
Systems Reference Library

Version 8.1

IBM System/360 Time Sharing System

FORTRAN Programmer's Guide

This publication descrihes how to use the IR\f Systt'rIl /360 Timc
Sharing System (TSS; :ICi()) for compiling and executing programs
'written in the FORTnA:\' lV language. It also describes how to usc
the services and ft'al lIres of 'ISS /;oGO that, while not directly re­
lated to FOHTRA:\' programming, are frequcntly of usc to the FOH­

TRAN programmer.

File No. S360-25
GC28-2025-4 TSS

FIFTH EDITION (September 1971)

This is a major revision of, and makes ohsolete, C28-202.5-3 and Technical News­
letters GN28-3067 and CN28-,'3141.

This edition is current with Version 8, "Iodification 1, of the IBM System/360
Time Sharing System (TSS/:360), and remains in elIect for all subsequent versions
or modifications of TSS/360 unless otherwise noted. Significant changes or ad­
ditions to this publication will he provided in new editions or Technical Ncws­
letters. Bcfore using this puhlication, refer to the latest edition of IBM System/360
Time Sharing System: Addendllm, GC28-204,), which may contain information
pertinent to the topics covered in this edition. The Addendtlm also lists the
editions of all TSS/360 publications that are applicable and current.

Requests for copies of IBM publications should be made to your IBM repre­
sentative or to the IBM hranch office serving your locality,

A form is provided at the back of this publication for reader's comments.
If the form has been H'movcd. comments may be ad(lressed to IBM Corporation,
Time Sharing System!:l60 Programmin!.(Publications, Department 6·n, Neighbor­
hood Road, Kingston,)i. Y. 1240L

©Copyright International Business ~lachines Corporation 19G7, 1968,1970, 1971.

This publication is a guide to the facilities of the IBM

System/360 Time Sharing System for the user of IBM

FORTRAN IV. It is divided into three parts.
Part I is an introduction to the IBM System/360 Time

Sharing System, directed to the user of the FORTRAN IV

language. It contains basic information needed for ef­
fective use of the system and all of the information
needed for effective use of Part II of this manual.
Readers already familiar with the time-sharing system
might profitably scan Part I and go directly to Part II.

Part II is a set of annotated examples. They begin
with fundamental operations, such as logging on, and
in succeeding examples progress to increasingly sophis­
ticated concepts. The examples reproduce and com­
ment on the user-system dialog as it would appear
at a terminal with the exception that specific system
response messages are not identified. The examples
may be read for instruction; they may also be used as
models for accomplishing common tasks.

Part III is a set of appendixes containing reference
material for users who may need detailed information
about the system.

:Much of the material in the introduction and the
appendixes duplicates or summarizes information in
the examples (Part II) and other TSS!~()O publications.
Some material is unique, such as Appendix C, which
gives guidelines for efficient programming and a dis­
cussion of the effects of compiler optimization on the
use of the program control system (pes).

Prerequisite Knowledge
Readers should be familiar with the IBM FORTRAN IV

language, since this book does not describe the lan­
guage, but rather describes the use of the language in
the TSS/360 system.

Preface

The FORTRAN user will find the language specified in
these publications:

IBM System/360 Time Sharing System: IBM FOR­
TRAN IV, GC28-2007

IBM System/360 Time Sharing System: FORTRAN
IV Library Subprograms, GC28-2026

If additional kno\vledge of the time-sharing system
is needed, the following publications should be re­
ferred to:

IBM System/360 Time Sharing System: Concepts
and Facilities, GC28-2003, provides a broader
system survey than does this manual's introduc­
tion.

IBM System/360 Time Sharing System: Command
System User's Guide, GC28-2001, describes the
entire command language, including the program
control system.

IBM System/360 Time Sharing System: System Ales­
sages, GC28-20:37, lists all of the messages pro­
duced by the system.

IBM System/360 Time Sharing System: Terminal
User's Guide, GC28-2017, gives details of the
facilities and operations of the various terminals
supported by TSS,i360.

IBM System'360 Time Sharing System: Linkage
Editor, GC28-2005, describes the linkage editor.

FOHTRAN programmers who wish to use assembler
language subroutines will need to be familiar with:

IBM System/360 Time Sharing System: Assembler
Language, GC28-2000

IBM System/360 Time Sharing System: Assembler
User Macro Instructions, GC28-2004

Part I. Introduction
The System
Identifying You to the System
Conversational Use of the System

Conversational Task Initiation
SYSIN and SYSOUT
Virtual Storage
Sharing Time
System Catalog

Terminal Session Activity
Entering Commands
Compiling and Running a Program
Checking Out and Modifying Programs.
Planning Problem Program Input/Output
Specifying TSS/360 Problem Program 110
Data Sets with Virtual Storage Organization
Physical Sequential Data Sets
Generation Data Groups
Data Set Definition
Cataloging and Uncataloging Data Sets
Using System Storage
Protecting and Sharing Data Sets
Maintaining Program Libraries
Copying, :\1odifying, and Erasing Data Sets

Conversational Task Termination
N onconversational Use of the System

Nonconversational Task Initiation
l'\onconversational Command Procedure Processing
Nonconversational Task Termination

Mixed Mode Use of the System
Remote Job Entry

Command Directory

Part II. Examples
Example 1: Initiating and Terminating a

Conversational Task
Example 2: Compilation and Correcting from

the Terminal
Example .3: Compilation and Correction from

the Terminal.
Example 4: Compile and Run
Example 5: Correcting and Recompiling a Prestored

Example
Example
Example
Example
Example
Example
Example

Source Program
6: Writing a Data Set and Printing It
7: Reading and Writing Cataloged Data Sets
8: Multiple Compilation Before Execution
9: Use of PCS Immediate Statements

10: Use of PCS Dynamic Statements
11: Input and Output on Tape
12: Conversational Initiation of

Nonconversational Tasks
Example 13: Preparing a Job for Nonconversational

Example
Example
Example
Example

Processing
14: Storing DDEF Commands for Later Use.
15: References to Subroutines
16: Entering Data for Later Use
17: Data Set Considerations when Interrupting

a FORTRAN Execution
Example 18: Sharing Data Sets
Example 19: Manipuation of Several Forms of a

Program
Example 20: Terminal Input of a Pre-Punched Program

for Compilation and Running.
Example 21: Intra-task Carryovers

1
1
1
1
2
2
2
3
3
4
4
4
5
5
6
6
7
7
7
8
9
9

10
12
12
12
12
13
13
13
13
14

19

20

22

24
26

28
30
32
34
36
38
40

42

44
45
47
49

52
54

56

58
60

Contents

Example 22: Survey of System Facilities and Some
Housekeeping Methods

Example 23: Generation Data Groups
Example 24: Tape and Disk Medium Transfers of

Virtual Access Method Data Sets
Example 25: The Text Editor Facility
Example 26: The Text Editor Facility
Example 27: Use of Procedure Definition (PROCDEF)
Example 28: The User Profile Facility

Part III. Appendixes

Appendix A. Use of the FORTRAN Compiler
Entry and Correction of FORTRAN Source Statements

Format of Source Lines
Card Format Line (Both Nonconversational and

Console Card Reader)
Character Sets - Card Format
Keyboard Format
Character Sets - Keyboard Format
Mixed Card and Keyboard Input

Effici('nt Correction Techniques.
Entry of Keyboard Source Statements for Later

Punching and Recompilation .
Compiler Diagnostic Action
Compiler Options and Listings Produced

FORTRAN Parameters
Explicitly Defaulted
Implicitly Defaulted

Structure and Description of Compiler Listings
Heading Page
Source Program Listing
General Description of Output Module Listing
Default Option Listing
Detailed Description of Output Module Listing
Description of PSECT Listing
Description of Table of Initialized Variables
Description of Symbol Table Listing.
Description of Cross Reference Listing
Description of Storage Map Listing
Destination of Compiler-Produced Listings

Conversational Tasks
Nonconversational Tasks

FORTRAN" IV Library Subprograms: Indirect
References
Reference to Subroutines

Destination of Output
Compiler Restrictions

Appendix B. PCS and FORTRAN Object Programs
General
Commands and Statements
Sequence of Operation

Conversational Mode
Nonconversational Mode

Notation
Directives
Operators
Symbols

FORTRAl\ Statement Numbers
Subscripted Symbols

Constants

62
65

67
68
69
71
72

74
74
74

74
74
74
75
75
76

78
78
80
80
80
80
82
83
83
83
83
85
87
89
90
91
91
92
92
92

92
92
93
93

97
97
97
97
98
98
98
98
98
99
99

100
100

Expressions
Arithmetic Expressions
Logical Expressions

Ranges
Commands

QUALIFY Command
AT Command
DISPLAY Command
DU~IP Command
IF Command
REMOVE Command
CALL, GO, BRANCH Commands
SET Command
STOP Command

PCS DiClgnostics
Dimension Errors
Range Errors
Program Interruption
Dummy Arguments

Appendix C. Programming Considerations
Object Time Efficiency

Object Code Optimization
Compiler Optimintion

Efficient Use of FORTRAN Statements
Use of Linkage Editor to Improve Object Time

Efficiency
Use of Dynamic Loader to Improve Object Time

Efficiency
Use of Control Section Packing to Improve Object

Time Efficiency
Effect of Compiler Optimization on PCS Usage

Multiple Executions
Data Definition Considerations.
Linking COM:\ION between Multiple Executions

Program Libraries
Program Library List Control

Substituting FORTRA;\ IV-Supplied Subprograms
Sharing Libraries

Recovering from Errors when Dynamically Loading
Shared Code (PUBLIC) Considerations
System Naming Rules

User-Assigned Names
Reserved Names

External Symbols
Reserved Names Associated with Data Sets

Compiler-Assigned Ntunes
Miscellaneons Programming Considerations .

Floating-Point Computations
Object Program Interrupt Provisions
STOP IPA USE/RETURN Differences
Link-Editing FORTRAN Pro,grams
Use of RUN Command and Call Statement with

FORTRAN Subprogram ~[odule Names
Initial Content of FORTRAN Variables

Appendix D. Assembler Language Subprograms
FORTRAN Object Program Structure
Subprogram References

Proper Register Vsage
Reserving a Parameter Area
Reserving a Save Area
Variable~Length Parameter Lists

Types of FORTRAN Calls
Linkage between FORTRAN and Assembler

Language Programs
CALL where the Argument is a Variable Name
CALL where the Argument is a Subprogram Name
Using Data in COMMON
Refe;ring to Variables in an Array.

100
100
101
101
101
101
101
102
102
103
103
104
104
10.5
105
105
105
105
106

107
107
107
107
108

109

llO

110
110
111
111
III
112
112
11.3
113
114
115
116
116
116
116
116
116
117
117
117
117
118

118
118

119
119
119
120
120
120
120
121

121
121
122
123
123

Appendix E. Specification of Data Set
Characteristics 124
Data Set Creation and Structure 124

Access Methods 124
Virtual Access Method 124
Physical Sequential (1'S) 125

Data Set Records 126
Variable-Length Format 126
Fixed-Length- Format 126

FORTRA?\ Records 127
Formatted Rccords 127
l\AMELIST Records 129
Onform:ltled Records 130

Summary of FORTRAN Data Set Formats 130
FORTRAI\' Operations on Data Sets 130

Generation of New Data Sets 130
Reading Existing Data Sets 132

From Outside TSS/360 132
From Other than FORTRAN Programs

on TSS/360 132
From FORTRAI\' Programs on TSS/360 132

Exception Handling 132
Positioning Statements and Sequence Rules 133
Execution I/O Error Messages 133

SECURE Requirpments for Nonconversational Tasks 133
Gl1ide to DDEF Commands 134

Basic DDEF Command 134
DD~AME = FTxxFyyy 134
DSORG= 135
DSNAME= 135

Default of DDEF Commands 135
Conversational 135
Noncol1versational 136

Full DDEF Command 136
DDNAME 1~
DSORG 137
DSNAME 138
UNIT 138
SPACE 138
VOLUME 138
LABEL 139
DISP 139
OPTION 139
RET. 140
DCB. 140

DDEF Summary 142
Sample DDEF Commands 142
Error Messages for the DDEF Command 145
Data Set Definition Rules for Langnage Proeessing 145
Data Set Definition Rules for TSSi360 Commands. 145

Appendix F. Aftention Considerations 149
Interrupting Execution 149
Interrupting Privileged Commands 149
Interrupting Nonprivileged Commands and User Programs 149
Attention Levels 149
Using the Program Control System (PCS) \vith

ATTENTION 149
Responding to Attention Interruptions 149

Appendix G. Command Formats.. 151
Operands 151
Metasymbols 151
General Forms 152

Appendix H. Carriage and Punch Controls 162

Appendix I. Sample Program 163
Part One --c Noneonversational 16.3
Part Two - Conversational 165

Figures

FIGURE TITLE PAGE

1 System Catalog 4
2 A Simple Compile and Run 5
3 Data Set Identification, FORTRAN Programs 7
4 Catalog Example 9
5 Sharing of Cataloged Data Sets 11
6 Noneonversational Task Initiation 12
7 FORTRAN Parameters 80
8 Compiler Parameters Default and Prompting

Description 81
9 Heading Page 83

10 Source Program Listing 83
11 CSECT and PSECT Listings for Default Listing

Options 84
12 CSECT Listing 84
13 PSECT Listing 86

Tables

TABLE TITLE

1 Command Directory
2 Compiler Diagnostic Aetion
.3 Destination of Compiler Output
4 Simple Source Program Restrictions
5 Complex Source Program Restrictions
6 Shared Data Set Commands
7 STOP /1' A USE/RETURN Differences
8 Linkage Registers
9 Dimension and Subscript Fonnat

PAGE

14
79
95
9.5
94

114
118
120
123

Illustrations

FIGURE TITLE

14 Table of Initiali7cd Variables.
1.5 Symhol Tahle Listing
16 Cross-Reference Listing
17 Storage '\tap Listing
18 Sa\(' Area Format amI \Vord Content
19 Maximum He cord I,englhs (Bytes)
20 Re('onl Formats - Virtual Sequential
21 Hl'conl Format,; - Virtual Ind{'x Sequcntial
22 Hccorc1 Formats - Physical SeqUt:ntial
2,'3 Basic DDEF Command
24 Full DDEF Command
2.5 Canl Listing for CO:\V
26 Compilation Listing for CONV
27 SYSOUT Listing for CONY
28 Conversational SYSIN-SYSOUT for CO\iV

PAGE

89
89
90
91

120
126
127
128
129
134
1,'37
163
164
165
165

TABLE TITLE PAGE

10 Data Set Format Summary 131
11 DDEF Parameter Requirements by Data

Set Type 143
12 Data Set Definition Hules for Language

Processing 146
13 Data Set Definition Requirements for Commands 146
H Responding to Attention Interruptions 150
1.5 Carriage Control Characters 162
lG Punch Control Characters 162

In the Time Sharing System/360 you can run a pro­
gram conversationally: you and the system can ex­
change information during the entering and execution
of your program.

To compile a program conversationally, you enter it
at a typewriter-like terminal. The system analyzes each
program statement as it is entered. If the system finds
an error, it tells you so and offers you a chance to cor­
rect it. '''hen the whole program has been entered, it
is analyzed as a whole, and again you can correct any
errors the system may find. Then you can execute the
program and monitor its progress. For example, you
can intervene during execution to check on the current
value of a variable, or leave a Hag to the system to
stop execution should a specified condition arise. You
can even make temporary patches to correct program
troubles.

You can also run a program nonconversationally -
for instance, when the program has been checked out
and you know it will run satisfactorily, or when you
cannot stay at the terminal to converse with the sys­
tem. Nonconversational (background) processing in
TSS/360 works much like batch processing in other mM

systems.
You can run in mixed mode - that is, you can start

a program conversationally and s'.Vitch to noncon­
versational processing. Once a program is running
nonconversationally, however, you may not switch
back to conversational processing.

The System

Tss/36o is a special set of programs that has been de­
signed to make it easier for you to use a computer:

• A supervisor program controls the overall operation
of the system, and provides the time sharing en­
vironment that lets a number of users employ the
system concurrently.

• A group of service routines perform program control
and data management functions for each user, as
well as for the system.

• A third set of programs allows you to compile and
develop your problem programs.

This publication explains how to use these programs,
without involving you in their structure or their de­
tailed internal operations.

Part I: Introduction

Identifying You to the System
Before you first use TSS/360 you must be granted access
to the system by either your system administrator or
your system manager.1 They, in effect, join you to the
system by storing the following information about
you:

• User Identification (userid) - a code that uniquely
identifies you to the system.

• PasstDord - a code word used in validating your
attempt to get on the system under the above userid.
The password is a further protection against un­
authorized use of the system or unauthorized use of
your data sets or charge number.

• Charge Number(s) - account number(s) against
which your use of the system is charged.

• Priority - a code indicating the relative priority of
your work in the system.

• Privilege Class - a code identifying you as a user,
i.e., an individual who can employ the special set of
commands reserved for users (as opposed to the
commands reserved for, say, the operator).

From the information supplied by your manager or
administrator, the system can recognize you, and
validate your use of the system when you wish to be­
gin processing. This information remains in the system
until your system manager or administrator withdraws
your right to use the system.

Conversational Use of the System
In conversational processing, you communicate with
the system by means of a terminal. The terminal is a
typewriter-like device. One type, the IBM 2741, is an
IBM Selectric typewriter specially equipped for termi­
nal use; another type, the IBM 1050 System, can in­
clude both a typewriter and a card reader. With the
1050 you can enter input into the system via the key­
board or the card reader. Your terminal may be lo­
cated at the computer installation or at a remote loca­
tion. In any event, all terminal operation is much the
same: you enter a command directing the system to do
certain work, the system responds, you enter another
command, etc. You don't have to be an expert typist;
correcting typing errors is a straightforward process, as
shown in the examples.

1If you are interested in additional details on system management and ad­
ministration, refer to Manager's and Adrninistrator's Guide.

Part I: Introduction 1

You will find that you do not require extensive com­
puter training to use TSS/360. You must know three
things:

• The procedure for setting up your terminal for oper­
ation. This is a matter of setting a few switches. This
manual does not discuss the procedures and settings
for the various terminals - see Terminal User's
Guide or ask someone to show you the correct pro­
cedure for setting up your terminal.

• The TSS/360 FORTRAN IV Language, the lan­
guage in which you express your problem-solving
procedure. This language is used for illustration
throughout this publication; it is explained in detail
in IBM FORTRAN IV. In TSS/360, you also have a
variety of mathematical and service subprograms
available for your use. These are described in FOR­
TRAN IV Library Subprograms.

• The TSS/360 Command System, involving the com­
mands you win use to converse with the system.
Almost every command is shown in the examples
in Part II of this manual. Many typical uses are
shown, but not every use of every command. Should
you need more information than is in the examples
or the appendixes, consult Command System User's
Guide, which describes the commands in detail. The
commands are explained briefly at the end of this
introduction.

In conversational mode, you engage in dialog with
the system. The system responds to your requests,
confirms actions, and informs you of any errors.
Complete details on system response messages are
presented in the System Messages publication.

The work done between logging on and logging off
is called a task. You may run one or many programs as
part of a single task. The work you do on a task at a
terminal is called a terminal session. Since a task may
begin conversationally but end nonconversationally,
task is not necessarily synonymous with terminal
session.

Conversational Task Initiation

You use the following procedure to initiate conversa­
tional processing:

1. Make certain the terminal is set up for operation
under TSS/360 (proper switch settings, power on, etc.)

2. Either:

2

a. Dial up the system, if it has a telephone-like
modulator/demodulator (modem). The phone
number is determined by your installation.

b. Press the attention button on the terminal, if the
terminal is "hardwired" (i.e., directly connected
to the computer).

'''hen you press the attention button or dial up the
system, you begin the log-on process and set up a
conversational task in the system. If you have been
granted access to the system, and identify yourself
properly in the LOGON command in accordance with
the parameters set up for you at join time, the system
completes the initiation of your task (If you cannot
log on, you should notify your system manager or
system administrator.)

SYSIN and SYSOUT

From your point of view, initiating a task means that
the system has prepared itself to perform work for you.
You can now converse with the system as if you alone
were using it. You have unique communication paths
in the system, permitting it to read from and write to
your terminal independently of all other tasks. You
can thus define work for the system by issuing com­
mands, and the required programs and data will be
loaded into main storage and processed, as you spec­
ify, regardless of the work other users may be simul­
taneously specifying.

Your task's input to the system contains the se­
quence of commands you issue; this sequence is caBed
SYSIX. Your system input stream can also include data
to he prestored in thc system. or actual input records
to an executing program. '''hen you are in the con­
versational mode, your terminal is your task's SYSIN

device. YOUI' task's system output stream, called SYS­

OUT, is directed to the terminal. It consists basically of
system messages; it may also contain output from your
programs if you so choose. Because the terminal is thus
a combined SYSIN/SYSOUT device, the terminal listing
wi11 contain a mixture of the two system streams.

You and every other user have your own unique
SYSIN/SYSOUT. You also have the fonowing:

• Your own virtual storage space
• A scheduled time interval in which your task is

executed

• Your own catalog

Virtual Storage

In TSS/360, you are not directly concerned with the
physical limitations on main storage. Special address­
ing techniques, internal to the system, provide you
with a storage capacity theoretically equal to the total
range of addresses that can be specified in an instruc­
tion. The system's addressing techniques effectively
combine sections of main and secondary storage,
creating a virtual storage area in which your task
operates. Your installation will inform you of specific
virtual storage limits on your problem programs and
data.

Although you have large virtual storage capacity,
efficient programming is important; performance can

be degraded by excessive demands on the available
storage at an installation.

When you log on, the system routines essential to
your task are loaded into your virtual storage. These
routines are a permanent part of your virtual storage,
i.e., they remain there throughout your task.

You obtain other system routines by issuing com­
mands and executing programs. These routines are
loaded into, and unloaded from, your virtual storage
on a demand basis.

You control the residence in your virtual storage of
the linkage editor and your problem programs. (Refer
to the LOAD, LNK, RUN, CALL, GO, and UNLOAD com­
mands in the table at the end of this introduction.)

An important aspect of TSS/360 virtual storage man­
agement is the protection it provides. Each user has
his own storage space for program execution. Another
user cannot interfere with your executing programs,
nor can you interfere with his, because neither of you
can refer to the other's virtual storage space.

Sharing Time

Others may be using the system at the same time you
are. The system appears to be serving each of you
exclusively because it is repetitively giving each of you
a time slice, or an interval, during which all the facili­
ties required by your task, including computer execu­
tion time, arc in fact exclusively yours. Unless the sys­
tem is overloaded, its speed will allow it to do your
work as well as that of other users without the in­
tervals being apparent to you.

TSS.360 can also operate with several terminals
sharing a single task. This mode of operation is not
discussed in this publication; refer to IBM System/360
Time Shari/!;!, System: I11ultitel'mina7 Task Program­
ming and Operation, GC28-2034 for a description.

System Catalog

Conceptually, the system catalog is very much like the
catalogs used in libraries. It is an index that points to
items that reside elsewhere. You use it initially to re­
cord the location of data, so that you don't have to
keep track of where the data is located and so that you
can later retrieve the data by its name alone. The
structure of the catalog protects your data sets from
being accessed by other users, unless you specifically
permit others to share them.

To understand the structure and significance of the
system catalog, you must become familiar with the
basic concepts of data set, data set name, and data set
residence.

A data set is a named collection of one or more rec­
ords. For example, all of the following are data sets:
a source program, a library of compiled programs, the

collection of FORTRAN input records needed by a pro­
gram.

A data set name uniquely identifies a data set. It is in
the form of one or more symbols separated by periods.
For example, ROCKET.TESTFIRE.APRIL14. Each symbol
can consist of from one to eight alphameric characters,
the first of which must be alphabetic. Starting from the
left, each symbol of the name is a category within
which the next symbol is a unique subcategory. A
fully qualified name identifies an individual data set.
A partially qualified name identifies a group of data
sets. For example, if ROCKETS.TESTFIRE.APRIL14 is a
fully qualified data set name, ROCKETS and ROCKETS.
TESTFIRE are partially qualified names identifying
groups of data sets, one of which is ROCKETS.TESTFIRE.
APHILI t. The group ROCKETS.TFSTFIRE is a subgroup of
nOCKETS.

For example, examine the gross structure of the sys­
tem catalog illustrated in Figure 1, and note the fol­
lowing:

1. The system catalog consists of a master index and
sets of subordinate catalog entries. It is, in effect, a
collection of separate catalogs. The system has its
own catalog and each user has his own catalog.

2. The various catalogs are an index of the data sets
associated with them. Data sets that are to be cata­
loged must reside on one or more direct-access or
magnetic tape volumes. A volume can be a remov­
able disk pack or a tape reel. Some direct-access
volumes are public, meaning that they are perma­
nently mounted while the system is running, and
they can be accessed by all users. Some direct­
access volumes, and all magnetic tape volumes are
private. This means that they are not mounted on
the system until needed, that they are demounted
when no longer needed, and that they can be used
by only one user at a time. Data sets on either pub­
lic or private volumes can be cataloged.

\Vhen the system was generated at your installation,
all catalog entries for system data sets were created,
including SYSLIB, which contains the system routines
that are loaded on demand - for example, the FOR­
TRAN-supplied subprograms.

Your master index entry in the ~ystem catalog is
created when your system manager or administrator
joins you to the system. At that time, your user identi­
fication is placed in the master index and another
special entry is created in your catalog for a data set
called your USFRLIB. Your USERLIB is your own private
library for object programs.

Except for USERLIB, you control all entries in your
catalog by the way you name your data sets and by
the way you use the cataloging and uncataloging fa-

Part I: Introduction 3

Master index
L-__ T_S_S"",·.··'_.·'_'t'_'. __ ..l-___ u_"--,e'_<d_l __ ---1 ___ u_s_e_r;c-2 ___ L-___ U_5C,.'._;d_3 __ -->11 L ___ u_se,r;_u_n __ --'

Other Catalog
Enti-;es

DoJ-o Sets

Catalog
Entries

for
Systern
Program

I
!

Figure 1. System Catalog

Catalog
Entries

for

User;

Octo Set':;

cilities of the system. Some of these facilities are for
entering, removing, and renaming catalog entries.
Others are for indicating which data sets can be
shared by others and to what extent. These facilities
are described later in this section. The key points here
are these:

• Your catalog exists in the system from the timc you
are joined until the time your access privilege is
withdrawn.

• Cataloging data sets is the only means of retaining
data sets on public volumes from session to session.
It also simplifies later use of those data sets.

til You can share your programs and data with others
or not as you wish.

Terminal Session Activity

Entering Commands

To enter commands, you simply type in the required
characters and press the return key on the terminal.
\Vhat you type in, of course, depends on what you
wish to do and the content of the commands required.
Each command has an operation part specifying what
is to be done (as RUN), and each may have one or
more operands that qualifies the operation (as LOC=

followed by the name of your object program, say
:\{AI;'>i. This qualifies the operation to mean "execute
my object program, MAIN").

4

Catalog Catalog Catalog

Entrie5 Entries EnTI Ie:. . . .
for fo, for

Use'2 Use'3

User
n

Dal·o Sch Dota Set:; Data Seh

If you enter an incorrect command, the system
issues a message which informs YOll of the error. The
system also issues messages that give you information
helpful in assessing the system's activity relative to
your task. System messages are issued <1utomaticaHy
as the conditions causing them arise.

