCH •••••••••••••••••••••• Y28-2018 

CZCEW 
WRITDSCB ••••••••••••••••••••• Y28-2018 

CZCEX 
EXTEND. • • • • • • • • • • • • • • • • • • • • •• Y 28- 20 18 

CZCEY 
DUPOPEN •••••••••••••••••••••• Y28-2016 

CZCEZ 
DUPCLOSE ••••••••••••••••••••• Y28-2016 

CZCFA 
ADDCAT ••••••••••••••••••••••• Y28-2018 

CZCFB 
EVV •••••••••••••••.•••••••••• Y28-2013 

CZCFD 
DELCAT •.••.•••••••••••••••• " Y28-2018 

CZCFF 
Search SBLOCK •••••••••••••••• Y28-2018 

CZCFG 
Get SBLOCK ••••••••••••••••••• Y28-2018 

CZCFI 

292 

INDEX •••••••••••••••••••••••• Y28-2018 
CZCFL 

LOCATE ••••••••••••••••••••••• Y28-2018 
CZCFC 

OBTAIN/RETAIN •••••••••••••••• Y28-2018 
CZCFS 

SHARE •••••••••••••••••••••••• Y28-2018 
CZCFT 

DELVAM ••••••••••••••••••••••• Y28-2016 
CZCFU 

SHAREUP. • • • • • • • • • • • • • • • • • • • •• '{28 - 20 18 
CZCFV 

UNSHARE •••••••••••••••••••••• Y28-2018 
CZCFX 

CATFLUSH ••••••••••••••••••••• Y2B-2018 
CZCFZ 

RENAME ••••••••••••••••••••••• Y28-2018 
CZCGA 

Virtual Memory Allocation •••• Y28-2018 
CZCHA 

Small Virtual Memory 
Allocation ••••••••••••••••••• Y28-2018 

CZCHB 
CLOSE Command •••••••••••••••• Y28-2013 

CZCJA 
STIMER - TTIMER •••••••••••••• Y2B-2041 

CZCJC 
Cleanup •••••••••••••••••••••• Y28-2041 

CZCJD 
Delete Interrupt Routine ••••• Y28-2041 

CZCJI 
Interrupt Inquiry (INTINQ) ••• Y28-2041 

CZCJL 
Leave privilege •••••••••••••• Y28-2041 

CZCJQ 
Queue Linkage Entry (QLE} •••• Y28-2041 

CZCJS 
Specify Interrupt Routine 
(SIR) •••••••••••••••••••••••• Y28-2041 

CZCJT 
Program, SVC, Timer, External, 
Asynchronous I/O, Synchronous 
I/O & VSS Interrupt Processors, 
Data Set paging. Scanner 
Dispatcher ••••••••••••••••••• Y28-2041 

CZCJY 
Set Clock •••••••••••••••••••. Y28-2041 

CZCJZ 
Cancel Clock ••••••••••••••••• Y28-2041 

CZCKZ 
CSECT store •••••••••••••••••• Y28-2018 

CZCLA 
Open Common •••••••••••••••••• Y28-2016 

CZCLB 
Close Common ••••••••••••••••• Y28-2016 

CZCLD 
Forced End of Volume ••••••••• Y28-2016 

CZCMA 
Get a Buffer ••••••••••••••••. Y28-2016 

CZCMB 
Get a Buffer Pool •••••••••••• Y28-2016 

CZCMC 
MSAM open •••••••••••••••••••• Y28-2016 

CZCMD 
Set Unit Record •••••••••••••• Y28-2016 

CZCME 
DOMSAM. • • • • • • • • • • • • • • • • • • • • •. Y28- 2 016 

CZCMF 



Page of GY28-2009-2, Issued september 30, 1971 by TNL GN28-3193 

MSAM READ/WRITE •••••••••••••• Y28-2016 
CZCMG 

MSAM Posting and Error 
Retry ••••••••••••••.••••••••• Y28-2016 

CZCMH 
MSAM Finish •.•••••••••••.•••• Y28-2016 

CZCMI 
MSAM Close ••••••••••••••••••• Y28-2016 

CZCNA 
Free a Buffer •••••••••••••••• Y28-2016 

CZCNB 
I Free a Buffer Pool ••••••••••• Y28-2016 

CZCOA 
Open VAM ••••••••••••••••••••• Y28-2016 

CZCOB 
close VAM •••••••••••••••••••• Y28-2016 

CZCOC 
MOVEPAGE ••••••••••••••••••••• Y28-2016 

CZCOD 
Insert Page/Delete Page •••••• Y28-2016 

CZCOE 
Request Page ••••••••••••••••• Y28-2016 

CZCOF 
Insert ••••••••••••••••••••••• Y28-2016 

CZCOG 
Reclaim •••••••••••••••••••••• Y28-2016 

CZCOH 
Interlock •••••••••••••••••••• Y28-2016 

CZCOI 
Release Interlock •••••••••••• Y28-2016 

CZCOJ 
FIND ••••••••••••••••••••••••• Y28-2016 

CZCOK 
STOW ••••••••••••••.•••••••••• Y28-2016 

CZCOL 
Search ••••••••••••••••••••••• Y28-2016 

CZCOM 
Extend POD ••••••••••••••••••• Y28-2016 

CZCON 
Relocate Members ••••••••••••• Y28-2016 

CZCOO 
Get Page Number •••••••••••••• Y28-2016 

CZCOP 
OPEN sequential •••••••••••••• Y28-2016 

CZCOQ 
CLOSE Sequential •••••.••••••• Y28-2016 

CZCOR 
GET ••••••••••••••••••••••••• Y28-2016 

CZCOS 
PUT ••••••••••••••••••••••••• Y28-2016 

CZCOT 
Set Location ••••••••••••••••• Y28-2016 

CZCOU 
PUT Exchange ••••••••••••••••• Y28-2016 

CZCOV 
Flush Buffers •••.•••••.•••••• Y28-2016 

CZCOX 
POD? •••••••••••••••••••••••• Y28-2015 

CZCPA 
PUT •••••••.•••••••••••••••••• Y28-2016 

CZCPB 
GET •••••••••••••••••••••••••• Y28-2016 

CZCPC 
Set Location •.•••••••••.••••• Y28-2016 

CZCPE 
READ/WRITE Delete Record ••••• Y28-2016 

CZCPL 
Add Directory Entry ••••.••••• Y28-2016 

CZCPI 
Get Page, End sequential, 
Release Exclusive •••••••••••• Y28-2016 

CZCPZ 
OPEN Indexed Sequential •••••• Y28-2016 

CZCQA 
CLOSE Indexed Sequential ••••• Y28-2016 

CZCQE 
Search SDST •••••••••••••••••• Y28-2016 

CZCQI 
Expand RESTBL •••••••••••••••• Y28-2016 

CZCQK 
VAM Data Management Error 
Processor •••••••••••••••••••• Y28-2016 

CZCQQ 
VAM Interlock Reset •••••••••• Y28-2016 

CZCQV 
CONVERT •••••••••••••••••••••• Y28-2013 

CZCRA 
BSAM READ/WRITE •••••••••••••• Y28-2016 

CZCRB 
Tape Positioning, Card Reader 

CZCRC 

Stacker Select. Printer Channel 
Skipping ••••••••••••••••••••• Y28-2016 

Check I/O •••••••••••••••••••• Y28-2016 
CZCRG 

Backspace •••••••••••••••••••• Y28-2016 

I CZCRH 
DA Error Retry ••••••••••••••• Y28-2016 

CZCRM 
Logically Reposition Tape or 
DA Data Set •••••••••••••••••• Y28-2016 

CZCRN 
Note ID of Last Record 
Read or Written •••••••••••••• Y28-2016 

CZCRP 
SAM Posting and Error Retry •• Y28-2016 

CZCRQ 
FINDR •••••••••••••••••••••••• Y28-2016 

CZCRR 
RELFUL. • • • • • • • • • • • • • • • • • • • • •• Y 28 - 20 16 

CZCRS 
FULREL ••••••••••••••••••••••• Y28-2016 

CZCRX 
Virtual Memory Error 
Recording •••••••••••••••••••• Y28-2018 

CZCRY 
VMSDE •••••••••••••••••••••••• Y28-2018 

CZCSA 
QSAM ••••••••••••••••••••••••• Y28-2016 

CZCSB 
lOREQ •••••••••••••••••••••••• Y28-2016 

CZCSC 
lOR OPEN ••••••••••••••••••••• Y28-2016 

CZCSD 
lOR CLOSE •••••••••••••••••••• Y28-2016 

CZCSE 
IOREQ Posting •••••••••••••••• Y28-2016 

CZCTA 
SYSTIME •••••••••••••••••••••• Y28-2018 

I CZCTC 
Terminal Task Control •••••••• Y28-2016 

CZCTR 
RTAM Error Recording 
Interface •••••••••••••••••••• Y28-2018 I CZCWA 
ASCII Translation and 

Appendix C: Flowchart Directory 293 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

