
Systems Reference Library

IBM System/360 Time Sharing System

PL/I Language Reference Manual

File No. S360-29
Order GC28-2045-1

This publication is a companion volume t.o IBM
System/360 Time Sharing System: PL/I Programmer's
Guide, Order GC28-2049. Together the two books form a
guide to the writing and execution of PL/I programs
under the control of an IBM System/360 'rime Sharing
System that includes the PL/I compiler.

TSS

This publication is planned for use as a
reference book by the PL/I user. It is not
intended to be a tutorial publication, but
is designed for the reader who already has
a knowledge of the language and who
requires a source of reference material.

It is divided into two ~arts. Part I
contains discussions of concepts of the
language. Part II contains detailed rules
and syntactic desc.riptions.

Although implementation information is
included, the book is not a complete
description of any implementation
environment. In general, it contains
information needed in writing a program; it
does not contain all of the information
required to execute a Frogram. For further
information on executing a program refer to
the publication: IBM System/360 Time
Sharing System: PL/I Progranlmer's Guide.
Form GC28-201.19.

The features discussed in this
publication correspond to thOSE implemented
in tne fifth version of the PL/I (F)
Compiler in Release 18 of IBM System/360
Operating System.

PREFACE

RECOMMENtED PUBLICATIONS

The following publications contain other
information that might be valuable to the
PL/I user or to a user who is learning
PL/I:

IBM SYGtem/360 Time Sharing System:
PL/I Programmer's Guide, Form
GC28-2049 ~

A pL/r Primer, Form GC28-680B

A Guide to PL/I for Commercial
Programmers, Forn. GC20-1651

A Guide tc PL/I for FORTRAN Users, Form
GC20-1637

The following publication contains a
description of the IBM System/360 Time
Sharing System:

IBM System/360 Time Sharing system:
Concerts and Facilities, Form
GC28-2003

iii

INTRODUCTION

PART I: CONCEPTS OF PL/I

SECTION 1: BASIC CHARACTERISTICS OF PL/I
Machine Independence
Program Structure
Data Types and Data Description
Default Assumptions
Storage Allocation
Expressions
Data collections
Input and Output
Compile-Time Operations
Interruption Activities
Multitasking

SECTION 2: PROGRAM ELE~ENTS
Character Sets

60-Character Set
48- Character Set
Using the Chara,cter Set

Identifiers
The Use of Blanks
Conunents

Basic Program Structure
Simple and compound Statements

Stat€ment Prefixes
Groups and Blocks

SECTION 3: DATA ELEMENTS
Data Types
Problem Lata

Arithmetic Data
Decimal Fixed-Point Data
Sterling Fixed-Point Data
Binary Fixed-Point Data
Decimal Floating-Point Data
Binary Floating-Point Data
ccmplex Arithmetic Data
Numeric Character Data
Precision cf Arithmetic Constants

String Data
Character-String Data
Bit-string Data

Program Control Data
L3bel Data
Event Data
Task Data
Locator Data
Area Data

Data Organization
Arrays

Expressions as Subscripts
Cross Sections of Arrays

Structures
Qualified Names

Arrays of stru~tures
Other Attributes

The DEFl"I::D Attribute
The LIK~ Attricute
'fhe ALIGNED and UNALIGNED Attributes

CONTENTS

1

3

5
5
5
5
5
6
6
6
6
7
7
7

8
8
8
8
8
9

10
10
10
10
11
11

13
13
13
13
14
15
15
15
16
16
17
18
18
18
20
20
20
21
21
21
21
21
22
23
23
23
24
25
25
25
26
26

v

The INITIAL Attribute. • 27

SECT ION 4: EXrRE~;:oaONS AND DATA CONVERSION • • • • • 29
Use of Expressions • • • • • 29
Data. CorNers iOll in orerational Expressions • • • • • 30

Problem Lata ConvPI.sion • • • • • 30
Hit-string to Character-String 30
Charact.er-Strinq to Bit-string • • • • • 30
Character-String to Arithmetic 30
Arithmetic to c~aracter-String 30
IHt-·string to Arithmetic • • • •• • • • • 30
Arithmetic to Bit-string • • • • • • • 30
Ari thmetic Mode Conversion • • • • 30
Arit~hnHot ic8a~;e and Scale Conversion •••••••••• 30

Locator Ddta Conversion. • • • • • • • 31
Offset tu Pointer . 31
Pointer to Offset . . • • 31

Conversion by Assignment • • • • • • 31
Exprt:s,;ion Opera. tions . • • • • • • • •• 31

Arithmetic o~erations . • • • • • • 31
Data Conversion in ArithJT1etic Operations • 0 •• 31
Results of Arithmetic operations • 32

Bit-string vlJerations . • • • • 34
Co~rariscn Operations 0 • • • • 34
COLcatenation Cperations 0 • • • • 35
('cli<lcinat.i.ons of Operations • • • • • 36

}'riority cf Cperat.crs • 36
luray Expres,;icns . • • • • • 37

Prefix Operators and Arrays : • • • • • • • 38
lliflx Operator:; and Arrays • • • • • • • • • • 38

Arri:lY and Element Cperations • • • • 38
Array and Array OpErations 38
Array and structure operations 39
Data Conver~i0n in Array Expressions • 39

Structure Expressions . • 39
Prefix Or~rators and Structures . • • • • • 39
Intix OceraLors and Structures • • • • • • • • • • • 39

Struct.ure and Element Operations • • • • 39
Structlrre and Structure operations • • • • • • • • 40
Structure Assignment BY NAME •••• • • • • • 40

Operands of Expressions . 0 40
Function rteference Orerands • • • • • 0 40

Concepts of Data Conversion • • • 41
Tar~et Attributes for Type Conversion 0 • • • • 42

Bit to Character and Character to Eit • • • • • 42
Arithmetic to String • • • • • 43
Str ing to Arithmetic • • • • 43

Target Attributes for Arithmetic Expression Operands 43
Precision and Length of Expression Orerand 'rargets ••• • • • '0 44
Precision for Arithmetic Conversions ••••• • • • • • 44
Lengths of Character-String Targets • • • • • • • • 45
Lengths of Bit-string Targets • • • • • 45
Conversion of the Value of an Ex[ressicn • • • • 45

Conversion Operations • • • • • 45
The CONVERSION, SIZE, FIXEDOVERFLOW, and OVERFLOW Conditions 46

SEC'l'ION 5: STATE~;ENT CLASSIFICATION •
Classes of Statements . • •

Descriptive Statements

vi

The DECLARE Statement •
Other Descriptive Statements

Input/Output Statements •
RECORD I/O Transfer Statements
STREAM I/O Transfer Statements
Input/Output Control Statements •
The DISPLAY Statement • . • • • •

Data Movement and computational Statements
The Assignment Statement • • • •

48
48
48

• 48
• 48
• 48

• • • 49
49

• 49
• 50
• 50
• 50

The STRING O~tion . . • . .
Program structure Statements

The PROCECURE Statement .
The ENTRY Statement
The BEGIN Statement •
fhe END Statement . . •
The ALLOCATE and FREE Statements

Preprocessor Statements •
Control Statements

The GO TO Sta tement • .
The IF Staten,ent
The DO St_a terrent
Noniterative DO statements
The CALL, "ETURN, anti E[~D Statements
The STOP and EXIT Statements

Exception control Statements
The ON ~;t at eITEnt
The REVERT Statement
The SIGNAL St aternent

St-CTION 6: LlLOCKS, l'LOW OF CONTROL, AND S'IORAGE ALLOCATION
Blocks .•••

Procedure Blocks • • • .
Degin Blocks
Internal and External Blocks

Use of the END sta ternent With Nested Blocks and DO-Groups
(~ultiple Clcsure)

Activation and Termination of Blocks
Activation
TERMINATION . . •.•..

Begin Block Termination
Procedure Termination
Program Ter~ination

Storage Allocation
Static Storage
Automatic Storage •
Controlled Storage
BaSed Stora~e . • • • • . •

Reactivation of an Active Procedure (RECURSION)
Effect of Recursion on Storage Classes

Prologues and Epilogues • •
Prologues
E~i~ogues

SECTION 7: RECOGNITION OF NAMES
Explicit Declardtion

Scope of an bxrlicit Declaration
Contextual Declaration • • . • • • •

Scope of a Contextual Declaration •
Implicit Declaration • •
Examples of Ceclarations ..• • .
Application of Default Attributes •
The INTE~NAL and EXTERNAL Attributes

Scope of Member Names of External Structures
Multiple Declarations and Amtiguous Heferences

SECTION 8: INPUT AND OUTPUT
Data sets . .
¥iles •

The File Attritute
Alternative Attributes

The STR£AM and FECORD Attributes
The INPUT, OUTPIT, and UPDATE Attributes
The SEQUENTIAL and .:JIRECT Attributes
The BUFFERED and UNBUFFERED Attributes

Additive Attritut~s . • •
The PRINT At ribute . •
The BACKWAkU3 Attribute

• 50
• 51
· 51
• 51

51
52
52
52

• 52
52
53
53
54

• • 54
55
55

• • 55
55
55

• 56
• • 56

56
56
57

• 57
58
58

• • 60
· 60

60
61
61
61

• • 62
62
62
62
63

· 64
64

• 64

65
65
66
66
66
67
67

• 68
• 68

70
70

71
· 71

72
• 72

• • 73
• • 73

• 73
• • 73
• • 73

74
74

• • 74

vii

The KEYED Attribute
The EXCLUSIVE Attribute
The ENVIRONMENT Attribute •

Opening and Closing Files
The OPEN Stateme:lt
Irr,plicit Orening
Merging of Attributes •
Associating Cata Sets With Files
The CLOSE Statenlent

Standard Files

SECTION 9: STRl:AM-ORIENTED TRANSMISSION •
List-Directed Transmission
Da ta-Di:e<.:ted 'l'l:ansmission
Edit-Directed Transmission

~ata Transmission Statements
Options of Transmission Statements

The FILE and STRING Options
The COpy OFtion
Ti,e SKIP Opt'.,; on
'l'he PAGE Of'ti on
The LINE Option

Date! ,s}?ecifi;;atiorls
Data Lists

List-Directed Data specification
List- Dir~~tpd Data in the Stream
L~st-Directed Input Format
List-!)irect,'.:d Output Format

Datd-Di.cecte,l Ddta specification
Data-'Directed Data in the Stream
Data-DirectAd Ir!f,ut Format
Data-DlrecteG Output Format
Length of Data-Directed Output Fields

Edit-Direcb .. 'c1 Lata c,pecification
Format Lists

Print Files
Standard Fil€ SYSPRINT

The EnviLonment Attritute
Record Format

Blocking
Line Size and Record Format

Buffer Allocation
Data Set Organization
Volume Dispositiun

SECTION 10: RECORD-ORIENTED TRANSMISSION
Introduction
Data Trans~ission Statements

The READ Statement
The WRITE Statement
The REWRITE Statement
The LOCATE Statement
The DELETE Statement
The UNLOCK Statement

Options of Transrr,ission Statements
The FILE option
The INTO Option
The FROM OFt ion
The SET Option
The IGNORE Option
The KEY Option
The KEYFROM and KEYTO Options
The EVENT Gfltion
The NOLOCK OFtion

Processing Modes
Move Mode
Locate Mode

The Environment Attri~ute

viii

74
74
74
74
74
75
75
76
77
77

79
79
79
80
80
80
80
81
81
81
81
81
81
83
83
83
84
84
85
85
86
86
87
88
91
92
92
92
93
93
94
94
94

96
96
96
96
96
96
96
96
97
97
97
97
97
97
97
98
98
98
99
99
99

.100

.101

Record Format . .
Blocking

Buffer Allocation •
Data set Organization
Volume Disposition
Printer/punch Control • • • •

• .101
• .101

.102
• .102

Interchange of Data Between COBOL and PL/I Programs • •

• .103
.••. 103

.103
Asynchronous Operations Limit ••••• • •• 103
Track Overflew • • • . • • • • • • .104

.104 consecutive organization ••••
Sequential UFdate .

Indexed Organization
Keys • •
Creating A Data Set •
Sequential Access •
Direct Access . . . • • • • •

SUJr,mary of Record-Oriented Transmission •
Examples of Declarations for Record Files •

• •• 104
• .104
• .106
• .108

.108
• .108
• .108

.109

SECTION 11. EDITING AND STRING HANDLING •• • • • .110
Editing By Assignment . • • • • .110

Altering The Length Cf String Data • • • • • • • .110
Other Ferms of Assignment . • • .111

Input and output OFerations • • • • • .111
The STRING OFtion in GeT and PUT Statements •••• .111

The picture Specification. . • • • • • • •• • • • • • •• 112
Numeric Character Specifications .••. • • • • • .112
The '9' Picture'Character in Numeric Character Sfecifications •• 113
The Z and * Picture Characters • • • • • .113
The V Picture Character . • • • • • • .113
The Insertion Picture Characters: E. / •••• • .114
The $ Picture Character. . • .114
Sign Specification in Numeric Character Specifications ••••• 114
overpunched Sign-SFecification Characters: T, I, and R •. 115
Other Numeric-Cnaracter Facilities • • • • • • .115
Character-string Picture Specifications . •• ••••• •• 115

Bit-string Handling. . • . • . • • • • • . • • • .116
Character-String and Bit-string Built-In Functions .117

SECTION 12: SUBROUTINES AND FUNCTIONS •
Arguments and Parameters
Subroutines • • . • . • •
Functions • . • • • . • • •

Attributes of Returned Values •
Built-In Functions

Relationship of Arguments and Pararreters
Dummy Arguments • • . •
The ENTRY httribute ..••••

Entry Names as Arguments
Allocation of Parameters

Parameter Bounds and Lengths
Simple Parameter Bounds and Lengths
controlled Parameter Bounds and lengths

Argument and Parameter Types . . . • •
Generic Names and References • • • •
Passing an Argument to the Main Procedure

.118
• .118

.119
• .120

.121
• • 122
• .123

• • • • • • . 123
.124
.125

• •••••• 126
• .127
• .127

.127
• •••••• 128

• • • • • .129
• .130

SECTION 13: EXCEPTIONAL CONDITION HANDLING AND PROGRAM CHECKOUT • • .131
.131
.131
.131
.132
.132

Enabled Conditions and Established Action • • • • • • •
Condition Prefixes .•.• . • • • • •
Scope of the Co ldition Prefix • • •••
The ON staternens . . • • • •••
The Null On-Unit ••• .
Scope of the ON Statement •
The REVERT Statement
The SIGNAL tate~ent
The CONDITION Condition
The CHEC¥ condition • • • • • •

• .133
• .133

.133
• .133

.134

ix

The !O~UK;CRIPTRANGE Condition
The S'l'RINGI<ANGE Condition •
Condition Built-In Functions and Condition Codes

Examr;le of U~;e of ON-Conditions •

SECTlON 14: BASEL VARIABLES AND LIST PROCESSING •
Introduction
Based Variables and Pointer Variables

Point~l Qualification.
Rules and Restrictions

Pointer Defining
Self-Defining Data

The PEF~R Option
Point_er Sett,ln'i, Based Storage Allocation, and Input/Output

RPiirl with :;€t
L[)CdU-; wi t,1l and wi thout Set •
.''11 locdt,e with ':And without Set
Puint.-:! A";,~i,]mrent

The ADD~ BuiL~-in FUnction
The NULL Built-in Function

Free; ng Based ;;1-(;rage •
The Fr~e ~lritnrnent
lrnF-: li c; it F U"(c_l n':J

Ar~ab n~d Offs0t~ .
l\rca Varia'-,l''':.;

Rul,'s ar.(~ Re:-'trictions
Oftset Variatles

Rule~ and ~est£lctions
Al~ocdtion within an Area
~3~i:tin9 Offset. Values.

Thf'; NULL< Built-in Function.
AL ea Assignmt'nt and Input/output

The EMPTY Built-in Function •
Tne AREA ON-Condition.
1 nrut and Output

Area imd uffset Defining
CorrmunicaLion tetween Procedures

Argwllf::r'ts dnd F'arclT,eters
Pointer to Pcinter
offset to Point~r •
Offset to Offset
Pointer to Offset
Area to l'.rea

F,eturns fLom Entry Points •
Locator Returns •
Area Returns

Var iaille Length Pa rameter Lists •
Examples of List Processing Technique

SEC'I'lON 15: COMPILf.-TIME FACILITIES.
Introduction
Preprocessor Input and Output •

Prefrocessor Scan •
Rescanning and Replacement

Preproc('ssor Var iables
Preprocessor Expressions
Preprocessor Procedures •

Invccation of Preprocessor Procedures •
Arguments and Parameters for Preprocessor Functions •

Returned Value
Examples of Pre~rocessor Functions
Use of the SUBSTR Built-In Function •

The Preprocessor DO-Group •
Inclusion Of External Text
Preprocessor Statements •

SECTION 16: OPTI/'IIZATICN AND EFt'ICIENT PERFORMANCE
Introduction

x

.134

.134
• .134

.134

.138
.138
.139
.139

• .139
.140
.140
.140
.141
.141
.142
.142
.142
.142

• .143
.143
.143
.144
.144
.144
.145
.145
.145

• .145
.146
.146
.146
.146
.147
.147
.147
.147
.147
.147
.148
.148
.148
.148
.148
.148
.149
.149
.150

.153

.153
.153
.153
.154
.155
.156
.156
.156
.157
.157
.158
.159
.159
.159
.160

.161
.161

Effect of Compilation on O~ject Program Efficiency
PL/I Options: ORDER and REORDER •

The OReER option • • • • • • • • • • • •.•••
The REORDER option • • • • . • • • • • • • • • •
Effect of ORDER and REORDER Options -- Example

Compiler option: OPT=N
Loop and SubscriJ;t Optimization
Assignment Handling •
INLINE OPERATIONS •

Data Conversion • •
String Handling •

Programming Techniques
Improving Speed of Execution

Methods of Improvement When OPT=O or 1
Methods of Improvement When OPT=2

Avoiding Common Errors
Source Progrdm and General Syntax
Program Control . . . • • • • •
Declarations and Attributes • • •
Assignments and Initialization
Arithmetic and Logical operations
DO-groups . . • • • • • • • • •
Data Aggregates • • • • . • • • •
Strings . . • . . • • • • • • • • •
Functions and pseudo-Variables
On-Conditions and On-Units • • • • •
Input/Output • • • • • • •

PART II: Rules and Syntactic Descriptions •

SECTION 1: SYNTAX NOTATION

.161
• • • • • • • .161

• .162
• •• 162

.162

.162
• .163
• .163

.164
• •• 164

• .166
• • • • • • • .166

• ••• 166
• ••. 166

• .170
.170

• .170
• • .171

.171

.173
• .174

• • • • • • • .176
• •• 177
• •• 177

• .177
.177
.178

• .181

• .183

SECTION 2: CHARACTER SETS WITH EBCDIC AND CARD-PUNCH CODES1 • .185
60-Character Set
48-Character Set

SECTION 3: KEYWORDS AND KEYWORD ABBREVIATIONS •

SECTION 4: PICTURE SPECIFICATION CHARACTERS.
Picture Characters for Character-String Data
Picture Characters For Numeric Character Data •

Digit and Decimal-Point Specifiers
Zerc Suppression Characters .
Insertion Characters • . • . • • •
Signs And Currency Symbol • • • • •
credit, Debit, And Overpunched Signs
Exponent Specifiers •
Scaling Factor ••••
?terling Pictures •

SECTION 5: EDIT-DIHECTED FORMAT ITEMS
Data Format Items • .
Control Format Items
Remote Format Item • • • • •
Use of Format Items • • •
ALPHABETIC LIST OF FORMAT ITEMS •

The A Format Item •
The B Format Item
The C Format Item
The COLUMN Format Item
The E Format Item
The F Format item
The LINE Format Item
The P Format Item • • •
The PAGE Formit Item
The R For~lt Item •.

• .185
• .186

.187

.192
.192

• ••• 193
.194
.194

• ••• 196
• •. 197

• .199
.200
.200

• .201

• • .203
.203

• .203
.204

• .204
• •• 204

• .204
.204
.205

• • • • • • • 205
• • .206

.207

.208
• • • • • • • 208

.208
• • • • • • • • . 208

xi

'I'hp ~;KIP Fonriat Item
The X Fonn,'l ItEm, •

SECT ION b; PHOl!Ll:t-1 LATA CONVERSION
Aritrunetic Conver~ion

Floa t i Il'l" F '-,i nL Ccnversion
l>lod,c COllv,i~.r,~ion .
Precision c~:)nvt2.r:~:~ion
Base Con~c.rsion .
Cuded At ithmpti(; r(o Numeric Charact,er
N\:Jl'e.r ie "hdL<lcter \ 0 Coded A1-ithrretic ••

Data Ty~p ~onver~ion
(,ha.r de L,-,r-"t 1 i n'l to Arithmetic
p·,d t,nJ[let Lf": 1.i~ Charactez.-String ••••
Ct;,nJ.cl:eL-:;tring to Bit -string
Pi +-sr_ri IFl t C Chardcter-String
1,1: L tIllEr"' 1 (. 1.0 13,;"1_ -., tl i ng
n.Lt-~:t,r:L;:q '-0 Arithnlet',lC

T~blc of Ccillng Values. •• • •••••••
'Idb;'('~_' for k"';111t~; of Arithmet_ic Operations

SECT 1.:N "/; [,'HL'!' n·; H1NcTJONS AND PSEUDO-VARIABLES
Co.: p<1 Ld t JJ)Jl i 1 "'LL 1 t -[TI l'cnct ions

St>:inq HaJji.,ll::q Dll.ilt-in Funct,ions
~Jl'~' Str11'(, HU..Llt-in Function
t'SC1C·l ;- ... tLl~I'~ ::-'flilL -in Function.
"':IL\.~-\ ~·-;t 1.'. ;,~_, .\; l}1 " .. ~r~ ?unctiun
HIC}! ::;'.("J:1" 2:1j,.LI:··Jn Function.
lNflE:<, ST ~-u,,~ SHiH-in Function

o'.ririU Built--lIl Function
:~(.W ;etri.ng built-· ill Funct_ion
id:::U.,\T St'l;/~ Fl<l1.1.t:-in Yunction •
S'I'RI~)G ;;, .inS hd __ l,~-il1 f'unction
;,I)H,;Ti(~i'.Lin<1 i:m::'lt--iTl Function.
The TkAl-...,;' V'i'. :3L r ,L"J Buil t- in Function
UN~;P:t:C S 'ri ;,q EUl Jt -in Functior, •
'7'JJe V1:.'i.l. F Y :_,: -' lilg buil t- ir. Function •

Ar i thIT'E-L i,c' "'Ji t t "In F UIh.::ti ons • • • • • • •
AI'S Arit:,;h(ci.J,C Built-in Function
ADD Arit~netic duilt-in Function
bINARY Arjrhmetic Built-in Function.
eEl L Ar i. t L:l:etic Sui 1 t - ill Function • •
COMPLEX IULt hW€i:1C Built-in Function
CON.)(; A.ut.tltl,etj.c Guilt-in Function
DECIMAL A.ril~netic Built-in Function
DIVIDE Arl t lmet_lc Built-in Function
FIXED l\riLullet.ic; Built-in Function
FLOAT ALithmetic Built-in Function
,FLOOk Ar it lII1,et ic Bui 1 t- in Function
lMA,; Ari thmetic Built-in Function
MAX ArithwFlic Built-in Function
MIN Arithmetic Built-in FUnction
MOD Ari~hmptic Built-in FUnction
MULTIPLY Arithmetic Built-in Function.
PRECISION Arithmetic Built-in Function
hEAL Arithmetic Built-in Function •
ROUND AritIluletic Built-in FUnction ••••
SIGN Arit_hmetic Built-in Function.
TRUNe Arithmetic Built-in Function

Mathematical Built-in Functions.

xii

ATAN Mathematical Built-in Function •
ATAND lVJathemati.cal Built-in Furcticn
ATA~H Mathematical Built-in Function
COS Mathematical Built-in Function
COSD Mathematical Built-in FUnction •
COSH Mathematical Built-in ~unction
ERF Mathemat ical Built-in Function
ERFC Mathematical Built-in Function ••••••

••• 209
.209

• .210
• ••• 210

• .210
.210
.210

• .211
.211

• .211
.211
.211

• • • • • .212
.213

• • • .213
.214
.214

• .214
• .214

• .220
.221
.221

• .221
• .221

• • • • • • .222
• .222

.222
• • • • • • .223

• .223
• .223
• .224

.224
• .224
• .225
• .226

.226
• .227
· .227

• • • .227
• .227

.227
.228
.228
.2,28
.228

• .228
.229

• ••• 229
.229

• .229
.229
.230

• .230
• .230
• .230

.231
••• 231

.231
• .231

.233
• .233

.234
• .234
• .234
• .234
• .234

{

• .234 EXP Mathematical Built-in Function
LOG l-lathematical Built-in Function
LOGlO Matfl'2matical Built-in Function
LOG2 Mathematical Built-in Function
SIN Matnematical Built-in Function
SIND Mathematical Built-in Function
SINH Mathematical Built-in Function

• • • • • .234
.235
.235

• ••••• 235

SQRT Mathematical Built-in Function •
TAN Mathematical Built-in Function ••••
TAND Mathematical 9uilt-in Functions
TANH Mathematical Built-in Function • •
Summary of Mathematical Functions ••

Array Manipulation Built-in FUnctions • • •••
ALL Array :tJanilo;ulation Function. • ••••••••••
ANY !,rray Mani[ulation Function .• ••••••••
DIM Array ~anipulation Function • • • • • •
HEOUND Array Hanipulation FUnction •••••••••
LBOUND Array Manipulation Function • • • •
PCl.LY Array Manipulation Function • • • • • • • • •
PROD Array t-lanipulation Function • • • •

• .235
.235
.235

• .235
.235

• .236
• .236

.236

.236
• •• 236

.236
• .237
• .237

.237
• .237

SUM Array Manipulation Function . • • • • • • • • • 237
Condition Built-in Functions .•.•

DATAFIELD Condition Built-in Function .
ONCHAR CondiTion Built-in Function
ONCODE Condition Built-in Function
ONCOUNT Condition Built-In Function •
ONFILE Condition Built-in Function
ONKEY Condition Built-in Function ••
ONLOC Condition Built-in Function • •
ONSOURCE Condition Built-in Function

Based Storage Built-in Functions . • . .
ADDR Based Storage Built-in Function
EMPTY Based Storage Built-in Function
NULL Based Storage Built-in Function
NULLO Based ::~torage Built-in Function

Multitasking Built-in Functions • •

• .238
.238
.238
.238

• •• 238
.238

• .239
.239
.239

• .239
.239

• .239
• .240

.240
• .240

COMPLETION Multi tasking Built-in Function • • ••• • .240
.240
.240

STATUS Multit_asking Built-in Function ••••
Miscellaneous Built-In Functions •••••••

ALWCATION Built-in Function
COUNT Built-in Function • •
DATE Built-in FUnction
LINENO Built-in Function
TIME. Built-in FUnction

Pseudo-Variables •.. • • • •
COMPLETION Pseudo-variable
COMPLEX Pseudo-variable
IMAG Pseudo-variable
ONCHAR pseudo-variable
ONSOURCE Pseudo-variable
REAL Pseudo-variable
STATUS Pseudo-variable
STRING Pseudo-variable
SUBSTR Pseudo-variable
UNSPEC Pseudo-variable

SECTION 8: ON-CONDITIONS
Introduction .••..••

Condition Codes (ON-codes)
Multiple InterrJptions

Section OrganizatiGn . . • . •
Computational Conditions

The CONVERSION ;ondition
The FIXEOOVFHFLOW Condition
The OVERFLC. Condition
The SIZE Condition . • • •
The UNDERFLOW Condition • •
The ZERODIVIDE Condition

• .240
• .241

• • • • .241
.241
.241
.241
.241

• .242
• •• 242

• .242
.242

• .242
• ••••• 242

.242
• .243
• .243

• .244
• .244

• • • • .244
.246
.246

• • .247
.247

• .248
• .248
• .248
• .248

.249

xiii

• .249
• .249
• .249

Input/Output Conditions • •
The ENDFILE Condition
The ENDPAGE Condition
The KEY Condition • .
The NAME condition

••••••• 250

The PENDING Condition •
The RECORD Conditien
The TRANSMIT Condition
The UNDEFINEDFILE Condition •

• .250
• .250

••• 250
.251

• .251
• .252 Program-Checkout Conditions •••

The CHECK Condition • • • • • • • • • • • • • .252
The ~TRINGRANGE Condition • • • • • •
The SUBSCRIl''IHANGE condition

List Processing Condition •••••
The AT<EA Condition ••••

System Action Conditions ••• •
The ERROR Condition ••
The FINISH Condition ••••••••

User-Named Condition
The CONDITION Condition

• .254
.254

• ••• 254
• .254
• .255
• .255
• .255
• .255

••• 255

BECTIGN 'J: A'J."TPIBUTES . • . • • • • • • • • • •• .256
Specification cf Attril:utes • • • • • .256

Fact.oring of At:tributes • • • • • • .256
Data Attributes . • • • • • • • • • • • • • .256

Prohlem D~ta ...•...•.••• • • • • • ••• 256
Program Cord:.rol Data • • • • • • • • • • • • .257

Entry Name Attributes. • • .257
File Description AttribJtes • • • • • .257
Scope Attributes • . . . • ••• 257
Storage Class At Lributes • • • • • • • .258
Alphabetic I,ist of Attributes • • • • • • ••• 258

xiv

ll,LIGNED dnd UNALIGNED (Data Attributes) • • • • • • • .258
AREA (Pro9ram Control Data Attribute). • • • • • .259
AUTOMATIC, STATIC, CONTROLLED and BASED (Storage Class
Attributt.~~s) • • • • . . • • • • • ••••
BACK~1ARfk; (File Description Attribute) •••••••••
BASED (storage Class Attibute) ••••••••••••
BINARY and DECIMAL (Arithmetic Data Attributes) • • • • •
BIT and CHARAC'I'ER (string Attributes) • •
BU:FF'ERED and UNBUFFERED (File Description Attributes) •
BUILTIN (Entry Attribute) • • • • • • • • • •
CHARACTER (string Attribute) ••••••••
COMPLEX and REAL (Arithmetic Data Attributes)
CONTROLLED (Storage Class Attribute)
DECIMAL (Arithmetic Data Attribute) •
DEFINED (Data Attribute) •• ••••
Dimension (Array Attribute) • • • • •
DIRECT and SEQUENTIAL (File Description Attributes) • •
ENTRY Attribute •.•.•••••.••
ENVIRONMENT (File rescription Attribute)
EVENT (Program Control Data Attribute) •••••••••
EXCLUSIVE (File Description Attribute)
EXTERNAL and INTERNAL (Scope Attributes)
FILE (File Description Attribute) • • • • • •
FIXED and FLOAT (Arithmetic Data Attributes)
FLOAT (Arithmetic Data Attribute) • • • • • • • • • •
GENERIC (Entry Name Attribute) .•••••••••••
INITIAL (Data Attribute) ••••••
INPUT, OUTPUT, and UPDATE (Fil~ r:escriFtion Attributes) •
IN'fERNAL (Scope At tr ibute) • • • •
IRREDUCIBLE and REDUCIBLE • • • • • • •
KEYED (File Description Attribute)
LABEL (Program Control Dat? Attribute)
Length (String Attribute) •••••

• .260
• .261

.261
• .261
• .262
• .262
• .262

.263
• .263

.263
• .263

• ••• 263
• •• 265

• .266
.266

• .267
• .261

.268

.269
• .269

.269
• .269
• .269

.271
• .273

• • .273
• .273
• .273
• .273

.274
LIKE (Structure Attribute) ••••
OFFSET and POINTER (Program Control Data Attributes)
OUTPUT (File Description Attribute) • • • • • • • • •

• ••• 274
•••••• 275
• • • • • • 215

PICTURE (Data Attribute) ••••••
POINTER (Program Control Data Attribute)
POSITION (Data Attribute) •.•..•
Precision (Arithmetic Data Attribute)
PRINT (File Description Attribute)
REAL (Arithmetic Data Attribute)

.275
• .278

.278
• • .278

.279
.279

RECORD and STREAM (File Description Attributes) . • .279
Reducible . . • • • • • • • • • • •
RETURNS (Entry Name Attribute)
SEQUENTIAL (File Description Attritute)

• •• 279
• • • .279

STATIC (st.crage Class Attribute) ••••
• .280

.280
STREAM (File Description Att.ribute) .
TASK (Prograrr Control Data Attribute)
UNALIGNED (Data Attribute) •••••
UNBUFFERED (File Description Attribute) •
UPDATE (File Description Attribute)
VARYING <String Attribute}

10: STATEMENTS
ALLOCATE Statement
Assignment Statement
BEGIN Statement
CALL Statement
CLOSE Statement
DECLARE Statement •
DELAY Statement • •
DELETE Statement
DISPLAY Statement •
DO Statement ••••
END Statement •
ENTRY Statement •
EXIT Statement
FORl".AT Statement
FREE Statement

• .280
.280
.280
.280
.280
.280

• .281
• .281
• .283

.286
• .287
• .288

• • • • • • • • • • • 288
• .289

.289

.290
• .290

.292
.293
.293

• .294
• ••• 294

SECTION
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
'l'he
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The

GET Statement • • •
GO TO Statement ••
IF Statement
LOCATE Statement
Null Statement

• • • • • • • • • • • • • • 295

ON Statement
OPEN Statement
PROCEDURE Statement
PUT Statement • •
READ Sta tement
RETURN Statement
REVERT Statement
REWRITE Statement •
SIGNAL Stat.ement
STOP Statement
UNLOCK Statement
WAIT statement
WRITE Statement • •

Preprocessor Statements •
The %ACTIVATE Statement
The % Assignment Statement ••••
The %DEACTIVATE Statement •
The %DECLARE Statement
The %00 Statement • •
The %END Statemlnt ••••••••
The %GO TO Stah:ment
The %IF statement • • •
The %INCLUDE Statement
The % Null st: at:';ment
The %PROCED', :E Statement
The Preprocessor RETURN Statement

• .296
• ••• 296

• .297
• .297

• • • • • ..297
• • • • • .299

• ••• 300
• JOl

•••••• 303
.305

• .305
• .306

• •• 307
• .307
• .307
• .307
• .308

• •• 309
• .309

.310

.310
• .310

.311
• .311

.312

.312
• • • .312
• • • • 313

• .313
• .314

xv

SECTION 11: DATA MAPPING
Structure Mapping •

• • • • • .315
.315

Ru les • •. • . . • • • • • • ••••• 315
Rules for Orcler of Pairing
Rules for Mapping One Pair
Effect of UNALIGNED Attribute

Example of Structure Mapping
Record Alignment • . . • .

SECTION 12: DEFINITIONS OF TERMS

INDEX •

FIGURES -----

Figure 1. Some Functions of Special Characters
Figure 2. Target Types for Expression Operands
Figure 3. Precision for Arithmetic Conversion.
Figure 4. Lengths of Character-String Targets ••••••
Figure 5. Lengths of Bit-String Targets ••••
Figure 6. Circumstances that can Cause Conversion.
Figure 7. Scopes of Data Declarations ••••••
Figure 8. Scopes of Entry and Lahel Declarations
figure 9. General Format for Repetitive Specifications

.315
•. 316

.316

.318
• •• 326

.329

.336

9
42

• 43
45
45
46
67
68

• 82
Fiqure 10. Examrle of Data-Directed Transmission (Both Input and
Output) . • . . •. . •.••...•.•••••••• • 87
Fiyure 11. Options and Format IteJ11s for Controlling Layout of
PRINT Files • . • • . • • • . • • • • • • • • • • • • 91
Figure 12. Relationship Between Line Size and Record Size
Figure 13. Inrut and Output: Move Mode ••.••••
Figure 14. Locate Mode Input, Move Mode Output •••
Figure 15. 3taterr'ents and Options Permitted for Creating and

• 94
• 99

• ••• 100

Accessing CONSECUTIVE Data Sets • . • • • • • • .105
F'igure 16. Relationship Between RKP Suboperand and Record Format •• 106
Figure 17. Statements and Options Permitted for Creating and
Accessing INLEXEI: Data Sets • . . . • ..••
Figure 18. A Program Checkout Routine •.•.•••••
Figure 19. Exarnfle of TWO-Directional Chain •••••

.107
• •• 135

.150
2} 164 Figure 20. Implicit Data Conversions Performed Inline (Part 1 of

Figure 21. Conditions Under Which the String Operations are
Handled Inline . . • • . . • • . • • • • • . • • • • • • .167
Figure 22. Conditions Under Which the String Functions are Handled -
Inline • • • • • . . • • • • • . • • • • • .168
Figure 23. Pictured Character-String Examples .193
Figure 24. Pictured Numeric Character Examples •• 194
Figure 25. Examples of Zero Suppression .••• .195
Figure 26. Examples of Insertion Characters •• 196
Figure 27. Examples of Drifting Picture Characters •. 198
Figure 28. Examples of CR, DB, T, I, and R Picture Characters •• 199
Figure 29. Examples of Floating-Point Picture Specifications .200
Figure 30. EXaJ11ples of Scaling Factor Picture Characters •••• 201
Figure 31. Examples of Sterling Picture Specifications .201
Figure 32. Examples of Conversion From Fixed-Point to
Character-String • • • • • • • • • • • • • • • • .214
Figure 33. Bxamples of Conversion FroIT Arithmetic to Bit-string •• 215
Figure 34. Data Type of Result of Bit-string Operation ••••••• 215
Figure 35. Data Type of Result of Concatenation Operation •• 215
Figure 36. Data Type of Result of Comparison Operation. •• • .215
Figure 37. Data Type of Intermediate Operands of comparison
OpeIa tion • . • • • • • • • • • • • • • . • • • • • • • •
Figure 38. Data Type of Result of Arithrr,etic Operation ••••
Figure 39. Precision for Ari th; letic Conversions ••••••

• .216
.216

•• 216
Figure 40. Lengths of Converted Character strings (Arithmetic to
Character-String) •••.•••••.•••••••••.•••••• 217

xvi

Page of GC28-2045-1, Issued September 30, 1971 by TNL GN28-3185

Figure 41. Lengths of converted Bit Strings (Arithmetic to
Bit-String) • • • • • • • • • • • • • • • . • • • • • • • • • •
Figure 42. Ceiling Values • • • • • • . • • • • • • • • • •
Figure 43. Attributes of Result in Addition and Subtraction
Operations .•.••••••••. • . . • • • . • .
Figure 44. Attributes of Result in Multiplication OFerations
Figure 45. Attributes of Result in Division operations • • . •
Figure 46. Attributes of Result in Exponentiation Operations •
Figure 41. Mathematical Built-In Functions (Part 1 of 2)
Figure 48. Permissible Items for Overlay Defining ••••
Figure 48A. Summary of Attributes • • ••.••••
Figure 49. General Formats of the Assignment Statement
Figure 50. General Format of the 00 staterrent
Figure 51. Format of Option List for READ Statement
Figure 52. General Format of the IDECLARE Statement ••••
Figure 53. Summary of Alignment Requirements for ALIGNED Data
Figure 54. Summary of Alignment Requirements for UNALIGNED Data

• • .217
• •• 217

.218
• .218

.219
• •. 219

.232
• .259
• .280

.284

.290

.303
• .310

• • .317
• .318

.319 Figure 55. Mapping of Minor Structure G
FigUre 56. MaFPing of Minor Structure E
Figure 51. MaFPing of Minor Strucrure N
Figure 58. Mar-ping of Minor Structure S
Figure 59. Mapping of Minor Structure C
Figure 60. Mapping of Minor Structure M

• • • • • • • • 320
• • • • • • • • 321

• • • • • • • • 322

Figure 61. MaFping of Major Structure A
FigUre 62. Offsets in Final Mapping of Structure A
Figure 63. Format of Structure S •••••
Figure 64. Block Created from Structure S
Figure 65. Block created by Structure S With Correct Alignment
Figure 66. Alignment of Data in a Buffer in Locate ~ode
Input/Output, for Different Formats and Data Set organizat.ions

• .323
.324
.325

• .326
• .326

· . .326
.327

• • 328

x vi. i

An expLanation of the syntax Language
used in this publication to describe ele
ments of PL/I is contained in Part II. Sec
tion 1, "Syntax Notation."

IMPLEMENTATION CONSIDERATIONS

This publication reflects features of
Ithe TSS/360 version of the PL/I compiler.

2

No attempt is made to provide complete
implementation information. Discussion of
implementation is limited to those features
That are required for a full expLanation of

the language. For example, references to
certain parameters of the DDEF conmand are
essential to an expLanation of record
oriented input and output fiLe
organization.

Implementation features identified by
the phrase "for System/360 implementa
tions apply to all impLementations for
IBM System/360 computers. Features identi-

, fied by the phrase "for the TSS/360 PL/I
compiler ••• • appLy specifically to the
PL/I compiLer under the IBM System/360 Time
Sharing System.

PART I: CONCEPTS OF PL/I

Introduction 3

The modularity of PL/I, the ease with
which subsets can be defined to meet dif
ferent needs, becomes apparent when one
examines the different features of the lan
guage. Such modularity is one of the most
important characteristics of PL/I.

This chapter contains brief discussions
of most of the basic features to provide an
overall description of the language. Each
is treated in more detail in subsequent
sections.

~~CHINE INDEPENDENCE

No language can be completely machine
independent, but PL/I is much less machine
dependent than most commonly used program
ming languages. The methods used to
achieve this show in the form of restric
tions in the language. The most obvious
example is that data with different 'charac
teristics cannot in general share the same
storage; to equate a floating-point number
with a certain number of alphabetic charac
ters would be to make assumptions about the
representation of these data items which
would not be true for all machines.

It is recognized that the price entailed
by machine independence may sometimes be
too high. In the interest of efficiency,
certain features such as the UNSPEC built
in function and record-oriented data tranS
mission, do permit a degree of machine
dependence.

PROGRAM STRUCTURE

A PL/I program consists of one or more
blocks of statements called procedures. A
procedure may be thought of as a subrou
tine. Procedures may invoke other proce
dures, and these procedures or subroutines
may either be compiled separately, or may
be nested within the calling procedure and
compiled with it. Each procedure may con
tain declarations that define names and
control allocation of storage.

The rules defining the use of proce
dures, communication between procedlres,
the meaning of names, and allocaticn of
storage are fundamental to the proper un
derstanding of PL/I at any level bu·, the
most elementary. These rules give the user
considerable control over the .C'. gree of
interaction between subroutines. They per
mit flexible communication and storage
allocation, at the same time allowing the

SECTION 1: BASIC CHARACTERISTICS OF PL/I

definition of narres and allocation of
storage for private use within a procedure.

By giving the user freedom to determine
the degree to which a subroutine is self
contained, PLiI makes it possible to write
procedures which can freely be used in
ether environments, while still allowing
interaction in procedures where interaction
is desirable.

DATA TYPES AND DATA DESCRIPTION

The characteristic of PL/I that most
contributes to the range of applications
for which it can be used is the variety of
data types that can be represented and
manipulated. PL/I deals with arithmetic
data, string data (bit and character), and
program control data, such as labels.
Arithmetic data may be represented in a
variety of ways; it can be binary or deci
~al, fixed-point or floating-point, real or
complex, and its precision may be
specified.

PI/I frovides features to perform arith
metic operations. operations for corrpari
sons, logical manipulation of bit strings,
and operations and functions for assero
cling, scanning, and subdividing character
s1:rings.

The compiler must be able to determine,
for eVEry name used in a program, the com
plete set of attributes associated with
that name. The user may specify these
attributes explicitly by means of a DECLARE
statement, the compiler may determine all
or some of the attributes by context, or
the attributes may be assumed by default.

CEFAULT ASSUMPTIONS

An imFortant feature of PL/I is its
default philosophy. If all the attributes
associated with a name, or all the options
permitted in a statement. are not sFecified
ty the user, attributes or options may be
assigned by the compiler. This default
action has two main consequences. First,
it reduces the amount of declaration and
ether program writing required; second, it
makes it possible to teach and use subsets
of the language for which the user need not
know all possible alternatives. or even
that alternatives exist.

Since defaults are based on assumptions
about the intent of the user, errors or

Section 1: Basic Characteristics of PL/I 5

omissions may be overlooked, and incorrect
attributes may be assigned by default. To
reduce the chance of this, the compiler
optionally provides an attribute listing,
which can be used to check the names in the
program and the attributes associated with
them •

STORAGE ALLOCATION

PL/I goes beyond most other languages in
the flexibility of storage allocation that
it provides. Dynamic storage allocation is
comparatively difficult for an assembler
language user to handle for himself; yet it
is automatically provided in PI/I. There
are four different storage classes: AUTO
lilA TIC, STATIC, CON'rROLIED, a nd BASED. In
general, the default storage class in PL/I
is AUTOMATIC. This class of storage is
allocated whenever the block in which the
variables are declared is activated. At
that time the bounds of arrays and the
lengths of strings are calculated. AUTO
MATIC storage is freed and is available for
reuse whenever control leaves the block in
which the storage is allocated.

Storage also may be declared STATIC, in
which case it is allocated when the program
is loaded; it may be declared CONTROLLED,
in which case it is explicitly controlled
by the user with ALLOCATE and FREE state
ments, independent of the invocation of
blocks; or it may be declared BASED, which
gives the user an even higher degree of
control.

The existence of several storage classes
enables the user to determine for himself
the speed, storage space, or programming
economy that he needs for each application.
The cost of a particular facility will
depend upon the implementation, but it will
usually be true that the more dynamic the
storage allocation, the greater the over
head in execution time.

EXPRESSIONS

Calculations in PL/I are specified by
expressions. An expression has a meaning
in PL/I that is similar to that of elemen
tary algebra. For example:

A + B * C

This specifies multiplication of th~ value
of B by the value of C and adding the value
of A to the result. PI/I places few re
strictions on the kinds of data tha~ can be
used in an expression. For example, it is
conceivable, though unlikely, that A could
be a floating-point number, B a fixed-point
number, and C a character string.

6

When such mixed expressions are speci
fied, the operands will be converted so
that the operation can be evaluated mean
ingfully. Note, however, that the rules
for conversion must be considered careful
ly; converted data may not have the same
value as the original. And, of course, any
conversion requires additional com~iler
generated coding, which increases execution
time.

The results of the evaluation of expres
sions are assigned to variables by IIeans of
the assignment statement. An example of an
assignment statement is:

x = A + B * C;

This means: evaluate the expression on the
right and store the result in X. If the
attributes of X differ from the attributes
cf the result of the expression, conversion
will again be ~erformed.

LATA COLl.ECTIONS

PL/I permits the user many ways of
describing and operating on collections of
data, or data aggregates. Arrays are
collections of data elements, all of the
same type, collected into lists or tables
of one or more dimensions. Structures are
hierarchical collections of data, not
necessarily all of the same type. Each
level of the hierarchy may contain other
structures of deeper levels. The deepest
levels of the hierarchy represent elemen
tary data items or arrays.

An element of an array may be a struc
ture; similarly, any level of a structure
may be an array. Operations can be speci
fied for arrays, structures, or parts of
arrays or structures. For example:

A = B + C:

In this assignment statement, A, B, and C
could be arrays or structures.

INPUT I,ND OUTPUT

Facilities for input and output allow
the user to choose between factors such as
Simplicity. machine independence, and effi
ciency. There are two broad classes of
input/output in PL/I: stream-oriented and
record-oriented.

Stream-oriented input/output is almost
completely machine independent. On input,
data items are selected one by one from
what is assumed to be a continuous stream
of characters that are converted to inter
nal form and assigned to variables speci
fied in a list. Similarly, on output, data

items are converted one by one "Lo external
character form and are added to a conceptu
ally continuous stream of characters.
Within the class of stream input/output,
the user can choose different levels of
control over the way data .items are edited
and selected fronl or added t.o the stream.

For printing. the output stream may be
considered to be divided into lines and
pages. An output stream file may be
declared to be a print file with a speci
fied line size and page size. The user has
facilities to detect the end of a page and
to specify the beginning of a line or a
page. These facilities may be used in sub
routines that can be developed into a
report generating system suitable for a
particular installation or application.

Record-oriented input/output is machine
dependent. It deals with collections of
data. called records, and transmits these a
record at a time without any data conver'
sion; the external representation is an
exact copy of the internal representation.
Because the aggregate is treated as a
whole, and because no conversion is per
formed, this form of input/output is poten
tially more efficient than stream-oriented
input/output, although the actual efficien
cy of each class will, of course, depend on
the implementation.

Stream-oriented input and output usually
sacrifices efficiency for ease of handling.
Each data item is transmitted separately
and is examined to determine if data con
version is required. Record-oriented input
and output, on the other hand, provides
faster transmission by transmitting data as
entire records, without conversion.

COMPILE-TIME OPERATIONS

Most programming is concerned only with
operations upon da'ta. PL/l permits a
compile-time level of operation, in which
preprocessor statements specify operations
upon the text of the source program itself.
The simplest, and perhaps the commonest
preprocessor statement is %INCLUDE (in gen
eral, preprocessor statements are preceded
ty a percent sign). This statement causes
text to be inserted into the program,
replacing the %INCLUDE statement itself. A
typical use could be to copy declarations
from an installation's standard set of
definitions into the program.

Another function provided by compile
time facil ities is the selective cO'.Ipi la-

tion of program text. For example, it
might specify the inclusion or deletion of
debugging statements.

Since a simple but powerful part of the
PL/I language is available for compile-time
act,ivity, the generat.ion, or replacement
and deletion, of text can become more elab
orate, and more subtle transformations can
be performed. Such transformations might
then be considered to be installation
defined extensions to the language.

INTERRUPTION ACTIVITIES

computing systems provide facilities for
interrupting the execution of a program
whenever an exceptional condition arises.
Further, they allow the program to deal
with the exceptional condition and to
return to the point at which the interrup
tion occurred.

PI/I provides facilities for detecting a
Variety of exceptional conditions. It
allows the user to specify, by means of a
condition prefix, whether certain interrup
tions will or will not occur if the condi
tion should arise. And, by use of an ON
statement, he can specify the action to be
taken when an interruption does occur.

MULTITASKING

In TSS/360, the concept of multitasking
is inherent in the structure of the system;
there are extensive multitasking facilities
in the TSS/360 command system. In this
implementation of the corr'piler, no initia
tion of tasks will be permitted from within
a PL/I execut..able program. The user can
start an independent task in TSS/360 by
several different methods. There is no way
for these tasks to communicate within the
PL/l code. (Refer to IBM System/360 Time
Sharin~?tem: Command System User's
Guide, Order No. GC28-2001.)

'T'h(; effect, then, is that although mul
titasking statements are accepted by the
compiler, the current implementation cannot
honor them and upon encountering a tasking
st.atement will terminate execution.

Note: If a Frogram contains a CALL state
ment with a multitasking option (TASK,
EVENT, or PRIORITY), the entire program is
unacceFtable for TSS/360 execution.

Section 1: Basic Characteristics of PL/I 7

SECTION 2: PROGRAM ELEMENTS

There are few restrictions in the format
of PL/I statements. Consequently, programs
can be written without consideration of
special coding forms or checking to see
that each statement begins in a specific
column. As long as each statement is ter
minated by a semicolon, the format is com
~l€tely free. Each statement may begin in
the next cclumn or position after the pre
viuus statement, or any nurrber of blanks
may intervene.

CHARACTER SETS

One of two character sets may be used to
write a source program; either a 60-
character set or a 48-character set. For a
given external procedure, the choice
between the two sets is optional.

60-CHARACTER SET

The 60-character set is comrosed of
digits, special characters, and alphabetic
characters.

There are 29 alphabetic characters
Leginnir.g with the currency symbol ($), the
number sign (It), and the commercial "at It
sign (@), which precede the 26 letters of
the English alphabet in the IBM System/360
collating sequence in ~xtended Binary
Coded-Decimal Interchange Code (EBCDIC).
For use with languages other than English,
the first three alphabetic characters can
be used to cause printing of letters that
are not included in the standard English
alphabet.

There are ten digits. The decimal
digits are the digits 0 through 9. A
tinary digit is either a 0 or a 1.

There are 21 special characters. They
are as follows:

Name Character
Blank
Equal sign or assignment symbol =
Plus sign +
Minus sign
Asterisk or multiply symbol *
Slash or divide symbol /
Left parenthesis (
Right parentheSis)
Comma
Point or period

I Apostrophe
Percent symbol %
Semicolon

8

Name
Colon

Character

"Not" symbol
"And" sYlrbol
"Or" symbol
"Greater than" symbol
"Less than" symbol
Ereak character~
Question mark

,
&

I
>
<

?

Special characters are combined to cre
ate other symbols. For example, <= means
"less than or equal to," ,= means "not
equal to." The combinat.ion *. denotes
exponentiation (X •• 2 means X2). Blanks are
not permitted in such composite sYlrbols.

An alphameric character is either an
alr-habetic character or a digit, but not a
special character.

Note: The question mark, at present, has
no sr-ecific use in the language, even
though it is included in the 60-character
set.

48-CHARACTER SE'I

The 48-character set is composed of 48
characters of the 60-character set. In all
but four cases, the characters of the
reduced set can te combined to represent
tne rrissing characters from the larger set.
For example, the percent symbol (%) is not
included in the 48-character set, but a
double slash (//) can be used to rer-resent
it. The four characters that are not du
plicated are the corrmercial "at" sign, the
number sign, the break character, and the
question mark.

The restrictions and changes for this
character set are described in Part II,
Section 2, "Character Sets with EBCDIC and
Card-Punch Codes."

USING THE CHARACTER SET

All the elements that make up a PL/I
program are constructed from the PL/I
character sets. There are two exceptions:
character-string constants and cororrents may
contain any character permitted by a par
ticular machine configuration.

:LThe break character is the same
typewriter underline character.
used with a name, such as GROSS
improve readability.

as the
It can be

PAY, to

Certain characters ferform specific
fUnctions in a PL/I program. For example,
many characters fUnction as operators.

There are four types of operators:
arithmetic, comparison, bit-string, and
string.

The arithmetic operators are:

+ denoting addition or prefix plus
denoting subtraction or prefix

minus

* denoting multiplication
/ denoting division
** denoting exponentiat.ion

The comparison operators are:

> denoting "greater than"
,> denoting "not greater than"
>= denoting "greater than or

equal to"
denoting "equal to"

,= denoting "not equal to"
<= denoting "less than 0.1:: equal
< denoting "less than"
,< denoting "not less than"

The bit-string operators

, denoting "not"
t denoting "and"
I denoting "or"

are:

to"

The string operator is:

II denot.ing concatenation

Figure 1 shows some of the functions of
other special characters.

Identifiers

In a PL/I program, names or labels are
given to data, files, statements, and entry
points of different program areas. In
creating a name or label, a user must
observe the syntactic rules for creating an
identifier.

An identifier is a single alphabetic
character or a string ot alphameric and
creak characters, not contained in a com
Hent or constant, and preceded and followed
cy a blank or some other delimiter; the
initial character of the string must be
alphabetic. For System/360 implementation,
the length must not exceed 31 characters.

Language keywords also are identifiers.
A keyword is an identifier that. when used
in proper context, has a specific rreaning
to the compiler. A keyword can specify
such things as the action to be taken, the
nature of data, the purpose of a name. For
example, READ, DECIMAL, and ENDFlLE are
keywords. Some keywords can be abbre
viated. A complete list of keywords and

r-------------T-----------T---,
I Name I Character I Use I
t-------------+-----------+---~
I comma I I Separates elements of a list I
I I I I
I period I I Indicates decirral point or binary point; connects elements I
I I I of a qualified name I
I I I I
I semicolon I I Terminates statements I
I I I I
I assignment I ::: I Indicates assignment of values 1 I
I symbol I I I
I I I I
I colon I I Connects prefixes to staten:ents; can be used in specifica- I
I I I tion for bounds of an array I
I I I I
I blank I J Separates elements of a '~Latement I
I I I I
I apostrophe I I Encloses string constants and picture specification I
I I I I
I parentheses I I Enclose lists; specify information associated with various I
I I I keywords; in conjunction with operators and operands. j
I I I delimit portions of a computational expression I
I 1 I I
I arrow I -> I Denoter pointer qualification I
I I I ,
I percent I % I Indicates statements to be executed by the compiler i
I symbol I 1 preproc ~ssor I
t-------------~-----------~---1
I :l.Note that the character = c,. be used as an equal sign and as an assignment symbol. I l ___ --------- __________________________ l

Figure 1. Some Functions of Special Characters

Section 2: Program E~ements 9

their abbreviations is contained in Part
II, section 3, "Keywords and Keyword
Abbreviations."

Note: PL/I keywords are not reserved
words. They are recognized as keywords by
the compiler only ~len they appear in their
proper context. In other contexts they may
be used as user-defined identifiers.

No identifier can exceed 31 characters
I 1n length; for the TSS/360 PL/I compiler,

some identifiers. as discussed in later
chapters, cannot exceed seven characters in
1.-nqtil. This 1iwi tatien is placed upon
certain names, called external names, that

I may he referred to by t~he time-sharing sys
teil' or by filore 1: hdn one separately compiled
p.rocedure. If an external name contains
r\lore r.han seven characters, it is truncated
by che compiler, which concatenates the
first four characters with the last three
characters.

Examples of identifiers that could be
used for names or labels:

FILE2

LOOP 3

HATE OF PAY

#32

Blanks may be used freely throughout a
PL/I program. TIley mayor may not surround
uperdtor3 and most other delimiters. In
genf,ral, any number of blanks may appear
wherever one blank is allowed, such as
bet,ween words in a statement.

One or more blanks must be used to
separate identifiers and constants that are
not separated by some other delimiter or by
a cOlmnent. However, identifiers, constants
(except character-string constants) and
composite operators (for example, ,=) can
not contain blanks.

Other cases that require or· permit
blanks are noted in the text where the fea
ture of the language is discussed. Some
examples of the use of blanks are:

AB+BC is equivalent t,o AB + BC
~ABLE(10) is equivalent to TABLE (10)
FIRST, SECOND is equivalent to FIRST. SECOND
ATOB is not equivalent to A TO B

comments

Comments are permitted whereve.r. blanks
are allowed in a program, except within

10

data items, such as d character string. A
comment is treated as a blank and can
therefore be used in place of a required
separating blank. comments do not other
wise affect execution of a program; they
are used only for documentation purposes.
Comments may be [unched into the same cards
as statements, either inserted between
statements or in the middle of them.

The general format of a comment is:

character-string */

The character pair 1* indicates the
l::eginning of a comment. The same character
fair reversed, *1, indicates its end. No
l::lanks or other characters can separate the
two characters of either composite pair;
the slash and the asterisk must be irrmedi
ately adjacent. The comment itself may
contain any characters except the */ coml::i
nation, which would be interpreted as ter
minating the comment.

Example:

1* THIS WHOLE SENTENCE COULD BE
INSERTED AS A COMMENT */

Any characters permitted for a particu
lar machine configuration may be used in
comments.

EASICPROGRAM STRUCTURE

A PL/I program is constructed from basic
program elements called statements. There
are t.wo types of statements: simple and
compound. These statements make up la.rger
program elements called groups and blocks.

SIMPLE AND COMPOUND STATE.HEN'l'S

There are three types of simple state
ments: keyword, assignment, and null, each
cf which contains a statement body that is
terminated by a semicolon.

A keywo~d ~tatemen~ has a keyword to
indicate the fUnction of the staterrent; the
statemeut body is the remainder of the
statell!ent.

The assignment statement contains the
assignment symbol (·;)and does not. have a
keywcrd.

The null statement consists only of a
semicolon and indicates no cperaticm; the
semicolon is the statement body.

Examples of simple statements are:

GO TO LOOP_3; (GO TO is a keyword; the
blank between GO and TO

A = B + c;

is optional. The state
ment body is LOOP_3;)

(assignment statement)

A compound statement is a statement that
contains one or more other statements as a
part of its statement body. There are two
compound statements: the IF statement and
the ON statement. The final stateEent of a
compound statement is a simple statement
that is terminated by a semicolon. Hence,
the compound statement is terminated by
this semicolon. The IF statement can con
tain two simple statements as shown in the
following example:

IF A>B THEN A
LOOP_3 i

B+C; .l:.LSE GO TO

This example can also be written as
follows:

IF A>B
THEN A=B+Ci
ELSE GO TO LOOP 3:

Following are examples of the ON
statement:

ON OVERFLOW GO TO OVFIXi
ON UNDERFLOW;

The contained statement in the second
example is the null statement represented
by a semicolon only; it indicates that no
action is to be taken when an UNDERFLOW
interruption occurs.

Statement Prefixes

Both simple and compound statements may
have one or more prefixes. There are two
types of prefixes; the label prefix and the
condition prefix.

A label prefix identifies a statement so
that it can be referred to at some other
point in the program. A label prefix is an
identifier that precedes the statement and
is connected to the statement by a colon.
Any statement may have one or more labels.
If more than one are specified, they may be
used interchangeably to refer to that
statement.

A condition prefix specifies whether or
not interruptions are to result from the
occurrence of the named conditions. Condi
tion names are language keywords, earh of
which represents an exceptional cond.tion
that might arise during execution of a pro
gram. Examples are OVERFLOW and SIZE. The
OVERFLOW condition arises when the e}.ponent
of a floating-point number .excee(l-; the
maximum -allowed (representing a waximum
value of about 10 75). The SIZE condition
arises when a value is assigned to a vari-

able with loss of high-order digits or
bits.

A condition name in a condition prefix
Ray te preceded ty the word NO to indicate
that, effectively, no interruption is to
cccur if the condition arises. If NO is
used, there can be no intervening blank
tetween the NO and the condition narre.

A condition prefix consists of a list of
cne or more condition names, separated by
commas and enclosed in ~arentheses. One or
!Tore condition prefixes may be attached to
a statement, and each parenthesized list
!rust be followed by a colon. Condition
prefixes precede the entire statement,
including any possible label prefixes for
the statement. For example:

(SIZE, NCOVERFLOW):COMPUTE:A B * C ** D;

The single ccndition prefix indicates that
an interruption is to occur if the SIZE
condition arises during execution of the
assignment statement, but that no interrup
tion is to occur if the OVERFLOW condition
arises. Note that the condition prefix
precedes the label prefix COMPUTE.

Since intervening blanks between a pre
fix and its associated statement are
ignored, it is often convenient to punch
the condition prefix into a separate card
that precedes the card into which the
statement is punched. Thus, after debug
ging, the prefix can be easily removed.
For' example:

(NOCONVERSION) :
(SIZE,NCOVERFLOW):
COMPUTE: A = B * C ** D;

Note that there are two condition prefixes.
The first specifies that no interruption is
to occur if an invalid character is encoun
tered during an attempted data conversion.

Condition prefixes are discussed in Part
I, Section 13, "Exceptional Condition
Handling and Program Checkout. 3

GROUPS AND BLOCl<S

A ~ is a sequence of statements
headed by a DO statement and terminated by
a corresponding END statement. It is used
for control purposes. A group also may be
called a DO-group.

A block is a sequence of statements that
defines an area of a program. It is used
to delimit the scope of a name and for con
trol purposes. A program may consist of
one or more blocks. Every statement must
appear within a block. There are two kinds
cf blocks: begin blocks and procedure

Section 2: Program Elements 11

tlocks. A begin block is delimited by a
BEGIN statement and an END statement. A
~rocedure block is delimited by a PROCEDURE
statement and an END statement. Every
begin block must be contained within some
f'rocedure block.

Execution passes sequentially into and
out of a begin block. However. a procedure

12

block must be invoked by execution of a
statement in another block. The first pro
cedure in a ~rogram to be executed is
invoked automatically by the system. For
System/360 implementations, this first pro
cedure must be identified by s~ecifying
OPTIONS (MAIN) in the PROCEDURE statement.

Data is generally defined as a represen
tation of information or of value.

In PL/I, reference to a data it.em,
arithmetic or string, is made by using
either a variable or a constant (the terms
are not exactly the same as in general
mathematical usage).

A variable is a symbolic name having a
value that may change during execution of a
program.

A constant (which is not a symbolic
name) has a value that cannot change.

The following statement has both
variables and constants:

AREA = RADlUS.*2*3.1416;

AREA and RADIUS are variables; the numbers
2 and 3.1416 are constants. The value of
RADIUS is a data item, and the result of
the computation will be a data item that
will be assigned as the value of AREA. The
number 3.1416 in the statement is itself
the data item; the characters 3.1416 also
are written to refer to the data item.

If the number 3.1416 is to be used in
n,ore than one place in the program, it may
be convenient to represent it as a variable
to which the value 3.1416 has been
assigned. ThUS, the above statement could
be written as:

PI = 3.1416;
AREA = RADIUS**2*PI;

In this statement, only the digit 2 is a
constant.

In preparing a PL/I program, the user
must be familiar with the types of data
that are permitted, the ways in which data
can be organized, and the methods by which
data can be referred to. The following
paragraphs discuss these features.

DATA TYPES

The types of data that may be u~ed in a
PL/I program fall into two categor~es:
problem data and program control data.
Problem data is used to represent vllues to
be processed by a program. It consists of
two data types, arithmetic and ;.tring.
Program control data is used to control the
execution of a program. Program control

SECTION 3: DATA ELEMENTS

data consists of the following types:
label, event, task, locator, and area.

A constant does more than state a value;
it demonstrates various characteristics of
the data item. For example, 3.1416 shows
that the data type is arithmetic and that
the data item is a decimal number of five
digits and that four of these digits are to
the right of the decimal point.

The characteristics of a variable are
not immediately apparent in the name.
Since these characteristics, called attri
butes, must be known, certain keywords and
expressions may be used to specify the
attributes of a variable in a DECLARE
statement. The attributes used to describe
each data type are discussed briefly in
this chapter. A complete discus~ion of
each attri~ute appears in Part II, Section
9. -Attributes."

PROBLEM DATA

The types of problem data are arithmetic
and string.

ARITHMETIC DATA

An item of arithmetic data is one with a
numeric value. Arithmetic data items have
the characteristics of base, scale, Freci
sian, and mode. The characteristics of
data items represented by an arithrretic
variable are srecified by attributes
declared for the name, or assurr,ed by
default.

The base of an arithmetic data item is
either decImal or binary.

The scale of an arithmetic data it err is
either fixed-pOint or floating-point.. A
fixed-~oint data item is a number in which
the [osition of the decimal or binary Foint
is specified, either by its appearance in a
constant or by a scale factor declared for
a variable. A floating-point data item is
a number followed by an optionally signed
exponent. The exponent specifies the
assumed position of the decimal or binary
FOint, relative to the pOSition in which it
aFpears.

The precision of an arithmetic data item
is the number of digits the data item may
contain, in the case of fixed-point, or the
ainimum number of significant digits
(excluding the exponent) to be maintained,

Section 3: Data Elenents· 13

in the case of floating-point. For fixed
point data items, precision can also speci
fy the assumed position of the decimal or
binary l!oint, relative to the rightmost
digit of the number.

Whenever a data item is assigned to a
fixed-point variable, the declared preci
sion is maintained. The assigned item is
aligned on the decimal or binary point.
Leading zeros are inserted if the assigned
item contains fewer integer digits than
declared; trailing zeros are inserted if it
contains fewer fractional digits. A SIZE
error may occur if the assigned item con
tains too many integer digits; truncation
on the right may occur if it contains too
many fractional digits.

The mode of an arithmetic data item is
either real or complex. A real data item
15 a number that expresses a real value. A
complex data item is a pair of numbers:
the first is real and the second is
imaginary. For a variable representing
cOftlPlex dat-a items, the base, scale, and
pre~ision of the two parts must £e
identical.

Base, scale, and mode of arithmetic
variables are specified ty keywords; preci
sion is specified by parenthesized decimal
integer constants. The precision of arith
metic constants is discussed in greater
detail below, under the heading "Precision
of Aritrunetic Constants."

In the following sections, the real
arithmetic data types discussed are decimal
fixed-point, sterling fixed-point, binary
fixed-point, decimal floating-paint, and
£inary floating-point. Any of these,
except sterling fixed-point, can be used as
the real part of a complex data item. The
imaginary part of a complex number is dis
cussed in "Complex Arithmetic Data," in
this section.

Complex arithmetic variables must be
explicitly declared with the COMPLEX attri
bute. Real arithmetic variables may be
explicitly declared to have the REAL attri
bute, but it is not necessary to do so,
since any arithmetic variable is assumed to
be real unless it is explicitly declared
complex.

Decimal Fixed-Point Data

A decimal fixed-point constant cJnsists
of one or more decimal digits with an
optional decimal point. If no decimal
point appears, the point is assumed to be
immediately to the right of the rightmost
digit. In most uses, a sign IDa:l' optionally
precede a decimal fixed-point constant.

14

Exawples of decimal fixed-point con
stants as written in a program are:

3.1416
455.3
732
003
5280
.0012

The keyword attributes for declaring
deciroal fixed-point variables are DECIMAL
and FIXED. Precision is stated by two dec
imal integers, separated by a comma and
enclosed in parentheses. The first, which
roust be unsigned, specifies the total num
ber of digits; the second, the scale fac
tor, may be signed and specifies the number
of digits to the right of the deciroal
~oint. If the variable is to represent
integers, the scale factor and its ~reced
ing comma can te omitted. The attritutes
may appear in any order, but the precision
specification must follow either DECIMAL or
FIXED (or REAL or COMPLEX).

Following are examples of declarations
of decimal fixed-point variables:

DECLARE A FIXED DECIMAL (5,4);
DECLARE B FIXED (6,0) DECIMAL;
DECLARE C FIXED (7,-2) DECIMAL;

The first DECLARE statement specifies that
the identifier A is to represent decimal
fixed-point items of not more than five
digits, four of which are to be treated as
fractional, that is, to the right of the
assumed decimal point. Any item assigned
to A will be converted to decimal fixed
point and aligned on the decimal point.
The second DECLARE statement specifies that
B is to represent integers of no wore than
6 digits. Note that the comma and the zero
are unnecessary; it could have been speci
fied B FIXED DECIMAL (6). The third
DECLARE statement specifies a negative
scale factor of -2; this means that the
assumed decimal point is two places to the
right of the rightmost digit of the item.

The maximum number of decimal digits
allowed for System/360 implementations is
15. Default precision, assumed when nc
specification is made, is (5,0). The
internal coded arithmetic form of decimal
fixed-~oint data is packed decimal. Packed
decimal is stored t1oiO digits to -the tyte,
with a sign indicat.ion in the rightmost
four bits of the rightmost byte. Conse
quently, a decimal fixed-point data item is
always stored as an odd number of digits,
even though the declaration of the variable
nay specify the number of digits (p) as an
even number. When the declaration speci
fies an even number of digits, the extra
digit place is in the high-order position,
and it participates in any operations per-

formed upon the data item, such as in a
comparison operation. Any arithmetic over
flow or assignment into an extra high-order
digit place can be detected only if the
SIZE condition is enabled.

Sterling Fixed-Point Data

PL/I has a facility for handling con
stants stated in terms of sterling currency
value. The data may be written in a pro
yram with pounds, shillings, and pence
fields, each separated by a period. Such
data is converted and roaintained internally
as a decimal fixed-point numcer represent
ing the equivalent in pence. A sterling
data constant ends with the letter L,
representing the pounds syrrbol. All three
tields (pounds, shillings, and pence) must
be present in a sterling constant. Note
that the the maximum number of digits
allowed in the pounds field of a sterling
constant is 13. The pence field is one or
more decimal digits with an optional deci
mal point (the integer part must be less Ithan 12 and cannot be omitted, and the
fractional part must not exceed 13 minus
the number of digits in the pounds field).

Examples of sterling fixed-point con
stants as written in a program are:

101.13.8L
1.10.0L
0.0.2.5L
2.4.6L

The third example represents twopence
halfpenny. The last example represents two
pounds, four shillings, and six pence. It
is converted and stored internally as 534
(pence).

There are no keyword attributes for
declaring sterling variables, but a vari
able can be declared with a sterling pic
ture, or sterling values may be expressed
in pence as decimal fixed-point data. The
precision of a sterling constant is the
precision of its value expressed in pence.

Binary Fixed-Point Data

A binary fixed-point constant consists
of one or more binary digits with an
optional binary point, followed immediately
by the letter B, with no intervening blank.
In most uses, a sign may optionally precede
the constant.

Examples of binary fixed-paint constants
as written in a program are:

10110E
I1111B
101B
111. 01B
101l-111E

The keyword attributes for declaring
tinary fixed-point variables are BINARY and
FIXEC. Precision is specified by two deci
mal integer constants, enclosed in paren
theses, to represent the maximum number of
binary digits and the number of digits to
the right of the binary point, respective
ly. If the variable is to represent inte
gers, the second digit and the COIT.ua can be
omitted. The attributes can appear in any
order, but the precision specification must
follow either BINARY or FIXED (or REAL or
COMPLEX) ,

Following is an example of declaration
cf a binary fixed-point variable:

DECLARE FACTOR BINARY FIXED (20,2);

FACTOR is declared to be a variable that
can represent arithmetic data items as
large as 20 tinary digits, two of which are
fractional. The decimal equivalent of that
value range is from -262,144.00 througb
+262,143.75.

The maximum number of binary digits
allowed for System/360 implementations is
31. Default precision is (15,0), The
internal coded arithmetic form of binary
fixed-point data is a fixed-point binary
fullword or halfword. fA full word is 31
bits plus a sign bit; a balfword is 15 bits
plus a sign bit.) Any binary fixed-point
variable of precision less tban 16 is
always stored as 15 digits, even thougb the
declaration of the variable may specify
fewer digits; any binary fixed-point vari
able of precision greater than 15 (or any
tinary fixed-point constant, regardless of
precision) is always stored as 31 digits.
The declared numter of digits are consid
ered to be in the low-order positions, but
the extra high-order digits participate in
any operations performed upon the data
item. Any arithmetic overflow into such
extra high-order digit positions can be
detected only if the SIZE condition is
enabled.

An identifier for which no declaration
is ma~e is assumed to be a binary fixed
po:int. variable, with default precision, if
it3 first letter is any of the letters I
through N.

Decimal Floating-Point Data

A decimal floating-point constant is
written as a field of decimal digits fol
lowed by the letter E. followed by an
cptionally signed decimal integer exponent.
The first field of digits may contain a
decimal point. The entire constant may be
preceded by a plus or minus sign. Examples
of decimal floating-point constants as
written in a program are:

Section 3: Data Elements 15

15E-23
15E23
4E-3
48333E65
438EO
3141593E-6
.003141593E3

The last two examples represent the same
value.

'rhe keyword attributes for declaring
decimal floating-point varial::les are DECI
MAL and FLOAT. Precision is stated by a
decimal integer constant enclosed in paren
theses. It specifies the minimum number of
significant digits to be maintained. If an
item assigned to a variable has a field
width larger than the declared precision of
the varia ble, trunca tion may occur on the
right. The least significant digit is the
first that is lost. Attributes may appear
in any order, but the precision specifica
tion must follow either DECIMAL or FLOAT
(or REAL or COMPLEX).

Following is an example of declaration
of <l decimal floating-point variable:

DECLARE LIGHT_YEARS DECIMAL FLOAT(S);

This statement specifies that LIGHT_YEARS
is to represent decimal floating-point data
itGfls with an accuracy of at least five
significant digits.

The maximum precision allowed for deci
mal floating-point data items for System/
360 implementations is (16); the exponent
cannot exceed two digits. A value range of
approximately 10-78 to 1075 can be ex
pressed by a decimal floating-point data
item. Default precision is (6). The
internal coded arithmetic form of decimal
floating-point data is normalized hexadeci
mal floating-faint, with the point assumed
to the left of the first hexadecimal digit.
If the declared precision is less than or
equal to (6), short floating-paint form is
used; if the declared precision is greater
than (6), long floating-point form is used.

An identifier for which no declaration
is made is assumed to be a decimal
floating-point variable if its first letter
is any of the letters A through H, 0
through Z. or one of the alphabetic exten
ders I $, '*, iii.

Binary Floating-point Data

A binary floating-point constant con
sists of a field of binary digits followed
by the letter E, followed by an optio:lally
Signed decimal integer exponent followed by
the letter B. The exponent is a :;tring of
decimal digits and specifies an integral

16

power of two. The field of binary digits
nay contain a binary point. A binary
floating-point constant may be preceded by
a plus or minus sign. Exarrples of binary
floating-point constants as written in a
prograIO are:

101101E5B
101.101E2B
11101E-28B

The keyword attributes for declaring
binary floating-point variables are BINARY
and FLOAT. Precision is expressed as a
decimal integer constAnt, enclosed in
rarentheses, to specify the minimum number
of significant digits to be maintained.
'Ihe attributes can appear in any order, but
the precision specification must follow
either BINARY or FLOAT (or REAL or COM
PLEX). Following is an examFle of declara
tion of a binary floating-point variable:

DECLARE S BINARY FLOAT (16);

This specifies that the identifier S is to
represent binary floating-point data items
with 16 digits in the binary field.

The maximum precision allowed for binary
floating-point data items for System/360
implementations is (53); default preciSion
is (21). The exponent cannot exceed three
decimal digits. A value range of approxim
ately 2- 260 to 2 252 can be expressed by a
binary floating-point data item. The
internal coded arithnetic form of binary
floating-point data is normalized hexadeci
mal floating-point. If the declared preci
sion is less than or equal to (2l), short
floating-point form is used; if the
declared preCision is greater than (21),
long floating-point form is used.

complex Arithmetic Data

In t.he complex mode, an arithmetic data
item is considered to consist of two parts,
the first a real part and the second a
signed imaginary part. There are no com
Flex constants in PL/I. The effect is
obtained by writing a real constant and an
imaginary constant.

An imaginary constant is written as a
real constant of any type (except sterling
fixed-point) immediately followed by the
letter I.

Examples of imaginary constants as writ
ten in a program are:

271
3. 968El 01
11011. OlBI

Each of these is considered to have a real
part of zero. Although complex constants

cannot be written with a nonzero real part,
.PL/I provides the facility to express such
values in the following form:

real-constantf+I-}irraginary-constant

Thus a complex value could be written as
38+271.

The keyword attribute for declaring a
complex variable is CO~PIEX. A complex
variable can have any of the attributes
valid for the different types of real
arithmetic data. Each of the base, scale,
and precision attributes applies to both
fields.

Unless a variable is explicitly declared
to have the COMPLEX attribute, it is
assumed to represent real data items.

Numeric Character Data

A numeric character data item (also
known as a numeric field data item) is the
value of a variable that has been declared
with the PICTURE attribute and a numeric
picture specification. The data item is
the character representation of a decimal
fixed-point or floating- point va1ue.

A numeric picture specification
describes a character string to which only
data that has, or can be converted to, an
arithmetic value is to be assigned. A nu
meric picture specification cannot contain
either of the picture characters A or X,
which are used for non-numeric picture
character strings. The basic form of a nu
meric picture specification is one or more
occurrences of the digit-specifying picture
character 9 and an option~l occurrence of
the picture character v, to indicate the
assumed location of a decimal point. The
picture specification must be enclosed in
apostrophes. For example:

'999V99'

This numeric picture specification
describes a data item consisting of up to
five decimal digits in character form, with
a decimal point assumed to precede the
rightmost two digits.

Repetition factors may be used in numer
ic picture specifications. A repetition
factor is a decimal integer constant, en
closed in parentheses, that indicates the
number or repetitions of the immediately
following picture character. For example,
the fol1owing picture specification would
result in the same descriptic , as the
example shown above:

• (3)9V(2)9'

The format for declaring a numeric
character variable is:

DECLARE identifier PICTURE
'numeric-picture-specification' ;

For example:

DECLARE PRICE PICTURE '999V99'i

This specifies that any value assigned to
PRICE is to be maintained as a character
string of five decimal digits, with an
assumed decimal point preceding the right
rrost two digits. Data assigned to PRICE
will be aligned on the assumed point in the
same way that paint alignment is maintained
for fixed-point decimal data.

The numeric picture specificaticn can
specify all of the arithmetic attributes of
data in much the same way that they are
specified by the appearance of a constant.
Only decimal numeric data can be repre
sented by picture character. Complex data
can be declared by specifying the COMPLEX
attribute along with a single picture spec
ification that describes either a fixed
point or a floating-point data iterr.

It is important to note that, although
numeric character data has arithmetic
attributes, it is not stored in coded
arithmetic form. In System/360 implementa
tions, numeric character data is stored in
zoned deciIl'al format; before it can be used
in arithmetic computations, it must be con
verted either to packed decimal or to hexa
decimal floating-point format. Such con
versions are done automatically, but they
requjre extra execution time.

Although numeric character data is Ln
character form, like character strings, and
although it is aligned on the decirral pOint
like coded arithmetic data, it is processed
differently from the way either coded
arithmetic iterr's or character str ings are
processed. Editing characters can be spe
cified for insertion into a numeric
char?cter data item, and such character~
are actually stored within the data item.
Consequently, when the item is printed or
treated as a character string, the editing
characters are included in the assignment.
If, however, a numeric character item is
assigned to another numeric character or
arithmetic variable, the editing characters
will not be included in the assig mr.ent;
cnly the actual digits and the location of
the assumed decimal point are assigned.

Consider the following example:

DECLARE PRICE PICTURE '$99V.99',
COST CHARACTER (6),
VALUE FIXED DECIMAL (6,2}j

Section 3: Data Elerrents 17

PRICE = 12.28;
COST'" '$12.28';

In the picture specification for PRICE, the
currency symbol ($) and the decimal point
L) are editing characters. They are
stored as cnaracters in the data i tero.
','hey dre not, however, a part of it.s arith
metrc value. After execution of the second
assr0Droent statement, the actual internal
character representation of PRICE and COST
Cdn be considered identical. If they were
pr.lnted, they would print exactly the same.
They do not, However, always fUnction the
same. For example:

VALUE = PRICE;
COST "" PRICE;
VALUE COST;
PRICE := COS'l';

AfLer the first two assignment state
~~nts are executed, the value of VALUE
wot.:ld.be 0012.28 and the value of COST
'.Nould .be • $12.28'. In the assignment of
2RICE t.o VALUE, the currency symbol and the
decllnal point are considered to te editing
,:::tldl.dcte:.:s. and they are not part of the
c:ssiqnHlent; the arithmetic value of PRICE
:'; c,)llverted to internal coded arithmetic
torn;. In the assignment of PRICE to COST,
i.,)wever, the assignment is to a character
stl.jn~, and the editing characters of a nu
mericpicture specification always parti-
,:-:j pate in such an assignroent. No conver
~ion is necessary because PRICE is stored
lD character forro.

'['ne third and fourth assignment state
ments would cause errors. The value of
COST cannot be assigned to VALUE because
the currency symbol in the string makes it
invalid as an arithmetic constant. The
\laillE: of COST cannot be assigned to PRICE
.for e~actly the same reason. Only values
that are of arithmetic type, or that can be
converted to arithmetic type, can be
assigned to a variable declared with a nu
meric picture specification.

Note: Al though the decilr.al point can be an
editing character or an actual character in
ci character string. it will not cause an
error in converting to arithmetic form,
since its appearance is valid in an arith
metic constant. The same would be true of
a valid plus or minus sign, since arithme
tic constants can be preceded by signs.

Ot.her editing characters, including zero
suppression characters, drifting charac
ters, and insertion characters, can be used
in numeric picture specifications. For
complete discussions of picture charac~ers,
see Part II, Section 4, nPicture Specifica
tion Characters" and the discussie,l. of the
PlcrlJRE attribute in Part II, Section 9,
"Attribut,es ...

18

Precision of Arithmeti.c Constants

For purr;oses of expression evaluation,
an apparent precision is defined for real
arithmetic constants:

Real fixed-foint constants have a preCi
sion (p,q), where p is the t.otal norrber of
digits in the constant and q is the number
of digits specified to the right of the
decirral or binary point.

The precision of a sterling constant is
equivalent to the precision of its corre
sponding value in fixed-point pence. This
value is determined as follows: multiply
the value of the pounds field by 240; add
the value of the shillings field multiplied
by 12; add the value of the pence field.
The Frecision of the result (with leading
zeros removed) is the precision of the cor
responding sterling constant.

The precision of a floating-point con
stant is (p), where p is the number of
digits of the constant left of the E.

Examples:

3.14 has Frecision (3,2)
0.012E5 has precision (4)
O.9.0.SL has precision (4,1)
000000lB has precision (7,0)

STRING DATA

A string is a contiguous sequence of
characters (or binary digits) that is
treated as a single data item. The length
of the string is the number of characters
(or tinary digits) it contains.

There are tvw types of strings:
character strings and bit strings .

A character str·ing can include any
digit, letter, or special character recog
nized as a character by the particular
machine configuration. Any blank included
in a char~cter string is an integral
charact:rc:r and is included in the count of
length. A comment that is inserted within
a char-acter string will not be recognized
as a comment. The coroment, as well as the
co~rrent delimiters (/* and */), will be
considered to be part of the character
string data.

Character-string constants, when written
in a program, must be enclosed in afostro
fhes. If an apostrophe is a character in a
string, it must be written as two ar:ostro
r:hes with no intervening blank. The length
of a character string is the number- of
characters bet.ween the enclosing apostro-

Pag~ ot GC2B-20~5-1. Issued September 10, 1971 by TNL GN2B-3185

phes. If two apostrophes are used within
the string to represent a ~inqle apos
trophe, t_hey are counted as a single
character.

A null character-string constant is
written in a program as two apostrophes
with no intervening blank.

Examples of character-st:ring constants
dre:

'LOGARITHM TABLEt
'PAGE 5'
'SHAKESPEARE"S ··'·HAMLET····'
, AC43R-19 t

(2) 'WALLA •
•• (null character-~;tring constant)

The third example actually indicates SHAKE
SPEARE'S "HA~LET" with a length of 24.
In the fifth example, the rarenthesized
number is a repetition factor, which indi
cates reFetition of the characters that
follow. This examFle specifies the con
stant 'WAlLA WALLA' (thp bldnk is included
as one of the characters to be re[kated).
The rep~tition factor must be an unsigned
decimal integer constant, enclosed in
parentheses.

The keyword attribute for declaring a
character-string variable is CHARACTER.
Length is declared by an expression or a
decimal integer constant, enclosed in
parentheses, which specifies the number of
characters in the string. The length spec
ification must follow thp keyword CHARACTER
For example:

DECLARE NAME CHARACTER (15);

This DECLARE statement specifies that the
identifier NAME is to represent character- '
string data items, 15 characters in length.
If a .character string shorter than 15
characters were to be assigned to NAME, it
would be left adjusted and padded on the
right with blanks to a length of 15. If a
longer string were assigned, it would be
truncated on the right. (Note: If such
truncation occurs, no interruption will
result as it might for truncation of arith
metic data, and there is no ON condition in
PL/I to deal with string truncation.)

Character-string variables rray also be
declared to have the VARYING attribute. as
follows:

DECLARE NAME CHARACTER (15) VARYING;

This DECLARE statement specjFies that the
identifier NAME is to be used to represent
varying-length character-string data ~tems
with a maximum length of 15. The actual
length attribute for NA~E at any particular

time is tht· length of the data item
assigned to it_ at t_hat time. The user need
not keep track of the length of a varying
length character 5tring; this is done auto
matically. The length at any qiven tirre
can l:e dEt.ermined by the user. howf'ver, by
use of the LENGTH built-in function, as
discussed in Part I. Section 11. WEditing
and String Handling.- Note for the TSS/360
PL/I com~iler that until a varying-length
string variable is given an initial value,
its length is set to zero.

Chardcter-strinC) data in Sy~>tem/360
implementations is maintained internally in
character format, that is, each charact:er
cccufies one byt.e of storage. The maximum
length allowed for variables declared with
the CHARACTER dttribute is 32,767. The
maximum If'ngth allowed for a charactEr
string const<lnt. aft er appl icat ion of rf~pe

tition factors varies according to thE
amount of stordge availablf' to the compil
er, but it never will he less ~han 1,007.
The rr,inimum length for a character strinq
is zero.

CharaCi:_f"r-str in<) variable:J alcio Cdn bf'
declared using t:hf' PICTURE attribute ot thr>
form:

P ICTURI' • aha I.dcter- picture- ~,pt'ci f i Cd t ion'

The character pict_ure specification is d

string composed of the picture specifica
tion characters A, X. and 9. The strin'1 of
picture characters must be enclosed in
apostrophes, and it_ must cont.ain at led!;t
one A or X dnd no other r:icturp charact_ers
excert 9. The charact.er A specifies that
the corresponding position in the descrited
field will contain an alphabetic character
or blank. The character X s[£cifies that
any character may appear in t_he correspond
ing position in the field. The picturt~
character 9 specifies that t.he correspond
ing position will contain a nuroeric
charact.er or blank. For example:

DECLARE PART NO PICTURE 'AA9999X999';

This DECLARE statement specifies that the
identifier PART_NO will represent
character-string data items consisting of
two alphabetic characters, four numeric
characters, one character that may te any
character, and three numer ic character".

Repetition factors are used in plcture
specifications differently froIT thE way
they are used in string constants. repeti
tion factors must be placed inside the
apostrophes. The repetition factor speci
fies r"epetition of the immediately follow
ing ~icture character. For example, the
above picture specification could be
written:

Section 3: Data Elements 19

Page of GC28-2045-1, Issued September 30, 1971 by TNL GN28-3185

• (2)A(4)9X(3)9'

The maximum length allowed for a picture
specification is the same as that allowed
for character-string constants, as dis
cussed above.

Note that, for character picture speci
fications. the picture character 9 speci
fies a digit or a blank, while, for numeric
picture specifications, the same character
specifies only a digit.

Bit-string Data

A bit-string constant is written in a
program as a series of binary digits en
closed in apostrophes and followed immedi
ately by the letter B.

A null bit-string constant is written in
a program as two apostrophes with no inter
vening blank, followed immediately by the
letter B.

Examples of bit-string constants as
written in a program are:

'l'B
'11111010110001'B
(64) 'O'B
, • B

The parenthesized number in the third
example is a repetition factor which speci
fies that the following series of digits is
to be repeated the specified number of
times. The example shown would result in a
string of 64 binary zeros.

A bit-string variable is declared with
the BIT keyword attribute. Length is spec
ified by an expression or a decimal integer
constant, enclosed in parentheses, to spec
ify the number of binary digits in the
string. The letter B is not included in
the length specification since it is not
part of the string. The length specifica
tion must follow the keyword BIT. Follow
ing is an example of declaration of a bit
string variable:

DECLARE SYMPTOMS BIT (64):

Like character strings, bit strings are
assigned to variables from left to right.
If a string is longer than the length
declared for the variable, the rightmost
digits are truncated; if shorter, padding,
on the right, is with zeros.

A bit-string variable may be given the
VARYING attribute to indicate it is to be
used to represent varying-length bit
strings. Its application is the same as
that described for character-string
variables in the preceding section.

20

With Systeml'360 implementations, tit
strings are stored eight bits to a byte.
The maximum length allowed for a bit-string
variable with the TSSI'360 PLI'I compiler is
32,161 bits. The maximum length allowed
for a bit-string constant after application
of repetition factors depends upon the
amount of storage available to the compil
er, but it will never he less than 8,056
(1,007 bytes). The minimum length for a
bit string is zero.

PROGRAM CONTROL DATA

The types of program control data are
label, event, task, locator, and area.

LABEL DATA

A label data item is a label constant or
the value of a label variable.

A label constant is an identifier writ
ten as a prefix to a statement so that,
during execution, program control can be
transferred to that statement through d

reference to its label. A colon connect~
the label to the statement.

ABCDE: DISTANCE == RATE.TH1.E;

In this example, ABCDE is the statement
label. The statement can be executed ei
ther by normal sequential execution of
instructions or by transferring control to
this statement from some other fJOint in the
program by means of a GO TO statement.

As used above, ABCDE can be clas::;if it-d
further as a statement-label constant. A
statement-label variable i~ an idenLif .l..L~
that refers to statement-label constants.
Consiaer the following example:

statement;

statement;

LBL A' - ,

LBL A and LBL B are statement-label con
stants because they are prefixed to state
ments. LBL X is a statement-label vari
able. By assigning LBL_A to LBL_X, the
statement GO TO LBL_.X causes a transfer to

the LBL_A statement. Elsewhere, the pro
gram may contain a statement assigning
LBL B to LBL X. Then, any reference to
LBL-X would be the same as a reference to
LBL-B. This value of IBL X is .retained
untIL another value is assigned to it.

A statement-label variable must be
declared with the LABEL attribute, as
follows:

DECLARE LBL X LABEL;

EVENT DATA

Event variables are designed to coordi
nate the concurrent execution of a number
of procedures in a mul tiprog l.·amming
environment, or to allow a degree of over
lap between a record-oriented input/output
operation and the execution of other state
ments in the procedure that ori'jinated the

1 operation. Since multitasking is not sup
ported in TSS/360, event variables used in
a llIultiprograrr,ming context do not have as
much significance as in the IB~ System/360
operating System.

A variable is given the EVENT attiibute
by its appearance in an EVENT option or a
WAIT statement, or by explicit declaration,
as in the following example:

DECLARE ENDEVT EVENT;

For detailed information, see ·The EVENT

J Option· in Part I, Section 10, "Record
Oriented Transmission.·

TASK DATA

Task variables are designed to control
the relatiVe priorities of different PL/I
tasks (i.e., concurrent separate execution
of procedures). Since in TSS/360, the cur
rent implementation does not support mul
tiple PL/I tasks, task variables have no
significance.

LOCATOR DATA

There are two types of locator data:
pointer and offset.

The value of a pOinter val:iable is ef
fectively an address of a location in
storage, and so it can be used to qualify a
reference to a variable that may hlve been
allocated storage in several diffErent
locations, all of which are immediately
accessible. Since based storage if so
allocated, reference to a bas.ed variable
must be qu-alified in some way;.,ith the
TSS/360 compiler, this qualification must
be provided by a pointer variable.

The value of an offset variable speci
fies a location relative to the start ef a
reserved area of storage and remains valid
when the address of the area itself
changes.

Lecator variables can be declared as in
the following example:

DECLARE HEADPTR POINTER,
FIRST OFFSET (AREAl);

In this example, AREAl is the name of the
reserved area of storage that will contain
the location specified by FIRST.

A variable can also be given the POINTER
attribute by its appearance in the BASED
attribute, by its appearance on the left
hand side of a pointer qualification sym
tol, or by its appearance in a SET option.

For detailed information, see Part I,
Section 14, nBased Variables and List
Processing. •

AREA DATA

Area variables are used to describe
areas of storage that are to be reserved
for the allocation of based variables. An
area can be assigned or transmitted com
plete with its contained allocations; thus,
a set of based allocations can be treated
as one unit for assignment and input/output
while each allocation retains its individu
al identity.

A variable is given the AREA attribute
either by its appearance in the OFFSET
attribute or an IN option, or by explicit
declaration, as in the following example:

DECLARE AREAl AREA(2000},
AREA2 AREA;

The number of bytes of storage to be
reserved can be stated explicitly, as it
has been for AREAl in the example; other
wise a default size is assumed. For the

ITSS/360 PL/I compiler, this default size is
lO 0 0 r.it es •

For detailed information, see Part I,
:3ection 14, -Based Storage and List
Processing .•

DATA ORGANIZATION

In PL/I, data items may be single data
elements, or they may be grouped together
to form data collections called arrays and
structures. A variable that represents a
single element is an ~lement variable (also
called a scalar variable). A variable that
represents a collection of data elements is

Section 3: Data Elements 21

{'either an ar~ariable or a structure
variable. -----

Any type of problem data or program con
t.rol data can be collected into arrays or
st.ructures.

ARRAYS

D;lta elements having the same charac
teristics, that is, of the same data type
dnd of the same precision or length, may be
grouped together to form an array. An
~.r:.E~ is an n-dimensional collection of
elements, all of which have identical
2ttributes. Only the array itself is given
a name. An individual item of an array is
referred to by giving its relative position
withlD the array.

Consider the following two declarations:

DECLARE LIST (8) FIXED DECIMAL (3);

DECLARE TABLE (4,2) FIXED DECIMAL (3);

In Crle first example, LIST is declared to
be a one-dimensional array of eight ele
rrent:.s, each of which is a fixed-point deci
mal item of three digits. In the second
example, TABLE is declared to te a two
dimensional array, also of eight fixed
lc;oint decimal elements.

The parenthesized numcer or numbers fol
lowing the array name in a DECLARE state
ment is the dimension attribute specifica
tion. It must follow the array name, with
or without an intervening clank. It speci
fies the number of dimensions of the array
and t.he bounds, or extent, of each dimen
sion. Since only one bounds specification
appears for LIST, it is a one-dimensional
array. Two bounds specifications,
separa.ted by a comma, are listed for TABLE;
consequently, it is declared to be a two
dimensional array.

The bounds of a dimension are the begin
ning and the end of that dimension. The
extent is the number of integers between,
and including. the lower and ufper bounds.
If only one integer appears in the bounds
specification for a dimension, the lower
hound is assumed to be 1. The one dimen
sion of LIST has bounds of 1 and 8, its
extent is 8. The two dimensions of TABLE
have bounds of 1 and 4 and 1 and 2; the
extents are 4 and 2.

If the lower bound of a dimension js not
I, both the upper bound and the lower bound
must be stated explicitly, with the two
numbers connected with a colon. For
example:

22

DECLARE LIST_A (4:11);
DECLARE LIST_B (-4:3);

In the first example, the bounds are 4 and
11i in the second they are -4 and 3. Note
that the extents are the same; in each
case, there are 8 integers from the lower
bound through t.he upper bound. It is
import.ant to note the difference between
the bounds and the txtent of an array. In
the manirulation of array data (discussed
in Part I, Section 4. "Expressions·)
involving more than one array. the bounds
-- not merely the extents -- must be iden
tica1. Although LIST, LIST At and LIST B
all have the same extent, the bounds are
not i.dentical.

The bounds of an array determine the way
elements of the array can be referred to.
For example, assume that the following data
items are assigned to the array LIST, as
declared above:

20 5 10 30 630 150 310 70

The different elements would be referred
to as follows:

Beferen..<::=~ Element
LIST (1) 20
LIST (2) 5
LIST (3) 10
LIST (4) 30
LIST (5) 630
LIST (6) 150
LIST (7) 310
LIST (8) 70

Each of the numbers following the name
LIST is a subscript. A parenthesized suc
script following an array name, with or
without an intervening blank, specifies the
relative position of a data item within the
array. 11 sutscripted name, such as LIST
(4), refers to a single element and is an
element variable. The entire array can be
referred to by the unsubscripted name of
the array, for example, LIST. In this
case, LIST is an array variable. Note the
difference between a subscript and the
dimension attribute specification. The
latter, which appears in a declaration,
specifies the dimensiona1ity and the numter
cf elements in an array. Subscripts are
used in c+ .. her references tc identify spe-·
cific el'.;ments within the array.

The same data assigned to LIST A and
IIST_B, as declared above, would be
referred to as follows:

Reference Element Reference
LIST A (4) 20 LIST B (- 4)
LIST A (5) 5 LIST B (- 3) -LIST A (6) 10 I,IST B (-2)
.LIST A (7) 30 LIST B (-1)
LIST A (8) 630 LIST B (0)
LIST A (9) 150 LIST B (1) -LIS'r A (10) 310 LIST B (2)
LIST A (11) 70 LIST B (3)

Assume that the same data were assigned
to TABLE, which is declared as a two
dimensional array. TABLE can l:e illus
trated as a matrix of four rows and two
columns, as follows:

TABLECm,n)
(1, n)

(2, n)

D,n)
(4, n)

~
20
10

630
310

J.!!l..L~
5

30
150

70

An element of TABLE is referred t.o by a
subscripted name with two Farenthesized
subscripts, separated by a comma. For
example, TABLE (2,1) would sFecify the
first item in the second row, in this case,
the data item 10.

Note: The use of a matrix to illustrate
TABLE is purely conceptual. It has no
relationship to the way in which the items
are actually organized in storage. Data
items are assigned to an array in row major
order, that is, with the right-most sub
script varying most rafidly. For example,
assignment to TABLE would be to TABLE(l,l),
TABLE(l,2), TABLE(2,1), TABLE(2,2) and so
forth.

Arrays are not limited to two dimen
sions. The PL/I compiler allows as many as
32 dimensions to be declared for an array.
In a reference to an element of any array,
a subscripted name must contain as many
subscripts as there are dimensions in the
array.

Examples of arrays in this chapter have
shown arrays of arithmetic data. Other
data types may be collected into arrays.
string arrays, either character or bit, are
valid, as are arrays of statement labels.

Expressions as Subscripts

The subscril-'ts of a subscripted name
need not be constants. Any expression tnat
yields a valid arithmetic value can be
used. If the evaluation of such an expres
sion does not yield an integer value, the
fractional portion is ignored. For System/
360 implementations, the integer value is
converted, if necessary, to a fixed-point
binary number of precision C15.0), since
subscripts are maintained internally as
binary integers. Note that, altnough the
TSS/360 compiler maintains fixed-point
binary variables of precision less than 16
as halfwords, this does not apply to sub
script expressions. These, like most other
compiler-created fixed-point biv3ry tem
poraries (see section 4, -Expressions and
Data Conversion") are stored as fullwords.
regardless of precision.

subscripts are frequentl} eApressed as
variables or other expressions. Thus,

TABLE(I,J*K) could be used to refer to the
different elements of TABLE by varying the
values of I, J. and K.

Cross Sections of Arrays

Cross sections of arrays can be referred
to by substituting an asterisk for a sub
script in a subscripted name. The asterisk
then specifies that the entire extent is to
be used. For example, TABLE(*,l) refers to
all of the elements in the first column of
TABLE. It specifies the cross section ccn
sisting of TABIE(l,l), TABLE(2,1), TABLE(3,
1), and TABLE(4,1). The subscripted name
'IABLE(2.*) refers to all of the data items
in the second row of TABLE. TABLE(*,*)
refers to the entire array.

Note that a subscripted name containing
asterisk subscripts represents, not a
Single data element, but an array with as
many dimensions as there are asterisks.
consequently, such a name is not an element
expression, but an array expression.

STRUCTURES

Data items that need not have identical
characteristics, but that possess a logical
relationship to one another, can be grouped
into aggregates called structures.

Like an array. the entire structure is
given a name that can be used to refer to
the entire collection of data. Unlike an
array, however, each element of a structure
also has a name.

A structure is a hierarchical collection
of names. At the bottom of the hierarchy
is a collection of elements, each of which
represents a single data item or an array.
At the top of the hierarchy is the struc
ture name, which represents the entire
collection of element variables. For
example, the following is a collection of
element variables that might be used to
compute a weekly payroll:

LAST_NAME
FIRST_NAME
REGULAR_HOURS
OVERTIME_HOURS
REGULAR_RATE
OVERTIME RATE

These variables could be collected into
a structure and given a single structure
name, PAYROLL, which would refer to the
entire collection.

LAST_NAME
FIRST NA~E

PAYROLL
REGULAR _ HOU RS
OVERTIME HOURS

REGULAR_RATE
OVERTIME_RATE

Section 3: Data Elen,ents 23

Any reference to PAYROLL would be a
reference to all of the element variables.
For example:

GET DATA (PAYROLL);

This input statement could cause data to
be assigned to each of the element
variables of the structure PAYROLL.

It often is convenient t.o subdivide the
entire collection into smaller logical
collections. In the above examples, LAST -
NAME and FIRST NAME wight make a logical -
f;,lbcollection • -as might REGULAR_HOURS and
CVERTIME_HOURS, as well as REGULAR_HATE and
OVERTIME RATE. In a struct.ure, such subco
llections also are given names.

NAME
FIRST
LAST

PAYROLL
HOURS
REGULAR
OVERTIME

RATE
REGULAR
OVERTIME

Note that the hierarchy of names can be
considered to have different levels. At
t:le first level is the structure name
(c<'illed a wajcr struct.ure name); at a deep
er level are the names of substructures
(called minor structure names); and at the
deepest are the element naffies (called ele
rr,entary narees). An elementary name in d

structure can represent an array, in which
case it. is not an element variable, but an
array variable.

The organization of a structure is spec
i li.ed in a DECLARE sta tement through the
use of level numbers. A major structure
name must be declared with the level number
1. Minor structures and elementary names
must be declared with level nurebers arith
metically greater than 1; they must be
decimal integer constants. A blank must
separate the level number and its asso-I clated name. The maximuw declared level
number perrritted in a structure is 255.
The maximum true level number f€rmitted in
a structure is 63.

For example, the items of a weekly
payroll could be declared as follows:

DECLARE 1 PAYROLL,
2 NAME,

3 LAST,
3 FIRST,

2 HOURS,
3 REGULAR,
3 OVERTIME,

2 RATE,
3 REGULAR,
3 OVERTllo'E;

Note: In an actual declaration of the
structure PAYROLL, attributes WOUld be
specified for each of the elementary names.
The pattern of indention in this example is

24

used only for readability. The statement
could be written in a continuous string as
CECLARE 1 PAYROl1, 2 NAME, 3 LAST, etc.

PAYROlL is decJared as a rna jar struct.ure
conta ining the winor st.ructiJreS NAME,
HOURS, and RATE. Each IT,inor structurE: con
tains two elementary names. A user can
refer to the entire structure by the narre
PAYROLL. or he can refer to portions of the
struct.ure by referring to the minor struc
ture nawes. He can refer to an element by
referring to an elementary name.

Note that in the declaration, each level
number precedes its associated name and is
separated from the narce by a blank. The
nUffibers chosen for successively deeper
levels need not be t.he immediately succeed
ing integers. They are used merely to spe
cify the relative level of a name. A minor
structure at level n contains all t.he names
with level numbers ~Ieater than n that lie
l:;etween that minor structure name and the
next name with a level number less than er
equal to Q. PAYROLL might have been
declared as follows:

CECLARE 1 PAYROLL,
4 NAt-:E,

5 LAST,
5 FIRST,

2 HOURS,
6 HEGULAR.
5 OVERTIME,

2 RATE,
3 REGULAH,
3 OVERTIME;

This declaration would result in exactly
the saroe structuring as the previous
declarathm.

The description of a ~ajor structure
name is terwinated by the declaration of
another item with a level number 1, by the
declaration of another item with no level
number, or by a sewicolon terminati ng the
~ECLARE statement.

Level nureters are specified with struc
ture names only in DECLARE statements. In
refer~nces to the structure or its ele
ments, no level numbers are used.

Qualified Names

A minor structure or a structure element
can be referred to by the minor structure
name or the elementary name alone if there
is no ambiguity. Note, however, that each
of the names REGULAR and OVERTIME arrears
twice in the structure declaration for
PAYROLL. A reference to elther name would
l::e ambiguous without: some quali ficaticn to
nake the name unique.

PL/I allows the use of qualified names
to avoid this ambiguity_ A 3...ualified name
is an elementary name or a miner struct,ure
name that is made unique by qualifying it
with one or more names at a higher level.
In the PAYROLL example, REGULAR and OVER
TIME could be made unique through use of
the qualified names HOURS.REGULAR, HOURS.
OVERTIME, RATE. REGULAR, and HATE.OVERTIME.

The different names of a qualified name
are connected by periods. Blanks mayor
may not appear surrounding the period.
Qualification is in the order of levels;
that is, the name at the highest level must
appear first, with the name at the deepest
level appearing last.

Any of the names in a structure, except
the major structure name itself, need not
be unique within the procedure in which it
is declared. For example, the qualified
name PAYROLL. HOURS. REGULAR might be
required to make the reference unique
(another structure, say wORK, might also
have the name REGULAR in a minor structure
HOURS; it could be made unique with the
name wORK.HOURS.REGUI~R). All of the qual
ifying names need not te used, although
they may be, if desired. Qualificati~n
need go only so far as necessary to make
the name unique. Intermediate qualifying
names can be omitted. The name PAYROLL.
LAST is a valid reference to the name
PAYROLL. NAME. LAST.

ARRAYS OF STRUCTURES

A structure name, either rra jar or minor,
can be given a dimension attrit.ute in a
DECLARE statement to declare an array of
structures. An array of structures is an
array whose elements are structures having
identical names, levels, and elements. For
example, if a structure, wEATHER, were used
to process meteorological information for
each month of a year, it might be declared
as follows:

DECLARE 1 wEATHER(l2),
2 TEMPERATURE,

3 HIGH DECIMAL FIXED(4,l),
3 LOw DECI~AL FIXED(3,1),

2 WIND VELOCITY,
3 HIGH DECIMAL FIXED(3),
3 LOw DECIMAL FIXEC(2),

2 PRECIPITATION,
3 TOTAL DECI~AI FIXED(3,l),
3 AVERAGE DECIMAL FIXED(3,l);

Thus, a user could refer to the w€lther
data for the month of July by specifying
WEATHER (7) • Portions of the July .. "eather
could be referred to by TEMPERATUR~(7),
wIND VELOCITY (7), and PRECIPIT .rION (7), but
'I0TAL(7) would refer to the total precipi
tation during the month of July.

TEMPERATURE.HIGH(3), which would refer
to the high terr,pera ture in March, is a sub
~cripted qualified name. ----

The need for subscripted qualified names
tecorres mere afparent when an array of
structures contains rrinor structures that
are arrays. For example, consider the fol
lowing array of structures:

DECLARE 1 A (6,6) ,
2 B (5) ,

3 C,
3 D,

2 E;

Both A and B are arrays of structures. To
identify a data item, it may be necessary
to use as many as three names and three
subscripts. For example, A(1,l).B(2).C
identifies a particular C that is an ele
Rent of B in a structure in A.

So long as the order of subscripts
remains unchanged, subscripts in such
references may te moved to the right or
left and attached to names at a lower cr
higher level. For example, A.B.C(l,1,2)
and A(1,1,2).B.C have the same meaning as
A(1,1}.B(2).C for the above array of struc
tures. Unless all of the subscripts are
Roved to the lowest or highest level, the
qualified name is said to have interleaved
subscripts; thus, A.B(l,1,2).C has inter
leaved subscripts.

An array declared within an array of
structures inherits dimensions declared in
the containing structure. For exarrple, in
the above declaration for the array of
structures A, the array B is a three
dimensional structure, because it inherits
the two dimensions declared for A. If B is
unique and requires no qualification, any
reference to a particular B would require
three subscripts, two to identify the spe
cific A and one to identify the specific B
within that A.

OTHER ATTRIBUTES

Keyword attributes for data variables
such as BINARY and DECIMAL are discussed
briefly in the preceding sections of this
chapter. Other attributes that are not
peculiar to one data type may also be ap
rlicable. A complete discussion of these
attributes is contained in Part II, Section
9, "Attributes." Some that are especially
a~~licable to a discussion of data type and
data organization are DEFINED, LIKE,
ALIGNED, UNALIGNED, and INITIAL.

The CEFINED Attribute

The DEFINED attribute specifies that the
named data element, structure, or a.rray is

Section 3: Data Elements 25

to occupy the same storage area as that
assigned to other data. For examrle,

DECLARE LIST (100,100),
LIST_IThM (100,100) DEFINED LIST;

LIST is a 100 by 100 two-dimensional array.
LIST ITEM is an identical array defined on
LIST-:- A reference to an element in LIST I
TEM is the same as a reference to the -
corresponding element in LIST.

The DEFINED attribute, along with the
POSITION attribute, can be used to subdi
vid€~ or overlay a data item. For example:

DECLARE LIST CHARAC'TER (50),
LISTA CHARACTER (1 0) DEFINED LIST,
LISTB CHARACTER(10) DEFINED LIST

POSITION(1l} ,
LISTC CHARACTER(30) DEFINED LIST

POSITION(2l)i

LISTA refers to the first ten characters of
LIST. LISTB refers to the second ten
characters of LIST. LISTC refers to the
last thirty characters of LIST.

The DEFINEr:: att ribute may also l::e used
to specify parts of an array through u~e of
iSUB variables, in order to constitute a
new array. The iSUB variables are dummy
variables where i can te srecified as any
decimal integer constant from 1 through B
(where n represents the nurrber of dimen
sions for the defined item). The value of
the dummy variable (iSUB) ranges from the
lower bound to the upfer cound of the
dimension specified by~. For example:

DECLARE A(20,20),
B(lO) DEFINED A(2*lSUB,2*lSUB);

B is a subset of A consisting of every even
element in the diagonal of the array, A.
In other words, B(l) corresponds to A(2,2),
B(2) corresponds to A(4,4).

The LIKE Attribute

The LIKE attribute is used to indicate
that the name being declared is to be given
the same structuring as the major structure
or minor structure name following the
attribute LIKE. For example:

26

DECLARE 1 BUDGET,
2 RENT,
2 FOOD,

3 MEAT,
3 EGGS,
3 BUTTER,

2 TRANSPORTATION,
3 WORK,
3 OTHER,

2 ENTERTAIN.t!ENT,
1 COST_OF_LIVING LI~E BUDGET;

This declaration for COST OF LIVING is the
saITe as if it had te,on declared:

DECLARE 1 COST_OF_LIVING,
2 RENT,
2 FOOD,

3 MEAT,
:1 EGGS,
3 BUTTER,

2 TRANSPORTATION,
3 WORK,
3 O'I'HER,

2 ENTERTAINMENT;

Note: The LIKE attribute copies structur
ing, names, and attribute~; of the structure
l::elow the level of the specified name only.
No dimensionality of the specified name is
copied. For exarrple, if BUDGE'!' were
declared as 1 BUDGET{l2J, the declaration
of COST OF LIVING LIKE BUDGET would not
give the dImension at~tr ibute to COST OF -
LIVING. To achieve dimensionality cf -
COST OF LIVING, the declaration would have
t~o be DECLARE 1 COST_OF_LIVING (12) LIKE
EUDGET.

A minor structure name can be declared
LIKE a major structure or LIKE another
rrinor structure. A major structure name
can be declared LIKE a minor structure or
LIKE another major structure.

'The ALIGNED and UNAlIGNED }\ttributes

The ALIGNED and U~mLIGNED attributes are
used to specify the positioning in st,orage
cf data elements, to influence speed of
access or storage economy respectively.

Note: Use of the UNALIGNED attribute
allows data interchange with FORTRAN files.

ALIGNED in System/360 implementations
specifies that the data element is to be
aligned on the storage boundary correspond
ing to ,its data type requirement.

UNALIGNED in System/360 implementations
specifies that. each data element is to be
stored contig~ously with the data element
freceding it:: a charact.er-st.ring iterr is
to be rrap-Ied on the next byte boundary. a
cit-striug item is to be mapped on the next
tit, and a fullword and doubleword item is
to be mapped on the next byte boundary.

Defaults are applied at element level.
The defaUlt for bit-string data, character
string data, and numeric character data is
UNALIGNED; for all other types of data, the
default is ALIGNED.

ALIGNED or UNALIGNED can be specified
for element, array, or structure variables.
The application of either attribute to a
structure is equivalent to applying the
attribute to all contained elements that

are not explicitly declared ALIGNED or
UNALIGNED.

The following example illustrates the
effect of ALIGNED and UNALIGNED declara
tions for a structure and its elements:

DECLARE 1 STRUCTURE,
2 X BIT(2), /* UNALIGNED BY

DEFAULT */
2 A ALIGNED, /* ALIGNED EXPLICITLY

3 B, /* ALIGNED FROM A */
3 C UNALIGNED, /* UNALIGNED

EXPLICITLY */
4 0, 1* UNALIGNED FROM C */
4 E ALIGNED, /* ALIGNED EXPLICITLY
4 F, 1* UNALIGNED FROM C */

3 G, /* ALIGNED FROM A */
2 Hi /* ALIGNED BY DEFAULT

*/

*/

*/

Although UNALIGNED causes economic use
of data storage, for System/360 implementa
tions it will increase the amount of code
generated to access data items that are not
aligned on the required byte boundaries.

The INITIAL Attribute

The INITIAL attribute specifies art ini
tial value to be aSSigned to a variable at
the time storage is allocated for it. For
examFle:

DECLARE NAME CHARACTER(10) INITIAL
('JOHN DOE');

DECLARE PI FIXED DECIMAL (5,4) INITIAL
(3.1416) ;

DECLARE TABLE (100,100) INITIAL CALL
SUBR (ALPHA) i

When storage is allocated for NAME, the
character string 'JOHN DOE' (padded t.O 10
characters) will be assigned to it. When
PI is allocated, it will be initialized to
the value 3.1416. Either value may be
retained throughout the program, or it may
be changed during execution. The third
example illustrates the CALL option. It
indicates that the procedure SUER is to be
invoked to perform the initialization.

For a variable that is allocated when
the program is loaded, that is, a static
variable, which remains in allocation
throughout execution of the ~rogram, any
value specified in an INITIAL attribute is
assigned only once. Fcr automatic
variables, which are allocated at ;ach
activation of the declaring ~lock, any
specified initialization is assigned with
each allocation. For controlled v~riables,
which are allocated at the execution of
ALLOCATE statements, any spec~ ied initial
ization is aSSigned with each allocation.
Note, however, that this initialization can
be overridden in the ALLOCATE statement.

The compiler does not allow the INITIAL
attribute to be specified for based
variables.

The INITIAL attribute cannot be given
for entry names, file names, DEFINED data,
entire structures, r~rameters, task data,
cr event data.

Note: The CALL option cannot be used with
the INITIAL attribute for static data.

The INITIAL attribute cannot be used
without the CALL option for pointer, off
set, or area data. An area variable is
automatically initialized with the value of
the EMPTY cui It-in function, on allocation,
after which any specified INITIAL CALL is
applied.

The INITIAL attribute can be specified
for arrays, as well as for element
variables. In a structure declaration,
only elementary names can be given the INI
'IIAL attritute.

An array or an array of structures can
ce partly initialized or fully initialized.
For exarrple:

DECLARE A(lS) CHARACTER(13) INITIAL
('JOHN DOE', 'RICHARD ROW',

'MARY SMITH'),
B (10,10) DECIMAL FIXED(5)

INITIAL ({25) 0, (25)1, (50) O} ,
1 C(8),

2 D INITIAL (0),

2 E INITIAL«8)0)i

In this examFle, only the first three ele
ments of A are initialized; the rest of ~he
array is uninitialized. The array B is
fully initialized, with the first 25 ele
ments initialized to 0, the next 25 to 1,
and the last 50 to O. The parenthesized
numbers (25, 25. and 50) are iteration fac
tors, that sFecify the numter of elemen~
to be initialized. In the structure C,
where the dimension (8) has been inherited
ty Df cnly the first element of 0 is
ini.ti.alized; where the dimension (8) has
teen inherited ty E, all the elements of E
are initialized.

When an array of structures is declared
with the LIKE attritute to obtain the same
structuring as a structure whose elerrents
have been initialized, it should be noted
that only the first structure in this array
cf structures will be initialized. For
example:

DECLARE 1 G,
2 H INITIAL(O),
2 I INITIAL (0) ,

1 J(8) LIKE G;

Section 3: Data Elements 27

In this example, only J(l).H and J(l).I are
initialized in the array of structures.

For STATIC arrays, iteration factors
must be decirr,al integer constants; for
arrays of other storage classes, iteration
factors may be constants, variables, or
expressions.

The iteration factor should not be con
fused with the string repetition factor
discussed earlier in this chapter. Consid
er the following example:

DECLARE TABLE (50) CHARACTER (10)
INITIAL «10)'A',(2S){10)'B',
(24) (U'C');

This INITIAL attribute srecification con
tains both iteration factors and repetition
factors. It srecifies that the first ele-

28

ment of TABLE is to be initialized with a
string consisting of 10 A's, each of the
next 25 elements is to be initialized with
a string consisting of 10 B'S, and each of
the last 24 elements is to be initialized
with the single character C. In the INI
TIloL at.tribute specification for a string
array, a single parenthesized factor pre
ceding a string constant is assumed to be a
string repetition factor (as in (lO)'A').
If more than one appears, the first is
assurred to be an iteration factor, and the
second a string repetition factor. For
this reason (as in (24)(1)'C'), a string
repetition factor of 1 must be inserted if
a single string constant is to be used to
initialize more than one element.

The CALL option can be used to initial
ize arrays, except for arrays of static
storage cla ss.

An expression is a representation of a
value. A single constant or a variable is
an expression. Combinations of constants
andior variables, along with operators and/
or parentheses, are expressions. An ex
fression that contains operators is an
Q£erational expression. The constants and
variables of an operational expression are
called operands.

Examples of expressions are:

27
LOSS
A+B
(SQTY-QTY)*SPRICE

Any expression can be classified as an
element expression (also called a scalar
expression), an array expression, or a
structure expression. An element expres
sion is one that represents an element
value. An array expression is one that
represents an array value. A structure ex
pression is one that represents a structure
value.

For the TSS/360 PL/I compiler, array
variables and structure variables cannot
appear in the same expression. Element
variables and constants, however, can
appear in either array expressions or
structure expressions. An elementary nalTle
within a structure or a subscripted name
that specifies a single element of an array
is an element expression.

Note: If an elementary name of a structure
is given the dimension attribute, that ele
mentary name is an array variable and can
appear only in array expressions.

In the examples that follow, assume that
the variables have attributes declared as
follows:

DECLARE A(10,10) BINARY FIXED (31),
B(10,10) BINARY FIXED (3i),
1 RATE, 2 PRIMARY DECIMAL FIXED (4,2),

2 SECONDARY DECIMAL FIXED (4,2),
1 COST, 2 PRIMARY DECIMAL FIXED (4,2),

2 SECONDARY DECIMAL FIXED (4,2),
C BINARY FIXED (15),
D BINARY FIXED (15);

Examples of element expressior.3 are:
C * D
A(3, 2) + B(4,8)
RATE. PRIMARY - COST.PRI~~RY
A(4,4) • C
RATE. SECONDARY / 4
A(4,6) • COST.SECONDARY

SECTION 4: EXPRESSIONS AND DATA CONVERSION

All of these expressions are element ex
pressions because each operand is an ele
lTent variable or constant (even though some
may be elements of arrays or elementary
names of structures); hence, each expres
sion represents an element value.

Examples of array expressions are:

A + B
A • C - D
B / lOB

All of these expressions are array expres
sions because at least one operand of each
is an array variable; hence, each expres
sion represents an array value. Note that
the third example contains the binary
fixed-point constant lOB.

Examples of structure expressions are:

RATE * COST
RATE / 2

Eoth of these expressions are structure ex
pressions because at least one operand of
each is a structure variable; hence, each
expression represents a structure value.

USE OF EXPRESSIONS

Expressions that are single constants or
Single variables may appear freely through
out a program. However, the syntax of many
PL/I statements allows the appearance of
operational expressions, so long as evalua
tion of the expression yields a valid
value.

In syntactic descriptions used in this
publication, the unqualified term "expres
sion" refers to an element expression, an
array expression, or a structure expres
sion. For cases in which the kind of ex
pression is restricted, the type of re
striction is noted; for example, the term
"element-expression" in a syntactic
description indicates that neither an array
expression nor a structure expression is
valid.

Note: Although operational expressions can
appear in a number of different PL/I state
rrents, their most common occurrences are in
assignment statements of the form:

A = B + c;

The assignment statement has no PL/I key
word. The assignment symbol (=) indicates

Section 4: Expressions and Data Conversion 29

that the value of the exrression on the
right (B + c) is to be assigned to the
variable on the left (A). For purposes of
illustration in this chapter, some examples
of expressions are shown in assignrr;ent
statements.

DATA CONVERSION IN OPERATIONAL EXPRESSIONS

An operational exrression consists of
one or more single operations. A single
operation is either a prefix 0Feration (an
operator preceding a single operand) or an
infix operation (an operator between two
operands). The two operands of any infix
operation, when the operation is performed,
usually must be of the same data type, as
specified by the attritutes of a variable
or the notation used in writing a constant.

Tne operands of an operation in a PL/I
expression are automatically converted, if
necessary, to a common representation
cefore the operation is performed. General
rules for conversion of different data
t~ypes at e discussed in the following para
graphs and in a later section of this
chapter, "Concepts of Data Conversion."
~etailed rules for srecific cases, includ
ing rules for computing the precision or
length of a cenverted item, can te found in
Part II, Section 6, ·Problem Data
Conversion."

Data conversion is mainly confined to
rloblem data. The only conversion possible
wit_h program control data is conversion
between offset and pointer types.

PROBLEM DATA CONVERSION

Data conversion can be applied to all
types of problem data, as listed below.

Bit-string to Character-String

The bit 1 becomes the character 1; the
bit 0 becomes the character O.

Character-String to Bit-string

The character string should contain the
characters 1 and 0 only, in which case the
character 1 becomes the tit 1, and the
character 0 becomes the bit O. The CONVER
SION condition is raised by an attempt to
convert any character otber than 1 or 0 to
a bit.

Character-String to Arithmetic

The character string must be in the form
of a signed or unsigned arithmetic ,;onstant
(or an expression representation of a COM
PLEX data item). The constant may be sur
rounded by blanks, but blanks must not be

30

imbedded in a number. Any character other
than those allowed in arithmetic data will
raise the CONVERSION condition if conver
sion is attempted.

Note: In the conversion, for an infix
cperation, of a character string that
represents a fixed-point constant -- either
decimal or tinary -- any fractional [ortion
will be lost if it is converted to fixed-

I point. For the TSS/360 PL/I compiler,
integer digits will be truncated if the
character string contains more than 5
decimal integer digits or 15 binary digits.
If the conversion is to floating-point, it
~ill retain its fractional value. Rules
for the frecision of such conversion are
listed in Part II, Section 6, "Problerr Data
Convers ien ...

Arithmetic to Character-String

The value of an internal coded arithme
tic operand is converted to its character
representation. The converted field is a
character string in the form of a valid
arithmetic constant. The length of the
character string is dependent upon the pre
cision of the arithmetic data item.

Eit-string to Arithmetic

A bit string is interpreted as an
unsigned binary integer dnd is converted to
fixed-point binary of positive value. The
tase and scale are further converted, if
necessary.

Aritrunetic to Bit-string

The absolute value is converted, if
necessary, to a real fixed-point binary
integer. Ignoring the plus Sign, the
integer is then interpreted as a bit
string. The length of the bit string is
dependent upon the preciSion pf the origi-
nal unconverted arithmetic data iterr.

Arithmetic Mode Conversion

If a complex data item is converted to a
real data item, the result is the real part
of the complex item.

A .real data item is converted to a com
plex data item by adding an imaginary part
of zero.

Arithmetic Base and Scale Conversion

The precision of the result of an arith
metic base or scale conversion is dependent
upon the preCision of the original arithme
tic data item. The rules are listed in
Part II, Section 6, "Problem Data
Conversion ...

LOCATOR DATA CONVERSION

Only offset to pointer conversion occurs
as a result of an operational expression
(locator variables are restricted to = and
,= comparison operations), but either of
the following types of conversion can
result from assignment. (See also Part It
Section 14, "Based Storage and List
Processing.")

Offset to Pointer

An offset value is converted to pointer
by combining the offset value with the
pointer value relating to the start of the
area named in the OFFSET attribute.

Pointer to Offset

A pOinter value is converted to offset
by effectively deducting the pointer value
for the start of the area from the pointer
value to be converted. This conversion is
limited to pointer values that relate to
addresses within the area named in the OFF
SET attribute.

CONVERSION BY ASSIGNMENT

In addition to conversion performed as
the result of an operation in the evalua
tion of an expression, conversion will also
occur when a data item -- or the result of
an expression evaluation -- is assigned to
a variable whose attritutes differ from the
attributes of the item assigned. The rules
for such conversion are generally the same
as those discussed above and in Part II,
Section 6, ·Problem Data Conversion."

EXPRESSION OPERATIONS

An operational expression can specify
one or more single operations. The class
of operation is dependent upon the class of
operator specified for the operation.
There are four class of operations -
arithmetic, bit-string, comparison, and
concatenation.

ARITHMETIC OPERATIONS

An arithmetic operation is one that is
specified by combining operands with one of
the following operators:

+ • / ••

The plus Sign and the minus sign can appear
either as prefix operators (assocjated with
and preceding a single operand such as +A
or -A) or as infix operators :dssociated
with and between two operands, such as A+B

or A-B). All other arithmetic operators
can appear only as infix operators.

An expression of greater complexity can
be ccmposed of a set of such arithmetic
operations. Note that prefix operators can
precede and be associated with any of the
operands of an infix operation. For
example, in the expression A.-B, the minus
sign preceding the variable B indicates
that the value of A is to be multiplied by
the negative value of B.

More than one prefix operator can pre
cede and be associated with a single vari
able. More than one positive prefix opera
tor will have no cumulative effect, but two
consecutive negative prefix operators will
have the same effect as a single positive
prefix operator. For example:

-A The single minus sign has the effect
of reversing the sign of the value
that A represents.

--A One minus Sign reverses the sign of
the value that A represents. The
second minus sign again reverses the
sign of the value, restoring it to
the original arithmetic value repre
sented by A.

---A Three minus signs reverse the sign of
the value three times, giving the
same result as a single minus sign.

Data Conversion in Arithmetic Operations

The two operands of an arithmetic opera
tion may differ in type, base, mode, preci
sion, and scale. When they differ, conver
sion takes place according to rules listed
telow. Certain other rules as stated
below -- may apply in cases of
exponentiation.

TYPE: character-string o~erands, numeric
character field operands (digits recorded
in character form), and bit-string operands
are converted to internal coded arithmetic
type. The result of an arithmetic opera
tion is always in coded arithmetic form.
Note that type conversion is the only con
version that can take place in an arithme
tic prefix operation.

BASE: If the tases of the two operands
differ, the decimal operand is converted to
tinary.

MODE: If the modes of the two operands
differ, the real operand is converted to
complex mode (ey acquiring an imaginary
part of zero with the same base, scale, and
precision as the real part). The exception
to this rule is in the case of exponentia
tion when the second operand (the exponent
of the operation) is fixed-point real with

Section 4: Expressions and Data Conversion 31

a scale factor of zero. In such a case, no
conversion is necessary.

PRECISION: If only precisions differ, no
type conversion is necessary.

SCALE: If the scales of the two operands
differ, the fixed-point operand is con
verted to floating-paint. scale. The excep
tion to this rule is in t.he case of
exponentiation when the first operand is of
floating-point scale and the second operand
(the exponent of the operation) is fixed
point with a scale factor of zero, that is,
a fixed-point integer constant or a vari
able that has been declared with precision
(p,O). In such a case, no conversion is
necessary, but the result will be
f loa ti ng- poi nt.

If both operands of an exponentiation
operation are fixed-point, conversions may
occur. as follows:

1. Both operands are converted to
floating-point if the exponent has a
precision other than (p,O).

2. The first operand is converted to.
floating-faint unless the exponent is
an unsigned fixed-point integer
constant.

3. The first operand is converted to
floating-point if precisions indicate
that the result of the fixed-point
exponentiation would exceed the maxi
mum number of digits allowed for the
implelrentation (for System/360, 15
decimal digits or 31 binary digits).
Further details and examples of con
version in exponentiation are included
in the section ·concepts of Data Con
version" in this chapter.

Results of Arithmetic operations

The "result" of an arithmetic operation,
as used in the following text, may refer to
an intermediate result if the operation is
only one of several operations specified in
a single operational expression. Any
result may require further conversion if it
is an intermediate result that is used as
an operand of a subsequent operation or if
it is assigned to a variable.

After required conversions have taken
place, the arithmetic operation is per
formed. If maximum precision is exceeded
and truncation is necessary, the truncation
is performed on low-order fractional
digits, regardless of base or scale of the
operands. In some cases involving fix~d
point data, however, high-order digits may
sometimes be lost when scale factc·s are
such that point alignment does not allow
for the declared number of integer digits.

32

The tase, scale, mode, and precision of
the result depend upon the operands and the
operator involved.

For prefix operations, the result has
the same base. scale, mode, and preciSion
as the converted operand. Note that the
result of -A. where A is a string, is an
arithmetic result, since A must first be
convert.ed to coded ari t.hwetic form tefore
the operation can l::e performed.

Fer infix operat.ions, the result depends
upon the scale of the operands in the fol
lowing ways:

FLOATING-POINT: If the converted operands
of an infix operation are of floating-point
scale, the result is of floating-point
scale, and the base and mode of the result
are the common base and wade of the
operands. The precision of the result is
the greater of the precisions of the two
operands.

FL"EC-POINT: If the convert.ed operands of
an infix operation are of fixed-point
scale, the result is of fixed-point scale,
and the base and mode of the result are the
common base and Il'ode of the operands. The
precision of a fixed-point result depends
upon operands, according to the rules
listed below.

In the formulas for computing precision,
the symbols used are as follows:

p represents the total number of
digits of the result

g represents the scale factor of

P.1

the result

represents the total number of
digits of the first operand

represents the scale factor of
the first operand

represents the total number of
diqit.s of the second operand

represents the scale factor of
the second operand

ADDITION AND SUBTRACTION: The total number
of digits in the result is equal to 1 plus
the number of integer digits of the operand
having the greater number of integer digits
flUS the numter of fractional digits of the
cperand having the greater number of frac
tional digits. The total number of posi
tions cannot exceed the maximum number of
digits allowed (15 decimal digits, 31
tinary digits). The scale factor of the
result is equal to the larger scale factor
cf the two oferands.

Formulas:

p = 1 + maximum (P1-q1' p~-q~)
+ maximum (q1' q~)

Example:

12354.2385 + 222.11111
ABC D

The total number of digits in the result
would be equal to 1 plus the number of
digits in A plus the num£er of digits in D.
The scale factor of the result would be
equal to the number of digits in D. Preci
sion of the result would be (11,5).

MULTIPLICATION: The total numter of digits
in the result is equal to one flus the
number of digits in operand one plus the
number of digits in operand two. The total
number of digits cannot exceed the maximum
number of digits allowed for the implemen
tation (15 decimal, 31 binary). The scale
factor of the result is the sum of the
scale factors of the two operands.

Formulas:

p = P1 + p~ + 1
q q1 + q~

Example:

345.432 • 22.45
ABC D

The total number of digits in the result
would be equal to 1 plus the sum of the
number of digits in A, B, C, and D. The
scale factor of the result would be the sum
of the number of digits in Band D. Preci
sion of the result would be (11,5).

DIVISION: The total number of digits in
the quotient is equal to the maximum
allowed by the implementation (15 decimal,
31 binary). The scale factor of the quo
tient is dependent upon the number of
integer digits of the dividend (A in the
example below), and the number of fraction
al digits of the divisor (D in the example
below). The scale factor is equal to the
total number of digits of the result minus
the sum of A and D.

Formulas:

p = 15 decimal, 31 binary
q = 15 (or 31)-«P1-q1) + q~)

Example:

432.432 / 2
ABC D

~he total number of digits in the quctient
would be 15 (the maximum number allowed).
'The scale factor would be 15 minus the sum
cf 3 (A, the number of integer digits in
the dividend> and zero (D, the nurr.ber of
fractional digits in the divisor). Preci
sion of the quotient would be (15,12).

Note that any change in the nUff,ber of
integer digits in the dividend or any
change in the number of fractional digits
in the divisor will change the precision of
the quotient, even if all additional digits
are zeros.

00432.432 / 2
432.432 / 2.0000

Precision of the quotient of the first
examfle would be (15,10); scale factor is
equal to 15-(5+0). Precision of the quo
tient of the second example would be
<15,8); scale fact.or is equal to 15-(3+4).

Caution: In the use of fixed-point divi
sion operations, care shOUld be taken that
declared precision of variables and
apparent precision of constants will not
give a result with a scale factor that can
force the result of subsequent operations
to exceed the maximum number of digits
allowed by the implementation.

EXPONENTIATION: If the second operand (the
exponent) is an unsigned nonzero real
fixed-point constant of precision (p,O),
the tot.al number of positions in the result
is equal to one less than the product of a
number that is one greater than the number
cf digits in the first operand multiplied
ty the value of the second operand (the
exponent). The scale factor of the result
is equal to the Froduct of the scale factor
of the first operand multiflied by the
value of the second operand (the exponent).

Note: Some special cases of exponentiation
are-'.:iefined as follows:

1. Real mode, x**y

a. If x=O and y>O, the result is O.

b. If x=O and y'50. the ERROR condi-
tion is raised.

c. If x*O and y=O, the result is 1.

d. If x<O and y is not fixed-point
with precision <p,O) , the ERROR
condition is raised.

2. Complex mode, x*.y

section 4: Expressions and Data Conversion 33

a. If x'-"'O and y has its real part >0
and its imaginary part =0, t.he
result is O.

b. If x=O and the real part of Y$O or
the imaginary part of y*O, the
ERROR condition is raised.

(As pOinted out under WData Conversion
in Arithmetic operations,· if the
exponent is not. an unsigned real
fixed-point integer constant, or if
the total number of digits of the
result would exceed 15 decimal digits
or 31 binary digits, the first operand
is converted to floating-point scale,
and the rules for float.ing-point
exponentiation apply.)

Formulas:

p ((Pi. +1) * (value-of-exponent))-1
g q1 * (value-of-exponent)

Example:

32 ** 5

The total number of digits in the
result would be 14. This is arrived
at by multiplying a number equal to
one plus the number of digits in the
first operand (1+2) by the value of
the exponent and subtracting one. The
scale factor of the result would be
zero (0 * 5, scale factor of the first
operand multiplied by the value of the
exponent) •

3. The expression X**(-N) for N>O is
evaluated by taking the reci~rocal of
X**N. This may cause the OVERFLOW
condition to occur as the intermediate
result is computed, which corresponds
to UNDERFLOW in the original
expression.

BIT-STRING OPERATIONS

A bit-string operation is one that is
specified by combining operands with one of
the following operators:

1 {, I

The first operator, the "not" symbOl, can
be used as a prefix operator only. The
second and third operators, the "and" sym
bol and the "or" symbol, can be used as
infix operators only. (The operators have
the same function as in Boolean algebra.)

Operands of a bit-string operation are.
if necessary, converted to bit strj,gs
before the operation is performed. If the
operands of an infix operation are ot

34

unequal length, the shorter is extended on
the right with zeros.

The result of a bit-string operation is
a bit string equal in length to the length
of the oferands (the two operands, after
conversion, always are the same length).
If either is a varying-length bit string,
the result is of varyin9 length.

Bit-string operations are perforrred on a
tit-by-bit basis. The effect of the "not"
operation is bit reversal; that is, the
result of ,1 is 0; the result of ,0 is 1.
The result of an "and" operation is 1 only
if both corresfonding tits are 1; in all
other cases, the result is O. The result
cf an nor~ operation is 1 if either or both
of the corresponding bits are 1; in all
ether cases, the result is O. The follow
ing table illustrates the result for each
tit fosition for each of the operators:

r------T------TT-----T-------y------T-----'
I A I B I I 1 A I 1 B I MB I A I B I
t------+------++-----+-------t------+-----~
I I II I I I, I
I 1 I 1 II 0 I 0 I 1 I 1 I
t------+------++-----+-------+------+-----~
I I II I ! i I
I 1 I 0 II O! 1 I 0 I 1 I
t------+------t+-----+-------+------+-----~
I I II I ! I I
I 0 I 1 Ill! 0 I 0 I 1 i
~------+------++-----+-------+------+-----~
I I II I I ! I
I a I 0 II 1 I 1 I 0 I 0 I L ______ ~ ______ L~ _____ L _______ L ______ ~ _____ J

More than one bi t-st:ring operation can
te comtined in a single expression that
yields a bit-string value.

In the following examples, if the value
of operand A is '010111'B, the value of
operand B is '111111'B, and tbe value of
operand C is '110'B, then:

, A yields '1010GO'B
l C yields 'OOl'B

C & B yields 'l10000'B
A. B yiel ds '111111'B
,~ I B yields '11111'B '-

A I (, C) yields '011111'B
1 (t, C) I (, B)) yields '110111'B

COMPARISON OPERATIONS

A comparison operation is one that is
specif ied by combini ng ope rands wi t.h one of
the following operators!

< ,< <'-" ,= >= > 1>

These o~erators specify "less than," "not
less than,· "less than or equal to," "equal
to," "not equal to," "greater than or equal

to," "greater than," and "not greater
than."

There are three types of comparisons:

1. Algebraic, which involves the compari
son of signed arithmetic values in
internal coded arithmetic form. If
operands differ in tase, scale, preci
sion, or mode, they are converted
according to the rules for arithmetic
operations. Numeric character data is
converted to coded arithmetic before
comparison.

2. Character, which involves left-to
right, character-by-character compari
sons of characters according to the
collating sequence.

3. Bit, which involves left-to-right,
bit-by-bit comparison of binary
digits.

If the operands of a cOffiparison are not
immediately ccmpatible (that is, if their
data types are appropriate t.O different
types of comr;:arison), the operand of the
lower comparison type is converted to con
form to the comparison type of the operand
of the higher type. The priority of com
parison types is (1) algetraic (highest),
(2) character str ing, (3) bit string.
Thus, for exaffiple, if a tit string were to
be compared with a fixed decimal value, the
bit string would be converted to arithmetic
(i.e., fixed binary> for algebraic compari
son with the decimal value (which would
also be converted to fixed binary for the
comparison) •

If operands of a character-string com
parison, after conversion, are of different
lengths, the shorter operand is extended on
~he right with blanks. If operands of a
bit-string comparison are of different
lengths, the shorter is extende~ on the
right with zeros.

In the execution of PL/I programs, com
parisons of character data will observe the
collating sequence resulting from the
representations of characters in bytes of
System/360 storage, in extended tinary
coded decimal interchange code (EBCDIC).

The result of a comparison operation
always is a bit string of length one; the
value is 'l'B if the relationship is true,
or 'O'B if the relationship is not true.

The most common occurrences oj compari
son operations are in the IF statement, of
the following format:

IF A = B
THEN action-if-true
ELSE action-if-false

The evaluation of the expression A = B
yields either 'l'B or 'O'B. Depending upon
the value, either the THEN portion or the
ELSE portion of the IF statement is
executed.

Comparison operations need not be
limited to IF statements, however. The
following aSsignment statement could be
valid:

x == A < 8;

In this example, the value 'l'B would be
assigned to X if A is less than Bi other
wise, the value 'O'B would be assigned. In
the same way, the following assignrrent
statement could be valid:

x == A = 8i

The first symbol (=) is the assignrrent sym
toli the second (==) is the comparison
operator. If A is equal to B. the value of
X will be 'l'B; if A is not equal to B, the
value of X will be 'O'B.

Only the comparison operations of
"equal" and "not equal" are valid for com
parisons of complex operands, or compari
sons of locator operands. Comparison
operations with program control data other
than locator data are not allowed.

CONCATENATION CPERATIONS

A concatenation operation is one that is
specified by combining operands with the
concatenation symbol:

II

It signifies that the operands are to be
joined in such a way ~hat the last charac
ter or bit of the operand to the left will
immediately precede the first character or
bit of the orerand to the right, with no
intervening bits or characters.

The concatenation operator can cause
conv~rsion to string type since concatena
tion can be performed only upon strings,
either character strings or tit strings.
If both operands are character strings or
if both operands are bit strings, no con
version takes place. Otherwise both
operands are converted to character
strings.

The results of concatenation operations
are as follows:

Eit String: A tit string whose length is
equal to the sum of the lengths of the two
tit-string operands.

Section 4: Expressions and Data Conversion 35

~haracter string: A character string whose
length is equal to the sum of the lengths
of the two character-string operands. If
dn operand requires conversion for the con
cat_enation opera tion. t:he result is depen
dent upon the length of the character
string to which the operand is converted.

~or example. if A has the attributes and
valuE of the anlstant '010111'B, B of the
constant '101'S, C of the constant 'XY,Z'.
and D of the constant 'AA/EB', then

AI IE yields '010111101'B
Ai IAI IB yields '010111010111101'B

CIID yields 'XY,ZAA/BB'
D! Ie)l1.elds 'AA/BBXY,z'
HI iD yields '101AA/BB'

Note that, in the last example, the bit
r~tring '101'S is converted to the character
fjt-_, i "g '101' before the concatenation is
p~tformed. The result is a character
s~ric9 consisting of eight characters.

Note: If either of the operands of a con
catEnation operation has the VARYING attri
Lut.tc_, t.he result will J:::e a VARYING string.
\·Ihe:. VAHYING st.rings are concatenated, the
i D.terflled.id~:e string created has a length
equal to the sum of the maximum lengths.
If Ule maximwl< lengths are known at compile
time dnd their sum exceeds 32767, then a
truncated jnteunediate string of length
32767 will be created and an error message
projuced. If the maximum length of either
operand is not known at compile time and
their sum exct:eds 32767, a truncated inter
mediate string of length 32767 will be
cr~ated but there will be no diagnostic
messd,:!e.

The use of adjustable VARYING strings
can create a similar proJ:::lem. When an
operand of the concatenate operator or the
argument of the UNSPEC function is an
adjustable VARYING string, the length of
the intermediate result field is not
tested, and execution will fail. This
situation can also occur with SUBSTR if the
thiz"d argument is not a constant, eecause
in this case the result is an adjustable
VARYING string.

Similarly, when a VARYING string is
passed as an argument to a fixed-length
string parameter, the length of the tem
porary argument created is the maximum
length. If the user wishes to pass the
current length of the VARYING string ("D,

for example, Y=X(A), a possible method is:

36

DCL ATEMP CHAR(.) CTLj
ALLOCATE ATEMP CHAR(LENGTH(A»i
ATEMP=A;
Y=X (ATEMP):
FREE ATEMPi

COMBINATIONS OF OPERATIONS

Different types of operations can be
combined within the sawe oferational ex
fressicn. Any comcination can be used.
For example, the expression shown in the
following assignment statement is valid:

RESULT = A + B < C t D;

Each oferaticn within the expression is
evaluated according to the rules for that
kind of operation, with necessary data con
versions taking place before the oferaticn
is performed.

Assume that the variables given aeove
are declared as follows:

DECLARE RESULT B1'1'(3),
A FIXED DEClMAL(l),
B FIXED BINARY (3),
C Ct~RACTER(2), D BIT(4)i

• The decimal value of A would be con
verted to J:::inary base.

• The tinary addition would be performed,
adding A and B.

• The J:::inary result would ee compared
with the converted binary value of C.

• The bit-string result of the corrparison
would J:::e extended to the length of the
bit string D. and the "and ft operation
would be performed.

• The result of the nand" operation, a
bit string of length 4, would be
assigned t:o RESULT without conversion,
but with truncation on the right.

The expression in this example is
described as being evaluated operation-by
operation, froro left to right. Such would
ce the case for this particular expression.
'Ihe order of evaluation, however, deFends
upon the priority of the oFer~tors appear
ing in the expression.

Priority of Operators

In the evaluation of expressions,
priority of the operators is as follows:

** prefix+ prefix-
* /
infix+
II
< , < <=
&

I

infix-

,= >=

1

> 1>

(highest)
!
I
I
I

V
(lowest)

If two or more operators of the highest
friority aFpear in the same expression, the
order of priority of those operators is
from right to left; that is, the rightmost

exponentiation or prefix operator has the
highest priority. Each succeeding exponen
tiation or prefix operator to the left has
the next highest priority.

For all other operators, if two or more
operators of the salDe priority afpear in
the same expression, the order of priority
of those operators is from left to right.

Note that the order of evaluation of the
expression in the assignment statement:

RESULT = A + B < C & Di

is the result of the priority of the opera
tors. It is as if various elements of the
expression were enclosed in parentheses as
follows:

(A) + (B)
(A + B) < (C)
(A + B < C) & (D)

The order of evaluation (and, conse
quently, the result) of an expression can
ce changed through the use of parentheses.
The above expression, for example, might be
changed as follows:

(A + B) < (C & D)

The order of evaluation of this expres
sion would yield a bit string of length
one, the result of the comparison opera
tion. In such an expression, those expres
sions enclosed in parentheses are evaluated
first, to be reduced to a single value,
tefore they are considered in relation to
surrounding operators. Within the lan
guage, however, no rules specify which of
two parenthesized expressions, such as
those in the above example, would be evalu
ated first.

The value of A would be converted to
fixed-point binary, and the addition would
be performed, yielding a fixed-point binary
result (RESULT 1). The value of C would be
converted to a-bit string (if valid for
such conversion) and the Rand" operation
would be perfcrmed.

At this point, the expression would have
been reduced to:

RESULT 2 would be converted to binary, and
the algebraic comparison would be per
formed, yielding the bit-string rfsult of
the entire expression.

The priority of operators is defined
only within operands (or sub-orerands). It
does not necessarily hold tru;:, for an
entire expression. Consider the following
example:

A + (B < C) & (D II E .* F)

The priority of the operators specifies, in
this case, only that the exponentiation
will occur tefore the concatenation. It
does not specify the order of the operation
in relation to the evaluation of the other
operand (A + (E < c)l.

Any operational expression (except a
prefix expression) must eventually be
reduced to a single infix operation. The
cperands and operator of that operation
determine the attributes of the result of
the entire expression. For instance, in
the first example of combining operations
(which contains no parentheses), the -and
operator is the operator of the final infix
cperationi in this case, the result of
evaluation of the expression is a bit
string of length 4. In the second example
Cbecuase of the use of parentheses), the
operator of the final infix operation is
the comparison operator, and the evaluation
yields a bit. string of length 1.

In general, unless parentheses are used
within the expression, the operator cf low
est priority determines the operands of the
final operation. For example:

A + B .* 3 II C * D - E

In this case, the concatenation operator
indicates that the final operation will be:

(A + B ** 3) II (C * D - E)

!he evaluation will yield a character
string result.

Subexpressions can be analyzed in the
same way. The two operands of the expres
sion can be defined as follows:

A + (B ** 3)
(C * D) - E

ARRAY EXPRESSIONS

An at-ray expression is a Single array
varia~le or an expression that includes at
least one array operand. Array ex{::ressicns
nay also include operators -- both prefix
and infix -- element variables and
constants.

Evaluation of an array expression yields
an array result. All operations performed
on arrays are performed on an element-ty
element tasis, in row-major order. There
fore, all arrays referred to in an array
expression must be of identical bounds.

Although comparison operators are valid
for use with array operands, an array
operand cannot appear in the IF claqse of

Section 4: Expressions and Data Conversion 31

an IF statement. Only an element expres
sion is valid in the IF clause, since the
IF statement tests a single true or false
result ..

Not.e: Array express ions are not always ex
pressions of conventional matrix algebra.

For the TSS/360 Compiler the level of
nEsting in array expressions is limited by
the following rule:

For each level of nesting of array expres
c,ions, add 2 for the maximum number of
dimensions in the array, add 3 for each
subscript or argument list in the expres
sion or assignment, and finally, add 5.
The t.otal for t.he whole nest should not
exceed 900.

PREFIX OPERATORS AND ARRAYS

The result of the operation of a prefix
averd~0r on an array is an array of ident
icat hounds, each element of which is the
result of the operation having been per
formed upon each element of the original
array. I'c,r eXdmple: .

If A is the array 5 3 -9
1 -2 1
6 3 -4

then -A i.s the array -5 -3 9
-1 2 -7
-6 -3 4

INFIX OPERATORS AND ARRAYS

Infix orerations that include an array
variable as one operand may have an element
or anotber array as the other operand.

Arr~'L and Element operations

The result of an operation in which an
element and an array are connected by an
infix operator is an array with bounds
identical to the original array, each ele
ment of which is the result of the opera
tion performed upon the corresponding ele
ment of t.he original array and the single
element. For example:

If A is the array

then A*3 is the array

5
12

15
36

10
11

30
33

8
3

24
9

The element of an array-element opera
tion can be an element of the same arrdY.
For example, the expression A*A(2,1) would
give the same result in the case of the
array A above, since the value of A{2,3} is
3.

38

Consider the following assignment
statement:

A :=. A * A(1,2);

Again, using the above values for A, the
newly assigned value of A would be:

50 100 800
1200 1100 300

Note that the original value for A(1,2),
which is 10, is used in the evaluation for
only the first two elements of A. Since
the result of the expression is aSSigned to
A, changing the value of A, the new value
of A(1,2) is used for all subsequent opera
tions. The first two elements are multi
plied by 10, the original value of A(1,2);
all other elements are multiplied by 100,
the new value of A(1,2).

Array and Array Operations

If two arrays are connected by an infix
operator, the two arrays must be of ident
ical bounds. The result is an array with
~ounds identical to those of the original
arrays; the operation is performed upon the
corresponding elements of the two original
arrays.

Ncte that the arrays must have identical
bounds. They must have the saJ[e nurr~er of
dirrensions r and corresponding dimensions
must have identical lower bounds and ident
ical upper bounds. For example, the bounds
of an array declared X(10,6) are not ident
ical to the ~ounds of an array declared
Y(2:11,3:8) although the extents are the
same for corresponding dimensions, and the
number of elements is the same.

Examples of array infix expressions are:

If A is the array

and if B is the array

then A+B is the array

and A*B is the array

2
6
4

1
8
6

3
14
10

2
48
24

4
1
8

5
3
3

9
4

11

20
3

24

3
7
2

7
4
1.

10
11

3

21
28

2

Array and Structure Operations

For the TSS/360 PIlI compiler, no
reference can be made to both an array and
a st~ucture in the same expression or in
the same assignment statement.

Data Conversion in Array Expressions

The examples in this discussion of array
expressions have shown only single arithme
tic operations. The rules for combining
operations and for data conversion of
operands are the same as those for element
operations.

STRUCTURE EXPRESSIONS

A structure expression is a single
structure variable or an expression that
includes at least one structure operand and
does not contain an array operand. Element
variables and constants can te operands of
a structure expression. Evaluation of a
structure expression yields a structure
result. A structure operand can be a major
structure name or a minor structure name.

Although comparison of era tors are valid
for use with structure operands, a struc
ture operand cannot appear in the IF clause
of an IF statement. Only an element ex
pression is valid in the IF clause, since
the IF statement tests a single true or
false result.

All operations performed on structures
are performed on an element-by-element
basi.s. Except in a BY NAME assignment
(seebelow), all structure variables appear
ing in a structure expression must have
identical structuring.

Identical structuring means that the
structures must have the same minor struc
turing and the same number of contained
elements and arrays and that the position
ing of the elements and arrays within the
structure (and within the minor structures
if any) must be the same. Arrays in corre
sponding positions must have identical
bounds. Names do not have to be the same.
Data types of corresponding elements do not
have to be the same, so long as valid con
version can be performed.

For the TSS/360 Compiler the level of
nesting in structure expressions is limited
by the following rule:

For each level of nesting of structure ex
pressions, add 2 for the maximum number of
dimensions in the structure, add L for the
maximum level in a structurE! repression,
add 3 for each subscript or argument list
in the expression or assignment, and final-

ly, add 15. The total for the whole nest
should nct exceed 900.

PREFIX OPERATORS AND STRUCTURES

The result of the operation of a ~refix
c~erator on a structure is a structure of
identical structuring, each element of
which is the result of the o~eration having
teen performed upon each element of the
original structure.

Note: Since structures may contain ele
rrents of many different data types, a pre
fix operation in a structure expression
would be meaningless unless the o~eration
can be validly performed upon every element
represented by the structure variable,
which is either a major structure name or a
minor structure name.