Compiling and Running a Program

Suppose you wanted to simply compute sine A, for a
single value of A, and print the result at the termi­
naL Yon might design the following source program to
do this:

A=.2
SINE=c SIN (A)

10 FORl\fAT ('THE SINE OF' ,F7.4, 'IS' ,F7.4)
WRITE(G,lO)A,SINE
STOP
E:'-JD

You cOllld then compile and nm that program by
thc conversational task illm!rated ill Figure 2. The
LOCO" and LOCOFF commands are used to initiate and
tcrminate the task. FTN initiates FORTRAN compiler
processing. To control the compilation you specify a
number of parameters: name of the compiled program,
listings YOll want, etc. The compiled program is auto­
matically stored in VOI[r USERLIB as an objcet program
module. You execute it by the CALL or HUN command
to obtain your resn1t.

1. Press the attention button System makes you an
or dial up system. active user.

log on 2. Issue a LOGON com-

mand.

1. Issue a FTN command System compiles your
(FTN is the name of the source program; it fhen
FORTRAN compiler). stores your object pro-

2. Enter the parameters re- gram for you (in your

Compile
qui red to control the USERLlB).
compilation (including the
name by which you want
to identify the object pro-
gram).

3. Enter your source pro-
gram.

1. Issue a CAll PGM com- System retrieves your
mand (where PGM is abject program, exe-

Run
the name you assigned cutes it, and prints the
your object program at result on your terminal:
compile time above). THE SINE OF 0.2000 IS

0.1987.

1. Issue a LOGOFF com- System terminates your
log off mand. task and releases your

terminal.

Figure 2. A Simple Compile and Run

In TSS/360 your source programs can use many of the
system-supplied subprograms. For example, in the pro­
gram illustrated in Figure 2, you used the SIN sub­
program. These programs reside in SYSLIB and are
available during execution when your program in­
vokes them. Similarly, you can design and compile
your own FUNCTION and SUBROUTINE subprograms,
store them in your USERLIB (or some other library)
and use them during later program executions.

Checking Out and Modifying Programs

The FORTRAN compiler includes conversational prompt­
ing and diagnostic facilities that assist you in debug­
ging your SOl).rce program. It also includes optional
facilities for storing and cataloging your source and
listing data sets, and for including an Internal Symbol
Dictionary (ISD) in your object module. An ISD allows
you to make full use of the Program Control Sys­
tem (pes).

You can use PCS commands and statements to per­
form one, or any combination, of these:

1. Request display of data fields and instruction loca­
tions within your program, specifying these items
by their symbolic names as used in the source lan­
guage program.

2. Modify variables within your program, specifying
these variables by their symbolic names and speci­
fying the new value for each variable.

3. Specify the statements within your program at
which execution is to be stopped or started. When
program execution has been stopped, you may in­
tervene, as described in items 1 and 2, before you
direct resumption of program execution.

4. Specify the statements within your program at
which the actions described in items 1 and 2 are to
be automatically performed.

5. Obtain the values of your program's variables at a
specified point in its execution, with the variables
formatted according to their types.

6. Establish logical (true or false) conditions that
allow or inhibit the actions described in items 3,
4, and 5.

The use of Program Control System facilities does
not impose any restrictions on your source coding. In
general, the use of program control facilities will
greatly simplify the preparation of source programs,
because many functions previously source-coded can
conveniently be made available after compilation. pes
is discussed in greater detail in Appendix B.

Planning Problem Program Input/Output

In most TSS/360 installations, a problem program does
not communicate directly with unit record devices
(card reader/punches and printers). You organize
input/output data flow as follows:

1. Prior to program execution, you store input data in
the system on a direct-access device. If the data is
the output of a previously executed program, you
can simply write it on public storage during that
program so that it will be retained for subsequent
use. If the data involved is new input, you can pre­
store it using the fonowing facilities:

• Text editor facilities

• DATA command
• Operator procedures, involving your card input

deck or magnetic tape reel

2. During program execution, you will generally READ
input data from the direct-access device on which
you stored it; and you will WRITE output data to a
direct-access device (for later actual output, follow­
ing execution). However, in TSS/360, you also have
the following additional facilities for input/output
during program execution:

Input: You can READ a record dynamically from
your terminal, READ input data from the system's
tape devices; or SET data in your program (based
on program conditions) if you like.

Part I: Introduction 5

Output: You can \VRITE a record to your terminal,
WRITE output data on magnetic tape; and PAUSE

in your program, print out data or a message at
your terminal, and return control to the terminal
for insertion of additional commands and then
continue processing.

You can also STOP your program and DISPLAY the
6nal results of its computation.

3. Following execution, you can print out or punch on
cards the program output you stored on a direct­
access device, using the PRINT and PUNCH com­
mands, respectively. You can also produce a mag­
netic tape for subsequent printing by issuing a
WT (write tape) command.

Since you can communicate with your programs
during their execution, you can design programs that
do not require use of conventional I/O devices; all I/O

can be achieved via the terminal. For example, you
can design your programs so that when predetermined
events occur, intermediate results are printed out at
your terminal. You can then decide how you want to
proceed: supply additional or different data at that
time; change the sequence of program execution; stop
the programs; examine key 6nal results prior to initia­
ting their final printout; etc.

Specifying TSS/360 Problem Program I/O

In TSS/360, to specify problem program I/O activity,
you must consider both of the following:

l. Use of appropriate FORTRAN I/O statements in the
source program to indicate the data transfer or I/O

control functions.

2. Use of (or omission of) DDEF (define data) com­
mands to identify the name, location, organization,
etc., of the data sets associated with the FORTRAN

I/O statements.

Data Transfers: You use the FORTRAN READ and
WRITE statements to transfer data to and from your
program. You should regard a data set as a continuous
string of data which you have subdivided for separate
processing by your FORTRAN program; the subdivisions
are termed FORTRAN logical records. FORTRAN logical
records are defined by one of the following:

1. A FORMAT statement and a list referred to by an I/O

statement (formatted records).

2. An I/O list appearing in an I/O statement that doe5
not contain a reference to a FORMAT statement (un­
formatted records).

6

3. A NAMELIST name appearing in an I/O statement
(NAMELIST records).

You define the overall relationship of a data set's
records by specifying the data set's organization. (You
do this in the DDEF commands discussed later in this
section.) In TSS/360, there are two fundamentally dif­
ferent types of data set organizations: virtual storage
data sets and physical sequential data sets.

Data Sets with Virtual Storage Organization

Data sets with a virtual storage organization can re­
side only on direct-access volumes. You process these
data sets on the basis of the records they contain. Vir­
tual storage data sets can have any of these specific
organizations:

1. Virtual sequential: This is the standard FORTRAN I/O

data set organization; the term vs is used to describe
it. In a vs data set, the order of the logical records
is determined solely by the order in which the rec­
ords were created. In creating this type of data set,
you provide the system with a stream of records.
The system organizes the data into pages, and stores
the data set on a direct-access device. After the
data set has been created, you can read back the
records in the order in which they were created
merely by requesting one record after the other.

2. Virtual index sequential: A data set with this or­
ganization is referred to as a VI data set. As a FOR­

THAN user, you will probably use VI data sets only
when interfacing with programs written in assem­
bler language that require this organization. In a
VI data set, the records are organized in sequence
based on a data key associated with each record.
During FORTRA" program execution, you can create
and read VI data sets sequentially, but you cannot
use the random-access capabilities of this organiza­
tion.

There are two special types of VI data sets - line
data sets and list data sets. A line data set is one
that is organized by line number, where each line
is a record and is prefixed with the line number as
its key. Source programs are line data sets. You can
inspect and display these data sets by line number
using the LINE? command. Other commands enable
you to effect replacements, insertions, and deletions
on line data sets. Note: Records in a line data set
must be variable-length (format V); fixed-length
(format F) records are not permitted.

A list data set contains the listings produced as
output by the system's language processors; it is
organized by line number, where each print line is
a record and is suffixed with a line number as its key.

In conversational mode, printing of language-proc­
essor listings is not automatic; you can have a listing
printed only if you issue a PHI NT command,

3. Virtual Partitioned. A virtual partitioned data set,
referred to as a vp data set, is used to combine in­
dividually organized groups of data into a single
data set. Each group of data is called a member,
and each member is identified by a unique name.
Program module libraries are a good example of a
vp data set. Your USERLIB is organized this way, and
the compiled program modules you store in USERLIB

are its members.
The partitioned organization allows you to refer

to either the entire data set (via the partitioned
data set's name) or to any member of that data set
(via a name consisting of the name of the data set
qualified by the member name in parentheses).

The partitioned data set may be composed of
vs or VI members or a mixture of both. Individual
members, however, cannot be of mixed organiza­
tion.

Physical Sequential Data Sets

Data sets with a physical sequential organization can
reside on either direct-access or magnetic tape vol­
umes. The logical records in these data sets have an
organization which is determined solely on the basis
of their position relative to the beginning of the data
set. \Vhen these records are processed in Tss/360, the
block is used as the unit of transfer to and from the
device involved. A block can consist of one or more
logical records. Data sets with physical sequential or­
ganization are called PS data sets. You will use PS data
sets each time you process magnetic tape in your
programs. Volumes containing data sets with PS or­
ganization can be interchanged among TSS/360 and
IBM System/360 Operating System installations.

Generation Data Groups

The cataloging facilities of TSS/360 provide an option
that assigns numbers to individual data sets in a se­
quentially ordered collection, thereby allowing you
to catalog the entire collection under a single name.
You can distinguish among successive data sets in the
collection without assigning a new name to each data
set. Because each data set is normally created from the
data set created on the previous run, the new data set
is called a generation, and the number associated with
it is caned a generation number. The entire structure
of data sets of the same name is called a generation
data group (CDC). You can refer to a particular gener­
ation by specifying, with the common name of the
group, either the relative generation number or the
absolute generation name of the data set.

Data Set Definition

In a FORTRAN I/O statement, the data set referred to is
identified by an unsigned integer constant or integer
variable whose value may be any number from 1 to 99.
The relationship between a data set reference number
and the actual data set is provided in the DDEF com­
mand. This I/O technique provides you with a degree
of device independence; you do not need to change
your program if the residence of data sets it processes
changes from one execution to another.

The basic method used to identify FORTRAN data sets
is illustrated in Figure 3. The system first relates the
data set .reference number of the READ or W"RITE state­
ment to the ddname operand of the corresponding
DDEF command. For FORTRAN data sets, the ddname
operand of the DDEF command is always of the form
FTXXFYYY, where IT indicates FORTRAN, xx is the data
set reference number, and yyy is a FORTRAN sequence
number used to differentiate data sets, i.e., in a se­
quence of data sets which are to be referred to by the
same data set reference number during the course of
program execution (at anyone time, the data set
reference number refers to one data set only). Having

General

READ or WRITE Statement

dato set reference number R
DDNAME~ FTL.:J FYYi

DDEF Command

DSNAME = I dsname I
~ in data set label

Data Set

Examole

200 WRITE(-;; , lOlA, SINE

DDEF FT 06 FOOl, VS,DSNAME = OUTPUT
'"'-

OUTPUT ;5 the

dsname of the dato set to be written

Figure 3. Data Set Identification, FORTRAN Programs

Part I: Introduction 7

found the corresponding DDEF command, the system
then obtains the name of the data set from the dsname
operand of that DDEF command. Other information in
the DDEF command (or already in the system, if the
data set is cataloged) is then used to determine such
things as: data set residence, i.e., where the data set
is (input data set) or is to be placed (output data
set); organization of the data set; routines necessary
to process the data set; etc.

All object time FORTRAN data sets except those in
SYSIN and SYSOUT require a DDEF command. In both
conversational and nonconversational modes, if you
omit a DDEF command normally associated with a READ

or ,VRITE statement, the system will default to SYSIN

or SYSOUT. There are also FORTRAN statements whieh
automatically assume SYSIK or SYSOUT (STOP, PAUSE,

and several I/O statements from previously imple­
mented FORTRA~ systems that were retained in TSS/360

FORTRA~). In a conversational task, sysm and SYSOUT

involve your terminal. In a non conversational task, you
define the SYSIN data set (or submit it to the operator)
and the system defines SYSOUT.

The DDEF command has other uses besides defining
the data sets llsed during execution of a program.
You can also use it to define the data sets used by
certain commands, to define job libraries, to define
a special data set (called PCSOUT) for the DU:\lP pro­
gram checkout command, and to concatenate input
data sets (i.e., relate them so that several different
data sets can be read in as if they were a single data
set) .

Any DDEF command you issue during a task re­
mains in force throughout the task, unless you enter
a RELEASE command for that data set. The RELEASE

command is the opposite of the DDEF command: the
DDEF command sets up task control information for
the data set; the RELEASE command removes that in­
formation.

The DDEF commands used in a session or in a com­
mand procedure need not be issued directly during
the session or be included explicitly in the command
procedure. One, or more, or all, of the DDEF commands
needed can be made available by using the CDD (call
data definition) command.

The CDD command is used to retrieve one or more
DDEF commands from a data set; you must supply the
name of the data set. If this is all you specify, the
system assumes that you want to use all the DDEF

commands in the data set. If you want to use only
selected DDEF commands, you identify each by its
ddname. You should prestore frequently used DDEF

commands in a data set and call them in this fashion
wherever possible. COD can be used in either conver­
sational or nonconversational tasks.

8

In a conversational task, the system analyzes the
data set's requirements at the time the DDEF command
is issued. It will thcn attempt to allocate the required
resources (and, for private volumes, issue any mount­
ing messages that are required) at that time. If the
required space cannot be allocated, or the specified
volumes cannot be mounted, the system will inform
YOll, thereby allowing you to proceed with other work.

The DDEF command is illustrated in the examples,
and is discussed in detail in Appendix E.

Cataloging and Un cataloging Data Sets

You can catalog and un catalog data sets in several
ways. Sometimes cataloging is automatic; in other
cases, you must issue a CATALOG command to catalog
the data set. All data sets with virtual storage organi­
zation that reside in public storage are automatically
cataloged when they are created.

The CATALOG command sets up the catalog entry for
the named data set. For example, suppose you are
tlser .T0H"-'DOE and you want to catalog a data set
named ENG.PHYSICS.TEST2. If you issue a CATALOG com­
mand naming that data set, the system establishes en­
tries in your catalog, as shown in Figure 4.

1. From your user identification, the system locates
your catalog in the system catalog (via the master
inclex) .

2. It then sets up any indexes needed for each level
of qualifier in your data set name. (Some of these
may already exist.)

3. When it has established the lowest level index (in
this case, TEST2), it records in the catalog the specif­
ic volume on which the beginning of the data set
is located.

The CATALOG command can also be used to alter
the entry of a previously cataloged data set; i.e., you
can rename a cataloged data set. If you employ genera­
tion data groups (CDC), you must initially use the CATA­

LOG command to set up the structure for the GDG:

name. number of generations to be retained, disposi­
tion of old generations when the specified number of
retentions is exceeded, etc. Then yOll can use the DDEF

command to define ne\\' data sets as generation levels
of the CDC, or you can usc the CATALOG command with
the "'EW:\,A:\IE operand to rename an existing data set
as a generation level.

'''hen you catalog a data set, you can specify either
read-only or unlimited access. You can always erase
your own data set, but if you have cataloged it with
read-only access, you cannot write into it, thus ensur­
ing against accidentally overlaying data.

You can use the DELETE command to remove a
catalog entry for a data set if:

'--------------

I - ~ - - - < User CataloG - - - - - ---,
1 • I

I JOHHDO[I ENG : I PAYRl Tl
I I I __ J

I ;
I E~JG ~ICS i I ("EM TI
I
I

-1 PHYSICS
I
I
I
: CCW4R

1
I

T
: TE~J T2

I

- - - j

L-_____ C_O __ '-_AR_, _____ ~

,[STl : I TEST2 ! I:=J
1

DATA SET DESCRIPTOR

L ______________ _

I
I

_-.J

1. You want to remove the catalog entry of H data set
from the catalog without erasing the data set, and
the data set resides on a private volume.

2. You want to remove the catalog entry of a data set
you are sharing from your catalog (because you no
longer have a need to share that data set).

The ERASE command can also be used for uncata­
loging. ERASE removes the catalog entry, and erases
the data set as well if it resides on a direct-access vol­
ume. (Erasing means making the storage space of the
data set available for other use.)

So that you can specify whether you want to be
given one data set name at a time when you enter
either the ERASE or DELETE command, provision is made
to set the value of DEPROMPT (a value contained in
your User Prome) to either YES or NO. If the value was
set to YES, and you specify a partially qualified data
set name, you will be given one data set name at a
time for disposition. If the value was set to NO, all
data sets grouped under this partially qualified name
will be erased or deleted without individual presenta-

Hon. If you specify a fully qualified name, the data set
will be erased or deleted no matter what was specified
for DEPROMPT.

YOIl have the option in certain commands, as PRINT

and PU-"iCH, if a cataloged data set is involved, of speci­
fying whether it is to be erased or not after the output
operation.

Using System Storage

The system assumes that you want storage on a public
volume unless you specifically ask for storage on a
private volume. 'Vhen it is necessary to retain the data
sets in the system, you make the most effective use of
TSS/:lliO by storing your data sets on public volumes.
Public volumes are always mounted and available for
allocation to your task, within the limits of public allo­
cation established for you by your installation.

If you use private volumes, you may need to
wait for devices to become available; in any case, you
must wait for the operator to mount the volume on the
device. Each time a request is made for a device on
which to mount a private volume, the system must
determine whether or not it can honor the request,
based on the current requirements throughout the
system for those devices. If the system cannot alIocate
a private device to your task, one of two actions
occurs, depending upon the operational mode:

• In a conversational task, if the system cannot al­
locate the required space or if the required volumes
cannot be mounted, the system issues a diagnostic
message to you during the execution of the DDEF

command. The system cancels the DDEF command,
returns control to the terminal, and awaits another
command.

• In a non conversational task, the system places your
task in abeyance until aU private devices required
by the task arc allocated. You must include a SECURE

commancl to reserve all devices that will be required
for private volumes during the execution of a non­
conversational task. SECURE mllst appear immediately
after the LOGON command, and only one SECURE com­
mand is allowed for each task. The devices specified
for private volumes will he reserved so that the task
can be executed without waiting for I/O devices; any
waiting that may be necessary to reserve the devices
occurs at SECURE time rather than during execution
time. The SECURE command is nf'ver used in a con­
versational task; it is mandatory only in non con­
versational tasks that include references to private
volumes.

Protecting and Sharing Data Sets

Yon cannot gain access to any data sets other than
your own unless you have system authorization to do

Part I: Introduction 9

so, or you have been given authorization to share them
by another user who owns the data set(s) involved.

A shared data set is one that is cataloged and for
which the owner has issued a PERMIT command. It be­
longs to one user, but may be shared with other
users on any of the fonowing bases:

1. Read-only access: The sharer may read the data
set, but may not change it in any way.

2. Read-and-write access: The sharer can both read
and write to the data set, but he may not erase it.

3. Unlimited access: The sharer, in effect, can treat
the data set as his own; he may thus even erase it.

You issue a PERMIT command to designate other
users who may share your data sets, and to indicate
the level of access those users mav have. You also
use the PERMIT command to withdra~v from previously
authorized sharers the right to continue sharing your
data. Each time you issue a PER~nT command, your
catalog is updated when the task is terminated by
LOGOFF or ABEND. Information on who can share which
of your data sets is stored in your catalog.

If you have been named in another user's PERMIT
command, you must issue a SHARE command before
you can actually access the data sets he has authorized
you to use. To see how this command, is used, assume
that a sharer's user identification is JMC200 and that
he has been permitted to share one data set. The data
set is owned by user TIKP100, and is cataloged by him
under the fully qnalified name ENG.PHYSICS.COMAR.
TEST2. Assume also that the sharer wants to name the
data set E="IG.CHl'::\r.NOTAR.TEST1. He would then issue
the SHARE command shown at the top of Figure 5. In,
response to that command, the svstem would search
the owner's catalog to see if thc prospectivc sharer is
authorized. If he is not, the command is ignored; if he
is authorized, the system places the owner's complete
name for the data set in the sharer's catalog with a
pointer back to the master indcx. vVhencver thc sharer
subsequently refers to the data set by his namc, the
system locates the data set by the search procedure
shown on Figure 5.

To be concurrently accessible by morc than one
task, a data set must be cataloged and must be a
virtual storage data set (vs, VI, or vP).

Maintaining Program Libraries

A program in TSS/360 can consist of one or more object
modules. An object module is the output of a language
processor or the linkage editor (exclusive of the list­
ing). An programs in TSS/360 are stored in object
module form in program libraries, which are vp data
sets. A program consisting of only one object module
is stored entirely within one library; however, if a
program consists of several object modules, those

10

modules may reside in different libraries, depending
on how you store them.

There are four categories of program libraries:

• System library (SYSLIB)

• U sel' library (USERLIB)
• User-defined job libraries

• Linkage editor libraries

SYSLIB is accessible to an users on a read-onlv basis.
USERLIB is the private library assigned to yo~ when

you are joined to the system. This library is auto­
matically built for you and made a part of your cata­
log by the system. USERLIB is thus available each time
you log on. If you do not use job libraries in a task,
all the object modules resulting from your use of
the language processors are automatically placed in
USERLIB. You may wish to restrict your USERLIB to ob­
ject modules that you execute frequently or that you
llse frequcntly in the buildup of other object modules.

The program library list is a defined hierarchy of
program libraries. It is initialized at log-on time, and at
that time co.nsists of USER LIB and SYSLIB. The library
at the top of the list alwavs automatically receives all
object modules resulting· from languag~ processing.
As noted above, if no job libraries are defined, the
library at the top of the list is always USERLIB. How­
ever, you can specify that a job library be added to
the program library Jist to receive the output of the
language processors. You do this by issuing a DDEF
command defining that job library and containing
the OPTION=,TOBLIB parameter. When this command
is executed, the name of that job library is added to
the top of the program library list. That library then
receives all subsequent output of the language proc­
essors until another job library is defined (and it is
placed at the top of the list), or until a RELEASE com­
mand is issued for the first job library. The POD? com­
mand can be used to obtain a list of member names
alias (entry point) names, and other member oriented
data from the task's USERLIB and such cataloged job
libraries as have been established by the user.

In addition to using the program library list to store
object modules, the system also uses this list to control
its order of search when looking for object modules
that must be loaded at execution time. The library at
the top of the list is always searchcd first, then the
next-to-the-top library, etc.; then, USERLIB and, finally,
SYSLIB. By using the linkage editor, you can move ob­
ject modules from one library to another.

Other user-defined libraries may be defined by DDEF
commands that omit the .TOBLIB parameter. They are
not placed on the program library list and cannot be
loaded. They are used principally with the linkage

Issued by
User JMC200 ENG.PHYSICS.COMAR. TEST2

'--------'--~, ----'-----.----'--1
Sharer's Reference to Data Set

Data Set I~ Owner

ENG.CHEM. NOTAR. TE5T]

RKP]OO

JMC's. Us.er Catalog

I --------------

II JMC200 I I ENG ! I
I

I r-=------.-------1
I ENG I I CHEM : I
I I
I ~r_r-------------_r-r--~
I CHEM I I NO TAR : I I ~----------~I~~

r-" i NOTAR ,-I....,.I--TE-ST-]-JJ~I-.,-I--~
I r-=--"-~
I I TE511 RKPIOO. ENG. PHYSICS.COMAR. TE5T2 ' I
L _________________ ~

Figure 5. Sharing of Cataloged Data Sets

Owner's Identification of Dota Set

4

RKP's Us.er Catalog -------------- ---,
I

i RKPlOO I I ENG 1 I

I r----~--·-···-··-~-J
: ENG I I PHYSICS : I
I I
I r-------·--·-
i PHYSICS I I COMAR r I
I]
I r
! c~" I_I_::~ __ ! _I __ T_EST~~ I
~ TEST2 DATA SET DESCRIPTOR

I L ______________ _

Dalo Set Control Block

JOHNDOE. ENG. PHYSICS. COMAR.,
TE5T2

DATA PAGE ~

I DATA PAGE r-

------1 DATA PAGE t-----'
DATA PAGE

DATA PAGE

DATA PAGE

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
~

Part I: Introduction 11

editor. (Refer to Linkage Editor for an explanation
of linkage editor library control.)

Copying, Modifying, and Erasing Data Sets

You can lise the CDS command to make a copy of any
data set (or any member of a partitioned data sct) to
which you have access except data sets whose records
are in undefined format (sec Appendix E), s11ch as
program module libraries. You can also use the com­
mand to renumber the lines of a line data set as it is
being copied. Both the original and copy data sets
must be defined in your task.

You can use the :MODIFY command to insert, delete,
replace, or inspect records of a VI data set, or of a VI

member of a VP data set. You have to identify the
record to be modified (by its key or line number).
You can revie\v modifications, and play hack corrected
lines for confirmation of your changes.

You can use the YV, VT, and TV commands to copy
your data sets, depending on their origin and desired
destination. The Y\' command callses a VA},! data set
to be copied into p11hlic storage. The VT command
causes a "AM data set to be reproduced on 9-track
magnetic tape. The T\' comm:md retrieves and ""vTites
into public storage a data set previously written on
9-track magnetic tape by the VT command.

Yon can usc the ERASE command to enlse data sets
that you own. If you are sharing someone else's data
set, you can remove its entry from your catalog by
isslling the DELETE command.

Conversational Task Termination

To knninate your conversational task, issue a LOGOFF

command. The systpm will then update its internal
accounting tables reflecting your use of the system
during the session.

If you later want to communicate with the system
again conversationally, you must again log on as de­
scribed in the section "Conversational Task Initiation."

Nonconversational Use of the System
There are many applications where you will not re­
quire dynamic communication with the system or with
your problem programs in order to obtain the prob­
!em solutions you desire.

Nonconversational Task Initiation

Figure 6 illustrates the various ways in which you can
llse the system for nonconvcrsational processing.

You can issue the EXECUTE command in a conversa­
tional task to initiate nonconversational tasks. The
EXECUTE command names a cataloged command pro­
cedure that is to be executed. The command pro­
cedure functions as the SYSIN data set for the noncon­
vcrsational task. It must begin with a LOGO"'" command;
end with a LOGOFF command; and, it must be pre­
stored in the system by you so that it can be retrieved
merely by its name. If private devices are required in
the task, a SECURE command must immediately follow
tIle LOGOl'\" command.

You can issue PHINT, PUNCH, and WT commands in
either a conversational or non conversational task.
These commands are, in effect, one-command-proce­
dun's. They initiate nonconvcrsational tasks that trans­
fer data bt'tween a direct-access device and a printer,
card plmch, or tape unit, respectively.

You can also have the operator initiate nonconver­
sational tasks for you. You supply him with a card
deck or magnetic tape; the contents of the deck or
tape depend on what you want done:

• If you \vant to enter data into the system for later
use (i.e., prestore it) you prepare a card deck (or
magnetic tape) with a command procedure of the
following form:

DATASET descriptor card
Data cards
%ENDDS card } card images

If you do this, the task set up by the operator will
transfer data from the input medium to a direct-ac-

Nonconversotional Processing

In your conversational

task, issue:

• BACK command

• EXECUTE command
• PRINT command
• PUNCH command
• V~iT command

Figure 6. Nonconversational Task Initiation

12

i
In your nonconver5otiQnoj
task, issye~-~---

• PRINT commano

• PUNCH comMand

• WT command

Have the operator:

• Issue R T command

• Initiate card reoding

cess device and catalog it so that it is later available
to you by its name.

• If you want to enter a command procedure, you
prepare a card deck as follows:

LOGON card
Other commands & data cards
LOGOFF card

The task that is set up by the operator will execute
the commands in the command procedure you have
defined.