I Conversion ••••••••••••••••••• Y28-2016 
CZCWB 

Build or Modify Common 
Portion of DEB ••••••••••••••• Y28-2016 

CZCWC 
SAM CLOSE •••••••••••••••••••• Y28-2016 

CZCWD 
I DA OPEN •••••••••••••••••••••• Y28-2016 

CZCWL 
Build or Extend DA DEB ••••••• Y28-2016 

CZCWM 
Message and ABEND 
Processing ••••••••••••••••••• Y28-2016 

CZCWo 
SAM OPEN Mainline •••••••••••• Y28-2016 

CZCWP 
Tape Positioning ••••••••••••• Y28-2016 

CZCWR 
Read Format 3 DSCBs •••••••••• Y28-2016 

CZCWT 
Tape OPEN.................... Y28- 2016 

CZCWV 
Volume Sequence Convert •••••• Y28-2016 

CZCWX 
Tape Volume Label Processor •• Y28-2016 

Tape Header/Trailer I CZCWY 

Label Processor •••••••••••••• Y28-2016 
CZCXD 

DA output EOV •••••••••••••••• Y28-2016 
CZCXE 

Mainline EOV ••••••••••••••••• Y28-2016 
CZCXI 

DA Input BOV ••••••••••••••••• Y28-2016 
CZCXN 

DA Input Label Processor ••••• Y28-2016 
CZCXO 

Tape output EOV •••••••••••••• Y28-2016 
CZCXS 

Set DSCB ••••••••••••••••••••• Y28-2016 
CZCXT 

Tape Input EOV ••••••••••••••• Y28-2016 
CZCXU 

DA Output Label Processor •••• Y28-2016 
CZCXX 

Concatenation Processor •••••• Y28-2016 
CZCYA 

TAM OPEN ••••••••••••••••••••• Y28-2016 
CZCYG 

TAM CLOSE •••••••••••••••••••• Y28-2016 
CZCYM 

TAM READ/WRITE ••••••••••••••• Y28-2016 
CZCZA 

TAM Posting •••••••••••••••••• Y28-2016 
CZHNE 

VSS External Interrupt 
Processor •••••••••••••••••••• Y28-2022 

CZHNM 
VSS Message •••••••••••••••••• Y28-2022 

CZHNP 
VSS Program Interrupt 
Processor •••••••••••••••••••• Y28-2022 

CZHNV 
VSS Activate Interrupt 
Processor •••••••••••••••••••• Y28-2022 

CZHPA 
VSS Real Core Access ••••••••• Y28-2022 

CZHPB 

294 

VSS Virtual Memory Access •••• Y28-2022 
CZHPR 

VSS Restore Status •••••••••.• Y28-2022 
CZHSA 

VSS I/O Control •••••••••••••• Y28-2022 
CZHSB 

VSS I/O Initiation/Posting ••• Y28-2022 
CZHTA 

VSS Direct Access Device 
Access Method •••••••••••••••. Y28-2022 

CZHTB 
VSS Console Access Method •••• Y28-2022 

CZHTC 
VSS sequential Access 
Method ••••••••••••••••••••••• Y28-2022 

CZHTD 
VSS Telecommunications Access 
Method. •• • • • • • • • • • • • • • • • • • • •• Y28- 2022 

CZHTE 
VSS I/O Editor ••••••••••••••• Y28-2022 

CZHUA 
VSS Direct Access Device 
Error Recovery ••••••••••••••• Y28-2022 

CZHUB 
VSS Console Error Recovery ••• Y28-2022 

CZHUC 
VSS Sequential Access Device 
Error Recovery ••••••••••••••• Y28-2022 

CZHUD 
VSS Telecommunications Error 
Recovery ••••••••••••••••••••• Y28-2022 

CZHUE 
VSS Error Scan and Recovery •. Y28-2022 

CZHVA 
VSS I/O Completion •.••••••••. Y28-2022 

CZHWA 
VSS Address to Symbol 
Resolution ••••••••••••••••••. Y28-2022 

CZHW~ 

VSS Memory Map Format •••••••• Y28-2022 
CZHXA 

VSS Operator Functions ••••••• Y28-2022 
CZHXC 

VSS Language Control ••••••••• Y28-2022 
CZHXI. 

VSS Literal Resolution ••••••• Y28-2022 
CZHXP 

VSS Source to Polish ••••••••• Y28-2022 
CZHXS 

VSS Scan Control ••••••••••••. Y28-2022 
CZHYA 

VSS AT Command Processor ••••• Y28-2022 
CZHYC 

VSS COLLECT command 
Processor •••••••••••••••••••. Y28-2022 

CZHYD 
VSS DUMP/DISPLAY Corrmand 
Processor •••••••••••••••••••• Y28-2022 

CZHYE 
VSS DEFINE Command 
Processor •••••••••••••••••••• Y28-2022 

CZHYI. 
VSS CALL/END Corrmands 
Processor ••••••••.••••••••••• Y28-2022 

CZHYM 
VSS DISCONNECT Command 
Processor .•••.••••••••••••••• Y28-2022 

CZHYN 



Page of GY28-2009-2, Issued September 30, 1971 by TNL GN28-3193 

VSS 
CZHYP 

VSS 
CZHYQ 

VSS 

RUN Command Processor •••• Y28-2022 CZHZH 

PATCH Command Processor •• Y28-2022 
VSS $TASK Format ••••••••••••• Y28-2022 

CZUBC 

QUALIFY Command 
Processor •••••••••••••••••••• 

CZHYR 
VSS REMOVE Command 
Processor ••••••••••••.••••••• 

CZHYS 
VSS SET Command Processor •••• 

CZHYT 
VSS STOP Command Processor ••• 

CZHZA 
VSS AT SVC Processor ••••.•••• 

CZHZF 

Y28-2022 

TSU Module .•••••••••••.•••••• Y28-20Q7 
CZUFA 

DMPRST •••••••.•.••••••••••••• Y28-2047 
CZUFO 

PATCLEAR ••••••••••••••••••••• Y28-2047 

Y28-2022 fCZUPFPATFIX ••••••••••••••••••••••• Y28-2047 
Y28-2022 CZUFY 

(/ L User Catalog Scan............ Y28-2018 
Y28-2022: CZUFX 

"~ DSCB Catalog Recovery •••••••• Y28-2018 
Y28-2022 CZUVA 

VAMACC .•••.•••••••••••••••••• Y28-2013 
VSS $AT/$PATCH Format •••••••• Y28-2022 

Appendix C: Flowchart Directory 295 





Where more than one page reference is 
given, the major reference is first. 

operator (FORTRAN) 253 
$ (TSSS) 266-268 
*%*% 84 
? operator (FORTRAN) 253 

ABEND 199 
completion codes 199 

Abnormal Task Termination (ABEND) 199 
Absolute DEF 149 
access (sharing) 161 
access dependent routines 83-86 
Access Methods PLM 275 
accounting, system 109-110 

services 211 
Acknowledgement Data Set 234,238 
ACKO (RJE) 237,238 
Active List 113-120 

auxiliary storage allocation 129 
Dispatcher use of 35 

Active Remote Task (ART) table 209 
ADCON generation 152 
ADDCAT Routine 159 
ADDEV SVC 137 
ADDPG svc 123 
Addressing (example of) 18-20 

as integrity protection 76 
Administrator, System 5-7 
ADT 135 
AET 207 
AETD macro 50,208 
ALFBET (SCAN) 205 
ALFNUM (SCAN) 205 
ALLOCATE (ESA) 131 
Allocation phase (Dynamic Loader) 151,143 

Figure 153 
Loading 151-155 

alter attributes 213-214 
APGENX data set 16 
Application Program (in MTT) 53-55 
ART 209 
ASAT 129,276 
ASMMAC data set 16 
ASMNDX data set 16 
ASNBD 16,15 
ASNBD command 232,233,234 
Assembler Control module 243-244 

operation 248 
16 Assembler Macro Index (ASMNDX) 

Assembler Macro Library (ASMMAC) 
Assembler phases (I, II, III, IV) 
Assembler, TSS/360 243-248 

control 248 
environment 243 
macro processing 245-246 
organization 243-244 
output 243 
phases 247-248 

16 
247-248 

syntax analysis 244-245 
assembly statement 244 
assignment of storage keys 72 
associative registers 19-20 
AST (see Auxiliary Segment Table) 
asynchronous interrupt 

CIP check 98 
definition 49 
handler (RJE) 235-238 

AT verb 
processing 219-220 
TSSS 265 

processing 268-269 
ATTACH 54 
Attention Entry Table (AET) 207 
Attention Handler (command system) 207 
Attention interrupt handling 49-50 

user-defined 50 
attributes (data set) 

alteration of (RET) 214 
DDEF 213-214 

Authorization Code 7 
Auxiliary Control Volume 15 
Auxiliary Segment Table 122-123,18 

glossary 276 
sharing, internal 168-169 

Auxiliary storage 14 
allocation, release 128-130 

Auxiliary Storage Allocation Table 
(ASAT) 129-276 

available block counter 121 
Available Device Table (ADT) 134-135,278 
available list (storage 
allocation) 120-121 

AWAIT/TWAIT levels 112,117 

BABY chain 156 
BACK 16 
BACK command 212 
backspace 202 
base/index split operator (FORTRAN) 253 
Basic Sequential Access Method 

(BSAM) 60-61 
READ processing example 87-100 

Eatch Monitor 
command system 209-210,203 
nonconversational overview 16-17 

processing 232-234 
Batch Sequence Number (BSN) 7 
Batch Work Queue (BWQ) 137,278 

batch monitor 210 
command system 203 
processing of 233-234 

BEGIN (used in MTT) 54 
EIO Message (RJE) 238 

Figure 237 
bit directory (drum) 129 
BLOCK COMMON module 76 
Elocking/deblocking in QSAM 62 
Eootstrap (SERR) 194,192 
breakpoint character 204 