INFIX OPERATCRS AND STRUCTURES

Infix operations that include a struc
ture variable as one operand may have an
element or another structure as the other
o~erand.

Structure orerands in a structure ex
pression need not be major structure names.
A minor structure name, at any level, is a
structure variable. Thus, if M.N is a
rrinor structure in the major structure M,
the following is a structure expression:

M.N 6 '1010'B

Structure and Element Operations

When an operation has one structure and
cne elerr.ent operand, it is the same as a
series of operations, one for each element
in the structure. Each sub-operation
involves a structure element and the single
element.

Consider the following structure:

1 A
2 B

3 C
3 D
3 E

2 F
3 G
3 H
3 I

If X is an element variable, then A * X is
equivalent to:

A.C * X
A.D * X
A.E * X
A.G * X
A.H • X
A.I • X

Section 4: Expressions and Data Conversion 39

Structure and structure Operations

When an operation has two structure
operands. it is the same as a series of
element operations. one for each corre
sponding pair of elements.

For example, if A is the structure shown
in the previous example and if M is the
following structure:

1 M
2 N

3 0
3 P
3 Q

2 R
3 S
3 T
3 U

then A II M is equivalent to:

A.C I! M.O
A.D II M.P
A.E II M.Q
A.G II M.S
A.H II M.T
A. I II M.U

Structure Assignment BY NA~£

One exception to the rule that operands
of a structure expression must have the
same structuring is the case in which the
structure expression appears in an assign
ment statement with the BY NAME option.

The BY NAME appears at the end of a
structure assignment statement and is pre
ceded by a comma. Examples are shown
below.

Consider the following structures and
assignment statements:

lONE
2 PARTl

3 RED
3 ORANGE

2 PART2
3 YELLOW
3 BLUE
3 GREEN

1 TWO
2 PARTl

3 BLUE
3 GREEN
3 RED

2 PART2
3 BROWN
3 YELLOW

ONE = TWO. BY NAME;

1 THREE
2 PARTl

3 RED
3 BLUE
3 BROWN

2 PART2
3 YELLOW
3 GREEN

ONE.PARTl THREE.PARTl, BY NAME:
ONE = TWO + THREE, BY NAME;

The first assignment statement would he the
same as the following:

ONE.PARTl.RED = TWO.PART1.RED:
ONE.PART2.YELLOW = TWO.PART2.YELLOW;

The second aSSignment statement would be
the same as the following:

40

ONE.PART1.RED == THREE.PART1.RED;

The t.hird assignment statement would be the
same as the following:

ONE. PART 1. RED == TWO. PARTl. RED
+ THREE.PART1.RED;

ONE.PART2.YELLOW = TWO.PART2.YELLOW
+ THREE.PART2.YELLOW;

The BY NAME option can appear in an
assignment statement only. It indicates
that assignment of elements of a structure
is to be made only for those elements whose
naIT;es are COIT;mon to toth struct ur es.
Except for the highest-level qualifier spe
cified in the assignment statement, all
qualifying names must be identical.

If an operational expression afpears in
an aSSignment statement with the BY NAME
option, operation and assignment are per
formed only upon those elements whose names
have been declared in each of the struc
tures. In the third assignment statement
above, no operation is performed upon ONE.
PART2.GREEN and THREE.PART2.GREEN, because
GREEN does not appear as an elementary name
in PART2 of TWO.

OPERANDS OF EXPRESSIONS

An operand of an expression can be a
constant, an element variable, an array
variable, or a structure variable. An
operand can also be an expression that
reFresents a value that is the result of a
computation. as shown in the following
assignment statement:

A = B * SQRT (C) ;

In this examfle, the expression SQRT(C)
represents a value that is equal to the
square root of the value of C. Such an ex
pression is called a function reference.

FUNCTION REFERENCE OPERANDS

A fUnction reference consists of a name
and, usually, a parenthesized list of cne
or more variables, constants, or other ex
pressions. The name is the name of a block
of coding written to perform specific com
putations upon the data represented by the
list and to substitute the computed value
in place of the function reference.

Assume, in the above example, that C has
the value 16. 'rhe function reference SQRT
(C> causes execution of the coding that
would compute the square root of 16 and
replace the function reference with the
value 4. In effect. the assignment state
ment would become:

A = B * 4;

The coding represented ty the name in
the function reference is called a fUnc
tion. The function SQRT is one of the PL/I
bUIlt-in functions. Built-in functions,
~Iich provide a number of different opera
tions, are a part of the PL/I language. A
complete discussion of each apFears in Part
II, Section 7, "Built-In Functlons and
PseudO-Variables." In addition, a user may
write functions for other furpOS€S (as
described in Part I, section 12, ·Subrou
tines and Functions"), and the names of
those functions can be used in function
references.

The use at a function reference is not
limited to operands of operational expres
sions. A function reference is, in itself,
an expression and can be used wherever an
expression is allowed. It cannot be used
in those cases where a variable represents
a receiving field, such as to the left of
an assignment symbol.

There are, however, ten built-in func
tions that can be used as E§eudo-variables.
A pseudo-variable is a built-in function
name that is used in a receiving field.
Consider the following example:

DECLARE A CHARACTER(lO>,
B CHARACTER (30) ;

SUBSTR(A,6,5) = SUBSTR(B,20,S);

In this assignment statement, the SUBSTR
built-in function name is used both in a
normal function referenctc and as a
pseudo-variable.

The SUBSTR built-in function extracts a
substring of s~ecified length from the
named string. AS a pseudo-variable, it
indicates the location, within a named

·string, that is the receiving field.

In the above example, a substring five
characters in length, i:eginning with char
acter 20 of the string B, is to be assigned
to the last five characters of the string
A. That is, the last five characters of A
are to be replaced by characters 20 through
24 of B. The first five characters of A
remain unchanged, as do all of the charac
ters of B.

All ten of the built-in functions that
can be used as pseudo-variables are dis
cussed in Part II, Section 7, "Built-In
Functions and Pseudo-Variatles". No user
written fUnction can be used as a
pseudo-variable.

CONCEPTS OF DATA CONVERSION

Data conversion is the transformation of
the representation of a value from one form

to another. PL/I makes very few restric
tions upon the use of the available forlTs
cf data representat.ion or upon the mixing
cf different representations within an
expression.

Users who want to make use of this free
dom RUst understand that mixed expressions
imply conversions. If conversions take
I=lace at execution time, they will slow
down the execution, sometimes significant
ly. Unless care is taken, conversions can
result in loss of frecision and can cause
uneXFected results. A lack of understand
iAg of conversions can lead to logical
errors and inaccuracies that are sometimes
hard to trace.

This section is concerned primarily with
the concepts of conversion operations.
Specific rules for each kind of conversion
are listed in Part II, Section 6, "Problem
Data Conversion." Earlier sections of this
chapt,er discuss circumstances under which
conversion can occur during evaluation of
expressions. This section deals with the
frocesses of the conversion.

The subject of conversion can be consi
dered in two parts, first, determining the
target. attributes, and, second, the conver
sion oferation with known source and target
attributes. This section deals with deter
rrining target attributes. Rules for con
version operations are given in Part II.
Section 6, "Problem Data Conversion."
Within each section, here and in Part II,
arithmetic ccnversion and type conversion
are considered separately.

The ~arge~ of a conversion is the
receiv1ng field to which the converted
value is assigned. In the case of a direct
assign~ent, such as A = B, in which conver
sion must take Flace, the variable to the
left of the assignment symbol (in this
case, A) is the target. Consider the fol
lowing example, however:

DECLARE A CHARACTER(S),
B FIXED DECIMALC3,2),
C FIXED BINARY (10) ;

A "" B + C;

During the evaluation of the expression E+C
and during the assignment of that result,
there are four different targets, as
follows:

1. The comfiler-created tenporary to
which the converted binary equivalent
of E is assigned

2. The comfiler-created temporary to
which the binary result of the addi
tion is aSSigned

section 4: EXFressions and Data Conversion 41

3. The tempcrary to which the converted
decimal fixed-point equivalent of the
Linary result is assigned

4. A, the final destination of the
result, to which the converted
character-string t:quivalent of the
decirral fixed-point representation of
the value is assigned

The attributes of the first target are
determined frcm the attributes of the
source (S), froIll the operator, and from the
attribut.es of the other operand (if one
operand uf an arithmetic infix o~erator is
blnary, the other is converted to binary
Lefore evaluation). The attributes of the
second t.arget aTe determined from the
attributes of the source (C and the con
verted representation of B). The attri
Lutes of the third target are determined in
fbrt frorr the source (the second target)
dnd in part from the attributes of the
eventual tarqct (A). (The only attribute
determined from the eventual target is
LECIMAL, since a binary arithmetic repre
s~ntation must be converted to decimal
Ieprespntdtion before it can be converted
to a character ~~tring.) The attributes' of
th~' fourth t.argct (A) are known from the
DECLi\RE st.atement.

When an expression is evaluated, the
tdrqet attributes usually are Fartly
derived from the source, Fartly from the
operation being performed, and partly from
tile attribut.€O:i of a second operand. Some
assumptions may be made, and some imFlemen
tation restrictions (for example, maximum
preciSion) and conventions exist. After an
expression is evaluated, the result may be
further converted. In this case, the tar
get. attri but.es usually are independent of
the source. Since the process of determin
ing target attributes is different for ex
pression operands and for the results of
expression evaluation, the two cases are
dealt with separately.

A conversion always involves a source
data iterr and a target data item, that is,
the original representation of the value
and the converted representation of the
value. All of the attributes of both the
source data item and the target data item
are known, or assumed, at compile time.

It is fossible for a conversion to
involve interrrediate results whose attri
tutes may depend upon the source value.
For example, conversion from character
string to arithmetic may require an im:er
mediate conversion and, thus, an inter
mediate result. before final conversio~ is
completed. The final target attribl1t~es in
such cases, however, are always de~2rmined
from the source data it err and are indepen
dent of the values of the variables.

42

The maxirr,um number of temporary results
which may exist during the evaluation of an
expression or during an assignment state
ment is 200. An estimate of the nurrber of
tempcrary results which may exist during
the evaluation of an exrression can be
obtained frOlr the following:

At each level of parentheses, count one for
each operator which is forced to be evalua
ted before an inner level of parentheses.
For each such operator, count one fcr each
operand which reguires conversion before
use, count one for each nested function,
count one for each subscripted variable
used as a target in an assignment state
rrent, and finally, count one for each
pseudo-variable and each argument of a
fseudo-variatle.

It should be realized that constants
also have attributes; the constant 1.0 is
different from the constants 1, '1' E, '1' I

IB, or lEO. constants way be converted at
compile time or at execution time, but in
either case, the rules are the sarre.

TARGET ATTRIBUTES FOR TYPE CONVERSION

When an expression operand requires type
conversion, some target attributes must be
assumed or deduced from the source. Some
ct these assumFtions can be made based on
the operator, as shown in Figure 2.

BIT TO CHARACTER AND CHARACTER TO BIT

In the conversion of bit to character,
and character to bit. the length of the
target (in bits or characters) is the sarre
as the length of the source (in bits or
characters).

r-----------T-----------------------------,
I Operator ! Target Type I
~-----------t-----------------------------~
I + - * / **1 coded arithmetic I
I i I
I (, ill bi t stri ng I
I! I
I I I I character string (unless 1
I I toth operands are tit I
I I strings) I
I I I
I > < ! arithmetic, unless both I
I >= <= I operands are strings; thenl
I ~= I character string, unless I
1'>'< I Loth operands are tit I
I I strings; then bit string i l---________ ~ _____________________________ J

Figure 2. Target Types for EXFression
Operands

ARITHM£~IC TO STRING

In the conversion of arithmetic to bit
string or character-string data, the length
of the target is deduced from the precision
of the source. Algorithms for determining
the length of the target are given below
under the headings "Lengths of Hit-string
Targets" and "Lengths of Character-String
Targets." In the case of expression
operands, there is no truncation of the
resulting character-string value, since the
length of the target is the length of the
intermediate string.

STRING TO ARITHMETIC

In the conversion of tit-string or
character-str ing data to arithmetic, the
~tring must consist of digits that repre
sent a valid arithmetic constant. The com
~iler has no way of determining the attri
Lutes of the constant represented by the
string; therefore, attributes must be
assumed for the target.

In the case of character-string to
arithmetic conversion, the attributes
assumed for the target are those attributes
that would have been assumed if a fixed
point decimal integer cf precision (15,0)
had appeared in place of the string. Simi
larly, for a bit-string source that is to
t,e converted to arithmetic type, the attri
butes of the target are the attributes that
would have been given to the target if a
fixed-point binary integer of precision
(31,0) had appeared in place of the bit
string.

1a£get Attritutes for Arithmetic EXfression
Operands

Except for exponentiation, the target
attributes for arithmetic conversion are
assumed dS follows:

BINARY

F'LOA'l'

COMPL£X

lJrecision
cf seurce

unless both operands are DECIM·
AL, in which case no base con
version is performed

unless both operands are FIXED,
in which case no scale conver
sion is performed

unless both operands are REAL,
in which case no mode conver
sion is performed

unless base or scale conversion
is performed (see Figure 3,
"Precision for Arithmetic
Conversion")

In the case of exponentiation, the base
and precision are determined as for other
operations. The target scale of the first
operand is always FLOAT unless the first
cperand source is FIXED and the second
operand (the exponent) is an unsigned
fixed-point integer constant with a value
small enough that the result of the
exponentiation will not exceed the maximum
number of digits allowed (for Systerr/360
implementations, 31, if binary, or 15, if
decimal). The target scale of the second
operand is FLOAT unless it is an integer
constant or a variable of precision (p,O).
If either of the operands is COMPLEX, the
target mode is COMPLEX for both operands

r----------------------T------------------------------T---------------------------------,
ISource Attributes t Target Attributes I Target Precision I
i----------------------+------------------------------t---------------------------------~
!DECIMAL FIXED(p,q) I DECIMAL FLOAT I p I
I I I I
!DECIMAL FIXED(p,q) I BINARY FIXED I 1+p*3.32, q*3.32 I
I I I I
IDECIMAL FIXED(p,q) I BINARY FLOAT I p*3.32 I
I I I I
IDECIMAL FLOAT(p) I BINARY FLOAT I p*3.32 I
I I I !
IBINARYFIXED(p,q) I BINARY FLOAT I p I
I I I I
tBINARY FIXED(p,q) I DECIMAL FIXED I 1+p/3.32, q/3.32 !
t I I i
IBINARY FIXED(p,q) I DECIMAL FLOAT I p/3.32 I
I I I I
IBINARY FLOAT(p) I DECIMAL FLOAT I p/3.32 I ,.----------------------.1.------------- ___________________ J.. __________________________________ ~

,Note: Conversion from floating-po..Lnt to fixed-point scale will occur only when a target I
!precision is known, as in assignment to a fixed-fcint variatle. If the target !
Iprecision is incafable of holding che floating-point value, truncation on both left I
I and right will occur, and the SIZE condi tion ~ill be raised <if enabled) if significant I
Idigits are lost. I l ___ J

Figure 3. Precision for Arithmetic Conversion

Section 4: Expressions and Data Conversion 43

unless the second operand is a REAL integer
constant or variable of pr~cision (p,O).
In either case, the target mode for the
second operand is REAL (that is, its mode
is not converteJ).

In the exarrries of exponentiation shown
telow, the variables are those ndmed in the
following DECLARE statement:

DECLARE A FIXED CECIMAL(2),
B FIXED DECIJVALO ,2),
C FLOAT DEC IMAL (4) ,
D FLOAT DECI t-':AL (7) •

E FIXED ClCHlj~L(8),
F FIXED DECIMAL (15),

G COMPLEX FLOAT DECIMAL(6) ;

Note: If only one digit appears in the
precision attribute specification for a
fixed-point variable, the scale factor is,
ty default, zero; the precision is (p,O).

G •• C

A •• 4

D •• 5

C •• A

E •• A

r:: •• B

G •• B

No conversion necessary. Both
operands are floating-point.

No conversion necessary.
Second operand is unsigned"
fixed-point integer constant,
and the result will not exceed
15 digits.

No conversion necessary. First
operand is floating-point;
second is fixed-point with pre
cision (P, 0) •

No conversion necessary. First
operand is floating-roint;
second is fixed-point with pre
cision (P, O) •

First operand is converted to
f loating-roint because second
operand is not unsigned fixed
point int.eger constant. Second
operand is not converted
because it has precision (p,O).

Second operand is converted to
floating-point because it does
not have precision (P, 0). Even
if B had an integer value with
a fractional part of zero, it
still would be converted, since
its declared precision is
(3,2) •

First operand is complex.
Second operand is converted to
floating-point complex because
its precision is not (PrO).

Note: All of these examples woulrl be the
same if they had been declared bL",dry rath
er than decimal, except that the maximum
number of tinary digits allowed is 31.

44

Precis ion and Lenqth~_L.l2:u2ression Operand
Targets

The following rules apply to all calcu
laticns of precision and length:

1. Precision and length specifications
are always integers. If any of the
calculations given below produces a
nonintegral value, the next largest
integer is taken as the resulting pre
cision. In the case of scale factors,
which can be negative, it is the abso
lute (positive) value that is used to
take the next largest integer; the
result, of course, will be negative if
the source scale factor is negative.

The following illustrates how preci
sion would be computed in a conversion
from DECI~AL FIXED (13,-4) to EINARY
FIXED:

1 + 13 • 3.32 44.16 resulting number
of digits (p) is
45

-4 • 3.32 -13.28 resulting scale
factor (g) is
-14

ThUS, the resulting precision is 145,-
14); however, due to rule 2 below, it
becomes (31,-14).

2. There is an implementation-defined
maximum for the precision of each
arithmetic representation. If any
calculation yields a value greater
than the implementation-defined lirrit,
then the implementation limit is used
instead. In System/360 implerrenta
tions, theSE limits are:

FIXEr:: CECI~AL -- 15 digits
FIXED BINARY -- 31 digits
FLOAT r::ECI~AL -- 16 digits
FLOAT BINARY -- 53 digits

Because of the particular values for
these implementations, these limits
wili usually come into effect only for
conversions from fixed-point decimal
to fixed-point binary.

The scale factor for bott! binary and
decimal base has the range +127 to
-128 in Systere/360 implementations.
This limit will rarely concern the
user.

Precision for Arithmetic Conversion~

Figure 3 gives the target precision for
an operand if base or scale conversion
occurs.

r-------------------------T---------------------------T---------------------------------,
(source Attributes I Conditions I Target Length I
~-------------------------t---------------------------+---------------------------------~
I DECIMAL FIXED (p,q) I If p>=q>=O I p+3 I
I I I I
I I If q>p I p+3+k I
I I or I (where k == number of deciroal I
I I q negative I digit~s to express scale I
I 1 1 factor) I
I I I I
(DECIMAL FLOAT(p) I I p+6 t
I I I I
INumeric character field I I Same as source I L _________________________ L ___________________________ L-------__________________________ J

Figure 4. Lengths of Character-string Targets

The target Frecision of one oFerand of
an expression is not affected ty the preci
sion of the other operand. This can have a
significant effect on accuracy, particular
ly if one of the operands is a constant.

Lengths of Character-String Targets

The length of a character-string target
is related to the Frecision of the decimal
source, as shown in Figure 4.

Note: If a binary data item is converted
to character, it is first converted to
decimal. The r:;recision of this intermedi
ate conversion result controls the lenqth
of the final character-string target.
Algorithrr,s for computing the intermediate
precision of a decimal item converted from
binary are shown in Figure 3.

For complex coded arithmetic sources,
the target length is one greater than twice
the length of the target for the corre
sponding real source. For complex numeric
character data, the target length is twice
the length of the real part of the source.

Lengths of Bit-string Target~

When converting arithmetic operands to
bit string, the arithmetic source is con
verted to a positive binary integer. The
precision of the binary integer target is
the same as the length of the bit-string
target as given in Figure 5.

r--------------------T--------------------,
ISource Attributes I Target Length I
t--------------------+--------------------~
IDECIMAL FIXEO(p,q) I (p-q)*3.32 I
I I I
I DECIMAL FLOAT (p) I p*3. 32 I
I I I
IBINARY FIXED(p,q) I p-q t
I I I
IBINARY FLOATCp) I p I L ____________________ ~ ___________________ J

Figure 5. Lengths of Bit-string Targets

Note that. p-q represents the numter of
binary or decimal digits to the left of the
point. This could be zero or negative, in
~hich case no conversion is perforrred and,
for the TSS/360 PL/I compiler, the final
result is a null string.

Conversion of the ~alue of an Expression

The result of a completely evaluated ex
pression may require further conversion.
The circumstances in which this can occur,
and t,he t~arget attributes for each situa
tion, are given in Figure 6. In addition,
certain tuilt-in functions cause ccnver
sian. Any subscript reference is converted
to binary integer.

CONVERSION OPERATIONS

As in the case of determining target
attributes. conversion operations may also
te considered 1n two staqes: type conver
sion and arithmetic conversion. For
example, when a character-string source is
converted to a coded arithmetic target, the
string is first converted to an arithrretic
form whose att.ritutes are determined by the
constant expressed by the string. This
intermediate result is then converted (if
necessary) tc the attritutes of the target.
'These t~c st.ages may not, be separated in an
actual irrplerrentation, but for the purpose
of description it is convenient to ccnsider
them ~""Farately.

There are six cases of type conversion:

Arithmetic to character-string
Character-string to aritf@etic
Arithmetic to tit-string
Bit-string to arithmetic
Character-string to tit-string
Bit-string to character-string

For specific rules f or each of the cases
cf type conversion and for arithmetic con
version, see Part II. Section 6, ·Protlerr
Data Conversion."

Section 4: Expressions and Data Conversion 45

r---,
I The following may cause conversion to any target attritutes: I
I I
I Cause Target At.tributes I
I Assignlfent Attr~tutes of varial:le to the left of the assignment symbol I
I I
I Arguffient to Frocedure Attritutes of corresponding parameter declared in ENTRY I
I with ENTRY declared declaration I
I I
I RETURN (expression) Attributes specified in PROCEDURE or ENTRY statement I
t--·---~
I The following may cause conversion to character-string: I
I I
I §ta~ement Ortion String Length I
I OPEN TITLE Source, 8-character maximum I
I I
I DISPLAY Source, 100-character maximum I
I I
I RECORD I/O KEYFROM Key length specified in DDEF command I
I I
I KEY Key length specified in CDEF command I
r--~
I The fcllcwing may cause conversion to a binary integer whose precision, as defined I
I for the compiler, is 9i ven be low: I
I I
I §tat:.emen!: 9ption/Attribute Precision I
I DECLARE/ALLOCATE length 15 I
I
I
I
I
I
I DELAY
!
I FORt-'lAT
I (and format items
I in GET and PUT)
I
!
I OPEN
I
I
I I/O
I
I
I

tounds

repetition factor

milliseconds

iteration factor
w
d
s

LINESIZE
PAGESIZE

SKIP

lINE

15

15

31

15
15

7
7

15
15

15

15

I
I
I
I
I
I

I IGNORE 15 I l ___ J

Figure 6. Circumstances that can Cause Conversion

THE CONVERSION, SIZE, FIXEDOVERFLOW, AND
OVERFLOW CONDITIONS

When data is converted from one repre
sentation to another, the CONVERSION or
SIZE conditions may be raised. The OVER
FLOW and FIXEDOVERFLOW conditions are
raised only when the result of an arithme
tic operation exceeds the im~lementation
defined liwit. When an operand is con
verted from one representation to another,
if the value of the result will not fit in
the declared precision for the new repre
sentation, the SIZE condition is raised.

The SIZE condition is raised wh{~ signi
ficant digits are lost from the left-hand

46

side of an arithmetic value. This can
occur during conversion within an expres
sion, or ~pon assigning the result of an
eXFression. It is not raised in conversion
to character string or bit string even if
the value is truncated. It is raised on
conversion to E or F format in edit
directed transmission if the field width
specified will not hold the value of the
list item. The SIZE condition is normally
disabled, so an interruption will occur
only if the condition is raised within the
sco~e of a SIZE Frefix.

The CONVERSION condition is raised when
the source field contains a character that
is invalid for the converS10n being per-

formed. For example, CONVERSION would be
raised if a character string being con
verted to arithmetic contains any character
other than these allowed in arithmetic con
stants, or if a character string that is
being converted to bit contains any charac
ter other than 0 and 1. Each invalid char
acter raises the CONVERSION condition once,
so a single ccnversion operation causes
several interruptions if more than one
invalid character is encountered. The CON
VERSION condition is normally enabled, so
when the condition is raised, an interrup
tion will occur. It can be disabled by a
NOCONVERSION prefix, in which case an
interruption will not occur when the condi
tion is raised.

Note that the OVERFLOW and FIXECOVERFLOW
conditions are raised when an implementa
tion maximum is exceeded, while the SIZE
condition is raised when a declared preci
si2~ is exceeded. For example, if the
addition of two binary halfword values
resulted in an overflow into a sixteenth
digit position, and the result were
assigned to a binary halfword variable,
SIZE would be raised (if enabled). Note
that, in such a case, SIZE would be the
only indication that an error had occurred,
whereas if a similar situation arose with
fullword binary values (i.e., an attempted
overflow past the thirty-first digit posi
tion), FIXEDCVERFLOW would be raised during
the actual computation, before the attempt.

Section 4: Expressions and Data Conversion 47

SECTION 5: STATEMENT CLASSIFICATION

'rhis section classifies statements
according to their functions. Statements
in each functional class are listed, the
purpose of each statement is described, and
examples of their use are shown.

A detailed description of each statement
is not included in this section l:ut may be
found in Part II, section 10, "Statements."

c,:LASSES OF S~A'l'EMENTS

Statements can be grouped into the fol
lowing six classes:

Descriptive
Input/Output
Data !-lOvement and COirputational
Program Structure
Preprocessor
Control
Exception Control

The names of the classes have been chosen
for descript- ive purposes only; they have no
fundamental significance in the language.
Some statements are included in more than
one class, since they can have more than
one function.

DESCRIPTIVE STATEMENTS

when a PL/I program is executed, it may
manipulate many different kinds of data.
Each data item, except a constant, is
referred to in the program by a name. The
PL/I language requires that the properties
(or attributes) of data items referred to

must be known at the time the program is
compiled. There are a few exceptions to
this rule; the bounds of the dimensions of
arrays, the length of strings, and some
file attributes may be determined during
execution of the program.

The DECLARE Statement

The DECLARE statement is the principal
means of specifying the attributes of a
name. A name used in a program need not
always appear in a DECLARE statement; its
attributes often can be determined by con
text. If the attributes are not specific
ally declared and if they cannot be deter
mined by context. then default rul€fi are
applied. The combination of defad.t rules
and context determination can make it unne
cessary, in some cases, to use a DECLARE
statement.

48

DECLARE statements are always needed for
fixed-point decimal and floating-point
l:inary variables, character- and bit-string
variables, label variables, arrays and
structures, static, controlled, and based
variables, offset variables, and all data
with the PICTURE attribute. An ENTRY
declaration must be made in a DECLARE
statement for the name of any function that
returns a value with attributes different
from the default attributes that would be
assumed for the name -- FIXED BINARY(lS) if
the first letter of the name is I through
Ni otherwise, DECIMAL FLOAT(6). (The
default precisions are those defined for
Systern/360 implementations.) An ENTRY
declaration also must be made if arguments
and pararreters do not match exactly, as may
be the case when constants are passed as
arguments.

DECLARE statements may also be an impor
tant part of the documentation of a pro
gram; consequently, users may make liberal
use of declarations, even when default
attributes apply or when a contextual
declaration is possible. Because there are
no restrictions on the number of DECLARE
statements, different DECLARE staterrents
can Le used for different groups of names.
This can make modification easier and the
interpretation of diagnostics clearer.

Other Descriptive Statements

The OPEN statement allows certain attri
butes to be specified for a file narre and
rray, therefore, also be classified as a
descriptive statement. The FORMAT state
rrent may be thought of as describing the
layout of data on an external ITedium, such
as on a Fage or an input card.

INPUT/OUTPUT STATEMENTS

Thp principal statements of the in~ut/
outFut class are those that actually cause
a transfer of data between internal storage
and an external medium. Other input/out:;ut
statements, which affect such transfers,
may be considered input/output control
statements.

In the following list, the statements
that cause a transfer of data are groufed
into two subclasses, RECORD I/O and STREAM
I/O:

RECORD I/O Transfer Statements
READ
WRITE

REWRITE
LOCATE
DELETE

STREAM I/O Transfer Sta1:ements

GET
PUT

I/O Control Statements

OPEN
CLOSE
UNLOCK

A related statement, discussed with
these statements, is the DISPLAY statement.

There are two important differences
between STREAM transmission and RECORD
transmission. In STREAM transmission, each
data item is treated individually, whereas
RECORD transmission is concerned with
collections of data items (records) as a
whole. In STREAM transmission, each item
may be edited and converted as it is trans
mitted; in RECORD transmission, the record
on the external medium is an exact copy of
the record as it exists in internal
storage, with no editing or conversion
performed.

As a result of these differences, record
transmission is particularly a~plicable for
processing large files that are written in
an internal representation, such as in
binary or packed decimal. Stream transmis-

Ision can be used for processing typed or
keypunched data and for producing readable
output, where editing is required. Since
files for which stream transmission is used
tend to be smaller, the larger processing
overhead can be ignored.

RECORD I/O Transfer Statements

The READ statement transmits records
directly into working storage or makes
records available for processing. The
WRITE statement creates new records,
transferring collections of data to the
output device. The LOCATE statement allo
cates storage for a variable within an out
put buffer, setting a pointer to indicate
the location in the buffer, having pre
viously caused any record already located
in a buffer for this file to be written
out.

The REWRITE statement alters existing
records in an UPDATE file. The D~LETE
statement removes records from an UPDATE
file.

STREAM I/O Transfer Statement~

Only sequential files can be processed
with the GET and PUT statements. Record

boundaries generally are ignored; data is
considered to be a stream of individual
data iterrs, either coming from (GET) or
going to (PUT) the external medium.

The GET and PUT statements may transmit
a list of items in one of three modes,
data-directed, list-directed, or edit
directed. In dat.a-directed transmission,
the narres of the data items, as well as
their values, are recorded on the external
rredium. In list-directed transmission, the
data is recorded externally as a list of
constants, separated by blanks or commas.
In edit-directed transmission, the data is
recorded externally as a string of charac
ters to be treated character by character
according to a format list.

Data-directed transmission is most use
ful for reading a relatively small numter
cf values and for producing self-annotated
debugging output. List-directed in~ut is
suitable for reading in larger volumes of
data punched in free form. Edit-directed
transmission is used wherever format must
be strictly controlled, for example, in
~roducing re~orts and for reading cards
punched in a fixed format.

Note: The GET and PUT statements can also
te used for internal data movement, by
specifying a string name in the STRING
option instead of specifying the FILE
option. Although the facility may be used
~ith READ and WRITE statements for waving
data to and from a buffer, it is not actu
ally a part of the input/output operation.
GET and PUT statements with the STRING
option are discussed in the section "Data
~overnent and computational Stat.ements," in
this section.

Input/OutE-ut Control Statements

The OPEN statement. associates a file
narre with a data set and prepares the data
set for processing. It may also specify
additional attritutes for the file.

A~, OPEN statement need not al~ays be
~::::il.ten. Execution of any input or output
transmission statement that specifies the
name of an unorened file will result in an
automatic opening of the file before the
data transmission takes place.

The OPEN statement may be used to
declare attributes for a file; for a PRINT
file, the length of each printed line and
the number of lines per page can be sr€ci
fied only in an OPEN statement. The OPEN
statement can also be used to specify a
name (in the TITLE option) other than the
file name, as a link between the data set
and the file.

Section 5: Statement Classification 49

The CLOSE statement dissociates a data
set from a file. All files are closed at
term.LIlaciun of a program, so a CLOSE state
mpnt ~s not always required.

The UNLOCK statement is accepted, but is
of no significance to the '1'55/360 compiler,
since TS8/360 data management automatically
locks records being read, if the file has
Leen opened for direct access.

The DISPLAY statement

Tne UI::;PJiliY statement is used to write
li,eS!3aqes on tlJe user's terminal. It may
31so ~e used, with the REPLY option, to
allow the user to communicate with the pro-
9rdTii by typing in a code or a message. The
REfLY optiun rray be used merely as a means
ut sus~enalng program execution until the
user acknowledges the message.

u;:rA I-J()VEMENT AND COMPUTATIONAL STATEMENTS

I!lterna 1 data movement involves the as
bignme~t of the value of an expression to a
s..:'Cified variable. The expression may be
,,' cC'm,L:;nt, or a variable, or it may be an
Lxpresslon that specifies computations to
tIe made.

Tlle most cOli~monly used statEment for
internal data movement, as well as for
specifying corr,putations, is the assignment
statement. The GET and PUT statements with
i h", <:iTJ:UNG option also can be used for
.internal data movement. The PUT statement
can, iIl addition, specify computations to
l:e made.

The Assignment. statement

The assignment statement, which has no
keyword, is identified by the assignment
symool (=). It generally takes one of two
forms:

A Bi
A B + C;

The first forrr can be used purely for
internal data movement. The value of the
variable (or constant) to the right of the
assignment symbol is to be assigned to the
variable to the left. The second form
includes an operational expression whose
value is to be assigned to the variable to
the left of the assignment symbol. The
second form specifies corr,putations to be
made, as well as data movement.

Since the attributes of the variable on
the left may differ from the attributes of
the result of the expression (or of the
variable or constant), the assignment
statement can also be used for conversion
and editing.

50

The variable on the left may be the name
of an array or a structure; the expression
en the right may yield an array or struc
ture value. Thus the assignment statement
can be used to move aggregates of data, as
well as single iterrs.

Multiple AssignmEnt

The value of the expression in an as
signment statement can be assigned to more
than one varia tie in a statement of the
follewing form:

A,X = B + c;

Such a statement is executed in exactly the
same way as a single assignment, except
that the value of B + C is assigned to both
A and X. In general, it has the same
effect as if the following two statements
had been written:

A B + Ci
X B + Ci

Note: If multiple assignment is used for a
structure assignment BY NAME, the elemen
tary names affected will be only those that
are common to all of the structures listed
to the left ef the assigrunent symbol.

The STRING 0Etion

If the STRING option appears in a GET or
PUT statement in place of a FILE o~tion,
execution of the statement will result only
in internal data movement; neither input
nor cutFut is involved.

Assume that NAME is a string of 30
characters and that FIRST, MIDDLE, and LAST
are string variables. Consider the follow
ing examFle:

GET STRING (NAME) EDIT
(FIRST,MIDDLE, LAST)
{A(12),A(1),A(17»j

This staterrent sFecifies that the first 12
characters of NAME are to be assigned to
FIRST, the next character to MIDDLE, and
the remaining 17 characters to LAST.

The PUT statement with the string option
specifies the reverse operation, that is,
that the values of the specified variables
are to be concatenated into a string and
assigned as the value of the string named
in the STRING option. For example:

PUT STRING (NAME) EDIT
(FIRST,MIDDLE, LAST)
(A(12),A(1),A(17»j

This statement specifies that the values of
FIRST, MIDDLE, and LAST are to be conca-

tenated, in that order, and assigned to the
string variable NAME.

computations to be perforrr,ed can be s{:e
cified in a PUT statement ty including
operational expressions in the data list.
Assume, for the following example, that the
variables A. B, and C represent arithmetic
data and BUFFER represents a character
string:

PUT STRING (BUFFER) LIST (A*3,B+C);

This statement specifies that the character
string assigned to BUFFER is to consist of
the character representations of the value
of A multiplied by 3 and the value of the
sum of Band C.

Operational expressions in the data list
of a PUT statement are not limited to PUT
statements with the STRING option. Opera
tional expressions can aFpear in PUT state
ments that specify output to a file.

PROGRAM STRUCTURE STATEMENTS

The prograrr, structure statements are
those statements used to delimit sec·tions
of a program into blocks and groups, and to
control the allocation of storage within a
program. These statements are the PROCE
DURE statement, the END statement, the
ENTRY statement, the BEGIN statement, the
DO statement, the ALLOCATE statement, and
the FREE statement. The concept of blocks
and groups is fundamental to a proper un
derstanding of PL/I and is dealt with in
detail in Sections 6, 7, and 12 in Part I.

Proper division of a program into blocks
simplifies the writing and testing of the
program, particularly when a number of
users are cooperating in writing a single
program. It may also result in more effi
cient use of storage, since dynamic storage
of the automatic class is allocated on
entry to the block in which it is declared.

The PROCEDURE Statement

The princi~al function of a procedure
tlock, which is delimited by a PROCEDURE
statement and an associated END statement,
is to define a sequence of operations to be
performed upon specified data. This
sequence of operations is given a name (the
label of the PROCEDURE statement) and can
be invoked from any pOint at which the name
is known.

Every program must have at least one
PROCEDURE statement and one END stRtement.
A program may consist of a number of sepa
rately written procedures link d together.
A procedure may also contain other proce
dures nested within it. These internal

procedures may contain declarations that
are treated (unless otherwise specified) as
local definitions of names. Such defini
tions are not known outside t.heir own
clock, and the names cannot be referred to
in the containing procedure. Storage asso
ciated with these names is generally allo
cated upon entry to the block in which such
a name is defined, and it is freed upon
exit froIT the tlack.

The sequence of statements defined by a
r:rocedure can te executed at any point at
which the procedure name is known. A pro
cedure is invoked either by a CALL state
rrent or ty the appearance of its name in an
expression, in which case the procedure is
called a function procedure. A function
reference causes a value to be calculated
and returned to the function reference for
use in the evaluation of the expression.

CommUnication between two procedures is
by means of arguments passed from an invok
ing procedure to the invoked procedure, by
a value returned from an invoked procedure,
and by names known within both procedures.
A procedure may therefore operate upon dif
ferent data when it is invoked frorr dif
ferent points. A value is returned from a
function procedure to a function reference
by means of the RETURN statement.

The ENTRY Statement

The ENTRY statement is used to provide
an alternate entry paint to a procedure
and, pOSSibly, an alternate parameter list
to which arguments can be passed, corre
sponding to that entry point.

Note: It is important to distinguish
tetween the ENTRY stat.ement, which sfec.i.
fies an entry to the procedure in which it
occurs, and the ENTRY attribute specifica
tion, which describes the attributes of
rarameters of procedures that are invoked
from the procedure in which the ENTRY
attribute srecification appears.

'The BPaN Statement

Local definitions of names can also be
rrade within tegin tlocks, which are delimi
ted by a BEGIN statement and an associated
END statement. Begin blocks, however, are
executed in the normal flow of a program,
either sequentially or as a result of a GO
TO or an IF statement transfer. One of the
most common uses of a begin block is as the
on-unit of an ON statement, in which case
it is not executed through normal flow of
control, but only upon occurrence of the
specified condition. It is also useful for
delirr-iting a section of a program in which
some automatic storage is to be allccated.

Section '): Sta tement Classification 51.

Edell begin block must l::e nested within a
~r0cedure or another begin block.

The EllD Statement .----- -~-.-.---.----~-.----

Cl'lie END stat.cment. is used to signify the
" .. ,,1 of d block 01 group. Every block or
'J!OU[I!:ust nave an END statement. However,
Uk ... :ND st.at.ement may 1:e explicit or impli
eiL; a single END statement can be applied
to 6 nurub~r of nested l::locks and groups by
t :lc incl.ufiion of the label of the contain-
j n9 block or group after the keyword END.
~h0 other END ~tdtements are then implied
by th~ one containing t.he latel, and need
not Dt:: given explicitly. If no label fol
lows END, the ,; catement afplies to only one
~roup or Llock. (Multiple closure is dis
cus~ed in more detail in Section 6,
ftBlocks, Flow of Control, and Storage
J\ll()(~ .. aLion,.")

Executicn of an END statement for a
1..1..:)C.l< t.el.minat.es t.he block. However, it is
~~i-;Le 0aly means 0f terminating a block,
tc"en t.h'l'.lqh each block must have an END
"tcd~(;(n>::nt. For example, a procedure can be
tenr,~ nat:ed by execution of a RETURN sta1;e
~ent (see ·ConLrol Statements,· below).

Th,:; effect: cf execution of an END state
,),erlt for a grc~ depends on whether or not
t.he 91:0,"1:' is it erati ve. If the group is
.i'.<'tdtivc, eX2'."Jtion of t.he END statement
causes control to return to the teginning
of. ttlto' grnup unt.il all iterations are com
vIele, unless control is passed out of the
qroul.' before tnen. (See "Control State
ments," below.) If the group is nonitera
tive, the END statement merely delimits the
<jIOnp (to enable the group to be treated as
a single statement), and control passes to
the next, stat.ement.

1.!1Q....bLWC[l.TE and FREE Statements

As with many other conventions in PL/I,
cne convention concerning storage alloca
t.iOf. and t.he scope of definitions of names
can be overridden by the user. The storage
clasG dttr'ibute AUTOMATIC is assumed for
most variables. However a variable can be
declared STATIC, in which case it is allo
::atE'd throughout the entire program; or it
can be declared CONTROLLED, or BASED, in
which case its allocation can be explicitly
specified by the user.

The ALLOCATE statement is used to assign
storage t.O controlled and based data, j nde
pendent of block boundaries. The bounus of
controlled arrays and the length of con
trolled strings, as well as their initi11
values, may dlso be specified at the time
the ALLOCATE statement is executed. The
FREE statement is used to free controlled
and based storage after it has been
allocated.

52

PREPROCESSOR STATEMENTS

PLiI allows a degree of control over the
contents of the source program during the
compilation. The programmer can specify,
for examFle, that any identifier appearing
in the source program will be changed; he
can select parts of the program to be com
piled without the rest; he can include text
from an external source. These operations
are performed by the preprocessor stage of
the comFiler, and are specified by prepro
cessor statements that appear among the
other statements within the source program
itself.

In general, preprocessor statements are
identified by a leading percent symbol
before the keyword; several of therr have
the same keyword as standard PL/I state
ments, and these have a similar effect at
compile-time to that of their counterpart
at execution time.

The complete list of preprocessor state
rrents is:

% ACTIVATE
% assignment
% DEACTIVATE
% DECLARE
% DO
% END
% GO TO
% IF
% INCLUDE
% null
% PROCEDURE
RETURN

'Ihese statements are discussed in Part I,
Section 15. "Compile-Time Facilities,· and
in Part II, Section 10, "Statements."

CONTROL STATEMENTS

Statements in a PI/I program, in gener
al, are executed sequentially unless the
flow of control is modified by the occur
rence of an interruption or the execution
cf one of t.he following control statements:

GO TO
IF
DO
CALL
RETURN
END
STOP
EXIT

The GO TO Statement

The GO TO statement is most frequently
used as an unconditional branch. If the
destination of the GO TO is specified by a
label variable, it may then be used as a

Page of GC28-2045-1, Issued September 15, 1970 by TNL GN28-3171

switch by assigning label constants, as
values, to the label variable.

If the label variable is subscripted,
the switch may be controlled by varying the
subscript. Sincp multidimensional label
arrays are allowed, and since logical
values may be used as subscripts, quite
subtle switching can be effected. It is
usually true, however. that simple control
statements are the most efficient.

The keyword of the GO TO statement may
be written either as two words separated by
a blank or as a single word, GOTO.

The IF Statement

The IF statement provides the most com
mon conditional branch and is usually used
with a simple comparison expression follow
ing the word IF. For example:

IF A = B
THEN action-if-true
ELSE action-if-false

If the comparison is true, the THEN
clause (the -action to be taken-) is
executed. After execution of the THEN
clause, control branches around the ELSE
clause (the -alternate action-), and execu
tion continues with the next statement.
Note that the THEN clause can contain a GO
TO statement or some other control state
ment that would result in a different
transfer of control.

If the comparison is not true, control
branches around the THEN clause, and the
ELSE clause is executed. Control then con
tinues normally.

The IF statement might be as follows:

IF A = B
THEN C = 0;
ELSE C = E:

If A is equal to B, the value of 0 is
assigned to C, and control branches around
the ELSE clause. If A is not equal to B,
control branches around the THEN clause,
and the value of E is assigned to C.

Either the THEN clause or the ELSE
clause can contain some other control
statement that causes a branch, either con
ditional or unconditional. If the THEN
clause contains a GO TO statement, for
example, there is no need to specify an
ELSE clause. Consider the following
example:

IF A = B
THEN GO TO LABEL_1;
next-statement

If A is equal to B, the GO TO statement of
the THEN clause causes an unconditional
branch to lABEL_1. If A is not equal to B,
control branches around the THEN clause to
the next statement, whether or not it is an
ELSE clause associated with the IF
statement.

Note: lfthe THEN clause does not cause a
transfer of control and if it is not fol
lowed by an ELSE clause., the next statement
will be executed whether or not the THEN
clause is executed.

The expression following the IF k~yword
can be only an element expression: it can
not be an array or structure expression.
It can. however, be a logical expression
with more than one operator. For example:

IF A = B , C = 0
THEN GO TO R;

The same kind of test could be made with
nested IF statements. The following three
examples are equivalent:

IF A = B , C = D
THEN GO TO R;

B = B + 1;

IF A = B
THEN IF C = D

THEN GO TO R;
B = B + 1;

IF A ,= B THEN GO TO S;
IF C ,= D THEN GO TO S:
GO TO R;

S: B = B + 1;

The DO Statement

The most common use of the DO statement
is to specify that a group of statements is
to be executed a stated number of times
while a control variable ~s incremented
each time through the loop. such a group
might take the form:

DO I = 1 TO 10;

END;

The statements to be executed iteratively
must be delimited by the DO statement and
an associated END statement. In this case,
the group of statements will be executed
ten times, while the value of the control
variable I ranges from 1 through 10. The
effect of the DO and END statements would
be the same as the following:

I = 1;
A: IF I > 10 THEN GO TO B:

Section 5: Statement Classification 53

page of GC28-2045-1, Issued september 15, 1970 by TNL GN28-3111

I = 1+1;
GO TO Ai

B: next statement

Note that the increment is made before the
control variable is tested and that, in
general, control goes to the statement fol
lowing the group only when the value of the
control variable exceeds the limit set in
the DO statement. If a reference is made
to a control variable after the last itera
tion is completed, the value of the vari
able will be one increment beyond the spe
cified limit.

The DO statement can also be used with
the WHILE option and no control variable,
as follows:

DO WHILE (A = B);

This statement, heading a group, causes the
group to be executed repeatedly so long as
the value of A remains equal to the value
of B.

The WHILE option can be combined with a
control variable of the form:

DO I = 1 TO 10 WHILE (A = B)~

This statement specifies two tests. Each
time that I is incremented, a test is made
to see that I has not exceeded 10. An
additional test then is made to see that A
is equal to B. Only if both conditions are
satisfied will the statements of the group
be executed.

More than one successive iteration spe
cification can be included in a single DO
statement. Consider each of the following
DO statements:

DO I = 1 TO 10, 13 TO 15;
DO I = 1 TO 10, 11 WHILE (A = B)i

The first statement specifies that the DO
group is to be executed a total of thirteen
times, ten times with the value of I equal
to 1 through 10, and three times with the
value of I equal to 13 through 15. The
second DO statement specifies that the
group is to be executed at least ten times,
and then (provided that A is equal to B)
once more: if ·BY O· were inserted after
"11", execution would continue with I set,
to 11 as long as A remained equal to B.
Note that in both statements a comma is
used to separate the two specifications.
This indicates that a succeeding specifica
tion is to be considered only after the
preceding specification has been satisfied.

The control variable of a DO statement
can be used as a subscript in statements

54

within the DO-group, so that each iteration
deals with successive elements of a table
or array. For example:

DO I = 1 TO 10;
A(!) = I;
END;

In this example. the first ten elements of
A are set to 1.2, •••• 10, respectively.

The increment in the iteration specifi
cation is assumed to be one unless some
other value is stated, as follows:

DO I = 2 TC 10 BY 2;

This specifies that the loop is to be
executed five times, with the value of I
equal to 2, 4, 6, 8, and 10.

Noniterative DO Statements

The DO statement need not specify
repeated execution of the statements of a
DO-group. A simple DO statement, in con
junction with a DO-group, can be used as
follows:

DO;

END;

The use of the simple DO statement in this
manner merely indicates that the DO-group
is to be treated logically as a single
statement. It can be used to specify a
number of stat~ents to be executed in the
THEN clause or the ELSE clause of an IF
statement, thus maintaining sequential con
trol without the use of a begin block.
(Only a single statement, a DO-group, or a
begin block can be specified in the THEN
clause or in the ELSE clause.)

The CALL, RETURN. and END Statements

A subroutine may be invoked by a CALL
statement that names an entry point of the
subroutine. Control is returned to the
activating, or invoking, procedure when a
RETURN statement is executed in the subrou
tine or when execution of the END statement
terminates the subroutine.

The RETURN statement with a parenthe
sized expression is used in a function pro
cedure to return a value to a function
reference. This form is used to return a
value from a procedure that has been
invoked by a function reference.

Normal termination of a program occurs
as the result of execution of the final END
statement of the main procedure or of a
RETURN statement in the main procedure,

either of which returns control to the
system.

Note: A CALL statement must not contain a
multitasking option if any part of the pro
gram containing the CALL statement is to be
executed on TSS/360.

The STOP and EXIT Statements

The STOP and EXIT statements are both
used to cause termination of execution and
return of control to the coremand system.

EXCEPTION CONTROL STATEMENTS

The control statements, discussed in the
preceding section, alter the flow of con
trol whenever they are executed. Another
way in which the sequence of execution can
be altered is by the occurrence of a pro
gram interruption caused by an exceptional
condition that arises.

In general, an exceptional condition is
the occurrence of an unexpected action,
such as an overflow error, or of an
expected action, such as an end of file,
that occurs at an unpredictacle time. A
detailed discussion of the handling of
these conditions appears in Part I, Section
13, ·Exceptional Condition Handling and
Program Checkout.-

The three exception control statements
are the ON statement, the REVERT statement,
and the SIGNAL statement.

The ON Statement

The ON statement is used to specify
action to be taken when any subsequent
occurrence of a specified condition causes
a program interruption. ON statEments may.
specify particular action for any of a
number of different conditions. For all of
these conditions, a standard system action
exists as a part of PL/I, and if no ON
statement is in force at the time an inter
ruption occurs, the standard system action
will take place. For wost conditions, the
standard system action is to print a mes
sage and terminate execution.

The ON statement takes the form:

ON condition-name(SYSTEM;lon-unit}

The ·condition name- is one of the keywords
listed in Part II, Section 8, ·ON
Conditions.- The ·on-unit- is a single
statement or a begin block that specifies
action to be taken when that condition
arises and an interruption ccurs. For
examf.-Ie:

ON ENDFILE(DETAIL) GO TO NEXT_MASTER;

This statement specifies that when an
interruption occurs as the result of trying
to read teyond the end of the file named
DETAIL, control is to be transferred to the
statemf'nt, latcled NEXT MASTER.

When ex(·cution of an on-unit is success
fully cowpleted. control will normally
return to the I,oint of the interruption or
to a point immediately following it,
depending upon the condition that caused
the interruption.

An important use of the ON statement is
for debugging. The CHECK condition causes
debugging information to be printed whenev
er the value of one of a list of specified ,
variables is changed or whenever a speci
fied statement is executed.

The effect of an ON statement, the es
tablishment of the on-unit, can be changed '
within a tlock (1) by execution of another
ON staterr,ent narr,ing the :;drre condition with
either another on-unit or the word SYSTEM,
~hich reestablishes standard systerr action.
or (2) by the execution of a REVERT state
ment naming that condition. On-units in
effect at the time another block is acti
vated re~ain in effect in the activated
tlock, dnd in other blocks activated by it,
unless another ON statement for the same
condition ie, executed. When control
returns to an activating block, on-un~ts

are reestaclished as they existed.

The REVERT Staterr€nt

The REVERT statement is used to cancel
the Effect of all ON statements tor the
same condition that have been Executed in
the block in which HIP Rr.VERT ~;t_dtE£r,ent
afpears.

The REVERT statement, which must specify
the condition narre. reestablishes the on
unit that was in effect in the activating
block at the time the current block was
invoked.

The SIGNAL State~ent

The SIGNAL statewent sim\llate~j the
occurrence of an interru~tion for d named
condition. It can be used to test thE' cod
ing of the on-unit established by execution
cf an ON statement. For example:

SIGNAL OVERFLOW;

This statement would simulate the occur
rence of an overf low inter ruption dDd would
cause ~xecution of the on-unit estdblished
for tht.' OVERFLOW condit,ion. If an on-unit
has not teen e:;tablished, standard system
action is taken.

:~ect ion ') = :;tatement Classification 5'-,

Page of GC28-204S-1, Issued September 30, 1971 by TNL GN2R-118S

SECTION 6: BLOCKS, FLOW OF CONTROL, AND STORAGE ALLOCATION

This section discusses how statements
can be organized into blocks to form a PLII
program, how control flows within a program
from one block of statements to another.
and how storage may be allocated for data
within a block of statements.

BLOCKS

A block is a delimited sequence of
statements that constitutes a section of a
program. It localizes names declared
within the block and limits the allocation
of variables. There are two kinds of
blocks: procedure blocks and begin blocks.

PROCEDURE BLOCKS

A procedure block, simply called a pro
cedure, is a sequence of statements headed
by a PROCEDURE statement and ended by an
END statement, as follows:

label: {label:] •.. PROCEDURE:

END [label];

All procedures must be named because the
procedure name is the primary point of
entry through which control can be trans
ferred to a procedure. Hence, a PROCEDURE
statement must have at least one label. A
label need not appear after the keyword END
in the END statement, but if one does
appear, it must match the label (or one of
the labels) of the PROCEDURE statement to
which the END statement corresponds.
(There are exceptions; see ·Use of the END
Statement with Nested Blocks and DO-GrOUps
in this chapter.) An example of a
procedure:

A: READIN: PROCEDURE
statement-l
sta tement- 2

statement-n
END READIN;

In general, control is transferred to a
procedure through a reference to the name
(or one of the names) of the procedule.
ThUS, the procedure in the above example
would be given control by a reference to
either of its names, A or READIN.

56

A Ph/I program consists of one Or more
such procedure<., each of which may contain
other procedures and/or begin blocks.

BEGIN BLOCKS

A begin block is a set of statements
headed by a BEGIN statement and ended by an
END statement, as follows:

(label:] ••• BEGIN;

END (label);

Unlike a procedure hlock, a label is
optional for a begin block. If one or more
labels are prefixed to a BEGIN statement,
they serve only to identify the starting
point of the block. (Control may pass to d

begin block without reference to the name
of that block through normal sequential
execution, although control can be trans
ferred to a labeled BEGIN statement by
execution of a GO TO statement.) The label
following END is optional. However, a
label can appear after END, matching a
label of the corresponding BEGIN statement.
(There are exceptions; see ·Use of the END
Statement with Nested !Hocks and DO-Groups"
in this chapter.) An exam[Jle of a begin
block:

B: CONTROL: BEGIN;
sta t.ement-l
statement-2

stat ement-n
END B:

Unlike procedures, beqin blocks general
ly are not given control through speCial
referenc~s to them. The normal sequence of
control governing ordinary statement execu
tion also governs the execution of begin
blocks. Control passes into a begin block
sequentially, following execution of the
preceding statement.

Begin blocks are not essential to the
construction of a PL/I program. However,
there are times when it is advantageous to
use begin blocks to delimit certain areas
of a program. These advantages are dis
cussed in this section and in Part I, Sec
tion 7. -Recognition of Names.-.

INTERNAL AND EXTERNAL BLOCKS

Any block can contain one or more
blocks. That is, a procedure, as well as a
cegin block, can contain other procedures
and begin blocks. However. there can be no
overlapping of blocks; a block that con
tains another block must totally encompass
that block.

A procedure block that is contained
within another block is called an internal
Frocedure. A procedure block that is not
contained within another block is called an
external procedure. There must always be
at least one external procedure in a PL/I .
program. (Note: With System/360 implemen
tations. each external procedure is com
piled separately. Entry names of external
procedures cannot exceed seven characters.)

Begin blocks are always internal; they
must always be contained within another
l:;lock.

Internal procedure and begin blocks can
also be referred to as nested clocks.
Nested blocks. in turn, way have blocks
nested within them, and so on. The outer
most block always must be a procedure.
Consider the following example:

A: PROCEDURE;
statement-al
statement-a2
statement-a3
B: BEGIN;

statement- t1
statement-b2
statement-b3
END Bi

statement-a4
statement-aS
C: PROCEDURE;

statement-cl
statement-c2
D: BEGIN;

statement-dl
statement-d2
statement-d3
E: PROCEDURE;

statement-el
statement-e2
END E;

statement-d4
END C;

END C;
statement-a6
statement-a7
END A;

In the above example, procedurd block A
is an external procedure because it is not
contained in any other block. Blc~k B is a
begin block that is contained in Ai it con
tains no other blocks. Block; is an
internal procedure; it contains begin block
D. which. in turn, contains internal proce-

dure E. This example contains three levels
cf nesting relativE to Ai Band C are at
the first level. D is at the second level
(but the first. level relative to C> and E
is at the third level (the second level
relative to C, and the first level relative
to D).

There must not be more than 50 levels of
nesting at any point in the compilation.
~he degree of nesting at any point is the
number of PROCEDURE, BEGIN. or DO state
ments without a corresponding END state
ment, pIllS the number of currently active
IF compound statements, plus the nunber of
currently unmatched left parentheses, plus
the nuwber of dimensions in each active
array expression, plus the maxiroum number
of dimensions in each active array expres
sion. plus the maximum number of dinensions
in each active structure expression.

Use of the END Statement With Nested Blocks
and CO-Groups (Multiple Closure)

The use of the END statement with a pro
cedure, begin tlock, or DO-group is
governed by the followinq rules:

1. If a label is not used after END, the
END statement closes (i.e., ends) that
unclosed block headed by the BEGIN or
PROCEDURE statement, or that unclosed
DO-group headed by the DO statement,
that physically precedes, and appears
closest to, the END statement.

2. If the opt.ional label is used after
END, the END statement closes that
unclosed tlock or DO-group headed by
the BEGIN, PROCEDURE, or DO statement
that has a matching label, and t.hat
i'bysically precedes. and aJ;:pears clos
est. to, the END statement.. Any
unclosed blocks or DO-groups nested
within such a block or DO-group are
automatically closed by this END
stat.ement; this is known as roul tiple
closure.

From the second rule, it is evident that
nested blocks sometimes make it l'ossible
for a ",ingle END statement to close more
th<'l r one block. For e xaItple. asp. ulre that
t;,e following external procedure has been
defined:

FRST: PROCEDURE;
statement-fl
statement-f2
ABLK: BEGIN;

st:atement-a1
statement-a2
SCND: PROCEDURE;

statement-s1
BBLK: BEGIN;

statement-b1
END;

Section 6: Blocks, Flow of Contl:ol, and Stora{j€ Allocation 57

END;
statement-a3
END ABLK;

END FRST;

In this example, begin block BBLK and
internal [rOCedULe SCND effectively end in
the same place; that is, there are no
statements between the END statements for
each. This is also true for begin block
ABLK and external procedure FRST. In such
cases, it is not necessary to use an END
statement for each block, as shown; rather,
one END stat.ement can te used to end BBLK
dnd FCND (and ar.other END can be used to
end ABLK and FRST. In the first case, the
statement would be END SCND, tecause one
END statement w.ith no following label would
close only the begin block BBLK (see the
first rule above). In the second case,
only the statement END FRST is required;
the statement END ABI.K is superfluous.
~hus, the exaffiple could te specified as
£0110\115 :

FRST: PROCEDUREi
statf,ment-fl
stah:·ment-f2
ABLK: BEGIN;

statement-al
statement-a2
SeND: PROCEDUREi

statement-s1
statement-s2
BBLK: BEGIN;

statement-bl
statement-b2

END SCND;
statement-a3

END FRST;

Note the following example:

CBLK: PROCEDURE;
statement-cl
statement-c2

DGP: DO I = 1 TO 10;
statement-d1
GO TO LBL;
statement-d2

LBL: END CBLK;

In this example, the END CBLK statement
closes the block CBLK and the iterative
DO-group DGP. The effect is as if an un
ldbeled END statement for DGP appeared
immediately after statement-d2, so that the
transfer to LBL would frevent all but the
first iteration of DGP from taking place,
and statement-d2 would not be executed.

ACTIVATION AND TERMINATION OF BLOCKS

ACTIVATION

Although the begin block and the proce
dure have a physical resemblance and play

58

the same role in the allocation and freeing
of stocage, as well as in delimiting the
scope of names, they differ in the \<lay they
are activated and executed. A begin block,
like a single statement, is activated and
executed in the course of normal sequential
program flow (except when specified as an
on-unit) and, in general, can afpear
wherever a single st_atement can appear.
For a procedure, however, normal sequential
program flew passes around the procedure,
from the statement before the PROCEDURE
statement to the statement after the END
statement of that procedure. The only way
in which a procedure can be activated is by
a procedure reference.

A procedure reference is the appearance
of an entry name (defined below) in one of
the following contexts:

1. After the keyword CALL in a CALL
statement

2. After the keyword CALL in the CALL
option of the INITIAL attribute (see
the discussion of the INITIAL attri
bute in Part II, Section 9, "Attri
butes,· for details)

3. As a function reference (see Part I,
Section 12, "Subroutines and Func
tions," for details)

This chapter uses examples of the first
of these; that is, with the procedure
reference of the form:

CALL entry-name;

'Ihe material, howE:,ver, is relevant to the
other two forms as well.

An entr~ naw~ is defined as either cf
the follcwing:

1. The label, or one of the labels, of a
PROCEDURE statement.

2. The label, or one of the labels, of an
ENTRY Etatement appearing within a
procer1ure

The first of these is called the ~intary
entry foint to a procedure; the second is
known as a seconda~~ry point tc a pro
cedure. The following is an exarr.ple of a
procedure containing secondary entry
points:

A: PROCEDURE;
statement-·l
statement-2

ERRT: ENTRY;
statement- 3
sta tement-4
statement-S

NEXT: RETR: ENTRY;
statement-6
statement-1
statement-8
END A;

In this example, A is the primary entry
point to the procedure, and ERRT, NEXT, and
RETR specify secondary entry points. Actu
ally, since they are both labels of the
same ENTRY statement, NEXT and RETR specify
the same secondary entry point.

When a procedure reference is executed,
the procedure containing the specified
entry pOint is activated and is said to be
invoked; control is transferred to the
specified entry point. The ~oint at which
the procedure reference appears is called
the point of invocation and the block in
which the reference is made is called the
invoking block. An invoking tlock remains
active even though control is transferred
from it to the block it invokes.

Whenever a procedure is invoked at its
primary entry point, execution begins with
the first executable statement in the
invoked procedure. However, when a proce
dure is invoked at a secondary entry pOint,
execution begins with the first executable
statement following the ENTRY statement
that defines that secondary entry point.
Therefore, if all of the numbered state
ments in the last example are executable,
the statement CALL A would invoke procedure
A at its primary entry point, and execution
would begin with statement-~; the statement
CALL ERRT would invoke procedure A at the
secondary entry point ERRT, and execution
would begin with statement-3; either of the
statements CALL NEXT or CALL RETR would
invoke procedure A at its other secondary
entry point, and execution would begin with
statement-6. Note that any ENTRY state
ments encountered during sequential flow
are never executed; control flows around
the ENTRY statement as though the statement
were a commen t.

Any procedure, whether external or
internal, can always invoke an external
procedure, but it cannot always invoke an
internal procedure that is contained in
some other procedure. Those internal pro
cedures that are at the first level of
nesting relative to a containing procedure
can always be invoked ty that containing
procedure, or by each other. For example:

PRMAIN: ~ROCEDURE;

t,tatement-l
statement-2
statement- 3
A: PROCEDURE;

statement-al
statement-a2

B: PROCEDURE;
statement-bl
statement-b2

END Ai
statement-4
statement- 5
C: PROCEDURE;

statement-cl
statement-c2
END C;

statement- 6
statement-1
END PRMAIN;

In this example, PRMAIN can invoke pro
cedures A and C, but not B; procedure A can
invoke procedures Band C; procedure B can
invoke procedure C; and procedure C can
invoke procedure A but not B.

The foregoing discussion about the acti
vation of tlccks presupposes that a program
has already been activated. A PL/I program
becomes active when a calling prograrr
invokes the" initial procedure. This call
ing program usually is the time-sharing
system, although it could be another pro
gram. For System/360 implementations, the
initial procedure, called the main proce
dure, must be an external procedure whose
PROCEDURE statement has the OPTIONS(MAIN)
specification, as shown in the following
exam}:le:

CONTRL: PROCEDURE OPTIONS(MAIN};
CAll Ai
CALL B;
CAll C;
END CONTRL;

In this example, CONTRL is the initial pro
cedure and it invokes other procedures in
the program.

The following is a summary of the acti
vation of blocks:

• A program becomes active when the ini
tial procedure is activated by the
s~::;tem.

• Except for the initial procedure,
external and internal procedures con
tained in a program are activated only
when they are invoked by a procedure
reference.

• Begin blocks are activated through
normal sequential flow or as on-units.

• The initial procedure remains active
for the duration of the prograrr.

• All activated blocks remain active
until they are terminated (see below).

section 6: Blocks, Flow of Control, and Storage Allocation 59

TERMINATION

In general, a procedure block is ter
minated when, by some rreans other than a
procedure reference, control passes back to
the invoking block or to some other active
block. Similarly. a begin block is ter
minated when, by some means other than a
proceduLe reference, control passes to
another dctive block. There are a number
of ways by which such transfers of control
can Le accompll.shed, and their interpreta
tions differ according to the type of block
1::eiog termiIl3ted.

Begin Block Termination

A begin block is terminated when any of
the following occurs:

1. Control reaches the END statement for
the block. When this occurs, control
moves to the statement physically fol
lowing the END, except when the block
is an on-unit.

2. 'I'he execution of a GO TO statement
within the begin block (or any block
activated from within that begin
block) t.ransfers control to a point
not contained within the block.

3. A STOP or EXIT statement is executed
(thereby terminating execution>.

4. control reaches a RETURN statement
that transfers control out of the
begin block and out of its containing
procedure as well.

A GO TO statement of the type described
in item 2 can also cause the termination of
otber blocks as follows:

If the transfer point is contained in a
block that did not directly activate the
block being terminated, all intervening
blocks in the activation sequence are
terminated.

For example, if begin block B is con
tained in begin block A, then a GO TO
statement in B that transfers control to a
pOint contained in neither A nor B effec
tively terminates both A and B. This case
is illustrated below:

60

FRST: PROCEDURE OPTIONS(MAIN);
statement-1
statement-2
statement-3
A: BEGIN;

statement-a1
statement-a2
B: BEGIN;

sta tement - bi
statement-b2

GO TO LAB;
statement-b3
END Bi

statement.-a3
ENG A;

statement-4
statement-5

LAB: statement-6
statement-7
END FRSTi

After FRST is invoked, the first three
statements are executed and then begin
block A is activated. The first two state
ments in A are executed and then begin
block B is activated (A remaining active}.
when the GO TO statement in B is executed,
control fasses to statement-6 in FRST.
Since statement-6 is contained in neither A
nor B, both A and B are terminated. Thus,
the transfer of control out of begin block
B results in the termination of intervening
tlock A as well as termination of block B.

Procedure Termination

A procedure is terminated when one of
the following occurs:

1. Control reaches a RETURN staterrent
within the frocedure. The execution
of a RETURN statement causes control
to be returned to the point of invoca
tion in the invoking procedure. If
the point of invocation is a CALL
statement, execution in the invoking
procedure resumes with the statement
following the CALL. If the point of
invocation is one of the other forms
of procedure references (that is, a
CALL option or a function reference),
execution of the statement containing
the reference will be resumed.

2. Control reaches the END statement of
the procedure. Effectively, this is
equivalent to the execution of a
RETURN statement.

3. The execution of a GO TO staterrent
within the procedure (or any block
act::"vated from within that procedure)
transfers control to a point not con
tained within the procedure.

4. A STOP or EXIT statement is executed
(thereby terminating execution).

Items 1, 2, and 3 are normal procedure
terminations; item 4 is abnormal procedure
termination.

As with a begin clock, the type of ter
mination described in item 3 can sorretimes
result in the termination of several proce
dures and/or begin blocks. SpeCifically,
if the transfer [oint specified by the GO
TO statement is contained in a block that

Page of GC28-2045-1, Issued September 30, 1971 by TN!. GN2R-11RS

did not directly activate the block being
terminated, all intervening blocks in the
activation sequence are terminated. Con
sider the following eXdmple:

A: PROCEDURE OPTIONS(MAIN):
statement-l
statement-2
B: BEGIN;

statement-bl
statement-b2
CALL C;
statement-b3
END Bi

statement-3
statement-4
C: PROCEDURE;

statement-cl
statement-c2
statement-c3
D: BEGIN;

statement-dl
statement-d2
GO TO LAB;
statement-d3
END D;

statement-c4
END C;

statement-5
LAB: statement-6

statement-7
END A;

In the above example, 1\ activates 1-3,
which activates C, which activates D. In
D, the statement GO TO LAB transters con
trol to statement-6 in A. Since this
statement is not contained in D, C. or B,
all three blocks are terminated: A remains'
active. Thus, the transfer of control out
of D results in the termination of inter
vening blocks Band C as well as the ter
mination of block D.

Program Termination

A program is terminated when anyone of
the following occurs:

1. Control for the program reache~ an
EXIT statement. This is abnormal
termination.

2. Control for the prog.ram reaches a STOP
statement. This also is abnormal
termination.

3. Control reaches a RETURN statement or
the final END statement in the main
procedure. This is normal termination.

4. An on-unit for the ERROR c~ndition is
executed with normal return (that is,
a GO TO statement does not transfer
control out of the on-unit) or the
FINISH condition is rai .. sed as a result
of the standard system action for the
ERROR condition.

5. Execution of a restricted function
(for example, multitasking or REGIONAL
I/O) is called for.

Note: The termination of a program, wheth
ernorlTldl or abnormal • raises the FINI,;H
condition. Thp standard !>rstem action for
this condit_ion is to rf'turn control to the
systf'm. For normal t.ermination, the sy,;tem
will then [lass control to the calling pro
gram, it any. For abnormal termination, it
will terminat(~ f'xecution. (See Part II,

. Section A, ·ON-conctitions.-)

STORAGE ALLOCATION

storage allocation is the process at
associating an area of storage with a vari
able so that the dnta items to be reprp
sented by the varirblp may b~ recorded
interndlly. When storage has heen asso
ciated with a variable, the variabV, i!;
said to be allocated. Allocation for a
given variable may take plac~statical!y,
that i::-~, bpforp tht' execution of t.he [>ro
ge'am, or dynal1}ically. during expcution. l\
variable that i!; allocated statically
remain!; allocat ed while t.h.- [,roqralTl i:,
loaded. A variable that. i!: allocated
dynamicallr relinquishps its storage vither
upon the termi nd t.ion of UH·' block CC>ntd i n

ing that variahle or dt. ttl" re'lUl::;t 01 til!·
user, depending UPOll its :;toraqf' eld!"::.

The manner ill which stord'je i,; dlloc,1thl
for a varidbl,' i,; (1et ('rmin"ri bi t_tH· "t'l!:-dlj"

class of that variable. Thpre dr~ IOUI

storag(c, class,,",:; ,;tatic, dutOllldtic, c()n
trolled, dnd ba:;ed. Each :;tJ,ra'Jfc: c1",;;, ie,
specified l>y it:; corn'~;pOTl(hrlg ,;torag!'
class attr ibntf': ';TATIC. IdJ1'OMATIC, CUN
TROLLED, und Bl\;;ED. resl,ect l.vt>l y. Th .. 1 d(,t
three define dynamic "toraqp allocation.

St_orag!, cld'ic; dttribute~; may bp decLHI.'d
explicitly for element, array, dnd maior
structure variable~;. If a variabl,· ie; ,if1

array or d major structur·p variabip, trw
storage clas" declared for that variable
applies to all of t.he elem.·nt.s i n th~ d rrdY
or structurl'.

All varidble~; that hdVP not be(C!I1 ext)li··
citly decLjred with a stora<j(' cld!is at.Lri
bute are a!;,.;umed t_o have th,,· AUTOMAT Ie
attribute, with one exception: any vari
able that has the EXTERNAL dttr:l.bute ie;
assumed to have the STATIC dt.t_ribute.

All variables that have the STATIC
attribut.e dre l>drt. of the compiled proqram.
They are allocated storaqe wh~n the program
is loaded and they remdir, dllocated untJ.l
the progrdm 1.!.i unloaded. c;tatic var1.dbl.".;
that are given initial values can therefore
be said to be initialized before the fir~t
execution aft.er a load, but. tht-:y are not
reinitialized for any subsequent execution
unless the program is unloaded first. It
the values of static vdriables are chdnqed,
they rpmain changed for subsequent execu
tions. Examplf>:

Section 6: Blocks, Flow of cont.rol. dnd Storage Allocation 61

I',lql' of GC28-2045-1, Issued September 30, 1971 by TNL GN2R-3185

OUTP: PROCEDUHE;
DECLARE X FIXED STATIC INITIAL (1)1

PUT DATA (X);

X X+l;
END OUTP;

In the above example, the first time
that procedure OUTP is invoked, X has the
value 1 and execution of the PUT statement
causes the item X=l to be written. Before
OUTP is terminated, the assignment state
ment X=X+l increases the value of X by 1.
If OUTP is invoked a second time during the
same load, and if the value of X is not
changed elsewhere in the program, X has the
value 2. ex is not reinitialized to 1.) X
would also have the value 2 if:

• OUTP were a main procedure •

• X were declared as an EXTERNAL static
variable.

When the PUT stdtement is executed for the
second time, the item X=2 is written into
the st_ream.

Thus, the static variable X might be
used to record the number of times OUTP is
invoked.

Automatic Storage

A variable that has the AUTOMATIC attri
bute is allocated storage upon activation
of the block in which that variable is
declared. The variable remains allocated
as long as the block remains active; it is
freed when the block is terminated. Once a
variable is freed, its value is lost.

controlled Storage

A variable that has the CONTROLLED
attribute is allocated storage only upon
the execution of an ALLOCATE statement
specifying that variable. Storage remains
allocated for that variable until the
execution of a FREE statement in which the
variable is specified. This allocation
remains even after termination of the block
in which it is allocated. Thus, the allo
cation and freeing of storage for variables
declared with the CONTROLLED attribute is
directly under the control of the user.

A controlled variable may be stacked;
that is, storage may be allocated for a
controlled variable even when a previous
allocation for that variable exists. In
terms of ALLOCATE and FREE statements,
stacking occurs when an allocated con
trolled variable is specified in an ALLO
CATE statement without first having been

62

specified in a FREE statement. When this
occurs, the previous allocation is not
released; its value remains the same but,
for th(, time being. this value is not
available to thp U~.ier. ConceptuCilly, the
new allocation is stacked on top of the
previous allocation, with the result that
the previous allocation is ·pushed-down" in
the stack. Suhiequent allocations are
always added t.o the top ()f the stack.

Any reference to a stacked controlled
variable always refers to the most recent
allocation for that variable, that is, to
the allocation at the top of the ~tack.
Thus, a F'REE statement specifying a stacked
controlled variable will cause the alloca
tion a t the t.op 01: the stack to be freed.
When this occurs, the other allocations in
the stack are "popped-up", the mOf;t. rpcent
previous a llocat ion coming to t.hp top ano
being availpble once again. When an allo
cation is I:.9~(L . ..'!P to the t,oIJ of a stack,
its value is t.he ~ame as it Wd!; when it Wd,;

pushed do'Wl] .

Based ~;torage i,; c>irnilar t.O controllt,(j
storage in that it can be allocated by th,'
ALLOCATE st,atement and freed by th., FHEL
statement; and more thdn one allocation Cdll

exist for one variable. Howpver, the U~;f-'r
has a much qreater deqrpe ot control iUl
based storage. For example. all curn' nt
based allocations are available at any
time: unique referpnce t.o a particuLlr
allocation is provided by a pointer Vd 1'10

qualifyinq the based variable reff'rf>n<;<'.

The use of based storagp also allow,;
data to he processed in an I/O buffer
without it havinq to be moved from the
buffer to a variclble Ct,hat i~;, t.o a \'IKJrk
area). By means of thp LOCATE' statement.
and the READ !;tatement with thp SET optiu!l,
the structure of the based variable is
strperimposed on the data in t.he output nr
input buffer respectively, so that any
reference to that allocation of the biL~t-'d
variable is a referencI' t.o that data.

Based sturage is tlw most fX.)werf ul of
the PL/I ~;torai1e classes, but it must fH
used carefully; many of tht> safeguJ.rds
against eI"rOr that are provided for ot hf'r
storage classes cannot. be provided for
based.

For full details of based storage, see
Part I, Section 14, -Based Storage and List
Processing."

REACTIVATION OF "~_"l\CrIYE PROCEDUkE
JJiECUR~; 1O!:U

An active i'roce(~un" t.bat can be reacti
vated from within itself or feom within
another active procedure is said to be a

Page of GC28-20'S-1. Issued September 15, 1970 by TNL GN28-3171

For full details of based storage, see
Part I, Section 111. -Based Storage and List
Processing.-

REACTIVATION OF AN ACTIVB·PROCEDURE
(RECURSION)

An active procedure that can be reacti
vated from within itself or from within
another active procedure is said to be a

Section 61 Blocks, Flow of control, and Storage Allocation 62.1

recursive procedure; such reactivation is
called recursion. -----

A procedure can be invoked recursively
only if the RECURSIVE option has been spec
ified in its PROCEDURE statement. This
option also applies to the names of any
secondary entry points that the procedure
might have.

The environment (that is, values of
automatic variables, etc.) of every invo
cation of a recursive procedure is pre
served in a manner analogous to the stack
ing of allocations of a controlled vari
able. An environment can thus be thought
of as being "pushed down" at a recursive
invocation, and "popped up" at the termina
tion of that invocation. Note that a label
constant always contains information iden
tifying the current invocation of the block
that contains the label. Hence, if a label
constant is assigned to a label variable in
a particular invocation, a GO TO statement
narning that variable in another invocation
could restore the environment that existed
when the assignment was performed.

Consider the following example:

RECURS: PROCEDURE RECURSIVE;
DECLARE X STATIC EXTERNAL INITIAL (0);

X=X+li
PUT DAT A (X);

IF X =5 THEN GO TO LAB;
CALL AGN:
X =X-li
PUT DATA (X);

LAB: END RECURS;

AGN: PROCEDURE RECURSIVE;
DECLARE X STATIC EXTERNAL INITIAL (0);

X=X+ 1;
PUT DATA eX) ;

CALL RECURS;
X=X-li
PUT DATA (X);
END AGN;

In the above example, RECURS anr' AGN are
both recursive procedures. Since X is
static and has the INITIAL att.ihute, it is
allocated and initialized £efore execution
of the program begins.

The first time that RECURS is invoked, X
15 increrrenteJ ty land X=l is transrritted
ty the PUT statement. Since X is less than
5, AGN lS invoked. In AGN, X is incre
mented by 1 and X=2 is transmi tted (also by
a PUT statement). AG'N then reinvokes
RECURS.

This second invocation of RECURS is a
recursive invocation, because RECURS is
still active. X is incremented as tefore,
and then X=] is transmitted. X is still
less than 5. so AGN is invoked aqain.
Since AGN is active when invoked; this
invocation of AGN is aLoo recursive. X is
incremented once again. X=4 is transmitted,
an~ RECURS is invoked for the third tiwe.

The third invocation of RECURS results
in the transmission of X=5. But, since X
is nc longer less than 5, GO TO LAB is
Executed, and then RECURS is terminated.
However, only the third invocation of
RECURS is terminated. with the result that I,
control returns to t,he procedure that
invoked RECURS tor the third time; that is,
cont.rol returns to the statement following
CALL RECURS in the second invocaticn of
AGN. At. this J:oint X is decremented by 1
and X=4 is transmitted. Then the second
invocation at AGN is terminated, and con
trol returns to the procedure that invoked
AGN for the second time; that is, centrel
ret~u.rns to the statement followin'J CALL AGN
in the second invocation of RECURS. Here X
is decrerrented again and X=3 is trans-
mitted, after which the second invocaticn
of RECURS is terminated and control returns
to the first invocation of AGN. X is
decremented again, X=2 is transmitted, the
first invocatioll of AGN is tenrinated, arid
control returns to the first invocation of
RECURS. X is decremented, X=l is trans
rritted, X 1S reset. to 0, and t.he first
invocation of RECURS is terminated. Cen
tral then returns to the procedure that
invoked RECURS in the first ~lace.

NG'te t.!Je difference between recursive
andreen!eraJ:le J:rocedures. A proced\:ire is
recursiv('· only if the RECURSIVE option is
specif i cd in thf~ PROCEDURE st,dt.ement.

I Every Frccedure comr~il ed by the TSS/J60
PL/J compiler is reenterable; that is, it
is a procedure that does not modify itself
during its execution, so that subsequent
execution of the procedure with the sa~e
data will always give the Srlme result.

Allocation cf static varlables Cas il
lustrated above) is not dffecb~d by t.ecur"
sien, because they are allocated storage
outside the environment of d recursive pro
cedure. Allocation of controlled variables
is likewi,;e unaffected Lecausc t.heir: allo
cation and release is completely under the

Section 6: Blocks, Flow of Control, ,And Stol:age Allo,':'at.ion 63

control of th~ user. However, allocation
0f dutomaLic variables is affected, because
they are a part of the environment of a
~drticular invocation and also because
their allocation and release is not direct-
1 y cont rolled by -UlE user. This applies to
lased variables also, but with the provi
si_on that the storage class of the pointer
variable must be taken into account.

Each time d procedure is invoked recur
::,ively, storage for each automatic variable
i.,; reallocated, and the previous allocation
i.3 l'u~; hed down in a stack. Each time an
d~t~vation of a recursive procedure is ter
ll'l.nated, dutomatic storage is popped up to
jield the next most recent generation of
a~tomdtic storage. Hence, each generation
of automatic storage is preserved as part
(,+: the environment of the corresponding
re~ursjvp activation.

,- P-:>i!1tcer- va:::iables, unless they are I eXf-'licitJl' declared otherwise, are automat
i ic Dl :1eiault, and are therefore subject to
I Lhe ;otiIC\r;.il(l" rxo,:ess descr~bed atove. Con
i Si,,'_~uc'flt_l 'i, Wlnen reference 1S made to a
,~ basc(i vaL iable in a recursive procedure,

,
the ~rograNJer should take care to ensure
the ,.ralidity aud accuracy of the pointer
qualifier.

~BOL()GO£::S AND EPILOGUES

Each tim~ a block is activated, certain
Jctivities must be performed tefore control
c~o reach the first executable statement in
the block. This set of activities is
called a prologue. Similarly, when a block
is terminated, certain activities must be
il?rformed l:;efcre control can 1:e transferred
ont of the block; t.his set of actiVities is
called an epilo~~.

~rologues and efilogues are the respon
sibility of the compiler and not of the
user. They are discussed here because
knowledge of them may assist the user in
illiproving the Ferformance of his program.

A prologue is a compiler-written routine
logically appended to the beginning of a
block and executed as the first step in the
activdtion of a block. In general, activi
ties performed by a prologue are as
follows:

64

• computing dimension l::ounds and string
lengths for automatic and DEFINED
variables and ENTRY declarations.

• Allocating storage for automatic
variables and initialization, if
specified.

• r:etermining which currently active
tlocks are known to the procedure, so
that the correct generations of auto
matic storage are accessible, and the
correct en-units may be entered.

• Allocating storage for dummy arguments
that may be passed from this l::lock.

The prologue rray need to evaluate ex
rressions defining lengths, bounds, itera
tion factors, and initial values. Note
that if an item is referred to in an ex
pression and the allocation or initializa
tion of a second item depends on that ex
preSSion, then the first item must be in no
way dependent on the second item for its
own allocation and initialization. Furth
er, the first item must be in no way depen
dent on any other item that so derends on
the second item. For example, the follow
ing declaration is invalid:

DCL A(B(l}) INITIAL(2),
B(A(l» INITIAL(3);

However, the following declaration is
valid:

DCL N INITIAL(3),
A(N) ,

B CHAR (N) ;

Epilogues

An epilogue is a compiler-written rou
tine logically appended to the end of a
tlock and executed as the final step in the
termination of a block. In general, the
activities performed by an epilogue are as
follows:

• Reestablishing the on-unit environment
existing before the block was
activated.

• Releasing storage for all automatic
variables allocated in the block.

Page of GC28-2045-1, Issued september 15. 1970 by TNL GN28-3171

A PLiI program consists of a collection
of identifiers, constants, and special
characters used as operators or delimiters.
Identifiers themselves may be either key
words or names with a meaning specified by
the user. The PUI language is constructed
so that the compiler can determine from
context whether or not an identifier is a
keyword, so there is no list of reserved
words that must not be used for user
defined names. Any identifier may be used
as a name; the only :restriction is that at
any point in a program a name can have one
and only one meaning. For example. the
same name cannot be used for both a file
and a floating-point variable.

Note: The above is true so long as the
6o-character set is used. Certain i,denti
fiers of the 48-character set cannot be
used as user-defined identifiers in a pro
gram written using the 48-character set;
these identifiers are: GT, GE, NE. LT, NG,
LE, NL, CAT, OR, AND, NOT, and PT.

It is not necessary, however, for a name
to have the same meaning throughout a pro
gram. A name declared within a block has a
meaning only within that block. Outside
the block it is unknown unless the same
name has also been declared in the outer
block. In this case, the name, in the outer
block refers to a different object. This
enables users to specify local definitions
and, hence, to write procedures or begin
blocks without knowing all the names being
used by other users writing other parts of
the program.

Since it is possible for a name to have
more than one meaning, it is important to
define which part of the program a particu
lar meaning applies to. In PL/I a name is
given attributes and a meaning by a
declaration (not necessarily explicit).
The part of the program for which the mean
ing applies is called the scope of the
declaration of that name. In most cases,
the scope of a name is determined entirely
by the position at which the name is
declared within the program (or assumed to
be declared if the declaration is not
explicit). There are cases in which more
than one generation of data may exist with
the same name (such as in x'ecursion) i such
cases are considered separately.

In order to understand the rules for the
scope of a name, it is necessary to under
stand the terms ·contained in- and-intern
al to.-

SECTION 7: RECOGNITION OF NAMES

Contained In: All of the text of a block,
from the PROCEDURE or BEGIN statement
through the corresponding END statement, is
said to be contained in that block. Note,
however. that ~;e labels of the BEGIN or
PROCEDURE statement heading the block, as
well as the labels of any ENTRY statements
that apply to the block, are not contained
in that block. Nested blocks are contained
in the block in which they appear.

Internal To: Text that is contained in a
block, but nat contained in any other block
nested within it, is said to be internal to
that block. Note that entry names of a
procedure (and labels of a BEGIN statement)
are not contained in that block. Conse
quently, they are internal to the contain
ing block. Entry names of an external pro
cedure are treated as if they were external
to the external procedure.

In addition to these terms, the dif
ferent types of declaration are important.
The three different types -- explicit
declaration, contextual declaration, and
implicit declaration -- are discussed in
the followipg sections.

EXPLICIT DECLARATION

A name is explicitly declared if it
appears:

1. In a DECLARE statement

2. In a parameter list

3. As a statement label

4. As a label of a PROCEDURE or ENTRY
statement

The appearance of a name in a parameter
list is the same as if a DECLARE statement
for that name appeared immediately follow
ing the PROCEDURE or ENTRY statement in
which the parameter list occurs (though the
same name may also appear in a DECLARE
statement internal to the same block).

'

The appearance of a statement label pre
fix constitutes explicit declaration of a
statement label constant.

The appearance of a name as the label of
either a PROCEDURE or ENTRY statement is
the same as if it were declared in a
DECLARE statement immediately preceding the
PROCEDURE statement for the procedure to
which it refers.

Section 7: Recognition of Names 65

page of GC28-2045-1. Issued' September 15, 1970 by TNL GN2B-3111

SCOPE OF AN EXPLICIT DECLARATION

The scope of an explicit declaration of
a name is that block to which the declara
tion is internal, but excluding all con
tained blocks to which another explicit
declaration of the same identifier is
internal.

For example:
P A B B' C

] P: PROCEDURE;

DECLARE A, Bi

]]
]

Q: PROCEDURE;

DECLARE B, C;

END Q;

J J END P;

The lines to the right indicate the
scope of the names. Band B' indicate the
two distinct uses of the name B.

CONTEXTUAL DECLARATION

When a name appears in certain contexts,
some of its attributes can be determined
without explicit declaration. In such a
case. if the appearance of a name does not
lie within the scope of an explicit
declaration for the same name, the name is
said to be contextually declared.

A name that has not been declared ex
plicitly will be recognized and declared
contextually in the following cases:

1. A name that appears in a CALL state
ment, in a CALL option, or followed by
a parenthesized list in a function
reference (in a context where an
expression is expected) is given the
ENTRY and EXTERNAL attributes.

2. A name that appears in a FILE option,
or a name that appears in an ON, SIG
NAL, or REVERT statement for a condi
tion that requires a file name, is
given the FILE and EXTERNAL
attributes.

3. A name that appears in an ON CONDI
TION, SIGNAL CONDITION, or REVERT CON
DITION statement is recognized as a
user-defined condition name.

4. A name that appears in an EVENT option
or in a WAlT statement is given the
EVENT attribute.

5. A name that appears in a TASK option
is given the TASK attribute.

66

6. A name t.hat appears in the BASED
attribute. in a SET option. or on the
left-hand side of a pointer qualifica
tion symbol Is given t,he POINTER
attribute.

7. A name that appears in an IN option,
or in the OFFSET attribute is given
the AREA attrioute. Note, however,
that all contextually declared area
variables are given the AUTOMATIC
attribute. The compiler requires that
the variable named in the OFFSET
attribute must be based; if a nonbased
area variable is named. the offset
variable will be changed to a pointer
variable. Hence, unless the variable
named in the OFFSET attribute is ex
plicitly declared, OFFSET effectively
becomes POINTER, and a severe error
occurs.

8. If an undeclared identifier appears:

a. before the equal sign in an as
Signment statement, or

b. before the assignment symbol in a
DO statement (or in a repetitive
specification), or

c. in the data list of a GET
statement

and if that identifier is neither en
closed within an argument list nor
immediately followed by an argument
list. that. identifier is contextually
declared to be a variable and not a
reference to a built-in function or
pseudo-variable. This rule does not
apply to the identifiers ONCHAR,
ONSQURCE, and PRIORITY.

Examples of contextual declaration are:

READ FILE (PREQ) INTO (Q);
ON CONDITION (NEG) CALL CREDIT:

In these statp~ents. PREQ is given the FILE
attribute, N~G is recognized as a user
defined cOlndition name, and CREDIT is given
the ENTRY attribute. The EXTERNAL attri
bute is given to all three by default.

SCOPE OF A CONTEXTUAL DECLARATION

The scope of a contextual declaration is
determined as if the declaration were made
in a DECLARE statement immediately follow
ing the PROCEDURE statement of t.he external
procedure in which the name appears.

Note that contextual declaration has the
same effect as if the name were declared in
the external ~rocedure, even when the
statement that causes the contextual
declarations is internal to a block (called
B, for example) that is contained in the
external procedure. Consequently, the name
is known throughout the entire external
procedure, except for any clocks in which
the name is explicitly declared. It is as
if block B has inherited the declaration
from the containing external procedure.

Since a contextual declaration cannot
exist within the scope of an explicit
declaration, it is impossible for the con
text of a name to add to the attributes
established for that name in an explicit
declaration.

For example, the following procedure is
invalid:

P: PROC (F);

READ FILE(F) INTO(X);

END P;

The identifier F is in a parameter list and
is, therefore, explicitly declared. It is
given the attributes REAL DECIMAL FLOAT by
default. Since F is explicitly declared,
its appearance in the FILE option does not
constitute a contextual declaration. Such
use of the identifier is in error.

IMPLICIT DECLARATION

If a name appears in a program and is
not explicitly or contextually declared, it
is said to be implicitly declared. The

scope of an implicit declaration is deter
mined as if the name were declared in a
LECLARE statement immediately following the
first PROCEDURE statement of the external
procedure in which the name is used.

An implicit declaration causes default
attributes to ce applied, depending upon
the first letter of the name. If the name
begins with any of the letters I through N
it is given the attributes REAL FIXED
EINARY (15,0). If the name begins with any
other letter including one of the al~habet
ic extenders $, #, or i, it is given the
attributes REAL FLOAT DECIMAL (6). (The
default precisions are those defined for
System/360 implementations.)

EXAMPLES OF DECLARATIONS

Scopes of data declarations are illus
trated in Figure 7. The brackets to the
left indicate the block structure; the
brackets to the right show the scope of
each declaration of a name. In the dia
gram, the scopes of the two declarations of
Q and R are shown as Q and Q' and Rand R'.

P is declared in the block A and known
throughout A since it is not redeclared.

Q is declared in A, and redeclared in B.
The scope of the first declaration is all
of A except B; the scope of the second
declaration is block B only.

R is declared in block C, but a
reference to R is also made in block B.
The reference to R in block B results in an
implicit declaration of R in A,the external
procedure. Two separate names with dif
ferent scopes exist, therefore. The scope
of the explicitly declared R is C; the
scope of the implicitly declared R is all
of A except block C.

r---,
I P Q Q' R R' S I I
II A: PROCEDURE; J] II

DECLARE P, Q;
I B: PROCEDURE; I
I DECLARE Q; I

, [~: = ~iGIN;] I I DECLARE R; I
I DO I = 1 TO 10; I
I END; I

! [0' ~~~~.i;]]] j
I END A; I L ___ --------__________________________ J

Figure 7. Scopes of Data Declarations

Section 7: Recognition of Names 67

I is referred to in block C. This
results in an implicit declaration in the
~xtern~l procedure A. As a result, this
declaration arplies to all of A. including
th~ contained procedures B, C and D.

S is explicitly declared in procedure D
and is known only lNithin D.

Scopes of entry name and statement label
declarations are illustrated in Figure 8.
'The exan'1::1e shows two external procedures.
Tile names of these procedures, A and E, are
d~sumed to be explicitly declared with the
1,XTERNAL attribut.e within the procedures to
WhlCh they applj. In addition, E is con
textually declared in A as an EXTERNAL
~nLry DaIDP by its appearance in the CALL
~tate~ent in clock C. The contextual
de~laration of E applies throughout block A
dnd is linked to the explicit declaration
()f E that applies throughout tlock E. The
, .. cope of the name E is a 11 of block A and
,,,11 of block E. The scope of the name A is
only all of the block A, and not E. in E,
:ai rice the CAI,L StateITIent itself would pro
vide a contextual declaration of A, which
would then result in the sco~e of A being
all of A and all of E.

The label L1 appears with statements
internal t.O A and to c. Two separate
declarations are therefore established; the
first applies to all of tlock A except
~lock c, the second applies to block C
only. Therefore, When the GO TO statement
In block B is executed, control is trans
ferred to L1 in block A, and clock B is
terminated.

D and B are explicitly declared in block
" and can be referred to anywhere within Ai
tut since they are INTERNAL. they cannot be
referred to in block E (unless passed as an
argu!11ent. to E).

c is explicitly declared in B and can be
referred to from within B, but not from
outside B.

L2 is declared in B and can be referred
to in block B, including C, which is con
tained in B, but not from outside E.

APPLICATION OF DEFAULT ATTRIBUTES

The attritutes associated with a name
comprise those explicitly, contextually, or
imrlicitly declared for that name, as well
as those assumed by default. The default
for each attribute is given in Part II,
Section 9, "Attributes."

THE INTERNAL AND EXTERNAL A'ITRIBUTES

The score of a name with the INTERNAL
attribute is the saITIe as the scope of its
declaration. Any other explicit declara
tion of that name refers to a new object
with a different, nonoverlapping scope.

A name with the EXTERNAL attribute may
ce declared more than once in the sarre ~ro
gram, either in different external proce
dures or within blocks contained in exter
nal Frocedures. Each declaration of the
name establishes a sco~e. These declara
tions are linked together and, within a
program, all declarations of the same iden
tifier with the EXTERNAL attribute refer to
the same name. The scope of the narre is
the sum of the scopes of all the declara
tions of that name within the ~rograrr.

Note: External names cannot be more than
seven characters long for TSS/360
implementa lion.

Since these declarations all refer to
the same thing, they must all result in the

r---,

i 'r' ~;~c:~:;:i~RE; L]l Ll' Ll2 ABC eli
I L2 : CALL C; I I
I [C: PROCEDURE; I

L1: X = Y;

l CALL Ei
END C;

GO TC Ll;
END Bi

I [D: PROCEDURE; I
I EN!: D; I
I CALL B; I
I END Ai I
I [E: PROCEDURE;] I
I END E; I L ___ -----------------------___________ J

Figure 8. Scopes of Entry and Lacel Declarations

68

same set of attributes. It may be imposs
ible for the compiler to check this, parti
cularly if the names are declared in dif
ferent procedures, so care should be taken
to ensure that different declarations of
the same name with the EXTERNAL attribute
do have matching attributes. The attribute
listing, which is available as optional
output from the compiler, helps to check
the use of names. The following example
illustrates the above points in a program:

A: PROCEr:URE;
DECLARE S CHARACTER (20):
CALL SET (3);

E: GET LIST (S,M,N):
B: BEGIN;

DECLARE X(M,N), Y(M):
GET LIST (X,Yl;
CALL C (X, y) :
C: PROCEDURE (P,Q):

DECLARE P(.,.), QC.),
S BINARY FIXED EXTERNAL:

S == 0:
DO I == 1 TO M;
IF SUM (P(I,.» Q(I)

THEN GO TO B:
S == S+1;
IF S = 3 THEN CALL OUT (E):
CALL D (I) :

B: END:
END C;

D: PROCEDURE (N);
PUT LIST ('ERROR IN ROW '

N, 'TABLE NAME' S):
END Dj

END B;
GO TO E:
END A;

OUT: PROCEDURE (R):
DECLARE R LABEL,

(M,L) STATIC INTERNAL
INITIAL (0),

S BINARY FIXED EXTERNAL,
Z FIXED DECIMAL(1):

M M+1; S==O:
IF M<L THEN STOP: ELSE GO TO R;

SET: ENTRY (Z):
L=Z;
RETURN;
END OUT:

A is an external procedure name; its
scope is all of block A, plus any other
blocks where 11 is declared (explicitly or
contextually) as external.

S is explicitly declared in block A and
block C. The character string dec~aration
applies to all of block A except block C;
the fixed binary declaration applie3 only
within block C. Notice that although D is
called from within block C, tp', reference
to S in the PUT statement in D is to the
character string S, and not to .the S
declared in block C.

N appears as a parameter in block D, but
is also used outside the block. Its
apearance as a parameter establishes an
explicit declaration of N within D; the
references outside 0 cause an implicit
declaration of N in block A. These two
declarations of the name N refer to dif
ferent objects, although in this case, the
Objects have the same data attributes,
which are, by default, FIXED (1S,0),
BINARY, and INTERNAL.

X and Yare known throughout B and could
be referred to in block C or D within Sf
but. not in that [art of A outside B.

p and Q are parameters, and therefore
their appearance in the parameter list is
sufficient to constitute an explicit
declaration. However, a separate CECLARE
statement is required in order to specify
that P and Q are arrays. Note that
although the arguments X and Yare declared
as arrays and are known in block C, it is
still necessary to declare P and Q in a
DECLARE statement to establish that they,
too, are arrays. (The asterisk notation
indicates that the bounds of the parameters
are the same as the bounds of the
arguments.>

I and M are not explicitly declared in
the external procedure Ai they are there
fore implicitly declared and are kncwn
throughout A, even though I appears only
within block C.

Within the External procedure A, OUT and
SET are contextually declared as entry
names, since they follow the keyword CALL.
They are therefore considered to be
declar>2o in A and are given the EXTERNAL
attribute by default.

The second External procedure in the
example has two entry names, SET and OUT.
These are considered to be explicitly
declared with the EXTERNAL attribute. The
two entry names SET and OUT are therefore
known throughout the two procedures.

The label B appears twice in the fro
gram, once as the label of a begin bleck,
which is an explicit declaration, as a
label in A. It is redeclared as a label
within block C by its appearance as a pre
fix to the END statement. The reference to
E in the GO TO statement within block C
therefore refers to the label of the END
statement within block C. Outside block C,
any reference to B would be to the label of
the begin blcck.

Nctethat C and D can be called from any
point within B hut not from that part of A
outside Bf nor from another external proce
dure. Similarly, since E is known through
cut the external procedure A, a transfer to

Section 7: Recognition of Names 69

L n,ay be rrade from dfly point within A. The
lahel B within block C t however, can only
be rt-'ferred to from within C. Transfers
,:.Jut uf a block by a GO TO statement can be
II'CH1<='; hut such trans fen; intQ a nested
Llock generally cannot. An exception is
': rkl'A'fl ill ttle <!xt erna I procedure OUT, whe re
Lht· label E f rorT! block A is r:assed a:~ an
d uJ'Hllc"nt to t.he label parameter R.

The stdt.C'ment GO TO R causes control to
l.a,;,~ to t.iJe label E, even though E is
d~'cldrt'(1 within A, dnd not known within
(YOfT.

',Ii,,;, variables M and L are declared
h tt linl the block OUT to be STATIC, so their
vdi:lt's are prt'served between calls to OUT.

(1\ drdeJ: to identify the S in the proce
d!t, ():J') as the ::.;ame Sin the rrocedure C,
h .• til have been declared with the attribute
1.:,), r!'~RNAL.

• ~~C')H'_~.t_M"'mlJ'"~ Names of External
j § t:p~<::!. UJ' gfj ,
1
i
l

J,,;h,',., oj Ird 'ler ~3tructure name is declared
wi'. il the EXTERNAL attl'ibute in more than

I Ull2 block, the attributes of the carre
l ""'ul.dinq structure members must be the same
~ i~ 0ach·ca~e. although the corresponding
~ rnt'!T,b"cr Hames need not be identical. Mem-
t r.t r:, o{·-;t.ructllres always have the INTERNAL
! 6L"ribute, and cannot be declared with any
I sco~~ attribute. However, a reference to a
I lh!wber of an external st.ruct.ure, using the
~ h,€rHber name known to the block containing
i the reference, is effectively a reference

,~ to tnat member in all blocks in which the
external name is known, regardless of

~ whether the corresfonding member names are
~ iJentical. For example:

PROCA: PflOCEDURE;
DECLARE 1 A EXTERNAL,

2 B,
2 C;

END PROCA;

PROCB: PROCEDURE;
DECLARE 1 A EXTERNAL,

2 B,
2 D;

END PROCB;

In this example, if A.B is chan~~d in
~ROCA, it is also changed for PROCB, and
vice versa; if A.C is changed in PROCA, A.D
is changed for PROCB, and vice versa.

70

MULTIPLE DECLARA'l'IONS AND AMBIGUOUS
REF~ENCES

Two or more declarations of the same
identifier internal to the same block con
stitute a multiFle declaration, unless at
least one of the identifiers is declared
within a structure in such a way that na~e
qualification can te used to make the nalTes
unique.

Two or more declarations anywhere in a
rrogram of the same identifh,r as different
names with the EXTERNAL attribute consti
tute a multiple declaration.

Multiple declarations are in error.

A name need have only enough qualifica
tion to make the name unique. Reference to
a na~e is always taken to apply to the
identifier declared in the innermost block
containing the reference. An ambiguous
reference is a name with insufficient qual
ification to make the narre unique.

The following examples illustrate both
~ultiple declarations and ambiguous
references:

DECLARE 1 A, 2 c, 2 D, 3 E;
BEGIN;
DECLARE 1 A, 2 B, 3 C, 3 E;
1\.C = D.E;

In this example, A.C refers to C in the
inner block; D.E refers to E in the outer
block.

DECLARE 1 A, 2 Bf 2 B, 2 c, 3 D, 2 C;

In this txample, B has been multiply
declared. 1\.0 refers to the second D,
since A.D is a complete qualification of
cnly the second D; the first D would have
to be referred to as A.C.D.

DECLARE 1 At 2 B, 3 c, 2 0, 3 C;

In this example, A.C is ambiguous tecause
neither C is corrpletely qualified by this
reference.

DECLARE 1 A, 2 A, 3 A;

In this example, A refers to the first A,
A.A refers to the second A, and A.A.A
refers to the third A.

DECLARE X;

DECLARE 1 Y, 2 X, 3 Z, 3 A,
2 Y, 3 Z, 3 A;

In this example, X refers to the first
CECLARE statement. A reference to Y.Z is
ambiguous; Y.Y.Z refers to the second Z;
and Y.X.Z refers to the first Z.

PL/I includes input and output state
ments that enable data to te transmitted
tetween the internal and external storage
devices of a computer. A collection of
data external to a program is called a data
set. Transmission of data from a data set
to a program is termed input, and transmis
sion of data from a program to a data set
is called output.

PL/I input and output statements are
concerned with the logical organization of
a data set and not with its physical char
acteristics; a program can be designed
wi thout specific knowledge o.t the inputl
output devices that will be used when the
program is executed. To allow a source
program to deal primarily with the logical
aspects of data rather than with its phys
ical organization in a data set, PL/I em
ploys a symbolic representation of a data
set called a file. A file can be asso
ciated with different data sets at dif
ferent times during the execution of a
program.

Two types of data transmission can be
used by a PL/I program. In stream-oriented
trans~ission, the organization of the data
in the data set is ignored within the pro
gram, and the data is treate,d as though it
actually were a continuous stream of indi
vidual data items in character form; data
is converted from character form to inter
nal form on input, and from internal form
to character form on out~ut. In record
oriented transmission, the data set is con
sidered to be a collection of discrete rec
ords. No data conversion takes ~lace dur
ing record transmission; on input the data
is transmitted exactly as it is recorded in
the data set, and on output it is trans
mitted exactly as it is recorded internal
ly. It ~s possible for the same data set
to be processed at different times by eith
er stream transmission or record transmis
sion; however, all items in the data set
would have to be in character form.

Stream-oriented transmission is ideal
for simple applications, particularly those
that use terminal or punched card input and
have limited output; a minimum of coding is
required of the user, especially for ter
minal or punched card input and printed
output. However, compared with record
oriented t~ansmission, stream-oriented
transmission is less efficient in terms of
execution time because of the data conver
sion it involves, and more sf:-,ce is
required on external storage devices
because all data is in character form.

SECTION 8: INPUT AND OUTPUT

Although record-oriented transmission
may demand rather more effort from the
user, it is more versatile than stream
oriented transmission, with regard to the
rranner in which data can be processed and
the types of data set that can be pro
cessed. Since data is recorded in a data
set exactly as it appears in main storage,
any data format is acceptable; no conver
sion protlems ~ill arise, but the user rrust
have a greater awareness of the structure
of his data.

This section discusses those aspects of
PL/I input and output that are common to
stream-oriented and record-oriented trans
nission, including files and their attri
butes, and the relationship of files to
data sets. Sections 9 and 10 describe the
input and output statements that can be
used in a PL/I program, and the various
data set organizations that are recognized
in PIlI. Stream-oriented transmission is
dealt with in Part I, Section 9, and
record-oriented transmission in Part I,
section 10.

LATA SETS

Data sets are stored on a variety of
external storage media, such as punched
cards, reels of magnetic tape, and disks.
Despite their variety, these media have
rrany conrron characteristics that permit
standard methods of collecting, storing,
and transmitting data. For convenience,
the general term volume is used to refer to
a unit of external storage, such as a reel
of magnetic tape or a disk pack, without
regard to its specific physical
composition.

The data items within a data set are
arranged in distinct physical groupings
called blocks. These blocks allow the data
set ~o be transmitted and processed in por
tions rather than as a unit. For proces
Sing purposes, each block may consist of
cne or more logical subdivisions called
records, each of which contains one or more
data items. (Sometimes a block is called a
physical record, because it is the unit of
data that is physically transmitted to an
its logical subdivisions are called logical
re~ords.)

When a block contains two or more rec
erds, the records are said to be blocked.
Elocked records often permit more compact
and efficient use of storage. Consider how
data is stored on magnetic tape: the data

Section 8: Input and Output 71.

I between two successive interrecord gaps is
on.:: block, or physlcal record. If several
lOliedl records are contdined within one
tlc>ck, t:he number of gaps is reduced, and
11,uch more data can be st.cred on a full
length of tape. For example, on a tape of
den,3ity 800 characters/inch with an inter
record g3p of 0.6 inches, a card image of
80 characters would take uf 0.1 inches. If
the r'ecords were unblocked, each I'ecord
w(J111d require 0.1 inches, plus 0.6 inches
for tne interhlock gap, rraking a total of
0.7 inchps. 100 records would therefore
tA~~ up 70 inch05 of tape. If the records
'>I'.rt; blc,..:ked, howeve1, at, say, 40 records
t~ a block. €3ch block of 10 records would
take up 1 inch, plus 0.6 inches for the
yap, m~king a total of 1.6 inches. Thus,
lCO rEcords would now take up only 16
i ch-,s ("1ft-ape; this is less than 25 per
cer.t. of the arrount needed for the unblocked
~-co":clds.

M03t data [rocessing a~flications are
'-'on(,'n~2a ',.;i th logical records rather than
ill'Jc.k.,.i. Therefore, the :int=ut and output
St6temerts of PL/I generally refer to log
"Lca 1 r<~c(J1ds; this allows the USEr to con
CE.l.tl.iiLe on the data to be processed,
wlthou'-_ Leing directly concernEd about its
phy"c(>.<l organization in external storage.

FILES

To allow ;;; source program to deal pri
marily with the logical aspects of data
rather than with its physical organization
in a data set, PL/I employs a symbolic
rern:sentation of a data set called a file.
'Thi~-; symbolir. representation determines how
:input and output statements access and pro
cess the associated data set. Unlike a
data set, however, a file has a signifi
cance OIlly within the source program and
does not exist as a physical entity exter
nal to the program.

PL/I requires a file narre to te declared
for a file, and allows the characteristics
afthe file to be descrited with keywords
called file attributes, which are specified
for the file name. The following lists
show the attributes that are applicable for
each type of data transmission:

72

StreaIT'-Ori ented
Transrriss ion
FILE
STREAM
INPUT
OUTPUT
EXTERNAL
INTERNAL
PRINT

Record-Oriented
Transmission
FILE
RECORD
INFUT
OUTPUT
UPDATE
SEQUENTIAL
DIRECT

ENVIRCNMENT BUFFERED
UNBUFFERED
EXTERNAL
INTERNAL
BACKWARDS
KEYED
EXCLUSIVE
ENVIRONMENT

The TRANSIENT attribute is designed to
allow teleprocessing applications frograrrs
to be written in Pi/I. Since teleproces
sing is not sUFPorted in TSS/360, the TRAN
SIENT attribute is accepted by the compil
er, but the UNDEFINEDFILE condition is
raised when an attempt. is made to use a
file with the TRANSlfl,T attribute.

A detailed description af each of these
attributes appears in Part II, Section 9,
KAttributes." The discussions below give a
brief description of each of the file
description attributes and show how these
attributes are declared for a file. The
scope attributes, EXTERNAL and INTERNAL,
are discussed in Part I, Section 7, "Recog
nition of Names."

THE FILE ATTRIBUTE

The FILE attribute indicates that the
associated identifier is a file narre. For
example, the identifier MASTER is declared
to be a file name in the following
statement:

DECLARE MASTER FILE;

The attributes associated with the FILE
attribute fall into two categories: alter
native attributes and additive attributes.
An alternative attribute is one that is
chosen from a group of attrihutes. If no
eXFlicit or implicit declaration is given
for one of the alternative attributes in a
grouF and if one of the alternatives is
required, a default attribute is assumed, I although this is deferred until OPEN time,
when some attributes can be supplied in the
PL/I OPEN statement.

An addi~ive attribute is one that must
be stated explicitly or is implied cy
another explicitly stated attribute or
name. The additive attribute KEYED can be
implied by the DIRECT attribute. The addi
tive attribute PRINT can be implied by the
standard output file name SYSPRINT. An
additive attribute can never be applied by
default.

Note: With the exception of the INTERNAL
and EXTERNAL scope attributes, all the
alternative and additive attributes imply
the FILE attribute. Therefore, the FILE
attribute need not be specified fcr a file
that has at least one of the alternative or

additive attributes already specified
explicitly. The FILE attribute must be
specified explicitly, however, if only the
INTERNAL or EXTl:.RNAL attril:ute is speci
fied; otherwise, the identifier will be
assumed, by default, to te an arithmetic
variable rather than a file name.

ALTERNATIVE ATTRIBUTES

PL/I provides five groups of alternative
file attributes. Each group is discussed
individually. Following is a list of t.he
groups and the default for each:

Group Alternative Default
~ Attributes Attribute
Usage STREAM I RECORD STREAM

Function INPUT ! OUTPUT ! UPDATE INPUT

Access SEQUENTIAL I DIRECT SEQUENTIAL

Buffering BUFFERED I UNBUFFERED BUFFERED

Scope EXTERNAL I INTERNAL EXTERNAL

The scope attributes are discussed in
detail in Part II, Section 9, "Attributes";
a brief description of alternative attri
~utes is given below.

The STREAM and RECORD Attributes ----
The STREAM and RECORD attritutes

describe the type of data transmission
(stream-oriented or record-oriented) to be
used in input and output operations for the
file.

The STREAM attr-ibute causes a file to be
treated as a continuous stream of data
i terns recorded only in character forrri.

The RECORD attribute causes a file to be
treated as a sequence of records, each
record consisting of one or more data items
recorded in any internal form.

DECLARE MASTER FILE RECORD,
DETAIL FILE STREA~;

The INPUT, OUTPUT, and UPDATE Attributes

The function attributes determine the
direction of data transmission permitted
for a file. The INPUT attribute applies to
files that are to be read only. The OUTPUT
attribute apflies to files that are to be
written only. The UPDATE attribute
describes a file that is to be \.Ised for
both input and outfut; it aJ\ows records to
be inserted into an existin~ file and other
records already in that file to be altered
or deleted.

I

DECLARE
DETAIL FILE INPUT,
REPORT FILE OUTPUT,
MASTER FILE UPDATE;

The access atritutes apply only to a
file with the RECORD attribute, and provide
information regarding access to the con
tents of the file.

The SEQUENTIAL attribute specifies that
successive records in the file are to be
accessed on the basis of their successive
Fhysical positions, such as they are on
magnetic tape.

The DIRECT attribute specifies that a
record in a file is to be accessed on the
tasis of its location in the file and not
on the basis of its position relative to
the record previously read or written. The
location of the record is determined ty a
character-string which is called a key;
therefore, the DIRECT attribute imflies the
KEYED attribute. The associated data set
must be in a direct-access volume.

The BUFFERED and UNBUFFERED Attributes

The tuffering attributes apply only to
files that have the SEQUENTIAL and RECORD
attributes. The BUFFERED attribute indi
cates that records transmitted to and frorr
a file rrust Fass through an intermediate
internal-storage area. Use of the EUFFERED
attribute enables the system to automatic
ally overlap data transmission with ether
precessing. The size of a buffer is usual
ly related to the size of the blocks (phys
ical records) in the data set associated
with the file.

The UNBUFFERED attribute indicates that
a record in a data set need not pass
through a buffer but may be transmitted
di~ectly to and from the internal storage
~ssociated with a variable. Any desired
overlapping of data transmission with other
processing is the responsibility of the
us~r, who can use the EVENT option for this
purpose. The tlocks and records are gener
ally the same size in a data set that is
associated with an UNBUFFERED file.

Note: SFecification of UNEUFFEREr:: does not
preclude the use of buffers. In some
cases, "hidden buffers" are required.
These cases are listed in the discussion of
the BUFFERED and UNBUFFERED attributes in
Part II, Section 9, "Attributes.-

Section 8: Input and Output 73

ADDITIVE ATTRILUTES

The additive attributes are:

FfiINT
BACKWARDS
KFYED
EXCLU5;IVE
ENVI 80NMEN'1' (option-list)

~hf PRIN~ Attrj.bute .,--_._._- "----~-----

Tht· I'hJNT a"!·tli[o(lte applies only t.O
tiL.,,; with thf' STREAM and OUTPUT attri
!;ute,-~, IT in,'Licates th?it the file is
iCcv,·,nttl.:..lly to be printed, that
d~Soc13ted wich the file is to
t'):jntt'cj PiH.jPS, although it may
"Hi ;J ,'11 Oil SOft,,,, otheL medium.

is, the data
appear on
first be
The PRINT

act.r .;1;1: .. E cau[,es t.he initial byte of each
~c~rJ 0f ~~e associated data set to be

. "<.c!: v ed for a r':ctnter control character.

C'l.(C }Ji,CK"U~h,.:,; a ttL·ibut.e applies only to
flJe~ with th~ SEQUENTIAL, RECORD, and
liil'U'l' ,',tt.clb'}ies and only to data sets on

1l,c!.')'lt;tLC tape. It indicates that a file is
Co) ~;tc a.cccssed in n.'versEo order, .teginning
wj,h tn0 l~st r~cord and proceeding through
,hs ti.lt-' '_ll1til the first. record is
.5 -~ ce:s ~~ 2d <-

The KEYED attribute indicates that rec
·Ji\.-J~3 in t.i1e file are to l::e accessed using
une of the key oftions (KEY, KEYTO, or KEY
FROM) 0f ~ata transmission statements or of
' .. he IlELE'fE. st.at.eJl1ent.. Note that the KEYED
'it tr ilmt e does not necessarily indicate
that UH~ :ict uell keys exist or are to be
written in t:he data set; consequently, it
need not be srecified unless one of the key
()ptim,'i i~; to be used. The STREAM attri
bute cannot be applied to a file that has

Ithe KEYEC attrlbute. The nature and use of
keys is discussed in detail in Section 10,

I "Record-Oriented Transmission. n

The EXCLUS1VE Attribute -------------------

Th~ EXCLUSIVE attri~ute applies only to
flies with the RECORD, DIRECT, and UPDATE I attributes. Under TSS/360, the EXCLUSIVE
attribute need not be declared, since
record-locking is automatic and cannot be
suppn,ssed by a NOLoeK option.

Tt~ £NVIRONM1cNT Attribute

The ENVIRO~MENT attritute provides
information that allows the compiler to
determine the method of accessing the data

raSsOciated with a file. It specifies the
~hysicdl organization of the data set that

74

will be associated with the fi leo and indi
cates how the data set is to be handled.

The general format of the ENVIRONMENT
attribute is:

ENVIRON~ENT (option-list)

The options appropriate to the two types of
data transmission are descrited in the
relevant sections in Part I, Section 9,
"Stream-Oriented Transmission,· and Section
10, "Record-Oriented Transmission."

OPENING AND CLOSING FILES

Before the data associat.ed with a file
can be transmitted by input or output
statements, certain file {Creparation acti
vities must occur, such as checking for the
availability of external storage media.
positioning the media, and allocating
appropriate progralllming support. Such
activity is known as opening a file. Also,
when processing is completed, the file must
te closed. ClOSing a file involves releas
ing the facilities that were estatlished
during the opening of the file.

PL/I provides two statements, OPEN and
CLOSE, to {Cerform these functions. These
statements, however, are optional. If an
OPEN statement is not executed for a file,
the file is opened automatically when the
first data transmission statement for that
file is executed; in this case, the auto
matic file prq::aration consists of standard
system procedures that use information
about the file as specified in a DECLARE
statement (or assumed from a contextual
declaration>. Similarly, the file is
closed automatically on termination of the
program that opened it, if it has not teen
explicitly closed l::efore termination.

The OPEN Statement

Execution of an OPEN statement causes
cne or more files to be opened explicitly.
The OPEN statement has the following basic
format;

OPEN FILE(file-name)
[,FILE(file-name)

[option-listJ
{option-list]] ••• ;

The option list of the OPEN statement. can
specify any of the alternative and additive
attributes, except the INTERNAL, EXTERNAL,
and ENVIRONMENT attributes. Attributes
included as options in the OPEN statement
are merged with these stated in a DECLARE
statement. The same attributes need net be
listed in toth an OPEN statement and a
DECLARE statement for the same file, and,
cf course, there must be no conflict.
Other options that can appear in the OPEN
statement are the TITLE option, used to

associate the file name with the data set,
and the PAGESIZE and LINESIZE options, used
to specify the layout of a data set. The
TITLE option is discussed below under
"Associating Data Sets with Files," and the
PAGESIZE and LINESIZE options, which apply
only to STREAM files, in Part I, Section 9.
The option list may precede the FILE (file
name) specification.

For the TSS/360 PL/I compiler, the OPEN
statement is executed by library routines
that are loaded dynamically at the time the
OPEN statement is executed. Consequently,
execution time can be reduced if more than
one file is specified in the same OPEN I statement.

For a file to be opened explicitly, the
OPEN statement must be executed tefore any
of the input and output statements listed
below in "Implicit opening" are executed
for the file.

Implicit 0Eening

An implicit opening of a file occurs
when one of the statements listed below is
executed for a file for which an OPEN
statement has not already been executed.
The type of statement determines which
unspecified alternatives are applied to the
file when it is opened.

The following list contains the state
ment identifiers and the attritutes deduced
from each:

Statement Identifier
GET

PUT

READ

WRITE

LOCATE

REWRITE

DELETE

UNLOCK

Attributes Deduced
STREAM, INPUT

STREAM, OUTPUT

RECORD, INPUT
(see Note)

RECORD, OUTPUT
(see Note)

RECORD, OUTPUT
SEQUENTIAL, BUFFERED

RECORD, UPDATE

RECORD, UPDATE

RECORD, DIRECT,
UPDATE, EXCLUSIVE

Note: INPUT and OUTPUT are deduce,l from
READ and WRITE only if UPDATE has >lOt been
explicitly declared.

An implicit opening caused ty one of the
above statements is equivalent .0 preceding
the statement with an OPEN st.atement that
specifies the deduced attributes.

Me~~~f Attributes

There must be no conflict between the
attributes specified in a file declaration
and the attributes merged, explicitly or
implicitly, as the result of opening the
file. For example, the attributes INPUT
and UPDATE are in conflict, as are the
attributes UPDATE and STREAM.

After the attributes are merged, the
attribute implications listed below are
applied prior to the applicat.ion of the
default attributes discussed earlier.
ImFlied attributes can also cause a con
flict. If a conflict in attributes exists
after the aFplication of default attri
tutes, the UNDEFINEDFILE condition is
raised.

Following is a list of merged attributes
and attributes that each implies after
rrerging:

Merged Attributes ImQlied Attril::utes
UPDATE RECORD

SEQUENTIAL RECORD

DIRECT RECORD, KEYED

BUFFERED RECORD

UNBUFFERED RECORD

PRINT OUTPUT, STREAM

BACKWARDS RECORD, SEQUENTIAL
INPUT

KEYED RECORD

EXCLUSIVE RECORD, KEYED,
DIRECT, Upr;ATE

I Note: The attritutes SEQUENTIAL or DIRECT
and EUFFERED or UNBUFFERED do not apply to
a file with the STREAM attribute.

The fcllowing two examples illustrate
attribute merging for an explicit oFening
and frL an implicit opening.

Exrlicit opening:

DECLARE LISTING FILE STREAM;

OPEN FIIE(LISTING) PRINT;

Attributes after merge due to execution of
the OPEN statement are STREAM and PRINT.
Attributes after implication are STREAM,
PRING and OUTPUT. Attributes after default
afflication are STREAM, PRINT, OUTPUT, and
EXTERNAL.

Section B: Input and Output 75

Implicit opening:

DECLARE MASTER FILE KEYED INTERNAL;

READ FILE (MASTER) INTO
(MASTER_RECORD) KEYTO(MASTER_KEY):

Attribut.es after merge due to the opening
caused by execution of the READ statement
are KEYED, INTERNAL, RECORD, and INPUT.
Attributes after implication are KEYED, IN
TERNAL, RECORD, and INPUT (no additional
attributes are implied). Attributes after
default application are KEYED, INTERNAL,
RECORD, INPUT, SEQUENTIAL, and BUFFERED.

Associating Data Sets With Files

with TSS/360, the association of a file
with a specific data set is accomplished
using the TSS/360 command system, outside
the PL/I program. At the time a file is
opened, the PUI file narre is associated
with the name (ddname) of a DDEF command,
which is, in turn, associated with the name
of a specific data set (dsname). Note that
the direct association is with the name of
a DDEF camirand, not with the name of the
data set itself.

A ddname can be associated with a PL/I
file either through the file name or
through the character-st.ring value of the
expression in the TITLE option of the asso
ciated OPEN statement.

If a file is opened irrplicitly, or if no
TITLE option is included in the OPEN state
ment that causes explicit opening of the
file, the ddname is assuwed to be the same
as the file name. If the file name is
longer than eight characters, the ddname is
assumed to be composed of the first eight
characters of the file name.

Note: Since external names are limited to
seven characters for the compiler, an ex
ternal file name of more than seven charac
ters is shortened into a concatenation of
the first four and the last three charac
ters of the file name. Such a shortened
name is not, however, the name used as the
ddname in the associated DDEF command.

Consider the following statements:

1. OPEN FILE(MASTER)i

2. OPE\~ FII,E (OLDMASTER} ;

3. READ FILE(DETAIL) .•• ;

When statement number 1 is executed, the
file name MASTER is taken to 1::e t· ... e same as
the ddname of a DDEF command in the current
task. When statement number 2 is executed,

76

the name OLDMASTE is taken to be the same
as the ddname of a DDEF command in the cur
rent task. (The first eight characters of
a file name form the ddname. Note, howev
er, that if OLDMASTER is an external name,
it will be shortened by the compiler to
OLDMTER for use within the program.) If
statement number 3 causes implicit o~ening
cf the file DETAIL, the name DETAIL is
taken to be the sarre as the ddname of a
[;DEF comIrand in the current task.

For RECORD I/O, in each of the above
cases, a corresponding DDEF command Rust
a~fear in the task: otherwise, the UNDE
FINECFILE condition would be raised. The
three DDEF commands would aFpear, in ~art,
as follows:

1. DDEF DDNAME=MASTER,DSNAME= •••

2. DDEF DDNAME=OLDMASTE,DSNAME= •••

3. DDEF DDNAME=DETAIL,DSNAME= •••

I For STREAM I/O, if no DDEF is given, the
records are read from/to SYSIN/SYSPRINT.

If a file is opened explicitly by an
OPEN statement that includes a TITLE
option, the ddname is taken from the TITLE
option, and the file name is not used out
side the program. The TITLE option appears
in an OPEN statement as shown in the fol
lowing forIT.at:

OPEN FILE (file-name) TITLE(expression);

The expression in the TITLE option is eval
uated and converted to a character string,
if necessary, that is assumed to be the
ddname identifying the appropriate data
set. If the character st.ring is longer
than eight characters, only the first eight
characters are used. The following OPEN
statement illustrates how the TITLE option
rright be us ed:

OPEN FI LE (DETAIIj) TITLE (. DEI' AILl •) ;

If this statement were executed for RECORD
I/O, there must be a DDEF cormnand in the
curren t '.4 sk wi th DETAILl as i t.s ddname.
It might afpear, in part, as follows:

DDEF DDNAtlE=DETAIL1.DSNAME=DETAILA, •••

Thus, the data set DETAIJ~ is associated
with the file DETAIL through the ddname
DETAIL1.

Although a data set name represents a
specific collection of data, the file name
can, at different times, represent~ entirely
different data sets, Using the above
example of the OPEN statement, what.ever
data set is named in the DSNAME parameter
of the DETAILl DDEF command is the one that

is associated with DETAIL at the time it is
opened.

Use of the TITLE option allows a user to
choose dynamically, at open time, one among
several data sets to be associated with a
~articular file name. Consider the follow
ing example:

DECLARE 1 INREC, 2 FIELD 1 ••• ,
2 FILE_IDENT CHARACTER(8),

CETAIL FILE INPUT ••. ,
MASTER FILE INPUT •.. ;

OPEN FILE(DETAIL);
READ FILE(DETAIL) INTO (INREC)i
OPEN FILE(MASTER) TITLE(FILE_IDENT);

Assume that the program containing these
statements is used to proc~ss several dif
ferent detail data sets, each of which has
a different corresponding master data set.
Assume, further, that the first. record of
each detail data set contains, as its last
data item, a character string that identi
fies the appropriate master data set. The
following DDEF commands might appear in the
current task:

DDEF DDNAME=DETAIL,DSNAME= •••
DDEF DDNAME=MASTER1A,DSNA~E=MASTER1A
DDEF DDNAME=MASTER1B,DSNAME=MASTERIB
DDEF DDNAME=MASTER1C,DSNA~E=MASTERlC

In this case, MASTERlA, ~ASTERIB, and MAS
TERIC represent three different master
files. The first record of DETAIL would
contain as its last item, either 'MASTER
lA', 'MASTER1B', or 'MASTER1C', which is
assigned to the character-string variable
FILE IDENT. When the OPEN statement is
executed to oI=en the file MASTER, ·the cur
rent value of FILE IDENT would be taken to
be the ddname, and-the appropriate data set
identified by that ddname would be asso
ciated with the file name MP.STER.

Another similar use of the TITLE option
is illustrated in the following statements:

DCL IDENT(3) CHAR(l)
INITIAL('A', 'B', 'C');

DO I=lT03;
OPEN FILE(MASTER)

TITLE(' MASTER1' II IDENT (I»;

CLOSE FILE(MASTER);
END;

In this eXe:mple, ICENT is d(~clare 1 as a
character-string array with three elements
having as values the specific character
strings 'A', 'B', and 'C'. When :~ASTER is
opened during the first itera~ion of the
DO-group, the character constunt 'MASTER1'
is concatenated with the value of the first
element of IDENT, and the associated ddname

is taken to be MASTERIA. After processing,
the file is closed, dissociating the file
name and the ddname. During the second
iteration of the group, MASTER is oFened
again. This time, however, the value of
the second element of IDENT is taken, and
MASTER is associated with the ddname MAS
Tl::RIB. Similarly, during the final itera
tion of the group, MASTER is associated
with the ddname MASTER1C.

Note: The TSS/360 command system does not
allow the break character (_) to appear
in names. Consequently, this character
Cdnnot appear in ddnames. Care should thus
te taken to avoid using break characters
among the first eight characters of file
ndmes, unless the file is to be opened with
a TITLE option with a valid ddname as its
expression. The alphabetic extender char
acters $, @, and U, however, are valid for
ddnames. except in the first position.

The CLOSE Statement

The basic form of the CLOSE statement
is:

CLOSE FILE (file-name)
(,FILE (file-name») ••• ;

Executing a CLOSE statement dissociates the
specified file from the data set with which
it became associated when the file was
opened. The CLOSE statement also disso
ciates from the file all attributes estab
lished for it by the implicit or eXFlicit
opening Frocess. If desired, new attri
tutes may be specified for the file name in
a sutseguent OPEN statement. However, all
attributes explicitly given to the file
name in a DECLARE statement remain in
effect.

As with the OPEN statement, closing more
than one file with a single CLOSE statement
can save execution time.

Note: Closing an already closed file or
opening an already opened file has nc
effect.

STANr:ARD FILES

Two standard files are r-rovided that can
te used :ty any 101/1 program. One is the
standard system file called SYSIN. The
ether is the standard PL/I output file
called SYSPRINT. On program executicn,
this PL/I file becomes the system file SYS
OUT. Standard files can be used only with
stream-oriented transmission, and they
differ from normal files in that their rec
ords cannot be reread or replaced.

These files need not be declared or
opened explicitly; they are opened automat-

Section 8: Input and Output 77

ically, with a standard set of attributes.
For SYSIN, these attri~utes specify that it
is a stream-oriented input file. For SYS
PRINT, the standard attributes specify
stream-oriented output. Both file names,
SYSIN and SYSPRINT, are assumed to have the
external attribute, even though SYSPRINT
contains more than seven characters.

These file names need not be explicitly
stated in GET and PUT statements when these
files are to be used. GET and PUT I/O
statements that do not name any file, or
that name a file which is not defined by a
DDEF command in the current task, are equi
valent to:

GET FILE<SYSIN) ••. ;
PUT FILE(SYSPRINT) ••• ;

It is more advantageous to name a file;
this gives the user the option of sUbsti
tuting for SYSIN or SYSPRINT at any time,
by issuing a CLEF command for the file.

Any references to SYSIN and SYSPRINT
other than those in GET and PUT statements
must be stated explicitly.

The identifiers SYSIN and SYSPRINT are
not reserved for the specific purposes
described above. These identifiers can ce
used, except as external names, for other

purposes besides identifying standard sys
tem files. Other attributes can be applied
to them, either explicitly or contextually,
cut the PRINT attribute is applied automat
ically to SYSPRINT unless it is declared
explicitly and without the STREAM OUTPUT
attributes.

Note: Special care must be taken when
SYSIN or SYSPRINT is declared by the user
as anything other than a STREAM file. The
compiler causes, in effect, the identifier
SYSIN to be inserted into each GET state
ment in which no file name is explicitly
stated and the identifier SYSPRINT to be
inserted into each PUT statement in which
no file name is explicitly stated. Conse
quently, the following would be in error:

DECLARE (SYSIN, SYSPRINT) FIXEr;
DECIMAL (4,2);

GET LIST (A,B,C>;
PUT LIST CD,E,F);

The identifier SYSIN would be inserted into
the GET statement, and SYSPRINT in the PUT
statement. In this case, however, they
would not refer to the standard files, but
to the fixed-point variables declared in
the block.

Paql' of GC2H-2045-1, IssulCd ~;('!.>t"l1\h('r 30, 1971 hy TN!. (;tJ2H-llR5

This section describes tht, input and
output statements used in stream-oriented
transmission, which is one of the two types
of data transmission available in PLiI.
Those features that apply equally to
stream-oriented and record-oriented trans
mission, including files, file attributes,
and opening and closing files, are
described in Section 8, which forms a gen
eral introduction to this section dnd to
Section 10.

In stream-oriented transmission, a data
set is treated as a continuous stream of
data items in character form; within a pro
gram, block and record boundaries are
ignored. However, a data set is considered
to consist of a series of lines of data,
and each data set that is created or
accessed by stream-oriented transmission
has a line size associated with i~. In
general, a line is equivalent to a record
in the data set; however, the line size
does not necessarily e4ua1 the record size.

There are three modes of stream-oriented
transmis:;ion: list-directed, data
directed, and edit-directed. Th<~ transmis
sion statements used in all three modes
generally require the following information

1. The name of the file associated with
the data set from which data is to be
obtained or to which data is to be
assigned.

2. A list of program variables to which
data items are to be assigned during
input or from which data items are ~o
be obtained during output. This list
is called d data list. On output, the
data list can also include constants
and other expressions.

3. The format of each data item in the
stream.

Under certain conditions all of this
required information can be implied; in
other Cases, only a portion of it need be
stated explicitly. In list-directed and
data-directed transmission. the formats of
data items are not specified in the state
ments. And in data-directed transmission,
even the data list is optional.

LIST-DIRECTED TRANSMISSION

List-directed transmis::>ion permits the
user to specify the variables to which data
is assigned and to specify data to be
transmitted without specifying the format.

Input: In (jt:nf'ral. the nata itf'flIf; in t.he
stream dre character strings in the form of
optionally signed valid constants or in the
form of expres:;ions that represent cOHlplex
constants. The variables to which the data
is to be a~:;iqnf!d are ~pecif if-~d by rt ddta
list. Item!; dn' separated by d comma dnd/
or one or more blanks.

output: The data values to be tran~mltU'd
are specified by a variablf:', d con!;t.ant .• or
an expression t.hat repre:;ents a dat.d i tJ'rn.
Each data item ~;laced in the :,trEcatn i,; d
character-!;trinq representat.ion that
reflect~; thp attribute,; of thf-> vdci"blf'.
Items art, ~;epard ted by a blank. Lt'd,ji n<J
zeros ot arithmetic data are !..;uPi,re:,:.;c,.l.
Binary fixf:'d-point and floating-[,oint
items, however, are character ,;t.rin'l'; that
express the value in decimdl
repr es('n ta t ion.

For PRINT filps, data items drl" dutOI[,..,t
ically aliqned on iml,lementat.ion-def itll'd

preset tab po:.;itions. For the T:;;;/ jf,O 1'1./1
compiler, the:;e position:..; eire 1,)<" 4CJ,
73, 97, <lrFl 121, but provi:;ion i:,; n"Jtip for
the us(:r to altpr these value:; (:ie,' 1'1./ 1
P r 0<4 r a !fune r' J:' __ Zit!t:i~) .

DATA-DIHECTED TkAN,;MIS: ION

Data-directf.'Q tran~;mission I"··rmit.'; t.he
user to tran~mit self-id~ntifyiny riatd.

Input: Each data item in the ~;tream l:; in
the form ot an ilssignment: ~;tatt'ment. that
specifies bot.h t.he vallie dnd t.h., variaol,,'
to which it is tu be as:5lCjned. In qerH:ral,
values are in the form of constdnL;. It ell1!;
are sel'drdt.ed I>y d comma ,.ind/or on,· or more
blanks. A semicolon mu:;t "nd (-'dch 'lroup ot
items to be accp::;,;pd by d :"inglp Gl:,T !;t<.1te-- I

me.nt. A data lIst in the (~ET ~;tatement is
optional, ,:;incp the semicolon det.E,rmint<~
the nUITtbpr of 1 t(·ms t:o he obt dined f ron' t ht,
strt:'am.

output: The Jata values tu he tran:c;mitted
may be specified by dn optional datil list.
Each data item placed in the stream has the
form of an assignment. statement wiU,out a
semicolon. Items are separated by d blunk.
The last item transmitt ed hy each P!lT
statemf'nt is followed by a semicolon.
Leading zeros of arithmetic data arp ,;U!'
pres,;ed. Th~, character repreSf'nt.dt ion of
each value reflects the attributes of the
variablp. pxcept for fixpd-~~int anrl
floating-point_ binary item~;, which dfT'edt
as valut's pxpre:';f;ed in decimal notat ion.

Section 9: Stream-oriented Transmis~;ion 7')

Page of GC2B-2D45-1, Issued September 30, 1971 by TNL GN2R-llR5

If the data list is oMitted, it is
assumed to specify all variables that are
known within the block containing the
stat.ement and ax'e pennitted in data
directed output.

For PRINT files, data items drE automat
ically aligned on the implementation
defined preset tab positions referred to
under -List-Directed Transmission.-

EDIT-DIRECTED TRANSMISSION

Edit-directed transmission pennits the
user to specify the variables to which data
is to be assigned or to specify dat.a to be
transmitted, and t.O specify the format for
each item on the external medium.

Inpu~: Data in the stream is a continuous
string of characters: different data items
arp no': separated. The variables to which
the ddLd is to be assigned are specified by
d data list. Format items in a fonnat li,st
spf:'cify the number of characters to be
as!:igned to each variable and describe
characteristics of the data (for example,'
the assumed location of a decimal point).

output: The data values to
are defined by a data list.
that the data is to have in
defined by a format list.

DATA TRANSMISSION ~;TATEMENTS

be transmitted
The format

trw stream is

Stream-oriented transmission uses only
one input statement, GET, and one output
statement, PUT. A GET statement gets the
next series of data items from the stream,
and a PUT statement puts a specified set of
data items into the stream. The variables
to which data items are assigned. and the
variables or expressions frOM which they
are transmitted, are generally specified in
a data list with each GET or PUT statement.
The statements may also include options
that specify the origin or destination of
the data or indicate where it appears in
the stream relative to the preceding data.

The following is d summary of the
stream-oriented data transmission state
ments and their options:

STREAM INPUT:

GET! [FILEUilename)] [data-specificatic..nl
(COpy] [SKIP[(expression)]J}1
{STRING (character-string-name)
data-specification};

STREAM OUTPUT:

80

PUT{[FILE(filename»)ldata-specificationJ
[SKIP[(expression)])}1

[STRING{character-string-name)
data-specification};

STREAM OIlTPUT PRINT:

PUT lr'ILE (tile-name»)
[data-specification)

[
PA(;E [LINE(expression) 1]
:~KIP[(expression)}
LINE (exprpssion)

The optionr; may appear in any order. The
data specification can have one of the fol
lowing forms:

LIST (data-list)

DATA {(data-list)]

EDIT (data-list) (format-list)
[(data-list) (format-list)} ••.

The data specifiCdtion can be omitted for
STREAM OUTPUT PRINT files only if one of
the control options (PAGE, SKIP, or LINE)
appears. Format lists may use any of the
following format items:

A.S,C.E,F.
P,R,X,
SKIP {(w) J
COLUMN (w)

PAGE
LINE (w)

A.B.C,E.F,P,P,X

which may be used with
any STREAM f ilt.'

which can be used with
STREAM OUTPUT PRINT
files only

which may be used with
the STRIN(; option

The statemvnts are discussed individudlly
in detail in Part II, :~ec-t~on 10,
·Statement~::; ...

OPTIONS OF TRANSMISSION STATEMENTS

The FILF option :;pecifi.'s the name of
the file "pon which the operation is to
take pldce. The STRINe; option allows GET
and PUT st.dtements to bp used to transmit
data between internal :;t_orage locat,ions
rather than between internal and external
storage. If neithpr the FILE option nor
the STRING option C' ppears in a GET state-.
ment, the standard input file SYSIN is
assumed; if neither option apppars in a PUT
statement, the st.andard output file Sy~>
PRINT is assumed.

Examples of the use of the FILE option
are given in some of the statements below;
Part I, Section 11. -Editing and String
Handling,- illustrates the use of the
STRING option.

page of GC28-2045-1, Issued september 15, 1970 by TNL GN2B-1171

The COpy Opti cn

The COPY option should appear only in a
GET FILE statement. It sp€!cifies that each
data item is to be written. exactly as
read. into the standard out~put fi Ie SYS
PRINT. For example, the st.atement

GET FILE(SYSIN} DATA(A,B,C)COPYi

not only transmits the values assigned to
A. B, and C in the input st~ream to the
variables with these names, but also causes
them to be printed out in data-directed
format.

The SKIP Option

The SKIP option specifies a new current
line (or record) within the data set. The
parenthesized expression is converted to an
integer w, which must be greater than zero
(unless the file is a PRINT file). The
data set is positioned to the start of the
wth line (record) relative to the current
line (record).

For non-PRINT files, if the expression
is omitted or if w is not greater than
zero, a value of 1 is assumed. For PRINT
files, it w is less than or equal to zero,
the effect-is that of a carriage return
with the same current line.

The SKIP option takes effect before the
transmission of any values defined by the
data specification, even if it appears
after the data specification. Thus, the
statement

PUT LIST(X,Y,Z) SKIP(3);

causes the values of the variables X, Y,
and Z to be printed on the standard output
file SYSPRINT commencing on the third line
after the current line.

The PAGE option

The PAGE option can be specified only
for PRINT files. It causes a. new current
page to be defined within the data set.
The PAGE option takes effect before the
transmission of any values defined by the
data specification (if any), even if it
appears after the data specification.

The LINE Option

The LINE option can be specified only
for PRINT files. It causes blank lines to
be inserted so that the next line will be
the ~h line of the current page, where ~
is the value of the parenthesized expres
sion when converted to an integer. The
LINE option takes effect before the trans
mission of any values defined by the data
specification (if any), even if it follows

the data specification. If both the PAGE
option and the LINE option appear in the
same statement, the PAGE option is applied
first. For example, the statement

PUT I-'ILE(LIS'l'} DAT1\(P, Q,R)
LINE (34) PAGE;

causes the values of the variables P, Qr
and R to be printed in data-directed format
on a new page, commencinq at line 34.

DATA SPECIFICATIONS

Data specifications are given in GET and
PUT statements to identify the data to be
transmitted. The data specifications
correspond to the modes of transmission.

Data Lists

List-directed, data-directed, and edit
directed data specifications require a data
list to specify the data items to be
transmitted.

General format:

(data-list)

where WGata list- is defined as:
element [,element] •••

Syntax rules:

The nature of the elements depends upon
whether the data list is used for input or
for output.. The rules are as follows:

1. On input, a data-list element for
edit-directed and list-directed trans
mission can be ·one of the following:
an element, array, or structure vari
able, a pseudo-variable, or a repeti
tive specification (similar to a
repetitive specification of a DO
group) involving any of these ele
ments. For a data-directed data spe
cification, a data-list element can be I

an element, array, or structure vari
able. None of the names in a data
directed data list can be subscripted,
but qualified names are allowed.

2. On output, a data-list element for
edit-directed and list-directed data
specifications can be one of the fol
lowing: an element expression, an
array expression, a structure expres
sion, or a repetitive specification
involving any of these elements. For
a data-directed data specification, a
data-list element can be an element,
array, or structure variable, or a
repetitive specification involving any
of these elements_ Subscripts are
allowed for data-directed output.

Section 9: Stream-Oriented Transmission 81-

Page of GC28-2045-1. Issued September 15, 1910 by TNL GN2S-3171

3. The elements of a data list must be of
arithmetic or string data type.

4. A data list must always be enclosed in
parentheses.

REPETITIVE SPECIFICATION: The general for
mat of a repetitive specification is shown
in Figure 9.

Syntax rules:

1. An element in the element list of the
repetitive specification can be any of
those allowed as data-list elements as
listed above.

2. The expressions in the specification,
Which are the same as those in a DO
statement, are described as follows:

a. Each expression in the specifica
tion is an element expression.

b. In the specification, expression-1
represents the starting value of
the control variable or pseudo
variable. Expression-3 represents
the increment to be added to the
control variable after each repe
tition of data-list elements in
the repetitive specification.
Expression-2 represents the ter
minating value of the control
variable. Expression-4 represents
a second condition to control the
number of repetitions. The exact
meaning of the specification is
identical to that of a DO state
ment with the same specification.
When the last specification is
completed, control passes to the
next element in the data list.

3. Each repetitive specification must be
enclosed in parentheses. as shown in
the general format. Note that if a
repetitive specification is the only
element in a data list, two sets of
outer parentheses are required, since
the data list must have one set of
parentheses and the repetitive speci
fication must have a separate set.

4. As Figure 9 shows, the ·specification
portion of a repetitive specification
can be repeated a number of times, as
in the following form:

DOl 1 TO 4, 6 TO 10

Repetitive specifications can be
nested; that is, a.n element of a
repetitive specification can itself be
a repetitive specification. Each DO
portion must be delimited on the right
with a right parenthesis (with its
matching left parenthesis added to the
beginning of the entire repetitive
specification) •

When DO portions are nested, the
rightmost DO is at the outer level of
nesting. For example, consider the
following statement:

GET LIST ((A(I,J) DO 1 = 1 TO 2)
DO J = 3 TO 4»;

Note the three sets of parentheses, in
addition to the set used to delimit
the subscript. The outermost set is
the set required by the data list; the
next is that required by the outer
repetitive specification. The third
set of parentheses is that required by
the inner repetitive specification.
This statement is equivalent to the
following nested DO-groups:

DO J := 3 TO 4;
DO I ::= 1 TO 2;
GET LIST (A (I,J»;
END;

END;

It gives values to the elements of the
array A in the following order:

An,3), A(2.3), A(l,4), A(2,4)

Note: Altb':;ugh the DO keyword is used in
the repetitive specification, a correspond
ing END statement is not allowed.

,--,
I (element [. element] .•• 00 {Variable } = specification (. specificat.ionl •••) I
I pseudo-variallie I

lA ·specification- has the following format: I
I . [TO expression-2 [BY expressiOn-31] I
\expresslon-l [WHILE (expression-4)] I
I BY expression-3 (TO expression-21 , l ________________________________ ... ___________________________ . ____________________________ j

Figure 9. General Format for Repetitive Specifications

82

Page of GC28-20QS-l, Issued September 30, 1971 by TNL GN2A-3185

TRANSMISSION OF DATA-LIST ELEMENTS:
data-list element is of complex mode,
real part is transmitted before the
imaginary part.

Ita
the

If a data-list element is an array vari
able, the elements of the array are trans
mitted in row-major order, that is, with
the rightmost subscript of the a'rray vary
ing most frequently.

~L Q uQta-ii~t ~lement 1~ a structure
vdl:i ... b.le, the elements of the structure are
transmitted in the order specified in the
structure declaration.

For exampie, if a decla,ration is:

DECLARE 1 A (10), 2 B, 2 C:

then the statement:

PUT FILE(X) LIST(A):

would result in the output being ordered as
follows:

A.B(l) A.C(l) A.B(2} A.C(2) A.B(3)
A. C (3) ••• etc.

If, however, the declaration had been:

DECLARE 1 A, 2 B(10), 2 C(lO);

then the same PUT statement would result in
the output being ordered as follows:

A.B(l) A.B(2) A.B(3) ••• A.B(10)
A. C(l) A. C(2) A. C(3). •. A.CnO)

If, within a data list used in an input
statp~ent for list-directed or edit
directed transmission, a variablE is
assigned a value, this new value is used if
the variable appears in a later reference
in the data list. Example:

GET LIST (N,(X(I) 001=1 TO e), J, K,
SUBSTR (NAME, J,K»;

When this statement is executed, data is
transmitted and assigned in this order:

1. A new value is assigned to N.

2. Elements are assigned to the array X
as specified in the repetitive speci
fication in the order X(1), X(2), ••• X
CN), with the new value of N used to
specify the number of items to be
assigned.

3. A new value is assigned to .J.

4. A new value is assigned to K.

5. A substring of length K is assign~d to
the string variable NAME, beginning at
the Jth character.

LIST-DIRECTED DATA SPECIFICATION

The general format of a list-directed
data specific<ltion, either input or output,
is:

LIST (data-list)

The data list is described under =Data
Lists,· above. The keyword LIST must
appear to specify the list-directed mode of
transmission.

List-Directed oa ta in the Stream

Data in the stream. either input. or out-
put, is of character data type and has one
of the following general forms:

{+I-] arithmetic-constant

character-~;tring-constant

bit-string-constant

{+ I-} real-const ant {+ 1- } imag inary- constan t.

These form~, correspond exactly to the forms
used for writing optionally sil]ned con
stants in a PL/I program. Howpver, ster
ling constants cannot be used A ~;tring con
stant must be one of the two penni tted
forms listpd above; itpration dnd string
repetition fdctors are not allowed. A
blank must not precede the central + or -
in complex expressions.

List-Directed Input Format

When the data named is an array, the
data consists of constants, the first of
which is d~~~gned to the first element of
the array, the second constant to t.t.e
second element, et c., in row-rna ior order.

A structure name in the Oi'lt.i'I list repre
sents a li~;t of t.he contained element
variables and arrays in the order specified
in the structure description.

I On input" each pair of data items in the
stream must be separated either by a blank,
a comma, or a carriage return. This
separator may be surrounded by an arbitrary
number of blanks. A null field in the
stream is indicated either by the first
non-blank character being a comma, or by
two commas separated by an arbitrary number
of blanks. A null field specifies that the
value of the associated item in the data
list is to remain unchanged.

The transmission of the list of con
stants on input is terminated by expiration
of the list or by tne end-of-file condi
tion. In the fonner case, poSitioning in
the stream for the next_ GET statement is
always at t he character following the fh-st:
blank or comma follOwing the last data item

Section 9: Stream-Oriented Transmission 83·

Paqc of CC28-204~·-1, Issued SeptL'mhcr 30, 1971 by TNL GN2H-J185

transmitted. More than one blank. can
separate two data item~. and d comma
separator may be preceded or followed by
one or more blanks. In such cases, a sub
sequent GET statp~ent will iqnor~ interven
ing blanks dnd the comma (if present) and
will access t.he next data item. However.
1f an edit-directed GET stdt~:ment should
follow, the first charact.er accessed will
be the character to which the file has been
positioned (in other words, the next data
item will begin with the first character
following the blank or comma that separated
it from the previous data item).

If the data is a character-string con
stant, the surrounding apostrophes are
removed, and the enclosed characters are
interpreted as a character strinq.

If the data is a bit-string constant,
enclosing apostrophes and the t.railing
character n are removed, and the enclosed
charac.ers are interpreted as a bit string.

If the data is an arithmetic constant or
complex expression, it is converted to
coded arithmetic form with the base. scale,
mode, and precision imlJlied by the
constant.

Data type conversions follow the rules
for conversion from character type, as
listed in Part II, Section 6 •• Problem Data
Conversion,"

List-Directed output Format

The values of the element variables and
expressions in the data list are converted
to character representations and transmit
ted to the data stream.

A blank separates successive data items
transrnitted. (For PRINT files, items are
separated according to program tab
settings.)

The length of the data field placed in
the stream is a function of the attributes
of the data item, including precision and
length. Detailed discussions of the con
version rules and their effect upon preci
sion are listed in the sections covering
conversion to cbaracter type in Part. II,
Section 6, Rproblem Data Conversion.-

Fixed-point and floating-point binary
dat.a i tents are converted to decimal note
tion before being placed in the stream.

For numeric character values, the
character-string value is transmitted.

Bit strings are converted to character
representation of bit-string constants,
consisting of the characters 0 and 1, en
closed in apo~tr·ophes. and followed by the
letter B.

84

Character strings are written out. If
the file does not havp the attribute PRINT,
enclosi ng apostrophes ilre supplied, dnd
contained dpostrophes dre replaced by two
apostrophe!>. Thf> field width is the cur
rent length of the strinq plus the number
of added apostrophps. If t.he file has the
attribute PRINT, enclosing apostrophe:.; are
not supplied, and contained apostrophes are
Unmodified. The field width is the current
length of the string.

Examples of list-directf>d data
specifications:

LIST (CARD, RATE, DYNAMIC_FLOW)

LIST «THICKNE!;S (DI!;TANCE)
00 DISTANCE = 1 TO 1000»

LI~;T (P, Z, M, R)

The specification in the last eXdmrle
can be used only tor output, since it con
tains operationcll pxpn'ssions. Such ex
pressions ar .. evaluated wht~n the stat.ement
is executed, dnd the result is placed in
the stream.

DA'l'A-DIRECTED DATA SPECIFICATION

The genf.:ral format of a datd-d~rected
data specificdtion, for e~ther input or
output, is:

General rules:

1. The d"t.d list is described in "Dat.d
Lists· in thi::; section. It~ cannot
incl uue pardmeters. defined variable~;,
or ba~;ed variables. For input, the
data list Cdnnot contain subscript~d
nall1e~;. Names of !citruct.ure element" in
the da ta Ii st nepd onl y hdV~' enough
qualificdtion to re:;olve any ambiglli··
ty; full qualificcttion is not
required. On input., if the stream
contains a name that does not havlc' a
counterpart. in the data list, tht~ NAME
condition i~; rai5l'd.

2. Omission of the data list implies that.
a data list is assumed. This assumed
data list contains all t~hp names that
are known to the block and are vdlid
for data-directed tran!;mission. On
inlJut , if the stream contains a ndme
not known within the block, the NAME
condition is raised. If the assumed
data list contains a name that is not
incilloed in the stream, t.he value of
the a ssociated variable remains
unchanged. On output, all items in
the assumed datil list are t~ransmitted.

