
(

Systems Reference Library

IBM System / 360 Time Sharing System

Planning for PL / I

File No. S360-29
Form GC28-20S0-0 TSS

This planning aid, intended for use prior to the
availability of the IBM System/360 Time Sharing System
PL/I processor, will be replaced by reference documen­
tation to be issued when TSS/360 PL/I is released.

The user will be able to write PL/I proq-rams to be
compiled under TSS/ 360 PL/I if he refers to this pub­
lication in conjunction with the manuals listed in the
preface.

PREFACF

This publication is intended for systems
analysts and proqrammers who will use it as
a planning aid for the TSS/360 PLiI proces­
sor, before that becomes available. rhe
PLiI language features described in IBM
System/360 Time Sharing System: PLiI
Reference Manual, Form C28-20Q5, and in IBM
System/3EO Time Sharing System: PLiI
Library computational Subroutines, Form
C28-20Q6, corrpspond to the fourth version
of the PLiI (F) compiler of IBM System/360
Operating System (OS)360). The initial
release of the TSS/360 PL/I compiler will
correspond to the fifth version of the OS/
360 PL/I (F) compiler. This publication
indicates the features that differ from
those currently described for TSS/360.

Section 1 describes functional modifica­
tions to the PL/I language and compiler;
Section 2 describes improvements in perfor­
mance and optimization. The appendix pro­
vides an alphabetical list of the changed
language features.

First Edition (February 1970)

Several features have been added to the
PL/I language so that users of the IBM
System/360 Operating System can write tele­
processing applications programs. These
new language features will be accepted by
the compiler, but an attempt to execute
statements containing these features will
result in task termination in TSS/360.

PREREQUISITE PUBLICATIONS

The reader should understand the infor­
mation in:

IBM system/360 Time Sharing System:
PL/I Reference Manual, Form C28-2045

IBM System/360 Time Sharing System:
PLiI Library Computational Subroutines,
Form C28-2046

Significant changes or additions to this publication will
be provided in new editions or Technical Newsletters.

This publication was prepared for production using an IBM
computer to update the text and to control the page and line
format. Page impressions for photo-offset printing were
obtained from an IBM 1403 Printer using a special print
chain.

Requests for copies of IBM publications should be made to
your IBM representative or the IBM branch office serving your
locality.

A form is provided at the back of this publication for
reader's comments. If the form has been removed, comments
may be addressed to IBM Corporation, Time Sharing System/360
Programming Publications, Department 643, Neighborhood Road,
Kingston, New York. 12401

C Copyright International Business Machines Corporation 1970

(

,

SECTION 1: FUNCTIONAL CHANGES
String-Handling Additions

The TRANSLATE Stri ng Bui! t- in
Function • • • • • • • • •
The VERIFY String Built-in Function

Optimization Extensions
Language Modifications.

ORDER • • • • • • ••
REORDER • • • • • • •

Index String Built-in Function
Adoption of Halfword Binary Facilities.
Relaxation of REFER Option Restriction •
RETURNS Keyword in PROCEDURE, ENTRY and
~PROCEDURE Statements •••••••
Additions to the list of Acceptable
Abbreviations •• • • • • • • • • •
Other Environment Options (TRKOFL and
NCP) • • • • • • • • • • • • • . • • • •

5
5

5
5
6
6
7
7
7
7
7

7

8

8

CONTENTS

Teleprocessing Language Features • • 8

SECTION 2: PERFORMANCE IMPROVEMENTS
AND OPTIMIZATION • • • • • • • • 9
Loop and Subscript Optimization • • •• 9

Loop Control Mechanism • • • • • 9
Loop Control Variables • • 9
ARRAY Expressions • • • • 9
Subscript Lists •• • • • 9

Improved Code for Assignments • • • •• 9
Improved Register Usage • 10
Improved Code for Mathematical Built-in
Functions • • • • • • • • • • • • • 10
Changes to t:he Library computational
Subroutines •••••••••
Improvements in Use of Storage

APPENDIX: SUMMAR Y OF ADD ITIONS AND

• 10
• 10

CHANGES TO PL/I • • • • • • • • 11

(

(

Functional additions to the TSS/360 PL/I
compiler consist of: two string built-in
fUnctions (TRANSLATE and VERIFY): two opti­
mization options (ORDER and REORDER); and
the adoption of System/360 halfword binary
facilities for fixed binary variables with
precision less than 16.