Index 297 



BSAM 60-61 
READ processing example 87-100 

BSAM READ/WRITE 96 
BSN 7 
Buffer processing (VAM) 100-106 
buffering, QSAM 67 
BUILD (BSAM) 93 
build data set (DATA) 213 
BUILTIN 201 

command 216-217 
BULK I/O (see BULKIO) 
BULKCOMM 232,233 
BULKIO 

BIO message (RJE) 237-238 
nonconversational overview 8-9 
RJE 

control card processing 234-239 
overview 234 

task initiation 232 
BULKIO data management commands 

(punch, print, WT) 215 
BULKIO Initialization (RJE) 234-235 
BULKIO Message handling 232-234 

RJE (figure) 237 
BULKIO preprocessor 203 
BULKIO II (task 002) 203 

batch monitor 208-209 
XIIS interface 207-208 

BUMP (device allocation) 137 
BWQ (see Batch Work Queue) 

CA&E (see Command Analyzer and Executor) 
CALL command 216 

PCS 220 
TSSS 265 

CALL expansion 152 
CANCEL command 212-213 
Card Input 16 

(see also RJE) 
Card Reader 

RJE 237 
catalog command 213 
catalog 

building, example of 162 
routines 158-160 
S-block 278 
sharing 161-170 
structure and overview 66-68 

Catalog Service Routines 158-160 
CAW protection key 72 
CBT 276,120 
CCB (STARTUP) 272 
CDD command 214 
CDS command 214 
channel 

addressing in BSAM 60-61 
program build example 93-94 
program, disk 181-182 
program, drum 172 
programs in IOREQ 64 
switching 23 

Channel Interrupt Processor (CIP) 
BSAM READ 98 
Task Initialization 

conversational 225 
nonconversational 235-236 

Channel Status Word (CSW) 189 

298 

Character and Switch Table 201 
CHAR48 (PL/I) 256 
CHECK macro 60 
CHEKDS (SCAN) 205 
CHKNUM (SCAN) 205 
CIP (see Channel Interrupt Processor) 
class, storage 72 

FORTRAN 252 
CLATT macro 49 
CLI 

Assembler use of 243 
CLIC macro 49 
CLIP macro 49 
CLOSE processing 86-87 

Type=T 86 
code levels (Linkage Editor) 262 
codes 16 and 17 (see Interruption Coue) 
COLLECT command (TSSS) 266 
COM 280 
COMBINE (Linkage Editor) 263 
Combined Dictionary 204 
Command Analyzer and Executor 205 

controller interface 202-203 
flow (figure) 206 
PCS interface 223 
task initiation 231 

command controller 202-203 
overview (figure) 203 

command creation 216-217 
command string 

TSSS 266 
Command System 200-224 

command analyzer and executor 205 
command controller 202-203 
dictionary handler 204 
GATE 204 
interrupt processing 207 
language processor 217 
overview 200 
PCS 219 
source list handler 203-204 
Tailoring 201 
text editor 218-219 
user commands 216-217 

COll!mands 
available to privilege classes 7 
overview 4 

common control section 154 
common expression (FORTRAN) 250,253 
Communication Area (COM) 280 
communication, inter-task 77-78 
Compiler 

FORTRAN IV (see FORTRAN IV compiler) 
PL/I (see PL/I compiler) 

Compiler Executive routine (EXEC) 250-251 
Completion Codes 1, 2, 3 199 
Complex DEF 149-150 
conditional instructions 

Assembler 245-246 
configuration 22 
configuration control 138 
Configuration Control Block (CCB) 272 
CONN 54 
CONNECT 170 

TSSS 265 
connecting modules (Linkage Editor) 262 
CONSTRUCT (BSAM) 93 
CONTEXT (Text Editor) 218 



CONTINUE (FORTRAN entry point) 251 
CONTINUE card (RJE) 234 
Control Architecture 

Resident Supervisor 31 
Task Monitor 42 

control blocks 81-85 
generation 273 
processing overview (figure) 94 
relationship (figure) 277 
Resident Supervisor 276 
Virtual Storage 278 

CONTROL mode 9 
control nucleus 

TSSS 265 
Control Output Module (PL/I) 256 
Control Section (CSECT) 69 

key assignment 154-155 
purpose of 74-75 
rejection 154 
sharing 166 

Control section Dictionary 
(CSD) 147-150,74 

Control Statement (Linkage Editor) 263,261 
Control Unit (device) 140 
Control Unit Table 140 
conversational task 

creation 225 
figures 226-228 
initiation 225-232 
overview 7 
Resident Supervisor processing 225-230 
Task Monitor processing 230-232 

conversational to nonconversational 212 
Copy Data Set (CDS) 214 
Core Block Table (CBT) 120,276 
Core Dump, Stand Alone (utility) 271 
CORRECT (Text Editor) 218 
counter, location 

Assembler 246 
CPU Elapsed time 141 
CPU Identification 272 
CPU Interval time 141 
Crossbar switch 22,23 
CSD 147-150,74 
CSECT (see Control Section) 
CSTORE 76 
CSW 189 
C1 option (Dynamic Loader) 152-153 
C2 option (Dynamic Loader) 153 

DADSM 132 
DAIB 276,182 
DASDI 271 
DAT 17-21,121 
Data Button, used during LOGON 8 
DATA command 213 
Data Control Block (DCB> 81-82,69 

glossary 278 
Data Definition (Assembler) 244 
Data Event Control Block (DECB) 81,85 

glossary 278 
Data Extent Block (DEB) 84-85,278 
data group (MSAM) 63 
Data Management 81-106,56-65 

Examples 
BSAM processing 87-100 
VSAM processing 100-106 

macro instructions 57 
OS data set support 60 
overview 81-87 

rata Management commands 213-216 
data set 

creation of (DATA) 213 
delta, STARTUP 272 
modify 214 
PL/I 256,255 

Data Set Control Block (OSCB) 83-84,279 
Format E 100-101 
Formats 

SAM 130 
VAl'.· 133 

maintenance 158 
data set descriptor (DSD) 67,132-133 
Data Set Interlock 163 
data set name (DSNAME) 82 
Data Set Sharing 161-162 
DATASET card 233 
DC (Assembler processing) 254 
DCB (see Data Control Block) 
DDEF 82-83,69 

device allocation 135-136 
figure 88 
Library, user 69 
Linkage Editor 261 

DDEF command 213 
alter (RET) 214 
CDD 214 
conversational proceSSing 231 

DDNAME 82 
DEB 8 4- 85, 278 
deblocking/blocking in QSAM 62 
DECB 81,85 
DEF 149-151,155 
default values 200 
DEFAULT verb 205 
DEFINE corr.mand (TSSS) 266 
Define Constant (DC> 

Assembler processing 254 
define data name (DDNAME) 82 
Define data set (see DDEF) 
DELCAT Routine 159 
DELET macro 51 
DELETE (program module) 155-156 
DELETE command 213 
delete JFCB (RELEASE) 215 
Delete Interrupt Routine (DIR) 

use of 44-45 
delete VAM (DEIVAM) 214 
DELPG SVC 123 
delta data sets (STARTUP) 272 
Delta-to-run (DTR) 112 
DELTSI SVC 129 
DELVAM command 214 
device addressing 139-140 
Device Allocation 133-140 

dynamic 136 
nonconversational 136-137 
Pathfinding 138 

Device Group Table 139 
Device Interaction Group (DIG) 40 
Device Management 

Allocation 133-134 
Pathfinding 138 
Re1ease 

Device Queue Processor 34 

Index 299 



in BSAM READ example 96 
devices, public and private 15 
DHD (DCB Header) 85 
DIAGNO 48,209 
diagnostic 

Assembler 
control 248 
macro 245 
syntax 243 

Linkage Editor 260-261 
Dial-up 8 
DICB 172-173,276 
Dictionary 

Assembler 245 
Dictionary Handler (command system) 204 
DIG (see Device Interaction Group) 40 
DIR (see Delete Interrupt Routine) 
Direct Access Device Space Management 

(DADSM) 132 
Direct Access Interface Block 

(DAIB) 182,276 
Direct Access PRINT (utility) 271 
Direct Access Storage Device Initialization 

(DASDI) 271 
DISABLE command 219 
DISCONNECT command (TSSS) 266 
disk pages/cylinder 129 
Disk Paging 181-188 

example 183-188 
philosophy 181 

disk storage allocation 129-130 
Dispatchable List 113-120 

Dispatcher use of 34-35 
Dispatcher 34-35,92 
DISPLAY 

command 
PCS 219 
TSSS 266 

command analyzer 205 
DISPLAY/DUMP (PCS) 223 
display information commands 216 
Distributed switching 22 
DLINK 152,50 
DO loops (FORTRAN) 252-253 
$ (TSSS) 266-268 
DRAM 65 
DROP (device) 211,135 
Drum Access Method (DRAM) 65 
Drum bit directory 129 
Drum Interface Control Block 

(DICB) 172-173,276 
Drum Paging 171-174 

CCWs 174-175 
channel program (sample) 175 
Relocation Exception (example) 175-179 
TSE processing (example) 179-181 