Page of GC28-2045-', Issued September 30, 1971 by TNL GN2A-S1R5

When a name occurs in more than one
block, all data with that name in the
active blocks is transmitted, not only
data with that name within the scope
of the current block.

3. On input, recognition of a semicolon
or an end of file in the stream causes
transmission to cease. whpther or not
a data list is specified. On output.
a semicolon is written into the stream
after the last data item transmitted
by each PUT statement.

Data-Directed Data in the stream

The data in the stream associated with a
data-directed transmission statement is in
the form of a list of element assignments
having the following general format (the
optionally signed constants, like the vari
able names and the equal Signs, are in
character form):

element-variable = constant
({bl,lcr}element-variable constant) .•• ;

General rules:

1. The element variable may be a sub
scripted name. Subscripts must be
optionally signed decin~l integer
constants.

2. On input, the element assignments may
be separated by either a blank (b in
the above format), a comma, or a car
riage return (cr in the above format).
Redundant blanks are ignored. On out
put, the assignments are separated by
a blank.

3. Each constant in the st~ream has one of
the forms described for list-directed
transmission.

Data-Directed Input Format

General rules for data-directed input:

1. If the data specification does not
include a data list, the names in the
stream may be any names known at the
point of transmission. Qualified
names in the input stream must be
fully qualified.

2. If a data list is used, each element
of the data list must be an element,
array, or structure variable. Names
cannot be subscripted, but ~lalified
names are allowed in the da t,l list.
All names in the stream should appear
in the data list; however, the order
of the names need not be the same, and
the data list may includE:. names that
do not appear in the stream.
For example, consider the followinq
data list, where A, B, C, and Dare
names of element variables:

DATA (B, A, c, D)

This data list may be associated with
the following input data stream:

A=2.5, 8=.0041, D=125, Z='ABC'i

Note: C appears in the data list but
not in the stream; its value remains
unaltered. Z, which is not in the
data list, raises the NAME condition.

3. If the data list includes the name of
an array, subscripted references to
that array may appear in the stream
although subscripted names cannot
appear in the data list. The entire
array need not appear in the stream;
only those elements that actually
appear in the stream will be assigned.

Let X be the name of a two-dimensional
array declared as follows:

DECLARE X (2,3)FIXED (6,2);

Consider the following data list dnd
input data stream:

Data List
DATA (X)

Input Data Stream
X(1,1)=1.9S, X(1,2)=80B~,
XCl,3)=13;

Although the data list has only thE
name of the array, the asuociated
input stream may contain value~; tor
individual elements of the array. In
this case, only three eleJl1ent~j are
assiyned; the remainder of the array
is unchaDtjed.

4. If the data list includes the name~ of
structure elements, then fully quali
fied names must ap~ear in the stream,
although full qualification is not
required in the data list. Consider
the following structures:

DECLA~E 1 CARDIN, 2 PARTNO, 2 OEc,CRP,
2 PRICE, 3 RETAIL, 3 WHSL,
1 CARDOUT, 2 PARTNO, 2 DE~,CRP,
2 PRICE, 3 RETAIL, 3 WIISL;

If it is desired to read a value for .
CARDIN. PRICE. RETAIL, the data specifi
cation and input data stream could
have the follOwing forms:

Data ~;pecification
DATA (CARDIN. RETAIL)

Input Data Stream
CARDIN.PRICE.RETAIL = 4.28;

5. Interleaved subscripts cannot appear
in qualified names in the stream. All
subscripts must be moved illl the way
to the right, following the last name
of the qualified name. For example,
assume that Y is declared as follows:

Section 9: stream-Oriented Transmission 8S

Pelq,' of CC2H-2045-J, Issul~d SC'ptember 10, 1971 by 'l'NI. (;N2H-llR r ,

DECLARE 1 Y(">,5),2 A(10),J S,
3 C, 3 D;

An elesnent name would have to .:Ippear
in the stream as follows:

Y.A.B{2,3,8)= 8.72

The name in the data list could not
contain the subscript.

Data-Directed Output Format

General rules for data-directed output:

1. An element of the data list may be an
element, array, or structure variable,
or a repetitive specification involv
ing any of these elements or further
repetitive specifications. Sub
scripted nantes can dppear. The names
appearing in the data list, together
with their values, are transmitted in
the form of a list of element assign
ment_s separated by hlank~; and ter
minated by a semicolon. (For PRINT
files, items are spparated c..tccording
to proqram tab setting~.)

2. Array variables in the data list are
treat~d as a list of the contained
subscril,t_ed elements in row-rna jor
order.

Consider an array declared dS follows:

DECLARE X (2. 4) F IX ED;

If X appears in a data list as follows:

DATA (X)

on output, the output data stream
would have the form:

X(I,I)=1 X(I,2)=2 X(I,3)=3
X(1,4)=4 X(2,1)=5 X(2,2)=6
X(2,3)=7 XC2,4)=8j

Note: In actual out_put, more than one
blank would follow the e'iual siqn. In
conversion tram coded ari thrnet_ic to
character. leadinq zeros are converted
to blanks, and up to three additional
blanks may appear at the beginning of
the field.

3. Subscript expressions that appear in a
data list are evaluated and replaced
by the value.

4. Items that are part of a structure
appearing in the data list are trans
mitted with the full qualification,
but subscripts follow the qualified
names rather than being interleaved.
If a data list is specified for a
structure element transmitted under
data-directed output as follows:

DATA (YCl.-3) .\.1)

86

the dst;ociat_ed dat.a field in the out
put stream is of the form;

Y.U(1,-3)= 3.756;

5. The numher of characters in a quali
fied name must not exceed 256.

6. ' Struct_ure names in the data list dre
interpretf-'d as a list of the canta ined
element or elements, and any contained
arrays are treat.ed as arove.

Consider the following structure:

DECLARE 1 A, 2 B. 2 C, 3 OJ

If a data list for data-directed out
put is as follows:

DATA (A)

and the value~; of lJ dnd 0 dre 2 and
17. respect ivply. t_he associat_ed d<Jtd
fif.'ld~; in ttl>' output t,trf'dm would bc':

A.B= 2 A.C.D= 17;

7. III the iollowillq case~;, datd-directf'd
output. is not_ valid tor ~;l\bsequent
data-directed input:

d. When the prH:i~;ion dt_tributt-' of d

fixerl-Ix,int variabl.> is ~;uch Uld t
tht, aS~;tlmpd point i ,; locatpej Ollt.

~;ide the f i<'I,j ...,~th a:;!,umed zer()~;

intervE'ninYi tllat is, it for IJH'ci
!;ion (1',<]) p is Ie::;:; than y, 0r '1
is le:>s than zero. (In this Cd~;"
an exp0nent is transmitted, pre
ceded by d Lf'tt.er F which i~; not
vdli(j tr)r ronVlr!;.lOn to drithrntc,tic
type.)

b. Whf'n the character-~;tring value of
a numer.lC character variable do('~;

not represent a vdlid ol'tionally
si'Jned arithmetic const_ant. For
eXdlllple, this i:; dlway:; trup fur
complex numeric character vdridble~;.

Length of Oata:-Directed Output Fields

The length of the data field on the
external medium is a function of the attri
butes declared tor t_h", vdriablf' and, sinc!'
the name is also included, t he length of
the fully qualified subscripted name. The
field length or out.put items converted from
Coded arithmetic data, numeric chardcter
data. and bit-strinq data is the Sdme dS
that for list-directed output data, and is
governed by thlc: rult:s for data convt;rsion
to character type as described in Pdrt I I.
Section 6, ·Problem Data Conversion.-

For character-string data, the contents
of the character striny arle: written out en
C'":losed in apostrophes. Each d(JOstrophe
cqntained loIithill ttle character string is
re(Jresented by two sllccessive apostrophes.

Page of GC28-2045-1, Issued September 30, 1971 by TNL GN2A-31A5

In the example shown in Figure 10, A is
declared as a one-dimensional array of six
elements; B is a one-dimensional array of
seven elements. The procedure calculates
and writes out values for All) = B(I+l) +
B(l) •

EDIT-DIRECTED DATA SPECIFICATION

General format for an edit-directed data
specification. either for input or output,
is as follows:

EDIT (data-list) (format-list)
[(data-list) (format-list)] •••

I Syntax rul es :

I 2.

The data list, which must be enclosed
in parentheses, is described above in
-Data Lists.- The format list, Which
also must be enclosed in parentheses,
contains one or more format items.
There are three types of format items:
data format items, which describe data
in the stream, control format items,
Which describe page, line, and spacing
operations; and remote format ~tems,
Which specify the label of a separate
statement that contains the format
list to be used. Format lists and
format items are discussed in more
detail in -Format Lists,· below.
Edit-directed transmission is the only
mode that can be used for reading or
writing sterling data, by use of a
picture specification.

For nonconversational input, data in
the stream is considered to be a con
tinuous string of characters not
separated into individual data ite~s.
The number of characters for each data
item is specified by a format item in
the format list. The characters are
treated according to the associated
format item.

For conversational input, the preced
ing rule applies, except that a car-

riage return delimits an incompletely
entered item:

• If the target item is a varying
string, the input is transmitted as
is; no extra blanks are inserted.

• If the target item is not a varying
string, the input is padded on the
right with blanks to give it the
necessary field width.

4. For output, the value of each item in
the data list is converted to a format
specified by the associated format
item and placed in the stream in d

field whose width also is specified by
the format item.

5. For either input or output, the first
data format item is associated with
the first item in the data list, the
second data format item with the
second item in the data list, and so
forth. If a format list cont.ains
fewer format items than there are
items in the associated data list, the
format list is reused; if there are
excessive format items, they are
ignorpd. Suppose a format list con
taining fivp nata format items and its
associated data list specifies ten
items to he transmitted. Then the
sixth item in the data list will be
associated with the first data format
item, and so forth. Suppose a format
list contains ten datd format items
and its associated nata list specifies
only five items. Then thp sixth
through the tpnth format items will be
ignorpd.

6. An array or structure variable in a
data list is equivalent to n items in
the data list, where n is the number
of element items in the array or
structure, each of which will be asso
ciatert with a separate use of a data
format. item.

r--------------------------·---,
lAB: PROCEDURE; I
I Input Stream I
I DECLARE (A(6), B(7» FIXED; I
I B(1)=l, B(2)=2, B(3)=3, I
I GET FILE (X) DATA (8)i I
I B(4)=1. B(5)=2, B(6)=3, 8(7)=4; I
I 00 I = 1 TO 6; I
I I
I A (1) = B (1+1> + D (1); I
I Output Stream I
I END; I
I AU)=3 A(2)=5 A(3)=4 11.(4)=3 I
I PUT FILE (Y) DATA (Ali I
I A(S)=5 A(6)=7; I
I END AS; I L __ ------------------_____________ J

Figure 10. Example of Data-Directed Transmission (Both Input and Output)

Section 9: Stream-Oriented Transmission 87

Page of GC28-2045-1, Issued September 30, 1971 by TNt CN28-]18S

7. If a data list item is associated with
a control format item, that control
action is executed, and the data list
item is paired with the next format
item.

8. The specified transmission is complete
when the last item in the data list
has been processed using its corre
sponding format item. Subsequent for
mat items, including control format
items, are ignored.

9. On output, data items are not automat
ically separated, but arithmetic data
items generally include leading blan~s
because of data conversion rules and
zero suppression.

Examples:

GET EDIT (NAME, DATA, SALARY)
(ACN), X(2), A(6), F(6,2»;

PU~ EDIT C'INVENTORY='IIINUM,INVCODE)
(A,F(S»:

The first example specifies that the
first N characters in the stream are to be
treaded as a character string and assigned
to NAME; the next two characters are to be
skipped; the next six are to be assigned to
DATA in character format; and the next six
characters are to be considered as an
optionally signed decimal fixed-point con
stant and assigned to SALARY.

The second example specifies that the
character string 'INVENTORY=' is to be con
catenated with the value of INUM and placed
in the stream in a field whose width is the
length of the resultant string. Then the
value of INVCODE is to be converted to
character to represent an optionally signed
decimal fixed-point integer constant and is
then to be placed in the stream and is then
to be placed in the stream right-adjusted
in a field with a width of five characters
(leading characters may be blanks). Note
that operational expressions and constants
can appear in output data lists only.

Format Lists

Each edit-directed data specification
requires its own format list.

General format: (format-list)

where -format list- is defined as:

, it:m ~
n 1tem t

tn (format-list)'
... J [': item n item

n (format-list)

Syntax rules:

1. Each -item- represents a format item
as described below.

8S

2. The letter n represents an iteration
factor, which is either an expres~ion
enclosed in parentheses or an unsigned
decimal integer constant. If it is
the latter, a blank must separate the
constant and the following format
item. The iteration factor specifies
that the associated format item or
format list is to be used n successive
times. A zero or negative iteration
factor specifies that the associated
forffidt item or format list is to be
skipped and not used (the data list
item will be associated with the next
format item). If an expression is
used to represent the iteration fac
tor, it is evaluated and converted to
an integer once for each set of itera
tions. The associated format item or
format list is that item or list of
items immediately to the right of the
iteration factor.

General rule:

There are three types of format items:
data format items, control format items,
and the remote format item. Data format
items specify the external forms that data
fields are to take. Control format items
specify the page, line, column, and spacin'J
operations. The remote format item allows
format items to be specified in a separate
FORMAT statement elsewhere in the block.

Detailed discussions of tile various
types of format items appear in Part II,
Section 5, -Edit-Direct_ed F'orl11dt Item:..;.·
The following discussions show how the for
mat items are used in edit-dir~cted data
specifications.

Data Format Items

On input, each data format item specifie~;
the number of character's t_o be associated
w),th the data item and how to interprf't th!'
external data. The data item is assi'1ned to
the associated variable named in the d~td
list, with necessary conversion to conform
to the attributes of tile variable. On out
~ut, the value of the associated element in
the data list is converted to the character
representation specifipd by the formdt item
and is inserted into tbe data ~;tream.

There are six data format items: fixed
point (F). f loating-poj nt (E), complex (C),

picture (P), character-string (A). dnd bit
string (R). They are, in general, speci
fied as follows:

F (wl,dl.pJ])

E Cw,d[,5])

C (real- format - item !. real- format- it-to'!ln))

P 'picture-specification'

I

Page of GC28-2045-1, Issued September 30, 1971 by TNL GN28-31B5

A ("d]

8 ((w»)

In this list, the letter ~ represents an
expression that specifies the number of
characters in the field. The letter g spe
cifies the number of digits to the right of
a decimal point; it may be omitted for
integers. The real format item of the com
plex format item represents the appearance
of either an F, 8 or P format item. The
picture specification of the P fermat item
can be either a numeric character specifi
cation or a character-string specification.
On output, data associated with F and F
format items is rounded if the internal
precision exceeds the external precision.

A third specification (E) is allowed in
the F format item; it is a scaling factor.
A third speCification (~) is allowed in the
E format item to specify the number of
digits that must be maintained in the first
subfield of the floating-paint number.
These specifications are discussed in
detail in Part II, Section 5 WEdit-Directed
Format Items.·

Note: Fixed-point binary and floating
point binary data items must always be
represented in the input stream with their
values expressed in decimal digits. The F
and E format items then are used to access
them, and the values will be converted to
binary representation upon assignment. On
output, binary items are converted to
decimal values and the associated F or E
format items must state the field width and
point placement in terms of the converted
decimal number.

The following examples illustrate the
use of format items:

1. GET FILE (IN FILE) EDIT (ITEM) (AC 20» ;

This statement causes the next 20
characters in the file called INFILE
to be assigned to ITEM. The value is
automatically transformed from its
character representation specified by
the format item A(20), to the repre
sentation specified by the attributes
declared for ITEM.

Note: If the data list and format
list were used for output, the length
of a string item need not be specified
in the format item if the field width
is to be the same as the l'mgth of the
string. that is, if no blanks are to
follow the string.

2. PUT FILE (MASKFLE) EDIT (MASK) (8);

Assume MASK has the attribute BIT
(25); then the above statement writes
the value of MASK in the file ca:.led

3.

4.

MAS~LE as a string of 25 characters
consisting of O's and l's. A field
width specification can be given in
the B format item. It must be stated
for input. ----

PUT EDIT (TOTAL) (F(6.2»:

Assume TOTAL has the attributes FIXED
(il. 2); then the above stat.ement speci
fies that the value of TOTAL is to be
converted to the character representa
tion of a fixed-point number and writ
ten into the standard output file SYS
PRINT. ~ decimal point is to be
inserted before the last. two numeric
characters, and the number will be
right-adjusted in a field of six char
acters. Leading zeros will be changed
to blanks, and. if necessary, a minus
sigh will be placed to the left of the
first numeric character.

In conversion from internal decimal
fixed-point type to character type,
the resultant strinq always is three
characters longer than p, the number
of digits in the precision specifica
tion of a decimal fixed-point vari
able. The extra characters may appear
as blanks preceding the number in the
converted string. And, since leading
zeros are converted to blanks, addi
tional blanks may precede the number.
If a decimal point or a minus sign
appears, either will cause one leading
blank to be replaced.

In edit-directed output, the field
width specification in the format item
(in this case, the 6 in the F(6,2)
format item) can be used to truncate
leading zeros. In this specification,
one zero is truncated. TOTAL would be
converted to a character string of
length seven. If all four digits of
the converted number are greater t.han
zero. the number, with its inserted
decimal point, will require five digit
positions; if the number is negative,
another digit position will be
required for the minus sign. Conse
quently, the F(6,2) specification will
always allow all diqits, t.he point.,
and a possible sign to appear, but
will remove the extra blank by
truncat ion.

GET FILE(A) EDIT (ESTIMATE) (E(10,6»;

This statement obtains the next ten
characters from the file called A and
interprets them as a floating-point
decimal number. A decimal point is
assumed before the rightmost six
digits of the mantissa. An actual
point within the data can override
this assumption. The value of the
number is converted to the attributes

Section 9: Stream-Oriented Transmission 89

Paqe of GC28-2045-1, Issued September 30, 1971 by TNL GN28-318S

of ESTIMATE and assigned to this
variable.

5. GET EDIT (NAME, TOTAL)
(P'AAAA',P'9999');

When this statement is executed, the
standard input file SYSIN is assumed.
The first five characters must be
alphabetic or blank and they are
assigned to NAME. The next four char
acters must be nonblank numeric char
acters and they are assigned to TOTAL.

Control Format Items

The control format items are the spacing
format item (X), and the COLUMN, LINE,
PAGE, and SKIP format items. The spacing
format item specifies relative spacing in
the data stream. The PAGE and LINE format
items can be used only with PRINT files
and, consequently, can only appear in PUT
stat~~ents. All but PAGE generally include
expressions. LINE, PAGE, and SKIP can also
appear separately as options in the PUT
statement; SKIP can appear as an option in
the GET statement.

The following examples illustrate the
use of the control format items:

1. GET EDIT (NUMBER, REBATE)
(A(S), XeS), A(S»;

This statement treats the next 15
characters from the standard input
file, SYSIN, as follows: the first
five characters are assigned to NUM
BER, the next five characters are
spaced over and ignored, and the
remaining five characters are assigned
to REBATE.

2. GET FILE (IN) EDIT (MAN, OVERTIME)
(SKIP(1), A(6), COLUMN(60), F(4,2»;

This statement positions the data set
associated with file IN to a new line:
the first six characters on the line
are assigned to MAN, and the four
characters beginning at character
position 60 are assigned to OVERTIME.

3. PUT FILE(OUT) EDIT (PART, COUNT)
(A(4), X(2), F(S);

This statement places in the file
named OUT four characters that r~pre
sent the value of PART, then two blank
characters, and finally five charac
ters that represent the fixed-point
value of COUNT.

4. The follOWing examples show the use of
the COLUMN, LINE, PAGE, and SKIP for
mat items in combination with one
another.

90

PUT EDIT ('QUARTERLY STATEMENT')
(PAGE, LINE(2), A(19»;

PUT EDIT
(ACCT#. BOUGHT, SOLD,
PAYMENT. BALANCE)

(SKIP(3), A(6). COWMN(14),
E(7, 2l. COLUMN (30), F (7.2) •
COLUMN(45), F(1,2).
COLUMN(60), F(1,2»;

The first PUT statement specifies that
the heading QUARTERLY STATEMENT is to
be written on line two of a new page
in the standard output file SYSPRINT.
The second statement specifies that
two lines are to be skipped (that is,
·skip to the third following line-)
and the value of ACCT# is to be writ
ten, beginning at the first character
of the fifth line; the value of
BOUGHT, beginning at character posi
tion 14: the value of SOLD. beginning
at character position 30; the value of
PAYMENT beginning at character posi
tion 4S; and the value of BALANCE at
character pOSition 60.

Note: Control format items are executed at
the time t.hey are encountered in the format
list. Any control format list that appears
after the data list is exhausted will have
no effect.

Remote Format Item

The remote format item (R) specifies the
label of a FORMAT statement (or a label
variable whose value is the label of a FOR
MAT statement) located elsewhere; the FOR
MAT statement and t~e GET or PUT statement
specifying the remote format item must be
internal to the same block. The FORMAT
statement contains the remotely situated
format items. This facility permits the
choice of different format specifications
at execution time, as illustrated by the
follOWing exam~le:

DECLARE SWITCH LABEL;
GET FILE(IN) LIST(CODE);
IF caOE 0= 1

THEN SWITCH = L1;
ELSE SWITCH = L2;

GET FILE(IN) EDIT (W,X,Y,Z)
(R(SWITCH}):

Ll: FORMAT (4 FC8,));
L2: FORMAT (4 E (12.6)) ;

SWITCH has been declared to be a label
variable; the second GET statement can be
~ade to operate with either of the two FOR
MAT statements.

Expressions in Format Items

The ~, E, ~, and ~ specifications in
data format items, as well as the specifi
cations in control format items, need not

Page of GC28-2045-1, Issued September 30, 1971 by TNL GN2B-31B5

be decimal integer constants. Expressions
are allowed. They may be variables or
other expressions.

On input, a value read into a variable
can be used in a format item associated
with another variable later in the data
list.

PUT EDIT (NAME, NUMBER, CITY)
(A(N),A(N-4),A(10»;

GET EDIT (M,STRING A,I,STRING B)
(F(2),A{M),XCM),FC2),ACI»;

In the first example, the value of NAME is
inserted in the stream as a character
string left-adjusted in a field of N char
acters; NUMBER is left-adjusted in a field
of N-4 characters; and CITY is left
adjusted in a field of 10 characters. In
the second example, the first two charac
ters are assigned to M. The value of M is
then taken to specify the number of charac
ters to be assigned to STRING A and also to
specify the number of characters to be
ignored before two characters are assigned
to I, whose value then is used to ?pecify
the number of characters t.o be assigned to
STRING B.

PRINT FILES

The PRINT attribute can be applied only
to a STREAM OUTPUT file. It indicates that
the data in the file is ultimately intended
to be printed (although it may first be
written on a medium other than the printed
page). The first data byte of each record
of a PRINT file is reserved for a ANSI
printer control character; the compiler
causes the control characters to be
inserted automatically when statements con-

taining the control options and format
items PAGE, SKIP, and LINE are executed.

The layout of a PRINT file can be con
trolled by the use of the options and for
mat items listed in Figure 11. (Note that
LINESIZE, SKIP, and COLUMN can also be used
for non-PRINT files.) LINESIZE and PAGE-
SIZE establish the dimensions of the
printed area of the page, excluding head
ings and footings. The LINESIZE option
specifies the maximum number of characters
to be included in each printed line; if it
is not specified for a PRINT file, a
default value of 120 characters is assumed
(but there is no default for a non-PRINT
file). The PAGESIZE option specifies the
maximum number of lines to appear in each
printed page; if it is not specified, a
default value of 60 lines is assumed.

Consider the followinq example:

OPEN FILE(REPORT) OUTPUT STREAM PRINT
PAGESIZE(S5) LINESIZE(110):

This statement opens the file REPORT as a
PRINT file. The specification PAGESIZE(S5)
indicates that each page should contain a
maximum of 55 lines. An attempt to write
on a page after 55 lines have already been
written (or skipped) will raise the ENDPAGE
condition. The standard system action for
thE> ENDPAGE condition is to skip to a new
page, but the user can establish his own
action through use of the ON st.atement.

The ENDPAGE condition is raised only
once per page. Consequent~y, printing can
be continued beyond the specified PAGESIZE
after the ENDPAGE condition has been raised
the first time. This can be useful, for
example, it a footing is to be written at
the bottom of each page.

r------------T------------~------------T--~--,
I I I Statementinl I
I I I which option I I
I I Edit-directedl or format I I
I Option Iformat item litem appears I Effect I
1------------+-------------+------------+------------------------------------"--.-------~
I LINES IZE (w) 1. I - 1 OPEN 1 Establ ishes line width i
J I I I -\
IPAGESIZE(w) I I OPEN IEstablishes page length I
I I I I !
I PAGE I PAGE. I PUT I Skip to new page I
I I I I I
ILINECW) I LINE(w) I PUT ISkip to specified line I
I I I I I
ISKIP[(x)]1. I SKIP[(x)]1. I PUT ISkip specified number of lines I
I I I I I
I - I COLUMN(w)1. I PUT ISkips to specified character position in line I
~------------L-------------~------------L---i
l1.can also be used with non-PRINT files; see ·Options of Transmission Statements· I
I and ·control Format Items,· above, and ·Line Size and Record Format,· below. I
L __ -----------------------_______ ._J

Figure 11. Options and Format Items ~or Controlling Layout of PRINT Files

Section C}: Stream-Oriented Transmission 91

Page of GC28-2045-1, Issued St'pt('mIH'r 30, 1971 by TNL (~N2A-l1R5

For example:

PUT FlLE(REPORT) !;KIP LIST (FearING);
PUT FILE(REPORT} PAGE;
N = N + 1;
PUT FILE(REPORT) LIST('PAGE 'liN);
PUT FILE(REPORT) SKIP (3).
END;

Assume that REpORT has been opened with
PAGESIZE(S5). as shown in the previous
example. When an attempt is made to write
on line 56 (or to skip beyond line 55). the
ENDPAGE condition will arise. and the begin
block shown here will be executed. The
first PUT statement specifies that a line
is to be skipped, and the value of FOOTING,
presumably a character string, is to be
printed on line 57 (when ENDPAGE arises,
the current line is always PAGESIZE+l).
The second PUT statement causes a skip to
the next page, and the ENDPAGE counter is
automatically reset for the new page. The
page number is incremented, and the
character string 'PAGE' is concatenated
with the new page number and printed. The
final PUT statement causes three lines to
be skipped, so that the next printing will
be on line 4. control returns from the
begin block to the Pl~ statement that
caused the ENDPAGE condition, dnd the data
is printed. Any SKIP option specified in
that statement is ignored, however.

Note that SIGNAL ENDPAGE i~> ignored if
there is no ENDPAGF. on-unit, since it may
not be possible for standard system action
(start a new page) to occur (for example,
if the file has not been opened).

The specification LINESIZE(110) indi
cates that each line on the page can con
tain a maximum of 110 charact.ers. An
attempt to write a line great.er than 110
characters will cause the excess characters
to be placed on the next line.

Standard File SYSPRINT

Unless the standard file SYSPRINT is
declared explicitly, it is alway~ given the
attribute PRINT. When t.he fih: i!i opened,
a new page is initiated auton,atically. If
the first PUT statement that refRrs to the
file has the PAGE option, or if the first
PUT statement includes a format list with
PAGE as the first itf'm, a blank page will
appear.

THE ENVIRONMENT ATTRIBUTE

The ENVIRONMENT attribute specifies
information about the physical organization
of the data set associated with a file.
The information is contained in a paren
thesized option list; the general format
is:

92

ENVIRONMENT (option-list)

The opt ions applicable t_o stream
oriented transmission are:

(record-format option)

[BUFFERS(n)]

CONSECUTIVE

LEAVE
REWIND

The options may appear in any order and
a~e separated by blanks. The options them
selves cannot contain blanks.

The options a.re discussed below under
four h~adings: record format, buffer allo
cation, data set organization, and volume
disposition. The information supplied by
some of the options can alternatively be
specified by default or in DDEF commands
(see also PL/I Programmer's Guide).

RECORD FORMAT

Although record boundaries are ignored
in ~tr(,dro-or iented transmission, record
format i~; important when a data set is
being credt ed, not only because it affects
the amount of storage space occupied by the
data set and th(; efficiency of the tJrogram
that processes the data, but also because
the data set may later be l)rocessed by
record-oriented transmission~ Having spec
ified the record format, the user need not
concern himself with records as long as he
uses only stream-oriented transmission; he
can consider his data set as a series of
characters arranged in lines, and can use
the SKIP option or format item (and, for a
PRINT tile, the PAGE and LINE options and
format items) to select a new line.

Logical records can be in one of three
forma.ts: f iXf'd-length (format-F).
variable-]fmgth (format-V), or undefin·ed
length (format-U).

Record-format options for VAM data sets are:

V (maximum-reeord-size) [
IFlreCord size) I]
t U (maximllm-record-size) I

Record-forroat options for PS data sets are:

[
I F(bloek-size[,record-sizeJ} 1
1 V (maximum-block-sizt"

l (,maximum-record-sizel)
U(maximum-block-size) J

VAM data set::; and PS data sets dre
described helow, undeJ -Blocking.-

Page of GC28-2045-', Issued September 30, 1971 by TNL GN28-1185

Blocking

The user's concern with blocking depends
on the type of data set that. he is using.

Two basic types of data sets can be used
in TSS/360: VAM data sets, and physical
sequential (PS) data sets. VAM data sets
are formatted for use with direct access
devices and for interface with the TSS/360
virtual access method (VAM) data management
routines. PS data sets are formatted for
use with magnetic tape or for communication
between TSS/360 programs and programs on
the IBM Systern/360 Operating System or on
the Model 44 Programming System. Except
when the user specifies (in the DDEF com
mand) that a data set is PS, TSS/360 treats
all data sets as VAM data sets.

VAM DATA SETS: Blocking and deblocking for
VAM data sets is done automatically by the
system. The system uses page-size blocks
(4096 bytes), and ignores any attempt by
the user to specify a block size. The only
restriction placed on the user by the sys
tem's blocking facilities is that the reco
rds must stay within the specified record
size, and format-U records must be mul
tiples of a page in length.

PS DATA SETS: For PS data sets, blocking
and deblocking of fixed- and variable
length records is done automatically.
However, the block size must be stated
(unless the records are unblocked and the
record size is given by the LINESIZE
option). If no record size or line size is
specified, the records are assumed to be
unblocked (that is, each block contains
only one record). Undefined-length records
cannot be blocked by the system; therefore,
their record size is not specified.

Block size and record size are specified
in number of bytes.

PS fixed-length records are blocked and
deblocked in accordance wit_h the specified
block size and record size. The block size
must be an exact multiple of the record
size.

When variable-length records are written
onto PS data sets, deblocking information
is automatically inserted into each record
and block. Four bytes are prefixed to the
data in each record to specify d~blocking
information, including two bytes for the
total record size; a further four bytes are
prefixed to the first record in each block,
two of which specify the t()tal block size.

The user of a PS data set with variable
length records must specify the maximum
block size and, for blocked records, the
maximum record size. In each case, he must
allow an additional four bytes for the

deblocking inf()rmation. The record size
must never exceed the block size. For
example, if the maximum data length antici
pated i5 120 bytes, a block size of not
less than 12B bytes must be specified.
whether the records are blocked or not,
since unblocked records are COllG idered to
be in hlocks of one record each; if the
records are blocked, the record size must
not be less than 124 bytes, and must be at
least four bytes less than the specified
block size.

For PS undefined-length records, all
processing of records is the responsibility
of the user. If a length specification is
included in the record, the user must
insert it himself, and he must retrieve the
information himself.

Note: 1. Hecord format, block size, and
record size can be specified in
the DCB operand of a DDEF c()m
mand instead of in the ENVIRON
MENT attribute, but all three
must appear together in one
place or the other. The rele
vant DeB suboperands are RECFM,
BLK~;rZE. and LRECL.

2. The record size for a PRINT file
must include one byte for a
printer control character. If
record format, block size, and
record size are not specified
for a PRINT file, the following
default assumptions are made:

Record format. V

Record size 125 bytes

Line Size and Record Format

The record size for a STREAM OUTPUT file
can be given in the LINESIZE option of an
OPEN statement. For a non-PRINT file, the
value specified in the LINESIZE option is
the actual record size for fixed-Iengt.h or
undefined-length records, but does not
include the four bytes for deblocking
information in variable-length records.
For a PRINT file, the value specified in
the LINESIZE option is the ac~ual le~gth of
the printed line; it does not include the
printer control character. Thus the equiv
alent record size is one byte more than the
line size for fixed-length or undefined
length records, and five bytes more for
variable-length records. See Figure 12.

If the records are unblOCked, it. is not
necessary to specify a block size. If the
record~i are blocked, the block si ze must be
compatible with the record size: for
fixed-length I-ecords, it must_ be an exact
multiple of the record size; for variable
length (format-VB) records, it must be dt

Section 9: Stream-Oriented Transmission 93

Page of GC2B-204~-l, Issued September 3D, 1971 by TNL GN2B-31B5

r----------------T-------------------------------T----------T---------~----------------, I I I form<l.t-F I foimat-V I format-tJ I
.----------------+------------------------~-----+----------+----------+----------------~
I I Record size~ I L+l I L+5 I L+1 I
I PRINT file I I I I I
I I Block size (it not specitied) I L+l I L+9 I L+1 I
~----------------+----------------------~----~---t----------+----------+----------------~
I I Record size~ I L I L+4 I L I
I Non-PRINT file I I I I I
I I Block size (if not specified) I L I us I L I
~---------------~-------------------------------~----------~---------~----------------~
I L=line size s[Jecified in LINESIZE option I
I ~"Record size" here means the equivalent record size (or maximum record size in the I
I cases of format-V and -U records) that would be specified in the ENVIRONMENT I
I attribute I l _______________________________________ --__ J

Figure 12. Relationship Between Line Size and R~cord Size

least four bytes larger than the maximum
record size.

If neither line size nor block size are
specified for a PRINT file, a default line
size of 120 characters is applied; there if;
no default line size for non-PRINT files.'

BUFFER ALLOCATION

A buffer is an internal storage area
that is uned for the intermediate storage
of data transmitted to and from a data set.
The use of buffers allows transmission and
computing time to be overlapped, and it may
help speed up processing, es~ecially where
the data set contains format-V or format-U
records or where the amount of processing
per record is irregular. Buffer~; are
essential for the automatic blocking and
deblocking of records.

The option BUFFERS(n) in the ENVIRONMENT
attribute specifies the number(n) of buff
ers to be allocated for a data set; this
number must not exceed 255 (or such other
maximum as was established at system
generation). If the number of buffers is
not specified or is specified dS zero, two
buffers are assumed.

The number of buffers can be specified
in the BUFNO sUboperand of a DDEF command
instead of in the ENVIRONMENT attribute.

DATA SET ORGANIZATION

The organization of a data set deter
mines how data is recorded in the data set.
and how the data is subsequently retrieved
so that it can be transmitted to the pro-

94

gram. The TS~;/360 PUI cOl'1piler recognizes
two data set organizations, CONSECUTIV~ and
INDEXED. A data set that is to be accessed
by stream-oriented transmission must have
COtlSECUTIVE organization; since this is the
oefault for data set organization, it need
not be specified at all for a STREAM file.

The records in d CONSECUTIVE data set
are arranged sequentially in the order in
",oich they were written; they can be re
trieved only in the same order (unless
record-oriented transmission is used).
After the data set has been created, the
4ssociated file can be opened for input (to
iead the data), or for output (to extend
the data set by adding records at the end,
or to replace the contents of the data set
by new data: the effect of using an OUTPUT
file to process an existing data set
d~pends on the DISP operand of the asso
ciated DDEF command).

VOLUME DISPOSITION

The vollme disposition options allow the
us~r to specify the action to be taken (1)

when the end of a magnetic tape volume is
reached and (2) when a data set on a mag
netic tape volume is closed normally or
abnormally.

The act. ion s[.Jecified by the LEAVE option
depends on the volume position.

1. If the end of the volume has been
reached, no repoSitioning of the tape
occurs and the channel is freed.

2. If a data set is closed normally or
abnormally before the end of the
volume, the tape is repositioned at

the end of the data set (unless it is
already there) or at the end of the
current volume if a multivolume data
set is being accessed.

The RE~IND option repositions the mag
netic tape to the beginning of the data
set.

If neither lEAVE nor REWIND is sFecified
in the oFtions list of the ENVIRONMENT
attribute, the tape is repositioned at the
teginning of the current data set on the
current volume.

If both LEAVE and REWIND are specified
as options of the ENVIRONMENT attribute,
RE~IND is ignored.

Section 9: Stream-Oriented Transmission 95-

SECTION 10: RECORC-ORIENTED TRANSMISSION

INTRODUCTION ~he READ Staterr,ent

This sectien descrites the input and
output statements used in record-oriented
transmission, which is one of two types of
data transmission used for input and output
in PL/I. Those features of PL/I that apply
Equally to record-oriented and streaw
oriented transmission, including files,
file attributes, and opening and closing
files, are described in Part I, Section S,
which forms a general introduction to this
section and Section 9.

In record-oriented transmission, dat.a in
a data set is considered to be a collection
cf records recorded in any format accept
able to the computer. No data conversion
is performed during record-oriented trans
mission: on input, the READ statement
causes a single record to te transmitted to
a program variable exactly as it is record
ed in the data set; on output, the WRITE~
REWRITE, or LOCATE statement causes a
single record to be transmitted from a pro
gram variable exactly as it is recorded
internally. Although data is actually
transmitted to and from a data set in
blocks, the statements used in record
oriented transmission are concerned only
with records; the records are tlocked and
deblocked automatically.

CATA TRANSMISSION STAT~MENTS

The following is a general description
of the record-oriented data transmission
statements; they are described in detail in
Part II, Section 10, .. Statements."

The variables involved in record
oriented transmission must be unsub
scripted, of level 1 (element and array
variables not contained in structures are
of level 1 by default), and may be of any
storage class. The variables cannot be
parameters or defined variables. They can
be label, pointer, or event variables, but
such data rna] lose its validity in
transmission.

There are four statements that actua;.ly
cause transmission of records to or from
external storage. They are READ, WRITE,
LOCATE, and REWRITE. A fifth statement,
the DELETE statement, is used to de] '!te
records from an UPDATE file. The attri
butes of the file determine which state
ments can be used.

• 96

The READ statement can be used with any
INPUT or UPDATE file. It causes a record
to be transmitted from the data set tc the
~rograrr, either directly to a variable or
to a buffer. In the case of blocked rec
crds, the READ statement causes a record to
be transferred frorr a buffer to the vari
able; consequently, every READ statement
may not cause actual data transmission from
the input device.

The WRITE Stat€rr,ent

The WRITE statement can be used with any
OUTPUT file, DIRECT UPDATE file, but net
with a SEQUENTIAL UPDATE file. It causes a
record to be transrritted from the ~rograrr,
to the data set. For unblocked records,
transmission may be directly from a vari
able or from a buffer. For blocked rec
ords, the WRITE statement causes a logical
record tc be placed into a buffer; only
when the blocking of the record is complete
is there actual data transmission to the
output device.

The REWRITE Statement

The REWRITE statement causes a record to
be replaced in an UPDATE file. For SEQUEN
TIAL UPDATE files, the REWRITE staterrent
specifies that the last record read from
the file is to be rewritten; consequently a
record rrust te read before it can te
rewritten. F'1r DIRECT UFDATE files, any
record can be rewritten whether or net it
has first been read.

The LOCATE Statement

The lCCATE statement can ~e used only
with a BUFFERED OUTPUT SEQUENTIAL or TRAN
SIENT file. (Note: A program that uses a
TRANSIENT foile cannot be executed cn TSS/
360.) It allocates storage within an out
put bufff;r for a based variable, setti.ng a
~ointer to the location in the buffer as it
does so. This pointer can then be used to
refer to the allocation so that data can be
rroved into the buffer. The record is writ-·
ten out automatically, during execution of
a subsequent WRITE or LOCATE statement for
the file, or when the file is closed.

The DELETE Statement

The DELETE statement specifies that a
record in an UPDATE file be deleted. It
can only be used for a file associated with
an INDEXED data set •

Page of GC28-20ij5-1. Issued September 15, 1970 by TNL GN28-3171

The UNLOCK Statement

The UNLOCK statement is accepted, but is
of no significance to the TSS.l360 compiler,
since page-level interlocks are automatic
ally set by VISAM data management if a file
is opened for direct access.

OPTIONS OF TRANSMISSION STATEMENTS

Options that are allowed for record
oriented data transmission statements dif
fer according to the attribut.es of the file
and the characteristics of the a~sociated
data set. Lists of all of the allowed com
binations for each type of file are given
in Figures 15, and 17 later in this
section.

Each option consists of a keyword fol
lowed by a value, which is a file name, a
variable, or an expression. This value
must always be enclosed in ~irentheses. In
any statement, the options may appear in
any order.

The FILE Option

The FILE option must appear in every
record-oriented statement. It specifies
the name of the file upon which the opera
tion is to take place. It consists of the
keyword FILE followed by the file name en
closed in parentheses. An example of the
FILE option is shown in each of the state
ments in this section.

The INTO Option

The INTO option can be used in the READ
statement for any INPUT or {~DATE file.
The INTO option specifies a variable to
which the logical record is to be assigned.

READ FILE (DETAIL) INTO (RECORD_i):

This specifies that the next sequential
record is to be aSSigned to the variable
RECORD_l.

Note that the INTO option can name an
element string variable of varying length;
thus it is possible to read a record whose
length is unknown to the PI/I user f and is
not contained in the data. The current
length of the string is set to the length
of the record. The LENGTH built- in func
tion can be used to find the len~th of the
record.

When the record variable of a READ sta
tement is a variable length t,t-string, the
byte count, and not the bit count. is
stored as the current length. ~his is an
implementation restriction because all
variable length bit-strings are not both
byte aligned and multiples of eight.

The FROM Option

The FROM option must be used in the
WRITE statement for any OUTPUT or DIRECT
UPDATE file. It. can also be used in the
REWRITE statement for any UPDATE file. The
FROM option specifies the variable from
which the record is to be written. If this
variable is a st.ring of varying length, the
current length of tne string determines the
size of the record.

For files other than DIRECT UPDATE or
SEQUENTIAL UNBUFFERED WDATE files, the
FROM option can be omitted from a R~4RITE
statement. If the last record was read by
a READ statement with the INTO option,
REWRITE without FROM has no effect on the
record in the data set; but if the last
record was read by a READ statement with
the SET option, the record will be updated,
in the buffer, by whatever assignments were
made.

WRITE FILE (MASTER) FROM (MAS_REC);

REWRITE FILE (MASTER) FROM (MAS_REC);

Both statements specify that the value of
the variable MAS REC is to be written into
the file MASTER.- In the case of the WRITE
statement, it specifies a new record in a
SEQUENTIAL OUTPUT file. The REWRITE state
ment specieies that MAS_REC is to replace
the last record read from a SEQUENTIAL UP
DATE file.

The SET Option

The SET option can be used with a READ
statement or a LOCATE statement. It speci
fies that a named pointer variable is to be
set to point to the location in the buffer
into which data has been moved during the
READ operation, or which has been allocated
by the LOCATE statement.

R&~D FILE (LIST) SET (P);

This statement specifies that the value of
the pointer variable P is to be set to the
location in the buffer of the next sequen
tial record.

The IGNORE Option

The IGNORE option can be used in a READ
statement for any SEQUENTIAL INPUT or UP
DATE file. It includes an expreSSion whose
integral value specifies a number of rec
ords to be skipped over and ignored.

READ FILE (IN) IGNORE ();

This statement spec.ifies that the next
three records in the file are to be
skipped.

Section 10: Record-Oriented Transmission 97

Page of GC2B-2045-1, Issued September 15, 1910 by TNL GN28-3111

If a READ statement includes none of the
options INTO. SET. and IGNORE, IGNORE(1} is •
assumed.

The KEY Option

The KEY option applies only to KEYED
files associated with data sets of INDEXED
organization. (The types of data set
organization applicable to record-oriented
transmission are discussed under -Data Set
Organization,· below.> The option consists
of the keyword KEY followed by a parenthe
sized expression, which may be a character
string constant, a variable, or any other
element expression; if necessary, the
exp.t°ession is evaluated and converted to a
character string. The rules governing the
length of the character string and what it
represents are discussed below under -IN
DEXED Organization."

The KEY option identifies a particular
record. It can be used in a READ statement
for an INPUT or UPDATE file, or in a
REWRITE or DELETE statement for a DIRECT
UPDATE file. (The KEY option can be used
in a READ statement for a SEQUENTIAL file
only if the associated data set has INDEXED
organiza tion.)

READ FILE (STOCK) INTO (ITEM)
KEY (STKEY);

This statement specifies that the record
identified by the character-string value of
the variable STKEY is t.O be assigned to the
variable ITEM.

The KEY.l"HOM and KEYTO 0Et ions

The KEYFROM and KEYTO options apply only
to KEYED tiles associated with data sets of
INDEXED organization. Each option consists
of the keyword KEYFROM or KEYTO followed by
a parenthesized expression. For KEYFROM,
the expression may be a character-string
constant, a variable, or any other element
expression; if necessary. the expression is
evaluated and converted to a character
string. For KEYTO, the expression must be
a character-string variable. The rules
governing the lengths of the character
strings and what they represent are dis
cussed below, under "INDEXED Organization.-

The KEYFROM option specifies the loca
tion within the data set where the record
is to be written. It can be used in a WRITE
statement for a RECORD OUTPUT or DIRECT up.
DATE file, or in a LOCATE statement.

WRITE FILE (LOANS> FROM (LOANREC)
KEYFROM (LOANNO);

This stat.ement specifies t.hat the value of
LOANREC is to be written as the nex~ record
in the file LOANS, and that the value of
LOANNO is to be used as the key.

98

The KEYTO option specifies the name of
the variable to which the key of the record
being read is to be assigned. It can be
used in a READ stata~ent for a SEQUENTIAL
INPUT or SEQUENTIAL UPDATE file.

READ FILE (DETAIL) INTO (INVTRY)
KEYTO (KEYFLD);

This statement specifies that the next
record in the file DETAIL is to be assigned
to the variable INVTRY, and that the key of
the record is to be assigned to the vari
able KEYFLD.

The EVENT Option

The EVENT option is specified with the
keyword EVENT followed by the parenthesized
name of an even to variable. (The appearance
of a name in the EVEN'!' option constitutes a
contextual declaration of an event vari
able.> The option can appear in any READ,
WRITE, REWRITE, or DELETE statement for an
UNBUFFERED file.

The EVENT option is designed to be used
when asynchronous I/O operation is possi
ble. In TSS/360. the user"s execution is
suspended while I/O is in progress. except
for CONSECUTIVE SEQUENTIAL UNBUFFERED.
Only in this case is asynchronous I/O pos
sible. ThUS, when a WAIT statement is
encountered. I/O is generally complete, so
that this option is of little value to the
TSS/360 PL/I user.

The EVENT option also specifies that
record I/O interruptions (except for UNDE
FINEDFlLE) are not to occur until a WAIT
statement, sp~A('ifying the same event vari
able, is execut.ed by the same task. For
example:

READ FILE (MASTER) INTO CREC_VAR)
EVENT <RECORD._l>;

In this exaro~le. when the READ statement,is
executed. the input operation is started.
No I/O interruption for RECORD. TRANSMIT,
KEY, or ENDFII,E conditions will take place
until the WAIT statement is executed. If,
when the WAIT statement is executed, t.he
input operation is not complete (possible
only for CONSECUTIVE SEQUENTIAL UNBUFFERED
files), and if none of the four conditions
is raised, inline proceSSing stops, but the
operat ion continues. Whl?Jl the operation is
successfully completed, processing con
tinues with the next statement following
the WAIT statement. If any of the four
conditions arise durin9 execution of the
READ statement, an interruption will occur
when the WAIT statement is executed. On-

units will be entereu 1n the order in which
the interruptions occur (normally. TRANSMIT
or ENDFILE. KEY, RECORD). Then upon norwal
return frorr all of the on-units thus
entered, processiT~ continues wi~h the next
statewent following the WAIT ~;t:atement.

Note that although the EVENT option
specifies asynchronous processing, it does
not srecify that interruptions will he
caused asynchronously; none of the four
conditions can cause an interruption until
they are synchronized wi.th [,rocessing by
the WAIT statement.

Other interru~tions can occur, l1owever.
Any condition that arises dUring the inline
processing will, of course, caUSE an inter
rupt if it is enabled. In add1tion, if the
I/O statement containing t.he EVENT option
should cause implicit opening of the file.
and if the UNDEFINEDFIlE condition should
arise because of that im[liclt o~pning. the
interruption will occur at the time the
UNDEFINEDFILE condition is raised. Only
the four conditions TRANSMIT. KEY. RECORD,
and ENDFILE can be synchronized ty the WAIT
statement.

Once a statement cont~ainJ..nq an EVENT
option has been executed, the event vari
able named in the opticn is considered to
te active; while it is activ~, the event
variable cannot De srecified again in an
EVENT option. rhe event variable becomes
inactive again only after Execution of the
corresponding WAIT stdterrent.

An inrut/output event should te waited
for only by the task t~bat inHia ted the
input/output operation.

The NOLOCK Option

The NOLOCK option is ignored, since
page-level interlocks are automatically set
by VISAM data management if a file is
opened for direct access.

PROCESSING MODES

Record-oriented transrrission offers the
user alternative met. hods of nandling his
data. He can process data within the
storage area allocated to hlS program; this
is termed t~e move mode because the data is
actually moved into or out of program
storage either directly or via a buffer.
Alternatively, the user can [rOCESS his
data while it remains in a buffer (that is,
without rroving it into t.he storage area
allocated to his program); tnis is termed
the locate mode, because tbe execl1tion of a
data transmission statement wp~ely jdenti
fies the location of the stordge allocated
to a record in the buffer. The locate mode
is applicable only to EUFFERED SEQUENTIAL

files. Which rrode is used is determined by
the data transmission statements and
cftions specified ty the user.

MOVE MODE

In the wove mode, a READ statement
causes a record to be transferred frem
external storage to the variable named in
the INTO option (via an input buffer if a
EUFFERED file is used); a WRITE or REWRITE
statement causes a record to be transferred
frorr, the variatle named in the FROM option
to external storage (perhaps via an output
tuffer). The variables named in the INTO
and FROM oFt ions can be of any storage
class.

Consider the followinq example, which is
illustrated in Figure 13:

INPUT
BUFFER

JARIABlE
[DATA,

,:)I,fTPUT

SUfFEQ.

NEXT: READ FILE(IN) INTO(DATA)i

WRITE FILE (OUT) FROM (DATA);
GO TO NEXT;

,~o '" ,.:~~~ WR ITE

L! I!!

/.
~"'ALI 1 5[;

--'----'-----'

Figure 13. Input and Output: Move Mode

Section 10: Record-Oriented Transmission 99.

The first time the KEAD statement is
executed, a tlock is transmitted from the
data set associated with the file IN to an
input buffer, and tne first record in the
hlock is assigned to the variable DATA;
further executions of the HEAD statement
assign successive records from the buffer
to DATA. When the buffer is empty, the
next READ statement causes a new block to
be transmitted from the data set. The
WRITE statement is executed in a similar
manner, building physical records in an
output buffer and transmitting tnem to the
data set associated with the file OUT each
time the buffer is filled.

The move mode may be simpler to use than
the locate mode since there are no buffer
alignment problems. Furthermore, it can
result in faster execution when there are
numerous references to the contents of the
same record, because of the overhead
incurred by the indirect addressing tech
nique used in locate mode.

LOCATE MODE

Locate mode requires t:he use of based
variables. A based varlatle is effectively
overlaid on the datct in the buffe}-, and
different based variables can be used to
access the same data by associating the
sarre pointer with each one; thus the same
data can be interpreted in different ways.
Locate mode can also be used to read self
defining records, in wnich inforwation in
one part of the record is used to indicate
the structure of the rest of the record;
for example, this information could be a
count of the number of repetitions of a
subfield, cr a code identifying which one
of a class of structures should be used to
interpret the record.

A READ statement causes a block of data
to be transferred from the data set to an
input buffer, if necessary, and then sets
the pointer variable named in the SET
option of the next record; the data in the
record can then be processed by reference
to the based variable associated with the
pointer variable. The record is available
only until the execution of the next READ
statement that refers to the same file.

Locate mode frequently provides fast.!r
execution than move since there is less
movement of data, and less storage may be
required. But it must be used carefully;
in particular, the user must be aware of
how his data will be aligned in the nuffer
and how structured data will be mapped;
structure mapping and data alignment are
discussed in Part II, Section 11.

.100

Figure 14 illustrates the following
example, which uses locate mode for in~ut
and nove mode for output:

DeL DATA BASED(P);

NEXT: READ FILE(IN) SETCP):

WRITE FIIE(OUT) FROM(DATA}i
GO TO NEXT;

The first time the READ statement is
executed, a tlock is transmitted from the
data set associated with the file IN to an
input buffer, and the pointer variable P is
set to paint to the first record in the
tuffer: any reference to the variable DATA
or to any other based variable qualified by
the pointer P will then in effect be a
reference to this first record. Further
executions of the READ statement set the
pointer variable P to point to succeeding
records in the tuffer. When the buffer is
empty. the next READ statement causes a new
block to be transmitted from the data set.

DATA
SET

INPUT
BUFfER

OUTPUT
BUFFER

DATA
SET

1ST 2~;D

READ READ

1ST
WRITE

I
ft

3RD
READ

2ND 3RD
WRITE WRITE

Figure 14. locate Mode Input, Move Mode
Output

l'd<1!' "f ,;CLK-204')-1, ISSIWd :~!'ptt'ml,,'r-!O, 1')71 by TNL GN2A-J1A"i

It is doubtful whether t.he U!H: of locate
modE' for bot h input and out.put in t l,e above
!c-xdmplt.' would rf"'!-mlt. in incrPd:;pd f'tficien
cy. An dlternative would he to use move
mode tor input and locate Plode for Olltput,
tor ex,Hllplp!

DeL DATA BASED(P);

NEXT: LOCATE DATA FILE(OllT):
READ FlLE(IN) INTO(DATA);

GO TO NEXT;

Each execution of the LOCATE state~ent
reserve~ storage in an output buffer for a
new allocation of the ba~ed variable DATA
and sets the pointer variable P to point to
this storage. The first execution of the
READ statement cause:; a hlocK to be tran~;
mitted from the data set associated with
the fil(: IN to an input buffer. and t.he
first record in t_hi-' block to he ds:;iqned to
the first allocation of DATA; sUb:;equpnt
executions of the KEAD statement assign
successi ve logical records to tht' current
allocation of DATA. When the input buffer
is empty, the next READ statement Cdllses d

new block to be transmitted from trw data
set. Each record is available for proces
Sing during the period between the execu
tion of the READ statement and the next
execution of the LOCATE statement. When no
further space is available in the output
huffer, the next execution of the LOCATE
statement causes a blOCK to De transmitted
to the data set associated with the file
OUT, and a new buffer to he allocated.

Note that, in each of the foregoing
examples, if the data set accessed in the
move mode had had unblocked records and the
associated file had been declared UNBUF
FERED, movement of data in internal storage
may have been unnecessary; if rm:;sible,
each record would have been read into and
written from the same buffer.

THE ENVIRONMENT ATTRIBUTE

'I'he ENVIRONMENT attribute can be speci
fied only in a DECLARE statement; it cannot
be specified as an option of an OPLN state
ment. It specifies information about the
phySical organization of the dati set asso
ciated with a file. The information is
contained in a parenthesized option list;
the general format is:

ENVIRONMENT (option-list)

The options applicable to record
oriented transmission, with the exception
of teleprocessing applications. are:

[rf'cord-format option]

[rmFI-'EH!;(n) J

[~ CON" EC1JT IV 1 1\,]
I INDEXED

[l~~~~n(]
[I CTLMi/\ I J
I CTLJ60 \

[COROL]

[NCP(decimal-inteqer-constant»)

[T~KOF'L)

Not,e: The INDEXARF.A and NOWRITE options
ar;-ignored in T;';'/360.

Thf' option~; may ctppear in any order, and
are se[;arat ed by blanks. The options them
selves cannot contain blanks.

The ortion~ are discussed below under
pleven hpddings: n~cord format, buffer
allocation, data set organization, volume
disposition, carriage control, data inter
change, ddta managf'ment optimization, key
classification, asynChronous operations
limit, dnd track overflow. The information
supplied by some of the options can alter
natively hp specified in a DDEF command or
by defctu It. . The DDEF command is descr ibed
in IBM ~;y;.tem/360 Time Sharing System:
PL/I Programmer's Guide.

RECORD FORMAT

Logicdl records can be in one of three
formats: fixed-length (format-F),
variable-length (format-V), and undefined-

• length length Cforrrdt U).

Record-format options for VAM data sets are;

f;1 F(record size) 1 l V (maximum-record-size)
_ U (maximum-record-si ze) _

Record-format olltions for PS data set~ '-U..;:

[
F(block-size(,record-sizeD]
V (maximum-block-size

l.maximum-record-size)
U (maximum-block-size)

VAM data sets and PS data sets are
described below, under -Blocking.-

Blocking

The user's Concern with blocking depends
on the type of data set that he is using.

Section 10: Record-0riented Transmission 101

rage of GC28-201.15-1, Issued Spptf'mlll'r 10, Iq71 by TNL CNnl-lIH C,

Two basic types of Jatd set!; can be \wed
in TSS/)t>O: VAM data set~, ,mti phy:;ical
sequpntial (PS) data set!;. VAM data spts
are formatted for use wit_h dinect access
devices and for interface with th .. T"!.:;/360
virtual access method (VJ\M) data mandgement
routines. p::> data sets are formattt·q for
use wi t_h magnetic tape or for communication
between TSS/360 programs and proqrams on
the IBH ~;ystem/360 Operating System or on
the Model 44 Programming System. Except
when the user specifies (in the DDEF com
mand) that a data set is PS, TSS/360 treats
all data sets as virtual storage data sets.

VIRTUAL STORAGE DATA SETS: Formrlt-F, -V,
and -U records are permitted. Blocking dnd
deblocking are done autorratically by thfJ
system. 1'he system uses page-size block:;
(4096 bytes), and ignon::i any attempt hy
the user to specify a block size. Records
must stay within the s~ecified record si~e,
and format-U records must he multiples of a
page in length.

PS DATA SETS: ['Ormat-F, -V, and -U records
are penni tted. The block size and record
t;ize are specified in number of bytes. ' The
block size must always be stated; if no
record size is ~.;pecified, the record~; arf>
assumed to be unblocked (that is, each
block contains only one record).
Undefined-length records cannot be blocked;
therefore, the record size can be specified
for fixed-length and variable-length rec
ords only. blocking and deblocking of
fixed-length and variable-length records
are handled automatically.

Fixed-length (fornlat_-F> records are·
blocked and deblocked in accordance with
the specified block size and reconi :;ize.
The block size must be an exact multiple of
the record size.

When variable-length (format_-v) records
are written, deblocking information is
automatically inserted into each record <md
block. Four bytes are prefixed to the data
in each record to specify deblocking infor
mation, including two bytes for the total
record size; a further four byte:; are pre
fixed to the first record in each block,
two of which specify the total block size.

For format-V records, the user must spe
cify the maximum block size and, for
blocked records, the maximum record size;
in each case, he must allow an additional
four bytes for the deblocking information.
The record size must never exceed the block
size. For example, if the maximum data
length anticipated is 120 bytes, the ~xi
mum record size should be specified as 124
bytes, and a block size of not less than
128 bytes should be sIJecified whetller the
records are blocked or not (unblocked rec~
ortis are considered to be in block:; of one
record each).

102

l"or IInd .. !f int-~<l-lf>ngth (format-U) n'cords,
all procl:s!;inq of records is the responsi
bility of th,? uspr. If a length s(Jecifica
tion it; included in tilP record, the user
mu:;t im;prt it himself, and he must re
trieve t.he information himself.

Recorrt format, block !;ize, and record
size can bl' "pecified in the DeB operand of
a DDEF command in:;t_('ad of in the ENVIRON
MENT att rihllte, hut_ all three must appear
toget.her in one ['lnce or the at_her. The
relevant Dcn suboperands are RECFM,
BLKSIZE, and LRECL.

BUFFER ALLOCATION

A uuffer i,; dn internal storage area
t_hat ir, used for the intermediate storage
of datd t_rrtn~mlitted to and frol'1 a data set.
The USt' of buffers allows transmission and
cOfTI[Jllting time to b(' overlapped, and it may
help ~; l'ppc} up l'rocpssing, especially where
th~~ amount of [,rocf':Jsing per record is
irregular. BufterH are essential for the
automat.ic blocking and deblocking of rec
ords and for locate-mode transmission.

The option PIJFFERS(n) in the ENVIRONMENT
attribute specifies t.he number (n) of buf
fprs to be allocdted for a data set; this
number must_ not pxceed 255 (or such other
mdximul!l a!; wa:; f'stablic;hf'd at system
generat ior,) . If the numher of buffers is
not specifif'd for a RUFFERED fi Ie or is
~'l'ecifif'd ciS zero, two buffers are assumed.

The numher of ~lffers can be specified
in the [l1l1,'NO :;ubop('rand of a DDEF corr.rnand
in::tead of in the ENVIRONMENT attribute.

DATA ~)ET ()f{GAN I ZAT ION

The orgunization of a data set deter
mines how data is recorded in a data set
volume, and how the data is subsequently
retrieved so that it can be transmitted to
the proyram. Records are stored in and re
trieved from a data set either sequentially
on the bi.l:;j" of succe~;sive I'hy,~ical posi
tions, or dilt'ctly by trJf~ m;c of keys spe
cified in data transmission stdtements.
These :;toraqe and retrieval methods providt!
PL/I with two general data set organiza
tions: CONSECUTIVE and INDEXED: CONSECU
TIVE is assUJTled by default if no data set
organization is specified.

In a rlata set with CONSECUTIVE organiza
tion, records arp organized solely on the
basis of their !ciuccessive physical posi
tions; records are retrieved only in
sequential Older, and key" are not used.
Th.' record~; of an INDEXED data set are
arranged in logical sequence according to
keys associated with ('dch rC'cord; the rec
ord!; are ~rranqed in ascending key

ueqUE'nce, dnd indexes, crerlt PI! .\(lIi It\din
tdined by the sy~>b'm, .ilP 11::.'<1 tor ,..·trif>v
,11 ot rt'C()rd~l.

CONSECUTIVE datd sets dlt' till' :;irnplt'r of
tht~ two t,yPps to create .in.) lise, dnd t_hey
have tht' ddvdntaqe that 1;->:;:; illh'rrl<ll and
extern.ll storage is required. lIowl'ver,
records in a CONSECUTIVE dahl st:'t: can be
updated only in their exi:Jtinq ueqllence,
<lnd if records are to be inserted d new
data set must be created. Even sequpntial
updating is not supportE,d for IIldgntet ic
tape.

Althouqh an INDEXED data set HllI!;t be
created sf~quenticllly, once it .'xi:;t::; rp.c
ords can he retrieved, updated, ddded, or
deleted at random. :;equential l'ror.essin<]
of an INDEXED data set is 51ow.'r t hdn that
of a correuponding CONGECUTI VE old til :;f't,
Ot.'cause the records it contaiw; dn~ not
necessarily arranged ill physical :i("luenct'
but dre logically chained in order ot
ascending key values. An INDEXfm dat.1 spt
can contain only format-f' or fOrllldt-V rpc
ords; tormat-U records are not supporU>d.

The use of the record-orientl'd transmis
sion statements to process data set:; of
each type of organization is Jiscusued
under appropriate headings bplow.

VOUIME DISPOSITION

The volume disposition o}Jtion dllows thf'
user to s peci fy the <'Ict ion t () be taken (1)
when the end of a magnetic tdpf' volume i:;
reached and (2) when a data set on d mag
netic tape volume is clos,'d normdlly or
dbnormally.

The action specified by the LEAVE uption
depends on the volume position.

1. If the end of the volum.' hd!; been
reached, no repOSitioning of t_he tat 'E'

occurs and the channel iu freed.

2. If the datcl set is closed normdlly or
abnormally before the end of the
volume, the tape is r€'t,ositioned at
the end of the data set (unless it is
already there) or at the end of the
current volume if a multivolul'lE' data
set is being accessed.

The REWIND option repOSitions the mag
netic tape to the beginning of thf' ddta
set.

If neither LEAVE or RfWINli i:::; specified
in the options list of the EtNIRONMENT
attribute, the tape if; n'positioned dt, th.~
beginnintj of th,! current datd set on the
current volume.

If hot II LEAVE ,lfId REWIND dC" GI,ecil it,d
d!; 'opt jon:; (If tho· ENVIRONMENT dtt_riblJtt~,
IU,:Wl NV i:; i 'JrIOH·'1.

PR I NTEH/ I'll N(' Il "ON"l' l{U 1.

The l'l iot I'r/I'uflch control option!.; C'l'LA!;A
dnd CTLJ60 dPply only to OIJTPUT files d!j!.;O
ci<ltPd wit II CtltJ:;E(:lITIVE data sets. They
:;pecify t.hdt the fir"t c:hacacter of a rec
ord is to tH' int erpretpd a:; d control
character.

1. Th(? CTLA:;A opt ion specifif>s Amf~cican
N<lt i (lrld 1 ;;t ,Hldd r(l FORTRAN control
Cltil r <J ctl'l'!;.

2. Th." CTL'lbO opt ion spl'cif iE'S IBM
Systt-'HI,I l60 l'la<:hinR code control
chdrdct~'r!;.

IN'I'ERCIIAW;E (H-' DATA BETWEEN COkOL AND PUI
PRoejRAM':3

Th.~ COllOL option in the ENVIRONMENT
,lttributl' :;[,t'citieo; t.i1at the file will r.on
tai tI st Cllct lJ[Y:; [!'df>l'p.d accurdiny to the
COilUL (F) .t1<joriU1PI. This type of file is
!;uhi(~ct to til.' tollowiny rE~!jtrictions:

1. TIL" f i I,· ("If. h. used only for rEAD
INTO "no! WkITF. FROM stat'ement:,.

2.. Th.· EVENT o(:t.ion cannot be u!3ed with
t,hE' allov!' :;tel h:!1lo?nt:;.

3. I t <IT! ON-condition arises as a result
ot t h" HEAD INTO stdtement. the vari
<lblf ndmt'<1 in the INTO option cannot
bp U!>f'd in thp on-unit" and return
from the nn-unit must be normal if the
com[,l.,tl'd vdridblp is required.

4. 1'111' t IIp ndml:' cannot in: [Jds~aed as dn
o.cqumf'nt.

A;;YNCIiHONOI1:; OPERATION~; LIMIT

ThE' d:;ynchronou:; operations limit speci
ti,':'; the nllmb"r of incomplet_E:' I/O opera
tion:; wit,h tilP EVENT option that are
dllowed to t;xi:;t, for the file at_ one time.

The decimal IntPger constant specified
with NCP must havp. a value in the range 1
t,hrollqh 99; otlwrwise, 1 is as~umed and an
(-rror [!le~.i!}d(Je i~ is!Jup-d.

Thi:; 01" ion i:; ':quivalent to the NCP
:;UDopf'c,'ln(1 <>t th.~ ocn operand of the DDEF
comm.ind. :;1'" Appf>ndix D of PL/I Program
IIItc!I'S (iuicie.

:;f~ction 10: Hf'cord-Oriented Transmission 103

Page of GC28-2045-1, Is~;u('d :;,'ptl'mh"l' 10,1071 by TN!. (;N~JH-\lHr,

Note: Use of the NCT' opt ion i!; v<lli(l only
for PS data sets rtccesspd by B:;I\M (i.f!. I

CONSECUTIVE SEQm:NTIAL UNBtlFFEl<ED tiles).

TRACK OVERFLOW

The track overflow option ;;pecities'that
records transmitted to a direct-dccess
storage device can be written on overflow
tracks if necessary.

This option is equi va lent to the speci,..
fication of "T" in the RECFM sub~arameter
of the OCB parameter of thp DDEF command.

CONSECUTIVE ORGANIZATION

In a data set with CONSECUTIVE organiza
tion, the records have no keys. When the
data set is creat~d, records are written
conspcutively in the order in which they
are presented. The records can hp re
trieved only in the order in which they
werE' written or in the reverc;e order: .
therefore, the associated filp must have
the SEQUENTIAL attribute. A CONSECUTIVE
data set can have format-F, format-V, or
format-U records.

Note the difference b0twepn thp CONSECU
TIVE option of the ENVIRONMENT attribute
and the SEQUENTIAL attribute. CONSECUTIVE
specifies the physicill organization of a
data set; SEQUENTIAL specifies how a file
is to be processed. A data set with COWiE
CUTIVE organization must be associated with
a SEvUENTlhl filf;; but a data set with IN
DEXED organization can be associated with
either a SEQUENTIAL or DIRECT file.

A CONSECUTIVE Jata set on magnetic tape
can be read forwards or backwards. If the
data set is to be read baCKwards, the as!3O
ciated file must have the BACKWARDS attri
bute. If a data set is first read or writ
ten forwards and then read backwards in the
same program, t.he LEAVl:: option should be
specified in the ENVIRONMENT attribute to
forevent nonnal rewind when the file is
closed (or, with a multivolume data set,
when volume-switching occurs). Variable
length records cannot be read backwards.

Once a CONSECUTIVE data set has been
created, the file that accesses it can be
opened for SEQUENTIAL INPUT or SEQUENT!AL
OUTPUT; or it can be opened for SEQUEN'n"L
UPDATE. provided that the data set is on a
direct-access storage device. If it is on
magnetic tape and opened for OUTPUT, DISP=
MOD must be specified in the DDEF command;
records can then be added to the end of the
data set. (If DISP~MOD is not specified
for a CONSECUTIVE data set that i!; already
created and on magnetic tape, the data set
will be overwritten.) Figure 15 lists the

lOll

data tranGmi!3~;ion !.t.utements and options
that can hf! 1J!;f'd to creat.p. and access a
CONSECUTIVE (1dt rl !.f>t.

:;EVUEN'l'IAL UPDATE

When a cons('cutive data set is accessed
by a SEQUENTIAL UPDATE file, a record must
be retrieved wit.h a READ stat.ement before
it can be updated by a REWRITE statement:
however, every record that is retrieved
need not be rewritten. A REWRITE statement
will always update the last record read.

Consider the followinq:

READ FILE(F) INTO(A)i

READ FlLE(F) INTO(B);

REWRITE FILE(F) FROM(A);

Tht~ REWRITE statpJIlent updates the record
which was read by the second READ state
ment. Thf' record that was read by the
first stat.ement cannot be rewritten after
the second READ !,tatement has heen
executed.

Intf>rveninq READ, statements are not per
mitted hptwef'n d READ statement and a
R~'WRITE ~tcltement that refer to the same
record in a data set. For example, the
following is not valid:

READ FILE (F) INTO (A) EVENT (E1);

READ FILE (F) INTO (8) EVENT (E2);

WAIT (E1);
REWRITE FILE (F) FROM (A);

The REWRITE statement will attempt to
update the last record read, which, in this'
instance, is the record read by the first
READ statement. (A record accessed by a
READ statement with the EVENT option is not
considered to have been read until the
corresponding WAIT statement has been
executed.) Because of the intervention of
the second READ statement, the ERROR condi
tion will be raised.

INDEXED ORGANIZATION

Since a data set with INDEXED organiza
tion is a VAM data set (of the virtual in
dexed type), it must be on a direct access

r-----------------T---T-------------------------,
IFile declaration11Valid statements, with options that must IOther o!='tions that can I
I I appear I also be used I
~-----------------+---+-------------------------~
ISEQUENTIAL OUTPUTIWRITE FILE(file-name) FROM(variable); I I
I BUFFERED I I I
I ILOCATE variacle FILECfile-name); ISET(pointer-variable} I
~-----------------+---+-------------------------~
(SEQUENTIAL OUTPUTIWRITE FILE(file-name) FROM (variable) , !EVENT(event-variatle) I
I UNBUFFERED I I!
~-----------------+-----------.--------------------------------t-------------------------~
I SEQUENTIAL INPUT IREAD FILE(file-naroe} INTO(variatle); I I
I BUFFERED I I I
I IREAD FILEUile-narne) SET({:ointer-varial::le); I I
I I I I
I I READ FILE (f ile-narne) IGNORE (ex~ression); I I
r-----------------t---+-------------------------~
ISEQUENTIAL INPUT IREAD FILE(filE-name) INTO (variable; I EVENT (event-variable) I
I UNBUFFERED I I I
I IREAD FILE(file-name) IGNORE(expression); I EVENT (event-varial::le) I
~-----------------t---+-------------------------~
I SEQUENTIAL UPDATE I READ FILE (file-name) INTO (variatle) ; I I
I BUFFERED ! 1 I
I I READ FILE (file-narre SET (pointer-variatle); I I
I I I I
t (READ FIIE(file-naree) IGNORE(ex~ression); I I
I I I I
I IREWRITE FILE(file-name}; IFROM(variatle) I
~-----------------+---+-------------------------~
I SEQUENTIAL UPDATEI REAl: FILE(file-name) INTO (variable); I EVENT (event-variable) I
I UNBUFFERED I I I
I IREAC FILECEile-name) IGNORE(expression) I EVENT (event-variable) I
I I I I
I IREWRITE FILE(file-name) FRO~(variable); I EVENT (event-variac Ie) I
~-----------------~----------.---------------------------------~-------------------------~
11 The complete file declaration would include the attritutes FILE, RECORD, and I
I ENVIRONMENT (CONSECUTIVE) , for example: I
I I
I DECLARE MASTER FILE RECORD SEQUENTIAL OUTPUT BUFFERED ENVIRONMENT(CONSECUTIVE); I
I I
I By omitting the attributes that would be applied by default, this can be shortened tc:\
I I
I DECLARE MASTER FILE RECORD OUTPUT; I L ___ -------------------_______________ J

Figure 15. statements and Options Permitted fer Creating and Accessing CONSECUTIVE Data
Sets

device. Its records are arranged in logic
al sequence according to keys that are
associated '!lith each record. A key is a
character string that usually represents an
item within the record, sueh as a part
number, a date, or a name. Logical records
are arranged in the data set in ascending
key sequence according to the System/360
collating sequence. Indexes included in
the data set are used by the operating sys
tem data-management routines to locate a
record when the key is supplied. Format-V
and format-F records can be used in an IN
DEXED data set.

Unlike CONSECUTIVE organization, INDEXED
organization does not requirE every record
to be accessed in sequential f'3hion. Once
an INDEXED data set has been created, the
associated file may have the attribute

SEQUENTIAL or DIRECT as well as INPUT or
UPLATE. The INl:EXED data set's records can
be retrieved, deleted, and replaced at ran
dom, or added to the end of the data set.
If the associated file has the DIRECT
attribute, records can also be inserted at
random.

An INDEXED data set can be accessed ran
domly (i.e., ncnsequentially), whether its
associated file is SEQUENTIAL or DIRECT.
The differences are:

• A SECUENTIAL file is more efficient, if
the records are generally accessed in
physical sequence.

• A SEQUENTIAL file allows either sequen
tial (no keys specified) or random
(keys specified) access; all I/O state-

Section 10: Record-Oriented Tra.nsmission 105.

ments used with a CIRECT file must spe
cify a key.

• Only a DIRECT file can be used to add
records at random. With a SEQUENTIAL
file, records can only be added to the
end of the data set, or rerlaced (not
inserted) •

• Only a DIRECT file causes the setting
of an interlock while a data set is
being updated. (An interlock is a pro
qranrring device that allows a dat.a set
t.O be updated wit.hout interference from
other users who have been given access
to the data set.)

• For cases where a KEY, KEYTO, or KEY
FROM Dption is in error, the PL/I
library gives more complete diagnostic
facilities if the CIRECT file is being
used.

Figure 17 lists the data-transmission
statements and options that can be used to
create and access an INDEXED data set.

KEYS

There are two kinds of keys, recorded
keys and source keys. II recor.2ed~TI is a
character string that actually appears with
each record in the data set to identify
that record; its length cannot exceed 255
characters. A source key is the character
string value of the eXfression that appears
in the KEY or KEYFROM option of a data
transwission statement to identify the
statement to which the record refers; for
direct access of an INDEXED data set, each
transmission statement must include a
source key.

The length of the recorded keys in an
INDEXED data set is defined ty the KEYLEN
suboperand of the DDEF command that defines
the data set. If the length of a source
key differs from the specified length of
the recorded keys, the scurce key is trun
cated on the right or padded with blanks on
the right to the specified length.

Since the GENKEY (generic key) option is
not supported by TSS/360 dat.a management,
all source keys should have the length spe
cified in the KEYLEN suboperand of the
DDEF command. If a record with a matching
key is not found, the KE~ condition is
raised and the data set is pOSitioned to
the first record.

The recorded keys in an INDEXED data set
may be separate from, or embedded within,
the logical records. The RKP sutoperand of
the DDEF command determines how th,:: key is
to be maintained. (See Figure 16.) This
suboperand specifies the displacement, in

r
Initiol Key

r---+ _______ E._m_be_(_jd_ed __ K_e_y ______ ~

RKP cO

u.. - ET --,
" i c
2 DATA J

RKpc 4

2:

" 4-hyle l E length KEY DATA S' field

Figure 16. Relationship Between RKP Sub
operand and Record Format

tytes, of the key from the beginning of the
record. The library maintains the key as
an initial (non-embedded) key if RKP equals
zero, for format-F records, or if RKP
equals four, for format-V records. The
library maintains the key as part of the
dat.a if RKP is not zero, for format-F rec
ords, or if RKP is great.er than four, for
forwat-V reccrds. Maintaining the key as
part of the data means that the user must
ensure that the key is in position tefore
the record is written; on input, the KEYTO
option can be used to obtain a copy of the
key.

The use of embedded keys obviates the
need for the KEYTO option during sequential
input, but the KEYFROM oftion is still
required for outr.;ut. (H0'.4€Ver, the data
specif ied by the K'EYFROM ortion may te the
emtedded key itself.)

Luring the execution of a LOCATE or
WRITE statement that adds a record to a
data set with embedded keys, the value of
the expression in the KEYFROM option is
compared with the key emcedded in the rec
ord; if they do not match, the KEY condi
tion is raised. When the KEY condition is
raised in this way by a LOCATE staterrent,
the record in the tuffer cannot be trans
mitted until the key embedded in the record
has teen changed to match the value given
in the KEYFROM option; if the file is
closed1 cefore the key has been corrected,
the key supplied in the KEYFROM option is
automatically substituted for the errtedded
key, and the record lS then transmitted.

1.1n these circurr,stances, the file cculd not
Le closed ex~licitly (i.e., by a CLOSE
statement) but only implicitly on termina
tion of the task that opened the file.

r-----------------T---T-------------------------,
I IValid statements, with options that must 10ther o~tions that can I

I IFile declaration 1 1 appear I also be used I
~-----------------+-----------.--------------------------------+-------------------------~
ISEQUENTIAL OUTPUT I WRITE FiLE (file-name) FROM (variable) I I
I BUFFERED2 I KEYFROli (ex[ression) ; I I
I I I I
I ILOCATE variable FILE(file-nan:e) tSET(pointer-varial;le) I
I I KEYFROfvj(exrres~~ion) ; I I
r-----------------+---+-------------------------~
I SEQUENTIAL INPUT IREAD FIl~(file-name) INTO (variatle), IKEY(expression) or KEYTO I
I EUFFERED2 I I (character-string- I
I I Ivariatle) I
I IREAD FILE(file-narne) SE~(pointer-variable); IKEY(expression) or KEYTO I
I I I (character-string- I
I I I variable) I
I IREAD FIlEUile-naroe) IGNORE (expression) ; I I
r-----------------+---+-------------------------~
ISEQUENTIAL UPDATEIKEAC FILE(file-name) INTO(variable); IKEY(expression) or KEYTO I
I BUFFEHED.2 I I (character-string- I
I I I variable) I
I IREAD FIlE(file-name) SET(rointer-variatle); IKEY(expression) or KEYTO I
I I I (character-string- I
I I I variable) I
I IREAC FILE(file-name) IGNORE(expression): I I
I I I I
I IREWRITE FILE(file-name); !FROM(variable) I
I I I I
I I DELETE FILE(file-name); I I
~-----------------+-----------------~-------------------------+-------------------------~
I DIRECT OUTPUT IWRITE FILE(file-name) FROM (variable) I EVENT (event-variatle) 3 ,
I I KEYFROM(exr::ression) i I I
t-----------------+--+-------------------------~
IDIRECT INPUT IREAD FIIE(file-naroe) INTO (variatle) I EVENT (event-variable) 3 I
I I KEY(expression); I I
t-----------------+---+-------------------------~
IDIRECT UPDATE IREAD FILE(file-name} INTO (variatle) I EVENT(event-variatle} 3 I
I I KEY{ exrression}; I I
I I I I
I IREWRITE FILE(file-name) FROM(variable) IEVENT(event-variatle) 3 I
I I KEY (expression) i I I
I I I I
I IWRITE FILECfile-name) FROM (variable) I EVENT C event-variable) 3 I
I I K EYFROM (exr::rEssion) ; I I
I I I I
I I DELETE FILE(f ile-name) KEY(expression); I EVENT (event-variatle) 3 , t-----------------L-----------------------------------________ L _________________________ ~

11 The complete file declaration would include the attributes FILE. RECORD, and ENVIRON- I
I MENT (INDEXED); if any of the options KEY, KEYFROM, and KEYTO is used, it must also I
I include the attribute KEYEC. For examr::le: I
I I
I DECLARE ~~STER FILE RECORD SEQUENTIAL OUTPUT BUFFERED KEYED ENVIRONMENT(INDEXED); I
I I
I By omitting the attributes that would be ar::r::lied by default, this can be shortened to:,
I I
I DECLARE MASTER FILE RECORD KEYED ENVIRONMENT(INDEXED): I
I I
I:ZIf a SEQUENTIAL file associa.ted with an INCEXEC data set is declared UNBUFFERED, the I
I compiler will change the declaration to BUFFERED. Thus a declaration of UNBUFFERED I
I gains nothing. I
I I
13Use of the EVENT variable with DIRECT files is sur::r::orted by TSS/360 for oompatibility I
I only; in TSS/360, asynchronous I/O can occur only with CCNSECUTIVE SEQUENTIAL UNEUF- I
, FERED files. . , l ____________________________ . ___ J

Figure 17. Statements and opt~vns Permitted for Creating and Accessing INDEXED Data
Sets

Section 10: Record-Oriented Transmission 107-

CREATING Ii DATA SET

When an INCEXEC data set is being
created, if the associated file is opened
for SEQUhNTIAL OUTPUT, the records must be
presented in the order of ascending key
values. (If there is an error in t,he key
sequence, the KEY condition will be
raised.) The associated file can also be
opened for DIRECT OUTPUT, although this
entails a larger processing overhead than
for SEQUENTIAL OUTPUT; the keys can then be
~resented at random.

Once aD INCEXEL data set has been
created, the file that accesses it can be
opened for SEQUENTIAL INPUT or UPDATE, or
for DIRECT INPUT cr UPDATE. It cannot be
opened for OUTPUT.

SEQUENTIAL ACCESS

A SEQUENTIAL file that is used to access
an INDEXED data set may l:e opened with
either the INPUT or the UPDATE attribute.
The data transmission statements need not
include source keys, nor need the file have
the KEYED attribute. Sequential access ·is
in orJer of ascending recorded-key values;
records are retrieved in this crder, and
not necessarily in the order in which they
were added to the data set.

The rules governing the relationship
tetween the READ and REWRITE statenents for
a SEUUENTIAL UPDATE file that accesses an
lNDEXED data set are identical to those for
a CONSECUTIVE data set (descrited above).

During sequential access of an INDEXED
data set, it is possible to refosition the
data set to a farticular record l:y supply
ing a source key in the KEY option of a
READ statement, and to continue sequential
reading from that record. (The associated
file must have the KEYED attribute.) Rero -
sitioning can occur in either a forward or
a backward direction. ThUS, a READ state
ment that includes the KEY art ion will
cause the record whose key is su~plied to
be read; a subsequent READ statement
without the KEY option will cause the rec
ord with the next higher recorded key to be
read.

Since the GENKEY option is not supported
in '1'55/360, the source key should be the
same length as the recorded keys. If the
source key is longer, it is truncated on
the right. If it is shorter, the source
key is padded cn the right with clanks.

DIRECT ACCESS

A DIRECT file that is used to access an
INDEXED data set may be opened with either

108

the INI:'UT or the UPDATE attriLut.e. All
data transmission statem~nts must include
source keys; the DIRECT attribute irrplies
the KEYEC attril:ute.

A DIRECT UPLATE file can te used to re
trieve, add, delete, or rerlace records in
an INDEXED data set.

SUMMARY OF RECORD-ORIEt:<TED TRANSMISSION

The following point~, C'~)Ver t,he salient
features of record-oriented transwissicn:

1. A SEQUENTIAL file specifies t.hat the
data set records can be accessed,
created, or modified, in a particular
order, tl>at is, froJTc the first record
of the data set to the last record of
the data set (or from the last to the
first if the BACKWARDS attrihute has
heen specified).

2. A DIRECT file specifies that the data
set records can be accessed, created,
or modified, in random order. 'Ihe
~articular record of the data set to
be operated uron must be identified ty
d key.

3. A data set that is accessed. created,
or modified by a ,;EQUENTIAL file may
or rray not have recorded keys. If it
does, the key~ can be ignored while
accest,inq sequent ially, or they may be
extracted fron the data set or rlaced
into the data ;3et by the KEY FRO 1', and
KEYTO options. In qeneral, the !Tost
efficient way to create a data set
containing recorded keys is as a
SEQUENTIAL ou'rpUT file. It then can
be accessed as a DIRECT file.

4. SEQUENTIAL INPUT and SEQUENTIAL UPDATE
files may he positioned to d farticu
lar record within the data set by a
READ operation that specifies the key
of the desired record. ~hereafter,
successive READ statements without the
KEY option will access the records
sequentially. This kind of accessing
may b~ used only if the data set has
INrEXED organization and if the file
has the KEYED attribute.

5. Existing records of a data set in a
SEQUENTIAL UPDATE file can be rewrit
ten, ffodified, ignored, or deleted.
The DELETE statement used with this
tYfe of file specifies that the last
record read is to be deleted. 1 Orera
tion with a DIRECT UPDATE file, howev-

1If the DELETE stat.ement is used with a
sequential file, the data set must have IN
DEXED organization.

6.

7.

B.

er, can s~ecify which record is to be
deleted by means of a key; also, rec
ords can be added to the data set by
means of the WRITE statement. An
existing record in an UPDATE file can
be replaced through use of a REWRITi;
statement.

Although the EXCLUSIVE attribute, the
NO LOCK Oftion, and the UNLOCK option
are accepted by the compiler, they
have no rreaning in TSS/360. Inter
locks are applied automatically
whenever a file is cpened for DIRECT
access.

A WRITE statement adds a record to a
data set, while a REWRITE statement
replaces a record. Thus, a WRITE
staterrent may be used with OUTPUT
files, and DIRECT UPDATE files, but a
REWRITE statement may be used with UP
DATE files only. Moreover, for DIRECT
files, a REWRITE statement uses the
KEY option to identify the existing
record to be replaced; a WRITE state
ment uses the KEYFROM option, which
not only specifies where the record is
to be written in the data set, but
also specifies an identifying key to
be recorded in the data set.

Records of a SEQUENTIAL INPUT or
SEQUENTIAL UPDATE file can be skipped
over and ignored ty use of the IGNORE
option of a READ statement. The
expression of the IGNORE option speci
fies the number of records to be
skipped. A READ statement in which
only the FILE option appears indicates
that one record is to be skipped.

EXAMPLES OF DECLARATIONS FOR RECORD FILES

Following are examples of declarations
of files, including the ENVIRONMENT
attribute:

DECLARE INVNTRY UPDATE BUFFERED
ENVIRONMENT (F(100)

INDEXED);

This declaration also specifies only three
file attributes: UPDATE, BUFFERED, and

ENVIRONMENT. Implied attributes are FILE,
RECORD, and SECUENTIAL (the last two attri
tutes are implied ty BUFFERED). Scope is
EXTERNAL, by default. The data set is of
INDEXED organization, and it contains

I fixed-length records of 100 bytes each.
Note that although the data set actually
contains recorded keys, the KEYTO option
cannot be specified in a READ statement,
since the KEYED attribute has not been
specified.

Note that for both of the atove declara
tions, all necessary attributes are either
stated or implied in the DECLARE statement.
None of the attributes can be changed in an
OPEN statement or in a DDEF command. The
second declaration might have been written:

DECLARE INVNTRY
ENVIRONMENT(F(100) INDEXED);

~ith such a declaration, INVNTRY can be
opened for different purposes. It COUld,
for example, be opened as follows:

OPEN FILE (INVNTRY)
UPDATE SEQUENTAIAL BUFFERED;

With this OPEN statement, the file attri
tutes would be the same as those specified
(or imFlied) in the DECLARE statement in
the second example above (the number of
tuffers would have to be stated in the
associated DDEF command). The file might
te opened in this way, then closed, and
then later opened with a different set of
attributes, for example:

OPEN FILE (INVNTRY)
INPUT SEQUENTIAL KEYED;

This OPEN statement allows records to te
read with either the KEYTO or the KEYED
option. Because the file is SEQUENTIAL and
the data set is INDEXED, the data set is
INDEXED, the data set may be accessed in a
purely sequential manner; or, by means of a
READ statement with a KEY option, it may be
accessed randomly. A KEY option in a READ
statement with a file of this description
causes a specified record to be obtained.
Subsequent READ statements without a KEY
cption access records sequentially, begin
ning with the next record.

Section 10: Record-Oriented Transmission 109

e:;EC'TION 11. fClTING AND STRINGJ:!~NDLING

The data manipulation performed by the
arithroetic, ccmparison, and ~it-string
operators are extended in PL/I by a variety
of string-handling and editing features.
These features are specified by data attri
Lutes, statement options, built-in func
tions, and pseudo-varia~les.

The following discussions give general
descriptions of each feature, along with
illustrative examples.

The most fundamental form of editing
performed by the assignment statement
involves converting the data type of the
value OD the right side of the assignment
symbol to conform to tne attributes of the
receiving variable. Because the assigned
value is made to convorm to the attributes
of the receiving field, the Frecision or
length of the assigned value may be
altered. Such alteration can involve the
dodition of digits or characters to and the
deletion of digits or characters from the
converted item. The rules for data conver
sion are discussed in Part I, Section 4,
"Expressions and Data Conversion,· and in
Part. II I Section 6, "Protlem Data
Conversion."

ALTERING THE LENGTH OF ~JTRING DA'l'A

Hhen a value is assigned to a string
variable, it is converted, if necessary, to
the same string type (character or bit) as
the receiving string and also, if neces
sary, is truncated or extended on the right
to confor~ to the declared length of the
receiving string. For example, assume SUB
JECT has the attributes CHARACTER (10),
indicating a fixed-length character string
of ten characters. Consider the following
statement:

SUBJLCT 'TMN::; FOR~ATIONS' ;

The length of the string on the right is
fifteen characters; therefore, five charac
ters will be truncated from the right end
of the string when it is assigned to SUB
JECT. This is equivalent to executing:

SUBJECT = 'TRANSFORMA';

If the assigned string is shorter than
the length declared for the receiving
string variable, the assigned string is
extended on the right either with blanks,

110

in the case of a character-string variable,
or with zeros, in the case of a bit-string
variable. Assume SUBJECT still has the
attributes CHARACTER (10). Then the fol
lowing two stateroents assign equivalent
values to SUBJECT:

SUBJECT
SUBJECT

• PHYSICi.:;· ;
'PHYSICSbbb';

The letter ~ indicates a blank character.

Let CeDE be a bit-string variable with
the attributes BIT(10). Then the following
two statements assign equivalent values to
CODE:

CODE
CODE

'110011'B;
'1100110000'E;

Note, however, that the following state
rrents do not assign equivalent values to
SUBJECT if it has the attributes CHARACTER
(10) :

SUBJECT
SUBJECT

'110011'B;
'1100110000'B;

When the first statement is executed, the
tit-string ccnstant on the right is first
converted to a character string and is then
extended on the right with blank characters
rather than zero bits. This statement is
equivalent to:

SUBJECT = '110011bbbb';

The second of the two staterr.ents
requires only a conversion from bit-string
to character-string type and is equivalent
to:

SUBJECT = '1100110000';

A string valUE, however, is not extended
with blank characters or zero bits when it
is assigned to a string variable that has
the VARYING a ttribute. Instead, t.he length
specification of the receiving string vari
able is effectively adjusted to describe
the length of each assigned string. Trun
cation will occur, though, if the lenqth of
the assigned string exceeds the maxim~m
length declared for the varying-length
string variatl€.

I For the TSS/360 compiler t.he length, in
characters or bits, of a string variable or
intermediate string result is limited to
32,767.

OTHER FORMS OF ASSIGNMENT

In addition to the assignment statement,
PL/I provides other ways of assigning
values to variables. Among these are two
methods that involve input and output sta
tements: one in which actual input and
output operations are perforreed, and one in
which Jata movement is entirely internal.

InFut and output Operations

Although the assignment statereent is
concerned with the transwission of data
tetween storage locations internal to a
computer, input and output operations can
also be treated as related forms of assign
ment in which transmission occurs between
the internal and external storage facili
ties of the computer.

Record-oriented operations, however, do
not cause any data conversion of items in a
logical record when it is transmitted.
Required editing of the record must te per
formed within internal storage either
before the record is written or after it is
read.

Stream-oriented operations, on the other
hand, do provide a variety of editing fUnc
tions that can be applied when data items
are read or written. These editing fUnc
tions are similar to those provided by the
assignment statement, except that any data
conversion always involves character type,
conversion from character type on input,
and conversion to character type on output.

The STRING Option in GET and PUT Statements

The STRING option in GET and PUT state
ments allows the statements t:o be used to
transmit data between internal storage
locations rather than between the internal
and external storage facilities. In both
GET and PUT statements, the FILE option,
specified by FILE (file-name), is replaced
ty the STRING option, as shown in the fol
lowing formats:

GET STRING (character-string-variable)
data-specification;

POT STRING (character-string-variable)
data-sFecification;

The GET statereent specifies t:hat data items
to be assigned to variables in the data
list are to be obtained from the specified
character string. The PUT statement speci
fies that data items of the data list are
to be assigned to the specified ch~racter
string variable. The ·data~specification·
is the same as described for i .. put and out
put. In general, it takes one of the fol
lowing forltis:

DATA [(data-list)]
LIST (data-list)
EDIT (data-list) (format-list)

Although the STRING option can be used
with each of the three modes of stream
criented transwission, it is most useful
with edit-directed transmission, which con
siders the input stream to be a continuous
string of characters. For list-directed
and data-directed GET statements, individu
al items in the character string must be
separated ry comITas or blanks; for data
directed GET statements, the string must
also include the transmission- terITinating
sewicolon, and each data item must appear
in the form of an assignment stateITent.
Edit-directed transmission provides editing
facility by means of the format list.

The STRING option permits data gathering
cr scattering operations to be performed
with a single statement, and it allows
stream-oriented processing of character
strings that are transmitted by record
criented statements.

Consider the following statement:

PUT STRING (RECORD) EDIT
(NAME, PAylt, HOURS*RATE)
(A(12), A(7), P'$999V.99');

This statereent specifies that the
character-string value of NAME is to be
assigned to the first (leftmost) 12
character positions of the string named
RECORD, and that the character-string value
of PAY# is to be assigned to the next seven
character positions of RECORD. The value
of HOURS is then to be multiplied by the
value of RATE, and the product is to be
edited into' the next seven character posi
tions, according to the picture
sj;-ecificaticn.

Frequently, it is necessary to read rec
ords of different formats, each of which
gives an indication of its format within
the record by the value of a data item.
'Ihe STRING ortion provides an easy way to
handle such records; for example:

REAC FILE (INPUTR) INTO (TEMP);
GET STRING (TEMP) EDIT (CODE) (F(U);

IF CODE ,= 1 THEN GO TO OTHER TYPE;
GET STRING (TEMP) EDIT (X,Y,Z)

(X(1), 3 F(10,4»;

The READ statement reads a record from the
input file INPUTR. The first GET statement
uses the STRING option to extract the code
from the first byte of the record and to
assign it to COCE. The code is tested to
determine the format of the record. If the
code is 1, the second GET statement then
uses the STRING option to assign the ite~s

Section 11: Editing and String Handling 111

in the record to X,Y, and Z. Note that the
second GET statement sfecifies that the
first character in the string 1E~P is to be
ignored (the XIl) forwat item in the format
list). Each GET statement with the STRING
option always specifies that the scanning
is to begin at the first character of the
string. Thus, the character that is
ignored in the second GE1 statement is the
same character that is assigned to CODE by
the first GET statement.

In a similar way, the PUT statement with
a STRING option can be used to create a
record within internal storage. In the
following exalq:le, as~,ume that the file
CUTPRT is eventually t.O be printed.

POT STRING (RECORD) EDIT
(NAME, PAY#, HOURS*RATE)
(XU), A(12), X(10), A(]), X(10),
P'$999V.99');

WRITE FILE (OUTPRT) FROM (RECORD);

The PUT statement specifies, by the X(1)
spacing format item, that the first
character assigned to the character-string
variable is to be a single blank, the ANSI
carriage-control code that s~ecifies a
single space before printing. Following
that, the values of the variables NAME and
PAY# and of the expression HOURS*RATE are
assigned. The format list specifies that
ten blank characters are to be inserted
between NAME and PAY# and between PAY# and
the expression value. The WRITE statement
specifies that record transmission is to be
used to write the record into the tile
OU'IPRT.

1HE PICTURE SPECIFICATION

Picture specifications extend the edit
ing facilities available in PL/I, and pro
vide the user with greater control over his
data formats. A picture specification con
sists of a sequence of character codes en
closed in apostrophes which is either part
of the PICTURE attribute, or part of the P
(picture) forrrat-item:

DECLARE PRICE
PUT FILE(SYSPRINT)

PICTURE'$Z9V99'i
EDIT

('PART NUMBER', PART#)
(A (1 2), P' AAA 99 X') ;

Picture specifications are of two types:

• numeric character specifications

• character-string picture specifications

A numeric character specificatior in a
PICTURE attribute indicates that tbe data
item represents a numeric quantity, but
that it is to be stored as a character

112

st:ring; it also lndlcat.es how t.he numeric
value is to be repres~nted in the string.
A nurreric character, specified in a P for
mat item, indicates how a numeric value is,
cr is to be, reFresentt':d as a chdracter
sLring on the external medium.

A character-string picture specification
is an alternative way of describing a
fixed-length cha;:actf;L- string, with the
additicnal facility of specifying positions
in the string that can only contain charac
ters from certain ;3U.t:S~'ts of the corrplete
set of characters aVdllablc on the IBM
System/360 Op'"ra ting !>ystem.

The concepts of t.he two types of r:icture
specifications are de~;cribed separately
telow, and a detailed. description of each
~icture character, tog~ther with examples
of its use, appears in Part II, Section 4,
"picture Specificatioll Characters." It is
sufficient here to note that the presence
of an A or X picture character defines a
picture specification as a character-string
ficture specification; otherwise it is a
numeric character specification.

Numeric Character ~~pecifici:t...Si.:2!}§'

A numeric chaLacter specification speci
fies that the associa~ed data item has a
nurreric value, Lut is to be main·tained
within the computer (or, 1S represented in
the external medium) as a character string.
It also specifies the torm the character
string is to take, and exactly how the num
eric value is represented in the string.
For example:

DCL PRICE PICTURE'$Z9V99',

This specifies tlJat PRICE is to be repre
sented by a character string of length 5.
The first character is always $. the second
is a blank or non-zero digit, and the
third, fourth, and fifth characters are
digits. The numeric value is the four
characters that Cdn represent digits,
regarded as FIXED DECIMAL (4,2), and is
always positive. t3.2~ is represented as
'$1325' and .95 as 'SbU9S'.

The numeric character sfecificatiOl; has
two IldJor uses:

• The first use is for data items that
will be concerned with input/out~ut
operations, tut can be used anywhere in
a program where nurreric data can occur •
However. on IBM System/3M) Time Sharing
System, most flUllIE'ric Oferations on fic
tured data dre cOfl<3ideI:ably less effi
cient than the same op'rations Of' coded
numeric dat.d.

.. The second twe st:ems trom the fact that
il pictured datd i~ero effectively has

two vdluel:i. When the itl'w i:; 11:';,',j in d

IH1l11t'rlC context, the fllllnt'ric vdll1t-' i:.
ohtaillPd from or :;torpci into til"
Chdldct pr str in<j. by t.he conv.'c;ion
prnct'!";!; defined by the picture !'peci f i
edt ion; when the itenl is u!;pd in d
ch,\rdcter context, the act ual ch,H<lcter
!;tr inq that represents ttl!' va 1 ue is
uSt-'d. For example:

DCL COUN'!' PIC'l'URE'999' INITIAL(O),
~)TIUNG CHAR (3);

COllNT = COUNT + 1;
~;THrNc = COUNT;

ThL' inU ial n'pref;,mtat ion of CUllNT is
'000'. 1n the first assiqrunt!nt ,;t.<lte
ment thi~; is converted t.o FIXED DECIMAL
(3,0); the addition is performed; and
the result. is convt:'rted back to the
pj ct ured form • 001'. In t;he :;pcond
assignmpnt statement the Vii lilt! ot
:.;tri nq i:.; set to '001'.

Note that ·character cont pxt· include:;
defining. A numeric-cliazactPr ddta
item may be defined on a cllardcter
string and vice verSel.

When d charact.er-strinq valul' i:;
ar;siqnpd to a numeric charactpr datd
item (wht,ther by ,hr€'ct as"i'1nm<'nt, or
dS thf' n·.'sult of c.;trpan.-oIit"lltld l/O),
the ~>ource must contain a COfl~it.1nt t.hat
i!-; valid accordin'] to tht' rule~; for
constant:; in PL/I :iource pro',Jr-dm:;. The
value of thi,; con!;tant is tht-n con
verted and edited to th", pict.uu.'
:;pecification.

Tile followin'3 example will tll!'refore
re!";ult in a conversion errcr:

DCL A PICTURE '$$$9V.9Q';
A = '$17.95';

The currency symbol mak .. s ttl • .'
character-string constant invdlld for
conver~ion to the aritt~etic vdlue of
the numeric character varidble, even
though its character-strin'1 value con
tai n:; a currency symbol.

Correct examples are:

A '17.95';
A 17.95;

either of which would result in A hav
ing the character-string value b$17.9~.

The 'g' Picture Character in Numeric
Character Specifications

The ~icture character '9' is the simp
lest form of numeric character specifica
tion. A string of n, '9' fJicture charac
ters specifies that the item is to be

represpntyo hI' d f j xPd-lf'ngth r.tlardcter
~;trinq of h'nqth ", f->df:h charaf:tf~r of which
is a diqi t (z('ro t.hrou(Jh ni nf'). Thf' llumer
ic vall1t' i:; th.- VdJll~' of thp djgit!; d:; an
lmsignpd \Jpcimdl nmJUwr (i.e., FIXED DECI
~.AL Cn, 0) • For ('xarnple:

·DCL DIG 1'1' l' lCTlJ l< t: ") , ,
COllNT l'ICTURE'9Q9',
XYZ PJCTUHE 'ClO)9';

The la!;t lin" :;how;; an alternative way of
writing thf' picturp character 'g' ten
times.

. Example of m;e;

DCL 1 CARn IMJ\GE,
2 DATA CHAR (72) •

2 IDENTIFICATION CHARD),
2 :;EV:JENCE PIC' 99999';

:;E{,jUENCE '" SEQUENCE + 1;
WRITE FILE (()UTPlJT) FROM(ClU<D IMAGE);

Note that the definition of 'g' in a
characler- :;tr ing picture allows the ccrCtC~S
l,ondin<] chdracter to be either a blank or a
d i'J it.

It i~; oft!-n [!rpf.>rabl~ to replace lead
ing zero,; in numlJ<"'r:; by blank~; In picture
';iA·cificdt ions, this ir; accomplished by
u,;ing the Z picture character. A picture
s~ecification contctining only Z's and g's
bd:~ one or more Z's optionally followed by
one or more 9'~. The rppresentation of
nUJlleric dat.a is as for the '9' picture spe
cification, except that. if the digit to be
h~!ld would otherwi:;" be zero and if all
diqit positions to the left would also be
zero, then the character string will con
edin a blank in this position. Example:

OCL PAGE. ;,{JMFlI::R PICTURE' ZZg· ;

197 i:, hel'l d:; '197',69 as 'b&9', 5 as
'bo')', and zero dS 'bbO'. With a picture
,;[,ecification of all Z's, a value of zero
is held as an all-blank string.

The asteri,;k picturp charact.pr has the
:;ame effect as the 'Z', except that an '.'
is held in the string instead of a blank.
This can b4> used, for example, when print':'
log checks, when it is desired not to leave
blank space:; withill fields. For example:

DeL CREDIT rIl.'TURE '$"9.99';

(The $ dnd. picture characters are
de:;cribed btc'low.) A value of 95 is held as
's •• o.qr,'; d value of 12350 is held as
'$123. ~O·.

Section 11: Editing and String Handling 113

P':l.l]C' of GC2B-2045-1, lssu(,(j [;('pt!'ml1cr 30, 1971 by TNt. CN2H-llH5

The V Picture Character

Up t,o now, numeric charact,er :;ppcitica
tions have only represent.ed non-negdtive
intpgcr values. The V pict.ure character
indicates the position of an as:;llllled deci
mal point within the character st,ring. For
example:

DeL VALUE PICTURE 'Z9V999';

The string '12345' represents the numeric
value 12.345. Note that the V does not
specify a character position in the
character-string representation; on assign
ment to the data item, a decimdl I~int is
not, included in the character string.

The Insertion Picture Characters: B • I'

A decimal point picture character (,)
can appear in a numeric picture ~;l)Pcifica
tion. It merely indicates that d decimal
pOint is to be included in the character
representation of the value. Therefore,
tne decima 1 point is a pa rt of it:;
character-string value. The decimal point
picture character does not cause decimal
point alignment during assignment; it is
not a part of the variable's arithmetic
value. Only th., V pict,ure character cau~;(::.

alignment of decimal points. For t->xampl e:

DECLARE SUM PICTURE '999V.99·;

SUM is a numeric character variable r8pre
senting numbers of five digits with a deci
mal point assumed bet.ween the third "mti
fourth digits. The actual point specified
by the decimal point insertion character i~;

not a part of the arithmetic value; it is,
however. part of i ts character-~,tring
value. (The decimal point picture charac
ter can appear on either side of the char
acter V. Gee Part II, Section 4, ·Picture
Specification Characters.-) The following
two statements assign thE' same character
string to SUM:

SUM 123;
SUM 123.00;

In the first statement, two zero digits are
added to the right of the digits 123.

Note the effect of the following
declaration:

DECLARl:: RATE PICTURr: • 9V99. 99' ;

Let RATE be used as follows:

RATE = 1.62;

When this statement is executed, decimal
point alignment occurs on the character V

114

ano not. on Uw decimal point picture char
acter thilt, dppf-'drS in the picture speCifi
cation for RATE. If RATE were printed, it
would dpppar a" '162.00', but its arithme
tic value would be 7.6200.

Unl ike t,he V picture character. which
can appt'<'lr only once in a picture specif i
cation, th{~ decimal point picture character
can apl~ar more than once; this allows
digit grollp!; within the numeric character
dat.a item t a be separated by points, as is
common in lJewey decimal notation and in the
·nul'1eric not <.It. ion:; of some European
countr ip:;.

B(>cause a decimal point pictur·e charac
ter causes a perioo charact,er to be
inserted into the character-string value of
d numeric character data item, it is called
an i ~-;prt,ion character. PL/I provides
three other in!;ertion characters: comma
(,), uld~h (/). ano blank (B), which arc
USf'd in ttl.' ~,am(~ way as the decimal point
picture charact er except that. a comma,
SlASh, or blank is inserted into the char
acter strinlj. Consider these statements:

DECLJ\RE RE~(JL'I' PlcrURE '9.999.999,V99';
HE~ULT = 1234567;

Tht= charact er-string value of RESULT would
be '1.234.567,00'. Note that decimal point
alignment occurs before the 'two rightmost
digit posit.ions, a,; specified by the V pic
ture charact.er. If RESULT were assigned to
d coded arithmetic field, the value of the
ddta converted t.o arithmetic would be
1234567.00.

The $ picture character controls the
appearance of the currency symbol ($) in
specif ied positions of numeric character
data ite~~. For example. a dollar sign can
be app('nopd to the left of a numeric char
aeter item, a~; indicated in the following
stdtemt'r,ts:

DECLJ\RE PRICE PICTURE '$99V.99';
PRICE = 12.45;

The character-string value of PRICE is
equivalent to the character-string constant
'$12.45'. Its drithmetic Value. however,
is 12.45.

Sign Specification in Numeric Character
Specif icat. ions

There dre several way!; in which signed
informcltion can be held in a numeric char-

Page of GC28-2045-1, Issued September. 15. 1970 b}' TNL GN28-3171

acter data it.:p.m. The simplest of these is
the S character specificatiou. This speci
fies a character in the character-string
representation that contains ' .. " if the
value is positive or zero, and '-' if the
value is negative. It must occur either to
the right or to the left of all digit posi
tions. For example:

DeL ROOT PICTURE 'S999';

50 is held as '+050', zero as '+000', and
-243 as '-243'. Similarly the picture
character specifies a corresponding charac
ter position containing ' .. ' for positive or
zero, and blank for negative values; the
'-' picture character specifies a corres
ponding character position containing blank
for positive or zero, and '-' for negative
values.

Overpunched Sign-Specification Characters:
T, I, and R

An alternative way of representing
signed values, which does not require an
additional character in the string, is by
an overpunched Sign specification. This
representation arose from the custom of
indicating signs in numeric data held on
punched cards, by superimposing a 12-punch
(to represent +) or an 11-punch (to repre
sent -) on top of a column containing a
digit (usually the last one in a field).
The resulting card code is, in most cases,
the same as that for an alphabetic charac
ter, e.g., 12-punch superimposed on 1
through 9 gives A through If 11-punch
superimposed on 1 through 9 gives J through
R. The 12-0 and 11-0 combinations are not
characters in the PL/I set but are within
the set of characters accepted by the IBM
System/360 Time Sharing System implementa
tions for character data.

The T picture character specifies a
character in the character-string represen
tation that holds a digit and sign. in the
representation described above, i.e., 12-
punch superimposed on 1 through 9 (A
through I) for positive or zero, ii-punch
superimposed on 1 through 9 (J through R)
for negative. It can appear anywhere a '9'
picture specification character could have
occurred. For example:

DeL CREDIT PICTURE 'ZZV9T';

The character-string represe,ntati)n of
CREDIT is 4 characters. +21.. 05 is held as
'2i0E', -0.01 is held as 'bbOP'.

The I picture character specifies a
character position that holds Lhe represen
tation of a digit overpunched with a 12-
punch if the value is positive or zero, or
a digit without overpunch. i.1 the value is
negative.

The R pict.ure character specifies a
character position that holds the represen
tation of a digit overpunched with an 11-
punch if the value is negative. or a digit
without overpunch. if the value is posi
tive. For example:

GET EDIT (X) (P'R99');

sets X to (+}132 on finding '132' in the
next 3 positions of the input: stream, but
to -132 on finding 'J32'.

other Numeric-Charact.er Facilities

Further details of usage of the above
picture specification characters, toqether
with details of picture specification char
acters for floating signs and currency sym
bols, floating point values, and sterling
values, appear in Part II, Section 4, "Pic
ture Specification Characters."

The full list of numeric-character
specification characters is 9,V,Z.*.Y,
(•) • (,) • 1, B, S -.• $. CR. DB. T. I. R. K. E , F • 8. 7 , 6
P.H.G"G,H, and M, of which all except K.V,
F,G, and M specify the occurrence of a
character in the character-string
represent.ation.

Character-stri~ Pi~ture Specification~

A character-string picture specification
is an alternative way of describing a
fixed-length character string. with the
additional facility of specifying positions
in the string t.hat only contain characters
from certain subsets of the complet.e set. of
characters available on the IBM Svstem/360
Time S',aring System. ~

A character-strln9 picture specification
is recognized by the occurrence of an A or
X picture character. The only valid char
acters in a character-string picture speci
fication are A. X. and 9. Each of these
specifies the presence, in the character
string. of one character poSition that can
contain the following:

Any character recognized by the
particular implementation (for the
IBM Systeml360 Time Sharing Syst.eII'l.
any oftne 256 bit combinations
that can occur in t.he a-bit. byte).

A Any alphabetic character, or blank.

9 Any digit, or blank. Note the dif
ference from the 9 picture charac
ter in numeric cha racter
specifications.

When a character-stri."9 value 1s assigned,
or transferred. to a pictured character
string data it. em, the parti (.-ular character
in each position is checked for validity,

Section 11: Editing and String Handling 115

Page of GC28-2045-1. Issued September 15, 1910 by TNL GN28-31.71

as specified by the corresponding picture
specification character. If the character
is invalid. the CONVERSION condition is
raised. For example:

DECLARE PART# PICTURE 'AAA99X";

The following values are valid for assign
ment to PART#.

'ABC12M'
• bbb09/'
'XYZb13"

The following values are not (the invalid
characters are underscored)~

'AB123M'
• ABCl/2'
• Mb#~5; I

BIT-STRING HANDLING

The following examples illustrate some
of the facilities of PL/I that can be used
in bit-string manipulations.

DECLARE I PERSONNEL_RECORD,
2 NAME,

3 LAST CHARACTERC1S),
3 FIRST CHARACTER(lO),
3 MIDDLE CHARACTER (1) ,

2 CODE STRING,
3 MALE BIT(l),
3 SECRETARIAL BIT(l>,
3 AGE,

4 (UNDER 20,
TWENTY TO 30.
OVER_30"> BITel),

3 HEIGHT,
4 (OVER 6,

FIVE-SIX TO 6,
UNDER 5 6) BITel>,

3 WEIGHT,
4 COVER 180,

ONE_TEN_TO_180 ,
UNDER_II 0) BITel),

3 EYES,
4 (BLUE,

BROWN,
HAZEL,
GREY,
OTHER) BIT (1).

3 HAIR,
4 (BROWN,

BLACK,
BLOND,
RED.
GREY,
BALD) BIT(1),

3 EDUCATION,
4 (COLLEGE,

HIGH SCHOOL,
GRAMMAR_SCHOOL) BIT(l);

This structure contains NAME, a minor
structure of character-strings, and CODE-

ll6

STRING, a minoI:' structure of bit-strings.
• By default. the elements of PERSONNEL_RE

CORD have the UNALIGNED attribute. Conse
quently, CODE_STRING is mapped with eight
elements per byte. that is. in the same way
as a bit-string of length 25.

Each of the first two bits of the string
represents only two alternatives: MALE or
, MALE and SECRE.'TARIAL or , SECRETARIAL. The
other categories (at level 3) list several
alternatives each. (Note that the level
number 4 and the attributes BIT (1) are fac
tored for each category.)

The following portion of a program might
be used with PERSONNEL_RECORD:

INREC: READ FILE(PERSONNEL)
INTO (PERSONNEL_RECORD);

IF (,MALE ,. SECRETARIAL
, UNDER 20
,. UNDER-S 6
,. UNDER=110
, BLUE
,. (BAIR. BROWN I BLOND)
& HIGH SCHOOL)
I (MALE & lSECRETARIAL
& OVER 30
,. OVER=6
, OVER_ISO
Ii. EYES. GREY
& BALD
,. COLLEGE)

THEN PUT LIST (NAME):

GO TO INREC;

Another way to program the same informa
tion retrieval operation, as shown in the
following coding. would result in consi
derably shorter execution time:

DECLARE PERS_STRING BIT(2S) DEFINED
CODE_STRING;

IF PERS STRING
=-'0110000l00Il0000l000000l0'B
'l'HEtl GO TO OUTP;

IF PEPS_STRING ,
= 'OlI000010QIIOOOOOOIOOOOIO'B
THEN GO TO OUTP;

IF PERS STRING
=-'100011001000001000000l100"B
THEN GO TO OUTP;

GO TO INREC;

OUTP: PUT LIST (NAME);

GO TO INREC.

In this example, the bit string PERS STRING
is defined on the minor structure -

Page of GC28-2045-1, I.ssued September 15, 1970 by TNL GN2B-3171

CODE_STRING. Bit-string constants are con
structed to represent the values of the
information being sought. The bit string
then is compared, in turn, with each of the
bit-string constants. Note that the first
and second constants are identical except
that the first tests for brown hair and the
second tests for blond hair. These two

variations are specified in the first
example by (HAIR.BROWNIBLOND).

Note that the second method of testing
PERSONNEL RECORD could not be used if the
structure-were ALIGNED (the base identifier
for overlay defining must be UNALIGNED).

Section 11: Editing and String Handling 116.1

The first method, if it ~ere used, would be
more efficient with an ALIGNED structure.

The tests mi9ht also te made ~ith a
series of IF statements, either nested or
unnested, in which each tit would be tested
with a single IF statement. It ~ould
require a greater amount of coding, but it
~ould be faster at execution time than an
IF statement containing many tit-string
operators.

CHARACTER-STRING AND BIT-STRING BUILT-IN
FUNCTiONS

PL/I provides a numter of tuilt-in fUnc
tions, some of which also can be used as
pseudo-variables, to add power to the
string-handling facilities of the language.
Following are trief descriptions of these
functions (more detailed descriptions
appear in Part II, Section 1. "Built-In
Functions and Pseudo-Variables·).

The BIT built-in function specifies that
a data item is to be converted to a bit
string. The built-in function allo~s a
user to specify the length of the converted
string, overriding the length that ~ould
result from the standard rules of data
conversion.

The CHAR built-in function is exactly
the ~ame as the BIT built-in function,
except that the conversion is to a charac
ter string of a specified length.

The SUBSTR built-in function, which can
also serve as a pseudo-variable in a
receiving field, allows a specific sub
string to be extracted from (or assigned
to, in the case of a pseudo-variable) a
specified string value.

The INDEX built-in function allo~s a
string, eitner a character string or a bit
string, to be searched for the first occur
rence of a specified substring, ~hich can
ne a single character or bit. The value
returned is the locaticn of the first char
acter or bit of the substring, relative to
the beginning of the string. The value is
expressed as a binary integer. If the sub-

string does not occur in the specified
string, the value returned is zero.

The LENGTH tuilt-in function gives the
current length of a character string or bit
string. It is particularly useful ~ith
strings that have the VARYING attribute.

The HIGH built-in function provides a
string of a specified length that consists
of repeated occurrences of the highest
character in the collating sequence. For
System/360 implementations. the character
is hexadecimal FF.

The LOW built-in function provides a
string of a specified length that consists
of repeated occurrences of the lowest char
acter in the ccllating sequence. For
System/360 implementations, the character
is hexadecimal 00.

The REPEAT tuilt-in fUnction permits a
string to be formed from re~eated occur
rences of a specified substring. It is
used to create string patterns.

I The STRING bUilt-in fUnct.ion ~hich can
also be used as a pseudo-variatle, conca
tenates all the elements in an aggregate
variable into a single string element.

The BOOL built-in function allows up to
16 different Boolean o~erations to be ap
plied to t~o specified tit strings.

The UNSPEC tuilt-in function, which can
also be used as a pseudo-variable, speci
fies that the internal coded representation
of a value is to be regarded as a tit
string with no conversion.

The TRANSLATE built-in function trans
lates a specified string according to a
translation tatle defined by t~o other
strings.

The VERIFY built-in function verifies
that each character or tit in a given
source string is represented in a given
verification string; in other words, it
tests the validity of each character or bit
according to user-specified criteria.

Section 11: Editing and String Handling 117

SECTION 12: SUBROU1'INES AND FUNCTIONS

ARGUMENTS AND PARAMETERS

Data can be made known in an invoked
procedure by extending the scope of the
names identifying that data to include the
invoked procedure. This extension of scope
is accomplished by nesting procedures or by
specifying the EXTERNAL attribute for the
names.

There is yet another way in which data
can be made known in an invoked procedure,
and that is to specify the names as arqu
[Ilents in a list in the invoking statement.
Each argument in the list is an expression,
a file nane, a statement label constant or
variable, or an entry name that is to be
passed to the invoked procedure.

Since argu[Ilents are passed to it, the
invoked procedure must have some way of
accepting them. This is done by the expli
cit declaraticn of one or more Earameters
in a list in the PROCECURE or EN1RY state
ment that is the entry point at which the
procedure is invoked. A parameter is a
name used within the ~nvoked procedure to
represent another name (cr expression) that
is passed to the procedure as an argument.
Each parameter in the parameter list of the
invoked procedure has a corresponding argu
ment in the argument list of the invoking
statement. This correspondence is taken
from left-to-right; the first argument
corresponds to the first parameter, the
second argument corresponds to the second
parameter, and so forth. In general, any
reference to a parameter within the invoked
procedure is treated as a reference to the
corresponding argument. The number of
arguments and parameters must be the same.

IThe maximum number of parameters permitted
at any entry point is 64.

The example oelow illustrates how param
eters and arguments may be used:

118

PRMAIN: PROCEDURE;
r;ECLARE NAME CHARACTER (20),

ITEM BIT(5);

CALL OUTSUB (NAME, ITEM);

END PRMAINi

OUTSUB: PROCEDURE (A,B);
DFCLARE A CHARACTER (20),

B BIT(5);

PUT LIST (A,B);

END OUTSUB;

In ~rGcedure PRMAIN, NAME is declared as
a character string. and ITEM as a bit
string. The CALL statement in PRMAIN
invokes the procedure called OU1SUB, and
the Farenthesized list included in this
procedure reference contains the two argu
ments being passed to CUTSUB. The PROCE
[URE staterr.ent defining OUTSUB declares two
parameters, A and B. When OUTSUB is
invoked, NAME is associated with A and ITEM
is associated with B. Each reference to A
in OUTSUB is treated as a reference to NAME
and each reference to B is treated as a
reference to ITE~. Therefore, the PUT LIST
(A,B) statement causes the values of NAME
and ITEM to be written into the standard
system output file, SYSPRINT.

Note that the passing of arguments usu
ally involves the passing of names and not
merely the values represented by these
names. (In general, the name that is
passed is usually the address of the value
or an address that can be used to retrieve
the value.) As a result, storage allocated
for a variable before it is passed as an
argument is not duplicated when the Froce
dure is invoked. Any change of value spec
ified for a parameter actually is a change
in the value of the argument. Such changes
are in effect when control is returned to
the invoking block.

A param€ter can be thought of as
indirectly representing the value that is
directly represented by an argument. Thus,
since both the argument and the pararreter
represent the same value, the attributes of
a parameter and its corresponding argurrent
rrust agree. For example, an obvious error
exists if a parameter has the attribute
FILE and its corresponding argument has the
attribute FLOAT. However, there are cases
in which such an error may not be so
obvious, for example, when an argurrent is a
constant. Certain inconsistencies between
the attributes of an argument and its asso
ciated parameter can be resolved by speci
fying, in an invoking procedure, the ENTRY
attribute for an entry name to be invoked.

Pd'l<' of CC'2B-201.15-1, Issued September 30, 1971 by TN!. CN2R-l1W.

The ENTRY attribute specificat.ion provides
t.he facility to specify that: the compiler
is to qf>nerate coding to convert one or
more it rgurnents to conform wi th th(~ a t.t.ri
butes of the associated paramet.ers. This
topic is discussed later in this chapter in
thl' sections wThe ENTRY lIttributp· and
-Dummy Arguments.-

A name is explicitly declared to be a
parameter by its appearance in the parame
ter list of a PROCEDURE or ENTRY statement.
HoweVer, its att.ributes, unless defaults
apply, must be explicitly stated within
that procedure in a DEC~RE statement.

Parameters, therefore, provide the means
for generalizing procedures so tliat dat.a
whose names may not be known wit.hin such
procedures can, nevertheless, be operated
upon. There are two types of generalized
procedures that can be writtf,n in PL/I:
subroutine procedures (ca lIed :;imply, sub
routines) and function proct-'dures
(flmetions) .

SUBROUTINES

A subroutine is a procedure that is
invoked by a CALL statement and w,iually
requires arguments to be passed to it. It
can be either an external or internal pro
cedure. A reference to such a procedure is
known as a subroutine reference. The gen
pral format of a subroutine rd:ertOnce is a~;
follows:

CALL entry-name (C argument_ [, argument.] •••)] ;

Note that a subroutine can also be invoked
through the CALL option of an INITIAL
attribute specification.

Whenever a subroutine is ~nvoked, the
arguments of the invoking statement are
associated with the parameters of the entry
point, and control is then ~Issed to that
entry point. The SUbroutine is thus acti
vated, and execution begins.

Upon termination of a subroutine, con
trol normally is returned to the invoking
block. A subroutine can be termlnated
normally in any of the following ways:

1. Control reaches the final END state
ment of the subroutine. Execution of
this statement causes control to be
returned to the first executable
statement logically following the
statement that originally invoked the
subrouti ne. There is an except. ion,
however: return of control from a
subroutine invoked by the CALL option
is to the statement containing the
CALL option at the point immediately
following that option. Either of

these is considered to be a normal
rpturn.

2. control ["t>aches a RETURN statement in
the subroutine. This causes the same
normal ret.urn caused by the END
stdtement.

3. Cont.rol rpaches a GO TO statement that
transfers control out of the subrou
tine. (This is not permitted if the
subroutine is invoked by the CALL
option.) The GO TO statement may
specify a label in a containing block
(the label must be known within the
subroutine>, or it may specify a pa
rameter that has heen associated with
a label argument passed to the subrou
tine. Although this is considered to
be normal termination of the subrou
tine, it is not normal return of con
trol, as effected by dn END or RETURN
st tement.

A STOP or EXIT statement encountered in a
subrout_ine abnormally terminates execllt ion
of that subroutine dnd of thp entire pro
gram associated with the procedure that
invoked it.

The following example illustrates how a
subroutine interacts with the procedure
that invokes it:

A: PROCEDlJRE;
DEC LAR 1:-; RATE FLOAT (10). TIMe: l"WAT('J),

[JI:;TANCE F'LOATC1S), MASTER FILE;

CALL kEAUCM (HATE, TIME, DI~)TANCE,
Ml\:,TER) ;

END Ai

READCM: PROCEDURE (W,X,'l,Z)i
DECLARE W FLOAT (10), X FLOATCS),

Y FLOAT(lS), Z FILE;

GET FILE (Z) LIST (W,X,'l);

Y = W*X;
IF Y > 0 THEN RETURN;

ELSE PUT LISTC'ERROR READCM')i
END READCMi

The .arguments HATE, TIME, DISTANCE, and
MA:;TER are passed to the parameters W, X,
'l, and Z. Consequently, in the SUbroutine,
a reference to W is the same as a reference
to RATE, X the: ,'mf> as TIME, Y the same as
CISTANCE, dnd Z the same as MASTER.

Section 12: Subroutines and Ftmctions 119

1'.1'1<' of GC28-204S-1, Issul'<1 :;qlt('m\>l'r 30,1'171 by TNL CN2H--llH',

FUNCTIONS

A function is a procedure tl\dt always
returns a single value to the l~int of
invocation. It usually require~; ar'lllment_s
to be passed to it when it i:; invoked, dnd
is invoked by the appearance of the func
tion name (and associated argumellt:;) in an
expression. Such an appearance i:i called a
fUnction reference. Like a subroutine, a
function can operate u[~n the ar'!uments
passed to it and upon other known data.
But unlike a SUbroutine, a function is
written to compute a single value which is
returned, with control, t_o the point of
invocation, the function reference. Th~s
single value can be of arithmetic, string
(including picture data), locator, or area
type. The maximum number of different data
types or precisions return~d by one fun~
tion may not exceed 256. An example of a
function reference is contained in the fol
lowi ng procedure:

MAINP: PROCEDURE;

GET LIST (A, B, C, Y);

X Y**3+SPROD(A,B,C);

l:;ND MAINP:

In the above procpdure, the assignment
statement

x = Y**3+SPROD(A,B,C);

contains a reference to a function cdlled
SPROD. The parenthesized list following
the function name contains the arguments
that are being passed to SPROD. Assume
that SPROD has been defined as follows:

SPROD: PROCEDURE (U,V,W);

IF U > V + W
Tll EN R l:'TURN (0);
ELSE RETURN (u.V.W);

END SPROD;

When SPROD is invoked by MAINP, the
arguments A. B, and C are associated with
the parameters U, V, and W, respectively.
Since attributes have not been exr,Jicitly
declared for the arguments and parameters,
defaUlt attributes of FLOAT DECIMAL (6) are

120

applieo to cdch drgument dnd parameter.
(The default precision is that defined for
!;i'~;tem/360 implement_ations.) Hence, the
attribute!; dn~ consistent .• and the associa
tion of the ar(juments with the pardmeters
produce:; no prror.

ourin<j t .rlP ext:cut.ion of SPROD, t-he IF
statement_ i:j encountered and a test i~
made. If {J is greater than V + W, the
statement dssociated with the THEN clause
is executed; othcrwise, the statement asso
ciated wit_h t.hf! ELSE clause is executed.
In either case, the executed statement is a
RETURN st.at f'mpnt •

The RETURN ~tatement is the usual way by
which d function is tf'rminatf'd and control
is returned to the invoking procedure. Its
Uf;e in rl fllnction differs somewhat from its
use in a ~;lIhroutinp; in a funct_ion. not
only doe~; it rpturn control but it also
rct.urn:~ <1 vdlu(~ t_o the point of invocation.
The genprdl tOrTn of the RETURN statement,
when it is used in a function, is as
follow:, :

Rf.'I'IJRN «~l(:ment-expression);

The expr,>ssion must be present and must
represent d single value; i.e., it cannot
be an drrelY or structure expression. It is
this va lue t.hat io; rl'..>turned to the invoking
procedure at the [,oint of invocation.
Thus. for the above example,' SPROD returns
eilher n or the value represented by U*V.W,
along with control to the invoking expres
"ion in MAINP. The returned value then
effectively replaces the function
reference, dnd evaluation of tbe inVOking
expression continueo;.

A function can also hI" terminated by
execut ion of d (;0 TO stat ement. I f this
method is used, evaluation of the expres
sion that invoked the function will not be
completed, and control will go to the des
ignated statement. As in a subroutine, the
trdnsfer pOint specified in a GO TO state
ment may br' d parameter t.hat has been asso
ciated with d label argument. For example,
assume that MAINP and SPROD have been
defined as follows:

MAINP: PROCEDURE;

GET LIST (A,B.C,Y);
X r Y.*J+SPROO(A,B,C,LABl):

LAB!: CALL ERRT;

Page of GC28-2045-1, Issued September 15. 1910 by TNL GN28-3171

END MAINP;

SPROD: PROCEDURE (U,V,W,Z);
DECLARE Z LABEL:

IF 0 > V + W
THEN GO TO Z;
ELSE RETURN (U*V*W>,

END SPROD;

In MAINP, LABl is explici t.ly declared to
be a statement label constant by its
appearance as a label for the CALL ERRT
statement. When SPROD is invoked, LABl is
associated with parameter Z. Since the
attributes of A must agree with those of
LABl, Z is declared to have the LABEL
attribute. When the IF statE!ment in SPROD
is executed, a test is made. If U is
greater than V + W, the THEN clause is
executed, control returns to MAINP at the
statement labeled LABl, and evaluation of
the expression that invoked SPROD is dis
continued. If U is not greater than V + W,
the ELSE clause is executed and a return to
MAINP is made in the normal fashion. Addi
tional information about the use of label
arguments and label parameters is contained
in the section -Relationship of Arguments
and Parameters" in this section.

Note: In some instances, a function may be
so defined that it does not require argu
ments. In such cases, the appearance of
the function name within an expression will
be recognized as a function reference only
if the function name has been explicitly or
contextually declared to be an entry name.
See -The ENTRY Attribute- in this section
for additional information.

Attributes of Returned Values

The attributes of the value returned by
a function may be declared in two ways:

1. They may be declared by default
according to the first letter of the
function name.

2. They may be explicitly declared in the
RETURNS option of the PROCEDURE (or
ENTRY) statement for the function.

The value of the expression in the RETURN
statement is converted within the function.
whenever necessary, to conform to the
attributes specified by one of the two
methods above.

Attributes specified in ENTRY statements
can be different from those specified in
the encompassing PROCEDURE Btatement.

In the previous examples of MAINF and
SPROD. the PROCEDURE statement of SPROD
contains no attributes declared for the
value it returns. Thus, t.hese attributes
must be deterreined from the first letter of
its name # S. The attr.ibutes of the
returned value are therefore FLOAT and
DECIMAL. Since these are the attributes
that the returned value is expected to
have. no conflict exists.

Note: Unless the invoking procedure pro
vides the compiler with information to the
contrary, the attributes of the value
returned by a fUnction to the inVOking pro
cedure are always determined from the first
letter of the function name.

The RETURNS Option: The way in which
attributes can be declared for the returned
va.l ue in the PROCEDURE or ENTRY statement
is illustrated in the following example.
Assume that the PROCEDURE statement for
SPROD has been specified as follows:

SPROD: PROCEDURE CO. V • W • Z) RETURNS
(FIXED BINARY);

With this declaration. the value returned
by SPROD will have the attributes FIXED and
BINARY. However, since these attributes
differ from those that would be determined
from the first letter of the fUnction name.
this difference must be stated in the
inVOking procedure to avoid a possible
error. The PL/I user communicates this
information to the compiler with the
RETURNS attribute specified in a DECLARE
statement in the invoking procedure.

The RETURNS Attribute: The RETURNS at.tri
bute 16 specified in a DECLARE statement
for an entry name. It ::;;peclfies the attri-

I bute of the value returned by that func
tion. It further specifies. by implica
tion, the ENTRY attribute for the name;
consequently. it is an !tPll¥ name attribute
sEecificatip~. Unless default attributes
for the entry name apply. any invocation of
a funct.ion must appear within the scope of
a RETURNS attribute declaration for the
entr''1 name.. For an internal function, the
REl'URNS attribute can be specified only in
a DEC~.RE statement tilat is intex.nal to the
same block as the function procedure.

The general format of the RETIJRNS attri
bute is:

RETURNS (attribute-list)

A RETURNS attribute specifies that \fithin
the invoking procedure the value returned
from the named entry point is to be t.reated
as though it had the attributes given in
the attribute list. The \ford treated is
used because no conversion is performed in
an invoking block upon any val.ne ret.urned
to it. Therefore. if the attributes of ~-he

Section 12: sul:i:c(;utines and Ftmctions 121

Page of GC28-2045-1, Issued September 15, 1970 by TNL GN28~3171

returned value do not agree with those in
the atTxibute list of the RETURNS attri
bute, an error will probably result.

In order to specify to the compiler that
coding for MAINP is to handle the FIXED
BINARX value being returned by SPROD, this
declaration must be given within MAINP:

DECLARE SPROD RETURNS (FIXED BINARY);

Note what is implied in the above dis
cussion. DUring compilation of the imrok
ing block, there is no way for the compiler
to check a function procedure to determine
the at~tribut_es of the value it returns. In
the absence of explicit information in a
RETURNS attribute specification, the com
piler can only assume that the attributes
will be consistent with the attributes
implied by the first letter of the function
name. This is true even if the function
procedure is contained in the invoking pro
cedure. If the returned value does not
have the attributes that the invoking pro
cedure is prepared to receive, no conver
sion can be performed. The RETURNS attri
bute must be declared for a function that
returns any value.

Built-In Functions

Similar to function procedures that a
user can define for himself is a comprehen
sive set of pre-defined functions called
built-in fUnctions.

'I'he set of built-in functions is an
intrinsic part of PL/I. It includes not
only the commonly used arithmetic functions
but also other necessary or useful func
tions related to language facilities, such
as functions for manipulating strings and
arrays.

Built-in functions are invoked in the
same way that user-defined functions are
invoked. However, many built-in functions
can return array or structure values,
whereas a user-defined function can return
only an element value.

Note: Some built-in functions may actually
be compiled as in-line code ratiler than as
procedure invocations. All are referred to
in a PL/I source program, however, by func
~ion references, whether or not they result
in an actual procedure invocation.

Neither the ENTRY attribute nor the
RETURNS attribute can be specified for an~:
built-in function name. The use of the
name in a function reference is recognized
without need for any further identifica
tion; attributes of values returneo by
built-in functions are known by the
compiler.

122

But since bui It--i n function names are
PLII keywords, they are nOT. reserved; the
same identifiers can be used as user
defined names. Consequently. ambiguity
might occur if a built-in function
reference were to be used in a block that
is contained in another block in which the
same identifier is declared for some other
purpose. To avoid this ambiguity, the
BUILTIN attribute can be declared for a
built-in fUnction name in any block that
has inherited. from a containing block,
some other declaration of the identifier.
Consider the following example.

A: PROCEDURE;

B: BEGIN;
DECLARE SQRT FLOAT BINARY;

C: BEGIN;
DECLARE SQRT BUILTIN;

END C;

END B;

END A;

Assume that in external procedure A.
SQRT is nei tJ-:."2'Y explicitly nor contextually
declared for some other use. Consequently.
any reference to SQRT would refer to the
built-in function of that name. In B,
however. SQRT is declared to be a floating
point binary variable, and it cannot be
used in any other way. Finally, in C, SQRT
is declared with the BUILTIN attribute so
that any reference to SQRT will be recog
nized as a reference to the built-in func
tion and not co the floating-point binary
variable ~e~;lared in B.

Note that a variable having the same
identifier as a built-in function can be
context_ually declared by its appearance on
the left-hand side of an assignment symbol
(in an assignment statement, a DO state
ment, or a repetitive specification) or in
the data list of a GE.r statement, provided
that it is neither enclosed within nor
immediately followed by an argument list.
(This does not apply to the names ONCHAR.
ONSOURCE, and PRIORITY which are pseudo
variables that do not_ require arguments.)
For example, if the statement SQRT = 1 had
appeared in procedUre B instead of the
explicit declaration. SQRT would have been

contextually declared as a floating-point
decimal variable.

A user can even use a built.-in function
name as the entry name of a user-written
function and, in the same program, use both
the built-in fUnction and the user-writ.ten
function. This can be accom~lished by use
of the BUILTIN attribute and the ENTRY
attribute. (The ENTRY attribute, which is
used in a DECLARE statement to specify that
the associated identifier is an entry name,
is discussed in a later section of this
section.)

The following example illustrates use of
the ENTRY attribute in conjunction with the
BUILTIN attribute.

SQRT: PROCEDURE (PARAM) FIXED (6,2);
DECLARE PARAM FIXED (12);

A:

ENL SQRT;

PROCEDURE;
DECLARE SQRT ENTRY RETURNS

(FIXED(6,2», Y FIXED(l~);

X SQRT(Y);

B: BEGIN;
DECLARE SQRT BUILTIN;

Z S\,!RT (P);

END B;

END A;

The use of SQRT as the label of the
first PROCEDURE statement is an explicit
declaration of the identifier as an entry
name. Since, in this case, SQRT is not the
built-in function, the entry name must be
explicitly declared in A (and the RETURNS
attribute is s~ecified because the attri
butes of the returned value are not
a~parent in the function name). ':he func
tion reference in the assignment statement
in A thus refers to the user-written SQRT
function. In the begin block, the identi
fier SQRT is declared with the BUILTIN
attribute. Consequently, the function
reference in the assignment statement in B
refers to the built-in SQRT fUnction.

If a user-written function using the
name of a built-in function is external,
any rrocedure containing a reference to
that function name must also contain an
entry declaration of that name; otherwise a
reference to the identifier would be a
reference to the built-in function. In the
above example, if the PROCEDURE B were not
contained in A, there would be no need to
specify the BUILTIN attribute; so lcng as
the identifier SQRT is not known as some
other name, the identifier would refer to
the built-in function.

If a user-written function using the
name of a built-in function is internal,
any reference to the identifier-rn-the con
taining ~lock would be a reference to the
user-written fUnction, provided that its
name is known in the block in which the
reference is made. No entry name attri
cutes would have to te specified if attri
cutes to the returned value could be
inferred from the entry name.

RELA'IIONSHIP OF ARGUMENTS AND PARAMETERS

When a functicn or subroutine is
invoked, a relationship is established
between the arguments of the invoking
statement or expression and the pararreters
of the invoked entry point. This relation
ship is dependent upon whether or not durrmy
arguIr,ents are created.

DUMMY ARGUt-'ENTS

In the introductory discussion of argu
ments and parameters, it is pointed out
that the name of an argument, not its
value, is passed to a subroutine or func
tion. Hcwever, there are times when an
argument has no narr,e. A constant, for
exam~le, has no name; nor does an opera
tional expression. But the mechanisrr that
associates arguments with parameters cannot
handle such values directly. Therefore,
the compiler must provide storage for such
values and assign an internal narre for
each. These internal names are called
dummy arguments. They are not accessible
to the PL/I user, but he should be aware cf
their existence tecause any change to a pa
rameter will be reflected only in the value
of the dummy argument and not in the value
of the original argument from which it was
constructed.

A dummy argument is always created fer
any of the following cases:

1. If an argument is a constant

2. If an argument is an expression
involving operators

Section 12: Subroutines and Functions 123

3. If an argument is an expression in
parentheses

4. If an argument is a variable whose
data attributes are different from the
data attributes declared for the pa
rameter in an entry name attribute
specification appearing in the invok
ing block

5. If an argument is itself a function
reference containing arguments

6. If, for the TSS/360 PL/I compiler, an
argument is a controlled array or
string associated with a simple param
eter, unless the asterisk notation is
used.

In all other cases, the argument name is
passed directly. The parameter becomes
identical with the passed argument; thus,
changes to the value of a parameter will be
reflected in the value of the original
argument only if a dummy argument is not
passed.

A task variable cannot te passed as an
argument if this would ca use a dummy arg.u
ment to be created.

Note: When a dummy argument is created for
an argument that is a constant, the attri
butes of the dummy argument will be those
indicated by the constant. For example, if
SUB is a subroutine that expects to be
passed a fixed binary argument, the
statement

CALL SUB(2);

will lead to error, since the dummy argu
ment will be fixed decimal. This can be
avoided either by assigning the value 2 to
a fixed binary variable and passing the
variable name, e.g.,

1==2;
CALL SUB(l);

or by using the ENTRY attribute.

THE ENTRY ATTRIBUTE

There is no way during compilation of a
sUbroutine or function that the compiler
can know the attributes of arguments that
will be passed to a parameter. The compil
er must assume that the attritutes of each
argument will agree with the attributes of
its associated parameter. Wherever there
is disagreement, the program must provide,
in the invoking procedure, an ENTRY attri
bute declaration for the entry name of the
subroutine or function being invokeJo The
general form of the ENTRY attribute is as
follows:

124

ENTRY (parameter-attribute-list
[,parameter-attribute-list) ••• »)

Note that the atove format dllows the
keyword ENTRY to be specified without
accompanying parameter attribute lists, as
it might be used to identify a function
entry name that does not require arguments.

Each param.eter attribute list in the
ENTRY attribute specification corresponds
to one parameter of tile subroutine or fUnc
tion involved and specifies the attributes
of that parameter. In general, if the
attributes of an argument do not agree with
those of its corresponding parameter (as
specified in a parameter attribute list), a
dummy argument is constructed for that
argument if conversion is possible. The
dummy argument contains the value of the
original argument converted to conform with
the attributes of the corresponding parame
ter. Thus, when the subroutine or function
is invoked, it is the dUlT,my argument that
is passed to it.

If an ENTRY attribute with parameter
attribute lists is not used, the compiler
assumes that the arguments are compatible
and acts according to the default attri
cutes cf the parameters. If the argument
attributes do not agree with the attributes
ot the corresponding parameter, no conver
sion occurs, and an error probably results.
For example, if a fixed decimal argurrent,
which should be byte aligned, is passed to
a procedure which expeets a fixed binary
argurrent, then a specification interruption
probably oceurs when the argument is
treated as fullword binary.

When the above form of the ENTRY attri
bute is used, each parameter of the subrou
tine or function must be accounted for. If
there is no need to specify the attributes
of a particular parameter, its place must
be kept by a comma. For example, the
statement:

DECLARE SUBR ENTRY (FIXED.,FLOAT)i

specifies that SUBR is an entry narre that
has three [drameters: the first and third
have the attributes FIXED and FLOA~, re
spectively, while the attributes of the
second are presumably the same as those of
the argunent being passed. Since the
attrihutes of the second parameter are net
stated, no assumr:tions are made and no con
versioIls are performed.

As mentioned earlier, the ENTRY attri
bute may be specified without parameter
attribute lists. It is used in this way to
indicate that the associated identifier is
an entry name. Such an indication is
necessary if an identifier is not otherwise
recognizable as an entry name, that is, if

l.t is not ex~licitly or contextually
declared tc be an entry name in one of t~he
following ways:

1. By its appearance as a label of a PRO
CEDURE or ENTRY statement (explicit)

2. By its appearance immediately follow
ing the keyword CALL (contextual>

3. By its a~~earance as the function name
in a function reference that contains
an argument list (contextual>

Therefore, if a reference is made to an
entry narr,e in a block in which it does not
appear in one of these three ways, the
identifier must be given the ENTRY attri
Lute explicitly, or by im~lication (see
-Note" below), in a DECLARE statement
within the block. For example, assume that
the following has been s~ecified:

A: PROCEDURE;

PUT LIST (RANDOM);

END A;

Assume also that A is an external proce
dure and RANDOM is an external function
that requires no arguments and returns a
random number. As the procedure is shown
above, RANDOM 13 not recognizatle within A
as an entry name, and the result of the PUT
statement therefore is undefined. In order
for RANDOM to be recognized within A as an
entry narr,e, it must l:;e declared to have the
ENTRY attribute. For example:

A: PROCEDURL;
DECLARE RANDOM ENTRY;

PUT LIST (RANDOM);

END A;

NOw, RANDOM is recognized as an entry
name, and the appearance of RANDOM in the
PUT statement cannot be interpreted as
anything but a function reference. There
fore, the PUT statement results in the out
put transmission of the random number
returned by RANDOM.

Note: The ENTRY attribute is implied -
and therefore need not be stated explicitly
-- for an identifier that is d~~lared in a
DECLARE stdtement to have the RETURNS
attribute.

Entry Narres as Arguments

When an entry name is specified as an
argument of a function or subroutine
reference, one of the following applies:

1. If the entry name argument, call it M,
is specified with an argument list of
its own, it is recognized as a fUnc
tion reference; M is invoked, and the
value returned by M effectively
re~laces M and its argument list in
the containing argument list.

2-. If the entry name argument arrears
without an argument list, but within
an operational expression or within
parentheses, then it is taken to be a
function reference with no arguments.
For exan;ple:

CALI A(B);

This ~asses, as the argument to proce
dure A, the value returned by the
functicn procedure B.

3. If the entry name argument appears
without an argument list and neither
within an operational expression nor
within parentheses, the entry narre
itself is passed to the function or
subroutine being invoked. In such
cases, the entry name is not taken to
be a fUnction reference, even if it is
the name of a function that does not
require arguments. For exam~le:

CALL A (B);

This passes the entry name B as an
argument to procedure A.

There is an exception to this rule,
however: if an identifier is known as
an entry name and appears as an argu
ment and if the parameter attribute
list for that argument specifies an
attribute other than ENTRY, the entry
name will te invoked and its returned
value passed. For example:

A: PROCEDURE;
DECLARE B ENTRY,

C ENTRY (FLOAT) ;

x = C(B);

END A;

In this case, B is invoked and its
returned value is passed to C.

Section 12: Subroutines and Functions 125

consider the following examfle:

CALLP: PROCEDURE;
DECLARE RREAD ENTRY,

SUBR ENTRY (ENTRY, FLOAT,
FIXED BINARY, LABEL);

GET LIST m,S};

CALL SUBR (RREAD, SeRT(R), S,
LABl) ;

LABl: CALL ERRT(S);

END CALLP;

SUBR: PROCEDURE{NAME, X, J, TRANPT);
DECLARE NAME ENTRY, TRANPT LABEL;

IF X > J THEN CAll NAME(J)i
ELSE GO TO TRANPT:

END SUBR;

In this exarrple, assume that CALLP,
SUBR, and RREAD are external. In CALLP,
both RREAD and SUBR are explicitly declared
to have the ENTRY attribute. (Actually,
the explicit declaration for SUBR is used
principally to provide information about
the characteristics of the parameters of
SUBR.) Four arguments are specified in the
CALL SUBR statement. These arguments are
interpreted as follows:

1. The first argument, RREAD, is recog
nized as an entry name (because of the
ENTRY attribute declaration). This
argument is not in conflict with the
first parameter as specified in the
parameter attribute list in the ENTRY
attribute declaration for SUBR in
CALLP. Therefore, since RREAD is rec
ognized as an entry name and not as a
function reference, the entry name is
passed at invocation.

2. The second argument, SQRT(R), is rec
ognized as a fUnction reference
because of the argument list accom
panying the entry name. SQRT is
invoked, and the value returned by
SQRT is assigned to a dummy ar-:ument,
which effectively replaces the
reference to SQRT. The attributes of
the dummy argument agree with those of

126

the second farameter, as specified in
the parameter attribute list declara
tion. When SUBR is invoked, the duwroy
argument is passed to It.

3. The third argument., S, is simply d

decimal floating-point elewent vari
able. However, since its attributes
do not agn>e with t.hose of t.he third
parameter, as specified in the parame
ter attribute list declaration, a
duwrry argument is created containing
the value of S converted to the attri
butes of the t.hird parameter. When
SUBR is invoked, the dummy argurrent is
passed.

4. The fourth argument, LABl, 1.S a
statemel~-label constant. Its attri
butes agree with those of the fourth
parameter. But since it is a ccn
stant, a dummy argument is created for
it. When SUBR is invoked, the dummy
argument is passed.

In SUER, four pard.meters are explicitly
declared in the PROCEDURE staterr~nt. If no
further explicit declarations were given
for these pararr,eters, arithmetic default
attributes would be supplied for each.
~herefore, since NAME must represent an
entry narre, it is explicitly declared with
the ENTRY attribute, and since TRANPT rr,ust
represent a statement label, it is expli
citly declared with the lAEEL attribute. X
and J are arithmetic, so the defaults are
allowed to a~ply.

Note that the afpearance of NAME ~n the
CALL statement does not constitute a con
textual declaration of NN1E as an entry
name. Such a contextual declaration can be
made only if no explicit declaration aff
lies, and the appearance of NAME in the
PROCEDuRE statement of sum~ constitutes an
eXflicit declaration of NAME as a parame
ter. If the attributes of a paraIfeter are
not eXflicitly declared in a complementary
DECLAR.t: statement, arithroetiCj defaults
affly. Consequently, NA~E must be expli
citly declared to have the ENTRY attribute;
ctherwise, it would be assumed to be a
tinary fixed-point variable, and its use in
the CALL statement would result in an
error.

ALLOCATION OF PARAME'fERS

A parameter cannot be declared tc have
any cf the storage class attributes STATIC,
AUTO!o'ATIC, or EASED. It can, however, be
declared to have the CONTROLLED attribute.
Thus, there are two classes of pararreters,
as far as storage allocation is concerned:
those that have no storage class, i.e.,
simple !?arameters, and those that have the
CONTROLLED attritute, i.e., controlled
Fararr,eters. --_._--

Page of GC28-2045-1, Issued September 15, 1970 by TNL GN28-3171

A simple parameter may be associated
with an argument of any storage class.
However, if more than one generation of the
argument exists, the parameter is asso
ciated only with that generation existing
at the time of invocation.

A controlled parameter must always have
a corresponding controlled argument. Such
an argument cannot be subscripted, cannot
be an element of a structure, and cannot
cause a dummy to be created. If more than
one generation of the argument exists at
the time of invocation, the parameter
corresponds to the entire stack of these
generations. Thus, at the time of invoca
tion, a controlled parameter represents the
current generation of the corresponding
argument. A controlled parameter can be
allocated and freed in the invoked proce
dure, thus allowing the manipulation of the
allocation stack of the associated argu
ment. A simple parameter cannot be speci
fied in an ALLOCATE or FREE statement.

Parameter Bounds, Lengths, and Sizes

If an argument is a string, array, or
area, the length of the strinq. the bounds
of the array. or the size of ·the area must
be declared for the corresponding parame
ter. The number of dimensions and the
bounds of an array parameter, the length of
a string parameter, or the size of an area
parameter must be the same as that for the
current generation of the corresponding
argument. Usually, this can be ensured
simply by specifying actual numbers for the
bounds, length, or size of the parameter.
However, the actual bounds, length, or size
may not always be known at the time that
the subroutine or function is written.
Whenever this is the case, bounds, length,
or size for a simple parameter can be spec
ified by asterisks; bounds, length, or size
for a controlled parameter can be specified
either by asterisks or by expressions.

Simple Parameter Bounds L Lengths, and Sizes

When the actual length, bounds, or size
of a simple parameter is not known, it can
be specified in a DECLARE statement by
asterisks. When an asterisk is used, the
length, size, or bounds is taken from the
current generation of the corresponding
argument; if no current generation exists,
any reference to the variable is an error.
If an asterisk is used to represent the
bounds of one dimens ion of an arra" / parame
ter, the bounds of all other dimensions of
that parameter must be specified by
asterisks.

1 Controlled Parameter Bounds, ~~ngths, and
Sizes

The bounds, length, or size of a con
trolled parameter can be rep.resfmted in a

DECLARE st.atement either by ast.erisks or by
element expressions.

AHterisk Notat.ion: When asterisks are
used. 'siie;-length. or bounds of the con
trolled parameter is taken from the current
generation of the correspondinq argument.
Any subsequent allocation of the controlled
parameter uses the same bounds, length, or
size, unless it is overridden by a dif
ferent bounds, length, or size specifica
tion in the ALIJ)CATE statement. If no cur
rent generation of the argument exists, the
asterisks only det(~rmine the dimensi'mality
of the parameter. and an ALIJ)CATE statement
in the invoked procedure must specify
bounds, length. or size for the controlled
parameter before other references to the
parameter can be made.

Expression Notation: The bolmds. length,
or size of a cont.rolled parameter can also
be specified by element expressions. These
expressions are evaluated at the time of
allocation. Each time the parameter is
allocated, the expressions are re-evaluated
to give current bounds, length, or size for
the new allocation. However, such expres
sions in a DECLARE statement can be over
ridden by a bounds, length, or size speci
fication in the ALLOCATE statement itself.