In all of the ways in which a nonconversational
task is initiated, the system action is basically the same:

1. The request to set up the nonconversational task is
enqueued and assigned a batch sequence number.

2. The individual requesting the task (you or the
operator) is sent the batch sequence number (to
later permit that individual to CANCEL that task if
he wants).

3. The requested task is then executed when the re­
quired system resources become available.

Nonconversational Command Procedure Processing

When you use the EXECUTE command to initiate a
nonconversational task, the commands are taken one
at a time from the cataloged command procedure
(SYSIN data set) you specified. The system specifies
the task's SYSOUT. You can read SYSIN input in your
programs, in a manner similar to conversational mode,
if the data is properly positioned in the SYSIN data set.
Similarly, you can write to SYSOUT from your program.
Because there is no prompting in nonconversational
processing, you must specify every command com­
pletely, you must take care to have your commands in
proper sequence, you must include a SECURE command
to obtain any devices needed for private volumes, and
you must catalog any data sets you want to keep.

In nonconversational mode, listings produced by
language processors (by the FORTRAN compiler, the
assembler, or the linkage editor) are written auto­
matically on SYSOUT unless you specify the LISTDS

option (in the FTN, ASM, or LNK command) as "y".
If the LISTDS option is "Y", the listing is put into the
list data set, as in the conversational mode, and will
not be printed until you issue a PRINT command.

Nonconversational Task Termination

The execution of nonconversational tasks (except
PRIXT and PUl'\CH) is terminated when their LOGOFF

command is executed. The system then automatically
prints out the task's SYSOUT data set. For nonconversa­
tional tasks, the SYSOUT data set consists of the com­
mands from SYSDI that were executed, any data that
your program writes to SYSOUT, and the compiler-issued
diagnostic messages (if no listings were requested).

Tasks created by the PRINT and PUNCH commands
terminate when the data transfer is completed.

You can also terminate your nonconversationaI
tasks by issuing a CANCEL command identifying each
task to be terminated by its batch sequence number.

Mixed Mode Use of the System
You can begin a task at your terminal, and then issue
a BACK command to have the task's execution com­
pleted in the nonconversational mode. Before issuing
the BACK command, you must have stored a SYSIN

data set that is to function as the command procedure
and, if desired, input data for the nonconversational
portion of your task. You must also have issued DDEF

commands for any private volumes you may need. The
SYSIK data set must not contain a LOGON command (be­
cause you have already logged on), but it should end
with a LOGOFF command.

'~7hen you issue a BACK command for a task, the
system determines whether it can provide sufficient re­
sources to continue your task nonconversationally. If
it cannot, the system will reject your request, and you
can try later.

Once your BACK request is accepted, your terminal
is inactive. You must then log on at your terminal
again to initiate a new conversational task if you want
to continue to use the terminal.

Remote Job Entry
The TSS/360 remote job entry feature makes high­
speed printing and card reading available at locations
outside the central computer installation. Each re­
mote station has a card reader to accept input and a
printer to produce output.

A complete description of this facility is provided in
IBiH System/360 Time Sharing System: Remote Job
Entry, GC28-2057.

Part I: Introduction 13

Command Directory

Table 1 presents a guide to the commands of TSS/360

as presented in the examples and appendixes of this
book. The commands are grouped by general function.

Table 1. Command Directory

FUNCTION

Task
Management

BACK

CA
CB

COMMAND

CANCEL

EXECUTE

KA
KB

LOGOFF

LOGON

PROCDEF

SECURE

TIME

USAGE

CATALOG

Data Set CDD
Management

SAMPLE

USAGES

BACK
DSNAME=PROCl2A

CA

CANCEL
BSN=0375

EXECUTE
DSNAME=PH.OC12

KB

LOGOFF

ADUSERID, !vlYPASS""
ADACCT29

PROCDEF
ZLOGON

SECURE
(TA=1,9)

TIJ\IE 1.5

USAGE

CATALOG
DSNAME=

RESULT01,
STATE=N,
ACC=R

CDD DDPACK,
DDMAIN14

For each command, a sample usage and a statement
of its general effect are shown, along with the num­
bers of all the examples in Part II in which this par­
ticular command appears.

EFFECT

ILLUSTRA TrVE

EXAMPLES

Switchcs your conversational task to non- 12
conversational mode. Here you specify
PROC12A as the source of further commands.

Specifies that card input will follow. Causes 20
SYSIN to be switched to the card reader.
The A signifie, that you want to eon vert card
input from 1057 card punch code to
EBCDIC. A CB would signify conversion
from 029 keypunch code to EBCDIC.

Terminates execution of nonconversational 19,20
task to which the system had assigned batch
sequence number 0375.

Requests the execution in non conversational 12
mode of a sequence of commands contained
in data set PH.OCl2. You may then continue
in conversational mode at the terminal.

Specifies that keyboard input in folded mode 20
will follmv (i ,e. thc lower casc characters a-z
and! " ¢ are to be translated into their upper-
case equivalents (A-Z and $ # @). KA
would specify that you want to use the full
EBCDIC character set.

Notifies system that you want to terminate
your task. The system may then query you
regarding any uncataloged data sets.

Identifies you to the system. You enter your
identification, password, and account number.

Defines a procedure (ZLOGON) which is
automatically executed each time you log
on, prior to any terminal processing you may
initiate.

Reserves devices for private volumes required
for nonconversational tasks. This command at
the beginning of your sequence of commands
secures one 9-track tape unit.

Establishes the maximum amount of elapsed
time that a task will be allowed to run. Here
you have set a IS-minute limit on program
execution time.

All but
example 3

All

27

14,21

2

Presents totals of system resources used 22
sinee LOGON and since you were joined to
system.

Causes your physical sequential output data
set RESUL TOl to be cataloged. The N in­
dicates that the catalog entry is new. The
R indicates that vou vvant to restrict access
to the data set to ~ read-only.

5, 11,21,23,
24

Causes execution of the DDEF commands 14
defined by the data definition name
DDMAINI4, which you had stored in the
data set DDPACK.

CDS CDS Copies the data set MYDAT A, naming the 18
DSNAME1=MYDATA, copy MYDATAl.
DSNAME2=MYDATA1

14

Table 1. Command Directory (cont.)

FUNCTION COMMAND

CLOSE

DDEF

DELETE

DSS?

ERASE

EVV

PC?

Data Set PERMIT
Management
(Continued)

POD?

RELEASE

SHARE

RET

TV

VT

VV

CLOSE

SAMPLE

USAGES

DDEF
DDNAME=LIBDD,
DSORG=VP,
DSNA~1E=SCRATCH,
OPTION =JOBLIB

DELETE
DSNAME=DATA5

DSS? PHI,SIGMA

ERASE
DSNAME=SCRATCH

EVV
DEVICE=2311,
VOLUME= (123ABC),
USERID = ADUSERID

PC? PHI,SIGMA

PERMIT
DSNAIvfE = DATA,
STATE=N,
ACCESS=RO,
USERlD=ABPALlD

EFFECT

Closes data sets from the command level
when normal processing has been interrupted
and closure from the program level is difficult
or impossible.

Defines a data set for the current task.
Every data set you use must be defined for
the current task, even if previously cataloged.
You assign LIBDD as the name of the data
definition. The data set created by this DDEF
is a virtual partitioned job library named
SCRATCH.

Removes the entry for the data set DAT A5
from your catalog.

Causes printing of information about your
data sets PHI and SIGMA.

Erases data set SCRATCH (releases direct­
access storage for other use), and, if
cataloged, deletes name from catalog.

Presents a private VAM volume to the sys­
tem and catalogs the data sets on it. The
volume is a 2311 with volume serial number
123ABC. The data sets are to be cataloged
in user ADUSERID's user catalog.

ILLUSTRATIVE

EXAMPLES

17

4,6,7,8,9,
10,11,12,
13,15,17,
18,21,23,
24

22

22

4,5,7,8,19,
22

Causes printing of limited information about 22
your data sets PHI and SIGMA.

Permits the user with the user ID,ABPALID,
to have read-only access to all of your data
set whose left-most name qualifier is DATA.
The N signifies that this command creates a
new sharer's list, rather than updates on exist-
ing list.

18

POD? Causes printout of information about each 22
PODNAME=USERLIB object module in your USERLIB.

RELEASE
DDNAME=MYDD

SHARE
DSNAME=MYDATA,
USERID=ADUSERID,
OWNERDS=DATA

HET
DSNAME=ALPHA,
RET=(TCU)

TV
DSNAMEl=COPYl,
DSNAME2=COPY2

VT
DSNAMEl=ORIGINl,
DSNAME2=COPYl

VV
DSNAMEl=COPY2,
DSNA:\IE2=COPY3

Revokes the data definition established by
a previously issued DDEF named MYDD.

Creates an entry in your catalog for the data
set named DATA, to which you are author­
ized access when the owner issues a PERMIT
command.

Modjfies the RET field of the data set
descriptor to specify that data set ALPHA
be assigned to temporary storage with read/
write access and that it be deleted when it
is closed.

Causes data set copied on 9-track as
COPYI to be reproduced on direet-access
storage in V AM format under the name
COPY2.

Causes V AM data set named ORIGIN 1 to
be copied on 9-track magnetic tape as
COPYL

Causes V AM data set named COPY2 to be
copied into public storage under the name
COPY3.

10,17

18

16

24

24

24

Part I: Introduction 15

Table 1. Command Directory (cont.)

16

FUNCTION

TeAi:
Editing

Data
Editing

COMMAND

CORRECT

DISABLE and
ENABLE

EDIT

END

EXCERPT

EXCISE

INSERT

LIST

LOCATE

NUMBER

POST

REGION

DATA

LINE?

MODIFY

SAlvfPLE

USAGES

CORRECT
Nl=lOO,
SCOL=8

DISABLE
ENABLE

EDIT
DSNAME=EX26

END

EXCERPT
DDi\AME=NEWl,
RNAME=REGION2,
l'\1=600,N2= 1000

EXCISE
N1=0000200

INSERT
0000400

LIST
Nl=lOO,
N2=500

LOCATE
STRING=LINEF

NUMBER
N1=300,
N2=500,
BASE=300,
INCR=50

POST

REGION
RNAME=FIXA

DATA
DSNAME=PROC12A

LIKE?
SOURCE.MAIN9,
(1200,1400)

MODIFY
SETI\AME=

SOURCE.MAIN4

EFFECT

ILLUSTRATIVE

EXAMPLES

Causes the characters beginning with column 26
8 of line 100 in the current region to be
dhplayed for correction purposes. Characters
are inserted, deleted or changed by keying in
correction symbols directly beneath the af­
fected character(s).
DISABLE causes your modifications to the 26
data set to be provisional, pending execution
of an ENABLE command. By issuing a
STET command instead of an ENABLE,
you would cause all modifications made after
the DISABLE to be deleted.
Invokes the facilities of the Text Editor. 25,26
The operand identifies the data definition
name associated with the data set which is to
be edited.

Terminates processing of the Text Editor 25,26
or the PROCDEF command.
Excerpts lines 600 to 1000 from REGION2 26
of the data set associated with the data
definition name NEW 1 and inserts them into
your current region. EXCERPT, following a
REVISE command, replaces a range of lines
in the current data set; following an INSERT
command, it adds to lines being typed in
from the terminal.
Deletes line number 0000200 from the cur- 25
rent region.
Informs the system that you wish to insert 25
the following lines from SYSIN into the cur-
rent region, placing them immediately after
line 0000400.
Lines 100 to 500 of the current region 26
are displayed.

Searches the current region for the first 26
occurrence of character string LINEF. When
the string is found, the line containing it
is displayed.
Causes the lines within the current region 26
to be renumbered. Nl and N2 define the
range to be renumbered. The numbering
will begin \.vith 300 and increase in in­
crements of 50.
Makes all previous editing changes permanent 26
and puts Text Editor into disabled state,
making future c:langes reversible.
Used after invoking the Text Editor, this 25,26
command identifies a region name to be as-
signed a line or range of lines that are to be
edited.

Creates a new data set named PROC12A. 12,14,16
You do not need to issue a DDEF command
for data sets created by a DATA command.
By default, the data set organization is VS.
Causes printing of source lines 1200 to 1400 9, 10, 16, 19
from the specified line data set.

Permits you, with suhsequent parameters, to 5
insert, replace, review, or delete lines in a
VISAM data set named SOURCE.MAIN4
containing FORTRAN source statements for
your program MAIN4.

Table 1. Command Directory (cont.)

FUNCTION

Bulk
Output

Program
Management

Program
Control

COMMAND

PRINT

PUNCH

WT

FTN

AT

CALL

DUMP

GO

IF

DISPLAY

LOAD

QUALIFY

REMOVE

SET

STOP

UNLOAD

PRINT

SAM:PLE
USAGES

DSNAME=
LlST.MAIN2(0),

ERASE=Y,
PRTSP=EDIT

PUNCH
DSNAME=

SOURCE.MAIN19,
STARTNO=9,
ENDNO=88

WT
DSNAME=M220UT

FTN
NAME=MAIN2

AT MAIN.l7,
MAIN.96(2)

CALL MAIN4

DUMP MAINlOfl:C,
MAINIO#P

GO

AT 101;
IF A>B; STOP

DISPLAY MAIN9.ALPHA,
MAIN9.BETA

LOAD BLKDATA8

QUALIFY
MNAME=MAIN9

REMOVE 2

SET
BETA=l.O

STOP

UNLOAD MAINl5

EFFECT

Canses the current generation of the listing
data set LIST.MAIN2(O) to be printed on
the high-speed printer.

Causes the 9th through the 88th characters
of each record of your source data set to
be punched. The first eight characters are
the line number and input key. Punching is
done in nonconversational mode when sys-
tem resources are available.

ILLUSTRATIVE

EXAMPLES

2,4,5,6,
8,10,13,
14,19,20

19

Causes the data set M220UT to be written 22
on magnetic tape for subsequent off-line
printing.

Activates the FORTRAN compiler. You name
the object module to be produced in this
compilation MAIN2. The system will assign
the name SOURCE.MAIN2 to the data set
it creates containing your FORTRAN source
statements. You have specified the default
values for the remaining parameters by omit­
ting them.

Causes message to be printed on SYSOUT
when execution of your program MAIN
reaches statement numbered 17 and when it
reaches the first executable statement after
the one numbered 96.

Causes loading and execution of your pro­
gram MAIN4 at the first executable state­
ment.

Causes a formatted dump of MAINI0's
CSECT and PSECT. It will be written in
the PCSOUT data set for later printing.

Causes execution of your current program
to be resumed from the point of interruption.

Causes execution of your program to stop at
location 101 if the expression A>B is true.

Causes printout on SYSOUT of the current
contents of data fields ALPHA and BETA
in program MAIN9.

2,3,4,5,8,
13,20

10

4,5,7,9, 11,
13,14,15,
17,20,21,23

10

9,10,15

10

9

Causes your block data subprogram to be 8, 10
transferred from your library to virtual stor-
age.

Causes subsequent references to symbols and 9, 10
statement numbers to be qualified by the
name MAIN9. You can now write AB instead
of MAIN9.AB, or 105 instead of MAIN9.105.

Deletes previously issued AT commands, or 10
PCS statements containing AT commands.
Here you specify deletion of the statement to
which the system assigned the number 2.

Sets value of BETA equal to 1.0. 9, 10

Stops program execution and causes printing 9
on SYSOUT of current instruction location
and program status information.

Removes the object module MAIN15 from 15,21
your virtual storage.

Part 1: Introduction 17

Table 1. Command Directory (cant.)

FUNCTION COMMAND

DEFAULT

User PROFILE
Profile

Management

SYNONYM

18

SAMPLE

USAGES

DEFAULT
DSORG=VS

PROFILE

SYNONYM
DOPROG= FTNPGM

EFFECT

ILL USTRA TIVE

EXAMPLES

Sets the default value for the DSORG para- 28
meter of the DDEF command to virtual
sequential (VS).

Causes changes affected by DEFAULT and 28
SYNONYM commands to become a perman-
ent part of your user profile.

Establishes a synonym for the name 28
FTNPGM. This module can now be called
by the name DOPROG.

Part II is devoted to examples in which the dialog be­
tween you and the system appears (along with explan­
atory comments) as it would at the terminal. They are
typical examples of system use. Unlike the sample
programs in Appendix I, the examples in this section
have not been system-tested. You may, therefore,
observe minor differences between an example's de­
scription in Part II and the printout you obtain if you
nm the example itself. Use the examples, therefore,
only as a learning device, and as models for designing
your own work.

Commands and concepts are presented in an ordered
sequence: the most necessary and basic ones appear
first, and are reviewed in subsequent examples. The
examples are designed so that the beginner should read
them in sequence. Those familiar with the commands
and concepts can use the examples for reference.

FORTRAN programs are shown where they are neces­
sary to clarify use of the commands. Only the relevant
statements are included.

Part II: Examples

The system issues various types of messages at your
terminal, as follows:

• Prompting :Messages - request that you supply
command operands or other information. You are
prompted only for omitted parameters that have no
default option.

• Response Messages - either inform you of actions
the system has taken in executing a command or
request additional inforn1ation.

• Diagnostic Messages - infom1 you of errors and
prompt you for correction.

In these examples, lines typed by the system are
headed SYS, lines you enter are headed YOU. Lines in
which both the system and you enter something are
headed S,Y. Lines printed by your program are headed
PGM, and cards entered from the terminal card reader
and printed are headed CIP, for "card image printout."

Part II: Examples 19

Example 1: Initiating and Terminating a Conversational Task

In this example, you initiate a simple conversational task and then terminate it. The commentary explains the
keyboard entries required to converse with the system.

To begin a conversational task, make sure that the terminal is properly prepared (refer to instructions
provided by your installation or to the Terminal User's Guide). 'Vhen you dial up the system or press the atten­
tion button for the first time in your task, the system assumes a log-on operation and responds with the current
date and time. You then enter all the log-on operands.

During your dialog with the system, your commands are not entered into the system until you press the
return key.

YOU: (press the attention button or dial up system)
From this point on, pressing the attention button halts current activity in most situa­
tions. Consult Appendix F for the specific action taken in each situation.

YOU: LOGON ADUSERID,MYPASS*"ADACCT24,A
9,A"P

You must enter the entire LOGON command on a single line. While typing the LOGON
operands, you realize that you have entered your charge number incorrectly. There­
fore, you backspace three characters, move the paper up one line by hand to avoid
overtyping, and reenter the corrected portion of the charge number. You then complete
the LOGON operands. If you wanted, you could have cance]]ed the entire line by
typing a pound sign (#) and immediately pressing the return key; then you would
reenter the correct line.

SYS: (responds with the current release-level of the system, the date, time, and task
identification)

20

You can now communicate with the system by entering commands.

Explanation of LOGON Operands

ADUSERID

MYPASS*

ADACCT29

A

First Operand - User Identification

This operand is the full identification assigned to you when you were joined to the sys­
tem.

Second Operand - Password

This operand is an installation-assigned code that provides protection against un­
authorized use of your user identification. In conversational mode, you must supply
a password if one has been assigned to you.

Third Operand - Addressing

Specifies whether 24-bit or 32-bit addressing is to be used for this task. If you default
this operand, the installation default value will take effect.

Fourth Operand - Charge Number

This operand is the charge or account number that was assigned to you by your ad­
ministrator. The first two characters of your charge number also identify your admin­
istrator.

Fifth Operand - Control Section Packing

This operand specifies whether control sections are to be packed (i.e., not placed on
separate pages), and the manner of packing to be used. The codes and their meanings
are:

p

S.Y KB

YOU: J.·OGoff
SYS:

Code

A
p

o

X
N

Meaning

Pack all control sections
Pack all prototype control sections (PSECTs)
Pack all control sections having neither public nor proto­
type attributes
Pack all control sections except prototype control sections
No packing

Sixth Operand - Maximum Auxiliary Sto,age

This operand specifies the maximum amount of auxiliary stoTage to be allocated to your
task; you default this operand and use the installation default value.

Seventh Operand - Pristine Mode

This operand alJows you to log on with only the system-supplied defaults, synonyms,
procdefs, and Character and Switch Table. Since you specified this operand as P, your
user library is defined; if you had specified it a5 X, your user library would not be
defined.

After logging YOU on, the system prints a single underscore and then backspaces; this
is the standard signal that it is ready to receive your next command on the same line.
Here you specify that :'OU want folded mode; that is that certain lower case characters
(as a-z and I "¢) be translated by the system into their upper case equivalents (A-Z
and $ # @, respectively). Thus, with KB, you no longer need to perform shifting
operations.

When you initiate a conversational task, the system automatic-aHy assumes folded
mode; hence in this example you need not have specified KB. However, there are
other character control commands, such as KA, which invoke EBCDIC mode at the
keyboard. Thus, if you specify KA and at a later time in your session wish to return
to folded mode, you must enter KB.
Here you decide to conclude your session, so you logoff. Note that LOGoff translates
to LOGOFF.

The system confirms your LOGOFF command.

Part II: Examples 21

Example 2: Compilation and Correction from the Terminal

In this example, you type in the source statements of a short program and correct several errors while compiling
the program. The compiled object module is stored in your USERLIB. The listings you select are printed as a sepa­
rate task, only if requested using the PRINT command. After logging on, you issue:

S,Y: TIME 15

S, Y: FTN NAME=MAIN2

The TIME command establishes a period of time a task will be allowed to run in
virtual storage. You decide that 15 minutes will be adequate for your task and wish to
be alerted when this interval is exhausted. TIME is thus useful in controlling inad­
vertent loops amI other abnormal actions occurring in programs.

This C'ommand activates the FORTRAN compiler. A compiled program is called an
object module. You name the object module to be produced in this compilation r-"fAIN2.
The svstem creates a source data set, naming it SOURCE.MAIN2, which will contain
your FORTRA"J source statements as you entered at the terminal.

Because SOURCE.MAIl-J2 is a line data set residing in public storage, it is auto­
matically eataloged for you. Although YOll did not explicitly issue a DDEF command,
there was an implied system iss1Ian('e of DDEF associated \vith your FTN command.

The system also creates a list data set, named LIST.;v1AIN2, which will contain
the listing ~f the ohject modnh'_ The :\TAJ\IE parameter is not defaultable, all-hough you
could enter the command as ITN \fAI!\,"2. It is permissible to omit the NA1\fE keyword.
Note, however, that when yml omit the keyword and have several operands to enter,
you must specify the operands in the order ill -which they are syntacticallv defined. In
this example vou specify the default vallles for the remaining paramete'rs by simply
omitting them.

S, Y:
S, Y:

0000100 READ (5,10) A, B
0000200 FORMAT (F6.2)

The system prints line numbers. After each line number, vou skip a space and enter a
FORTRAN statement. You rio not have to follow the FORTRAN card format when
entering source lines from the terminal. Skipping one space after the system prints the
line number improves readahilitv. Since the system regards an" line with a C in column
1 as a comment line, skipping a space also prevents lines such as C = A "R from being
treated as a comment. \Vhen you want a comment line. you should not skip a space, but
enter the C in column 1.

SYS: 0000200 E <1H FORMAT STATEMENT DOES NOT HAVE STATEMENT NUMBER.
The compiler examines each statement for syntactical errors as soon as it is received.
200 is the line number of the statement in error, E is an error level code, indicating a
serious program error; the statement is ignored. Other elTor level codes are:
W A waming of a possible problem; the- statement is compiled as written.
F Serious error; statement can only be partially compiled.
A Compilation cannot be continued.

See Appendix A for further details on compiler diagnostics.

SYS: 0000200 FORMAT (F6.2)
The system prints the Jine in error for yOlll' review.

S.Y: #200,10 FORMAT (F6.2)
The system prints the number sign, #, after which you enter the line number of the
line to be corrected, followed by a comma and the replacement line. There must be at
least one space between the statement number (10) and the rest of the statement.

S,Y: #(press return key)

22

Another correction or change or even insertion of an entireJy new line could be made
at this time. Since vou wish to continue entering vour program, you request the next
line number by pre~sing the retum key.

S,Y:
S,Y:
S, Y:
S,Y:
SYS:

SYS:

0000300 ATB = A (I B
0000400 WRITE (6,20) A, B, ATB
0000500 STOP
0000600 END
0000400 F *** 20 STATEMENT NUMBER USED AS FORMAT IS NOT DEFINED.

Aftel the END statement has been entered, the compiler diagnoses global errors, which
are errors that involve more than a single statement. In doing so, it found an error.

The system invites you to modify your source statements.

YOU: Y
You may reply yes (Y) or no (N). Here you reply yes and wait for the system to invite
your modification.

S,Y:
StY:

#400, WRITE (6,10) A, Bt ATB
#(press return key)

SYS:

\VhiIe you are entering modifications, no error checking is done; however, the com­
piler rescans the entire program when it recompiles after modifications are completed.

The system continues compilation and informs you when finished.

S,Y: ~RINT LIST.MAIN2(0}, ERASE=Y, PRTSP=EDIT

SYS:

S,Y: !!OGOFF
SYS:

The system will establish a nonconversational task to print the current generation of
LISTJvfAIN2. The current generation is specified by the (0) immediately after the
generation data group name. The PRTSP operand is specified as EDIT because tile
systcm supplics control characters to format the listing. The ERASE operand is included
to eliminate the listing from the system after printing. Each listing is put into the list
data set (the data set beginning with LIST.).

The system ackowledges your PRINT command and informs you of the batch sequence
number it has assigned to the printing task.
Now compilation is complete.

You are informed of the batch sequence numbcr of the separate task created to
print the listings produced by the compiler.

The compiled object module now resides on the library at the top of your program
library list - in this case, your USERLIB.

The system will confirm your LOGOFF command.

Part II: Examples 23

Example 3: Compilation and Correction from the Terminal

In this example, you type in the same FORTHAN program as in Example 2, but this time all applicable parameters
are shO\vn. After logging on, you issue:

S,Y: FTN NAME=MAIN3,STORED=N,VERID=A6/26,-
ISD=N, SLIST=Y, OBLIST=N, CRLIST=N, STEDIT=N ,MMAP=N,­
BCD=N ,PUBLIC=N ,LISTDS=N, LINCR= (100,100)

24

This is the same FTN command as jn Example 2. except that here all the FTN operands
are entered with their keywords. Each operand is described below. When entering com­
mands conversationallv at the terminaL YOU mav continue them on another line jf
necessary by entering ~ hyphen at the poi~1t \\"her~ you wish to break the current line.

Explanation of FTN Operands

NAME=

STORED=

VERID=

ISD=

SLIST=

OBLIST=

CRLIST=

STEDIT=

Object Module Name

You assign the name MAIN3 to the output object module to be created by the compiler.
The source data set for this object module is named SOURCE.MAIN3; the listing data
set is named LIST.MAIN3(O).

This is the only FTN operand that may not be defaulted.

Presto red Source Data Set

You specify N so that you mav enter source statements from your terminal rather than
compile from a prestored source data set.

Object Module Version Identification

You may assign a version identjfication to the object module in this case, A6/26. It
appears on output listings of the named program and is stored in a special field in your
object module. If you do not assign a version identification, you may distinguish the
version of your object module bv using the system supplied "time stamp." A time stamp
is always produced by the system; it gives the current time and date at which compila­
tion begins.

Internal Symbol Dictionary

This parameter permits you to create an Internal Svmbol Dictionary (ISO) during
compilation. An ISO is necessary for the fullest use of tlie program control system (PCS).