STRING-HANDLING ADDITIONS

TRANSLATE returns a translation of a
given string to the point of reference,
according to a translation table defined by
two other strings. Example: Enables items
in any user-specified character set to be
read in, translated into internal notation,
and processed by the PL/I application pro­
gram: also, retranslation into the same or
another character set can be performed on
output.

The VERIFY function verifies that each
character or bit in a source string is
represented in a given verification string:
it tests the validity of each character or
bit according to user-specified criteria.

The TRANSLATE ~tring Built-in Function

Description: TRANSLATE returns the trans­
lated value of a specified string to the
point of invocation. The translation is
performed in accordance with a translation
table supplied in the form of two arguments
to the function.

Reference: TRANSLATECs,r[,p])

Arguments: "s" represents the source
string: i.e., the string that supplies the
value to be translated. Arguments "r" and
"p" represent the replacement and position
strings respectively: a character-for­
character map from Wr" onto "p" defines the
translation table. If .p" is not speci­
fied, an implementation-defined character
string is provided: for this compiler. this
string consists of the 256 EBCDIC charac­
ters arranged in ascending order, hexade­
cimal 00 through FF.

If any argument is arithmetic, it is
converted to string: a character string if
the argument is DECIMAL, a bit string if
the argument is BINARY. If, after any
arithmetic-to-string conversion, all argu­
ments are bit strings, or all are character
strings, no further conversion takes place:
otherwise, bit-string arguments are con­
verted to character strings.

SECTION 1: FUNCTIONAL CHANGES

When a r " is shorter than "p,. it is
right-padded (with blanks or O's, depending
on the string type) to the length of "p."

Result: The value returned by this func­
tion is a string identical in length and
value to the source string, "s." A change
is made to the source string only when a
character/bit position of as· contains a
character or bit that has been specified
for replacement (by inclusion of that value
in the posi,tion string "p"): that value
will be replaced by the corresponding value
from the replacement string "r." The
correspondence is by position: character/
bit positions 1, 2, 3, ••• , n of .p" corre­
spond respectively to character/bit posi­
tions 1,2,3, ••• , n of "r."

Example:

DECLARE (S,T) CHAR(10),
(P, R) CHARD):

P=',.$';
R=' • , D' :

A: GET DATA(S):
T=TRANSLATE(S,R,P):
PUT DATA(T):
GO TO A:

That sequence reads in data from SYSIN,
translates commas to periods, periods to
commas, and dollar signs to the charac­
terrD r , and writes out the result on SYS­
OUT. Thus, if the string S='$12,345.50·
were read in, the string T rD12.345,50'
would be written out. (In TSS/360, the
same result can be achieved by omitting P
and making R consist of the EBCDIC
sequence, except for the replacement of the
comma, period, and dollar Sign by the
period, comma, and 'Dr.)

Note: Use of this function will in many
cases result in the in-line use of the TR
machine instruction.

The VERIFY String Built-in FUnction

Description: VERIFY examines two given
strings and returns a fixed binary 0 if
each character or bit in the first string
is represent~ed in the second string: other­
wise, the value returned is the index of
the first character in the first string
that is not represented in the second
string.

section 1: Functional Changes 5

Reference: VERIFY(expr-1,expr-2)

Arguments: -expr-1- and -expr-2- represent
the source and verification strings respec­
tively. If either argument is arithmetic,
it is converted to string; a character
string if the argument is DECIMAL, or a bit
string if the argument is BINARY. If,
after any arithmetic-to-string conversion
has been performed, both arguments are bit
strings or both character strings, no
further conversion takes place; otherwise,
the bit-string argument is converted to a
character string.