Drum preference 129-130 
Drum Share (STE) 113 
DSCB 83-84,100-101 

maintenance 158 
SAM 130 
VAM 133 

DSD 133 
DSNAME 82 
DSS? command 216 
DTR (STE) 112 
DUMP/DISPLAY (PCS) 223 
DUMP/RESTORE 271 

300 

DUMP verb 
command system 205 
TSSS 266 

Duplex configuration 23,26 
Dynamic Address Translation 

(DAT) 17-22,121 
dynamic allocation 

devices 136 
storage (see storage allocation) 

Cynamic Loader 143-157,42-45 
Control Section Dictionary 148 
CSECT sharing 166-167 
introduction 143 
PCS interface 223-224 
processing 151 
Program Module Dictionary 143 
Relocation Dictionary 150 
Task Dictionary 144 

rynamic Relocation 17-22 
Dynamic statement processing (PCS) 220 

E DSCB 133 
Early-End processing (Linkage Editor) 264 
Edit (text editor) commands 218-219 
Edit Controller 205 
Editing (Linkage Editor) 262 
EF (FORTRAN) 251 
Elapsed time 

CPU 141 
task 141-142 

Eligible List 113-120 
EMCI 194,193 
ENABLE (Text Editor) 219 
END (Test Editor) 218 
END command (TSSS) 266 
End of file (EOF) 

RJE 238-239 
END statement 

Assembler 247 
FORTRAN compiler 249 
Linkage Editor 263-264 

ENTER macro 59 
ENTER SVC 

concept 13-14 
example 87 

ENTER Table 
use of 59 

Entrance Criteria (scheduling) 114 
Environment, System 

Hardware 22 
Multiprogramming 16 
Operational 5 

EOF (RJE) 238 
figure 239 

EPE (in RESTBL) 85,101 
storage allocation 120-123 

EQU (equate> 149 
EQUATE (EQU) statements 

Assembler processing 247 
EQUIVALENCE statement (FORTRAN) 251-252 
ERASE command 214 
EREP/67 192 
ERF (FORTRAN) 251 
Error 189-199 

descriptions 189 
recording 189-191 
recovery and retry 192-198 



retrieval 192 
error handling 

Linkage Editor 262 
ERROR macro 189 
error overview, Resident Supervisor 

(figure) 193 
error record retrieval 191-192 
Error Recording Edit and Print 

(EREP/67) 192 
Error Recovery procedures 192-198 

machine error 193-195 
Paging I/O error 195-197 
Task I/O error 197-198 
VAM 198 

Error Recovery Routines 
Resident supervisor 39 

Error Retry procedures (see Error Recovery 
procedures) 

ESA (see External Storage Allocation) 
EXCERPT (Text Editor) 218 
EXCISE (Text Editor) 218 

operator (FORTRAN) 253 
EXEC (FORTRAN) 250 
EXECUTE corr.mand 212 
execute program 

CALL 216 
RUN 216 

EXIT macro 51 
EXPAND 124 
Explicit Linkage 151-153 
EXPRESS mode 9 
Expression File (EF) (FORTRAN) 251 
Expression Representation File (ERF) 

(FORTRAN) 251,253 
Extend (SAM Storage) 130 
Extended Control PSW 

address translation 18-19 
programmed interrupt 36-37,48 
TSS Feature 29 

Extended Instruction Set (SVCs) 13 
Extended mode 29 
Extended TSI (see XTSI) 
EXTERN (CSD processing) 149 
External Interrupt 47 
External Interrupt Initialization 

Subprocessor (XIIS) 207 
External Interrupt Processor (XIP) 77-78 

command system 207,206 
External Machine Check Interrupt processor 

(EMCI) 194,193 
External Page Entry (EPE) 85 

insertion of 105 
sharing 166 
storage allocation 122-123 

External Page Table (XPT) 
Dynamic Loader 143 
example 18-19 
storage allocation 122-123 
use of 59 
VAM GET 105 

External References (Linkage 
Editor) 261-262 

External Shared Page Table (XSPT) 168,276 
figure 170 

External Sharing 161-168 
data set 161 
internal control, with 163 
programs 162 

External Storage 
allocation of 

SA~ volumes 130-131 
VAM volumes 132 

public, private, system 14-15 
External Symbol 145-147,74 

CSD 148-151 
external symbol definition entry 

(DEY) 148-151 
external symbQl reference entry 

(REF) 148-151 
External/Virtual buffer relationship 106 

F DSCB 133 
fair share (auxiliary storage) 128-129 
fence-sitter 80 
Find data set (FINDDS) 82 
FIND JFCB (FINDJFCB) 82 
FINISH macro 63 
First Preprocessing output Module 

(PL/I) 256 
Floating Storage Address switch 272 
FORCE 210 
FORM 1-3 (Linkage Editor) 263-264 
format, DSCB (see DSCB) 
FORTRAN compilation 

in nonconversational overview 17 
FORTRAN IV compiler 249-254 

external interfaces 250 
organization 250-253 
overview 249-250 
phases 251-253 
storage class 252 

FORTRAN IV PLMs 276 
48-character preprocessor (PL/I) 256 

GATE Routine 204 
GATRD macro 204 
GATWR macro 204 
General Queue Entry {GQE} 

BSAM READ example 87-97 
description 39 
Drum 1.74 
glossary 276 
Internal Scheduler 35 
Interrupt Stacker use 32,87 
Queue Processors 37-38 
use with Scan Table 40 

GENSCB (SYSGEN) 273 
GET SBLOCK Routine 160 
GET/PUT processing 100-105 
GETLINE 217 
GETMAIN 120 
GETS~AIN 169 
GIVE BACK SAM (GIVBKS) 1.32 
global storage (FORTRAN) 252 
GO verb 205 
GQE (see General Queue Entry) 
GTWAR macro 204 
GTWRC macro 204 
GTWSR macro 204 

hard failure 192 
hardware configuration 22 
hardware error 

Index 301 



definition 189 
system 198 

Hardware state 
problem 10 
supervisor 10 

Hash Table (Dynamic Loader) 145 
Hashing (Dynamic Loader) 145-146 
HOLD (device) 211,135 
Holding levels 112-113 

IAIP 207,206,232 
task initiation, conversational 

IBM-supplied problem programs 14 
ICB (see Interrupt Control Block) 
Identify CPU 271-272 
IF command 205 

PCS 219-220 
TSSS 265 

processing 269 
immediate statement (PCS> 219 
Implicit linkage 151 
Inactive/Active lists 113-119 

auxiliary storage allocation 128-129 
inboard failure 195 
INCLUDE (Linkage Editor) 263 
Independent Utilities PLM 275 
Index level (catalog) 161-162 
index portion (symtolic library) 70 
INDEX Routine 158-159 
information display commands 216 
INITIAL (FORTRAN) 251 
Initial Attention Interrupt Processor 

(!AlP) 207,206 
Initial Program Load (IPL) 271 
Initial Program Load UPO volume 15 
Initial Virtual Memory (SYSIVM) 15 

description, concept 128 
drum 111 
Dynamic Loader 145 
STARTUP 271 

Initialization 27 
initialization, task 

conversational 225 
non conversational 232 

Inout (interlock) 163 
Input Closeout (BULKIO) 233 

RJE (figure) 239 
Input Component {PCS} 220,222 
Input option (interlock) 163 
Input Service 232,234 

RJE termination 238-239 
RJSTART (figure) 237 

Input Start 
BULKIO 232 
R.JE 234 

INSERT (Text Editor) 218,103 
INSERT command 218 
INSPAGE/DLLPAGL 101 
instruction counter 19 
instruction synthesis (Assembler) 246 
Integrity 

Auxiliary Storage 71-72 
control 71 
DCB 84 
External Storage 71-72 
task 44-45 

inter-CPU communication 47 

302 

Interconnection 22-23 
Interlock 

concep: 24 
SDAT 133 
sharing (external) 163-164 
data set 163 
memter 163-164 
page 164 
read 163 
write 163 

Interlock levels (STEs) 113 
Internal Scheduler 

Dispatcher interface 35 
Task scheduling 114-120 

Internal REF 149 
Internal sharing 168-170 
Internal Symtol Dictionary (ISD) 74,279 
Interphase Dumping and Tracing (PL/I) 256 
Interruption Codes 

general SO 
relocation 155 
16 and 17 48,169 

Interrupt Control Block (IeB) 44,279 
building 44 

Interrupt Handling 47-52 
Attention 49 
Command System 207-208 
External 

Timer 47 
Write Direct 47 

1/0 48-49 
Machine Check 47 
Program 47-48 
programmed 35-37 
Resident Supervisor 31-34 
SVC 50-52 
task integrity 44-45 
Task ~onitor 42-44 
user-specified handler 44 

Interrupt Inquiry macro (INTINQ) 44 
Interrupt, I/O, asynchronous or synchronous 48- 1+9 
Interrupt Queue Processors 37-38 
Interrupt Stacker 

BSAM examrle 87,98 
I/O Interrupt processing 49 
Resident Supervisor 32 
task initialization 225 

Interrupt Storage Area elSA) 36-37,279 
Interrupt Table (ITB) 42,279 
Interval time 

CPU 141 
Task 141 

Interval Timer (STARTUP) 272 
Inter-task communication 76-77 
INTINQ macro 44 
Invocation phase (Dynamic Loader) 151 
I/O, (RSS, TSS) 265 
I/O address 133-134 
I/O Interrupt 48-49 
I/O Page Control Block (IOPCB) 106-107,276 
I/O Request (IOREQ) 64 
1/0 Request Control Block 60 
I/O retry procedures 192-193 
I/O task operations 72-73 
lOCAl. 