If a current generation of the argument
exists at the time of invocation. the ex
pressions evaluated at invocation must give
the same bounds, length, or size as the
argument. If a current generation does not
exist. then nc requirements are made on the
values of these expressions. They are
evaluated each time the parameter is allo
cated, except in those cases where the ex
pressions are overridden by d bounds,

I length, or size specification in the ALLOC
ATE statement itself. For example:

MAIN: PROCEDURE OPTIONS (MAIN) ;
DECLARE (M20). S(30), CU.OO),

D(100»CONTROLLED.
NAME CHARACTER (20),
I FIXED (J. 0) ;

ALLOCATE A. B:
CALL sum (A,B};

FREE A. B;

FREE A,B;
GET LIST (NAME,I);
CALI~ SUB2 (e, D, NAME, I);

FREE C,D;

Section 12: Subroutines and Funci:.ions 127

Page of GC28-2045-1. Issued september 15, 1970 by TNL GN28-3Tl1

END MAIN;

SUB1: PROCEDURE (U.V);
DEC LARE (U ("), V (.. » CONTROLLED;

ALLOCATE U(30), V(40);

RETURN;
END SUBI;

SUEl: PROCEDURE (Xf Y, NAMEA. N) ;
DECLARE (X(N),Y(N»CONTROLLED,

NAMEA CHARACTER (.),
N FIXED(3.0);

ALLOCATE X, Y;

RETURN;
END SOO2;

In the procedure MAIN, the arrays A. B, C,
and D are declared with the CONTROLLED
storage class attribute; NAME and I are
AUTOMATIC by default.

When SUBl is invoked, A and B, which
have been allocated as declared, are
passed. SUBl declares its parameters with
the asterisk notation. The ALLOCATE state
ment, however, specifies bounds for the
arrays; consequently. the allocated arrays,
which are actually a second generation of A
and B. have bounds different from the first
generation (if no bounds were specified in
the ALLOCATE statement, the bounds of the
new generation would be identical to those
of the first generation).

After control returns to MAIN, the first
FREE statement frees the second generation
of A and B (allocated in SUBl as parame
ters), and the second FREE statement frees
the first generation (allocated in MAIN).

When sua2 is invoked, C and D are passed
to X and Y. NAME is passed to NAMEA, and I
is passed to N. In SUR2, X and Yare
declared with bounds that depend upon the
value of I (passed to N). When X and Yare
allocated, this value determines the bounds
of the allocated array.

Although NAME (corresponding to NAM~)
is not controlled, the asterisk notation
for the length of NAMRA indicates ~hat the
length is to be picked up from the declara
tion of the argument (NAME).

128

ARGUMENT AND PARAMETER TYPES

In general, an argument and its corres
ponding parameter may be of any data
organization and type. For example, an
argument may be a statement label. provided
that the corresponding parameter is
declared with the LABEL attribute; it may
be an entry name, provided that the corres
ponding parameter is an entry name, and so
on. However. not all parameter/argument
relationships are so clear-cut. Some need
further definition and clarification. Such
cases are given below.

If a parameter is an element. L e •• a
variable that is neither a structure nor an
array. the argument must be an element
expression. If the argument is a sub
scripted variable, t.he subscripts are eval
uated before the subrout.ine or function is
invoked and the name of the specified ele
ment is passed. If the argument is a con
stant, the attributes of the corresponding
parameter must. agree wit.h the attributes
indicated by the constant. unless the ENTRY
attribute is specified for the entry name.

If a parameter is an array. the argument
must be an array expression or an element
expression. If the argument is an element
expression. the corresponding parameter
attribute list must specify the bounds of
the array parameter. (Note, however, that
in this case the bounds in the parameter
attribute list cannot be asterisks.) This
causes the construction of a dummy array
argument. whose bounds are those of the
array parameter. The value of the element
expression m.cn becomes the value of each
element of the dummy array argument.

If a parameter is a structure. the argu
ment must be a stnu.:ture expression or an
element expression. If the argument is an
~lement expression, t~e corresponding pa
rameter attribute list: must specify the
structure description of the structure pa
rameter (only 1,i~vel numbers need be used -
see the disc:,.!>sion of the ENTRY attribute
in Part I::: i SectIon 9.· .. Attributes," for
details). This causes the construction of
a dUlDnry structure argument.!illbose descrip
tion matches that of thE: structure parame
ter. 'Ehe value of the element expression
then becomes the value of each element. of
the dummy structure argument. The relative
structuring of the argument a''ld the parame
ter must be the sa. me • the level numbers
need not be identical. The el€!t'l1ent value
must be one that can be ccmverted t.O con"
form with the at.t.ributes of all t.he elemen'
tary names of the E>t:.tllctnre.

If a parameter is an ~",lement label vari
able. the argument mus-t" '.be eith;r;"raIi-e:f;;::-
ment label variable or '" lal~l constant.

If the argument is a label constant, a
dummy argument is constructed.

If the parameter is an array label vari
able, the argument must ce an array label
variable, an element label variable, or a
label constant. If the argument is either
of the latter two, the corresponding param
eter attribute list must specify that the
parameter is a label array, giving the
bounds of that array. This causes the con
struction of a dummy array label argument,
whose bounds are those of the label array
parameter.

If a parameter is an entry name, the
argument must be an entry name. Note that
the name of a mathematical built-in func
tion can be passed as an argument, but no
other built-in function names can be
passed.

If a parameter is a file name, the argu
ment must be a file name. The attributes
of the file name parameter are always
ignored.

If a parameter is a fixed-length string
variable, the argument should be a fixed
length string. If the argument is of vary
ing length, a parameter attribute list
describing the parameter as a fixed-length
string must be given in the invoking proce
dure. Similarly, if a parameter is a
varying-length string variatle, the argu
ment should be a varying-length string. If
the argument is of fixed length, a parame
ter attribute list describing the parameter
as a varying-length string must be given in
the invoking procedure. Whenever a
varying-length string argument is passed to
a non-varying string parameter whose length
is undefined (i.e., specified by an
asterisk), the maximum length of the argu
ment is passed to the invoked procedure.
This is true even when the argument is an
element; the object of passing the maximum
length rather than the current length is to
maintain a consistent rule for both element
and array arguments. (If the argument were
a varying-length string array passed to a
non-varying undefined-length parameter,
only one length could be passed, and this
would naturally be the maximum length.)

Example:

DECLARE A CHARACTER(50) VARYINC,
PROCl ENTRY (CHARACTEH.(~»;

A='123' ;
CALL PROC1 (A) ;

PROC1: PROCEDURE (B>;
DECLARE B CHARACTER(*),

C CHARACTER (5) ;

C=B I I • 45' ;
/* C='123bb' NOT '12345' */

In this examFle, to pass A, a dumIr.Y of
length 50 (i.e., the maximum length of A)
is created. In the concatenation oFera
tion, '45' is concatenated at the right of
the character string of length 50 (which
contains '123' followed by 47 blanks). The
result is then truncated to fit into C,
which has length 5, so that C='123bb'.

If a para~eter is a locator variable of
either pointer or offset type, the argument
rrust be a locator variable of either type.
If the types differ, a dummy argument is
created. (See also Part I, Section 14,
"Based Storage and List Processing.")

GENERIC NAMES AND REFERENCES

A generic name represents a fawily of
procedure entry points, each me~ber of
which can be invoked by a generic
reference, that is, a procedure reference
using the generic name in Flace of the
actual entry name. The memcer invoked is
determined according to the number and
attributes of the arguments specified in
the generiC reference; it is that member
whose parameters match the arguments in
number and attritutes.

A generic name must be declared with the
GENERIC attribute. The general format of
this attribute is as follows:

generic-name GENERIC (member-declaration
[,rremcer-declarationJ ••.)

Each rremter declaration corresponds to
cne Frocedure entry point in the family.
It specifies the entry name of the rrember,
followed by the ENTRY attribute and its
associated parameter attribute list; this
list gives the number and attributes of the
parameters for that entry name. Fcr
examFle, consider the following statement:

tECLARE CALC GENERIC
(FXDCAL ENTRY(FIXED,FIXED),
FLOCAL ENTRY(FLOAT,FLOAT),
MIXED ENTRY (FLOAT,FIXED»;

This statement defines CALC as a generic
name having three members, FXDCAL, FLOCAL,
and MIXEt. One of these three fUnction
Frocedures will be invoked by a generic
reference to CALC, depending on the charac
teristics of the two arguments in that
reference. For example, consider the fol
lowing statement:

Z= X + CALC(X,Y);

Section 12: Subroutines and Functions 129

If X and Yare floating-point and fixed
pOint, respectively, MIXED will be invoked.

PASSING AN ARGUMENT TO THE MAIN PROCEDURE

When invoking a procedure, a single
argument can be passed in apostrophes,
using the operand field of the procedure
name. See IBM System/360 Tinle Sharing Sys
tem, PLII Programmer's Guide. If this
facility is used, the first argument should
be declared as a VARYING character string;
the maximum length is 100, and the current
length is set equal to the argument length
at object time. The argument can also be a
fixed-length character string. For
example:

-130

PLI TOMMon
- TOM: PROC (PARAM) OPTIONS (MAIN);

DCL PARAM CHAR(100) VARYING;

After compiling TOM, the user can execute
it by issuing the statement TOMMOD
'ABC123'. The length of PARM is set equal
to 6, and the character string ABC123 is
passed to TOM.

SECTICN 13: EXCEPTIONAL CONDITION HANDLING AND PROGRAM CH£CKOUT

When a PL/I prograro is executed, a large
number of "'xceptional conditions are roon
itored by c.ne systero and their occurrences
are auton~t.cally detected whenever they
arise. These excertional conditions may be
errors, such as overflow or an input/output
transroission error, or they may be condi
tions that are expected tut infrequent,
such as the end of a file or the end of a
[:age when out rut is being Frinted. When
checking out a program, a user can also get
a selective flow trace and dumfs by speci
fying that the occurrence of anyone of a
list of identlfiers be treated as an excep
tional condition.

Each of the conditions for which a test
may be made has been given a name, and
these nanles are used by the user to control
the handling of exceptional conditions.
The list of condition nawes is part of the
PL/I language. For keyword naroes and
descriptions cf each of the conditions, see
Part II, Section 8, "ON-Conditions."

ENABLED CONDITIONS ANC ESTABLISrlED ACTION

A condition that 1S being monitored, and
the occurrence of whien will cause an
interruption, is said to be enabled. Any
action specified to take place when an
occurrence of the condition causes an
interrupt1on, is said to be established.

Most conditions are checked for automat
ically, and when they occur, the system
will take control and Ferform some standard
action specifiea for the condition. These
conditions are enabled by default, and the
standard system action is established for
them.

The most common system action is to
raise the ERROR condition. This provides a
common condition that may be used to check
for a nurober of different types of errors,
rather than checking each error type indi
vidually. Standard system action for the
ERROR condition is to raise the FINISH con
dition and terminate the task.

The user may specify whether OJ not some
conditions are to be enacled, that is, are
to be checked for so that they will cause
an interruption when they arise. If a con
dition is disabled, an occurre~ce of the
condition will not cause an interruption.

All input/outFut conditions and the
ERROR, FINISH, and AREA conditions are
always enabled and cannot ce disabled. All

of the coroputational conditions and the
prograrr checkout conditions may be enabled
or disabled. The program checkout condi
tions and the SIZE condition must be ex
plicitly enabled if they are to cause an
interruption; all other conditions are
enacled ty default and must be explicitly
disabled if they are not to cause an inter
ruption when they occur.

condition Prefixes

Enabling and disablinq can be sFecified
for certain conditions by a oondition pre
fix. A condition prefix is a list of one
cr more condition names, enclosed in paren
theses and separated by commas, and con
nected tc a statement (or a statement
lacel) by a colon. The prefix always pre
cedes the statement and any statement
labels. A condition name in a prefix list
indicates that the corresponding condition
is enabled within the scope of the prefix.
Soroe condition names can be preceded by the
word NO, without a separating blank or con
nector, to indicate that the corresponding
condition is disabled.

Scope of the Condition Prefix

Tne scope of the prefix, that is, the
part of the Frogram throughout which it
applies, is usually the statement to which
the prefix is attached. The prefix does
not arfly to any functions or subroutines
that may be invoked in the execution of the
statement.

A condition prefix to an IF staterrent
afFlies only to the evaluation of the
expression following the IF; it does not
dPFly to the statements in the THEN or ELSE
clauses, although these way tnemselves have
Frefixes. Similarly, a prefix to the ON
statement has no effect on the staterrents
in the on-unit. A condition prefix to a 00
statement applies only to the evaluation of
any expressions in t.he DO statement itself
and not to any other statement in the DO
group.

Condition prefixes to the PROCEDURE
statement and the BEGIN statement are spe
cial (though commonly used) cases. A con
dition prefix attached to a PROCEDURE or
BEGIN statement applies to all the state
rrents up to and including the corresponding
END statement. This includes other PROCE
[URE or BEGIN statements nested within that
clock. It does not apply to any procedures
lying outside that clock, which may be
invoked during execution of the program.

Section 13: Exceptional Condition Handling and Program Checkout 131

'rne enabling orjisabling of a condition
'0Y be redefined within a block ty attach
ing a prefix to statements within the
block, including FROCEOURE and BEGIN state
lIlent,j (thus redeflning the enablinq or dis
abling of the condition wlthin nested
blocks). Such a redefinition applies only
tc the execution of the statement to which
the prefix is attached. In the case of a
nest.ed PROCEDURE or BEbIN statement, it
a~rlies only to thf block the statement
defines, as well a~ any blocks contained
within that block. When control passes out
ot the scope of thf redefining prefix, the
redefinition nc longer applies. A condi
tion prefix can be attached to any state
ment except a DECLAPE ur ENTRY statement.

ThEe ON Statement

A system actlon Lxists for every condi
tion, and if an inTerruption occurs, the
system action wi 11 be p,~rformed unless the
user has specified an alterr~te action in

I dn ON statement fer that condition, and
that ON statement has been executed. The
Furpose of the ON statement lS to establish
the action to be tdken when dn interruption
results frcm an exceFtlonal condition that
has been enabled, elthpr by default or by a
condition prefix.

Note: The action specified in an ON state
ment will not be executed during any por
tion of d {:rogram throl)ghout which t,he con
dition has been disabled.

The forIT of the ON statement is:

ON condition-narre [SNAP) on-unit
SYSTEM;

(See Part II, Section J, "Statements" for a
full description.)

The keyword SYSTEM followed by a semi
colon specifies standard system action
wpenever an interruption occurs. It rees
tablishes system action for a condition for
which some other action has been estab
lished. The on-unit is used by the user to
specify an alternate action to be taken
whenever an interruption occurs.

The SNAP option specifies that when an
interruption occurs, debugging information
will be written in a debugging file. The
form and content of the information depends

I upon the implernentat ion. For the TSS/3')O
PL/I compiler, it is a list of a11 active
procedures. The information is written in
the standard system file SYSPRINT. If SNAP
1S specified, the action of the SNAP option
precedes the action of the on-unit. If
SNAP SYSTEM is specified, the system action
rr,essage is followed immediately by a list
of active procedures.

132

The on-unit nrust tR either a single,
unlabeled, simFle statenent or an unlabeled
begin tJcck. The sinqlc L'itatement cannot
te a RE'fURN, FORMAT, or DECLAKE statement.
It, cannot tf~ ei tber ot tLe two cOITI-0und
statement:s, IF and ON, (Jr d DO-group.
(PROCEDURE, B~GIN, END, and DO stateaents
can never appear as single statements.)
'Jbe implementation limi t for the mmter of
ON-units that can te active at any time is
127. The begin block, if it appears, can
contain any statement except RETURN,
although the RETURN statement can appear
within a procedure nested in the begin
l::lock.

The single statement on-unit. or the
begin bleck on-unit, is executed as though
it were a procedure (without parameters)
that was called at the point in the program
at which the interruption occurred. If the
on-unit is a ;oinule statement it behaves
Exactly as though it were enclosed by PRO
CEDURE and END statements; when execution
reaches the END statement of the unit, con
trol returns to the point frorr which the
tlock was invoked. Just as with a proce
dure, control may be transferred out of an
en-unit ty a GO TO statement; in this case,
control is transferred to the point speci
fied in the GO TO, and a normal return does
not occur.

Note: The specific point to which central
returns frem an on-unit varies for dif
ferent conditions. In some cases, it
returns to the point t,ha.t irrmediately fol
low~ the action in which the condition
arose. In other cases, control returns to
the actual point of interruption, and the
action is reattempted. An example of the
latter case is the return from the en-unit
ot an ON CONVERSION stateJllent. When an
interruption occurs as the result of a con
version error, control returns from the
on-unit to reattempt conversion of the
character that caused the error (on the
assumption that the invalid character has
teen changed Juring execution of the on
unit). If the invalid charact~r is net
changed. the EBROR condition is raised.

A. special case of an on-unit is the null
statement. 'Ihe effect of this is t,o say
"when an interruption occurs as a result of
this conditicn, do nothing."

Use of the null on-unit is not the same
as disabling, for two reasons: first, a
null on-unit may be specified for any con
dition, but not all conditions can be dis
abled; and, second, disabling a condition,
if possible, may save time by avoiding any
checking for this condition. If a null
en-unit is specified, the system must still
check for occurrence of the condition,

transfer control to the on-unit whenever an
interruption occurs, and then, after doing
nothing, return from the on-unit.

I Note: With the TSS/360 PL/I compiler, a
null on-unit for the CONVERSION condition
will not cause a permanent loo~ if a con
version error occurs, because no conversion
is re-attempted unless the invalid charact
er is changed in the on-unit. If it is not
changed, the ERROR condition is raised.

Scope of the ON Statement

The execution of an ON statement asso
ciates an action sFecification with the
named condition. Once this association is
established, it remains until it is over
ridden or until termination of the block in
which the ON statement is executed.

An established interruption action
~asses from a block to any tlock it acti
vates, and the action remains in force for
all subsequently activated tlocks unless it
is overridden by the execution of another
ON staterr.ent for the same condition. If it
is overr idden, the new action rerr,ains in
force only until that block is terminated.
When control returns to the activating
block, all established interruption actions
that existed at that point are reestab
lished. This makes it impossible for a
subroutine to alter the interruption action
established for the block that invoked the
subroutine.

If more than one ON statement for the
same condition appears in the same block,
each subsequently executed ON statement
permanently overrides the previously estab
lished condition. No reestablishment is
possible, except through execution of
another ON statement with an identical
action specification (or re-execution,
through some transfer of control, of an
overridden ON statement).

The REVERT Statement

The REVERT statement is used to cancel
the effect of one or more previously
executed ON statements. It can affect only
ON statements that are internal to the
block in which the REVERT statement occurs
and which have been executed in the same
invocation of that block. The effect of
the REVERT statement is to cancel the
effect of any ON statement for the named
condition that has been executed in the
same block in which the REVERT stai,ement is
executed. It then reestablishes the action
that was in force at that time of activa
tion of that block. This statement has the
form:

REVERT condition-name;

A REVERT statement that is executed in a
block in which no on-unit has been estab
lished for tile named condition is treated
as a null statement.

~he SIGNAL Statement

The user may simulate the occurrence of
an ON condition ty means of the SIGNAL
statement. An interruption will occur
unless the namEd condition is disatled.
~his statement has the form:

SIGNAL condition-name;

The SIGNAL statement causes execution of
the interruption action currently estab
lished for the specified condition. The
principal use of this statement is in pro
gram checking, to test the action of an
on-unit, and to determine that the correct
action is associated with the condition.

If the signaled condition is not
enabled, the SIGNAL statement is treated as
a null statement.

The CONDITION Condition

The ON-condition of the form:

CONDITION (identifier)

allOWS a user to establish an on-unit that
will be executed whenever a SIGNAL state
ment is executed specifying CONDITION and
that identifier.

As a detugging aid, this condition can
be used to establish an on-unit whose
execution results in printing information
that shows the current status of the prc
gram. The advantage of using this tech
nique is that the statements of the on-unit
need be written only once. They can be
executed from any point in the prograrr.
through flacement of a SIGNAL statement.

Following is an example of how the CON
CIT ION condition might be included in a
program:

ON CONDITION (TEST) BEGIN;

END;

Execution of the begin block would be
caused wherever the following statement
appears:

SIGNAL CONDITION (TEST);

The CONDITION condition always is
enabled, but it can be raised only by the
SIGNAL statement.

Section 13: Exceptional Condition Handling and Program Checkout 133

The CHECK Condition

The CHECK condition is an important tool
frovided in PL/I for ~rogram tEsting. The
keyword CHECK in a prefix list is followed
by a parenttlesized name list. The names in
the list may be statement lal:;el constants,
entry names, and variables, including array
and structure variables, label variables,
task variables, event variables, area
variables, and locator variatles. Sub
scripted names are not allowed but quali
fied names can be used. Paramet.ers, and
variables with the DEFINED or BASED attri
Lutes cannot be checked.

The CHECK prefix may be attached only to
PROCEDURE or BEGIN statements, and there
fore, it always applies to an entire block.

An interruption will generally occur
immediately after the Execution of a state
ment in which the value of a variable in a
check list may have been altered. Excep
tions are as follows:

1. With the compiler, during data
directed input, the interru~tion
occurs after the first checked vari
atle receives its value.

2. With statement labels and entry names,
the interruption occurs immediately
before the execution of the statement
or the invocation of the entry name.

The system action for the CHECK condition
is to print the identifier causing the
interruption and, if it is a variatle
(other than a program control variable), to
print its new value in the form of data
directed output. For ~abel variables and
other program control variables, only the
variable is printed; no value is included.

Thus, by preceding a l:;lock with a CHECK
prefix, as shown in the example in Figure
18, the user can obtain selective durrps in
a readable format by specifying variables;
he can obtain a flow trace Dy specifying
labels and entry names.

The CrlECK condition may also be speci
fied in an ON statement, if other than sys
tem action is required. This gives the
user all the facilities of PL/I, including
the simplicity of data-directed output for
controlling and editing his debugging
information.

The SUBSCRIPTRANGE condition

Another ON condition that is used prin
cipally for program checkout, but that may
also be used in production, is th~ SUB
SCRIPTRANGE condition. This condition must
be enabled in a condition prefix. When it
is enabled, each subscri~t in an array

134

reference is
uated to see
fied bounds.
any subscript

checked every time it is eval
that it lies within the speci

'rhe condition is raised if
is too high or too low.

Since this checking involves a substan
tial overhead, it usually is used only in
progra~ testing, and is removed for produc
tion programs.

The STRINGRANGE Condition

The STRINGRANGE condition is not enabled
unless it appears in a condition prefix.
It is raised by an invalid reference to the
SUBSTR built-in function and pseudo
variable, the arguments to which must lie
within certain bounds (see "SUBSTR String
Built-in Function," in Part II, Section 7).
It allows execution to continue with a SUB
STR reference that has been revised either
automatically (that is, by standard system
action) or by the user specifying an
on-unit.

Condition Built-In Functions and Condition
Codes

When an on-unit is invoked, it is as if
it were a procedure without arguments. It
is therefore iIl1fOSsible to pass to the on
unit any information atout the interruption
(other than the name of the condition). To
assist the user in making use of on-units,
some special functions are provided that
rray be used to inquire about the cause of
an interruption and possibly to atterrpt to
correct tne error.

These condition built-in funct.ions can
be used only in on-units or in blocks
invoked ty on·-units. They are listed in
Part II, Section 7 I "Built.-In Funct_ions and
Pseudo-Variatles. ft

The condition built-in functions provide
information sllch as tlle narr,e of the r:roce
dure in which the interruption occurred,
tne character or character string that
caused a conversion interrUption. the value
of the key used in the last record trans
rritted, ~nd so on. Some can be used as
pseudo-variables for error correcticn.

The ONCODE function provides a binary
integer whose value depends on the cause of
the last interruFtion. This function, used
in conjunction with the ERROR condition,
allows the user to deal with er:rors that
rray be detected by the implementation, but
that are not represented by condition names
in the language.

EXAMPLE OF USE OF ON-CONDI'TJ;Q!!§

The routine shown in Figure 18 :illus
trates the use of the ON statement, the

r---, II (CHECK(HEADER,NEWBATCH,INPUT,BADBATCH,SAMPLE»: /*DEBUG*/ 01 I
I DIST: PROCEDURE; 02 I
I DECLARE 1 SAMPLE EXTERNAL, 03 I
I 2 BATCH CHARACTER (6) • 04 I
I 2 SNO PICTURE '9999', 05 I
I 2 READINGS CHARACTER(70), 06 i
I TABLE (15 ,15) EXTERNAL; 07 i
I /* ESTABLISH INTERRUPTION ACTIONS FOR ENDFILE & CONVERSION */ 08 I
I ON ENDFIlE (PDATA) CALL SUMMARY; 09 I
I ON CONVERSION BEGIN; CALL SKIPBCH; 10 I
I GO TO NEWBATCH; 11 I
I END; 12 I
I ON ERROR DISPLAY(BATCHIISNOIIREADINGS): 13 t
I /* MAIN LOOP TO PROCESS HEADER & TABLE */ 14 I
I HEADER: READ INTO (SAMPLE) FILE (PDATA); 15 I II PUT DATA (SAMPLE); /*DEBUG*/ 16 t
I /*THE CHECK ACTION LISTS INPUT DATA FOR DEEUG*/ I
I IF SNO , == 0 THEN SIGNAL CONVERSION; 17 I
I NEWBATCH: GET LIST (OMIN,OINT,AMIN,AINT) STRING (READINGS): 18 I
I TABLE == 0; 19 I
I CALL INPUT; 20 I
I CALL PROCESS; 21 I
I GO TO HEADER; 22 I
I /* ERROR RETURN FROM INPUT */ 23 I
I BADBATCH: SIGNAL CONVERSION; 24 I
I (CHECKCIN1,IN2,ERR2,ERR1,TABLE»: /*DEBUG*/ 25 I
I INPUT: PROCEDURE; 26 I
I /* ESTABLISH INTERRUPTION ACTIONS FOR CONVERSION • SUBRG */ 27 I
I ON CONVERSION BEGIN; 28 I
I IF ONCODE == 624 & ONCHAR = • • 29 I
I THEN DO; ONCHAR = '0'; 30 I
I GO TO ERR1; 31 I
I END; 32 I
I ELSE GO TO BADBATCH; 33 I
I END: 34 I
I ON SUBSCRIPTRANGE GO TO ERR2; 35 I
I /* LOOP TO READ SAMPLE DATA AND ENTER IN TABLE */ 36 I
I IN1: READ INTO (SAMPLE) FILE (PDATA); 37 I
I IF SNC = 9999 THEN RETURN; /*TRAILER CARD*/ 38 I
I IN2: GET EDIT (R,OMEGA,ALPHA) (3 P'999') 39 I
I STRING (READINGS); 40 I
I (SUBSCRIPTRANGE): TABLE«OMEGA-OMIN)/OINT, (AIPHA-AMIN)/AINT) == R: 41 I
I GOTCIN1; 42 I
I /* FIRST CONVERSION & SUBSCRIPTRANGE ERROR IN THIS EATCH */ 43 I
I ERR2: ON SUBSCRIPTRANGE GO TO BArBATCH; /*FOR NEXT ERROR*/ 44 I
I CALL ERRMESS (SAMPLE, 02) ; 45 I
I GO TO INl; 46 I
I ERR1: REVERT CONVERSION; /*SWITCH FOR NEXT ERROR*/ 47 I
I CALL ERRMESS (SAMPLE, 01) ; 48 I
I GOTOIN2: 49 I
I END INPUT: 50 I
I END DIST; 51 I L ___ -----------_______________________ J

Figure 18. A Program Checkout Routine

SIGNAL and REVERT statements, and condition
prefixes. The routine reads batches of
card images containing test readings. Each
batch has a header card ~ith a sample num
ber, oalled SNO, of zero and a trailer card
image with SNO equal to 9999. If a conver
sion error is found, one retry is attempted
with the error character set to zero. Two
data fields are used to calculate a su~
script; if the subscript is out of range,
the sample is ignored. If 1;h. re is more

than one subscript error or more than one
conversion error in a batch, that catch is
then ignored.

The numbers to the right of each line
are sequence numbers, which are not part of
the program itself.

The CHECK prefixes in lines 1 and 25 are
included to help with debugging: in a pro
duction program, they would be removed.

Section 13: Exceptional Condition Handling and Program Checkout 135

The prefix specifies that just before the
statements HEADER, NEWBATCH, and BADBATCH
are executed, just before the procedure
INPUT is invoked, and whenever the value of
the variable SAMPLE changes. interruptions
will occur. Since no ON statemenL has been
executed for the CHECK condition, system
action is performed. This will result in
the appropriate name being written on SYS
PRINT, together with the new value, if any,
of SAMPLE.

Since the labels used within the intern
al procedure INPUT are not known in DIST,
they cannot be specified in a CHECK list
for DIST. A separate CHECK prefix is
therefore inserted just tefore the proce
dure statement heading INPUT. This check
list specifies the label~; in INPUT, and the
array TABLE.

It is worth noting again that the CHECK
condition prefix can be applied only to
PROCEDURE and BEGIN blocks, and not to
individual statements. The first statement
executed is on t.he ON EN0FU,E statement on
line 9. This specifies that the external
procedure SUMMARY is to te called when an
ENDFILE interruption occurs. This action
applies within DIST and within INPUT and
within all other procedures called by DIST,
unless they establish their own action for
ENDFILE.

Throughout the procedure, any conditions
excert SIZE, SUIlSCRIPTRANGE, STRINGRANGE,
and CHECK are enabled by default; and for
all conditions except those mentioned ex
plicitly in ON statements, the system
action applies. This system action, in
most cases, is to generate a message and
then to raise the ERROR condition. The
action specified for the ERROR condition on
line 13 is to display the contents of the
card being processed. When the ERROR
action is completed, the FINISH condition
is raised, and execution of the program is
terminated.

The statement on line 10 specifies
action to be taken whenever a CONVERSION
interruption occurs. Since this dction
consists of more than one statement, it is
bracketed by EEGIN and END statements.

The main loop of the program starts with
the statement HEADER. Since the CHECK con
dition is enabled for HEADER, an interrlp
tion will occur before HEADER is executed.
The READ statement with the INTO option
will cause a CHECK condition to be raised
for the variable specified in the INTO I option (unless, for the TSS/360 con'J?iler,
the EVENT option is used): consequently,
the input is listed in the form of data
directed output.

136

The card image read is assullled to be a
header card. If it is not, the SIGNAL CON
VERSION statement. cause.s execut:ion of the
BEGIN block, which in turn calls a ~rcce
dure (not shown here) that reads on, ignor
ing card images until it reaches a header
card in,age. The begin block ends with a GO
TO statement that terminates t.he on-unit.

The GET statement labeled NEWBA'fCH uses
the STRING option to get the different test
numbers that have teen .read into the char
acter string READINGS, which i.s an elerrent
cf SAMPLE. Since the variables named in
the data list are not explicitly declared,
their arTearance causes implicit declara
tion with the attribut.es FLOAT DECIMAl, (6).

The array TABLE is initialized to zero
before the procedure INPUT is called. This
frocedure inherits the on-units already
established in DIST, but it can override
them.

The first statement of INPUT establishes
a new action for CONVERSION interruptions.
Whenever an interruption occurs, the ONCODE
is tested to check that the int:erruption is
due to an illegal P forrr,at. input character
and that the illegal character is a blank.
If the illegal character is a blank, it is
replaced by a zero, and control is trans
ferred to ERRI.

ERRl is interna 1 t.O the procedure INPUT.
'Ihe statement, REVERT CONVERSION, nullifies
the ON CONVERSION statement executed in
INPUT and restores the action specified for
conversion interrupts in DI81 (which causes
the tatch to,be ignored).

After a routine is called to write an
error Kessage, central goes to IN2, which
retries the conversion. If another conver
sion error occurs, the interruption action
is that specified on lines 10 and 11.

The second ON statement in INPUT estab
lishes the act~ion for a SUBSCRIPTRANGE
interruption. This conditien must be ex
plicit.ly enabled by a SUBSCRIPTRANGE prefix
for an interruption to occur. If an inter
ruption does occur, the on-unit causes a
transfer to ERR2, which establishes a new
on-unit for SUBSCRIPTRANGE interruptions,
overriding the action specified in i.:he ON
statement on line 35. Any subst'guent sut·
script errors in this batch will, there
fore, cause control to go to BADBATCH,
which signals the CONVERSION condition as
it existed in the procedure DIST. Note
that on leaving INPUT, the on-action
reverts to that established in DIST, which
in th1S case calls SKIPBCH to get to the
next header card.

After estat:lishment of a new on-unit, a
message is printed, and a new sample card
image is read.

The statement labeled IN1 reads an 80-
column card image into the structure
SAMPLE. A READ statement does not cause
input data to be checked. so the CONVERSION
condition cannot arise.

The statement IN2 checks and edits the
data in columns 11 through 19 according to

the picture format item. A nonnumeric
character (including blank) in these
columns will cause a conversion interrup
tion, with the results discussed abcve.

The next statement (line 41) has a SUB
SCRIPTRANGE ~refix. The data just read is
used to calculate a double subscript. If
either subscript falls outside the bounds
declared for TABLE, an interruption occurs.
If beth fall outside the range, two inter
ruptions occur.

section 13: Exceptional Ccndition Handling and Program Checkout 137

SECTION 14: BASFD VARIABLES AND LIST PROCESSING

This section describes the PL/I based
storage facilities of the TSS/360 PL/I com
~iler, and gives some indication of their
use.

INTRODUCT ION

Storage allocation is the association of
the requisite amount of storage with a
variable; it is effectively a two-way pro
cess: the storage is associated with a
variable, and the variable is associated
with the storage. Allecation will be made
either statically (that is, before the pro
gram is executed), or dynamically (that is,
during execution). A statically allocated
variable remains allocated for the duration
of the program, but a dynamically allocated
variable may relinquish its storage before
the program has finished.

The storage class attributes determine
which kind of allocation is to apply to a
given variable. STATIC specifies that
allocation will be made statically; AUTO
MATIC, CONTROLLED, and BASED each specify a
type of dynamic allocation. Automatic
storage is allocated automatically on entry
to the block in which the variable is
declared, and freed automatically when the
clock is terminated; once freed, the value
of the variable is lost. Controlled
storage allocation is under the direct con
trol of the user, using t.he ALLOCATE and
FREE statements. Based storage allocation
is also under the direct control of the
user, but with some essential differences
from controlled allocation.

When the user rea lloca tes a controlled
variable without first freeing it, the
value of the earlier allocation is not
lost. All values are held, but in such a
~ay that only one value is available for
use at a given time. Effectively, the
values are stacked. On the other hand,
when a based variable is reallocated
without first being freed, all the values
are not only beld, but are also available
for use at any time.

Whenever a based varial:;le is allocated,
a pointer variable is set to a value relat
ing to the address of the allocation; by
including this pointer variatle in a
reference to the based variable, the user
can distinguish between different alloca
tions of one based varia tIe. In other
words, reference to the based vad.ble can
be qualified by a pointer value. ~he
pointer variable is one of two types of

138

].ocat.OT variabL,. The other t~ype, the off
set variable, is discussed later.

The tased variatle can te a structure
containing a locator for anotiler alleca
tion, which in turn can contain a locator
for yet another allocation, and so CD.
This is tbe fundamental concept underlying
PUI list rrocessing.l different allocations
can be chained together in a specific
order. In fact., t~hey oan l:e chaililcd
together in several different orders at
eDce by using several different sets of
locators. Thus, for exarrple, it is [ossi
tIe to sort a list without duplicating the
list items or rroving them around; any
sequence can be specified ty a set of loca
tors. This facility can also be used tc
chain like items to<]€ther without neces
sarily implying a particular order.

A list or chain of associated based
variables could re scattered over d large
area of storage, linked only by rointers.
However, to facilitate input/output and
assignment, the based variables can te
collected together into a reserved area.
'The relative locat:ions of the items-can
then be established. The reason for this
[rovision is that the value of a pointer is
absolute and refers to only one allocation
cf a variatle; for example, if a list of
associated based structureE; cont_aining
rointers were written out and later read in
again, this would constitute a realloca
tion, within which the pointer values would
Le meaningless because the addresses would
1:e dif ferent:. However, another kind of
locator variable, called an offset vari
able, is available, which establishes the
location of an item relative to the start
of an area. Because-Tiisrilative, the
value of an offset variable retains its
rreaning across input./outpu·t and assignment.

As well as rroviding a list processing
facility, based storage allows the user to
Rake more efficient use of record-oriented
input/output. This type of input/output
normally involves the use of interrr,ediate
buffers and work areas; hut a based vari
able can be Virtually overlaid on i:i 1:;uffe.r,
and [rocessing can take place within tbe
buffer. Several separate based variable:3
can be effectively overlaid on the saRe
huffer at once; this allows easy bandling
of files containing different types of
record. (The type of record wouId be des
ignated within the record itself~ the
correct based variable could then he deter
mined from a test made after t~he record has
teen read into the Luffer.) This type of

Page of GC2B-2045-', Issued September]0, 1971 by TNL GN28-31A5

input/output using based variables is the
PL/I form of locate mode ineut/output.

BASED VARIABLES ANO POINTER VARIABLES

A based variable is a variable that can
be allocated in more than one location in
storage, thus simultaneously representing a
number of values, any of which can be
retrieved by specifying a pointer variable
associated with the relevant storage
location.

When a based variable is declared, it is
associated with a pointer variable. The
form of the declaration is:

identifier BASED (pointer-variable)

Example:

DECLARE X BASED (P);

This declaration also contextually declares
p to be a pointer variable unless an ex
plicit declaration for P exists. Pointer
variables can be declared explicitly, with
the following format:

identifier POINTER

When an unqualified reference is made to
the based variable, the value of the point
er variable included in the declaration
will be used to determine which allocation
is concerned. For example:

x = X + 1;

In this statement, the pOinter variable
used to determine the location of X will in
both cases be P; that is, the references to
X are implicitly qualified by the pointer
P. Note, however, that X could have been
explicitly qualified by other l~inter
variables. Explicit pOinter qualification
is discussed below.

POINTER QUALIFICATION

Reference to a based variable can be
explicitly qualified by means of the fol
lowing format:

pOinter-variable -> based-variable

The painter variable must be neither
subscripted nor based; a qualified name is
allowed. For example:

P -> X :: Q -> X;

This statement means Simply that the value
of one allocation of X is to be assigned to
another allocation of X; the X allocated in
the location associated with P is to be

'made equal to the X allocated in the loca
tion associated with Q. The appearance of
P and Q in the statement contextually
declares them as pOinter variables, unless
explicit declarations exist for P and Q.

The arrow< or pointer qualifier. is a
Composite symbol made up of a minus sign
followed by a greater-than sign. Its
equivalent in the 48-character set is PT.
It does not signify an operation; its func
tion is similar to that of the period sym
bol in an ordinary qualified name.

RULES AND RESTRICTIONS

Full details of the rules governing
based variables and pointer variables are
given under the respective attributes in
Section I, Attributes. However. the fol
lowing points should be carefully noted:

1. Based variables may not have the
EXTERNAL, VARYING, or INITIAL
attributes.

2. Thf~ bounds of based arrays and the
lengths of based strings must be
decldred using decimal integer con
stanb;, with t.he exception that the
REFER option (see "The REFER Option"
in this section) allows. one adjustable
array bound, :,tring length, or area
size to be declared within a based
structuH'.

3. Based label arrays cannot be initial
ized by subscripted label prefixes.

4. Based variables cannot be checked by
means of a CHECK condition prefix.

5. Based variables cannot be transmitted
using data-directed input/output.

6. The pointer variable qualifying a
based variable (whether implicitly or
explicitly) cannot itself be based,
nor can it be subscripted; it must be
an element variable. or an element of
a structure; a qualified name is
allowed. (Arrays of pOinter variables
are allowed, but the value of an ele
ment of such an array would have to be
assigned to an element pointer vari
able before it could be used to quali
fy a based reference.>

7. Pointer variables cannot be operands
of any operators except the comparison
operators = and ,=. The value of a
pointer variable can be compared with
that of any other locator variable, or
with a locator value returned by a
function.

Section 14: Based Variables and List ProceSSing 139

Page of GC28-204S-1, Issued Sept.ember 10, 1971 by TNL C"<2H··llWi

8. Assignment of a pointer variable value
can be made only to another locator
variable.

9. Pointer variables cannot be trans
mitted using STREAt-l input/out~put.

10. The painter variable declared with a
based variable is not given the value
of t.he NULL built-in function by the
declaration.

11. Only the INITIAL CALL form of the INI
TIAL attribute is allowed in pointer
declarat ions.

12. The implementation of offsets and
pOinters does not support bit addres
sing. This restriction has no practi
cal effect on ALIGNED bit strings.
With UNALIGNED bit strings belonging
to arrays or structures, however, only
offsets or pointers to major struc
~~ure!·; or minor structures with byte
(or higher) alignment should be used.

l-<ot.e: The allocation of a ba~>ed variable
will always take at least eight bytes of
storage, even if the based variable is a
bit-string variable of length 1.

Pointer DefiniI:!'l

A painter variable can be defined on
another pointer variabh' using overlay or
correspondence defining.

SELF-DEFINING DA'rA

A self-defining record is one which con
t.ains, within itself. information about its
own fields. ~:Ilch as the length of a string.
PLiI allows the user to declare a based
struct.ure in a way that is designed to help
manipulate sllch data. A based structure
can be declared to have either one adjust
able array bound, one adjustable string
~engthr or adjustable dred size, governed
by a variable contained within the struc
ture itself. This variable i3 given a
value when the struct.ure is allocated; the
value is assiqned from a variable outside
the structure. Note that the variable out
side the structure is used only on alloca
tion (either by an AIALOCATE statement or by
a LOCATE statement): for any other
reference to the struct.ure (such as READ
with SET, discussed later in this section),
the variable inside the structure will
apply.

The REFER Option

The REFER option is used in the .leclara
tion of a based structure to specify that,
on allocation of the structure, the value
of a variable outside the structure is to

140

~ assigned to an element of the struct.ure,
and that this value will be the length,
size. or bound of another element of the
same allocatio~ of the structure.

The REFER opt. ion .has the following gen
eral form:

ele~ent-variable REFER (element-variable)

The element variables must be unsubscripted
fixed binary integer variables, and can be
fullword or halfword, but must have the
same precision. The variable on the left
hand side of the keyword must not belong to
the structure; it can be qualified or
pointer-qualified. The variable on the
right-hand side must belong to the
structure.

For examplt':

DC L 1 ::TR BASED (P),
2 Y FIXED BINARY,
2 Z (B.X REFER (Y»;

This declaration ~pecifies that the l~sed
structure STR will consist of an array Z
and an element Y; when ::.iTR is allocated,
the upper bound of Z is set equal to the
current value of B.X, and this valufc' is
as:c;igned to Y. For any ot.her reference to
the variable, the bOlmd va.lue is taken from
Y.

Note that this option can be used only
once in a declaration. If it is used to
specify an array bound, t_he bound mu,;t be
the uppf'r hound of the leadinq dimension of
the element with which it is u~,pd, and the
dirnen .. c; ion must belonq t.o the last ele.ment.
in the structure declarat.ion, or to a minor
struct ure cont dinin') the 1,; st. element:.

For example:

DCL 1 :~TP. BA!.;ED cr') ,
2 A,

J fl FIXED BINARY,
.1 c !2(),

IJ,
3 B FIXED BINARY,
3 C (O:X REFER (D. B) , I) ~ 9) ;

In this declaration. the REFER opt ion i:>
used to specify an ddjustable upper bound
for the array D< C; in this cas. it. !";ould
not have appeared in any place othel than
that shown. Note that even t-..hough the rule
states that the variable on the right-hand
side of the REfER keyword must belonq to
the st.ructure cont.aining the REF'ER opt.ion,
this variable must still be sufficiently
qualified to avoid ambiguity with me~bers
of other st.ructures. In this case, a
reference t.o B alone would not be suffi
cient, since structure A also contains a

I member named B. This would an:ly even if A
and D were separate major structures.

Note: Since the adjustable bound must be
Fart of the leading dimension of the ele
ment with which it is declared, it is not
possible for that element to inherit a
dimension from a higher level. (Inherited
dimensions would automatically become the
leading dimensions of the lower-level
member.)

For example:

DCL 1 STR BASED (p),
21:(10),

3 E (50),
3 F (50);

In this declaration, both E and F would
have implied bounds of 1:10, inherited from
Dj the REFER option could not have been
used with thell' but could have teen used
with D (in place of 10).

If the REFER option is used to specify a
string length, that string must be an ele
ment variable. and it roust be the last ele
ment variable in the structure declaration.

If the element variacle on the right
hand side of REFER varies during the pro
gram then:

1. The structure must not be freed until
the element variacle is restored to
the value it had when allocated;

2. The structure must not te written out
while the element variable has a value
greater than the value with which it
was allocated.

3. The structure may be written out when
the element variable has a value equal
to or less than the value it had when
allocated. The number of elements or
the string length actually written
will be that indicated by the current
value of the variable.

For exam~le:

DeL 1 REC BASED (P),
2 N,
2 A (M REFEIHN»,

M INITIAL (100);

ALLOCATE REC;

N = 86:

WRITE FILE (X) FR()~ (REe);

In this example, 86 elements of REC are
written. It would be an error to attempt

to free REC at t.his point, since N must be
restored to the value it had when allocated
(i.e., lOO). If N was assigned a value
greater than 100, an error would occur when
the WRITE statement was encountered.

POINTER SETTING, BASED STORAGE ALLOCATION,
AND INPUT/OUTPUT

Before a reference can be made tc a
cased variacle, the qualifying pOinter
variable must have a value. This value can
te set in any ot five different ways:

1. vii th the SET option of a RE.AD
staterr.enti

2. By a LOCATE statc~ent;

3. By an AILCCATE statement;

4. By assignment of the value of another
locator variable, or a locatcr value
returned ty a user-defined function;

5. By assignrrent of an ADDR built-in
function value.

Note that the actual value is in all
cases set ty the compiler. The user has no
direct control over addressing; he cannot,
for exarr.fle, assign a constant to a pointer
variable.

A sfecial ferm of assignrrent to a ~oint
er variable is wade uSinq the NULL cuilt-in
fUnction. This dssigns a special value to
the fointer, that cannot be related to any
address; its purpose is to give a fositive
indication that the pointer does not cur
rently identify any allocation of a
variable.

READ WITH SET

The READ statement with the SET option
has the following basic format:

READ FILE (file-narre)
SET (pointer-variatle);

Th~ ~ointer variacle can ce any variable
that represents a single pOinter value.
!his forn of the READ statement causes a
record to be read into a buffer and the
specified pointer variatle to be set to
point to the buffer. A based variable
reference, qualified by the same pointer,
will then relate to the fields of the
record.

A based variable used to descrite a
record in a tuffer is effectively overlaid
on the buffer. The result of a reference
to an elenent of the based variable is the
same as it would be if the record had been
read directly into the structure descriced.

Section 14: Based Variacles and List ProceSSing 141

If t.he REFER option is used in the
declaration of a structure, and the pointer
to the structure is set I::y a REAC statement
with the SET option, the value for the
appropriate array bound, string length, or
area size is taken from the varial::le inside
the structure (i.e., from the record
itself), not from the variable outside the
structure. For example!

DCL 1 REC BASEDCP),
2 N,
2 A(M REFER (N),

M INITIALClOO),
INFILE FILE RECORD;

ALLOCATE REC;

FREE REC;

READ FILE(INFILE} SET(P);

In this example, when REC is first allo
cated, the array A has 100 elements and N
has the value 100. On executien of the
READ staterrent, however, the numter of ele
ment.s in the array is specified in that
part of the record effectively overlaid by
N; the value of M has no effect.

LOCATE WITH AND WITHOUT SET

The LOCATE statement has the following
tasic format:

LOCATE based-variable FILE (tile-name)
[SET (pointer-variatle)];

The pointer variatle can be any variable
that represents a single pointer value.

This statement allocates storage, in an
output buffer, fer a based variable. The
action is similar to that of the READ and
SET, in that the based variatle is, in
effect, overlaid on the buffer. In this
case, however, data is moved (by subsequent
statements) into the output buffer in such
a way that the fields of the record are
located relative to the elements of the
based variable; the record is automatically
written onto the sFecified file immediately
tefore execution of the next WRITE, LOCATE,
or CLOSE statement (or irr'plici t close
operation) for the file. This WEans that
the user must assign values to the variable
after allocation and before the next input/
output operation on the file.

Again, a pointer variable is set to
point to the buffer. This pointer variable
will be that specified in the SET option,
if the option appears; if the option is
omitted, the pointer variable that vias

142

declared with the specified based variable
is set.

ALLOCATE WITH AND ;UTHOU'I SET

The ALLOc.r,TE c;;tatemEnt, as used with
based variables, has the following basic
fermat:

ALLOCATE based-variable [IN(area-variable)]
[SET(peinter-variabl~)l;

The effect of this st~te~ent is sirrilar
to t.hat of the LOCATE statement, in that it
allocates storage for the based variable
and sets a pointer to point to the alloca
tion. In this case, however, no output is
implied; the storage is not allocated in a
buffer. If the SET option a~pears, the
specified pointer variable is set; if the
option is omitted, the pointer variable
that was declared with the specified based
variable is set.

The IN option, if included, specifies
that the allocation is to be made within
the reserved area of storage named. Areas
are discussed in detail lafer in this
chapter. The area variable can be any
variable that represents a single area; the
pointer variable can be any variable that
represents a single pointer value.

POINTER ASSIGN~ENT

The value of a pointer variable rray be
assigned to another pointer variable in a
simple assignment statement. Assurre that p
and Q are pointer variables and that P has
a valid pointer va lne.

Q '" P;

This statement specifies that Q is to be
set to point to the same location that P
points to. A reference to a based variable
qualified by Q will then be effectively
identical to a reference t_o the sarre based
variable qualified by P. For example
(assuming that X is a based variable asso
ciated with the pointer P by declaration),
the referenc~s X, P -> X, and Q -> X will
te ident iCdl in effect ..

lhe ApCR Built.-in Fnnctior.

~he value returned by the ADDR built-in
function is a valid point.er value that spe
cifies the location of a data variatle
narred as the argument of t~he funct ien
reference. For example:

P '" ADI:R (X);

Execution of this St,.atement will give
the pointer variable P a value so that it

Page of GC28-2045-1, Issued September 15, 1970 by TNL GN28-3111

points to the location of the data variable
X. The value of an ADDR function reference
can be assigned to a locator variable only.

The argument can be a variable that
represents an element, an array, a struc
ture, an area, an element. of an array, a
minor structure, or an element of a struc
ture. The value ret.urn€d is always a
point.er value. Note that if a based vari
able has not been allocated, its ADDR is
undefined; however. the ADDR value of an
unallocated controlled variable is nUll.

The ADDR of an element of an array or
structure returns a value that relates to
the address of the element. However, a
pointer: qualifying a subscripted or quali
fied variable is assumed to point to the
array or structure in which the element is
contained, not to the element itself. For
example:

DCL A (10,10) CHARACTER (20) B~.SED (P),
B CHARACTER (20) BASED (Q>,
C (10,10) CHARACTER (20);

Given this declaration,if ADDR (Cr is
assigned to p. then A (1,1> will refer to
the first element of C. If ADDR (C(2,3))
is assigned to Q, then B is ~~ffectively
overlaid on the third element. in the second
row of C. (This technique, like the other
overlaying techniques made possible by the
use of based variables and painters, is
extremely powerfUl; however, such tech
niques should be used only with the under
standing that the compiler has no means of
recognizing incompatibilities between the
attributes of the based variable and the
attributes of the variable being effective
ly overlaid.)

Since ADDR returns a single value only.
the elements of an array or structure argu
ment must occupy successive locations in
storage. For example:

DeL A(lO,lO);

For the array declared above, ADDR would
not be permitted for the cross-section
AA(*,lO), because each element in the cross
section would belong to a different row,
and would be separated from Lts column
neighbor by other elements in its row.
ADDR would, however, be permitted for the
cross-section A(lO,*); this cross-section
consists of one entire row whose elements
occupy successive locations in stcrage.

Note also that since the TSS/360 PL/I
compiler does not support ba.sed-st ..)rage bit
addressing, the argument to thp AiJDR built
in function must be aligned OL a byte (or
higher) boundary. In the case of bit
strings belonging to unaligned arrays and
structures, therefore, ADDR should be used
only for the level 1 name 01: for minor

structures that are not composed ent.irely
of bit strings.

The NULL bull t-·in function requires no
arguments; it returns a null pOinter value
(that is, a special point.er value that can
not relate to any address in storage). Its
purpose is to provide a positive indication
that. a pointer does not. currently identify
any allocation of a variable. Examples of
its use include the following:

1. If NULL is assigned to a pointer at
the start of a program, a later test
of the pOinter against NULL will show
whether a based variable qualified by
the pointer has been allocated or not.

2. A terminal point.er in a chain can be
set to the value of NULL so that the
beginning or end of the chain can be
recognized.

FREEING BASED STORAGE

The storage that has been associated
with a based variable by one of the alloca
tion methods described above can be freed
explicitly or, in certain cases, implicit
ly. for possible reuse. Once t.he storage
for a based variable has been freed, a
reference to the associated t~inter becomes
invalid.

THE FREE STATE..'''I:ENT

The FREE statement, as applied to based
varid~Ies. has the following basic format.:

FREE qualified-reference
[IN fa rea-variable) J
I. qualified-reference
[IN (ar~a --variable)] J ••• ;

where "qualified-refer:ence" 15 defined as:

[pointer-varIable ->] based-~ariable

This statement frees the storaae asso
ciated with one or more allocatio~s of one
or more specified based variables. The
allocations are identified bv the current
values of the specified pOiniers. If a
pointer is omitted, it is assumed to be
that declared with the based variable
concerned.

IN (area-variable) must be specified if
the allocation was made ~ithin an area;
otherWIse, it must be omitted. Areas are
discussed later in this sectIon.

The amount of storage freed depl?nds on
the attributes of the based variable,
including the current value of any ad]ust-

Section 14: Based Variables and List Processing 143

Page of GC28-2045-1, Issued september 15, 1910 by TNL GN28-3171

able bound or length specification. The
user is responsible for ensuring that the
amount freed coincides with the amount
originally allocated. For example:

DECLARE 1 S BASED (P),
2 N.
2 X(M REFER (N»;

M "" 50;
ALLOCATE Si
/*X HAS 50 ELEMENTS AND THE VALUE OF N IS
SET TO 50*/

M = 80i /*THIS HAS NO EFFECT ON THE CUR
RENT AL.LOCATION OF S*/
P -> N = 10;
FREE S;
/*THIS IS IN ERROR BECAUSE STORAGE EQUIV
ALENT TO 40 ELEMENTS OF X IS LEF1'
UNFREED*/

It is an error to attempt to free bas.ed
variables that have not been allocated.

IMPLICIT FREEING

In certain circumstances, based storage
is freed without the use of an explicit
FREE statement, as follows:

1. Storage that has been allocated by the
LOCATE statement is freed after the
variable is written out.

2. Storage that has been effectively
allocated by a READ statement with the
SET option is freed by the next read
or close operation on the file.

AREAS AND OFFSETS

Based variables can be allocated within
an area of storage that has been reserved
by allocation- of an area variable. This
has t.he effect of grouping the data items
together so that they can be easily trans
mitted or assigned as a single unit while
still retaining their individual identi
ties. The items stay in their relative
locations. which can be identified by.off
sets from a pointer that identifies the
start of the area. This does not mean that
pointers cannot be used within areas:
however, offsets have the advantage of
remaining valid during area transmission
and aSSignment.

Offsets, like pointers, can be u8(d to
build chains of data; however f they cannot
be used directly as based variable quali
fiers nor can they appear in a SET option.
Assignment from pointer to offset implies

144

conversion to offset; similarly, aSSignment
from offset to pointer implies conversion
to pointer. Hence, an offset variable can
be given a value by assigning a pointer
value to it; and, in order to use an offset
as a qua1ifier. its value is a.ssigned to a
nonbased pointer.

AREA VARIABLES

The AREA att.t:ibute defines an area of
storage that is to be reserved for the
allocation of based variables. It has the
following general format:

I AREA [(size)]

Note: The size can be an expression or an
asterisk.

The number of bytes of storage is speci
fied by an asterisk or by the integral
value of the expression, if present: other
wise, an implementation defined value of
1000 bytes is assumed. This value is the
size of the area.

The implementat.ion defined maximum size
of an area is 32,767 bytes.

The size of an area is the amount of
storage that is reserved by the area a110-
cation for the allocation of based
variables. The amount of the reserved
storage that is actually in use is known as
the extent of the area: it is defined as
the amount of storage between the start of
the reserved area and the end of that
unfreed allocation which is furthest from
the start (jf t he area. In addition to the
declared size. the implementation requires
an extra 16 bytes of control information,
giving such details as the size. and the
length of the current extent. These 16
bytes are allocated immediately before the
start of the reserved area, and are added
to the area size to obtain the length of
the area. i.e., the actual amount of
storage needecl for the area allocation.
The distinc"~ ... oD between area size and
length is 1.mportant to the discussion of
area I/O later in this sect.ion.

DECLARE A STATIC AREAt2000),
B AREA,
C AREA un;

This statement specifies that:

1. A is a static area variable reserving
2000 byte!'; of storaqe. (The size of
an area of static storage class, if
specified. must be specified as an
unsigned fixe,} decimal integer
constant.)

Page of GC28-204S-1, Issued Sept.ember 15, 1970 by TNL GN28-3171

2. B is an automatic area variable
reserving 1000 bytes of storage.

3. C is an automatic area variable whose
size depends on the value of N current
at the time of entry to the block.

Rules and Restrictions

The following rules apply to area
variables:

1. Data of the area type cannot be con
verted to any other data type: an area
can be assigned to an area variable
only.

2. No operators can be applied to area
variables.

3. Only the INITIAL CALL form of the INI
TIAL attribute is allowed with area
variables.

4. When an area is allocated, it is auto
matically given the EMPTY state .(see
-The EMPTY Built-in FUnction- in this
section, for explanation of EMPTY).

5. An asterisk can be used to specify the
size if the area variable being
declared is controlled or is a para
meter. In the case of a controlled
area variable where size is declared
with an asterisk, the size must be
specified in the ALLOCATE statement
used to allocate the area. In the
case of a parameter declared with an
asterisk, the size is inherited from
the argument.

OFFSET VARIABLES

Declaration of an offset variable must
be explicit. The OFFSET attribute has the
following form:

OFFSET (variable)

The variable within the parentheses must
be an unsubscripted level 1 based area
variable.

The function of an offset variable is to
provide a locator value that points to the
location of a based variable relative to
the start of a based area. If the contain
ing area is transmitted or assigned, the
offsets will still point to the correct
locations of the components.

Example:

DECLARE A AREA BASED(P}.
o OFFSET (A) ,
X BASED(Q);

This declaration specifies that A is a
based area variable, that the value of 0
will pOint to a location relative to the
start of A, and that X is a based variable.
If X were now allocated within A, the v"lue
of its pointer could be assigned to 0 to
establish the location of X relative to the
start of A. If A and 0 were written out
and then read back: in again, 0 would still
point to X relative to the start of A.
although the pointer for A itself would
have been reset.

Rules and Restrictions

The following rules apply to offset
variables:

1. Offset variables cannot be used to
qualify a based reference.

2. ASSignment of an offset value can be
made only to a locator variable. When
an offset value is assigned to an off
set variable, the area variables named
in the OFFSET attributes are ignored.
A pointer value can be assigned to an
offset variable, with implicit
conversion.

3. Offset variables cannot be operands of
any operators except the comparison
operato~s = and ,=. The value of an
offset variable can be compared with
that of any other locator variable, or
with a locator value returned by any
function.

4. Offset variables cannot be transmitted
using STREAM input/output.

5. Offset. variables cannot. appear in any
SET option.

ALLOCATION WITHIN AN AREA

Based variables are allocated within an
area by means of an ALLOCATE statement with
the IN option. This sets a pointer which
can te converted to offset by assignment to
an offset variable. For example:

DECLARE A AREA BASED(V),
1 B BASED(P).

2 OOFFSET(Al.
2 VALUE,

Q POINTER;
ALLOCATE A;

ALLOCATE B IN (A),

ALLOCATE B IN (A) SET (Q):
O=Q;

Section 14: Based Vat:iables and List Processing 145

Page of GC28-2045-1. Issued September 15, 1970 by TNL GN2B-3171

The first ALLOCATE statement causes the
area A to be allocated, reserving 1000
bytes of storage for allocation of bas~d
variables, and sets V.

The second ALLOCATE statement causes B
to be allocated within the area V -> A, and
sets P.

The third ALLOCATE statement causes
another allocation of B (different from p'
-> B) to be made within the area V -> A,
and sets Q.

The assignment sta-tement causes the
value of Q to be converted to offset (rela
tive to the pointer V) and assigned to P -
> O. Thus, the first allocation of the
structure B contains an offset value that
points to the second allocation of B. The
setting of offset values is discussed
below.

SETTING OFFSET VALUES

An offset variable can be given a value
by assignment only, since it cannot appear
in a SET option, nor is any implicit set
ting possible. In the above example, P -
> 0 was given its value by aSSignment from
Q. Note, however, that the reference 0 ->
VALUE, fox:- example, would be invalid, since
offsets cannot be used as qualifiers.

The NULLO BUilt-in Function

The NULLO built-in function is the off
set equivalent of the NULL built-in func
tion as used with pointers. It requires no
arguments, and returns a null value that
can be assigned to offset variables only.

Note: A null offset value cannot be con
verted to a null pointer value. nor can a
null pointer value be converted to a null
offset value. Therefore, the value of the
NULLO built-in function cannot be assigned,
even indirectly, to a pointer variable; nor
can the value of the NULL built-in function
be assigned to an offset variable. For
example:

DECLARE OOFFSET{A),
P POINTER;

P=NULL;
O=Pi
O=NULLO;
P=O;

The second and fourth assignment~ in the
above example would be invalid. They could
be made valid by inserting IF statements,
such as the following:

146

IF P='NULL THEN O=NULLO;
ELSE O=P;

AREA ASSIGNM.ENT _AND INPUT/OUTPU'I'

The value of an area expression can be
assigned to one or more area variables by
an assignment statement. Area-to-area
assignment has the effect of freeing all
allocations in the target area and then
assigning the extent of the source area to
the target area, in such a way that all
allocations in the source area maintain
their locations relative to each other;
that is, any gaps left by freeing opera
tions in the source area are maintained
during the assignment (such a gap might
have been left, for example, if the second
of three contiguous allocations had been
freed; if the gaps were automatically
closed up, some offset values might lose
their meaning).

If a source area containing no alloca
tions is assigned to a target area, the
effect is merely to free all allocations in
the target area.

A possible use for area assignment is to
allow for expansion of a list of based
variables beyond the bounds of its original
area. When an attempt is made to allocate
a based variable within an area that con
tains insufficient. free storage to accom
modate it, the AREA condition is raised
(see below). The on-unit for this condi
tion could be to chancre the value of a
pointer qualifying the reference to the
inadequate area, so that it pointed to a
different area; on return from the on-unit,
the alloca-Uon would be attempted again,
within the new area. Alternatively, the
on-unit could write out the area and reset
it to EMPTY.

The EMPTY Built-ill Function

The EMPTY built-in function reqUires no
arguments and ~eturns an area of zero size
and extent. The effect is to free all
allocatiorJ in the target area.

DECLARE A AREA,
I BASED(P},
J BASED(Q);

ALLOCATE I IN{A), J IN (Al:

A=EMP'I'Y;
/*EQUIVALENT 'I'D:

FREE I IN (Ai, J IN (A); */

The AREA ON-Condition

The AREA condition is raised in any of
the following circumstances:

1. When an attempt is rrade to allocate a
based variable within an area that
contains insufficient free storage for
the allocation to ce made.

2. When an attempt is made to perform an
area assignment, and the target area
contains insufficient storage to
accomodate the extent of the source
area.

3. When a SIGNAL AREA statement is
executed.

The ONCODE tuilt-in function can be used
to determine whether the condition was
raised by an allocation, an assignrrent, or
a SIGNAL statement.

On normal return from the on-unit, the
action is as follows:

1. If the condition was raised by an
allocaticn, the allocation is re
attempted. If the on-unit has changed
the value of a pointer qualifying the
reference to the inadequate area so
that it foints to another area, the
allocation is reattempted within the
new area. Note that if the on-unit
does not effectively correct the
fault, a loop may result.

2. If the condition was raised by an area
assignment, or by a SIGNAL statement,
execution continues at the point of
interruption.

If no on-unit is specified, the system
will comment and raise the ERROR co~ition.

Input and OutFut

The area facility is designed to allow
easy input and output of comflete lists of
based variables as one unit, to and from
RECORD files. The control information is
transmitted with the area. Consequently,
the record length required is governed by
the area length (i.e., area size + 16):
the RECORD condition is raised if the
length of an area named in the INTO option
of a READ statement, or in the FROM option
of a WRITE statement, differs from the
relevant record length. Note that even
though the RECORD condition is rai;ed,
incorrect control information will be
transmitted; when an area is written out,
it must not be read back into an area of
different size.

In the case of READ with SET, the length
of the input area in the buffer is equal to

the length of the area used to create the
record.

AREA AND OFFSET DEFINING

An offset can be defined on an offset,
using overlay or correspondence defining.
In the declarations of the defined offset
and the tase offset, the variables named in
the two CFFSET atttributes need not be the
sarre.

Similarly, an area can be defined on an
area, using overlay or correspondence
defining. The base area must have a size
equal to that of the defined area.

COMMUNICATION BETWEEN PROCEDURES

Similarly to variables of other data
types, locator and area variables in one
~rocedure can te related to those in anoth
er procedure by rreans of arguments and
faraweters, and the general rules are as
described in Part I, Section 12, "Subrou
tines and Functions." There are necessari
ly some restrictions, which will be
eXflained in the following discussion; but
a general rule is that where it is fcssible
to assign the value of one variable to
another variable, it is also possible to
relate the two variables by an argument and
a parameter.

l\RGUMEN'IS ANI:: PARAfJETERS

A locator argument of either pointer or
offset type can be passed to a locater fa
raweter cnly. The parameter can be of
either type, but if the argument tYfe dif
fers frolt the J;arameter type, a dummy argu
ment is created by the compiler, and a
change in the value of the parameter will
not be reflected in the value of the origi
nal argurrent.

Pointer to Pointer

No conversion is necessary when a foint
er arguIT,ent is passed to a pointer parame
ter; norrrially, therefore, no dUITmy arguIrent
is created, and a change in the value of
the parameter ~ill be reflected in the
value of the argument. Note, however, that
this reflected change could be avoided, if
necessary, ty passing the argument as an
expression in parentheses: this causes a
dUffimy argument to be created. For example:

FReC1: PROCEDURE;
DECLARE (P,Q> POINTER;

CALL PROC2«P).Q);

Section 14: Based Variables and List Precessing 147

PROC2: PROCEDURE(R,S):
CECLARE (R,S> POINTER:

END PROCli

In this example, a change in the value
of S will be reflected in the value of Q,
but a change in the value of R will have nc
effect on P.

Offset tc Pointer

Passing an offset argument to a pointer
parameter implies conversion to a dummy
pointer argument, which is then passed to
the entry point. The entry must be
declared with the POINTER attribute in the
parameter attribute list. For example:

PROC3: PROCEDURE:
DECLARE PROC4 ENTRY
(POINTER) ,

o OFFSET(A),
A AREA BASED(P);

CALL PROCIl,(O);
PROC4: PROCEDURE(Q):

DECLARE Q POINTER:

END PROC3;

In this example, the values of P and 0
are used to obtain the value of the dummy
pointer argument to be passed to PROCIl,.

Offset to Offset

When an offset argument is passed to an
offset parameter, variables nawed in the
OFFSET attribute of the offset declarations
are ignored, just as they are ignored for
offset assignment; if they differ, the fact
that they differ does not imply conversion
to a dummy argument. For example:

PROC5: PROCEDURE:
DECLARE OA OFFSET(A),

A AREA BASEDCP),
B AREA BASED{Q> ••••

CALL PROC6 (OA) ;
PROC6: PROCEDURE(OB):

DECLARE OB OFFSET(B), •••

END PROCS;

In this example, OA would be passed
directly to OB.

148

pointer to Offset

PaSSing a pointer argument to an offset
parameter implies conversion to a duw~y
offset argument, which is then passed to
the entry point:. The entry must be
declared with the OFFSET attribute in the
pararreter attritute list, and the two OFF
SET attribute specifications must name the
same variable. For example:

PROC7: PROCEDURE;
DECLARE PROCS ENTRY (OFFSET(A)},

P POINTER,
A AREA BASED(Q)i

CALL PROC8(P);
PROC8: PRCCEDURE(O)i

DECLARE 0 OFFSET(A);

EN!: PROC7;

In this example, the values of P and Q
are used to obtain the value of the durr,my
offset argument to be passed to PROC8.

The varia~le following the keyword OFF
SET is not considered during selection of a
generic entry point.

Area to Area

An area argument can be passed only to
an area parameter. If the size of the
arguroent differs from the size appearing in
the parameter attribute list of the rele
vant entry declaration, the argument is
first assigned to a dummy area argument
with the size specified in the entry
declaration; the dummy argument is then
~assed to the entry point.

The size of an area argument is not con
sidered during selection of a generic entry
~oint.

RETURNS FRCM ENTRY POINTS

An entry point can return a locator
value or an area; hence, the PROCEDURE and
ENTRY statements and the RETURNS attribute
nay specify the POINTER, OFFSET, or AREA
attributes.

Locator Returns

Either type of locator variable can
appear in a RETURN statement in a procedllre
that returns a locator value. If the pro
cedure is to return an offset value but the
RETURN statement specifies a pointer. there
is implicit conversion to offset, and vice
versa. For example:

PROCA: PROCEtURE POIN~ER;
DECLARE A AREA BASED(P),

o OFFSET(A);

RETURN (e);

eND PROCA;

The values of 0 and P are used to obtain
the pointer value to be returned.

PROCB: PROCEDURE OFFSET(B);
DECLARE B AREA BASED(Q),

R POINTER;

RETURN(R);
END PROCB;

The values of Q and R are used to obtain
the offset value to be returned. Note that
the OFFSET attribute is specified in the
PROCEDURE statement complete with the na~e
of the relevant area variable: the keyword
OFFSET alone is not sufficient.

Similarly, a locator value returned by a
function may undergo implicit conversion.
For example:

DECLARE 0 ENTRY RETURNS{CFFSET(A»,
A AREA BASED (P) ,
Q POINTER;

The value of P and the value returned by
o are used to obtain the pointer value to
be assigned to Q.

Area Returns

If a return statement identifies an area
that has an extent different from that
specified in the relevant PROCEDURE or
ENTRY statement, aSSignment is made to a
dummy area with the correct extent, thus
effectively performing a conversion.

VARIABLE LENGTH PARAMETER LISTS

In PLlI, a Frocedure can have only a
fixed number of parameters, all of which
must be sFecified. However, by passing an
array of pointers as a single argument, it
is possible to simulate a vat:iable length
parameter list, since the array call have
adjustable bounds.

T'he following procedure sorts a variable
number of based character-strir'J variables
according to their values in relation to
tb.e collating sequence. The pointers qual-

ifying these based variables are passed as
an array argument to the procedure.

Assume that the calling procedure con
tains an array of pointers. KEYPOINTS, with
one dimension, which is named as an argu
ment in the CALL statement, and whose ele
rrents each Feint to a based character
string variable.

SORT: PROCEDURE(P);
DECLARE

P(*} POINTER,
(H,L) FIXED BINARY,
LISTEL BASED (POINTER1)
CHARACTER (60) •
POINTER2 POINTJ::R;

H=HBOUNDCP, 1);
L=LBOUND(P,ll ;
/*THE HBOUND AND LBOUND BUILT-IN
FUNCTIONS RETURN THE UPPER AND
LOWER BOUNDS OF THE SPECIFIED
DIMENSION (IN THIS CASE, THE FIRST
AND ONLY DIMENSION). THESE VALUES
ARE USED IN SETTING THE CONTROL
VARIABLES OF THE FOLLOWING
DO-GROUPS SO THAT THE NUMBER OF
ITERATIONS IS CORRECT FOR THE
NUMBER OF PARAMETERS*/

Ii: DO I=L TO H-l;
POINTER1=PU) ;

END 11;
END SORT:

/*THE VARIABLE LISTEL NOW HAS A
VALUE*/

DO J=I+l TO Hi
POINTER2=P (J) ;
/*THIS IS NECESSARY, SINCE THE
IMPLEMENTATION DOES NOT
SUPPORT SUBSCRIPTED POINTER
QUALIFIERS*/

IF lISTEL /*IMPLICITLY QUALIFIED
BY POINrER1*/

>POINTER2->LISTEL
THEN DO;

/*REORDER ARRAY ELEMENTS*/
p(I)=P(J) ;
P(J)=POINTER1:
FOINTER1=P (1) :

After execution of this procedure, the
elements of KEYPOINTS will have been rear
ranged so that the first element points to
the hased variahle with the lowest value
according to the collating sequence, the
second element pOints to the based variable
with the next lowest value, and so on.
Thus, the cased variables will have been
logically sorted without changing the phys
ical order of the data.

Section 14: Based Variacles and List processing 149

EXAMPLES OF LIST PROCESSING TECHNIQUE

The following examples illustrate the
use of based storage, locator variables,
and areas, for list processing and
input/output.

Example 1

This procedure builds a two-directional
chain through items that are allocated in
the calling procedure and identified in
turn by passing a pointer parameter. Each
item consists of an allocation of a basic
structure that contains two pointers and a
data value (in this case, a character
string). One pointer identifies the p:t·e
ceding item, and the other identifies the
following item. The ends of the chain are
recognized by a null value for a contained
pointer (for example, the backwards pointer
in the first item is null). The locations
of the ends of the chain are identified Ly
a head pointer and a tail pointer. Figure
19 shows a diagrammatic representation of
the chain.

/*EXAMPLE 1*/
BUILD_CHAIN: PROCELURE(EIE~PTR);

DECLARE
1 ELEMENT BASED{EIE~PTR),

2 BACK_CHAIN POINTER,
2 FWD CHAIN POINTER,
2 DATA CHARACTER(SO),

ELEMPTR POINTER,
(HEAD, TAIL) POINTER SIAlIC EXTERNAL;

r-----------~.-.~--. ~.---~----.~ ---... --- ~---~~.---.

,-----------.-~--.. ---~---.----.~-. --_._-_ ...

He ad

Pointer

Ba~:::r:s=Jl __ J~--:.~T:,:,
r-----;-

Pointer l Pointer (NULL)

Forwards Forwards
----- Pointer Pointer

r.---------

Data 2 Data I

._-----_._--

Figure 19. Example of Two-Directional Chain

150

/*ASSUME THAT HEAD AND TAIL ARE
INITIALLY ASSIGNED THE VALUE OF THE
NULL BUILT-IN FUNCTION IN THE PROCEDURE
THAT CAllS BUIlD_CHAIN*/

IF HEAD=NUlL
THEN /*FIRST ELEMENT*/

HEAD=ElE~PTRi /*SET HEAD POINTER*/

ELSE /*NOT FIRST ElEMENT*/
TAIL->FWD_CHAIN=ELEMPTR;
/*UPDATE FWD CHAIN*/

BACK_CHAIN=TAIl;
I*UPDATE BACK CHAIN*/

TAIl=ElE~PTR; /*UPDATE TAIL POINTER*/

FWD_CHAIN=NUlLi /*SET END INDICATOR OF
FWD CHAIN*/
END BUILD_CHAIN;

Ncte that the parameter ELEMPTR may
identify a nonbased structure, provided
that this structure has the same structur
ing and attributes as ELEMENT.

Example 2

This procedure deletes an item from the
chain created by the procedure in exam~le
1. The item to be deleted is identified by
a pointer parameter.

1* EXAf.!PlE 2 */
ALTER_CHAIN: PROCEDURE(ELEMPTR};

DECLARE

l
~

ITEM ':==]L __
- Backwards

Pointer

Forwards
Pointer

Data 3

I Toil

Pointer

,---........ ITEM n

I Backwards

J
Pointer

For word.
Pointer (NULL)

Data n

1 ELEMENT BASED(ELEMPTR),
2 BACK CHAIN POINTER,
2 FWD_CHAIN POINTER,
2 DATA CHARACTER (50) ,

ELEMPTR POINTEH,
(HEAD, TAIL) POINTER STATIC EXTERNAL,
(PRED, SUCC) POINTER STATIC;

/*SET POINTERS TO PREDECESSOR AND
SUCCESSOR OF ELEMENT BEING DELETED.
PRED AND SUCC ARE USED BECAUSE
BACK_CHAIN AND FWD CHAIN, BEING BASED,
CANNOT BE USED AS QUALIFIFRS*/

PRED=BACK_CHAINi
SUCC=FWL_ CHAIN;

/*UPDATE FORWARD CHAIN*/
IF PRED=NULL

THEN HEAD=SUCC; /*DELETE HEAD*/
ELSE PRED->FWD_CHAIN=SUCCi

/*UPDATE BACK.lARD CHAIN*/
IF SUCC=NULL

THbN TAIL=PRED; /*DEL£TE TAIL*/
ELSE SUCC->BACK_CHAIN=PREDi

ENe ALTER_CHAIN;

Example 3

This frocedure tuilds a sequential list
through several allocations of an area
variable. Within each area allocation, the
procedure builds a chain of structure allo
cations, each of which contains an offset
identifying the following item in the
chain, a character string value, and a
value (passed from the calling procedure)
indicating the length of tne string. The
location of the first iterr in the chain is
indicated by an offset attached to the
area. This offset is part of a structure
containing the first offset and the area;
consequently, the area is a level 2 vari
able. Since a level 2 variable cannot be
named in the OFFSET attribute, a dummy
level 1 area variable is effectively over
laid on the level 2 area, and this dummy is
named in the OFFSET attributes.

The procedure sets pointers to the start
of the area and to each item in the area.
These pointers are external, and are there
fore known to the calling procedure.

Each area allocation is in output buffer
space, and when filled, is written onto a
data set, using locate-mode output. This
output process is controlled by an on-unit
for the AREA condition. The items in the
area are chained by offsets to ensure that
the chain is not invalidated by in>ut/
output operations on the list. It is
assumed that the output file is opened and
closed by the calling procedure.

/*EXAMPLE 3*/
BUILD_LIST: PROCEDURE(N);

CECLARE
N FIXED BINARY,
1 LIST BASED(LISTPTR),

2 FIRST OFFSET(DUM~Y),
2 BOLY AREA,

1 ELEM BASED(ELEMPTR),
2 CHAIN OFFSET(DUMMY),
2 STRING,

3 LENGTH FIXED BINARY,
3 DA1A CHARACTER(N REFER
(LENGTH)) ,

(ELEMPTR, LISTPTR) POINTER STATIC
EXTERNAL, /*THESE POINTERS ARE
INITIALIZED TO NULL BY THE CALLING
PROCEDURE*/
LFILE FILE RECORD SEQUENTIAL
EXTERNAL,
LASTELEM POINTER STATIC,
DU~MY AREA BASED(DPTR);

CN AREA
BEGIN: /*ALLOCATE OUTPUT BUFFER
SPACE*/

LOCATE LIST FILE{LFILE) SET
(LISTPTR) ;
DP'IR=ADDR (BODY) ;
LASTELEM=NULL; /*INDICATES NE~
AREA*/
END;

IF LISTPTR=NULL
'rHEN SIGNAL AREA; /*CREATE FIRST AREA*/
ALLOCATE ELEM IN (BODY): /*ELEMPTR IS
SET AUTOMATICAILY*/
IF LASTELEM=NULL /*SET FORWARD CHAIN*/

THEN FIRST=ELEMPTR; /*FIRST ELEMENT
OF AREA*/
ELSE LASTEIEl<'->CHAIN=ELEMPTR; /*OTHER
ELEMENTS*/

CHAIN=NULLO: /*SET END-OF-CHAIN
INDICATOR*/
LASTELEM=EIEMPTR; /*SAVE POINTER TO NEW
ELEMENT*/

END BUILD_LIST:

Note that LFILE in examFles 3 and 4
should have 3 record length of 1020 to
accommodate the records created by alloca
tions of the structure LIST. This is made
up of 1000 bytes (default size for an area)
flUS 16 bytes of area control information,
plus 4 bytes for the offset variable FIRST.

This procedure sequentially retrieves
the list items created by the procedure in
example 3. The procedure sets a pointer to
the next itero in the list, or if the item
has been retrieved, sets the pointer to
null.

/*EXAMPLE 4*/
GET_ELEMENT: PROCEDURE;
/*ASSU~E THE SAME DECLARATIONS AS IN
EXAMPLE 3, AND ASSUME THAT LIS'IPTR IS
INITIALIZED TO NULL BY THE CALLING
PROCEDURE*/

Section 14: Based Variables and List Processing 151

ON ENDFILE(LFILE)
BEGIN;

ELEMPTR=NULL: I*A11 ELEMENTS
RETRIEVED*/
CLOSE FILE(LF1LE):
GO TO EXIT:

END;

IF LIS'fPTR=NULL I*F IRST ELEMENT TEST*/
THEN DO:

OPEN FILE(LFILE):
GO TO READ_AREA;

END;

IF LASTELEN-)CHAIN=-NU1l0 /*END-OF-AREA
TEST*/

THEN RI'AD AREA: /*READ RECORD INTO
BUFFER*/

DO,
READ FILE(LFILE) SET (LISTPTR);
DPTR=ADDR (BODY) ,
ELEMPTR=FIRST; /*8£'1' PTR TO FIRS'!
ELEMENT*I
ENe;

ELSE ELEMPTR"LfI.STEU:tJ">CllAIN; /*5ET
POINTER TO FOLLO~lING ELEMEN1 */

IJI.STELEM=ELEMPTRj 1*51\\1E PCItdEH TO NEI,
ELEMENT*/

EXIT: END GET_ELEMENT;

152

INTRODUCTION

compile time is generally defined as
that time during which a user's source pro
gram is compiled, or translated, into an
executable object program. ordinarily,
changes to a source program may not te made
dt this time.

However, with PLlI, the user does have
some control over his source program during
compile time. His source program can con
tain special statements (identified by a
leading %) that can cause parts of the
source program to be altered in various
ways:

1. Any identifier appearing in the source
program can be changed.

2. If conditional compilation is desired,
the user can indicate which sections
of his program are to be compiled.

3. Strings of text residing in a user
library or a system library can be
incorporated into the source program.

PL/I makes source program alteration at
compile time possible by a somewhat dif
ferent approach to compile time processing.
compile time as defined in PL/I has two
stages:

1. The Preprocessor Stage -- During this
stage, the user's source program is
scanned for preprocessor statements,
special statements that cause the pre
processor to alter the text teing
scanned. These statements are consi
dered part of the source program, and
appear freely intermixed with the
statements and other text of the
source progcam. The altered source
program, resulting from the action of
the preprocessor statements, then
serves as input to the second stage.
Note that the preprocessor stage is
optional.

2. The Processor Stage -- During this
stage, the output from the first stage
is compiled into an executatle object
program.

This section is concerned w~~h the first
stage; the actual compilation of a program
is not discussed.

SECTICN-.12! __ COl-'PILE-TIME FACILITIES

PREPROCESSOR INPUT AND OUTPUT

The preprocessor interprets preprccEssor
statements and acts upon the source prgram
accordingly_ In[ut to the preproceSiCt is
a sequence of char:acters that is the user's
source program. It contains preprccess. r
statements freely intermixed with the rest
of the user's source proqram. Prerrccessor
statements are identified by a leading per
cent symbol (%) and are executed as they
are encount ered ty the preprocessor ('.- i +j,

the exception of preprocessor [rocedures,
which If,ust te invoked in order to be
executed). One or more blanks ~ay separate
the fercent symtol from the statement.

While checking the preprocessor state
ments for correct format and such, the pre
processor also checks the rest of the
source program text to ensure that there
are no unmatched co~~ent or character
string delimiters. A percent symbol
appearing within a comment or character
string is considered to be part of that
comment or string. This is the extent of
the checking done at this stage on all text
other than preprocessor statements.

Output from the preprocessor consists of
a new character string called the Erepro
cessed text, which consists of the altered
source program and which serves as input to
the processor stage. Note that preproces
sor statewents are replaced by blanks in
the prerrccessed text.

PREPROCESSOR SCAN

The preprocessor starts its scan of the
input text at the beginning of the string
and scans each charact er sequentially. As
long as a preprocessor statement is not
encountered, the characters are placed into
the preprocessed text in the same crder and
general form in which they were scanned.
However, when a preprocessor staterrent is
encountered, it is executed. This execu
tion can cause the scanning of the source
prcgrarr and the sutsequent formation of
preprocessed text to be altered in either
of two ways:

1. The executed statement may cause the
prerrocessor to continue the scan from
a different point in the prograrr.
This new point may very well be one
that has already been scanned.

Section 15: Compile-Time Facilities 153

2. The executed statement may initiate
replacement activity. That is, it may
cause an identifier not a~pedring in a
preprocessor statement to LE replaced
when that identifier is subsequently
encountered in the scan. The replace
ment value will then be written into
the preprocessed text in place of the
old identifier (see -Rescanning and
Replacement- below for Jetails).

The scan is terminated when an attempt
is made to scan beyond the last character
in the source program. The preprocessed
text is completed and the second stage of
compilation can then begin.

Rescanning and Replacement

For an identifier to 1::e replaced by a
new value, the identifier must first be
activated for replacement. Initially, an
identifier is activated ty its appearance
in a preprocessor DECLARE statement (i.e.,
a % DECLARE statement). (It can be deacti
vated by appearing in d % DEACTIVATE state
ment and it can be reacU vated by appearing
in a % ACTIVATE statement.) After it has
~een activated initially, it must be given
a replacement value. This is usually done
via the execution of a preprocessor assign
ment statement. Once an identifier has
been activated and been given a vallle, any
occurrence of that identifier in text other
than preprocessor statements is replaced by
that value, provided that the identifier is
still active when it is encountered by the
scan. The new value is Dot immediately
inserted into the prepr,)cessed text, howev
er; it must be checked to see whether or
not it, or any part of it, is subject to
replacement by still another value Ca
resean is made to determine this). If it
cannot be replaced, it is inserted into the
preprocessed text; if it can be replaced,
replacement activity continues until no
further replacements can te made. Thus,
insertion of a value into freprocessed tex-t
takes place only after all possitle re
placements have been made. Note that the
deactivation of an identifier caUSES it to
lose its replacement capability but not its
value. Hence, the subsequent reactivation
of such an identifier need not beaccom
fanied by the assignment of a replacement
value.

For example, if the source program ~on
tained the following sequence of
statements:

154

%DECLARE A CHARACTER, B FIXED; "A = 'B+C';
%B = 2;
X = Ai

then the followinrl would be inserted into
the preprocessed text in place of the above
sequence:

x '" 2+C;

In this example. the first statement is
a preprocessor DECLARE statement that acti
vates A and B and also esta1::1ishes them as
preprocessor variables. (An identifier
rrust be estal:lished as a preprocessor vari
able before it can be assigned a value in a
~reproeessor statement; it can be so estab
lished only through a preprocessor CECLARE
statement.) The second and third state
ments are preprocessor assignment state
rrents; the second assigns the character
string 'B+C' to A, and the third assigns
the constant 2 to B. The fourth statement
is a nonpreprocessor statement 1 and, there
fore, is not executed at this stage.
However, necause this statement contains A,
and A is a prer;rocessor variable that bas
teen activat.ed for replacement, the current
value of A will replace it in that state
ment. Thus, the string 'B.C' re~laces A in
the statement. But this string contains
the preprocessor variable B, Upon checking
E, the Freprocessor finds that it has been
activated and that it has been assigned a
value of 2. Hence, the value 2 replaces B
in the string. Further checking shows that
2 cannot be re~laced; scanning resumes with
+C which, again, cannot be replaced. Thus,
the chain of replacements comes to an end
and the resulting statement is inserted
into the preprocessed text.

Nete that the preprocessor variable B
has a default frecision of (5,0) and,
therefore, actUSllly contains 2 preceded by
four zeros. - When this value replaces B in
the string 'B.C' it is converted to a char
acter string and becomes 2 preceded by
seven blanks (the rules Eor conversicn of
deciffial fixed-~oint values to character
string are followed). See "Preprocessor
Expressicns· for details.

Also note that each t.ime a replacement
occurs, a blank is appended to each end of
the replacement value. Hence, in the above
example, th~ first replacement results in a
blank being apFended to each end of the
string 'B+C', and the second replacerrent
results in another blank being appended to
each side of the 2 that replaces the B.
lhe result, therefore, will have nine addi
tional blanks immediately before the 2, cne
additional blank immediately after the 2,

~For the purpose of this discussion, a ncn
freproeessor stat.ement~ is any statement or
set of one or more identifiers that aFFears
in the source frogram but is not contained
in a preprocessor state~ent. nor in a rre
frocessor rrocedure, nor in a comment.

and one additional blank immediatEly after
thE C.

Replacew~nt values must not contain per
ctnt symbols, unmatched apostrophes, or
unmatched comrrent delimiters.

The following example illustrates how
compile-time facilities can te used to
speed up the execution of a OO-loop.

A user rright include the iollowing loop
in his program:

DO 1=1 TO 10;
Z (I)=X(I)+Y (I);

END:

The following sequence would accomplish thE
same thing, but without the requirements of
incrementing and testing during execution
of the compiled program:

%DECLARE I FIXED:
%1=1.:
%LAB: ;
Z(I)=X{I)+Y(I) ;
%1=1+1:
%IF 1<=10 %THEN %GO TO LAE:
%DEACTIVATE Ii

The first statement activates I and
8stablishes it as a preprocessor variable.
The second statement assigns the value 1 to
I. This means that subsequent encounters
cf the identifier I in non-prefrocessor
staterrents will be replaced ty 1 (provided
that I rewains activated). The third
statement is a prefrocessor null statement
that is used as the transfer target for the
rreprocessor GO TO statement appearing
later.

The fourth statement, not being a pre
l:~rocessor statement, is only scanned for
replac~lent activity; it is not executed.
1he first time that this statement is
scanned, I has the value 1 and has been
activated. Therefore, each occurrence of I
in this statement is replaced by 1 and the
following is inserted into the preprocessed
text being formed:

Z (1) =X (1 HY (1):

Note that each 1 is actually preceded by
seven blanks of its own in addition to the
one replacement blank shown.

The fifth statement incre~ents the value
of I by 1 and the sixth statement, 1 pre
processor IF statement, tests the value of
I. If I is not greater than 10, the scan
is resumed at the statement labeled LAB;
otrlerwise, the scan continues with the text
immediately following the 'GO T'., statement.
Hence, for each increment of I, up to and
including 10, the aSSignment statement is

res canned and ea~h occurrence of 1 is
replaced Dy its current value. As a
result, the following statements are
inserted into the preprocessed text:

Z (1) =X (1) + y (1);

Z(2)=X(2)+Y(2);

Z(10 }=X(10)+Y(10);

As before, each number from 1 through 9
is preceded by seven blanks in addition to
the replacement blank shown; 10 is preceded
by six blanks in addition to the replace
ment blank shown.

When the value of I reaches 11, contrcl
falls through to the %DEACTIVATE statement.
This statement is interpreted as fellows!
sutsequent encounters of the identifier 1
in source program text are not to be
replaced by the value 11 in the prepro
cessed text being formed; each I will be
left unrrcdified, either for the remainder
of the scan or at least until I is reacti
vated by a %ACTIVATE statement. If I is
again activated, it will still have the
value 11 (unless an intervening preproces
sor aSSignment statement has established a
new value for I).

PREPROCESSOR VARIABLES

A prefrocessor variable is an identifier
that has been specified in a $DECLARE
statement with either the FIXED or CHARAC
TER attribute. No other attributes can ce
declared for a preprocessor variable.
Defaults are applied, however. A frepro
cesser variatle declared with the FIXEC
attribute is also given the attributes
CECH!A.L and preci'3ion (5,0) ty default

I (this is also the ll'axirr,ull' precision): a
CHARACTER preprocessor variacle is given
the VARYING attribute with no maxirrurr
length. No contextual or implicit declara
tion of identifiers is allowed in rrepre
cesscr statements.

The score of a preprocessor variable
encompasses all text except those prepro
cesser procedures tbat have redeclared that
variable. The scope of a preprocesser
variable that has teen declared in a pre
processor procedure is the entire procedure
(there is no nEsting of preprocessor
procedures).

When a preprocessor variable has teen
given a value, that value replaces all
occurrences of the corresponding identifier
in text other than preprocessor statements
during the time that t.he variable is
active. If the freprocessor variacle is

Section 15: Compile-Time Facilities 155

inactive (or if it has no value), replace
ment activity cannot occur for the corre
sponding identifier.

A preprocessor variable is activated
initially by its appearance in t.he %DECLARE
statement. It can be deactivaled and sub
sequently reactivated by its appearance in
%DEACTIVATE and %ACTIVATE st_atements,
respectively. Deactivation of a preproces
sor variable does not strir it of its
value; in other words, an inactive prepro
cessor variable retains the value it had
while it was active and can be altered by a
preprocessor statement or rrocedure if so
desired.

PREPROCESSOR EXPRESSIONS

Preprocessor expressions are written and
evaluated in the same way as source program
expressions, with the following exceptions:

1. The operands of a ~~ep~ocessol expres
sion can consist only of preprocessor
variables, references to preprocessor
procedures, decimal integer constants,
bit-string constants, character-string
constants, and references to tne
built-in function SUBSTR. Repetition
factors are not allowed with the
string constants and the arguments of
a reference to SUBSTR must te prepro
cessor expressions.

2. The exponentiation symhol (••) cannot
be used as an arithmetic operator.

3. For arithmeLic cpeLdL-_ions, Llll]:1 deci-
mal integer arithmetic of precision
(5,0) is performed; that is, each
operand is converted to a decimal
fixed-point value of precision (5,0)
before the operatlon is performed, and
the decimal fixed-point result is con
verted to precision (5,0) also. Any
character string teing converted t.o an
arithmetic value must be in the form
of an optionally signed decimal inte
ger constant. Note that the proper
ties of the division operator are
affected. For example, the expression
3/5 evaluates to 0, rather than to
0.6.

4. The conversion of a fixed-point deci
mal number to a character string
always results in a string of length
8. (Leading zeros in the number are
replaced by blanks and an additional
three blanks are apfended to the Jeft
end of the number, one of which is
replaced by a minus sign if the number
is negative.)

A character string in an expres::'Jon
being assigned to a p;:epl_ocessor variable

156

may incl ude Freproces"or variable;;;,
references to freprocessor procedures. con
stants, and operators; preprocessor state
rrents cannet be includEd in such strings.
Note that if the user desires to insert a
ITultiple character operator such as ,= into
preprocessed text, the operator must aFfear
in the source rrogram ~s an entity. For
example, one cannot have a ,A in the source
frograrr and exrect a 'J(,A=',,,,, statement, to
generate the operator ,= in the prerro
cessed text. The reaf,on is that_ all re
placements cause a blank t:o be dn;ended to
each end of th~ reflacement value. Thus,
the hypothetical caSt; ci ted would result in
1 b=b (where each };,l represents a blank)
being inserted into the prerrocessed text.

PREPROCESSOR PR9CEDURE~

A preprocessor pr'ocedure is an internal
function procedure that can be executed
only at. the prepx~oces<}or stage. Its syntax
differs from other function procedures in
that its PROCEDURE and END staterrents rcust
each have a leadinq percent symbol. The
format of a preprocessor procedure is as
follows:

%label: {latel: 1 . . . PRCCEDURE
[(identifier
[. identifier) .••)]
(RETURNS(CHARACTERIFIXED)};

[label:1 •.. RETURN
(prefrocessor-e~pression);

% [label:} END ! 1a1:;21} ;

More than one RE'fUHN statement may
appear. The general rules governing the
statements that can appear within a prepro
cessor procedure are given in~he descrif
tion of the 'lPROCEDURE statement jn Part
II, Section 10, "Statements.- One thina
should l::e noted, howevel:: no statement J

appearing within a prerrocessor prccedure
can have a leading percent symbol.

INVOCATION OF PREPROCESSOR PROCEDDEE::,

A preprocessor procedure is invcked ty a
function referEnce in the uE>'la1 sense;
i.e" by the appearan.~;e ofU.e entl~Y name
and its associated argument list (if any)
in an exrression. The function reference
can appear in a prepLocessor stat_2!Ient_ or:
in a ncnfreprocessor statement. However,
at_ least one condi t.ion musi~ be !!let fer the
function to te invoked: regardless of
INhere the reference arrears, t:he function
can be invoked if and only if the entry

name used in that reference has been expli
citly declared with the ENTRY and RETURNS
attributes in a %DECLARE statement. This,
ana not its appearance as a label of a
%PROCEDURE statement, is what estaclishes
it as an entry name; in fact, it is not
even necessary for the preprocessor proce
dure to have been scanned before the
reference is encountered (the procedure has
only to be in the source program somewhere
-- anywhere -- when the reference is
encountered). This is the only condition
that must be met for a preprocessor proce
rture to be invoked by a reference in a pre
rrocessor statement.

A seccnd condition must be met if the
reference to the preprocessor procedure is
made in a nonpreprocessor statement.: the
entry name used in the reference must be
active at the time the reference is encoun
t-ered. Entry names of preprocessor func
tions are the same as preprocessor
variables as far as activation and deacti
vation is concerned; i.e., they must be
activated initially by a %DECLARE statement
and they can be deactivated and reactivated
thereafter by 'DEACTIVATE and "ACTIVATE
:;tatements. Thus, since the first condi
tion requires that the entry name appear in
d %DECLARL statement, this second condition
would be restrictive only if the entry name
had later appeared in a %DEACTIVATE
statement.

The value returned ty a preprocessor
iunction (i.e., the value of the preproces
sor expression in the RETURN statement)
always replaces the function reference and
its associated argument list. Note that
for a reference made in a preprocessor
statement, the replacement is only for Lhat
larticular execution of the statement; a
subsequent scanning of the statement would
again result in the invocation of the
tunction.

ARGUMENTS AND PARAMETERS FOR PREPROCESSOR
FUNCTIONS

The number of arguments in a preproces
sor fUnction reference must always agree
with the number of parameters accounted for
in the ENTRY attribute specified for that
fUnction in a 'DECLARE statement. If pa
rameters are not accounted for, the prepro
cessor assumes that the corresponding pro
cedure has none and no arguments are
passed. If, however, parameters are
accounted for, the preprocessor expects to
find a parenthesized list of argumEnts,
separated by commas and equal in number to
the pararr'eters accounted for in the proce
dure reference. The number of para~i1eters
accounted for in the ENTRY at.tritute and
the actual number of parameterc in the
"PROCEDURE statement, howeyer, need not be
the same. The arguments are interpreted

according to ! 11., t.ype ot stateI\'ent (p:e[,ro
cesser or nonprf'i:rocess<H) in whic!. tbe
function reference appea n:;. The arguments
in the al-gumtnt list are evaluated cefon':
any mat.ch is made with the parameter list.
If there are more arguments than parall·,tJ
ters, the excess arguments on the right are
ignored. (Note that for a function
reference arguwent, the function is invoked
and executed, even if the argUl1ient is
ignored later.) If there are fewer a~gu
nents t.han parameters, the excess p'lr"',me
ters on the right are given values of zero,
for FIXEr:: paramet_ers, or the null strir;-j(
for CHARACTER I-ararreters. The usual rules
concerning the creation of dummy arguments
apply if the function reference is in a
Freprocessor statement, tut dummy arguments
are always created if the function
reference occurs in a nonpreprocessor
statement.

If the function reference appears in d

nonpreprccessor statement, the arguments
are interpreted as character strings and
are delirrited ty the appearance of a comma
or a rigbt parenthesis occurring outside of
talanced parentheses. For example, the
argument list (A<B,C) ,D) has two arguments,
namely, the string A(B,C) and the string D.
Each argument is then scanned for possitle
rer-Iacewent activity. Both the procedure
name and its argument list must be found at
one replacement level. Thus, only the com
mas and parentheses seen in the text being
scanned when the procedure name is encoun
tered are considered in this context.
After all replacements have been made, each
resulting arguwent is converted to the type
indicated ty the corresponding parameter
attribute in the ENTRY attribute declara
tion for the function entry name (i.e., the
ENTRY att;ribute declaration in the ~DECLARE
st.atell11c;n+ ..). No conversion is performed if
a corresponding parameter attribute is not
given in the ENTDY declaration. (The ENTRY
attribute is discllssed under "The lDECLARE
statemE,nt" in Part II, Section 10,
"Statements. ")

If the function reference a~pears in a
[reprocess or statement, the arguments are
associal~d with the parameters in the nor
nal fashion. If there is a disagreement,
the argurrents are converted to the attri
tutes of the corresponding parameters as
specified in the ENTRY attribute of the
'DECLARE statement for the entry name.
Only preprocessor variatles, character
string constants, and fi:xed-point decirr,al
constants can te passed to a preprocessor
fUnction invoked by a preprocessor
statement.

Returned Value

The value returned by a preprocessor
fUnction to the foint of invocation. is
represented by the preprocessor expression

Section 15: Compile-Time Facilities 157

in the RETU~N statement of that fUnction.
Eefore being returned, this value is con
verted (if necessary) to the attribute
(CHARACTER or FIXEC) specified in tne
RETURNS oftion f the function's %PROCEDURE
statement. The attribute of the returned
valUE must be consist.eDt wi tn Ule attribute
specified with the RETURNS attribute in the
ENTRY attribute specification of the %DEC
LARE sl.aterrent fer the entry namE. If the
FOint of invocation is in d nenprcprocessor
statement, the value is scanned for re
placement activity after it has replaced
the functien reference. Note that the re
placPJl1ent of a function reference in a non
rreprocesscr statemeltt involves surrounding
t.he replacement value by blanks (one blank
on each end) in the ~;all~e way that it does
ior the replacement of an identifier by the
value of the preprocessor variable.

Note that the rules fer preprocessor
cx['ressions do !lot }Jerllii t t.he value
returned by d preprocesscr procedure to
contain preprocessor staterrents.

Examples of Pre~rocessQr FUnctions

In the statements below, VALUE is a
preprocesscr function prccedure that
returns a character string of the form
argl(arg2), where argl and 9~ represent
the argurrents that have teen passed to the
function.

Asswne that t.he source prograrr contains
the following sequence:

%DEC LP.RE A CHARACTEH,
VALUE ENTRY (ChARACTER, FIXED)

RETURNS(CllARACTER);
DECLARE (Z(lO), Q) FIXED;
%A= • Z' ;
%VALUE: PROCEDURE (ARG1,ARG2)

RETURNS (CHARACTER)i
DECLARE ARGl CHARACTER,

AHG2 FIXED;
j'{F5URN(ARG111' ('IIARG211')');
%END VALUE;

Q = 6+VALUE{A,3);

When the scan encounters the last state
went, A is active and is thus eligible fer
replacerrent. Since VALUE is also active,
the reference to it in the last statement
causes the preprocessor to invoke toe pre
processor function procedure of that nawe.
However, hefore the arguments A and 3 are
passed to VALUE, A is replaced by its value
Z (assigned tc A in a previous assignment
statement), and 3 is converted to fixeJ
point to confcr~ to the attritute of its
corresponding parameter. VALUE then per
forms a ccncatenation of these arguments
and the parentheses and returns th0 conca
tenated value, that is, the string Z (3),
to the pOint of invocation. The returned
value replaces the function reference and

158

the result is inserted into the prepro
cessed tExt. Thus, the preprocessed text
generated by the atove sequence is as fol
lows (replacement blanKS are not shown):

DECLARE (Z(10),Q) FlXELJ;
Q = 6+Z(3);

The FreFrocessor function procedure GEN
defined in the following example can gener
ate GENERIC declarations for up to 99 pa
rameters. Only four are generated in this
example, hOWEver.

Assurre that. the source r;n)9ram contains
the following sequence:

%DCL GEN ENTRY (CHAR, FIXED, FIXED,
CHAR) RETURNS (CHAR):

DeL A GEN (A,2,5,FIXED), .•. ;

%GEN: PRoe (NAME,l,mv,HIGB,ATTR)
CHAR;

DCI (NAME, SUFFIX, ATTR, STRING)
CHAR, (LO\.J, HIGH, It J) FIXED;

STRING='GENERIC(' ;
DO I=LOw TO HIGH; /* ENTRY DCL

LOOP */
IF I>9

THEN SUFFIX=SUBSTR(I, 7, 2);
/* 2 DIGIT./

ELSE SUFFIX=SUBS'fR (I, 8, 1);
/*1 DIGIT./

STRING=STRINGIINAMEIISUFFIXII
• ENTRY (';

CO ·J=1 TO I; /* PAR ATTR LIST.I
STRING=STRINGIIATTR;
IF J<I /* PARAM ATTR

SEPI-\RATOR */
THEN STRING=STRINGI I', 'J
ELSE ETRING=STFINGi I') ';

aH~;

IF I<HIGH /* ENTRY DCI,
SEPARATOR*.l

THEN gTRING=STRINGI I',';
ELSE STRING=STRINGI I I)';

ENe;
RETURN (STRING);

% END;

The following is generated int.o rreFro
cessed text:

Del A GENERICCA2 ENTRY (PIXEL,FIXED),
A3 ENTRY (FIXED, FIXED,

FIXED) ,
A4 ENTRY (FIXED, FIXED,

FIXED, FIXEr.::) i

AS ENTRY (FIXED, FIXED,
FIXED, FIXED, FIXEL»),

Ncte that the atove exarrple refers to
the tuilt-in function SUBSTR. It is the

only built-in function that ChI) t E invokloj
at the prerrocessor :;tag~? Ir Cdn be
lnvoked ty a reference in EIth~r a pre~rc
CEssor or d ncnpreFrocessor st~t~m~nt.

Use of the SUBSTR Built-In Functicll

p, reference to SUBSTR ill a norq:nqJroccs
SU1- statement is executed by the Freproces
sel.· only if the name SLJ5STR is active. The
tllilt-in function SUES'IR can b: dctivat",j
01:1 y by .;; %ACTIVATE st.a terrent. If the
IJentifier SUESTR is giVEn the ENTRY attri
L:H.e in a %DECLARE staterreEt, it is assurreJ
to Lefer ~o a user-defined rrerrocessor
~rocedure of that name. The argurrents In 3

~cnpreFrccesscr staterrent reference to the
tuil t- in function SUBSTR are interrreted ir.
the sawe way that arguITents in any nonpre
~rocessor statement reference to a preprc
cessor function are interrreted, that is,
as character strings.

A prerrccessor statement reference to
3UESTR is always valid.

:·ilE PREPROCESSOR r:::O-GROUP

The preprocEssor DC-grour can provide
iterative execution of the rrerrocessor
statements contained wlthin the group. Tbe
Iormat of the preFrocessor Co-grcup is as
iC'llows:

%Dar:el: 1 ... [DC i=rrl[TC rn2[SY m3]lJ;]
EY n 3 [,"0 rr 2 J

% [latel:). .. END [labe 1) ;

In the above format, i IT,ust be a prel:~.(c

cess or variatle and m1, i2, and m3 must ~e
pref.;n::.c(,ssor eXFressions -:- ThE' lar:El that
can follow the keywor5 END must be one of
the labels preceding the keyword LO. Pre
~rucessor CO-groups may be nested and mul
~iFle closure is allowed.

Cont.rol cannot be transfer.rej into a
rreFrocessor CO-grouF srecifying iteration,
except by way of a return freIT a preproces
sor Frocedure inVOked frcm withi:) the
group.

Beth preprocessor staterren~s and text
ether than pre~rocessor statements can
a~Fear within a preprocessor CC-grouF.
riowever, only the ~rE:processor stat =ment.s
are executed; nonpreprocessor statements
are scanned tut only fer possicle replace
ment activity.

Noniterative preprocessor DG'~roups are
useful as THEN or ELSE claUSES of IIF
statemen1:.s.

The ('xF'ansj (I, 'l . 1:' et rocessor DO-gLoup
is t.he :3ame as ttl" t ,,:'o\'/n under the lionrre
r:rocessol co statci,'<'nt i~l Part II, ':~·ect" l)E

10, "Stdtrnlellt:'C."

The exanrlc- (,'l,J,-! 1·',S'11.tS in t.lie Sdf" ... '

~xlansicn gener6t(~ [0r the example cf rre
l-Tocessor leer eXt·dn~·;i.Of1 1 n the section
"Rescanning anJ P"llacerrent" in this
Charter:

%CECLA~E I FIXED;
%DO 1=1 'Ie 10;
Z(I)"'X(I)t:{(I) ;

%END;
%CEACTIVi\TJ, L;

The second EXdIIT'l,: under "Returned
Value" shows how preprocessor DO-grcups can
te used within a preprocessor procedure
(percent symbols must te omitted, of
course) .

Strings of Exte£nal text can be inccrpo
rated into the source pro3ram at the pre
processor stage hy use of the IINCIUCE
statement. Sucn text, once incorpcrated,
is called lncl~ged t.ext. and may consist of
toth preprocessor dnd ncnpreFrocessor
statements. hence, lncluded text can con
tribute to the prerrocessed text being
ferneJ.

The general fcrrrat and the rules govern
ing the use of the %INCLUDE staterrent are
~resented i1: Part 1[, Section 10,
"Statements."

Tho-:' t txt sred tied l:::y a %INCLUCE state
ment is inc~rpcrated intc ~he source ~rc
gran irrrre~iatelj aiter tle point at which
the statement is exe2uted. The scan there
fore continnes ·"jth the first character in
the included tExt All rrerrocesscr state-
ments in this te~t are ~xecuted and re
placements are ITdOe where required.

Preprocessor ~~cc2jures whose declara
tions arrear in external text can be
invokeG only afte~ that external text
teccrres includei te~t. The result of a
preprocessor prG~eiur~ reference encoun
tered tefore that rrLcedure has teen incor
Forated into the source prograrr is
undefined.

Assurre that PAY~L is a member of the
data set USERLIB and ccntains the fcllowing
stplcture declarat.ion:

CECIARE 1 FAYFCI L,
2 NAME,

3 LAST CHARACTER (]O) VARYING,
3 FIRST ChAR~C1E~ (15) VARYING,
3 ~ICDIE CHARACTER (3) VARYING,

Secticn 15: Com0ii0-Time Facilities 159

2 MAN_NO FIXED DECIMAL (6,0>,
3 REGLR FIXED DECIMAL (8,2),
3 OVFRTIM FIXED DECIMAL (8,2>,

2 RATE,
3 REGLAR FIXED DECIMAL 18,2),
3 OVERTIME FIXEL DECIMAL (8,21;

Then Lhe following sequence of prepro
ceSsor statements:

%DECLARE PA'lROLI CHARACTEl<;
%PAYROLL='CUM_PAY' ;
%INCLllDE PAYRL;
%DEACTIVATE PAYROLL;
%INCLUDE PAYRL;

will generate two identical structure
declarations into the preprocessed text,
the only difference being their names, CllM-

PAY and PAYROLL. Execution of the first
jINCLULE statement causes the text in PAYRL
to be incorporated into the source program.
When the scan encounten; the identifier
PAYROLL in this included text, it replaces
i t_ by the current value of the active pre
processor vaI.iable PAYROLL, namely, CUM_
PAY. Further scanning of the included text
results in no additional replacements. The
scan then encounters the %DEACTIVATE state
ment. Execut".ion of this statement deacti
vates the preprocessor vari.able PAYROLL and
makes the identifier ineligi~le for re
placement. When the second %INCLUDE state
ment is executed, the text in PAYRL once
again is incorporated int".o the source pro
gram. This time, however, scanni.ng of the
included text results in no replacements
whatsoever, because none of the identifiers
in the included text are active. Thus, two
structure declarations, differing in name
only, are inserted int.o preprocessed text.

PHEPROCESSOR STATEMENTG

This section lists those statements that
can be used at the preprocessor stage and
briefly discusses those preprocessor state
ments that have not yet been explained in
this chapter. All of the preprocessor
statements, their formats, and the rules
governing their use are descri1:ed in the
section "Preprocessor Statements" in Part
II, Section 10, ·Statements."

But first, some unrelated comments per
taining to preprocessor st.atements in gen
eral should be made:

1. Some keywords appearing in preproces
sor statements can be al;breviated'ls
shown in Pdrt II. Section 3, "Ke~ords
and Abbreviations,'"

2. COlI'l'[,ents can appear within preproces
sor statements wherever blanks san
appear; however, such comments are
never inserted into preprocessed text.

160

3. All preprocessor statements can be
labeled. Such labels must appear
immediately following the " [cnly
bldnks can intervene). All labels
must be unsubscripted statement label
constants. ILdbels on IDECLARE state
ments are ignored)

The functions performed by the following
~reprocessor statements hdve already been
discussed in this chapter:

% ACTIVATE
% DEACTIVATE
% ICECLARE
% DO
% END
% INCLUDE
% PROCEGURE
RETURN

Note that the preprocessor RETURN state
ment cannot have a leading I because it can
1:e used only within a [reprocessor proce
dure, and all Fercent symbols must be
omitted therein.

Four other statements can be executed at
the freprocessor stage:

% assignment
% GO TO
% IF
I null

The preprocessor as~iqnment statement is
used to evaluate preprocessor expressions
and to assign the result to a preprocessor
variable. All of the exanlples shOwn in
this section ~ake use of this ataterrent.

The % GO TO statement, causes the prepro
ceSsor to interruption its sequential scan
ning and continue it elsewhere in the
source program, specifically at the label
specified in the % GO 'TO. ThUS, it_ can l::e
useful fer rescanning or avoiding text.

The % IF statemer,t can be used to con
trol the seq \lence cf t.he scan accordinq to
the value ri a preprocessor expression: It
must have a THEN clause and it can have an
ELSE clause. Each clause, as well as each
preprocessor statement within the clause,
rrust be Freceded by a I. Nesting of %IF
statements is allowed and must follow t~e
same rules that apply for the nesting of
non~reFrccessor IF statements.

The preprocessor null statement i:3 the
same as a nonpreprocessor null staterrent
(except for t.he ~). It, can be used t.O PIv'
vide transfer t3l:getS f GL %GO TO statelTents
cr it can 1:;e used in l,est~€d %1F statement.s
to balance the %ELSE claus€s. For exarrple,
%ELSE%; is a null ELSE clause.

Page of GC28-2045-1, Issued s.~pt~embe:r 15. 1970 by TNL GN28-3171

SECTION 16: OPTIMIZA'rIott ANJ? __ k!:FFICIENT PERFORMANCE

This section, concerned with general
efficiency. provides information on the
ways in which execution speed can be im
proved, and it includes a list of common
errors to avoid.

INTRODUCTION

For a given application, several object
programs are possible, each of which would
produce the required result. However they
would have varying degrees of efficiency in
terms of machine time and storage use. The
efficiency of a PL/I object program depends
on two basic factors:

1. The way in which the user writes the
source program

2. The way in which the compiler treats
the source program

These two factors are interrelated. The
compiler can perform a limited amount of
optimization (i.e., briefly, it can alter
the program during compilation so that the
object program uses less machine time but
still gives the required result); but the
user can control the degree of optimiza
tion, using the PL/I options ORDER and •
REORDER and the OPT compiler option.
Secondly, the compiler does not necessarily
generate identical object code for a given
PL/I item (such as an assignment) every
time that item appea.rs in 3. source program.
For example, an assignment may be made
either directly or via a compiler-created
temporary variable; data conversion may be
performed by in-line code or may require a
library call. The method selected depends
on the nature of the data. A knowledge of
the circumstances in which the compiler
generates more efficient object code can be
borne in mind by the user while writing the
source program.

The remainder of this section deals with
two main topics. The first, headedd
-Effect of Compilation on Object Program
Efficiency,· deals primarily wit!. the com
piler and the circumstances in wnich it
generates more efficient c(~e. The second,
headed ·Programming Techniques,· provides
lists of hints that the user (;an follow to
obtain different types of ef"':.Lciency (e.g_,
reduced storage requirements; increased
execution speed). It also provides a list
of the errors most likely 1:0 be encountered
when first using PL/I.

EFFECT OF COMPl~.:rION_ON OBJECT PROG.RAM
EFFICIENCY

The TSS/360 PL/I compiler is capable of
optimizing loops and subscripts (see
below). This optimization requires the use
of extra compiler phases. with a consequent
increase in compilation time; moreov"!r. t:he
results are not guaranteed in certain cases
of error. For this reason, provision is
made for the user to control the degree of
optimization by using the ORDER and REORDER
options on the blocks within the PL/I pro
gram itself and by using the OPT compiler
option in the PLI for a particular compila
tion of the prc>gram.

The compiler will also, as part of its
normal funt."t ion (i. e.. without, the nse of
special. optimization phrases). select the
more efficient of two methods for many
operations, provided that the nature of the
data allows it to do so. Such operations
include simple assignments, evaluation of
string built-in functions, and data
con versions.

PLII OPTIONS: ORDER AND REORDER

Strictly speaking, the order in which
the statement.!'> of a PL/I source program are
to be execnt ed is specif ied by the orde.r in
which they appear in the source program,
eveh J. f the code coul d be re::;roered so as
to produce the same result~ more efficient
ly. The order of execution is normally
sequential except where modified by a con
trol statement such as TO TO. (See ·Con
trol Statements" in Part I, Sect. ion 5,
·Statement Classification.-)

The user can vary the degree of language
stringency imposed on the compiler by using
the ORDER and REORDER options on the PROCE
r:tf,.~,E and BEGIN statement.s. REOkDER speci
fies a partial relaxation oftn..,. rules to
allow the compiler more freedom in optimi
zation. This relaxation is such that if
computational or system action interruI-"ts
occur during execution of the block, the
result is not necessarily the same as it
would be under the str let rules.

The selected option applies t,o all
nested blocks unless overriden; if neither
option is specified, the opt.ion that app"
lies to the containirg block will be
assumed. If the block is an ext:ernal pro-'
cedure. it will be assumed to have the
ORDER option unless REORDER .is explicitly
specified.

Section 16: Optimization and Efficient. l>t~rformance 1.61

Page of GC28-2045-1, Issued September 15. 1970 by TNL GN28-3171

The ORDER Qption

The ORDER option specifies that. the
normal language rUl es are not_ to be
relaxed; i.e., any optilHization must be
such that the execution of a block always
produces a result. that is in accordance
with the strict definition of PL/I. This
means that the values of variables set by
execution of all stat.ement:s prior to compu
tational or system action interruption are
guaranteed in an on-unit entered as a
result of the interruption, or anywhere in
the program afterwards.

Note that the strict definition now
allows the compiler to optimize common
expressions,1 where safely possible, by
evaluating them once only and saving the
result, rather than reevaluating for each
reference.

The REORDER option specifies that execu
tion of a block must produce a result that
is in accordance with the strict definition
of PL/I unless a computational or system
action interruption occurs during execution
of the block; the result is then allowed to
deviate as follows:

1. Af ter a computa ti ana 1 or system system
action interrupt has occurred during
execution of the block, the values of
variables modified, allocated. or
freed in the block are guaranteed only
after nonnal return from an on-unit or
when accessed by the ONCHAR and
ONSOURCE built-in functions.

2. The values of variables modified.
allocated. or freed in an on-unit for
a comput.ational or system action con
dition (or in a block activated by
such an ou·-u.'li t) are not guaranteed on
return from the on-un1t into the
block. except for values modified by
the ONCHAR and ONSOURCE
pseudo-variables.

A program is in error if a computational
or system action interruption occurs during
the execution of the block and this inter
ruption is followed by a reference to a
variable whose value is not guaranteed in
such circumstances.

1A common expression is an expression that
occurs more than once in a program but ·~s
obviously intended to result in the same
value each time that it is evaluate': .. _ i.e ••
if a later expression is identica.l to an
earlier expression, with no intervening
modification to any operand, the expre
ssions are said to be common.

162

Effect of ORDER and ruWRDER Options
Example

The following example illustrates the
effect of the ORDER and REORDER OPTIONS:

X: PROCEDURE ORDER:
DECLARE {A,B.C> (lO,lO);
ON UFL PUT LIST ('UFL WHEN M=' ,M);
ON OFL BEGIN;

POT LIST (OOFL WHEN M=' ,M):
GO TO RESTART i
END;

RESTART: GET DATA(M.B.C,D,K);
CALL Y.
PUT DATA(M,A);
GO TO RESTART;

Y: PROCEDURE REORDER;
DO I = 1 TO 10:
DO J :: 1 TO 10;
A(I.J)=B(I+K,J).C(J.I+K).C(K+l,l)
+D/I+D/K;
END: END;
END Y:

END X;

In this example, since the values of D and
K are not modified anywhere in procedure Y.
the compiler is permitted to keep I and J
in registers and move the computation of
the expression I+K outside of the inner
loop; in addition, since the expression K+l
does not depend on I or J, it can be eva
luated outside of both loops. If this
movement is carried out, the expression I+K
will be evaluated ten times instead of 100
times, and the expression K+l will be eva
luated once instead of 100 times. Any
attempt to use A. I. or J after an overflow
interruption in procedure Y. and before
another value has been aSSigned to them,
would be an error.

I Computation of the expressions D/I and
D/K cannot be moved, because they are not
subscript expressions.

COMPILER or":'ION: OPT=N

The OPT compiler option, specified in
the 1';:../1 command for a compilation. allows
t.he user to control the optimization for a
particular compilation. 'l'he opt.ion can be
specified with one of three values:

OPT=O reqllests fast compilation and. as a
secondary consideration, reduction
of the storage space required by
the object program at the expense
of execution time.

OPT=l requests fast coolpilation and, as a
secondary consideration, reduction
of object program execution time at
the eXp'?XlSe of storage space.

PaljC of GC2B-2045-1, rssued Scrtf'mbpr 30, 1971 by TN" GN2R-31R5

OPT=2 requests reduction of object pro
gram execution time at the expense
of compilation time.

The extra optimization phase~) of t.he com
piler (i.e., those concerned mainly with
loop and subscript optimization) are
invoked only when OPT=2 is specified.

LOOP AND SUBSCRIPT OPTIMIZATION

Four types of loo~ and subscript opti
mizationare attempted by the compiler when
the compiler option OPT=2 is specified.
However, the compiler will not necessarily
be able to perform the optimization in
every case; its ability to do so is
affected by several factors, such as the
use of subscripts nested within subscripts,
the use of loops containing procedure or
begin blocks, or the choice of ORDER and
REORDER options.

The section headed -Methods 01 Im~rove
ment When OPT=2,· under -Improvinq Speed of
Lxecution,· later in this chapter. g~ves a
list of rules that the user shoul~ follow.
when using OPT=2, so as to give the compil
er the best chance of car.rying out the loop
and subscript optimization. In the
descriptions of the four types of optimiza
tion, below, the indicated choice of block
option should be interpreted as follows:
where it is indicated that optimization
will be effected for both ORDER and REORD
ER, the specification of REORDER will pro
bably result in the greater degree of opti
mization; however, even where REORDER is
stated to be necessary for d particular
type of optimization, there will usually be
some optinuzation when ORDER is specified.

The four types of loop and subscript
optimization are as follows:

1. Loop control mechanism: The object
code for loop control (i.e., the
necessary comparison and branching
instructions generated by the compil
er) will be simplified wherever poss
ible. The block option may be ORDER
or REORDER.

2. Loop control variables: The object
code for control variables used as
subscripts will be simplified wherever
possible. The block opt.ion should be
REORDER.

1For the purpose of this discussion, a loop
is considered to be either an iterative
DO-group or an array expression. The dis
cussion does not apply to loops specified
by GO TO statements or to repetitive speci
fications in data lists for stream-oriented
transmission.

1. Array expressions: Array expressions
(which are effectively a type of loop,
since the ::pecified operation is per
formed on each element in turn) will
be optimized by a combination of the
two techniques mentioned above. The
blOCK option may be ORDER or REORDER.

4. Subscript lists: Common expressions
appearing in subscript lists are eval
uated at the point of the first occur
rence of the common expressions. and
the result is saved for other occur
rences of the expression. (This app
lies both inside and outside of
loops.) subscript expressions that
occur within il loop, but whose values
never change during the execution of
the loop, are evaluated outside of the
loop. The block option should be
REORDER. (Note the difference between
th~ two types of expression and their
tr~~atment: a common expression, which
ap~edr~ more than once in the program,
is evaluated at its first occurrence;
the other type of expression, which
occur'" Ioolitbin a loop and has a value
thJt remaiw; const<lnt thronqhollt all
the iterations of the loop, is evalua
ted before it occurs. In the latter
case, therefore. the compiler reorders
the code.)

ASSIGNMENT HANDLING

When the expression on the right-hand
side of an assignmpnt statement. is an
operational expreSsion. or where data con
version is necessary. the assignment is
usually made via an intermediate temporary
which holds the result of the expression.
(See Part I, wection 4, -Expressions and
Data Conversion. R) However, the TSS/360
PL/I compiler produces optimized code that
does not use te~porary storage in the fol-

• lowing casps, provided that the FIXEOOVER
FLOW and SIZE conditions are disabled or
cannot be raised, and provided that the
operands are of suitable scale and
preciSion:

1. Simple fixed decimal assignments (for
example, A = A + constant; X = A + B ;.
X = A • B + C;).

2. Simple expressions and assignments
that involve only character-string
variables and character-string con
stants (for example, A = AIIB;).

3. ASSignments between temporary
variables such as occur in some func
t.ion references.

The block option may be ORDER or REORDER,
and the OPT compiler option may have any of
the three possible values.

Section 16: Optimization and Efficient Performance 163

Paq(' of GC28-2045-1, Issued Sc'ptC'fllbcr 30,1971 by 'l'NL CN2H--11H'J

INLINE OPERATIONS

Operat.ions are performed at execution
time in two different ways: the}' may be
handled by calls to PL/I library routines
or they may be handled directly by inlinc
code. The saving in execution time for an
operation performed inline can be of t.he
order of ten to one or more in rplation to
d similar operation handled by a library
call; the overall effect on program execu~
tion will depend on the number of times
these operations are used in a program. It
will repay the user, therefore, to recog
nize those operations that are performed
inline and those that require d library
call, and to arrange his program t.O use t.he
former wherever possible. The majority of
the inline operations are concerned with
data conversion and string handling.

Data Conve:r;sioq

The data conversioWci performed inline
are shown in Figure 20. A conversion out-
side tne range or condition yiven, or
marked -Not done,· is performed by a
library call.

Not all of th(~ pict.ure characters avail
able can be uspd in a picture specification
involved in an arithmetic conversion. The
only ones permitted are:

1. V and 9

2. Driftinq or nondrifting character,; $,
S, ... -

3. Zero suppression characters Z ••

4. Insert ion charact ers ., •• /. B

For inline convers ions, picture specif ica
tions with this subset of characters are
divided into three types:

Picture type 1: Picture specifications
consisting entirply of 9s with (optionally)
a V and a leading or trailing sign or cUr
rency symhol dnd up to four insertion
characters. Examples of type 1 pictures are
'99V999', '99', 'S99V9', '99V+', '$99.99'

,------------------------------T--------------------------------------T-----------------,
I I I Minimum Opti- I
I Conversion! I mi4 ation Code I
t-------------T-----------------~ t--------T--------~
I I I I SIZE I SIZE I
I "ource I Target I Comments and Condition IDisabledlEnabled I
t-------------t----------------f---------------------------------.----+-----.---+-------~
I IFIXED BINARY I I 0 I 0 I
I ! I I I I
I I FIXED DECIMAL I If either scale factor '" 0 and the I 1 I 1 I
I I I other sca Ie factor SO. then t~he opt.. I I I
I I I code may be 0 I I I
I I I I I t
IFIXED BINARY IFI~AT IIf source scale factor = 0, then the! 1 I 1 I
I I lopt. cqde m4Y be 0 (whether SIZE is I I I
I I I enabled or not) I I I
I I I I I I
I IBit string IString must be fixed-length, ALIGNED, I 0 INot donel
I I I and with length <256 I I I
I I I I I I
I ICharacter string ISource scale factor must be 2 0 I 1 I Not donel
I lor Picture IString must be fixed-lengt.h wit.h I I I
I I Ilength <256 PictUre tYt)('S I, 2, or } I I I
I I I (See ·Picture Conver',jons Not I I !
I I I Performed Inline. -) I I I
t-------------f-------·----------f--------------------------------.---+--------+-------~
I I FIXED BINARY I If source and target scales have the I 0 I 1 I
I I ! same sign and are nonzero, then the I I I
I I I opt. code (S1 ZE disabled) must be 1 I I I
I I I I I
I I FIXED DECIMAL I 0 ! 0 I
I I I . I I
IFIXED DEClMALIFLOAT Isource precision must be <10 1 ill
I I I i I
I IBit string ISoHrce scale factor must be zero I 0 INot donel
I I Istring must; be fixed-length, ALIGNED, I I I
I I . I dud with length <256 ! I I
'--___________ --'--________________ ..L __________ ----.... --------.----------_..L ________ ..L _______ -l

Figure 20. Implicit Data Conversions performed Inline (Part 1 of 2)

164

Page of GC28-2045-1. Issued September 15, 1910 by TNL GN28-3171

r------------------------------~-------------------------------------T-----------------,
I I I Minimum Opti - I
I Conversion I I mization Code I
~-----------~-----------------~ ~-------T--------~
I I I I SIZE I SIZF I
I Source I Target I Comments and Condition IDisabledlEnabled I
~------------t-----------------t-------------------------------------t--------t--------~
I ICharacter string Isource scale factor must be ~ 0 I 1 I 1 I
I I I string must be fixed-length and I I I
I I Ilength <256 I I I
I I I I I I
IFIXED DECIMALIPicture IPicture types 1, 2, and 3. For I 1 INot donel
I I I picture types 1 and 2 with no sign, I I I I' I Ithe opt. code may be O. (See I I I
I I I-Picture conversions Not performed I I !
I I I Inl ine ...) I I I
r-------------t-----------------t-------------------------------------t--------t--------~
I I FIXED BINARY I I 1 I Not done I
I I I I I I
I I FIXED DECIMAL I Target precision must be :59 I 1 I Not done I
I I I I I I
I FLOAT I FLOAT I Source and target may be single or I 0 I 0 I
I I I double length I I I
I I I I I I
I IBit string IString must be fixed-length, ALIGNED, I 1 INot donel
I I land with length <256 I I I
t-------------t-----------------t--~---------------------------------t--------t--------~
I lFIXED BINARY Isource string must be fixed-length, I 0 INot donel
I I I ALIGNED, and with length <256 I I I
I I I I I I
iBit string IFIXED DECIMAL Isource must be fixed-length, ALIGNED, I 1 INot done I
I I and FLOAT I and with length<32 I I I
I I I I I I
I IBit string lSource and target must be ALIGNED I 0 I 0 I
I I Iwith length <2040 I I I
r-------------t-----------------t-------------------------------------t--------+-------~
I Character I I I I I
I string: I I I I I
I Fixed-length I Character string: I I I I
I I Fixed-length ITarget length must be ~256 I I !
I I VARYING ISource and target lengths must be I 0 I 0 !
I I I :$256 I I I
I I I I I I
I VARYING ICharacter stz'ing ISource and target lengths must be I 0 I 0 I
I I (VARYING) I ~256 I I I
~-------------t-----------------t-------------------------------------+--------t--------~
I I Character stdng I String must be fixed-length with I 0 I 0 I
I I Ilength <256 I I I
I Picture I I I I I
I I Picture I Pictures must be identical I 0 I 0 I
~-------------+-----------------+-------------------------------------t--------t--------~
I lFIXED BINARY Isource precision must be <10 I 1 INot done I
I I I I I I
I IFIXED DECIMAL IIf picture has a Sign, then the opt. I 0 INot done I
I I I code must be 1 I I I
I Picture I I I I I
I type 1 I I I I I
I I FLOAT I Source precision must be 10 I 1 I Not done I
I I I I I I
I I Picture IPicture types 1, 2. or 3 I 1 (Not done!
r-------------t-----------------t--------------------------------------+--------f--------i
I Label I Label I I 0 I 0 I
r-------------+-----------------t-------------------------------------+--------+--------~
I I Pointer/Offsf!L I Pointer/Offset I 0 I 0 I L _____________ ~ _________________ ~ _________________________ ---_________ ~ ________ ~ _________ J

Figure 20. Implicit Data Conversions Performed Inline (Part 2 of 2)

Sect~ion 16: Optimization and Efficient Performance 165

Page of GC28-2045-1, Issued september 15. 1970 by TNL GN28-3111

picture type ~: Picture specifications
with zero suppression characters and
(optionally) insertion characters and a
sign of currency symbol character. Also,
type 1 pictures with more than four inser
tion characters. Examples of type 2 pic
tures are ·ZZZ·. ' •• /.9', ·ZZ9V.99 t , '+ZZ.
ZZ·. • $/////99'.

picture type 3: Picture specifications
with drifting strings and (optionally) ins
ertion characters and a sign or currency
symbol character. Examples of type 3 pic
tures are '$$$$'. '-,--9", '5/55/59',
'+++9.V9"* '$$$9-"

I PICTURB CONVERSIONS NOT PERFORMED INLINE:
Sometimes a conversion involving a pictured
item is not performed inline even though
the picture specification conforms to one
of the above types. This may be because:

1. The optimization code value (OPT=n) is
too low.

2. SIZE is enabled.

3. There is no overlay between the digit
positions in the source andthe target.
(For example: a conversion from FIXED
DECIMAL (6,8) or FIXED DECIMAL (5,-3)
to PIC '99V99' will require a library
call.)

4. The picture specification may have
certain characteristics that make the
conversion difficult to handle inline:

a. An insertion character between a
drifting Z or a drifting • and the
first 9 is not preceded by a V
(for example, ·ZZ.99').

b. There are drifting or zero
suppression characters to the
right of the decimal point (for
example, ·ZZV.zz·, '++V++t).

String Handling

The string operations and built-in func
tions performed inline are shown in Figures
21 and 22. Note that even the string func
tions indicated as always being performed
inline may sometimes require a library
call. For example, if the expression in
the BIT or CHAR function requires an impli
cit convers.ion not handled inllne. the
appropriate library routine will be called.

PROGRAMMING TECHNIQUBS

IMPROVING SPBED OF EXECUTION

By USing the OP1'=2 compiler optlon and
tbe REORDER block option, the user allows
the compiler to optimize loops and sub-

166

scripts (see REffect of Compilation on
Object Program Efficiency,- above). Howev
er, there is a significant increase in com
pilation time and results are not guaran
teed in certain cases of error. The recom
mended procedure is to specify REORDER
where possible in the program but to sup
press the optimization phases in the early
stages of developing the program, by using
OPT=O or 1; when the program is fully deve
loped it can be compiled during OPT=2.

Even when OPT=O or 1 is specified. the
user can increase the execution speed by
following certain rules; and when OPT=2 is
specified, he can increase the amount of
optimization by following another set of
rules. For this reason. the information in
this part is given first in terms of OPT=O
or 1, and then in terms of OPT=2.

Methods of Improvement When OPT=O or 1

The following measures are suggested for
use where both compilation time and execu
tion time are important factors. Note that
while some of these measures may slow down
the compilation, this is offset by the fact
that others will accelerate :Lt. In the
main, there should be no serious increase
in compilation time.

1. If the use of storage is not as impor
tant as speed of execution. use OPT=l.
Avoid the STMT option.

2. Avoid unnecessary program segmentation
and block structure. all procedures,
ON-units and BEGIN blocks need pro
logues and epilogues, the initializa
tion and housekeeping for which carry
a considerable overhead. (Prologues
and epilogues are described in Appen
dix C of this publication.) Whenever
possible, use GOTO of IF statements to
control program logic, rather than the
CALL statement.

3. Branching.in IF statements can be im
proved h:;" using DO and BND statements
to bra~ket a THEN clause, rather than
using a GOTO statement in the THEN
cl~use. For example:

IF A=B THEN 00;
C=D;
B=F;

END,

L: etc.

is more efficient than

IF A =B THEN GO TO L:
C=D;
B=F.

L; etc.

Page of GC28-2045-1, Issued september 15, 1970 by TNL GN28-3171

4. When GO TO is used in an IF statement,
more efficient object code is produced
by the GO TO if it refers to a label
within the same block rather than to a
label outside the block.

Section 16: Optimization and Efficient Performance 166.1

r-------------------T---,
I String Operation I comments and Conditions I
r-------------------t--------------------------------T----------------------------------~
I I Source I Ta rget I
I r--------------------------------t----------------------------------~
IAssign I Nonadjustable, ALIGNED, fixed- INonadjustable, ALIGNED, fixed- I
I I length tit string <2048 tits Ilength bit strinq <2048 bits lcng I
I Ilong I I
I I I I
I I Nonadjustable, ALIGNED, bit INonadjustatle, ALIGNED VARYING I
I Istripg <2048 tits long Ibit string <2048 bits long I
I I I !
I (OPT=O) I Nonadjustable, UNALIGNED, fixed-INonadjustable, UNALIGNED, fixed- I
I I length bit string that is a Ilength tit string that is a I
I Iscalar element of an AUTOMATIC, Iscalar element of an AUTOMATIC, I
I IBASED or STAT:j:C structure with IEASEI) or STATIC structure with no I
I Ino adjustable bounds or extents ladjustable bounds o~ extents. Thel
I I Istring must be 1 bit long. I
I I I I
INote: The assign- IFixed-length or VARYING IFixed-length or VARYING character I
Iment VARYING stringlcharacter string <256 characterslstring <256 characters long I
Ito fixed-length I long I I
I string is not I I I
I handled inline I I I
t-------------------t--------------------------------i ----------------------------------~
,'And', 'Net', 'Or' I Nonadjustable, ALIGNED, fixed-length or VARYING bit strings, with I
I I length: I
I I fixed-length - <2048 bits I
I I VARYING - ~32 tits I
I I I
I Compare INonadjustable fixed-length character strings <256 characters long I
I I Nonadjustatle, ALIGNED, fixed-length or VARYING bit strings, with I
I I length: !
I I fixed-length - <2048 bits I
I I VARYING - ~32 bits I
I Concatenate jNonadjustable fixed-length or VARYING character strings <256 I
I I characters long I
(STRING function IScalars and nonadjustable contiguous array or structure variatles I
~-------------------i---i
I Notes: I
11. OFerations with VARYING strings require OPT=l. I
(2. If the expression in IF statement is a tit string satisfying the conditions fer I
I the source string when OPT=O, then, if the string is <10 tits long, inline code I
I is generated to test the value of the string. I l ___ ------------------ ________________ J

Figure 21. Conditions Under which the String operations are Handled Inline

5. KeeF IF clauses simFle; s€p~rate any
multif1e conditions into a series of
simple IF statements. For example:

IF A=B
THEN IF C=[;

THEN IF E=F
THl!.N GO TO M;

6. Avoid extensive use of adjustable
arrays and/or CONTROLLED storage.

7. Use constants wherever Fossible
instead of eXfressions.

8. Exercise care in sfecifying precision.
For example:

DCL A FIXED DEC(B,4),
B FIXED DEC(lO,2),

C FIXED DEC(10,l);

C=A+Bi

This requires almost twice as rruch
code as it would if B had been
declared (10,4), because the evalua
tion of A+B requires a scale factor of
4.

9. Use the PICTURE attribute only when
necessary. For example, use FIXED
DECIMAL(5,2) instead of PIC'999V99'.
If a picture field is used in rrcre
than one arithmetic operation, convert
it once and then use the new form in

Section 16: Optimization and Efficient Performance 167-

r---------y-------------------------------,
I String I I
IFunction I Comments and Conditions I
~---------+-------------------------------~
I BIT IAlways I
I I I
iBOOL INonadjustable, ALIGNED bit str-I
I lings, where the third argument I
I I is one of the logical operators I
I I'and', 'not', 'or' or exclusivel
I I 'or' I
I I I
I CHAR IAlways I
I I I
I INDEX ISecond argument must be a non- I
I ladjustable character string I
I 1<256 characters long I
I I I
I LENGTH IAlways I
I I I
ISUBSTR ISTRINGRANGE must be disabled I
I I I
ITRANSLATEIFirst argument must be a fixed-I
I Ilength character string of I
I Ilength 5256. If a third argu- I
I Iment is given, toth second and I
I Ithird arguments must be I
I Icharacter-string constants; if I
I la third argument is not given; I
I Ithe second argument may be any I
I Ifixed-Iength character-string I
I largument, including constants. I
I I I
IUNSPEC I Always I
I I I
IVERIFY IBoth arguments must be fixed- I
I Ilength character strings of I
I Ilength :5256. 1£ second argu- I
I Iment is a constant, the func- I
I Ition is partially performed at I
I Icompile time. If both argu- I
I Iments are variatles, the fUnc- I
I Ition is performed at execution I
I Itirre. In both cases, no I
I Ilibrary call is necessary. I L _________ i _______________________________ J

Figure 22. Cenditions Under Which the
String Functions are Handled
Inline

each operation. This holds for any
conversion required more than once.

If it is necessary to use data with
the PICTURE attritute in arithmetic
expressions, use pictures that will be
handled in-line, as this considerably
reduces execution time. Pictures with
all 9s, a V and a nondrifting sign are
particularly useful. For example:

'999'
t$99v99'
'$99'
'V999'

10. Internal switches and counters, and
data involved in substantial computa-

tien or used for sutscripts, should be
declared BINARY; rlat.a required for
output should be kept in DECIMAL forrr.

11. Keep data conversions to a minimum.
Some possible methods follow:

a. Use addi t.iona 1 variables. Ear
example, if a problem specifies
that a character variable has to
be regularly incremented ty 1,

DCL CTLNO CHAR(18};

CTLNO = crr,NO+l;

requires two conversions, while

LCL CTLNO CHAR(S),
DCTLNO DEC FIXEC;

DCTLNO=DcrLNO+l;
CTINC=DCTLNC;

requires only one conversion.

b. Take special care to make struc
tures match when it is intended to
move data from one structure to
another.

c. Avoid mixed mode arithmetic. espe
cially the use of character str
ings in ari thmet.ic calculations.

12. Declare arrays in the procedure in
which they are used, instead of pas
sing them as arguments. Declare sub
script variables in the block in which
they are used, as FIXED BINARY.

13. In multiple assignments to subscri~ted
variables, restrict the assignrrent to
three variatles.

14. If a sutscripted item is referred to
more than once with the same sut
script. assign the element to a scalar
variar'le:

R=(A(I)+l/A(I»+A(I>.*A(I);

should be replac~d by

ASUB=A (1);

R= (ASUB+1/ASUB) +ASUB**ASUBi

15. Bit strings should, if poSSible, be
specified as multiples of eight bits.
Bit strings used as logical switches
should be specified according to the
numter of switches required. In the
examples below, Ca) is preferable tc
(b), and (t) to (c):

Page of GC28-2045-1, Issued September 10, 1971 hy TNL GN28-31B,)

1. Single Switches

Ca) DeL SW BIT(l) INIT ('l'B);

IF SW THEN 00:

(b) DeL SW BIT(S) INIT 'l'B);

IF SW THEN DO:

(c) DeL SW BIT(8) INIT ('l'B);

IF SW = '10000000'B THEN DO;

2. Multiple Switches

(a) DeL S SIT(S):

S = '11100000'1:.:

IF S = '11100000'E THEN DO;

(b) DCL S SIT(3);

B = tl11 t S:

IF B = '111"S THEN DO:

(c) DeL (SW1,SW2,5W3) SIT(l);

SW1, SW2, SW3, = 'l'S:

If bit string data is to be held in
structures, such structures should be
declared ALIGNED.

16. Avoid wheH.; possible use of unaligned
bit-strings as they usually cause
library sUhroutines to be invoked.

17. Concatenation operations are
time- cons uming.

18. Varying-length strings are not as
efficient as fixed-length strings.

19. Fixed-length strings are not efficient
if their length is not Known at com
pile time, as in this example:

DeL A CHAR(N)i

20. Avoid using the SIZE, SUBSCRIPTRANGE,
STRINGRANGE and CHECK ON-conditions,
except during debugqing. Debugging
aids should be removed from the pro
gram before running it,ps a production
job.

21. Do not refer to the DATE built-in
function more than once in a run; it
is expensive. Instead, refer to the
function once and save the value in a
variable for subsequent use; e.g.,
instead of

PAGcA=TITLEAIIDATE;
PAGEB=TITLEBIIDATE;

it is more efficient to ~rite

DTE=DATE;
PAGEA=TITLEAII DTE:
PAGEB=TITLEBIIDTEi

22.' Allocat e suff icient buffers to prevent
the program becominq I/O bound.

23. Use blocked output records.

24. Open a number of files in a single
OPEN statement.

'25. In STREAM I/O, use long data lists
instead of splitting up I/O
sta tements.

26. Use EDIT-directed I/O in preference to
LIST- or DATA-direct,ed.

27. Consider the use of overlay defining
to simplify transmission to or from a
character string structure. Example:

DeL 1 IN,
2 TYPE CHAR (2) ,
2 REC,

3 A CHAR (5),
3 B CHAR (1) ,

3 C CHAR (66) ;
GET EDIT <IN)
(A(2).A(S),A(7J7),A(66»:

In the above example, each format
item/data-field pair is matched separ-

Section 16: Optimization and Efficient Performance 169

Page of GC28-20Q5-1. Issued Sp.ptember 30, 1971 by TNL GN2B-31A5

ately, code being generated for each
matching operation. It would be more
efficient to define a character string
on the struct.ure and apply the G~T
stat~ernent to the str ing:

DCL STRNG CHAR(80) DEF IN;

GET EDIT (STRNG) (AlSO»);

Methods of Improvement When OPT=2

When it is intended that OPT~2 will be
used for the final compilation, the user
should use REORDER wherever possible and
should observe the following points while
writing the program. (Note that this
information is'given for guidance only:
full optimization may not necessarily take
plac~ itt.he advice is followed; converse
ly. some optimization may take place if tpe
adv:l .e is not followed.) The following
i tent::; obstruct l2.op and s ubscr i pt optimi za
tion, and should be avoided wherever
possible:

1. Subscript expressions that are not
fixed-point binary or that contain
nested subscripts or fUnction
references.

2. The SUBSCRIPTRANGE condition; this
should be enabled only when necessary.

3. 00 statements that have more than one
iterative specification and/or a WHILE
clause.

4. Control variables that dre not real
fixed-point binary integer element
variables.

5. Expressions in TO and BY clauses other
than decimal integer constants or
single variables and expression~ of
real fixed-point oinary integer type.

6. The SIZE condition when enabled for
iterative DO statements.

7. Loops that contain any of the
following:

170

a. GET DATA statements

b. References to user-defined
funct.ions

c. Procedure calls

d. Procedures or begin blocks

e. Statement.s that are likely to
raise conditions other t.han compu-

tational or system action condi
tions if the compilation contains
on-units for such conditions.
H'or example, if the compilation
contains an on-unit for an I/O
condition, the use of I/O state
ment.s wit.hin loops should be
avoided wherever possible.)

8. Arrays that are parameters and/or do
not have constant bounds.

9. Any of the following types of
variable:

a. Variables wit.h the f."XTERNAL
at.tribute.

b. Based variables and variables that
are either defined or defined
upon.

c. Variables that are parameters.

d. Variables uspd as arguments to
either the ADDR built-in function
or a user-defined fUnction return
ing a pOinter value.

e. Variables used as arguments to an
internal procedure when there are
any pointers in the compilation.

f. Variables used as arguments to
external procedures (other than
built-in functions) when there are
any external pointers in the com
pi lat. ion or when any argument to
one such procedure is an internal
point_er.

AVOIDING COMMON ERRORS

This is a list of the errors and pit
falls most likely to be encountered when
writing a PL/I source program. Some of the
items concern misunderstood or overlooked
language rule~:;, while othel's result from
failure t" observe the implementation con
ventions and restrictions of the TSS/360
PL/I compiler. and are indicated by en
appearLng after the item.

Source Program and Gener~l......§yrl..!ax

1. Ensure that t.he source program is com
pletely contained within the margins
specified by the SORMGIN
option. en

2. Inadvprtent omission of certain sym
bols may give rise to errors that are
difficult to trace. Common errors
are: unbalanced apostrophes;

unmatched parentheses; unn",atched corr.
ment delimiters (e.g., 1* punched
instead of *1 when closing a comment);
and missing semicolons.

3. Reserved keyword operators in the 48-
character set (e.g., GT, CAT) must in
all cases be preceded and followed by
a blank or comment.

4. Care should be taken to ensure that
END statements correctly match the
appropriate DO, BEGIN, and PROCEDURE
statements.

5. In some situations, parentheses are
required when their necessity is not
immediately obvious. In particular,
the expression following WHILE and
RETURN must be enclosed in
parentheses.

Program Control

1. The procedure to te given initial con
trol at execution time must have the
OPTIONS (MAIN) attritute. If more than
one procedure has the MAIN option, the
first one gets control. (1)

2. When a procedure of a program is
invoked while it is still active, it
is said to be used recursively.
Attempting the recursive use of a pro
cedure that has not teen given the
RECURSIVE attribute may result in a
program interruption after exit from
the procedure. This will occur if
reference is rrade to AUTOMATIC data of
an earlier invocation of the
procedure.

Declarations and Attritutes

1. DECLARE statements for AUTOMATIC
variables are in effect executed at
entry to a block; sequence of the fol
lowing type are therefore likely to
lead to unpredictable storage
requests:

A: PROC;
N=4;
DCL B (N) FIXED;

END;

2. Missing commas in DECLARE statements
are a common source of error. For
example, a comma rr.ust follow tile entry
for each element in a structure
declaration.

3. External identifiers shollld neither
contain more than seven chd£acters,
nor start with the letters IHE. (I)

4. In a PICTURE declaration, the V
character indicates the scale factor,
but does not in itself produce a
decimal faint on out~ut. The point
picture character produces a faint on
output, but is purely an editing
character and does not indicate the
scale factor. In a dEcimal constant,
however, the point does indicate the
scale factor. For example:

5.

6.

DCL A PIC'99.9',
E PIC'99V9',
C PIC'99.V9';

A,B,C=45.6;
PUT LIST (A,B,C);

This will cause the following values
to te put out for A, Bf and C,
respectively:

04.5 456 45.6

I f these va lues we re now read tack
into the variables ty a GET LIST sta
tement, A, H, and C would be set tc
the following respective values:

004 56.0 45.6

If the PUT statement were then
repeated, the result wOllld be:

00.4 560 45.6

Separate external declarations of the
same identifier must not specify con
flicting attributes, either eXflicitly
of ty default. If this occurs the
compiler will not be able to detect
the conflict. PLII also requires that
if an INITIAL value is specified in
one declaration of a STATIC EXTERNPL
variatle, the same INITIAL value
should appear in every declaration of
that variable.

An identifier cannot be used for Rore
than onE purpose within its scope.
Thus, the use of X in the fcllcwing
sequence cf statements would be in
error:

PUT FILE (X) LIST (A,B,C); X=Y+Z;
X: M=N;

7. It is advisable to declare all entry
points, associated parameter lists,
and any return values, to avoid inad
vertent clashes of attributes.

If the attributes of the data items in
an argument list do not rr.atch these
declared for the ENTRY. a dummy argu
ment is created with the correct
attributes, and the data item is con
verted into the dummy. For exarrple:

Section 16: Optimization und Efficient Perforrr.ance 171 0

-172

DCL X ENTRY (FIXED, CHAR(4»,
Y FIXED, Z FIXED(l,O);

Y=45;
2.=0;
CALL X(Y,Z)i

X:PROC(A,B);
DCL A FIXED,

B CHAR (4) ;

END;

In the above example, a dummy is
created for the second argument, Z,
and is passed to X as 'bbbO'.

If the attributes declared for X in
the entry name declaration were incom
patible with the attributes of the
arguments in the CALL statement, the
campi ler would issue a diagnostic mes
sage, and at execution tirre no conver
sion would take place. However, if
the attributes declared for X in the
entry name declaration conflicted with
the attributes of the corresponding
parameters in the PROCEDURE statement,
the compiler would not detect the dis
agreement, and at execution time the
consequences of such an error would,
in general, be unFredictatle. For
example, if X were declared

DCL X ENTRY (FLOAT, CHAR(4);

then 45 would be Fassed as FLOAT, but
would be interpreted by X as FIXED,
possibly with disastrous results.

Similarly, attributes declared for
RETURN values must agree in the invok
ing and invoked procedures; however,
the actual eXfression returned may be
of any data type and will be converted
to that declared. For example:

DCL X RETURNS (CHAR(4»;
DCL A CHAR(4);

X: PROC CHAR(4);
RETURN CI*J*K);
END Xi

The precision of decimal integer con
stants should be taken into account
when such constants are passed. For
example:

CALL ALPHA (6) ;

ALPHA: PROCEDURE(X)i
DCL X FIXED DECIMAL;
END;

The above example is incorrect because
X will be given a default preclsion,
while the constant, 6, will be passed
with precision (1,0).

8. When a data item requires conversion
to a dummy, and the called procedure
alters the value of the parameter,
note that the dummy is altered, not
the original argument. For example:

DCI X ENTRY (FIXED, FIXED),
A FIXED,
B FLOAT;

CALL X(A,B);

X:PRCC(Y,Z>;
DCL (Y t Z) :FIXED;
Y=Z**100; I*A IS ALTEREC IN

CALLING PROC*I
Z=Y**3; 1*8 IS UNALTERED IN

CALLING PROC*I
END Xi

9. When the attributes for a given iden
tifier are incompletely declared, the
rest of the required attributes are
sUFFlied ty default. The following
default assumptions should be careful
ly noted.

FLOAT DECIMAL REAL is aSSllliied for
implicitly declared arithmetic
variahles, unless the initial letter
is in the range I through N, when
FIXED BINARY REAL is assumed.

If a variable is explicitly declared
and any of the base, scale, or Hade
attrihutes is specified, the otbers
are assumed to be ffoH. the set FLOATI
DECIMAL/REAL. For example:

r;CL Ii

l:;Cl J REAL:

/*1 IS FIXED BINARY
(1 S, O) RKAL
AUTOMA'TIC*I

/*J IS FLQAT DECIMAL
(6) REAL
AUTOMATIC*/

eCL K s'rATICi /*K IS FIXED BINARY
(15 (0) REP,l~

STATIC*'

DCI L FIXED; ?*L r::~ f'IXEr LECIMA.L
(5,0) REAL
AUTOMATIC'"

10. The precision of cowplex expressions
is not obvious" For ~.xample, Lhe pre
cision of 1 + 11 is (2,0>, that is,
the precision follows the rules for
expression evalua ticn.