Result: The value returned by this func­
tion is a fixed binary integer of default
preciSion (15,0).

Each character or bit, c, of the source
string is examined to see if it is repre­
sented in the verification string; i.e., to
determine if

INDEX(expr-2.c)~=0

The characters or bits of the source
string are examined from left to right. If
a character or bit is not represented in
the verification string, the return is the
index of that character or bit in the
source string. If each character or bit in
the source string is represented in the
verification string, the returned value is
O.

Example: B is a character string, length
48, containing the 48 characters of the
48-character set. The expression

VERIFY (A, B)

will then return a value of 0 for any value
of A that consists solely of characters
from the 48-character set, but will index
the first character in a value of A that
does not conform to the 48-character set
(if A = Ip GT X', the returned value is 0;
if A = 'P > XI, the value is 3).

Note: Use of this function will in many
cases result in the in-line use of the TRT
machine instruction.

OPTIMIZATION EXTENSIONS

The NORMAL, ABNORMAL, USES. and SETS
attributes have been removed from the PL/I
language; these keywords will not be
accepted by this compiler. (Previously,
these keywords were accepted without being
acted upon.) Two options (ORDER and REORD­
ER) for PROCEDURE and BEGIN statements have
been added. These options in the PL/I lan­
guage stipulate the rules that any compiler
must observe during optimization. The way
in which this compiler ensures that these

6

rules are observed is described in Section
2. The REDUCIBLE and IRREDUCIBLE attri­
butes are retained in the language; this
compiler will continue to accept them
without taking action.

The order in which the statements of a
PL/I source program are to be executed is
specified by the order in which they appear
in the source program, even if the code
could be reordered to produce the same
result more efficiently. The order of
execution is sequential, except where modi­
fied by a control statement such as GO TO.

However, the user can vary the degree of
language stringency imposed on the compiler
by using the ORDER and REORDER options in
the PROCEDURE and BEGIN statements. REORD­
ER specifies a partial relaxation of the
rules to allow the compiler more freedom in
optimization. Whether the compiler takes
advantage of this relaxation depends on
other factors than the option specified:

• The compiler will optimize code only
where it can recognize that it is safe
to do so.

• The user can prevent the compiler from
introducing extra phases by avoiding
optimization.

These two considerations are also
described in Section 2.

LANGUAGE MODIFICATIONS.

The syntax of the PROCEDURE and BEGIN
statements has been changed to allow the
inclusion of the keywords ORDER and REORD­
ER. The general format of the PROCEDURE
statement:

entry-name: [entry-name:] •••
PROCEDURE

[(pararneter[,pararreter] •••)]
[OPTIONS (option-list)]
[RECURSIVE] [RETURNS

(attribute •••) J
[ORDER I REORDER] ;

For the BEGIN statement, similar format
change has been made.

ORDER and REORDER specify, for optimiza­
tion purposes, the degree of language
stringency to be observed during compila­
tion of the block. The strict rules
require that the source program be compiled
for execution in the sequence of the source
program's statements, even if the code
could be reordered to produce the same
result more efficiently. The relaxation
allowed by REORDER is such that if computa-

)

(
\

/
\

tional or systeHraction interruptions occur
during execution of the block, the result
might not be the same as it would be under
the strict rules.

The selected option, ORDER or REORDER,
applies to all nested blocks unless over­
ridden; if neither option is specified, the
option that applies to the containing block
will be assumed. If the block is an
external procedure, the ORDER option will
be assumed, unless RF.ORDER is explicitly
specified.