Source Listing

The listings you request with this and the next four parameters will form your listing
data set. (See Appendix A for a detailed explanation of these listings.) The system cre­
ates a name for this data set bv prefixing "LIST." to the module name you supplied as
the first assembler parameter (LIST.~IAIN3), using generation data group logic.

The source listing shmvs the source input statements.

Object Listing

You indicate yon do not ,>vant an ohject listing. The object listing shows the code
generated by the compiler. This code is in the form of assembler language statements
and hexadecimal machine language code. Ordinarily, it is not needed by FORTRAN
programmers.

Cross Reference Listing

This listing shows where, in the source program, each statement number and symbol
is defined or referred to. You have told the system not to produce this listing.

Edited Symbol Table

This listing indicates the characteristics and displacement for every symbol in the
source program. You have indicated you do not want a listing of this table.

SYS:

S, Y:
S, Y:
SYS:
SYS:

S, Y:
S, Y:

MMAP=

BCD=

PUBLIC=

LISTDS=

LINCR=

Memory Map

This listing contains summary information about the module, most of which is included
on other listings. You have declined a listing of a memory map.

Binary Coded Decimal

Since you are writing this at the terminal, the characters entered will be stored inter­
nally in the standard system EBCDIC form. If your source program were in the form
of cards or tapes from a system using BCD, the BCD code could be used. In BCD
mode, characters of either EBCDIC or BCD can be entered.

Private or Public CSECT Attribute

This parameter specifies whether the executable portion (not variables) of the object
module is to have a public or private attribute. You have selected a private attribute.
Public means that the resulting object program can be shared by other users. Most
FORTRAN users will want to take the default option (i.e., private).
For more detailed information regarding all FORTRAN compiler options, see Ap­
pendix A.

Listing Destination

This parameter specifies whether the listings you request from the compiler are to be
placed in a list data set or placed directly on SYSOUT; it is ignored in a conversa­
tional task.

Starfing Line Number, Increment

The system creates a line number for each of your source statements. Although a part
of the source data set being formed (SOURCE.MAIN3), line numbers are not an in­
trinsic part of the FORTRAN program itself and have no specific relationship to any
statement numbers.

The starting line number and the increment number may contain three to seven
digits, of which the last two must be 00. Thus in the case here illustrated, the system
generated line numbers will be 100, 200, 300, etc.

The system requests each input source line by typing out a line number to the terminal
starting with 100. After you enter a source line, it is added to the source data set and
processed by the FORTRAN compiler.

0000100 READ (5, 10) A, B
0000200 FORMAT (F6.2)
0000200 E ~~~ FORMAT STATEMENT DOES NOT HAVE STATEMENT NUMBER.
0000200 FORMAT (F6.2)

The system prints the line in error for your review.
After the system prints the #, you correct the erroneous statement.

#200,10 FORMAT (F6.2)
#(press return key)

... and indicate that you have finished making modifications.
The session continues as in Example 2.

Part II: Examples 25

Example 4: Compile and Run

In this example you enter and compile a short test program without error and then execute it. You execute your
task in conversational mode, using your terminal for both input and output. After logging on, you issue:

S,Y: DDEF LIBDD,VP, SCRATCH, OPTION=JOBLIB
This command defines a job library and causes it to be placed at the top of your program
library list. Object modules produced by compilations will be placed in it instead of in
your USERLIB, which is now second on your library list.

A DDEF command defines a data set during the session in which the command
appears. In general, every data set you use must be defined for the current session,
even if it has been previouslv cataloged.

LII3DD is the data definition name (DDNA:t-.fE) for the job library data set named
SCRATCH. All libraries have virtual partitioned (VP) organization.

The OPTION indicates to the system that the data set you are defining is a job
library.

The system automatically catalogs SCRATCH as a new catalog entry and assigns
an "unlimited" (read/write) access qualjfier to the library.

Your object module. l\fAIN4, will be placed automatically in your job librarv,
SCRATCH, when compilation has satisfactorily completed.

S. Y: FTN MAIN4. N, , , , , Y, , Y • , Y, , (100,100)

S, Y:
S, Y:
S,Y:
S, Y:
S, Y:
S, Y:

SYS:

26

0000100
000020010
0000300
0000400
0000500
0000600

LpUbliC CSECT
BCD

storage map

I~~I ~liS~~!~ed~~:b:~~

--edi ted symbol table
cross-reference listing

~---object listing
~----source listing

'----ISD
~-~version identification

'----source prestored
Because no keywords were used in specifying which operands vou desired, you

must enter those operands in the order shown.
Only the first operand must he specified. The rest may be defaulted bv including

a comma where the operand would appear. You m1lst surplv commas for defaults
prior to the non-defaulted parameter (e.g., the Y for public CSECT attribute), but
you need not supplv trailing commas.

The system automatically catalogs SOURCE.MAIN4 as a new catalog entry and
assigns an "unlimited" (read/write) access qualifier to the library.

READ (5,lO)A
FORMAT (F6.2)
ATC = A03.l4
WRITE (6,10)A,ATC
STOP
END

You type in your program statements following the line numbers printed by the system.
You use a tab stop to space over 6 columns so that the statements have the appearance
of the standard card format. Such tabbing is not required, but it is recommended as a
visual aid to avoid errors. \Vhen entering source lines, a tab has the logical effect of a
single blank character. Example 2 shows a source program entered in free form. Ap­
pendix A discusses the use of tabs and spaces in entering source statements.

The system informs you of the satisfactory completion of the compilation.

S.Y: PRINT LIST.MAIN4(O),PRTSP=EDIT
SYS:

S • Y : .QALL MAIN4

The system acknowledges your PRINT command and informs you of the batch sequence
number it has assigned to the printing task.

The CALL command has two effects: it causes the loading of your object module and
initiates program cxecution at the first executable statement. Note that the NAl\IE key­
word is omitted for the sake of brevity.
Since you gave no DDEF command for thc data set reference number 5 in your
READ statement, the system will assume you want to obtain input from SYSIN, which
is the terminal when in conversational mode.

SYS:
YOU:

(unlocks terminal keyboard)
0.5

PGM: 0.50
1.57

PGM: TERMINATED: STOP

S,Y: ERASE SCRATCH

S.Y: !!OGOFF
SYS:

Since you gave no DDEF command for the data set reference number 6 in your
WRITE statement, it will be defined as SYSOUT, \vhich is also the terminal when
in conversational mode.

This message is printed when execution reaches yOUl' STOP statement (source line 500).
You are now returned to command mode, indicated by the printout of the underscore.

Before logging off YOll decide that vou v'!(mt to erase the job library data set; SCRATCH,
(;ontaining the object module MAIN4, hecause YOll want to modify and recompile
SOURCE.MAIN4 at a later date. You conserve public storage and increase the effi­
ciency of the system by erasing all data sets not needed.

The system conHrms your LOGOFF command.

Part II: Examples 27

Example 5: Co:recting and Recompiling Cl Presto red Source Program

In this example you modify and recompile the source program SOURCE.~fAI~4 which, being on a public volume,
was automaticalIy cataloged for you in Example 4. You then run the new object module. After logging on, you
issue:

S,Y: MODIFY SOURCE.MAIN4
SYS:

S, Y: #
R,100

SYS: 0000100

S, Y: #
100,1

S, Y: #
450,

S, Y: #
500,80

S,Y: #
%E

You enter a ?v10DIFY command to alter the source program entered in the previous
example.

The system prints a number sign to request each modification. You wish to review line
100 before modifying it, and enter the R (for review), a comma, and then the line num­
ber.

READ(5,10)A
The system prints the line. \Vhen you entered the statements, you separated them from
their statement number with a tab character.

The system prompts for modifications with the number sign.

READ (10,5, END=80)A

GO TO 1

STOP

You modify the line by typing, following the number sign, the line number, a comma,
and then the modified line. The system then prints another number sign.

You enter an entirely new line between 400 and 500.

You add the label 80 as referenced in the READ statement.

You type these two characters to signal the end of modifications.

S, Y: CATALOG SOURCE. MAIN4, STATE=U, ACC=U, NEWNAME-'_SOURCE.MAIN5

S,Y: ~TN MAIN5,Y"Y

You use the CATALOG command to rename the current source data set SOURCE.­
~fAIN5. At compilation time, its list data set will be named LIST.~IAIN5(O) hv the sys­
tem. The first U indicates the updating of an existing catalog entry. The second U speci­
fies unlimited access for the data set.

Yon enter the name and the rest of the FTN parameters you need: Y for prestored,
the second comma after the first Y to default the version icl parameter, and Y for ISD.

SYS: 0000100 F 000 STATEMENT NUMBER USED AS FORMAT IS NOT DEFINED.
The compiler discovers an error in line 100. Note that this error was not detected dur­
ing your use of the t-.l0DIFY command, since that command does no syntactical
checking. You decide to correct the line.

SYS: 0000100 1 READ (10,5, END=80) A

YOU:
S, Y:
S,Y:

28

y

The svstem prints the line that caused the diagnostic and asks whether yon want to
modify your source statements.

#100,1 READ{5,10,END=80)A
(press return key)

Having made the necessary correction, you signal that you are finished by pressing the
return key. This is equivalent to the termination you indicated with %E during the
MODIFY command. Then the compiler will rescan your source statements.

SYS:
The system informs you of the satisfactory completion of the compilation.

S,Y: fRINT LIST.MAIN5(0) ,PRTSP=EDIT,ERASE=Y
SYS:

S,Y: CALL MAIN5

The system acknowledges your PRINT command and informs you of the batch sequence
number it has assigned to the printing task.

The compiled object module is stored in your USERLIB. You now proceed to
run the modified program.

Since you gave no DDEF command for the data set reference number 5 in your READ
statement, the system assumes you ,vant to use the terminal for input.

SYS:
YOU:

(unlocks terminal keyboard)
2.0

PGM: 2.00
6.28

SYS: (unlocks
YOU: 5.0
PGM: 5.00

15.70
SYS: (unlocks
YOU: 1.0
PGM: 1.00

3.14
SYS: (unlocks
YOU: %END

terminal

Data set reference number 6 in your \VRITE statement refers to the terminal for
output.

keyboard)

terminal keyboard)

terminal keyboard)

Satisfied that the program is now working correctly, you terminate execution by enter­
ing %END, which is the end-of-data indicator for SYSIN.

SYS: TERMINATED: STOP
Execution of MAIN5 being terminated, the system prints this message and then prompts
for the next command.

S,Y: ~RASE USERLIB(MAIN5)

S,Y: !!OGOFF
SYS:

You plan to recompile your program later, so you erase its object module from your
USERLIB. This will prevent name duplication in the future, and conserve public
storage space.

The system confirms your LOGOFF command.

Part II: Examples 29

Example 6: Writing a Data Set and Printing It

In this example, you run a program that \\'rites a data set that is much too long to be conveniently printed at
your terminaL You run the program, and then request printing of the output datu set on the high';'peed printer as
a separate task. After logging on, you issue:

YOU:

SYS:
S, Y:

(press attention or dial up system)
LOGON ADUSERID,MYPASS*"ADACCT29
BOOI LOGON TASKID=F206 12/15/69 10: 12
!2DEF DDNAME==FT07F001, DSORG=c::VS, DSNAME=M60UT ,­
DCB= (RECFM=c:F'A, LRECL=80) , DISP==NEW

In preparation for the execution of your program, you define a cataloged data set
(M60UT) for data set reference number 7. You specify a virtuaJ sequential (VS) data
set.

You specify that your record format is to bc fixed-length (F) and the records con­
tain print control characters (A). Its records are to be 80 bytes long.

S,Y: CALL MAIN6

SYS: TERMINATED: STOP

The MAIN6 object module is stored in your USERLIB.
It ends with these statements:

I· WRITE (7,10) ALPHA, BETA, GAMMA I
! 10 FORMAT (lHO,3F20.5)
I ENDFILE 7 L STOP

END

The data set referred to in the WRITE7 and the ENDFILE7 statements is defined
by the FT07FOOl data definition.

The system indicates the end of execution. The underscore OD the next line indicates
rehlrll to command made.

S, Y: PRINT DSNAME=M60UT, PRTSP=EDIT

30

To print your newly written data set, this command creates a separate task similar
to the tasks that have printed vour listing data sets. Onl\' the first operand. DSNAME=,
must be specified; the remaining operands rna,' be defaulted.

Explanation of PRINT Operands

STARTNO=

ENDNO=

PRTSP=

ERASE=

ERROROPT=

First Byte Position

You want printing to begin with the first byte of each data set record. You can enter a
number consisting of one to six digits.

l.ast Byte Position

This parameter specifies at which byte in each data set record printing is to end. Since
your records arc shorter than the default length of 132, your printing will end at the
last (80th) byte of each record.

Spacing Option

Since you want line spacing to be controlled by the control character your program
has supplied in each record, YOll choose EDIT. (The default ,vould be 1.) Selecting
EDIT requires that you d"fan]t the next three parameters.

Erasure Option

This parameter is meaningful only if the data set being printed is cataloged. In that
case, you can specify that the data set be erased after it is printed.

Error Option

This parameter applies only to data sets on tape. It specifies the action to be taken if
an unrecoverable error is found ,,,,hile a data set record is being read.

FORM=

SYS:

S,Y: LOGOFF
SYS:

Type of Printer Paper

Here you can specify the kind of printer paper you desire for your output. The operands
for this keyword are determined by your installation.

The system informs you that it has created a separate task to print your data set.

The system confinns your LOGOFF command.

Part II: Examples 31

Example 7: Reading and Writing Cataloged Data Sets

In this example, you run a program that reads one data set and produces two other data sets as output, as well
as printing some short messages at the terminal. After logging on, you issue:

S, Y:
S, Y:
S, Y:

DDEF FT11F001,VS,IN11
DDEF FT22FOOl,VS,OUT22A
DDEF FT22F002,VS,OUT22B

You give data definitions for the three data sets to be used.
A DDEF command remains in effect only for the session during which it was issued.
Therefore, data definitions must be given even for data sets already cataloged. Data
definition names for FORTRAN I/O have the standard form, FTxxFyyy, where xx is
the data set reference number for an I/O statement, and yyy is the data set sequence
number. You may use any data set name, as long as it is unique.

Because the first data set, INll, was created previously, the system default for
disposition is OLD. The next two data sets, OUT22A and OUT22B, are going to be
created in this task, so they receive a system default disposition of NE\V. Note that
you do not have to include explicitly in the DDEF commands the parameter DISP=
OLD for INll, nor DISP=NEW for OUT22A and OUT22B.

The last two data definitions refer to the same data set reference number as in the
FORTRAN WRITE statement, Le., 22. Since an ENDFILE statement is given, and
further 'VRITE statements are executed on the same data set reference number, two
distinct data sets wi1l be created. The second number in the data definition for the
OUT22B data set name must be stepped from 1 to 2 to refer to the second data set
written.

S,Y: CALL MAIN7
You run your FORTRAN object module, which was stored in your USERLIB in a
previous session. :\IA[\,1"7 includes these statements:

7
10

80

FORMAT (2F20.3)
READ (11 , 7 , END=80) A, B

WRITE (22,7)A,B

GO TO 10
ENDFILE 22

WRITE(22,20)E,F

ENDFILE 22
20 FORMAT (lX,2A4)

WRITE (77,120)
90 STOP
120 FORMAT(26H FINISHED WRITING 2 FILES.)

END

The last 'WRITE statement wiII produce a short message on the terminal.

PGM: FINISHED WRITING 2 FILES.

32

Because vou did not issue a DDEF command for data set reference number 77, the
system a~sumes you want your output from the WRITE statement at the terminal.

SYS: TERMINATED: STOP

S,Y: ERASE INll

SYS: LOGOFF

The system indicates the end of execution with this message. The underscore mark
indicates return to command mode.

You erase the input data set that is no longer needed. Erasing a data set deletes
its entry from your catalog and releases its storage space. You do, however, want to re­
tain your two output data sets that were automaically cataloged for you at DDEF time.

The system confirms your LOGOFF command.

Part II: Examples 33

Example 8: Multiple Compilation Before Execution

In this example you enter a BLOCK DATA program, then compile prestored main and subprograms. You create a
new JOBUB, which you catalog. Aftel' logging on, you issue:

S,Y: ~DEF DDLIBA,VP,LIBA,OPTION=JOBLIB
\Vith this data definition YOll create a llew job library to hold the object modules from
the three programs you are about to compile.

The system automatically catalogs LIBA as a new catalog entry and assigns an
"unlimited" (read/write) access qualifier to the library.

S,Y: ETN BLKDATA8

S,Y:
S,Y:
S, Y:
S, Y:
S, Y:

0000100
0000200
0000300
0000400
0000500

You activate the FORTRAN compiler and specify the module name (BLKDATAS)
for your BLOCK DATA program. You will enter your source statements at the terminal.

The system automatically catalogs your source data set as SOURCE.BLKDATA8.

BLOCK DATA
DIMENSION AB(3),AC(3)
COMMON/XY/AB/EXTRA/AC, ANSWER
LOGICAL ANSWER
DATA AB(1)/.007/,AB(2)/71.1/,AB(3)/8200.0/,AC/3*.88/,­
.ANSWER/.TRUE./

The period preceding ANS\VER is the continuation character and is therefore not
part of the statement.

S,Y: 0000600 END
Your program initializes data for labeled common blocks XY and EXTRA.

SYS:
The system informs you of the satisfactory completion of the compilation.

StY: ~RINT LIST.BLKDATA8(O),PRTSP=EDIT
SYS:

The system acknowledges your PRINT command and informs you of the hatch sequence
number it has assigned to the printing task.

StY: DEFAULT LPCXPRSS==Y
You indicate that you want the language processor "express mode" enabled. In express
mode, several modules can be compiled in sHccession; the FTN command is issued
for the first compilation, and only the module name is entered for succeeding
compilations.

StY: ETN MAIN8,STORED=Y

SYS:
The system informs you of the satisfadorv completion of the compilation and reqnests
the name of the next moduk to he compiled.

S,Y: SUBR8 You enter the name of the next module to be compiled.

SYS:

Y:
SYS:

34

The system informs you of the satisfactory completion of the compilation.

PRINT LIST.MAIN8(0)",EDIT

You enter a PRINT command preceded by a command system break character so that
the system will interpret the line as a command. Express mode is turned off, and the
system interprets the line as a command. The system acknowlcdges your PRINT com­
mand and informs you of the hatch sequence number it has assigned to the printing task.

S, Y:
SYS:

:ERINT LIST.SUBR8(O) ,PRTSP=EDIT
BSN=0569

S,Y: LOAD BLKDATA8

SYS:

S,Y: CALL MAINS

The system acknowledges by issuing the batch sequence Dumber of the PRINT job.

A block data subprogram is the only program you are required to load. Main programs
and subroutines they refer to are automatic-all\" loaded when you issue the RUN
command.' .

The system informs vou that it has loaded BLKDAT A8.
You ~ust load the block data program prior to executing the main program.

Because you did not supply a DDEF for your \VRITE statement in ?vlAIN8, the output
is received at your terminal.

PGM: 2048 VARIATIONS TRIED.
ANSWER IS F

SYS: TERMINATED: STOP
S,Y: ERASE SOURCE.BLKDATAS

S,Y: LOGOFF
SYS:

You decide to erase your source data set. YaH retain your cataloged job library, LIRA,
containing the three new object modules.

The system confirms y0111' LOGOFF command.

Part II: Examples 35

Example 9: Use of pes Immediate Statements

In this example, you are executing a program for the first time. Since the program control system (pes) pro­
vides complete debugging capability at execution time, you have not included any debugging aids in your com­
piled program. Anticipating the use of pes, you requested an ISD wh(>l1 the source program was compiled.

S,Y: DDEF DEFJOB1,VP,JOB1,OPTION=JOBLIB,DISP=OLD

S,Y:
YOU:

SYS:

CALL MAIN9

This command defines a job library JOBI, which contains the object module, MAIN9.
JOBI has been previously cataloged, but you must give this data definition to make
it available. Note that you did not have to specify DISP=OLD ('xplicitly becausc JOBI
was previously cataloged and the system defaults OLD in this case.

(press attention button)
You begin to run the program you wish to debug and then halt execution by pressing
the attention button. The appearance of an exclamation mark indicates the system's
readiness to accept new commands.

YOU: QUALIFY MAIN9

S, Y:
SYS:

S,Y:
SYS:

S,Y:
SYS:

S,Y:

STOP

After issuing this command, you can refer to internal symbols without the qualifying
module name; thev will be qualified automatically bv the prefix "MAIN9."

STOP AT MAIN9.86(4) PSW 2 0 0 004A3C12
The STOP command displays the FORTRAN statement number where the interrupt
occurred, or, if the statement is not numbered, the most recent number plus an incre­
ment. In this case the (4) indicates that the interrupt occurred during execution of the
third executable statement after statement number 86. The rightmost field of the PSW
gives the virtual storage address of the next instruction to be executed. See Appendix
B for more pes information.

LINE? SOURCE.MAIN9, (1200,1400)
0001200 7 ANGLEB==ANGLE1-ANGLE2
0001300 86 ALPHA=COS (ANGLEA)
0001400 BETA=SIN (ANGLEB)

You request a printout of source lines 1200 to 1400 which you believe include state­
ment number 86. (Note the distinction between line numbers, which are not part of the
program, and statement numbers, which are.) To obtain a printout of the current
values of the variables ALPHA and BETA, you issue a DISPLAY command.

DISPLAY ALPHA, BETA
ALPHA==+ • 17751984E+00
BETA=+.OOOOOOOOE+OO
SET BETA=l.O

Since you previously issued a QUALIFY command for MAIN9, you specify only the
internal names of the variables. Using this new information, you decide to change the
value of a key variable to determine if the program will run to successful completion.
You change the value of BETA and the system informs you of the new value.

S,Y: QO
You next enter a GO command. It causes execution to resume from the point of inter­
ruption.

SYS: TERMINATED: STOP
The program runs to completion.

36

S,Y: LOGOFF
SYS:

The system confirms your LOGOFF command.
Alterations you made with pes commands exist in your program only while it is exe­
cuting in virtual storage.

Since pes alterations do not affect your object module, permanent changes should
be made by modifying the source statements and then recompiling.

Part II: Examples 37

Example 10: Use of pes Dynamic Statements

In this example, you use some of the more powerful commands of pcs. pcs provides trace facilities, conditional
program interruptions and modification of variables, and dumps. After logging on, you issue:

S,Y: DDEF DDCURR,VP,CURRENT,OPTION=JOBLIB
This DDEF command causes your job library CURHENT to be placed at the top of
your program library list. CURRENT has been previously cataloged and contains
compiled object modules.

S,Y: ~RASE PCSOUTIO

S,Y: DDEF PCSOUT,VI,PCSOUTIO

S,Y:
SYS:

The DDEF command defines the data set that will be fined hy the PCS DUMP com­
mand; the data set can later be printed. Tt requires the data definition name PCSOUT
and virtual index sequential (VI) organization. You name the data set PCSOUTlO.
You precede the DDEF command with an EHASE command to ensure that PCSOUTlO
docs not contain any data hefore the DUMP command is issued.

~INE? SOURCE.MAINI0,2100,2700,3200
0002100 A==ATAN(Y)
0002700 101 VAR==A~~2
0003200 210 GO TO(301,302,303,304),J

You decide to display three of your source statements in MAIN10, which has been
previously compiled and cataloged. \Vith the compilation, you had requested an
internal symbol dictionary (ISD).

S,Y: ~OAD MAIN10
SYS:

The system informs vou that it has loaded MAIN10.
In addition to its u~e for loading block data subprograms, you must nse the LOAD
command if you wish to enter a pes statement before execution hegins. Since the LOAD
command does not initiate execution, you must eventuallv issue a GO or RUN command.

S,Y: QUALIFY MAIN10

S,Y:
SYS:

S, Y:
SYS:

S, Y:
SYS:

38

The QUALIFY command enables you to designate. before referring to a group of
internal names, the module in which these names are defined; thereafter, you may refer
to these names without explicitly qualifying them by module name.

£T 101; IF A>B & J=1; SET X==l. 0
00001

AT 210 STOP
00002

MAINlO

This AT command will cause a message to be printed on SYSOUT when execution of
MAIN10 reaches statement number 101 and the IF condition is true. In addition, the
IF and SET commands will cause the following: if A is greater than B at that time,
and J is equal to 1, then X will be set to l. Execution will then proceed.

The system assigns a number to each command containing an AT statement (here
1) that can be used later for removing the statement.

You also request that execution be stopped when it reaches statement number 210.
Without the QUALIFY command you would have had to write MAINlO.101 in the
first AT and ;\1AIN10.210 in this one.

AT MAIN10.101 PSW 3 0 0 005F2ABO 1
STOP AT MAIN10.210 PSW 4 0 0 0067D238 2

You execute the program. Your IF condition is fulfilled, X is set equal to 1, and your
program stops at statement 210. If the IF condition were not satisfied, the SET would
not be performed and you would not receive the X= printout. The number 1 appearing
at the end of the PS\V output is the PCS statement number assigned by the system.

S,Y: DUMP MAINIO#C, MAINIO#P

S,Y: RELEASE PCSOUT

You request a formatted dump of)'1AINlO's CSECT and PSECT. It will be written
in the PCSOUTIO data set that you defined earlier.

If you wish to print the data set during this session, you must first issue a RELEASE
command for its data definition. This causes the data set to be closed.

S, Y: ~RINT PCSOUT10,ERASE=Y

SYS:

S, Y: REMOVE 1,2

S, Y: GO

SYS: TERMINATED: STOP

S, Y: LOGOFF

SYS:

The data set will be erased after it is printed.

The system acknowledges your PRINT command.

This command deletes the previously issued PCS statements that include AT commands.

You now resume execution of your program.

The program runs to completion, and you logoff.

The system confirms your LOGOFF command.
Alterations made to your program with the PCS commands (SET, AT) exist only in
virtual storage. To make permanent changes to a program, reassemble from an altered
source data set. This causes the changes to be incorporated into the object module,
which you would then load.

Changes you make with the SET command remain in effect as long as the program
is loaded. (By contrast, all AT commands in any of your programs are completely re­
moved if you implicitly or explicitly unload a module that is referred to by any AT
command.)

Logging off causes all of your programs to be unloaded from virtual storage.

Part II: Examples 39

Example 11: Input and Output on Tape

In the previous examples, all of your data sets resided on direct-access devices (disks) which were assigned to
public storage. In this example, your data sets reside on tapes, which are always private volumes.

You will run a previously-compiled program that reads a data set from a labeled tape and processes the in­
put data. Then it writes a ne,v data set on another tape. After logging on, you issue:

S,Y: QDEF FTOIFOOl,PS,SAMPLEOl

SYS:

This command defines the data set that your program is to read. Since it is cataloged,
you need enter only these parameters. Omitted information about the data set's charac­
teristics (record format, record length, organization) will be obtained from the tape
label that was created by the system when the data set was written. Information about
the volume on which the data set resides (9-track tape, private, volume serial number,
etc.) will be provided from the catalog entry.

The system will inform you that the task is waiting for volume mounting. You will
be informed by the system when the wait is over.

S,Y: DDEF FT02FOOl,PS,RESULTOl,-
!:INIT=(TA,9) ,LABEL=(,SL) ,VOLUME = (PRIVATE)

SYS:

S,Y: CALL MAINll

40

Here you define your output data set. It is not yet written, and is not cataloged, so you
must supply all the necessary DDEF parameters.

Because it is not yet written, the disposition field is defaulted to NEW. The data
set is to have physical sequential (PS) organization, is to reside on a 9-track tape, and
is to be provided standard labels (SL) by the system.