11. When a procedure contains rr:orethan
one entry point, ·with different pa.ram
eter lists on each entry, make sure
that no references are made to parame
ters other than those associated with
the paint at which control. entered the
procedure. For exarrple:

A: PROCEDURE(P,Q)i
P=Q+8; RETURN;

B: ENTR'l(R,S).
R=P+S; /*THE REFERENCE TO P

IS AN ERROR*/
ENe;

12. Based storage is a~located in terms of
doublewords; therefor~, even for the
smallest item, at least eight pytes
are required. (I)

13. The variable used in the REFER option
must be referred to unarr.biguously.
For exani~le:

DCL 1 A,
2 'l FIXED BIN,
2 Z FLOAT,

1 B,
2 Y FIXED BIN
2 T(1:N REFER(B.'l»;

In any references to this declaration,
Y must be fully qUdlified to ~revent a
possible ambiguity.

14. A pointer qualifier (explicit or
implicit) may not be cased or
subscripted. (I)

15. Conflicting contextual declarations
must be avoided. P is often used as
the name of a pointer and it must not
then assume by default the characteri
stics of another data type. For
example:

B BASED (P),

P AUTO,

. ,
P is first contextually declared to be
a pointer and then, by default, to be
FLOAT DECIMAL.

16. BASED variables cannot be used as
arguments or parameters. (I)

17. Offsets must be declared with a level
1 unsubscripted based area.

Assignments and Initialization

1. When a variable is accessed, it is
assumed to have a value which has been
previously assigned to it and which is
consistent with the attributes of th~
variable. If this as~umption is inco
rrect, either the program will proceed
with incorrect data or a fLogram
interruption will occur. Such a
situation can result from failure to

initialize the variable, or it can
occur as a result of the variable hav
ing been set in one of the following
ways:

a. by the use of the UNSPEC
pseudo-variable

b. by RECORD-oriented input

c. by overlay defining a picture on a
character string, with sUbsequent
assignment to the character string
and then access tc the picture

d. by passing as an argument a vari
able assigned in a different pro
cedure, without matching the
attributes of the parameter.

Failure to initialize a variable will
result in the variable having an
unpredictable value at execution time.
Do not assume this value to be zero.

Failure to initialize a subscri~t can
be detected by checking for subscripts
out of range, when debugging the
program.

2. Any attemft to write out a variable or
array that has not been initialized
may well cause a data interruption to
occur. For example:

DCL AnO) FIXED;
A(1)=10;
PUT LIST (A);

To avoid the data interruption, the
array should be initialized before the
assignment statement, thus:

A=O;

Note that this problem can also occur
as a result of CHECK system action for
an uninitialized array. If the CHECK
condition were enabled for the array
in the above example, and system
a~tion were taken, the results. and
the way in which tbe program ter
minates, would be unpredictable. The
same problem arises when PUT DATA is
used.

3. Note the distinction between = (as
signment) and = (comparison). The
statement

A=B=C:

means ·compare B with C and assign the
result (either '1'B or 'O'S) to A.
performing type conversion is
necessary."

section 16: Optimization and Efficient Performance 173-

4. Assignments that involve conversio,)
should be avoided if possible.

5. In the case of initialization of or
assignment to a fixed length stri.ng:
if the assigned value is shorter than
the string, it is extended on the
right with blanks (for a character
string) or zeros (for Lit strings).
For example:

DCL A CHAR(6),
B CHAR(3) INITC'CR');
A==B;

After the execlltion or thE ab,)\le "Ll '"
tements, B would co~tain CRt, dnd A
would contain CRbtbb.

6. It is not possitle to assign a cross
section of an array of strucLu.t-es in a
single statement; the whole of an
array of structures, or a single e1e-'
ment may be referenced, but nOL a
cross section. (1)

7. When SIZE is disabled, the resuLt. ,)f
an assignment which would have Iii i.sed
SIZE is unpredictable:

FIXED BINARY: The result of 0D a~
signment here -.- wldch in1olutJe", for:
instance, source lclllgudge assiStlments
and the conversions implied by pararre
ter matching -- may he to raise
FIXEDOVERFLOW.

FIXED DECIMAL: Trullc 3tidD to tlte;
nearest byte may occur, ,,;jLlIont r';ii_,~

ing an interruption. If the ~a(get

precision is even, an extra digit ffidY

be inserted in the hi~h-or~er h}t0.

Arithmetic and Loqical_uperatioI1S

1. The rules for' expression eva lll,:; t .ion
should be carefully noted, with parti
cular reference to priority of opera
tions. The following examples shuw
the kind of mistake that can occur:

-174

X>YIZ is not equivalent to X>YIX>Z
but is equivalent to (X>Y) jZ

X>Y>Z is not equivalent to X>Y&X>Z
but is equivalent to (X>Y»Z

The clause IF A=BIIC is equivalent
to IF A==(BIIC),not to IF (A==B)IIC

All ore ration sequences of equal
priority are evaluated left to right,
except for **, prefix +, rrefix -, and
l' which are evaluated right to lett.
ThUS, the statement

2.

is equi~dlent to

A=B**(-(C**D»;

The normal use of parentheses is to
modify the rules of priority; however,
it may te convenient to use redundant
parentheses as a safeguard or to
clarify the oferation.

Conversion is governed by comfrehen
sive rules whioh must he thoroughly
understood if unnecessary trouble is
to be avoided. Some examples of the
effect of conversion follow.

a. DECIMAL FIXED to BINARY FIXED can
cause unexpected results if frac
tions are involved:

DCL I FIXED BIN(31,5) INIT(l)~

1-"'1+.1;

The value of I 15 now 1.0625.
This is because .1 is converted to
FIXED BINARY(5,4), so that the
nearest binary approximation is
O.OOOlB (no rounding occurs). The
decimal equivalent of this is
.0625. A better result wculd have
been achieved by specifying .1000
in place of .1. (See alsc item f.
telow.)

b. If arithmet.ic is performed on
character strinq data, the inter
mediate results are held in the
maximum precision:

Del.. A CHAR (6) I NIT (• 123. 45') ;
DeL B FIXED(S,2);
B=A; /*B HAS VALUE 123.45*/
B=A+A; /*B HAS VAllJE 246.00*/

c. The rules for arithmetic to bit
string conversion affect assign
ment to a bit string from a decim
al constant:

DeL A B 1'1' (1) ,

D B1'r(5);
A=l; /*A HAS VALUE 'O'B*/
D=l; /*D HAS VAI,UE '00010' B*/
D=='B; /*D HAS VALUE '10000'8*/
IF A=l THEN GO TO Y;

ELSE GO TO X;

The branch will be to X, because
the assignment to A resulted in
the following sequence of actions:

(1) The decima 1 constant, 1, is
assumed to be FIXED DECIMAL(l,
0) and is assigned to teft
porary storage with the attri
butes FIXED BINARY(4,OJ, tak
ihg the value 'OOOl'B;

(2) This value is now treated as a
hit string of length (4), so
that it becomes 'OOOl'B:

(3) The resultant bit string is
assigned to A. Since A has a
declared length of 1, and the
value to be assigned has
acquired a length of 4, trun
cation occurs at the right,
and A has a final value of
• 0' B.

To perform the cOlf,parison opera
tion in the IF statement, 'O'B and
1 are converted to FIXED BINARY
and compared arithmetically. They
are unequal, giving a result of
"false" for the relationship A=l.

In the first assignment to D, a
sequence of actions similar to
that described for A takes place,
except that the value is extended
at the right with a ~€ro, because
D has a declared length that is 1
greater than that of the value to
be assigned.

d. Assignment of arithmetic val~es to
character strings involves conver
sion according to the rules for
LIST-directed output.

Example 1

DCL A CHAR (4) ,
B CHAR (7) i

A='O'i I*A HAS VALUE 'Otbb'*1
A=O: I*A HAS VALUE 'bbbO'*1
B=1234567: I*B HAS VALUE

Note: The three clanks are neces
sary to allow for the possibility
of a minus sign and/or a decimal
or binary point, with provision
for a single leading zero before
the point.

Example 2

DCL CTLNO CHAR(S} INIT('O'):
DO 1=1 TO 100;

CTLNO=CTLNO+1:

END;

In this example, a conversion
error occurs because of the fol
lowing sequence of actions:

(1) The initial value of CTLNO,
that is, 'Obbbbbbb', is con
verted to FIXED DEClMAL(5,0)
for the addition, 9J\l1ng a
temporary value of 00000.

(2) The d€cimal constant, 1,
assumed to be FIXED DECIMAL
(1,0), is added; in accordance
with the rules for addition,
the precision of the result is
(6,0), giving a value of
000001.

(3) This value is now converted to
a character string of length
9, value 'ttbbttbb1', in pre
paration fCIL the assignrrent
back to CTLNO.

(4) Because CTLNO has a length of
B, the assiqnment causes trun
cation at t!le right; thus,
CTLNO has a final value that
consists entirely of blanks.
This value cannot be success
fully converted to arithmetic
type for the second iteration
of the lOOp.

e. FIXED division can result in unex
pected overflows or truncation.
For example, the expression

Item

1
3
1/3

25
25+1/3

01
3

01/3
25
25+01/3

25+1/3

would yield a value of 5.33 ••• 3.
To obtain a result of 25.33 ••. 3,
it would be necessary to write

25+01/3

The explanation is that constants
have the precision and scale fac
tor with which they are written,
while FIXED division results in a
value of maximum implementaticn
defined preciSion. The results of
the two evaluations are reached as
follows:

r-------T-------T----------------,
I I Preen/ I I
I IScale I I
I I Factor I Result I
~-------+-------+----------------i
I 1(1,0) I 1 !
I I U,O) I 3 I
I 1(15,14)1 0 .333333333333331
I 1(2,0) I 25 I
I I (15, 14) 15. 333333333333331
I I I (truncation en !
I i lleft; I
I I I FIXEOOVERFLOW I
I jwould be raised I
I I lunless disabled) I
.-------t-------t----------------i
I 1(2,0) I 01 I
I 1<1,0) I 3 I
I 1(15,13)1 0 0.33333333333331
I 1(2,0) I 25 !
I 1(15,13)1 25 .33333333333331 l _______ ~ _______ ~ ________________ J

Section 16: Optimization and Efficient Performance 175-

f. Checking of a picture is performed
only on assignment into the pic
ture var iable:

DCL A PIC'999999',
B CHAR(6) DEF A,
C CHAR(6);

B= • ABCDEF' :
C=A: /*WIll NOT RAISE CONV

CONCI'IION*/
A=C; /*WILL RAISE CCNV*/

Note also (A, B, C as declared
above) :

A=123456: /*A HAS VALUE 123456*/
/*8 HAS VALUE

'123456'*/
C=123456; /*C HAS VALUE

'ctt123'*/
C=A: /*C HAS VALUE '123456'*/

g. A decimal fixed-point element with
a declared even precision (P,Q)
may have an effective precision of
(P+1,Q), as the high-order byte
may not be nonzero. The SIZE con
diticn can be used to eliminate
this effect:

DO-groups

DCL (A,BtC> FIXED DECIMAL
(6,0):
ON SIZE:

(SIZE): A = B + C:

This ensures that the high-order
byte of A is zero after the
assignment.

1. The scofe of a condition prefix ap
plied to a DO statement is limited to
execution of the statement itself; it
does not apply to execution of the
entire group.

2. An iterative DO group is not executed
if the terminating condition is satis
fied at initialization:

1=6;
DO J=I TO 4;

X=X+J;
END:

x is not altered by this group, since
BY 1 is implied. Iterations can step
backwards, and if BY -1 had teen spe
cified, three iterations would have
taken place.

3. Expressions in a LO statement dre
assigned to temporaries with the same

characteristics as the eXpression, not
the variable. For example:

eCL A DECIMAL FIXED(5,O);
A=10i
CO 1=1 TO A/2;

ENC:

This loop will not be executed,
because A/2 has decimal precision
(15,10), which, on conversion to
binary (for comparison with 1), becorr
es binary (31,34).

Five iterations would result if the DO
statement were replaced by

ITEMP=A/2;
CO 1=1 TO ITEMP;

4. DO-groufs cannot be used as ON-units.

5. UF~er and lower bounds of iterative
DO-groups are computed once only, even
if the variables involved are reas
signed within the group. This aFflies
also to the BY expression.

Any new values assigned to the
variables involved would take effect
only if the DO-GROUP WAS STARTED
AGAIN.

6. In a DO-group with both a contrcl
variable and a WHILE clause, the eval
uation and testing of the WHILE eXFre
ssion is carried out only after deter
mination (fraIl' the value of the con
trol variable) that iteration may be
performed. For example, the fcllowing
group would be executed at ffiost once:

DC 1=1 WHIlE(X>Y);

END;

7. I is frequently used as the control
variatle in a DO-group, for example:

DO 1=1 TO 10;

Within the scope of this implicit
declaration, I might be contextually
declared as a pointer, for example:

eCI X BASED (I) ;

The two statements are in conflict and
will produce a diagnostic message.
When I is a pointer variable, it can
only be used in a DO-group in one of
the following ways:

1. DCL (P, lA, IB, IC) POINTER;

DO P=IA,IB,IC;

2. LCL (P, IA) POINTER;

DO WHILE(P=IA);

Data Aggregates

1. Array arithmet.ic should te thought of
as a convenient way of specifying an
iterative computation. For example:

DCL A(10,20);

A=A/A(l,l>;

has the same effect as

DCL A(10,20);

DO 1=1 TO 10;
DO J=l TO 20;
A(I,J)=A(I,J)/A(l,l);
END; END;

Note that the effect is to change the
value of A(1,1) only, since the first
iteration would produce a value of 1
for A(l,l). If the user wanted to
divide each element of A by the origi
nal value of A(l,1), he could write

B=A(181) ;
A=A/B;

or alternatively,

DCL A(10,20),
B(lO,20};

B=A/A (1 , 1) ;

2. Note the effect of array
multiplication:

DCL (A,B,C) (l0,10):

A=B*C;

This does not effect matrh. multipli
cation; it is equivalent to:

Strings

DCL (A,B,C) (10,10);

[;0 1=1 TO 10;
DO J=l TO 10;
A(I,J)=B(I,J)*C(I,J};
END; END;

1. Assignments made to a varying string
by ueans of the SUBSTR pseudo-variable
do not set the ~ength of the string.
A varying string initially has an
undefined length, so that if all assi
gnments to the string are made using
the SUBSTR pseudo-variable, the string
still has an undefined length and can
not be successfully assigned to anoth
er variable or written out.

2. The user must ensure that the lengths
of intermediate results of string
expressions do not exceed 32767 bytes.
This applies particularly to variable
string lengths, as there is no object
time length checking. (1)

Functions and Pseudo-Variables

1. When UNSPEC is used as a pseudo
variable, the expression on the right
is converted to a bit string. Conse
quently, the expression must not be
invalid for such conversicn; for
example, if the expression is a
character string containing characters
oth~r than 0 or 1. a conversion error
will result.

On-Conditicns and On-Units

1. Note the correct pOSitioning of the ON
statement. If the specified action is
to apply when the named conditicn is
raised ty a given statement, the ON
statement must be execut.ed befcre that
statement. The statements:

GET FILE (ACCTS) LIST (A,B,C);
ON TRANSMIT (ACCTS) GO TO TRERR;

would result in the ERROR condition
being raised in the event of a trans
mission error during the first GET
oferaticn, and the required branch
would not be taken (assuming that no
previous ON statement afplies). FUr
thermore, the ON statement would be
executed after each execution of the
GET statement.

2. An on-uni t cannot be entered ty rr,eans
of a GOTO statement.. To execute an
on-unit deliberately, the SIGNAL sta
tement can te used.

Section 16: Opti~ization and Efficient performance 171*

3. CONVERSION on-units entereo as a
result of an invalid conversion (as
oFPosed to SIGNAL) shonld either
change the invalid character (by means
of the ONSOURCE or ONCHAR ps€udo
variable), or else terminate with a
GOTO st atement. OtheDNis€, the system
will print a message and raise the
ERROR condition.

4. At normal exit from an AREA on-unit,
the standard system act.ion is to try
again to make the allocation. Unless
the on-unit makes the allocation poss
ible, therefore, the on-unit will be
entered again and an indefinite loo~
will be created. To avoid this, the
amount allocated should be modified in
the on-unit; for example, the EMPTY
built-in function could be used, or a
painter variable could te changed.

Input/Output

1. The UNDEFINEDFILE condition may be
raised if a STREAM file is reopened
with attributes or options that con
flict with attributes, options, or
parameters previously specified for·
it. For example, if a file originally
opened with a LINESIZE of 100 is sub
sequent ly reopened with a LINES IZE of
131, the UNDEFINEDFILE condition will
be raised if the DCB sutoperand
BLKSIZE is not specified in the DDEF
command, or if it is specified as less
than 132. Difficulties of this nature
can be avoided by the use of different
file names, or by using the same file
name with different TITLE option
specifications. (0

2. The UNDEFINEDFILE condition is raised
not only by conflict ing language
attributes (such as DIRECT with
PRINT). but also ty the following:

-178

a. Block size smaller than record
size.

b. LINESIZE exceeding the permitted
maximum.

c. Format-U records specified for
INDEXED organization.

d. KEYLEN not specified for creation
of INDEXED data sets.

e. Attempting to open an INDEXED data
set for DIRECT OUTPUT.

f. Attempting to open a CONSECUTIVE
data set with DIRECT or KEYED
attribut es.

g. Specifying an RKP option, for an
INDEXED data set, with a value

resulting in KEYLEN+RKP exceeding
LRECL.

h. Specifying a formaL-V logical rec
ord length of l€~s than 18 bytes
for STREAM dat_a set.s.

i. Specifying, for format-F blocked
records, a block size that is not
an integral multiple of the record
size.

j. Specifying, for tormat-V records,
a logical l:ecord length that is
not at least four bytes smaller
than the specified block size.

k. Attempting to o~en a file with the
UNBUFFERED attribute for blocked
records.

1. Attempting to use blocked reccrds
in the syste~ input strearr with an
UNBUFFERED file. The default rec
ord format for the systerr input
stream is FB-format. Since this
stream is not checked on input,
the presence of FB-format records
will not be detected until an
attempt is made to open the file,
when UNDEFINEDFILE will be raised.

Note: If the UNDEFINEDFILE condition
is raised because either the key
length or the tlock size is not speci
fied, a subsequent attempt to c~en the
file will not raise this condition
again.

3. If a file is to be used for both input
and output, it roust not be declared
with either the INPUT or the OUTPUT
attribute. Tpe required option can te
specified on the OPEN STATEMENT.
There must be no conflict between file
attributes specified in the declara-
tion and those specified by the OPEN
statement.

4. Input/output lists must be surrounded
by a pair of parentheses; so must
iteration lists. Therefore, twc j:airs
of oucer parentheses are required in

GET LIST ({A(I) DO 1=1 TO N»;

5. Note tbat the file must have the KEYED
attribute if the KEY. KEYFROM, or
KEYTO oFt ions are to be used in any
input/output statement referring to
that file.

6. The standard file names SYSIN and SYS
PRINT are implicit only in GET and PUT
statements. Any other reference, such
as those in ON st.atell1ents, must be
explicit.

7. PAGESIZE and LINESIZE are not file
attributes, that is, they cannot be
included in a DECLARE statement for
the file; they are options on the OPEN
statement.

8. When an edit-directed data list is
eXhausted, no further forrrat items
will be ~rocessed, even if the next
format item does not require a match
ing data item. For example:

DCL A FIXED(S),
B FI XED (S , 2) ;

GETEI:;IT (A, B)
(F (S) , F (S, 2) , X (70)) ;

The X(70) format item will not be pro
cessed. To read a following card with
data in the first ten columns only,
the SKIP option can be used:

GET EDIT (A,B) (F(S), F(S,2»
SKIP;

9. The nurr.i;er of data items represented
by an array or structure name appear
ing in a data list is equal to the
number of scalar elements in the array
or structure; thus, if more tha~ one
format item aprears in the format
list, successive elements will be
matched with successive format items.
For example:

DCL 1 A,
2 B CHAR(S),

i C FIXED{S,2);

PUT EDIT IA) (A(S),F(5,2»;

B will be matched 'Nith the A(S) iten:,
and C will be matched 'Nith the F(S,2)
item.

10. Arrays are transmitted in row major
order (e.g., A(1,l>, A(1,2), A(1,3),

A (2 ,1) , etc.)

11. Strings used as input data for GET
DATA and GET LIST must be enclosed in
apostrophes.

12. The 48-character refresentation of a
semicoln (,.) is not recognized as
asemicolon if it appears in a DATA
directed inFut stream; the 11-8-6
punch must be used. (1)

13. The user must be aware of two limita
tions of PUT DATA; (i.e., no data
list). First, its use with an ON sta
tement is restricted because the dat.a
known to PUT DATA would t~ the data
known at the point of the on-unit.
Second, and more serious, the data

will te put out as normal data
directed output, 'Njdch means that. any
unallocated or unassigned data rray
raise a CONVERSION or other condition.

If the on-unit

ON ERROH PUT DATA;

is used in an outer block, it must be
remembered that variables in inner
blocks are not kpo'Nn and therefore
will not be dumped. It would te a
good practice, therefore, to repeat
the on-unit in all inner blocks during
deLugging.

If an error dOES occur during execu
tion of the PUT DATA statement, and
this statement is wjthin an ERROR on
unit, the rrogram will recursively
enter the ERROR on-unit until no more
storage remains for the 0Feraticn.
Since this could be wasteful of
machine t.ime and printout., the ERROR
on-unit should be turned off once it
is activated. Instead of:

ON ERROR PUT DATA;

better code would be:

ON ERROR BEGIN i
ON ERROR SYSTEM;
PUT DATA;
END;

When PUT rATA is used 'Nithout a data
list every variable known at that
point in the program is transmitted in
data-directed output format tc t.he
s~ecified file. Users of this facili
ty, however, should note that:

a. Uninitialized decimal fixed-point
data may raise thE: CONVERSION con
dition or a data interru~ticn.

b. Unallocated controlled data 'Nill
cause arbitrary values to ce
printed and, in the case cf decim
al fixed-pOint, may raise the CON
VERSION condition or a data
interruption.

14. Use of locate mode 1/0. A pointer set
in READ SET or JnCATE SET may not be
valid ceyond the next operation on the
file, or beyond a CLOSE statement. In
OUTPUT files, WRITE and LOCATE state
ments can be freely mixed.

For UPDATE files, the REWRITE st:at.e
ment with no options must be used if
it is required to rewrite an updated
record. The result of this REWRITE is
always to rewrite the contents of the
last buffer onto the data set.

Section 16: Optimization and Efficient Performance 179-

-180

For examr;le:

3 READ FILE (F) SET (pl;

5 P->R = Si

7 REWRITE FILE (F);

11 READ FILE (F) INTO (X);

15 REWRITE FILE (F);

19 REWRITE FILE (F) FROM (X);

Notes:

Staterrent 7 will rewrite a record
updated in the buffer.

Statement 15 will only rewrite
exactly what was read, i.e., it
will not change the data set at
all.

Staterr,ent 19 will raisE ERROR,
since there is no r;receding READ
statement.

There are two cases where it is not
possible to check for the KEY condi
tion on a LOCATE statement until tran
smission of a record is attempted.
(This will generally occur on execu
tion of the next PL/I output statement
for this file.)

These are:

When the embedded key differs frOir
the KEYFROM in a VISA~ file.

If this LOCATE statement is to
transmit the last record before

the file is closed, the record is
not transrritted, and the errbedded
key is overwritten with the KEY
FROK string, and the record is
transrritted.

Thus the condition may be raised
by a CLOSE statement or by an END
staterrent that causes implicit
closing. Until the error is
corrected, the record cannot be
transrritted and no further opera
tion can te carried out on the
file.

15. Allocation and freeing of based
variables: If a reference is rrade, at
object tirre, to a BASED varial:le that
has not been allocated storage, an
unpredictal:le interruption (protec
tion, addressing or specification) nay
occur.

16. Areas, pOinters, offsets and struc
tures containing any of these cannot
be used with STREAM I/O. PUT DATA
cannot te used with BASED variables.

When a tased variable is freed, the
associated pointer no longer ccntains
useful information. This pointer can
only be used again if:

a. It is reallocated with the sarre or
another based variable, or,

b. A value is assigned to it from an
offset or anot,her pointer

A based variable allocated in an
area [[;ust be freed in that area.
For eJ!ample:

DCI A AREA, B BASED (X);
ALLOCATE B IN (A)i

FREE B;
FREE B IN (A);

1* ILLEGAL *1
/* L:E.GAL */

PART II: Rules and Syntactic Descriptions

181

Throughout this publication, wherever a
PL/I statement -- or sQme other combination
of elements -- is discQssed, the manner of
writing that statement or fhrase is illus
trated with a uniform system of notation.

This notation is not a part of PLtI; it
is a standardized notation that may be us~d
to describe the syntax -- or const~uction

of any programming language. It pro
vides a brief but precisE explanation of
the general patterns that the language per
n,its. It does not describe the meaning of
the language elements, merely their struc
ture; that is, it indicates the order in
which the elements may (or must) appear,
the punctuation that is required, and the
options that are allowed.

The following rules explain the use of
this notation for any programming language;
only the examples apply specifically to
PUI:

1. A notation variable is the name of a
general class of elements in the pro
gramming language. A notation vari
able rrust consist of:

a. Lower-case letters, decimal
digits, and hyphens and must begin
with a letter.

b. A combination of lOWer-case and
upper-case letters. There must be
one portion in all lower-case let
ters and one fortion in all upper
case letters, and the two portions
must be separated by a hyphen.

All such variables used are defined in
the manual either syntactically, using
this notation, or are defined
semantically.

Examples:

a. digit. This denotes the occur
rence of a digit, which may be 0
through 9 inclusive.

b. file-name. This denqtes the
occurrence of the notation vari
able named file name. An explana
tion of file name is given else
where in the manual.

c. DO-statement. This denotes the
occurrence of a DO statement. The
upper-case letters ar~ used to
indicate a language keyword.

SECTION 1: SYNTAX NOTATION

2. A notation constant denotes the liter
al occurrence of the characters repre
sented. A notation constant consists
either of all capital letters or of a
sfecial character.

Example:

DECLARE identifier FIXED;

This denotes the literal occurrence of
the word DECLARE followed by the nota
tion variable "identifier," which is
defined elsewhere, followed by the
literal occurrence of the word FIXED
followed by the literal occurrence of
the semicolon (;).

3. The term "syntactic unit," which is
used in subseq~ent rules, is defined
as one of the following:

4.

a. A single notation variable or
notation constant.

b. Any collection of notation
variables, notation constants,
syntax-language symbols, and key
words surrounded by braces or
brackets.

Braces {} are used to denote grouping
of more than one element. into a syn
tactic unit.

Exarr,ple:

identifier I FIXED

FLOAT

The vertical stacking of syntactic
units indicates that a choice is to be
made. The above example indicates
that the variable "identifier" must be
followed by the literal occurrence of
either the word FIXED or the word
FLOAT.

5. The vertical stroke I indicates that a
choice is to be made.

Exarrple:

identifier {FIXEDIFLOAT}

This has exactly the same meaning as
the above example. Both methods are
used in this manual to display
alternatives.

Section 1: Syntax Notation 183

6. Square brackets {] denote options.
Anything enclosed in brackets may
appear one time or may not appear at
all. Brackets can serve the addition
al purpose of delimiting a syntactic
unit. Vertical stacking within brack
ets means that no more than one of the
stacked syntactic units can appear.

Example:

{ [lower- bound:] upper-l::.ound} 1*

This denotes the occurrence of either
a literal asterisk or the variable
"upper-bound," but not both. If
~upper-bound" appears, it can option
ally be preceded ty the syntactic unit
composed of the variable "lower-bound"
and the literal colon.

7. Three dots ••. denote the occurrence
of the immediately preceding syntactic
unit one or more times in succession.

Example:

[digit]

184

The variable "digit" mayor may not
occur since it is surrounded by brack
ets. If it does occur, it may be
repeated one or more times.

8. Underlining is used to denote an ele
ment in the language being described
when there is conflict between this
element and one in the syntax
language.

Exarrple:

operand (& II} operand

This denotes t.hat the two occurrences
of the variable "operand" are
separated by either an "and" (&) or an
"or" (I). The constant I is under
lined in order to distinguish the "or"
syrntol in the PLiI language from the
"or" symbols in the syntax language.

Page of GC28-2045-1, Issued Septemher 10, 1911 by TNL GN28-HR'l

SECTION 2: CHARACTER SETS WITII ERCDIC AND CARD-PUNCH CODES1

60-CHARACTER SET

Character Card-Punch 8-Bi t Code Character Card-Punch 8-Bit Code
blank no punches 0100 0000 N 11-5 1101 0101

12-8-3 0100 1011 0 11-6 1101 0110
< 12-8-4 0100 1100 P 11-1 1101 0111
(12-8-5 0100 1101 Q 11-8 1101 1000
+ 12-8-6 0100 1110 R 11-9 1101 1001
I 12-8-1 0100 1111 ·s 0-2 1110 0010 , 12 0101 0000 T 0-1 1110 0011
$ 11-8-3 0101 1011 IJ 0-4 1110 0100
• 11-8-4 0101 1100 V 0-<) 1110 0101
) 11-8-5 0101 1101 W 0-6 1110 0110

11-8-6 0101 1110 X 0-1 1110 0111 , 11-8-7 0101 1111 '{ 0-8 1110 1000
11 0110 0000 Z o-q 1110 1001

/ 0-1 0110 0001 0 0 1111 0000
, 0-8-3 0110 1011 1 1 1111 0001
l 0-8-4 0110 1100 2 2 1111 0010

0-8-5 0110 1101 '3 '3 1111 0011
> 0-8-6 0110 1110 4 4 1111 0100
? 0-8-1 0110 1111 5 5 1111 0101

8-2 0111 1010 6 (, 1111 0110
8-3 0111 1011 7 7 1111 0111
~ 8-4 0111 1100 8 8 .1111 1000

8-5 0111 1101 9 9 1111 1001
= 8-6 0111 1110
A 12-1 1100 0001
B 12-2 1100 0010
C 12-3 1100 0011 CornEosite
D 12-4 1100 0100 Symbols card-Punch
E 12-5 1100 0101 <:: 12-8-4, 8-6
F 12-6 1100 0110 II 12-8-7, 12-8-7
G 12-1 1100 0111 ** 11-8-4, 11-8-4
H 12-8 1100 1000 ,< 11-8-7, 12-8-4
I 12-9 1100 1001 , > 11-8-7, 0-8-6
J 11-1 1101 0001 ,= 11-8-1, 8-6
K 11-2 1101 0010 >'" 0-8-6, 8-6
L 11-3 1101 0011 /* 0-1, 11-8-4
M 11-4 1101 0100 */ 11-8-4, 0-1

-> 11, 0-8-6

1These card codes are those used by the TSS/360 high-speed card reader. The code Varia-
tions for use with the IBM 1056 Card Reader can be found in IBM S~stem/360 Time Sharing
System: Terminal User's Guide, GC28-2017.

Section 2: Character Sets With EBCDIC and Card-Punch Codes 185

Page of GC2S-2045-1. Issued Se[.tember 30, 1971 by TNL GN28-J185

48-CHARACTER SET

character
blank

+
$
•

/

A
B
C
D
E
F
G
H
I
J
K
L
M
N
o
p

Q
R
S
T
U
V
W
X
Y
Z
o
1
2
3
4
5
6 ..,
8
9

186

card-Punch
no punches
12-8-3
12-8- 5
12-8-6
11-8-3
11-8-11
11-8- 5
11
0-1
0-8-3
8-5
8-6
12-1
12-2
12-3
12-11
12-5
12-6
12-7
12-8
12-9
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
0- 2
0- 3
0-4
0-5
0-6
0-7
0-8
0-9
o
1
2
3
II
5
6
7
8
9

8-Hit Code
0100 0000
0100 1011
0100 1101
0100 1110
0101 1011
0101 1100
0101 1101
0110 0000
0110 0001
0110 1011
0111 1101
0111 1110
1100 0001
1100 0010
1100 0011
1100 0100
1100 0101
1100 0110
1100 0111
11 00 1000
1100 1001
1101 0001
1101 0010
1101 0011
1101 0100
1101 0101
1101 0110
1101 0111
1101 1000
1101 1001
1110 0010
1110 0011
1110 0100
1110 0101
1110 0110
1110 0111
1110 1000
1110 1001
1111 0000
1111 0001
1111 0010
1111 0011
1111 0100
1111 0101
1111 0110
1111 0111
1111 1000
1111 1001

composite
Symbols

bO-Character
Set

card Punch Eguiv~lent
12-8~12-8-3

IE
CAT .* NL
NG
NE
//
, .
AND
GE
,GT
IT
NOT
OR
/.
*(
PT

11-3, 12-5 <=
12-3,12-1.0-3 II
11-11-4, 11-8-4 ••
11-5, 11-3 ,<
11- 5, 12·- 7 1 >
11-5, 12-5 ,=
0-1, 0-1 ~
0-8-3, 12-8-3
12-1, 11-5, 12-4 ~

12-7, 12-5)=

12-7. 0- 3 >
11-3. O-J <
11-5, 11-6, 0-3 1

11-6, 11-9 I
0-1, 11--8-4 /*
11-8-4, 0-1 */
11- 7. 0-· 3 - >

Note: When nsing ttl(~ 48-character set, the
following rules should be observed:

1. The two periods that replace the colon
must be iw.mediately preceded by a
blank if the [receding character is a
reriad.

2. The two slashes that replace the per
cent symbol must be irnroediately pre
ceded by a blank if the preceding
character is an asterisk, or iroroedi
ately followed by a blank if the fol
lowing character is an asterisk.

3. The sequence "comma period" re~resents
a semicolcn except_ when it occurs in a
carow.ent or' char'aeter !:,tri fig. or when
it is irruuediatel.y followed by a digit.

4. When the compiler option CHARlie is
specified in the PLI command for the
compilation (see IBM Systern/360 Time
Sharing SJL~~!!l.L PL/I Programmer's
Guide), 60-character set symbols may
be freely intermixed wi t.h I.IS--character
set symbols and will be accepted by
the compiler as valid input.

5. 48-character set -reserVed- words
(e.g., GT.LE,CAT. etc.,> must be pre
ceded and followed by a blank or a
comment. If they are not .• the inter
pretation ty the compiler is unde£ined
and may not, ther~fore. be what the
user intended.

A record containing part or all of a
48-character set reserved word mus'!: be
3 characters or more in length.

!<eyword
ARS (x)
l'AcrIVATE
ADD(x,y,p[,q])
ADDR(x)
ALIGNED
ALL(x}
ALLOCATE
ALLOCATION (x)
ANY(x)
AREA
AREA[(size)]
ATANex[.yJ)
ATAND(X[,y])
ATANH(x)
AUTOMATIC

BACKWARDS
BASED (pointer-variable)
BEGIN
BINARY
BINARY(x[.p[.ql])
BIT (length)
BITCexpressionl,size)
BOOL(x,y,W)
BUFFERED
BUFFERS(n)
BUILTIN
BY
BY NAME

CALL entry-name
CEIL(x)
CHAR(expression[,size]}
CHARACTER (length)
CHECK (name-list)
CLOSE
COBOL
COLUMIHw)
COMPLETION (event-name)
COMPLEX
COMPLEX {a, b)
CONDITION (name)
CONJG(x)
CONSECUTIVE
CONI'ROLLED
CONVERSION
COpy
COS(x}
COSD(x)
COSH(x)
COUNT (file-name)
CTIASA
crL360

DATA
DATAFIEID
DATE
SDEACTlVATE
DECIMAL
DEClMAL(xl,pl,q]])
DECLARE

Page of GC28-2045-1, Issued September 15, 1970 by TNL GN28-3171

Abbreviation

"ACT

AUTO

BIN
BIN (xl, p(,.ql])

BUF

CHAR C length)

COL(w)

CPLX
CPLX(a,b)

CTL
CONV

"DUCT
DEC
DEC (x (• p [, q]])
DeL

SECTION 3: KEYWORDS AND KEYWORD ABBREVIATIONS

Use of Keyword
built-in fUnction
preprocessor statement
built-in function
built-in function
attribute
built-in function
statement
built-in function
built-in function
condition
attribute
built-in function
built-in function
built-in function
attribute

attribute, option of OPEN statement
attribute
st.atement
attribute
built-in function
attribute
built-in fUnction
built-in function
attribute
option of ENVIRONMENI' attribute
attribute
clause of DO statement
option of the assignment statement

statement or option of INITIAL attribute
built-in function
built-in function
attribute
condition
statement
option of ENVIRONMENT attribute
format item
built-in function, pseudo-variable
da.ta attribute
built-in function, pseudo-variable
condition
built-in function
option of ENVIRONMENT attribute
attribllte
conG..ltion
option of GET sta tement
built-in function
built-in function
built-in function
built-in function
option of ENVIRONMENT attribute
option of ENVIRONMENT attribute

STREAM I/O transmission mode
built-in function
built-in function
preprocessor statement
attribute
built-in function
statement

Section 3: Keywords and Keyword Abbreviations 187

Page of GC28-2045-1. Issued September 15, 1970 by TNL GN2B-3171

Keyword
IDECIARE
DEFINED
DEIAY(n)
DELEI'E
DIMh:.n)
DIRECT
DISPIAY
DIVIDE(x,y,p(,qJ)
00
'100

EDIT
ELSE
'lELSE
EMPTY
END
'lEND
ENDFILE(flle-name)
ENDPAGE(file-name)
ENTRY
ENVIRONMENT
ERF{x}

ERFC(x)
ERROR
EVENT

EXCLUSIVE
EXIT
EXP(x)
EXTERNAL

F(block-size(,record-size)
FILE
FILE (file-name)

FINISH
FIXED
FIXED{X(,p[,q1])

Abbreviation
'lDCL
DEF

ENV

EXCL

EXT

FIXEDOVERFLQW FOFL
JPLOAT
FLOAT (x [. pH
FLOOR(x)
FORMAT (format-llst)
FREE
FROM{variable)

GENERIC
GET
ooro G~O
'lGO TO IGOTO

HBOOND(x,h)
HIGB(i)

IF
UP
IGNORE(n)
lMAG(x)
IN
JINCLODE
INDEX (string,config)
INDEXED
INITIAL
INPUT
INTERNAL
INTO (variable)
IRREOOCIBLE

188

INIT

INT

IRRED

Use of Keyword
preprocessor statement
attribute
statement
statement
buil.t-j n function
attribute
statement
built-in fUnction
statement
preprocessor statement

STREAM I/O transmission mode
clause of IF statement
clause of 'lIF statement
built-in function
statement
preprocessor statement
condition
condition
attribute or statement
attrHmte
built-in function
built-in function
condition
option of DISPLAY, READ, WRITE, REWRITE,
and DELETE sta tements

attribute
statement
built-in function
attribute

option of ENVIRONMENT attribute
attribute
option of GET and PUT statements,

specification of RECORD I/O statements
condition
attribute
built-in function
condition
attribute
built-in fUnction
built-in fU!1ction
statement
statement
option of WRITE or REWRITE statements

attribute
statement
statement
preprocessor statement

built-in fu~~tion
built-in f'lnction

statement
preprocessor statement
option of READ statement
built-in function, pseudo-variable
option of ALLOCATE and FREE statements
preprocessor statement
built-in function
option of ENVIRONMENT attribute
attribute
attribute. option of the OPEN statement
attribute
option of READ statement
attribute

Keyword
KEY (file-name)
KEY{x)

KEYED
KEYFROM(x)
KEYTO{variable}

LABEL
LENGTH (string)
LBOUND(x,n)
LEAVE
LIKE
LINE(w)
LINENO(file-name)
LINESIZE(w)
LIST
LOCATE
LOG(x)
LOG2(x)
LOG10(x)
LOweD

MAIN
MAX (X1 ,xa'" xn)
MIN (X1, xa- • - xn)
MOD(x1,xa)
MULTIPLY(x1,xa,p[,Q)

NAME (fi Ie-name)
NCP{n)

NOCHECK

NOCONVERSION

NOFIXEDOVERFLOW

NOOVERFLOW

NOSIZE

NOSTRINGRANGE

NOSUBSCRIPTRANGE

NOUNDERFLOW

NOZERODIVIDE

NULL
NULLO

OFFSET (area-name)
ON
ONCHAR
ONCOUNT
ONCODE
ONFILE
ON KEY
ONLOC
ONSOURCE
OPEN
OPTIONS (list)
ORDER
OUTPUT
OVERFLOW

Page of GC28-20Q5-1, Issued September 15, 1970 by TNL GN28-3171

Abbreviation

NOCONV

NOFOFL

NOOFL

NOSUBRG

NOUFL

NOZOIV

OFL

Use of Keyword
condition
option of READ, DELETE, and REWRITE

statements
attribute, option of OPEN statement
option of WRITE statement
option of RR~D statement

attribute
built-in function
built-in fUnction
option of ENVIRONMENT attribute
attribute
format item, option of PUT statement
built-in function
option of OPEN statement
STREAM I/O transmission mode
statement
built-in function
built-in function
built-in function
built-in fun~tion

option of PROCEDURE statement
built-in function
built-in function
built-in function
built-in function

condition
option of ENVIRONMENT attribute
(valid only for CONSECUTIVE SEQUENTIAL
UNBUFFERED files>
condition prefix identifier

(disable!:' CHECK)
condition prefix identifier

(disables CONVERSION)
condition prefix identifier

(disables FIXEDOVERFLOW)
condition prefix identifier

(disables OVERFLOW)
condition prefix identifier

(:Hsable SIZE)
condition prefix identifier

(disables STRINGRANGE)
condition prefix identifier

(disables SUBBCRI PTRANGE)
condition prefix identifier

(disables UNDERFLOW)
condition prefix identifier

(disables ZERODIVIDE)
built-in function
buiLt-in function

attribute
statement
built-in function, pseudo-variable
built-in fUnction
built-in function
built-in function
built-in function
built-in fUnction
built-in function, pseudo-variable
statement
option of PROCEDURE statement
option of PROCEDURE and BEGIN statements
attribute, option of the OPEN statement
condition

Section 3: Keywords and Keyword Abbreviations 189

Page of GC28-2045-1, Issued September 15, 1910 by TNL GN28-3171

Keyword
PAGE
PAGESIZE(w)
PICTURE
POINTER
POLY(a,x)
POSITION (i)
PRECISION (x, p [, q])
PRINT
PROCEDURE
'-PROCEDURE
PROD(x)
PUT

READ
REAL
REAL (x)
RECORD

RECURSIVE
REDUCIBLE
REENTRANT
REFER
REORDER
REPEAT (string, i)
REPLY(c)
RETURN
RETURNS

REVERT
REWIND
REWRITE
ROUND(x,n)

SEQUENTIAL
SET (pointer-variable)

SIGN(x)
SIGNAL
SIN (x)
SIND!x)
SINH ex)
SIZE
SKIP [(x)]

SNAP
SQRT (x)
STATIC
STATUS (event-name)
STOP
STREAM
STRING (x)
STRINGRANGE
STRING{string-name)
iSUB
SUBSCRIPTRANGE
SUBSTRCstring,il,j])
SUMe xl
SYSIN
SYSPRINT
SYSTr~

TAN(x)
TAND(x)
TANH(x)
THEN
%THEN

1.90

Abbreviation

PIC
PTR

POSCH
PREC(x,p(,q})

PROC
IPROC

RED

SEQL

S'l'RG

SUBRG

Us e of :Keyword
format item, option of PUT statement
option of the OPEN statement
attribute
attribute
built-in function
attribute
built-in function
attribute, option of OPEN statement
statement
preprocessor statement
built-in function
statement

statement
attribute
built-in function, pseudo-variable
file attribute, option
of OPEN statement, condition
option of PROCEDURE statement
attribute
opt ion of PROCEDURE statement
option of BASED attribute
option of PROCEDURE and BEGIN statements
built-in function
option of DISPLAY statement
statement
attribute, option of PROCEDURE and ENTRY

statements
statement
option of ENVIRONMENT attribute
statement
built-in function

attribute
option of ALLOCATE, LOCATE, and

READ statements
built-in function
statement
built-in function
built-in function
built-in function
condition
format item, option of GET and

PUT statements
option of ON statement
built-in function
attribute
built-in function, pseudo-variable
statement
attribute, option of OPEN statement
built-in function, pseudo-variable
condition
option of GET and Pur statements
dummy variable of DEFINED attribute
condition
built-in function. pseudo-variable
built-in function
name of standard system input file
name of standard system output file
option of the ON statement

built-in function
built-in function
built-in function
clause of IF statement
clause of IIF statement

Page of GC28-20~5-1, Issued September 15, 1970 by TNL GN2B-3171

Keyword
TIME
TO
TITLE(x)
TRANSLATE (s, r [, pl)
TRANSMIT
TRKOFL
TRUNC (x)

U(max-block-size)
UNALIGNED
UNBUFFERED
UNDEFINEDFILE(file-name)
UNDERFLOW
UNSPEC(x)
UPDATE

Abbreviation

UNAL
UNBUF
UNDF(file-name)
lIFL

V(max-block-size[,max-record-size])
VARYING VAR
VBS(max-block-size[,max-record-size)

VERIFY (expr-l, expr-2)
VS(max-block-sizel,max-record-size])

WAIT
WHILE
WRITE

ZERODIVIDE ZDIV

Use of Keyword
built-in fUnction
clause of DO statement
option of OPEN statement
built-in fUnction
condit_ion
option of ENVIRONMENT attribute
built-in funct.ion

option of ENVIRONMENT attribute
attribute
attribute, option of OPEN statement
condition
condition
built-in function, pseudo-variable
attribute, option of OPEN statement

option of ENVIRONMENT attribute
attribute
option of ENVIRONMENT attribute

(treated as a V option)
built-in function
option of ENVIRONMENT attribute

(treated as a V option)

statement
clause of DO statement
statement

condition

The following keywords can be compiled, but will not execute on TSS/360 for the
reasons given under -Intended Use of Keyword.-

Keyword I EVENT

G(max-message-size)

GENKEY
INDEXAREA
NOLOCK
NOWRITE
PENDING
PRIORITY (x)

PRIORITY ((task-name»)

I RCmax-record-size)

REGIONAL

TASK

TASK ((task-name)]

TRANSIENT
UNLOCK

Abbreviation Intended Use of Keyword
option of CALL statement; (causes abnormal

termination of execution)

option of ENVIRONMENT attribute (raises
UNDEFINEDFILE condition>

option of ENVIRONMENT attribute (ignored)
option of ENVIRONMENT attribute (ignored)
option of READ statement (ignored)
option of ENVIRONMENT attribute (ignored)
condition (raises UNDEFINEDFILE condition)
option of CALL statement (causes abnormal

termination of execution)
built-in function, pseudo-variable (causes

abnormal termination of execution)
opt~on of ENVIRONMENT attribute (raises

UNDEFINEDFILE condition)
option of ENVIRONMENT attribute (raises

UNDEFINEDFILE condition>
attribute. option of PROCEDURE statement

(causes abnormal termination of
execution>

option of CALL statement (causes abnormal
termination of execution)

attribute (raises UNDEFINEDFILE condition)
statement (ignored)

Section 3: Keywords and Keyword Abbreviations 191

Page of GC28-2045-1, Issued september 15, 1910 by TNL GN28-3171

SECTION 4: PICTURE SPECU'ICATION CHARACTERS

Picture specification characters appear
in either the PICTURE attribute or the P
format item for edit-directed input and
output. In either case, an individual
character has the same meaning. A discus
sion of the concepts of picture specifica
tions appears in Part I, Section 11, "Edit
ing and String Handling.-

Picture characters are used to describe
the attributes of the associated data item,
whether it is the value of a variable or a
data item to be transmitted between the
program and external storage.

A picture specification always describes
a character representation that is either a
character-string data item or a numeric
character data item. A s:haracter-strinq
£ictured item is one that can consist of
alphabetic characters, decimal digits, and
other special characters. A numeric char
acter pictured ite~ is one in which the
data itself can consist only of decimal
digits, a decimal pOint and, optionally, a
plus or minus sign. other characters gen
erally associated with arithmetic data,
such as currency symbols, can also be spec
ified, but they are not a part of the
arithmetic value of the numeric character
variable, although the characters are
stored with the digits and are considered
to be part of the character-string value of
the variable.

Arithmetic data assigned to a numeric
character variable is converted to charac
ter representation. Editing, such as zero
suppression and the insertion of other
characters, can be specified for a numeric
character data item. Editing cannot be
specified for pictured character-string
data.

Data assigned to a variable declared
with a numeric picture specification (or
data to be written with a numeric picture
format item) must be either internal coded
aritnmetic data or data that can be con
verted to coded arithmetic. Thus, assigned
data can contain only digits and, optional
ly, a decimal point and a sign. It should
not contain any other character, even
though that charact.er (for example, a cur
rency symbol) is specified in the picture
specification and is to be inserted into
the data as part of its character-string
value; if it does, the CONVERSION condition
is raised.

192

Numeric character data to be read using
the P format item must conform to the spec
ification contained in the P format item,
including editing characters. If the indi
cated character does not appear in the
input stream, the CONVERSION condition is
raised.

Data assigned to a variable declared
with a character-string picture specifica
tion (or data to be written with a
character-string picture format item)
should conform, character by character (or
be convertible, character by character) to
the picture specification; if it does not,
the CONVERSION condition is raised.

Figures in this section illustrate how
different picture specifications affect the
representation of values when assigned to a
pictured variable or when printed using the
P format item. Each figure shows the orig
inal value of the data, the attributes of
the variable from which it is assigned (or
written), the picture specification, and
the character-string value of the numeric
character or pictured character-string
variable.

PICTURE CHARACTERS FOR CHARACTER-STRING
DATA

Only three r-icture characters can be
used in character-string picture
specifications:

X specifies that the associated position
can contain any character whose internal
bit configuration can be recognized by
the computer in use.

A specifies that the associated position
can contain any alphabetic character or
a blank character.

9 specifies that the associated position
can contain any decimal digit or a blank
character.

No insertion characters can be specified"
At least one A or X must appear.

Figure 23 gives examples of character
string picture specifications. In the
figure, the letter b indicates a blank
character. Note that. assignments are left··
adjusted, and any necessary padding with
blanks is on the right."

r------------------T--------------------T------------------------T----------------------,
I Source I Source Data I Picture I Character-St ring I
I Attributes I (in constant form) I Specification I Value1 I
t------------------t------------·--------t------------------------+----------------------~
I CHARACTER(S) I '9B/2L' I XXXXX I 9B/2L I
I I I I I
I CHARACTER(S) I '9B/2L' I XXX I 9B/ I
I I I ! I
I CHARACTER(S) I '9B/2L' I XXXXXXX I 9B/2Lbb I
I I I I I
I CHARACTER(S) I 'ABCDE' I AAAAA I ABCDE I
I I I I I
I CHARACTER(S) I'ABCDE' I AAAAAA I ABCDEb I
I I I I I
I CHARACTER (S) I • ABCDE' I AAA I ABC I
I I I I I
I CHARACTER(S) I '12/34' I 99X99 I 12/34 I
I I I I I
I CHARACTER(S) I 'L26.7' I A99X9 I L26.7 I
t------------------~--------------------L-------------___________ L ______________________ ~

11A variable declared with a character-string Ficture specification has a character- I
I string value only. I l ___ ---------------------______________ J

Figure 23. Pictured Character-String Examfles

PICTURE CHARACTERS FOR NUMERIC CHARACTER
DATA

Numeric character data must. repres'ent
numeric values; therefore, the associated
picture specification cannot contain the
characters X or A. The picture charact.ers
for numeric character data can specify
detailed editing of the data.

A numeric character variable can be con
sidered to have two different kinds of
value, depending upon its use. They are
(1) its arithmetic value and (2) its
character-string value.

The arithmetic value is the value ex
pressed by the decimal digits of the data
item, the assumed location of a decimal
foint, and possibly a sign. The arithmetic
value of a numeric character variable is
used whenever the variable appears in an
expression that results in a coded arithme
tic value or whenever the variable is
assigned to a coded arithmetic, numeric
character, or bit-string variacle. In such
cases, the arithmetic value of the numeric
character variable is converted to internal
coded arithmetic representation.

The character-string value is the value
expressed by the decimal digits of the data
item, as well as all of the editing and in
sertion characters appearing in the picture
specification. The character-strir~ value
does not, however, include the assumed
location of a decimal point, as specified
by the picture character V. The character
string value of a numeric cha:~a ter vari
able is used whenever the variable appears
in a character-string expression operation
or in an assignment to a character-string

variable, whenever the data is printed
using list-directed or data-directed out
put, or whenever a reference is made to a
character-string variable that is defined
cn the numeric character variable. In such
cases, no data conversion is necessary.

The picture characters for numeric char
acter s~ecifications may be grouped into
the following categories:

• Digit and Decimal-Point Specifiers

• Zero Suppression Characters

• Insertion Cha~acters

• Signs and Currency Symbol

• Credit, Debit, and Overpunched Signs

• Exponent Specifiers

• Scaling Factor

• Sterling Pictures

The picture characters in these groups
rray be used in various combinations. Con
sequently, a numeric character specifica
tion can consist of two or more parts such
as a sign specification, an integer suc
field, a fractional subfield and, for
floating-point, an exponent field. A
sterling picture specification co~tains
separate fields for pounds, shillinqs, and
pence; the pence field can have an integer
subfield and a fractional subfield.

A major requirement of the picture spec
ification for numeric character data is
that each field must contain at least one

Section 4: Picture Specification Characters 193

~icture character that specifies a
position. This picture character,
Iieed not be the digit charact.er 9.

digit
however,
other

~icture characters, such as the zero
suppression characters (Z or * or Y), also
s~ecify digit positions. At least one of
these characters must be used to define a
numeric character specification.

I The maximum length of a picture describ
ing a numeric field, after expansion of
iteration factors, is 255.

DIGIT AND DECIl'lAL-POINT SPECIFIERS

The picture characters 9 and V are used
in the simplest form of numeric character
specifications that represent fixed-point
decimal values.

Figure 24 gives examples of numeric
character specifications.

9 specifies that the associated position
in the data item is to contain a decimal
digit.

v specifies that a decimal point is
assumed at this position in the asso
ciated data item. However, it does not
specify that an actual decimal point is
to be inserted. The integer and frac
tional parts of the assigned value are
aligned on the V character; therefore,
an assigned value may be truncated or
extended with zero digits at either end.

(Note that if significant digits are
truncated on the left ,the result is
undefined and a SIZ~ interrUption will
occur, if SIZE is enabled.) If no V
character aFpears in the picture speci
fication of a fixed-point decimal value
(or in the first field of a picture
specification of a floating-point decim
al value), a V is assumed at the right
end of the field specification. This
can cause the assigned value to be trun
cated. if necessary, to an integer. The
V character cannot apppar more than once
in a picture specification. The V is
considered to be a subfield delimiter in
the picture specificat.ion; that is, the
porticn preceding the V and the portion
following it (if any) are each a sub
field of the specification.

ZERO SUPPRESSION CHARACTERS

The zero suppression picture characters
specify conditional digit positions in the
character-string value and may cause lead
ing zeros to be replaced by asterisks or
tlanks and nonleading zeros to be replaced
ty blanks. Leading zeros are those that
occur in the leftmost digit positions of
fixed- point numbers or in t.he leftmost
digit positions of the two parts of
floating-point numbers, that are to the
left of the assumed position of a deci~al
point, and that are not preceded by any of
the digits ~ through 9. The leftmost non
zero digit in a number and all digits,

r------------------T--------------------T------------------------T----------------------,
I Source I Source Dat,B I Picture I Character-String I
! Attributes I (in constant form) I Specification I Value 1 I
~------------------+--------------------+------------------------+----------------------1
! FI XED (5) I 12 34 5 I 9 99 9 9 I 123 4 5 I
I I I I I
I FIXED (5) I 12345 I 99999V I 12345 I
I ! I I I
I FIXED (5) I 12345 I 999V99 I 34500 2 I
I I I I I
I FIXED (5) I 12345 I V99999 I 00000 2 I
I I I I I
I FIXED(?) I 1234567 I 99999 I 34561 2 I
I I I I I
I FIXED (3) I 123 I 99999 I 00123 I
I I I I I
I FIXED(5,2) I 123.45 I 999V99 I 12345 I
I I I I I
I FIXED (7,2) I 12345.67 I 9V9 I 562 I
I I I I I
I FIXED(5,2) I 123.45 I 99999 I 00123 I
.------------------~--------------------~------------------------~----------------------i
11The arithmetic value is the value exrressed by the digits and the actual or assumed I
I location of the V in the specification. I
12In this case, PL/I does not define thR result since significant digits have been I
I truncated on the left. The result shown, however. is that given for System/360 I
I implementations. I
L ___ --------------------______________ J

Figure 24. pictured Numeric Character Examples

194

zeros or not, to t_he right ot it repres(:nt
significant digits. Note that a floating
point number can also have a leading zero
in the exponent field.

Figure 25 gives examples of the use of
zero suppression characters. Ln the
figure, the letter b indicates a blank
character.

z specifies a conditional digit position
and causes a leading zero in the asso
ciated data position to be .replaced by a
blank character. When the associated
data position does not contain a leading
zero, the digit in the position is not
replaced by a blank character. The pic
ture character Z cannot appear in the
same subfield as the picture character
*, nor can it appear to the right of a
drifting picture character or any of the
picture characters 9, T, I, or R in a
field.

* specifies a conditional digit pOSition
and is used the way the picture charac
ter Z is used, except that leading zeros

are replaced by asterisks. The picture
character * cannot appear with t.he pic
ture character Z in the same subfield,
nor can it appear to the right of a
drifting picture character or any of the
picture characters 9, T, I, or R in a
field.

Y specifies a conditional digit position
and causes a zero digit, leading or non
leading, in the associated positicn to
be replaced by a blank character. When
the associated position does not contain
a zero digit, the digit in the position
is not replaced by a blank character.

Note: If one of the picture characters Z
or * appears to the right of the picture
character V, then all fractional digit
positions in the speoifioation, as well as
all integer digit positions, must employ
the Z or * picture character, respeotively.
When all digit positions to the right of
the picture character V contain zero
sUIpression Ficture characters, fractional
zeros of the value are suppressed only if
all positions in the fractional part con-

r------------------T----------------~---T------------------------T----------------------,
I Source I Souroe Data I Picture I Character-String I
I Attributes I (in constant form) I Specification I Value1 I
~------------------t--------------------t------------------------t----------------------~
I FIXED (5) I 12345 I ZZZ99 I 12345 I
I I I I I
I FIXED (5) I 00100 I ZZZ99 I tblOO I
I I I I I
I FIXED (5) I 00000 I ZZZ99 I tbbOO I
I I I I I
I FIXED (5) I 00100 I ZZZZZ I tblOO I
I I I I I
I FIXED(S) I 00000 I ZZZZZ I tbbbb I
I I I I I
I FIXED(5,2) I 123.45 I ZZZ99 I tb123 I
I I I I I
I FIXED(S,2) I 001.23 I ZZZV99 I bbI23 I
I I I I I
I FIXED (S) I 12345 I ZZZV99 I 34S00 2 I
I I I I I
I FIXED (5) I 00000 I ZZZVZZ I tbbbb I
I I I I I
I FIXED(S) I 00100 I ***** I **100 I
I I I I I
I FIXED (5) I 00000 I **""** I ***** I
I I I I I
I F I XED (5 , 2) I 0 0 0 • 0 1 I * **v ** I * ** 0 1 I
I I I I I
I FIX};'D (5) I 0 Ol 00 I YYYYY I tblbb I
I I I I !
I FIXED(5) I l0203 I 9Y9Y9 I Ib2b3 I
t------------------~---------------------~------------------------~----------------------~
11The arithmetic value is the value expressed by the digits and the actual or assurred I
I location of the V in the speoification. I
J2In this case, PL/I does not define the result since significant digits have been l
I truncated on the left. The resulL shown, however, is that given for System/360 I
I implementations. I L ___ -------------------_______________ J

Figure 25. Examples of Zero sUppression

section 4: Picture Specification Characters 195

tain zeros and all integer positions have
been suppressed. The entire character
string value of the data item will then
~onsist of blanks or asterisks. No digits
in the fractional part are replaced by
blanks or asterisks if the fractional part
contains any significant digit.

lNSERTION CHARACTERS

The picture characters conuna (,), point
(.), slash (/), and blank (B) are insertion
characters; they cause the specified char
acter to be inserted into the associated
position of the numeric character data.
They do not indicate digit pOSitions, but
are inserted between digits. Each does,
however, actually represent a character

position in the character-string value,
whether or not the character is suppressed.
The comma, point, and slash are conditional
insertion characters; within a string of
zero suppression characters, they, teo, ~ay
be suppressed. The blank (B) is an uncon
ditional insertion character; it always
specifies that a blank is to appear in the
associated position.

Note: Insertion characters are a~plicable
cnly to the character- string value. They
specify nothing about the arithmetic value
of the data item.

Figure 26 gives examples of the use of
insertion characters. In the figure, the
letter b indicates a blank character.

r-------------------T--------------------T------------------------T----------------------1
I Source I Source Data I Picture I Character-String I
i Attributes I (in constant form) I Specification I Value 1 !
r------------------+--------------------+-------------------------+----------------------~
I FIXED(4) I 1234 I 9,999 I 1,234 I
I I I I \
I FIXED(6,2) ! 1234.56 I 9,999V.99 I 1,234.56 I
I I L I I
I FIXED(4,2) I 12.34 I ZZ.VZZ I 12.34
I I I I
I FIXED(4,2) I 00.03 I ZZ.VZZ I bbb03
I I I I
I FIXED(4,2) I 00.03 I ZZV~ZZ I bb.03
I I I I
I FIXED(4,2) I 12.34 I ZZV.ZZ I 12.34
I I I I
I FIXED(4,2) I 00.00 I zZV.ZZ I bbbbb
I I I I
I FIXED(9,2) I 1234567.89 I 9,999.999.V99 I 1,234,567.89
I I I I
I FIXED(7,2) I 12345.67 I **,999V.99 I 12,345.67
I I I I
I FIXED(7,2} I 00123.45 I **,999V.99 I ***123.45
I I I !
I FIXED(9,2) I 1234567.89 I 9.999.999V,99 I 1.234.567,89
I I I I
I FIXED(6) I 123456 I 99/99/99 I 12/34/56
I I I I
I FIXED(6) I 123456 I 99.9/99.9 I 12.3/45.6
I I I I
I FIXED(6) I 001234 I Zz/ZZ/ZZ I bbb12/34
I ! I I
I FIXED(6} I 000012 I ZZ/ZZ/ZZ I bbbbbb12
I I I I
I FIXED(6) I 000000 I Zz/ZZ/ZZ I bbbbbbbb
I I I I
I FIXED(6) I 000000 I **/**/** I ********
I I I I
I FIXED(6) I 123456 I 99B99B99 I 12b34b56
i I I I
I FIXED (3) I 123 I 9BB9BB9 ! Ibb2bb3
I I I I
I FIXED (2) I 12 : 9BB/9BB I Ibb/2bb !
t------------------~--------------------~------------------------~----------------------i
11 The arithmetic value is the value expressed by the digits and the actual or assumed I
I location of the V in the specification. I l ___ --------___________ o _________________ J

Figure 26. Examples of Insertion Characters

196

Page of GC28-2045-1, Issued September 15, 1970 by TNL GN28-3171

Comma (,). causes a comma to be inserted
into the associated position of the numeric
character data when no zero suppression
occurs. If zero suppression does occur,
the comma is ins erted only vhen an unsup
pressed digit appears to the left of the
comma position. or vhen a V appears immedi
ately to the left of it and the fractional
part contains any significant digits. In
all other cases where zero suppression
occurs, one of three possible characters
isinserted in place of the comma. The
choice of character to replace the comma
depends upon the first picture character
that both precedes the comma position and
specifies a digit position:

• If this character position is an
asterisk, the comma position is
assigned an asterisk.

• If this character position is a drift
ing sign or a drifting currency symbol
<discussed later}, the drifting string
is assumed to include the comma posi
tion, which is assigned the drifting
character.

• If this character position is not an
asterisk or a drifting character, the
comma position is assigned a blank
character.

In the special case of a conditional in
sertion character that is prl!ceded either
by nothing or only by characters that do
not specify digit positions, the condition
al position viII always contain the condi
tional ins~Ition character.

Point (.): is used the same way the comma
picture character is used, except that a
point (.) is assigned to the associated
position. This character never causes
point alignment in the picture specifica
tions of a fixed-point decimal number and
is not a part of the arithmetic value of
the data item. That function is served
solely by the picture character V. Unless
the V actually appears, it is assumed to be
to the right of the rightmost digit poai
tion in the field, and point alignment is
handled accordingly. even if the point in
sertion character appears elsewhere. The
point (or the co_ or slash) can be used
in conjunction vith the V to cause inser
tion of the point (or comma or slash) in
the position that delimits the end of the
integer portion and the beginning of the
fractional portion of a fixed-point. (or
floating-point) number, as mi.ght l:l e desired
in printing, since the V does not cause
printing of a point. '!'be point murt iane
diately precede or immediately folio" the
V. If the point precedes the '7. it will be
inserted only if a significant digit
appears to the left of the V, even if all
fractional digits are signiflcant. If the

point immediately follow8 the V, it will be
suppressed if all digits to the right of
the V are suppressed, but it will appear if
there are any fractional digits (along with
any intervening zeros).

Slash (/): is used the same way the comma
picture character is used" except that a
slash V) is inserted in the associated
position.

Blank (B): specifies that a blanklicharac
ter alvays be inserted into the associated
position of the character-string value of
the numeric character data.

SIGNS AND CURRENCY SYMBOL

The picture characters S. ... and - spec
ify signs in numeric character data. The
picture character $ specifies a currency
symbol in the character-string value of nu
meric character data.

These picture characters may be used in
either a static or a drifting manner. A
drifting character is simi lar to a zero
suppression character in that it can cause
zero suppression. Bowever~ the character
specified by the drifting string is always
inserted in the position specified by the
end of the drifting string or in the posi
tion immediately to the left of the first
significant digit.

The static use of these characters spec
ifies that a sign, a currency symbol. or a
blank alvays ... ppears in the associated
position. Tbe drifting use specifies that
leading zeros are to be suppressed., In
this caSE. the rightmost suppressed posi
tion associated with tbE pi(.."ture character
will contain a sign. a blank, or a currency
symbol.

A drifting character is specified by
multiple use of that character in a picture
field. Thus. if a field contains one cur
rency sy!!lhol ($), it is interpreted as
static: if it contains more than one. it is
interp~eted as drifting. The drifting
character Blst be specified in each digit
position through which it 11&1' ddft.

Drifting characters IIJIIW!It appear in
strings. A string is a sequence of the
same drifting character, optionally con
taining a V and one of the inaertion chara
cters comma, point, slash_ or 54 Any of
the insertion characters slash, ('''01llIIIlI&.
point. or B following' the Iaat drifting
syJlbol of the at x'ing is coneidered part of
the drifting string_ 90'M!ever. a follOWing
V teXlllinateu the drifting string and is not
part of it. A field of a picture specifi
cation can contain only one drifting
string. A drifting string cannot be pre-

Section 41 Picturf!; Specification Charlllcters 197

Page of GC28-2045-1, Issued September 15, 1970 by TNL GN28-3171

ceded by a digit position. The picture
characters * and Z cannot appear to the
right of a drifting string in a field.

Figure 27 gives examples of the use of
drift.ing picture characters. In the
figure, the letter b indicates a blank
character.

The position in the data associated with
the characters slash, comma, point, and B
appearing in a string of drifting charac
ters will contain one of the following:

• slash, comma, point, or blank if a sig
nificant digit has appeared to the left

• the drifting symbol, if the next posi
tion to the right contains the leftmost
significant digit of the field

• blank, if the leftmost significant digit
of the field is more than one position
to the right

If a drifting string contains the drift
ing character Q times, then the string is
associated with Q-1 conditional digit posi
tions. The poSition associated with the
leftmost drifting character can contain
only the drifting character or blank, never
a digit. If a drifting string is specified
for a field, the other potentially drifting
characters can appear only once in the
field, i.e., the other character represents
a static sign or currency symbol.

If a drifting string contains a V within
it, the V delimits the preceding portion as
a subfield, and all digit poSitions of the
subfield follOwing the V must also be part
of the drifting string that COmmences the
second subfield.

Only one type of sign character can
appear in each field. An S, +, or - used
as a static character can appear to the
left of all digits in the mantissa and
exponent fields of a floating-point speci-

r------------------T--------------------T------------------------T----------------------,
I Source I Source Data I· Picture I Character-String I
I Attributes I (in constant form) I Specification I Value1 I
r-------------------+--------------------+------------------------+---------------------~
I FIXED(5,2} I 123.45 I $999V.99 I $123.45 I
I I I I I
I FIXED(5,2) I 001.23 I $ZZZV.99 I $bbl.23 I
I I I I I

I I FIXED(S,2) I 000.00 I $ZZZV. zz I bbbbbbb I
I I I I I
I FIXED (1) I 0 I $$$.$$ I bbbbbb I
I I I I I
I FIXED(S,2) I 123.45 I $$$9V.99 I $123.45 I
I I I I I
! FIXED(S,2) I 001.23 I $$$9V.99 I bb$1.23 I
I I I I I
I FIXED(5,2) I 012.00 I 99$ I 12$ I
I I I I I
I FIXED(2) I 12 I $$$.999 I bbb$012 I
I I I I I
I FIXED(4) i 1234 I $$$,999 I b$l,234 I
I I I I I
I FIXED(5,2) I 123.45 I S999V.99 I +123.45 I
I I I I I
I FIXED(5,2) I -123.45 I S999V.99 I -123.45 I
I I I I I
I FIXED(5,2) I -123.45 I +999V.99 I b123.Li5 I
I I I I i
I FIXED(5,2) I 123.45 I -999V.99 I b123.4S I
I I I I I
I FIXED(S,2) I 123.45 I 999V. 99S I 123.45+ I
I I I I I
I FIXED(S,2) I 001.23 I ++B+9V.99 I bbb+l.23 I
I I I I I
I FIXED(S,2) I 001.23 I ---9V.99 I bbb1.23 I
I I I I I
I FIXED(S,2) I -001. 23 I SSS9V.99 I bb-l.23 I
~--_-_-_---_------L--------------------~-__ ------------_________ i ______________________ ~

11 The arithmetic value is the value expressed by the digits and the actual or assumed I
I location of the V in the specification. I
l ___ ----------------------------_____ -J

Figure 27. Examples of Drifting Picture Characters

198

fication, and either to the right or left
of all digit rositions of a fixed-point
specif ica t ion.

In the case in which all digit positions
after the V contain drifting characters,
suppression in the subfield will occur only
it all of the integer and fractional digits
are zero. The resulting edited data item

Iwill then be all blanks. If there are any
significant fractional dig~ts, the entire
fractional portion will appear
unsuppressed.

$ specifies the currency symbol. If this
character appears more than once, it is
a drifting character; otherwise it is a
static character. The static character
specifies that the character is to be
placed in the associated position. The
static character must appear either to
the left of all digit positions in a
field of a s~ecification or to the right
of all digit positions in a specifica
tion. See details above for the drift
ing use of the character.

s specifies the plus sign character (+) if
the data value is 20, otherwise it spec
ifies the minus sign character (--). The
character may be drifting or static.
The rules are identical to those for the
currency symbol.

+ specifies the plus sign character (+) if
the data value is ~O, otherwise it spec
ifies a blank. The character may be
drifting or static. The rules are
identical to those for the currency
symbol.

specifies the minus sign character (-)
if the data value is <0, otherwise it
specifies a blank. The character may be

drifting or static. The rules are
identical to those for the currency
symbol.

CREDIT, DEBIT, AND OVERPUNCHED SIGNS

The charact.er pairs CR (credit) and DB
(debit) specify tile signs of real numeric
character data items and usually appear in
business report forms.

Any of the ~icture characters T, I, or R
specifies an overpunched sign in the asso
ciated digit positiOn of nuaeric character
data. An overpunched sign is a i2-punch
(for plus) or an ii-punch (for minus)
funched into the same column as a digit.
It indicates the sign of the arithaetic
data itea. Only one over~unched sign can
appear in a specification for a fixed-point
number. 1', floating-point specification can
contain two, one in the mantissa field and
cne in the exponent field. The overpunch
character can, however, be specified for
any digit position within a field. The
overpunched number then will appear in the
specified digit position.

Frorr the user's terminal keyboard, an
"overpunch" is not possible. The user
should be careful to avoid Y, D, or R in
any picture that_ will be be read froro his
terrrinaI.

Note: When an overpunch character occurs
in a P format item for edit-directed input,
the corresFonding character in the input
stream rray contain an overpunched sign.

Figure 28 gives examples of the CR, DB,
and cverrunch characters. In the figure,
the letter b indicates a blank character.

r------------------T--------------------T------------------------T----------------------,
I Source I Source Data I Picture I Character-String I
I Attributes I (in constant for~) I Specification I Value 1 I
t------------------+--------------------+------------------------+----------------------~
I FIXED(3) I -123 I $Z.99CR I $1. 23CR I
I I I I I
I FIXED(4,2) I 12.34 I $ZZV 99CR I $12.,34bt I
I I I I !
I FIXED(4,2) I -12.34 I $ZlV.99DB I $12.14DB I
I I I I
1 FIXED(4,2) I 12.34 I $ZZV.99DB $12.34bb
I I I
I FIXED (4) I 1021 I 9991 l02A
I I I
! FIXED(4) I -1021 I Z99R l02J
I I I
I FIXED(4) I 1021 I 99T9 I lOBi I
~------------------~--------------------~------------------------~----------------------i
11 The arithmetic value is the valUE expressed by the digits and the actual or assumed i
I location of the V in the spec'fication. I L ___ ----------________________________ J

Figure 28. Examples of CR, DB, T, I, and R Picture characters

Section 4: Picture Specification Characters 199

r------------------T--------------------T------------------------T----------------------,
I Source I Source Data I Picture I Character-String I
I Attributes I (in constant_ form) I Specification I Value1. I
t------------------+--------------------+------------------------t----------------------i
I FLOAT (':» I .1234SE06 I V. 99999E99 I .123451':06 I
I I I I I
I FLOAT(S) I .1234SE-06 I V.99999ES99 I .12345E-06 I
I I I I I
I FLOAT (5) I .12345E+06 I V.99999KS99 I .12345+06 I
I I I I I
I FLOAT(S) I -123.458+12 I S999V.99ES99 I -123.45E+12 I
I I I I I
I FLOAT(S) I 001.23E-01 I SSS9.V9%SS9 I -iJ.23.00Eb-3 I
I I I I I
I FLOAT(S) I 001.23E+04 I ZZZV.99KS99 I 123.00+02 I
! ! I I I
I FLOAT (S) I 001. 23E+04 I SZ99V. 99ES99 I +123.00E+02 1
I I I I I
I FLOAT(S) I 001.23E+04 I SSSSV.99E-99 I +123.00Eb02 I
~-__ ---------------~--------------------i-------------___________ ~ ______________________ ~
I.1The arithmetic value is the value expressed ty the mantissa, multiplied by 10 to the I
I power indicated in the exponent field. I
l ___ -----------------_________________ J

Figure 29. Examples of Floating-Point Picture SFecifications

CR specifies that the associated positions
will contain the letters CR if the
value of the data is less than zero.
Otherwise, the positions will contain
two blanks. The characters CR can
appear only to the right of all digit
positions of a field.

DB is used the same way that CR is used
except that the letters DB aFpear in
the associated positions.

T specifies that the associated position,
on input, will contain a digit over
punched with the sign of the data. It
also specifies that an overpunch is to
be indicated in the character-string
value.

I specifies that the associated position,
on input, will contain a digit over
punched with + if the value is ~Oi
otherwise, it will contain the digit
with no overpunching. It also speci
fies that an overpunch is to be indi
cated in the character-string value if
the data value is zOo

R specifies that the associated position,
on input, will contain a digit over
punched with - if the value is <0;
otherwise, it will contain the digit
with no overpunching. It also speci·
fies that an overpunch is to be indi
cated in the character-string value if
the data value is <0.

Note: The picture characters CR, DB, 'r, I,
and R cannot be used with any other sign
characters in the same field.

200

EXPONENT SPECIFIERS

The Ficture characters K and E delimit
the exponent field of a numeric charact_er
specification tbat describes floating-point
decimal numbers. The exponent field is
always the last field of a numeric charac
ter floating-point picture specification.
The Ficture characters K and E cannot
appear in the same specification.

Figure 29 gives examples of the use of
exponent delimiters. In the figure, the
letter b indicates a blank character.

K specifies that the exponent field
appears to the right of the associated
position. It does not specify a chara~
ter in the numeric character data item.

E specifies that the associated pOSition
contains the letter E, which indicates
the start of the exponent field.

The value of the exponent is adjusted in
the character··string value so t_hat the
first significant digit of the first field
(the mantissa) appears in the positicn
associated with the first digit specifier
of the specification (even if it is a zero
sUFFression character).

SCALING FACTOR

The picture character F specifies a
scaling factor for fixed-point decimal num
bers. It appears at the right end of the
ficture specification and is used in the
following format:

F ({+\-1 decimal-integer-constant)

r-----------------~--------------------T------------------------T----------------------,
I Source I Source Data I Picture I Character-String I
I At_tributes I (in constant form) I Specificat.ion I Value~ I
~------------------+--------------------t------------------------+----------------------~
! FI XED (4 , 0) I 12 00 I <; 9 F (2) I 12 I
I I I I I
I FlXED(7,O) I -1234500 I S99<;V99F(4) I -12345 I
I I I I I
I F I XED ('), 5) I . 0 0 0 12 I 99 F (- :.) I 12 I
I I I I I
I FIXED(6,6} I .012345 I 999V99F(-4) I 12345 I
~------------------~--------------------~------------------------~----------------------~
11The arithmetic value is the same as the character-string value, multiplied by 10 to I
I the power of the scaling factor. I L ___ -------------___ J

Figure 30. Examples of Scaling Factor Picture Characters

r------------------T--------------------T------------------------T----------------------,
i Source I Source Data I Picture I Character-String I
i Attributes I (in constant form) I Specification I Value1 I
t------------------+--------------------+------------------------+----------------------~
I FIXEO(4) I 0534 I G~Z9M.8M.99V.9CR I b2.4.06.0bc I
I I I I I
I FIXED(4) I 0019 I GMZZM.ZZM.ZZP I bb.b1.07D I
~------------------~--------------------~------------------------~----------------------~
11 The arithmetic value of a numeric character variable declared with a sterling picture I
I specification is its value expressed as a valid sterling fixed-point constant, which I
I for aritr~etic operations is always converted to its value expressed in pence. I l ___ ---------------___________________ J

Figure 31. Examples of Sterling Picture Specifications

specifies that the optionally signed
decimal integer constant enclosed in
parentheses is the scaling factor. The
scaling factor specifies that the
decimal point in the arithmetic value
of the variable is that number of
places to the right (if the scaling
factor is positive) or to the left (if
negative) of its assumed position in
the character-string value.

For System/360 implementations, the
scaling factor cannot specify a fixed
point number that contains more than 15
digits.

Figure 30 shows examples of the use of
the scaling factor picture character.

STERLING PICTURES

The following picture characters are
used in picture specifications for sterling
data:

8 specifies the position of a shilling
digit in BSI single-character re?resen
tation. Ten shillings is represented
by a 12-punch (&) and elever, through
nineteen shillings are represented by
the characters A through If
respectively.

7

6

P

G

,H

specifies the position of a pence digit
in BSI single-character representation.
Ten pence is represented by a 12-punch
(&) and eleven pence is represented by
an 11-punch (-).

specifies the position of a pence digit
in IBM single-character representation.
Ten pence is represented by an 11-punch
(-) and eleven pence is represented ty
a 12-punch (&).

specifies that the associated position
contains the pence character D.

specifies the start of a sterling pic
turrc. It does not specify a character
in the numeric character data it:em.

specifies that the associated position
contains the shilling character S.

specifies the start of a field. It
does not specify a character in the nu
meric character data item.

Figure 31 gives examples of the use of
sterling picture specifications.

Sterling data items are considered to be
real fixed-point decimal data. When
involved in arithmetic operations, they are
converted to a value representing fixed-

section 4: Picture Specification Characters 201

pOint pence. Sterling pictures have the
general form:

PICTURE

"G [editing-character-I]

M pounds-field

M [separator-ll
shillings-field

M [separator-21 ••.
pence-field

[editing-character-21

"Editing character 1" can be one or more
of the following static picture characters:

$ + s

The "pounds field" can contain the fol
lowing picture characters:

z Y * 9 T I R , $ + - S

The last four characters ($ + S) must
be drifting characters. The comma can be
used as an insertion character.

"Separator 1" can be one or more of the
following pictur.-e characters:

/ B

The "shillings field" can be:

{99 I YY I ZZ I Y9 I Z9 I YZ I B}

202

One of the nines can be replaced by T, I,
cr R, if no other sign indicator appears in
any of the fields of the specification.

"Separator 2ft can be one or more of the
picture characters:

/ B H

The "pence field" takes the form:

£99IYYIZZIY917IZ9IYZI6}

[(VIV.I.V] 9!Z!Y] ••.

One of the nines can be replaced by T, I,
or R, if no ot.her sign indicator aj::j::ears in
any of the fields of the specification.

"Editing character 2" can be one or more
of the static picture characters $, +, -,
or S and one or more of B, P, CR, or DB. A
sign character or CR or DB can appear only
if no other sign indicator appears in any
of the fields of the specification.

The pounds, shillings, and pence fields
must each contain at least one digit
position.

Zero suppression in sterling pictures is
performed on the total data item, not
separately on each of the pounds, shil
lings, and pence fields. The Z picture
character is not allowed to the right of a
6, 7, B, or 9 picture character in a ster
ling specification. In sterling pictures,
the field separator characters slash (/),
point (.), B, and H are never suppressed.

This section describes each of the edit
directed fcrrrat items that can appear in
the format list of 3 GET or PUT stat~ment.

There are three categories of format
items: data fcrrr.at items, control format
items, and the ren-,ote forn-.at itelT.

In this section, the three categories
are discussed separately and the format
items are listed under each category. The
ren,ainder of the sect.ien ccntains detailed
discassions of each of the forrrat items,
with the discussions aFpearing in alphabe
tic order.

A data format item describes the exter
nal forrrat of a single data item.

For input, tne data in the stream is
considered te be a ecntinucus string of
characters; all blanks are treated as
characters in the stream, as are quotation
marks. Each data format iterr in a GET
statement specifies the nurrter of charac
ters to be obtained from the strearr and
describes the way these characters are to
tE interpretej. Strings should not be en
closed In quotation ffiarks, ncr should the
letter 3 be used to identify bit strings.
If toe characters in toe strearr cannot be
interpreted ir. the manner s[ecified, the
CO~;VERSION condition is raised.

For outrut, ~he data in the stream takes
the form specified by the format list.
Each data forrrat iterr in a PiJT statement
spEcifies the width of a field intc whicn
the associated ::'lata it err, in character form
is to be placed and describes the format
that the value is to take. Enclosing apes
trophes are nct inserted, nor is the letter
E to identify bit strings.

Leading blanks are not inserted automat
Ically to separate data items in the output
stream. String data is left-adjusted in
the field, whose width is specified.
Arithmetic data is right-adjusted. Because
cf the rules for conversion of arithmetic
data to character type, which can cause up
to three leading blankS to be inserted (in
addition to any blanks that replace leading
zeros>, there generally will be at least
one blank preceding an arithrretic item in
the converted field. Leading blanks will
not appear in the stream, however, unless
the specified field width allows for them.
Truncation, due to inadequate field-width

SECTION 5: EDIT-OIRECTED FORMAT ITEMS

srecification is on the left for arithmetic
items, on the right for string items.

Note that the value of binary data both
en inFut and output is always represented
in decimal form for edit-directed
transmission.

Following is a list of data format
items:

Fixed-point
format it err.

F lcati ng- Foir,t
format item

Ccrrplex forn-,at
it err,

Picture format
item

Bit-string
forrr;at iterr

Character-string
format item

F(srecification)

E (ppeci fication)

C(specification)

P'picture-specification'

B (specification)

A(specification)

CO~TROL FCRttAT ITEMS

The
laycut
file.
forrrat

control format item~ specify the
of the data set associated with a
The following is a list of ccntrcl
items:

Paging format
item

line skipping
fcrmat iterr,

Line pcsition
format i tern

colurrn position

Spacing
format it err;

PAGE

SKIP(specificaticn}]

LINE (specification)

COLUMN (specification)

X (specification)

A centrol fermat item has no effect
unless it is encountered before the data
list is exhausted.

The PAGE and LINE format items apply
only to output and only to files with the
PRINT attribute. The SKIP and COLUMN for
mat items apply to both input and output.

The PAGE, SKIP, and LINE format items
have the same effect as the corresponding

Section 5: Edit-Directed Format Items 203

options of the PUT staterrent (and of the
GET statement, in the case of SNIP), except
that the format items t.ake effect only when
they are encountered in the format list,
while the options take effect tefore any
data is transmitted.

The COLUMN format item positions the
file to the s~ecified character position in
the current line.

The spacing format item specifies rela
tive horizontal spacing. On input, it
specifies a number of characters in the
stream to be skipped over and ignored; on
output, it specifies a number of blanks to
be inserted into the stream.

REMOTE FORMAT ITEM

The remote format item specifies the
label of a FORMAT statement that contains a
format list wnich is to be taken to replace
the remote format item.

The remote format item is:

Restatement-label-designator)

The "statement latel designator" is a
label constant or an element label
variable.

USE OF FORMAT ITEMS

The "specification- that is listed above
for all but the picture, PAGE, and remote
format iteIl's can contain one or more ex
pressions. Such expressions can be speci
fied as decimal integer constants, as ele
ment variables, or as other element expres
sions. The value assigned to a variable
during an input operation can be used in an
expression in a format item that is asso
ciated with a later data item. An expres
sion is evaluated and converted to an
integer each time the format item is used.

ALPHABETIC LIST OF FORMAT ITEMS

The A Format Item

The A format item is:

A {(field-width)]

The character-string format item
describes the external representation of a
string of characters.

General rules:

1. The "field width" is an expres8~on
that is evaluated and converted to an
integer each time the format item is

204

used. It specifies the number cf
character rositions in the data stream
that contain (or will contain) the
string.

2. On input, the specified number of
characters is obtained from the data
stream and assigned, with any neces
sary conversion, truncation, or pad
ding, to the associated element in the
data list. The field width is always
required on input, and if it has a
value less than or equal t.o zero, a
null string is assumed. If apostro
phes appear in the stream, they are
treated as characters in the string.

3. On output, the associated element in
the data list is converted, if neces
sary, to a string of characters and is
truncated or extended with blanks on
the right to the specified field width
before being placed into the data
stream. If the field width is less
than or equal to zero, the format item
and its associated element in the data
list are skipped, and no characters
are placed into the data strearr. En
closing apostrophes are never
inserted. If the field width is not
specified, it is assumed to be equal
to the character-string length of the
eleIl'ent named in the data list (after
conversion, if necessary, acccrding to
the rules given in Part II, Section 6,
·Problem Data Conversion").

The B Format Item

The B format item is:

B [(field-width)]

The bit-string format item describes the
external representation of a bit string.
Each bit is represented by the character 0
or 1.

General rules:

1. The "field width" is an expression
that is evaluated and converted t.o an
integer each time the format item is
used. It specifies the number of
data-stream character pOSitions that
contain (or will contain) the bit
string.

2. On input, the character represf.:nt.at.ion
of the tit string may occur anywhere
within the specified field. Elanks,
which may a{Cpear l::efore and after the
bit string in the field, are ignored.
Any necessary conversion occurs when
the bit string is assigned to the
associated element in the data list.
The field width is always required on
inICut, and if it is less than or equal

to zero, a null string is assumed.
Any character other than 0 or 1 in the
string, including embedded blanks,
quotation marks, or the letter B, will
raise the CONVERSION condition.

3. On output, the character representa
tion of the bit string is left
adjusted in the s~ecified field, and
necessary truncation or extension with
blanks occurs on the right. Any
necessary conversion to bit-string is
performed" No apostrophes are
inserted, nor is the identifying let
ter B. The field width need not be
specified when the associated element
in the data list is a bit string; in
this case, the current length of the
associated string is used, and the
data item completely fills the field.
The field width is always required if
the data-list item is arithmetic or
pictured. If the field width is less
than or equal to zero, th~: format item
and its associated element in the data
list are skipped, and no characters
are. placed into the data stream.

he C Forrr,at Item

The C format item is:

C(real-format-item[,real-format-item])

The complex format item describes the
xternal representation of a complex data
tem.

eneral rules:

1. Each "real format item" is specified
by one of the F, E, or P format items.
The P format item must describe fixed
pOint or floating-point numeric
character data; it cannot describe
sterling or character-string data.

2. On input, the com~lex format item
describes the real and imaginary parts
of the complex data item within adja
cent fields in the data stream. If
the second real format item is
omitted, it is assumed to be the same
as the first. The letter I will cause
the CONVERSION condition to be raised.

3. On output, the real format items
describe the forms of the real and
imaginary parts of the complex data
item in the data stream. If the
second real format item is omitted. it
is assumed to be the same as Ue
first. The letter I is never appended
to the imaginary part. If the second
real format item (or the first, if
only one appears) is an F 0~ E item,
the internal sign will be f'rinted only
if the value of the imaginary part is

less than zero. If the real fermat
iterr is a P item, the sign will be
printed only if the S or - or + pic
ture character is specified. If the I
is to be appended, it must be s~eci
fied as a separate data item in the
data list, immediately following the
variable that specifies the complex
item. The I, then, must have a corre
sponding format item (either A or Pl.

The COLUMN Format Item

The COLUMN format item is:

COLUMN (character-position)

The column pOSition format item pOSi
tions the file to a specified character
position within the line. It can be used
with either input or output files.

General rules:

1. The ncharacter position" can be speci
fied by an expression, which is evalu
ated and converted to an integer each
time the format item is used.

2. The file is pOSitioned to the speci
fied character positon in the current
line. On input, intervening character
positions are ignored; on out~ut, they
are filled with blanks. If the file
is already positioned after the speci
fied character positon, the current
line is completed and a new line is
started; the format item is then ap
plied to the new line.

3. If the specified character position
lies beyond the rightmost character
position of the current line, cr if
the value of the expression for the
character position is less than one,
then the character position is assumed
to be one.

Note: The rightmost character position
is determined as follows:

a. For output files, it is determined
by the line size;

b. For input files, the compiler uses
the length of the current logical
record to determine the line size
and, hence, the rightmost charac
ter position. In tbe case of V
format records, this line size is
equal to the logical record length
minus the number of bytes contain~
ing control information.

4. The COLUMN format itero has no effect
unless it is encountered before the
data list is exhausted.

Section 5: Edit-Direct.ed .Format Items 205

The E Format Item

The E. format item is:

E(field-width,number-of-fractional-digits
[,number-of-significant-digits})

The floating-point format item describes
the external representation of decimal
arithmetic data in floating-point format.

General rules:

1. The "field width," "number of frac
tional digits, It and "number of signi
ficant digits" can be represented by
expressicns, which are evaluated and
converted to integers when the format
item is used.

"Field width" specifies the total
number of characters in the field.

"Number of fractional digits" speci
fies the number of digits in the man
tissa that follow the decimal point~

"Nuruber of significant digits" speci
fies the number of digits that must
appear in the mantissa.

2. On input, the data item in the data
stream is the character representation
of an optionally signed decimal
floating-foint or fixed-point constant
located anywhere within the specified
field. If the data item is a fixed
point number, an exponent of zero is
assumed.

206

The external form of a floating-point
number is:

[+1-] mantissa {E){+I-} exponent
E [+1-]

The mantissa must be a decimal fixed
point constant.

a. 'rhe number can appear anywhere
within. t.he specified field; blanks
may appear before and after the
number in the field and are
ignored. If the entire field is
blank, the CONVERSION condition is
raised. When no decimal point
appears, the expression for the
number of fractional digits speci
fies the number of character posi
tions in the mantissa to the right
of the assumed decimal point. If
a decimal point does appear in the
number, it overrides the s.ecifi
cation of the number of the frac
tional digits.

The value ,exprf.:ssed by "field
width" includes trailing blanks,
the eXFonEnt po~;ition, the posi
t,ions for t.he optional plus or
minus signs, the position for the
oFtional 1 ett.h' E, and the posi
tion for the optional. decirral
point in t.he maIlti~;sa_

b. The exponent is a decimal integer
constant. Whenever the exponent
and preceding sign or letter E are
omitted, a zero exponent is
assumed.

3. On output, the interna 1 dat,a is con
verted to float~il1CJ-point, and the ex
ternal data item in the specified
field has the following general form:

[-J {s-d digits}. fd digits}
E f+I-} exponent

In this form, s represents the number
of significant digits, and d repre
sents the number of fractional digits.
The value is rounded if necessary.

a. The exponent is a two-digit deci
mal integer constant, which nay be
two zeros. Tbe exponent. is auto
matically adjusted so that the
leading digit. of the mantissa is
nonzero. When thl:' value is zero,
zero suppression is applied to all
digit positions (except the first)
to the lett of the decimal point.
All other digit positions contain
zero.

b. If the above form of the number
does not fill the specified field
on output, the numJ::er is right
adjusted and ext,ended on ·".he left
with l::lanks. If the nlwber of
significant digits h; not sFeci
fied, it is taken to be 1 plus the
number of fractional digits. For
System/360 implementations, t,he
field width for non-negative
values of t.he data item must be
gredter than or equal i:o 5 Flus
t~c number of significant digits.
For negative values of the data
item, the field width must be
greater than or equal to 6 plus
the number of slgnificant digits.
However, if the number of trac
tional digits is zero, the decimal
point is not written, and the
above figures for the fi eld widt.h
are reduced by 1.

c. 'l'he rounding of internal dat.a is
as follows: :if truncat.ion causes
a digit to be lost from the right,
and this digit is greater than or
equal to 5, then 1 is added to

4.

the digit to the left of the trun
cated digit.

d. If the field width is such that
significant digits or the sign is
lost, the SIZE condition is
raised.

When using the E format item ECw,d,s),
s must be less than 17 digits. When
using E(w,d), d must te less tllan 16
digits. If the number of significant
digits in E format data is greater
than 16, then:

E format input: CONVERSION condition
raised

E format output: ERROl{ condition
raised

The F Format Item

The F format item is:

Flfield-width[,number-of-fractional-digits
[,scaling-factor)])

The fix",d-point format item describes
the external representation of a decimal
arithmetic data item in fixed-foint format.

General rules:

1. The "field width," "number of frac
tional digits,· and ·scaling factor"
can be represented by element expres
sions, which are evaluated and con
verted to integers when the format
i tern is used.

2. On in[:ut, the data item in the data
stream is the character representation
of an optionally signed decimal fixed
point constant located anywhere within
the specified field. Blanks may
appear before and after the number in
the field and are ignored. If the
entire field is blank, it is inter
preted as zero.

The number of fractional digits, if
not s~ecified, is assumed to be zero.

If no scaling factor is specified and
no decimal point appears in the field,
the expression for the number of f .rac
tiona 1 digits specifies the number of
digits in the field to the right of
the assumed decimal point. If a deci
mal pOint actually does appear in the
data, it overrides the express ,on for
the number of fractional digits.

If a scaling factor is specifi~d, it
effectively multiplies the value of
the data item in the data ~tream by 10
raised to the integral value (2) of

the scaling fac't.or. Thus, if E is
positive, tllE' numhIC:r is treatc,r] aE
though trH' decimal point appeared 12
places to the right of its given ~osi
tien. IE E is n~qative, the number is
treated us though the decimal feint
arreared r [laces to the left of its
qiV€1l [x..sit.ion. The given position of
tbe decimal point is t.hat in(licated
either ty an actual point, if it
api,ears, ur by the eXfr(,sc;iufl fer the
numter of fractional digits, in the
absence of an act\w 1 point.

3. On output, the internal dat.a is con
verted, if necessary, to fixed-point;
t.he external data is Ulf.:! chdracter
refresentation of a decimal fixed
point numb~r, rounded if necessary,
and right -adjusted in the s[Jecified
field.

If only the field width is specified
in the format item, only the integer
portion of the number is written; no
deciwal point appf'ars.

If both the field width and nurrber of
fractional digits are specified, (Jut
the sca 1", f ac tor is not, both t_he
integer and fract ional portion~> of the
nmnber are written. If the value (d)
of the numter of fractional digits Is
greater than zero, a decimal foint is
inserted before the rightmost d
digits. TrailiI1(j zeros are sUf:f-lied
when the number of fractional ~igits
is less than d (the value d must be
less than the-field width)~ Surfres -
sion of leading zeros is applied to
all digit positions (except the first)
to the left of the decimal point.

The counding of internal data is a~
follows: if truncation causes a digit
to te lest. from the right, and this
digit is greater t.han or egual to 5,
then 1 is added to the digit to the
left of the truncated digit.

The integer value (E) of the scaling
factor effectively multiplies the
value of the associated element in the
data list by 10 raised to the Fower cf
P, before it is edited into its exter
nal character representation. When
the number of fractional digits is
zero, only the integer portion of the
nurrl::er is used.

On output, if the value of the fixed
point number is less than zero, a
minus sign is prefixed to the external
character representation; if it is
greater than or equal to zero, no sign
appears. Therefore, for negative
values of the fixed-paint. number. the
field width specification must include

Section 5: Edit-Directed Format Iterrs 207

a count of both the sig n and the deci
mal point.

If the field width is such that signi
ficant digits or the sign is lost, the
SIZE condition is raised.

The LINE format item 1· c'"
~ .

LINE (line-number)

The line position format item specifies
the particular line on a page of a PRINT
file upon which the next data item is to be
printed.

General rules:

1. The "line number" can be represented
by an expression, which is evaluated
and converted to an integer each time
the format item is used.

2. The LINE format item specifies that
blank lines are to be inserted so that
the next line will be the specified
line of the current page.

3. If the specified line has already been
passed on the current page, or if the
specified line is beyond the limits
set by the PAGESIZE option of the OPEN
statement (or by default), the ENDPAGE
condition is raised.

4. If "line number" is less than or equal
to zero, it is assumed to be one.

5. The LINE format item has no effect
unless it is encountered Lefore the
data list is exhausted.

If the PAGE occurs in conversational
mode only three spaces will be taken if the
file is SYSOUT.

The P Format Item

The P format item is:

P 'picture-specification'

The picture format item describes the
external representation of numeric charac
ter data and of character-string data.

The "picture specification" is discussed
in detail in Part II, Section 4. "Picture
Specification Characters" and in the dis
cussion of the PICTURE attribute in Secfion
I, "Attributes."

On input, the picture specification
describes the form of the data item
expected in the data stream and. in Lhe
case of a numeric character string, how its

208

arithmetic valn.: Is to Le int:erpreted.
Note that. the pic·ture specification should
accurately describe the data in the input
stream, including chardcters represented by
editing characters. If the indicated char
acter does not appear in the strearr, the
CONVERSION condition is raised.

On output, the value of the associated
element in the data list is edited to the
form specified by the picture specification
tefore it is written into the data stream.

The PAGE Forfila :Llte~!!

The PAGE format item is:

PAGE

. The paging format item specifies t.hat a
ne~ page is to be established. It can be
used only with PRINT files.

If the specified line is more than three
lines from the current position then only
three spaces will £e taken when the output
file is SYSOUT on a terminal.

General rules:

1. The establishment of a new page
implies that the next printing is to
be on line one.

2. The PAGE format item has no effect
unless it is encountered before the
data list is exhausted.

The R Format Item

The R format item

R (statement-label-designator)

The remote format i t.ern allows format
items in a FORMAT st.atement to rer;:lace the
remote format it.em.

General rules:

1. The "statement latel designator- is a
label CODstant or an element laLel
variable that has as its value ±he
staten,ent label of a FORMAT statement.
The FORMAT statement includes a format
Jist that is taken to .replace the for
mat item.

2. The R format item and the specified
FOR~AT statement must be internal to
the same tlock. (If the procedure is
executed recursively, thev must be in
the same invocation.) ~

3. There can be no recU]':sion wi thin a
FOR1>!AT statement. That is, a remote
FORMAT statement cannot contain an R
forn-at item that names itself as a.

statement label designator, nor can it
name another remote FORMAT statement
that will lead to the naming of the
original FORMAT statement. Avoidance
of recursion can be assured if the
FORMAT statement referred to by a
remote format it.em does not itself
contain a further remote format item.

4. Any conditions enabled for the GET or
PUT statement must also be enabled for
the remote FORMAT statement(s) that
are referred to.

5. If the GET or PUT statement is the
single statement of an on-unit, it
cannot contain a remote format item.

The SKIP Format Item

The SKIP format item is:

SKIP[(relative-position-of-next-line)]

The line skipping format item specifies
that a new line is to be defined as the
current line.

General rules:

1. The -relative position of next line"
can be specified by an element expres
sion, which is evaluated and converted
to an integer each time the format
item is used. It must be greater than
zero for non-PRINT files. If it is
not, or if it is omitted, 1 is
assumed.

2. The new line is the specified number
of lines beyond the present line.

3. If the value of the relative pOSition
is greater than one, then on input,
one or more lines will be ignored; on
output, one or more blank lines will
be inserted.

4. The value of the relative position may
be less than or equal to zero for
PRINT files only; the effect is that
of a carriage return without line
spacing. Characters previously writ
ten may be overprinted.

5. If the SKIP format item is not speci
fied at the end of a line, then SKIP

(1) is assumed, that ~s, single
spacing.

6. For PRINT files, if the specified
relative position is beyond the limit
set by the PAGESIZE OPtion of the OPEN
statement (or the default), the END
PAGE condition is raised.

7. The SKIP format item has no effect
unless it is encountered before the
data list is exhausted.

If SKIP specifies more than three
spaces in conversational mode, then
only three spaces will be taken on
SYSOUT.

The X Format Item

The X format item is:

X (field-width)

The spacing format item controls the
relative spacing of data items in the data
stream. It is not limited to PRINT files.

General rules:

1. The "field width" can be represented
by an expression, which is evaluated
and converted to an integer each time
the format item is used. The integer
Sfecifies the number of blanks before
the next field of the data stream,
relative to the current position in
the stream.

2. On input, the specified number of
characters is spaced over in the data
stream and not transmitted to the
program.

3. On output, the specified number of
blank characters are inserted into the
stream.

4. If the field width is less than zero.
it is assumed to be zero.

5. The spacing format item has nc effect
unless It is encountered before the
data list is exhausted.

Section 5: Edit-Directed Format Items 209

This section lists the rules for arith
metic conversion and for conversion of
~roblem data types. Each type conversion
is listed under a separate heading. In
addition to the text, fifteen figures
appear:

• Figures]4 through 38 show the data
type of the result of an oFeration
involving two operands of possibly
differ ing tYFes. Note tha t although
the tables are for two operands, these
operands could themselves be the result
of other operations: any expression
involving a number of infix operators
will be eventually reduced, during
evaluation, to a single infix operation
witl! two operands. Note also that the
result is the result of the expression
only, and may be converted on subse
quent assignment.

• Figure 39 states the rules for comput
ing the precision of the result of an
arithmetic conversion.

• Figure 40 states the rules for comput
ing the length of the result of an
arithmetic to character-string
conversion.

• Figure 41 states the rules for comput
ing the length of the result of an
aritrlmetic to bl t-strinrJ conversion.

• Figure 42 can be used to find the ceil
ing (CEIL) ot any value l::etween 1 and
15 when that value is multiplied by
3.32 or it can be used to find the
ceiling (CEIL) of any value between 1
and 56 when that value is divided by
3.32.

• Figures 43 through 46 illustrate conv
ersion in arithmetic expression opera
tions, and they give attributes of the
results based upon the operator speci
fied and the attributes of the two
operands.

ARITHMETIC CONVERSION

The rules for arithmetic conversion spe
cify the way in which a value is trans
formed from one dri thmetic representatL)n
to another. It can be that, as a result of
the transformation, the value will change.
For example. the number .2, which can be
Exactly represented as a decimal f):2d
point number, cannot be exactly represented
in binary. The magnitude of such changes

210

in value depends upon the precisions of the
target and source. In expression evalua
tion, the precision of the target is
derived from the precision of the source.
In order to estimate and to understand the
errors that can occur, the precision rules
rrust be understood; and since the r~les
also leave some latitude for the irrplerren
tation, it is helpful to have some know
ledge of the way in which conversions are
imrlemented.

In System/360 implementations, ~cth
decimal and cinary floating-point numbers
are maintained in the internal hexadecirral
form used in System/360. If the specified
precision is more than 6 decimal digits, or
21 binary digits, the number is mai~tained
in long floating-point form (14 hexadecirral
digits with a hexadecimal exponent). If
the precision is 6 deciroal digits er less,
or 21 tinary digits or less, the number is
maintained in short floating-point form (6
hexadecimal digits and a nexadecimal
exponent) .

No actual conversions between binary and
decirral are performed on floating-point
data. The only precision changes are from
long to short, which is done by truncation,
and from short to long, which is dcne by
extending with zeros. The declared preci
sion of floating-point data and the case,
however, do affect the calculation of t.ar
get attributes, as well as the attributes
of interrrediate forms that are determined
from the source.

If a complex value is converted to a
real value, the result is the real part of
the complex value.

If a rectI value is converted to a com
plex value, the result is a complex value
that has the value of the :r:-eal source as
the real part and zero as the imaginary
j:art .•

Precision conversion occurs if the spe
cified target precision is different from
the source precision. In particular, there
always is a precision change when the
source and target are of different bases.
It is also possible tlidt. there i3 an actual
change in rrecision when converting from

floating-point to fixed-point, because of
the way in which floating-point numbers are
represented. Precision changes are per
formed by truncation or by padding with
zeros. Floating-point numbers are con
verted from short precision to long preci-
sion by extending with zeros on the right,
and from long precision to short precision
by truncation on the right.

Fixed-point numbers filiiintain decimal or
Linary point alignment and may be truncated
on the left or right, or extended with
zeros on the left or right.

No indication is given of loss of signi
ficant digits on the right. Loss of digits
on the left can be checked for if the SIZE
condi tion is enabled. In System/360 imple
wentations, binary fixed-point numbers are
stored in words of 31 bits, whatever the
declared width. Decimal numbers are always
stored as an odd number of digits, since
they are maintained in System/360 packed
decimal format, with the rightmost four
bi ts of the --ightmost byte expressing the
sign .

Base Conversion

Changes in base will usually affect only
the value of noninteger fixed-point num
bers. Some decimal fractions cannot be
expressed exactly in binary, and some
errors will then occur due to truncation.
Some binary fractions will also require
nlore decimal digits for exact representa
tion than are automatically generated by
the conversion rules, and this may also
cause errors resulting from truncation.

Since the range of .binary fixed-point
numbers is smaller than the range of decim
al fixed-point numbers, it is possible for
significant digits to be lost on the left
in conversion from decimal to tinary. This
will raise the SIZE condition, but an
interruption will not occur unless the con
dition is explicitly enabled by a SIZE
prefix.

The natural notation for constants is
decimal and, therefore, most constants are
written in decimal. The precision of a
constant is derived from the way in which
it is written. Care should therefore be
taken when writing non integer constants
that will be converted to fixed-point
binary.

The following examples illustra'.e how
the representation of a decimal constant
(.1) is converted when used in an arithmet
ic expression (such as A+.1). Taryet
attributes are derived from the attributes
of A, the operator, and the at~ributes of
the constant, which are, in this case,
DECIMAL FIXED (1,1).

Attributes of A:
Value:
Target:
Final Value:

Attritutes of A:
Value:
Target:
Final Value:

FIXED BIN(lO,2)
.1
FIXED BIN(S,4}
.0625

FLOAT BIN(SO)
.1
FLOAT BIN(4)
.1>value>.062S

Coded Arithmetic to Numeric Character

Coded arithmetic data being converted to
numeric character is converted, if neces
sary, to a decimal value whose scale and
Frecision are determined by the PICTURE
attribute of the numeric character iterr.

Numeric Character to Coded Arithmetic

Numeric character data being converted
to coded arithmetic is first interFreted as
a decirrial item of the scale and precision
determined by the corresponding PICTURE
attribute. This item is then converted to
the base, scale, and precision of the coded
arithmetic target.

LATA TYPE CONVERSION

Character-String to Arithmetic

The source string must represent a valid
arithmetic constant or complex expression.
The constant may optionally be signed, and
may be surrounded by blanks, but cannot
contain blanks between the sign and the
value of the constant, or between the end
of the real part and the sign of the
imaginary Fart in a complex expression.
The permitted forms are:

[+I-larithmetic-constant

[~ 1-] rea l-consta nt [+ \-} imaginary- constant

A null string gives the value zero.

The constant ~ill itself have the attri
tutes of base, scale, mode, and precision.
It will be converted to conform with the
attriLutes of the target.

Even when converting from character
string to numeric character field, the
source must still contain a constant which
is valid according to the rules for con
stants in PL/I source programs. The value
of this constant is then converted and
edited to thE: Ficture representation.

The following example will therefore
result in a conversion error:

DCL A PICTURE '$$$9V.99';

A='$17.9S';

Section G: Problem Data Conversion 211

The currency symbol makes the character
string constant invalid for conversion to
the arithmetic value of the numeric
;haracter variable, even though its
character-string value contains a currency
symbol.

Correct examples are:

A='17.95';

-1.=17.95;

either of which would result in A having
the character-string value b$17.95.

.For conversion from character- string to
arithmetic, the attributes assumed for the
target are those attributes that would have
been assumed if a fixed-point decimal inte
ger of precision (15,0) had appeared in
place of the string. (The precision given

lis that for the TSS/360 PL/I compiler.)

Arithmetic to Character-string

The arithmetic value is converted to a
decimal arithrretic constant. The constant
is inserted in an intermediate character
string whose length is derived from the
attributes of the source (see Figure 40,
"Lengths of Converted character Strings").
Except for the base and precision, the
attributes of the constant are the same as
the attributes of the source.

In the case of the conversion of expres
sion results, the intermediate string is
assigned to the target string, and may be
truncated or padded with zeros on the
right.

Since the rules of arithmetic to
character-string conversion are also used
for list-directed and data-directed output,
and for evaluating keys, this type of con
version will be found in most programs, and
should be thoroughly understood.

Numeric Character to Character-String

Real numeric character fields are
treated as character strings and assigned
to the target string from left to right
according to the rules for character-string
assignment_ •

The real and imaginary parts of complex
numeric character fields are concatenated,
and the resulting string is assigned to the
target. No character, including I or
blank, is inserted between or following:he
two parts.

Fixed-Point to Character-String

A binary fixed-point source is first
converted to decimal, and the decimal pre-

212

cision is derived from the precision of the
binary source (see Figure 39, ·Precision
for Arithmetic Conversions").

A decimal fixed-point source with preci
sion (p,g) is converted to character-string
representation as follows:

1. If p>=q>=O (that is, if the assumed
decimal point lies within the field of
the internal representation) then:

• The constant is right adjusted in a
field of width p+3 .

• Leading zeros are replaced by
blanks, except for a single zero
that immediately precedes the decim
al point of a fractional number •

• If the value is negative. a minus
sign precedes the first significant
digit (or the zero before the point
of a fractional number). Positive
values are unsigned.

• Unless the source is an integer, the
constant has q fractional digits.
If the source is an integer, there
is no decimal point.

2. If g is negative or greater than p, a
scaling factor is appended to the
right of the constant. The constant
itself is of the same form as an inte
ger. The scaling factor has the form:

H+ I-}nnn

where {+l-}nnn has the value -g.

The number of digits in the scaling
factor is just sufficient to contain
the value of q without leading zeros.

The length of the intermediate string
is:

p+3+k

where k is t.he number of digits neces
sary to represent the value of q (nct
including a sign or the letter Fl.
For example, given:

DCL A FIXED(4,-3>,
C CHAR(10);
A=1234.0E3i
C=A;

The intermediate string generated in
converting A would be:

b1234F+3

which, when assigned to c, would give:

b1234F+3bl::

Other examples are shown in Figure 32.

Floating-Point to Character-string

If the source is binary, its binary pre
cision is converted to the equivalent
decimal precision (see Figure 39, "Preci
sion for Arithmetic Conversions").

The decimal source with precision p is
converted as if it were transmitted by an E
format item of the form E(w,d,s) where:

w, the length of the intermediate
string, is p+6 (for the F compiler)

d, the number of fractional digits, is
p-l

s, the number of significant digits,
is p

For the TSS/360 PL/I compiler, an E for
mat item generates a floating-point d~cimal
constant with a signed two-digit exponent.
(See Part II, Section 5, "Edit-Directed
Format Items.")

The following examples illustrate the
intermediate string generated for a
floating-point to character-string
conversion:

Source Attributes: FLOAT DEC(6)
Source Value: 1735xl0 5

Intermediate String: Ll.73500E+08

Source Attributes: FLOAT BIN(20)
Source Value: -91882xl0 2

Intermediate String: -9.182200E+06

Source Attributes: FLOAT DEC{S)
Source Value: -.0016632
Intermediate String: -1.6632E-03

Complex to Character-String

The intermediate string that is
generated contains a complex expression.
Its length is 1 plus twice the length of
the character string generated by a real
source with corresponding attributes. The
intermediate string consists of two concat
enated strings. The left-hand, or real,
part consists of a string generated exactly
as for a real source. The right-hand, or
imaginary, part is always signed, and it
has an I appended. The string lengtn of
the imaginary part is one character longer
than the real part (to allow for the I).
The resulting string is a complex expres-

sion, with a sign but no blanks between its
elements.

The following examples illustrate the
intermediate string that results from a
complex to character~string conversion:

Source:
Value:
Result:

COMPLEX DEC FLOAT(5}
17.3+1. 51
b1.7300E+Ol+1.S000E+OOI

Source:
Value:
Result:

COMPLEX DEC FIXED(4,3)
0.133+0.0071
tttO.133+0.0011

Character-String t.o~-string

The charact2r 1 in the source string be
comes the bit 1 in the target string. The
character 0 in the source string becomes
the bit 0 in the target string. Any
character other than 0 and 1 in the source
string will raise the CONVERSION condition.
A null character string becomes a null bit
string.

If the source string is longer than the
tprget, excess characters on the right are
ignored (so that excess characters other
than 0 or 1 will not raise the CONVERSION
condition). If the target is longer than
the source, the target is padded on the
right with zeros.

Eit-string to Character-String

The bit 0 becomes the character 0, and
the bit 1 becomes the character 1. A null
Lit string becomes a null character string.
The generated character string, which has
the same length as the source bit string,
is aSSigned to the target.

If tne source bit string is shorter than
the target character string, the remainder
of the target is padded with blanks.

The following are examples of bit-string
to character-string conversion:

Source Value:
Target Att.riLutes:
Resul t.:

Source Value:
Target AttriLutes:
Result:

Source Value:
Target Attritutes:
Result:

Source Value:
Target Attributes:
Result:

'1011'B
CliAR(4)

'lOll'

'10101'B
CHAR (10) VAR

'10101'

'10101'B
CHAR(10)

'10101bbbbb'

'OOOl'B
CHAR(l)

'0 •

The CONVERSION condition cannot be
raised on conversion from tit to character;

Section 6: Protlem Data Conversion 213

hcwever, a character string created by con
vFrsion from a bit string can cause a con
version error when reconverted if blanks
have been inserted.

Aritr~etic_ to Bit-string

The absolute arithmetic value is first
Iconverted to a real binary integer, whose
~recision is the same as the length of the
b~t-string target as given in Figure 41.
This integer, without a sign, is then
treated as a bit string. Thi.s intermediate
string is then assigned to the target.

Examples are shown in Figure 33.

For the compiler, the effeot is as if
the bit string were interpreted as an
unsigned binary integer of maximum preci
sion (56,0). If the string is longer than
56 bits, bits on the left are ignored: the
SIZE oondition will be raised if nonzero
bits are lost, provided that SIZE is
enabled. Note that truncation is on the
left, not on the right. The null string
gives the value zero; otherwise, the res~lt

of a bit-string to arithmetic conversion is
always Fositive.

TABLE OF CEILING VALUES

Figure 42 is intended to aid the user in
computing the ceiling values used to deter
rrine precisions and lengths in conversions.
It gives the ceiling for the result of a
rrultiplication by 3.32 of any value (x)
between 1 and 15. It also gives the ceil
ing for the result of a division by 3.32 of
any value (y) between 1 and 56.

TABLES FOR RESlJLTS OF' ARITHMETIC OPERATIONS

Figures 43 through 46 give the attri
butes of the results of arithmetic cFera
tions, based on the operator specified and
the attributes of the two o~erands. In
these ta£les, the target precisions (i.e.,
the precisions of the converted operands)
can never exceed the implementation-defined
maximums, which, for System/360.: r,c'errenta
tions, are: 15 for FIXED DECIMAL, jl for
FIXEC BINARY, 16 for FLOAT DECIMAL, and 53
for FLOAT BINARY.

r----------------------T--------------T--------------------T--------------T--------------,
I Source I Source I Intermediate I Target I I
I Attributes I Value I String I Attributes I Result I
t----------------------+--------------+-------------------+--------------+--------------~
I FIXED DEC(5,O) I 2497 I 'bbbb2497' I CHAR(10) I 'bbbb2497bb' I
I I I I I I
I FIXED DEC(S,O) I 2497 ! 'bbbt:2497' I CHAR(5) I 'bbbb2' I
I I I I I I
I FIXED DEC(4,l) I -121.7 I 'b-121.7' I CHAR (7) I 'b-121.7' I
I I I 1 I I
I FIXED DEC(4,S) I .01217 I 'b1211F-')' I CHAR(7) I 'b1217F-' I
I I I I I !
I FIXED DEC(4,-3) I -3279000 I '-3219F+3' I CHAR(S) I '-3279F+3' I
I Iii I I
I FIXED DEC(3,3) I -.567 I '-0.567' I CHAR(6) I '-0.567' I
I I I I I I
I FIXED BIN(15,O) I 4095 I 'bbbbb4095' I CHAR(S) ! 't:bbbbl+09' I
I I I I I I
I FIXED BIN(3,3) I .375 I 'bbO.3' I CHA..ll<td I 'bbO.' I
I I I I I I
I FIXED BIN(1S,-lS) I -65S36 I 'b-65S36F+S' I CHAR (10) I 'b-65536F+S' I L ______________________ L ______________ L ___________________ L ______________ L ______________ J

Figure 32. Examples of Conversion From Fixed-Point to Character-String

214

r----------------------~--------------T-------------------T--------------T--------------,
I Source I Source I Intermediate I Target I I
I Attributes I Value I String I Attributes I Resul t I
r----------------------+--------------+-------------------+--------------+--------------~
I FIXED BIN(10) I 15 I '0000001111'8 I BIT(10) I 'OOOOOOllll'BI
I I I I I I
I FIXED BINU) I 1 I 'l'B I BITU) l'l'B I
I I I I I I
i FIXED DEC(l} I 1 I 'OOOl'B I BIT(l) I 'O'B I
I I I I I I
I FIXED BIN(3) I -3 I 'Ol1'B I BlTO) I 'Ol1'E I
I I I I I I
I FIXED BIN(4,2) I 1.25 I 'Ol'B I BIT(2) I 'Ol'B I
I I I I I I
I FIXED DEC(2,1) I 1.1 I 'OOOl'B I BIT(4) I 'OOOl'E I
I I I I I I
I FLOAT BIN(4) I 1.25 I 'OOOl'B I BIT(S) I '00010'E I
L ______________________ i _____ . _________ i ___ ~----------_____ i ______________ i ______________ J

Figure 33. Examples of Conversion From Arithrretic to Bit-string

r-----------------T-----------------~-----------------T----------------T----------------,
IOPERAND TYPES ICODED ARITHMETIC INUM~RIC CHARACTERICHARACTER STRINGIBIT STRING I
r-----------------+-----------------+-----------------+----------------+----------------~
ICODED ARITHMETIC IBit string IBit string IBit string IBit string I
~-----------------+-----------------+-----------------+----------------+----------------i
INUMERIC CHARACTERIBit string IBit string IBit string IBit string I
r-----------------+-----------------+-----------------+----------------+----------------~
ICHARACTER STRING !Bit string l~it string IBit string IBit string I
~-----------------+-----------------+-----------------+----------------+----------------~
IBIT STRING IBit string IBit string IBit string IBit string I t _________________ ~ _________________ i _________________ ~ ________________ ~ ________________ j

Figure 34. Data Type of Result of Bit-string Operation

r-----------------T-----------------T-----------------T----------------7----------------,
IOPERAND TYPES ICODED ARI'IHMETIC INUMERIC CHARACTERICHARACTER STRINGIBIT STRING I
~-----------------+-----------------+-----------------+----------------+----------------~
ICODED ARITHMETIC ICharacter string ICharacter string ICharacter stringlcharacter string I
t-----------------t-----------------+-----------------+----------------t----------------~
INUMERIC CHARACTERlcharacter string ICharacter string ICharacter stringlcharacter stringl
~-----------------t-----------------+-----------------+----------------+----------------i
ICHARACTER STRING ICharacter string ICharacter string /character stringlCharacter string I
t-----------------t-----------------+-----------------t----------------+----------------~
fBIT STRING ICharacter string ICharacter string ICharacter stringlBit string I l _________________ i _________________ ~ _________________ i------__________ ~ ________________ J

Figure 35. Data Type of Result of Concatenaticn Oreration

r-----------------T-----------------T-----------------T----------------T----------------,
IOPERAND TYPES ICODED ARITHMETIC fNUMERIC CHARACTERICHARACTER STRINGIBIT STRING I
t-----------------+-----------------+------------------+----------------+----------------~
ICODED ARITHMETIC IBit string IBit string IBit string iBit string I
~-----------------t-----------------+-----------------+----------------t----------------1
INUMERIC CHARACTERIBit string IBit string lBit string IBit string I
r-----------------+-----------------+-----------------+----------------+----------------~
iCHARACTER STRING IBit string IBit string IBit string IBit string I
~-----------------+-----------------+-----------------t----------------+----------------~
IBIT STRING IBit string IBit string IBit string IBit string I
t-----------------~-----------------i-----------------~----------------~-----------------~
INote: Although the final result of a comparison operation is always a bit string of I
Ilength 1, the type of comparison (algebraic, ~haracter, or tit) depends on the data I
Itype of the intermeidate operands dfter conversion, which are shown in Figure 37. I l_______________________________ ------------_---------------------______________________ J

Figure 36. Data Type of Result of Comparison Operation

Section 6: Problem Data Conversion 215

r-----------------T-----------------T-----------------T----------------y----------------,
JOPERAND TYPES ICODED ARITHt<IETIC INUMt;RIC CHARACTERICHARACTER STRINGIPIT STRING I
I C before I ! I I ,
I conversion} I I I I I
~-----------------t-----------------t-----------------t----------------t----------------i
I CODED ARITHl"iETIC ICoded ari UHretic I Coded arithlTietic 'Coded arithmet icl Coded arithmetic I
~----------------~t-----------------t-----------------t----------------t----------------i
,NUMERIC CHARACTERICoded arithmetic ICoded arithmetic ICoded arithmet:iclCoded aritrmeticl
r-----------------+-----------------t---------------·--t----------------+----------------1
,CEARACTER STRING I Coded ari thIJletic I Coded arithmetic I Charact.er stringl Character str ing I
~-----------------+-----------------t-----------------t----------------t----------------i
I BIT STRING 'Coded arithmetic I Coded arithmetic ICharacter string I Bit string I
l _________________ ~ _________________ ~ _________________ L----------______ i ________________ J

F1gure 37. Data Type of Intermediate Operands of COlT~ariscn Operatio!1

r-----------------T-----------------T-----------------T----------------T----------------,
IOPERAND TYPES leCDED ARITH~ETIC INUMERIC C~ARACTERICHARACTER STRINGI3IT STRING !
.-----------------+-----------------t------·--~-------+----------------t----------------i
leODED ARITHMETIC Icoded arithmetic Icoded arithmetic Icoded arithmeticlCoded arithmetic!
~-----------------t-----------------t-----------------+----------------+----------------1
INUMERIC CHARACTERlcooed arithrretic ICoded arithmetic Icoded arithmeticlcoded arithmetic I
~-----------------t----------~------t---------~-------+----------------t----------------i
ICHARAC'rER STRING leoded aritnrretic ICoded arithmetic Icoded arithmeticjCoded arithmetic I
~-----------------t-----------------+-----------------+----------------+----------------~
IBIT STRING ICoded arithmetic Icoded arithmetic ICoded arithrneticlCoded arithmetic I
l _________________ ~ __________________ ~ ________________ -~----------------~-----___________ J

Figure 38. Gata Type of Result of Arithn'.etic Operation

r-----------------------T---------------------------T-----------------------------------,
ISource Attritutes I Target Attributes I Target Precision I
~-----------------------+---------------------------+-----------------------------------i
!DECIMALFIXED(p,q) I DECIMAL FLOAT I P I
j I I I
JDECIMAL FIXEDCp,q) I BINARY FIXED I 1+p*3.32,q*3.32 (see note 3) (
) I I I
IDECIMAL FIXED(p,q) I BINARY FLOAT I p*3.32 I
I I I I
IDECIMAL FLOAT(p) I BINARY FLOAT i p*3.32 I
I I I I
I BINARY FIXED (p,q) I BINARY FLOAT I p I
I I I I
IBINARY FIXED(p,q> I DECIMAL FIXED I 1+p/3.32,q/3.32 (see note 4) I
I I I I
(BINARY FIXEOCp,q) I DECIMAL FLOAT I p/3.32 I
I I I I
IBINARY FLOATCp) I DECIMAL FLOAT I p/3.32 I
.-----------------------~---------------------------~-----------------------------------i
INotes: I
,-1-.-1n the cases of p*3.32 and p/3.32, the CEIL ef the result is taken; the value I
I taken is an integer that is equal to or greater than the result. !
I I
I 2. Target ~recision never can exceed the implementation-defined maximums, which are I
I 15 for FIXED DECIMAL, 31 for FIXED BINARY, 16 fer FLCAT DECIMAL, and 53 for FLOAT I
I BINARY. I
I I
I 3. When 9 is negative, the following formula applies: I
I I
I {MIN (CEIL (p*3. 32) +1, 31> ,CEr:i~ (ABS <q) *3. 32) *SIGN Cq» I
I I
I 4. When 9 is negative, the following formula a~~lies: I
I I
I (CEIL(p/3.32}+1,CEIUAKq)/3.32*SIGN(q» I
l ___ ----------------------------______ J

Figure 39. Precision for Arithmetic Conversions

216

r-----------------------T---------------------------T-----------------------------------,
\Source Attributes I Conditions I Target Length I
~----------------------t---------------------------t-----------------------------------~
IDECIMAL FIXED(p,q) I If p>=q>=O I p+3 I
I I I I
I I If q>p I p+3+k I
I I or I (where k :::: number of decimal I
I I q negative I digits to express scale I
I I I factor) I
I I I I
I DECIMAL FLOAT (p) I I p+6 I
I I I I
I Numeric character data , I SalLe as source I
~-----------------------~---------------------------~-----------------------------------~
iNote: Binary data is converted to decimal befcre conversicn to character-string. I l ___ J

Figure 40. Lengths of Convert€d Character Strings (Arithmetic to Character-String)

r-----------------------T--,
ISource Attributes , Target Length I
t-----------------------t---~
'DECIMAL FIXED(p,q) I (p-q)*3.32 I
I \ I
lDECIMAL FLOAT(p) I p*3.32 I
t' I IBINARY FIXED(p,q) I p-q I ,I ,
I BINARY FLOAT (p) I p I
t-----------------------~---~
I Notes : I
I 1. In the cases of p*3.32 and (p-q)*3.32, the CEIL cf the result is taken. I
I I
I 2. If q is greater than or equal to P. the result is a null string. I l ___ ~-___ ---__________ J

Figure 41. Lengths of Converted Bit Strings (Arithmetic to Bit-String)

r-----T-------------T-------T-------------,
I x I CEIL(x*3.32) I y I CEIL(y/3.32)1
t-----+-------------+-------+-------------~
I 1 I 4 I 1-3 I 1 I
I 2 I 7 I 4-6 I 2 I
! 3 I 10 I 7-9 I 3 I
, 4 I 14 I 10-13 I 4 I
I 5 I 17 I 14-16 I 5 I
I 6 I 20 I 17-19 I 6 I
I 7 I 24 I 20-23 I 7 I
I 8 I 27 I 211- 26 I 8 I
t 9 I 30 I 27-29 I 9 I
I 10 I 34 I 30-33 I 10 I
I 11 I 37 I 34-36 I 11 I
I 12 I 40 I 37-39 I 12 I
I 13 I 44 I 110-113 I 13 I
I 111 I 47 I 44-116 I 111 I
I 15 I 50 I 47-49 I 15 I
I I I 50-53 I 16 I
I I I 54-56 I 17 I L _____ ~ _____________ ~ _______ ~ _____________ J

Figure 42. ceiling Values

Section 6: Problem Data Conversion 217

r---,
I First O~erand I
~--------------------T-----------------T--------------------T-----------------~
!VECHtAL FIXl:.D(rilqi)IDE.CIMAL FLOA'I(P1>!BINARY FIXE['(Pi,qi} IBINARY FLOAT(ri) I

r-T-------f---------------------+-----------------f--------------------+-----------------1
1::oIDECHlAL!DECL-lAL FIXi':D(p,q) ICECIMAL FLOAT(r) IEINARY FIXEC(p,q) IBINARY FLC.z\T(p) I
lelFIXED IF~1+r-lAX(ri-qi,r2-q;z)lp=MAX(pi,p;z) Ip=1+MAX(p1-qu r - s) Ip=HAX(h,r) I
Icl(P;z,q.z)1 +MAX{qilQ2) I I +~AX(qus) Iwhere: I
10 1 !q=tw<J\}:(qi,C;;Z) I !q=1-1AX(q1,S) I r=F.z*3.32 I
IIi! I I Iwhere: j I
lal I I I r=1+p;z*3.32 i I
I I I I I s=q;z * 3.32 I I
IOr-------+--------------------+-----------------+--------------------+-----------------~
IriDECIMALIDECINAL FLOAT(p) IDECIMAL FLOAT(p) IBINARY FLCAT(p) IBINARY FLOAT{F) I
lelFLOAT 1 r=l'1.A':dpup;z) I r=MAX(rifP;Z) Ir=lJAX(p1,r) Ip=f;lAX(P1,r} I
I r I (r;z) I I I where: Iwhere: 1
I a I I I I r= F;z * 3 • 32 I r=p ;z * 3 • 3 2 I
I nj j I til
Idr-------t--------------------t-----------------+--------------------+-----------------1
, 13INARY IbH~Y FIXEi)(p,q) IBINARY FLCAT(p) IEINARY FIXED(p,q) IBINARY FLOATlp) j
I IFIXEL jp=1+t-1AX(r-s,p;z-q;z) Ip=MJ\X(r,p;z) Ip=1+MAX(P1-Q1,P;Z-Q2) !p=MAX(Pi,r2) I
I I (P2,Q;Z) I +~lAX(;;3,q.z) Iwhere: I +!'AX{Q1,q;Z) I I
I I Iq=~';j:(S,q2) I r=pl.*3.32 Iq=r--1AX{Q1,q;Z) 1 I
I I I-"here: I I 1 I
I I ! r=1+h*3·32 I I I I
I I I S=Ch * 3.32 I I I I
! r-------t--------------------t-----------------t--------------------+-----------------~
I IBINARY IEINlh"'Y FLOAT(p) iEH_lI.RY FLOAT{p) jEI[;ARY FLCAT(p) IEIKARY FI01\T(p) I

iFLOAT Ir·=l'lA;'.(r,P2) Ip=!"AX(r,F;z) Ir=I-'AX(P1tP.z) Ip=~AX(P1'P;Z) I
I (p;z) Iwhere: Iwhere: I I I

,! ! r=i?i*3.32 ! r=h*3.32 I I I L_i _______ i ____________________ i _________________ i ____ -----------_____ i _________________ J

Figure 43. Attribu~es of Result in Addition and Subtraction Cperations

r---,
I First Cperand I
~--------------------T-----------------T--------------------y-----------------1
IGECHlAL FIX.2D{h,Ql.) iLECI!'.lI.L FLCAT(h) 'BINARY FIXE[{P1,Ql.) iBJNARY FLCAT(P1) I

r-T-------+--------------------t-----------------t--------------------+-----------------~
ISIDECIMALIDECI~lAL FIXED(r,q) ICECIMAL FLCAT(p) IBINARY FIXED(p,q) IBINARY FLOAT(p) ,
!ejFIXED ip=pl.+p;z+l Ir=tw<AX1ri,p;Z) Ir=h+ r + 1 !p=!"AXlp1,r) I
lei Ip2,q2) 19=91+q;Z I Iq=ql.+s Iwhere: I
, 0 I I I I wh e re : I r=p 2 * 3.32 I
in! I I I r=I+P2*3.32 , I
I dl I I s=q.z*3.32 I I
I r-------+--------------------t-----------------+--------------------+------------------~
/OIDECIMALjDECIMAL FLOAT(!?) I DEC It-'AL FLOAT(p) IBINARY FLCAT(p) IBINARY FlOAT(p) I
Ip!FLOAT ir:=MAX(puP;z) I r= l<:A X (Pitr2) 1r:=MAXlr;1t r) Ip=MAX(Pu r) t
Je!(F;z) I I ,where: Iwhere: I
lrl! I I r=r;o*3.32 I r=P2*3.32 I
la I I j I I I
Inr-------t--------------------+-----------------+--------------------t-----------------i
id/BINARY tEINARY FIXED(r,q) IBINARY FLOAT(r) !EINARY FIXED(p,q) tBINARY FLOAT(p) I
i IFIXED l~r+r2+1 Ip=MAX(r,p;z) Ip=P1+P2+1 Ip=l"AX(p1.r;Z) I
I I (P2.q.;z)!q=s+q;z !,,"here: iq=q1+Q;Z I I
I I j here: ! r=pl.*3.32 I I I
I I ! r=1+P1*3.32 I I I ,
j I I s= q 1 * 3. 3 2 I I i I
I ~-------t--------------------f-----------------+--------------------+-----------------~
I tBINARY IBINARY FLOAT(r) IBINARY FLOAT(r) IEINARY FLOAT(p) IBINARY FLOATep) I
I I FLOAT I p=MAX (r,p;z) Ir=1-'.AXIr.,p;z) Ip=MAX(P1,P2) 1~l-'lAX(p1,r;Z) I
J I (p;z) I ",here: I,,"here: I ! I
I I I r=h*3.32 I r-"'h*3.32 I I I l_J. _______ ~ ___________________ .l _________________ .l. ____ ---------------_.l _________________ J

Figure 44. Attributes of Result in Multip11cation Oreraticns

218

r---,
I First operand I

~-----------------~--T-----------------T--------------------T-----------------~
IDECIMAL FIXED(p~,q1)IDECIMAL FLOAT(f1)IEINARY FIXED(P1,q1) tBINARY FLOAT(P1) I

r-T-------t------------,-------t-----------------t--------------------+-----------------~
IS I DECIMAL I DECIMAL FIXED(p,q) I DECIMAL FLOA'ICp) IBINARY FIXED(p,q) IBINARY FLOAT(r) I
lelFIXED Ip=15 Ip=MAX(p~.pO!) Ip=31 Ip=MAX(Pu r) I
Icl (pO!,qO!) Iq=15-((h-q1)+qO!) I Iq=31-«p1-q1)+s) Iwhere: I
101 I I Iwhere: I rc:pO!*3.32 I
Inl I I I s=qO!*3.32 I I
Idl I I I I I
I ~-------t--------------------t-----------------t--------------------+-----------------~
IOIDECIMALIDECIMAL FLOAT(p) I DECIMAL FLOAT(p) IBINARY FLOAT(p) IBINARY FLOAT(p) I
IplFLOAT Ip=MAX(puPO!) Ip=MAXCpuPO!) Ip=MAX(p1,r) Ip=MAX(p1,r) I
lei (PO!) I I Iwhere: Iwhere: I
Irl I I I r=fO!*3.32 I r=PO!*3.32 I
la I I I I I I
Inr-------+--------------------t-----------------+--------------------+-----------------~
ldlBINARY IBINARY FIXED(p) IBINARY FLOAT(p) IBINARY FIXED(p,q) IBINARY FLOAT(p) I
IIFIXED 1P=31 Ip=MAX(r,PO!> Ip=31 Ip=MAX(P1'PO!) I
I I (pO!,qO!) Iq=31- «r-s>+qO!) Iwhere: 1q=31-((h-q1)+QO!) I I
I I Iwhere: I r=P1*3.32 I I I
I I I r=l +P1 * 3 • 32 I I I I
I I I S=Q1 * 3. 32 I I I I
I r-------+--------------------t-----------------+--------------------+-----------------4
I IBINARY IBINARY FLOAT(p) IBINARY FLOATep) IBINARY FLOAT(p) IBINARY FLOAT(p) I
I IFLOAT Ip=MAX(r,pO!) Ip=MAX(r,PO!) Ip=MAX(P1,PO!) lP=MAX{P1,f4) I
I I (PO!) I where: I where: I I I
I I I =P1*3.32 I r=P1*3.32 I I I
l_~ _______ ~ ____________________ ~ _________________ ~ ____ -----------____ -~ _________________ J

Figure 45. Attributes of Result in Division Operations

r--------------------T---------------------T------------------------------------,
I I second OFerand I I
I First Operand I (Exponent) I Target Attributes of Result I
r--------------------+---------------------+------------------------------------~

Case (1) I FIXED DECIMAL(p1,q~) I Unsigned integer IFIXED DECIMAL(p,q) (provided p:S15] I
1 I constant with value nl p=(p1+1)*n-1 I
I I I q=ql. *n I
t--------------------t---------------------t------------------------------------~

Case (2}IFIXED BINARY(F1,Q1) lUnsigned integer IFIXED BINARY(p,q) [provided F:S311 I
I Iconstant with value nl p=(p1+1)*n-1 I
I I I q=q1 *n I
r--------------------+---------------------+------------------------------------~

Case (3) I FIXED DECIMAL(P1, q1) I FIXED flECIMAL (PO!, qO!) I FLOAT DECIMAL(p) [unless case (1) I
lor lor I or (7) is aPFlicatleJ I
I FLOAT DECIMAL (P1) I FLOAT DECIMAL (fO!) I f=MAX (Pi' Fa) I
t--------------------+---------------------+------------------------------------~

Case (4) I FIXED BINARY(p~,q1) IFIXED DECIMAL(pO!,qO!) IFLOAT BINARY(p) [unless case (2) I
lor lor I or (7) is applicable] I
IFLOAT BINARY(f1) IFLOAT DECIMAL(pO!) I p=MAX(pl.,CEIL(3.32*FO!» I
r--------------------t---------------------+------------------------------------~

Case (5) I FIXED DECIMAL (Puql.) IFIXED BINARY(P4,qO!) lIi LOAT BINARY(p) [unless case (1) I
lor lor I or (7) is applicableJI
IFLOAT DECIMAL(pl.} IFLOAT BINARY(pO!) I F=MAX(CEILD.32*p1)'PO!) I
~--------------------+---------------------+------------------------------------~

Case (6) IFIXED BINARY(F1,q1.~ IFIXED BINARY(pO!,qO!) IFLOAT BINARY(p) [unless case (2) I
lor lor I or (7) is applicable) I
IFLOAT BINARY(F1) IFLOAT '3INARY(pO!) I p=~AX(p1.'p.2) I

r--------------------t---------------------t------------------------------------~
Case (7) I FLOAT DECIMAL(P1) IFIXED DECIMAL(pO!,O) I FLOAT (F1) [with base of first I

lor lor I operand] I
IFLOAT BINARY(p1.) IFIXED BINARY (pO!,O) I I L ____________________ ~ _____________________ ~ __________ ----______________________ J

Figure 46. Attributes of Result in Exponentiation Operations

Section 6: Problem Data Conversion 219

SECTION 1: BUILT- IN FUNC'I'IONS AND PSEUDO-VARIAB~ES

All of the built-in functions and
pseudo-variables that are available to the
PL/I user are given in this section. The
general organization of this section is as
follows:

1. computational Built-in Functions

a. string-handling built-in functions

b. Arithmetic built-in fUnctions

c. Mathematical built-in functions

d. Array manipulation built-in
functions

2. Condition Built-in Functions

3. Based Storage Built-in Functions

4. Multitasking Built-in Functions

5. Miscellaneous Built-in Functions

6. Pseudo-Variables

The computational built-in functions,
shown above, provide string handling, ari
thmetic operations (addition, division,
etc.), mathematical operations (tri
gonometric functions, square root, etc.),
and array manipulation. The computational
built-in functions are:

string Handling:
BIT
BaaL
CHAR
HIGH

INDEX
LENGTH

Arithmetic:
ABS
ADD
BINARY
CEIL
COMPLEX
CONJG
DECIMAL
DIVIDE
FIXED
FLOAT
FLOOR

Mathematical:
ATAN
ATAND
ATANH
COS

220

LOW
REPEAT
STRING
SUBSTR
TRANSLATE
UNSPEC
VERIFY

IMAG
MAX
MIN
MOD
MULTIPLY
PRECISION
REAL
ROUND
SIGN
TRUNC

LOG 1 0
LOG2
SIN
SIND

COSD
COSH
ERF
ERFC
EXP
LOG

Array ~anifulation:
ALL
ANY
DIM
HBOUND

SINH
Si,:;RT
TI\N
TAND
TANH

LBOUND
POLY
PROD
SUM

The condition built-in functions allow
the PL/I user to investigate interruFts
arising from enabled ON-conditions. The
condition built-in functions are:

DATAFIELD
ONCHAR
ONCODE
ONCOUNT

ONFILE
ONKEY
ONLOC
ONSOURCE

The based storage built-in functicns are
designed to facilrtate list processing and
the use of based storage. They mainly
return special values which can be assigned
to lecator and area variables. The cased
storage built-in fUnctions are:

AD[;R
EMPTY

NULL
NULLO

The multitasKing built-in functions are
designed to allow the user to investigate
the current state of a task or asynchronous
input/output operation, or the current I priority of a task. Since multitasking is
not PL/I-controlled in TSS/360, these func
tions may only be used successfully to
investigate input/output operations. The
rrultitasking built-in functions are:

COMPLETION
PRIOHI'I'Y
STATUS

I Since PRIORITY is aSSociated exclusively
~ith multitasking, any attempt to rrake use
of it in TSS/360 will result in abnormal
termination of execution.

The miscellaneous built-in functions
perform various duties; for example, one
function provides the current date, another
provides a count of data items transmitted

during a STREAM input/output operation,
while another provides an indication of
whether or not a controlled variable is in
an allocated state. The miscellaneous
built-in functions are:

ALLOCATION
COUNT
DATE

LINENO
TIME

The section on pseudo-variables gives a
short discussion for each of the PL/I
pseudo-variables. A more complete descrip
tion can be found in the discussion of the
corresponding built-in fUnction. The
pseudo-variables are:

COMPLETION
COMPLEX
lMAG

ONCHAR
ONSOURCE

REAL
STATUS
STRING
SUBSTR
UNSPEC

All of the built-in functions and
pseudo-variables are presented in alphabet
ical order under their proper headings.

COMPUTATIONAL BUILT-IN FUNCTIONS

STRING HANDLING BUILT-IN FUNCTIONS

The functions described in this section
may be used for manipulating strings.
Unless it is specifically stated otherwise,
any argument can be an element expression
or an array expression. If an argument is
an array, the value returned by the built
in function is an array with bounds ident
ical to that argument (the function having
been performed for each element of the
array). For those functions where two or
more array arguments are allowed, the argu-

I ments must have identical bounds. Except
where stated otherwise, an argument that is
specified as "string- can be an expression
of any data type, but if it is arithmetic,
it is converted to bit-string (if binary
base) or character-string (if decimal base)
before the fUnction is invoked.

All conversions mentioned in this sec
tion are made according to the rules fOr
the conversion of expression operands as
specified in Part II, Section 6, "Problem
Data Conversion."

BIT String Built-in Function

Definition: BIT converts a given value to
a bit string and returns the result ~o the
point of invocation. This fUnction allows
the user to control the size of 'he result
of a bit-string conversion.

Reference: BIT (expression l, size])

Afgurrents: The argument "expression"
represents the quantity to be converted to
a tit string. The argument ·size,· when
specified, must be a decimal integer con
stant giving the length of the result. If
"size" is not specified, it is determined
according to the type conversion rules
given in Part II, Section 6, "Problem Data
Conversion." If "expression" is an array
expression, "size" applies to each elerrent
of the array.

Result: The value returned by this func
tion is "expression" converted to a bit
string. The length of this bit string is
determined by the integral value of "size,"
as described above.

BoaL String Built-in Function

Cefinition: BOOL produces a bit string
whose bit representation is a result of a
given Boolean operation on two given bit
strings.

Reference: BOOL (x,¥,w)

Arguments: Arguments "x· and .y. are the
two bit strings upon which the Boolean
operation specified by "w· is to be per
formed. If ·x· and "y. are not bit
strings. they are converted to bit strings.
If "x· and .y" differ in length, the short
er string is extended with zeros on the
right to match the length of the longer
string.

Argument "w· represents the Boolean
operation. It is a bit string of length 4
and is defined as n1 n 2 n3 n., where each n
is either 0 or 1. There are 16 possible
bit cOlr,binations and thus 16 possible Bool
ean operations. As for "x· and "y,. "w· is
converted to a bit string (of length 4)
before the function is invoked, if
necessary.

If more than one argument is an array,
the arrays must have identical bounds.
Note that if only "w" is an array, the
returne~ value is an array with identical
bounds, each element of which is the result
of the corresponding Boolean operation per
formed on "x" and "y."

Result: The value returned by this func
tion is a bit string, z, whose length is
equal to the longer of-·x" and "y." Each
bit of ~ is determined by the Boolean
operation on the corresponding bits of "x·
and "y" as follows: the ith bit of z is
set to the value of n1. n;, n3, or n
depending on the combination of the ith
bits of "x· and Wy" a~ shown in the follow
ing Boolean table:

Section 7: Built-In Functions and Pseudo-Variables 221

r-------------T-------------TT------------,
I xi I yi I I zi I
~-------------+-------------t+------------~
I I II I
I 0 I 0 II n1 I
~-------------+-------------++------------1
I I II I
I 0 I 1 II n2 I
t-------------+-------------++------------~
I I II I
I 1 I 0 II n3 I
~-------------+-------------++------------~
I I II I
I 1 I 1 II n I L _____________ L _____________ LL ____________ J

Example: In the following assignment
statement, assume that U and ID have been
declared as bit strings, XXX is the string
'011'B, YYY is the string 'l10'B, and the
Boolean operator is '0110'B:

U=IDIIBOOL (XXX, YYY, '0110'B);

Further, assume that Z represents the value
returned to the point at which BOOL is
invoked (that is, Z is a bit string of
length 3 that is to be concatenated with
ID), then the Boolean table for this invo
cation of BaaL can be defined as:

r-------------T-------------TT------------,
I XXXi I YYYi II Zi I
~-------------+-------------++------------~
I I II I
I 0 i 0 II 0 I
t-------------+-------------++------------~
I ! II I
I 0 I 1 II 1 I
t-------------+-------------++------------~
I I II I
I 1 I 0 II 1 I
~-------------+-------------t+------------~
I I II I
I 1 I 1 II 0 I l _____________ L _____________ LL ____________ J

which is interpreted as follows:

Whenever the ith bits of XXX and YYY are
o and 0, respectively, the ith bit of Z
is 0; whenever the ith tits of XXX and
YYY are 0 and 1, respectively, the ith
bit of Z is 1, and so on.

Thus, since the first bits of XXX and YYY
are 0 and 1, respectively, the first bit of
Z is 1; since the second bits of xxx ano
YYY are 1 and 1, respectively, the second
bit of Z is 0; and since the third bits 'Jf
XXX and YYY are 1 and 0, respectively, the
third bit of Z is 1. Therefore, the value
returned to the point of invocation is the
bit string '101'B.

222

CHAR St_ring Built-in Funs:tion

Definition: CHAR converts a given value to
a character string and returns the result
to the point of invocation. This function
allows the user tG contr:cl the size of the
result of a character-string conversion.

Reference: CHAR (expression[. size])

Argument_~: The argument "expression"
represents the quantity to ce converted to
a character string. The argument "size,"
when specified, must be a decimal integer
constant giving the length of the result.
If ·size" is not specified, it is deter
mined according to the type conversion on
rules given in Part II, Section 6, "Problem
Lata Conversion." If "expression" is an
array expression, "size" applies to each
element of the array.

Result: The value returned by this func
tion is "expression" converted to a charac
ter string. The length of this character
string is determined by "size," as
described atove.

HIGH String Built-in Function

Definition: HIGH for-lOS a character string
of a given length from the highest charac
ter in the collating sequence; that is,
each character in the constructed string is
the highest character in the collating
sequence.

Reference: HIGH (i)

Arqumen!:: The argument, "'i," must be a
decimal integer constant specifying the
length of tne string that is to be formed.

Result: The value returned by this fUllC
tion is a character string of length "i;'"
each character in the string is the highest
character in the collating sequence. For
System/360 implementations, this character
is stored as hexadecima 1 FF.

INDEX String Built-in_Junction

Lefinition: INDEX searches a specified
string -for a specified bit or character
string configuration. If the configuration
is found, the starting location of that
conflguration within the st_ring is returned
to the point of invocation.

Reference: INDEX (string, config)

ArguITents: 'rwo arguments must be speci
fied. The first argument, "string," repre
sents the string to be searched; the second
argument, "ccnfig," represents the bit or
character string configuration for which

I "string" is to be searched. If both argu-

I ments are bit-string, no conversj.on is per
formed. If both arguments are binary, or
if one argument is bit and one binary, both
arguments are converted to bit. Otherwise
both arguments are converted to character.

If both arguments are arrays, the arrays
must have identical bounds.

Result: The value returned 'cy tnis func
tion is a binary integer of default preci
sion. This binary integer is either:

1. The location in "string" at which
"config" has been found. If more than
one "config" exists in "string," the
location of the first one found (in a
left-to-right sense) will be returned.

2. The value 0, if "config" does not
exist within "string" or if either of
the arguments has a length of zero.

Example: If ASTRING is a character string
containing:

'912NAMEA,1,FIRST,2,SECOND'

then the statement:

I = INDEX(ASTRING,'l,');

will return a binary value
point of invocation. This
represents the location of
tion '1,' within ASTRING.
statement had been:

of ten to the
binary value
the configura
However, if the

I = INDEX(ASTRING,'l');

then a binary value of two would be
returned to the point of invooation. This
value is the location of the first '1'
appearing within ASTRING.

LENGTH String Built-in Function

Definition: LENGTH finds the string length
of a given value and returns it to the
point of invocation.

Reference: LENGTH (string)

Argument: The argument, "string," repre
sents a character string or a bit string
whose length is to be found. The argument
need not represent a string; if it does
not, it is converted before the fUnction is
invoked to a character string (if the argu
ment is DECIMAL) or a bit string (if the
argument is BINARY).

Result: The value returned by this func
tion is a fixed binary integer of aefault
precision giving the current le~gth of
"string." If "string" is an ar~ay expres
sion, an array of identical tounds is
returned.

Exampl~: If XYZ is a varying-length char
act.er string whose maximum length is 30.
but whose current length is 25, then the
statement:

I = LENGTH(SUBSTR{X¥Z,4»;

will assign a tinary value of 22 to I.

LOW String Built-iJl FUnction

Definition: LOW forms a character string
cf sfecified length from the lowest charac
ter in the collating sequence; i.e., each
character of the formed string will be the
lowest character in the collating sequence.

Reference: LOW (i)

~gument: The argument, "i" must be an
unsigned decim~l integer constant sfeci
fying the length of the string being
formed.

Result: The value returned by this func
tion is a character string of length "i";
each character in the string is the lowest
character in the collating sequence. For
System/360 implementations, this character
is stored as hexadecimal 00.

.REPEAT String Built-rin Function

Definition: REPEAT takes a given string
value and forms a new string consisting of
the given string value concatenated with
itself a specified number of times.

Reference: REPEAT (string,i)

Arguments: The arguIl1ent "string" refre h

sents a character string pr bit string from
Which the new string will be formed. The
argument need not represent a string,
however; if an argument other than a bit
string or character string is specified, it
is converted, before the function is
invoked, to a tit or character string.

The rugument "i" must be an optionally
signed decimal integer constant. It repre
$encs the number of times that ·string" is
to be concatenated with itself:

If "string" is an array expression, the
value of "in is applied to each element.

Result: The value returned by this func
tion is "string" concatenated with itself
"i" times. In other words, the returned
value will be a string containing (i+1)
occurrences of the value "string." If ni"
is less than or equal to zero, the returned
value is identical to the argument (i.e.,
the converted argument, if the original
arguIT,ent was not a string).

Section 7: Built-In Functions and PseudO·-Variatles 223

~xample: If BSTR is a bit string contain
ing '101'B, the statement

A = REPLAT(BSTR,6);

will cause the following value to be
returned to the point of invocation:

'101101101101101101101'8

STRING String Built-in Function

Definition: STRING concatenates all the
elements in an aggregate variable into a

ISingle string element. (STRING can also
used as a pseudo-variable.)

Reference: STRING(x)

be

Argument: The argument, "x", is an ele
ment, array, or structure variable, com
posed either entirely of character strings
and/or numeric character data, or entirely
of bit strings. If "x" is an element vari
able, the value returned is identical to
the value of the variable. The argument,
"x" I cannot be an operational expression.
·x" can be ALIGNED or UNALIGNED; if it is
ALIGNED, padding is not included in the
result.

Result: The value returned by this fUnc
tion is an element bit string or character
string, the concatenation of all the ele
ments in "x". If "x" contains one or more
varying strings, the result is a varying
string. For the 1'55/360 Compiler there is
no implementation if x is an element of an
interieaved array of varying strings, or a
cross-section of array of structures to
STRING built-in function. The concatenated
string in the result has a maximum length
of 32, 767 byt es .

SUBSTR String Built-in Function

Definition: SUBSTR extracts a substring of
user-defined length from a given string and
returns the substring to the point of invo
cation. (SUBSTR can also be used as a
pseudo-variable.)

Reference: SUBSTR (string,il,j])

Arguments: The argument "string" repre
sents the string from which a substring
will be extracted. If this argument is not
a string. it will be converted to a string.
Argument Wi" represents the starting po~nt
of the substring and "j" represents the
length of the substring. Arguments Wi" and
"j" must be integers or expressions that
can be converted to integers.

If more than one argument is an array,
the arrays must have identical bounds.

224

Assuming that the length of "string" is
~, arguments Hi" and "j" must satisfy the
following conditions:

1. j must te less than or equal to k and
greater than or equal to O.