ORDER

The ORDER option specifies that the lan­
guage rules are to be maintained; any opti­
mization must be such that execution of a
block produces a result that is in accor­
dance with the strict definition in PL/I.
The values of variables set by execution of
all statements prior to computational or
system-action interruptions are guaranteed
to be valid in an on-unit entered as a
result of an interruption, or anywhere in
the program afterwards. The strict defini­
tion allows the compiler to optimize common
expreSSions, where recognizably safe, by
evaluating them once and saving the result,
rather than re-evaluating them for each
reference.

Note: A common expression is an expression
that occurs more than once in a program,
but will result in the same value each time
that it is evaluated. if.a later expression
is identical to an earlier expreSSion, with
no intervening modification to any operand,
the expressions are said to be common.

REORDER

The REORDER option specifies that execu­
tion of the block must produce a result
that is in accordance with the stric1:
definition in PL/I unless a computational
or system-action interruption occurs during
execution of the block. When there is such
an interruption, the result is allowed to
deviate:

1. The values of variables modified, allo­
cated, or freed in the block are
guaranteed only after normal return
from an on-unit or when accessed by
the ONCHAR- and ONSOURCE-condition
built-in fUnctions.

2. The values of variables that an~ modi­
fied, allocated, or freed in an on­
unit for a computational or system­
action interruption (or in a block
activated by such an on-unit) are not
guaranteed on return from the on-unit

into t:he block, except for values
modified by the ONCHAR and ONSOURCE
pseudo variables.

A program is in error if a computational
or system-action interruption occurs during
the execution of a block and this interrup­
tion is followed by a reference to a vari­
able whose value is not guaranteed to be
valid.

INDEX STRING BUILT-IN FUNCTION

The language has been changed to reflect
these rules: When both arguments have
either the binary or bit-string attribute,
both are expressed as bit strings; in all
other cases, both are expressed as charact­
er strings.

ADOPTION OF HALFWORD BINARY FACILITIES

Previously, with PL/I, fixed binary
variables of any precision were stored as
fullwords (four bytes). The compiler will
now store fixed binary variables with pre­
cision less than 16 as halfwords (two
bytes), and will use System/360 halfword
instructions to process them. Variables of
default precision will be stored as
halfwords.

The change 10es not apply to fixed
binary constants or fixed binary intermedi­
ate targets (i.e., compiler-created tem­
poraries for holding intermediate results);
these will be stored as fullwords. Howev­
er, for more efficient execution time,
store fixed binary variables as fullwords
(i.e., specify precision 16 or greater).

RELAXATION OF REFER OPTION RESTRICTION

The restriction on the two variables in
the REFER option of the BASED attribute has
been eased to permit fixed binary integer
variables of any precision, as long as both
precisions are the same. This allows the
user the choice of either continuing to use
fullword binary or using halfword binary
for the controlling fields in self-defining
structures.

RETU~NS KEYWORD IN PROCEDURE, ENTRY AND
~PROCEDURE STATEMENTS

The RETURNS keyword is now mandatory in
PROCEDU~E. ~PROCFDURE, and ENTRY statements
of function procedures when the function
value attributes are explicityly specified.
If RETURNS is omitted, the omission will be
diagnosed as an error and the keyword will
be assumed to be present. The error will
have severity-level "warning."

Section 1: Functional Changes 7

Example:

Previously:

P:PROC(A) FIXED BINARY;

Now required:

P:PROCCA) RETURNS(FIXED BINARY);

ADDITIONS TO THE LIST OF ACCEPTABLE
ABBREVIATIONS

File Attribute Keyword

BUFFERED
EXCLUSrvE
SEQUENTIAL
UNBUFFERED

Abbreviation

BUF
EEL
SEQL
UNBUF

OTHER ENVIRONMENT OPTIONS (TRKOFL AND NCP)

Track overflow (TRKOFL) specifies that
overflow tracks on direct-access storage
devices can be used if necessary; specified
as:

TRKOFL

Asynchronous operations limit (NCP) spe­
cifies the number of incomplete input/
output operations with the EVENT option
that are allowed to exist for the file at
one time: specified as:

NCP (decimal-integer-constant)

The allowable range of the argument is 1
to 99; if nothing is specified, the system
assumes 1.