BSAM READ example 95 
IOPCB 102-103,276 
IORCB 60,276 



IOREQ 64 
IPL 271 
IPL voluIf,e 15 
ISA 36-37,279 
ISD 74,279 
ITL <Interrupt Table) 42,279 
IVM (see Initial Virtual Memory) 

Job File Control Block (JFCB) 82,69 
DDEF 213- 214 
glossary 279 

JFCB (see Job File Control Block) 
Job Library (JOBLIB) 69,83 
JOIN 8 
JOINRJE corrIDand 234 

Key 
assignment, CSECT 154 
CAW protection 77 
PSW protection 77 
storage protection 77,12-13 

keyword (command system) 200 
KX (read interlock) 164 
KY (read interlock) 164 

Language Control 
TSSS 267-269 

Language Processing 243-260 
Assembler, TSS/360 243-248 
compiler 

FORTRAN IV 249-254 
PL/I 255-260 

Language Processor Control (see LPC) 
LDS (see line data set) 
Leave Privilege (LVPRV) 45 
Level (STE) 111 
Levels, system 10 
LIBMAINT 69 
Libraries, Object and Symbolic 69-70 
library retrieval 

Assembler macro 245 
Line data set 59,279 
line data set (commands) 

creation (LATA) 213 
modify 214 

LINE? corrmand 216 
Link Editor (see Linkage Editor) 
link load phase, STARTUP 272 
linkage conventions 79-80 
Linkage Editor 261-264 

APGENX data set 16 
control statements 263-264 
divisions 262-263 
error handling 262 
library calls 262 
processing requirements 261 
program modification 262 

Linkage Editor PLM 275 
LIST (Text Editor) 218 
LIST.XXX (PL/I) 255,256 
literal (constants, pools) 246 
LNK 262 
LOAD con;mand 216 
LOAD expansion 152 
LOAD key (SYSBLD) 271 

Load VPSW 
BSAM READ e){an;ple 92-93 
interruption processing 42 

LOAD.XXX (PL/I) 255,256 
Loading (Dynamic Loader) 153-154 

Unload 157-158 
LOADLIST 15 
LOCATE corrn;and 218 
LOCATE Routine 159 
location counter 

Assen;cler 246 
IOF (Assembler) 245 
Logical Order File (LOF) 245 
Logical phase (PL/I) 255-256 

Table 257-258 
LOGOFF 8 

nonconversational task 233 
overview (figure) 239 

LOGOFF cOIf.mand 212 
lOGON 

conversational 22S,231-232 
nonconversational 233,238 

overview (figure) 239 
TSSS 265 

LOGON cOITrrand 211 
LOGON procedure 8 
Loop processing (FORTRAN) 249,253 
Low core threshold 121 
LPC 

Assembler control interface 248 
Assemcler use of 243-244 
command system 217 
FORTRAN compiler 249-250 
Linkage Editor 261-264 

LPC l'AIN 217 
LPCEI:IT 205 
IPCINIT 205 
LVPRV 45 
LVPSW (see Load VPSW) 

MAC.XXX (PL/I) 255,256 
machine address 

Asseroc~er 246 
~achine Check Interrupt 47 
nachine error 

processing 193-195 
recording 191 

~ACNDX data set 16 
Macro Index (MACNDX) 16 
macro ~anguage (Assernb~er) 244 
nacro ~itrary (Assembler) 245 
Macro Library (SYS:'lAC) 16 
nacre rrocessing 245-246,243 
Main Operator Coromunications Program 

(MOCP) 210 
~ain Operator Control Program (MOCP) 210 
~ain Operator Housekeeping Routine 

(MOHR) 210 
~ain Operator Task 

Systerr Operation 209 
VMTI 205 

~ain Output Module (PL/I) 256 
Main Storage Allocation 120 
nain system operator 8 
MAINLINE EOV 86 

figure 86 
major error 180 

Index 303 



Malfunction (multiprocessing) 27 
malfunction alert 193 
Manager, System 5 
MAP CDynaIdc Loader} 145,279 
Master Index (catalog structure) 66 
Master System Prograrr~er (MSP) 265 
MCB 77,276 
MEB 78,279 
Member Interlock 163 
Memory Map Table (MAP) 145,279 
MERGEDS (PLlI) 256 
MERGELST (PL/I) 256 
MERGESAM 132 
Message Broadcast routine 210 
message codes (command system) 207-208 
Message Control Block (MCB) 77,276 
Message Event Control Block (MEB) 78,279 
message facilities 201 
Message, intertask and operator 77-78 
microprogram 10 
minor error 189 
mneumonic 

Assembler 245 
MOCP 210 
MODIFY command 214 
modify prograrr, (Linkage Editor) 262 
module handling routines 216 
Module structure 74-76 
Module Usage Table (MUT) 156 

Figure 156 
MOHR 210 
Monitor, System 5 
Mount Request 136 
MOVEPAGE 

in BSAM example 103-104 
MOVXP SVC 123 
MSAM 62-63 

Read card (RJE) 237 
MSG (System Message Record) 279 
l"JSP (TSSS) 265 
MTSCB 53-55 
MTT/RTAM 53-55 
Multiple Sequential Access Method 

(MSAM) 62-63 
Multiprocessing Features 24 
Multiprogramming 16 
Multiterminal Status Control Block 

(MTSCB) 53-55 
Multiterminal Task 53-55 
MUT 156 

named expression (FORTRAN) 253 
NAU (SVMA) 127 
nested macro expansion 245-246 
Next Available Unit (NAU) (SVMA) 127 
NEXTPAR (SCAN) 205 
nonconversational tasks 

batch monitor 208-209 
batching 16-17 
initiation processing 

BULKIO 232 
RJE 234 

overview 16 
Nonprivilege (user) state 10,12 
Nonprivileged System Hash Table 

(SYSHASHNP) 146 
Null commands 8 

304 

NUl>!BER ('Text Editor) 218 
NUMSTG (SCAN) 205 

o Authorization 7 
Object Data Set Converter (ODC> 

(PL/I) 256,255-260 
Ol:;ject Library 69 
Object module handling routines 216 
OBTAIN Routine 158 
ODC (PL/I) 256,255-260 
OLTAM 64-65 
Online Test Access Method 64-65 
OPEN processing 83-84 
Operation, system (examples of) 225-239 
Operator Log 16 
Operator, System 5 
Operator Task 

Batch Monitor 208-209 
Main 210 
nonconversational processing 233 

Optimization Output Module (PL/I) 256 
option codes (Dynamic Loader) 152 
OS/360 data set support 60 
outboard failure 195 
Outin (interlock) 163,164 
output 

Assembler 243,247-248 
FORTRAN IV compiler 249 
Linkage Editor 261,264 
PUI 255-256 

Output Component (PCS) 222-223 
Output OFtion (interlock) 163,164 
output, RJE 238 

P Authorization 7 
packing 125-126 
Page Assignment Table (PAT) 132,279 

error 198 
Page concept 18 
Page Control Block (PCB) 

Auxiliary Storage 128-129 
description 41 
Dispatcher 35 
glossary 276 
storage allocation 121 
use of 171-175 

Page Control Block Entry 
(PCEE) 171-174,181-183 

Page Direct Access Queue 
Subroutine 181-183 

page directory 59-60 
~age header (SVMA) 127 
Page-in, drum 175-179,171 

error 195,196 
Page Interlock 164 
PacJe number, VA~l external storage 85-86 
Page-out 

dis k 181-188 
drum 179-181 
error 195-196 

page relocation 
examf:le 175 
paging 171-174 
task integrity 45-46 

Page Table 18-21 
dynarric loader 154 



glossary 276 
Virtual storage Allocation 122-123 

page wait 21 
Paging 

causes 171 
Disk 181-188 
Drum 171-174 
Time Slice End 179-181 

paging (auxiliary storage) 128-130 
paging Drum 171-175 

CCWs 174 
channel program (sample) 175 
philosophy 173-174 
Relocation Exception (example) 175-179 
TSE processing (example) 179-181 

Paging Drum Interrupt Processor 
(PDIP) 172-174 

paging Drum Queue Processor 172-174,34 
Paging Error control flow (figure) 195 
Paging Failure Recovery 196 
Paging I/O Error Recording 190-191 

process~g 195-196 
Paging I/O Error Recovery Control 195-196 
Paging Relocation Exception 

Example 175-179 
PAPA chain 156 
parcel (symbolic library) 70 
Partitioned Organization Directory 

(POD) 60 
in Catalog 66 
in Library 69 
sharing 163 

partitioning, system 23 
PAT (Page Assignment Table) 132,279 

error 198 
PATCH command (TSSS) 266 
pathfinding 138-140 
pathfinding and Reconfiguration Tables 276 
PAUSE (device management) 136 
PCB (see Page Control Block) 
PCBE 171-174 
PCS (see program Control System) 
PCSEXEC 207 
PCSVC macro 50 
Pending list (storage allocation) 120-121 
permit (sharing) 161,163 
PERMIT command 214 
PGOUT SVC processing 181-188 
phrase list 219 
PL/I compiler 255-260 

compiler flow (system level) 255 
control 255 

controller flow (figure) 259-260 
data sets used 256 
modules 256 
Object Data Set Converter (ODC) 256 
phases 257-258 
PRVDS 258 