By omitting the DeB field, you select the default options of variable length and
unblocked records. You do not specify the volume serial number in the VOLUME
field, so the system instructs the operator to choose a tape reel from the installation
pool. (Refer to Appendix E for further details on specifying DDEF parameters.)

The system will inform vou that the task is waiting for volume mounting. Again you
must ~ait until the tape is mounted.

You execute your object program, which was stored in your USERLIB.
MAINll has the following significant I/O and related statements.

DIMENSION SAMPLE(250),RESULT(250)
10 FORMAT (250A4)

100 READ (1,10,END=900, ERR==800)SAMPLE

CALL TRNFRM (SAMPLE,RESULT,250)

SYS: TERMINATED: STOP

WRITE (2,10) RESULT

GO TO 100
800 •

GO TO 100
900 ENDFILE 2

STOP

END

Your program concludes.

S, Y: .QATALOG RESULTOl, STATE=N, ACC=R

S,Y: HOGOFF
SYS:

This command causes your output data set to be cataloged, thus recording its charac­
teristics and volume serial number in the catalog. You will still have to issue a DDEF
command in order to use this data set in a later session, but the system will retrieve
its characteristics from the catalog, so at a later session, a DDEF of 'the following form
will suffice:

DDEF ddname"DSNAME=RESULTOI
The N indicates that the catalog entry is new (data set not currently cataloged),
You want to protect this new data set from accidental destruction in a later ses­

sion so you restrict the access to read only (R).

The system confirms your log-off request.
The private volumes (your two tapes) are demounted by the operator, and retained
at the installation.

This example can be run only in conversational mode. To run it nonconversa­
tiona11y, you would omit from the LOGON command your password, which is only
used conversationally, and add another command: SECURE (TA=2,9).

SECURE must appear immediately after the LOGON command. It would inform
the system of device requirements (here, hvo 9-track tape units) prior to execution of
the nonconversational task. Such tasks are described in later examples.

Part II: Examples 41

Example 12: Conversational Initiation of Nonconversational Tasks

It is often more convenient to have your programs run after yon have left the terminal, that is, to have them run
in nonconversational mode. Two ways of doing this after logging on are shown in this example.

In Part 1, you begin your task conversationally and then use the BACK command to switch its execution to
the nonconversational mode.

In Part 2, you construct a nonconversational task and then use the EXECUTE command to cause it to be exe­
cuted at a later time.

Part 1: The BACK Command

S,Y: DATA PROC12A
With this command you build the SYSIN data set (named PROCI2A) that will provide
input to your task after you have switched to the nonconversational mode. You do not
need to issue a DDEF command for the data set created by a DATA command. By
default, the data set organization is VS. .

S, Y:
S, Y:

#DDEF FT09FOOl,VS,SPRING
#CALL MAIN12

The system prompts (with #) for the first command to be executed in your nonconver­
sational task. This DDEF command defines the new data set for data set reference
number 9. It is to reside on public storage and is therefore automatically cataloged
for vou .

. MAIN12 contains a "READ(I,m) list" and a "WRITE(9,n) list" statement. You
omit a data definition for data set reference number 1 because you wil1 provide input
data in PROCI2A, which will be used as SYSIN.

S,Y: #(enter data to be read by MAIN12)

S,Y: #%END

S, Y:
S, Y:

#LOGOFF
#%E

S, Y: ~ACK PROC12A
SYS:

42

The DATA command accepts each line as a string of characters. Any mistakes you
make while creating this data set ,vill not be detected until the BACK command is
executed.

vVhen %END is read from SYSIN, it indicates the end of data to your program.

With the %E you indicate that your data set is complete. Now you arc prompted with
an underscore.

The system informs you that your BACK command has been accepted.
Your BACK command has been accepted ancI the task will be continued immediately
as a nonconversational task beginning with the DDEF command. (Note that DDEF
commands for private volumes must be given prior to issuing the BACK command.)
Should you wish to cancel the task you would issue a CANCEL command which
specified the batch sequence number.

Now you can depart and let the task run, since PROC12A is now its SYSIN and
includes a LOGOFF command for task telmination. If you wish to initiate another task,
you must log on again.

The BACK command may not complete its operation if the attention key is de­
pressed shortly after issuing the command. The result is a non conversational task
still connected to a terminal. \Vait a few seconds before initiating logon procedures.

Part 2: The EXECUTE Command

S. Y:
S, Y:

S. Y:
S,Y:
S,Y:

s, Y:
S,Y:
s, Y:
S, Y:
SYS:

DATA PROC12B
#LOGON ADUSERID",ADACC29

The LOGON command is the onlv difference between this and the PROC12A SYSIN
data set created in Part 1. Since' the task whose commands and data are stored in
PROC12B will be run later instead of being continued, you must provide a LOGON
command.

Note that a nOI1C'onversational LOGON omits the password. The remainder of
PROC12B is the same as in Part 1.

DDEF FT09FOOl,VS,SPRING
#CALL MAIN12 (same program as in Part 1)
(enter data to be read by MAIN12)

#%END
#LOGOFF
#%E
EXECUTE PROC12B

The system informs you that your EXECUTE command has been accepted,
Your request for a nonconversational task has been accepted by the system, and will
be executed when system resources are available, The SYSOUT of this task will consist
of system messages and any olltpnt to SYSOUT generated by ,'our executing programs,

Because the terminal is active (you are still logged on) after an EXECUTE is
issued, another command sequence can be entered. In fact, another sequence similar
to th(~ one illustrated could be issued to create other tasks,

S,Y: LOGOFF
SYS:

The system confirms \'our LOGOFF command.

Part II: Examples 43

Example 13: Preparing a Job for Nonconversational Processing

In this example, you put a series of commands and input data on cards. You will subsequently send them directly
to the installation operator, who wiII store the information from the cards into a data set. The data set wiII then
become the SYSIN for a nonconversational task (described in the cards) and will be queued for execution.

CARDS

LOGON ADUSERID",ADACCT29
'Nhen entered on a card, the LOGON command must start in the third card column,
and the first two columns must be blank. All the required LOGON parameters must be
included in the same card. The password is not used.

DDEF DDNAME= SCRATCH, VP, SCRATCH, OPTION=JOBLIB

FTN MAIN13,LISTDS=Y

READ(5,10)A
10 FORMAT (F6.2)

ATC=A <:>3.141
WRITE(6,10)A,ATC
STOP
END

CALL MAIN13

099.70

%END

LOGOFF

44

The command will define a ne,v JOBLIB on which to store the object module to be
created by the compiler. SCRATCH will automatically be cataloged for you by the
system.

Here you use the LISTDS operand. which works only in nonconversational tasks.
(If used in a conversational task, it is ignored.) By specifying LISTDS= Y, you cause
the listing to be placed in the list data sct, as in conversational tasks. If you did not
specify LISTDS= Y, the listing would be printed automatically; then it would no
longer exist in the system.

Your source statements follow. Note that the requirements for direct input of a
FORTRAN source program at the terminal keyboard and on cards are not the same;
here you must conform to FORTRAN source coding format. This is discussed more
fully in Appendix A.

Your source program, SOURCE.MAIN13, will automatically be cataloged for you
by the system.

After compilation, the object module will reside on the library at the top of your pro­
gram library list, in this case, the job library SCRATCH. You do not issue a PRINT
command in this task. However, the listing data set procedure is retained as the latest
generation of LIST.MAIN13, and you can later print it if you wish by issuing the
following command: PRINT LIST.MAIN13(O)", EDIT.

This command will initiate execution of your newly compiled module.

This card contains your object time data.

The %END will signal the end of the program data. The % character must be in
column 1 of the card. This card must immediately fonow the last input data card. This
card activates the "END=" option on a READ statement, if you have used it in your
program; if you have not, it initiates proper termination of the program execution when
a READ is executed after the end of data has been reached. If your program depends
on either of the above, and you have omitted the %END card, your program will read
the subsequent commands as SYSIN data, producing abnormal results.

Enter LOGOFF beginning in column 3.
Three things in particular should be kept in mind when preparing a deck of cards for
processing:
1. Although the positioning of characters when typed in directly can be "free form,"

the positioning on cards is more closely fixed.
2. Any errors in preparing the deck will probably terminate the task, since the system

cannot prompt you for corrections.
3. The "modifications" and "continue" compilation prompts will not occur, so no Y or

N responses should be specified.

Example 14: Storing DDEF Commands for Later Use

In Part 1 of this example you create a data set containing DDEF commands for frequently used data sets. In Part
2 you cause them to be issued with a CDD (can data definition) command. After logging on, you issue:

Part 1: Storing DDEF Commands

S, Y: DATA DDPACK.MAIN14 ,RTYPE= I, BASE=1000, INCR=400

The DATA command can be used to storc anv kind of information that can be trans­
mitted through the terminal. Here you are going to lise it to store your DDEF com­
mands in a data set YOll name DDPACK.MAINI4. The commands are stored as charac­
ter strings but are interpreted as commands when they are later retrieved with
the CDD command.

The I specifies that the data set is to be indexed. The first line number is to be
1000, and succeeding line numbers are to be incremented by 400. Default values for
each of these parameters is 100.

The data set, DDPACK.MAINI4, is automatically cataloged for you by the system.

S, Y: 0001000 DDEF YOURLIB, VP ,MAINPGMS, OPTION= JOBLIB

The system prompts you for each line with a line number. You enter the first DDEF
to be stored. It is for the cataloged job library that contains your compiled program to
be run, MAIN14.

The DDEFs do not have to be stored in any special order in the data set, but their
ddnames must be unique.

S,Y: 0001400 DDEF FT01F001,VS,IN14
Data set reference number I, input for MAINI4, has been cataloged in an earlier
session under the name INI4.

S, Y:
S, Y:

0001800 DDEF FT09F001, PS, DATA, UNIT = (TA, 9) • LABEL=,-
0002200 (, SL) , VOLUME = (,012170)

l\'1AINI4 also expects input on data set reference number 9 from an uncataloged data
set residing on tape 012170. Note the use of hyphen to continue the command on the
next line.

S,Y: 0002600 DDEF FT51F001,VS,OUTPUT.MAIN14

S,Y: 0003000 %E

S,Y: LOGOFF
SYS:

Since MAIN14 output will be too largc to be conveniently printed at the terminal,
this cataloged data set is to be defined to hold it.

The %E indicates that input to the DATA command is complete.

The system confirms vour LOGOFF command.
Your program, MAIN14, and its associated DDEF commands are ready for use. You
now check them out, to be sure there are no errors.

Part 2: Retrieving Stored DDEF Commands

After logging on, you issue:

S,Y: CDD DDPACK.MAIN14,YOURLIB
You cause the DDEF that defines your job library to be issued.

Part II: Examples 45

SYS: 0000, DDEF YOURLIB, VP, MAINPGMS, OPTION = JOBLIB
The system executes the specified DDEF command, prefixing four zeros to distinguish
it on your SYSOUT listing from those DDEF commands entered directly through
SYSIN. Any diagnostic "\'vould be printed at this point, as the system is now analyzing
the charader string as a DDEF command.

S,Y: .QDD DDPACK.MAIN14,(FTOIF001,FT09F001,FT51F001)
This command causes it and all the remaining data definitions to be executed. You may
enter any number of c1dnames. Omitting this parameter causes all thc DDEF commands
to be executed.

SYS: 0000 DDEF FTOIF001,VS,IN14
0000 DDEF FT09F001,PS,DATA

SYS:

SYS:

UNIT=(TA,9) ,LABEL=(,SL) ,VOLUME=(,012170)

The system informs you that it is waiting for volume mounting.
You must wait until the operator mounts your tape.

The system informs you that the task is now proceeding and the wait is over.

SYS: 0000 DDEF FT51F001,VS,OUTPUT.MAIN14

S, Y:
SYS:

CALL MAIN14
TERMINATED: STOP

You begin execution of a program.

Execution of your program is complete. The output of ~\'1ATN14 went to the data set
OUTPUT.MAIN14.

S,Y: PRINT OUTPUT.MAIN14,PRTSP=EDIT
SYS: The system acknowledges your PRINT command.
S,Y: ~OGOFF

SYS:

CARDS

46

The System confirms your LOGOFF command.
The f~llowing card d~ck is aU you need to run this task nonconversationally.

LOGON ADUSERID",ADACCT29
SECURE (TA=1,9)
CDD DSNAME=DDPACK.MAIN14
RUN LOC=MAIN14
PRINT OUTPUT. MAIN14, PRTSP=EDIT
LOGOFF

Example 15: References to Subroutines

In this example you run two programs, MAIN15 and MAINXV, each having references to other programs. After
MAIN15 is loaded, a diagnostic warns you of an undefined reference. You ignore it and execute anyway. After
MAINXV is loaded, a diagnostic warns you of an undefined reference in a program called by MAINXV. In this case
you resolve the reference before executing. After logging on, you issue:

S,Y: CALL MAIN15
The CALL command causes the system to load the specified object module and to
initiate its execution. During loading, the loader attempts to resolve any external refer­
ences by searching the libraries in the program library list and loading those modules
with definitions that satisfy the refercnces, These new modules may in turn have refer­
ences to other modules.

SYS: <>O<>O°UNDEFINED REF (ACLRTN) IN MODULE (MAIN15) .ADDRESS FFFFFOOO ASSIGNED
F025 MAIN15 ERROR IN LOADING MODULE
F002 STATEMENT REJECTED

S, Y: go

S.Y: CALL MAIN15

SYS: TERMINATED: STOP

S,Y: UNLOAD MAIN15

S,Y: CALL MAINXV

Here a diagnostic is issucd hecause the loader could not resolve a CALL for ACLRTN.
It assigns an invalid address that will cause an interrupt if it is executed. Since you are
certain that in this case the actual execution How of MAINl5 will not go through the
CALL on ACLRTN, you decide to go ahead and execute.

You issue a GO command, but the system merely prints an underscore.

You then issue the CALL command with the required module name, This must be
done after the OCCllrence of the F002 diagnostic.

Your program runs to completion. ACLRTN was not called during execution. If it had
been, an invalid address diagnostic would have appeared and an abnormal task termina­
tion would have followed,
Now you want to run MAINXV, You have to decide whether or not to unload l\fAIN15.
If you don't unload it, any programs already loaded for MAINI5 that MAINXV also
uses will not have to be reloaded, thereby saving some time. On the other hand, if the
programs are not unloaded and then reloaded, the loader will not be able to check their
references, and any unresolved references they might have will go undetected. To be
safe, you unload MAIN15,

MAINl5 and any other modules that were loaded because of references from it are
unloaded.

Now you initiate the loading and execution of MAINXV.

SYS: *****UNDEFINED REF (PRESSR) IN MODULE (THRUST44) .ADDRESS FFFFOOOO ASSIGNED
F025 THRUST44 ERROR IN LOADING MODULE.
F002 STATEMENT REJECTED.

THRUST44 was loaded hecause of a CALL to it from MAINXV,
THRUST44 in turn contained a CALL to PHESSR, which could not be located after a
search of all the libraries on the program library list. You remember that a job library
named ROCKETS has an object module vvhich contains a definition for PRESSR.

S,Y: DDEF MYLIBE,VP,ROCKETS,OPTION=JOBLIB,DISP=OLD
You issue a DDEF for the library ROCKETS to put it at the top of the program library
list.

Part II: Examples 47

S,Y: UNLOAD MAINXV

S, Y: CALL MAINXV

SYS:
S, Y:

SYS:

48

TERMINATED:
bOGOFF

STOP

Then you unload MAINXV from virtual storage.

Reloading MAINXV causes the loader to search the libraries in the program library
list again and it resolves the CALL to PRESSR from the newly defined library and
loads the module containing the definition of PRESSR.

After execution is complete, you log off.

The system confirms your LOGOFF command.

Example 16: Entering Data for Later Use

In this example, you create two data sets, one containing a source program for compilation in a later session, the
other containing data to be read by the program stored in the £rst data set. After logging on, you issue:

S,Y: DATA SOURCE.ORBIT,I,2000,200

S,Y: 0002000C

S,Y: 0002200

S,Y: 0002400

YOU:
S,Y: 000260020

SOURCE.ORBIT is the name of the data set 'lOU are about to create. When the DATA
command is used, the system automatically' supplies a data definition. The qualifier
"SOURCE" is needed because this data set is intended to be used as input to the
FORTRAN compiler. In earlier examples, where source statements were entered after a
FTN command, the source data set was created automatically and the qualifier,
SOURCE, was attached by the system.

The I specifies that the data set is to be indexed. The first line number is to be
2000, and ~ucceeding line numbers are to be incremented by 200. Default values for
each of these parameters is 100.

The source data set, SOURCE.ORBIT, is automatically cataloged for you by the
system.

ORBIT CALCULATIONS,HIGH ECCENTRICITY
The DATA command prompts for input by printing a line number. You enter a com­
ment line (C in column 1). You may start typing immediately after the line number, or
use a tab stop to format the terminal printing of your input. The tab stop may be set
at this time. \Vhen setting your tab stop, you should issue a line cancellation (a pound
sign at the end of the line) to cancel any of the spurious characters (tab, space, etc.)
that were generated when you set your tab.

DIMENSION A(lOO,lOO),B(lOOO)

REED (5,10)A
You notice you made a mistake in line 2400.
Since the line has not yet been completed (you have not pressed the return key) you
cancel the line by using the # sign. You then tab over and enter the correct line.

READ (5,10)A
FORMAT (19H PERTUBAT

RBATION TABLE)
You make another error, but this time you correct only the part in error. You back­
space 3 times, cancelling BAT, move the paper up once manually to avoid overtyping,
and continue the line correctly.

S, Y: 0002800 CALL THRUST(A,B)
S, Y: 0003000%2200, DIMENSION A(lOO,lOO),B(lOOO)

S,Y: 0003000

You notice another misspelling made earlier and decide to correct it by replacement.
The percent sign in the first typeable position has a special meaning to DATA when
of the form: %line number. It means that an insertion or replacement is to be made.
If the line number specified already exists, a replacement by the character string fol­
lowing the comma will be made. If the line number falls numerically between two
existing ones, an insertion will be made at that point.

In this correction and in the one after the next, the tab stop cannot be used because
of the double line numbers. Therefore, to maintain uniformity for future printouts of
your source data set, you enter six spaces between the comma and the source statement.

WRITE (6,10)B
The correction is made and you are again prompted for line 3000.

Part II: Examples 49

S, Y: 0003200%2700,30 FORMAT (E13.6)
Instead of entering a line for 3200, you insert a new line between 2600 and 2800.

S,Y: 0003200

S,Y: 000700010 FORMAT (1X,2F10.6)

S,Y; 0007200%D,2600

S, Y:
S, Y:

0007200
0007400%E

S,Y: DATA TELEM001

END

\Vhen entering your VS input data for your program via the DATA command (see
below), the system places a keyboard-card character for internal use prior to each
FORTRAN record. In this example, then, your FORlvlAT statcment must include
an X specification to skip one character for each record to be read so that your
program will skip over the unwanted system character.

The %D deJetes line number 2600 from the data set. If a range of Jines is to be deleted,
two line numbers arc specified; the first line number must be lower than the second.

The %E indicates to the DATA command that your data set is complete.

You enter another DATA command, this time defaulting to no index, which means you
will create a virtual sequential (VS) data set. This data is to be read by the program you
just entered. Because this data set also resides on public storage, the system automati­
cally catalogs TELEMOOI for you at this time.

S, Y:
S, Y:

#099.900000-08.732460
#093.247650-01.178940

S, Y: #%E
S. Y: RET TELEM001,PR

\Vhen a sequential data set is specified, line numbers do not appear; instead the system
prompts you for each line with the number sign. The tab key has not been used in
entering this data because it vvould then not be compatible with the input FOR~1AT
statement in ORBIT. Since a special character code is transmitted each time the tab
is depressed, allowance for use of the tab key would have to be made when' writing the
FOR~1A T statement by using the X specification to skip one character for each time
you pJanned to press the tab key.

'When a data set with virtual organization residing in public storage is automatically
cataloged for you, the system creates a new catalog entry and assigns an access quali­
fier of "unlimited" (read/write) to the data set.

You wish to change the system assigned access qualifier because this data set con­
tains important information which you do not want accidentally destroved. You there­
fore issue a RET command giving the data set name TELEr-.1001. The operand after
the data set name specifiies the data set is to reside on permanent storage and have
the read-only attribute.

S,Y: LINE? SOURCE. ORBIT, (2000,7400)

50

To check on the corrections made while entering your source statements, you use this
command to print the contcnts of the data set you have iust created. You specify the
first and the Jast lines to cause the printing of the entire data set.

SYS: 0002000 C
0002200
0002400
0002700 30
0002800
0003000
0003200

SYS:

0007000 10
0007200
D334 LAST
0007200

S,Y: LOGOFF
SYS:

ORBIT CALCULATIONS, HIGH ECCENTRICITY
DIMENSION A(lOO,lOO) ,B(lOOO)
READ (5,10)A
FORMAT (E13.6)
CALL THRUST(A,B)
WRITE(6,10)B

FORMAT (2FIO.6)
END

LINE IN MEMBER OR DS IS 7200
END

The system informs you that the last line of the data set is line numbered 0007200.
The space between the line numbers and the source statements is created by the
system. It indicates that the lines were originally entered from a terminal keyboard.
Lines entered from the terminal card reader are indicated by a C in that space.

The system confirms your LOCOFF command.

Tab stops were used to make the terminal printout format resemble FORTRAN source card format. Note that, just
because your terrninal printout format looks like card images, it does not meall that cards punched from this data set
can be used as FOHTHAN source input. In this example they cannot. For a further discussion of punching source cards
from a data set prepared at the terminal, see Appendix A.

Part II: Examples 51

hample 17.: Data Set Cconsiderations When Interrupting a FORTRAN Execution

In this example, you run a program that uses a data set on a private disk as input. \Vhen execution begins, you
realize you have specified the wrong data set. To start over you release the data set and unload your program.
You then run with the correct data set. After logging on, you issue:

S,Y: ~DEF FTIIFOOl,VS,RESULT01,OLD

SYS:

This command defines the data set that provides input to your MAIN17 program. DeB
subparameters are not required for existing data sets on direct-access devices, since the
data set characteristics ,vere recorded with the data set itself when the data set was
created.

The system informs you that the task is waiting for volume mounting. You must wait
for the operator to mount yom disk.

S,Y: DDEF FT05FOOl,VS,TABLEOOl
This command defines a new data set on public storage that is to contain some of yom
program output. It is automatically cataloged for you by the system.

S,Y: CALL MAIN17

PGM:

You default data set reference number L which was referred to in 1fAINl7, to
SYSOUT (terminal).

FIRST RECORD OF TEST RESULTS SHOWS
DATE OF TEST -- 11/17/69
LOCATION A

ALTITUDE RANGE 20000.0 TO 30000.0
This is some of the output from MAINl7.

YOU: (press attention button)

SYS:
S,Y: UNLOAD MAIN17

S,Y: RELEASE FTIIF001

Realizing that you have specified the wrong data set and volume number in your DDEF
command, you stop execution of MAINl7 by pressing the attention button.

You make sure that all your data sets are closed. Remember that the data set TABLEOOI
was to be created duri~g this run. If some output had gone to this data set before you
pressed the attention button, and another RUN MAIN17 was issued without unloading,
whatever had been written in TABLEOOI would be left there after restart.

This command releases the DDEF command previously issued. You must issue it
before the FTllFOOl data definition can be repeated for another data set.

S,Y: DDEF FTI1F001,VS,RESULT02,OLD

SYS:

52

You define what you believe to be the correct data set.

The system informs you that the task is waiting for volume mounting. After being
notified that the operator has mounted disk number 0122.37, you again execute your
program.

S,Y: CALL MAINl?

PGM:

You default data set reference number 1, which was referred to in MAIN17, to SYSOUT
(terminal).

FIRST RECORD OF TEST RESULTS SHOWS
DATE OF TEST -- 11/23/69
LOCATION B

ALTITUDE RANGE 5012.9 TO 6492.3
Everything now appears to be all right, so you allow execution to proceed to the exit
message and underscore.

SYS: TERMINATED: STOP
S,Y: LOGOFF

The system confim1s your LOGOFF command.

Part II: Examples 53

Example 18: Sharing Datil Sets

This example shows how data sets can be shared by several users of the system. Part I shows a session during
which another user makes one of his data sets available to you. Part 2 shows how you copy the data sd so that
you can make changes to it.

Part J: Permitting Access to a Data Set

After logging on, user ABPALID issues:

s, U: ~ERMIT DATA, USERID,,--=ADUSERID, ACCESS:=:RO

He makes available to you his cltaloged data set DATA 'vith reacl-only access point.

S,U: B,ETDATA,R
He changes his own access to DATA to read-only.

S,U: DDEF FTOIFOOl,VS,DATA

The user defines data set DA -A for his new task; he nO\v has read-only access to it.

S,U: ~ROGI
He executes PIIOGI, a program that uses data set DATA.

USR: LOGOFF
SYS:

The system confirms his LOGOFF command.

Part 2: Accessing a Shared Data Set

After logging on, you issue:

S, Y: SHARE DATA, USERID=ABPALID, OWNERDS=DATA

1\n entrv will be created in your catalog for (lat~~ set DATA. This cOlnrnand would
have been rejected if the owner had]Jot prn"jollsly granted YOU access with the
PEHMIT command.

S,Y: DDEF FT03FTOOl,VS,DATA

S,Y: PROG9

54

You issue a DDEF command defining DATA for your task.

You can now execute PROC9, a program that uses data set DATA.

Note: FORTRAN I/O opens all virtllal storage data sets for Ot'TPUT unless the data
set is read-only; read-only data scts are opened for INPUT. If a shared data set is
opencd for OUTPUT, an interlock is set that prevents other users from having access
to the data set nntil it is closed.

YOU: LOGOFF

SYS:

You must remember that if the owner erases or deletes one of his data sets which
you share, its entry in your catalog is not removed. To remove the entry from your
catalog, you must issue a DELETE command.

The system confirms your LOGOF'F command.

Part II: Examples 55

Example 19: Manipulation of Several Forms of a Program

In this example, you examine a previously cataloged program. Then you remove all forms of it from the system.
After logging on, you issue:

S,Y: LINE? SOURCE.MAIN19, (1,5000)

SYS:

SYS:

You would like to eliminate from the system any forms of a program named MAIN19
that you no longer need. You want to punch the source data set on cards, but first you
must determine whether such cards can be used as compiler input. So you issue this
command in order to examine the source data set.

The system informs you that the first line number in the data set is 000100. The system
then proceeds with the actual listing.

OOOOlOOCC THRUST CALCULATIONS FOR MK.1 ENGINE
0000200CC WITH STANDARD ATMOSPHERE.
0000300C DIMENSION ATBL(lO,lOOO) ,FORM(lO)
0000400C10 FORMAT (lOF10.6)
0000500C20 FORMAT (lOA4,2I4)
0000600C READ (3,20)FORM,I,J
0000700C READ (3,FORM) (ATBL((II,JJ) ,II=l,I) ,JJ=l,J)
0000800C WRITE (4,lO)ATBL(I,

YOU: (press attention button)
Satisfied that the program is what you want, you terminate the LINE? command. The
C following the line numbers indicates the statements were originally entered via a card
reader. This means that, if YOll punch the source data set, the cards can later be used
for compiler input. (See Appendix A for a more detailed description of compiler input
format requirements.)

S,Y: LINE? SOURCE.MAIN19,9999999
SYS:

The system issues the last line in the data set as: 0013700C END
In order to determine the size of the data set, you request the maximum possible line
number. This causes the last line of a line data set to be printed.