2. i must be less than or equal to k and
great,er than or equal to 1.

3. The value of i+j-1 must be less than
or equal to k.

~hus, the substring, as specified by "i"
and "j" rrust liE within ftstring."

If "j" is not specified, it is assurred
to be equal to the value of k-i+l. In
other words, it is assumed to be the length
of the remainder of "string," beginning at
the !th position in "string."

When these conditions are not satisfied,
the SUBSTR reference causes the STRINGRANGE
condition to be raised, if it is enabled.
If STRINGRANGE is not enabled, the result
cf the erroneous reference is undefined.

Result: The value returned by this func
tion is a varying-length string whose cur
rent length is defined as follows:

1. If j=O, the returned value is the null
string.

2. If j is greater than 0, the returned
value is that substring beginning at
the ith character or bit of the first
argument and extending j characters or
bits.

3. If j is not specified, the returned
value 1S that substring beginning at
the ith character or bit and extending
to the end of ·string."

ExalliEle: If AAA is a character string of
length 30, the statement:

ITE~ = SUBSTR(AAA, 7, 14);

will cause a 14-character substring to be
extracted tram AAA, starting at the seventh
character of AAA. The extracted string is
then returned to the point of invocation,
after which it is assigned to ITEM.

The TRANSLATE String Built-in Funqtio:g

[;efinition: TRANSLATE returns the trans
lated value of a specified string to the
point of invocation. The translation is
ferformed in accordance with a translation
table supplied in the form of two arguments
to the function.

Reference: TRANSLATEls,r[.pl)

Arguments: "sft represents the source
string; i.e., the string that supplies the
value to be translated. Arguments "rn and
"p" represent the replacement and position
strings respectively; a charact.er-for
character map from "r" onto "p" defines the
translation table. If "p. is not speci
fied, an iml:Jlementat.ion-defined character
string is provided; for the TSS/360 PL/I
compiler, this string consists of the 256
EBCDIC characters arranged in ascending
order, hexadecimal 00 through .~'F.

If any argument is arithmetic, it is
converted to string; a character string if
the argument is DECIMAL, a bit string if
the argument is BINARY. If, after any
arithmetic-to-string conversion, all argu
ments are bit strings, or all are character
strings, no further conversion takes place;
otherwise, bit-string arguments are con
verted to character strings.

When "r" is shorter than "pH, it is
right-padded (with blanks or O's, depending
on the string type) to the length of

Result: The value returned ty this func
tion is a string identical in length and
value to the source string, "s." A change
is made to the source string only when a
character/bit position of "s" contains a
character or bit that has teen specified
for replacement (by inclusion of that value
in the position string "p"); that value
will be replaced by the corres~onding value
from the replacement string "r." The
correspondence is by position: character/
nit positions 1,2,3, .•. ,n of "f" correspond
respectively to character/bit fositions
1,2,3, •.. ,n or "r."

Example:

DECLARE (S,T) CHAR(10),
(P,R) CHARD).

p=' , • $, ;
R=' . , D' ;

A: GET DATA (S);
T=TRANSLATE(S,R,P)j
PUT DATA (T);
GO TO A;

That sequence reads in data from SYSIN,
translates commas to periods, periods to
commas, and dollar signs to the charqcter
'D', and writes out the result on SYSOUT.
Thus, if the string S='$12,345.50' ~ere
read in, the string TD12.345,50· would be
written out. (In TSS/360, the same result
can be achieved by omitting P and IT,aking R
consist of the EBCDIC sequence, xcept for
the replacement of the comma, period, and
dollar sign by the period, comma, and 'D'.>

, Note: Use of the fUnction will in lTany
cases result in the inline use of the TR
lTachine instruction.

UNSPEC String Built-in FUnction

Cefinition: UNSPEC returns a bit string
that is the internal coded representation
of a given value. (UNSPEC can also be used
as a pseudo-variable.)

Reference: UNSPEC (x)

Argurrent: The argument, "x," may be an
arithmetic or string constant, variable, or
expression, or an area, pointer, or offset
variable, whose internal coded representa
tion is to be found.

Result: The value returned by this func
tion is the internal coded representation
of "x." This representation is in bit
string form. The length of this string
deFends upon the attributes of "x," and is
defined by Systero/360 implementations as
follows:

1. If "x" is FIXED BINARY of precision
(p,q), the length is as follows:

a. If P < 16 and the argument is a
single variable, the length is 16.

b. If P < 16 and the argument is not
a single variable, the length is
32.

c. If P > 15 the length is 32.

2. If "x" is FIXED DECIMAL of precision
(F,q), the length is defined as 8*
FLOOR «p+2) /2).

3 • If "Xl' is FLOAT BINARY of precision
the length is

f,

a. 32, if f is less than or equal to
21-

b. 64, if P is greater than 21-

4. If ·x" is FLOAT DECIMAL of precision
!J, the length is

a. 32, if p is less than or equal to
6.

b. 64, if P is greater than 6.

5. If "x" is a character-string of length
n or a numeric character data item
whose character-string value is of
length n, the length ~s 8*n.

6. If "x" is a bit-string of length n ,
the length is n.

Section 7: Built-In FUnctions and Pseudo-Variatles 225

7. If "x" is complex, the length is twice
that of the corresponding real value.

8. If "x" is a pointer, the length is 32.

9. If "X W is an otfs et, the length is 32.

10. If "x" is an area of size n, the
length is 8*{n+16).

Defi~ition: VERIFY examines two given
strings and returns a fixed binary 0 if
each character or bit in the first string
is represented in the second string; other
wise, the value returned is the index of
the first character in the first string
that is not represented in the second
string.

Arguments: "expr-l" and "expr-2" represent
the source and verification strings respec
tively. If either argument is arithmetic,
it is converted to string; a character
string if the argument is DECIMAL, or a bit
string if the argument is BINARY. If after'
any arithmetic-to-string conversion has
been performed, both arguments are bit
strings or both character strings, no
further conversion takes place; otherwise,
the bit-string argument is converted to a
character string.

!i.esul1,::: The value returned by this func
tion is a fixed binary integer of default
precision (15,0).

Each character or bit, c, of the source
string is examined to see if it is repre
sented in the verification string; to
determine if

INDEX(expr-2,c},=Q

The characters or bits of the source
string are examined from left to right. If
a character or nit is not represented in
the verification string. the return is the
index of that character or bit in the
source string. If each character or bit in
the source string is represented in the
verification string, the returned value is
O.

Example: B is a character string, length
48, containing the 48 characters of the
48-character set. The expression:

VERIFY(A,B}

will return a value of a for any value of A
that consists solely of characters ,Tom the
48-character set, but will index the first
character in a value of A that does not
conform to the 48-character set (if A = 'p

226

GT X', the ret:urned value is 0; if A
X·, the value is]).

'p >

Note: Use of this function will in many
cases result in the inline use of the TRT
machine instruction.

ARITHMETIC BUILT-IN FUNCTIONS

All values returned by arithmetic built
in functions are in coded arithmetic forIT.
The argurrents of these fUnctions should
also be in that form. If an argument: is
not coded arithmetic, then, before the
function is invoked, it is converted to
coded arithmetic accnrdir~ to the rules
stated in Part II, Sect, ion 6, .. Problem Data
Conversion." Note, therefore, that in the
function descriptions below, a reference to
an argument always means the converted
argurrent, if cc~version was necessary.

In some function descriptions, the
fhrase ·converted to the highest charac
teristics" is used; this means that the
rules for mixed characteristics are fol
lowed. (For these rules, refer to the sub
ject "Data Conversion in Arithmetic 0fera
tions· in Part I, Sec'tion 4, "Expressions
and Data Conversion".)

In general, an argument of an arithrretic
cuilt-in function may be an element. or
array'expression. If an argument is an
array, the value returned by the built-in
function is an array of the same dimension
and counds as the arguwent (the funccion
having ceen rerformed once for each element
of the array). Thus, tor example. if an
array argu~ent is passed to the absolute
val ue function ABS, the returned va lue is
an array, each element of which is the
absolute value of the corresponding elerrent
in the argument array.

Unless it is specifically stated
ctherwise:

1. The mode of an argument may be real or
compl.-;:.

2. The base, scale, mode, and frecision
of the ret.urned value are determined
according to the rules for the conver
sion of expression operands as given
in Part II, Section 6, "Problerr Data
Conversion. "

In many of these built-in funct.icns, the
symbol ~ is used. This symbol represents
the maximum precision that a value rray
have. It is defined, for System/360 imple
mentations, as follows:

N is 15 for FIXED DECIMAL values
16 for ETOAT DECIMAL values

31 for FIXED BINARY values
53 for FLOAT BINARY values

The precision of decimal and binary
floating-point items should be noted when
using the built-in functions ADD, BINARY,
DECIMAL, DIVIDE, FLOAT, ~ULTIPIY, and PRE
CISION. For decimal floating-point items:
if the precision is less than or equal to
(6), short floating-point form is used; if
the precision is greater than (6). long
floating-point form is used. For binary
floating-point items: if the precision is
less than or equal to (21), short floating
point form is used; if the precision is
greater than (21), long floating-point forrr
is used.

ABS Arithn,etic Built-in Function

Definition: ABS finds the atsolute value
of a given quantity and returns it to the
point of invocation.

Heference: ABS (x)

Argument: The quantity whose absolute
value is to be found is given ty "x."

Result: The value returned ty this fUnc
tion is the absolute value of "x." If "x"
is real, the result is the positive value
of "x"; if "x" is complex, the result is
the positive square root of the sum of
squares of the real and imaginary parts of
"x." The mode of the result is real, while
the base, scale, and precision are the same
as those of "x," with one exception: if
"x" is a complex fixed-point value of pre
cision (p,q), the precision of the result
is:

(MIN (N, p+1> , q)

ADD Arithmetic Built-in Function

Befinition: ADD finds the sum of two given
values and returns it to the point of invo
cation. This function allows the user to
control the precision of the result of an
add operation.

Reference: ADD (x,y,p[,ql)

Arguments: Arguments "x" and My" represent
the values to be added. Arguments "pn and
Wq" must be decimal integer constants spec
ifying the precision of the result. "q" may
be signed. If the scale of the result is
fixed-point, both "p. and "q" must be spe
cified; if the scale of the result is
floating-point, only "p" must be specified.
In either case, "p. must not exceed ~.

Result: The value returned ty this fUnc
tion is the sum of "x" and "y." The preci
sion of the result is determined by "pn and

"q"; this precision is maintained through
out the execution of the function.

EINARY Arithmetic_Built-in Function

Cefinition: BINARY converts a given value
to binary base and returns the converted
value to the point of invocation. This
function allows the user to control the
precision of the result of a binary
conversion.

Reference: BINARY (x[,pl,qll)

Argurrents: The first argument, "x," repre
sents the value to be converted to binary
base. Arguments "pH and "qr" when sFeci
fied, must be decimal integer constants
giving the precision of the binary result;
"q" may be signed. The precision of a
fixed-point result is (p,q); the precision
of a floating-point result is (p). If both
"p" and Q q " are omitted, the precisicn of
the result is determined according to the
rules given for base conversion in Part II,
Section 6, "Problem Data Conversion." Note
that "q" must be omitted for floating-point
arguments.

Result: The value returned by this func
tion is the tinary equivalent of "x." The
scale and mode of this value are the same
as those of "x." The precision is given by
"pH and "q.~

CEIL Arithmetic Built-in Function

tefinition: CEIL determines the smallest
integer that is greater than or equal to a
given real value and returns that integer
to the point of invocation.

Reference: CEIL (x)

Argument: The argument, "x," must not be
complex.

Result: The value returned by this func
tion is the smallest integer that is great
er than or equal to "x." The base, scale,
mode, and precision are the same as those
of "x," with one exception: if "x· is a
fixed-paint value of precision (p,g), the
preciSion of th~ result is defined as:

(MIN(N,MAX(p-q+l,l»,O)

COMPLEX Arithmetic Built-in FUnction

Cefinition: COMPLEX forms a complex number
from two given real values and returns it
to the pOint of invocation. (COMPLEX can
also be used as a pseudo-variable.)

Reference: COMPLEX (x,y)

Section 7: Built-In Functions and Pseudo-Variables 227

Ar9~ment~: Arguments ·x rt dnd "y" must both
be real; ·x~ represents the real part of
the complex numDer to te formed and .y"
~e~resents the imaginary part.

Result: The value returned cy this fUnc
tionis the complex number that has heen
formed from "x· and "y.-

COl'UG Arithmetic Built-in Functior:!

Definition: CONJG finds the conjugate of a
cOfl,plex value and returns it to the point
of invocation. (The conjugate of a complex
number is the complex number with the sign
of the inagi.nary part reversed.)

Reference: CONJG (x) -----

Argument: The argument, "x," is the value
whose conjugate is to be found; it must be
complex.

Result: The value returned by this func
tion is the conjugate of "x." The base,
scale, mode, and precision of the conjugate
are the same as those of the argument.

DECIMAL Arithrretic Built-in Function

Definition: DECIMAL converts a given value
to decimal base and returns the converted
value to the point of invocation. This
function allows the user to control the
~recislon of the result of a decimal
conversion.

Reference: DECIMAL (x[,[l,q1J)

Arqllments: The first argument, "x," repre
sents the value to be converted to decimal
base. Arguments "p" and "g," when speci
fied, must be decimal integer constants
giving the precision of the decimal result;
"q" may be signed. The precision of a
fixed-point result is (p,q)i the precision
of a floating-point result is (p). If both
"p" and "q" are owitted, however, the pre
cision of the result is determined accord
ing to the rules given for base conversion
in Part II, Section 6, "Problem Data Con
version." Note that "q" must be omitted
for floating-point arguments.

Result: The value returned by this func
tiOD is the decimal equivalent of the argu
ment "x"; its precision is given by "pot and
"q .. tt

Q):VIDE Arithmetic Buil t- in Function

Definition: DIVIDE divides a given value
by another given value and returns the quo
tient to the point of invocation. This
1unction allows the user to control ~he
[recision of the result of a divide
operation.

228

Reference: -------- DIVIDE (x,y,p(.(1)

Arquments: The argument, "x," is the divi
dend and argument ")I" is t.he divisor.
Arguments .ph and "gR ("q" is optional and
may be signed) must. be decimal integer con
stants sfecifying the precision of the
result. If the result is a fixed-point
value, .p. and "qft must both be specified;
if the result is a float_in<J-point value,
only "p. must be specified. In either
case, "p" must not exceed N.

Besult: The value returned by this func
tion is the quotient resulting frorr the
division of nx" ty "y." The precision of
the result is determined by .p. and "g" as
described abovE; this precision is main
tained throughout the execution of the
function.

FIXED Arithmetic ~uilt-in Function

Definitlon: FIXED converts a given value
to fixed-point scale and returns the con
verted value to the point of invocation.
~his function allows the user to control
the frecision of the result of a fixed
point conversion.

Reference: FIXED (x[,p[,g)])

Arqurrpnt: The first argument, "x," repre
sents the value to be converted to fixed
Faint scale. Arguments "pM and "g,ft when
specified, must be decimal integer con
stants (ng" can be signed) giving the pre
cision of the result, (p,g). For System/
360 implementations, if Rp" and "q" are
clllitted, "p" is assumed to be 15 for binary
"x" and 5 for decimal "z"; "q" is assumed
to be O.

Result: The value returned by this fUnc
tion is the fixed-point. equivalent of the
argument "x"; its precision is (p,g).

Definition: FLONr converts a given value
to floating-point scale and returns the
converted ~alue to the point of invocation.
This fWIction allows the user to centrol
the precision of the result of a floating
point conversion.

Reference: FLOAT (x{,p])

Argulllents: The first argument, "x," repre
sents the value to be converted to
floating-point scale. The second argurrent,
·P," when specified, must 1:;e a decirral
integer constant giving the precision of
the result. For Sy~otem/360 implementa
tions, if "p" is omitted, it is assumed to
1:;e 21 for binary "x" and 6 for decirr,al "x."

Page of GC28-2045-1, Isaued september 15, 1970 by TNL GN28-3171

Result: The value returned by this func
tion is the floating-point equivalent of
·x·; its precision is ·pow

FLOOR Arithmetic Built-in Function

Definition: FLOOR determines the largest
integer that does not exceed a given value
and returns that integer to the point of
invocation.

Reference: FLOOR ex)

Argument: The argument. ·x, - must not be
complex.

Result: The value returned by this func
tion is the largest integer that does not
exceed ·x.- The base, scale, mode, and
precision of this value are the same as
those of ·x,- with one exception: if ·x·
is a fixed-point value of precision (p,g).
the precision of the result is:

(MIN(N.MAXCp-q+l,l»,O)

lMAG Arithmetic Built-in Function

Definition: lMAG extracts thE~ imaginary
part of a given complex number and returns
it to the point of invocation. (IMAG can
also be used as a pseudo-variable.)

Reference: IMAG (x)

Argument: The argument. ·x," is the com
plex value whose imaginary part is to be
extracted.

Result: The value returned by this func
tion is the imaginary part of ·x.- The
base, scale, and precision of the imaginary
part are unchanged. The mode of the
returned value is real.

MAX Arithmetic Built-in Function

Definition: MAX extracts the highest
valued expression from a given set of two
or more expressions and returns that value
to the point of invocation.

Arguments: Two or more arguments must be
given. The arguments must not be complex.

Result: The value returned by MAX is the
value of the maximum-valued argume:tt. The
returned value is converted to conform to
the highest characteristics of all the
arguments that were specified. If the
arguments are fixed-point valur'l and have
precisions :

then the precision of the result is as
follows:

(MIN(N.MAX{Pi-qS.'···.Pn-qn)·
MAX(q1.···.qu}).MAX(qs..···qn)

MIN Aritt.metic Bull;,!:in FUnction

Definition: MIN extracts the lowest-valued
expression from a given set of two or more
expressions and returns that value to the
point of invocation.

Reference: MIN (Xs.,x2 ••••• xn)

Arguments: Two or more arguments must be
given. The arguments must not be complex.

Result: The value returned by MIN is the
value of the lowest-valued argument. The
returned value is converted to conform to
the highest characteristics of all the
arguments that were specified. If the
arguments are fixed-point values and have
precis ions:

then the precision of the result is as
fallows:

(MIN (N,MAX(ps. -qs. •••• , Pn-gnH'
MAX(qs..···qn»,MAX(qs..···.qn»

MOD Arithmetl"c Built-in Function

Definition: MOD extracts the remainder
resulting from the division of one real
quantity by another and returns it to the
point of invQcat.ion.

Arguments: Two argument-a must be given.
They must not be complex. Before t.he func
tion is invoked, the base and scale of each
argument are converted according to the
rules for the conversion of expression
operands, as given in Part II, Section 6.
·Problem Data Conversion. w

Result: The value returned by MOD is the
lowes 1. possible positive value. x". such
thdt;

where n is an integer.

In other words, the va.ln€< r~tuxl1ed is the
smallest positive number that must be sub
tracted from the first argument in order to
make it exactly divisible by the second
argument. This means that it the first
argument is positive, the returned value is
the remainder resulting from a divisi.on of
the first argument by the second. If the
first, argument i.s negative. the returned

Section 7: Built-In Funct-.,ions and Pseudo-Variables 229

Page of GC28-2045-1 1 Issued September 15, 1970 by TNL GN28-31"n.

I value is ·the modular equivalent of this
r. emai nd .. >f" E ... '. (Fa: example, MODe 29.6) returns
the VE'.H,e 5, >fh:tle MODC-29.6) returns the
value 1 .. }

If thE result i.s in floating-point
scale. its precision is the higher of the
precis:i.ons of the arguments; if the result
is in fixed-point scale, its precision is
defined as follows:

wher(;·
of "x ...

,Q1} and (P2,q2) are the precision
;.\!;d "x;a," respe~"tively.

It the 'i]<3ilue of the second argument is
zero. the ZERODIVIDE condit.ion is raised.

Note: i;?hf.':n the MOD function is used with
FIXED artmnents of different scale factors,
the r~3ults may be truncated. If SIZE is
enabled, an error message will be printed:
if SIZE 1s disabled, no error message will
be prird::ed and the result is undefined.

MULT.~!:.L)[Ad thmetic Built- in Function

Defirli.ticn: MULTIPLY finds the product of
twglv-e;:;-·values and returns it to the
point, of invocation. This function allows
the user to control the preCision of the
result of a multiplication operation.

Ar9!!ments~ Arguments "x:a." and "x .. " repre
sent the values to be multiplied. Argu
ments "p'" and "q'" ("q" is optional and may
be siqnedJ are decimal integer constants
specifying the precision of the result. If
the result: is a fixed-point value, "p. and
u q " must. both be specified; if the result
is a floating-point value, only .p. must be
speCified. In either case, "p. must not
exceed. N.

Res111t~ The value returned by this func
tion ls the product of "x 1 " and ·x ... " The
precision of the result is as specified;
this precision is maintained throughout the
execution of the function.

~REClslqN Arithmetic BUilt-in FUnction

Defird.tion: PRECISION converts a given
value-·Fo a specified precision and :r;·eturns
the converted value to the point of
invocat.ion.

J:eef e:t~.!!£~ : PRECIS ION (x, p [• q])

Argwnen'ts: The first argument. ·x," repre
sents the value to be converted to the spe
cified precision. Arguments .p" and '"q
("q" is optional and may be signed> are
decimal integer constants specifying the
preCision of the result. If ·x· is a

230

fixed-point value. "'p" and "q" must be spe
cified; if ·x" i:3 a floating-·point value,
only .p. must be specified.

Result: The value returned by this func
tion is t.he value of "x." converted to the
specifi.ed precision. The base. scale, and
mode of the returned value are the same as
those of "x."

REAL Arithmetic Built.- in Function

Definition: REAL ext.racts the real part of
a given complex value and returns it to the
point of invocation. (REAL can also be
used as a pseudo-variable.)

Reference: REAL (x)

Argument: The argument, "x," must be a
complex expression.

Result: The value returned by this fUnc
tion is the real part of the complex value
represented by "x." The base. scale. and
precision of the real part are unchanged.

ROUND Arithmetic Built-in Function

Definition: ROUND rounds a given value at
a specified digit and returns the rounded
value to the point of invocation.

Reference: ROUND (expression,n)

Arguments: The first argument. -expres
sion,- is an element or array representing
the value (or values, in the case of an
array expression) to be rounded; the second
argument, -n,· is a Signed or unsigned
decimal int.eger constant specifying the
digit at which the value of -expression" is
to be roux:.d.ed. If "'n" is positive, round
ing occurs at. the gth digit to t.ne right of
the decimal {or binary} ~~int in the value
of -expression-: if wnw is zero. rounding
occurs at the first digit to the left of
the decimal (or binary) point in the value
of "expression'"; if "n" is negative, round
ing occurs at. the !It.h+l digit. to the left
of the decimal (oJ.: b.inary) point in tbe
value of -e"pression." Note that the
decimal (r .. binary) point is assumed to be
at the l-cft for floating-point values,.

Resu!,t: For fixed-point, values" ROUND
retui:ris the value of "e.xpression" rounded
at the !lth digit t.o the right of the deci
mal (or binary) point. for positive "n" t or
at the first digit. t,o the left of the deci
mal (or binary) point. for zero wnw. or at
the !lth+1. digit to the left of the decimal
(or binary) point for negative or zero "n w •
ThUS, when -n- is negative, the returned
value is an integer.

If "expression" .is a flo.ating-pc}int ex
pression, the second argument is ignored,

Pdq ... at (lC:.!8-:.!OIlS-l, Issued !il'l,temLt r W, 1 ~1I by TNL (;N:lH- 3I8,)

dnd the rightmost bit in Lhe inLt:rnal
floating-point representation of the expre
ssion' s value is St;t to 1 it it i:; O. It
the righta:ost bit is 1, it i:. 11'11
unchdnged.

It "expression" i~; d :.tr illq, llli'
r,,'turned value is tht, san'\' :,t tin,!
unnlLH]i f i eu .

The bdse, scale, dnd mode at thl'
returned value are those of the vdlue of
-expression".

The precision of the returneu value for
floating-faint eXfressions is that of "ex
pression"; the precision at the returned
value for fixed-Foint eXl,rt:'s:;iont; is (MIN
(p+l,N),q). The extra digit e~+l) of the
returned value for fixed-roint cx~ressions
is to allow for those casec; in which round.,.
ing would give a result that could not bE}
exrressed in .~ .. digits, tor eXdll,ple,
ROUNOe9.999,2) would result in 1U.000.

Note that the rounding of a negative
quantity results in the rounding of the
absolute value of that quantity.

SIGN Arithn:etic Built-in Function

Definition: SIGN determines whethLr d

value is pOSitive, negative, or Zf.ro, anJ
it returns an indication to the [oint at
invocation.

Reference: SIGN (x)

Argument: The drgument, "x,· Ir,u~;t not be
complex.

Result: This function return~ d real
fixed-point binary value of default preci
sion according to the following rules:

1.

2.

3.

If the argument is greater than 0, the •
returned value is 1.

If the argument is equal to zero, the
returned value is O.

If the drgument is less than zero, the
returned value is -1.

TRUNC Arithmetic Built-in Function

Definition: TRUNC truncates a given value
to an integer as follows: first, it deter
mines whether a given value is positive,
negative, or equal to zero. If the value
is negative, TRUNC returns the smallest
integer that is not less than that value;
if the value is ~ositive or equal to zero,
TRUNC returns the largest integer that does
not exceed that value.

Reference: TRUNC (xl

Section 7:

Argument: The drgument, "x,- must not be
complex.

Result: 11 "x· i,; lest; than' zero, t.he
value ['.'turnpd by TRUNC is CEIL ex). It ·x·
is gredt~r than or equal to zero, the value
returnld by TRUNe i!, FLOOR(x). In either
case. !ht tdS~, Hedle, and mode of th~
resul t <1[(' ttll' ,idffif.> dn those of .. x. .. If
"x· i:.:; d tlodtinq-point value, the I1reci
sian r,-,mains the same. If ·x· is a fixed
foint vdlue of precision (p,q), the preci
sion ot tii~.! n;:.;ul t i!J:

~ATHEMA1ICAL flUIlT-IN FUNCTIONS

All drguments to the mathematical tuilt
l.n functior,~ "hould bt~ in coded arithmetic
form and in floating-point scale. Any
dr'jUlTent t.hat doe:.; not conform to this rule
is convr'rtpd to coded arithmetic and
f loating-I;oint tefore the function is
inVOked, according to the rules stated in
~art II, Section 6, ·Problem Data Conver
uion." Note, ther~tare. that in the func
tion de,;criptions Lelow, a reference to an
iugument alway:; treans the converted argu
rrent, if conversion was necessary.

In 9'-'IH-.:-rd I, an argument to a mathemati
cal tuilt-in function may be an element or
array ex~res~ion. If an argument is an
array, the value returned by the built-in
function i~ an array of the same dimension
dnd bounds as t.he argument (the function
having bEen performed once for each element
cf the array). Thus, for example, an array
to the cosine function COS results in an
array, ~ach elerrent of which is the cosine
cf the corresponding element in the argu
nent array.

Unless it is specifically stated other
wise, an argument may be real or complex.
Figure 47 at the end of this section pro
vides a quick reference for those mathemat
ical functions that accept either real or
con'plex arguments and those that accept
only real arguments.

All of the mathematical built-in func
tions return coded arithmetic floating
point values. The mode, base, and preCi
sion at these values are always the san:e as
those of the arguments.

ATAN Mathematical Built-in Function

cefinition: ATAN finds the arctangent of a
given value and returns the result ex
pressed in radians, to the point of
invocation.

Reference: ATAN (x[,y])

Built-In Functions and Pseudo-Variables 231

page of GC28-2045-1. Issued :;f'rt ~~mhl'r 30, '1.971 by TNL m~28-318,)

r------------------T-------------------T--------------------~--------------------------,
IFunction Referencel Argument Type I Value R€turnerl I Error condit-ions I
1-------------------+-----------------.... -+-----------------------+--------------------------~
I ATAN(x) I H'dJ I drct.ln (x) in rCldidn:; I I
I I I-CFi/2)<ATAN{X)<r j /L! I
I .-------------------+--~------------------+--------------------------i
I I cOTflrhx l-i+ATANHU+x) I x -= Hi I
t------------------+-------------------+~--------------------+--------------------------1
I ATANtx,y) ! both rf'dl Isee functicn I error if I
I I I rlescrirtion I x=O anrl y::=O I
~------------------+-------------------t---------------------+--------------------------~
I ATAND(x) I real larctan (~) in d€gree~; I f
I I 1-90<ATAND(x)<90! I
t------------------t-------------------t---------------------+--------------------------~
I ATAND(x,y) I both H~al Isee function I error if I
I I I ile!;cr i[,tion I x=0 dno y=O I
~------------------t-------------------t---~-----------------+--------------------------~
I ATANtHx) I real !.uctclnhlx) I ABS(x)?'l I
I r-------------------+---------------------+--------------------------i
I I com[lf~x I (LOG{(1+x)I'(1-x»)/2 I x = H I
t------------------t-------------------+---------------------+--------------------------~
I C(;;3(X) I real Icosine(x} I I
I x in radian~ .-------------------t----T----------------+--------------------------i
I I complex Icos(Y1.)+cosh(yOl) I I
I I l-i*sin(Y1)+sinh(:r2) I I
t------------------t-------------------t----------------------+--------------------------1
I COSD(x) I rNl Icosine(x) I !
I ~ in degrees ! ! I I
~------------------+-------------------+-----~---------------+--------------------------i
I COSH(x} I real Icosh(x) I I
I r-------------------+---------------------t--------------~-----------~
I I comtlf_x Icosh(~t'1)+cos(y~) I I
I i l+i*sinh(Y1)*:;in(Y2) I I

I t---;;;(~}---------t-----~~:~----------t~~~-~K-~~t2--d-t----t-------=------------------1
.------------------+-------------------+-----Q---------------+--------------------------i
I ERFC(x) I real 11 - EIH Ix) I I
~-.-----------------+-------------------+---~-------------. ·----+---·-----·-------------------1
I I I)(I I
I EXP (x) I real I e I
I ~-------------------+---~-----------------+--------------------------i
I I I x I I
I I cOlfl-lr;x I" I I
~------------------+-------------------+----~----------------t~-------------------------i
I LOG (x) I real Ilog (x) I X'_O I
! ~-------------------t------4--------------+--------------------------i
I ! corrr lex IloeJ (x) '" w I x=O
I I twhere w = u!i·v i
I I land -ri<v-sr i I I
~-----------------+-------------------+---------------------+--------------------------~
I LOG10(x) I r€al 110(31 (x) I xSO !
~------------------+-------------------+---------------------+--------------------------~
I LOG2(x) I real IlogO/(x) I x<O i
~------------------+-------------------+---------r-----------+-----------_______________ ~
I SIN(x) I real I~;in(x) I !
I x in radians t-------------------t--~------------------+--------------------------i
I I complfc'x Isin(Y1)·co!~h(y ..) I I
I i l+i*cos(Yt)*sinhly ..) I I
r-------------------+-------------------+---------------------+----------------.------.. -----1
I SIND(x) I real t sin(x) I I
I ~ in degrees I I I !
~------------------+-------------------+---------------------+--------------------------~
I SINIHx) I real Isinh(x) I - I
I t-------------------t---------------------t--------------------------1
I I complex Isinh(y,)*cos(y ..) I i
I I l+i+cosh(Y1)·!;in(y,2) I i
L _________________ ~ ________________ ---L--------.~-----------~----------------------____ J

Figure 47. Mathematical nuilt-In Functions (Vart 1 of 2)

232

r------------------T--------------------T---------------------T--------------------------,
[Function Reference I Argument Type t Value Returned I Error Conditions I
t------------------t-------------------1---------------------+--------------------------~
I SQRT (x) I real lfi I x<O I
I ~--------------------t---------------------+--------------------------~
I t complex L-IX = w I - I
I I Iwhere w = u±i*v I I
I I land either u>O, or i I
I I I u=O and v?:O I I
t------------------t----------·---------+---------------------+------------~-------------~
I TAN(x) I real Itangent(x) I - I
I ~ in radians t-------------------t---------------------t--------------------------~
I I complex I tangent (x) I I
~------------------t-------------------+---------------------+--------------------------~
I TAND(x) I real I tangent(x) I I
I ~ in degrees I I I I
~------------------+-------------------+---------------------t--------------------------~
I TANH(x) I real ltanh(x) I - I
I r-------------------t---------------------t--------------------------~
I I complex I tanh (x) I I l __________________ ~ ___________________ ~ _____________________ ~ __________________________ J

Figure 47. Mathematical Built-In Functions (Part 2 of 2)

Arguments: The argument "x· must always be
specified; the argument Ky. is o~tional.
If "y" is omitted, "x" represents the value
whose arctangent is to be found; in such a
case, "x" may be real or complex, but if it
is complex, it must not be equal to ±li.

If "y" is specified, then the value
whose arctangent is to be found is taken to
be the expression x/yo In this case, both
"x" and "y" must be real, and Loth cannot
be equal to 0 at the same time.

Result: When "x" alone is specified, the
value returned by ATAN depends on the mode
of "X." If "x" is real, the returned value
is the arctangent of fiX," expressed in
radians, where:

-pi/2<ATAN(X) <pi/2

If "x" is complex, the arctangent function
is multiple-valued, and hence only the
principal value can be returned. The prin
cipal value of ATAN for a complex argument
"x" is defined as follows:

-i*ATANH U*x)

If both "x" and .y" are specified, the
possible values returned by this function
are defined as follows:

1. If y>O, the value is arctangent (x/y)
in radians.

2. If x>O and y=O, the value is :pi/2)
radians •

3. If x~O and y<O, the value is (pi+ arc
tangent (x/y» radians.

4. If x<O and y=O, the value is (-pi/2)
radians.

5. If x<O and y<O, the value is (-pi+
arctangent (x/y» radians.

ATAND Mathematical Built-in Function

Definition:
a given real
expressed in
invocation.

Reference:

ATAND finds the arctangent of
value and returns the result,
degrees, to the point of

ATAND (x[,y])

Arguments: Arguments "x" and My" ("y" may
be omitted) must be real values. If "y" is
omitted, "x" represents the value whose
arctangent is to be found. If "y" is spe
cified, the value whose arctangent is to be
found is represented by the expression x/y;
in this case, both "x" and Ky. cannot be
equal to 0 at the same time.

Result: If .y. is not specified, the value
returned by this function is simply the
arctangent of "x," 'expressed in degrees,
where:

-90<ATAND(x)<90

If. .y" is specified, the value returned
ty this function is ATAN (x,y), except that
the value is expressed in degrees and not
in radians (see "ATAN Mathematical Built-in
Function" in this section); that is, the
returned value is defined as:

ATAND(x,y) = (180/pi)*ATAN(x,y)

ATANH Mathematical Built-in Function

Definition: ATANH finds the inverse hyper
tolic tangent of a given value and returns
the result to the point of invocation.

Section 7: Built-In Functions and Pseudo-Variables 233

Reference: ATANH (x)

Argument: The value whose inverse hyper
bolic tangent is to be found is represented
by ·x." If "x· is real, the absolute value
of "x" must not be greater than or equal to
1; that is, for real "x," it is an error if
ABS(X)21. If ·x· is complex, it must not
lJe equal to ± 1.

Result: If "x" is I:eal, the value returned
Ly t_his function is the inverse hyperbolic
tangent of "x.1t For comrlex "x," the
inverse hyperbolic tangent is defined as
follows:

{LOG«1+x)/(1-x»)/2

COS Mathematical Built-in Function "._------
Definition: COS finds the cosine of a
given vdlue, which is expressed in radians,
and returns the result to the point of
invocation.

Reference: COS (x)

Argument: The value whose cosine is to be
found is given by "x"; this value can be
real or complex and must be expressed in
radians.

Result: The value returned by this func
tion is the cosine of "x." For complex
argwnent "x," the cosine of "XU is defined
below, where x = Y1+iY2:

COSD Mathematical Built--in Function

Definition: COSD finds the cosine of a
given real value, which is expressed in
degrees, and returns the result to the
~oint of invocation.

Reference: COSO (x)

Argument: The value whose cosine is to be
found is given by "x"; this value must be
real and must be expressed in degrees.

Result: The value returned by this func
tion is the cosine of "x."

COSH Mathematical Built-in Function

Definition: COSH finds the hyperbolic
cosine of a given value and returns the
result to the point of invocation.

Reference: COSH (x)

Argument: The value whose hyperbolic
cosine is to be found is given by "x."

Result: The value returned by this func
tion is the hYferbolic cosine of "x." For

234

complex arguffient "XI" the hyperbolic cosine
of "x" is defined belOW, where X = Y1+iY2:

ERF Mathematical Built-in Function

[efinition: ERF finds the error function
cf a given real value and returns it to the
point of invocation.

Reference: ERF (x)

Arqurrent: The value for which the error
function is t.o be found is represented by
"x"; this value must be real.

Result: The value returned by this func
tion is defined as follows:

=-. r X -t 2
ERF {x} = -v1r Joe d t

JRFC Mathematical Built-in Function

refinition: ERFC finds the complement of
the error function (ERF) for a given real
value and returns the result to the point
of invocation.

Reference: ERFC (x)

Arqull'ent: The argument_, It x," represents
the value whose error function comFlement
is to be found; "x" must be real.

Result: The value returned by this func
tion is defined as follows:

ERFC(x} = l-ERF{x)

EXP Mathematical Built-in Function

Definition: EXP raises e (the base of the
natural logarithm system) to a given power
and returns the result to the point of
invocation.

Reference: EXP (x)

Arqurrent: The argument, "x," specifies the
power to which ~ is to be raised.

~esult: The value returned by this fUnc
tion is ~ raised to the power of "x."

LOG Mathematical Built-in Function

Definition: LOG finds the natural
logarithrr (i.e., base~) of a given value
and returns it to the point of invocation.

Reference: LOG (x)

Arqurr,ent: The argument, "x," is the value
whose natural logarithm is to be found. If
"x" is real, it must not be less than or
equal to 0; if "x" is complex, it must not
be equal to O+Oi.

Result: The value returned ty this func
tion is the natural logarithm of ax."
However, if "x· is complex, the function is
multiple-valued; hence, only the principal
value can be returned. The principal value
has the form w = uti*v, where ~ lies in the
range:

-pi<vspi

LOGIO Mathematical Built-in Function

Definition: LOGIO finds the common
logarithm (i.e., base 10) of a given real
value and returns it to the pOint of
invocation.

Reference: LOGIO (x)

Argument: The argument, "x," represents
the value whose common logarithm is to be
found; this value must be real and it must
not be less than or equal to O.

Result: The value returned by this func
tion is the common logarithm of ·x."

LOG2 Mathematical Built-in Function

Definition: LOG2 finds the tinary (i.e.,
base 2) logarithm of a given real value and
returns it to the point of invocation.

Argument: The argument, "x," is the value
whose binary logarithm is to be found; it
must be real and it must not be less than
or equal to O.

Result: The value returned to this func
tion is the binary logarithm of "x."

SIN Mathematical Built-in Function

Definition: SIN finds the sine of a given
value, which is expressed in radians, and
returns it to the point of invocation.

Reference: SIN (x)

Argument: The argument, ·x,· is the value
whose sine is to be found; it must be ex
pressed in radians.

Result: The value returned ty this func
tion is the sine of ·x.· For complex argu
ment ·x," the sine of "x" is defined below,
where x = Y1+i*Y2:

SIND Mathematical Built-in Function

Definition: SIND finds t.he sine of a given
real value, which is expressed in degrees,
and returns the result to the point of
invocation.

Reference: SIND (x)

Argument: The argument, "x," is the value
whose sine is to be found; ·x" must be real
and it must be expressed in degrees.

Besult: The value returned by this func
tion is the sine of "x."

SINH Mathematical Built-in Function

Cefinition: SINH finds the hyperbolic sine
of a given value and returns the result to
the point of invocation.

Reference: SINH (x)

Argument: The argument, "x," is the value
wbose hyperbolic sine is to be found.

Result: The value returned by this fUnc
tion is the hyperbolic sine of "x." For
coroplex arguroent "x," the hyperbolic sine
of "x" is defined below, where x = Y1+i*Y2!

sinh(x)=sinh(Y1)*cos(Y2)+i*cosh(Y1)*sin(Y2)

SQRT Mathematical Built-in Function

Definition: SQRT finds the square root of
a given value and returns it to the point
of invocation.

Reference: SQRT (x)

Argument: The argument, "x," is the value
whose square root is to be found. If "x"
is real, it must not be less than O.

Result: If ·x" is real, the value returned
l:;y this fUnction is the positive square
root of "x." If "x" is complex, the square
root fUnction is multiple-valued; hence,
only the principal value can be returned to
the user. The principal value has the form
w = u±i*v. where either u>O, or u=O and
v~O.

TAN Mathematical Built-in Fupction

Definition: TAN finds the tangent of a
given value, which is expressed in radians,
and returns it to the point'of invocation.

Reference: TAN (x)

Argument: The argument, "x,· represents
the value whose tangent is to be found; "x"
rrust be expressed in radians.

Result: The value returned by this func
tion is the tangent of "x."

TAND Mathematical Built-in Functions

Definition: TAND finds the tangent of a
given real value which is expressed in

Section 7: Built-In Functions and Pseudo-Variables 235

degrees, and returns the result to the
point of invocation.

Referenre: TAND (x)

Argument: The argument, "x," represents
the value whose tangent is to be found; "x"
must be expressed in degrees.

~esult: The value returned by this func
tion is the tangent of "x."

'TANH Mathematical Built-in Function

Def~r~tion: TANH finds the hyperbolic tan
gent of a given value and returns tne
result to the r-oint of invocation.

Reference: TANd (x)

~rgument: The argument, "x," represents
t~he value whose hyperbolic tangent is to be
fm.~nd.

Result: The value returned by this func
"t.ian Is the hyperbolic tangent of "x."

§ull:mary of Mathemat.ical Functions

Figure 47 summarizes the mathematical
built.-in functions. In using it, the read
er should be aware of the following:

1. A complex argument, ~x," is defined -
as x = Y1+i*Y2'

2. The value returned ty each function is
always in floating-point.

3. The error conditions are those defined
by the PL/I Language. Additional
error conditions detected by the TSS/
360 PL/I compiler are described in the
publication IBM System/360 'Time Shar
inG System: PL/I Library Computation
al Subroutines, Forrf' GC2B-2046.

4. All arguments must be coded arithmetic
and floating-point scale, or such that
they can be converted to coded arith
metic and floating-point.

ARRAY MANIPULATION BUILT-IN FUNCTIONS

The built-in functions described here
may be used for the manipulation of arrays.
All of these functions require array argu
ments (which may be expressions) and return
Single element values. Note that since
these functions return element values, a
function reference to any of them is consi
dered an element expression.

ALL Array Manipulation Function

Definition: ALL tests all bits of a given
bit-string array and returns the ~esult, in

236

the form of an element bit-string, to the
Foint of invocation. The element tit
string indicates whether or not the corre
sponding bits of given array elements are
all ones.

Reference: ALL (x)

Argument: The argument, "x," is an array
of bit strings. If t.he elements are not
cit strings, they are converted to bit
strings.

Besul~: The value returned by this func
tion is a bit strinq whose length is equal
to the length of the longest element in "x"
and whose cit values are determined by the
following rule:

If the ith bits of all of the elements
in "x" exist and are 1, then the ith bit
of the result is 1; otherwise, the ith
bit of the result is O. -

ANY Array Manipulation Function

Definition: ANY tests the bits of a given
tit-string array and returns the result, in
the form of an element bit-string, to the
point of invocation. The element bit
string indicates whether or not at least
one of the corresponding bits of the given
array elements is set to 1.

Reference: ANY (x)

Arqurrent: The argument, "x," is an array
of bit strings. If the elements are not
tit strings, they are converted to bit
st.rings.

Result: The value returned by this func
tion is a tit string whose length is equal
to the length of the longest element in ~x"
and whose tit values are determined by the
following rule:

If the ~th tit of any element in "x"
exists and is 1, then the ith bit of the
result is 1; otherwise, the ith bit of
the result is O. -

DIM Array.Manipulation Function

Cefinition: DIM finds the current extent
for a specified dimension of a given array
and returns it to the point of invocation.

Reference: DIM (x,n)

Arguments: The argument "x" is the array
to be investigated; wnw is the dimension of
"x," the extent of which is to be found.
If "n" is not a binary integer , it is con
verted to a binary integer of default pre
cision~ It is an error if ·x" has less
than "nR dimensions, if WnW is less than

Page of GC28-2045-1, Issued !;epten:ber]0, 1911 by TNL GN28-318'.>

or equal to 0, or if ·x· hi tl<1t cur:nmtly
allocated.

Result: The value returned ~y this func
tion is a binary integer of default preci
sion, giving the current extent of the Dth
dimension of ·x.-

HBOUND Array Manipulation Function

Definition: HBOUND finds the current upper
bound for a specified dimension of a given
array and returns it to the pOint of
invocation.

Reference: HBOUND (x,n)

Arguments! The argument ·x· is the array
to be investigated; -nw is the dimen~ion of
·x· for which the upper bound is to be
found. If wnw is not a tinary integer, it
is converted to a binary integer of default
precision. It is an error if ·x· has less
than "n- dimensions, if an· is less than or
equal to 0, or if ·x· is not currently
allocated.

Result: The value returned by this func
tion is a binary integer of default preci
sion giving the current upper round for the
nth dimension of ·x.·

LBOUND Array Manipulation Function

Definition: LBOUND finds the current lower
bound for a sFecified diwension of a given
array and returns it to the point of
invocation.

Reference: LBOUND (x,n)

Arguments: The argument ·x· is the array
to be investigated; "n" is the dimension of
·x" for which the lower tound is to be
found. If -n- is not a binary integer, it
is converted to a binary integer of default
precision. It is an error if "x· has less
than en· dimensions, if '"n'" is less than or
equal to 0, or if ·x· is not currtntly
allocated.

Result: The value returned ty this func
tion is a binary integer of default preci
sion giving the current lower bound of the
nth dimension of ·x."

POLY Array Manipulation Function

Definition: POLY forms a polynomial from
two given arguments and returns the result
of the evaluation of that Folynomial to the
point of invocation.

Reference: POLY (a,x)

Arguments: Arguments '"a- and ·x· must bp.
one-dimension arrays (vectors). They arc·
defined as follows:

a(m:n)

x(p:q)

whf>re lm:n) i'ln'} (p:q) represent the bounds
of "a" and ·x," respectively.

.Result:
tion i:::;

The vrllue returned by this func
detined as:

n-rr
a(m}+ L (a(m+j).

j=l

j-l
11 x (p+i))
i=O

If (q-p)«n-m-l), then x(p+i)=x(q) for
(p+i) >g. If m=n, then the result is a (m).

If ·x· is dn element variable, it is
interpreted as an array of one element,
i.e., xCl), dnd the result is then:

n-rr
L cdro+j).x •• j
j=O

PROD Array Mani[ulation Function

Definition: PROD finds the product of all
of the elements of a given array and
returns that product to the point cf
invocation.

PROD (x)

~!gurrent: The argument, "x,· should be an
array of coded arithmetic floating-point
Elements. If it is not, each element is
converted t.O coded arithrretic and f loating
[oint before being multiplied with the pre
vious product.

Result: The value returned by this func
tion is th,! product of all of the elerr.ents
in "x." The scale of the result is
floating-point, while the base, mode, and
[recision arp those of the converted ele
nents of "x.-.
SUM Array ManiFulation Function

Definition: SUM finds the sum of all of
the element~3 of d 'Jiven array and returns
thdt sum to th~ [oint of invocation.

Reference: su~ (x)

Argurrent: The argument, ·x," should be an
array of coded arithmetic floating-point
elements. If it is not, each element is
converterl to coded arithmetic and floating
point before being sumrn~rl with the ~revious
total.

Result: The value returned by this func
tion is the SUit: of all of the elements in
·x.- The scale of the result is floating
Faint. while the ba~e. mode, and Frecision
are those of the converted elements of the
drguwent.

Section 1; Built-In FUnctions and Pseudo-Variables 231

Paqe of t;C2?-- 204'1-1, l~;su{'d :;~Tt fml;PI" 10, 1 enl by TNL CN28~ si 11')

CONDITION BUILT-IN fUNCTION;;
-.--------~--- -

The condit icn built-in fllllct i()n~; <1110101
th,; [lVI user tu inve~;tiqdtl' illtl'lru!'t~;

that drise frem tC'nablp<1 ON-condition~;.
None of thhSP function" J[t''1u1r.:; dI"qu!IIentc;;.
l:.ach condition built-in funct iOIl IPturn:;
t.t;e va iue described only when t'x('cllt .. d in
un on-unit (or a block act.ivdti'd din'ct_ly
or indi rpct.ly by an on-uni t) t hdt i:;
entered d:; d result of an int (rrui,t ion
caused by onE" of the ON-condition~> tor
which the funct.lon can be Il:;pd. ;;uch cHI

on-unit Cdn be one specific to thp condi
tion, or it: Cdn be for the l:.RRCH or FINISH
condition when these condition~; ilrp raiSEd
as ~ltandard sy~-)te!li action. It a condition
built-in function is used out of context f

the value returned is as described for each
funct ion.

The on-units in which t!dch function Ciln
be U:,E"l i" Lf' 'J iven in the flHlct ion
definiti .11.

DATA~JiLD Conjition Built-in Functiun

Definition: Whenever the NAME condition is
raise;r;- DNI'AFIELD may be used to extract
the contents Gf the data field that cau~;ed

the condit.ion t"o b", :--ai:;ed.
only in an on-unit for th" NA~J:. condition
or in dn J-"RRCI!'i or FINI:;1l condition rdi:.;ed
as a result of standard systprr dcLion for
the NhVE condition.

Reference: DATAFI aD -----.-.----

£(esuLt: The vdlue r,'tllrnpd by thio; func
t10n is d varying-length character ~trin~
giving the contents of the data tield that
caused the NAJI.'E condition to fA' rcli:;f'd.
The maxirPum length of this ~,tr ing i:;
defined by UIP TSS/360 PL/I cO[l~ilf'r as
255. If DATAFIELD is used out of context,
a null strinq is returned.

ONClli\R COfldi tiofl Built-in Fur,ct ion ------"----------'---------._-

Definition: Whenever the CONV!:R:;rON condi
tion isrdised, ONCH/\R flay bf' USHI t.O
ext.ract" tfJ<'.' chardcter that Cdll:;,'d t h., con-
di ticn to be Idi:.,ed. It Cdn te u:,ed only
in an on-unit for the CONV~RSICN condition
or in an on-unit for an ERROR or FINI!jH
condition raised as standard system action
for the CONVERSION condition. (ONCHAR can
also be used as a pseudo-variable.)

Reference: ONCHAR

Result: The value returned hy this func
tion is a character ~;tring of length I.
containing the character that caused the
CONVERSION condition to be raised. This
character can be modi f ied in the on- m,i t
1:1' :

238

1. Thp 11:,(; of Uw ONCIiAR or ON!:)OURC£
[Jolt'wl',-VelI idtl('o;.

2. Chanqing th~ value of the field th~t
cdu!:ed tho'> CONVERSION error.

rt ONCllAH i:; w;ed nut of context, a bldnk
is ret In npd.

[efiniticn: ONCODE can be used in any 00-

unittodet.~!rmine Ule type of interru[)tion
that caused the on-unit to become active.

ONC()[:E

J:<esult: ()NCODE n,turn:; a binary int(,ger of
defaUlt p:eci~ion. This "code'" defines the
type of interruI;tion that caused the entry
into the currently active on-unit. The
codes tor t_he TS:;/160 PL/I compiler ar-e
given in Pdrt II. Section 8, ·ON
Conditions.- If ONCODE is used out of con
text, d valup of 0 is returned.

CNCOUNT Condition Suilt-'In Funct.ion ._-----------------._---- -

Definition: ONCOUNT can be used in any
cn-unitentered due to t.he abnormal comr-le
tion of an I/O ("vent to detf'nnine the num
I;er of i ntf'rrllI tion~l (including the current
cne) that rerrain to br handled when d mul
tiple int<rruftion ha~, H:sulted traIT' that
abnormal corrrletion. (Ml1lti~le interrup
tions are discussed in Part II, Section 8,
"ON-Conditicn3.")

CNCOIJNT

Re!;ult: ONCUtlNT ret-urn!; a bindLy valuf' of
defauit I,r('ci~;ion. If ut::COlJNT is u~;ed in
an (')n~llnit cnt(-'Li-'d as I,art of a multiple
int~rruption. this value sfPcifies the cor
resfcndinq numter of e~uivalent single
interru~tions (including the current one)
trJi~t reJf:ain to bp. handlf'd; if ONCOUNT is
U!iE':d in any at_her case, the retu.rned value
is zero.

Definition: UNFILh determines the name of
the-Til;:' tor. which an I/O or CONVERSlm<
condition was raispd and returns that ndITe
to I hp i oint of inVocdt- ion. This function
can bp il~;pd in UH:- on-- un] t t or a ny I/O or
CONVER~;rON condition; it also can be used
in dn on-unit for ~n ERROR or FINISH condi
tion rdised dS standard system action for
an I/O or CONVER~ION condition.

CNFIlE

Res~l!: : The Vd I tie returned by this func
tion i!; a varying-·length character string,
of 31-character maximum length. consisting
(t the nall1f' of the file for Which an I/O or
CONVERSION condition was raised.

Page of GC28-2045-1. Issued sept.runber 15, 1970 by TNL GN28-3171

In the case of a CONVERSION condition, if
that condition is not associated with a
fi~e, the returned value is the null
string.

ONKEY Condition Built-in l''unct:ion

Definition: ONKEY extracts the value of
the key for the record that caused an I/O
condition to be raised. This function can
be used in the on-unit for an I/O condition
or a CONVERSION condition; it can also be
used in an on-unit for an ERROR or FINISH
condition raised as standard system action
for one of the above conditions.

Reference: ONKEY

Result: The va~ue returned by this func
tion is a varying-length character string
giving the value of the key for the record
that caused an input/output condition to be
raised. If the interruption is not asso
ciated with a keyed record, or if the PEND
ING condition is raised, the returned value
is the null string.

ONLOC Condition Built-in Function

Definition: Whenever an ON-condition is
raised, ONLOC may be used in the on-unit
for that condition to determine the entry
point to the procedure in which that condi
tion was raised. ONLOe may be used in any
on-unit .•

Reference: ONLOC

Result: The value returned by this func
tion is a varying-length character string
giving the name of the entry point to the
procedure in which the ON-condition was
raised. If ONLOe is used out of context, a
null string is returned.

ONSOURCE Condition Built-in Function

Definition: Whenever the CONVERSION condi
tion is raised, ONSOURCE may be used to
extract the contents of the field that was
being processed when the condition was
raised. This function can be used in the
on-unit for a CONVERSION condition or in an
on-unit for an ERROR or FINISH condition
raised as standard system action for a CON
VERSION condition. (ONSOORCE can also be
used as a pseudo-variable.)

Reference: ONSOURCE

Result: The value returned by this func
tion is a varying-length charactel string
(maximum length is 255 for the compiler)
giving the contents of the field being pro
cessed when CONVERSION was raised. This
string may be modified in the "'n-unit by:

1. Use of the ONCBAR or QlISOURCE
pseudo-variables.

2. Changing the value of the field which
caused the CONVERSION error.

If ONSOURCE is used out of context, a
null string is returned.

BASED STORAGE BUILT-IN FUNCTIONS

The based storage built-in fUnctions
generally return special values to program
control variables concerned in the use of
based storage and list processing. Only
ADDR requires an argument.

ADDR Based Storage Built-in Function

Definition: ADDR finds the location at
which a given variable bas been allocated
and returns a pointer value to the point of
invocation. The pointer value identifies
the location at which the variable has been
allocated.

Reference: ADDR (x)

Argument: The argument, ·x,- is the vari
able whose location is to be found. It can
be any variable that represents an element,
an array. a structure, an area, an element
of an array, a !llinor structut:e. or an ele
ment of a structure. It can be of any data
type and storage class. For the TSS/360
PL/I compiler. t~e variable should not be a
bit-string variable forming part of an
unaligned array or structure.

Result: ADDR returns a pointer value iden
tifying the location at which ·x· has been
allocated. I.f "x" is a parameter. the
returned value ident.ifies the corresponding
argument (dummy or otherwise). If ·x· is a
based vilriable. the returned value is
determined from the pointer variable
declared with ·x-: if this pointer variable
has not. been set. the value .returned by
ADDR is undefined. If ·x· is an unallo
cated controlled variable, a null pointer
value is returned.

EMPTY Based Storage Built..,.in Function

DefinLtion: EMPTY clears an area of
st~.'!.age defined by an area variable. by
effectively freeing all the a.llo(!ations
contained within the area. The area can
then be used for a new set of allocations.

Reference: EMPTY

Arguments: None

Result: EMPTY returns an area of :a;ero
size. containing no allocations. to the
point of invocation. When this value is
aSSigned to an area variable, all the allo
cations contained within the area are
freed.

Section 1: Built-In l."unctions and Pseudo-Va:ciable~ 239

Page of GC28-2045-1, Issued September 15, 1970 by TNL GN28-3171

Note; The value of the EMPTY built-in
function is automatically assigned to all
area variables when they are allocated.

NULL Eased Storage.Built-in Function

Definition: NULL returns a null pointer
val.ue, (that is, a pointer value that cannot
identify any allocation) so as to indicate
that a pointer variable does not currently
identify an allocation.

l\rgQ~: None

Besult: The value returned by this func
tion is a null pointer value. This value
cannot be converted to offset type.

NULLO Based Storage Built-in Function

Definition: NULLO returns a null offset
value (that is, an offset value that cannot
identify any relative location of a based
variabl.e allocation) so as to indicate that
an offset variable does not currently iden-
tify an allocation. .

Reference: NULLO

Arquments : None

Result: The value returned by this func
tion is a null offset value. This value
cannot be converted to pointer type.

MUL'1;ITASKING BUILT-IN FUNCTIONq

The multitasking built-in.functions are
designed to be used during multitasking and
during asynChronous I/O operations. The
summaries below describe the intended,
rather than actual, workings of the func
tions. In TSS/360 only the COMPLETION and
STATUS functions can be executed success
fully, and these only to investigate the
current state of execution of an I/O opera
tion. They both require arguments.

COMPLETION Multitasking Built-in Function

Definition: COMPLETION determines the com
pletion value of a given event variable.
(COMPLETION can also be used as a
pseudo-variable.)

Reference: COMPLETION (event-name)

Argwn~nt: The argument, -event-name-, can
be an event element or an event array. It
represents the event (or events) whose com
pletion value is to be determined. The
event can be associated with compl~tion of
a task, or with completion of an I/O opera
tion, or it can be user-defined. It can be

240

active or inactive. An array argument
causes an array value to be returned.

Result: The value returned by this func
tion is 'O'B if the event is incomplete,
"l'B if the event is complete.

STATUS Multitasking Built-in Function

Definition: STATUS determines the status
value of a given event variable. (STATUS
can also be used as a pseudo-variable.)

Reference: STATUS (event-name)

Argument: The argument, -event-name·, can
be an event element or an event array. It
represents the event (or events) whose sta
tus value is to be determined. The event
can be associated wit~ completion of a
task, or with completion of an input/output
operation, or it can be user-defined. It
can be active or inactive. An array argu
ment causes an array value to be returned.

Result: The value returned by this func
tion is a fixed binary value of default
precision (15,0) for the TSS/360 PL/I com
piler). It is zero if the event is normal,
or nonzero if abnormal. The nonzero value
is set to 1 as a result of the completion
of the task, or input/output operation,
with which the event variable has been
associated by the event option. If the
nonzero value is user defined it can be set
to any value the user selects.

MISCELLANEOUS BUILT-IN FUNCTIONS

The functions described in this section
have little in common with each other and
with the other categories of built-in func
tions. Some require arguments and others
do not. Those that do not require argu
ments will be so identified.

ALLOCATION Built-in Function

Definition: ALLOCATION determines whether
or not storage is allocated for a given
controlled variable and returns an appro
priate indication to the point of
invocation.

Reference: ALLOCATION (x)

Argument: The argument, ·x , • must be an
unsubscripted array name, a major structure
name, or an element variable name. and it
must have the CONTROLLED attribute.

Result: The value returned by this fUi"lC
tion is defined as follows: if storage has
been allocated for ·x. w the returned value
is 'l'B (provided that the allocation is
known to the taSK executing the function):

if storage has not been allocated for H x,"
the returned value is ·O'B.

COUNT Built-in Function

Definition: COUNT determines the number of
data items that were transmitted during the
last GET or PUT operation on a given file
and returns the result to the foint of
invocation.

Reference: COUNT (file-name)

Argument: The argument, "file name,"
represents the file to be inVestigated.
This file must have the STREAM attribute.

Result: The value returned by this fUnc
tion is a binary fixed-point integer of
default precision specifying the number of
element data items that were transmitted
during the last GET or PUT operation on
wfile name." Note that if an on-unit or
I-rocedure is entered during a G~T or PUT
operation, and within that on-unit or pro
cedure a GET or PUT is executed for the
same file, the value of COUNT is reset for
t.he new operat.ion and is not restored when
the original GET or PUT is continued.

DATE Built-in Function

Definition: LATE returns the current date
to the point of invocation.

Reference: DATE

Ar<quments: None

Kesult: The value returned by this func
tion is a character st_ring of length six,
in the form yyrnmdd, where:

yy is the current year

nun is the current month

dd is the current day

Example: If the current date is March 4,
1969, execution of the statement

x = DATE;

will cause the character string '690304' to
be returned to the pOint of invocation.

LINENO Built-in Function

Definition: LINENO finds the current line
number for a file having the PRINT attri
bute and returns that nu~ber to the ~oint
of invocation.

Reference: LINENO (file-name)

Argune.!!!.: The argument, "file name," must
be the name of a file having the PRINT
att.ribute.

B~sult: The value returned by this func
tion is a binary fixed-point integer of
default frecision speCifying the current
line number of "file name,"

TIME Built-in Function

I:efinition: TIME returns the current time
to the point of invocation.

Resul!: The value returned by this func
tion is a character string of length nine,
in the form hhmmssttt, where:

hh is the current hour of the day

mm is the number of minutes

ss is the numter of seconds

ttt is the number of milliseconds in
machine-dependent increments

ExamEle: If the current time is 4 P.M., 23
minutes, 19 seconds, and 80 milliseconds, a
reference to the TIME function, for some
computers, will return the character string
'162319080' to the point of invocation.

PSEur;O-VARIABLES

In general, pseudo-variables are certain
built-in fUnctions that can appear wherever
other variables can appear in order to
receive values. In short, they are built
in fUnctions used as receiving fields. For
example, a pseUdo-variable may appear on
the left of the equal sign in an assignment
or DO statement; it may appear in the data
list of a GET statement; it may appear as
the string name in the STRING option of a
PUT statement.

Since all pseudo-variables have built-in
function counterparts, only' a short
description of each pseudo-variable is
given here; the discussion of the corre
sponding built-in function should be con
sulted fer the details. Note that pseudo
variables cannot be nested; for exarrple,
the following statement is invalid:

UNSPEC(SiJBSTR(A, 1,2))=' OO'B;

COMPLETION Pseudo-variable

Reference: COMPLE'l'ION (event-name)

Section 7: Built-In Functions and Pseudo-Variables 241

De~;.sription: The narrled event variable must
be inactive and is as described for the
CGMPLETION built-in function. The value
received by this pseudo-variable is a bit
~;tring of length 1. This value sets the
convletion value of the event variable. A
value of 'O'B specifies that the event
associated with the nevent variable" is
incumplete; ~ value of 'l'B specifies that
the E'vent ie, cOI\,plete. No interruption can
take place during assignment to the
~seudo-vdriable.

.r~~cripti2n: Only cOIT,plex values can be
assigned to this pseudo-variable. The real
~,art of the complex value is assigned to
th\' variable "a", the imaginary part is
dssiqred to the variable "t.n If either
"a" and nb" is an array, both must be
arrdY!.', of ident_ical bounds.

Rt?f e t-'::nce : If'lAG (c) ----_._---

ce~;cri£t:.ion: Real or complex values may be
assigned to this pseudo-variable. The real
V3 . .l ue or the real part of the con,plex value
is assigned to the imaginary part of the
complex variable "c r n whicn may be an ele
n,ent val.-iable or an array variable.

QJ'!QIAR Pseudo-variable

Reference: ON CHAR

Description: ONCHAR can be used in the
on-unit for a CONVERSION condition or in
the on-unit for an ERROR or FINISH condi
tion raised as standard system action for a
CONVERSION condition; it can also be used
in a block directly or indirectly activated
by such an on-unit. If ONCHAR is used in
some other context, it is an error.

The expression being assigned to ONCHAR
is evaluated, converted to a character
string of length 1, and assigned to the
character that caused the error. The new
character will displace the current value
of the ONCHAR built-in function, and will
be used when the conversion is re
attempted, upon the resumption of execution
at the point of interruption.

ONSOURCE Pseudo-variable

Reference: ONSOURCE

Description: ON SOURCE can be used in the
on-unit for a CONVERSION condition or in an
on-unit for an ERROR or FINISH condition
raised as standard system action f)r a CON
VERSION condition; it can also be used in a

242

block dirE-ctly or indi rectly activated by
such an on-unit. If ONSOURCE is used in
some other context, it is an error.

The expression being assigned to
CNSOURCE is evaluated, converted to a char
acter string, and assigned to the string
that caused the CONVERSION condition to be
raised. The string will be padded with
blanks, if necessary, to mat.ch the length
of the string that caused the error. This
new string displaces the current value of
the ON SOURCE built-in fmlction and will be
used when the conversion is re-attelq::ted,
upon the resumption of execution at the
point of interruption.

REAL Pseudo-variable

Reference: REAL (c)

Cescription: Real or complex values may be
assigned to this pseudo-variable. The real
value or the real part of the complex value
is aSSigned to the real part of the complex
variable "c," which may be an element vari
able or an array variable.

STATUS Pseudo-variable

Reference: STATUS (event-name)

Description: The named event varialle can
be active or inactive, and is as described
for the STATUS built-in fUnction. The
value received by this pseudo-variable is a
fixed point. binary value of default preci
sion ((IS , 0) for the TSS/360 PL/I compil
er). No interruption can occur during
assignment to the pseudo-variable.

STR~NG Pseudo-variable

STRING(x)

Cescription: The argument "x~ is an ele
ment, array, or structure variable, com
rosed either entirely of character strings
and/or numeric character data, or entirely
of bit strings. The variable may be
aligned or unaligned.

Note: For the TSS/360 compiler, the argu
ment to a STRING pseUdo-variable cannot be
a cross section of an array.

The value being assigned must be an ele
ment expression and is converted, if neces
sary, to bit-string or character-string
type, dependin9 on the characteristics of
the argurrent ·x", It is then aSSigned
piece by piece to the elements of ·x·,
using the normal rules of string assign
ment, until either all of the elements of
the aggregate have been aSSigned to, or no
portion of the assigned string remains. In
the latter case, the normal string assign
rrent rules aFply to the remainder of the

aggregate. i.e., varying strings are given
a zero length, and non-varying strings are
filled with blanks. (The length of each
assigned piece is determined by the length
of the corresponding element of the argu
ment; the normal rules for string assign
ment ap~ly if the last piece is too short.)

STRING pseudo-variable can only be used
in an assignment statement and a DO state
nlEmt. It cannot be used in options such as
KEPLY and KEYTO.

SUB!,TR Pseudo-variable

Lescription: The value being assigned to
SUBSTR is assigned to the substring of the
character- or bit-string variatle "string,'
as defined for the built-in function SUB
STR. If "string" is an array, l: and/or j
may be arrays, in which case they must have

identical bounds. The remainder of I ".string" . remains unchanged. The SIJBSTR
pseudo-variable cannot be applied to a nurr
eric picture.

UNSPEC Pseudo-variable

Reference: UNSPEC (v)

DescriFtion: The letter ·v· represents an
element or array variable of arithmetic,
string, area, pointer, or offset ty~e. The
value being assigned to UNSPEC is evalua
ted, converted to a bit string (the length
of which is a function of the characteris
tics of "v" -- see the UNSPEC built-in
function), and then assigned to "v,"
without conversion to the type of "v." If
nv" is a string of varying length, its
length after the assignment will be the
same as that of the tit string assigned to
it.

section 7: Built-In Functions and Pseudo-Variatles 243

INTRODUCTION ---,--------

The ON-condi~ions are those exceptional
conditions that can be specified in PL/I by
rreans at an ON statement. If a condition
is enabled, the occurrence of the condition
will result in an interruption. The inter
rurtlon. in turn, will result in the execu
tion of the current action srecification
tor t.hat condltion. If an ON statement for
that condition is not in effect, the cur
rent action srecification is the standard
system action for that condition. If an ON
statement for that condition is in effect,
the current action specification is either
SYSTEM, in which case the standard system
action fer that condition is taken, or an
,:;n-;Jni. t., in which case the user has sup
plied nis own action to be taken for· that
cor.dition.

It a comiltion is nct enatled (Le., if
t is di~abled), and the condition occurs,

,H, .tllterrupt:;..on will not_ take rlace, and
~rrors may result.

~~cme conditions a re always enabled
unless they have been explicitly disabled
by condition prefixes; others are always
disabled unless they have been explicitly
enabled by condition prefixes; and still
others are al'Nays enabled and cannot be
disabled.

Those conditions t~hat are always enabled
unless they have been explicitly disabled
hy condition prefixes are:

CONVERSION
FIXEDOVERFLOW
OVERFLOW
UNDERFLOW
ZERODIVIDE

Each of the above conditions can te dis
abled by a condi~ion prefix specifying the
condition name preceded by NO without
intervening blanks. Thus, one of the fol
lowing names in a condition prefix will
disable the respective condition:

NOCONVERSION
NOFIXEDOVERFLOW
NOOVERFLOW
NOUNDERFLOW
NOZERODIVIDE

Such a condition prefix renders the curre
sponding condition disabled throughout the
scope of the prefix; the condition remAins
enabled outside this sco~e. (Scope of a
condition prefix is discussed in !'ccr:: I,

244

Section 13, "Exceptional Condition Handling
and Program Checkout.")

Conversely, those conditions that are
always disabled unless they have been
enabled by a condition prefix are:

SIZE
SUBSCRIPTRANGE
STRINGRANGE
CHECK

The appearance of one of these four in a
condition prefix renders the condition
enabled throughout the scope of the prefix;
the condition renains disabled outside this
scope. Further, a condition prefix speci
f)-ing NOSIZE, NOSUBSCRIPTRANGE, NOSTRING
RANGE, or NOCHECK will disable the corre
sponding condition throughout the scope of
that prefix.

All other conditions are always enabled
and remain so for the duration of the ~rc
gram. These conditions are:

AREA
CONDITION
ENDFILE
ENDPAGE
ERROR
FINISH
KEY
NAME
RECORD
TRANSMIT
UNrEFINEDFILE

Condition (.09<2S (oN-C..9des)

The ONCODE built-in function may be used
by the user in anyon-unit to deterrrine the
nature of the error or condition that
caused entry into that on-urn t. 'rhe codes
corresponding to the conditions and errors
checked for by the TSS/360 PL/I corrpiler
are given below:

Code
o
3
(\

9
10
20
21

22

23

~Q.ldition/Error
eNCODE function used out of context
Source program error
FINISH (normal termination, or Sig-

naled by STOP or EXIT)
ERROR (signaled)
NAME
RECORD (signaled)
RECORD (record variable smaller than

record size>
RECORD {record variable larger than

record size}
RECORD (attempt to write zero length

record)

24

40
41
42
50
51
52
53
54
55
56

57

70
80
81
82

83

84

90
300
310
320
330
340
341
350
360

361
362
500
510
511
520
600
601
602
603
604

605

606
607

608

609
610

611

612

613

614

615

616

RECORD (zero length record has been
read)

TRANSMIT (signaled)
TRANSMIT (output)
TRANSMIT (input)
KEY (signaled)
KEY (keyed record not found)
KEY (attempt to add duplicate key)
KEY (key sequence error)
KEY (key conversion error)
KEY (key specification error)
KEY (keyed relative record/track

outside data set limit)
KEY (no space available to add keyed

record)
ENDFILE
UNDEFINEDFILE (signaled)
UNDEFINEDFILE (attribute conflict)
UNDEFINEDFILE (access method not

supported)
UNDEFINEDFILE (blocksize not

specified)
UNDEFINEDFILE (file cannot te

opened, no DDEF command)
ENDPAGE
OVERFLOW
FIXEDOVERFLOW
ZERODIVIDE
UNDERFLOW
SIZ E (normal)
SIZE (I/O)
STRINGRANGE
AREA (raised by based variable
allocation)
AREA (raised by area assignment)
AREA (signaled)
CONDITION
CHECK (LABEL)
CHECK (variable)
SUBSCRIPTRANGE
CONVERSION (internal) (signaled)
CONVERSION (I/O)
CONVERSION (transmit)
CONVERSION (error in F-format input)
CONVERSION (error in F-format input)

(I/O)
CONVERSION (error in F-format input)

(transmit)
CONVERSION (error in E-format input)
CONVERSION (error in E-format input)

(I/O)
CONVERSION (error in E-format input)

(transmi t)
CONVERSION (error in B-format input)
CONVERSION (error in B-format input)

(I/O)
CONVERSION (error in B-format input)

(transmit)
CONVERSION (character-string to

ari thmetiC>
CONVERSION (character-string to ari

thmetiC> (I/O)
CONVERSION (character-string to ari

thmetic> (transmit)
CONVERSION (character-string to

bit-string)
CONVERSION (character-string to bit

string) (I/O)

617

618
619

620

621

622

623

624

625

626

627

628

629

1000
1001
1002
1003

1004
1005

1006

1007

1008

1009
1010
1011
1012
1013

1014
1015
1016

1017
1018

11019

1500
1501
1504
1505
1506
1507
1508
1509
1510
1511

CONVERSION (character-string to bit
string) (transmit)

CONVERSION (character to picture)
CONVERSION (character to picture)

(I/O)
CONVERSION (character

(transmit)
CONVERSION (P-format

decimal>

to picture)

CONVERSION (P-format
mal) (I/O}

CONVERSION (P-format
mal) (transmit>

CONVERSION (P-format
character}

input

input

input

input

CONVERSION (P-fQrmat input
character) (I/O)

CCNVERSION (P-format input
character) (transmit)

CONVERSION (P-format input
sterling)

deci-

deci-

CONVERSION (P-format input ster-
ling) (I/O)

CONVERSION (p-format input ster-
ling) (transmit)

Attempt to read output file
AttemFt to write input file
GET/PUT string length errOl:
Unacceptable output transmission

error
Print ortion on non-PRINT file
Message length for DISPLAY state

ments is zero
Illegal array data item for data

directed input
REWRITE not immediately preceded by

READ
GET STRING -- unrecognizable data

name
Unsupported file operation
File tYj:e not. supported
Inexplicable I/O error
Outstanding read for update exists
No completed read exists -- incor-

rect NCP value
Too many incomplete I/O operations
Event variatle already in use
Implicit open failures cannot

proceed
Attempt to rewrite out of sequence
ERROR condition raised when end of
file encountered unexpectedly in
list-directed or data-directed
input, or when field width in format
list of edit-directed input would
take scan beyond end of file.
Attemj:l to close file not opened in

current task.
Short SQRT error
Long SQRT error
Short LOG error
Long LOG error
Short SIN error
Long SIN error
Short TAN error
Long TAN error
Short ARCTAN error
Long ARCTAN error

Section 8: ON Conditions 245

1512
1513
lc,14
1515
1550

1551

155?

1 553

15')4

L r. t: c .) .1)

2000
)()01
JUO(>
:l001
3002
J003
3004
.J005
J006
3798

3800
:" 80 1

3900

3901
:1902
.1903

3904

3905

3906

3907
3908

8091
8092
8093
8094
8095
8096
8097
9000

9001
9002

9003

246

Short SINH error
Long ,:;INH error
Short ARCTANH error
Long ARCTANH error
Invalid exponent in short float

integer exponentiation
Invalid exponent in long float

integer exponentiation
Invalid exponent in short float gen

eral ex~onentidtion
Invalld exponent in long float gen

eral exr;onent.iation
Invalid exponent in complex short

float illteger exponentiation
invalid exponent in comr;lex long

float integer ex~onentiation
Invdl~d eXPOnent in complex short

tlOdt ~eneral exponentiation
Invalid exponent in complex long

float. general exponentiation
Invalid argument in short float com

pl~x A~CTAN or ARCTANH
[nval id dl.gument in long float com-

plex At<C'l'AN or ARCTANH
Undcc,,'pt,ible DELAY st.atement
UnaCCE:'IJtatle T IflE stdtement
E-tormat conversion error
F-torrrat conversion error
A-format conversion error
0-furrrat ~o~version error
A-format input error
B-format input error
Picture character-string error
ONSOURCE or ONCHAR pseudo-variables

used out: of C0"1t: ext.
Improper return from CONVERSION

on-unit.
structure length 2 16**6 bytes
Virtual origin of array 2 16**6 or

~·-16**6
Attempt to wa it on inacti ve and

i ncon>flete event
Task variable already active
Event already being waited for
Wait on wore than 255 incomplete
events
Active event variable as argument to
COMPLETION pseudo-variatle
Invalid task variable as argument to
PRIORITY pseudo-variatle
Event variable active in aSSignment
statement
Event variable already active
Attempt to wait for I/O event in
wrong task
Invalid operation
Privileged operation
EXECUTE statement executed
Protection violation
Addressing interruption
S~ecification interruption
Data interruption
Too many active on-units and entry

parameter procedures
No invocation count
Invalid free storage (main

procedure)
Invalid free VDA

Multiple Interruhtions

A !!}ult.iple interrup!ion can occur only
for an input/output operation that has teen
dssocj.ated with an event variable. It
occurs during the execution of the WAIT
statement naming that event variatle, if
the event has been cOInrleted abnornally
(1. e., if one or more conditions occurred
during the operation). Since conditions
for an input/output event. are raised at the
execution of the WAIT for that event, the
interruFtions for these cunditions also
occur at this time. It is possible for
rrore than one interrultion to occur for an
input/output event. The aggregate of
interruptions for an input/output event is
called a multiple interruption.

When an input/output event is completed
abnormally. the order in which the condi
tions are raised, and therefore. the order
in which the interruptions for these condi
tions occur. is implementation defined. If
the on-unit for such a condition ends
abnormally, then all unprocessed rc~~itions
(i.e., remaining interruptions of the mul
tiple interruption) are ignored; if an on
unit ends normally, the next condition is
[:rocessed. If an on-unit has not Leen
established for such a condition or if SYS
TEt-l is ir. effect, the next condition out
standing will be processed only if the
standard system action is to comment and
continue; if the standard system acticn is
otherwise, all remaining interruptions in
the multiple interrUption will be ignored.

Note: If the UNJ:EFINEDFILE condition is
raised by an attempt at impliCit opening,
caused by a statement associated with an
event variatle, the condition is raised
immediately, and the interrur;tion will
cccur even before the WAIT statement is
executed.

SECTION ORGANIZATION

This section presents each condition in
its logical grouping, and in alphatetical
crder within that grouping. In general,
the following information is given fer each
condition:

1. General format -- given only when it
consists of more than the cendition
nan;e.

2. Description -- a discussion of the
condition, including the circurrst.ances
under which the condition can be
raised. Note that an enatled condi
tion can always be raised by a SIGNAL
statement; this fact is not included
in the descriptions.

Page of GC28-2045-1, Issued september 15. 1970 by TNL GN28-3171

3. Result -- the result of the operation
that caused the condition to occur.
This applies when the condition is
disabled as well as when it is
enabled. In some cases. the result is
not defined; that is, it cannot be
predicted. This is stated wherever
applicable.

4 _ Standard system action -- the action
taken by the system when an interrup
tion occurs and the user has not spec
ified an on-unit to handle that
interruption.

5. Status -- an indication of the
enabled/disabled status of the condi
tion at the start of the program, and
how the condition may be disabled (if
possible) or enabled.

6. Normal return -- the point to which
control is returned as a result of the
normal termination of the on-unit. A
GO TO statement that transfers control
out of an on-unit is an abnormal'on
unit termination. Note that if a con
di tion has been raised by the SIGNAL
statement, the normal return is always
to the statement inunediately follOtting
SIGNAL.

The conditions are grouped as follows:

1. computational conditions -- those con
ditions associated with data handling,
expression evaluation, and computa
tion. They are:

CONVERSION
FlXEDOVERFLOW
OVERFLOW
SIZE
UNDERFLOW
ZERODIVIDE

2. Input/output conditions -- those con
ditions associated with data transmis
sion. They are:

ENDFILE
ENDPAGE
KEY
NAME
PENDING
RECORD
TRANSMIT
UNDEFINEDFILE

3. Program-checkout conditions -- those
conditions that facilitate the debug
ging of a program. They are:

CHECK
SUBSCRIPTRANGE
STRINGRANGE

4. LisLprocessi ruL£2.!!!!i tiQ!! -- the AREA
condition. which is associated with
area usage.

5. .§ystem ~ction conditions -- those con
ditions that provide facilities to
extend the standard system action that
is taken after the occurrence of a
condition or at the complet.ion of a
program. They are:

ERROR
FINISH

6. User-named condition --the CONDITION
condition.

COMPUTATIONAL CONDITIONS

The CONV.ERSION Condition

Description: The CO~~ERSION condition
occurs whenever an illegal conversion is
attempted on character-string data. This
attempt may be made internally or during an
input/output operation. For example. the
condition occurs when a character other
than 0 or 1 exists in a character string
being converted to a bit string; other
examples are when a character string being
converted to a numeric character field con
tains characters not permitted by the PIC
TURE specific~tio!l, or when a string being
converted to coded arithmetic data does not
contain the charact.er representation of an
arithmetic constant.

All convers ions of character-atr log data
are carried out character-bY-'charat':til;!r in a
left-to-right. sequence and the condition
occurs for each i.nvalid cha:racter, When an
invalid character is encolu"lte.red. an inter
ruption occurs (if. of course. that CONVER
SION has not been disabled) and the current
action specification for the condition is
executed. If the action specification is
an on-unit. the inva lid character can. be
corrected within t.he unit f:r:/ using the
ONSOURCE or ONCHAR pseudo-vari.ables. On
return f.com on-unit. the conversion of the
string is retried frqm the beginning. For
the c..:>mpiler, if the illegal character has
not been corrected, a message is printed
and the ERROR condition is raised.

Note: If conversion of a charaeter~~string
of significant length greater than 16 to an
arithmetic field is attempted. and a conv
ersion on-unit is enabled in which the
ONCHAR built-in fUnction is used t~o replace
an invalid character with a numeric
character. the following happens:

The CONVERSION condition is raised due to
the excessive string length. and the repla
cement charact.er does not. al.l.eviate this
condition. Therefore. a loop occurs

Section 8: ON Condi tiona 2.147

Page of GC2B-2045-1, Issued September 15, 1970 by TNL GN2B-3171

I betwe~n the conversion module and the
on-urut.

Result: When CONVERSION occurs, the con
tents of the entire result field are
undefined.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

status: CONVERSION is enabled throughout
the program, except within the scope of a
condition prefix specifying NOCONVERSION.

Normal Return:
of the on--unit
.returns to the
the conversion

Upon the normal termination
for this condition, control
beginning of the string and
is retried.

The FIXBDOVERFLOW Condition

Description: The FIXEDOVERFLOW condition
occurs when the length of the result of a
fixed-point arithmetic operation exceeds
the maximum length allowed by the implemen
tation. For System/360 implementations,
this maximum is 15 for decimal fixed-point
values and 31 for binary fixed-point
values.

Result: The result of the invalid fixed
point operation is undefined.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: FIXEOOVERFLOW is enabled through
out the program, except within the scope of
a condition prefix that specifies
NOFIXEOOVERFLOW.

Normal Return: Upon normal termination of
the on-unit for this condition, control
returns to the point immediately following
the point of interruption.

The OVERFLOW Condition

Description: The OVERFLOW condition occurs
when the magnitude of a floating-point
number exceeds the permitted maximum. (For
System/360 implementations. the magnitude
of a floating-point number or intermediate
result. must not be greater than approxi
mately 10 75 or 22S~.)

Result: The value of such an illegal
floating-point number is undefined.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

status: OVERFLOW is enabled throug!lout the
program, except within the scope of a con
dition prefix specifying NOOVERFLOW.

248

Normal Return: Upon normal termination of
the on-unit for this condition, control
returns to the point immediately following
the point of interruption.

The SIZE Condition

Description: The SIZE condition occurs
only when high-order (i.e., leftmost) Sig
nificant binary or decimal digits are lost
in an assignment to a variable or a tem
porary or in an I/O operation. This loss
may result from a conversion involving dif
ferent data types, different bases, dif
ferent scales, or different precisions.

The SIZE condition differs from the
FIXEDOVERFLOW condition in an important
sense, i.e., FIXEDOVERFLOW occurs when the
size of a calculated fixed-point value
exceeds the maximum allowed by the imple
mentation (see the description of the
FIXEDOVERFLOW condition), whereas SIZE is
raised when the size of the value being
assigned to a data item exceeds the
declared (or default) size of the data
item. SIZE can be raised on assignment of
a value regardless of whether or not FIXED
OVERFLOW was raised in the calculation of
that value.

The declared size is not necessarily the
actual precision with which the item is
held in storage; however. the limit for
SIZE is the declared or default Size, not
the actual size in storage. For example,
with the TSS/360 PL/I compiler, a fixed
binary item of precision (20) will occupy a
fullword in storage. but SIZE is raised if
a value whose size exceeds FIXED BINARY(20)
is aSSigned to it.

Result: The contents of the data item
receiving the wrong-sized value are
undefined.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: SIZE is disabled within the scope
of a NOSIZE condition prefix and elsewhere
throughout the program, except within the
scope of a condition prefix specifying
SIZE.

Normal Return: Upon normal termination of
the on-unit for this condition, control
returns to the pOint immediately following
the point of interruption.

The UNDERFLOW Condition

Description: The UNDERFLOW condition
occurs when the magnitude of a floating
point number is smaller than the permitted
minimum. (For System/360 implementations,
the magnitude of a floating-point value may

P.3.ge of GC28-2045-1, Issued september 15« 1970 by TNL GN28-3111

not be less than approximately 10-'''' or
2-;2 fiO.)

UNDERFLOW does not occur when equal num
bers are subtracted (often called signifi
cance error).

Note that, for the TSS/360 PL/I compil
er, the expression x.*(-Y} (where Y>O) is
evaluated by taking the reciprocal of X •• Yi
hence, the OVERFLOW condition may be raised
instead of the UNDERFLOW condition.

Result: The invalid floating-point value
is set to O.

standard System Action: In the absence of
an on-unit, the system prints a message and
continues execution from the point at which
the interruption occurred.

Status: UNDERFLOW is enabled throughout
the program, except within the scope of a
condition prefix specifying NOUNDERFLOW.

Normal Return: Upon normal termination of
the on-unit for this condition, control
:returns to the point immediately fol,lowing
the point of interruption.

The ZERODIVIDE Condition

Description: The ZERODIVIDE condition
occurs when an attempt is made to divide by
zero. This condition is raised for fixed
point and floating-point. division.

Result: The result of a division by zero
is undefined.

standard System Action: In the absence of
an on-unit, the system print.s a message and
raises the ERROR condition.

Status: ZERODIVIDE is enabled throughout
the program, except within the scope of a
condition prefix specifying NOZERODIVIDE.

Normal Return: Upon normal termination of
the on-unit for this condition, control
returns to the point immediately following
the point of interruption.

INPUT/OUTPUT CONDITIONS

The input/output conditions are always
enabled and cannot appear in condition pre
fixes; they can be specified only in ON,
SIGNAL, and REVERT statements.

The ENDFILE Condition

General Format: ENDFILE (file-nar.le)

Description: The ENDFILE condition can be
raised during a GET or READ operation; it
is caused by an attempt to read past the

file delimiter of the file named in the GET
or READ state.ment.. It applies only to
SEQUENTIAL files.

If the file is not closed after ENDFILE
occurs. then any subsequent GET or READ
statement for that file immediately raises
the ENDFlLE condition again.

If ENDFILE is raised by an input/output
statement using the EVENT option, the
interruption does not take place until the
execution of a subsequent WAIT statement
for that event in the same procedure.

standard Sy~tem Action: In the absence of
an on-unit. the system prin~s a message and
raises the ERROR condition.

Status: The ~~DFILE condition is always
enabled; it cannot be disabled.

NOrmal Return: Upon the ncn::mal termination
of the on-unit tor the condition, execution
continues with the statement immediately
following the statement that caused the
ENDFILE condition to be ralsed (or. if END
FILE was raised by a READ with the EVENT
option, control passes back t~ the WAIT
statement from which the on-unit was
invoked) .

The ENDPAGE Co~Qj.tiorr

Genera 1 Format. ~ ENDPAGE (fIle-name)

The -file name~ must be the name of a
file having the PRINT attribute.

Descriptio!!! '.Fne ENDPAGE condition is
raised when a PUT st.atell'l€!nt result.s in an
attempt to start a new line oo1'on<:1 the
limit'. ;:;pecified for t.he Ctll";cent page. 'l'his
limit can be specified lJY the PAGESIZE
option in an OPEN statement; if PAGESIZE
has not been specified, a default limit of
60 applies for the TSS/360 PL.lI compiler,
The at.tempt to exceed the lind. t may be made
during data transmission (including aaso"
eiated fm:mat items, if the PUT statement
is edit-directed). by the !,INE option, or
by the SKIP option. ENDPAGE can also be
raised by a L.INE option or LINE format: ltem
t.:lCt specifies a line number less than t.he
current line number.

When ENDPAGE is raised, the Cl1rrent~ line
number is one greater than thl<t specified
by the PAGESIZE option (or 61. if the
default applies). The on-unIt: may start a
new page by execution of a PAGE option or a
PAGE format item. which sets tlH" current
line to L

I END PAGE is raised .only .once per page.
Consequently. printing can be continued
beyond t.he specified PAGESIZE aiter the
ENDPAGE condition has been raised the first

Section ij: ON Condit lOllS 249

Page of GC28-2045-1, Issued September 15, 1910 by TNL GN2S-3171

time. If the on-unit does not start a new
page, the current line number may increase
indefinitely. If a subsequent LINE option
or LINE format it.em specifies a line number
that is less than the current line number,
ENDPAGE is not raised, but a new page is
started with the current line set to 1.

If END PAGE is raised during data trans
mission, then, on return from the on-unit,
t~he data is written on the current line,
which may have been changed by the on-unit.
If ENDPAGE results from a LINE or SKIP
option, then, on return from the on-unit,
the action specified by LINE or SKIP is
ignored.

Standard System Action: In the absence of
an on-unit, the system starts a new page.
If the condition is signaled, execution is
unaffected and continues with the statement
following the SIGNAL statement.

Status: ENDPAGE is always enabled; it can
not be disabled.

Normal Return: Upon the normal completion
of the on-unit for this condition, execu
tion of the PUT statement continues in the
manner described above.

The KEY condition

General Format: KEY (file-name) . -
Description: The KEY condition can be
raised only during operations on keyed
records. It is raised in any of the fol
lowing cases:

1. The keyed record cannot be found.

2. An attempt is made to add a duplicate
key.

3. The key is out of sequence.

4. An error occurred intrye conversion of
the key.

5. The key has not been specified
correctly.

6. No space is available to add the keyed
record.

If KEY is raised by an input/output
statement using the EVENT option, the
interruption does not occur until the
execution of a subsequent WAIT statement
for that event in the same procedure.

The condition is not raised~or a LOCATE
statement until actual transmission is
attempted (that is, immediately before
execution of the next WRITE or LOCATE
statement for the file, or immediately

250

before the file is closed); until the error
is corrected, the record cannot be trans
mitted, nor can any further operation take
place for the file.

I A key sequence error cannot be detected
by PLII on the first attempt to write to an
indexed file that is reopened for sequen
tial output, if the next operation on tha~
file is close to it .•

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: KEY is always enabled; it cannot
be disabled.

Normal Return: Upon the normal completion
of the on-unit for this condition, control
passes to the statement immediately follow
ing the statement that caused KEY to be
raised (or, if KEY was raised by an input/
output statement with the EVENT option,
control passes back to the WAIT statement
from which the on-unit was invoked).

The NAME Condition

General Format: NAME (file-name)

Description: The NAME condition can be
raised only during a data-directed GET
statement. It can be raised either when an
identifier in the input stream does not
have a counterpart in the data list of the
GET statement or when the GET statement has
no data list and an identifier that is not
known in the block is encountered in the
stream.

NAME is :::-aised at the time the unmatched
identifier is encountered in the stream.

The user may retrieve the data field
(i.e., the identifier and its value) con
taining the unmatched identifier by using
the built-in function DATAFIELD in the
on-unit.

Standard Syst;em Action: In the absence of
an on-uni~. the system ignores the incor
rect data field, prints a message, and con
tinues the execution of the GET st.atement.

Status: NAME is always enabled; it cannot
be disabled.

Normal. Return: Upon the normal completion
of the on-unit for this condition. the
execution of the GET statement continues
with the next identifier in the stream.

The PENDING Condition

General Format: PENDING (file-name)

Page of GC28-20~5-1f Issued September 15. 1970 t~ TNL GN28-3171

Description: Except when signaled. the
PENDING condition can be raised only during
execution of a READ statement for a TRAN
SIENT file.

Note: Since TRANSIENT files are not sup
ported in TSS/360, the PENDING condition,
although it will compile correctly, will
result in an error diagnostic if executed.

The RECORD Condition

General l-'ormat: RECORD (filename)

Description: The RECORD condition can be
raised only during a READ, WRITE, or RE
WRITE operation. It is raised by any of
the following:

1- The size of the record is greater than
the size of the variable.

2. The size of the record is less than
the size of the variable.

3. A record of zero length has been read.

4. An attempt is made to write a 'record
of zero length.

I Note: Except when the length of the record
variable is zero, the RECORD condition is
not raised for consecutive unbuffered input
files containing U-format records if read
ing forwards.

If the size of the record is greater
than the size of the variable, the excess
data in the record is lost on input and is
unpredictable on output. If the size of
the record is less than the size of the
variable, the excess data in the variable
is not transmitted on output and is unal
tered on input. (Thus, if a zero length
record is read, the variable contains the
same data that it contained before the read
operation.) If an attempt is made to write
a record of zero length, tne attempt is
aborted, and, in effect, t.he statement is
ignored.

If RECORD is raised during transmission
of an area, the area control field will
contain incorrect information

If RECORD is raised by an input/output
statement using the EVENT option, the
interruption does not occur until the
execution of a subsequent WAIT statement
for that event in the same proc"dure.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

status: RECORD is always enabled; it can
not be disabled.

Normal Return: Upon nor:mal completion of
the on-unit. execution continues wit.h the
statement immediat.ely following the one for
which RECORD occnrred (or if RECORD was
raised by an I/O st.atement with an EVENT
option, control. returns to the WAIT state
ment from Which t-.he on-uni.t. was invoked).

The TRANSMIT condition

General Format: TRA.."'fSMIT (file-nc,me}

Description: The TRANSMIT condition can be
raised during any input/output operation.
It is raised by a permanent transmission
error, and therefore signifies that any
data transmitted is potentially incorrect.
During input, the condition is raised after
assignment of the potentially incorrect
data item or record. During output, the
condition is raised after the transmission
of the potentially incorrect data item or
record has been attempted.

If TRANS~~T is raised by an input/output
statement using the EVENT option~ the
interruption does not take place until the
execution of a subsequent WAIT sta.tement
for that event in the same procedure.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: TRANSMIT is always enabled; it
cannot be disabled.

Normal Return: Upon the normal complet.ion
of the on-unit, processing continues as
though no error had occurred. allowing
another condit.ton (e.g •• RECORD) \:0 be
raised by the s'tatement or data itemt.hat
raised the TRANSMIT condition. {I f 'l'AANS
MIT was raised by an i npot/output stat.ement
wit.h an EVENT option, control reb:u::ns t.o
the WAIT st.atement from which the on-Unit:
was invoked.)

The UNDEFINEDFlI.E conditiol1

DE';..o:_cription: The UNDEFINEDfTLE condition
1,·, raised whenever an attempt La open a.
file is unsuccessful. If the atteml-1t is
made by means af an OPEN stat.{:!tlH~ht t:l1i'1t
specifies mar-ethan one file name, attempts
to open all other: files in that statement
will be made before the condition is
raised. :If the condition is raised: for
more than one file in tiH>' same OPEN stoate
ment. on-units will be eXE>ctlted according
to the order of appearam::e !'taken from left
to right) of the file names in that OFB~
statement.

If the condition is raised an impli-
cit file opening in an input . .lout.put state-

Section 8: ON Conditions 251

Page of GC28-2045-1. Issued September 15. 1970 by TNL GN28-3171

ment without the EVENT option, then, upon
normal return from the on-unit, processing
continues with the remainder of the inter
rupted input/output statement. If the file
was not opened in the on-unit, then the
statement cannot be continued and the ERROR
condition is raised.

If the condition is raised by an impli
cit file opening in an input/output state
ment having an EVENT option, then the
interruption occurs before the event vari
able is initialized. In other words, the
event variable retains its previous value
and remains inactive. On normal return
from the on-unit, the event variable is
initialized, that is, it is made active and
its completion value is set to 'O"B (pro
vided the file has been opened in the on
unit). Processing then continues with the
remainder of the interrupted statement.
However. if the file has not been opened in
the on-unit, the event variable remains
uninitialized, the statement cannot be con
tinued, and the ERROR condition is raised.

For the TSS/360 PL/I compiler, some .
cases for which the UNDEFINEDFILE condition
is raised are as follows:

1. A conflict in attributes exists.

2. The blocKsize has not been specified.

3. There is no recognizable DDEF command
for a RECORD I/O file.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: UNDEFINEDFILE is always enabled;
it cannot be disabled.

Normal Return: Upon the normal completion
of the final on-Unit, control is given to
the statement immediately following the
statement that caused the condition to be
raised (see -Description- for action in the
case of an implicit opening).

PROGRAM-CHECKOUT CONDITIONS

The CHECK Condition

General Format: CHECK (name-list)

The wname list- is one or more named
separated by commas; a name may be a quali
fied name. Each name must be one of the
following:

1. An entry name

2. A statement label constant

252

3. An unsubscripted name representing an
element. an array, or a structure

'rhe names appearing in a CHECK pre:!: ... ;,
refer to the names known within the bloch
to which the prefix is attached. A name
cannot be a parameter or a variable having
the DEFINED or BASED atrributes.

Description: The CHECK condition is ru.«;ed
only within the scope of a CHECK conditic:.
prefix. Such a condition prefix may be
prefixed only to a PROCEDURE or BEGIN
statement. The CHECK condition is enabled
separately for each name in the list of the
CHECK prefix. For example, the prefix
CHECK (A,B,C) is equivalent t.O CHECK (A):

CHECK (Bl: CHECK tCl. Hence, the action
specificat.ion can be controlled separately
for each name. The REVERT statement can be
used to change the action specification for
one or more names in the list. Also, a
NOCHECK prefix can be used to disable the
CHECK condition for a specific name (like
CHECK, NOCHECK can appear only as a prefix
to a PROCEDURE or BEGIN statement".

If the name of a structure or array of
structures appears in the name list follow
ing CHECK, such a list is equivalent to one
that contains, in the order in which they
were declared. the elements of that struc
ture or array of structures. For example,
if P is defined:

DECLARE 1 P, 2 Q, 2 R, 2 S;

then:

CHECK (p)

is equivalent to:

CHECK (Q. R, S)

The CHECK condition is raised within the
scope of a CHECK prefix in any of the fol
lowing cases:

1. If a ~arne in the.CHECK prefix is a
stat,ement label constant, the condi
tion is raised and the interruption
occurs prior to the execution of the
statement to which tile label is pre
fixed. If the label is prefixed to a
DECLARE or FORMAT statement, the con
dition is not raised.

2. If a name in the CHECK prefix is a
variable (as specified in item 3 of
the general f01~t above), the condi
tion is raised whenever the value of
the variable, or a generation of any
part of the variable, is changed by
any statement within the scope of the
prefix.

Page of GC28-2045-1. Issued september 15, 1970 by TNL GN28-3171

Specifically, if the identifier 10
represents the variable, the condition
is raised in the following cases:

a. 10 appears on the left-hand side
of an assignment statement. (This
applies to BY NAME assignment even
if the name mentioned does not
appear in the final expansion of
the statement.)

b. 10 is set as a result of a pseudo
variable appearing on the left
hand side of an assignment
statement.

c. 10 appears as the control variable
of a DO-group or a repetitive
specification in a data list (or
it is set as a result of a pseudo
variable appearing as the control
variable of a DO-group or a repet
itive specification in a data
list).

d. 10 appears in the data list of an
edit-directed or list-directed GET
statement.

Section 8: ON Conditions 252.1

e. I~ is altered by data-directed
input.

f. ID appears in the REPLY option of
a DISPLAY statement.

g. ID appears in the STRING option of
a PUT statement.

h. 10 is passed as an argument to a
user-defined procedure, no inter
mediate argument is created, and
the frocedure terminates with a
RETURN or END.

i. 10 appears in the KEYTO or INTO
option of a READ statement. Note
that if the READ statement has an
EVENT option, the CHECK condition
will not be raised.

j. 10 is a pOinter variable and
appears in a SET option.

Note that in a, b, d. and e aboVe, if
10 is a structure. the CHECK condition
is raised each time an element of that
structure is given a value, but the
interruption for each condition does
not occur until after the statement
that caused the condition to be raised
has been executed comfletely.

The condition is not raised under any of
the following circumstances:

a. If the value of a variable defined
on ID or on part of ID changes in
any of the ways described above.

b. If the parameter that represents
the argument ID changes value.

c. If 10 appears in a GO TO or RETURN
statement or any statement that
involves the execution of a GO TO
or RETURN statement .•

d. If 10 is set ty the INITIAL
attribute.

Note that in all of the atove con
texts, 10 can appear in subscripted or
qualified form. Note also that ID
need not appear in the name list of a
CHECK prefix; it only need represent a
structure or element contained by, or
containing, a name in the li~t.

The interruption for a CHECK condition
occurs after the statement that caused
the condition to be raised has been
executed. (Note that an IF statement
is considered executed just prior to
the execution of the THEN or ELSE
clause.> If the statement is a DO
statement, the interruption occurs
each time control proceeds sequential-

ly to the statement following the DO
statement. If the DO specifies repet
itive execution, the interruption
occurs each time the control variable
changes value.

Only a data-directed GET statement or
a DO statement can cause a condition
to te raiSEd more than once fer the
same aFpearance of the same name. If
d statement causes a CHECK condition
to be raised for several names, the
conditions will be raised in the left
to-right order of appearance of the
names.

3. If a name in the CHECK prefix is an
entry name, the condition is raised
and the interruption occurs prior to
each invocation of the entry point
corresponding to the entry narre. The
condition is raised only if the entry
point is invoked by the entry narr,e
given in the prefix.

4. For the TSS/360 compiler, the number
of characters in a qualified name to
be used in CHECK name lists must not
exceed 256.

5. The maximum number of entries in a
CHECK condition, whether in a prefix
list or in an ON statement, is 510.
The maximum number of data iterrs teing
checked at any point in the corrpila
tion varies between 2078-2n and 3968-
2n, where,n is the number of currently
checked items which have the attribute
EXTERNIII.

Result: When CHECK is raised, there is no
effect on the statement being executed.

Standard System Action: In the absence of
an on-unit, if the name in the name list is
a statement-latel constant, a statement
label variable, a task name, an event name,
an area variable, a locator variable, or an
entry narre, then for this compiler, only
the name is printed on SYSOUTi in all ether
cases, the name and its new value are
printed on SYSOUT in the format of data
directed output.

Note: Standa£d system action for the CHECK
condition requires access to the variatle;
consequently, if SIGNAL CHECK is given for
an unallocated variable, an error will
result, as it would if the variable were
accessed by an on-unit.

Status: CHECK is disabled by default and
within the scope of a NOCHECK condition
prefix. It is enatled only within the
scope of a CHECK prefix.

Normal Return: Upon the normal completion
of the on-unit for the CHECK condition,

Section 8: ON Conditions 253

~xecution continues immediately following
the point at which the interruption
occurred.

Th~ STRlNGRANGE Condition

Definition: The STRINGRANGE condition is
raised whenever the lengths of the argu
ments to a SUBSTR reference fail to comply
with the rules described for the SUBSTR
built-in function.
SJch reference.

It is raised for each

st an dC1!:.<:'L_§Ls te!!'-Action: Executi on con
tinues as de::;cribed for normal return.

:?_!~::!_t:J:l_~~: S'I'RINGRANGE is disaLled by default
and wlthin the scope ot a NOSTRINGRANGE
cOllJition prefix. It is enabled only
within the scope of a STRINGRANGE condition
r-refix.

Norm~l Return: On normal return from the
oI~u~:;-Tt-,-(~xeclJtjon continues with a revised
SUBSTR reference whose value is defined as
tollows:

fl.ssuwjngthat the length of the source
stL-ir:o (after execution of the on-unit, if
specified) is k, the starting point is ~,
",ild thp length of the sutstring is j;

1. If i is greater than k the value is
the null string.

2. If i is less than or equal to k, the
value is that substring teginning at
the mth character or bi t. of the source
string and extending Q characters or
bi t_s. where !!I and D are defined by:

m=MAX (i, 1>

n=MAX (0. MIN (j+MIN (i, 1>-1, k-m+l))
[if j is specified]

n=k--m+1
[if j is not specified]

This means that the new arguments are
forced within the limits.

The values of i and j are established
tefore entry to the on-unit; they are not
reevaluated on return from the on-unit

'The SUBSCRIPTRANGE Condition

Description: SUBSCRIPTRANGE can be raised
whenever a subscript is evaluated and found
to lie outside its specified tounds. If
more than one subscript is associated with
an identifier, e.g., A(I,J,K), SUBSCRIPT
RANGE is raised after each erroneous sub
script has been checked. Thus, if both I
and J in the above example were in error,
SUBSCRIPTRANGE would be raised aft~r I was
evaluated and again after J was evaluated.

254

Result: When SUBSCRIPTRANGE has been
raised, the value of the illegal sutscri~t
is undefined, and, hence, the reference is
also undefined.

standard System Actin[l: In the absence of
an on-unit, the system prints a message dIld
raises the ERROl{ condit.ion.

statu~: SUBSCRIPTRANGE is disabled by
default and ~ithin the scope of a NONSUB
SCRIPTRANGE condition prefix. It is
enabled only within the scope of a SUB
SCRIPTHANGE condition prefix.

Normal Return:
of the on-unit
tion continues
point. at which

Upon the normal completion
for this condition, execu
immediately followinC] the
the condition occurred.

LIST PROCESSING CONDITION

The AREA Condition

LescriptioD: The AREA condition is raised
in either of the following circumstances:

1. When an attempt is made to allocate a
based variable wi thin an area that
contains insufficient free storage for
the allocation.

2. When an attempt is made to perforrr an
area assignment, and the target area
contains insufficient storage to
acccrrmodate the allocations in the
source area.

Result: If the condition occurs as the
result of an attempted allocation, the
allocation has no effect; if the condition
occurs as d result of an area assignment,
the contents of the target area are
undefined.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: AREA is alsways enabled; it cannot
be disabled.

Normal Return: On normal return from the
on-Unit, the action is as follows:

1. If the condition was raised by an
allocation, the allocation is reat
tempted. If the on-unit has changed
the value of a pointer qualifying the
reference to the inadequate area so
that it points to another area, the
allocation is reattempted within the
new area.

2. If the condition was raised by an area
assignment, or by a SIGNAL stateIl',ent f

Page at (;\.'28-~045-1. lfisued :;"pt .. mbt,r W, 1~71 Ly TNL GN2f:l-318<)

execution continues at the ioint of
i nterru!Jt ion.

~:;Y!iTEM ACTION CONDITIONS

The ERROR Condition

Description: The ERROR conditioll i:; raised
under the following circumstances:

1. As a result of the standard sy:;tf'J11
action for an ON-condition tor which
that action is to -Frint an error mes
sage and raise the eRROR condition R

2. As a result of an error (for which
there is no ON-condition) OCCUrring
during program execution

3. As a result of a ~IGNAL ERROR
statement

standard System Action: For thp TS~/160
PL/I comriler, if the condition i~ raised
in tne major task, the FINIS~ condition i8
raised, and subsequently the major task i"
terminatpd. If the condition is rai!;ed in
any other task, that task is terminated.

status: ERROR is always enabled: it cannot
be disabled.

Normal Return: Opon the normal con1pletion
of the on-unit, the standard system action
is taken.

The FINISH Condition

Description: The FINISH condition is
raised during execution of a statement
which would cause the termination of d PL/I
l:rogran" that i~;, by d :'>TOP !;tatf'ment t or
an EXIT statement in the IT,d jar ta,;k, or d
HETURN or END statem~nt in the initial
external ~rocedure. The condition is also
raised by SIGNAL FINISH in any td~k, and as
~art of the standard system action for the
ERROR condition. The interru~tion occurs
in the task in which the statement is
executed, and anyon-unit specified for the
condi tion is executed as (Jart of that ta!.;k.

An dtnornal return trom the on-unit will
dvoic'! any ,;ubr;pquf'nt task termination pro
ces~€,; <.nd IJI!cnilt the interrupted task to
conti nilI'.

standard System Action: In the absence of
an on-unit, no action is taken; that is,
Execution of the interrupted statem~nt is
resumed.

StdtuS: FINISH is always enabled; it can
not be disabled.

Normal Return: Upon the normal corr,pletion
of the on-unit, execution of the inter
rupted statenent is resumed. That is, if
FINISH in raised by any means other than
!,IGNAL FINISH, the normal completion of the
FINISH on-unit terminates the prograrr,.

USER-NAMED CUNLITION

'The CONCITION Condition

~eneral Format: CONDITION (identifier)

The Ridentifier" must be specified ty
th.! user. The arpearance of an identifier
with CONDITION in an ON, SIGNAL, or REVERT
,;tatemt'nt constitutes a contextual declara
tion for it; thp identifier i~ given the
EXTERNAL attrit.ute.