PL/I options 255 
PLC (PUr) 255 
PLI command 255 
PLILIST 255-256 
PLIMAC 255-256 
PLIINPUT 255-256 
PLM directory 275 
PMD (see Program Module 
Dictionary) 143-145,74 

POD (VPAM) 60 

in Catalog 66 
in Library 69 
sharing 163 

POD? con~and 216 
polish 

TSSS 266,268 
position (drum) 171-172 
Precedence order (scheduling) 113 
Preempt (STE) 113 
Preferred page pending list 

(storage allocation) 120-121 
Prefix (multiprocessing) 27 
Prefixed Storage Area (PSA) 28 

glossary 276 
machine error 193 

PRELUDE, (SYSBLD, STARTUP) 271,272 
Prelude, System 195 
Preprocessing Output Modules (PL/I) 256 
PRF (FORTRAN) 251 
Primary Dictionary (command system) 201 
PRINT 

non conversational 
overview 9 
processing 234 

PRINT cOII'.mand 
(data set to printer) 215 

priority 
Queue Scanner 34 
Scheduling 110-111 
Task 113,7 
use of CPU time 17 

Private devices 15 
Private storage 15 
private volumes 

SAM 130 
VAM 132 

Privilege Classes 7.5 
E 64 
MTT 54 
T 54 

Privilege state 10,12 
Privileged System Hash Table 

(SYSHASHP) 146 
PROCDEF 201 

command 216 
Program Control System (PCS) 219-223 

CA&E interface 223.220 
command analyzer 205 
command restriction 219 
components 220,223 
Dynamic Loader interface 223-224 
processing (figure) 221-222 
statement processing 219-220 
Task Monitor interface 223 

Program Interrupt 47-48 
codes 16 and 17 48 

Program Language Controller (PLC) 
(PL/I) 255 

figure 255 
Program Logic Manuals (PLMs). TSS 275 
Program ~odule Dictionary (PMD) 143-145,74 

glossary 279 
Program Module Structure 74-75 
Program Parameter List Analyzer 205 
Program Representation File (PRF) 

(FORTRAN) 251,253 
program sharing 162-163 
Program Status Word (PSW) 

Index 305 



comparative format 36 
concept, format 29-30 
machine check 193 
protection key 72 
TSSS 267 

programmed interlock 24,27 
Programmed Interruption 

concept 35 
schematic 36 

protection (see Integrity) 
Protection key 

CAW 72 
PSW 72 
Storage 72,12-13 

Prototype Control Section (PSECT) 75-76 
PRVDS (PL/I) 258 
PSA 28,87 

glossary 276 
machine error 193 

PSCET 
concept 75-76 
dynamic loading 149 

pseudo-Register Vector Table (PL/I) 258 
PSW (see Program Status Word) 
PSW protection key 72 

alteration of.. 12 
use example 87 

Public devices 133-134,15 
public Segment 126 
Public Storage 14-15 
Public/Private Volume Tables 

(PVTs) 132-133,279 
PULSE level 112 
PUNCH command 

(cards from data set) 215 
push-down save area 76 
PUT/GET processing 100-106 
PUTDIAG (LPC routine> 217 

Assembler 243 
PVT (Public/Private Volume Table) 133,279 

QCON (PL/I) 256,258 
QE (see Queue Entry) 
QLE (see Queue Linkage Entry) 
QSAM 61-62 
QUALIFY command (TSSS) 266 
QUANTA count 111 
QUANTUM length 111 
? operator (FORTRAN) 253 
Queue Entry (QE) 42-43,279 

(see also General Queue Entry) 
Queue Linkage Entry (QLE) 

Attention interrupt 49 
task initialization 230 
Task Monitor interrupt 42-43 

Queue Processors 
interrupt queue 38 
request queue 38 
Resident Supervisor overview 37-38 
SVC queue 38 

Queue Scanner 
Resident Supervisor 34 
Scan table 40 
use in BSAM example 88,91 

Queued Sequential Access Method 
(QSAM) 61-62 

as fence-sitter 85 

306 

quick cells (supervisor storage 
allocation> 121 

R address constant 75,143 
dynamic loading 148-151 

R option (VMA) 127 
RAE macro 51 
RATION (RCR) 109-110 
RCER 190-191 
RCON 75.143 

dynamic loading 148-151 
RCR 109-110 
RCSDR 190 
RDS 280 
RE (see Request Entry) 
READ 

Example of BSAM processing 87-100 
Read Cards job (MSAM) 237 
read interlock (sharing> 163,164 
read-only access (sharing) 161 
Reader, card (RJE) 237,235 
read/write access (sharing) 163 
Real Core Error Recording (RCER) 190-191 
Real Core Statistical Data Recording 

(RCSDR) 190 
Real time (timer) 141 
Recompute (SST) 112 
Reconfiguration module 192-195 
Recording errors 189-190 
Recovery (see Error Recovery Routines) 
Recovery Nucleus 192-193 
recursive operator (FORTRAN) 253 
reenteratle code 75 
REFs 148-151.155 
REGION command 218 
Region data set (RDS) 280 
register specification 

Assembler 244 
FORTRAN 249 

Reinitialization 27 
Rejection (control section) 154 
relative address 

Assembler 246 
Relative External. Storage Correspondence 

Table 280 
Data Management 84-85 
sharing 165-166 
use of 59 

Relative Volume 
RELEASE command 
Release device 

Number ( RVN) 
215 

85-86 

136 
command 215 

Relocatable DEF 149 
Relocation (dynamic loader> 155 
relocation, address constant 75 
Relocation Address register 

(addressing) 18 
Relocation Dictionaries (RLDs) 
Relocation, dynamic 17-21 

150-151 

Relocation phase (Dynamic Loader> 143-144 
Relocation Tables, relationship 170 
Rerr.ote Job Entry (RJE) 234-239 

control card processing 234 
figures 235- 239 

initiation 235-236 
(see also BULKIO) 

line enable (figure) 235 



line prepare (figure) 236 
termination 238-239 

Remote printer, reader (RJE) 234 
REMOVE comwand (TSSS) 266 
Remove module (UNLOAD) 216 
RENAME (Linkage Editor) 263 
RENAME Routine 158 
Reply Checking Table 210 
REPLY command 210 
REQPAGE 103 
Request Entry (RE) 42-43,280 
Request Page (REQPAGE) 103 
Request Queue Processors 37-38 
Request Queue table 136,280 
Rerun (RJE) 234 
Rescheduling 116 
reserve devices 212 
reserve list (devices) 137 
Reserve list (storage allocation> 121 

glossary 278 
Reserved volumes 133 
Resident, nonresident - concept 10,11,12 
Resident Shared Page Index 276,168 
Resident Supervisor 10 

characteristics 10 
component structure (figure) 33 
components 32 
data set 15 
functions 31-32 
Interruption 32 
logic overview 31-41 
task initialization 

conversational 226 
nonconversational 232 

Task Monitor interface 42 
TSSS interface 266 

Resident SUpervisor error handling 
(figure) 193 

Resident Supervisor PLM 275 
Resident Support System (RSS) 265 
Resident Terminal Access Method 

(RTAM) 53- 55 
residue item (FORTRAN) 253 
Resource Allocation and Control 109-110 

auxiliary storage allocation 128 
device allocation 133 
external storage allocation 130 
initial virtual storage 128 
main storage allocation 120 
pathfinding 138 
timer services allocation 141 
virtual storage allocation 122 

Resource Sharing 3 
RESSUP data set 15 
RESTBL (see Relative External Storage 

correspondence Table) 
RESTBL Header (RHO) 85,280 
RET (alter data set attricutes) 214 
RETAIN Routine 158 
Retrieval 

error record 192 
retry procedures 192-193 
REVISE (Text Editor) 218 
Revoke share privileges 214 
RHD (RESTBL Header) 85,280 
RI 163 
RJE (see Remote Job Entry) 235-239 
RJE Asynchronous Interrupt Subprocessor 

(RJEAIS) 235-237 
RJE Line Control (RJELC) 235-236 
RJE output 238 
RJEAIS 235-237 
RJELC SVC (RJE) 235.238 
RJEND (RJE) 238 

figure 239 
RJSTART (RJE) 237.238 

figure 237 
RLD 150-151 
RSPI 168-169 
RSPRV macro 51 
RSS (TSSS) 265 
RSV 121,278 
RT 203 
RTAM/MTT 53-55 
RTRN macro 51 
RUN command 216 

TSSS 266 
processing 269 

RUN LNK 262 
RVN (Relative Volume Number) 85-86 

S-block (catalog) 67,278 
routines 159-160 

S-entry 232-233,234 
SAM (see Sequential Access Method) 
SAM volume allocation 130-132 
SAMSEARCH 130 
SAT 280 
SCAN Routine 205,202 
Scan Table 

description and figure 40 
design concept 34 
glossary 278 

Scan Threshold 112 
Scanner/Dispatcher (Task Monitor) 42-44 

enable/disable of 44-45 
SCANT (see Scan Tacle) 
scatter-read 93 
Scheduled Start Time (SST) 112 

calculation 118-120 
Schedule 'fable 

Dispatcher use 34-35 
Scheduling 110-120 

active/inactive lists 113 
algorithm 115-117 
overview 110 
Table 111-113,118 
task 114 
walkthrough 117-120 