S,Y: PRINT SOURCE.MAIN19

SYS: PRINT BSN=0375

This command causes the creation of a nonconversational task that will print the
source data, and issues a batch sequence number for the noneonversational task.

The system acknowledges your PRINT command and assigns it a batch sequence
number (BSN).

S, Y: PUNCH SOURCE.MAIN19, STARTNO=9 ,ENDNO=88,ERASE=Y

56

You request the punching of the 9th through 88th characters of each record in your
source data set. The first eight characters are the line number and the input key. The
system creates a separate task that will perform the punching when system resources
are available.

You had to use the ERASE option in the PUNCH command, rather than a
separate ERASE command following it. The system will reject an ERASE command
if the data set referred to has an associated print or punch task pending. ~fost likely
the two tasks will be executed in the same order as they were entered. It is possible,
however that they actually will be executed in reverse order. If so, the ERASE option
will be delaved u~ltil after' the PRINT task has been completed. You should not insert
the ERASE ~ option until the last print or punch data command in any sequence which
refers to the same data set. It is possible that the first one, for example the PRINT above,
could be executed in less time than it takes to type in the next command; therefore the
ERASE option on the PRINT command could take effect before the PUNCH task
could be executed.

S,Y: CANCEL 0375
You now decide that a listing of the source data set is superfluous (since you will have a
source deck), so you cancel the printing task, referring to it by the batch sequence
number.

S,Y: ~RASE LIST.MAIN19(-1)
Here you erase the generation that contains the earlier version of MAIN19.

S,Y: ERASE LIST.MAIN19(0)
Here vou remove the latest generation of LISTJvIAIN19 which vou created and cata-
loged 'when the program was ~compiled in an earlier session. .

S,Y: ~RASE USERLIB(MAIN19)

S,Y: ~OGOFF
SYS:

This command erases the last form of this program, the object module produced during
compilation.

The system confirms your LOGOFF command.

Part II: Examples 57

Example 20: Terminal Input of a Pre-Punched Program for Compilation and Running

In this example, you use a terminal that has a eard reader. You switch back and forth between terminal keyboard
input and card input as you compile and execute a program.

You place a deck in your terminal card reader. LOGOI'\ and LOGOFF cornmand cards must begin in column
3, and their first two columns must be blank. All other commands raar begin in column 1.

CARDS

FTN MAIN20,ISD==Y,LISTDS==Y
C MATRIX I/O AND MULTIPLY

DIMENSION A(20) ,B(20),C(20) ,FORM(10)
10 FORMAT (10A4,13)
15 READ(7,10)FORM,I
20 READ (7 ,FORM, END== 3 0) (A (J) , J = 1 , I) , (B (K) ,K= 1 , I)

CALL MATMPY(A,B,C,I,I,I)
WRITE(17,FORM) (C(J) ,J==l,1)
GO TO 20

30 STOP
END

PRINT LIST.MA1N20(0),PRTSP=ED1T
KB Return to keyboard

Source
Statements

After logging on, you issue:

S,Y: CB (press reader start button)
This causes SYSIN to be switched to the card reader for one card. You can do this
any time the system is waiting for keyboard input if the desired cards are ready in the
card reader. .

Since the terminal is in send-receive mode. each card image is printed on the
terminal as if it had been typed in at the keyboard.

CIP: LOGONADUSERID,MYPASS*"ADACCT29

S, Y:
S,C:

S,C:
S,C:
S, C:
S, C:
S,C:
S,C:
S, C:
S,C:
S, C:
S,C:
SYS:

This is the card image printout (eIP). You supply the LOGON command from the
card deck.

CB (press reader start button)
ETN MAIN20, ISD=Y ,LISTDS==Y

0000100e
0000200
000030010
000040015
000050020
0000600
0000700
0000800
000090030
0001000

The system prompts for source statements bv issuing a line number. It then reads the
statements from the card reader.

MATRIX 1/0 AND MULTIPLY
DIMENSION A{20) ,B(20) ,C(20) ,FORM(10)
FORMAT (IOA4, 13)
READ(7,lO)FORM,I
READ(7,FORM,END=30) (A(J) ,J==I,I), (B(K) ,K=I,I)
CALL MATMPY(A,B,C,I,I,I)
WR1TE(17,FORM) (C(J) ,J==I,I)
GO TO 20
STOP
END

YOU: Y

SYS:

58

Even though you selected the card reader, these responses must be entered from the
keyboard. The system will alltomatically revert to the card reader after these prompts.

The system informs you that there were no errors.

ClF: PRINT LlST.MAIN20(0),PRTSP==EDIT

SYS:
The system acknowledges vour PRINT command and assigns it a batch sequence
number (BSN). For this example, assume a BSN of 0137.

elP: KB
The KB card is encountered. which switches control to the keyboard. The system's
underscore prompt for a command is followed by the KB card' image printou·t. This
results in another prompt for a command.

S,Y: CANCEL 0137
Since \'OI1 do not now want to see the listings produced by the compHer, you cancel
the task created to print them. Note that LIST.MAIN20(O) is cataloged for you in case
you want to print it later.

S, Y: CB

CARDS

ClP:
ClP:
CIP:
elP:
PGM:

elP:
elP:
PGM:
ClP:
ClF:
PGM:
SYS:
S,C:

S,Y:
SYS:

The system prompts YOll for input of data by unlocking the terminal keyboard. You
have the following deck reach, in the card reader and switch to card input by entering
CB at the keyboard.

Your READ statement refers to data set reference number 7. Sinee you did not supply
a DDEF for FT07F001, you default for terminal input.

CALL MAlN20
(3F10.6)
+03.600000 - 04.723000+07.245000
- 04. 200000+09.000000+03.400000
+05. - 6. +07.800000
+35. +01.300000-04.200000
- 07 .600000+03.700000+83.0
+11.100000 -13 .140000+17 • 8
%END
KB

003

Your program reads its input data from the card deck.

CALL MAlN20
(3F10.6) 003
-f-03. 600000--04.723000+07.245000
-04.200000+09.000000+ 03.400000
25.999969-61.210037 93.89157

You default the data set reference number 17 so that your output will be printed at
the terminal.

-"-05. -6. +07.800000
+35. +01.300000-04.200000
54.431976116.639954 44.063965
-07. 600000--l--03. 700000+83.0
+ 11.100000-13.140000+ 17 .8
64.799973-77.759964101.087952
CHClW STOP
KB

Your program concludes. The KB card causes SYSIN to be switched to the keyboard.
You then Jog off.

:!:OGOFF

The system confirms your LOGOFF eommanIT.

Part II: Examples 59

Example 21 : Intra-Task Carryovers

In this example, you prepare a deck for nonconversational processing, taking into account carryover of data
definitions and CO:\fi\WN blocks within the task. Your LOGON and LOGOFF commands begin in column 3; all
other commands may begin in column one.

CARDS

LOGON ADUSERID",ADACCT29

LOGON command parameters must all be on one card. A task for nonconversationaI
execution must be accurately prepared because most errors will cause premature
termination of the task or will make the results useless. Note that you do not enter a
password in nonconversational tasks.

SECURE (TA=3,9) , (DA=1,2311)

The SECURE command is needed in all nonconversational tasks that use private vol­
umes, in order to secure devices on which to mount them. This command requests
three 9-track tape drives and one 2311 disk unit. Only hvo tapes will be used ,;imuI­
taneously; the need for securing three will be expJained Jater in this example. If this
command is omitted or an insufficient number of units are reserved, your task will be
terminated upon execution of the first DDEF command that requests' a private device
that is not secured.

DDEF MYDISK,VP,MYLIBE,OPTION==JOBLIB

Since the data set I\IYLIBE is cataloged, the only parameters needed are those shown
here.

DDEF FT01F001, PS, MYDATAOA. UNIT== (TA, 9) , VOLUME== (,324010), LABEL== (,SL)
This DDEF command and the next one include the additional parameters needed for
uncataloged data sets. The first command refers to an existing volume. Data set char­
acteristics will be obtained hv the system from the label that was created when the
data set was first written on y~ur pri\:ate volume. YOll specify that standard labels exist.
Note the - in card column 72 signifving a continued command on cards. The next
eard starts in column 16. .

DDEF FT02F001,PS,MYOUTOOB,UNIT==(TA,9) ,VOLUME==(PRIVATE),­
DCB= (RECFM=F , LRECL==80) ,LABEL== (, SL)

CALL MAIN21A

UNLOAD MAIN21A

60

This DDEF command defines a ne\v data set that is to reside on a private volume. By
specifying PRIVATE but omitting the volume serial number on the VOLUME para­
meter you indicate that you want the operator to provide a tape from the installation
pooL \Vith the LABEL parameter. YOH indicate that you want the system to create
standard labels.

MAIN2lA contains a "READ(l.n)list" statement that reads input from the data set
.YIYDATAOA. It creates the new data set, MYOUTOOB, with a "WRITE(2,n)list"
statement.

The data set reference numbers 1 and 2. in the READ and WRITE statements,
respectively. appear in the data definition names (i.e., FTOIFOOI, FT02FOOl).

Unloading a program once you are through with it is often essential to successful pro­
gram execution. For example, MAIN2lA and :\,IAIN2IB both have an unlabeled
(blank) COMMON block. You are not sure which CO:\'IMON block is larger. If
MAIN21B contains a larger CO~lI\fON block than MAIN2IA, then you may encounter
problems when yOU run MAIN2lB because the loader will not allocate virtual storage
for a new COMMON block if there is one alreadv loaded from the RUN MAIN2lA
command. Since the loader allocates each unlab~led COMMON block extra pages
of virtual storage, the larger COMM00.' block in MAI0.'2IB may fit. If it does not,
MAIN2lB will probably be terminated because of an invalid address reference. Un­
loading MAIN12 also ensures that the data sets it refers to are closed.

CATALOG MYOUTOOB,N

RELEASE FTOIFOOI

In order to store the volume serial number in the catalog, this command must precede
the RELEASE command below. Because this is a new private volume you cannot
know the volume serial number in advance. By cataloging you cause the system to
record the assigned volume serial number in the catalog. You can then define the data
set for a future session by supplying only the minimum parameters in the DDEF com­
mand. Although failure to catalog MYOUTOOB at this point would not have caused
erasure of MYOUTOOB, it would have made it inaccessible during the rest of this
task. In conversational mode the assigned volume serial number is printed out and
can be used in a DDEF command later in the same session.

The next program to be run, MAIN21B, will read the data set MYOUTOOB with a
statement of the form READ(l,n)list. This read statement will also require a DDEF
command with a data definition name FTOIFOOI. If another DDEF command named
FTOIFOOl were issued at this time an ambiguity would result, since the data definition
FTOIFOOI would refer to two different data sets. The svstem would detect the error,
reject the command, and print a diagnostic message. Ther~fore, you issue this RELEASE
command to make the data definition name, FTOIFOOl, available for use with MY­
OUTOOB. Releasing the data definition name also releases the data set name and any
secured devices it used. The RELEASE command in this example relinquishes one of
the secured tape drives to the system, leaving you with hvo.

DDEF FTOIFOOl"MYOUTOOB,OLD

You are, in effect, moving the data set name MYOUTOOB from data definition FT02FOOl
to FTOIFOOl. There is no ambiguity because the system will remove the data set name
MYOUTOOn from the data definition FT02FOOl. The system is also cognizant of the
volume in which the data set MYOUTOOn is resident and that i\lYOUTOOB has already
been mounted on a secured device for this task.

DDEF FT02FOOl, PS, FINALOC, UNIT= (TA, 9), VOLUME= (PRIVATE) ,­
DCB=(RECFM=FBA, LRECL=50,BLKSIZE=500), LABEL=(,SL)

RUN MAIN21B

CATALOG FINALOC,N

LOGOFF

The FT02FOOl data definition was left without a data set name and is thus available
for use. This DDEF command now makes use of it to define a new data set named
FINALOC. The third secured tape unit (unused until now) will be used to mount the
necessary private tape volume.

A "WRITE(2,n)1ist" statement in MAIN21B will create the data set FINALOC.

This command will catalog FINALOC so that you need specify only the minimum
parameters when you issue a DDEF command for it in a future session.

Part II: Examples 61

Example 22: Survey of System Facilities and Some Housekeeping Methods

In this example yon do some housekeeping, erasing unwanted programs, and transferring a some; program from
publie storage to tape. After logging on, you issue:

S, Y: !:C?
This command is used ':0 prcs',nt the name, access, and, for sh:.rrcd data sets, the
owner's identifkation for one or more cataloged data sets, SiLce ',au do not specify
any data set names here, information about all your cataloged (lata sds is presented,

SYS: DATA SETS IN CATALOG WITH QUALIFIER ADUSERID
ADUSERID.JOBLIBA, ACCESS:RW
ADUSERID.LIST.MAINTEST(O),ACCESS:RW
ADUSERID.M220UT, ACCESS:RO
ADUSERID.PROJECT.A, ACCESS:RO
ADUSERID.PROJECT.B, ACCESS:RO
ADUSERID.PROJECT.C, ACCESS:RW
ADUSERID.PROJECT.C2, ACCESS:RO
ADUSERID.SOlffiCE.MATRIX7, ACCESS:RW
ADUSERID.SOURCE.TRIALX, ACCESS:RW
ADUSERID.VERSION5" ACCESS:RO,OWNER:MICHAELB

S,Y: DSS? SOURCE.MATRIX7

SYS:

S, Y:
S,Y:

S,Y:
SYS:
YOU:

You wnnt more information ahout one of your cataloged datil sets, so you issue a DSS?
command, This commalld presenls more detailed information than does the PC? com­
m:md. If DSS? is specified without an operand, detailed status information for all
yom cataloged data sets is presented,

ADUSERID.SOURCE.MATRIX7
ACCESS: RW
VOLUME: 232323 (2311)
DS ORGANIZATION: VI '
REFERENCE DATE: 257/68
RECORD FORMAT: V
KEY LENGTH: 00007

ERASE SOURCE.MATRIX7
~RASE LIST.MAINTEST(O)

PAGES: 002
CHANGE DATE: 257/68

RECORD LENGTH: 00132
RELATIVE KEY POSITION: 00004

You decidE' to erase two of the foregoing data sets, You would like to examine one
other data set before deciding whether to erase it.

LINE? SOURCE.TRIALX
5000100 C TRIALX IS BASED ON FORMER TUBE TEST ROUTINE.
(press attention button)

The Drst linr> p.-intecl out is sufficient for VOfl to recognize this as an old program that
you no iongel: need, You halt further printing by p;'cssing the attention button, You
erase it awl another data set of llnmeric,ll data associated with it.

S,Y: ERASE SOURCE.TRIALX
S,Y: ERASE PROJECT
SYS:

62

The systenl give" vou the option of erasing IE) or retaining (R) the individual data set
c3talogcd Hnder the generic Harne PROJECT, or cr3si:lg all of them (A),

YOH decide to erase all hut PHO}ECT.B.

SYS:
YOU:
SYS:
YOU:
SYS:
YOU:

PROJECT.A
E
PROJECT.B
R
PROJECT.C
A

S,Y: ~RASE VERSION5

SYS:

S,Y: DELETE VERSION5

S,Y: POD? USERLIB

By typing A, you canse the system to crase PHO}ECT.C and those data sets whosc names
would follo,v if prompting continued in this case, just PROJECT.C2).

The underscore indicates the end of PROJECT data sets, and you tell the system to dis­
pose of [mother obsolete data set.

The system infonns you that VERSION5 is not yours to erase, and ignores your com­
mand.
VERSION5 is it shared data set for \vhich you do not have unlimited ,l('cess, which in-
cludes the right to crase. '

The DELETE will remove enl)' 'lour catalog entry for VERSIO~5 but will not affect
the data set itself or the ov.w'r's catalog,

Now you request a list of cach '/),cd module on your USEHLIB.

SYS: ZCOXOOl START PRESENT POD DUMP
MAIN7

S, Y:
S,Y:

MAIN10
SUBMATRX
END OF PRESENT POD DUMP
ERASE USERLIB(MAIN7)
ERASE USERLIB(SUBMATRX)

Individual members of partitioned dab set can be erased in this way without erasing
the entire data set, in this case your USERLIB.

S,Y: POD? JOBLIBA
This command can be used to obtain information about a library or any other VP
(bta set.

SYS: ZCOXOOI STAHT PEESE:~T POD DUMP
PROG14
MAIN12

S,Y: ERASE JOBLIBA
An entire Jibran' data sct can br> erased. III addition to Cra51n((the data set, the ERASE
command also 'removes the catalog cntry, tlm, having the effect for cataloge(l data
sets of ERASE and DELETE.

S,Y: DDEF DDl,PS.TAPE.M22DUT
You define the eopy of the data sd tbat will reside on tape.

S,Y: WT M220UT,TAPE.M220UT,ERASE==Y
This commanrl requests a nOllC'oIlYersational task to write th(' data set M220UT on
tape, The data set must be cataloged or defined for the current session, Several optional
parameters are defaulted such as blocking factor, line spacing, etc" described funy
in the Command System User's Guide. ERASE specifies that the data set is to be erased
after completion of the \'\1T task.

Part II: Examples 6:3

SYS:

S,Y: USAGE

S,Y: LOGOFF
SYS:

64

The system informs you that your request has been accepted.
Your request for writing the tape has been accepted and assigned a separate task. The
system 'will also inform you of the number of the tape onto which it was written.

You conclude your task.

You enter the USAGE command to inquire about the amount of system resources you
have used. Two totals are presented: I) the amount resources used'since LOGON, and
2) the total amount of resources used since you \vere joined.

The following resources are accounted for: permanent storage, temporary storage,
direct-access devices, magnetic tapes, printers, card reader-punches, bulk input, bulk
output, TSS/360 tasks, total time that your terminal was connected to the system, and
CPU time used.

The system confirms your LOGOFF command.

Example 23: Generation Data Groups

In this example you create a generation data group (CDC) to store related data sets. Data sets are stored and cata­
loged in a CDC with a common set of qualifiers, the order the data sets are stored being used to identify each data
set. In the three parts of this example, you create a CDC and refer to generations of it by both relative and abso­
lute references.

Part 1: Creating a GDG

After logging on, you issue:

S, Y:

SYS:

DDEF MYDISK,VP,MYLIBE,UNIT=(DA,2311),­
VOLUME= (,230001), OPTION=JOBLIB,DISP=OLD

You define a job library that resides on a private disk. It contains the object module
that you will execute during this task.

The system informs you that the task is waiting for volume mounting. You must wait
for the operator to mount your disk.

S,Y: CATALOG GDG==TESTRSLT,GNO==5
This command creates a generation data group catalog entry. All data sets in this group
will have the name TESTRSLT as their leftmost qualifier. The second parameter speci­
fies that five data sets are to be retained in one group. \Vhen more than the specified
number bas 'been reached, the oldest generation of the group is erased.

S,Y: DDEF FT01F001,PS,TESTDATA,-

SYS:
UNIT== (TA, 9) ,VOLUME= (,230002) ,DISP=OLD,LABEL= (, SL)

The system informs you that the task is \vaiting for volume mounting. You must wait
for the operator to mount your tape.
The data set TESTDAT A contains the input to the program, MAIN23, which creates
the first generation of your CDC.

S,Y: DDEF FT02F001,VS,TESTRSLT(-+-1)

S,Y:
SYS:
S, Y:

SYS:

CALL MAIN23
TERMINATED:
LOGOFF

STOP

The dsname in this data definition is a relative reference. Zero (0) refers to the most
recent member, minus one (-1) to the one just prior to the latest, minus two (-2) to
the one before that, etc. Your positive, nonzero reference (+ 1) indicates a future gen­
eration about to be created.

When the system has completed automatically cataloging TESTRSL T(+ 1),
TESTRSLT(+l) will be known as TESTRSLT(O); when a new generation is entered
into a CDC, all of the relative generation numbers are reduced by one. If there were a
prior generation at this time, it would become (-1).

A data set which was written and cataloged during a previous session can be
added to this CDC. You would simplv use the CAT ALOC command to change the
data set name to TESTRSLT(+l).

The system confbms your LOCOFF command.

Part II: Examples 65

Part 2: Relative Reference to a GDG Member

After logging on, you issue:

S, Y: QDEF MYDISK, VP, MYLIB2, OPTION=JOBLIB ,DISP=--=OLD
SYS:

S,Y:
S, Y:

S, Y:
SYS:
S, Y:
SYS:

The system informs you that the task is waiting for volume mounting. You must wait
for the operator to mount your disk.
You request a different job library, containing a different version of the ~vlAIN23 object
module. Although it is on a private volume you need only the four parameters shown
because it was cataloged. No indication is seen here of a volume serial number but
it is possible that this volume could be the same as the one in Part 1.

DDEF FT01F001, VS, TESTRSLT (0) ,DISP=OLD
DDEF FT02FOOl, VS, TESTRSLT (+1)

CALL MAIN23
TERMINATED:
LOGOFF

STOP

This version of MAIN23 will take its input from the last CDC generation, and then
will create the next CDC generation. Thus, the first DDEF command above defines
the input of 1IAIN23 and the second defines the output data set to be stored as a new
generation in the CDC established in Part 1.

The system confirms vour log-off request.

Part 3: Absolute Reference to a GDG Member

After logging on, you issue:

S, Y: QDEF MYJOBL, VP, LIRE005, OPTION=JOBLIB, DISP=,OLD

You request a foh library that resides on a public volume. 010 '>vaiting for volume mount­
ing is necessary. A third version of .\:IAIN23 will be llsed. This version also receives
its input from one of the CDG data sets, defined hy the next DDEF command.

S,Y: DDEF FT01FOOl,VS,TESTRSLT.G0002VOO,DISP=OLD

S. Y:
S,Y:

SYS:
S,Y:
SYS:

66

You refer to the CDC generation created in Part 2 bv its absolute generation name.
The general form of this name is

qualifier. Gxxxx Vyy
where xxxx is the absolute generation number and yv the version numher. The name
of the CDC is the qualifier. The generation number is automatically incremented as
new gellcrations are cataloged; the version number is not. If you wish to replace a
CDC generation bv another versioll of the same generation,),011 have to supply the
version number by making it part of the absolute name \"011 refer to. The absolute
names of the two data sets created in Parts I and 2 are TESTHSL T.GOOO} von and
TESTRSL T.C0002VOO.

DDEF FT02FOOl, VS. TESTRSLT (+3)
CALL MAIN23

TERMINATED: STOP
LOGOFF

You supply a different relative generation number here. It will be added to the last
absolute generation number, leaving a gap in the absolute sequence for possibJe later
insertions (i.e., the absolute llames TESTHSLT.G0003VOO and TESTRSLT.C0004VOO
are omitted).

The system confirms your LOGOFF command.

Example 24: Tape- and Disk Medium Transfers of Virtual Access Method Data Sets

In this example, you copy VAt-f data sets from one medium to another. Each of the following commands is illus­

trated: TV (TAPE to V.">t-f), \"1' (VAM to TAPE), and vv (VAM to \'A:\l). The data sets to be copied are assumed
to exist, and are cataloged. After logging on, you issue;

S,Y: DDEF DDVTOUT,PS,COPYl,UNIT=(TA,9) ,VOLUME:=:(PRIVATE)
You define the tape copy of the data set.

S,Y: VT ORIGIN1,COPYl

SYS:

S, Y:
S, Y:

SYS:

Data set ORIGINl aJreadv exists as a VAM data set. COPYl is the name assigned to
the magnetic tape copy of this data set,

\Vhcn the data set is successfullv copied, you will receive ~ lll<:ssage indicating the
names of the input and output data sets, as w'e11 as the me sequence numbers and
volume serial numbers used,

DDEF DDVTOUT) PS, COPY2, UNIT == (TA, 9) , VOLUMEc-: (PRIVATE) ,LABEL:: (2, SL)
VT ORIGIN2

Here the output data set name is defaulted, making nt'cCssalT the preceding DDEF
command, The outPllt data set llame will be ADLTSERID,TAOOOOOl.COPY2, 'where
TAOOOOOI is an arbitrarv mlmbcr to aSSIJl'(' lIniqlIcncss for tlie fully qlwlified data set
name,

A svstem message will inform you whcr~ the data set is successfully copied, Any failure
to copy successfuly will result in a diagnostic message and cancellation of the command,

S, Y: TV ADUSERID. TAOOOOOl. COPY2, COPYBACK

SYS:

S,Y: VV ORIGIN3,COPY3

SYS:

The data set Just produced on a 9-trad~ magnetic tape is COpil,d on direct-access storage
in V AM format,

A system D1e:;sage will inform you of the success or failure of the copy operation.

The data set n::m1ell ORIGIN:3 is copied into puhlic storage and assigned the name
COPY.3.

A svstem message will inform \011 of the success or faihm' of the copy operation,

S, Y:
S, Y:

DDEF PRIVDD, VI, COPY 4, UNI T=c (DA, 2311) , VOIATMK,cc (,333333)
VV ORIGIN4,COPY4

SYS:

S,Y: LOGOFF
SYS:

YOIl desire to copy the dab set OHICIl':4 onto ~l private VAivi volume #333333 and
name the output data set COpy 4,

A 5vsterTl message will inform you of the 51wcess or failure of the cop\' operation,

You want to copv the data set OHICINl onto a private VAM volume #333.3.33 ,md
The s\'stem flcer-pts vonr LOGOFF request.

Part n: Examples 67

Example 25: The Text Editor Facility

In this example, you lise the Text Editor to create and edit data scts. The example illustrates only the more
basic features of the Text Editor facilities. After logging on, yon issue:

S,Y: DEFAULT REGSIZE=8

S,Y: EDIT EX25

S,Y: REGION REGION1

S, Y:
S,Y:
S, Y:

0000100 LINEONEE
0000200 LINE TWO
0000300 LINE THREE

S,Y: 0000400 UPDATE

YOll enter a dcf:llllt vahIe (in this examplc, 8 bytes) for the length you wish to allow
for the names of regions within the data sct you will edit.

You invoke the Text Editor and specify that data set EX25 is to be processed. Since
no DDEF command was issued for EX2."5, and the yaluc of the REGSIZE parameter
is greater tkm zero, the svstcm assumes that you ,vish to edit a region data set with
the following data set attributes: virtual index sequential data set organization, format­
V l"ccorck maxim\lm logical record length of 2.'56 bytes, a key length of 1,5 bytes (8-byte
region name and 7-byte line number), and a relative key position of 4.

You specify a region name; you will be invited to enter text for the region indicated.

You enter the data lines von wish to be part of the re/1:ion named REGIONl. Each
time ''au press the rehHn kev, the Text Editor prompts with the next line number.

You decide to make a change to the previous entries. Bv preceding UPDATE with an
underscore character (_), the Text Editor immediatelv executes the command.

SYS:
YOU:

FOR EACH LINE ENTER LINE NUMBER AND DATA
0000150 INSERTl

YOU: INSERT 0000400

S,Y:
S,Y:
S, Y:

S,Y:
S, Y:

S, Y:
S,Y:
S, Y:
S,Y:

0000400 LINEFOUR
0000500 LINEFIVE
0000600 END

EDIT EX25
~XCISE 200

INSERT 260,10
0000260 INSERT2
0000270 INSERT3
0000280 END

S,Y: LOGOFF

SYS:

68

You add line number 150 to your data set.

You now want to continue entering data at the point where you left off earlier. You
precede INSERT "vitb an underscore character, since the system expects data and not
a command following UPDATE.