fe~;cri~ti9D: CUNDITION is raised by a
SIGNAL Gtdtewent that specifies the a~rro
lriate identifier. The identifier speci
f if'd in thf; SIGNAL statement determines
which CONuITION condition is to be raised.

~~~dard~ystem Action: In the absence of 
dn on-unit fcr this condition, the system 
£,rintG d I1leS~;age and continues with tne 
Gtatement following SIGNAL. 

Status: CONuITION is always enabled; it 
. cannot be di:;atled. 

Normal Return: Upon the normal completion 
of the on-unit, execution continues with 
th~ statement following the SIGNAL state
ment that caused the interruption. 

0ection 8: ON Conditions 255 



Paqe of GC28-1045-1, Iss\JPd ~;et-tcillher 3D, 1971 by TNt c;N2B-31fl') 

A nafOt.' apPE'aring in a F'L/I l:rogx:am may 
have one of many different ml'dniIl'ls. It 
may. for exaufle, be a variaLle referring 
to arithmetic data i tells; it may be a file 
name; it may be a variable n;fcrrin(J to a 
character string, or it roay Le a stat ement. 
label or a variable referling to a state
ment. label. 

Properties, or chdractt~rif:;tics. of the 
values a na.'1le represents (for examrle, 
arithmetic characteristics of dat.a items 
represented by an arithmetic variable) and 
other properties of th~ name itself (such 
as scope, storage class, etc.) together 
make up \:.t\c S('t. of attritutes that_ Cd.n be 
assocL;r.ed WIth a name. 

'l'l-,ccct'c.riilutes enable til(.' cCITl~iler t.O 
';;";;.1.,]; a unique n,f'aning to t.he identifiE.:r 
sI>'cified in d DECLARE statelTl~!nt. For 
example, 1f t.he variable is an arithmetic 
data variable, the ba;3e, :..;calp, ITo,je, and 
[recision attributes must tE.: associated 
with the name. Associated attributes are 
those specified in d DECLARE :>tat.emellt. or 
as:01.lrned by default. 

This sect ion discusses th.- differult 
attributes. The attributes art' yrouled by 
function and t.hen detailf'd ji~,cus:;ion:; fol
low, in alphabetic order, showiny th p rule~, 
defaUlts, and format for each attribute. 

At the end cf the s~ction. therp i~ a 
table (Figun, 4(11) sumrrdrizin(J th.' 
attributes. 

SPECIFlCATION OF IITTRIUUTES 

Attributes (other than the dirrension, 
length, and Frecision attritut.es) specified 
in DECLARE statement.o, are serarated by 
blanks. Except for the dirrension, length, 
and precision attribute specificdtions, 
they may appear in any order. The dimen
sion attribute specification must iffimedi
ately follow t.he array nan,e; the length <md 
precision attribute specifications must 
follow one of their associated attributes. 
A corrana lT1USt~ follow the last att.ribut.e 
specification for a particular name (or the 
niUlle itself if no att.rihutes are srecifi('d 
with it). unless it is the last naITe in the 
DECLARE statement, in which case the semi
colon is u~,ecl. 

FACTORING OF ATTRI BUTE:; 

Attribute~; common tc :;tc~v~ral r,afCP:; CdIl 

be factored in a declaration to elurinat.' 
repeated specificdt ion of t.he same att ri-

256 

tute for: I'f\dny idplli.ifiers. Fact.oring is 
achieved ~y enclo~ing the names in paren
theses, and follOwing this by the set of 
attribllt(;s which arply. All factored 
attributes must apply to all of the naffies. 
No factored rtttribute can be overridden for 
any of the names, but any name within thE 
list may be given other attributes ~o long 
as there i~; no conflict. with the factored 
attributes. Factoring of attri butes is 
rermitted only in the DECLARE statement. 
but not within an ENTRY attribute declara
tion. The numler of left parentheses used 
for factoring attributes in DECLARE state
!Tents is linit,:>d to 73 in a compilation. 
The dimension attribute may be factored. 
The frecision and length attributes can be 
factored only in cnnjunction with an asso
ciated keyword dttriblte. Factoring can be 
nested as ~;hown in the fourth exalTlrle 
telow. Names within the parenthesized list 
are separated 1:1' corr,rr.:;s. 

Note: structure level numbers can also be 
tactcn.'d, but a factored level nUIr,ber f1\ust 
(-recede t.h(, f-dHcntitesizE.d list. 

DECLARE (A,B,C,D) BINARY FIXED (31); 

DECLARE IE CECIMAU6,S), 
F CHARACTER(lOJ} STATIC; 

DECLARE 1 A. 2eB t C,DJ 
fIXED (1'», 

(3 , 2 ) B INA R Y 
.... III 

IH.CLAHE ((A,B) FIXEDllO), C FLCAT(S}) 
EXTERNAL; 

PROBLEM DATA 

Attr ibut("; fo.t problem dat.a are used to 
describe arithmetic and string varial:les. 
Arithmetic 'o'ariable,:; have att.ributes that 
specify til<' case, scale, mode, and preci
sion of the dd ta i terns. St:ring va ri a hIe:; 
have attributes that specify whether the 
vari<-ible represent" character ::t.ri.nqs or 
tit ~trinqG dnd that srecify the lE~gth to 
t::e m"intdirH-d. The dlithrntcti.c data attri
tute:. cile: 

DINARY I [;ECI~.AL 

FIXcl~1 FLOAT 

REAL!COMPLI:A 

(preci:;ion) 



page of GC28-2045-1. Issued September 15, 1910 by THL GN28-3111 

The string data attributes are: 

BIT I CHARACTER 

(length) 

VARYING 

PICTURE 

other attributes can also be declared 
for data variables. The INITIAL attribute 
specifies the initial value to be given to 
the variable. The DEFINED attribute speci
fies that the data item is to occupy the 
same storage area as that assigned to other 
data. The ALIGNED and UNALIGNED attributes 
specify the positioning of data elements in 
storage. The storage class and scope 
attributes also apply to data. 

Other attributes apply only to data 
aggregates. For array variables, tbe 
dimension attribute specifies the number of 
dimensions and the bounds of an array. The 
LIKE attribute specifies that the structure 
variable being declared is to have the same 
structuring as the structure of the name 
following the attribute LIKE. 

PROGRAM CONTROL DATA 

Attributes for program control data spe
cify that the associated name is to be used 
by the user to control the execution of 
this program. The LABEL, TASK, EVENT, 
POINTER, OFFSET. and AREA attributes speci
fy program control data. 

ENTRY NAME ATTRIBUTES 

The entry name attributes identify the 
name being declared as an entry name and 
describe features of that entry point. For 
example, the attribute BUILTIN specifies 
that the reference to the associated name 
within the scope of the declaration is 
interpreted as a reference to the built-in 
function or pseudo-variable of the same 
name. The entry name attributes are: 

ENTRY 

RETURNS 

GENERIC 

BUILTIN 

REDUCIBLE 

IRREDUCIBLE 

FILE DESCRl:PTION ATTRIBUTES 

The file description attributes estab
lish an identifier as a file name and 
describe characteristics for that file, 
e.g., how the data is to be transmitted, 
whether records are to be buffered. If the 
same file name is declared in more than one 
external procedure. the declarations must 
not conflict. unless one is declared with 
the INTERNAL attribute. 

The file description attributes are: 

FILE 

STREAM I RECORD 

INPUT I OUTPUT I UPDATE 

PRINT 

SEQUENTIAL I DIRECT 

BUFFERED I UNBUFFERED 

BACKWARDS 

ENVIRONMENT (option-list) 

KEYED 

EXCLUSIVE 

Note that flle description attributes, 
except for the ENVIRONMENT attribute. can 
be specified as options in the option list 
of the OPEN statement. 

SCOPE ATTRIBUTES 

whether or not a name may be known in 
another ext.ernal procedure. The scope 
attributes are EXTERNAL and INTERNAL. 

All external declarations for the same 
identifier in a program are linked as 
declarations of the same name. The scope 
of this name is the union of the scopes of 
all the external declarations for this 
identifier. 

In all of the external declarations for 
the same identifier, the attributes 
declared must be consistent, since the 
declarations all involve a single name. 
For example. it would be an error if the 
identifier ID were declared as an EXTERNAL i 

file name in one block and as an EXTERNAL 
entry name in another block in the same 
program. 

The INTERNAL attribute specifies that 
the declared name cannot be known in any 
other block except those contained in the 
block in which the declaration is made. 

Section 9: Attributes 257 



Page of GC28-2045-1, Issued September 15, 1970 by TNL GN28-3171 

The same identifier may be declared with 
the INTERNAL attribute in more than one 
block without regard to whether the attri
butes qiven in one block are consistent 
with the attributes given in another block, 
since the compiler regards such declara
tions as referring to different names. 

For a discussion of the scope of names, 
see Part I. Section 7, "Recognition of 
Names." 

STORAGE CLASS ATTRIBUTES ---------

The storage class attributes are used to 
specify the type of storage for a data 
variable. They are: 

STATIC 

AUTOMATIC 

CONTROLLED 

BASED 

ALPl11'BETIC LIST OF ATTRIBUTES 

Following are detailed descriptions of 
tile attributes, listed in alphabetic order. 
Alternative attributes are discussed 
together, with the discussion listed in the 
alphabetic location of the attribute whose 
name is the lowest in alphabetic order. A 
cross-reference to the combined discussion 
appears wherever an alternative appears in 
tile alphabetic listing. 

ALIg~ED~ld UNALIGNED (Data Attributes) 

The ALIGnED and UNALIGNED attributes 
specify the positioning of data elements in 
storage. to influence speed of access or 
storage economy respectively_ They may be 
specified for element, array, or structure 
variables. 

ALIGNED in System/360 implementations 
specifies that the data element is to be 
aligned on the storage boundary correspond
i ng to i 1:5 data type requirement. 

UNALIGNED in System/360 implementations 
specifies that the data element is to be 
stored contiguously with the data element 
preceding it, and that a fullword or dou
bl~word item is to be mapped on the next 
ava~lable byte boundary in a similar manner 
to character strings of length 4 or 8. 

General format: 

ALIGNED t UNALIGNED 

General rules: 

258 

1. Although they are essentially element 
data attributes, ALIGNED and UNALIGNED 
can be applied to any array or struc
ture. This is equivalent to applying 
the attribute to all contained ele
ments that are not explicitly declared 
with the ALIGNED or UNALIGNED 
attribute. 

2. Application of either attribute to a 
contained array or structure overrides 
an ALIGNED or UNALIGNED attribute that 
otherwise would apply to elements of 
the contained aggregate by having been 
specified for the containing 
structure. 

3. The LIKE attribute is expanded before 
the ALIGNED and UNALIGNED attributes 
are applied to the contained elements 
of the LIKE structure variable. The 
only ALIGNED and UNALIGNED attributes 
that are carried over from the LIKE 
structure variable (i.e., A in the 
example below) are those explicitly 
specified for substructures and ele
ments of the structure variable. 

Example: 

DECLARE 1 A ALIGNED, 
2 B. /+ ALIGNED FROM A +/ 
2 C UNALIGNED. 

3 D; /+ UNALIGNED FROM C +/ 

DECLARE 1 X UNALIGNED LIKE Ai 

DECLARE 1 Y LIKE A; 

The second declare statement is equi
valent to: 

DECLARE 1 X UNALIGNED, 
2 B, ,'. UNALIGNED FROM X • / 
2 C UNALIGNED, 

3 D; /+ UNALIGNED FROM C +/ 

The third declare statement is equiva
lent to: 

DECLARE 1 Y, 
2 B, 
2 C UNALIGNED, 

3 D; 

/. ALIGNED BY DEFAULT +/ 

4. For overlay defining involving bit
and character-class data (see Figure 
48), both the defined item and the 
overlaid part of the base item must be 
unaligned. For all other types of 
defining. equivalent items must be 
either both ALIGNED or both UNALIGNED. 

5. The ALIGNED and UNALIGNED attributes 
of an argument in a procedure invoca
tion must match the attributes of the 
corresponding parameter. If these 
attributes of the original argument do 



Page of GC28-2045-1, Issued september 15, 1970 by TNL GN28-3171 

r------------------------------------'----------'-------------------------------------, 
I Defined Item Base Identifier I 
~-------------------------"----------------"------------------------------------------1 
IA coded arithmetic element An unsubscripted coded arithmetic element variable I 
I variable of the same base, scale, mode, and precision t 
I I 
IAn element label variable An unsubscripted element label variable I 
I I 
IAn element event variable An unsubscripted element event variable I 
I I 
IAn element task variable An unsubscripted element task variable I 
I I 
IAn element pointer variable An unsubscripted element pointer variable I 
I I 
IAn element offset variable An unsubscripted element offset variable I 
I 

, 
I 

IAn element area variable An unsubscripted element area variable I 
I I 

IA bit class 1 variable Bit class 1 data that '"is neither a cross section of 
array nor an array within an array of structures 

ani 
I 
I 

I 
I 

IA character class~ variable Character class~ data that is neither a cross 
of an array nor an array wit~in an array of 
structures 

section I 
I 
I 
I 
I A structure An identical structure whose makeup is such that 

I 
I 
I 
I 

I 
I 
I 
I 
I 

matching pairs of items from the structures are I 
valid examples for overlay defining of coded arith-l 
metic, label, event, area, offset, and pointer ele-I 
ment variables. The elements can also be strings I 
or numeric character data items of matching I 

I lengths. I 
~--------------------------------------------------------------------------------------~ 
11The bit class consists of: I 
I a. Fixed-length bit strings I 
I b. Unaligned structures consisting of items ~ or £ I 
I c. Unaligned arrays consisting of items ~ or ~ I 
I I 
12 The character class consists of: I 
I a. Numeric character data I 
I b. Fixed-length character strings I 
I c. Unaligned structures consisting of items ~. P. or ~ I 
I d. Unaligned arrays consisting of items ~, Q, or £ I l _______________________________________________________________________________________ J 

Figure 48. Permissible Items for Overlay Defining 

not match those of the corresponding 
parameter in an ENTRY attribute 
declaration, a dummy argument is 
created, with the attributes specified 
in the ENTRY attribute declaration, 
and the original argument is aSSigned 
to it. 

6. If a based variable is used to refer 
to a generation of another variable, 
the ALIGNED and UNALIGNED attributes 
of both variables must agree. 

7. Default assumptions for ALIGNED and 
UNALIGNED are applied on an element 
basis. 

8. POINTER, OFFSET, lABEL, EVENT and AREA 
cannot be unaligned. 

Assumptions: 

1. Defaults are applied at element level. 
The default for bit-string data, 
character-string data, and numeric 
character data is UNALIGNED: for all 
other types of data, the default is 
ALIGNED. 

2. For all operators and built-in func.
tions, the default for ALIGNED or 
UNALIGNED is applicable to the ele
ments of the result. 

3. Constants take the default for ALIGNED • 
or UNALIGNED. 

AREA (Program Control Data Attribute) 

The AREA attribute defines storage that, 
on allocation, is to be reserved for the 

Section 9: Attributes 259 



lc;';~ of GC2S-201lS-i, Issued September 15. 1970 by TNL GN.28-3:111 

allocation of .based variables. sto.rage 
thus reserved can be allocat.ed to and freed 
from based variables by naming the area 
variable in the IN option of the ALLOCATE 
and FREE statements. St.orage t.hat. has been 
freed can be subsequently reallocated to a 
Lased variable. 

General format: 

AREA [(size)] 

Synt.ax rule: 

The "size" can be an expression or an 
asterisk. 

General rules: 

1. The area size for areas that are not 
of static storage class is given by an 
expression whose integral value speci
fies the number of units of storage to 
be res€l.-ved. The unit for System/3iO 
implementations is the byte. 

2. The size for areas of static storage 
class must be specified as a constant; 
for the compiler, it must be a decimal 
integer constant. 

3. An asterisk can be used to specify the 
size if the area variable being 
declared is controlled or is a para
meter. In the case of a controlled 
area variable declared with an 
asterisk, the size must be specified 
in the ALLOCATE statement used to 
allocate the ar"€a. In the case of a 
parameter declared with an asterisk, 
the size is inherit.ed from the 
argument. 

4. Data of the area type cannot be con
verted to any other type; an area can 
be assigned to an area variable only. 

5. No oppxators can be applied to area 
variables. 

6. Only the INITIAL CALL form of the INI
TIAL attribute is allowed with area 
variables. 

7. .An area variable cannot be unaligned. 

Assumptions: 

1. The implementation maximum size AREA 
is 32,767 bytes. If the size specifi
cation is omitted, a default value is 
assumed. For the TSS/360 PL/I compil
er. this is 1000. 

2. An area variable can be contextually 
declared by its appearance L an OFF
SET attribute or an IN option. Note, 
however, that all contextually 

260 

declared area varian1 es are given the 
AU'XOMA':nc att-.n.hut.€.. The compiler 
requires that.t.he variable named in 
the OFFSET att):-ibute must be based~ if 
a nonbased area variable is named, the 
offs,·~t: variable will J.le changed to a 
pOinter variable. Hence, unless the 
variable named in the OFFSl!.'T attribute 
is explicitly declared. OFFSET effec
tively becomes POINTER, and a severe 
error occurs. 

AUTOMATIC, STATIC, CO~ROI.LED and_~¥ED 
(Storage Class Attribut~s) 

The storage class attributes are used to 
specify t.he type of storage allocation to 
be used for d:ata variables. 

AUTOMATIC speci.fies that storage is to 
be a110cated uf)on each ent1-y to the block 
to which the storage declaration is inter
nal. The st_orage is released upon exit 
from the block. If tile block is a proce
dure that is invoked recursively, the pre
viously allocat.ed st_orage is "pushed down" 
upon entry; the latest allocati.on of 
storage is "popped up" upon t".ermination of 
each generation of the recursive procedure 
(for a discussion of push-down and pop-up 
stacking, see Part I. Section 6. -Blocks. 
Flow of Control, and Sto.rage Allocation"'). 

STATIC specifies that s'torage is to be 
allocated when the program i8 loaded and is 
not to be released until program execution 
has been complet.ed. 

CONTROLLED specifies that full control 
will be maintained by the USer over the 
allocation and freeing of storage by means 
of the ALLOCATE and FREE statement!;. Mul
tiple allocations oft.he same contr'olled 
variable. wi t.hout. interver:ing freeing. l,111 
cause stacking of generationf.' of the 
variable. 

BASED, like CONTROLLED. specifies that 
full control over storage allocation and 
freeing will .be maintained b-J the user, but 
by various methods that are described in 
Part I, Sect:i.on 14. -Based Storage and List 
Processi "9"" Multiple allocations c:re not 
stackeit but. are available at any time; eaC'.h 
can De identified by t:he value of a pointer 
variable. 

General format! 

STATIC I AUTOMATICi 
CONTROLLED! BP.SED( poinv~r-val: iable) 

General rules: 

1. Automatic and baaed '\ld.r.iables can ",ave 
internal scope only. Static "and COll'

trolled variable£> m",}, have eH~her in
ternal or erten:lIal scope. 



Pa.ge of GC28-2045-1, Issued September 15, 1910 by TNL GN28-3171 

2. Storage class attributes cannot be 
specified for entry names, file names, 
members of structm·es, or DEFINED data. 
items. 

3. STATIC AUTOMATIC, and BASED attributes 
cannot be specified for parameters. 

4. Variables declared with adjustable 
array bounds, string lengths, or area 
sizes cannot have the STATIC 
attribute. 

5. For a structure variable. a storage 
class attribute can be given only for 
the major structure name. The attri
bute then applies to all elements of 
the structure or to the entire array 
of structures. If the attribute CON
TROLLED or BASED is given to a struc
ture, only the major structure and not 
the elements can be allocated and 
freed. 

6. The following rules govern the use of 
based variables: 

a. The pointer variable named in the 
BASED attribute must be a non
based, unsubscripted, element 
pointer variable. This applies to 
explicit pointer qualifiers also. 

b. Whenever a pOinter value is needed 
to complete a based variable 
reference, and none is explicitly 
specified, the pointer variable 
named in the relevant BASED attri
bute is used. 

c. Based variables cannot have the 
INITIAL attribute. Based label 
arrays cannot be initialized by 
subscripted label prefixes. 

d. When reference is made to a based 
variable, the data attributes 
assumed are those of the based 
variable, while the qualifying 
pointer variable identifies the 
location of data. 

e. A based variable can be used to 
identify and describe existing 
data; to obtain storage by means 
of the ALLOCATE statement; or to 
obtain storage in an output buffer 
by means of the LOCATE statement. 

f. The relative locations of based 
variables allocated ~thin an area 
can be identified by the values of 
offset variables, but these must 
be assigned to pointer variables 
for the purpose of explicit 
qualification. 

g. The EXTERNAL attribute cannot 
appear with a based variable 
declaration. but a based variable 
reference can be qualified by an 
external pointer variable. 

h. A based structure can be declared 
to contain only one adjustable 
bound or length specification. 
See wThe REFER Option,- in Part I, 
Section 14, wBased Storage and 
List Processing.· 

i. Based variables cannot be trans
mitted using data-directed 
input/output. 

j. The VARYING attribute cannot be 
applied to based variables. 

Assumptions: 

1. If no storage class attribute is spec
ified and the scope is internal, AUTO
MATIC is assumed. 

2. If no storage class attribute is spec
ified and the scope is external, STAT
IC is assumed. 

3. If neither the storage class nor the 
scope attribute is specified, AUTOMAT
IC is assumed. 

4. A pointer variable can be contextually 
declared by its appearance in the 
BASED attribute. 

BACKWARDS (File Description Attribute) 

The BACKWARDS attribute specifies that 
the records of a SEQUENTIAL INPUT file 
associated with a data set on magnetic tape I 

are to be accessed in reverse order, i.e., 
from the last record to the first record. 

General format: 

BACKWARDS 

General rules: 

1. The BACKWARDS attribute applies to 
RECORD files only~ that is, it con
flicts with the STREAM attribute. It 
implies RECORD and SEQUENTIAL. 

2. The BACKWARDS attribute applies only 
to files associated with data sets on 
magnetic tape. 

BASED (Storage Class Att1bute) 

See AUTOMATIC. 

Section 9: Attributes 261 



Page of GC2S-2045-1. Issued september 15 1 1910 by TNI, GN28-3171 

BINJI. .. RY and DECIMAL (Arithmetic Data 
Attributes) 

The BINARY and DECIMAL attributes speci
fy the base of the data items represented 
by an arithmetic variable as either binary 
or decimal. 

Genera 1 format: 

BINARY I DECIMAL 

General rule: 

The BINARY or DECIMAL attribute cannot 
be specified with the PICTURE attribute. 

Assumptions: 

Undeclared ident.ifiers (or identifiers 
declared only wi t.h one or more of the 
dimensions, UNALIGNED, ALIGNED, scope, and 
storage class attributes) a:re assumed to be 
ael t ',lI,etic variables with assigned attri
but0s depending upon the initial letter. 
For identifiers beginning with any letter I 
through N. the default attributes are REAL 
FIXED· BINARY (15,0), For identifiers 
beginning with any other alphabetic 
character, the default attributes are REAL 
FLOAT DECIMAL (6). If FIXED or FLOAT and! 
or REAL or COMPLEX are declared, then DECI
MAL is assumed. The default preCisions are 
those defined for System/360 
implementations. 

bIT and CHARACTER (String Attributes) 

The BIT and CHARACTER attributes are 
used to specify string variables. The BIT 
attribute specifies a bit string. The 
CHARACTER attribute specifies a character 
string. The length attribute for the 
string must also be specified. 

General format: 

BIT 
Clengt.h) [VARYING) 

CHARAC'TER 

General rules: 

1. The length att.ribute specifies the 
length of a fixed-length string or the 
maximum length of a varying-length 
string. 

2. The VARYING attribute specifies that 
the variable is to represent varying
length strings, in which case length 
specifies the maximum length. The 
current length at any time is the 
length of the current value. FOl:: the 
TSS/360 PL/I compiler. the length of 
an uninitialized varying-ler'9i:h string 
is set to zero. VARYING may appear 
anywhere in the declaration of the 
string, and it may be factored. VARY-

262 

ING cannot be applied to based 
variables. 

3. The length attribute must immediately 
follow the CHARACTER or BIT attribute 
at the same factoring level with or 
without intervening blanks. 

4. The h,~ngth attribute may be specified 
by an expression or an asterisk. 

If the length specification is an 
expression, it is converted to an 
integer when storage is allocated for 
the variable. 

The asterisk notation can be used for 
the length attribute specification to 
indicate that the length is specified 
elsewhere. For parameters or CON
TROLLED variables, the length can be 
taken from a previous allocation or, 
for CONTROLLED variables, it can be 
specified in a subsequent ALLOCATE 
statement. 

Only one adjustable string length 
specification can appear in the 
declaration of a based structure. See 
-The REFER Option", in Part I. Section 
14. 

5. If a string has the STATIC attribute. 
the length attribute must be a decimal 
intege r constant. 

6. If a string has the BASED attribute. 
the length attribute must be a decimal 
integer constant unless the is 
a member of a based structure ,:ind t.be 
REFER option is uSf:d. in which case 
one ildjustable string length may be 
allowed. (See "The REFF.R Option" in 
Part I, Section lQ.; 

7. The BIT, CH1'.RACTER, and VARYING attri
butes cannot be specified with the 
PICTURE attribute. 

8. The PICTURE attribute can be used 
instead ot CHARACTER to declare a 
fiY2d-length character-string variable 
(r,ee the PICTURE attribute). 

9. All of the string attributes should be! 
declared explicitly unless t.he PICTURE 
attribute is used. The detdult_ length 
for string data is 1. 

BUFFERED and_ UNBUFFERED n'ile Descx lJ?~l.On 
Attributes) 

The BUFFEHED at.tribute specifies 't.hat 
during transmission to and from external 
storage each record of a SEQUENTIAL RECORD 
file must pass through intermedidt.€ st..orage 
buffers. 



Page of GC28-20Q5-1, Issued ~eptember 15. 1970 by TNL GN28-3171 

The UNBUFFERED attribute specifies that 
such records need not pass through buffers. 
It does not, however. specify that they 
must not. For the TSS/360 PL/I compiler, 
hidden buffers will, in fact, be used if 
INDEXED is specified in the ENVIRONMENT 
attribute or if the z'ecords are 
variable-length. 

General format: 

BUFFERED I UNBUFFERED 

General rule: 

The BUFFERED and UNBUFFERED attributes 
can be specified for SEQUENTIAL RECOru) 
files only. 

Assumption: 

Default is BUFFERED. 

BUILTIN (Entry Attribute~ 

The BUILTIN attribute specifies that any I 

reference to the associated name within the 
scope of the declaration is to be inter
preted as a reference to the built-in func-. 
tion or pseudo-variable of the same name. 

Section 9: Attributes 262.1 





General format: 

BUILTIN 

General rules: 

1. BUILTIN is used to refer to a built-in 
fUnction or pseudo-variable in a block 
that is contained in another block in 
which the same identifier has been 
declared to have another meaning. 

2. If the BUILTIN attribute is declared 
for an entry name, the entry name can 
have no other attributes. 

3. The BUILTIN attribute cannot be 
declared for parameters. 

CHARACTER (String Attribute) 

See BIT. 

COMPLEX and REAL (Arithmetic Data 
Attributes) 

The COMPLEX and REAL attributes are used 
to specify the mode of an arithmetic vari
able. REAL specifies that the data items 
represented by the variatle are to be real 
numbers. COMPLEX specifies that the data 
items represented by the variable are to be 
complex numbers, that is, each data item is 
a pair: the first member is a real number 
and the second member an imaginary number. 

General format: 

REALI COMPLEX 

General rule: 

If a numeric character variable is to 
represent complex values, the COMPLEX 
attribute must be specified with the PIC
TURE attribute. The COMPLEX attribute is 
the only other arithmetic or string data 
attribute that can be specified with the 
PICTURE attribute. 

Assumption: 

Default is REAL. 

CONTROLLED (Storage Class Attribute) 

See AUTOMATIC. 

DECIMAL (Arithmetic Data Attribute) 

See BINARY. 

DEFINED (Data Attribute) 

The DEFINED attribute specifies that the 
variable being declared is to represent 
part or all of the same storage as that 
aSSigned to other data. The DEFINED attri-

bute can be declared for element, array, or 
structure variables. 

General format: 

DEFINED base-identifier 
{[subscript-listJlfPOSITION 

(decimal-integer-constant»)} 

'Ihe "base identifier" is an unsubscripted, 
optionally qualified variable whose storage 
is also to be represented by the variable 
being declared. The -3ubscript list- is a 
specification used to determine the fortion 
of a base identifier array that the cur
rently declared variable will refresent. 
POSITION is discussed under the rules for 
overlay defining. 

Rules for defining: 

1. The INITIAL, storage class, and scope 
a ttributes cannot be specified for the 
defined item. The defined iterr must 
be a level 1 variable and it cannot be 
a parameter. The VARYING attribute 
must not be specified for either the 
defined item or the base identifier. 
It should be noted that although the 
base can have the EXTERNAL attribute, 
the defined item always has the INTER
NAL attribute and cannot be declared 
with anJ scope attribute. If the base 
is external, its name will be known in 
all blocks in which it is declared ex
ternal, but the name of the defined 
item will not. However, the value of 
the defined item will be changed if 
the value of the base item is changed 
in any clock. 

2. The base identifier must always be 
known within the block in which t~e 
defined item is declared. The base 
identifier cannot have the DEFINED 
attribut~. It can represent a minor 
structure. The TSS/360 PL/I compiler 
does not allow the base identifier to 
be controlled or based. 

There are two types of defining, corre
spondence defining and overlay defining. 
If iSUB variables are involved, or if both 
the defined item and base identifier: are 
arrays with the same number of dimensions 
and the POSITION attribute is not speci
fied, corresfondence defining is in effect. 
In all other cases, overlay defining is in 
effect. 

In correspondence defining: the ele
rrents of the base identifier and the ele
ments of the defined item must have the 
same attributes. The lengths need not be 
the same; however, the length of the 
defined item must not be greater than the 

Ilength of the base item. The TSS/360 PL/I 

Section 9: Attributes 263 



compiler does not allow corresFondence 
l1efining for arrays of structures. 

correspondence Defining 

When correspondence defining has been 
specified, a reference to an element of the 
deLined item is interpreted as a reference 
to the corresponding element of the base 
identifier. A reference to the defined 
drray is interpreted as a reference to the 
aygregate of all of the base elements that 
correspond to some element 01 the defined 
array. 

It there is no subscript list following 
tle base identifier, then the correspon
de~ce is direct. In such a case, the 
Qlrays must have the same number of dimen
~ji(Jns I and d reference to an element of the 
defined item would be interpreted as a 
ret':'rence to an element of the base with 
~. he ,jdmp SUbSCL ip ts. 

It a subscript list follows the base 
identifier ill the DEFINED attribute speci
fication, each subscript can be an expres-
3ion and ~ach expression may contain 
cefecences to the dummy variables indicated 
by i :JUh. 

III tIle dumlny variable iSUB, i is a deci
mal integer constant in the range 1 to n, 
where n is the number of dimensions of the 
defined item. Thus, lSUB refresents sub
~cLipts of Lhe first dimension of the 
QPfilled array, 2SUB represents the second 
dimension of the defined array, and so 
fOLth. The subscript list following the 
nalile of the base array in the CEFINED 
attribute specification must contain the 
same number of subscript expressions as 
there are dimensions of the base array. 

At least one reference to iSUB must 
appear in the subscript list. An array 
defined by using iSUB variables in the sub
script list cannot be passed as an argu
ment. The base array can be passed, and an 
equivalent array can be defined on the cor
responding parameter. 

The base element corresponding to a 
defined element is obtained by replacing 
each iSUB in the subscript list by the 
integer value of the ith subscript of the 
defined element. 

The bounds of a defined array must be 
within the bounds of the base array. 

Overlay Defining 

Overlay defining specifies that the 
defined item is to occupy part or all 0f 
the storage allocated to the base. In this 
way, changes to the value of eithel: vari
able may be reflected in the value of the 

264 

other. Overlay defining is permitted 
l::etween the items shown in Figure 48. 

Rules for overlay defining: 

1. For bit and character class data, the 
POSITION attribute may be specified 
for the defined item. If POSITION is 
specified, the DEFINED attribute must 
alsc be s[ecified. POSITION need not 
necessarily follow the appearance of 
DEFINED; it may precede it in the same 
declaration, if so desired. The gen
eral format of the POSITION attribute 
i~., as follows: 

POSITION (decimal-integer-ccnstant) 

This specifies the position, in rela
tion to the start of the base, at 
which the defined item is to begir.. 
If this attril::ute is omitted, POSITION 
(1) is assumed; that is, the defined 
iterr is to l::egin at the first position 
of the base. The maximum value of the 
integer constant in the POSITION 
attribute is 32,767. 

2. For bit and character class data, the 
extent of the defined item must not be 
larger than the extent of the base. 
Extent is calculated l::y summing the 
lengths of the parts of the data, 
including all individual elements of 
arrays, and, in the case of the 
defined item, adding n - 1 (where n is 
the position in relatIon to the start 
of the tase). 

Order of Evaluation 

Evaluation proceeds as follows: 

1. Expressions specified in all attri
butes of the defined item (other than 
the DEFINED attribute) are evaluated 
on entry to the declaring block. 

2. Subscripts in the subscript list fol
lowing the base identifier are eva
luated when a reference to the defined 
item is made. 

ExamFles of Defining 

1. DECLARE A(20,20>, B(10) 
DEFINED A(2*lSUB, 2*lSUE); 

In this example of correspondence 
defining, B is a vector consisting of 
every even element in the diagonal of 
the array A. In other words, B(l) 
corresponds to A(2,2), B(2) corres
ponds to A(4,4), etc. 

2. DECLARE 1 P, 2 Q CHARACTER (10), 
2 R CHARACTER (100), 

PSTRINGl CHARACTER (110) 
DEFINED P; 



Page of GC28-2045-1,Issued SPl~P~~ r 10, 1971 by TNL GN2R-]185 

In this examrle of cverlay defining, 
PSTRINGI is a character str in'] that 
represents the concatenation of the 
two character string~ Q and H, which 
are elements of the structure P. Note 
that P has the PACKED attribute by 
default. 

3. DECLARE LIST CHARACTER (40), 
ALIST CHARACTER (10) CEFINED LIST. 
BLIST CHARACTER (20) 

DEFINED LIST POSITION (21), 
CLIST CHARACTER (10) 

DEFINED LIST POSITION (11): 

In this example of overlay defining, 
ALIST refers to the first tEn charac
ters of LIST, BLIST refers to the 
twenty-first through fortieth charac
ters of LIST, and CLIST refers to the 
eleventh through twentieth characters 
of LIST. 

4. DECLARE 1 A, 
2 B FIXED, 
2 C FLOAT, 

1 X DEFINED A. 
2 Y FIXED, 
2 Z FLOAT; 

In this example of overlay defining, Y 
refers to Band Z refers to c. 

Note : Although the la nguaqe rul er; ~>peci f y 
that the attributes (excPFt for h'nqth) of 
the defined item must exactly natch the 
attributes of the base item, the TSS/360 
PL/I comFiler allows a user to IDdk0 an 
exception to this rule, under certdin 
circumstances. 

If attributes ueclared for th, rlefinpd 
item differ from those of the ta~;e identi
fier, the compiler notes this ~ith a mes
sage at the ERROR level. For Examrlc: 

DECLARE A FIXED BINARY(31), 
B BIT (32) DEFINEO A; 

compilation of this DECLARE stat~ment would 
cause dn error message to te iSSUEd ty the 
compiler. However, f,xecut ion of tnt' Uro
gram could be successful, dnd drithmetic 
operations performed uron A would rpsult in 
the change of value of the Llt-strinq vdrir 
able B. 

Dimension (Array Attribute) 

The direension attritut.€ :;IJecities the 
number of dimensions of an array dnd the 
bounds of each dimension. The dim/_II'; ion 
attribute either ;;pecifies the bount!!; 
(ei ther the u[:[:er bound or the uH "r dod 
lower bounds) or indicates, by U!f' ut -In 
dsterisk, that the act.ual [;ounrb tor t h. 
;lrray are to be tak,-'n from e 1 ,-;,'wh.'n"'. 

Genf"ra 1 forl"at: 

(hound [, bOllnd 1 ••• ) 

where -bound- i,;: 

([lower-hound:) upper-boundJ,. 

and wurrer-boundw dnd -lower-bound- are 
element expressions. 

General rules: 

1. ThE' mmher of bounds specifications 
indicates the number of dimensions in 
the array unless the variable being 
declared is contained in an array of 
structures, in which case it inherits 
dim~nsions from the containing 
structure. 

2. The bounds specification indicates the 
bounds as tollows: 

a. If only the upper bound is given, 
the lower bound is assumed to be 1 

b. The lower bound must be less than 
or equal to the upper bound. 

c. If asterisk notation is used, an 
a~;terisk must be used for each 
bounds specification of the array. 
An asterisk s~ecifies that the 
actual bounds are to be s~ecifi€d 
in an ALLOCATE statement, if the 
variable i~ CONTROLLED, or in a 
declaration of an associated argu
ment, if the variable is a simple 
~arameter. Thus, the asterisk 
notation can he used only fcr 
pi! ram et e r~; ano CONTROLLED 
ven-iables. 

3. Bounds that are expressions are eva
lUdt.t-'d dnd converttc'd to integer data 
-- for Sy~;teI1"/]60 imFlementations, 
LINARY(lS) -- when storage is allo
cat~d for the array. For duurry ~rgu
ments that are arrays, the bounds are 
detprminpd cttinvocation of the block 
containinq the ENTRY attribute. For 
simple faYa~eters, bounds can be only 
oFtionally signed decimal integer con~ 
stants or asterisks. 

4. The bounds of arrays declared STATIC 
must be o[:tionally signed decimal 
integer constants. 

5. The bound~, of arrays declared EASED 
ITlust be ortionally signed decimal 
integer constants unless the array is 
F,-ut of a bilsed structure and the 
1<1 FI I, opti(ln is w;eo, in which case 
(JII< d<iju,;t,d'l.' hOllnd specification is 
allowed. (;;ee "The REFER Option- in 
Part I. Gection 14.> 

~ection 9: Attributes 265 



Page of GC28-2045-1. Issued Sei,tt:'R1ter ]0, 191.1 by TNL GN28-318'1 

6. The dimension attribute must immedi
dtely follow th(' array nalH" (nr the 
parenthesi2ed list of n~mes, if it is 
bei.ng factored). IntiTvcninq tlanks 
dre optional. 

7. If the asterisk notation is used to 
<leclare dimensions of dn drr"y of 
structures, all dimension declarations 
wit_hin the major struet.ure must also 
be aster isk~;. 

B. Arra~s dre limited, for edch dimen
sion, to a lower bound of -12,768 and 
to an upper bound of 32,767. 

DIRECT and SEQUENTIAL (File Descrirtion 
Attributes) -------

The DIHEC'l' and SEQUENTIAL attritutes 
specify the manner in which the records in 
a data set associatpd with a RECCRC tile 
dl:' tc be accessed. S!'QOLNTIAL ill;plies 
-tlldt. tile records are to be dcces:.ed accord
ing to their sequf,nce in the <1dt- d set. 
(The records in dn INDEXEli datd s,'t <Ire 
[rocessed in their !29Jc~J sequence; the 
records in a CONSECUTIVE or HECIONAL data 
set arE' t=rocessed in thei r El:!:i:;i c~.! 
sequence.) DIRECT sFecifies that the rec
ords will always be accessed by use of d 

key; each record must, therefor£, have a 
key associated with it. Either of thf~e 
two attributes implies tIlt· RECCHC 
attribute. 

Note that DIHECT and SE<,.JUl:NTIAL specify 
2nly t:hc current u:~d{Je of Ul(' filFi they do 
not specify Fhysical prOFertie~ of the datd 
set associated with the tile. The data set 
associated with a SEQUtNTIAL file mdy actu
ally have key~ recorded with the ~dtd. 
Most data sets accesseJ ty DIRECT filCH dre 
created by SE~UENTIAL files. 

Gene ra 1 Forrr.a t: 

DIRECT!SEQUENTIAL 

ceneral nIle!;: 

1. DIRECT fi les lllUSt also hdve t_he KEYED 
attribute (which is irrplied by 
DIRECT). SEQUENTIAL files mayor may 
not have the KEYEL rlttribute. 

2. The DIRECT and SEQUENTIAL attributes 
cannot be specified for files with the 
STREAM attribute. 

Assumptions: 

1. Default is SEQUENTIAL for RtCOPD 
files. 

2. If a file is implicitly ofened by an 
UNLOCK st.atement, DIRECT is assumed. 

266 

The ENTRY aU:.r.dJUte ~;pecifies that the 
identifipr being declared is an entry name. 
It also i~ used to describe the attributes 
of parameters of the entry point. 

General format: 

ENTRY {(parameter-attribute-list 
(. parameter-attribute-listJ ••• )] 

General rules: 

1. The ENTRY ~ttribute with associated 
parameter attribute lists must be 
declared for any entry name that is 
invoked within the block if the attri
butes of any argument of the invoca
tion differ from the attributes of the 
associated [aeameter. This specifies 
that the compiler is to create the 
neces~;ary dumrry arguments. 

2. Each "parameter attribute list" 
describes the attributes of a single 
pararreter. For example, the parameter 
attribute lists for the pararreters in 
the following procedure: 

TEST: PROCEDURE (A,B,C,D,E,F); 

DECLI,RE A FIXED DECIMAL (5) , 

B FLOAT BINARY (15) I 

c POINTER, 
1 G. 
2 P, 
2 Q, 
3 H FIXED DECIMAL, , 

r~ , L 

2 X~ 

2 Y, 
3 Z, 
F(4) CHARACTER (10); 

END TEST; 

cculd be declared as follows: 

DECLARE TEST ENTRY 
(DECIMAL FIXED (5), 
B1 NARY FLOAT (15), 

• 
1, 
2, 
? -, 
3 DECIMAL FIXED, 

• 
(4) CHARACTER (10»; 

3. The parameter attribute lists must 
appear in the same order as the para
mpters they describe. If the attri-' 
bute of any parameter need nct te 
descrIbed, the absence of the carre
spond1ng [aIameter attribute list must 



page of GC28-2045-1. Issued September 15, 1910 by ~L GN28-3111 

be indicated by a comma. (In t"he 
example above, the parameter C has no 
parameter attribute list nor has th", 
structure parameter E.) If a paramet
er attribute list is absent, the argu
ment is assumed to match "Che 
parameter. 

4. The attributes may appear in any order 
in a parameter attribut"e list. For an 
array parameter attribute list, the 
dimension attribute must be the first 
specified, otherwise the attributes 
may appear in any order. For a struc
ture parameter attribute list, the 
level numbers must appear in t"he same 
order as the level numbers of the cor
responding parameter, and t.hey must 
precede the attributes for each level; 
the attribute list numbers need not. be 
the same as those of the parameter, 
but the structuring must be identical; 
the attributes for a particular level 
may appear in any order. 

Note: Each attribute-list level numb
er together with any attributes speci
fied for the level, is delimited by a 
comma. (See example above.> 

5. The ENTRY attribute must be specified 
for any entry name that is declared 
elsewhere and not recognized as such 
within the block if any reference is 
made to that entry name (such as in an 
argument list) unless, within the 
block: 

a. The entry name appears in a CALL 
statement or a fUnction reference 
with an argument list, either of 
which constitutes a contextual 
declaration of the ENTRY attri
bute, or 

b. The entry name is declared to have 
the RE~URNS attribute, which 
implies ENTRY, or the BUILTIN 
attribute. The ENTRY attribute 
cannot be specified for a name 
that is given the BUILTIN or GEN
ERIC attributes. 

6. The ENTRY attribute must be specified 
or implied for an entry name that is a 
parameter. 

7. ExpreSSions used for length or bounds 
in an ENTRY attribute,specification 
for non-CONTROLLED parameters are eva
luated upon entry to the block to 
which the declaration of the ENTRY 
attribute is internal. 

8. Factoring of attributes is not per
mitted within parameter attribute 
lists of an ENTRY attribute 
specification. 

9. The ENTRY attribute must appear for 
each entry name in a GENERIC attribute 
specification. 

10. The EN'I'RY attribute can be declared 
for an internal entry name only within 
the block to which the name is 
internal. 

11. The maximum nesting of ENTRY attri
butes within an ENTRY or GENERIC 
attribute is 3. 

Assumptions: 

The ENTRY a.ttribute can be assumed ei
ther contextually or by implication, as 
described in rule 2. The appearance of a 
name as a label prefix of either a PROCE
DURE statement or an ENTRY statement con
stitutes an explicit declaration of that 
identifier as an entry name. No defaults 
are applied for parameters unless attri
butes and/or level numbers are specified. 
If only a level number and/or the dimension 
attribute is specified for a parameter, 
FLOAT, DECIMAL. and REAL are assumed. 

ENVIRONMENT (File Description Attribute) 

See Part I, Section 9, ·Stream-Oriented 
Transmission,· and Part I, Section 10, 
-Record-Oriented Transmission.-

EVENT (Program Control Data Attribute) 

The EVENT attribute specifies that the 
associated identifier is used as an event 
name. Event names are used to investigate 
the current state of asynchronous input/ 
output operations. They can also be used 
as program switches. 

Note: In TSS/360, asynchronous I/O can 
occur only with CONSECUTIVE SEQUENTIAL 
UNBUFFERED files. 

General format: 

EVENT 

General rules: 

1. An identifier may be explicitly 
declared wi th the EVENT attribute in a 
DECLARE statement. It may be contex
tually declared by its appearance in a 
WAIT statement, in a DISPLAY state
ment, or in various input/output 
statements (see Part I, Section 8, 
-Input and output.·) 

2. Event names may also have the follow
ing attributes: 

Dimension 

Section 9: Attributes 267 



Page of GC28-2045-1. Issued september 15, 1910 by TNL GN28-3171 

Scope (the default is INTERNAL) 

Storage class (the default is 
AUTOMATIC) 

DEFINED (event names may only be 
defined on other event names) 

3. An event variable has two separate 
values: 

a. A single bit which reflects the 
completion value of the variable. 
'l'B indicates complete, 'O'B 
indicates incomplete. 

b. A fixed-point value of default 
precision «15,0) for the TSS/360 
PLiI compiler) which reflects the 
status value of the variable. A 
zero value indicates normal, non
zero indicates abnormal status. 

c'he values of the event variable can 
be separately returned by use of the 
COMPLETION and STATUS built-in func
tions. The COMPLETION function 
returns a bit-string value correspond
ing to the completion value of the 
variable; STATUS returns a fixed 
binary value corresponding to the sta
tus value. 

Assignment of one event variable to 
another causes both the completion and 
status values to be assigned. Conver
sion between event variables and any 
other data type is not possible. 

4. Event variables may be elements of an 
array. Arrays containing event 
variables may take part in aSSignment, 
provided that this would not require 
conversion to or from event data. 

5. The values of the event variable can 
be set by one of the following means: 

268 

a. Use of the COMPLETION pseudo
variable, to set the completion 
value. 

b. Use of the STATUS pseudo-variable, 
to set the status value. 

c. Event variable aSSignment. 

d. By a statement with the EVENT 
option. 

e. By a WAIT statement for an event 
variable associated with an input/ 
output event. 

f. By the termination of a task with 
which the event variable is 
associated. 

9- By clOSing a file on which an 
input/output operation with an 
event optton is in progress. 

6. On allocation of an event variable. 
its status and completion values are 
undefined. 

7. An event variable may be associated 
with an event, that is, a task or an 
input/output operation, by means of 
the EVENT option on a statement. The 
variable remains associated with the 
event until the event is completed. 
For an input/out.put event. the event 
is completed duri ng the execution of 
the WAIT for the associated event. 
During this period the event variable 
is said to be active. It is an error 
to associate an active event variable 
with another event, or to modify the 
completion value of an active event 
variable by event variable assignment 
or by use of t.he COMPLETION 
pseudo-variable. 

8. It is an error to aSSign to an active 
event variable (including an event 
variable in an array. structure, or 
area) by means of an input/output 
statement. 

9. On execution of a CALI, statement with 
the EVENT option. the program in which 
the CALL is executed will be abnormal
ly terminated. In TSS/360. event 
variables may be successfully asso
ciat.ed only wIth j nput/out:put 
operat.ions. 

10. On execution of an input/output state
ment with the E\!EN'T option, the event 
varia-ble, if inact.ive. is set to zero 
status value and to irh.::ornph:~te. 'l'he 
sequence of these t.\.:lO assignments is 
uninterruptable and is completed 
before any transmission is initaited 
but afr.er any action associated ,>11th 
an implicit opening is 'camp} ete(L An 
input/output event. variable will not 
be set complete until either t.he ·ter
minat.i on of t.he procedure t.hat 
init ... at.ed the event. or the executi'::m, 
bX that. procedure. of a WAIT stc!tement 
naming the associated event var iaDle. 
The WAIT operation fll-;,lays execution of 
this task until any transmission ilSSO

ciated with the event is terminated. 
If no input/output conditions are t.o 
be raised for t.-.he operation, t;he event 
variable is set complete and .1..5 no 
longer active. If any input./<Jut.put~ 
conditions are to be raised, the event 
variable is set to have a tit.at.t:w value 
of 1 and the relevant conditions are 
raised. On norual return from the 
last on-unit ent.ered as a resnl t of 
these conditions, or on abnormal 



Page of GC28-2045-1, Issued S~ptemter 30, 1911 by TNL GN28-3185 

return from one of the on-units, the 
event variable is set comflete and is 
no longer active. 

11. Event variables cannot be unaligned. 

~CLUSIVE (File Description Attribute) 

The EXCLUSIVE attril:ute s(;ecifies that 
records in a data set associated with a 
DIRECT UPDATE file may be locked by an 
accessing task to prevent other tasks from 
interfering with an operation. 

Under TSS/360 the EXCLUSIVE attribute 
need not be declared, since record locking 
is automatic and cannot be supr-ressed by a 
NO LOCK option. 

General format: 

EXCLUSIVl:. 

EXTERNAL and INTERNAL (ScoFe Attributes) 

The EXTERNAL and INTERNAL attributes 
s~ecify the scope of a nawe. IN1tRNAL spe
cifies that the name can be known only in 
the declaring block and its contained 
i:locks. EXTERNAL specifies that the naml= 
may be known in other blocks containing dn 
external declaration of the same name. 

General format: 

EXTERNAL I I N1'ERNA L 

General rules: 

FILE (File Description Attribute) 

Tile FILE attribute specifies that the 
identifier being declared is a file name. 

General format: 

FILE 

Assumptions: 

The FILE attribute can be implied by any 
of the other filE description attributes. 
·In addition, an identifier may be contextu
ally declared with the FILE attribute 
through its appearance in the FILE option 
of any input/output statement, or in an ON 
statement for any input/output condition. 

FIXEr and FLOAT (Arithmetic Data 
~ttributes) 

The FIXID and FLOAT attributes specify 
th~ scale of the arithmetic variable being 
declared. FIXED specifies that the vari
able i~ to represent fixed-point data 
items. FLOAT sFecifies that the variable 
is tc re~resent floating-point data items. 

General fern at: 

FIXID I FLOAT 

Gent::ra 1 rule: 

The FIXED and FLOAT attributes cannot be 
Sf€cified with the PICTURE attribute. 

As~ulTrtions: 

Undeclared identifiers (or identifiers 
1. When a major structure name i:..; declared only with one or more of the 

declared EXTERNAL in more than one dimension, PACXEt, ALIGNED, scope, and 
block, the attributes of the structure stcrage class attributes) are assumed to be 
members must te the same in t:ach case" arithmetic variables with assigned attri-
although the corresponding n~mber tutes defending upon the initial letter. 
names need not be identical. For identifiers beginninq with any letter I 

through N, the default attributes are REAL 
2. Members of structures alway:..; hav£' the FIXED BINARY (15,0), For identifiers ce-

INTERNAL attribute and cannot be ginning with any other alphabetic character 
declared with any sco(:e attribute-;'-- - Ule default attributes are REAL FLOAT DECI-
However, a reference to a member of an MAL (6). It BINARY or DECIMAL and/or REAL
exi"p.rnal structure, using the member or COMPLIX are srecified, FLOAT is assumed. 
name known to the block containin~the The default precisions are those defined 
reference, is effectively a reference .~ fer Syste~/3&~ implementations. 
to that ~ember in all blocks in which 
the external name is known, regardless FLOAT (Arithwe·tic Data Attribute) 
of whether the corres~onding member 
names are identical. See FIXED. 

Assumptions: 

INTERNAL is assumed for entry names of 
internal (:rocedures and for variables with 
any storage class. EXTERNAL is assumec for 
file names and entry names of external pro
cedures. User-defined condition names are 
assumed to be EXTERNAL. 

GENERIC (Entry Name Attribute) 

The GEN~RIC attribute is used to define 
a nalTe dS a fa~ily of entry names, each of 
Which is referred to by the name being 
declared. When the generic name is 
referred to, the proper entry name is 
selected, based upon the arguments speci-

Section 9: Attributes 269 



Paye of GC2B-21j4~-1. Issued t>ertelliber 30, 1971 by TNL GN28-3185 

fied for the generic ndme in the procedure 
reference. 

General format: 

GENERIC (entry-name-declaration 
{,entry-nawe-declaration] ••• } 

General ["Illes: 

2. 

No other attributes can te specified 
for the name being given the GENERIC 
attribute. 

Each -entry name declarationW follow
ing the GENERIC att.ribute corresponds 
to one member of the family, and has 
the form: 

entry-name attribute-list 

3. Th~ -attribute list- of eaCh entry 
rla.11€ declaration specifies attributes 
)f the entry name. It must include 
the ENTRY attribute. It may optional
ly have INTE,RNAL, EXTERNAL. and 
RETURNS attributes. No entry name 
declaration can have the GENERIC 
attribute. nor can it have the BUILTIN 
att.ribute. 

4. Each entry name declaration must spec
ify attributes or level numbers for 
each rarameter. An ENTRY declaration 
within a GENERIC declardtion is exact
ly the sarre as any ether ENTRY 
declaration. Therefore, no other 
entry attribute declaration for the 
same identifier can appear in the same 
block if the entry narre appears in a 
GENERIC attribute specification. 

5. When a generic narre is referred to, 
the attributes of the arguments must 
match exactly the list following th., 
entry name declaration of one and only 
one member of the family_ The 
reference is then interpreted a!.; a 
reference to that member_ ThUS, the 
selection of a farticular entry name 
1S based upon the arguments of the 
reference to the generic name. Note 
that no conversion is done for argu
ments passed to generic functions. 
Consequently, the precision of a con
stant or any other expression must 
match the preciSion of a r;a.rameter. 

6. The selection of a particular entey 
name is first based on the number of 
arguments in the reference to the 
name. The following attributes aLe 
then considered in choice of q~neric 
members: 

Base 

Scale 

270 

l":ode 

Precision 

PICTURe 

LABEL (but not label list) 

Number of rtimensions (but not 
bounds) 

CHARACTER (but not length) 

BIT (but not length) 

VARYING 

ENTRY (but not parameter descrip
tion or other attributes of entry 
names) 

FILE (tut no other FILE attributes> 

ALIGNED 

UNALIGNED 

AREA (but not size> 

OFFSET (but not specified arEa 
variatle) 

POINTER 

TM,K 

EVE.NT 

7. Generic entry names (as opposed to 
references) may be specified as argu
mf:nts to nongeneric procedures if the 
invoked entry name is explicitly 
deci(HE<i with the ENTRY attribute. 
This ENTRY attribute must specify that 
the appropriate parameter is an entry 
name ann rrust. specify, by means of a 
further ENTRY attribute, the attri
butes of all its parameters. This 
enables a choice to be made of which 
fa~ily member is to be passed. 

8. There.i salimi t.a tion on the numter of 
family membo::rs and arguments which may 
h~ associated with a GENERIC entry 
name. The value given by evaluating 
the following formula must not exceeo 
700: 

n 

3n+R L ai +8MAX(a 1 ,aO/_ ••••••• an)~3d 
1 

where n the number of tami ly 
members 

a the number of arguments 
relating to the ith family 
member 



d the greatest function 
nesting depth at which an 
invocation of the GENERIC 
entry name appears. 

9. For the TSS/360 compiler, the maximum 
nesting of ENTRY attributes with a 
GENERIC attribute is 3. 

INITIAL (Data Attribute) 

The INITIAL attribute has two forms. 
The first specifies an initial constant 
value to be assigned to a data item when 
storage is allocated to it. The second 
form specifies that, through tne CALL 
option, a procedure is to te invoked to 
perform initialization at allocation. 

General fOIll1at: 

1. INITIAL (item [,iteml ..• ) 

2. INITIAL CALL entry-name 
[argument-list] 

General rule: 

The INITIAL attribute cannot ce given 
for entry names, file names, defined data, 
structures, parameters, or based variables. 

Rules for form 1: 

1. In this discussion, the term ·con
stant" denotes one of the following: 

[+1-1 arithmetic-constant 

character-string-constant 

bit-string-constant 

[+I-lreal-constant{+I-}imaginary
constant 

2. Only one constant value can be speci
fied for an element variable; more 
than one can be specified for an array 
variable. A structure variable can be 
initialized only cy separate initiali
zation of its elementary names, wheth
er they are elerr:ent or array 
variables. 

3. Constant values specified for an array 
are assigned to successive elements of 
the array ~n row-rr.ajor order (final 
subscript varying most rapidly). 

4. If too many constant values are speci
fied for an array, excess ones are 
ignored. if not enough are specified, 
the remainder of the array is not 
initialized. 

5. Each item in the list can be a con
stant, an asterisk denoting no ini-

t~alization for a ~articular elemPDt, 
or an iteration sp~cificatiGD. 

6. The iteration specificdtion hdS 0rJ! of 
the followinq generdl form~;: 

(iteration-factor) constant 

Cit,eration- factor) (iterr, [, it.,,:mJ ... ) 

(iteration-factor) * 

The "iteration factor" speclfi~s the 
nurrter of times the constant, u[ iteR 
list, is to be re~eated in the ini
tialization of elements af an array. 
If a constant follows tiH'" it.eration 
factor, then the specified nurnter of 
elements are to b~ initialized with 
that value. If a list of iterrs fol
lows the iteration factor, toen the 
list is tc te repeated the specified 
number of times, with each iterr 
initializing dn element of the array. 
If an asterisk follows the iteraticr. 
factor, then the specified nurrcer of 
elements are to be skir-~ed in the ini
tialization operation. 

7. The iteration factor can be an element 
expression, except for STATIC data, in 
which cas€ it must be an unsigned dec
imal integer constant. When stcrage 
is allocated for the array, the expre
ssion is evaluated to give an integer 
that sr-ecifies the number of 
iterations. 

8. A negative or zerc iteration facter 
causes no initialization. 

9. For initialization of a string array, 
if only one parenthesized el€rr~nt 
expression precedes the string initial 
value, the expression is interfreted 
to be a string repetition factor for 
the string; that is, it is interpreted 
as a part of the specification of the 
value for a single element of the 
array. Consequently, for an expres
sion to cause initialization of more 
than one element of a string array, 
both the string repetition factor and 
the iteration factor must be explicit
ly stated, even if the string reFeti
tion factor is (1). For exarrr-le, ccn
sider the following: 

«2) 'A') is equivalent tc l'A..~·) 
(fcr a single element> 

«2)(l)'A') is equivalent to 
('A', 'A') (for two elerrel~ts) 

10. Itera tions rra y be nested. 

11. Lacel ccnstants given as initial 
values for label variacles must te 

Section 9: Attributes 271 



known within the block in which the 
label variable declarations occur. 
STATIC label variables cannot have the 
INI'IIAL attribute. 

12. An alternate method of initialization 
is available for elements of arrays of 
non-STATIC statement label variables: 
an element of a label array can appear 
as a statement prefix, provided that 
all subscripts are optionally signed 
decimal integer constants. The effect 
of this appearance is the initializa
tion of that array element to a value 
that is a construct.ed label constant 
for the statement prefixed with the 
subscripted reference. This statement 
must be internal to the block contain
ing the declaration of the array. 
Only one form of initialization can be 
used for a given label array. If 
CHECK is specified for a label array 
and the elements of the label array • 
are initialized by a label prefix, the 
CHECK condition is not raised at 
initialization. 

13. For the TSS/360 PL/I compiler, 
character-string or bit-string data 
having the STATIC attribute cannot be 
initialized with corr,plex values. 

14. This form of the INITIAL attribute 
cannot be used in the declaration of 
locator or area variables. 

15. Initialization of LABEL variables on 
structures with the LIKE attribute 
requires careful handling, particular
ly as the implementation does not pro
vide the result specified by the lan
guage. A structure A is declared, 
using the LIKE attribute, to be iden
tical to a structure E. Structure B 
contains a LABEL variable that is ini
tialized, using the INITIAL attribute, 
to the value of a LABEL constant. The 
initial value of the corresponding 
LABEL variable in 1; is the initial 
value of the LABEL constant known in 
the block containing the declaration 
of B, not A. 

F'or example: 

DCL 1 B, 
2 L LABEL INITIAL {L1}; 

L1: 'f /*B.L L1*1 

BEGIN; 
DCL A LIKE B; 

272 

11: 'f I*A.L IS GIVEN THE VALUE OF' 
Ll IN STRUCTURE B*I 

END; 

Rules for form 2: 

1. The "entry name" and "argument list" 
passed must satisfy the conditicn 
stated for prologues as discussed in 
Part I, Section 6, "Blocks and Flow of 
Control ... 

2. ForK 2 cannot be used to initialize 
STATIC data. 

Examples: 

a.DECLARE SWITCH BIT (1) 
INITIAL ('1 fB); 

b. DECLARE MAXVALUE INITIAL (99), 
MINVALUE INITIAL (-99); 

c. DECLARE A (100,10) INITIAL 
({920)0. (20) ((3)5,9»; 

d. DECLARE TABLE (20,20) INITIAL 
CALL INITIALIZE (X,Y); 

e. DECLARE 1 A(S), 
2 B INITIAL (0), 
2 C INITIAL ((S)O); 

f. DECLARE Z(3) LABEL; 

Z (1) : IF X Y THEN GO TO EXIT; 

Z (2): A A + B + C * D; 

Z {3}: A A + 10; 

GO TO Z(n; 

EXIT: RETURN; 

Example c results in the following: 
each of the first 920 elements of A is set· 
to 0, the next SO elements consist of 20 
repetitions of the sequence 5,5,5,9. 

In Example ct, INITIALIZE is the name of 
a procedure that sets the initial values of 



I 

elements in TABLE. X and Yare arguments 
Fassed to INITIALIZE. 

In Examfle e, Band C inherit a dimen
sion of (8) but, whereas only the first 
element of B is initialized, all the ele
ments of C are initialized. 

In the last example, transfer is made to 
a particular element of the array Z by giv
ing I a value of 1,2, or 3. 

INPUT, OUTPUT, and UPDATE (File Description 
Attributes) 

The INPUT, OUTPUT, and UPDA~E attributes 
indicate the function of the file. INPUT 
specifies that data is to ce transmitted 
from external storage to the program. OUT
PUT specifies that data is to te trans
mitted from the program to external 
storage. UPDATE specifies that the data 
can be transmitted in either direction; 
that is, the file is both an input and an 
output file. 

General format: 

INPUTIOU~PUTIUPDATE 

General rules: 

1. A file with the INPUT attrloute cannot 
have the PRINT attribute. 

2. A file with the OUTPUT attritute can
not have the BACKnARDS attribute. 

3. A file with the UPDATE attribute can
not have the STREAM, BACKWARDS, or 
PRINT attributes. A declaration of 
UPDATE for a SEQUENTIAL file indicates 
the update-in-place mode: a record 
can be updated only by a READ state
ment followed by a corresponding 
REWRITE statement. 

Assumptions: 

Default is INPUT. The PRINl attribute 
implies OUTPUT. The EXCLUSIVE attritute 
implies UPCATE. 

The following assumptions are made when 
a file is implicitly opened cyan input/ 
output statement: 

WRITE, LOCATE, PUT 
READ, GET 
DELETE, REWRITE, UNLOCK 

INTERNAL (ScoFe AttributE) 

See EXTERNAL. 

OUTPUT 
INPUT 
UPDATE 

IRREDUCIBLE and REDUCIBLE 

These attributes cause no action in the 
'18S/360 PL/I compiler other than tc irrFly 
the ENTRY attribute. 

KEYEL (File Description Attribute) 

The KEYED attritute specifies that the 
options KEY, KEYTO and KEYFROM may ce used 
in statements that refer to the file to 
aCGess records. These options indicate 
that keys are involved in accessing the 
records in the file. 

General format: 

KEYED 

General rules: 

1. A KEYED file cannot have the attri
butes STREA~ or PRINT. 

2. The KEYED attribute can be specified 
only for RECORD files associated with 
data sets on direct-access devices. 

3. The KEYED attribute must be sFecified 
for every file with which any of the 
oFtions KEY, KEYTO, and KEYFROM is 
used. It need not be specified if 
none of the options are to be used, 
even though the corresponding data set 
may actually contain recorded keys. 

ASSUIlFticn: 

The DIRECT and EXCLUSIVE attributes 
imply KEYED. 

LABEL <Program Control Data Attribute) 

The LABEL attribute specifies that the 
identifier being declared is a label vari
able and is to have statement labels as 
values. To aid in optimization of the 
object program, the attribute specification 
may also include the values that the name 
can have during execution of the Frcgrarr. 

General format: 

LABEL [(statement-label-constant 
[,statement-label-constant] ••• )] 

Genera 1 rules: 

1. If a list of statement latel constants 
is given, the variable can have as 
values only members of the list. The 
label constants in the list must be 
known in the tlock containing the 
declaration. 

2. The number of statement label con
stants specified by the LABEL attri-

Section 9: Attributes 273 



bute is limited to 125 in any particu
lar label list. 

3. If the variable is a parameter, its 
value can be any statement label vari
able or constant Dassed as an argu
ment. If the argument is a label 
variable, the value of the label pa
rameter can be any value permitted for 
the label variable that is passed. 

4. An entry name cannot be a value of a 
label variable. 

5. The parenthesized list of statement 
label constants can be used in a LABEL 
attr ibute ~~pecifica tion for a label 
array. A subscripted label specifying 
an element of a label array can appear 
as a statement label prefix, if the 
label variable is not STATIC, but it 
cannot appear in an END statement 
after the keyword END. For further 
information, see general rule 12 in 
the discussion of the I~ITIAL 
attribute. 

6. The INITIAL attribute cannot be speci
fied for STATIC label variables. 

7. Labels cannot be unaligned. 

Length (String Attribute) 

See BIT. 

~IK~Structure Attribute) 

The LIKE attribute specifies that the 
name being declared is a structure variable 
~ith the same structuring as that for the 
r~me following the attribute keyword LIKE. 
Substructure names, element.ar·y names, and 
attributes for substructure names and ele
lllentary nanes are to be identical. 

General format.: 

LIKE structure-variable 

Genera I rules: 

1. The "structure variable" can be a 
major structure name or a minor struc
ture nanle. It can l::;e a qualified 
name, but it cannot be subscripted. 

2. The "structure variable" must be known 
in the block containing the LIKE 
attribute specification. The struc
ture names in all LIKE attributes are 
associated with declared structures 
before any LIKE attributes are 
expanded. For example: 

274 

DECLARE 1 A, 2 C, 3 E, 3 F, 
1 D, 2 C, 3 G, 3 Hi 

BEGIN; 
DECLARE 1 A LIKE D, 1 B LIKE A.C; 

END; 

These declarations result in the 
following: 

1 A LIKE D is expanded to give: 

1 At 2 C, 3 G, 3 H 

1 B I.Il<E A.C is expanded to give: 

1 B, 3 E, 3 F 

3. Neither the "structure variable" nor 
any of its substructures can be 
declared with the LIKE attribute, nor 
may the "st.ructure variable" have been 
com~leted ty the LIKE attribute. 

4. Neither additional substructures nor 
elementary names can be added to the 
created structure; any level number 
that immediately follows the "struc
ture variable" in the LIKE attribute 
specification in a DECLARE statement 
must be algebraically equal to or less 
than the level number of the name 
declared wi th the LIi'\E att.ribute. 

5. Attributes of the "structure variable" 
itself do not carryover to the 
created structure. For example, 
storage class attributes do nct carry 
over. If the "structure variable" 
following the keyword LIKE refresents 
an array of structures, its dimension 
attribute is not carried over. Attri
butes of substructure names and ele
mentary names, however, are carried 
over; contained dimension and length 
attributes are recomputed. An excep
tion is that this does not apply to 
the INITIAL attribute for any elements 
of a label array that has been ini
tiaLi. . .led by prefixing to a statement. 

6. If a direct application of the 
descriftion to the structure declared 
LIKE would cause an incorrect ccn
tinuity of level numbers (for example, 
if a minor structure at level 3 were 
declared LIKE a major structure at 
level 1) the level numbers are modi
fied by a constant before applicat.icn. 

7. The LIKE attritute is expanded before 
the ALIGNED and UNALIGNED attributes 
are applied to the contained elements 
of a structure. 



OFFSET and POINTER (Program Control Data 
Attributes) 

The OFFSE'l' and POINTER attributes 
reference to identify a particular alloca
tion of the based variable. Offset 
variables identify a location relative to 
the start of an area; fointer variables 
identify any location, including those 
within areas. 

General format: 

POINTERIOFFSET (aLea-vaLiable) 

General rules: 

1. A painter variable can be explicitly 
declared in a DECLARE statement, or it 
can be contextually declared by its 
appearance as a pointer qualifier, by 
its afpearance in a BA:iED attribute, 
or by its appearance in a SET option. 

2. An offset variable must be explicitly 
declared. 

3. The value of a pointer variable can be 
set in any of the following ways": 

a. With the SET option of a READ 
statement; 

b. By a LOCATE statement; 

c. By an ALLOCATE statement; 

d. By assignment of the value of 
another locator variable, or a 
locator value returned ty a user
defined function; 

e. By assignment of an ADDR or NULL 
built-in function value. 

4. The value of an offset vaLiable can be 
set only by assignment of the value of 
another locator variable or the value 
of the NULLO built-in function. 

5. Locator variables cannot te operands 
of any operators other than the com
parison operators = and ,=. 

6. Locator data cannot be converted to 
any other data type, but pointer can 
be converted to offset, and vice 
versa. 

7. A locator value can be assigned on~y 
to a locator variable. When an offset 
value is assigned to an offset vari
able, the area variables named in the 
OFFSET attributes are ignored. 

8. Locator data cannot be transmitted 
using STREAM input/output. 

g. Only the INITIAL CALL form of the INI
TIAL attribute is allowed in locator 
declarations. 

10. Offset variables cannot be used to 
qualify a based reference. 

I 11. For the TSS/360 PL/I compiler, the 
area variable named in an OFFSET 
attribute must be of based storage 
class. 

12. Pointer variables and offset variables 
cannot tE unaligned. 

Assurrption: 

The variatle named in the OFFSET attri
bute is contextually declared to have the 
AREA attribut.e, but its storage class will 
be automatic; hence, it will nct conforrr to 
general rule 11, above. For the TSS/360 
PL/I compiler, therefore, an offset 
declaration without an Qccompanying expli
cit area declaration will result in an 
eLror. (See also "AREA (Program Control 
Data Attribute)," in this section.) 

OUTPUT (File Description Attribute) 

See INPUT. 

PICTURE (Data Attribute) 

The PICTURE attribute is used to define 
the internal and external formats of 
character-string and numeric character data 
and to sfecify the editing of data. Numer
ic character data is data having an arith
rretic value cut stored internally in 
character form. Numeric character data 
rrust be converted to coded arithmetic 
before arithmetic operations can be 
ferfcrmed. 

The picture characters are described in 
Part II, Section 4. "Picture Specification 
Characters." 

General format: 

PICTURE 
'character-picture-specification' 
'numeric-picture-specification' 

A "picture specification," either character 
or numeric, is composed of a string of pic
ture characters enclosed in apostrophes • 
An individual ficture character may be pre
ceded by a repetition factor, which is a 
decimal integer constant, ~, enclosed in 
parentheses, to indicate repetition of the 
character n times. If n is zero, the 
character is ignored. Picture characters 
are considered to be grouped into fields, 
some of which contain subfields. 

Section 9: Attributes 275 



General rules: 

1. The ·character picture specification" 
is used to describe a character-string 
data item. Three characters may be 
used: A, indicating that the asso
ciated position in the data item may 
contain any alphabetic character or a 
blank; X, indicating that the asso
ciated post ion may contain any 
charact er; and 9 I indicating that the 
associated position may contain any 
declmal digit or a tlank. A character 
picture specification must include at 
least one A or X. Each character pic
ture :opecification is a 5in91e field 
with no contained subfields. 

Example: 

DECLARE ORDER# PICTURE 
'AA(3)9X99X(4)9'; 

This declaration specifies that values 
of ORDER3 are to be character strings 
of length 13. The string consists of 
two letters, three digits, any 
character, two digits, any character, 
and four digits. For example, the 
character ,c:;t:ring 'e; 42-63-0024' would 
fit this descriptjo~. 

Edt ting and ~;Clr:press ion characters are 
not allowed in character picture spe
cificaticns. Each picture specifica
t ion cnaract.er must represent. an <lctu
al character in the data item. 

2. The "numeric picture specification" is 
used to describe a character item that 
represents either an arithmetic value 
or a character-string value, depending 
upon its use. A numeric picture spe
cification can consist of one or more 
fields, some of which can be divided 
lnto s·'lbfields. A siIlgle field is 
used to describe a fixed-faint number 
or the mantissa of a floating-point 
nwober. Either may be divided into 
two subfields, one descriting the 
integer portion, the other describing 
the fractional portion. For floating
point numbers, a second field is 
required to describe the exponent; it 
cannot be divided into subfields. A 
second field may oFtionally be used 
with fixed-point numbers to indicate a 
scaling factor. Four basic picture 
characters can be used in a numeric 
picture sFecification: 

276 

9 indicating any decimal digit 

v indicating the assumed location of 
a decimal point. It does not spe
cify an actual character in the 
character-string value of CUE data 
item. The V also indicdt~s the end 

of a subfield of a picture 
specification. 

K indicating, for floating-point data 
items, that the eXfonent shculd be 
assumed to begin at the position 
associated with the picture 
character following the K. It does 
not specify an actual character in 
the character-string value of the 
data item, either an E or a sign. 
The K delimit::, the two fields of 
the specification. 

E indicating, for floating-point data 
items, that the associated pOSition 
will contain the letter E t.o indi
cate the beginning of the exponent. 
The E also delimits the two fields. 

In addition to these characters, zero 
suppression characters, editing char
acters, and sign characters may be 
included in a numeric ricture sfecifi
cation to indicate editing. Editing 
characters are not a [art of the ari
thmetic value of a numeric character 
data item, but they are a part of its 
character-string value. Repetition 
factors are allowed in numeric 
Sfecifications. 

3. A numeric character data item can have 
only a deciIT'al base. Its scale and 
precision are specified by the picture 
character:,. The PICTURE att,ribute 
cannot be specified in combination 
with base, scale, or precision attri
butes. If the mode of the numeric 
character data is CCMPLEX, however, 
the COMPLEX attribute must be explic
itly stated. 

4. Tne following paragra[hs indicate the 
combinations of picture characters for 
different. ari thm~tic data forrrats. 

a. Real decimal fixed-point it.errs are 
described in the following general 
form: 

PICTURE • [9J .•• [V] [9) ••• 
[F([+I-] integer)]' 

The optional field of the pict:ure 
specification, beginning with the 
letter F together with a parenthe
sized, optionally signed decimal 
integer constant, is a scaling 
factor that indicates the location 
of an assumed decimal point if 
that location is outside the actu
al data item. The scaling factor 
has an effect similar to the 
exponent of a floating-paint num
ber; it indicates that the assuroed 
decimal point is "integer" places 
to tile right (or left, if nega-



tlve) of the p(Js~t.lon otherwise 
indicated. 

Sign, editing, and zero suppres
sion picture characters can be 
included in a fixed-point specifi
cation. The V cannot appear more 
than once in a specification, 
although it may be used in combi
nation with the decimal point (.) 
or comma (,) editing characters, 
which cause insertion of a period 
or cown.a. If no V is included, 
the decimal point is assumed to be 
to the right of the rightmost 
digit. Only one sign indication 
can be included in the first field 
(the actual sign of the integer in 
a scaling factor is allowed addi
tionally). The specification must 
include at least one digit 
positiGn. 

Example: 

DECLARE A PICTURE • 999V99' : 

This specification describes nu
merjc character itEms of fiv~ 
digits, two of which are assumed 
to be fractional digits, 

b. Real decimal floating-point items 
are described by the following 
general form: 

PICTURE 
• [91 ••• (V] [91 ••• {E I K} 9 [9] , 

Both the mantissa field and the 
exponent field must each contain 
at least one digit position. The 
exponent field can contain no more 
than two digits, since System/360 
implementations allow only two 
digits in the exponent field of a 
decimal floating-point number. If 
arithmetic data items are to be 
assigned to the described vari
able, the exponent field must con
tain both of the allowed digit 
specification characters, or the 
second digit of the exponent field 
will be lost and the SIZE condi
tion will be raised. 

Sign, editing, and zero suppres
sion picture characters can be 
included in a floating-point spe
cification. One sign indication 
is allowed for each field. Only 
one V is allowed, and it can 
appear in the first field only. 
As with fixed-point specifica
tions, the V may appear in combi
nation with the decimal point 
editing character (as .V or V.>, 

5. 

c. Comrlex numeric character data is 
described using the general forrr: 

PICTURE 'real-picture' COMPLEX 

The "real picture" is a specifica
tion for either a decimal fixed
point or a decimal floating-point 
data item. The single picture 
specification describes both parts 
of a complex number. 

The precision of a numeric character 
variable is dependent upon the number 
of digit positions, actual and condi
tional. Digit poSitions can be speci
fied by the following characters: 

9 an actual digit character 

conditional diqit charactErs S~t
cifying zero suppre~~ion 

digit characters specifying an 
OVel.~ul.cn 

conditional digit drifting 
characters 

Each but the first conditional digit 
drifting character in a drifting 
string specifies a digit position. A 
conditional digit drifting character 
used alone does not specify a digit 
position. 

Precision of a fixed-point variable is 
(P.q), where E is the number of digit 
positions in the picture specification 
and 3 is the number of digit positions 
following V. Precision of a floating
point variable is (p), where f is the 
number of digit positions preceding 
the E or K. Indicated sbatic editing 
characters or insertion characters do 
not participate in the specification 
of precision. but they must be counted 
in the number of characters if the 
data item is written as output or 
assigned internally to a character 
string. 

6. A variable representing sterling data 
iterrs can be specified by using a nu
meric picture specification that con
sists of three fields, one each for 
pounds, shillings, and pence. The 
pence field may be divided into two 
subfields. Data so described is 

Section 9: Attributes 277 



stored in character format as three 
contiguous numbers corresponding to 
each of the three fields. If any 
arithrretic operations are specified 
fo~ the variable, its value is con
verted to coded fixEd-point decimal 
representing the value in pence. 
Sterling picture specifications have 
the following fOrl[': 

PICTURE 

'G [edi ting-ctlaracter-l J ••• 

M founds-field 

M {separator-i] ... 
shillings-field 

M [sefarater-21 •.. 
pence-field 

{editing-character-21 ... ' 

Picture specification characters, 
editing characters, and separators can 
be used in any of these fields and are 
discussed in Part II, section 4, "Pic
ture Specification Characters." 

The precision (p,g) of a sterling nu
meric discussed in Part II, Section 4, 
"Picture Specifica~ion Characters." 

g nurrber of fractional digits in 
t.he pence field 

P 3+q+ (number of digit posi t.ions, 
actual and conditional, in the 
Founds field) 

I'OINTER (Program Control Data Attribute) 

See OFFSET. 

POSITION (Data Attrihute) 

See DEFINEr:;. 

Precision (Aritnmetic ~ata Attricute) 

The precision attricute is used to spe
cify the minimum number of significant 
digits to be maintained for th~ values of 
the data items, and to srecify the scale 
factor (the assumed pOSition of the binary 
or decimal point). The precision attribute 
applies to both binary and decimal data. 

General format: 

(number-of-digits [, scale- factor]) 

The "number of digits" is an unsigned 
decimal integer constant and "scale factor" 
is an optionally signed decimal integer 
constant. The precision attribute :"")ecifi
cation is often represented, for hrevity, 

278 

as (F,g), where £ represents the "number of 
digits· and 9 represents the "scale 

General rules: 

1. The precision attribute must immedi
ately follow, with or without inter
vening blanks, the scale (FIXED or 
FLOAT). base (DECIMAL or· BINARY), or 
mode (REAL er COMPLEX) attribute at 
the same factoring level. 

2. The number of digits specifies the 
number of digits t.O be maintained for 
data items assigned to the variable. 
The scale factor specifies the nurrber 
of fractional digits. No lJoint is 
actually present; its location is 
assumed. 

3. The scale factor can be specified for 
fixed-pOint variables only; the nurrber 
of digits is specified for both fixed
point and floating-point variables. 

4. When the scaie is FIXED and no scale 
factor is srecified, it is assumed to 
be zero; that is, the variable is to 
represent integers. 

5. The scale factor of a variable, or of 
an intermediate result of type FIXEC, 
must be in the range -128 and +127. 

6. The scale factor can be negative, and 
it can be larger than the number of 
digits. A negative scale factor (-g) 
always specifies integers, with the 
point assumed to be lecated g rlaces 
to the right of the rightmost actual 
digit. A positive scale factor (g) 

that is larger than the number of 
digits alweys specifies a fraction, 
with the roint assumed to be located g 
places to the left of the rightrrost 
actual digit.. In eit.her case, inter
vening zeros are assumed, but t.hey are 
not stored: only the specified nurrber 
of digit.s are actually stored. 

7. The precision attribute cannot be sfe
cified in combination with the PICTURE 
attribute. 

8. The maximum number of digi t.S allowed 
for C;ystem/360 imrlementations is 15 
for decimal fixed-point data, 31 for 
binary fixed-point data, 16 for decim
al floating-point data, and 53 for 
binary floating-point dat.a. 

Assumptions: 

The defaults for System/360 implerrenta
tions are as follows: 

(5,0) for DECIMAl, FIXED 
(15,0) for BINARY FIXED 



(6) for DECIMAL FLOAT 
(21) for EINARY FLOAT 

PRINT (File Description Attribute> 

The PRINT attribute specifies that the 
data of the file is ultimately to be 
printed. 'Ihe PAGE and LINE options of the 
PUT statement and the PAGESIZE option of 
the OPEN statement can be used only with 
files having the PRINT attribute. These 
options are described in Part 11, Section 
10, "Statements." 

General format: 

PRINT 

General rules: 

1. The PRINT attribute implies the OUTPUT 
and STREAM attributes. 

2. The PRINT attribute conflicts with the 
RECORD attribute. (However, through 
the use of the DDEF command, RECORD 
files can be associated with tne 
printer. ) 

3. The PRINT attribute causes the initial 
data byte within each record to be 
reserved for USASI printer control 
characters. These control characters 
are set by the PAGE, SKIP, or LINE 
f orn,at i terns or opt ions. 

Assumption: 

If no FILE or STRING specification 
appears in a PUT statement, the standard 

I output file SYSPRINT is assumed. 

REAL (Arithmetic Data Attribute) 

See COMPLEX. 

rlECORD and STREAM (File Description 
Attributes> 

The RECORD and STREAM attributes specify 
the kind of data transmission to be used 
for the file. STREAM indicates that the 
data of the file is considered to be a con
tinuous stream of data items, in character 
form, to be assigned froIT, the stream to 
variables, or from expressions into the 
stream. RECORD indicates that the file 
consists of a collection of physically 
separate records, each of which consists of 
one or more data items in any form. Each 
record is transn,i tted as an entity to or 
from a variable. 

General forn,at: 

RECORDISTREAM 

General rules: 

1. A file with the STREAM attribute can 
be specif ied only in the OPEN, CLOSE, 
GET, and PUT statements. 

2. A file with the RECORD attribute can 
be specified only in the OPEN, CLOSE, 
READ, WRITE, REWRITE, LOCATE, UNLOCK, 
and DELETE statements. 

3. A file with the STREAM attribute can-
not have any of the following attri
butes: UPDATE, DIRECT, SEQUENTIAL, 
BAC~WARDS, BUFFERED, UNBUFFERED, 
EXCLUSIVE, and KEYED, any of which 
imFlies RECORD. 

4. A file with the RECCRD attribute can
not have the PRINT attribute. 

Assumptions: 

Default is STREAM. If a file is irr.flic
itly oFened ty a READ, WRITE, REWRITE, 
UNLOCK, or DELETE statement, RECORD is 
assurred. 

Reducible 

See IRREDUCIBLE. 

RETURNS (Entry Name Attribut.e> 

The RETURNS attribute may be specified 
in a DECLARE statement for an entry name 
that is used in a function reference within 
the scope of the declaration. It is used 
to describe the attributes of the fUnction 
value returned when that entry name is 
inVOked as a function. 

General format: 

RETU~NS (attribute ••• ) 

It is used in the following manner: 

DECLARE entry-name 
[ENTRY-at tribute- speci fi cation] 
RETURNS (attribute ••• ); 

Genera I rules: 

1. The "ENTRY attribute specification" 
consists of the keyword ENTRY with or 
without associated parameter attribute 
lists. If parameter attribute lists 
are net required, the keyword ENTRY is 
optional, since the RETURNS attribute 
irr,plies the ENTRY attribute. 

2. The attritutes in the parenthesized 
list following the keyword RETURNS are 
seFarated by tlanks. They must agree 
with the attributes specified in the 
RETURNS oFtion of the PROCEDURE or 
ENTRY statement to which the entry 

Section 9: Attributes 279 



name is prefixed. If the attributes 
of the act.ual value returned do not 
agree with those declared with the 
RETURNS attribute, no conversion will 
be performed. 

3. Only arithmetic, string, locator, 
AREA, and PICTURE attributes can be 
specified. 

4. Length attribute specifications are 
evaluated on entry to the block con
taining the RETURNS attritute 
specification. 

5. Unless default attributes for the 
entry name apply, any invocation of a 
function must appear within the scope 
of a RETURNS attribute declaration for 
the entry name. For an internal func
t.ion, t.he RETURNS attribute can be 
specified only in a DECLARE statement 
that is internal to the same block as 
the function procedure. 

6. RETURNS is mandatory for function pro
cedu.::es when function value attributes 
are explicitly specified. 

ASSUItI-:ti ons: 

If the RETURNS attribute is not speci'
fied within the scope of a function 
reference, the defaults assumed for the 
returned value are FIXED BINARY (15,0) if 
the entry name begins with any of the let
ters I through N; otherwise, the defaults 
~re FLOAT DECIMAL (6). Default precisions 
are those ~efined for System/360 
impleIllentations. 

280 

SEQUENTIAL (File Description Attribute) 

See CIRECT. 

STATIC (Storage Class Attribute) 

See AUTOMATIC. 

STREAM (File Description Attribute) 

See RECORD. 

TASK (Program Control Data Attribute) 

The TASK attribute was designed to 
describe a variable that may be used as a 
task name, to test or control the relative 
priority of a task. Since multitasking is 
not PL/I-controlled in TSS/360, any attempt 
to execute a statement making use of t.his 
attribute will cause abnormal termination 
of the Frogram. 

UNALIGNED (Data Attribute) 

See ALIGNED. 

UNBUFFERED (File Description Attribute) 

See BUFFERED. 

UPDATE (File Description Attribute) 

See INPUT. 

VARYING (String Attribute> 

See BIT. 



Page at GC28-20Q5-1, Issued :;eptemher 30. 1971 by 'fNL GN28-3185 

The following figure rresent.s d summary of TSS/360 PL/I attributes. Throughout this 
figure, Column 5 ('Conflicts with") lists only those attritutes of the same class as the 
attributes in discussion. For example: data attributes are not listed as conflicting 
with any file attributes. 

r------------------T----------------T-------------T------------T-----------------,----------------------~ 
IAttribute and I':peciii<,d tcr IlfTl l it',l ty orllml,lie,; or I IDefault . I 
IAbbreviation I Nam"" of I''';:;U/T,'d for !ASSUIU'c1 withjConflict.s wit.h IConsidel:at~ons I 
t-----------------f---·····-··-- --- -- .. --i ---- --- - - ----f ---- --- ----- t--- ---- -----------t-----------------------~ 
JALIGNEe !elelf·ent ,and}, I I piNAL IDefault aI-flied at I 
I I structure Vd' i.- I I I I element level; UNAL t 
I 1 .. l::le" ,mel r·~- I I I Ifor bit, charactel:, I 
i I rdn'ct.cr ,; I I i I pictured dat.a, ALIGNfD I 
! I I I I Ifor all othel: ty~es; I 
! I ! \' I I constants take defaul ts I 
t-··--·--------------f------- - --- --" - -t- - -- ---- -----f----·---- ----f- .. ---------------t------------------ ----~ 
I Al:EJI {(si ze) 1 ! l.'v£: 1-one ,1[, ,j ! !J"d~ cl.,If"t!d I IINIT wi thout IDefault size is 1000 I 
I "si;;:.·· may be IVariables dn,j lidenllfi.>rs I ICALI.oFtion 1 bytes I 
le1eJT!<>nt. expr.,ssionl paran,ctf'r:; i in IN optioll f I I I 
'with AUTC or CTL I lot ALUl(' I I I I 
I I jst<l!'lI'ent dnrll I I I 
I I l(;n:;1:1 rtttri-I I I I 
I I !lilt' ';pecifi-I I I I 
! I I Cd I ion! I I I 
t------------------i----------------.-------------t------------f------------------t-----------------------~ 
I AUTOMATIC tlpvEl-on" I I::TATIC,CTL,BA:;ED, IDefault is AUTO unless I 
lAUTO IVrlri"j-;IFs I IEXT.DEF,piHdlT1f't"r:QEX'f i,; "p?cified, in I 
I I ! I Iwhieh case, STATIC is I 
I I I I I IdssWT,ed I 
.------------------+----------------t-------------t------------t------------------t-----------------------~ 
IBACJ<WARDt; 1~;J::vL k!::CORD ! ' IFILI:.RECOR[.I:;TR~A".[lf<I:C1' I I 
I IlNPi J'f t.dl" til,:;! 1:,E\,L,INPIJT IOIlTPtJ1,rRIN'l,EXCL,I I 
I I ! Il'XI' I UPDATE, KEHD I I 
~------------------+----------------+--.----------+------------t------------------+-----------------------~ 
IBASEDCrtr-var) Ilf'v"l·-one I 1~;TATIC,CTL.AllTO IDefault stceaye clas::; I 
! (see REFER IVJti·.ll,·,; I I l-.XT.IJ\IT.fJFFSf.T. I is AUTO unlESS EXT i<; I 
ioption in ChaFter I I IDl-F.I'<HdlT1f't P r, IS[-Ecified. in which I 
Ilq: [Jdshl! I IdoiluCitdti· pxtf'nt~lc",se, :;'fATIC ~,~ I 
IVdI:labi,cc; clnd l.i,;t I I I"xr''f t with REFER IdSSllITlPd. Can cause I 
I"eoces"iny) I ! I Icontext.ual declaration I 
i I I I lot pointer variable I 
.------------------f----------------+-------------f------------t------------------t-----------------------i 
!BINARY Icodel acit he.' lci!IIId<-ci,tr"'ri I II.)!-.·(,I'I<; !Default:; for !_drtly I 
IBIN l,'l,!nl('nt or dcrdYli,I"r,titil''':; I i Idf'clared arithmetic I 
I Iv,nidtl.." dnd I wit h illlt irll I I Ivariables are FLOAT I 

Ir><,rdmetu:, 11,·ll.·! [I ! IOEl'REALunlessa I 
I I j l,f'Hl';h N I I I [Crt ci"ion att I:itute I 
! ! ("llll'!:; "1.,cl I I"pecification f0110w- I 
I It" t',n<:lion I I lin'l the Lase 01: mode I 
I I"nl ry ndIT''''') I liittriLute includes a I 
I I I I sCille factor, in which I 

! I I I Icase, FIXED is assuned I 
.------------------i----------------t-------------.------------t------------------t-----------------------4 
IBIT!lqt.h) [VARIN(;) Ibit-:;trinq I I leHAI< INO 1efault:o for dny I 
1·1gth- may be lelelTe·nt CT JTrdyl I • \ Istrinq attritutes I 
IElement expres- Iv,nlcitlt':.; clll" I I I I I 
I S.lon fcr AIJ'l'G or II·dLifr,t "r" I I I I I 
le1'l., a<3terisk for I ! I I I I 
leTL or pardmeter, I I I I I 
lor REFEfI tor I I I I I 
I BASED I I I ! I I 
.------------------t----------------f-------------t--·---------t------------------t-----------------------i 
I BUFFERED I SE\,L HECOP[; I I ~'I L~, ROCCRL P'TlH.AM. DIRECT, I !JUf is c1efau1t for I 
IBUF Ifile; I I::E-.;L,I::XT IPf<INT.UNBU~,EXCL ISE<"L files t 
~------------------t----------------t-------------t------------f------------------t-----------------------i 
I BUILTH-l Ibuilt-in I I lany at.her "ttri- I I 
I Ifunctions I I Ibut",l-'dr,lrretPrc; I I 
.------------------t----------------t-------------t------------t------------------t-----------------------i 
ICHARACTEIHlgthl Icharact.er-strin<JI I ifilT,PIC INo ,jefaults for any I 
I [VARYING] lel€'lI'ent OJ: drlayl I I Istring attribute I 
I CHAR Ivaridhle" and I ! ! I I 
.-19th - may be I parameters I ! I I I 
I element expression I I Ii' I 
lfor AUTO or Crt. ! I I I ! I 
lasterisk for CTL I I I I I I 
lor parameter, or I I I I I I 
IREFER tor BASED I I I I i I 
L __________________ ~ ________________ L _____________ ~ ___ ---------~------------------~--------_______________ J 

I Figure 48A. Swrunary of Attributes (Pait 1 of 6) 

Section 9: Attributes 280.1 



page of GC28-2045-1, Issued Sertember 30, 1971 by TNL GN28-31B5 

f'--- -- ------------,.----------------. - - - ----------T------------1"------------------T-----------------------1 
IAttribute dnd ISpecified for IlmrliH! hy orlImplie,; or 1 lOP-fault 1 
IAbbreviati.on IName,; of IAs,;ul1'eri for IA!'<5\lIreri withlConflict,; with Icon,;irleration::; I 
.------------------+----------------+-------------+------------+------------------+-----------------------~ 
ICOMI'LFX lacit.tlmet if I I IIH. II I, IREAL is default tor I 
ICPLX lelempnt or 1 I I !arithmetic variable:; I 
! !arcdY vacian,:; I I I I I 
I land pararnpt<>r:, ! 1 I I I 
t------------------+--~------------+-------------+------------+------------------+-----------------------i 
lCOlfiHOI.Ll:.C IIE'vel-one vdri- I I P;TATIC,AIl'ffi,RA!;ED IDefault storage clas:; I 
It'TL lables dnd P"'- I I I Ii" AUTO uniE'ss EXT i<; , 
I Irarneter" i I I Ispecified, in which ! 
I ! I I I lease, STATIC L I 
I I I I I I assumed I 
f------------------+----------------+-----------~-+------------+------------------+-----------------------i 
!DECIMAL Icoded arHhnleticl"ncierlarpd I jIlIN,PIC IDefault::; fOI: partly I 
i nEe lelement or drrayl icientifiers I I Idpclarf'd arithlllPtic I 
I IVariablf's and Iwith ,my ini-I I IvariaLles are PLeAT, I 
I I parameter,; I tidl letter I I IDEC,REAL, unless a ! 
I i lexcept I I I Iprecision attributE I 
I I I th rOllqh N I I 1 following a be:;p or I 

I I ('.'1l'lies al:101 I Imorle attritute in- I 
! Ito function I ! !clude:> a scale facto:r, I 
I lent:ry namE'!» I I lin which case, fIXED I 

! I I I i I is assumed I 
~------------------+--------------~-+-------------+------------t------------------t-----------------------i 
:,,":,.'INED base- 1 level-one I ! IINI1,Jl 111Yi,E1A:;l:.D, IDefined nanes alway,; I 
j"i.>,'ifier Ivariablps I I ICTL.:;TA'l'IC,INT Ihavp 1nternal ';co~p I 
I! ISL"script-listl I! I I IEXT,Vllk,[,ar,l\1\f'tpr I I 
: [FU:; (intf"gcr)]) I I I I I I 
: lJEF I I I I I I 
t------------------t----------------+----------~--+------------t------------------t-----------------------f 
i d~mens ion I a:rray:;. param- I I I f If lower bound is I 
I (bouncis[.bounds) jeters (i!l'Jlledi- I I I lornitted, 1 is assull£>d I 
I··") where lately followinq I I I I I 
I-bounils· is ,.uray name) I I I I I 
I (Uolole:r:Juppcrll" I ! I I I I 
! • 10,"," r· ii no I I I I I ! 
l-u~T"r· may be I I I I I I 
I element expn·s- I ! I I I 
IHion for AUTO or I I I I I 
!CTL; ... only tor ! I I I I 
I CTt or parameter, I I I I I 
,with all Or none i I I I I 
i of bounds spec- I I I I I 
ifications as I I I I I 

lasterisks. For I I I I I 
I Fdram.~ter the I I I I I 
I expression must be I I I I I 
i dn unsigned dec- I I I I I 
i imal integer I I I I I 
i constant. For: I I I I I 
! BASED, the last I ! ! I ! 
lupper may be I I I I i I 
IREHR I I I I I I 
t------------------t----------------+-------------t----L-------t------------------t-----------------------f 
iDIRECT tREcORD file:; II:·XCL InLF,RECORL.I;'TREAP',SECL,PRINT,!SEQL is default for I 
I I I I EXT,KEYEC IflUF,1JNPlIF, iRECORD tiles 
i I I I IBACKI«MW:; I i 
~------------------+----------------+-------------+----------~-+------------------t-----------------------~ 
IENTIlY lentry pointG, IRETUI,m~;, I I I 
I [(pararn-attr:- J I entry paramete:r'"I(;ENEIHC; I I i 

li,;tI.param- I Ildteb of I I 
att~-listl. •• l}1 IPROC or: ENTRYI I 

I I statements I I 
I land tor con- I I 
I Itf'xtuallyde-I ! 
I icl.:,C(>ri entry! I , 

i I I na,,.,,,,,; I I I' i 
f------------------+----------------t-------------+------------+------------------t-----------------------~ 
IENVIRONMf,NT Ifile:; I I 1 IPRINT files can get 
I (opt10n-l1st) I I I I I ENV by default; aU 
IENV . Ii! I lot"h":r files It'ust hdve 
I (See 'Option" of ! I I I I CIt. le,l<,t record forn-,at 
! the ENVI.RONMENT I I I I Idnd blnci<size "Feci-
IAttn,bute- at, end I I I I I U<"d in ENV or in d DD I 
jot th~s sect10n) I I I I I:;tdtprnent I 
l __ --- ____ -. , ________ 1._, ____ - --__ - - _ - __ 1._ - -- " -- _____ _ .1. ____ ________ .1. __ _______________ • __ • .l _____________________ ,, ___ J 

Figure 4BA. Summary of Attributes (Part 2 of 6) 

280.2 



Page of Ge28-20'S-1, Issued September 30, 1971 by TNL GN28-318S 

r------------------T----------------T-------------T------------T------------------T-----------------------, 
IAttribute and ISpecifie<1 for Ilm!,llPd by orll.pllel! or I IDefault I 
I Abbreviat ion I Names of IIIRliUl\led for I Asa",.ed wit h I cont 1 icts wit h I considerat ions I 
t------------------f----------------t-------------t------------f------------------t-----------------------i I EVENT levent v;uidbl." l"nrlecLdrf'd I I IDefault scope is lNT; I 
I land paramt't.'r:: I id,mtitiprc; I I Idefault storage class I 
I I I in I:.II~.NT op- I I lis AUTO I 
I I I tHm or WAIT I I I I 
I I I »tdt.p.mf'nt I I I I 
t------------------t----------------+------------~+----~-------t------------------t-----------------------i 
IEXCLUSIVlo. IDIRECT lIPDATE IHi .. l; impli- IFIl-£,RECOR[;.lnTRE.AM.SEQL,INPtr!' I I 
I EXCL IfileH in a lcitly openf'd IJEYJD.OUTPUT,IPRINT, I I 
I Itd>iking I by ... n IJNUX'~ I DIRECT, IUNBUF.BUF, I I 
I lenvironmpnt I,;t ... tement I UPDATE, EXT I BACKWARDS I I 

.------------------t----------------t--------~----t------------t------------------t-----------------------i 
I EXTERNAL Ilpvel-one I ~nt~y n ... mes I STATIC I INT,IItr!'O, BASED. lINT is default for all I 
I EXT Ivariables with lot f'xtcrnal I luEF,INIT with lnames exceft thm,e I 
I I STATIC or CTL i I procujurf!!), I I CALL oftion, Ilisted in colUllln 3 I 
I Ihlen I tilp:;, I I I I 
I I I !,ro'l[,lI1'mer- I I parallleter I I 
I I Idpfin('d con- I I I I 
I I I<iHlon Mmes I I I I 

~------------------t----------------+-------------t------------t------------------t-----------------------~ I FILE Ifile ... r;ard"'f'- IAny tile-namelEXT 10111 but file-name I I 
I Iters I·,ttril>ut.'; I lalld scope attri- I I 
I I Illndeclared I I butes I I 
I I I irlent if i"r inl I I I 
I I ,n u: option I I I I 
i I lin l/q state-! I I I 
I I I",enttoranyt I I I 
I I Ii/() condit ion I I I I 
~------------------t----------------+----~--------t------------t-------------------t-----------------------~ 
IFIXED Icoded arithm .. - Illndecl<lrcd r IFLOAT,PIC IDefaults for partly I 
I Itic variable!; I i<ient ith:ro I I Ideclared arithmetic I 
I j and paramE't"r,; I wi th i ni tii! 1 , I ,variables are REAL DEC I 
I I 11('tt. tIl I ,FLOAT unles'i :;cale I 
I I I throuqh N! I I factor appears in I 
I I I ('II'plies dlsol , l(lreciuion dttribute I 
I I I to function , I I specification with a I 
I I lentry names) , , lbase or mode attribute' 
I I I I I j in which case FIXEC is I 
I , I I I I assumed I 

~------------------t----------------+-------------+------------t------------------t-----------------------~ I FLOAT Icoded arithrr,E,ticI1Ind.'cldrt>d I IFIXED,PIC jDefaults for partly I 
I Ivariabl"s, pard-lidt-'ntitipr,; .1 j Ideclared arithmetiC I 
I Imet"rs I"xcel't tho,;" I I Ivariables are REAL DEC I 
\ I I ... ith initial I j IFLOAT unless scale I 
I I II"tt"f!; 1 I I Ifactor afpears in I 
I I Ithrowjh N I I lprecision attribute I 
I I I ("fp1 ies dl:;ol I Ispecification with a I 
I j I to t unction I 1 ,base or mode attri- I 
I I I pnt ry n"me:;) ! I I bute, in ... hich case I 
I I I I , ,FIXt:D is assumed I 
r------------------+----------------+-------------+------------+------------------t-----------------------~ 
IGENERIC Ifd~ily of entry I I 'any other attri- IA generic na~e is I 
I lentry-name- In ... me~ , I I hute, including I always considered to I 
I decl I , I I E:NTRY and IN'I' Ihave th .. ENTRY and I 
I t. ent ry-name- I I I I lINT attr ibutes. even I 
I decll. _ -) I I I I I if entry names of I 
I I I I I I family members have I 
I I I I I Ithe E~T attribute I 
~------------------t----------------+-------------+------------t------------------t-----------------------~ I INITIAL Iproblem data I I ENTI<Y.FILE,DEF, I I 
I <iteml,iteml lelement and I I BASED,PTR,OFFSET I I 
I ••• ) I array varia ble!; I I LABEL with STATIC, I 1 
IINIT lor labe 1 va 1'- I I parameter, I I 
,"item" is an liables I I structure I I 
larithmetic con- , I I I I 
I stant or an I I I I I 
lasterisk; repeti- I I I I I 
Ition factors may I I I I I 
lappear with strinql I I I I 
I constants, and I I I I I 
I iteration factor!) I I I 1 I 
lmay be specified I I I I I 
Ifor array I I I I , 
I initialization , I I I I t __________________ ~ ________________ ~ _____________ ~ _____ -------~---_______________ 4_ ______________________ J 

I Figure 48A. Summary of Attributes (Part 3 of 6) 

Section 9: Attributes 280.3 I 



Page of GC28-2045-1, Issued tJeptember 30, 1971 by. TNL GN28-3185 

f -_._--. '-'-'---- --------T---------------.,. --------- ----T------------T----·--------------T-----------------------, 
I Attullllt(, dnd ISpecifi ... d for \lmILi"d loy or! Implie:; or I IDefault I 
!Abbn"lfidl ion INam .. " ot 11I"""n .... '! for IAsBulI'ed wHhlcontlirtr. with I Considerations I 
t------------------+----------------+-------------+------------t------------------t-----------------------i 
liNITIAL C.'11"L i'h''''L dS .1txlV., I I I ENTRY .f'IL"'.~;TATIC I i 
I t(.nq-11,;t)) Iplu>; loedlor oI"dl I IDEF,AM;ED. pdrdmp-I I 
IINIT CIILL I"neil varL.blp,; I I It",r, ,;tructurp i I 
I------------------t----------------t-------------t--------~---t------------------t-----------------------f 
IINPllT Ifil .. !> !1\ACKWlIlln:;; tnU;.EXT IOIlTPIIT.!Jl'flIlTE IINPUT ir. default I 
I I IHle,; inll'li- I I EXCL,l'flINT Ifor files I 
I I Icitly op.>oed I I I I 
I I I ty 1l~.AD or I I I I 
I I I <;!:'j ,; .. "t"m('nt I I I I 
I I I (unl .. s,; 0[>- I I , I 
I I IDATE han heenl I I I 
I I I f'xrlicitly I I I I 
I I I:;peciti~dl I I I I 
~------------------+----------------t-------------t--------~---+------------------t-----------------------t 
IINTERNAL Il('vf'l-one IhHdmt'!<>r", f , EXT lINT is defaul t f or I 
lINT ivariabl<'s,tile!i Idefin.'d Vdr- I I ,variables of any I 
I , 1 iat,l.·", !'ntryl I I storaqe clas,; I 
I I I n.,mp:; of in- i I ! (including task and 
I I It-Nnell pro- I I I 
i I (cedlln'" I I levent variables) I 
t------------------t----------------t-------------t------------t------------------t-----------------------f 
IKEYE!; IDlRECT dnel IDIHECT,EXCL IFILE,EXT P,TREAl",PRnrr I I 
i !:;!::i)UENTIAL flLl";1 I IBACKWARO:; I I 
.-----.-- ----------t----------------t-------------t------------t------------------t-----------------------f 
I U\[lU Ilabel viiriablp:; I Wllt'l I r·'- I I dll other Cltt ri- I I 
!! (c,\r,·t· L,bel- land "ardmf't er:; it ix p :;, ,'xc:ppt I I hilt .. " pxcppt I I 
I constdnt I I ttl",;f' of I'ROC I I ALIGNED, :;coP" dndl I 
II, :t.mt-lab('l- I I·md l-NTRY I I "toragp cl"sc; I I 
I con:;t.J .•• l) I !:;tcltf'lwnt" I lattritute:; I I 
Ittw list of con- I I i I I I 
I stant ,,[,ecit ies I I I I I 
Ithe rdnqe of vdl- I I I I I 
lues thF variable I I I I 
i Cd n hd Vf> I I I I I I 
~------------------t----------------+-------------t------------t------------------t-----------------------t 
Ilength I:;trinq varl.,blp"l I lany attrit-utp:; not I I 
! (exp i 0, REFER- li'ind par..!mf'tE''':; I I (allowed in d v"Hd I I 
I option) I ! I I"trinq decLn .• tion! I 
Imw,t irr.m,-didt.ely I I I I .1 I 
I toll(JW' ChAR or [llT; I I I 1 I 
,-exp· ll'ust b<' lln- I I I I I 
Isigned decimal I I I I I 
! inter!,,!' c:onstant ! I I I 
I for :;TATIC or pa- I I I I 
! rameter; asterisK I I I I 
lis allowed for CTLI I I 
lor ~ar~meter; f I I 
IREFER option is I I I 
lallowed for last I I I 
I elementary ndme In I I I 
Ibased structure I I I I I 
~------------------t----------------t-------------t------------t------------------t-----------------------i 
ILIKE struct-llar Istructure vilri- I 1 lall datd attri- plote, attributes of I 
I ·st ruct - var- can- I ables I I 1 butes I the strllct urI" name I 
Inot ito;eli have I I I I iit:.;elf do not car:ry 1 
I been declared withl I I I. lovf'r 
Ithe LIKE attributel I I I I I 
.------------------+----------------t-------------t------------t------------------+-----------------------i 
IOFFSETfdlPa'-name) lotUiPr variablf'r.1 1 IPTR,INIT without Ican cause contextual I 
I-area--naile- re liS t. jdnel l'ardmetpr I I !CALL option Ideclar<ltion of area I 
I be 1"lIe1'-one basedl I I I I name, hut error Will I 
larE'd vanable I I I I Iresult because default I 
I I I I I !storaqr> class will be 
1 I 1 1 I IAUTO. not BASED 1 
~------------------t----------------t-------------t------------+------------------t----------------------~ 
1 OUTPUT Ifiles I PRINT; IFILE,EXT IUPDATE,INPUT,EXCL \INPUT is default for I 
I I IFile:.; impli- I I BACKWARDS I files I 
I I cit.ly opened i I I I 
I I by a PUT. I I ! i 
I IWIlITE, or LO-I I ! I 
I I CATE. stdte- I I I 
I I ment (unle"s I ( I 
I IUr-OATE hdS I I ! 
I Ibeenf'x~'i- I I ! ! 
I I lei t 1 y sped - I I I I 
I I It ied I I I i 
L __________________ ~ ________________ ~ _____________ L ___ ---------~------------------L--_____________________ J 

I Figure 4BA. Summary of Attributes (Part 4 of 6) 

280.4 



Page of GC28·2045-1, Issued September 30. 1971 by TNL GN28-3185 

t------------------T----------------T-----------~-T------------T------------------T-----------------------, 
IAttribute and ISpecified for II.plied by orllapli .. or I I Default I 
I Abbreviation INa~s of IAssu.ed for IA •• uaed withlConflicts with IConsiderations I 

~------------------+----------------+-------------+------------t------------------t-----------------------i I PIC'I'URE Ipictured nUII!- I I lany other arith- I I 
,'numeric-pic-spec"leric character I , Imetic attribute I I 
Ithe specification Ivariables and I I lexcept REAL and I I 
lis a string of I parameters I I I COMPLEX I I 
Inumeric picture I I I I I I 
I specification I I I I I I 
Icharacters any of I I t I I I 
Iwbich .ay be pre- I I I I I I 
Iceded by a paren- I I I I I I 
I thesized decimal I I I I I I 
linteger constant, I I I I I I 
I which is a I I I I I I 
Irepetition factor I I I I I I 
~------------------t----------------t-------------+------------t------------------t-----------------------. I PICTURE I pictured charac-i I I any other string I I 
I 'char-pie-spec' Iter-string I I ,attribute I I 
I PIC Ivariables and I I I I I 
Ithe speCification lpara.eters I I I I I 
I is a str ing of I I I I I I 
Icharacter-string I I I I I I 
I picture specifica-I I I I I I 
I tion characters, I I I I 1 I 
I any of which may 1 I I I I I 
I be preceded by a I I I I I I 
I parenthesized I I I I I I 
Idecimal integer I I I I I I 
I constant, which I I I I I I 
lis a repetition I I I I I I 
I factor. At least I I I I I I 
lone X or A must I I I I I I 
I appear I I I 1 1 1 
t------------------+----------------+-------------t------------t------------------+-----------------------~ I POINTER lpointer varia- IAny unde- I IOFFSET,UNAL,INIT I 1 
I PTR I bles parameters I clared iden- I 1 without CALL 1 1 
I 1 1 titier that I 1 I 1 
I I lappears in all I 1 
I I IBASED attri- I I 1 1 

I 1 bute s(;ecifi-I 1 I I 
I I cation or in I I I I 
I 1 a SET option I ! I I 
I I or as a I I I 1 
I Ipointer qual-I I I I 

I I I ifier I I I 1 
r------------------+----------------t-------------t------------+------------------+-----------------------~ I POSITION !defined string I I I I If POSl'rION is omitted I 
! (integer> Ivariables I I I lin string defining, I 
I POS ,(appears only inl 1 I I POOU) is assumed I 
I IDEFINE.D attri- I I I I I 
I Ibute ~pecificil- I I I I 1 
I I ti on) I I I I I 
r------------------t----------------t-------------t------------t------------------t-----------------------i 
I precision Icoded arithmeticl 1 lany attritute not I Default: 1 
I Ivariables and I I lallowed for coded I 1 
1 {p) 1 parameters 1 1 larithmetic vari- I (5,0) for DEC I ,.p. Illdy be limrr.ediately f01-1 1 lables 1 FIXED I 
I element Ilowing the base,1 I 1 1(1~,0) for BIN I 
lexpression for Iscale, or mode I 1 1 1 FIXED I 
IAUTO or CTL var- lattribute key- I I 1 I (6) for DEC 1 
liables, otherwise Iword I 1 I I FLOAT I 
lunsigned decimal I I , I I (21) for BIN I 
linteger constant I , I I I FLOAT 1 
t------------------+----------------~ 1 t------------------~ I I (p,q) Ifixed-point I , Isame as atove, I I 
,either number Icoded arith- I I Iplus FLOAT I I 
Imay be an element IlIIetic variahles I I I I I 
lexpression tor land parameters, I I I I I 
I AUTO or CTL varia-I specif ied as 1 1 I I I 
Ibles; .q- may labove I I I I I 
1 have negative I I I 1 I I 
I value I I I 1 I I 
.------------------t----------------+-------------t---~--------+------------------+-----------------------1 
I PRINT (STREAM OUTPUT I 'FILE,STREA~,IINPUT,RECORO, and IIf no FILE or STREAM I 
I Ifiles I IOUTPUT,EXT 1 record-oriented ,option appears in a I 
I I I I lfile-name dttri- IPUT statelllent, I 
I I I I Ibutes ISYSPRINT is assumed I l __________________ ~ ________________ ~ _____________ ~ ____________ ~ __________________ ~ _______________________ J 

I Figure 48A. summary of Attributes (Part 5 of 6) 

Section 9: Attributes 280.5 



Page of Ge2S-20llS-i, Issued SeFtember 30, 1911 by, 'rnL <;N28-3185 

r------------------T----------------T-------------T------------T------------------T-----------------------, 
IAttribute and ISpecified for 11InI111'<1 by orllniplies: or I,. IDefdult , 
IAl)brt'viatioll INamen of 11I",alR1l!d tor IAU"m,lI',ed:'witI:11C0I1fhctfi with \Con,uderations I 
r-----·-------------+----------------t-------------+--------~---+--~---------------+-----------------------~ 
i«£AL !"uithmetic eie- I IDE:C,f'LOAT ICOM~U:X IREAL is default tor I 
I Iment and anay I I I lall arithmetic I 
I Ivariables, I I I Ivariables I 
I I parameters I I I I I 
t------------------+----------------t-------------t------------+----------------·--t-----------------------i 
I RECORD !files jlll'LATE,BIlF, P'll.E,EXT ISTREAM,PRINT I::;TR~M iG default I 
I I IUNeU~.:;lUL. I I Ifor tile" , 
I i I LlRlCT Kl'tED, I I ! I 
I , IIlACl(WAHD~;. I I I 1 
1 I I~~XCL; tiles I I I I 
I I IlmlLicitly I I I I 
I I lop,mcd hy I I I I 
I ! 11H:.AD WHiTE, I I I I 
I I ilOCATl,RE- I I I I 
I I I WRITt, and I , I I 
I I IllF.UTE I I I I 
I I I "Lit "",pnt:; I 1 I I 
~------------------+----------------t-------------+------------+------------------t-----------------------~ 
IRETURNS(at.tribute:;)entry I'oint,; of I"ntry names IENTRY lall tut entry- IlJetault:, tor return..,d I 
lonlyaritl.met.lc, Ifunction lot tunction I Iname attribut<-,j !vaIlle are ~'IXED BIN I 
Istr.l.ng, lc)cator, I [":oced,,re:; I,toct'dllre,; I I i I1S,O) if initial I 
lanel lIP!:.'\ dttrl- I I I I p.otter of entry narr" I 
111ute:-; can te I I I I i is I through N; ottler- I 
l"'f,C,cl'ipd I I I I ,wi:,,:, ,'LOllT DEC(6) I 
t-----,------------t----------------t-------------t------------t------------------t-----------------------~ 
i'-iEvllioNTlAL IRlCUHD tile,,; i IFlLl,HJ:.C()HL,I:iTRtAI'.!'RINT.lXCL 1';l:.\.L iCj default for I 
1:,l:,\.,L I I IUT I CIRliCT IRECORD files I 
~------------------t----------------+-----------~-.------------+------------------+-----------------------~ 
I STATIC !level-one Il:.X'! I I AUTO, bA;;lO, (''']'1., I AUTU it> def';ult I 
I Ivariables I i Il'aram.,ter, ddlu:;t-\:.>tordqe class unless I 
I I I I laUe lounh; or I I:XI' i" ,+ecifie1, Hl 

I I I I Il',ngttl:; or :;izc"', i",nich cdse, STATIC i" 
I I I I I INIT .. ith CALL ur I dssurred 
I I I I IINIT with LI\FlI-:L I I 
~------------------t----------------t-------------+------------+~-----------------+-----------------------~ 
ISTREA/-' Itll",:; jl'f<lN1; I FlLJ:"J:,;('l I Rl:.C()HL, I:;THE.J\/-' 1::; def"ult 
I I 1'11t~:; il'l11- I Ir,,~crd-I)~'i"ll!.'d ltor filt~" 
I I ICltly 0l<"pd I Ifilt:-lldll'P I 
I I Ii'Y (aT Dr i'UTI lattril.lJl.,c; I 
I I I"t"tt'"it.'nt I I, I I 
~------------------+----------------t-------------+------------+--~--~------------+-----------------------f 
\IJNALIGNEU \elpment,,,rr,,y, I I iAII,;r;ri"l"l'f<,U\IJU·.lu"tdultc; are app11',,1 

UNAL Istructure vari- I I Ill,V;i!:T,tVHIT,TII;;K.\at .. lerr.'''!. lev,'I: 
lab1e:;, pardlle-- I \ iii < I:: A piNAL fur LJ.t, char-
Itel's I I I"cter, [~ct.ur:ed ddtd; 
I I I ALl(;NEC tel' ,,11 ctlwr 
I I Iddt" tYl,e:;; COllstdLtc; 

I I I I I Itak .. , detault" I 
~------------------t----------------t-------------t------------+------------------t-----------------------f 
IUNBUFFERlD ITRAN~jlLNT and I Ir'll.l:.,klCUkL,II'lJf,';lRr.AM,I'I<lN'I, IHUI-' 1'. JEtault for I 
IUNbUF !c;jo"L blp:; I Il:.XT ILIf<lCT,l:.XCL IktcUkL tll,,:; I 

~------------------t----------------t-------------+------.-----t------------------t-----------------------4 
IUPDATE !RECORD tile:; I,-XCL; IFILJ:.,RI:C<..kL., I INI'IJT,CIlTI U'T, iiNPUT i.,; defdult tor I 
I I IhI"" illl[ll- IlXT 1,;Tl<tllP.,I'HINT, liil"" I 
I I Ie It 1 i "p'nf'd I I BI\CKWlIl<;";; I I 
I I If Y d HI:.-IKITr: I I ! 
I I le,r lH:.Li:.H I I I 
I I Istdt"ll,cnt I I I I 
~------------------t----------------t-------------+-------------t------------------t-----------------------i 
IVAPYING Istein'j el"mcn! I I !' I, I I 
IVAR Idnd altdY V,H- I \ I I 
I Ildtl",:., dnd l·iJ- I I I I 
I Icamet.,!" ';peci- I I I I 
I It i ed on) yin . I I I I 
I ICCn)Ullct1"" IoIlUd I I I 
I IbiT or CHAN I I I 1 I 
l __________________ ~ ________________ ~ _____________ ~ ___ ---------~------------------~------ _________________ J 

Ql>tions of the Enviromrent Atteil-ut., 
F(block sIze! ,reco,d-:;lZ(·I) 
V(max-block-sizel.recoed-~lzeJ) 

(VSIVll~;} (max-block-"ize n'cord 
(,mdx-record-sizt, I) tOtmdt 

U(max-hlock-size) 
Buft-'Is (n) - Dllffer allocatioll 
CON:;J::CUl IV]:' I 
INDEXEC I datd-set orqanizdtlon 

LI:.IIVI,; I t"[,,.. vr:lun" rlL;p":;it lOll 
kEIoiU.[) \ 
c:1'LA.;A I kl:.COl,L til., ! rlnttc'r/!'ilnCIl control 
CTL3hO \ 
COf.!OL - d .. ltti in1 erclL.Jnqt' 
l'Hl«(JVL - t y,t(;k (lv"rt 1" .. 
HCP(,lecill<ll-lnt.l"p'r-C(;n!.;tdnt I -

d:;ynchl'(HI()U!; {iI t'r.,J:t ien:; lin it 

I Figure 48a. Summary of Attribute5 (Part 6 of 6) 

280.6 



Page of GC28-20QS-1, Issued september 15, 1970 by TNL GN28-3171 

This section presents the PL/I state
ments in alphabetical order. (The prepro
cessor statements are alphabetically 
arranged at the end of this section.) Most
statements are accompanied by the following 
information: 

1. Function -- a short description of the 
meaning and use of the statement 

2. General format -- the syntax of the 
statement 

3. Syntax rules -- rules of syntax that 
are not reflected in the general 
format 

4. General rules -- rules governing the 
use of the statement and its meaning 
in a PL/I program 

The ALLOCATE Statement 

Function: 

The ALLOCATE statement causes storage to 
be allocated for specified controlled or 
based data. 

General format: 

Option 1: 

ALLOCATE (level] identifier 
{dimension] (attribute] ••• 
[,[level] identifier [dimension] 
{attribute] ••• ] ••• ; 

Option 2: 

ALLOCATE based-variable-identifier 
(SET (pointer-variable)] 
lIN (area-variable)] 
[, based-variable-identifier 
[SET (pointer-variable») 
(IN (area-variable)]] ••• ; 

Syntax rules: 

1. Based variables and controlled 
variables may both be specified as 
identifiers in the same ALLOCATE 
statement. 

Syntax rules 2 through ./ apply only to 
Option 1: 

2. ·Level- indicates a level number. The 
first identifier appearing after the 
keyword ALLOCATE must be a level 1 
identifier. 

SECIION 10: STATEMENTS 

3. Each identifier must represent data of 
the controlled storage class or be an 
element of a controlled major 
structure. 

Q. wDimension- indicates a dimension 
attribute. -Attribute- indicates a 
BIT, CHARACTER, or INITIAL attribute. 

5. A dimension attribute, if present, 
must specify the same number of dimen
sions as that declared for the asso
ciated identifier. 

6. The attribute BIT may appear only with 
a BIT identifier; CHARACTER may appear 
only with a CHARACTER identifier. 

7. A structure element name, other than 
the major structure name. may appear 
only if the relative structuring of 
the entire structure appears as in the 
DECLARE statement for that structure. 

Syntax rules 8 and 9 apply only to 
Option 2: 

8. The based variable appearing in the 
ALLOCATE statement may be an element 
variable, an array, or a major struc
ture. When it is a major structure, 
only the major structure name is 
specified. 

9. The SET clause, if present, may appear 
preceding or following the IN clause. 

General rules: 

Rules 1 through 6 apply only to Option 1: 

1. When Option 1 is used, an ALLOCATE 
statement for an identifier for which 
storage was allocated and not freed 
causes storage for the identifier to 
be ·pushed down· or stacked. This 
pushing down creates a new generation 
of data for the identifier. When 
storage for this identifier is freed, 
using the FREE statement, storage is 
·popped up· or removed from the stack. 

2. Bounds for arrays, lengths of strings. 
and sizes of areas are fixed at the 
execution of an ALLOCATE statement. 

a. If a bound. length, or size is ex
plicitly specified in an ALLOCATE 
statement, it overrides any bound, 
length, or size given in the 
DECLARE statement. 

Section 10: Statements 281 



Page of GC28-2045-1. Issued Septe.mber 15, 1970 by TNL GN28-3171 

b. If a bound, length, or size is 
specified by an asterisk in an 
ALLOCATE statement, that value is 
taken from the current generation. 
If no generation of t_he variable 
exists, the bound, length, or size 
is undefined. 

c. Either the ALLOCATE statement or 
the DECLARE statement must specify 
any necessary dimension. size. or 
length attributes for an identifi
er. Any expression taken from the 
DECLARE statement is evaluated at 
the point of allocation using the 
condition enabling of the ALLOCATE 
statement, although the names are 
interpreted in the environment of 
the DECLARE statement. 

d. If, in either an ALLOCATE or a 
DECLARE statement, bounds, 
lengths, or area sizes are speci
fied by expressions that contain 
references to the variable being 
allocated, the expression are eva
luated using the value of the most 
recent generation of the variable. 

3. Upon allocation of an identifier, ini
tial values are assigned to it if the 
identifier has an INITIAL attribute in 
either the ALI..oCATE statement or 
DECLARE statement. ExpreSSions or a 
CALL option in the INITIAL attribute 
are executed at the point of alloca
tion, using the condition enabling of 
the ALLOCATE statement, although the 
names are interpreted in the environ
ment of the declaration. If an INI
TIAL attribute appears in both DECLARE 
and ALLOCATE statements, the INITIAL 
attribute in the ALLOCATE statement is 
used. If initialization involves 
reference to the variable being allo
cated, the reference will be to the 
new generation of the variable. 

4. To determine whether or not storage 
has been allocated for an identifier 
the built-in function ALLOCATION may 
be used. 

5. A parameter that is declared CON
TROLLED may be specified in an ALLO
CATE statement. 

6. Any evaluations performed at the time 
the ALLOCATE statement is executed 
(e.g., evaluation of expressions jn an 
INITIAL attribute) must not be inter
dependent; they cannot depend on each 
other at the same time. 

Rules 7 through 12 apply only b, Option 
2: 

282 

7. When Option 2 is used. storage is not 
"pushed dmm." or stacked. In this 
case, reference may be roade to any 
generation of a based variable through 
a pointt~r variable. 

8. The SET clause indicates the pointer 
variable that is to receive the value 
identifying the allocation. The SET 
clause need not name the pointer vari
able deClared with the based variable. 
If the SET clause is omitted, the 
pointer that was declared with the 
based variable is set,. 

9. If the IN clause appears in the ALLO
CATE statement. storage will be allo
cated in the named area. for the based 
variable. If sufficient storage does 
not exist within t~is area, the AREA 
condition will be raised. 

10. The amount of storage allocated for a 
based variable depends on its attri
butes, and on its dimensions and 
length specifications if these are 
applicable at the time of allocation. 
These attributes are determined from 
the declaration of the based variable, 
and additi,onal attribut.es may not be 
specified in the AI,LOCATE statement. 
A based structure may contain one 
adjustable array bound or string 
length, whose value is t~ken. on allo
cation, from the current value of a 
variable outside the structure (see 
-The REFER Option", in Part I. Section 
14, -Based Variables and List Proces
sing. W) Note that, the asterisk nota
tion for bounds and length is not per
mitted for based variables. 

11. If the area vari.able is an array, the 
subscripts must be spectfied with the 
area variable. 

12. A based variable transferred as an 
argument to a procedure cannot appear 
in an ALLOCATE statement in the called 
procedure. 

Examples ~ 

1. The following examples illust.rate the 
use of the ALLOCATE statement for a 
controlled identifier: 

DECLARE AlN1,N2) CONTROLLED .; 

H1, N2 = lOi 
ALLOCATE A; 

ALLOCATE A 
(1(1,K2); 

The bounds are 10 and 
10 

The bounds are Kl and 
K2 which override Hl 
and H2. 



Nl = Nl + 1; 
ALLOCATE Ai The bounds are 11 and 

10. 
ALLOCATE A The bounds are 11 and 

(*,*); 10. 
ALLOCATE A The bounds are J'l. and 

(J1, J 2); J2. 

2. The following example illustrates the 
use of the ALLOCATE statement when the 
DECLAR~ statement contains asterisks 
for the length of a controlled bit 
string B: 

DECLARE B BIT (*) VARYING CONTROLLED: 

ALLOCATE B 
En (*); 

ALLOCATE B; 

ALLOCATE B 
BIT (N); 

ALLOCATE B CHAR
AC'fER (ll); 

ALLOCATE L 
BIT (8): 

Invalid; violates rule 
21:; • 

Invalid: violates rule 
21;. 

The maximum length is 
N. 

Invalid: violates syn
tax rule :.. 

The maximum length is 
8. 

3. The following example illustrates the 
use of the built-in function ALLOCA
TION and of the INITIAL attribute for 
a controlled variable in an ALLOCATE 
statement: 

DECLARE A(N,N) CONTROLLED INITIAL 
((N*N) 0) : 

IF , ALLOCATION (A) THEN ALLOCATE A 
INITIAL (1, (N-l) «N) 0, 1»: 

ALLOCATE A: 

4. The following example illl1strates 
three uses of Option 2 of the ALLOCATE 
statement for based identifiers. 

DECLARE VALUE BASED (p), 
RATES BASED (Q) 

1 GROUP BASED (R), 
2 elM FIXED BINARY, 
2 VALUES (N REFER (DIM», 

TABLE AREA BASED (S), 
N FIXED BINARY, 
T POINTER: 

a. ALLOCATE VALUE SET (P): 
Allocates storage for the based 
variable VALUE and sets the point
er variable P to identify the par
ticular allocation. 

b. ALLOCATE GROUP SET (R); 
Allocates storage for the struc
ture GROUP, and sets the pointer 
variable R to identify the parti-

cular allocat j';lI 'J'he (.;. '" 
value of N iG l.Io: "l·.o ,.j(··"·'"IIL 

the bound of VArllt.:';, illll 'IIi:; 

value is ass j 9fh,,"i to Dl"1 

c. ALLOCATE RATE:, ;::;E'l' ('I') J~' 'l'AtL,,;; 
Allocates storaqe within tlle <'nea 
S-> TABLE for tilt' variable RATES. 
The pointer variaLle T is set to 
identify the location wiUd.n 'fAIlLE 
at which RATES is allocated. 

The Assignment Statell!t."nt 

Function: 

The assignment stdleiOt:nt is used t, 
evaluate an expressioll dnd t.o assigrJ i' ~~ 
value to one or more t.arqet var.iaLle~;; Lllc~ 

target variables may be element, array, (If 

structure variatles. The target variaLles 
rray be indicated by ps elloo-·var iab] es. 

General formats: 

The assignment stat Hut'::nt. has tbe ee ':Jen
eral format options. Theil are given in 
Figure 49. 

Syntax rules: 

1. In Option 2, each target varidble must 
be an array. If the right-hand side 
contains arrays of structures, then 
all target variables must be al·rays of 
structures. The BY NAME option rray be 
given only when the :r.ight·-hand side 
contains at. ledst one structure. 

2. In Option 3, each target variable UQst 
be a structure. 

General rules: 

1. Aggregate assigrullt:llt:." (Opti.Olld 1. dud 
3) are eXfanded inta a series of ele
ment aSSignments acC(,rding t ()tllle,; 5 
through 8. 

2. An element assignrrt,nl. is peJ:tcrroed as 
follows: 

a. Sutscripts of tile target 
variatles, and t rl .. , second aild 
third arguments of SUBSTR fseu,.iG
varial:le referenc'es, are ",valuated 
from left to riqht. 

b. The eXFression c" t.he rigbt-hdlld 
side is then ev~luated. 

c. For each target variable (in left 
to right order), the exp~ession is 
converted to the characteristics 
of the target vd.,·iable according 
to rules for data conversion 
(excer::t that whenever a conversion 
of arithmetic base is invclved, 

Section 10: Statewents 283 



r---------------------------------------------------------------------------------------, 
IOption 1 (Element Assignment) I 
, I 

" I elerr,ent--variable I !' element-variablel I, 
elerrent-ex~ression; 

I pseudo-variable , [seudo-variable I 
I \' I 
IOption 2 (Array Assignment) I 
I I 
I' larray-Variable I ,array-variable structure-expression (,BY NA~E] 'i = array-expression [,BY NAME) 
I pseudo-variable ,pseudo-variable elerrent-expression I 
, I 
IOption 3 (Structure Assignment) I 
I I 
I structure-expression [,BY NAME] I I 

structure-variable [,structure-variablel .•• = ; I 
I element-expression I l _________________________________________________________________________________ ~ _____ J 

Figure 49. General Formats of the Assignment Statement 

the value is converted directly to 
the ~recision of the target vari
ahle). The converted value is 
then assigned to the tdrget 
variable. 

3. For the TS~/360 comriler, multiple 
assignments are limited by the follow
ing rule: 

Count 11 for each targEt of a multiple 
assignment, add 3 for each ~seudo
variable, and then add 11 for each 
argurrent of a pseudo-variable. The 
total must not exceed 4,085. 

4. The following rules apply to string 
element a~signment: 

284 

a. The assignment is performed from 
left to right, starting with the 
leftmost position. 

b. If the target variable is a fixed
length string, the expression 
value is truncated on the right if 
it is too long or padded on the 
right (with hlanks for character 
string, zeros for bit strings) if 
the value is too short. (Note 
that a string pseudo-variable is 
considered to be a fixed-length 
string). The resulting value is 
assigned to the target. 

c. If the target is a VARYING string 
and the value of the expression is 
longer than the maximum length 
declared for the variable, the 
value is truncated on the r:i,ght. 
The target string obtains a cur
rent length equal to its maximum 
length. If the value of the 
expression is not longer than the 
maximum length, the valll~ is 
assigned; the target string 

ottains a current length equal to 
the length of the value. 

5. The follo ... ing rules apply to other 
elerrent assignments: 

a. If the target is an area variable, 
the expression must be an area 
variable or function. The AREA 
condi tion will be raised by this 
assignment if the size of the tar
get area is insufficient for the 
current extent of the area being 
assigned. 

b. If the target is a pointer vari
aele, the expression can only be a 
pointer (or offset) variable or a 
pointer (or offset) function 
reference. If the expression is 
of offset type, its value is con
verted to pointer. 

c. If the target is an offset vari
able. the expression can only be 
an offset (or pointer) variable or 
an offset (or pointer) function 
reference. If the expression is 
of pointer type, its value is con
verted to cffset. 

d. If the target is a label variable, 
the expression can only be a label 
variable or label constant. 
Environmental information (i.e., 
inforrration that identifies the 
invocation of the block) is always 
assigned to the label variable. 

e. If the target is an event vari
able, the expression can only be 
an event variable. The assignrrent. 
is uninterruptable. and it 
involves both the completion and 
status values. An event variable 
does not becorre active when it 



has an active event variable 
assigned to it. It is an error to 
assign to an activE event 
va..ciabLe. 

f. If the target~ is a S,!'ATUS pseudo
variable, a value can De assigned 
whether or not t~he eVEnt variable 
is active. It is an error to 
assign to a COMPLETION pSEudo
variable if the named event vari
able is active. 

6. The first target variable in an 
aggregate assignment is known as the 
master variahle. If the roaster vari
able is an arrdj, then an array expan
sion (Rule 6) i~:, ferformed; othenn se, 
a structure expansion (Rules 7 and 8) 
is perforrred. The CHECK condition for 
as:sigrullent. to a tdrqet variable is not 
raised during th~ assignment; it is 
raised (when suitably E:nabled) after 
the assignment is complete. Such 
CHECK conditions are raised in the 
written order of the enabled identi
fiers. In the case of BY NAME assign
ment, the CHECK condition for the tar
get variable is raised regardless of 
whether any value is assigned to an 
item. The label prefix of the origi
nal statement is a~plied to a null 
statement preceding the other 
generated statements. 

7. In Option 2, all array operands must 
have the same number of dimensions and 
identical bounds. The array assign
ment is expanded into a loop of the 
form: 

LABEL: DO jl 

DO j2 

DO jn 

LBOUND(master-variaLle,l) TO 
HBOUNDlmaster-variable,1) ; 

LBOUND(master-variable,2) TO 
HBOUND(master-variable,2); 

LBOUND(master-variable,n) TO 
HBOUND(master-variable,n} ; 

generated assignment statement 

BND LABELi 

In this expansion, n is the number 
of dimensions of the master variable 
that are to participate in the assign
ment. In the generated assignment 
statement, all array operands are 
fully su~scrifted, using (frorr left to 
right) the dummy variables jl to jn. 
If an array operand appears with no 
subscripts, it will only have the sub
scripts jl to jn; if cross-section 
notation is used, the asterisks are 
replaced by jl to jn. If the original 

aSSignment statement (which may have 
been generated by Rule 7 or Rule 8) 
has a ccndition prefix. the generated 
assignment statement is given this 
condition prefix. If the original as
signment statement (which may have 
been generated by Rule 8) has a BY 
NA~E option, the generated assignment 
staterrent is given a BY NAME option. 
If the generated assignment statement 
is a stzucture assignment, it is 
expanded as given beLOW. 

8. In Option 3, where the BY NAME option 
is not specified, the following rules 
apply: 

a. None of the operands can be 
arrays, although they may be 
structures that contain arrays. 

b. All of the structure operands must 
have the same number, k, of imme
diately contained items. 

c. The assignment statement (which 
may have been generated by Rule 6) 
is replaced by E generated assign
ment statements. The ith 
generated aSSignment statement is 
derived from the original as~ign
ment statement by replacing each 
structure operand by its ith con
tained item; ~uch generatEd as
signment st.atements may require 
further expansion according to 
Rule 6 or Rule 7. All generated 
assignment statements are given 
the condition prefix of the crigi
nal statement. 

9. In Option 3, where the BY NAME option 
is given, the structure assignrrent, 
Which may have teen generated by Rule 
6, is expanded according to stefs (a) 
through (d) below. None of the 
operands can be arrays. 

a. The first item immediately con
tained in the master variable is 
considered. 

b. If each structure operand and tar
get variable has an immediately 
cont.ained item with the same iden
tifier, an assignment staterrent is 
generated as follows: the state
ment is derived by replacing each 
structure operand and target vari
able with its immediately con
tained item that has this identi
fier. If any structure contains 
no such identifier, no statement 
is generated. If the g~nerated 
assignment is a structure or 
array-of-structures assignment, BY 
NAME is appended. The first 
generated assignment is given the 

Section 10: Statements 285 



label prefix of the original as
signment statement; all generated 
assignment statements are given 
the condition prefix of the origi
nal assignment statement. 

c. Step b is repeated for each of the 
iteros immediately contained in the 
master variable. The assignments 
are generated in the order of the 
items contained in the master 
variable. 

d. Steps a through c may generate 
further array and structure assig
nments. These are expanded 
according to Rules 6 through 8. 

Examples: 

1. Suppose that the following three 
structures have been declared. 

286 

1 ONE 
2 PARTl 

3 RED 
3 WHITE 
3 BLUE 

2 PART2 
3 GREEN 
3 YELLOW 
3 ORANGE (3) 

2 PART3 
3 BLACK 
3 WHITE 

1 TWO 
2 PART1 

3 RED 
3 GHEEN 
3 WHITE 

2 PART2 
3 BLUE 
3 YELLOW 
3 ORANGE (3) 

1 THREE 
3 PART1 

5 BLACK 
5 WHITE 
5 RED 

3 PART2 
5 YELLOW 
5 ~~HITE 

5 ORANGE< 3) 
5 PURPLE 

Consider the following assignment: 

ONE = TWO - 2 * THREE, BY NAME; 

By Rule 8 this generates: 

ONE.PART1 = TNO.PARTl - 2 * 
THREE.PARTl, BY NAME; 

ONE.PART2 = TWO.PART2 - 2 * 
THREE.PART2, BY NAME; 

Applying Rule 8 again, these state
ments are replaced ry: 

ONE.PART1.RED = TWO.PARTl.RED 
- 2 * THREE.PARTl.RED; 

ONE. PART!. WHITE = TWO. PART1.WHITE 
- 2 * THREE.PART1.WHITE; 

2. 

ONE.PART2.YELLOW = TWO.PART2.YELLOW 
- 2 * THREE.PART2.YELLOW; 

ONE. PART2. ORANGE '" TWO. PART2 .ORANGE 
- 2 * THREE.PART2.0RANGE; 

The final assignment is expanded 
according to Rul p 6. 

The following example illustrates 
array assignment (Option 2): 

Given the array A 

and the array B 

2 
J 
1 
4 

1 
7 
3 
6 

4 
6 
7 
8 

5 
8 
4 
3 

Consider the assignment statement: 

A = (A+B)**2-A(l,l); 

After execution, A has 
7 

93 
9 

93 

the value 
74 

189 
114 
114 

Note that the new value for A(l,n, 
which is 7, is used in evaluating the 
expression for all other elements. 

3. The following example illustrates str
ing assignment: 

Given: 

A is a fixed-length string whose 
value is 'XZ/BQ'. 

B is a varying-length string of 
maximum length 8 whose value is 
'~AFY' . 

C is a fixed-lengt.h string of 
length 3. 

D is a varying-length string of 
maximum length 5. 

Then in the statement: 

C=A, the value of C is • XZ/' • 
C='X', the value of C is 'Xtb'. 
D=B, the value of D is 'MAFY'. 
D=SUBSTRCA,2,3) I ISUBSTR(A,2,3), 

the value of D is 'Z/BZ/', 
SUBSTR(A,2,4)=B, the value of A is 

'XMAFY' • 
SUBSTR(B,2,2)='R', the value of B 

is 'MRbY'. 
SUBSTR{B,2)='R', the value of B is 

'MRbb' . 

The BEGIN Statement 

Function: 



Page ot GC2B-2045-1. Issued ncptemter lO, 1971 by TNL GN28-3185 

The BEGIN statement hpa,l!; and identifiep 
d begin block. 

Generdl tormat: 

BEGIN [ORDERIREOR~ERj; 

Syntax rules: 

1. A label of a BEGIN statement may be 
subscripted, but such a label cannot 
appear after an END statement. 

General rules: 

1. A BEGIN statement is used in conjunc
tion with an END statement to delimit 
a begin block. A comvlete discussion 
of begin blocks can be found in Part 
I, Section 6, ·Blocks, Flow of Con
trol, and storage Allocation.-

2. The ORDER option specifies that HIe 
normal language rules are not to be 
relaxed: i.e., any optimization must 
be such that the execut ion of a .block 
always produces a result that is in 
accordance with the strict definition 
of PL/I. This means that the values 
of variables set by execution of all 
statements prior to computational or 
systen,-action interruptions are 
guaranteed in an on-unit entered as a 
result of the interruption, or any
where in the program afterwards. Note 
that. the strict definition now allows 
the compiler to optirrize conomon expre
ssions (see note below), where safely 
possible, by evaluating for each 
reference. 

Note: A common expression is an 
expression that occurs more than once 
in a program but is otviously intended 
to result in the sarre value each time 
that it is evaluated, i.e., if a later 
expression is identical to an earlier 
expression. with no intervening modi
fication to an operand, the expre
ssions are said to te common. 

3. The REORDER ort-ion specifies that 
execution of the BEGIN block must pro
duce a result that is in accordance 
with the strict definition of PL/I 
unless a computational or system
action interruption occurs during 
execution of the tloCK: the result is 
then allowed to deviate as follows: 

a. After a computational or system
action interruption has occurred 
during execution of the block, the 
values of variables modified, 
allocated, or freed in the bloc't 
are guaranteed only after normal 
return from an on-unit or when 
accessed by the ONCHAR and 

ONSOURCE condition built-in 
functions. 

b. The values of variables modified, 
allocated, or freed in anon-unit 
for a computational or system
action condition (or in a block 
activated by such an on-Unit) are 
not guaranteed on return from the 
on-unit into the block. except for 
values modified by the ONCHAR and 
ONSOURCE pseudo variables. 

A program is in error if a con,puta
tional or system-action interruption 
occurs during execution of the block 
and this interruption is followed by a 
reference to a variable whose value is 
not guaranteed in such circumstances. 
(See also Part I. Section 17: -Opti
mization and Efficient Performance.-) 

'Ihe CALL Statement 

Function: 

The CALL statement invokes a procedure 
and causes control to be transferred to a 
specified entry point of the procedure. 

General format: 

CALL entry-nalfe 

{{argument (, argument) • • .») 

Syntax rules: 

1. The entry name, which can be a generic 
name, represents the entry point of 
the procedure inVOked. 

2. An argument cannot be a condition 
namE. 

General rule: 

See Part I, Section 12, ·Subroutines and 
Functions· for detailed descriptions of the 
interaction of arguments with the parame
ters that represent these arguments in the' 
invoked procedure. 

Exam~les : 

CRITICAL PATH: PROCEDURE (ALPHA, BETA, 
GAM~A) ; 

END; 

2. CALL PAYROLL (NAME, DATE, HRRATE); 

Section 10: Statements 287 



Page of GC28-2045-1. Issued ~eftemher 30, 1971 by TNL GN2B-3185 

The CLOSE Statement 

Function: 

The CLOSE statement dissociates the 
named file from the data set with which it 
was associated by opening in the current 
task. 

General format: 

CLOSE FILE (file-name) [,FILE 
(file-name») •.• ; 

General rules: 

1. The FILE (filename) option specifies 
which file is to be closed. It must 
appear once. Several files can be 
closed by one CLOSE statement. 

2. A closed file can be reopened. 

3.105ing an unopened file, or an al
ready closed file, has no effect. 

4. The CLOSE statement cannot te used to 
close a file in a task different from 
the one that opened the file. 

5. If a file is not closed by a CLOSE 
statement, it is automatically closed 
at the completion of the task in which 
it was oFened. 

6. All 1/0 events that have not been com
pleted before the file is closed are 
set complete, with a status value of 
1. 

7. A CLOSE statement unlocks all records 
in the file previously locked in the 
task in which the CLOSE a~pears. 

Examples: 

1. CLOSE FILE (MASTER); 

The file, MASTER, is closed, and the 
facilities allocated to it are 
released. 

2. CLOSE FILE (TABLE}\), FILE (TABLEB); 

288 

The two files, TABLEA and TABLEB are 
closed in the same way as MASTER, in 
the preceding example. 

'{he DECLARE Statement 

Function: 

The DECLARE statement is the rrincir;al 
«ethod for explicitly declaring attributes 
of names. 

Genera 1 format: 

DECLARE 
[level] identifier (attribute) •.• 
[,[level) identifier (attribute] ••• ] •.. ; 

Syntax rules: 

1. Any numrer of identifiers may be 
.declared in one DECLARE staterr,ent. 

2. -Level- is a nonzero unsigned decimal 
'integer constant. If a level numl::er 
is not specified, level 1 is assumed 
for all element and array variables. 
Level 1 must be specified for all 
major structure names. A blank space 
must sei:;arate a level number from the 
identifier following it. 

3. In general, attributes must immediate
ly follow the identifier to which they 
aFply as shown in the general format. 
However, attributes can be factoJ:ed 
(see -Factoring of Attributes· in Part 
II. Section 9, -Attributes-). 

General rule:;~ 

1. A particular level 1 identifier can be 
srecified in only one DECLARE state
ment within a particular block. All 
attributes given explicitly for that 
identifier must be declared together 
in that DECLARE ;3tatement. (Note, 
however, that identifiers having the 
FILE attribute may be given attributes 
in an OPEN statement as wel1. See 
-ThE OPEN Statement- in this section 
and in Part I. Section 8, -Infut and 
Output,· for further information.) 

2. Attributes of external names, in 
separate blocks and compilations, must 
be consistent. 



3. Labels may be prefixed to DECLARE 
statements (however, such labels are 
treated as comments and, hence, have 
no meaning). Condition prefixes can
not be attached to a DECLARE statement. 

The DELAY Statement 

Function: 

The DELAY statement causes the execution 
of a task to be suspended for a specified 
period of time. 

General format: 

DELAY (element-expression)~ 

General rule: 

Execution of the DELAY statement causes 
the element expression to be evaluated and 
converted to an integer !!; execution is 
then suspended for!! milliseconds. 

Example: 

DELAY (10); 

This statement causes execution of the 
task to be suspended for ten milliseconds. 

The DELETE statement 

Function: 

The DELETE statement deletes a record 
from an UPDATE file. 

General format: 

DELETE FILE (file-name) 
[KEY (expression)] 
(EVENT(event-variable)J; 

General rules: 

1. The options may appear in any order. 

2. The FILE (filename) option specifies 
the UPDATE file; it must be specified. 

3. The KEY option must be specified if 
the file is a DIRECT UPDATE file; it 
cannot be specified otherwise. The 
expression is converted to a character 
string and determines which record is 
to be deleted. 

4. If the file is a SEQUENTIAL UPDATE 
file, the record to be deleted is the 
last record that was read; the data 
set organization must be INDEXED. 

5. The EVENT option allows processing to 
continue while a record is being 
deleted. This option cannot be speci
fied for a SEQUENTIAL BUFFERED file. 

When control reaches a DELETE state
ment containing this option, the 
"event variable" is made active (that 
is, it cannot be associated with 
another event) and is given the com
pletion value 'O'B, provided that the 
UNDEFINEDFILE condition is not raised 
by an implicit file opening (see 
"Note" telow). The event variable 
remains active and retains its '0'8 
completion value until control reaches 
a WAIT statement specifying that event 
variable. At this time, either of the 
following can occur: 

a. If thE DELETE statement has been 
executed successfully and neither 
of the conditions TRANSMIT or KEY 
has been raised as a result of the 
DELET~, the event variable is set 
com~lete, given the comFletion 
value 'l'B, and the event variable 
is made inactive, that is, can be 
associated with another ev~nt. 

b. If the DELETE statement has 
resulted in the raising of TRANS
MIT or KEY, the interruption for 
each of these conditions dces net 
occur until the WAIT is encoun
tered. At such time, the corre
sponding on-units (if any) are 
entered in the order in which the 
conditions were raised. After a 
return from the final on-unit, or 
if one of the on-units is ter
minated by a GO TO statement, the 
event variable is given the com
pletion value 'l'B and is made 
inactive. 

Note: If the DELETE statement causes 
an in'Flicit file opening that results 
in the raising of UNDEFINEDFILE, the 
on-unit associated with this condition 
is entered immediately and the event 
variable rerrains unchanged; that is, 
the event variable remains inactive 
and retains the same value it had when 
the DELETE was encountered. If the 
on-unit does not correct the condi
tion, then, upon normal return from 
the on-unit, the ERROR condition is 
raised; if the condition is corrected 
in the on-unit, that is, ,if the file 
is opened successfully, then, upon 
normal return from the on-Unit, the 
event variatle is set to 'O'B, it is 
made active, and execution of the 
DELETE statement continues. 

6. The DELETE statement unlocks a record 
only if that record had been locked in 
the same task in which the DELETE 
appears. 

1. The DELETE statement can cause imfli
cit opening of a file. 

Section 10: Statements 289 



Example: 

DELETE FILE{ALPHA) KEY (DKE¥)i 

This statement causes the record 
lied by DKEY to be delEted from the 
set associated with the file ALPHA. 
record was previously locked in the 
task, it is unlocked. 

identi
data 
If the 

same 

The DISPLAY Statement 

Function: 

The DISPLAY statement causes a message 
to be displayed at the user's terminal. A 
reSDonse may be requested. 

General format: 

Option 1. 

DISP.LAY (element-expression); 

Option 2. 

OISPLAY (element-expression) 
REPLY (character-variable) 
(EVENT (event-variatle)] i 

General rules: 

, 
.l._ 

2. 

3. 

Execution of the DISPLAY statement 
causes the element expression to be 
evaluated and, where necessary, con
verted to a varying character string 
of implerrentation-definEd maximum 
length (126 characters). This 
character string is the message to be 
displayed. 

In Option 2, the character variable 
receives a string that is a message to 
be supplied by the user. ']'he message 
cannot exceed 126 characters. 

In Option 2, if the EVENT option is 
not specified, execution of the pro
gram is suspended until the reply mes-

ij. 

sage is received. In option 1, execu
tion continues uninterrupted. 

If the EVENT (event-variable) option 
is given, '155/360 execution waits for 
the reply to be completed before con
tinuing with subsequent statements. 
The comfletion part of the event vari
able will be given the value 'O'B 
until the reply is completed, when it 
will be given the value 'l'B. The 
reply is considered complete only 
after the execution of a WAIT state
ment naming the event. 

5. The EVENT and REPLY oftions can be 
given in either order. 

DISPLAY ('END OF JOB'); 

This statement causes the message "END 
OF JOB" to be displayed. 

The DO Statement 

Function: 

The DO statement heads a DO-group and 
can also be used to specify repetitive 
execution of the statements within the 
group. 

General formats: 

The three format types for the DO state
rrent are shown in Figure 50. 

Syntax rules: 

1. In all three types, the DO statement 
is used in conjunction with the END 
statement to delimit a DO-group. Only 
Type 1 does not provide for the repe
titive execution of the statements 
within the group. 

r---------------------------------------------------------------------------------------, 
jType 1. DO; I 
I I 
IType 2. DO WHILE (element-expression); I 
I I 
I I pseudo-variable I 
IType 3. DO =specification[,specificationl. .. i I 
I variable I 
I I 
I where "specification" has the form: I 
I I 
I [TO expression2 [BY expreSSiOn3]] I 
I expressionl [WHILE(expression4)] I 
I BY expression3 [TO expression2] I L _____________________________________________________ ---_______________________________ J 

Figure 50. General Format of the DO Statement 

290 



2. In Type 3, the variable or pseudo
variable must represent a single ele
ment; "variable" IT,ay be subscripted 
and/or qualified. Real arithmetic 
variables are generally used, but 
label, string, and complex variables 
are allowed, rrovided that the expan
sions given in the general rules below 
result in valid PL/I rrograms. Note, 
however, that if ·variable" is a label 
variable, each "sfecification" must 
have the following form: 

[
element-label-variablel 

label-constant 

(WHILE (expression)] 

3. Each expression in a specification 
must be an element ex~ression. 

4. If "BY expression3" is omitted from a 
·specification," and if "TO expre
ssion2" is included, "expression3" is 
assurred to be 1. 

5. If "TO expression2" is omitted from a 
"specification," repetitive execution 
continues until it is terminated by 
the WHILE clause or by some statement 
within the group. 

6. If both "TO expression2" and "BY 
expression3" are omitted from a speci
fication, it implies a single execu
tion of the group, with the control 
variable having the value of "expre
ssion1". If "WHILE expression4" is 
included, this single execution will 
not take place unless "expression4" is 
true. 

General rules: 

1. In Type 1, the DO statement only de
limits the start of a DO-group; it 
does not provide for repetitive 
execution. 

2. In Type 2, the DO statement delimits 
the start of a DO-group and provides 
for repetitive execution as defined by 
the following: 

LABEL: DO WHILE (expression); 
statement-l 

atatement-n 
END: 

NEXT: statement /*STATEMENT 
FOLLOWING THE DO GROUP*/ 

The above is exactly equivalent to the 
following expansion: 

LABEL: IF (expression) THEN; ELSE 
GO TO NEXT; 

statement-l 

statement-n 
GO TO LABEL; 

NEXT: statement /*STATEMENT 
FOLLOWING THE DO GROUP*/ 

3. In Type 3, the DO statement delimits 
the start of a DO-group and provides 
for controlled repetitive execution as 
defined by the following: 

LABEL: DO variable (a1 , ••• ,an)= 
expression1 
TO expression2 

BY expression3 
WHILE (expression4); 
statement-l 

statement-m 
lABEL1: END; 
NEXT: sta tement 

This is exactly equivalent to the fol
lowing eXJ;:ansion: 

tempn=an ; 
e1=expressionl ; 
e2=expression2; 
e3=expression3; 
v=el; 

LABEL2: IF (e3>=0)&(v>e2) 
(e3<O)&(v<e2) 
THEN GO TO NEXT: 

IF (expression4) THEN; 
ELSE GO TO NEXT: 

statement-1 

statement-m 
LABELl: v=v+e3; 

GO TO LABEL2; 
NEXT: statement 

In the above expansion, a1, ••. ,an are 
ex~ressions that may a~pear as sub
scripts of the control variable; 
temr1 ••• temrn are com~iler-crEated 
work areas, with the attributes BINARY 
FIXED(lS), to which the expression 
values are assigned; ~ is equivalent 
to "variatle- with the associated 
"temp" subscripts; "e1,· "e2," and 
We3" are compiler-created work areas 

Section 10: Statements 29L 



having the attributes of "expres
sion1,· "expression2," and "expres
sion3," respectively. In the simplest 
cases, there are no subscri~ts (i.e., 
n=O) and the first statement in the 
expansion is therefore el=expression1. 

A(]uitional rules for the above expan
sion follow: 

a. The above expansion only shows the 
result of one "specification." If 
the DO stat,ement contains more 
than one ·specification," the 
statement labeled NEXT is the 
first statement in the expansion 
for the next ·specification." The 
second expansion is analogous to 
the first expansion in every 
respect. Thus, if a second "spe
cification" appeared in the DO 
statement, the second expansion 
would look like this: 

NEXT: 

tempn=dni 
e5=expression5; 

v=e5: 
LABEL3: IF .. , THEN GO TO NEXT1; 

IF (expressionS) THEN; 
ELSE GO TO NEXT1i 

statement-1 

statement--m 
LABEL4: v=v+e7; 

GO TO LABEL 3 ; 
NEXT1: statement 

Note that statements 1 through mare 
not actually duplicated in the 
program. 

b. If the WHILE clause is omitted, 
the IF statement immediately pre
ceding statement-l in the expan
sion is omitted. 

c. If "TO expression2" is omitted, 
the statement "e2=expression2" and 
the IF statement identified by 
LABEL2 are omitted. 

d. If both "TO expression2" and "BY 
expression3" are omitted, all 
statements involving e2 and eJ, as 
well as the statement GO TO 
LABEL2, are omitted. 

4. The WHILE clause in Types 2 anj 3 spe
cifies that before each repetition of 

292 

statement execution, the associated 
elerrent expression is evaluated, and, 
if necessary. converted to a bit str
ing. If any tit in the resulting str
ing is 1, the statements of the 00-
group are executed. If all bits are 
0, then, for Type 2, execution of the 
DO-group is terminated, while fer TYFe 
3, only the execution associated with 
the ·specification" containing the 
WHILE clause is terminated: repetitive 
execution for the next "specifica
tion," if one exists, then begins. 

5. In a ·specification," "expressionl" 
represents the initial value cf the 
control variable (i.e., "variable" or 
"pseudo-variable"); "expressicn]" 
represents the increment to be added 
to the control variable after each 
execution of the statements in the 
group; expression2 represents the ter
minating value of the control vari
able. Execution of the staterrents in 
a DO-group terminates for a "specifi
cation" as soon as the value cf the 
control var-iatle is outside the range 
defined by "expressionl" and "expre-
58ion2." When execution for the last 
"specification" is terminated, con
trol, in general, passes to the state
ment following the OO-group. 

6. Control may transfer into a DO-grouF 
from outside the DO-group only if the 
DO-group is delimited by the DO state
ment in Type 1; that is, only if repe
titive execution is not specified. 
Consequently, repetitive DO-groups 
cannot contain ENTRY statements. 

7. The effect of allocating or freeing 
the control varia tIe within the DO
group is undefined. 

The END Statement 

Function: 

The END statement terminates blocks and 
groups. 

General format: 

END Habel]; 

Syntax rules: 

If -label" is specified, it cannot be an 
element of a label array; that is, it can
not be subscripted. 

General rules: 

1. If a label follows END, the statement 
te:rrrinates the unterminated group or 
block headed by the nearest preceding 
DO, BEGIN, or PROCEDURE statement hav-



Pdqt> of GC28-2045-1, Issued [:f:Tteml::er30. 1911 by TNL GN28-3185 

ing t hat label. It also tPrminatps 
any unterminat ed groupi or hloclul 
physically within that ~rour or block. 

2. If d labE'l does not tallow END. the 
st.atement terminates thdt: <JIOU£: or 
block headed by the nearnst preceding 
00, BEGIN, or PROCECURE statement for 
which there is no corresponding END 
statement. 

3. If control reaches an END statement 
for a procedure. it is treated as a 
RETURN statement. 

The ENTRY Statement 

Function: 

The ENTRY statement specifies a secon
dary entry point of a ~rocedure. 

General format: 
entry name: {entry name: 1 ••• 

ENTRY [(Farameter (,~arameter] ••. ») 
(RETURNS (attribute ... )l; 

Syntax rules: 

1. The only attributes that may be speci
fied in the RETURNS option of an ENTRY 
statement are the arithmetic, string. 
POINTER, OFFSET, AREA, and PICTURE 
attributes. The attributes specified 
determine the characteristics of the 
value returned by the procedure when 
it is invoked as a function at this 
entry point. 

2. A condition prefix cannot. be specified 
for an ENTRY statement. 

General rules: 

1. The relationship established betwe~n 
the paraweters of a secondary entry 
point and the arguments passed to that 
entry point is exactly the same as 
that established for rrimary entry 
point parameters and arguments. Se~ 

Part If Section 10, ·Subroutines and 
Functions,· for a complete discussion 
of this subject. 

2. As stated in syntax rule 1, the attri
butes specified in the RETURNS option 
of an ENTRY statement determine the 
characteristics of the value returned 
by the procedure when it is invoked as 
a function at this entry point. The 
value being returned by the procedure 
(i.e., the value cf the expression in 
a RETURN statement) is converted, if 
necessary, to correspond to the spe~i
fied attributes. If the RETURNS 
option is omitted, default attributes 
are applied, according to the first 

lEtter of the entry name Ilsed to 
invoke the entry point. 

The RETURW; keyword is mandatory for 
fUnction rrocedures when function 
value attritutes are explicitly 
specified. 

3. If an ENTRY statement has more than 
one label, each label is interpreted 
as though it were a single entry name 
for a separate ENTRY statement having 
the same parameter list and explicit 
attribute specification. For example, 
consider the statement: 

A: I: ENTRY; 

This statement is effectively the same 
as: 

A: ENTRY; 

I: ENTRY; 

Since the attributes of the returned 
value are not explicitly stated, the 
characteristics of the value returned 
by the procedure will depend on wheth
er the entry point has been invoked as 
A or I. 

4. The ENTRY statement must be internal 
to the procedure for which it defines 
a secondary entry point. It may not 
be internal to any block contained in 
this procedure; nor may it be within a 
DO-group that specifies repetitive 
execution. 

The EXIT Statement 

• Function: 

The EXIT statement causes iKmediate ter
rrination of the rrogram that contains the 
statement; control returns to the corr~and 
system, and the user is prompted with an 
underscore. The EXIT statement is equiva
lent to a STOP statement. 

General format: 

EXIT; 

General rule: 

EXIT causes the FINISH condition to be 
raised. If there is a FINISH on-unit, that 
cn-unit is executed first, and the program 
is terminated on normal return frorr the 
cn-unit. The completion values of the 
event variables associated with this pro
gram are set to 'l'B, and their status 
values to 1 (unless they are already 
nonzero). 

Section 10: Statements 293 



Page of GC28-204S-1. Iss'Jpd s€[:tember 30, 1911 by TNL GN28··3165 

Funct:ion: 

The FORMAT statement specifies a format 
list that can be used by €dit-directed 
transmission statements to control the for
mat of the data being transmitted. 

General fonilat: 

label: [label:] ••. FORMAT (format-list): 

Syntax lCules: 

1. The -format list~ must be specified 
according to the rules governing for
mat list specifications with edit
directed transmission as described in 
Part I. Section 8, ~Input and output.-

2. At least one wlabel- must be specified 
for a f'ORMIIT stoatement. One of the 
labels (or a label variable having the 
value of one of the labels) is the 
statement label designator a~pearing 
in a remote fonnat item. None of the 
labels can be specified in a GO TO 
statement. 

General rules; 

1. A GET or PUT statement may include a 
remote fern,at item, R, in the format 
list of an edit-directed data specifi
cation. That portion of the format 
list represented by R must be supplied 
.by a FORMAT statement identified by 
the statement label specified with R. 

2. The :remote format item and the FORti.AT 
statement must ~e internal to the same 
block. 

3. If a condition prefix is associated 
with a FORMAT statement, it must be 
identical to the condition prefix 
associated with the GET or PUT state
ment referring to that FORMAT 
staterrent. 

4. When a FORMAT statement is encountered 
in normal sequential flo~, control 
passes around it, and the CHECK condi
tion will not. be ra ised for a state
ment label attached to it. 

The FREE Statement 

Function: 

The FREE statement causes the stoLag€ 
allocated for specified based or ~ontrolled 
variables to be freed. For controlled 
variables. the next most recent allocation 
in the task is made available, and subse
quent references in the toasK to the identi
fier refer to that allocation. 

General formats: 

option 1 

FREE controlled-variable 
I,controlled-variable} ••. ; 

Option 2 

FREE [pointer-qualifier ->1 
based-variable(IN(area-variable») 
[,(pointer-qualifier ->1 
ba.sed-vat: id hI e 
(IN(area-variable)JJ ..• i 

Syntax rules: 

1. In Option 1, tne ·controlled va.riablew 

is an element, array. or major struc
ture of the controlled storage class. 

2. In Option 2, the -based variatle" must 
be an unsutscripted. level-one based 
variable. 

3. The forms of Opticn 1 and Option 2 can 
be combined in the same FR~E 
stateroent. 

General rules: 

1. If a specified nonbased identifier has 
no allocated storage at the time the 
FREE statement is executed, it is an 
error. 

2. If the based variable is not qualified 
by feinter qualification, the [ainter 
declar€~d wi th thE' based variatle will 
be ~sed to identify the generation of 
data occupying the port:itm of storage 
to be freed. 

3. The amount of storaqe freed depends 
upon the attributes of the based va:ti
able, includi.ng bounds and/or lenqt.hs 
at the time the storage is freed, if 
af~licatle. The user is responsible 
for determining that this amount coin
ci~~s with the amount allocated. If 
the variable has not been allccated, 
the results aEe unpredictable. 

4. II based variatle can be used to free 
storage only if that storage has been 
allocated for a based variable having 
identical data attributes. includinq 
values of boundS, lengths. and area
size expressions. 

5. The IN option must be specified if the 
storage t.o l::e freed has been allocated 
using the IN option. and it must have 
been allocated in the area specified 
in the FREE statement. The IN option 
cannot afpear in the FREE statement in 
any other circumstances. Note that 



Pa4€ at GC28~2045-1, Issued Septemter 30, 1971 by TNL GN28-3185 

area assignment cause~; a 1 location of 
based storage in the target area; such 
allocations can be frped by the IN 
option naming th€ target arPd. 

Examples: 

1. FREE X. Y, Z; 

2. The following excerpt fr0~ a procedure 
illustrates the FRE.E stateInlmt in con
junction with an ALLOCATE statement: 

DECLARE A(IOO} INITIAL «100)0) 
CONTROLLED, CCIOO). X(IOO); 

ALLOCATE A; 

C=Ai 

FRH, A; 

3. In the example below, it is i'\ssumed 
the declarations specifien in Examrle 
4 of thE ALLOCATE statement dpply. 

FREE VALUE; 

Frees that fortion of stcra~e ~hich is 
occupied by the allocation of VAVJE 
identified by painter P. 

FREE V->GROUPi 

Frees that portion of storaqe which is • 
occupied by the allocation of GROUP 
identified by pointer V. The value 
V->DI~ is used to determine the bound 
of VALUES. 

The GET Statement 

Funct ion: 

The GET statement is a STREAM transmis
sion statement that can te used in either 
of the following ways: 

1. It can cause the assignment of data 
from an external source (that is, from 
a data set) to one or more internal 
receiving fields (that is, to one or 
more variables>. 

2. It can cause the assignment of data 
from an internal source (that is, frolT, 
a character-string variacle) to one or 

If,or~ internal receiving fields (that 
is, to one or more variables>. 

General format: 

GET option-list; 

F'cllowinq is the format of ·option 
list-: 

{lFILE(filpname)][data-s~ecification) 
[COpy) [5KIP(Cexpression)]1} 

{STRING (character-string-name) 
data-specification} 

General rules: 

1. If neither the FILECfilename) option 
nor the STRING (character-fitr ing-name) 
option appears, the file option FILE 
(SYSIN) is assumed. 

2. One data specification must appear 
unless the SKIP option is s~ecified. 

3. The options may appear in any order. 

4. The filename refers to a file which 
has been associated, by opening, with 
the data set which is to provide the 
values. It must be a STREA~ INPUT 
file. 

? The ·character-string namE· refers to 
thE character string that is to pro
vide the data to be assigned to the 
datil list. This name may be a 
reference to a built-in function. 
Each GET operation using this option 
always bEgins at the beginning of the 
specified strinq. If the nu~ber of 
characters in this string is less than 
the total number of characters speci
fied by the data specification, the 
ERROR condition is raised. 

6. When the STRING option is used under 
data-directed transmission, the ERROR 
condition is raised if an identifier 
within the string does not have a 
match within the data specification. 

7. The data specification is as described 
in Part I, Section 9, ·Strearr.-Oriented 
TranslTission.· 

8. If the FILE (filename) option refers 
to a file that is not open in the cur
rent tasK, the file is implicitly 
opened in the tasK for stream output 
translT,ission. 

9. The COpy option. which may only be 
useo with the FILECfilename) option, 
specifies that the source data, as 
read, is to be written, without 

Section 10: Statements 295 



Page of GC28-20ij5-1. Issued se~terotcr 30. 1971 by TNL GN2B-3185 

alteration, on t,he !;tandard installa
tion ~rint tile. 

10. The SKIP option caUSeH a new current 
line to be defined for the data set. 
The expression, if present, is con
vert.cd to an integer ~. which must be 
greater than zero. If not. the com
piler substitutes a value of 1. The 
data set is positioned dt the start of 
the wth line relative to the current 
hoe-:- If the expression is omitted, 
SKIP(l) is assumed. The SKIP option 
is always executed before clny data is 
transmitted. 

ExamFles: 

1.. GET LIST (A, B,C> ; 

S:J€cifies the list-directed transmis
F~on of the values to be assigned to 

Band C from the file ~YSIN. 

2. GET F'ILE (BETA) EDIT eX,Y,Z) (J\{S), 
F(5,2), A(10»; 

Specifies the edit-directed transmis
sion of the values assigned to X, Y 
and Z from file BETA. 

The GO TO Statement 

Function: 

The GO TO statement causes control to be 
transferred to the staterrent identified by 
the specified label. 

General format: 

I GO 'l'0 

GOTO 

label-const.ant; 

element-label-wHiable; 

General rules: 

1. If an Delement label variableB is sFe
cified, the value of the latel vari
able determines the statement to which 
control is transferred. Since the 
label variable may have different 
values at each execution of the GO TO 
statement, control rray not always pass 
to the same statement. 

2. A GO TO statement. cannot pass conteol 
to an inactive block. 

3. A GO TO statement cannot transfer con
trol frarr outside a DO-group to a 
statement inside the OO-group If the 
DO-group specifies .repetitive execu
tion, unless the GO TO terminates a 
procedure or on-unit invoked from 
within the DO-group. 

296 

4.. If a GO TO statement tranr;fers cont.z"ol 
frcn within a ~lock to a point not 
contained within that block. the block 
is ter~inated. Also, if the transfer 
point is contained in a block that did 
not direc1:ly activate t.he block being 
terminated, all intervening blocks in 
the activation sequence are also ter
minated (see Part 1, Section 6, 
-Blocks. Flow of Control, and Storage 
Allocation,· for examr,les and 
details) . When one or more blocks are 
terminated .ty a GO '1'0 statement, con
ditions are reinstated and automatic 
variables are freed just as if the 
blocks had te~mindtEd in the usual 
fashion. 

5. When a GO TO statement transfers con
trol out of d procedure that has been 
invoked a s a function I the eva luati cn 
of the ex[ression that contained the 
corresponaing function reference is 
dis cant i nlled. 

The IF Statement 

Function: 

The IF statement tests the value of a 
specified exrressicn and controls the flow 
cf execution according to the result of 
that test. 

General formdt: 

IF Element-e](rre~;sion 
THEN lInit-l 
[ELSE uni t-21 

Syntax rul:';;; 

1. Each unit is either a sinqle stdtement. 
(except DO, END. PROCEDURE. BEGIN, 
DECLARE, FORMAT, or ENTRY), a DU
grcu~, or a begin block. 

2. The IF statement itself is not ter
minated 1")1' a ,;eroir:oloD; however. each 
·unit- ~~ecified must bp terminated by 
a serr':"colon. 

3. E;,ch "unit" may be labeled and rnay 
have condition prefixes. 

General rules: 

1. The element expression is evaluated 
and, if necessary, converted to a bit 
string. When t.he ELSE clause {that 
is. ELSE and its following Sunit~} is 
specified, the following occurs: 

If any bit in the string is I, 
·unit-I- is executed, and control 
then passes to the statement fol
lowing the IF statement. If all 
bits in the st.ring have the value 



0, "unit-l" is skipped and "unit-2-
is executed, after which control 
passes to the next statement. 

When the ELSE clause i~ not specified, 
the following occurs: 

If any bit in the string is 1, 
"unit-l" is executed, and control 
then passes to the statement fol
lowing the IF statement. If all 
bits are 0, "unit-l" is not 
executed an~ control passes to the 
next statement. 

Each "unit" may contain statements 
that specify a transfer of control 
(e.g., GO TO); hence, the normal 
sequence of the IF statement may be 
overriden. 

2. IF statements may be nested; that is, 
either "unit", or both, may itself be 
an IF statement. Since each ELSE 
clause is always associated with the 
innermost unmatched IF in toe same 
block or DO-group, an ELSE with a null 
staterrent may be required to specify a 
desired sequence of control. 

The LOCATE Statement 

Function: 

The LOCATE Statement, which applies to 
BUFFERED OUTPUT files, causes allocation of 
a based variable in a buffer; it may also 
cause transmission of a previously allo
cated based variable. 

General format: 

LOCATE variable 
FILE (filename) (SET(pointer-variable)] 

[KEYFROM(expression)]i 

Syntax rules: 

1. The options may appear in any order. 

2. The "variable" must be an unsub
scripted level 1 based variable. 

General rules: 

1. The FILE(filename) option specifies 
the file involved. This option must 
appear. 

2. Execution of a LOCATE statement causes 
the specified based variable to be 
allocated in the tuffer. Components 
of the based variable that have been 
specified in REFER options are initia
lized. A pointer value is assigned to 
the pointer variable named in the SET 
option or, if the SET option is 
omitted, to the pointer variable spe-

cified in the declaration of the cased 
variacle. The pointer value identi
fies the record in tne buffer. After 
execution of the LOCATE statement, 
values may be assigned to the based 
variacle for subsequent transmission 
to the data set associated with the 
file, which will occur immediately 
before the next LOCATE, WRITE, or 
CLOSE operation on the file, at which 
time the record is freed. 

3. If the KEYFROM(expression) opticn 
appears, the value of the expression 
is converted to a character string and 
is used as the key of the record when 
it is subsequently written. 

4. If the FILECfilename) option refers to 
an unopened file, the file is opened 
automatically; the effect is as if the 
LOCATE statement were preceded by an 
OPEN statewent referring to the file. 

Exarr.ple: 

LOCATE ALPHA SET (REC_POINT) FILE 
(BETA); 

The based variable ALPHA is allocated 
in a buffer and REC POINT is set to 
identify ALPHA in the buffer. Values 
may subsequently be assigned to ALPHA 
and the rEcord will be written in the 
data set associated with file BETA 
when a sutseguent LOCATE or WRITE 
statement is executed for file EETA or 
if BETA is closed, either explicitly 
or implicitly. 

The Null Statement 

Function: 

'Ihe null statement causes no action and 
does not modify sequential statement execu
tion. If the label of a null staterrent is 
enabled for the CHECK condition, CHECK is 
raised whenever control reaches the null 
statement. 

Genera I f orrr,at : 

[label:] •.. ; 

The ON Statement 

Function: 

The ON statement specifies what action 
is to be taken (user-defined or standard 
systelO action) when an interruption results 
from the occurrence of the specified excep
tional condition. exceptional condition. 

Genera I format: 

Section 10: Statements 297 



ON condition [SNAP] [SYSTEM; lon-unit} 

Syntax rules: 

1. The condition may be any of those 
described in part II, section B, ·ON
Conditions· . 

2. The ·on-unit" represents a user
defined action to be taken when an 
interruption results from the occur
rence of the specified "condition". 
It can be either a single unlabeled 
simple statement or an unlabeled begin 
block. If it is an unlal::eled simple 
statement, it can be any sill1ple state
ment eXC€ft, BEGIN, DO, END, RETURN, 
FORMAT, PROCEDURE, or DECLARE. If the 
on-unit is an unlabeJed begin block, 
any statement can be used freely 
within that block, wit_h one exception: 
A RETURN statement can appear only 
within a procedure nested within the 
begin block. 

3. Since the "on-unit" itself requires a 
semicolon, no semicolon is shown for 
t,he "on-unit" in the general format. 
However, the word SYSTEM ll1ust be fol
lowed by a semicolon. 

General rules: 

1. The ON statement determines how an 
interruption occurring for the speci
fied condition is to I::e handled. 
Whether the interruption is handled in 
a standard system fashion or by a 
user-supplied method is determined by 
the action specification in the ON 
statement, as follows: 

298 

a. If the action specification is 
SYSTEM, the standard system action 
is taken. The standard system 
action is not the same for every 
condition, although for most con
ditions the system simply prints a 
message and raises the ERROR con
dition. The standard system 
action for each condition is given 
in Part II, Section B, "ON
Conditions." (Note that the stan
dard system action is always taken 
if an interruption occurs and no 
ON statement for the condition is 