SCRATCH 130 
SDA (see Symbolic Device Address) 
SDAT (see Symbolic Device Allocation Table) 
SDST 165-168 
SEARCH SBLOCK Routine 159 
Search SDST 165 
Second Preprocessing Output Module 

(PL/I) 256 
SECURE command 213 
segment concept 21 
Segment Table 18-21 

glossary 278 
sharing 168-169 

Sequential Access Method (SAM) 60-65,56 
data management 83 

SEREP 192 

Index 307 



SERR 194,191 
retry 192 

SERR bootstrap 194,192 
Service Routines 5 

Resident Supervisor 39 
SET command 

PCS 219 
TSSS 266 

Set External Page Table Entry (SETXP) 144 
Set Interrupt Request (SIR) 43-44 
Set Path (SPATH) SVC 138 
SETTR macro 142 
SETUR macro 62 
SETXP SVC 144 
SGT (see Segment Table) 
SHARE command 215 

R (revoke) option 214 
SHARE Routine 159 
Shared Data Set Table (SDST) 165-168 
Shared page Table (SPT) 124-125,165-169 

glossary 278 
SHAREUP Routine 159 
Sharing 

description and processing 161-170 
External 161-168 
Internal 167-170 
protection (nonpriv) 71 
storage allocation 124-125 
type of 161 
VAM 165-166 
VISAM. VPAM 163-164 

SHUTDOWN 211 
Signaling (multiprocessing) 27 
Simplex configuration 23.24 
SIORCE (TSSS) 268 
SIR (see Specify Interrupt Routine) 
slot sorting (paging) 171-172 
SLX 280 
Small Virtual Memory Allocation (SUMA) 127 
Software state 10 
source lines (Linkage Editor) 261 
Source List Handler 203 

controller 202 
source portion (symbolic library) 70 
SOURCE.XXX (PL/I) 255-256 
SPATH SVC 138 
SPEC macro 44 
Specify Interrupt Routine (SIR) 

in Task Monitor Interrupts 43-44 
split hash 146 
split operator (FORTRAN) 253 
SPT (Shared Page Table) 124-125,165-169 
SRCHSDST routine 165 
SST (Scheduled Start Time) 112 
Stand Alone Core Dump (utility) 271 
Standard Area Retry 196 
Standard User Label (SUL) 132 
STARTIO 96 
STARTUP 271-273 

data set 15 
TSSS 265 

STE (Schedule Table entry) 111-112,114 
Steal Request 112 
STET (Text Editor) 218 
STIMER 142 
STOP command (TSSS) 266 
Storage Allocation 120-132 

Auxiliary 128 

308 

byte rrultiple (SVMA) 127 
External 130 
IVM 128 
supervisor 121 
user 120 
VAM volume 132 
virtual 122 

storage class 72 
FORTRAN 252 

storage cycle 24 
storage key 72,12-13 

protection 154 
Storage ~ap Table (MAP) 147,145 

command system 208 
storage protection key 154 
storage, system 14-16 
SUL 132 
Supervisor (see Resident Supervisor) 

(see also Task Monitor) 
Supervisor Calls (see SVCs) 
supervisor overhead 17 
supervisor storage allocation 121-122 
suppress auxiliary storage allocation 129 
SVC 

interruption in Resident 
Supervisor 50-52,42 

privilege support 13 
Queue processors 51-52,39 
TSSS 265 

SVMA 127-128 
switching. hardware component 
Symbol Definition (assembler) 
Symbol Table 

Assembler 245 
Symbolic Device Address 

concept 133-134 
Private devices 135 
Public devices 134 

23-24 
243-244 

Table 134-135,131 (see SDAT) 
Symbolic Device Allocation Table 

(SDAT) 134-135,131 
glossary 280 

Symbolic Library 69-70 
Symbolic Library Index (SLX) 280 
symbolic-to-actual address 138 
SYNAD 198 
synchronous interrupt 

definition 49 
Task I/O error 197 
versus asynchronous in CIP 98 

synonym 
command system 200 
dynamic loader 145 

syntax 
analysis 

Assembler 244 
FORTRAN 249 

Assembler diagnostic 243 
command system 200 

synthesis, instruction (Assembler) 246 
SYSBLD data set 15 

routine 271 
SYSCAT data set 16 

in catalog overview 66 
SYSCCB 15 
SYSER rr.acro 189 
SYSERR 198 
SYSGEN (see System Generation) 



SYSHASHNP 146-147 
SYSHASHP 146-147 
SYSIN 8 

Attention interrupt 49 
command system 208 
nonconversational 8 

SYSIN data set (nonconversational) 233 
SYSINDEX 70 
SYSIVM data set 15 
SYSLIB data set 16,69 

creation of 231 
sharing 162-163 

SYSLIB (SYSMLF) data set 16 
SYSLOG 16,210 
SYSMAC data set 16 

in symbolic library 70 
SYSMLF data set 16 

conversational task 231 
SYSOPERO.SYSLOG 16 
SYSOUT 8,9 

command system 208 
PRINT (non conversational) 9 

SYSPRX 204 
System Accounting Table (SAT) 280 
System Administration commands 211 
System Administrator 5,7 
System Build (SYSBLD) 15,271 
System Build Program 271 
System catalog (SYSCAT) 66 

data set 16 
system components, interconnection 22 
System Configuration Control Block 15 
System Control Block (see Control Block) 

generation of 273 
System Control Blocks PL~ 275 
System Environment 9-10,5 
System Environment Recording, Edit and 
Print (SEREP) 192 

System Environment Recording and Retry 
(SERR) 194,191-192 

system error 189 
recording 191 
SERR example 194 

System Error Processor (SYSERR) 198 
System Generation 

STARTUP 271-272 
SYSBLD 271 
SYSGEN macros 273 

System Levels 10 
System Library (SYSLIB) data set 16 

sharing 162-163 
System Log (SYSLOG) 16,210 
System Macro Index (MACNDX) 16 
System Macro Library (SYSMAC) 16 
System Manager 5 
System Message data set 203 

(see also SYSMLF) 
System Message Record (MSG) 279 
System Message Table 16 
System Monitor 5 
System operation commands 210-211 
System Operation, examples of 225-239 
System Operator 5 
System Operator services 209 
System Overview 3,5 
System Packing 125 
System partitioning 23 
System Prelude 195 

system program structure 9 
system prototype file (SYSPRX) 204 
System Resource accounting 109-110 
System Services Routines 120-142 

concept 12 
PLM 275 
use by nonprivileged user 13-14 

System storage 14-16 
System Table 278 
System User Library (USERLIB) 16 
System User Table (SYSUSE) 16,109 
system users 5 
SYSULIB 69 

PLlI, use in 255-256 
SYSULT 109 
SYSUSE data set 16 

in RCR 109-110 
SYSXBLD 70 

Table Register (Addressing) 18-20 
'Iailoring (command system) 201 
T&"1 63-64 
TAM IORCB generation (Figure) 95 
Tape access (BSAM) 60 
Tape switch (figure) 139 
tape to VAM 215 
tape write 

TV (tape to VAM) 215 
VT (VAM to tape) 215 
WT 215 

Task (concept) 7 
Task Comn.on (TCM) 280 
task communication 77 
'Iask Data Definition Table (TDT) 83,280 

DDEF 213-214 
Task Dictionary (TDY) 144-145,280 
task elapsed time 142 
Task Event Control Block (TECB) 65 
Task I/O Error Recording 191 

figure (overview) 197 
processing 197-198 

Task Identification Number (TID) 7,77 
Task initialization 

conversational 225-232 
nonconversational 232-239 

Task Integrity 44-45 
Task Interrupt Control (TIC) 35 

BSAM READ example 92 
function 42 
Program Interrupt 48 
SVC processing 50 
task initialization 229-230 
TSSS 268 

task interval time 141 
Task Management routines 211 
Task Monitor 

BSAM READ example 92 
conversational task interface 230 
Des cription 50 
Interface with Resident Supervisor 42 
Interrupt processing 42-43 
overview, concepts 11,12 
PCS interface 223 
Scanner/Dispatcher 96-97 
Timer 141-142 

Task Scheduling Walkthrough 117-120 
'Iask Status Index (TSr> 278 

Index 309 



creation 7 
Description 40 
Dispatching 35 

Task Symbolic Device List (TSDL) 137 
Task System Programmer (TSP) 265 
Task time 141 
task 002 203 
TCM 280 
TCS 54 

task initialization interface 229 
TCT 54,53-55 
TDT 83,280 
TDY 144-145,280 
TECB 65 
Telecommunication Access Method 

TSSS 267-268 
Temporary close (T) 86 
Terminal Access Method (TAM) 63-64 
Terminal allocation philosophy 133-134 
Terminal Communications Subprocessor 