You terminate Text Editor processing. Since EX26 resides in public storage, and is
VAM organized, it will be automatically cataloged.

Line number 200 from the current region REGIONl will be deleted.

Text Editor processing is terminated.

You decide to terminate your conversational task.

The system aecepts the LOGOFF request.

Example 26: The Text Editor Facility

In this example, you make more extended use of the updating capabilities of the Text Editor. The example is
probably more complex than you might expect for a single terminal session, but it will serve to portray the
scope and flexibility of the editing commands that are available to you. After logging on, you issue:

S, Y: DEFAULT REGSIZE=8

S,Y: EDIT EX26

S,Y: REGION REGION2

S, Y:
S, Y:
S, Y:
S, Y:
S, Y:
S, Y:
S, Y:
S, Y:
S, Y:
S, Y:
$, Y:

0000100 LINEA
0000200 LINEB
0000300 LINEC
0000400 LINED
0000500 LINEE
0000600 LINEF
0000700 LINEG
0000800 LINEH
0000900 LINEI
0001000 LINEJ
0001100 END

S,Y: EDIT EX25

S,Y: REGION REGIONl

You enter a default value (in this example, 8 bytes) for the length you wish
to allow for the names of regions within the data set you \vill edit.

You invoke the Text Editor and specify that data set EX26 is to be processed. Since no
DDEF command was issued for EX26, the same dahl set attributes are assumed as for
EX25 in the previous example.

You define a region name for EX26.

You enter the lines for REGION2 of data set EX26. You then terminate Text Editor
processing. Since EX26 is V AM organized and resides in public storage, it is auto­
matically cataloged when the Text Editor is invoked.

You again invoke the Text Editor and specify that data set EX25, region REGIONl,
prepared in the previous example, is to be processed.

The system prompts you to enter a command.

$, Y: !!UMBER300, 500, BASE=300, INCR=50

S,Y: DISABLE

Lines 300, 400, and 500 are now numbered 300, 3.50, and 400.

This optional command makes the following data set changes provisional. These
changes can be made permanent by issuing an ENABLE command, after you are
satisfied all changes were entered properly.

S,Y: EXCERPT EX26,REGION2,600,1000
You wish to excerpt lines 600 to 1000 from REGION2 of data set and insert these lines
in the current data set EX25.

$, Y: QONTEXT, LAST, STRINGl=LINE, STRING2=LINE NUMBER

S, Y: ENABLE

The current region is searched for all occurences of the character string line. \Vherever
it is found, LINE NU~1BER will replace the occurrence.
Note: This facility is useful for symbol replacement in source language data sets.

lJp this this point, the revisions made since DISABLE was issued above were tempor­
ary. \Vith the execution of the ENABLE command, these revisions are now perma­
nent. A STET command, on the other hand, would have deleted all changes made since
the DISABLE was issued.

Part II: Examples 69

S,Y: CORRECT Nl=lOO,SCOL=O

SYS:
YOU:

LINEONEE
* %

S,Y: EDIT EX26

S,Y: REGION REGION2

You now want to remove a single character from a line, starting with the first: column
(relative column 0). Standard correction characters are assumed, by default.

The result will be LINEONE.

You reopen the text editor for data set EX26.

The current region is now REGION2.

S,Y: ~OCATE 0,LAST,LINEF

SYS: 0000600 LINEF

S,Y: ~ISTIOO,LAST

S,Y: END

S,Y: LOGOFF
SYS:

70

You \Vallt the entire data set EX26 to be searched for the character string LINEF.

The line in which LINEF is first discovered is displayed at the terminal.

The current region (REGION2) will be displayed.

You terminate Text Editor processing.

The svstem accepts your LOCOFF command.

Example 27: Use of Procedure Definition (PROCDEF)

In this example, you create a procedure, tailored to your needs, to he called at a later time just as if it were a
system-supplied command. After logging on, you issue:

S, Y:
S, Y:
S, Y:
S, Y:
S, Y:

PROCDEF
0000100
0000200
0000300
0000400

FTNPGM
PARAM MODULE
FTN MODULE
PRINT LIST.MODULE(O)",EDIT,ERASE

END
You have defined a procedure which wiII now be available for calling by he name
FT:\'PG}'t. It allows you to define a module name for compilation. By calling the
established procedure, and giving a unique module llamc to use, both the compilation,
and printing of the resulting listing data sets can he accomplished.

S,Y: FTNPGM MYMOD

S, Y: PROCDEF SETUP

The procedure established above (via PROCDEF) will now be aetivated. The actual
module name (MYi\10D) will replace the dummy module name (MODULE) wherever
it occurs.

S, Y:
S, Y:
S, Y:

OOOOlOO PARAM STORED=$l, ISD:=$2, SLIST=$3, CRLIST=$4
0000200 DEFAULT STORED:=$l, ISD=$2, SLIST=$3, CRLIST=$4
0000300 END

S,Y: SETUP Y,N,Y,Y

S,Y: FTN MODI

S,Y: PROCDEF ZLOGON

This procedure will now be available to vary the default values for certain FTN
parameters.

Some FTN parameter default values have been adjusted to snit your requirements.

You now proceed with the compilation of "IODI with the adjusted default values.

Here the operand (ZLOCOJ\:) for the PROCDEF command is shown without the use
of a keyword.

S, Y:
S, Y:

0000100 DDEF STOREIT, VP, MYLIB, OPTION=JOBLIB
0000200 END

S, Y: LOGOlt'F
SYS:

You decide that each time yon LOCON you would like a certain job library defined
for any object modn1cs yon may produce. By assigning ZLOGON as the procl'dme
name, YOU insur~ its automatic call as soon as LOGOl',' is accepted. :-IYLIB is assnmed
to be an existing cataloged data seL Since PARAM was not used you cannot change
any of the values in the DDEF command.

The LOGOFF command is accepted bv the system.

Appendix A: Use of the FORTRAN Compiler 71

Example 28: The User Profile Facility

In this example, you are shown how to manipulate your copy of the prototype user profile, made available to
you at JOIN time. This prototype profile is a member of your user library (USERLIB). After logging on, you
issue:

S, Y: DEFAULT DSORG=VS
The data set organization Beld was originally defaulted by the system to VI (index
sequential). You will now be llsing mostly VS organized data sets, so you set the default
value (for the DDEF command) to virtual sequential (VS).

S. Y: ~YNONYM DOPROG=FTNPGM
The FTNPGM procedure named in Example 27 can now be invoked with either name:
DOPROG or FTNPGM.

S,Y: SYNONYM FINIS==DISPLAY 'TASK COMPLETED'

S,Y: :EROFILE

S,Y:
SYS:

FINIS
- TASK COMPLETED

S,Y: !!OGOFF
SYS:

72

When FINIS is invoked, the message: TASK CO!,IPLETED will appear on SYSOUT.

The above changes apply to your session profile only. You now decide to make the
changes a permanent part of your user profilc.

Since the PROFILE command was invoked, FINIS may be used in all subsequent
sessions to produce the same message.

The system accepts your LOGOFF command.

The appendixes give detailed information on the use
of TSS/:lGO by the FOHTHAN programmer; they contain
the following information:

A. Use of the FORTRAN Compiler: describes source
statement entry and correction and compiler diag­
nostics, output, and restrictions.

B. pes and FORTRAN Object Programs: describes the
use of pes when debugging FORTRAN object pro­
grams at the source language level.

C. Programming Considerations: describes the pro­
gramming techniques that yield more efficient pro­
grams, the effect of compiler optimization on the
use of pes, system naming conventions, library
management, and several miscellaneous consider­
ations.

D. Assembler Language Subprograms: describes the
techniques and conventions of incorporating as­
sembler-language subprograms into FORTRAN lan­
guage programs.

Part III. Appendixes

E. Specification of Data Set Characteristics: describes
the various record formats and data set organiza­
tions available to the FORTRAN user and explains
how and when to specify these characteristics for
a data set.

F. Attention Considerations: describes the system's
response to the attention key, which is a function
of the system's current activity.

C. Command Formats: describes the notation used
to present commands and gives the general form
of each of the TSS/360 users' commands.

H. Carriage and Punch Controls: lists the extended
ANSI FORTRAN carriage control and punch control
standard characters.

1. Sample Program: describes the sample program
that is distributed with the TSS/360 FORTRAN IV

compiler.

Part III: Appendixes 73

Appendix A. Use of the FORTRAN Compiler

This appendix discusses the following topics:

1. Entry and correction of FORTRAN" source statements:
the format of keyboard and card source statements,
efficient source statement correction techniques,
and entering lines from the keyboard that can later
be punched and reentered as cards.

2. Compiler diagnostic action: the format and effect
of diagnostic messagcs and error severity codes
produced by the compiler.

3. COlllPiler options and listings produced: FT,\ pa­
rameters, listing options, indirect referenccs to
FORTRAN" IV Sll hprograms, and the destinations of
all compiler output.

4. Compiler restrictions: simple and complex source
program restrictions.

Entry and Correction of FORTRAN
Source Statements
This section discusscs the following topics:

1. The format of FORTRAN sourcc statements entered
at the terminal keyboard, at the terminal card
reader, and at a card reader at the central com­
puting facility.

2. Guidelines for efficient source statement correction
techniques.

3. Techniques for entering FORTRAN source keyboard
lines so that they can be punched and rccntered
in card form for compilation.

Format of Source Lines

A FORTRAN source statement is composcd of one or
more individual source lines. A source line consists of
a single card or a single line of keyboard input. There
are five types of lines:

1. Comment lines
2. Initial lines
3. Continued lines
4. Continuation lines
5. END lines

The fol1owing paragraphs describe each of these types
of lines for both card and keyboard format.

For both card and keyboard statements, the maxi­
mum number of text characters that can be contained
in a statement is 1320. Card input lines normally con-

74

tain 66 text columns per card (columns 7-72); thus,
an initial line and 19 continuation lines are allowed.
The number of keyboard lines contained in 1320 char­
acters depends upon the position of the first character
in each line and the last character given prior to issu­
ing a carrier return in eaeh line.

Card Format line (Both Nonconversational and
Console Card Reader)

Comment lines are those lines with the letter C in
column 1. The compiler ignores these lines, but
includes them in the source listing. Comment lines
may appear anywherc within the source program
exccpt immediately preceding a continuation line.
Initial lincs in card format arc lines with the
charactcrs Lero or blank in card column 6. An initial
line is the first line of a FORTRAl'\ statement. Con­
tinued lines arc lines whose content docs not complete
the statement; that is, the statement is continued on
the following linc. Til card format, a line is not known
to he a continlled jine until the following line is in­
spected. A C(mtillllotiol1 line is a line in a statement
otlll'1' than the initial line, that is, a line whose con­
tent is a continuatioll of the prec(,ding line. In card
format, a contillnation line must contain a character
other than zero or blank in card column 6. An END

line is a line containing the FORTRAN" E"D statement.
Every SOlll'CP module must terminate with an El'\D line.

Character Sets - Card Format

The CA and CB commands transfcr control to the 1056
card reader, and specify the character set to be uscd.
CA is used to convert card input from 10.57 card punch
code to EBCDIC. eB specifics conversion from 029 key­
punch code to EBCDIC.

Keyboard Format

Keyboard lincs are different from card lines in two
general ways: (1) the :rigid column format of card
Jines is relaxed in keyhoard format and (2) the maxi­
mum number of characters in a line is greater (as
many as 130, depcnding upon the type of keyboard
being used).

Keyboard comment lines are similar to card com­
mcnt lines in that a kcyhoard comment line is identi­
fied by the letter C in the first typeable position, and
may appear anywhere within the source program ex­
cept immed iately prcceding a continuation line. I\ ote
that the statement C = 1.0, for example, if begun

in type position 1, would be treated as a comment line.
A good general practice is to set tab stops and make
ust' of thl' tab key. This practice will (1) ensure that
a statvIllcnt heginning with tlw letter C will not in­

advertently be processed by the compiler as a com­
ment line, and (2) provide a simple method for
formatting th!' inpnt program on the terminal paper -
separating statnllcnt numbers from statement text,
etc.; most examples in this appendix imply or expressly
clescrihc usc of tabs. The compiler considers a tah the
cCluivalent of Oll(, blank, when enterillg keyboard lines.
Thus, v,-hen rden'ncc is made to blanks. tab or blank
is implied. -unless specificany stated otherwise.

I nittal Jines in keyboard format can contain a state­
nWllt 1l11mlJer, ,IS in card format. This statement num­
ber can begin in any type position (hereafter referred
to as position) and is distinguished from the text por­
tion of tl](' HIll' hy jwing nmncric rather than having
an alphrdwric character as the nrst character. State­
ment l11nnhers can he preceded 11~' any number of
hlanks or tabs. A statement !1mnher can contain from
one to five nnmeric characters, each of which can be
preceded or followed by any nmnber of blanks. A
statement I1mnber is terrninatec1 when either five
1111mcric characters havc been encountered or a non­
llumeric, non hlank charader is encountered, which­
ever occurs nr.st ... ~ statement numher cannot be con­
tained on more than one Jille. F'ol1o\\'ing the statement
numlwr is the line text. The text mnst he separated
from the statement numher hy at kast one blank, or
by the character zero. (The mer is warned that the
entry of a terminal line ,vith a statement numher of
100, for example, immediately followed hy the text
of the statement -- i.e., with no intervening hlank _.
causes the s('cond zero of the statement number to be
treated as the character separating the statement nmn­
her and the text, and the statement nllmlwr will be
considered hy the compiler to he 10, not 100.) The
text portion of 11 linC' is terminated either by a hyphen
(followed hv a carricr return (if the line is to be
continued), or by a return preceded hy a character
other than a hyphen (if the line is not to he con­
tinued) .

A keyhoard continued line is onc encling with a
hyphen and n carrier return. The hyphen, of course,
is not considered part of the text.

A keyboard continuatioll line is the line following
a continued line. A continuation line cannot have a
statement num her. The text portion of a continuation
line can begin in any position and can be precedexl
by any number of blanks; it must also be preceded
by a single character other than hlank or zero. This
single character is equivalent to the column 6 con­
tinuation character of card lines and thus is termed a

"float ing continuation character." In effect, the first
nOllhlallk, nonzero character of a continuation line
is treated as it continuation character. The floating con­
tinuation character, which is not considered part of
the text, is useful for two reasons:

1. It allows the user to tab the continuation line (so
that it will fall directly beneath the preccding line)
without tlJerehy causing a blank to be inserted in
his text; blanks or tahs are ignored in continuation
lines l111til the floating continuation character is en­
cOlllltered. This is an important consideration, for
l'xampk. in cases where a line break must occur
in the middle of a character string that does not
permit embedded blanks.

2. If lines C'ntcred via the console are to be punched
and later reentered in card formaL the floating con­
tilllwtion character makes this possihle (this is de­
scribed later in this appendix).

A b'yhoard 1':]\:D line is a line ('ontaining the FORTRA:\"

c,\]) statement. Every source module 1I1llst terminate
wilh an END line.

Character Sets - Keyboard Format

KA and KB arc Ilsed to specify the character set to
he lIsed during keyboard inpllt. KA specifies the full
EBCDIC charact('1' set during input. KB indicates that
the lower-case characters (a-z and! " ¢) be translated
into their upper-case equivalents (A-Z and $:#: @ re­
spectively) .

It should he noted that KA is in cffect only for the
command during which it is issued. The system un­
derscore (inviting a new command) reverts to the
KB folded mode.

Mixed Card and Keyboard Input

FORTlH,(source statements entered at the terminal
may he hom cards .. from the keyboard, or from a mix­
turc of the two. If the nrst line of a statement is from
a carel. all lines in that statement must also be on
canIs. If the first linc in the statement is from the
kcvhoard. the following lines may be from the key­
board or from cards. Once the source of a statement
hecomes cards, however, keyhoard Jines may no longer
be included in that statement.

Once a line is entered at the terminal in either card
or keyboard form, the souree of the line (card or key­
hoard) is retained (','en though the line may be stored
in a prestorcd data set and later presented to the com­
piler from that source. Thus the above mixed-input
rules apply for both terminal input and later correc­
t ions to that input.

The procedure for changing sources is as follows.
Keyboard lines will he expected by the system until

Appendix A: Use of the FORTRAN Compiler 75

C, CA, or CB is entered at the keyboard. Once thesc
characters have bcen entered, input lines are expected
to be on cards. If a card containing K, KA, or KB is en­
countcred, lines are once again expected from the
keyboard. (See Terminal User's Guide for SYSIN de­
vice selection and data translation).

Examples: In these examples, the following notes
apply:

1. The letter t represents depression of the tab key.
The keyboard position at which the carrier is to be
positioned as the result of a tab is implied by the
position of the next non blank character in the
example. The following examples assume tab stops
are set such that the first depression of the tab key
causes the carrier to be positioned at type position
6 and the next depression causes positioning at
type position 7.

EXAMPLE FOHlIIAT CAnD Oil TYPE POSITIO~

1 Card

1

C

567

COMMENT
::'\OTE: Comment line.

2 Card 50
KaTE: Initial line with a statement numher.

3 Card Y=2.0
NOTE: Initial and continued line, no statement 1l11mber.

Card X+B
NOTE: Continuation line.

4 Key C COMMENT
~OTE: Comment line.

S Key 9 Y=3.1416
NOTE: Initial line with a statement number.

6 Key lOOt tZ=l.O-(CR)
NOTE: Initial and continued line; tab to column 6, tab again
to skip the continuation character position, then at position 7
type first text character.

Key t

NOTE: Continuation line; tab to position 6 for floating continu­
ation character, with text beginning in column 7.

7 Key 200t tY=l. 0- (CR)
NOTE: Initial and continued keyboard line.

Key CB
NOTE: To note a card line follows.

Card X+3.0*B
NOTE: Continuation card line.

76

2. The characters (CR) represent a carrier return.
3. The character (-) is used as the continuation char­

acter by system default.

Efficient Correction Techniques

Conversational correction of FORTRA:"! statements is
normally made at one of two points in the compilation.
The first, termed here local correction. occurs follow­
ing the compiler's scan of the statement just entered
and its printing at the terminal of any diagnostic mes­
sages associated with that statement. The second point
at which corrections are normally made occurs when
the entire program has been entered (i.e., when the
E,(D statement has becn entered) and a message similar
to, ":\JODIFICATIO;XS? E,(TEH Y OR :"!" has been typed at
the terminal. Corrections made at this point are termed
here glol)(f1 corrections. The distinction hetween global
and local corrections (and between different types of
local corrections) is important in that the user can
minimize the amonnt of processing required for a given
compilation by bcing aware of the effect corrections
have on the compilation process. The following para­
graphs describe efficient correction techniques in de­
tail. Before proceeding to this detailed discussion,
however, a general correction rule that applies in most
cases can be given: the most efficient correction tech­
niqne is to correct erroneous statements immediately
after they are entered and the diagnostic is produced.
This is the most natural time to correct an erroneous
statement, and is a convenient guideline to use.

After all global corrections have been made, the
entire source program is rescanned, beginning with the
first source line of the program. vVhen local corrections
are made, reinitiation of the source scan mayor may
not be required, depending upon the type of correc­
tion made. It is desirable, of course, to minimize the
number of source scans. For this reason, corrections
noted below as reinitiating the source scan generally
should not be made until the time for global correc­
tions is reached. This rule does not apply where failure
to make a correction would result in many other diag­
nostics, such as an error in entering variables in a
DI1\fENSION list.

Discussion of compiler response to various types of
local corrections can be quite complex if all possible
comhinations of conversational card and keyboard
corrections are covered. This section does not discuss
all possible types of corrections specificany, but gives
sufficient descriptive material and examples so that the
compiler response in any given case can be deter­
mined.

Discussion of compiler response to local corrections
requires a definition of three terms:

1. Partial statement - a statement currently being en­
tered. For card input, a statement is partial until
a noncontinuation line is entered to terminate the
statement. Keyboard statements are partial until a
line is entered that is not a continued line or a com­
ment line. An example of a partial keyboard state­
ment is the following (i.e., the line is noted as being
a continued line, but the continuation line has not
yet been entered):

X=A+B-(CR)

2. Tentative statement - the last complete statement
entered to the compHer. A keyboard statement he­
comes tentative when the last line of the statement
is not a continued line, causing the line to he
scanned by the compiler. This statement will re­
main tentative until a new statement is completely
entered. Thus a new statement may be begun with­
out changing the tentative status of the previous
statement, but once the new statement has been
completely entered, the statement held in tentative
status hecomes committed (see below). Entry of
eomment lines does not affect the status of tentative
statements. Such lines are included in the listing
but otherwise ignored.

3. Committed statement - the statement preceding a
tentative statement. The relation between a com­
mitted statement and a tentative statement is iden­
tical to the relation hetwcen a tentative statement
and a partial statement: once a statement becomes
tentative, the preceding statement becomes com­
mitted. In the following example, entrance of the
(non-continued) second statement causes the sec­
ond statemcnt to become tentative and causes the
first statement to become committed. Both are
keyboard lines.

X=A+B(CR)

y=x" "2(CR)

Entry of comment lines does not affect the status
of tentative or committed statements - such lines are
included in the listing but otherwise ignored.

The relation between the ahove types of statements
and compiler response to corrections is as follows:

1. Tentative and partial statements can be corrected
without causing a reinitiation of the source scan.

2. Correction of committed statements causes reiniti­
ation of the source scan from thc beginning of the
program.

3. Insertion of a new statement between a committed
and a tentative statement does not cause a res can

of the l'ntire program. Such an insertion causes a
rescan of the tentative statement, however.

The above rules can be more easily understood by
inspection of the following examples. In these exam­
ples, line numbers are seven digits with the last two
digits zero, the format in which they are printed by
the system A line IHlmlJer unch'rneath a number sign,
#, is a correction line. Such line 111l1nbers need
not be seven digits long and need not have two
trailing zeros. This notation is consistent with the
system convention by which printing of a diag­
nostic is followed by printing a number sign solic­
iting a correetion by the user. The correction line
numhers arc followed by a comma, also consistent
\vith system conventions. Line numbers preceded hy
a percent sign (%), where the % is entered by the user,
are unsolicited corrections - that is, corrections orig­
inated hy the user and not arising from the system's
diagnostic action.

Conversational corrections also affect the source list­
ing, as follows:

1. Source statements and their associated diagnostics
are not added to the source listing until the state­
ments are committed. Thus, the terminal1isting may
contain many diagnostic messages, hllt the source
listing contains only those diagnostics not corrected.

2. Corrections causing r('initiation of the sonrce sean
cause the source listing plus diagnostics associated
with the previous source scan to be lost, since the
results of the ne,,, source scan replace those of the
previous scan.

Example 1.

Ll"CE :'\0. F01\2\[AT

0000200
0000400
0000600

Key
Key
Key

CARD OR TYPE POSITIO;\;

Z=l.O
Y=2.0

1 567

DO 10 1=:=1,10

NOTE: In this example, all lines begin in type position 1, a
dangcrOlis practice as any lines beginning with a C aTe con­
sidered comment lines.

0000800 Key X(I) =1

Non:: Causes a diagnostic, as no DD.IENSION (or eql1ivalent)
statement is included.

100, Key DIMENSION X(10)

:'-lOTE: Making a correction prior to the committed statement
(line (00) causes reinitiation of the source scan. Note that this
statement could have been inserted at 700 mther than 100
without crmsing reinitiation of the source scan.

Appendix A: Use of the FORTRAN Compiler 77

Example 2.

LINE NO.

0000100
0000200
0000300
0000400

NOTES:

FOHMAT

Key
Key
Key
Key

CARD on TYPE PO;,ITIOX

1 567

t tZ=lO.O(CR)
t ty = 3 • 0- (CR)
t X=B- (eRl
t X+C- (CR)

The t indicates the tab key has been depressed, as disC'ussf'c1
em·lier.

The user is requested to enter line 500, hut Iw realizes that
line 300 must he corrected. \Vhen the correction of line 300 is
made, the statement starting <1t line ZOO is in partial statllS.
This correction doE'S not causp reinitiation of the sourCE' sC':m.

000050Q';I300, Key t X-B-(CR)
Note the use of floating continuation characters in lines 300
and 400.

0000500 Key t X+D(CRl
NOTE: Entry of line 500 completes thp statement. The compiler
then processes the compositp statement Y = :1.0-B-LC+D.

Example 3.

LINE NO. FOR"rAT

0000,100 Key
0000500 Key
0000600;:400, Key

CAllI) on TYPE j'().SITlO'\'

1 567

X=--= 1 (CR)
B=2(CR)
X=c2 (CRl

NOTE: The user is requested to enler line noo. \Vhen line
500 was entered, the statement of line ,100 hecame committeel.
The correction of line 400 thus Cfluses reinitiation of the source
scan.

Entry of Keyboard Source Sfoiements for loter
Punching ond Recompilation

The entry of source statements slIch that they can he
later punchcd UHf and reentered in card format is
governed hy the following considerations:

1. Source IillCS reside in a line data set in a format in
which the initial input sourec line is preceded hy
eight characters - a 7-byte zoned-decimal kcy and
a character specifying to TSS/;)GO that the sourcc
linc was cntered in card form or at the terminal
keyboard.

2. A continued line (hyphcn preceding the carriage
return) when punched and reentered in card for­
mat retains the hyphen unless precautions are taken
to remove it (see below) .

3. Keyboard input positioning requirements are much
more flexible than for card input.

78

Th('J'cfore:

1. Keyboard input lines must contain an statement
num bers in columns 1-5.

2. Keyboard input lines m1lSt contain no tabs.

.'3. Keyboard input lines must contain an Boating con­
tinuation characters in position 6.

4. Text must he contained between position 7 and a
position not greater than 72, as source card lines
cannot be scanned beyond column 72 for c1lal'acters
to be included in the text.

,5. Continued liIlC'S must all contain the hyphen con­
tinue character in a column such that the PU:,\CII

command (sec below) will cause the hyphen not
to be punched.

6. The column chosen in the PUNCH command for
termination of punching must be such that no lines
contain text beyond this column.

If input lines arc prepared in accordance \vith the
aboVt: rules, the line data set can t11C1l he punched,
using the]'C'\CII command. The parameters supplied
in the PUl\CH command are: startno, the position in
the sOlll'ce line as it resides in the line data set that
\vilJ })(' punched as column 1 of the card; and encIno,
the position in the sonrce line that will he last
punched in the carel. If the program contains no con­
tinuation lines (one IinC' per source statement), good
choices for startno and cncIno wonId be 9 (to skip 8
bytes - the 7-byte line number and the card or key­
hoard character) to 88 (to pUllch lip to SO columns of
tcxt from each source line - this choice assumcs no
sou ret' lines contain more than 80 columns of text).

The selection of 9 for startno will ncarly aJways be
tlle proper choice. The endno selection will vary, of
course, depending upon position of text and continu­
ation characters in the program :;on1'(,(, lines.

Compiler Diagnostic Action
This section dcscrilws the format of all diagnostic
messages produced by the TSS/:;I;O FOIlTnAN compiler.
It includes a description of the error severity code and
error lev('l associated with each message, and dcsc:rihcs
thc effect of error s(,verity upon requests to execute
the compiled program. Eder to System M CSS([{!,cs for
a description of each diagnostic and tl1e source pro­
gram errors that cause it.

The FOTITlU" compiler isslICS diagnostic messages
for source program errors, for violations of compiler
space and size restrictions, and for apparent machine
errors. These messages are included in the sonrc'e
program listing produced by the compiler if a listing

I

is requested; they are also printed at the terminal in
conversational mode. (A detailed description of the
destination of diagnostic messages for all combinations
of input sources, options requested, etc., is given in
Table 3 later in this appendix.)