Although these options are compiled
correctly. they do not affect execution

8

since TSS/360 does not support these fea­
tures (except for NCP in BSAM).

TELEPROCESSING LANGUAGE FEATURES

Several features have been added to the
PL/I language so that users of the IBM
System/360 Operating System can write tele­
processing applications programs. These
new language features will be accepted by
the compiler. but an attempt to execute
statements containing these features will
result in task termination in TSS/360.

The new language features:

1. TRANSIENT file attribute -- Indicates
that the file is to be associated with
a teleprocessing data set. TRANSIENT.
an alternative to DIRECT and SEQUEN­
TIAL, can be specified only for RECORD
KEYED BUFFERED files that have either
the INPUT or the OUTPUT attribute.

2. PENDING condition -- Except when sig­
naled, can only be raised during
execution of a READ statement for a
TRANSIENT file. Its form:

PENDING (file-name)

3. ENVIRONMENT format options (G and R)
-- Applicable only to the teleproces­
sing extension: one of these options
must be specified for TRANSIENT files.
They cannot be specified for DIRECT.
SEQUENTIAL, or STREAM files; they can­
not appear in conjunction with any
other option of the ENVIRONMENT attri­
bute. Their formats:

G (maximum-message size)
R (maximurr-record size)

)

(

SECTION 2:

The TSS/360 PLII compiler will include
the optimization improvements incorporated
in the fifth version of the PL/I (F) com­
piler of 08/360. The degree of optimiza­
tion attempted by the compiler depends on
the PL/I block options ORDER and REORDER,
and on the value specified by the user in
the compiler option JPT. The descriptions
of the specific areas of improvement. that
follow this introduction indicate the block
and compiler options that should be speci­
fied for each feature.

When optimization will be effected for
both ORDER and REORDER, it is probable that
REORDER will produce the greater degree of
optimization. However, even when REORDER
is necessary for a particular type of opti­
~ization to occur, there will usually be
some optimization if ORDER is specified.

OPT can be specified:

OPT=O -- requests fast compilation and,
as a secondary consideration,
reduction of the storage space
required by the object program
at the exoense of execution
time.

OPT=l -- requests fast compilation and,
as a secondary consideration,
reduction of object program
execution time at the expense
of storage space.

OPT=2 -- requests reduction of object
program execution time at the
expense of compilation time.

The new optimization phases of the com­
piler will be invoked only when OPT=2 is
specified.

LOOP AND SUBSCRIPT OPTIMIZATION

Loop Control Mechanism

The loop control mechanism will be simp­
lified wherever possible; BXLE or BXH
machine instructions will be generated,
rather than the pres~nt fi ve- instructton
sequence.

Block option: O~DERIREORDER

Optimization level: OPT=2

PERFORMANCE IMPROVEMENTS AND OPTIMIZATION

Loop Control Variables

The use of control variables as sub­
scripts will be optimized.

Block ootion: REORDER

Optimization level: OPT=2

ARRAY Expressions

A combination of the techniques used for
optimization of loop-control mechanisms and
control variables will be used.

Block optio~: ORDER I REORDER

Optimization level: OPT=2

Subscript Lists

Identical eXFressions, representing the
same value, will be replaced by temporary
variables to which the value will te
assigned. Expressions whose values will
not change will be moved out of loops.

Block optio~: REORDER

Optimization level: OPT=2

IMPROVED CODE FOR ASSIGNMENTS

Optimized code that does not use tem­
porary storage will be produced, in three
cases, when FIXEDOVERFLOW and SIZE are dis­
abled or cannot be raised, wnd when the
operands are of suitable scale and
precision.