(TCS) 54 
task initialization interface 229,227 

Terminal Control Table (TCT) 53-55 
Terminate task 

ABEND 199 
CANCEL 212 
LOGOFF 212 

Text Editor 218 
commands 218-219 

TIC (see Task Interrupt Control) 
TID 7,77 
TIME (specify task time) 213 
Time measurement 141-142 
Time Sharing 

concept 16-17 
definition 3 
design 11-13 
efficient use of 21 
Introduction 3 

Time Sharing Support System (TSSS) 265-271 
interruptions 32 
language 265-266 
overview 265 
sample session 265-271 

Time Slice 
concept and overview 16-17 

Time Slice End (TSE) 112,116 
processing example (paging) 179-181 

Timer InterruFt 47,141-142 
Timer Interrupt Processor (TIP) 

in TSE example (paging) 179-181 
timer services allocation 141 
TIP (TSE paging) 179-181 
TMSYNCH 100 
TRAITS (Linkage Editor) 263 
transfer rate (drum) 172 
Transmission Control Unit (2702) 24-26 
TSDL 137 
TSDT 137 
TSE (see Time Slice End) 
TSI (see Task Status Index) 
TSP (TSSS) 265 
TSS***** 15-16 
TSS/360 Features 3 
TSSS (see Time Sharing Support System) 
TSSS Interruptions 32 
TSSS I/O Request Control Block 

(SIORCB) 267-268 

310 

TTIMER 142 
TV command 215 
TWAIT/AWAIT levels 112,112-117 
Type I, II, III, IV linkages 79-80 

Task Integrity (type III) 45 

U Authorization 7 
undefined symbol 155 
underscore 202 
Unit Record processing (MSAM) 62-63 
unit table (SVMA) 127 
unlimited access (sharing) 161 
Unload 156-157 

command 216 
load 153-154 

UNSHARE Routine 159 
UPDATE command 218 
Update ortion (interlock) 163,164 
user catalog 66 
User Hash Tatle (USERHASH) 146 
User Library {SYSULIB} 69 
User Limits Tacle (SYSULT) 109 
User Profile 201,205 
User Prompter 205 
User-specified routines 45 

Attention handling 49-50 
User state (nonprivileged) 10,12 
User storage allocation 120,121 
user, system 5 
User Table (SYSUSE) 16,280 
USERHASH (dynamic loader) 146 
USERLIB data set 16 

PL/I, use in 255,256 
Users 5 
USING 246 
Utility Programs 14,271 

V address constant 75,143 
dynamic loading 148-151 

validate USERID 231 
Validation Data Set 234 
VAM (see Virtual Access Method) 
VAM (VSAM) processing example 101-106 
VAM access procedure 58-60 
VAM sharing 165-166 

VISAM, VPAM 163-164 
VAM to tape (VT) 215 
VAM to VAM write (VV) 215 
VAM Volumes 132 
VCON 75,143 

dynamiC loading 148-151 
verb (command system) 205 
Virtual Access Method (VAM) 56-60 

design 56 
overview 56-58 
VSAM example 101-106 

Virtual Addressing 
CSECT/PSECT theory 75-76 
exan:ple 18-21 
as protection 71 

virtual computer 10 
Virtual/External buffer relationship 110 
Virtual Index Sequential Data Sets 59 

sharing 164 
Virtual Memory Control Blocks 278 
Virtual Memory Environment Recording Edit 



and Print (VMEREP) 191-192 
Virtual Memory Error Recording 

(VMER) 190,70 
Virtual Memory Input Error Recovery 

(VMIER) 198 
Virtual Memory Page Table (VMPT) 148,151 
Virtual Memory Statistical Data Recording 

(VMSDR) 190-191 
Virtual Memory Task Initialization 

(VMTI) 205-206,230-231 
Virtual Partitioned data sets 60 

interlocks 163-164 
Virtual PSW 

comparison 36 
concept 36-37 
in programmed interrupt 36-37,48 

Virtual sequential Data Sets 59 
Virtual Sequential processing 101 
Virtual Storage 

concept 58 
example 18-21 
summary 21 

Virtual Storage Allocation 122-126 
Virtual Storage concept 58 
Virtual Support System (VSS) 264 
Virtual System concept 9-21 
VISAM data sets 59-60 

sharing 164 
VMA (see Virtual Storage Allocation) 
VMER 190,70 
VMEREP 191-192 
VMIER 198 
VMPT (CSO) 148,151 
VMS OR 190-191 
VMTI 205-206 

conversational processing 230-231 
Volume Table of Contents (VTOC> (BSAM) 

SAM allocation 130-131 
Volumes (Space Allocation) 

SAM 129-132 
VAN 132-133 

VPAM data sets 60 
interlocks 163-164 

VPSW (see Virtual PSW) 
VSAM data sets 59 
VSAM processing example 101-106 
VSENO/VSENDR 77-78,52 

88 

VSS (TSSS> 
VSS command 
VT command 
VTOC (ESAM) 
VV command 

WAIT level 
Wait state 

(see also 
WI 163 

265 
(TSSS) 266 
215 
130-131,88 

215 

(Interlock) 
35 

AWAIT/TWAIT) 

Write Direct 27 
interrupt 47 

113 

write interlock (sharing) 163,164 
Write to tape 

TV (tape to VAM) 215 
VT (VAM to tape) 215 
WT 215 

WT command 215 
(data set to tape) 

WTO/WTOR use in ~SAM 63 
VSEND compare 77 

XIIS 207 
XIP 77-78 

command system 207.206-208 
XPT (see External page Table) 
XSPT 168-170 

glossary 278 
XTSI 278 

Dispatcher use of 35 
sharing 168-169 
virtual storage allocation 122-123 

ZLOGON 8 
conversation processing 

2311, 2314 
pages/cylinder 129 
VAM format 132 

2702 (device allocation) 
2702 Transmission Control 
48-character preprocessor 

232 

139-140 
Unit 24 
(PL/I) 256 

Index 311 



GY2B-2009-2 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y. 10601 
[USA Only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[Interna tionall 

H 
ttl :s: 
(J) 

'­
W 

'" o 

t' 
o 

<Q 

(J) 

§ 

Gl 
>< 
W 
<Xl 
I 

W 
o 
o 
\l) 

I ". 



Technical Newsletter File Number 8360-36 

Re. Order No. GY28-2009-2 

This Newsletter No. GN28-3146 

Date September 15, 1910 

IBM SYSTEM/360 TIME SHARING SYSTEM 
SYSTEM LOGIC SUMMARY 
PROGRAM LOGIC MANUAL 

1'lIBM Corp. 1967, 1968, 1970 

Previous Newsletters Nos. 

This Technical Newsletter, a part of Version 8, Modification 0 of 
the IBM System/360 Time Sharing System, provides replacement 
pages for the subject publication. These replacement pages 
remain in effect for all subsequent versions or modifications 
unless specifically altered. Pages to be inserted and/or removed 
are listed below: 

7-10 
15-16 
27-30 
37-38 
59-60.1 
111-120.1 

191-192 
195-198.1 
209-210 
215-216.1 
271-272 
275-276.1 

A change to the text or a small change to an illustration is 
indicated by a vertical line to the left of the change; a changed 
or added illustration is denoted by the symbol (-) to the left 
of the caption. 

Please file this cover letter at the back of the manual to 
provide a record of changes. 

IBM Corporation, Dept. 643, Neighborhood Road, Kingston, N. Y. 12401 

None 





IBJ.1 Technical Newsletter File Number S360-36 

Re: Order No. GY28-2009-2 

This Newsletter No. GN28-3193 

Date September 15, 1971 

IBM SYSTEM/360 TIME SHARING SYSTEM 
SYSTEM LOGIC SUMMARY 
PROGRAM LOGIC MANUAL 

@ IBM Corp. 1967, 1968, 1970 

Previous Newsletter Nos. 

This Technical Newsletter, a part of Version 8, Modification 1 of 
the IBM System/360 Time Sharing System. provides replacement 
pages for the subject publication. These replacement pages 
remain in effect for all subsequalt versions or modifications 
unless specifically altered. Pages to be replaced are: 

13- 14 
41- 42 
65- 66.1 
73- 74 

111-112 
115-116 
119-120 
120.1 (Deleted) 
129-130.1 

133-134 
157-162 
181-182 
191-192 
195-196 
205-208 
229-232 
255-258 
287-296 

A change to the text or a small change to an illustration is 
indicated by a vertical line at the left of the change. 

Please file this cover letter at the back of the manual to 
provide a record of changes. 

IBM Corporation, Programming Publications, Dept. 643, Neighborhood Road, Kznf!,Jton, N.Y. 12401 

GN28-3146 

PRINTED IN U.S.A. 





Technical Newsletter File Number S360-36 

Base Publication No. GY28-2009-2 

This Newsletter No. GN28-3219 

Date February 1, 1972 

Previous Newsletters 

IBM System/360 Time Sharing System: 
System Logic Summary 

© I BM corp. 1967, 1968, 1970 

This Technical Newsletter provides replacement pages for the 
subject publication. Pages to be inserted and/or removed are: 

111-112 
115-116 

A change to the text is indicated by a vertical line to the 
left of the change. 

Sun~ary of Amendments 

Inaccuracies in the description of the Schedule Table Entry 
have been corrected. 

IBM Corporatioll. Dept. 643, Neighborhood Road, Kingston, N. Y. 12401 

GN28-3146 
GN28-3193 

PRINTED IN USA 