in efftoct.) 

b. If the action sfecification is an 
"on-unit," the user has supplied 
his own interru~tion-handlinl 
action, namely, the action defined 
by the statement(s) in the on-unit 
itself. Tne on-unit is not 
executed when the ON statement is 
executed: it is executed only when 
an interruption results from the 

occurrence of the specified condi
tion (or if the interruption 
results from the condition Leinq 
signaled hy a SIGNAL statement). 

2. The action specification (i.e., "on
unit" or SYSTEM) estatlished ty 
executing an ON statement in d given 
block remains in effect throughout 
that block and throughout all clocks 
in any activat,ion ~:ie'quence initiated 
by t,hat block, unlecis it is ov(,'rridden 
by the execution of another ON state
ment or d REVERT st,at.ement, a~, 

follows: 

a. If a later ON stat,ement "'tJecifies 
the sanle condition as a frier ON 
statell1ent and this later ON state
ment is executed in a block that 
lies within the activation 
sequenc~ initiated by the tlock 
containing the prior ON statement, 
the action specification of the 
prior ON statement is temporarily 
suspended, or stacked. It can be 
restored either by the execution 
of a REVERT statement, or by the 
terrrination of the block contain
ing the later ON statement. 

b. If the later ON statell1ent and the 
prior ON statement are internal to 
the same invocation of the sarre 
block, the effEct of the prior ON 
statement is corrpletely nullified. 

3. An on-unit is always treated by the 
cOll1~iler a~ a procedure internal to 
tne block in which it afpears. (Con
ceptually, it is enclosed in PROCECURE 
and END staterr,ents.) Any narres used 
in an on-unit do not belong to the 
invocation of the procedure or tlock 
in which the interrUption occurred 
<and, hence, effectively, the proce
dure or block in which the on-unit is 
executed> but, rather, to the environ
ment of the invocation of the proce
dure or block in which the ON state
ment for that on-unit was executed. 
(Remember that an ON statement is 
exer.uted as it is encountered in 
st~tement flow; whereas, the action 
specification for that ON statement is 
executed only when the associated 
interruftion occurs.) 

4. A condition raised during execution 
results in an interruftion if and only 
if the condition is enabled at the 
point where it is raised. 

a. The conditions 1\11EA, OVERFLOW, 
FIXEDOVERFLOW, UNDERFLOW, ZERODI
VIDE, CONVERSION, all of the 
input/output conditions, and the 



Paqe of GC28-20IlS-1, Issued September 30. 1911. by TNL GN28-31.85 

conditions CONDITION, FINISH. and 
ERROR are enablpd by default. 

b. The conditions SIZE, STRINGRANGE, 
SUBSCRIPTRANGE, and CHEC~ are dis~ 
abled by default. 

c. The enabling dnd dh;abling of 
OVERFLOW, FIXEDOVERFLOW, UNDER
FLO~. ZERODIVIDE, CONVERSION, 
SIZE, STRINGRANGE, SUBSCRIPTRANGE, 
and CHECK can be controlled by 
condition prefixes. 

5. If on-unit is a single statement, it 
cannot refer to a remote forw.at 
specification. 

6. If SNAP is specified, then when the 
given condition occurs and the inter
ruption results, a calling trace is 
listed; that is, a trace of all of the 
procedures active at the time the 
interruption resulted is printed on 
SYSOUT. 

The OPEN Statement 

Function: 

The OPEN statement opens a file by asso
ciating a file name with a data set. It 
also can comr-Iete the specification of 
attributes for the file, if a complete set 
of attributes has not been declared for the 
file being opened. 

General format: 

OPEN FILECfile-name) [options-group] 
[,FILECfile-name) {options-grouplJ •.• ; 

where "options-group· is as follows; 

lDIRECTISEQUENTIALl 
[BUFFERECIUNBUFFERED] 
[STREAMIRECORDl 
[INPUTIOUTPUTIUPDATE] 
[KEYED] {EXCLUSIVE] 
[BAC~ARDS] 
[TITLE (element-expression)} 
[PRINT] 
[LINESIZE(element-expression)} 
[PAGESIZE(element-expression») 

Syntax rules: 

1. The INPUT, OUTPUT, UPDATE, STREAM, 
RECORD, DIRECT, SEQUENTIAL, BUFFERED. 
UNBUFFERED, KEYED, EXCLUSIVE, BACX
WARDS, and PRINT options specify 
attributes that augment the attributes 
specified in the file declaration; for 
rules governing which of thes~ attri
butes can be applied together, see 
Part I. section 8, ·Input and output,
and the corresponding attricutes in 
Part II, Section 9, -Attributes.-

2. The options in an ·option group· and 
the FILE option for a file may appear 
in any ordez. 

3. The Rfile name R is the name of the 
file that is to be associated with a 
data set. Several files can be opened 
by one OPEN st.atement. 

General ru les : 

1. The opening of an already open file 
does not affect the file if the second 
opening takes place in the sane task. 
In such cases, any expressions in the 
·options-group· are evaluated, but 
they are not used. 

2. If the TITLE option is specified, the 
·element exrression- is converted to a 
character string, if necessary, the 
first eight characters of which iden
tify the DDEF command (the DDNAME) to 
be associated with the file. If this 
option does not appear, the first 
eight characters of the file name 
(padded or truncated) are taken to be 
the rDNAME. Note that this is not the 
same truncation as that for external 
names. If the file name is a fararre
ter. the identifier of the original 
argument passed to the pararr,eter, 
rather than the identifier of the pa
rarreter itself, is used as the 
identification. 

3. The LINESIZE option can be specified 
only for a STREAM OUTPUT file. The 
expression is evaluated, converted to 
an integer, and used as the length of 
d line during subsequent operations on 
the file. New lines may be started by 
use of the printing and control format 
iterr~ or by options in a GET or PUT 
statement. If an attempt is rrade to 
pOsition a file past the end of a line 
before explicit action to start a new 
line is taken, a new line is automat-
iCdlly started, and the file is posi
tioned to the start of this new line. 
If no line size is qiven for a PRINT 
file, an implementation-defined 
default of 1.20 characters is supplied." 

The LINESIZE option cannot be spe
cified for an INPUT file. The line 
size taken into consideration whenever 
a SKIP option appears in a GET state
ment is the line size that was used to 
creat.e the data set, if any; other
wise, the line size is taken to be the 
current length of the logical record 
CIr.inus control bytes, for format-V 
records). The maximum line size is 
32,751 for format-V records. and 32, 
759 for format-U and -F records. 

4. The PAGESIZE option can be specified 
only for a file having the STREAM and 

Section 10: Statements 299 



Page of GC28-204S-1, Issued oe~temter 30, 1971 by TML GN18-1165 

PRINT attributes. The element expres
sion is evaluated and converted to an 
integer, which rerresents the maxi.um 
number of lines to a page. During 
sub.<,;equent transmission t.o the PRINT 
file, a new page '!fay be started by use 
of the I'AGE format item or ty the PAGE 
option in the PUT statement. If a 
page becomes filled and more data 
remains to be p.rinted before action to 
start a new page is taken, the ENOPAGE 
condition is raised. For the TSS/360 
PL/I compiler, the maximum size of a 
page is 32.767 lines; the minimum is 1 
line. It PAGESIZE is not specified, 
the default is 60 lines per page. 

The PROCEDUR~ Statement 

Function: 

'I'lw pnOCECURE statelTlent. has the follow
in9 f "fictions: 

• It heads a procedure. 

• It defines the primary entry pOint to 
the procedure. 

• It specifies the parameters, if any, 
for the primary entry point. 

• It may fy certain special charac-
teristics that a procedure can have. 

" It may specify the attributes of the 
value that is returned by the procedure 
if it is inVOked as a function at its 
priInary ent.ry point,. 

General format: 

entry-name: [entry-name:] ••. 
PROCEDURE ( (parameter [ • param€terJ ••• ) ) 
[OPTIONS {option-list}} 
[RECURSIVE} 
(RETURNS(attribute ••. l] 
[ORDERIREORDER1; 

Syntax rules: 

1. OPTIONS and RECURSIVE are special pro
cedure specifications that the user 
can specify. They and the other PL/I
defined options can appear in any 
order and are separated by blanks. 

2. The ·option list- of OPTIONS specifies 
one or more additional im~lementation
defined options; it may contain the 
MAIN and REENTRANT options, separated 
by commas. MAIN specifies that the 
procedure is the initial proce~~re. to 
be invoked by the time-sharing system 
as the first step in the execution of 
the PL/I program; REENTRANT specifies 
that the compiler must generate reent
erable code; that is, code that does 

300 

I 
3. 

not modify itself during its 
II':xe<.."Ut,ion. 

Note! It is up to the program.''1u?r to 
~:re that, i,'\!1Y stati.c vaKial:JL~s are 
relld-only, if the prog):'am is to be 
truly reentrant. 

ORDER and REORDER are opt.ions used to 
control the optimi zation performed by 
the com~iler. The selected option 
applies to all nested blocks unless 
overridden. (These options are also 
allowed on BEGIN statements.) If 
neither Oft:ioll is given for an extern
al procedure, ORDER is assumed. 

General rules: 

1. When the procedure is invoked, a rela
tionship is established between the 
arguments ~assed to the p.cocedure and 
the parameters that represent those 
arguments in the invoked procedure. 
This topic is discussed in Part 1, 
Section 12, "Subroutines qnd 
Functions." 

2. OPTIONS may be specified only for an 
external rrocedure, and at least one 
external rrocedure roust have the 
OPTIONS (MAIN) designation; if more 
than one is so designated, the system 
will invoke the one that appears 
first., physically. OPTIONS afpliesto 
all of the entry pOints (both primary 
and secondary) that the procedure for 
Which it has been declared might have. 

3. RECURSIVE must b+' specified if the 
procedure might he invoked recursive
ly; that is, if it ~i9ht be re
activated while it is still active. 
If specified, it applies te all of the 
entry points Cpc.Hnary and secondary) 
that the frocedure might have. It 
applies only co the procedure for 
which it is d~clared. 

4. The -RETURNS attributes· specify the 
attri~~tes of the value returned by 
the GEocedure when it is invoked as a 
fur.eLien at: its primary entry pOl-nt. 
only arithmetic, string,. pointer, off
set. AREA, dnd PICTURE attributes are 
allowed. The value specified in t.he 
R~'TURN statement of the invok.ed proce
dure is converted to conform loIith 
theSE attributes hefore it is returned 
to the invoking procedure. 

If -RETURNS attldbutes" are not speci
fied. default attributes are supplied. 
In such a case, the na..<:'Iie ,)f the entry 

. ,point (tbe ent.1"Y name by which the 
procedure has been invoked) is us€'d to 
det.e·rmine the default, base. preCision, 
and scale., (Since the entry point can 
have lH!Ve!!:'al entry names, the default 



l'aqe of GC28-2045-1, Issued Septemht"r 10, 1971 by TNL GN28-3185 

base, precision. and scale Cdn differ 
according to the entry name.) 

S. If a PROCEDURE statement ha:.i more than 
one entry name, the lir:;t name can be 
considered as the only label of the 
statement; each subsequent entry name 
can be considered as a serardte ENTRY 
staterr.ent having the same parameter 
1 ist and RETURNS option as t_he PROCE
DURE statement. Thus, the statement: 

A: I: PROCEDURE RE'l'URNS{BINARY 
FIXED); 

is effectively the same as: 

A: PROCEDURF RE'l'URNS(BINARY FIXED); 

I: ENT~Y RETURNS(BINARY FIXED); 

6. The ORDER and REORDER options specify, 
for optimization purposes, the degree 
of language stringency to be otserved 
during compilation of the block. The 
strict rules require that the source 
program should be compiled so as to be 
executed in the order SI€cifipd.by the 
sequence of the statements in the 
source program (see ·Control st~te
ments· in Part I, Section 5, ·State
ment Classification-), even if the 
code could be rt'ornercd "0 as to pro
dUCE the same result wore efficiently, 
The relaxation allowed by REORDER i,; 
such that if comput~tional or system 
action interrurts occur during execu
t~on of the block, the resOlt is not 
necessarily the !,a!H: as it would be 
under the strict rules. 

7. The ORDER o~tion specifies thdt the 
normal language rules dre not to be 
relaxed; i.e., any opti~ization must 
be such that the execution of a block 
always produces a result that is in 
accordance with the strict definition 
of PL/I. This means that the values 
of variables set by execution of all 
statements prior to computational or 
systerr:-action interruFt ions are 
guaranteed in an on-unit entered as a 
result of the interru["tion, or any
where in the prograw afterwards. Note 
that the strict definition now allows 
the compiler to optirr:ize comrr.on expre
ssions (see note below), where safely 
possible, by evaluating therr once only 
and saving the result, rather than 
reevaluating for each reference. 

Note: A common expression is an ex
preSsion that occurs more than once in 
a program but is obviously intended to 
result in the same value each time 
that it is evaluated, i.e., if a later 
expression is identical to an earlier 
expression, with no intervening modi
fication to an operand, the expre
ssions are said to be common. 

8. The REORDER option specifies that 
execution of the block must produce a 
result that is in accordance with the 
strict definition of PL/I unless d 

computational or s~stem-action inter
rUFtion occurs during execution of the 
block; the result is then allowed to 
deviate as follows: 

a. After a computational or system
action interruption has occurred 
during execution of the bleck, the 
values of variatles modified, 
allocated, or freed in the clock 
are guaranteed only after normal 
return from an on-unit or ~hen 
accessed ty the ONCHAR and 
ONSOURCE condition built-in 
functions. 

b. The vrtlues of variables modified, 
allocated, or freed in an on-unit 
for a computational or system
action condition (or in a hlock 
activated by such an on-unit) are 
not guaranteed on return from the 
on-unit into thE block, except for 
values modified by the ONCHAR and 
ONSOURCE ~seudo variatles. 

A frograrr is in error if a computa
tional or system-action interrurtion 
occurs during execution of the clock 
and this interruption is follo~ed by a 
referAnce to a variable whose value is 
not guaranteed in such circu~stances. 

1he PUT Statement 

Function: 

The PUT statement is a STREAM transmis
sion statement that can be used in either 
cf the following ways: 

1. It can cause the values in one or more 
internal storage locations to be tran
srritted to a data set on an external 
mediurr. 

2. It can cause the values in one or more. 
internal storage locations to be 
assigned to an internal receiving 
field (rerresented by a character
string variable). 

General format: 

PUT option list; 

Following is the format of ·option list-: 

((FILE(filename)1[data-specificationl 

[{
PAGE[LINElelement-expreSSiOn»)}] 
SKIP ((element-expression») 
lINE (element-expression) 

{STRING (character-string-variable) 
data-specification} 

Section 10: Statements 301 



page of GC28-2045-1. Issued Septell,ber 3D, 1971 by '!NL GN2S-3185 

Syntax rules: 

1. If neither the FILE nor STRING opti.on 
dFpears, the specification FILE (SYS
OUT) is assilmed. If such a PUT state
ment lies wiLhin the scope of a 
declaration of the identifier SYSOUT, 
SYSOUT must have teen declared as FILE 
STREAM OUTPUT. If the PU'! statement 
does not lie within the scope of a 
declaration of SYSOUT, SYSOUT is the 
standard system output file. 

2. The FILE option specifies transmission 
to a dat.a set on an external medium. 
The file name in this oFtion is the 
name of the file that has been asso
ciat~ed (by implicit or e>q::lici t open
ing) with the data set that is to 
receive the values. This file must 
hi'lve the OUTPUT and STREAM attributes. 

3. "ile STRING opt. ion sf-eeif ies transmis
_ion from internal storage locations 
(represented by varial:les or expre-. 
ssions in the -data specification-) to 
a character st.ring (rerresented by the 
·chdracter-string variable-). Th~ 

·character-string variatle" can be d 

string pseudo-variatle. 

4. The -data speCification- option is as 
described in Part I, Section 9, 
"Stream-Oriented Transmis:;ion." 

5 . The PAGE, ~¥IP, dnd LINt options can
not appf'ar .<11 t h t.hf' ;~TR IN(; option. 

6. The opticns Ilay aI.p"dr in any order; 
at. least onE rou~t arrear. 

General rules: 

1. It t.he FILl:; option is specif ied. and 
the -file name- refers to an unopened 
file, the file is opened implicitly as 
an OUTPUT file. 

2. If t:he STRING ct=tion is sf'ecified, the 
PUT operation begins aSSigning values 
to the beginning of the string (that 
is, at the left-mest character posi
tion), after appropriate conversions 
have been performed. Blanks and deli
miters are inserted as usual. If the 
o;tri nq is not lcng enough to accomod
ate the data, the ERROR condition is 
raised. 

3. The PAGE and LINE ot:tions can 'N:' spe
cified for PRINT files only. Allot 
the options take effect lEfore trans
mission of any values defined ty the 
data specification, if given. Of th~ 
three, only PAGE and LINE may appear 

302 

in the sawe PIJT statement, in which 
case, the PAGE option is afplied 
first. 

q. The PAGE option causes a new current 
page to be defined within the data 
set. If a data specification is pre
sent. the t.ransmission of values 
occurs aft€r the definition of the new 
page. The paqe remains current until 
the execution of a PUT statement with 
the PAGE option, until d PAGE forrrat 
it err. is encountered. or until an END
PAGE interruption results in the 
definition of a new page. A new cur
rent page implies line one. 

5. The SKIP option causes a ne~ current 
line to be defined for the data set. 
The expression. ~f present. is con
verted to an integer w, which for non
PRINT files must be gieater than zero. 
The data set is positione~ at the 
start of the ~th line relative to the 
current line.·- If the expression is 
omit.ted, SKIP(l) is assumed. 

t:.. 

For PRINT files w may be less than or 
equal to zero; i~ this case, the 
effect is that of a carriage return 
with the same current line. If les3 
than w lines remain on the current 
page ~hen a SKIP!w} is issued. ENDPAGE 
is raised. 

The LINE option causes a new current 
line to tp defined for the data set. 
The f>xpres~.;ion is conVF~'cted t_c an 
intEger !I. The LINE option specifies 
that vl.ank lines are to bf' ~nserted so 
that t.he next line "'ill be the wt.n 
line of the current page. If at ledst 
~ lines have already been written on 
th~ current £Cage or if w exceeds the 
lirrits set t:y the PAGEr;IZE option of 
the OPEN st.atement, the ENDPAGE condi
tion is raised. It w is less Lhan or 
equal t.C zero, it. is--assumed to LE' 1. 

7. If tt.t:: FILEUilename) option l:efClS to 
a ile that is not: open, the file i~J 
ofened imflicitly for stream output. 

1. PUT DATA (A,D,C); 

srecifies the data-directed transmis
sion of the values A. Band C to the 
file SYSOUT. 

2. PUT FILE (LIST) EDIT (X,Y,Z) OUIO)) 
PAGE; 

specifies t.hat d lH'w page is to be 
defined for the prin~ file LIST. The 
values of X, Y and Z are placed start-



ing in the first printing position of 
the Df~W fage. Each of the values will 
use the A(10) format item. 

The READ Statement 

Function: 

The READ statement causes a record to be 
transmitted from a RECCRD INPUT or RECORD 
UPDATE file to a variable or buffer. 

General format: 

READ option-list; 

I The fcr~at of "option list ft is shown in 
Figure 51. 

General rules: 

1. The options may appear in any order. 

2. The FILE(filename) option specifies 
the file from which the record is to 
be read. This option must appear. If 
the file specified is not open, it is 
opened. 

3. The INTO(variable) option specifies an 
unsubscripted level 1 variable into 
which the record is to be read. It 
cannot be a parameter, nor can it have 
the DEFINED attribute. 

4. If the variable in the FROM or INTO 
option is a structure, it cannot con
tain VARYING strings. However it is 
possible to have a VARYING string ele
ment variable in these options. This 
is an implementation restriction. 

5. The KEY and KEYTO oftions can be spe
cified for KEYED files only. 

6. The KEY option must appear if the file 
has the DIRECT attribute. The "ex
pression" is converted to a character 
string that represents a key. It is 
this key that determines ~hich record 
will be read. 

The KEY option may also appear for 
files having the SEQUENTIAL and KEYED 
attributes. In such cases, the file 

is positioned to the record having the 
specified key. Thereafter, records 
may be read sequentially fron, that 
pOint on ty using READ statements 
without the KEY option. For SystenJ 
360 implementations, the data set must 
have the INDEXED organization. 

7. The KEYTO option can be given only if 
the file has the SEQUENTIAL and KEYED 
attribu.tes. It specifies that the key 
of the record being read is to be 
assigned to the "character-string 
variable" according to the rules for 
character-string assignment. If prop
er assignment cannot be made, the KEY 
condition is raised. 

For INDEXED, the recorded key is 
padded or truncated on the right to 
the declared length of the character
string variable. The KEY condition is 
not raised for such padding or 
truncation. 

Note: The KEYTO option cannot specify 
a variatle declared ~ith a nuneric 
picture specification. 

8., The EVENT option allows proceSSing to 
continue while a record is being read 
or ignored. This option cannct be 
specified for a BUFFERED file. 

When control reaches a READ st:atement 
containing this option, the "event 
variablew is made active (that is, it 
cannot be associated with another 
event) and is given the completion 
value 'O'B, provided that the UNDE
FINEDFILE condition is not raised by 
an implicit file opening (see "Note" 
belo~). The event variable rerrains 
active and retains its 'O'B completion 
value until control reaches a WAIT 
statement specifying that event vari
able. At this time, either of the 
following can occur: 

a. If the READ statement has been 
executed successfully and none of 
the conditions ENDFILE, TRANSMIT, 
KEY or RECORD has been raised as a 
result of the READ, the event 
variable is set complete (given 

r----------------------------~-{;~;(~~;;~~~i~~)-----------------}-]------------------------). -1 
I UNTO(variable)] [EVENT{event-variable)} I 
I KEYTO (character-string-var iable) I 
\ FILE ~{KEy(eXpreSSiOn)}] \ I I (file naroe) [SLT(pointer-variable)} I 
I KEYTO(character-string-variable) I 
I I 
I [IGNORECexpression») [EVENT{event-varia£le)] I L _______________________________________________________________________________________ J 

Figure 51. Format of Option List for READ Statement 

Section 10: Statements 303 



the completion value 'l'B), and is 
made inactive, that is, it can be 
associated with another event. 

b. If the READ statement has resulted 
in the raising of ENDFILE, TRANS
MIT, KEY, or RECORD, the interrup
tion for each of these conditions 
does not occur until the WAIT is 
encountered. At such time, the 
corresponding on-units (if any) 
are entered in the order in which 
the conditions were raised. After 
a return from the final on-unit, 
or if one of the on-units is ter
minated by a GO TO statement, the 
event variable is given the com
pletion value 'l'B and is made 
inactive. 

Note: If the READ statement causes an 
implicit file opening that results in 
the raisinq of UNCEFINEDFILE, the on
unit associated with this condition is 
ent.ered immediately and the event 
variable remains unchanged; that is, 
the event variable remains inactive 
and retains the same value it had when 
the READ was encountered. If the on
unit does not correct the conditiqn, 
then, upon normal return from the on
unit, the ERROR condition is raised; 
if the condition is corrected in the 
on-unit, that is, if the file is 
opened successfully, then, upon normal 
return from th~ on-unit, the event 
variable is set to 'O'B, it is made 
active, and execution of the READ 
statement continues. 

9. Any READ statement causes the record 
to be locked. A locked record cannot 
be read, deleted, or rewritten by any 
other task until it is unlocked. Any 
attempt to read, delete, or rewrite a 
record locked by another task results 
in a wait. Subsequent unlocking 
occurs as a result of one of the fol
lowing actions: 

304 

a. The locking task executes a 
REWRITE or DELETE statement that 
specifies the same file name and 
key as the locking READ statement; 

b. The locking task executes a CLOSE 
statement for the file specified 
in the locking READ statement; 

c. The locking task is completed. 

Note that a record is considered 
locked only for tasks other than the 
task that actually locks it; in other 
words, a locked record can always be 
read by the task that locked it and 
still remain locked as far as other 
tasks are concerned (unless, of 

course, the record has been explicitly 
unlocked by one of the above rrethods). 

10. The SET option specifies that the 
record is to te read into a buffer and 
that a pointer value is to be assigned 
to the named pointer variable. The 
pointer value identifies the record in 
the buffer. 

11. The IGNORE option may be specified for 
SEQUENTIAL INPUT and SEQUEN~IAL UPDATE 
files. The expression in the IGNORE 
option is evaluated and converted to 
an integer. If the value, Q, is 
greater than zero, n records are 
ignored; a subsequent READ st.atement 
for the file will access the (n+l)th 
record. A READ statenent without an 
INTO. SET, or IGNORE cption is equiva
lent to a READ with an IGNORE(l). 

12. An INDEXED data set that is accessed 
by a KEYED SEQUENTIAL INPUT file or a 
KEYED SEQUENTIAL UPDATE file may te 
positioned by is,3uing a READ statement 
with the KEY option. The srecified 
key will te used to identify the reco
rd required. Thereafter, reccrds may 
be read sequentially from that point 
by use of READ statements without the 
KEY option. 

For BtJFFERED SEQUENTIAL files, two 
positioning statements can be used, 
with the following formats: 

READ FILE (filename) INTO (vari
able) KEY (expression); 

READ FILE (filename) SET (pointer
variable) KEY (expressicn)i 

For UNBUFFERED SEQUENTIAL files, 
only the first form shown immediately 
above can be used, and it may be sre
cified with the EVENT option. 

Examrles: 

1. REAB FILE (ALPHA) SET (REC_ICENT); 

The next record from the data set 
associated with ALPHA is made avail
able and the pointer variable REC 1-
DENT is set to identify the record in 
the buffer. 

2. REAC FILE (BETA) KEY (VALUE) INTO 
(WORK); 

The record identified by the key VALUE 
is transmitted from the data set asso
ciated with BETA into the variable 
WORK. 



rage ot GC28-2045-1, Issued Ue(~emtpr 30. 1971 by TNL GN28-318S 

The RETURN statement 

Function: 

The RE~URN statement terminat~s execu
tion of the procedure that contains the 
kbTURN stdtement. If the ~rocedurc has not 
teen invoked as a task, the RETURN state
ment returns control to the invoking proce
dure. The RETURN statement may also return 
a value. 

General format: 

Cpt ion 1. 

RETURN; 

Option 2. 

RETURN (expression); 

General rules: 

1. Only the RETURN statement in Option 1 
can be used to terminate frocedures 
not invoked as function ~rocedures; 
control is returned to the ~oint log
ically following the invocation. 

If the RETURN statement terminates 
the major task, the FINISH condition 
is raised prior to the execution of 
any termination processes. 

2. The RETURN statement in O~tion 2 is 
used to terminate a procedure inVOked 
as a function procedure only. Control 
is returne~ to the ~oint of invoca
tion, and the value returned to the 
function reference is the value of the 
expressicn specified converted to con
form to the attributes declared for 
the invoked entry ~oint. These attri
butes may be explicitly s~ecified at 
the entry pOint; they are otherwise 
implied by the initial letter of the 
entry narre through which the procedurE 
is invoked. 

3. If control reaches an END statement 
corresponding to the end of a proce
dure, this END statement is treated as 
a RETURN statement (of the Option 1 
form) for the procedure. 

Example: 

A: PROCEDURE eX,Y) RETURN0 (FIXED); 
DECLARE (X,Y) FLOAT; 

RETURN (X •• 2+Y •• 2); 
END; 

B: PROCEDURE; 
DECLARE A ENTRY RETURNS (FIXED); 

R ::;. A(P,Q); 

END; 

In the assignment statement (R=A(P.y);), 
procedure B invokes procedure A as a func
tion. Procedure B specifies that the ele
Rent expression in the RETURN statement is 
to be evaluated; since X and Yare 
floating-point variacles and the RETURNS 
option of the PROCEDURE statement specifies 
that the value returned is to be fixed
point, the value of the expression is con-

'verted to fixed-~oint, and this value is 
returned to B. 

The REVERT Statement 

Function: 

The ~EVERT statement is used to cancel 
the effect of one or more previously 
Executed ON statements. It can affect only 
ON statements that are internal to the 
tlock in which the REVERT statement cccurs 
and which have been executed in the same 
invocation of that block. Executicn of the 
REVERT staterrent in a given block cancels 
the action specification of any ON state
rrent for the namEd condition that has been 
executed in that block; it then reestat
li~hes the action specification that was in 
forCE at the time of activation of the 
tlock. 

Geno=ral tormat: 

REV~RT condition; 

!:)yntax rule: 

The ·condition- is any of those 
described in Part II, Section 8, 
-ON-Conditions.-

General rule: 

The execution of a REVERT statement has 
the effect describEd above only if (1) an 
ON staterrent, s~ecifying the same condition 
and internal to the same block. was 
executed after the block was activated and 
(2) the execution of no other similar 
REVERT staterrent has intervened. If either 
of these two conditions is not met. the 
REVERT statelT,ent is treated as a null' 
statement. 

The RE~RITE Statement 

Function: 

The REWRITE statement can be used only 
for update files. It replaces an existing 
record in a data set. 

General format: 

Section 10: Statements 305 



Page of GC2S-204S-I, Issued Sertember 30, 1971 by 1NL GN28-l185 

REWRITE FILE (fi1€-nalTle) 
[FROM(variable)] 
[!<l:.'Y (.:;lernent-expression») 
(EVENT (event-evariab!e).i 

.syntax rules: 

1. 

2. 

3. 

The options can a~pear in any order. 

The "FILE (file-name)" option speci
fies the name of the file, which must 
have the UPDATE attribute. 

'fhe .. variable" in the PROP' option must 
be dn unsubscrirted level 1 variable 
(that is, a variable not contained in 
an array or st:ructure>. It cannot 
have the DEFINED attribute and it can
not be a rararreter. It represents the 
record that will rer;lace the existing 
rec0rd in the specified file. 

Gener21 :lules: 

1. If the file whose name arrears in the 
FILE specification has not been 
opened, it is opened imrlicitly with 
the attributes RECORD and UPDATE. 

2. The KEY ortion must appear if the file 
has the DIRECT attribute; it cannot 
appear otherwise. The element
expression is converted to a character 
string. This character string is the 
source key that determines which reco
rd is to be rewritten. For SEQUENTIAL 
files associated with INDEXED data 
sets in System/l60 imf1emf'ntations, 
the key n'U!:5 t be t Jie S aIDe as th e one it 
replaces. 

3. For SEQUENTIAL UPDATE files, the reco
rd sizes must match. If the neW 
length is shorter than the original 
record, t,he record j s not written, and 
no error indication is given. If the 
new length is greateL than the origi
nal. the record is not written, and 
error message IHEl121 is issued. 

For DIRECT UPDATE files, the record 
sizes need not rratch. 

4. The FROM option must ce srecified for 
UPDATE files having either the CIRECT 
attribute or both the SEQUENTIAL and 
UNBUFFERED attributes. A REWRITE 
statement in which the F'RCM option has 
not been specified has the following 
effect: if the last record was read 
by a REAr: statement with t.he INTO 
optlon, REWRITE without FRO~ has no 
effect on the record in the data s~t; 
if the last record was read by a READ 
statement with the SET option, t:he 
record will be updated by whatever 
assignments were lTade in thE buffer 
identified by the pointer variable in 
the SET oFt-ion. 

306 

I 5. If the variable in the FROM option is 
a. structure. it: cannot contain VARYING 
s·trings. However it is possible to 
have a VARYING string element variable 
in these options. This is an irr~le
mentation restrict,ion . 

6. The EVENT option a llows processing to 
continue while a record is being re
written. This option cannot be speci
fied for a SEQUENTIAL BUFFERED file. 

When control reaches a REWRITE stat,e
merit containinc.) this option, the event 
variable is made act,i \Ie (that is. it 
cannot be associated with another 
event) and is given the completion 
value 'O'B, provided that the UNDE
FINEDFILE condition is not raised by 
an iKplicit file opening [see -Note
below}. The ~vent variable remains 
active dnd retains its '~'S completion 
value until conteol reaches a WAIT 
statement srecifyinq that event vari
able. At this time, either of the 
following can occur: 

a. If the RE~RITE statement has been 
executed successfully and nene of 
the conditions TRANSMIT. KEY. or 
RECCRD has bepn raised as a result 
of the REWRD'E, the event variable 
is set compl~te (given the cowple
tien value '1'B), and the event 
variable is Wilde inactive (that 
is, it can be associated ~ith 
another event). 

b. If the REWRITE statement has 
resulted in the raiSing of TRANS
MIT. KEY, or RECOH), t.he interrup
tion for each of these conditions 
does not occur' unto i1 the WAIT i~:: 
encountered. At sucht:imE~. t,he 
corresponding on-units (if any) 
are entered in the order in ~hich 
the conditlon<; ... ere raised. ,,,fter 
a rt"turn trorn thf' final oll-'unit, 
or if one of ~he on-units is ter
minated by a ,,0 TO stat:ement, t.he 
event. variable is given the com
[Letion value 'l'B and is made 
inact ive. 

Note: If the HEhIR rTE stdtl"!tH'mt caus>::s 
animplicit fil,~ opt'n.ing Lhat .rf'sultt~ 
in the raising of UNDEFINEDFILf, the 
on-Unit associated with this condition 
is entered imrredidtely dnd the event 
variabl:e remains unchanged, that is. 
the event variable remains inactive 
and retains the same value it nad when 
the REWRITE was encQunt,ered. If t.he 
on-unit does not correct the condi
tion, then, upon normal retellrn fron; 
the on-unit, t~he ERROR condition is 
raised; if t.'l€ condition is ccrrected 
in the on-unit, that is, if the file 
is opened successful ,then, upon 



Page of GC28-201a5-1, Issued September 30, 1911 by TNL GN28-3185 

normal return frolt, the on-unit, the 
event variable is SEt to 'O's, it is 
made active, and execution of the 
REWRITE statement continues. 

The SIGNAL Statement 

Function: 

The SIGNAL statement simulates the 
occurence of an interruption. It may be 
used to test the current action specifica
tion for the associated condition. 

General format: 

SIGNAL condition: 

Syntax rule: 

The ·condition- is anyone of those 
described in Part II, Section a, 
·ON-Conditions. • 

General rules: 

1. When a SIGNAL statement is executed, 
it is as if the specified condition 
has actually occurred. sequ~ntial 
execution is interrupted and control 
is transferred to the current on-unit 
for the specified condition. After 
the on-unit has been executed, control 
normally returns to the statement 
immediately following the SI~NAL 
statement. 

2. The on-condition CONDITION can cause 
an interruption only as a result of 
its specification in a SIGNAL 
statement. 

3. If the s~ecified condition is dis
abled, no interruption occurs, and the • 
SIGNAL statement becomes equivalent to 
a null statement. 

4. If there is no current on-unit for the 
specified condition, then the standard 
system action for the condition is 
performed. 

The STOP Statement 

Function: 

The STOP statement causes immediate ter-I mination of the program: control is 
returned to the command system, and the 

. user is prompted with an underscore. 

General format: 

STOP; 

General rule: 

Prior to any termination activity the 
FINISH condition is raised in the ~rograrr 
in which thp STOP is executerl. If there is 
a FINISH on-unit, that on-unit is executed 
first, and the program is terminated on 
normal return from the on-unit. 

The UNLOCK Statement 

Function: 

The UNLOCK statement is ignored in TSS/ 
360, since all records are automatically 
locked when a file is opened for direct 
access. 

'the WAIT statement 

Function: 

The execution of a WAIT statement within 
an activation of a block gives the WAIT 
statement control for that activation of 
that block until certain specified events 
have comrleted. 

General format: 

WAIT (event-name [,event-name1 ••• ) 
[(element-expression)1; 

General rules: 

1. control for a given block activation 
re~ains within this statement until, 
at possibly separate times during the 
execution of the statement, the 
condition 

COMPLETION(event-name) = 'liE 

has been satisfied. for some or all of 
the event names in the list. 

2. If the optional expression does not 
appear, all thE? event names in. the 
list !rust satisfy the above condition 
before control returns to the next 

'staterr.ent in this task following the 
WAIT. 

3. If the optional expression appears, 
the expression is evaluated when the 
WAIT statement is executed and con
verted to an integer. This integer 
specifies the number of events in the 
list that must satisfy the above con
dition before control for the block 
passes to the statement following the 
WAIT. Of course, if an on-unit 
entered due to the WAIT is terminated 
abnormally, control might not pass to 
the statement following the WAIT. 

If the value of the expression is 
zero or negative. the WAIT statement 
is treated as a null statement. If 
the value of the expression is greater 

Section 10: Statements 307 



Page of GC28-2045-1. Issu'2d Ser-tember 30, 1971 by TNL GN28-·)185 

than the number, n. of event names in 
the list., the value is taken to be n. 
If the statement refers to an array
event name, then each of the array 
elements contributes to t.he count. 

4. If the event variable named in the 
list is associated with an I/O opera
tion initiated in the same task as the 
WAIT, t.he condition in Rule 1 will be 
satisfied when the I/O operation is 
completed. The execution of the WAIT 
is a necessary part of the completion 
of an I/O operation. If prior to, or 
during, the WAIT all transmission 
associated with the I/O operation is 
terminatea, then the WAIT performs the 
following action: If the transmission 
has finished without requiring any I/O 
conditions to be raised, the event 
variable is set complete (that is, 
COMPLE~rION(event name) '" 'liB). If 
i:he transmission has been terminated 
;}ut has required conditions to te 
raised, the event variable is set 
abnonral (t~hat. is. STATUS (event name) 

= 1) and all the required ON condi
tions are raised. On return from the 
last on-unit, the event variable is 
set complev? 

5. The order in which eN conditions for 
different I/O events are raised is not 
dependent on the order of arpearance 
of the event names in the list. If an 
ON condition for one event is raised, 
then all other conditions for that 
event are raised before the WAIT is 
terminated or before any other I/O 
conditions are raised unless an 
abnormal retuln is rr,ade from one of 
the on-units thus entered. The rais
ing of ON conditions for one event 
implies nothing about the comr:letion 
or termination of transmission of 
other events in the list. 

6. If an abnormal return is rrade from any 
on-unit entered frov a WAIT. the asso
ciated event variable is set complete. 
the execution of the WAIT is ter
minated, and control passes to the 
point specified by the abnormal 
return. 

7. If a WAIT statement is executed and 
the events required to satisfy the 
WAIT contain a mixture of I/O and non
I/O events, all non-I/O events wi:l be 
set complete before any of the I/U 
events. 

8. If some of the event names in t.r.e WAIT 
list are associated with I/C 0~2ra
tions and have not teen set complete 
before the WAIT is terminated (p.ither 
because enough events have teen com
pleted or due to an abnormal return), 

308 

then these incomplete events will not 
be set complete until the execution of 
another WAIT referring to these events 
in this sawe Frocedure. 

9,. The CALL statement will prevent execu
tion of the pro<Jram. The EVENT option 
mllst not be associated with a call 
statement under TSS/360. 

Exarrple: 

PI: PROCEDURE; 

CALL P2 EVENTCEP2}; 

WAIT{EP2); 

END; 

The WRITE Statement 

Function: 

The WRITE statement is a RECORD trans
nission statement that transfers a record 
from a variatle in internal storage to an 
OUTPUT or UPDA'IE file. 

General format: 

WRITE FILE (file-name) FROM (variable) 
[KEYFROM(element-expression) ) 
iFVENT (event-variable) J; 

Syntax rules: 

. 1 ~ The FILE and FROfI; specifications and 
thE KEYFRCM and EVENT options may 
appear in any order. 

2. The w£il0 name- specifies the file in 
which tbe record is to be written. 
This cUe must be a RECORD file that 
h~~ either the ~ITPUT attribute or the' 
DiRECT and UPDATE attributes. 

3. The ·variable- in the FROM specifica
tion must be an unsubscripted level 1 
variable <that is, a variable not con
tained in an array or structure>. It 
cannot have the DEFINED at.tribute and 
it cannot be a paramet.f.>r. It contains 
the record to be written. 

General rules: 

1. If the file is not open, it is opened 
imr:licitly with the attributes RECORD 
and OUTPll'f (uIlless UPDATE has been 
declared). 



2. If the KEYFROM option is specified, 
the "element eXFression" is converted 
to a character string. This character 
string is the source key that speci
fies the relative location .in the 
dataset where the record is written. 
For INDEXED data sets, KEYFROM also 
specifies a recorded key whose length 
is determined by the KEYLEN suboperand 

3. The EVLNT option allows processing to 
continue while a record is being writ
ten. This option cannot te specified 
for a ~EQUENTIAI BUFFERED file. 

When control reaches a WRITE statement 
containing tlli;:; oFtion, the "event 
variable" is made active (that is, it 
cannot be associated with another 
event) and is given the completion 
value 'O'B, provided that the UNDE
FINEDFILE condition is not raised by 
an implicit file opening (see "Note" 
below). The event variatle remains 
active and retainB its 'O'B completion 
value until control reaches a WAIT 
statement specifying that event vari
aele. At this time, either of the 
following can occur: 

a. If the WRITE statement has been 
executed successfully and none of 
the conditions TRANSMIT, KEY, or 
RECORD has been raised as a result 
of the WRITE, the event variable 
is set complete (given the comple
tion value 'l'B), and the event 
variable is made inactive, that 
is, it can be associated with 
another event. 

b. If the WRITE statement has 
resulted in the raising of TRANS
MIT, KEY, or RECORD, tne interrup
tion for each of these conditions 
does not occur until the WAIT is 
encountered. At such time, the 
corresponding on-units (if any) 
are entered in the order in which 
the conditions were raised. After 
a return from the final on-unit, 
or if one of the on-units is ter
roinated by a GO TO statement, the 
event variable is given the com
rletion value ('l'B) and is made 
inactive. 

4. If the variable in the FROM or INTO 
option is a structure, it cannot con
tain VARYING strings. However it is 
possible to have a VARYING string ele
ment variable in these options. This 
is an implementation restriction. 

Note: If the WRITE statement causes 
an iroplicit file opening that results 
in the raising of UNDEFINEDFILE, the 
on-unit associated with this condition 

is entered immediately and the event 
variable remains unchanged; that is, 
the event variable remains inactive 
and retains the same value it had when 
the WRITE was encountered. If the 
on-unit does not correct the condi
tion, then, upon normal return from 
the on-unit, the ERROR condition is 
raised; if the condition is corrected 
in the on-unit, that is, if the file 
is opened successfully, then uFon 
norroal return from the on-unit, the 
event variable is set to 'O'B, it is 
made active, and execution of the 
WRITE stateroent continues. 

PREPROCESSOR STATEMENTS 

All of the .statements that can be 
executed at the preprocessor stage are pre
sented alphabetically in this section. 

The %ACTIVATE Statement 

Function: 

The appearance of an identifier in a 
%ACTIVATE statement makes it active and 
eligible for replacement; that is, any sub
sequent encounter of that identifier in a 
nonpreprocessor statement, while the iden
tifier is active, will initiate reFlacement 
activity. 

General format: 

%[label:l ••. ACTIVATE identifier 
[,identifier] •.• ; 

Syntax rules: 

1. Each identifier must be either a Fre
processor variable or a preprocessnr 
procedure name. 

2. A %ACTIVATE statement cannot arFear 
within a preprocessor procedure. 

General rules: 

1. An identifier cannot be activated ini
tially by a %ACTIVATE staterrenti the 
appearance of that identifier in a 
%DECLARE statement serves that pur
pose. An identifier can ee activated 
by a %ACTIVATE stateroent only after it 
has been deactivated by a %DEACTIVATE 
statement. 

2. When an identifier is active (and has 
been given a value if it is a pre-
processor variable) any encounter of 
that identifier within a nonpreproces
sor statement will initiate replace
ment activity in all cases except when 
the identifier appears within a com
ment or within apostrophes. 

Section 10: Statements 309 



ExaJllple: 

If the source program contains the fol
lowing sequence of statements: 

% DECLARE I FIXED, T CHARACTER; 

% DEACl'IVATE I; 

% 1 15 ; 

% T 'ACD'; 

S 1*'1'* 3; 

% I -- 1+5; 

% ACTIVATE I; 

% DEACTIVATE T; 

R I*T*2; 

then the preprocessed text generated by the 
above would be as follows (replacement 
blanks are not shown): 

s 

R 20*T*2; 

The % Assignment Statement 

Function: 

The % assignment statement is used to 
evaluate preprocessor expressions and t.o 
assign the result to a preprocessor 
variable. 

General format: 

%[label:) ••• preprocessor-variable = 
preprocessor-expression; 

General rule: 

When the value assigned to a preproces
sor variable is a Character string, this 
character string should not contain a pre
processor statement, nor should it contain 
unmatched com~ent or string delimiters. 

The %DEACTIVATE Statement 

Function: 

The appearance of an identifier in a 
'lDEAcriVATE statement makes it inactive and 
ineligible for replacement; that is, any 
subsequent encounter of that identifier in 
a nonpreprocessor statement will nct initi
ate any replacement activity (unless, of 
course, the identifier has been reactivated 
in the interim,. 

General format: 

%[label:] ••• DEACTIVATE identifier 
{,identifier) .•• ; 

Syntax ru les: 

1. Each "identifier" must be either a 
preproce~sor variable, the SUESTR 
built-in function, or a preprocessor 
procedure name. 

2. A %DEACTIVATE statement cannot appear 
within a preprocessor procedure. 

General rule: 

The dE:activation of an identifier does 
not strir: it of its value, nor does it pre
vent it from receivir~ new values in subse
quent preprocessor statements. Deactiva
tion simply prevents any replacement for a 
particular identifier from taking place. 

The %DECLARE Statement 

Function: 

The %DECLARE statement establishes an 
identifier as a preprocessor variatle or a 
preprocessor procedure name and also serves 
to activate that identifier. An identifier 
Rust appear in a %DECLARE statement before 
it can be used as a variable or a procedure 
name in any other preprocessor statement. 

General format: 

The general fOI·mat is shown in Figure 
52. 

r---------------------------------------------------------------------------------------1 
1%[label:) ••• DECLARE identifier {FIXEDICHARACTERI~ntry-declaration} I 
I I 
I [, identifier {FIXED ICHARAC'IER I entry-declaration}] ••• ; I 
I I 
Iwhere the format of -entry declaration" is: I 
I I 
I hNTRY [ ([CHARACTER I FIXED] I 
I (, [CHARACTERIFIXED)] ••. ») t 
I RETURNS (CHARACTER I FIXED) I L _____________________________________________________ -----------------_________________ J 

Figure 52. General Format of the %DECLARE Statement 

310 



Page of GC28-20'5~1, Issued Septp.roter 10, 1911 by TNL GN28-3185 

Syntax rules: 

1. CHARACTER or FIXED must be specified 
if the -identifierW is a preprocessor 
variable; an entry declaration must be 
specified if the -identifier- is a 
preprocpssor procedure narre. 

2. Only the attributes sho~n in the above 
fo~at can be specified in a JDECLARE 
stateroent. 

3. Factoring of attributes is restricted 
to no roore than three. 

4. Any label attached to a 'DECLARE 
staterr.ent is ignored ty the scan. 

General rules: 

1. No length can be specified ~ith the 
CHARACTER attritute. If CHARACTER is 
specified, it is assumed that the 
associated identifier represents a 
varying-length character string that 
has no maximum length. 

2. A preprocessor declaration is not 
known until it has been encountered by 
the scan. If a reference to a prepro
cessor variable or procedure is 
encountered in a freprocessor state
ment before the declaration for that 
variable or procedure has been 
scanned, then the reference is in 

3. 

e rI'or. 

The scope of all preprocessor 
variables, procedure names, and labels 
is the entire source rrograrr scanned 
by the preprocessor, not including any 
preprocessor procedures that reneclare 
such identifiers. The scope of a 
declaration in a rre~rocessor proce
dure is limited to that procedure. 

4. An entry declaration ~ust be specified 
for each Freprocessor procedure in the 
source program. The ENTRY attribute 
specifies the number (andattritutes, 
if desired) of the ~ara~eters of the 
procedure; the RETURNS attritute spe
cifies the attribute of the value 
returned by that Frocedure. 

The ENTRY attribute in thE entry 
declaration must account for every pa
rameter specified in the IPROCEDURE 
statement of the preprocessor proce
dure. If the procedure has no parame~ 
ters, ENTRY must be specified without 
the parenthesized list following; if 
the procedure has one parameter, ENTRY 
follo~ed by eropty closed farentheses -
- ENTRY () -- will suffice; if the 
procedure has more than one pararoeter, 
the place of each additional parameter 
must be kept by a comrra. Thus, ENTRY 

("FIXED) specifies three parameters, 
the third of which has the attribute 
FIXED; the preprocessor roakes no 
assum{Jt_ions about the attributes of 
the first two. 

The RETURNS attribute specifies the 
attribute of the value to be returned 
by the preprocessor procedure to the 
point of invocation. If, in fact, the 
attribute of the value does not agree 
with the attribute specified by 
RETURNS, no conversion is perforroed 
and errors ma~ result. 

See ·preprocessor Procedures· in Part 
I, Section 16, "compile-Tiroe Facili
ties,· for a discussion of the above 
attributes, as well as a discussion of 
the association of arguroents and para
meters at the time of invocation. 

5. After a %rECLARE statement has been 
executed, it is replaced by a null 
statement so that any subsequent scan
ning through the stateroent has no 
effect. 

The %DO Statement 

Function: 

The leO statement is used in conjunction 
with a lEND statement to delimit a prepro
cessor DO-grouF_ It cannot be used in any 
other way. 

General format: 

m3 1f] ] 
ro2l t 

m2 (BY 

m3 [TO 

,Syntax rule: 

The "i" represents a preprocessor vari
able, and "ml," "m2," and "ro3" are prepro
cessor expressions. 

General rule: 

The expansion of a preprocessor DO-group 
is the same as the expansion for a corre
sponding nonpreprocessor DO-group and "i," 
"ro1.· "n,2," and a m3" have the same roeaning 
that the corresponding expressions in a 
nonpreprocessor DO-group have. 

See ·Preprocessor DO-Groups· in Part I. 
Section 16, ·Compile-Tiroe Facilities,· for 
a discussion and an example of its use. 

The ~END Statement 

Function: 

The 'END statement is used in conjunc
tion with ~DO or 'PROCEDURE statements to 

Section 10: Statements 311 



Page of GC2B-20115-1, Issued SeFtembf:r 30, 1971 by TNL GN28-3185 

delimit preprocessortO-grouFs or prepro
cessor procedures. 

% [label: 1 • • • EN!.: (label J ; 

Syntax rule: 

The label follo101ingEND must te a label 
of a "PROCEDURr. or '00 statement. Multiple 
closure is permitted. 

Function: 

The "GO TO statement causes the prepro
cessor to continue its scan at the speci
fied label. 

GEnfc.cal format: 

'I [label:]. •• [GO TOIGOTO} label; 

General rules: 

1. The label followin'J tbL key ... ord GO TO 
determines the point to which the scan 
will be transferred. It ~ust be a 
label of a r;reproces.sor statement, 
althougb it cannot be the label of a 
rreprocessor rrocedure. 

2. A prer:rocessor GO 1'0 statement appear
ing within a preprocessor procedure 
cannot transfer control to a point 
outside of that procedure. In other 
words, the label following GO TO must 
be contained ... ithin the Frocedure. 

3. See "The ~INCLUDE Statement- for a 
restriction regarding the use of ~GO 
TO with included text. 

The ~IF Statement 

Function: 

The ''IF statement can control the flow 
of the scan according to the value of a 
preprocessor expression. 

General format: 

~{label:) ••• IF preprocessor-expression 

ITHEN preprocessor-clause-1 

{IELSE preprocessor-clause-21 

Syntax rule: 

A preJ;rocessor clause is any &ingle pre
processor statement other than %DECLARE, 
IPROCEDURE. lEND. or %00 (percent symbol 
included) or a preprocessor DO-group (per
cent symbols included). Otherwise, the 

312 

syntax is the ~,dme as that for non
p:eprocessor IF statements. 

General rules: 

1. The preprocessor expression is eva
luated and converted to a bit string 
(if the ccnversion cannot be made, it 
is an error). If any bit in the str
ing has the value 1. clause-l is 
executed and clause-2, if present, is 
ignored; if all hits are 0, clause-l 
is ignored and clause-2, if fresent. 
is executed. In either case, the scan 
reSUmes imlIiediately following the IF 
statement, unless, of course, a IGO TO 
in one of the clauses causes the scan 
to reElume elsewhere. 

2. %IF statements can be nested according 
to the rules for nesting nonpreproces
sor IF statements. 

The 'INCLUDE Statement 

Function: 

The IINCLUDE statement is used to 
include (incorr-orate) strings of external 
text into the source program being scanned. 
This included text can contribute to the 
preprocessed text: being formed. 

General format: 

The IINCLUOE statement is defined as 
follows for the TSS/360 PL/l compiler: 

~[ldt;el:] •.. INCLUDE 

,I ddnarre-l (memb€r--name-" 1) ~ 

~ rr·ell'ber-name--' 1 t 

ll,\ .ddnarne-"2 <member-narre-2)(.1 

f , rr,ernte r'- !lam€'- 2 ,_, 

Syntax rules: 

...... " 

1. Each "ddname 8 and '"ltlerr,ber name'" pair 
identifies the external text to be 
incorporated into the source program. 
This external T_ext must be a member of 
a partitioned data set. 

2. A -ddname- specifies the ddname occur
:ring in the name field of the appro
priate DDEF cot!'Jnand. It.s associated 
-merrber name- specifies the name of 
the data set member to be inco
rr-orated. If -ddnarnew is omitted. 
SYSULIB is assumed. and no DDEF com
mand is required. 

3. 111 ~INCLUDE st:atauent cannot be used in 
3 preprocessor procedure. 



General rules: 

1. Included text can contain nonprepro
cessor and/or preprocessor statements. 

2. The included text is scanned, in 
sequence, in the sall,e manner as the 
source programi that is, preprocessor 
statements are executed and replace
ments are made where required. 

3. %INCLUDE statements can be nested. In 
other words, included text also can 
contain ~INCLUDE statements. A %GO TO 
statement in included text can transf
er control to a point in the source 
program or in any included text at an 
outer level of nesting, but the 
reverse is not permitted. An analo
gous situation exists for nested DO
groups that specify iterative execu
tion: control can be transferred from 
an inner group to an outer, containing 
group, but not from an outer group 
into an inner, contained group •. 

4. Preprocessor statements in included 
text must be complete. It is not per
missible, for example, to have half of 
a %IF statement in included text and 
half in the other part of the source 
program. 

Example: 

If the source program contained the fol
lowing sequence of statements: 

%DECLARE (FI LENAME1, FI I.ENAME2) 
CHARACTERi 

" FILENAME1 = • ~jASTER' ; 
% FILENAME2 'NEWFILE'i 

% INCLUDE DCLS; 

and if the SYSULIB member name DCLS 
contained: 

DECLARE (FILENAME1, FILENAME2) 
FILE RECORD INPUT 
DIRECT KEYED; 

then the following would be inserted into 
the preprocessed text: 

DECLARE (MASTER, NEWFILE) 
FILE RECORD INPUT 
DIRECT KEYED; 

Note that this is a way in which a 
central library of file declarations can be 
used, with each user supplying his own 
names for the files being declared. 

The % Null Statement 

Function: 

The % null statement can be used to pro
vide transfer targets for %GO TO state
rrents. It is also useful for balancing 
ELSE clauses in nested %IF statements. 

General format: 

" £label:] ••• ; 

'lhe "PROCEDURE Sta tement 

Function: 

The "PROCEDURE statement is used in con
junction with a %END statement to delimit a 
preprocessor procedure. Such a preproces
sor Frocedure is an internal function pro
cedure that can be executed only at the 
~reprocessor stage. 

Genera 1 format: 

% label: [label: ) • • • PROCEDU RE 
[(identifier [, identifier) ••. ») 
'RETURNSCCHARACTERIFIXED)'; 

Syntax rules: 

1. Each "identifier" is a parameter of 
the function procedure. 

2. One of the RETURNS attributes CHARACT
ER or FIXED must be specified to ind
icate the type of value returned ty 
the function procedure. There can be 
no default. 

General rules: 

1. The only statements and groups that 
can be used within a preprocesscr pro
cedure are: 

a. the preprocessor assignment 
statement 

b. the preprocessor DECLARE statement 

c. the preprocessor DO-group 

• d. the preprocessor GO TO statement 

e. the preprocessor IF statenent 

f. the preprocessor null staten,ent 

g. the preprocessor RETURN staterrent 

All of these statements and the 00-
group must adhere to the syntax and 
general rules given for then in this 
section, with one exception; all per
cent symbols must be omitted. 

Section 10: Statements 313 



2. A GO TO statement a~pearing in a pre
processor procedure cannot transfer 
control to a ~oint outside of that 
procedure. 

3. As implied by general rule 1, prepro
cessor procedures cannot be nested. 

4. A preprocessor procedure can be 
invoked by a function reference in a 
preprocessor statement, or, if the 
function procedure naIl'e is active, by 
the encounter of that name in a non
preprocessor statement. 

5. For the TSS/36C compiler, there may be 
no more th,~n 2'.4 compile-time proce
dures per comp~lation. Further, each 
procedure is limited to a maximum of 
15 ~aramet€rs. 

The Preprocessor RETURN Statement 

Function: 

The preprocessor RE'IURN statement can be 
used only in a preprocessor procedure and, 

314 

therefore, can have no leading %. It 
returns a value as well as control back to 
the point from which the preprocessor Frc
cedure was invoked. 

General format: 

(latel:) ••• RETURN 
(preprocessor-expression); 

General rule: 

The value of the preprocessor expression 
is ccnverted to the attribute specified in 
the %PROCEDURE statement before it is 
passed back to the point of invocation. If 
the point of invocation is in a nonprepro
cessor statement, replacement activity can 
be performed on the returned value after 
that value has replaced the procedure 
reference. 

I Note that the rules for preprocessor 
expressions do not permit the value 
retur~ed by a preprocessor procedure to 
contaln preprocessor statements. 



This section descrites structure mapping 
and alignment of records in buffers as per
formed by the TSS/360 PL/I compiler. The 
information is included in this manual 
because, under certain circumstances, it 
should be borne in mind while the progran 
is being written. However, the information 
is not essential to stream-oriented trans
mission or unaligned data; it is intended 
tor those using record-oriented transmis
sion (particularly locate mode) with 
aligned structures. 

STRUCTURE. MAPPING 

For any structure (major or minor), the 
length, aliqnment requirement, and position 
relative to a doubleword boundary will 
depend on the lengths, alignment require
ments, and relative positions of its mem
bers. The process of determining these 
requirements for each level in turn and 
finally for the complete structure, is 
known as structure mapping. 

During the structure mapping process, 
the compiler minimizes the amount of unused 
storage (padding) between rr,embers of the 
structure. It completes the entire process 
tefore the structure is allocated, accord
ing (in effect) to the rules discussed in 
the following paragraphs. It is necessary 
for the user to understand these rules for 
such pur~oses as determining the record 
length required for a structure when 
record-oriented input/output is used, and 
for determining the amount of padding or 
rearrangement required to ensure correct 
alignment of a structure tor locate-mode 
input/output (see "Record Alignment," 
below). 

Structure mapping is not a physical pro
cess. Although during this discussion such 
terms as "shifted" and "offset" are used, 
these terms are used purely for ease of 
discussion, and do not imply actual move
ment in storage; when the structure is 
allocated, the relative locations are al
ready known as a result of the mapping 
process. 

RULES 

The mapping for a complete structure 
reduces to successively combining pairs of 
items (elements, or minor structures whose 
individual IDa~pings have already been 
determined). Once a pair ha s been com
bined, it becomes a unit to oe paired with 

SECTION 11: DATA MAPPING 

another unit, and so on until the conFlete 
structure has teen mapped. The rules for 
the process are therefore categorized as: 

Rules for determining the order of 
Fairing 

Rules for mapping one pair 

~hese rules are described below, and are 
followed by an example showing an aFFlica
tion of the rules in detail. 

Note: To follow these rules, it is neces
sary to appreciate the difference tetween 
logical level and level number. The item 
with the greatest level number is not 
necessarily the item with the deepest log
ical level. If the structure declaration 
is written with consistent level numbers or 
suitable indention (as in the detailed 
example given after the rules) f the logical 
levels are immediately apparent. In any 
case, the logical level of each iterr in the 
structure can be determined by applying the 
following rule to each item in turn, start
ing at the beginning of the structure 
declaration: 

The logical level of a given item is 
always one unit deeper than that: of the 
nearest Freceding item that has a less
er level number than the given item. 

For example: 

eCL 1 A, 4 B, 5 C, 5 0, 3 E. 8 F, 1 G; 

1 2 3 3 2 3 3 

The lower line shows the logical level 
for each item in the declaration. 

Rules for Order of Pairing 

The steps in determining the order of 
pairing are as follows: 

1. Find the minor structure with the 
deeFest logical level (which we will 
call logical level nl. 

2. If the number of minor structures at 
logical level n exceeds one, take the 
first one of them as it appears in the 
declaration. 

3. Using the rules for mapping one pair 
(see below), pair the first two ele
ments aFpearing in this minor struc
ture, thus forming a unit. 

Section 11: Data Map~ing 315-



4. Pair this unit 'With the next element 
(if any) appearing in the declaration 
for the minor structure, thus forming 
a larger unit. 

5. Repeat rule 4 until all the elements 
in the minor structure have been com
bined into one unit. This completes 
the mapping for this minor structure: 
its alignment requirement and length, 
including any padding, are now deter
mined and will not change (unless the 
programmer changes the structure 
declaration). Its offset from a doub
leword boundary will also have been 
determined; note that this offset will 
be significant during mapping of any 
containing structure, and it may 
change as a result of such mapping. 

6. Repeat rules 3 through 5 for the next 
minor structure (if any) appearing at 
logical level n in the declaration. 

7. Repeat rule 6 until all minor struc
tures at logical level n have been 
mapped. Each of these minor struc
tures can now be thought of as an ele
ment for structure mapping purposes. 

8. Repeat the process for minor stru~
tures at the next higher logical 
level; that is, make n equal to (n -
1) and repeat rules 2 through 7. 

9. Repeat rule 8 until = 1; then repeat 
rules 3 through 5 for the major 
structure. 

Rules for Mapping One Pair 

As stated earlier, terms apparently im
plying physical storage are used here only 
for ease of discussion; the storage thus 
implied may be thought of as an imaginary 
model consisting of a number of contiguous 
doublewords. Each doubleword has eight 
bytes numbered zero through 7, so that the 
offs?t from a double'Word boundary can be 
given; in addition, the bytes in the model 
lllay be numbered continuously from zero 
onwards, starting at any byte, so that 
lengths and offsets from the start of a 
structure can be given. 

1. Begin the first item of the pair on a 
doubleword boundary; or, if the item 
is a minor structure that has already 
been mapped, offset it from the doub
leword boundary by the amount 
indicated. 

2. Begin the other item of the pair a': 
the first valid position following the 

end of the first item. This position 
will depend on the alignment require
ment of the second item. Alignment 
and length requirements for elerrents 
are given in Figures 53 and 54. (If 
the item is a minor structure, its 
alignment requirement will have been 
determined already.) 

3. Shift the first item towards the 
second item as far as the alignment 
requirement of the first item 'Will 
allow. The amount of shift determines 
the offset of this pair from a double
word boundary. 

After this process has been completed, 
any padding between the two items will have 
been minimized and will remain unchanged 
throughout the rest of the operation. The 
pair can now be considered to be a unit of 
fixed length and alignment requirement; its 
length is the sum of the two lengths plus 
padding, and its alignment requirement is 
the higher of the two alignment require
rrents (if they differ). 

Effect of UNALIGNED Attribute 

The example of structure mapping given 
belo'W shows the rules applied to a struc
ture declared ALIGNED, because mapping of 
aligned structures is more complex owing to 
the number of different alignment require
ments, Briefly, with the TSS/360 PL/I com
piler, the general effect of the UNALIGNED 
attribute is to reduce full'Word and double
word alignment requirements do'Wn to byte, 
and to reduce the alignment requirement for 
bit strings from byte do'Wn to bit. The 
same structure mapping rules apply, but the 
reduced alignment requirements are used. 
This means that unused storage between 
items can only be bit padding within a 
byte, and never a complete byte; bit pad
ding may occur 'When the structure contains 
tit strings. 

POINTER, OFFSET, LABEL, TASK, EVENT, and 
AREA data cannot be unaligned, then 
UNALIGNED is ignored for that element; the 
element is aligned by the compiler and 
error message IEM3181I is put out. For 
example, in a program with the declaration 

tECLARE 1 A UNALIGNED, 
2 B, 
2 C AREA(100); 

C is given the attribute ALIGNED, as the 
inherited attribute UNALIGNED conflicts 
with AREA. 



r-------------------T-----------------T------------------T------------T-----------------, 
I I I Stoxage I I I 
,Variable \Stored Internally I Requirements ,Alignment I Explanation I 
I Type I as I (in Bytes) I Requirements I 1 
~-------------------+-----------------t------------------+------------t-----------------~ 
I BIT (n) lOne l::yte for eachl CEIL(n/S) I I I 
I Igroups of 8 bits I I I I 
I I (or part thereof) I I I I 
~-------------------+-----------------t------------------~ I I 
ICHARACTER (n) lOne byte Fer In! I I 
I I character I I IData may begin I 
~-------------------+-----------------t------------------~ Ion any byte I 
I PICTURE lOne byte for eachlNumber of PICTURE I jO through 7 I 
I IPICTURE characterlcharacters other I I I 
I I (except M,V,K,G) Ithan M,V,K, and Gil I 
r-------------------t-----------------+------------------~ I I 
lDECIMAL FlXEC (p,q) 11/2 l::yte Fer ICEIL({p+1l/2) I I I 
! !digit plus 1/2 I I I I 
I Ibyte for sign I I I I 
~-------------------+-----------------t------------------t------------+-----------------t 
I BINARY FIXED (p,q) I Binary integer I 2 I Halfword I Data may tegin I 
I p < 16 I I I Ion byte 0, 2, 4, , 
I I I I tor 6 I 
r-------------------t-----------------+------------------+------------+-----------------~ 
I BINARY FIXED (Pr q) ! Binc.ry integer I I I I 
I p <! 16 I I I I I 
t-------------------+-----------------~ I I I 
tBINARY FLOAT (p) I I I t I 
I P < 22 I Short floating' I 4 ! Fullword I Data may begin I 
t------------------~ point I j ,on byte 0 ! 
I DECIMAL FLOAT (p) I I lor 4 only I 
I p < 7 I I I I 
t-------------------t----------------4 I I 
\ PC INTER I I I I 
r-------------------t-----------------1 I I 
IOFFSET I I I I 
t-------------------t-----------------t------------------~ I I 
I LABEL I I 8 I I I 
t-------------------t-----------------t------------------~ I I 
I TASK I - I 28 I I I 
~-------------------t-----------------4------------------~ I I 
I EVENT I I 32 I I j 

~-------------------t-----------------t------------------1------------+-----------------1 
\BINARY FLOAT (p) I I I IData may begin ! 
I 21 < P < 54 ILong floating I 8 !Doubleword Ion byte 0 only I 
t-------------------~point I I I I 
IDEClMAL FLOAT (p) I I I I I 
16<p<17 I I I I I 
~-------------------+-----------------+------------------~ I I 
I AREA I 116+size I I I 
t-------------------~-----------------~---------------___ A ____________ ~ _________________ ~ 

I Note: The term CEIL used in some storage calculations has the same rr.eaning as the I 
,---- CliIL built-in function of PL/l r i.e., the snallest integer that exceeds the I 
I value of the expression in parentheses: thus, CEIL(30/S) =4. I L _______________________________________________________________________________________ J 

Figure 53. Summary of Alignment Requirements for ALIGNED Data 

Section 11: Data Mapping 317-



r-------------------T------------------T------------------T------------T-----------------, 
I I (Storage I I I 
I Variable IStored Internallyl Requirements I Alignment I Explanation I 
I Type I as I (in Bytes) I Requirements I I 
r-------------------t-----------------t------------------+------------+-----------------~ 
IBIT (n) lAs many bits as I n bits IBit (Data may begin I 
I I are required, I I Ion any bit in I 
I Iregardless of I I lany byte 0 I 
I I byte toundaries I I I through 7 I 
r-------------------+-----------------+------------------+------------+-----------------~ 
I CHARACTER (n) lOne byte fer I n I , I 
I I character I I I , 
r-------------------+-----------------+------------------~ i ! 
I PICTURE lOne byte for eachlNumber of PICTURE I I I 
I I PICTURE characterl characters other ( I i 
I I (except M,V,K,G) lthan M,V,K alld G I I I 
t-------------------+-----------------t------------------~ I I 
IDECIMAL FIXED (p,q)!1/2 byte fer ICEIL{(p+1)/2) i ( I 
I I digit, plus 112 I I I Data may begin I 
I Ibyte for sign I I Ion any byte 0 I 
t-------------------t-----------------t------------------~ ,through 7 I 
IBINARY FIXED (p,q) ,Binary integer 1 2 1 I I 
1 p < 16 I I I I I 
r-------------------t-----------------t------------------~Byte I I 
(BINARY FIXED (p,q) iBinary integer I I 1 1 
! p 2 16 I I I I I 
t-------------------+-----------------~ I I I 
tBINARY FLOAT (p) I I I I I 
I p < 22 I Short I ~ I 1 I 
r-------------------~floating faint I I I I 
I DECIMAL FLOAT (p) I "I 1 I I 
I p < 7 I I I I I 
r-------------------+-----------------t------------------~ I I 
I BINARY FLOAT (p) I I I I I 
I 21 < P < 54 I Long I I I I 
r-------------------~ floating faint I 8 I I I 
I DECIMAL FLOAT (p) I I I I I 
I 6 < P < 17 i I I I I 
t-------------------~-----------------~------------------~------------~-----------------~ 
INote: POINTER, 'OFFSET, LABEL, TASK, EVENT, and AREA data cannot be UNALIGNED. I l _____________________________________________________ ---------------___________________ J 

Figure 54. Summary of Alignment Requirements for UNALIGNED Data 

EXAMPLE OF STRUCTURE MAPPING 

This example shows the application of 
the structure mapping rules for a structure 
declared as follows: 

DECLARE 1 A ALIGNED, 

-31B 

2 B POINTER, 
2 C, 

3 D FLCAT DECIMAL(14), 
3 E, 

4 F LABEL, 
4 G, 

5 H CHARACTER(2), 
5 I FLOAT DECIMAL(13), 

4 J FIXED BINARY(31,O), 
3 K CHARACTER(2), 
3 L FIXED BINARY{20,O), 

2 M, 
3 N, 

4 P FIXED BINARY, 
4 Q CHARACTER(5), 

4 R FLOAT DEClMAL(2), 
3 S, 

4 T FLOAT DECIMAL (15), 
4 U BIT (3) , 
4 V CHAR(1), 

3 W POINTER 
2 X PICTURE '$9V99'; 

The min0r structure at the deepest log
ical level is G, so that this is mapped 
first. Then E is mapped, followed by N, S, 
C, and M, in that order. Finally, the 
major structure A is mapped. For each 
structure, a table is given showing the 
steps in the process, accompanied by a dia
gram giving a visual interpretation of the 
process. At the end of the example, the 
structure map for A is set out in the form 
of a table sho~ing the offset of each memb
er frorr the start of A. 



r-------T----------~------T-----------T---------T--------------, 

1 1 I 1 Off s et from 1 1 I 
IName ofl Alignment ILengthlDoubleword ILength cfloffset from G 1 
1 Item 1 Requirement 1 t-----T-----·~ padding 1 1 
1 I I I Begin 1 End 1 I I 
r-------+-----------+------+-----+-----+---------+--------------~ 

step 1 I H I Byte I 2 1 0 1 1 1 I I 
1 I I Double I 8 I 0 1 7 1 I I 
I 1 I I I I I I 

Step 2 I *H I [;ouble I 2 I 6 I 7 I 1 0 I 
I I 1 Double I 8 I 0 I 7 I 0 I 2 1 
t-------+-----------+------+-----+-----+---------+--------------i 
I G I Double I 10 1 6 1 7 I I I l _______ ~ ___________ L ______ ~ _____ ~ _____ ~ _________ L ______________ J 

*First item shifted right 

H I 

~ 
-r-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-~ 

Step 1 101112131415161710111213141516171011121314151617101112131415161710 
-+-~._~-~-L-~-~-~-t-~-~-L-t-~-~-~-+-.L-~-.L-t-L-J.-J.-t--~-J.-.L-t-~-~-~-J-
I 1 I I I 

H I 

,.-----------~-T~-T-T-T-T-T-T-T~-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-'-

Step 2 10111213141516171011/213141516171011121314151617101112131415161710 
-t-L_~-~-t-~-J._~-t-~-~-~-t-~-£-~-t-~-~-.L-t_~-~-L_t-~-J.-~-t_~_~_L-~ 

------.,.... 
G 

Figure 55. Mapping of Minor Structure G 

Section 11: Data Ma~~ing 319-



r-------T-----------r------T-----------T---------T--------------, 
1 1 I IOffset from I 1 I 
IName ofl Alignment ILengthlDoubleword ILength ofloffset from G 1 
I Item 1 Requirement 1 ~-----T-----~ padding I I 
I II! Begin 1 End I I I 
t-------t-----------t------t-----t-----t---------+--------------~ 

step 1 I F I Word I 8 I 0 1 7 1 1 1 
I G I Double I 10 I 6 I 7 I I 1 
I I 1 I I I I 1 

Step 2 1 F 1 Word I 8 I 4 I 3 I I 0 I 
I G 1 Double 1 10 1 6 I 7 1 2 1 10 1 
1 I I 1 I 1 I I 

Step 3 I F 1 I I I I I I 
1 through I Double 1 20 I 4 I 7 I 1 I 
1 Gil I I 1 I I 
I J 1 Word 1 4 1 0 I 3 1 0 1 20 1 
t-------+-----------t------+-----t-----t---------t--------------f 
1 E 1 Double I 24 I 4 1 3 1 1 1 L _______ ~ ___________ i ______ ~~ ____ ~ _____ ~ _________ i ______________ J 

*First item shifted right 

F G 

~ ~------r-T-T-T-T-T-T-T-T-T-r-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-r-T-'-
step 1 101112131415161710111213141516171011121314151617101112131415161710 

-f-i-i-i-t-i-i-i-+-i-i-i-t-i-i-i-t-i-i-i-t-i-i-i-f-i-i-i-t-i-i-i-J-

1 I I 1 1 

F G 

F G J 

Step 

Figure 56. Mapping of Minor Structure E 

.320 



r-------T-----------T------T-----------T---------T--------------, 
I' ,(Offset from I I I 
IName ofl Alignment ILengthlDoubleword ILength ofloffset from G , 
I Itero ,Requirement, ~-----T-----~ Padding I , 
I I "Beginl End I , , 
r-------+-----------t------t-----t-----+---------+--------------~ 

Step 1 I P I rlalfword I 2 I 0 , 1 I ,0 , 
I Q I Byte ,5 I 2 , 6 I I 2 , 
I' I I (I I ( 

Step 2 I P I I I I I I , 
I through I Halfword I 7 , 0 I 6 I ( , 
I Q' 'I' I ( , 
I R I Word I 4 I 0 I 3 I 1 I 8 , 
t-------+-----------+------t-----t-----f---------t--------------~ 
IN' Word I 12 , 0 I 3 I , ( l _______ ~ ___________ ~ ______ ~ _____ ~ _____ ~ _________ ~ ______________ J 

P Q 

P Q R 

Step 2-r~i~T2T;T~T5T~~1f~T1T;T;T~T5T~T7T~I~12T;T;T;T~T7T~TiT;T;T~T;T~T71o 
-t-L-~-~-t-~-~-y~-~-~-~-t-~-~-~-t-~-~-~-t-~-~-~-t-~-~-L-t-~-~-~-~--

------~---------N 

Figure 57. MafPing of Minor Strucrure N 

Section 11: Data MaFFing 321-



r-------T-----------r------T-----------T---------T--------------, 
I 1 I IOffset froml I I 
INawe ofl Alignment ILengthlDoubleword ILength oflOffset from G 1 
I Item I Requirement 1 ~-----T-----~ padding I I 
I I 1 IBeginl End I I 1 
~-------+-----------+------t-----+-----+---------+--------------i 

Step 1 I T I Double I 8 1 0 I 1 I 1 0 I 
I U I Byte 1 1 I ° I 0 I 0 1 1 
I I I 1 I I 1 I 

Step 2 1 T I 'I I 1 I 1 
1 through I I:ouble I 9 I I) 1 0 1 I I 
1 U I i I I I I 1 
I V I Byte I 1 I 1 I 1 1 0 1 9 1 
~-------t-----------+------t-----+-----+---------+--------------~ 
1 S 1 Double 1 10 1 0 I 1 I I I l _______ ~ ___________ ~ ______ ~ _____ ~ _____ ~ _________ ~ ______________ J 

T 

~u 
-r-T-T-T-T-T-T-T-r-T-r-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-'--

Step 1 10111213141516111011121314151611101112131415/617101112131415161710 
-i-~-~-~-t-~-~-~-t-~-~-~-t_~-L-~-t-~-~-~-t-~-~-~-t-l-~-~-t-~-~-~-~-

T 
_______ UV 

-r-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-'--
Step 2 101112/31415161710111213141516171011121314151617101112131415161710 

-t-~_L-L-t-L-L-~_t-L-L_L-t-~_L-L~t_L-~-~-t-~-~-~-t-~_L-L_t_~_~-~-~-

, ~ I 
S 

Figure 58. Mapping of Minor Structure S 



r-------T-----------~------~-----------T---------T--------------, 
I I I IOffset from I I I 
IName ofl Alignment ILengthlDoubleword ILength cf!Offset from G I 
I Item ! Requirement I ~-----T-----~ Padding I I 
I I I IBeginl End I I I 
t-------t-----------t------+-----t-----+---------t--------------~ 

Step 1 I D I Double I 8 0 I 7 I I 0 I 
I E I Double I 24 4 I 3 I 4 I 12 I 
I I , i I I I 

Step 2 I D I I I I I I 
I through I Double ! 36 0 I 3 I I I 
I E I I I I I I 
I K I Byte I 2 4 I 5 I 0 I 36 I 
I I I I I I I 

Step 3 I D I I I I I I 
I through I Double I 38 0 I 5 I I I 
I K I I I I I I 
I L I Word I 4 0 I 3 I 2 I 40 I 
r-------t-----------t------t-----+-----f---------+--------------~ 
I C I Double I 44 I 0 I 3 I I I L _______ ~ ___________ ~ ______ ~ _____ ~ _____ ~ _________ ~ ______________ J 

D E Clength24) 

~ ----------
Step 1 '1~I~T;T;T~T5T~T;~~~~T51fq;T~T~T2T3T~T5T6T7ToTiT2T;T;T;T6T;I~ 

-t-~-~-~-t-~-~-~-~-~-~J-t-~-~-~-t-~-~-~-t-~-~-~-t-~-~-~-~ 

D E Uength24) K 

Step 

D E Uength24) K L 

Step 

~ ~,~----

3-r~1~1213T~T5T6T;~~~T5jlq;T~T1T2T3T~T5T6T;T~Tl1;T;T;T;T61;10 
I-i-i-~-t-~-~-~-f ~~~'t-~-~Jl-t-~-~-~-t-~-i-i-t-i-~-i-t-i-~-~-~ 

c 

Figure 59. Mapping of Minor structure C 

Section 11: Data Mapping 323-



r-------T-----------~------T-----------T---------T--------------, 

I I 1 IOffset froml I I 
INaroe ofl Alignment ILengthlDoubleword ILength ofloffset from G 1 
I Item I Requirement 1 .-----~-----~ padding I 1 
I I 1 IBegin, End, 1 I 
~-------+-----------+------+-----+-----+---------+--------------~ 

Step liN 1 Word ,12 1 0 1 3 I I I 
I S I Double ,10 I 0 1 1 1 I I 
I' I I I I' 1 

Step 2 1 *N I Word I 12 I 4 I 1 I ,0 I 
lSI ~ouble 1 10 1 0 I 1 I 0 I 12 I 
I I I I I I I I 

Step 3 I Nil 1 1 I I I 
I through I Double 1 22 I 4 1 1 1 1 I 
1 S 1 1 I 1 1 I I 
I W 1 Word I 4 I 4 1 7 1 2 I 24 1 
~-------+-----------+------+-----+-----+---------+--------------~ 
1 M I Double I 28 1 4 1 7 1 I I l _______ L ___________ L ______ ~ _____ ~ _____ ~ _________ L ______________ J 

*First item shifted right 

N s 

-----------~------ --------~---------r-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-~ 

Step 1 101112131415161110111213141516171011121314151617101112131415161710 
-t-~-L-~_t_~-~-~-t-L_~-~_t-~-~-~-t-~-~-~-t-~-~-~-t-~-~-~-t-~-L_~-~ 

N s 

~-----~------ -------./"'--------
-r-T-T-T-T-T-T-T-~-T-T-T-~-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-~ 

Step 2 101112131415161710111213141516171011121314151617101112131415161710 
-+-~-~-~-t-~_L-L-+_~-L-L_t-~-~-L-+_L-L-L-t-L-L-L-+-~-L-L_t-L-L-~-L-

I I 1 I I 

N S w -----_./"'-_----- -----~-----
Step 

Figure 60. Mapping of Minor Structure M 

-324 



r-------T-----------T------T-----------T---------T--------------, 
I I I IOffset frowl I I 
IName ofl Alignroent ILengthlDoubleword ILength oflOffset from G I 
I Item I Requirement I t-----T-----~ padding I I 
I I I I Beg i n I End I I I 
t-------+-----------+------+-----+-----+---------+--------------~ 

Step 1 I B I Word I 4 I 0 I 3 I I I 
I C I Double I 44 I 0 I 3 I I I 
I I I I I I I I 

Step 2 I *E I Word I 4 I 4 I 7 I I 0 I 
I C I Double I 44 I 0 I 3 I 0 I 4 I 
I I I I I I I I 

Step 3 I B J I I I I I I 
Ithroughl Double I 48 I 4 I 3 I I I 
I C I I I I I I I 
I M I Double I 28 I 4 I 7 I 0 I 48 I 
I I I I I I I I 

Step 4 I B I I I I I I I 
I through I Double I 76 I 4 I 7 I I I 
I M I I I I I I I 
I X I Byte I 4 I 0 I 3 I 0 I 76 I 
~-------+-----------+------+-----+-----+---------+--------------~ 
I A I Double I 80 I 4 I 3 I I I L _______ ~ ___________ ~ ______ ~ _____ ~ _____ ~ _________ L ______________ J 

*First item shifted right 

B C (lengt~ 44) 

B C 

B C M (length 28) 

B C M X 
, --....--. ~-- ~ -~ 

Step 4 loT1T2i;T;T5T6T;ToT~1f~~i;T5T6T;iol11fn;T;T5T6T7ToT~T2T;_r. ;1;j6171o . 
-f-~-~-~-t-~-~-~-+-~-~Jl-t-~-~-~-+-i-~Jl-t-i-~-i-+-~-~-~-i_~_i_i_L--

I , ____ I ~'I ..-/' I 

A (length 80) 

Figure 61. Mapping of Major Structure A 

Section 11: Data Mapping 325-



r-------------T------T------T------T------, 
I A I I I I From A I 
I B I I I I 0 I 
I C 1 I 1 From C I 4 I 
I D I I I 0 1 4 I 
I padding(4) I I I 8 I 12 I 
I E I I From E I 12 I 16 I 
I F I I 0 I 12 I 16 I 
I padding(2) I I 8 I 20 I 24 I 
I G IFrom GI 10 I 22 1 26 I 
I H I 0 I 10 I 22 I 26 I 
I I I 2 I 12 I 24 I 28 I 
I J I I 20 I 32 I 36 I 
I K I I I 36 I 40 I 
I padding(2) I I I 38 I 42 I 
I L I I I 40 I 44 I 
1M I I IFromMI 48 I 
! N I IFrom N I 0 I 48 , 
I P I I 0 I 0 I 48 I 
J Q I I 2 I 2 I 50 I 
I padding(1) I I 7 I 7 I 55 I 
I R I I 8 I 8 I 56 I 
I S I I From SI 12 I 60 1 
I T I I 0 I 12 I 60 I 
I U I I 8 I 20 I 68 I 
I V I I 9 I 21 I 69 I 
I padding(2) I I I 22 I 70 I 
! W I I I 24 I 72 I 
IX I I I I 76 I l _____________ ~ ______ ~ ______ ~ ______ ~ ______ J 

Figure 62. Offsets in Final Mapping of· 
Structure A 

HECORD ALIGNMENT 

The user must pay attention to record 
alignment within the buffer when using lo
cate mode input/output. The first data 
byte of the first record in a block is gen
erally aligned in a buffer on a doubleword 
coundary (see Figure 66); the next record 
begins at the next available cyte in the 
cuffer. The user must ensure that the 
alignment of this byte matches the align
ment requirements of the based variable 
with which the record is to be associated. 

Most of the alignment problems described 
here occur in ALIGNED based or nonbased 
variables. If these variables were 
UNALIGNED, the preservation of the record 
alignment in the buffer would be consi
derably easier. 

If a VB-format record is to be con
structed with logical records defiLed by 
the structure: 

1 S, 
2 A CHAR(l}, 
2 E FIXED EINARY(31,O}~ 

this structure is mapped as in Figure 63. 

r--------T--T-----------, 
I IA I B I l ________ ~ __ ~ ___________ J 

t t t 
W W W 

w = Word boundary 

Figure 63. Forn,at of Structure S 

If the block was created using a 
sequence of WRITE FROM(S> statements, the 
format of the block would be as in Figure 
64, and it can be seen that the alignment 
in the buffer differs from the alignrrent of 
S. 

There is no problem if the file is then 
read using move mode READ statements, e.g., 
READ INTO(S>, because information is moved 
from the buffer to correctly aligned 
storage. 

If, however, a st.ructure is defined as: 

1 SEAS ED BASED(P) LIKE S; 

and READ SET(P) statements are used, 
reference to SBASED.B will, for the first 
record in the block, be to data aligned at 
a doubleword plus one byte, and will pro~ 
bably result in a specification 
interru[:tion. 

The same ~rotlem would have arisen had 
the file originally been created by using 
the statement: 

LOCATE SBASED SETCP); 

Again, for the first record in the 
block, P would be set to address a dcuble~ 
word and references to SEASED.E would be 
invalid. 

r-----------T-----------T--y-----------T---------··-T--T-----------T----------------------
I BL I RL I A I B I RL I A I B I L-__________ i ___________ ~ __ L ___________ ~ ___________ i __ ~ ___________ ~ _____________________ _ 

c t t t t t 
D W D W D W 

BL 
RL 

Block length 
Record length 

D = Doubleword boundary 
W = Word boundary 

Figure 64. Block Created from Structure S 

-326 



Page of GC28-2045-1. Issued September 15, 1970 by TNL GN28-3171 

r-----------T-----------T--------T--T----------~---------~-------T-~----------T-----
I BL I RL I PAD I AI B I RL I PAD I AI B I l ___________ ~ ___________ L ________ L __ ~ ___________ L __________ ~ ________ L __ ~ ___________ ~ ____ _ 

t t t t t t t t 
D W D W D W D to;' 

BL = Block length 
RL Record length 

D = Doubleword boundary 
W Word boundary 

~gure 65. Block Created by Structure S With Correct Alignment 

In both cases the problem is avoided if 
the structure is padded in such a way that 
B is always correctly aligned: 

1 S, 
2PADCHAR(3), 
2 A CHAR (1) , 
2 B FIXED BINARY; 

The block format would now be as in Figure 
65; B is always on a word boundary. Pad
ding may be required at the beginning and 
end of a structure to preserve alignment. 

The alignment of different types of rec
ord within a buffer is shown in Figure 66. 
For all organizations and record types 
except blocked records in INDEXED data sets 
with format-FB, -v, or -VB records and 
RKP=O, the first data byte in a block is 
always on a doubleword boundary. The posi
tion of any successive records in the buff
er depends on the record format. 

I For unblocked INDEXED with format-F and 
RKP=O, the LOCATE statement will use a hid
den buffer if the data set key length is 
not a multiple of 8. The pointer variable 
will point at this hidden buffer. 

A special problem arises when using lo
cate mode I/O in conjunction with based 
variable containing adjustable extents, 
i.e., containing a REFER option. Consider 
the following structure: 

1 S BASED (P) , 
2 N, 
2 C CHAR (L REFER eN»; 

If it is desired to create blocked format-V 
records of this type, using locate mode 
I/O, record alignment must be such that N 

l is halfword aligned. If L is not a mul
tiple of 2 then, if the alignment of the 
current record is correct, that of the fol-
lowing record will be incorrect. Correct 
alignment can be obtained by the following 
sequence: 

LENGTH = L; 
/. SAVE DESIRED LENGTH L */ 

L = 2.CEILCL/2); 
/. ROUND UP TO MULTIPLE OF 2 */ 

LOCATE S FILE (F); 
N = LENGTH; 

/. SET REFER VARIABLE */ 

This technique can be adapted to other uses 
of the REFER option. 

The preprocessor RETURN statement can be 
used only in a preprocessor procedure and, 
therefore, can have no leading ,. It 
returns a value as well as control back to 
the point from which the preprocessor pro
cedure was invoked. 

General format: 

(label:] ••• RETURN 
(preprocessor-expression) 1 

General rule: 

The value of the preprocessor expression 
is converted to the attribute specified in 
the IPROCEDURE statement before it is 
passed back to the point of invocation. If 
the point of invocation is in a nonprepro
cessor statement, replacement activity can 
be performed on the returned value after 
that value has replaced the procedure 
reference. 

Section 11: Data Mapping 327 



Page of GC28-2045-1, Issued September 15, 1910 by TNL GN28-3171 

CONSECUTIVE 

F 

V or VS 

tJ 

FB 

VB 

VBS 

INDEXED 

F 

FB RKP = 0 

RKP ~ 0 

V RKP = 4 

V RKP > 4 

VB RKP 4 

VB RKP > 4 

Doubleword 
boundary 

I 
~-------, 
I data I 
~----------I 
I 
~---------. 
I data I 
~ _________ J 

I 
~---------, 
I data I 
~----------I , 

EK 
RL 

~---------T--------T---
I data I data I 

= embedded key 
= record length 

~----------~----------~--
t--------~--~--------~--~---
I data IRL I data IRL I 
~-_--------L---~----------~--~-
~---------. 
I data I 
~----------J 
I 
I 
~---------. 
I data I 
~---------J 
t-----T---------~----~--------T---
I key I data I key I data I 
~-----~---------~----~----------~---
t--~-~--~-~--T--~--
I IEKI I IEKI I 
~---~--~---~---~--~---~---
I <--data--> <--data--> 

~-----T---------. I key I data I 
~--__ -~----------J 
~---------. 
I data I 
~--_----J 

t-----T---------T-~-----T---------~---
I key I data IRLI key I data I 
.-----~----------~-~-----~---------~--
t---------~-~----------T---
I data IRLI data I L __________ ~ __ ~ __________ ~ __ _ 

Note: 1. Each VBS record is moved to a hidden buffer 

2. Control bytes and key for the first data item have been omitted where they 
precede the doubleword alignment 

-Figure 66. Alignment of Data in a Buffer in Locate Mode Input/Output, for Different For
mats and Data Set organizations 

328 



This section provides definitions for 
rrost of the terms used in this publication. 

access: the act that encompasses the 
reference to and retrieval of data. 

action specification: in an ON statement, 
the on-unit or the single keyword SYSTEM, 
either of which specifies the action to be 
taken whenever an interruption results from 
raising of the named condition. 

activation: institution of execution of a 
block. A procedure blcck is activated when 
it is invoked at any of its entry points; a 
tegin block is activated when it is encoun
tered in normal sequential flow. 

active: 

1. the state in wnich a block is said to 
be after activation and before 
termination. 

2. the state in which a preprocessor 
variable or preprocessor procedure is 
said to be when its value can replace 
the corresponding identifier in source 
program text. 

3. the state in which an event variable 
is said to be as a result of its 
appearance in the EVENT option of an 
executed RECORD input/output state
ment. An event variable remains 
active. and, hence, cannot be asso
ciated with any other input/output 
operation, until a WAIT statement nam
ing that event variable has been 
executed. 

additive attributes: file attributes for 
which there are no defaults and which, if 
required, must always te stated explicitly. 

address: a specific storage location at 
which a data item can be stored. 

adjustable (bounds and lengths): bounds or 
lengths that may be different for different 
allocations of the associated variable. 
Adjustable bounds and lengths are specified 
as variables, expressions, or asterisks, 
which are evaluated separately a1. each 
allocation. They cannot be used for STATIC 
data. 

allocated variable: a variable with which 
storage has been associated. 

allocation: the association of storage 
with a variable. 

SECTION 12: DEFINITIONS OF TERMS 

alphabetic character: any of the charac
ters A through Z and the alphabetic exten
ders #, $, and •. 

alphameric character: an alphabetic 
character or a digit. 

alternative attributes: attributes that 
may be chosen from groups of two or more 
alternatives. If none is specified, a 
default is assumed. 

area: a block of storage defined by an 
area variable and reserved, on allocation, 
for the allocation of based variables. 

arithmetic conversion: the transformation 
of a value from one arithmetic representa
tion to another arithmetic representation. 

argument: an expression, file name, state
rrent la~el constant or variable, mathemat
ical built-in funcnion name, or entry name 
~assed to an invoked procedUre as Fart of 
the procedure reference. 

arithmetic data: data that has the charac
teristics of base, scale, mode, and Freci
sion. It includes coded arithmetic data 
and numeric character data. 

arithmetic operators: any of the prefix 
operators, + and -, or the infix operators 
+, -, *, /. and **. 

array: a named, ordered collection of data 
elements, all of which have identical 
attributes. An array has dimensions, and 
elements that are identified by subscripts. 
An array can also be an ordered collection 
of identical structures. 

array of structures: an ordered collection 
of structures formed by giving the dimen
siop attribute to the name of a structure. 

assignment: giving a value to a variable. 

asynchronous: the overlap of an in~ut/ 
output.o~eration with the execution of 
sta tements. 

attribute: a descriptive property asso
ciated with a name or expression to 
describe a characteristic of data items, of 
a file, or of an entry point the name may 
represent. 

automatic stora,~: storage that is allo
cated at the accivation of a block and 
released at the termination of that block. 

Section 12: Definition of terms 329 



base: the nurr,ber system in terms of which 
an arithmetic value is represented. In 
PL/I, the base is binary or decimal. 

based storage: storage whose allocation 
and release is controlled by the user, with 
immediate access to all unfreed 
al L)cat ions. 

begin block: a collection of statements 
hea,ied by a BEGI N statement and ended by an 
END statement that delimits the scope of 
names and, in general, is activated by 
normal sequential statement flow. It con
trols the allocation and freeing of auto
matic storage declared in that block. 

tinary: the number system based on the 
value 2. 

tit: a binary digit, either 0 or 1. 

bit string: a string composed of zero or 
more bits. 

tit-string operators: the operators 
1 (r.ot), f. (and), and I (or) • 

block: a begin block or a procedure block. 

bounds: the upper and lower limits of a·n 
array dimension. 

buffer: an intermediate area, used in 
input/output operations, into which a rec
ord is read during input and from which a 
record is written during output. 

built-in function: one of the PL/I-defined 
fUnctions. 

call: the invocation of a sutroutine by 
means of the CALL statement or the CALL 
option of the INITIAL attribute. 

character string: A string composed of 
zero or more characters from the data 
character set. 

coded arithmetic data: arithmetic data 
whose characteristics are given by the 
base, scale, mode, and precision attri
butes. The types for System/360 are packed 
decimal, binary fullwords, and hexadecimal 
floating-point. 

comment: a string of characters, used for 
documentation, which is Freceded by /* and 
terminated by */ and which is treated as a 
blank. 

comparison operators: 
<-,- >- > 

the op~ators ,< < 
,> 

compile time: in general, the t.ime during 
which a source program is translated into 
an object module. In PL/I, it is the time 
during which a source program can be 

330 

altered (preprocessed), if desired, and 
then translated into an object program. 

compiler: a translator that converts a 
source frog ram into an object module. It 
consists of two stages, a preprocessor and 
a processor. 

complex data: arithmetic data consisting 
of a real part and an imaginary part. 

compound statement: a statement that con
tains other statements. IF and ON are the 
only compound statements. 

concatenation: the operation that connects 
two strings in the order indicated, thus 
forming one string whose length is equal to 
the sum of the lengths of the two strings. 
It is specified ty the operator I I. 

condition name: a language keyword that 
represents an exceptional condition that 
rright arise during execution of a program. 

condition prefix: a parenthesized list of 
one or more condition names prefixed to a 
statement by a colon. It determines wheth
er or not the program is to be interrupted 
if one of the specified conditions occurs 
within the scope of the prefix. Condition 
names within the list are separated by 
commas. 

constant: an arithmetic or string data 
iterr that does not have a name; a statement 
label. 

contained in: all of the text of a block 
except any entry names of that block. (A 
label of a BEGIN statement is not contained 
in the begin block defined by that 
sta tement. ) 

contextual decla:lation: the association of 
attributes with an identifier according to 
the context in which the identifier 
appears. 

controlled storage: storage whose alloca
tion and release is controlled by the user, 
with immediate access to the latest alloca
tion only. 

conversion: the transformation of a value 
from one representation to another. 

cross section of an array: every element 
represented by the extent of at least one 
dimension of an array. An asterisk in the 
place of a subscript in an array reference 
indicates the entire extent of that 
dimension. 

data: representation of information or of 
value. 



data character set: all of those charac
ters whose bit configuration is recognized 
by the computer in use. 

data-directed transmission: the type of 
STREAM input and output in which self
identifying data of the type, variable-name 
= value, is transmitted. 

data item: a single unit of data; it is 
synonyn.ous with "element." 

data list: a list of expressions used in a 
STREAM input/output specification that 
represent storage areas to which data items 
are to be assigned during input or from 
which data items are to te ottained on out
put. (On input, the list may contain only 
variables.) 

data set: a collection of data external to 
the program. 

data specification: the portion of a 
stream-oriented data transmission stat;ement 
that specifies the mode of transmission 
(DATA, LIST, or EDIT) and includes the data 
list and, for edit-directed transmission, 
the format list. 

deactivated: toe state in which a prepro
cessor variable is said to be when its 
value cannot replace the corresponding 
identifier in source program text. 

decimal: 
value 10. 

the number system based on the 

declaration: the association of attributes 
with an identifier explicitly, contextual
ly, or implicitly. 

default: the alternative assumed when an 
identifier has not been declared to have 
one of two or more alternative attributes. 

delimiter: any valid special character or 
combination of special characters used to 
separate identifiers and constants, or 
statements from one another. 

dimensionality: the number of bounds spe
cifications associated with an array. 

disabled: the state in which the occur
rence of a particular condition will not 
result in a program interruption. 

DO-group: a sequence of statements headed 
by a DO statement and closed by its corre
sponding END statement. 

dummy argument: a compiler-assigned vari
able for an argument that h?~ no user
aSSigned name or whose attr~butes do not 
agree with those declared with the ENTRY 
attribute for the corresponding parameter. 

edit-directed transmission: that type of 
STREAM transmission for which both a data 
list and a format list are specified. 

el€!!!en_t,: a single data it.err; as opposed to 
a collection of data itens, such as a stru
cture or an array. (Som~times called a 
"scalar item.") 

element variable: a variable that can 
refl·esent only a single value at anyone 
point in time. 

enabled: that state in which the occur
rence of a particular condition will result 
in a program interruption. 

entry ndIre: a label of a PROCEDURE or 
ENTRY statement. 

entry point: a point in a procedure at 
which it may be invoked by reference to the 
entry nane. (See Erimary entrY-Eoint and 
secondary entry point.) 

epilogue: those processes which occur at 
the termination of a block. 

event: an identifiable point in the execu
tion of a program. 

€V(oot rJallie: the identifier used to refer 
to an event variable. 

eVent variable: a variable associated with 
an event; its value shows whether an event 
is complete and the status of the 
corr;pleticn. 

exceFtional condition: an occurrence, 
WJlich can cause a program interruption. of 
an unexpected situation, such as an cver
flow error, or an occurrence of an expected 
Situation, such as an end of file, that 
occurs at an unpredictable time. 

explicit declaration: the assignment of 
attributes to an identifier by means of the 
r::ECLARE statement, the appearance of the 
identifier as a label, or the appearance of 
the identifier in a parameter list. 

eXf-onent (of floating-point constant): a 
(kciroa1 integer constant specifying the 
fower to which the base of t<he floating
pOint nurrber is to be raised. 

expression: the representation of a value; 
examfles are variatles and constants 
appearing alone or in combination with 
operators, and function references. The 
term "expression" refers to an element ex
pression, an array expression, or a struc
ture expression. 

external declaration: an explicit or con
textual declaration of the EXTERNAL attri
bute for an identifier. Such an identifier 

Section 12: Definition of terms 331 



is known in all other hlocks for which such 
a declaration exists. 

external name: an identifier which has the 
EXTERNAL attribute. 

external-E!9cedure: a procedure that is 
not contained in any other procedure. 

field (in the data stream): that portion 
of the data stream whose width, in number 
of characters, is defined by a single data 
or spacing format item. 

field (of a picture specification): a 
character-string picture specification or 
that portion (or all) of a numerit charac
ter picture specification that describes a 
fixed-point number. If IT,ore than one field 
appears in a single specification, they are 
di vided by the F' scaling-factor character 
for fixed-point data, the K or E exponent 
character for floating-paint data, or the M 
field-separator for sterling data. 

file: a symbolic representation, within a 
program, of a data set. 

fil~!al~: a symbolic name used with:ln a 
program to refer to a data set. 

format item: a specification used in edit
direct.ed transmission to describe the 
representation of a data item in the streare 
or to control the format of a printed page. 

format list: a list of format items 
required for an edit-directed data 
specification. 

fUnction: a procedure that is invoked by 
the appearance of one of its entry names in 
a function reference. 

function reference: the afpearance of an 
entry name in an expression, usually in 
conjunction with an argument list. 

generation (of a block): a particular 
activation of a block. 

qeneration (of data): a particular alloca
tion of controlled or automatic storage. 

generic key: a character string that iden
tifies a class of keys: all keys that 
begin with the string are members of that 
class. For example, the recorded keys 
'ABCD', 'ABCE', and 'ABDF' are all members 
of the classes identified ty the generjc 
keys 'A' and 'AB', and the first two al:e 
also members of the class 'ABC'; and the 
three recorded keys can be considered to be 
unique members of the classes 'ABCD', 
'ABCE', and 'ABDF', respectively. 

332 

~eric name: the name of a family of 
entry names. A reference to the name is 
replaced by the entry name whose entry 
attribute matches the attributes of the 
argurrent list. 

a DO-gr·oup. 

identifier: d string of alphameric and 
break characters, not contained in a corr
rrent or constant, preceded and followed by 
a delimiter and whose initial character is 
alFhabetic. 

imaginary number: a number whose factors 
include the square root of -1. 

implicit declaration: association of 
attributes with an identifier used as a 
variable without having been explicitly or 
contextually declared; default attributes 
apply, depending upon the initial letter of 
the identifier. 

inactive block: a procedure or begin block 
that has not been activated or that has 
been terminated. 

inactive event variable: an event variable 
that is not currently associated with an 
event. 

infix operatcr: an operator that defines 
an operation between two operands. 

initial procedure: an external procedure 
whose PROCEDURE statement has the OPTIONS 
(MAIN) attribute. Every PL/I program must 
have an initial procedure. It is invoked 
automatically as the first step in the 
execution of a program. 

~nput/output: the transfer of data between 
an external medium and internal storage. 

interleaving of subscripts: a subscrirt 
notation used with subscripted qualified 
names that allows one or more of the 
required subscrirts to immediately follow 
any of the comFonent names. 

internal block: a block that is contained 
within anothEr block. 

internal ~dme: an identifier that has the 
INTERNPL attribute. 

internal procedure: a procedure that is 
contained in another block. 

internal to: all of the text contained in 
a block except that text contained in 
another block. Thus the text of an inter
nal block (except for its entry names) is 
not internal to the containing block. 

Note: An entry name of a block is not £Qn=. 
tamed in that block. 



Page of GC28-2045-1. Issued september 15, 1970 by TNL GN28-3171 

interruption: the suspension of normal 
program activities as the result of the 
occurrence of an enabled condition. 

invoke: to activate a procedure at one of 
its entry points; to enter an on-unit. 

invoked procedure: a procedure that has 
been activated at one of its entry points. 

invoking block: a block containing a 
statement that activates another block. 

iteration factor: an expression that 
specifies: 

1. the number of consecutive elements of 
an array that are to be initialized 
with a given constant. 

2. the number of times a given format 
item or list of format items is to be 
used in succession in a format list. 

key: see source key and recorded key. 

key class: a set of keys that begin with a 
common character string; this character 
string is the generic key for the class. 

keyword: an identifier that is part of the 
language and which, when used in the proper 
context, has a specific meaning to the 
compiler. 

known: a term that is used to indicate the 
scope of an identifier. For example, an 
identifier is always known in the block in 
which it has been declared. 

label constant: synonymous with statement 
label. 

label prefix: an unparenthesized identifi
er prefixed to a statement by a colon. 

leading zeros: zeros that have no Signifi
cance in the value of an arithmetic number; 
all zeros to the left of the first signifi
cant digit (1 through 9) of a number. 

level number: an unSigned decimal integer 
constant specifying the hierachy of a name 
in a structure. It appears to the left of 
the name and is separated from it by a 
blank. 

level-one variable: a major structure 
name; any unsubscripted data variable not 
contained within a structure. 

list-directed transmission: the type of 
STREAM transmission in which data in the 
stream appears as constants separated by 
blanks or commas. 

list processing: the use of based 
variables and locator variables to build 
chains or lists of data. 

locator variable: a variable whose value 
identifies an allocation of a based vari
able in storage. Pointer variables and 
offset variables are the two types of loca
tor variables. 

major structure: a structure whose name is 
declared with level number 1. 

minor structure: a structure whose name is 
declared with a level number greater than 
1. 

mode: real or complex designation for an 
arithmetic value. 

multiple declaration: two or more declara
tions of the same identifier internal to 
the same block without different qualifica
tions, or two or more EXTERNAL declarations 
of the same identifier as different names 
within a single program. 

name; an identifier that has been 
declared. 

nesting: 

1. the occurrence of a block within 
another block. 

2. the occurrence of a group within 
another group. 

3. the occurrence of an IF statement in a 
THEN clause or an ELSE clause. 

4. the occurrence of a function reference 
as an argument of another function 
reference. 

S. the occurrence of a subscript within a 
subscript. 

null locator value: a special locator 
value that cannot identify any location in 
storage; it gives a positive indication 
that a locator variable does not cUrrently 
identify any allocation of a based 
variable. 

null string: a string data item of zero 
length. 

numeric character data: arithmetic data 
described by a picture that is stored in 
character form. It has both an arithmetic 
value and a character-string value. The 
picture must not contain either an A or an 
X picture specification character. 

offset variable: a locator variable whose 
value identifies a location in storage, 
relative to the start of an area. 

on-un! t: the action to be executed upon 
the occurrence of the ON-condition named in 
the containing ON statement. 

Section 12: Definition of terms 333 



Page of GC28-20Q5-1, Issued September 15, 1970 by TNL GN28-3171 

operator: a symbol specifying an operation 
to be performed. See arithmetic operators, 
bit-string operators, comparison operators, 
and concatenation. 

option: a specification made in a st.ate
ment that may be used by the user to 
influence the execution of the statement. 

packed decimal: the System/360 internal 
representation of a fixed-point decimal 
data item. 

parameter: a name in an invoked procedure 
that is used to represent an argument 
passed to that procedure. 

parameter-attribute list: a description in 
an ENTRY attribute specification that lists 
attributes of parameters of the named entry 
point. This enables dummy arguments to be 
created correctly. 

Eict,~r~~ a character-by-character specifi
catj·n describing the composition and 
att&~butes of numeric character and 
character-string data. It allows editing. 

~nt of invocation: the point in the 
invoking block at which the procedure 
reference to the invoked procedure appears. 

.PQ!nter variable: a locator variable whose 
value identifies an absolute location in 
storage. 

precision: the value range of an arithme
tic variable expressed as the total number 
of digits allowed and, for fixed-point 
variables, the assumed location of the 
decimal (or binary) point. 

prefix: a label or a parenthesized list of 
condition names connected by a colon to the 
beginning of a statement. 

prefix operator: an operator that pre
cedes, and is associated with, a single 
operand. The prefix operators are , + -

~rocessed text: the output from the 
first stage of compile-time activity. This 
output is a sequence of characters that is 
altered source program text and which 
serves as input to the processor stage in 
which the actual compilation is performed. 

preprocessor: the first of the two compil
er stages. At this stage the source pro
gram is examined for preprocessor state
ments Which are then executed, resulting in 
the alteration of the source program text. 

preprocessor statements: special state
ments appearing in the source proqram that 
specify how the source program text is to 
be altered; they are identified by a lead
ing percent sign and are executed as they 

are encount_ered by the preprocessor (they 
appear without the percent sign in prepro
cessor procedures). 

£!Jmary ent_ry point: the entry point named 
in the PROCEDURE statement. 

problem data: strinq or arithmetic data 
that is processed by a PL/I program. 

procedure: a block of statements, headed 
by a PROCEDURE statement and ended by an 
END statement, t.hat defines a program 
region and delimits the scope of names and 
that is activated by a reference to its 
name. It controls allocation and freeing 
of automatic storage declared in that 
block. 

procedure reference: a function or subrou
tine reference. 

processor: the second of the two compiler 
stages. The stage at which the prepro
cessed text is compiled into an object 
module. 

program: a set of one or more external 
procedures, one of which must have the 
OPTIONS (MAIN) attribute in its PROCEDURE 
statement. 

program control data: data used in a PL/I 
program to affect the execution of the pro
gram. Program control data consists of the 
following types: label. event, task. 
pointer, offset, and area. 

prologue: those processes that occur at 
the activation of a block. 

Eseudo-variable: one of the built-in func
tion name:; that can be used as a receiving 
field. 

pushed-down stack: a stack of allocations 
to which new allocations are added and 
removed from the top on a last-in. first
out basis. 

qualified name: a sequence of names of 
structure members connected by periods, to 
uniquely 1dentify a component of a struc
ture. Any of the names may be subscripted. 

receiving field: any field to which a 
value may be assigned. 

record: the um t of transmi.ssion in a 
RECORD input or output operation; in the 
interna1 form of a level-one variable. 

recorded key; a character string recorded 
in a direct-access vo1ume to identify the 
data record that immediately follows. 

recursion: the reactivation of a procedure 
while it is already active. 



repetition factor: a parenthesized 
unsigned decirral integer constant preceding 
a string configuration as a shorthand 
representation of a string constant. The 
repetition factor specifies the number of 
occurrences that make llP the actual con
stant. In picture specifications, the 
repetition factor specifies repetition of a 
single picture character. 

repetitive specification: an element of a 
data list that specifies controlled itera
tion to transmit a list of data items, gen
erally used in conjunction with arrays. 

returned value: the value returned by a 
function procedure to the point of 
invocation. 

scale: fixed- or floating-point represen
tation of an arithmetic value. 

sco~of a condition rrefix}: the range 
of a program throughout which a condition 
prefix applies. 

scope (of a name): the range of a program 
throughout which a name has a particolar 
interpretation. 

secondary entry point: an entry point 
defined by a label of an ENTRY statement 
within a procedure. 

source.k~: a character string referred to 
in a RECORD transmission statement that 
identifies a particular record within a 
direct-access data set. The source key may 
or may not also contain, as its first part, 
a substring to be compared with, or written 
as, a recorded key to positively identify 
the record. Note: The source key can be 
identical to the recorded key. 

source program: the program that serves as 
input to the compiler. The source program 
may contain preprocessor statements. 

standard file: a file assumed by the com
piler in the absence of a FILE or STRING 
option in a GET or PUT statement (the stan
dard files are: SYSIN for input, SYSPRINT 
for output). 

statement; a basic element of a PL/I pro
gram that. is used to delimit a portion of 
the program, to describe data used in the 
program, or to specify action to be taken. 

statement label: an identifying name pre
fixed to any statement other than a PROCE
DURE or ENTRY statement. 

statement label variable: a '!ariable 
declared with the LABtL attribute and thus 
able to assume as its value a statement 
label. 

static storage: storage that is allocated 
l::efore execution of the program begins and 
t.hat remains allocated for the duration of 
the frograro. 

streillli: data being transferred froIt or to 
an external medium represented as a Con
tinuous string of data items in character 
form. 

string: a connected sequellce of characters 
or bits that is treated as a single data 
item. 

structure: 
that refers 
t.hat mayor 
attribut:es. 

a hierarchical set of names 
to an aggregate of data items 
may not have different 

subfield: the integer description portien 
or the fraction description portion of a 
picture specificat_ion field that describes 
a noninteger fixed-point data item. The 
subfields are divided by the picture char
acter v. 

subroutine: a procedure that is invoked hy 
a CALL statement or a CALL option. A sub
routine cannot return a value to the invok
ing block, but it can alter the value of 
variables that are known within the invok
ing block. 

subscript;. = an element expression specify
ing a location ~ithin a dimension of an 
array. A sutscript can also be an 
asterisk, in which case it specifies the 
entire extent of the dimension. 

synchronous: describes serial execution of 
a frograrr, using a single flow of control. 

termination of clock: cessation of execu
t.ion of a block, and the return of control 
to thp. activating block by means of a 
RETURN or END statement, or the transfer of 
cGlitrol to the activating block or scrr,e 
other active block by means of a GO TO 
statement. A return of cont.rol to the 
operating system via a RETURN or END state
rrt-ent in the initial procedure or a STOP or 
EXIT statement in any block results in the 
termination of the program. See~E':!J,ogue. 

variable: a name that represents data. 
Its attributes remain constant, but it can 
represent different values at different 
times. Variables fall into three cate
gories: element, array, and structure 
variables. Variables may be subscripted 
and/or qualified. 

Section 12: Definition of terms 335 



Where more than one page reference is 
given, the major reference is first. 

; (see semicolon) 
~ Assignment statement 310,154,160 
" Null statement 313,160 
lAcTIVNrE stat:ement 309,1511-157,160 
%DEACTIVATE statement 310,154-157,160 
iDECLARE statement 310,154-157,160 
~DO statement 311,159-160 
~END statement 311-312,160 
%GO TO statement 312,145,160 

in included text 313 
%IF statement 312,160 
~INCLUDE statement 312,7 
~PROCEDURE statement 313,156-157,160 

RETURNS option 158 

A format item 204 
A picture character 192,17 
abbreviations of keywords 187-191 
abnormal termination 55,60 
access att:ributes 73 
action :specification 132,244 

nullification of 133,305 
on-unit 132.298 
SYS'fEM 132,298 

activation 
of hlocks 58-59 
of preprocessor entry names 154,157 
of preprocessor variables 154,156 
of SUBSTR at compile-time 159 

active event variable 251,309 
active procedures, list of 132 
ADD built-in function 227 
addition operation 32,218 
additive attributes 72 
ADDR built-in function 239,142-143 
adjustable area size 139 
adjustable array bound 139 
adjustable string 36 
adjustable string length 139 
adjustable variable 

STATIC attribute, when prevented 260 
aggregates 16,22-25 
algebraic comparison 35 
ALIGNED attribute 258,26 

bit strings 140 
buffering 326-328 
STRING argument 224 

alignroent 315-328 
ALL built-in function 236 
ALLOCATE statement 281,6 

use with based variables 142 
allocation 

336 

of based storage 138,142 
of buffers 94,102 
of controlled storage 281 
deterreination of 240 
of storage 61-62,6 

ALLOCATION built-in function 240,283 
allocation of storage 163 
alphabetic characters 8,115 
alphabetic extenders 67,28 
alFhameric characters 8 
alternative attributes 72,73 
ambiguous references 78.30 
Wand" operation 34 
-and W symbol 34 
ANY built-in function 236 
apostrophe 8,19,20 
area 

arguments 146 
assignments 146 
data 145,22 

input/output of 147 
parameters 147 
REFER option 140-141 
returns from entry points 148 
varia tIes 144 

contextual declaration of 66 
examples of use 150-162 

AREA attribute 259,66 
AREA condition 247,131,145 

dat.a mapping 316 
argument list 118,125 

in assignment 38,39 
arguments 118,51 

of arithmetic built-in functions 226 
array 121,128 
area 147 
constants as 123 
controlled 126 
default attributes for 120 
dummy 128 
entry name 125,129 
expressions as 123,127 
file name 129 
function references as 123 
in CALL statement 281 
in function reference 120 
label 128-129,119 
of mathematical built-in functions 230 
offset 129,148 
of preprocessor functions 151 
of pseudo-variable 42 
of string built-in fUnctions 221 
parentheses used with 123 
pointer 129,148 
string 129,126 
structure 128 

arguments and parameters 
preprocessor 157 
relationship of 123 
types of 128 

arithmetic to bit-string conversion 214,30 
examples of 215 
length of result 211 

arithmetic built-in fUnctions 226,220 
arithmetic to character-string 
conversion 212,30 

examples of 213 



length of result 
arithmetic constants 
arithmetic conversion 

base in 211,43 
mode in 210,30 

217 
18 

210,30 

prec~s10n in 216,43 
scale in 216,43 
target attributes in 43 

arithmetic data 13 
attributes for 256 
comFarison of 35 
defaults for 253 

arithmetic operations 31 
conversion in 31 
errors to avoid 174-176 
results of 218,32 
truncation in 32 

arithmetic operators 9,156 
arithmetic value of numeric character 
data 213.112-113 

array 27,11 
ALIGNED bit string 140 
arguments 128 
arithmetic 176-177 
assignment 283 
based 139 
cross sections of 23 
dimensions of 22,265 
operations, results of 38 
parameters 128 
of structures 24 
UNALIGNED bit string 140 
variables 22,83 

array bounds 22,265 
adjustable 139 
asterisks for 265,282 
declaration 139 
expressions for 167 

based variables 140 
REFER o~tion 139,140 

array expressions 29,37 
in array assignment 284 
data conversion in 39 
dimensions in 57 
with element operands 38 
with infix operators 38 
operands of 37 
optimization 163 
with prefix operators 38 

array manipulation built-in 
functions 236,220 

arrow (pointer-qualifier) 139 
aSSignment 

area 146 
array 283,38 
by assignment statement 283,110 
bit-string 20,110 
BY NAME 283,39 
character-string 18,284 
CHECK condition raised for 2'j2 
conversion by 31,110 
of data items 79 
element 283,284 
errors to avoid 173-174 
by input/output 111 
label 284 
multiple 50,285-286 
pointer 142 

by STRING option 111 
structure 283-284,39 

assignment statement 283-286,10,50 
for computation and assignment 50 
for conversion and editing 110,50 
for internal data movement 50 
optimization 163 
preprocessor 310 
types of 281$ 

asterisk notation 69 
in ALLOCATE statement 282 
for tounds specifications 265,282 
for controlled parameters 127 
in INITIAL attributes 271 
for length specifications 262,282 
for Simple parameters 127 
for subscripts 23 

asterisk picture characters (*) 195,113 
asynchronous operation 98,103-104 
ATAN buil t.-in function 232-233 
JlTJlNC built-in function 233 
ATANH built-in funct.ion 233-234 
attributes 256-280,6 

additive 72,14 
in ALLOCATE statement 281-282 
alternative 72,73 
buffering 73 
contextual declaration of 66,69 
in CECLARE statements 288 
default 68.72 

(see also default) 
entry name 51 
in ENTRY statement 293 
errors to avoid 111-173 
explicit declaration of 288,65 
factoring of 256,288 
file 12 
implicit declaration of 67,69 
listing of 6,69 
merging of 75 
in PROCEDURE statement 300 
of result in arithmetic 

operations 218,219 
scope 257 
of source in conversions 41,218-219 
specification of 256 
storage class 260,126 
ta.rget (see target attributes) 
of target in conversions 41,218-219 

AUTOMATIC attribute 260,52 
autoJT·atic storage 71,6 
automatic variables 27 

pointer variatles 64 

B format item 204,80,89 
E ficture character 196,114 
BACKWARDS attribute 261,83,84 
EACK~ARDS option 299 
base 13,31 

in arithmet.ic conversion 43 
of arithmetic data 261 
of arithmetic targets 43 
attributes for 261 
binary 13 
decimal 13 
of numeric character data 276 

base conversion 211.41,Q3 

Index 337 



BASED attribute 260,138-139 
alignment 326 
buffering 326 
dimension attribute 265 
REFER option 140-141,265 

based data 
array 139 
string 139 

cased storage 138-152,6 
allocation of 142 
allocation of, within area 147 
built-in functions 239-240 
freeing of 143-144 
freeing of, within area 146 

based variables 138-152 
examples of use 150-152 
input/output 141-142 
in recursive procedure 64 
restrictions 139-140 

base identifier of DEFINED attritute 263 
BEGIN block 56,1 

END statement for 60,292-293 
as on-unit 132,51 
speed of execution slowed by 166 
termination of 60 

BEGIN statement 287,12 
blocks, nesting of 57 
CBECF prefix to 134,252 
cowUtion prefixes to 131-132 
ORDE}! artion 161,162 
REORDER option 161,162 

BINARY attribute 261,15 
hinary base 15,13 
BINARY built-in function 227 
binary data 15,16 
binary full word 15 
binary logarithm 235 
bit addressing 140 
BIT attribute 262,20 

in ALLOCATE statement 281 
data rrapping 317,318 

BIT built-in function 221,117 
bit-calss data 259 
bit-string comparison 35 
bit-string data 

assignment of 20,284 
attributes for 20 
comparison of 35 
concat.enation of 35 
constants 20,84 
conversion of 43,221 
manipulation of 116 
variables 20 

bit-string format item (B) 204,89 
Cit-string operations 34 
bit-string operators 9 
bit-string targets 45,221 
bit-string to arithmetic conversion 214,30 
bit-string to character-string 
conversion 214,30 

blank picture character (B) 196,114 
balnks 10 

338 

in constants 211,19,20 
in data-directed transmission 85 
in keys 106 
in list-directed transmission 83.79 
in numeric character data 196 
in picture specifications 114 

in preprocessor replacement 154,158 
in structure declarations 25 
use of 10 

BLKSIZE subparameter 93,102 
block size 94,93,102 
block structure 1.166 
tlocking of records 93,101-102,71 

alignment 326-328 
record-oriented transmission 101-102 
streaw--oriented transmission 93,94 

l:;locks 56,5 
activation of 58-59 
begin 56,1 
invocation of 59 
multiple closure of 57-58 
nested 57 
procedure 56,1 
record 71,93,101-102 
in stream-oriented transmission 79 
and structures, external 70 
on tape 71-72 
termination of 60 

FOOL built-in function 221,117 
boolean operation 221,117 
tounds 22,236 

in ALLOCATE staterrent 281-282 
asterisk notation for 127 
expressions for 127 
of array farameters 127 

branch 52-53 
(see also GO TO statement) 

BSI penc~ charaoters 201 
ESI shilling characters 201 
BUF (see BUFFERED attribute> 
buffer--

alignment 326-328 
and based storage 62 

FUFFERED attribute 262,73 
EVENT option 289 

BUFFERED option 299 
buffering attributes 73 
tuffers 73,97 

allocation of 94,102 
hidden 73.261 

EUFFERS option 94,102 
BUFNO subparameter 94.102 
built-in functions 220,41 

arithmetic 226-232,220 
array manipulation 236,220 
as arguments 129 
based storage 239- 240 
computational 221,220 
conditi0~ 237,134 
mathematical 232-236,220 
miscellaneous 240-241,220 
multitasking 240 
string-handling 221,117 
values returned by 122 

EUILTIN attribute 262,122 
BY clause 82,290,291 
EY NAME option 283,39,284,285 

in array assignment 285 
in structure assignment 40,284-285 

C format item 205,89 
CALL ortion 211,27 
CALL staTement 287,54 



multitasking 7,55 
calling trace 299 
card punch codes 185-186 
carriage control 91,103 
CEIL built-in function 227,217 

data mapping 317,318 
ceiling values 217 
chaining technique 150 
CHAR built-in function 222,117 
CHAR48 compiler option 186 
CHARACTER attribute 261,19 

in iDECLARE statement 154,155,310,311 
in %PROCEDURE statement 158,313 
in ALLOCATE statement 281 
data mapping 317,318 

character sets 185-186,8 
character-class data 264 
character-string comparison 35 
character-string data 18-20 

as keys 98,106 
assigmr.ent of 19,284 
attributes for 19,261 
comparison of 35 
concatenation of 36 
constants 9,18 
conversion of 211,221 
defined on numeric character data 113 
picture specification for 192,115 
variables 19,261 ' 

character-string format item (A) 204,88-89 
character-string targets 45,212 
character-string to arithmetic 
conversion 211,30 

character-string to bit-string 
conversicn 214,30 

character-string value of numeric 
character 193,113 

characters 8 
CHECK condition 251,136 

raised for null statement 297 
standard system action for 136,254 

CHECK condition prefix (see CHECK prefix) 
CHECK prefix 135-136,252 
classes 

of statements 48 
of storage 61,6 

clauses 
BY 82,290,291 
ELSE 53,296-297 
THEN 53,296 
TO 82,292 
WHILE SQ,82,292 

CLOSE statement 288,50 
unlocking of record 304 

closing of files 77,50 
multiple 77,288 

closure, multiple 57-58 
COBOL option 103 
codes for ON-conditions (see condition~ 
codes) '§ 

collating sequence 117,222,223, 35 '~.'f' 
collections of data 

arrays 7,22-23 
arrays of structures 25 
structures 23-25 

COLUMN for~at item 205,80,90 
comma picture character (,) 196,114 
commas 

in data-<'.iirected transmission 
in list-directed transmission 
in parameter attribute lists 

comments 10,160 
commen logarithm 235 
comparison 34-35,9 

of ,<eys 106 

79 
79,83 

124 

COMPLETION built~-in function 240 
comple\_ion value of event variable 240,242 
COMPLEX attribute 262,14 

with PICTURE attribute 262,276,277 
COMPLEX built-in function 227 
complex data 16-17,14 

attributes for 17,256 
picture specification for 277 

COMPLEX format item (C> 205,89 
comple~ numeric character data 276,277,212 
COMPLEX pseudo--variable 242 
complex to character-string conversion 214 
complex value 227-228,229 
composite symbols 185-186 
compound statements 11 
computational built-in functions 218 

arithrretic 226 
array manipulation 236-237 
mathelrat lcal 232- 2 36 
string-handling 221 

computational conditions 247 
computational statements 50 
concatenation 35-36,31 
condition built-in functions 237,134 
condition codes 245.134 
CONDITION condition 255,133 

with SIGNAL statement 307 
condition name 244,11 

use of NO with 131 
condition prefix 244,7 

effect on nested blocks 131-132 
scope of 131,244 

conditional tranch 53 
conditional digit position 195 
conditional insertion characters 196 
conditions 231-242,55 

codes for 244,245,134 
computational 247 
disabled 244,299 
enabled 244,298-299 
exceptional 131,7 
input/output 249,247 
program checkout 251.247 
raised in conversions 46 
system action 247 
user-nawed 255 

CONJG built-in function 228 
conjugate of complex value 228 
CONSECUTIVE option 104,92,101 

alignrrent 328 
compared with SEQUENTIAL attribute 104 
EVENT attribute 267 
EVENT option 98 
NCP option 104 

CONSECUTIVE organization 94,102-104 
compared with INDEXED 
organization 105-106 

constants 13 
arithmetic 
attril::utes 
bit-string 

14 
of 13 

20,30 

Index 339 



blanks in 211 
character-string 18-19,10 
label 20 
sterling 15 

contained in. meaning of 65 
contextual declaration 66-67 

of built-in function 
identifiers 122-123 

of entry names 126 
of event names 267 
of user-named condition 255 

control 
flow of 58-64 
ret_urn of 6U, 247 

ccnt.rol format items 90 
control statements 52-55 
control variable in 00 statement 53,291 
controlled 

drguments 127 
parameters 126-127 
stcJra'Jc 62.6 

allocation of 281 
freeing of 294 
st-ackin9 of 62 

variatle~ 62,63,27 
bound, and lengths for 

CON'fROLLED dt.t.rJ bute 259,62 
conversion 41-42,6 

arithmetic 43-45,210 
base in 43,44,211 
mode in 31,43,210 
precision in 43,44,211 
scale in 43,210 
target attributes in 42-45 

arithmetic to bit-string 214,43,45 
arithm~;tic to 
character-string 212,43,45 

in arithmetic operations 31 
in array exr:.ressions 37 
by assignment 31,50 
base 31,43 
bIt-string to arithmetic 214,45 
bit-string to character-string 214,42 
in bit-stri~g operations 34 
character-string to arithmetic 211,43 
character-string to bIt-string 214,42 
coded arithmetic to 
character-string 212,43 

coded arithmetic to numeric 
character 211 

in comparison operations 34 
complex to character-string 214 
conditions raised in 46-47 
efficiency of 164-166,168 
in exponentiation operations 33 
inline 164-166 
intermediate results in 42 
numeric character to coded 
arithmetic 211,43 

offset to pointer 31 
pointer to offset 31 
in preprocessor expressions 156 
type 211 

CONVERSION condition 248,46-47 
in aSSignment to picture 245 
in B-format input 205 

340 

for character-string to arithmetic 30 
for character-string to bit-string 214 

in E-format input 206 
null on-unit for 133 
ONCHAR used for 237 
ONSOURCE used for 239 
in STREAM input 203 

COPY option 80.295-296 
corr€spondence defining 262,263 
COS built-in function 234 
COSD built-in function 234 
COSH built-in function 234 
COUNT built-in fUnction 241 
CR picture characters 202 
credit picture characters (CR) 197 
cross sections of arrays 23 
CTLASA option 103 
CTL360 OFtion 103 
currency symbol picture character 

($) 196,114 

data 
aggregates 176-177 

(see also array) 
area 144-145,23 
arithmetic 13 

corrparison of 35 
conversion of 212,43,44-45 

attritutes of 256,69 
(see also attributes> 

bit-string 20 
comparison of 35 
concatenation of 35 
conversion of 42 
operations with 34 

character-string 18-19 
conparison of 35 
concatenation of 36 
conversion of 211,42 

collections of 7,21-22 
ccnversion of 41-47,30-37 
editing of 110-112 
event 21 
format items 203,87-89 

examples of 89 
implicit conversion 164,165 
inline conversion 164-166 
item 79 
label 20 
locator 21 
mcverr.ent of 50-51 
offset 144-145,21 
pointer 21 
problem 13.30 
program control 20,30 
string 18-20 
ta:;k 21 
typed 49 
types of 5,13,120 

data interchange 93,101-102 
~ATA keyword 80,84-86 
data list 81-82 

element of 83 
omission of 84-85 

data management routines 93,101 
data mapping 315-328 
data sets 79 

COBOL-generated 103 
files, association with 76 



organization of 102-106,94 
positioning of 94-95,103 
in stream-oriented transmission 79 

data specification 81-91,114 
data-directed 85-87 
edit-directed 87-91 
list-directed 83-85 

data transmission 71,96 
(see also input/output) 
statements 

(see also DELETE statement; GET 
statement; LOCATE statement; PUT 
statement; READ statement; REWRITE 
statement; UNLOCK statement; WRITE 
statement) 

record-oriented transmission 96-97 
stream-oriented transmission 80- 91 

data-directed transmission 79 
data specification for 85-87 
input 85 

CHECK condition for 251,134 
output 86 

DATAFIELD built-in function 238 
DATE built-in function 241 
DB picture characters 197 
DCB parameter 93,102 
DDEF command 92-94,101-104,76-77 

BLKSIZE suboperand 93 
BUFNO suboperand 94 
DCB suboperands 93 
DISP operand 94 
KEYLEN suboperand 106 
LRECL suboperand 93 
RECFM sub operand 93 
for record-oriented 
transmission 101-104,106 

RKP suboperand 106 
for standard file 18 
for stream-oriented transmission 93 

ddname 76,77 
in %INCLUDE statement 312 

deactivation 155,310 
(see also termination) 
of preprocessor entry names 157 
of preprocessor variables 156 

debit picture characters (DB) 199 
debugging 134,55 
debugging file 132 
decimal, packed 15 
DECIMAL attribute 261,14 

data mapping 317,318 
decimal base 13 
DECIMAL built-in function 228 
decimal data 14-16,277 
decimal point picture character 

(V) 194,114 
declarations 65-70 

errors to avoid 171-173 
DECLARE statement 288,48 

condition prefix to 132 
preprocessor 311,155-160 
RETURNS attribute 121 

default 6,68 
for arithmetic data 262,269 
attributes assumed by ]:';,256 
for attributes of value returned by 

function 121 
conditions enabled by 244,136 

for file attributes 13 
for breprocessor variables 155 

DEFINED attribute 263,25-26 
evaluation of 264 

defined item 262-264 
defining 263 
DELAY statement 289 
CELE'rE statement 289,49 

unlocking of record 304 
density of tape 72 
descriptive statements 48 
device independence 71 
digit specifier picture characters 194,276 
digits 8 
DIM built-in function 236 
dimension 22,265 

bounds of 22,236 
extent of 22,236 
maximum number of 23,38,39,57 

dimension a~tribute 265,22 
in ALLOCATE statement 281 

DIRECT attribute 266,73 
comparison with S~UENTIAL 
attribute 10~-106.108-109 

dire~t-access storage devices 93,101 
disabled conditions 131.244 

compared to null on-unit 132 
DISP operand of DDEF command 104 
DISPLAY statement 290,50 
DIVIDE built-in fUnction 228 
division operations 33 

attributes of results of 219 
remainder of 229 

division operator 31 
in preprocessor expressions 156 

DO-group 51,11 
errors to avoid 116-177 
preprocessor 159,311 
transfer of control into 292,296 

DO keyword in repetitive specification 82 
DO-loOf (see DO~group) 
DO statement 290-292,11.53-54 

blocks, nesting of 57 
condition prefix to 131 
iterative 53-54 
noniterative 54 
prefrocessor 311 
types of 290-291 

drifting picture characters 197-198 
drifting string 197,198 
CSNAME parameter 76.77 
dU!l"':'Y argUlllents 123-124,136 

attritutes 124 
dump, obtained by CHECK prefix 134 
dynamic storage allocation 61,6 

E format item 206,89 
I picture character 200,276 
EBCDIC <Extended Binary Coded Decimal 

Interchange Code) 185-186,35 
EDIT keyword 87-91,80 
edit-direc~ed transmission 80.111 

data specification for 87-91 
format items for 203,88-89 
FORMAT statement for 294 
input 87 
output 87 

Index 341 



editing 
by assigr~ent 110-117,50 
of numeric character data 192 
by PICTURE attribute 112 

efficient Ferformance 161-180 
elerr,ent 

and array operations 38,37 
assi.gnment 283 
of data list 83 
expression 29,236 

in array assignment 285 
in I}' statement 53,296 

of structure 23 
dnd st.ructure or;erations 39 
variable 22 

ELSE clause 
ir, % IF stat:ement 160 f 312 
in IF statement 53,35 

embedded key 106 
l::MPTY built-ill function 239,146 
enabled condition 131-134,244 
end of file 85 
bND ~>ta':.E,ment. 292-293,12 

tor heqin block termination 60 
blocks, nesting of 57 
multiple closure by 57-58 
~re&rncessor 311 
tar procedure termination 60,119 

LNDFILE condition 249,98 
ENDPAGE condition 249,91-92 
i:NTRY att.I.ibute 266,51 

1n %DECLARE statement 158,311 
compared with ENTRY statement 51 
contextual declaration of 266 
in generic entry narr,e declaration 270 
implied 121,125 

entry name 58,121 
as argument 125-126,129 
attributes for 257 
in CALL statement 287 
contextual declaration of 66,125,266 
explicit declaration of 300,125 
parameters 126,129 
preprocessor 156-157 

entry foint 118,266 
primary ~)8,300 
secondary 58,293 

ENTRY statement 293,51,58 
compared with ENTRY attribute 51 
condition prefix to 132 
l.abel of 65,125 
parameters of 293 

ENVIRONMENT attribute 92-95,101-109 
general format 74 
for record-oriented 
transmission 101-109 

for stream-oriented transmission 92-95 
epilogues 64 
ERF built--in function 234 
ERFC built-in function 234 
ERROR condition 255,131-136 

AREA condition 254 
raised by GET statement 295 
raised by PU'f statement 302 
results in program termination 61 

errors to avoid in programming 170-180 
estahlished action 132,133 
EVENT at.tribute 267,21 

342 

data mapping 316 
event data 21 
event narre 267 

(see also event variable) 
EVENT oftion 98,66 

and CHECK condition 136 
ill LELETE statement 289 
in FEAD statement 303 
in REWRITE statement 306 
in WRITE statement 309 

event variable 98,2'16 
active 251,306 
comFletion value of 242,240 
inactive 251,306 

€XCeFtion control statements 55,48 
exceftional conditions 131,7 
EXCL (see EXCLUSIVE attribute) 
EXCLUSIVE attribute 268,74 
execution speed 166-170 
EXIT statement 293,55 
EXP built-in fUnction 234 
explicit declaration 65-66 

by DECLARE statement 288 
explicit or;ening 74-75 
exponent 

of floating-faint data 15 
in picture specification 200,276 

exponent field 200 
exponent specifier picture characters 200 
exponentiation or;erations 33-34,31,32 

attributes of result 219 
bas e 43 
conversion 31,32 
mcde 43 
precision 43 
scale 43 

expressions 29-47,6 
array 37-39,29 
for array bounds 167,265 
attributes of result of 6,32 
for controlled parameters 127 
element 29 
in format items 91 
function reference operands 40-41 
operands of 40-41 
oferational 29 
preprocessor 156,309 
in RETURN statement 120 
for string lengths 167 
structure 39-40,29 
as subscripts 23 
use of parentheses in 37 

extended binary coded deciroal interchange 
code (see EP~DIC) 

extent 
of arc:'! 144 
ot dirrension 22,236 
in overlay defining 264 

EXTERNAL attribute 269,61 
CHECK condition 

external declaration 257 
external names 10,68 

structures 70 
external procedure 57,1 
external storage 71 
external structure 70 
external text, compile-time incorporation 
of 159,312 



F format item 207,88-91 
F picture character 201 
F-format (fixed-length) records 
factor 27,28 
factoring of attributes 

in 'DECLARE st.atement 
family members 271 
field 

256,288 
311 

93,102 

in picture specification 193,275 
width 203 

file 72 
association with data set 76,49 
attributes for 72-74,257 
closing of 74,288 
contextual declaration of 74 
name of {see file name) 
opening of 74-75,299 
standard 77-78,92 

FILE attribute 269,72,73 
file declarations, examples of 109 
file name 72,97 

arguments 129 
length of 76 
parameters 129 
in stream-oriented transmission 79 

FILE option 97,49,80 
of GET statement 295 
of PUT statement 301-302 

FILE specification 
of CLOSE statement 288 
of DELETE statement 289 
of OPEN statement 299 
of READ statement 303 
of REWRITE statement 306 
of WRI'rE statement 308 

FINISH condition 255,61 
FIXED attribute 269,14 

in lDECLARE statement 310-311 
in %PROCEDURE statement 158,313 
data mapping 317,318 
with preprocessor variables 155 

FIXED built-in function 228 
fixed-length records (F-format) 93,101,102 

(see also format-F records) 
fixed-point data 14-15 

assignment of 14 
binary 15,23 
constants 14-17 
conversion of 212-213 
decimal 14-15 
division o~erations with 33 
picture specification for 194,276 
sterling 15 
variables 14-17,23 

fixed-point format item(F) 207,88-91 
fixed-point scale 13 
FIXEDOVERFLOW condition 248,46 

compared with SIZE condition 47 
disabling 163 

FLOAT attribute 269,16 
data mapping 311,318 

FLOAT built-in function 228 
floating-~oint data 15-16 

binary 16 
constants 15,16 
conversion of 210,213 
decimal 15-16 
long form of 16,210 

picture s~ecification for 
short form of 16,210 
varial::l;::s 16 

200,276 

floating-point format item tE) 
floating-point scale 13 
FLOOR built-in function 229 
flow of control 58-64,52 
flow trace 134 

206,88-91 

forulat- F reco.rd 
a.lignment 328 
record-oriented transmission 102 
stream-oriented 
transmission 93,94,103,104 

format, record 92-94,101-102 
format items 88-91 

alphabetic list of 204 
centrel 90,87,88 
data 203,87-90 
remote 204.87,88,90 
spacing 204 
sUIDlI'ary of 88 

format list 88,203 
in FORMAT statement 294 

FORMAT staterr,ent 294 
format-U record 

rec<rd-oriented transmission 
str~ aIr-oriented transmission 

format-V record 
alignrrent 326-328 
record-oriented transmission 

102 
93,94 

102 
strearr,-oriented t.ransmission 93,94 

format-VB record 326 
fractional digits 206,207 
fractional subfields 194 
free forrrat 8 
FREE statement 294-295,6 
freeing of tased storage 143-144 
freeing of controlled storage 52,294 
FROM option 91,109,308 
FROM specification (see FROM option) 
fullword. tinary 15 
function 120-130,41 

(see also built-in functions) 
arguments of 118-119,123-139 
built-·in 220,41 
errors to avoid 177 
name of 123 
preprocessor 313 
references (see function references) 
termination of 120 
value returned by 120,305 
1--'iChout arguments 121 

function file attributes 73 
function references 120,40 

preprocessor 156-157 

G sterling picture character 201 
gap, interblock 72 
gap. interrecord 12 
generation 

of data 281 
stack of generations 127 
of variable 259 

GENERIC attribute 269-270,129 
generic name 129,269,270 
generic reference 129 
GENKEY oFlion lOB 

Index 343 



GET statement 295,49,75,78 
for internal data movement 50 
NAME condition raised by 250 
with standard input file 78 
strearr-oriented transmission 80 
with STRING option 50-51,295 

GO TO statement 296,52-53 
for begin block termination 60 
label variable in 52-53 
in on-unit 132 
for procedure termination 60,119,120 

H sterling picture character 201 
hillfword 15 
IlBOUND built-in function 237 
hidden buffers 73,262 
hierarchy of names 23 
HIGH built-in function 222,117 
high-order digits, loss of 32 

(see also SIZE condition) 

1 picture character 200 
identical structuring, meaning of 39 
identifiers 9,15,16 

built-in fUnction 122,123 
compile-time replacement of 140 
length of 9 
reser'Jed 122 

IF statement 296,11 
condition prefix to 131 
element eXFression in 53,296 
nested 297 
preprocessor 312 

IGNORE option 109 
ignoring of records 112-113 
lMAG built-in function 229 
IMAG pseudo-variable 242 
imaginary number 263 
imaginary part of complex value 213,228 
in1l:'leroentation information 2 
imr,lication, file attributes derived by 79 
implicit declaration 67-69 
implicit freeing of based storage 143 
implicit opening 109 

UNDEFINEDFILE raised in 251 
implied attributes 109 
IN option 142,145 
inactive event variable 251,306 
inactive identifier 310 
included text 159,312 

effect on preprocessor scan 159 
preprocessor procedures in 160 

INDEX built-in function 222-223,117 
INDEXED data set 104-109,94,254 

alignment 350 
comparison with CONSECUTIVE data 
set 105-106 

infix operations 30,32 
infix operators 31 

array expressions with 37-38 
structure expressions with 39 

INITIAL attribute 271,27 
in ALLOCATE statement 281-283 
for label variables 271-272 

initial key 106 
initial procedure 59,255 

344 

(see also main procedure) 
initialization 27-28,271-272 

of automatic variables 27 
of controlled varia~les 27,283 
errors to avoid 173-174 
of la~el arrays 271-272 
of static variables 27,62 

inline operations 164-166 
input 6-7,71 

standard system file for 78 
INPUT attribute 273,73-77 
INPUT option 299 
input/output 

of based variables 141 
conditions 249-252,131 
errors to avoid 177-180 
event 246,308 
locate-mode 139,151 
record-oriented 78,6,7 

statements for 96,49 
statements 48-49,71 
stream-oriented 79,6.7 
conversion in 111 
data-directed 85-86,49 
edit-directed 88-89,49 
list-directed 83-84,49 
statements for 80,49 

insertion picture characters 196,115 
integer sUbfield 193 
interblock gap 72 
interleaved array 224 
interleaved sucscripts 25,86 
intermediate results 42 
intermediate string 213 

maximum length 110 
internal procedure 57 
INTERNAL attribute 269,68-70 

structure merocer£ 70 
internal to, meaning of 65 
interrecord gap 72 
interruption 7,55 

established action for 134 
investigation of 238 
mult.ir;le 246 
ORDER option 162 
relaxation of rules 161,162 
REORDER option 162,161 
simulation of 55 
specification 326 
synchronous 99 

intervening blank 19,20 
INTO option 97,111 
invocation 

CALL statement for 287-288 
procedure 59 

prepr0cessor procedure 156,151 
invoked fTocedure 59- 60 
IRREDUCIBLE attribute 213 
iSUB varia£les 26,263,264 
iteration factor 27-28 

corr,r::ared with repetition factor 28 
in format list 88 
in INITIAL attribute 27,271 

iterative execution 290-292 
(see also repetitive execution) 



K picture character 276,115,200 
KEY condition 250.106 
KEY option 98 

in DELETE statement 289 
error 106 
in READ statement 303 
in REWRITE statement 306 

KEYED attribute 213,14-16 
example 109 

KEYED option 299 
KEYFROM option 98 

error 106 
KEYLEN suboperand of DDEF command 106 
keys 106,74 

comparison 106 
conversion of 46 
length of 106,46 
in READ statement 303 
recorded 106 
source 106 

KEYTO option 98 
error 106 

keyword statements 10 
keywords 9-10,187-191 

label 
argument 
constants 
data 20 

129,121 
20 

parameter 118 
prefix 11 
of preprocessor statement 151 
statement label 65 
variable 273-274 

in GO TO statement 52-53 
initialization of 272 

LABEL attribute 273-274,257 
data mapping 316 
INITIAL attribute 271 

layout of pages 91-92 
LBOtJND buil t- in function 237 
leading blanks in the stream 203 
leading zeros 86,156 
LEAVE option 94,103 
length 

of area 144 
in arithmetic to bit-string 
conversion 217 

in arithmetic to character-string 
conversion 217 

of bit-string targets 45 
of character-string targets 45 
of external names 10,68 
of fields 87,84 
of file names 81 
of identifiers 10 
of keys 106,46 
maximum for strings 19,20 
minimum for strings 19,20 
of record blocks 94,102 
of recorded key 106 
specified in ALLOCATE statement 281-282 
of string parameters 127 
of strings 118,18 
of tape 72 

length attribute 262,19,20 
LENGTH built-in function 223,19 

level mmbers 24 
in DECLARE statement 2.88 
factoring of 256 
in LIKE attribute specification 274 
logical level, not same as 315 
maximum pernd.tted 24 
for structure parameters 128 

level-l varia~les 96,288 
in READ statement 303 
in REWRITE statement 306 
in WRITE statement 308 

LIKE attribute 214,26 
INITIAL attribute 271 

line of data 79 
LINE format item 208,249 
LINE oftion 301-302,80,236-231 
line position format item (see LINE format 

iterr) 
line size for PRINT file 94 
line skipping format item (see SKIP format 

it:em) 
LINENO Luilt-in function 241 
IINESIZE option 91-92,299 
LIST keyword 83-84,80 
list-directed data specification 83 
list-directed output 83 
list-directed transmission 79,83 
list processing 138,150 
list processing condition 254-255,247 

(see also AREA condition> 
list of program variables (see data list) 
locate mode input/output 139,151 

alignment 326-328 
data R,apping 315,326- 328 
record alignment 326-328 

LOCATE statement 297,49 
alignment 326-238 
and based variable 62 
OUTPU'l' at tr ibute 273 
reinter setting by 141 
RECORD attribute 279 

locator arguments and parameters 148 
locator conversion 31 
locator data 21,31 
locator return~; from entry points 148 
locator variables 149 
locking records 307,50 

(see also EXCLUSIVE attribute) 
LOG built-in function 234-235 
logarithrrs 23U-235 
logical level 315 
logical operations, errors to 

avoJ.d 174-116 
loglcal records 11,72 

on tape 72 
I,OG10 }:;uilt-in function 235 
LOG2 built-in function 235 
long floating-Faint form 16 
loop optimization 163 
LOW built-in function 223,117 
lower bound 22,237 
LRECL sutparameter 102 

to! sterling picture character 201 
~achine independence 5,1 
magnetic tape 71-73,93,101 
MAIN option 300 

Index 345 



main procedure 54,59 
major structure 

alignment 140 
name 23,25 
offset to 140 
pointer to 140 

mantissa 200,206 
in picture specification 276,198 

mappir.g of data 315-328 
mathematical built-in functions 232-236 
MAX built-in function 229 
maximum len<jth 

bit-string data 20 
character-string data 19 
CHECK name 253 
fixed-point data 248 
identifiers 9 
intermediate string result 110 
LABEL lis t 273 
LINESIZE option 299 
numeric-character picture 
specification 194 

parameter list 314 
picture specification 20,194 
sterling fixed-~oint data 15 
STRING result 224 
string variable 110 
VARYING string 36 

rr.axi.mul11 numbe.r of binary digits 15 
maXil'lIUID number of decimal digits 14 
maximum precisions 278,14-16,44 
mernber of external structure 70 
merging of attributes 75-76 
MIN built-in function 229 
minor structure 

alignment 140 
nallle 23,25 
offset to 140 
pointer to 140 

minus sign picture character (-) 
miscellaneous built-in fUnctions 
MOD built-in function 229 
MOD data-set disposition 104 
mode 14 

197,199 
240,220 

in arithmetic conversion 30-31,43-44 
of arithmetic targets 43 
of arithmetic variables 263 
complex 16,14 
conversion of 31,210 
in exponentiation 43-44 
of numeric character data 276 
real 14 

Model 44 Programming System 93,101-102 
modes of stream transmission 49,79 
modularity 1,5 
multiple assignment 50,284 
multiple closing of files 77 
multiple closure 57-58 

by ~END statement 312 
of blocks 57-58 
of DO-groups 57 
by END statement 57-58 
of preprocessor DO-groups 159 

multiple declarations 70 
multiple interruptions 246,238 
multiple opening of files 75 
multiplication 33,218 
MULTIPLY built-in function 230 

«u1tirrogramming 21 
multitasking 7,21,55,280 
multitasking built-in functions 240 

NAME condition 250,84,85 
name list of CHECK condition 252 
names 9,65-70 

attributes for 256-280,5 
in CHECK condition prefix 134 
condition names 11,55 
entry names 58 
event names 267 
external names 10,68 
file names 97 
generic names 129 
hierarchy of 23 
procedure names 51,56 
qualification of 24-25 
qualified names 24-25,83 

subscripted 25 
score of 65-68 
of structure members, external 70 
structure names 23-25 
subscripted names 23,25,86 
unique names 70 

natural logarithm 234 
NCP cption 103,104,189 
nested blocks 57,70 
nested function 42 
nested IF statements 297 
nested repetitive specifications 82 
nesting 5 

of %IF statements 160,312 
of %INCLUDE statements 313 
in array exrression 38 
of blocks 57,70 
effect of condition prefix with 132 
ENTRY attribute 267,271 
of factored attributes 256 
of preprocessor no-groups 159 
in structure expression 39 

NO with condition names 11,132 
NOCHECK 244 
NOCONVERSION 244 
NOFIXEDOVERFIOW 244 
NOLOCK option 99 
noniterative DO statements 54 
nonsequential access 108,109 
NOOVERFLCW 244 
normal return 247 
norma'l termination 54,60-61 

of on-unit 247 
of procedure 60 
of pros ram 61 

normalized hexadecimal floating-point 16 
NOS!ZE 244 
NOSUBSCRIPTRANGE 244 
"not- operation 34 
NOUNDERFLOW 244 
NOZERODIVIDE 244 
null bit-string constant 20 
NULL built-in function 240,143 
null character-string constant 19 
null ELSE clause in ~IF statement 160 
null offset value 146,240 
null on-unit 132-133 
null pOinter value 143,240 



null statement 297,10 
as on-unit 132-133 

null string 
character string 19 
conversion to arithmetic 211 
result in arithmetic to bit-string 217 

NULLO built-in function 240,146 
numeric character data 17-18,112-115,275 

arithmetic value of 113,215 
character-string value of 113 
compared with coded arithmetic data 17 
conversion in arithmetic operations 17 
conversion to character-string 212 
conversion to coded arithmetic 17,211 
format 17 
picture characters for 193 
picture specification for 112-115 
signs in 191 

numeric character picture 
specifications 193-194,112-113 

numeric character variables 192 
numeric picture specifications 17 

object program 153 
offset arguments 148,129 
OFFSET attribute 215,145 

data mapping 316 
offset data 145-146,21 
offset parameters 148-149 
offset returns from entry points 148,149 
offset to pointer conversion 31 
offset variables 138 

defining 141 
examples of use 151 
null values of 146,240 
restriction 140 
setting value of 146 

ON statement 291-299,11 
condition prefix to 131 
purpose of 132 
scope of 133 
SNAP option of 132 

ON-codes (see condition codes> 
ON-conditions 244-245,132-137 

errors to avoid 171 
example of use 134-137 

ON-unit 132,98-99 
begin block as 132 
errors to avoid 177 
return of control from 132,247 
speed of execution slowed by 166 

ONCHAR built-in function 238,242 
ONCHAR pseudo-variable 242.66 
ONCODE built-in function 238,134 
ONCOUNT built-in function 238 
ONFILE built-in function 238 
ONKEY built-in function 239 
ONLOC built-in function 239 
ONSOURCE built-in fUnction 239,242 
ONSOURCE pseudo-variable 242,66 
OPEN statement 299,14-71 

as descriptive statement 48 
format of 76 
as input/output control statement 49 
options of 299,72 

opening files 74-77,49,299 
attributes, specification of 72-73 

explicit openings 
implicit openings 
multiple openings 

operands 29-41 

74-75 
75,109 
75 

of array expressions 37-38 
of bit-string operations 34 
of conparison operations 35 
of concatenation operations 35 
element 38,39 
in expression evaluation 42 
of expressions 40-41 
function reference 40-41 
of preprocessor expressions 156 
of structure expressions 39,40 

Operating System 93,101 
operational expressions 29-31 
cperations 

arithmetic 31-34 
errors to avoid 169 

array 38 
bit-string 34,30 
combinations of 36-37 
ccm~arison 34-35 
concatenation 35-36 
elereent 38,39 
four classes of 31 
infix 30 
logical 174-176 
prefix 30 
structure 39,40 

cpet:ators 9 
concatenation 35 
in expression evaluation 42 
infix 31 

array expressions with 38 
structure expressions with 39 

~refix 31 
array expressions with 38 
structure expreSSions with 39 

priority of 36-37 
OPT compiler option 163 
optimization of program 161-180 
OPTIONS option 300 
CPTIONS(MAIN) specification 300,12,59 
·or· operation 34 
order of evaluation of expressions 36 
ORDER option 161-162,189 

BEGIN statement 287 
PROCEDURE statement 300,301 

organization of data set 102-106,74,94 
cut put 71--109,6-7 

(also see input/output) 
OUTPUT attritute 213,73 

for standard file 78 
output files 96,109 

standard system output file 77-78,92 
OUTPUT option 299 
OVERFLOW condition 248,11,34 
overlay defining 264-265,258,259,117 
cverpunched sign picture 
characters 199-200 

P format item 208,88-90,112 
P sterling picture character 201 
packed decimal format 14 
padding of keys 106,303 
PAGE format item 208,90 

Index 347 



SYSPRINT 91,92 
page layout 91-92 
PAGE option 302,80 
PAGESIZE option 91-92 

default for 249,300 
paging format item (PAGE) 208,203 
[Oairing 315-326 
parameter attribute lists 124,128 
parameter lists 118,65 

variable length 149 
parameters 118-119,69 

in %PRC~EDURE statement 313 
area 148 
array 128 
attributes of 118.119,126 
bounds and lengths of 121 
GOlltrolled 127 
in DDEF command 76-17.92-94,101-104 
default attributes for 267,1·20 
element 128 
entry name 129 
explicit declaration of 120 
file name 129 
label 121 
offset 148,129 
pointer 147-148,129 
of preproces~Qr fUnctions 157-158,313 
of 9riwary entry point 300 
of secondary entry point 293 
simple 127,265 
storage allocation for 126-127 
string 129 
structure 128 

parenthsses 124.37 
l.evel of 42 
number permitted 57 

pence character specifier (P) 201 
pence digit specifiers C7 and 8) 201 
pence field 202,193 
PENDING condition 191 
percent symbol 139,141 
physical organization of data set 74 
physical record 71,72 
physical sequential data sets (see PS data 
sets) 

PICTURE attribute 275,112 
with COMPLEX attribute 263 
data mapping 317,318 

picture characters 112-115,275-278 
for character-string data 192 
for numeric character data 193 

picture format item (P) 208 
Iicture specification 275-276 

for character-string data 217,115 
for editing 112 
inline conversion 164-166 
for numeric character 
data 193-194,112-115 

PLI command 186 
(see also CHAR48 compiler option; OPT 
compiler option; SORMGIN compiler 
option) 

plus sign picture character 
(+) 197,114-115 

point alignment in numeric character 
data 113-114,197 

point insertion picture character (.) 197 
point of invocation 59 

348 

fainter argureents 147-148,129 
pointer assignment 142 
POINTER attribute 275,66 

data rr,apping 316 
pointer data 21 
fainter Iarameters 147 
painter qualification 140,64 
pointer returns from entry points 148 
pointer to offset conversion 31 
pointer variables 139,140 

contextual declaration of 66 
defining 140 
examples of use 150 
null value of 143,240 
restrictions 139-140 
setting value of 142 
stacking of 64 
storage class 64 

POLY built-in fUnction 237 
·Popped-up· stack 260,281 
·Popped-up· storage 62 
POSITION attricute 264,26 
positioning of data sets 94-95,103 
positioning of records 109 
pounds field 202,193 
precision 13-17,30 

of arithmetic constants 18 
in arithmetic conversion 44-45 
attribute 278 
in conversion 30,43-45,210 
default 278,14 
default for preprocessor variables 156 
in exponentiation 43 
function, value returned by 120 
and length specifications 44,45 
maximum 278,14-16,44 
of nurreric chara~~er data 276 
of source 210 
of sterling data 277-278 
of subscripts 23 
of target 210,43-45 

PRECISION built-in function 230 
Prefix list 131 
Prefix operations 30 
Prefix operators 31 

array expressions with 37-38 
structure expressions with 39 

prefixes 11 
condition 244,11 
label 11 

preprocessed text 154,157 
Ireprocessor 7 

DO-groups 159,311 
expressions 156 

in ~IF statement 312 
arithmetic operators in 156 
evaluation of 156,310 
operands of 156 
in RETURN statement 157,314 

function reference 158 
functions 157-159,313 
input to 153 
output from 153 
procedure name 156,314 

establishment of 311 
in included text 159 
invocation of 156 
scope of 311 



scan 153 
control of sequence of 154,311 

stage 153 
statements 309,153 

abbreviation of keywords 187-191 
comments in 160 
labels of 160 

variable 155-156,310 
maximum Frec~s~on 155 

primary entry point 58-59,300 
PRINT attribute 279,91-92 
PRINT files 80 

block size 94 
column positioning 205 
format items for 80 
line positioning 208 
page layout 91-92 
record format 94 
record size 94 

PRINT option 299 
printing format items 203,80 
priority 

of operators 36-38 
of types in comparison operations 35 

PRIORITY built-in fUnction 240 
PRIORITY (PL/I built-in function, and 

pseudo-variable) option 7 
PRIORITY pseudo/variable 2112 
problem data 13-20,30 

attributes for 256 
Frocedure 56,5 

communication between procedures 51 
END statement for 292 
external 57,1 
function 120-123,51 
initial 59,255 
internal 57 
invocation of 287,59 
main 54,59 
nesting of procedures 119 
preprocessor 156 
subroutine 119 

procedure block (see procedure) 
procedure name 51,56 
procedure reference 58 
PROCEDURE statement 300,12 

blocks, nesting of 57 
condition prefix to 131 

CHECK condition Frefix 252,134 
label of 65,126 
ORDER option 161,162 
REORDER option 161,162 

procedure ter~ination 60-61 
processor stage 153 
PROD built-in function 237 
program 

blocks 56,11-12 
calling 58-59,63 
checkout 131,135 

checkout conditions 252,132 
control 171 
control data 13,20-21 

attributes for 257 
debugging 247 
entry point of 266 
interruption 11,50,244 
optimizing 161-180 
segmentation 166 

structure statements 51-52,118 
termination 61 
testing of 131 

frolcgues 64 
PS (physical sequential) data sets 

record-oriented transmission 101-102 
stream-oriented transmission 93 

fseudo-variatles 241,41 
in expression evaluation 42 
errors to avoid 177 

·Pushed-down· environment 63 
·Pushed-down· stack 62,260 
·Pushed-downw storage 281,64 
PUT statement 301,50,80 

ENDPAGE condition raised by 249 
for internal data movement 50 
with standard files 78 
stream-oriented transmission 80 
with STRING option 50 

qualification ty pointer 139 
(also see based storage) 

qualified names 24-25,83 
in LIKE attribute 274 
subscripted 25 

quotation marks in stream 203 

R format item 208-209,90 
R picture character 199-200 
random access 108,109 
READ statement 303,96 

aligmrent of record 
and based variable 
pOinter setting by 
purpose of 49 

326 
62 
141 

record alignment 326 
SET option 141-142,140 

REAL attritute 263,14 
REAL built-in fUnction 230 
real mode 14 
real number 263 
real part of complex number 16,17 
REAL pseudo-variable 242 
receiving field 241,41 
RECF~ subparameter 93,102 
RECORD attribute 279,73 
record blocks 71-72 
RECORD condition 249,99 

raised by READ statement 303 
raised by REWRITE statement 306 
raised by WRITE statement 308 

record format 92-94,101-104 
F 92.93,102 
o~tions 92,101 
record-oriented transmission 101-102 
stream-oriented transmission 93,94 
U 92-94,102-104 
V 92-94~102-104 

RECORD option 299 
record positioning 109 
record size 93,102 

RECORD condition raised by 250 
in stream-oriented transmission 79 

record-oriented transmission 96-109,71-72 
attributes for 72 
characteristics of 96,71 

Index 349 



data mapping 315 
statements 96,48-49 

options of 97 
swnmary of 108 

recorded keys 106,98.108,109 
records 7 

(see also record format) 
addition of 94,103 
alignment 326-328 
blocked 93,101 
boundaries 79 
deletion of 103 
format of 92-94,101-102 
forroat-F 92,93,102 
format-U 92,102 
format-V 92,93,102 
locking and unlocking of 109 

(also see EXCLUSIVE attribute) 
logical 71,72 
physical 11 
replacement of 77,94,103 
rereading of 77 
retrieval of 94,103 
self-defiling 140 
on taI>e -11-72 
unblocked 72,93,102 

recursion 6:-64 
cefect on storage class 63-64,260 
:i 1 remot.e format items 208-209 

RECT!RSIVE opticn 300,63 
recursive procedure 62-64 
HEDU':::IBLE attribute 273 
REFER option 139,140 

alignment 349 
R~D with SET, effect on 142 

refe rences 
a Ilbiyuous 70,24 
fJnction 120,40-41 
generic 129 
s Jbrout_ine 119 

REGI )NAL option 191 
a-ignrnent 328 

relacive structuring 131 
remote format item (R) 208-209,90 
REORDER option 161-162,190,287 

PROCEDURE statement 300,301 
REPEAT built-in function 223,117 
repetition factor 19 

in bit-string constants 20 
in character-string constants 
compared with iteration factor 
in INITIAL attribute 271,28 

19,28 
28 

in preprocessor expressions 1~6 
repetitive execution 290,53-54 
repetitive specification 82 
replacement 310 

of identifiers 154 
by preprocessor function value 158 
replacing records 77 

replacement value 154,155 
REPLY option 290,50 
rereading records 77 
reserved identifier 10,65 
results 

350 

of arithmetic operations 32-3q 
of array operations 37-38 
attributes of 32-36 
of bit-string operations 34 

of comparison operations 34-35 
of concatenat.ion operations 35-36 
of element operations 38 
intenT,edia te 42 
of structure operations 39-40 

return of control from 
function 121 
invoked procedure 60 
on-unit 60,247 
subroutine 119 

RETURN statement 305,54 
expression in 120 
for function termination 120 
preprocessor 314,156 

eXfression in 158 
for subroutine termination 120 

returned value 305 
of arithmetic built-in function 226 
of array manipUlation built-in 
function 236 

attritutes of 121,293 
conversion of 121 

for preprocessor function 158 
default attributes for 280 
of mathematical built-in 

function 232-233 
of preprocessor function 158 
of preprocessor procedure 311 
of string-handling built-in 
function 221 

RETURNS attribute 279,121-122,190 
in DECLARE statement 311,157,158 

RETURNS option 121 
$PROCEDURE statement 158,313 
ENTRY statement 293 
example 305 
RETURNS attritute 279 

REVERT statement 305,50 
REWRITE statement 306,96 

purfose of 49 
unlocking of record 304 

RKP suboperand 106 
alignment 326-328 

RKP suboperand of DDEF command 106 
ROUND built-in function 230 
row-major order 83 

S picture character 199,198 
scalar expression 29 
scalar variable 21 
scale 13 

in arithmetic conversion 32,43 
of arithmetic targets 43,44 
conversion of 32 
in exponentiation 43 
of numeric character data item 276 

scale factor 278 
range permitted 278 

scaling factor 89.212 
in F format item 207 
in picture specification 276 

scaling factor picture character 
(F) 200-201 

scan by preprocessor 153 
scope 66-67 

attributes for 269,257 
of condition prefix 244,131 



of declaration 65-67 
of men.ber names of external 
structures 70 

of name 256,65-68 
of ON statement 132 
of preprocessor variable 155 
of stl·uct.ure member 70 

secondary entry point 58,293 
selt-defining data 140 
semicolon 79,85 

liS-character set 186 
SEQ} (see SEQUENTIAL attribute) 
SEQl ENTIAL attribute 266,72-76 

{)mpal:ed with CONSECUTIVE option 104 
compared with DIRECT 
attribute 105-106,108-109 

eVENT attribute 267 
and EVENT option 98,289 
and NCP option 104 

SET option 97,142 
alignment of record 326 
and based variable 62 
record alignment 326 
relationship to REFER option 142 
self-defining data 140 

shillings field 202,193 
short floating-point form 16.210 
sign, determination of 231 
SIGN built-in function 231 
sign picture characters 197,276 
SIGNAL statement 307,133 

AREA condition 254-255 
significant digits 206,211 

(see also SIZE condition) 
simple parameters 127,265 
simple statement 10-11 
simulation of an interruption 55 
SIN built-in function 235 
SIND built-in function 235 
SINH built-in function 235 
SIZE condition 248,11,46 

in base conversion 211 
compared with FIXEDOVERFLOW 

condition 47 
disabling 163,171,172 
in E format output 206 
in F format output 207 
MOD function 230 
in precision conversion 211 

size of area 144 
SKIP format item 209,203 
SKIP option 301,80 
skipping of records 97,109 
slash picture character (/) 196-197,114 
SNAP option 299,132 
SOffi~GIN compiler option 170 
source data item 42 
source keys 106,98 
source program 153 
spacing format item (X) 209,90 
special characters 8,9 
specification interruption 326 
speed of execution 166-170 
SQRT built-in function 235 
stacking of controlled storage 62 
stacking of pointer variables 64 
stacks 259,281 
standard files 77-78,92 

system output (SYSIN) 294 
systen output (SYSOUT) 80 

standard systen, action 244-255,55.131,132 
for CHECK condition 134 

statement label constants 273 
statement latel designators 204,208 
statement label variable 21 
statement latels 11,65 
statements 281 

classes of 48 
compound 10,11 
keyword 10 
null 10 
prefrocessor 309,160 
simple 10,11 

static allocation 61 
STATIC attribute 260,61 
static picture characters 197,199 
static storage 61-62 
static variatles 27,52 

allocation of 61 
initialization of 27,62 

STATUS built-in function 240 
STATUS pseudo-variable 242 
sterling fixed-point data 15,278 
sterling picture specifications 201,193 

examples of 201 
STMT comFiler option 166 
STOP statement 307,55 
storage 

allocation 61-62,5,6 
attributes for 260 
dynamic 6,61 
effect of recursion on 63-64 
for parameters 126-127 

classes of (see storage classes) 
external 71 
freeing of 259,260 
popped-up 62 
fushed-down 62 

storage classes 6,61-62 
attributes for 61,52 
automatic 6,52 
based 138-147,6 
controlled 6,52 
of fointer variables 64 
static 6,52 

storage devices, direct-access 93,101 
stream 203 
STREAM attribute 72-75,279,280 
STREAM option 299 
stream-oriented transmission 79-95 

attributes for 72 
characteristics of 19,71 
conversion in 79,71 
data mapping 315 
modes 79.80 
statements 80-83,49 
uses for 49 

string 
arguments 132 
aSSignment 272 
based 139 
fixed-length 262,115 
operators 9 
parameters 129 
varying-length 110,223,224,262 

string data 18-20,13 

Index 351 



attributes for 262,257 
errors to avoid 177 
inline conversion 164.165 
length of (see string length) 

string-handling built-in functions 221,220 
inline handling 166 

string length 118,18 
adjustable 139 
determination of 221 
expressions for 167 
REFER option 139,141 
varying 223-224,110,262 

STRING option 111,50-51 
in GET statement 50-51,295 
in PUT statement 50-51,302 

STHING p:.'eudo-variable 242-243,117,190,221 
STRINGRANGE condition 254,136 

(also see SUBSTR built-in function) 
string to arithmetic conversion 43 
structure 139,140 

arguments 128 
assignment 284,285 
declarations, blanks used with 24 
opeI:ations 40 
faraweters 128 

structure, block 1 
structure expressions 29,39-40 

dimensions in 57 
in structure assignment 284 

structure level. maximum permitted 24 
structure waf~in9 315-326 
structure names 24,25 

external 70 
structure variables 274,23-24 

in LIKE attribute specification 257 
structures 23-25 

arrays cf 25 
COBOL 103 

structuring 
identical 3Y,274 
LIKE attribute 26,274 
relative 128 

subfield delimiter 194 
sUbfields in a picture 
specification 193,275 

subroutine 119,5 
subroutine reference 119 
subscripted Ilames 23,25,86 
subscripted qualified names 25 
subscripted variable 42 
SUBSCRIPTRANGE condition 254,134,136 
subscripts 22-23 

in arguments 128 
asterisks as 23 
checking of 134 
evaluation of 254 
in expressions 38,39 
expressions as 23 
interleaved 25,86 
internal form of 23 
optimization 163 
precision of 23 

SUBSTR built-in fUnction 224,41 
in preprocessor expressions 156,158-159 
third argument 36 

SUBSTR pseudo-variable 243 
in assignment statement 286 

substring 117,224 

352 

subtraction 32-33,218 
SUM built-in fUnction 237 
synchronous interruptions 99 
syntactic unit 183 
syntax errors to avoid 17-171 
SYSIN 77-78,92 
SYSULIB 313 
SYSPRINT/SYSOUT 77-78,92 

as debugging file 132 
system action 244-245,55,131,132 
system action conditions 255,247 
system action specification 50,132 

'I picture character 200 
tab ~ositions 80,86 
TAN built-in fUnction 235 
TAND built-in function 235-236 
TANH built-in function 236 
taFe (see magnetic tape) 
tape density 72 
target 41 

base of arithmetic target 43 
length of bit-string target 45 
length of character-string target 45 
mode of arithmetic target 43-44 
precision of arithmetic target 44,210 
scale of arithmetic target 44 

target attributes 42-45 
task 7 

data 21 
variables 21 

TASK attribute 316,191 
TASK option 7,191 
temporary result 

in assignment statement evaluation 42 
in conversions 41,42 
in DO statement evaluation 291 
in expression evaluation 42 

termination 
abnorrral 55-293 
of clocks 58-59 
of function 120 
normal 54,60-61 
of on-unit 132,98-99,247 
of procedure 60-61 
of subroutine 119 

testing of program 131 
THEN clause 

in lIF statement 312,160 
in IF statement 296,53 

three-line skip 92 
'II ME built-in function 241 
TITLE option 299,76,77 
TO clause 291 
TR machine instruction 225 
track overflow PL/I option 104 
transfer of control by GO TO statement 296 
'IRANSIENT attribute 72.96,191 
TRANSLATE built-in 
function 224-225,117,191,220 

transmission statements 
(see DELETE statement; GET statement; 
LOCATE statement; PUT statement; READ 
statement; REWRITE statement; UNLOCK 
statement; WRITE statement) 

TRANSMIT condition 251,98,99 
raised by DELETE statement 289 



raised by READ statement 303 
raised by REWRITE statement 306 
raised by WRITE statement 309 

TRKOFL opti.on 104,191 
TRT machine instruction 226 
TRONC built-in function 231 
truncation 32,203 

in arithmetic operations 32 
of keys 303 
of source key 106 
in string assignment 110 

type 31 
type conversion 42-45,31 
typed data 49 

U-format records 92,102 
UNALIGNED attribute 140 

buffering 326 
data mapping 316,326 
GENERIC attribute 270 
string argument 224 

unblocked records 72,93,102 
unblocking 93,102 
UNBUFFERED attribute 262,73 

EVENT attribute 261 
and EVENT option 98 
and NCP option 104 

UNBUFFERED option 299 
unconditional branch 52-53 
unconditional insertion characters 196 
undefined format records 

(see U-format records) 
undefined-length records 

(see format-U records) 
UNDEFINEDFlLE condition 251,15 

raised by implicit file opening 247,289 
raised for TRANSIENT files 12 

UNDERFLOW condition 248,244 
UNLOCK statement 307,50 
unlocking records 109 

(also see EXCLUSIVE attribute) 
UNSPEC built-in function 225,117 
UNSPEC pseudo-variable 243 
UPDATE attribute 280,13 
UPDATE option 299 
upper bound 22,237 
usage file attributes 13 

v picture character 194,113 
variable 13 

array 22,81 
automatic 27 
and based storage 62 
control 53-54 
controlled 27,52 
element 21,22,96 
event 98,246 
iSUB 26 
label 20,21 
pseudo-variables 41 
scalar 21 

statement-label 20 
static 21,52 
structure 23-24,214 

variable-length records 
(see format-V records) 

VARYING attribute 262,36 
with bit-strings 20 
with character-strings 19 
READ statement 303 
REWRITE statement 306 
WRITE statement 309 

VARYING strings 110 
varying-length records (see V-format 

records) 
VERIFY built-in fUnction 226,111,191,220 
virtual access method (VAM) 93,101 
VAM (virtual access method) 
virtual storage data sets 

record-oriented transmission 101-102 
virtual storage data sets 

stream-oriented transmission 93 
volume 71 

WAIT statement 307,66 
WHILE clause 291,54 
work area in PL/I 62 
WRITE statement 308,15 

alignIr,ent of record 326 
purpose 49 
record alignment 326 

X format item 209,90,91 
X ficture character 192,115 

Y picture character 195,115 

Z ficture character 195,113 
zero suppression 194,113 

in data-directed transmission 79-80 
in E format output 206 
in edit-directed transmission 88 
in F format output 201 
in list-directed transmission 79 
in numeric character data 113 
picture characters for 194 
in sterling pictures 202 

ZERODIVIDE condition 249,244 
zeros, extensions with 110 
zoned decimal format 11 

48-character set 8,186 
6 sterling picture character 201 
60-character set 8,185 

codes for 185 
1 sterling picture character 201 
8 sterling picture character 201 
9 picture character 194,113,115 

Index 353 



International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, NY 10601 
iUSA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[lnternatJonai i 

C'l 
n 
IV 
CD 
I 

IV 
o 
SO 
Vl 
I 