1. Simple fixed decimal assignments
(example, A = A + constant; X = A + B;
X = A * B + C;).

2. Simple expressions and assignments
that involve only character-string
variables and character-string con­
stants (exarrFle: X = Al 18;).

3. ASSignments between ten.porary
variables such as occur in some sub­
routine or function references.

Block option: ORDER I REORDER

Opti~ization level: OPT=O, OPT=l, or OPT=2

Section 2: Performance Improvements and Optimization 9

IMPROVED REGISTER USAGE

Improvements in the register-allocation
stage of the compiler may result in better
use of registers during execution of the
object program, thereby eliminating some
intermediate store and load instructions.

Block option: ORDER I REORDER

Optimization level: OPT=2

IMPROVED CODE FOR MATHEMATICAL BUILT-IN
FUNCTIONS

The mathematical built-in functions have
been recode~ tc use new algorithms and to
exploit recent changes in the floating­
point hardware.

Block option: ORDERIREORDER

Optimization level: OPT=O, OPT=1, or OPT=2

10

CHANGES TO THE LIBRARY COMPUTATIONAL
SUBROUTINES

To take advantage of the improved
floating-point engineering change (IFPEC).
the TSS/360 PL/I library computational sub­
routines will include the changes incorpo­
rated in the fifth version of the PL/I (F)
compiler of OS/360. These changes will
consist mainly of removal of coding that
became redundant with the engineering
change. and the readjustment of constants
to the new precision.

IMPROVEMENTS IN USE OF STORAGE

The extent of the required private
storage has been reduced by the adoption of
halfword binary storage and the creation of
a single PL/I library that can be shared by
all users. These improvements are program­
dependent; no general statement can be made
about the overall effect on the use of
storage.

)

')

APPENDIX: SUMMARY OF ADDITIONS AND CHANGES TO PL/I

(

r----------------------------~----.---,
I Additions I Associated Topic I
~-----------------------------+---~
I ORDER option I Optimization extensions I
I I I
I PENDING condition I Teleprocessing I
I I I
I REORDER option I Optimi zation extensions I
I I I
I TRANSIENT attribute I Teleprocessing I
I I I
I TRANSLATE built-in function I String-handling additions I
I I I
I VERIFY built-in function I String-handling additions I
~----------------------------+---~
I changes I I
~--------------------------~ I I %PROCEDURE statement I Mandatory RETURNS keyword ,
I I I
I ABNORMAL attribute I Removal from language
I I
I BASED attribute I Adoption of halfword binary facilities
I I
I BEGIN statement I Optimization extensions
I I
I BUFFERED attribute I Additions to list of abbreviations
I I

(
I ENTRY attribute I Removal of USES and SETS attributes
I
I ENTRY statement Mandatory RETURNS keyword
I
I ENVIRONMENT attribute Teleprocessing
I
I EXCLUSIVE attribute Additions to list of abbreviations
I
I FIXED BINARY variables Adoption of halfword binary facilities
I
I NORMAL attribute Removal from language
I
I PROCEDURE statement Optimization extensions; Mandatory RETURNS keyword
I
I READ statement Teleprocessing
I
I REFER option Adoption of halfword binary facilities
I
I SEQUENTIAL attribute Additions to list of abbreviations
I
I SETS attribute Removal from language
I
I UNBUFFERED attribute Additions to list of abbreviations
I
I USES attribute Removal from language I L _____________________________ ~ _________________________ --------_________________________ J

Appendix: Summary of Additions and Changes to PL/I 11

}

(

GC28-2050-0

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, NY 10601
jUSA Only]

IBM World Trade Corporation
821 United Nations Plaza New York, New York 10017
I International i

'"
DI
::>
::>

) ::>
<0

HI
0
'1

'" t"'
'-....

'" '1
::>
rt
CD
Po
....
::>

~
Ul

:.-

Cl
n
N
co
I

IV
0

'" 0
I

0

)