Nearly all compiler diagnostic messages are printed
on one line. The format of this line is:

number code .. 00 text

(In the two-line messages, the second line follows the
first and omits the number and code fields.)

The "number" parameter is the source program line
number (not a FORTRAN statement number) of the
first line of the statement to which the message ap­
plies. Messages concerning errors that the compiler
does not associate with any specific statement carry
the line number of the source program END statement.

The "code" parameter is a one-letter indicator of the
severity of the error and the action taken by the com­
piler. The letters used, the severity of errors associated
with each letter, and a brief description of compiler
action taken are given in Table 2.

When a FORTRAN main program is to be executed
using the CALL command, the module named in the
CALL command and all modules called by this module
are inspected during the loading process to see wheth­
er any have been compiled with level-2 errors (se­
verity codes E or F). Any module containing an error
level of 2 causes a diagnostic message naming the
module and the error level to be printed on the user's
SYSOUT.

Table 2. Compiler Diagnostic Action

Page of GC28-2025-4
Issued February I, 1972
By TNL GN28-3204

The "text" parameter in diagnostic messages is a
verbal description of the condition that caused the
message. Names, statement numbers, etc., from the
FORTRAN source program being compiled are included,
where applicable. In addition to information to locate
and identify the condition, often "text" specifies the
actions taken by the compiler in F -code messages.
Occasionally the object code listing must be inspected
to determine the actual compiler action.

Occasionally, two or more identical messages are
produced for a source program statement in which
the erroneous situation appears to occur only once.
This is due to the conjunction of two conditions: (1)
the error is not serious enough to force the compiler
to abandon processing the statement and (2) the
statement is of a kind that requires more than one
scan by the compiler. Examples of such conditions
are (1) when an argument of a statement function is
in error and the argument is used more than once in
the statement function definition and (2) when cer­
tain types of errors are made in an I/O statement list.

The compiler does not attempt to make systematic
checks for machine failure. However, in the course
of processing, it may test for conditions that ought
never to arise, according to the design of the compiler.
If any such condition is detected, an A-code message
is issued advising of machine or compiler error. These
messages should be brought to the attention of system
maintenance personne1.

Although the conversational user may know that a
certain diagnostic is to appear at a particular place in

CODE SEVERITY DESCRIPTION ACTION

W

E

F

A

Warning,
Level-l error

Serious,
Level-2 error

Serious,
Level-2 error

Serious,
Level-3 error

The message is a warning that the compiler has detected either a situation
that may not be as the programmer intended or a use of a language feature
that is acceptable to the TSS/360 FORTRAN compiler but is unacceptable
to other implementations of IBM System/360 FORTRAN. In either case,
the statement is compiled exactly as written.

The message is a notification that the compiler has detected a serious source
program error. Compilation continues, completely ignoring the offending
statement, and the object program is generated as if the statement had not
occurred. (Although'the offending statement is deleted from the compilation,
the program is marked as containing a serious error if the offending state­
ment is not replaced. The presence of a serious error causes a diagnostic
message to be printed on the user's SYSOUT data set at load time.

This message is also a notification that the compiler has detected a serious
error. The compilation continues by partially compiling the statement. The
effect of F -code errors on the generated object program can frequently be
detennined from the text of the message, but occasionally examination of
the object code listing is required. Object program execution is not
recommended.

The message is a notification of a situation serious enough to prevent con­
tinuing the compilation. Mter issuing an A-code message, the compiler
exits to the command-language level. These messages are concerned with
violation of compiler size or space restrictions.

Statement compiled
as written

Statement deleted

Statement partially
compiled

Compilation discon­
tinued; no object
module produced

Appendix A: Use of the FORTRAN Compiler 79

Page of GC28-2025-4
Issued February 1, 1972
By TNL GN28-3204

his program, or he may recognize a diagnostic as it
begins to appear at the terminal, he should not try to
save time by pressing the attention key to prevent full
diagnostic text printout. Little time can be saved,
since a RUN command must be entered after an atten­
tion, and much time may be lost, since the compiler
will reinitiate compilation with the first source Hne
if certain of its diagnostics are so interrupted.

Compiler Options and Listings Produced
This section discusses three topics:

1. The parameters that must be supplied to the com­
piler when the FIN command is given.

2. The listings produced by the compiler when re­
quested by user-supplied parameters.

3. A list of FORTRAN IV supplied subprograms which
can be called by the compiler as a result of ex­
ponentiation, interrupt handling, I/O processing, or
STOP or PAUSE statement usage.

4. The destination of all output from the compilation.

FORTRAN Parameters

After issuing a FTN command, the user must enter a
parameter providing the module name for this com­
pilation. A list of compiler parameters is given in
Figure 7, and explained in detail following the figure.
The notation used in Figure 7 is explained in Appen­
dix G, "Command Formats."

Some of the compiler parameters listed in Figure 7
must be provided by the user; others may be left un­
specified and default values will be chosen. In some
cases the user will be prompted for missing para­
meters; in other cases he will not. Figure 8 shows the
relation between parameter specification and the com­
piler conditions. In Figure 8 the terms "explicitly de­
faulted" and "implicitly defaulted" are used as dis­
cussed below:

OPERATION OPERAND

FTN NAME=module name

[, STORED= {~}]

Explicitly Defaulted

A comma is issued immediately following entrance ()f
the preceding parameter, rather than entering a valu;e
for the new parameter followed by a comma. For eX­
ample, module ALPHA, with prestored source lines, is
to be compiled, explicitly defaulting the version iden­
tification, but supplying values for all other parame­
ters. The proper parameter description is:

ALPHA, Y"Y,Y,Y,Y,Y,Y,Y,Y

Implicitly Defaulted

In the example of the preceding paragraph, the user
could depress the return key following entrance of the
Y specifying an ISD is to be produced. This action
causes all parameters following the Isn option to be
implicitly defaulted.

The parameters shown in Figure 7 are described
as follows:

NAME - specifies the name of the object module to
be created. Prior to selecting the module name,
the user should refer to Appendix C for a discus­
sion of TSS/360 naming conventions, in order that
a module name not be chosen using a reserved
system name. The source data set for the module
is named by appending a period and the module
name to the characters SOURCE. For example, mo&.
ule ALPHA will have a source data set name
SOURCE.ALPHA. The module name must be unique
to the library that includes it (i.e., it must not be
the same as any entry point, control section name,
or module name in that library). Similarly, the
module name must not be the same as any COM"

MON block, FUNCTION, SUBROUTINE or any variable
name used within the program being compiled.
The name consists of one to eight alphameric
characters, the first of which must be alphabetic.
It is recommended that module names be six or
fewer characters, as discussed in Appendix C.

Default: None; a module name must be specified.

[, VERlD=version identification] L ISD={YIN}]
[, SLlST={YIN}] [,OBLlST={YIN}]
[, CRLlST={Y!N}] [, STEDIT = {YIN}]
[, MMAP={Y!N}] [, BCD={YIN}]
[, PUBLlC={YIN}]
[, LlSTDS={YIN}]
[,LlNCR= (first line number, increment)]

Figure 7. FORTRAN Parameters

80

Parometer User Actior:

Nonconversa~lona! Mode

Expl i citly 01 Tc:;k terminated
implicitly defaulted

Modvle

Not defaulted

bpi icitly defaulted

All other options Impiicaly defaulted

Not defaulted

Figure 8. Compiler Parameters Default and Prompting Description

STOHED - specifies vvhcther or not the source data
set is prestorcd (if so, it must have been named
SouRcE.module). The allowable values are Y or
N.

Default: N.

VERID - specifics the version identification to be as­
signed. The version identification consists of one
to eight alphameric characters.

Default: If a version identification is not assigned,
the version of the object module may be deter­
mined by using the system supplied "time stamp."
A time stamp is always produced by the system;
it gives the current time and date at which the
compilation begins. This time will be different
from the time at which any other compilation be­
gins, thus allowing positive identification of the
compilation output. The compilation listing will
contain an edit of the time stamp in the following
format: MO/DD/YY HH:MM:SS giving the time of
the compilation in month, day, year, hour, min­
ute, and second.

ISD - specifies \vhether an internal symbol dictionary,
which is required for extended usc of pcs, is to
be produced. The allowable values are Y or N.

System Action

Conversationa I Mode

Prompting for parameter 'Ni II occur

Proces.sing continue~ with
user-50-ppl i ed parameter

Default values selected

Default valves se!ected

Processing continues with
u5er-suppl ied parametel

An ISD should not be requested unless pcs is to
be used with this compilation since the request
for an ISD also inhibits compiler optimization. See
Appendix C for a fun discussion of this topic.

Default: Y.

SLIST - specifics whether a source program listing is
to be produccd. The allowable values are Y or N.

Default: Y.

OBLIST - specifies whether an object program listing
is to be produced. The allowable values are Y or
N.

Default: N.

CRLIST - specifies whether a cross reference listing is
to be produced. The allowable values are Y or N.

Default: N.

STEDIT - specifies whether the symbol table is to be
listed. The allowable values are Y or N.

Default: N.

MMAP - specifies whether a storage map is to be pro­
duced. The allO\vable values are Y or N.

Default: N.

Appendix A: Use of the FORTRAN Compiler 81

BCD - specifies whcther input includes BCD (binary­
coded decimal) or EBCDIC form of special char­
acters. Thc allowable values are Y for BCD or N.
If Y (BCD) is chosen, either BCD or EBCDIC input
may be used. Thus EBCDIC corrections may be
made to BCD source Jines. This option is included
for compatibility "vith FOHTHA" programs written
for previous lBl\f systems. If the user is uncertain
as to whether his program uses the BCI) or EBCDIC

form of special characters, the user should choose
the Y option, therehy giving himself complete
flexibility.

Note: If the EBCDIC option is selected, statement num­
hers passed as arguments must be preceded by an
asterisk (&n). However, if the BCD option is selected,
statement numbers passed as arguments must be pre­
ceded by a dollar sign ($n), and the $ character must
not be used as an alphabetic character in the source
module. (n represents the statement numher.)

Default: N.

PUBLIC - specifies whetlwr the exccutable part of
the modnle (thc CSECT, described bc1ow) to bc
created is to have a public or private attrihntc.
Allowable yalnes are Y or :"oJ; Y indicates 1mblic;
N' indicates private. If the public attribute is
chosen, other programmers may use the same
program if they are also given access to the li­
brary in which this module is stored. The means
for so doing are dcscribed in Appendix C.

Default: N.

LISTDS - specifies whether the requcsted listings are
to be placed in the list data set or on SYSOL'T.

Allowable values arc Y or N. If Y is chosen, the
listings are placed in the list data sct and can he
printed at any time with the PIU"iT command. If
N is chosen, the listings arc placed on SYSOUT; in
other words, it is printed automatically hut not
kept in the system.

Default in conversational mode: Y.
Default in nonconversatio1tal mode: K.

LINCR(line) - specifies the line number to be as­
signed to the first line of t11e data set. The line
number contains three to seven digits, of which
the last two must be 00.

Default: 100.

82

LIN'CR(increment) - spccifies the increment to be
applied to develop successive line numbers. The
increment may contain three to sevcn digits, of
which the last t\'iO must be 00. It cannot he nega­
tive.

Default: 100.

Example: A user specifies the following parameters
whcn isslling the FT;"\f command:

CO,VBOY,", V;i, Y, Y",Y "'''

Thus, the namc of the user's object module is COWBOY;

the source data set is not prestored; the first line
number of the data set is the default value of]00;
~nbseqt1ent line numbers are incremcnted by the de­
fault value of 100; the version klentifieation is V5 (not
a time stamp); an internal symbol dictionary is to be
produced, a source listing is to be produced (this
parameter could have been defaulted with the same
result); an object listing and cross-refercncc listing
are not to be produced (the default options); a sym­
bol table edit is to be produced; no storage map is to
be produced (thc default option); no BCD special
chnracters arc to appcar in the input (the default
option); and the CSECT of the module to be created
is to h<l \'l; the private attribute (the default option).

Structure and Description of Compiler Listings

The compiler will prepare a listing if one or more of
the five listing options arc requested. The fivc types
of listings are: source program listing, ohject pro­
gram listing, cross-reference listing, symbol table list­
ing, and storage map listing. The listings produced
vary somewhat, depending upon the combination of
listing options chosen.

The figures that follow show the listings produccd
for a compilation rcquesting the default listing op­
tions (source listing only), a compilation requesting
all five listings and a compilation requesting only a
storage map listing. A description is givcn for all
sample listings. This description includes hoth a gen­
eral discussion of items containcd in a particular list­
ing and references to particular items in the listing.
'Vhere appropriatc, a reference number in bold-face
type will he given in the listing description, for ex­
ample, 1. Such numbers refer to the encircled num­
hers on the listing itself that correspond to the item
being discussed.

Figure 9. Heading Page

I

PAGE
(~) @

COWE;~< ,. V:l

I
I

I

&~ c EXAMPLE PROGRAM TO DEMC~STRATE TS5/360
D[MENSrON A(lO),AIlO)

FORTRAN CO~PILER lIsrTN~S
200
300
4(0
500
600
700
Bro
900

lOCO
1100
1200 C

,~', 13CO

CCMMQN INA~f/C(5)7n(5,21 IfNOEX/l,M
DATA ~/lo*n.O/,B/IO.1.0J

NAMEl CST /r..UMfl
o DO 10 1"1.2

R£AO !5,N\JM)
DO 10 J=l,.l
REA9 (5,ClOC) O(I,Jl

10 CONTINn
CALL ('O·'1PUT {6,,8)
flELIBf:RAfE DIAGNOSTIC FOR ILLUSTRATIVE PURPOSES ..
X=AI {U

\·::")0001300. E *t<*
1400

ILLECAL EXPRESSION IN SUPSCRIPT ON A
tFll.GE.Ml~O T0 20

1500
1600
1700
1800
1 <00
2000
2100

WRITE (,t,.910) f!.,AfI) .. R{J},i=l.lC~
GO Tf] 5

20 STOP
900 FOPMATI2E2Q.PI
glC FORMATl'lTEST PROGRA~ SAMPLE rUT PUT FCllCWS' '10 r

x B'I(IbJ:20.8,!':20.8' J
E~D

Figure 10. Source Program Listing

Heading Page

A heading page containing three lines is produced if
any edits are requested. These heading lines describe:
an identification of the version of the compiler being
used 1, the module name 2 and version (or time
stamp, if version has been defaulted) for the compila­
tion 3, and a rccord of the options (other than verid)
selected for the compilation 4. An example of a head­
ing page appears in Figure 9. In this example, the
llser supplied the module name COWBOY, version iden­
tification VS, and defaulted all other parameters.

Source Program Listing

If a source listing is requested, the first listing pro­
duced foHowing the heading page is the source pro­
gram listing. The source program listing will contain
the diagnostic messages for each statement following
the statement. A sample source program listing is
shown in Figurc 10. The first line of all listings coa­
tains the module name,S, and the version identifica­
tion, 6. All source lines are preceded by the system­
assigned line number, 7. A diagnostic message is
included in the sample source listing 8.

General Description of Output Module Listing

Following the source program listing, listings of the
compiled object program module are given. In general,
the listing of a TSS/360 FORTRAN output module fonows
the actual organization of the output module. For any

FORTRA:\ source program other than a BLOCK DATA sub­
program, the compiler generates an output module
that consists of at least two control sections - a CSECT1

and a 1'SEC1'. The CSECT contains executable code and
other information that will not be changed during
program execution. The name of the CSECT is derived
from the user-supplied module name by appending
the two characters #C to the module name, or its left­
most six characters. The PSECT is a prototype control
section that contains a register save area, address con­
stants (adcons), parameter lists, NAMELIS1' informa­
tion, non-co~nION variables. and local and global
temporary storage. The name of the PSECT is generated
in the same manner as the name of the CSECT, the
suffix for the PSECT being #P. If COM~ION areas are de­
fined, each Co:r..L\IO:\ (hlank and any named CO:\IMON)
is represented by a common control section in the
ohject program module.

The BLOCK DATA subprogram generates an output
module ~hat contains one or more common control
sections. There is no CSECT or PSECT.

Default Option Listing

If the default options are chosen, an abbreviated de­
scription of the CSECT and PSEC1' is given. The sample
shown in Figure 11 contaim header information and

"The term "CSECT" generally refers to a control section other than a
PSECT or a COMMON control sed ion; In documentation or listings
\vherp compactness is necessary, thE' llser may find CSECT referring to
control sections in general.

Appendix A: Use of the FORTRAN Compiler 8.3

@
COWBOY

ENTRY NAME
@COWBOY

SIZE

toe t'EX
@oooooooo

EXTERNAL
@CHCBOl

REFERENCES
[He IAI

@(OWBOY~C SIZE

@CODE

@NUMERIC CONSTANTS

COWBOY , V5

@COWBOY#P SIZE

C""" "" AR£:A

CONVERSION CONSTANTS

ACDPESS CONSTANTS

1Yi\/ NAMEL I STS
'0

@
'HZ BYTES

CHCIEI

@428 ~YTES

@544 BYlES

~ON-CCMMON VARt48lES (oo""''' " (TrUll

NAME

INDEX

CHCIUI c~c 1 W2

@07!21/n7 21 :44: 12

LOC HEX 00000000

lOC HEX 00000170

07121167 21 :44: 12

LOC "EX 00000000

LOC >-EX OOOOC04C

LOC HEX 00000064

laC >-EX 000001,8

lOC ';EX onOQOIi) I:j

LaC hEX 000001C8

Figure 11. CSECT and PSECT Listings for Default Listing Options

@COWBOY ,'.IS

@cmmoy SIZE @912 BYTES

® ENTRY NA"lE
CO'w~Oy

@LOC HEX
OOOOClOOO

@ElCTERNAl REFERENCES
CHCI3Dl CHe]A 1 OKIEl CHe I U 1 (He IW2

@COWeDY-C SIZE @42f! I3YTES G7/21/67 21: 44: 12

CODE ® ® @lOC HEX ,~oooooo SIZE

@lINE NO. @LABEl lOC HEX 1 NST HEX INST ASSEM8LER
00000000 r:;I)ECDOOC 51 to'" 14.12.121131
00000004 5SEOI)C'48 C 14.72tO.l"l1
0000('1008 50EODOOa S T 14.8(0.131
Oocooooe '5000EOO04 ST 13.4(0.141
00000010 laDE CR 13.l~

00000012 58(00078- l 12.120{O.13)
00000016 5BEOOQ80 C 14.12R(O,131
(lOODOOIA 50EOO048 Sf 14,1210.13)
0000001E S8FOD07(l 15.12410.131
00000022 OOfF BASI'.. 14.15
0000002"- 5820D06C 2.108(0.131
0000002 B 58300068 3.104(0.131
OOOOO(lZC 5S40D070 4.112(0.131
00000030 58500064 5.100(0.13)
00000034

600 5 00000034 58600014 C 6.11610.13)
000000-38 5810001:' C 7.116ofO .. 13l
00OOOO3C 4170700B l A 1,BtQ,"n

700 <;9'1999 COOOO040 5BI00i'JB4 C 1,132{Q.131
00000044 5BEOOO8C C 1.li .. 14010~131
OOOOC04B 50 Eoo-o.a ST 14.72(O,}31
OOOOaD4C '58FOOC88 C 15.13610.131
00000050 OOEF BASR 14,15

800 OCOOOO52 1886 CR a ••
00000054 41100014 lA 1.20tO.O}
00000058 5(0041)00 " 0,010.41
0OOOOO5C 41116000 LA 1.tH 1.61
00000060 1891 CR 9.1

900 <:l99q98 00000062 5~1 ODC90 C 1.144{O,131
00000066 58EOD08C l 14.140(0.131
0000006A 50EOOO48 S1 14,7210.131
OaOOOQ6E 58FOOOS8 C 15 .. 136(0.}31
OODOD01? ODEf eASR 14.15
00000074 '58EODO<:lS L 14,152(0, B)
130000078 50EOOO48 ST 14 .. 1210.13)
0OOOOO1e 561000QC l 1.1'56tQ~13}

OOOCOO80 41o.OB014 CA 0 .. 20_0,8.
00000084 50001004 Sf O,4{O.1I
OOOOOOB8 IHOO SR 0.0

Figure 12. CSECT Listing

84

COMPUT

SIlE 356 BYTES

S TZ E 60 BHES

p~C.E 004

S lIE 16 AYTES

S lZ~ 24 RVTES

SIn: 108 RYTES

~H~ ?8 ~YTE5

SIlE 105 8YTj:~

SIlE 88 IWTfS

SHE 60 BYTFS

S llE q RYTFS

PAGE 003

(OMPUl

@356 R~ES 139
C I4ENTS

LOCAL TEt-IP STGto 001100220
f'XTERNAl CHeBOl

EXTERNAL CHeBOl

NUMER 1C 00000170
~O!ll-Cn~MO"l VAil. • ~OOOC1(!3.

INDf)(
CODE 00000034

NAl"\f
NAJroIIE

PARAMETER LI ST O(\OOI"lODO
£'<lERNAl CHC 111.1

E)(TERN4l OKrA!

VAR14BlF

PARAMETER LI <;T OIJO('(l-O'EO
EX"E~""Al (HC tA 1

EXTERNa.l OKI4.]

EXTERN4l CHe I Fl

PA.RAMETH: l!ST OOOOOOFO

a sumluary of PSECT and CSECT information. In the
header information, a line is given containing the
module name 9 and the version identification, ~ 0 .
Next, the module name is repeated, 11 and the size
in decimal of the module (CSEGr plus PSECT) is given,
12 . Tl'e name of the entl'Y point foI!ovvs. 13 with

the location of this entry point relative to the CSECT,

J4. Next are listed an external references made by
the compiled program, 15. Only one of the external
referene~s listed (COMPL'T) is also found in the source
program. The other external names all begin with the
three letters cnc, which identifies them as FORTRAN

lv-supplied subprograms called hy the object program.
/\. list of all sHch programs, with their names, is givcn
nt the end of this appendix.

The name of the CSECT, 16, and the numher of
storage locations in the CSECT, 17, are then givcn.
Also contained on this line is the time stamp asso­
ciated with the CSECT, 18. This time stamp is the
samc as that supplied for version identification, if the
llscr defaulted this compilation parameter, or is ob­
tained by the compiler for identification of the CSECT.

Following this liDe is the size, 19. and relative loca­
tion, 20. of the two types of information contained
in the CSECT.

The next section gh'es a sllmmary of the PSECT con­
tents. The line containing the name, 21, and size,
22 , of the PSECT is fOJJow2d hy the relative location
and si7e of the seven principal areas in the PSECT, 23.

Detailed Descrip:'ion of Output Module Listing

If an object code listing is requested, a detailed listing
of the CSECT and PSEGr (or CU\IMON control section.
for BLOCK DATA" suhprograms) is given. Figures 12 and
13 contain examples of CSECT and PSECT listings, re­
spectively. In addition, a listing of initialized variables
is given. Figure 13A contains an example of the Table
of Initialized Variables. The three listings are de­
scriJwd below.

Header Information: Each page of the listing is
headed by a line containing the user-specified module
name, the version, and the page number, 24. The
next line in the listing contains the module name,
25 , and the module size in decimal, 26. This size
is the total number of hytes occupied hy the CSEGr

and the rSECT, excluding COJvL\fOK control sections.
This information is foIlO\ved by a table of all entry
names, 27, and their locations (hexadecimal) rela­
tive to the base of the CSECT, 28 . The header informa­
tion is completed by a list of all references to external
routines, 29.

Description of CSECT Listing: A line containing the
name, 30, and size, 31, of the CSECT is printed im­
mediately preccding the code. Next is a line giving

the location of the executable code relative to the
CSFCT, 32, followed by the size in decimal of the ex­
ecutable code, 33 . I'ollowing this line are si:.: columns,
described below.
]. Line Number 3·1: The line numbers correspond

to linc numbers in the source data set. Each line
number appears on the same print line as the first
cxecnt::thle instruction of the respective source
statemen~. Line numhers of nonexecutable state­
ments (DIlIfENSION, CO]\BIO'\, DATA, etc.) arc omit­
ted. Howevcr, CO,\TINUE statements are included in
the listing.

2. [,abel 35: Any entry name, statement number, or
compiler-generated label is printed on the same line
as the first instruction of the corresponding source
statement that defines snch a labcl. Cornpiler­
generated labels indicate the destination of some
eompiler-gcnerated hranches. All compiler labels
are six-digit numbers and are generated in a de­
creasing sequence starting with 999,999. (In some
cases, the compiler-generated labels are not in de­
scending sequence, and gaps may occur in the
desccnding seqnence dne to compiler code op­
timization.)

.1. Hexadecimal Loection 36: This column gives the
location of the first byte of each instruction relative
to the base of the CSECT.

4. Instmction (Hexadecimal) 37: Each instruction is
represented by its machine language (hexadeci­
mal) configuration.

5. I nstrlletion (Assemblu Type) 38: Each instruction
is represented by its assemhler language equiva­
lent. All items in the operand field are decimal in­
tegers. No extcnClcd mnemonics are used except in
conditional branches, where the operand field con­
tains the lahel of the branch terminal.

6. Comments 39 : Whenever the operand (in storage)
of an RX- or Rs-type instruction can be meaningfully
described, the description is printed in the com­
ments column of the appropriate line.

A referenced constant is commented by its value,
which is printed in conventional FORTRAN repre­
sentation, and hy its location (hexadecimal) rela­
th'e to the base of the CSECT. Each part - real and
imaginary - of a complex constant is commented.
Certain fixed hinary constants can be commented
upon with their values and storage locations, al­
though the instructions do not actually refer to the
constants but ohtain them by other means (e.g., an
SLL instruction).

References to variables and elements of arrays
contain the word "variable" followed by the vari­
ahle or array name. No attempt is made to identify
a reference to a specified suhscripted array variable

Appendix A: Use of the FORTRAN Compiler 85

COw!::lO'r ~ V'j Pt..(:.F O'1{,

LINE NO .. LABEL LOC HE)(I NIT HEX [,,5 r ASSE~RLf~ COMMFNT(",
OOOOOO>:\A "59fODOG4 15.148(O~13} F-'tT~Rt,,'Al CHCIE1
C'JOOO(,8E OOEF ~ ,'I::-.,k. l(h 15-
00000090 58EOOOA4 14.lMlO.llI cXTFRNAL (HCIlJl
COOOOO04 50H.m048 s.. T 14,7210.1;)
OOOOOC98 58FOOCAO L 15.16010.13l EXTERNAl CHCrU1
OOOOOOOC OOfF BASR 1' .. 15

1000 10 OCOOO09E 41808014 LA l},20!O.8}
COOOOOA2 19S9 CR ~ ... g
aCOCOOA4 4770502c er-.E SQQQQR

000000.' R 41606004 LA (·.4 i C. 6)
OOOOOOA(1967 CR 6.1
cooocoeE 4rrC~joor: 8.~; E: S'SQ<:J99

IlOO DOOODOH? 5810DOA? L 1.16~{O, l,} PAR A MF- T F R LIST (100'."'1(:0f"P

CCOOOC!36 '5~lfODOHO 14.176fO. LH
(\00000'1.& 50EOOC4,3 ST 14~72'(O.13)

OQOOOORf 5 f:lt::("'![;O AC l 1'j.172(O,1'~i E'f1fR:')I'!L C nMPUT

OCOCOC'(? ODEF 6ASR 14 .. 1"::
t400 oooeOOC4 08604000 6.0{C~4l VARIARLE

COOOC0r: 8 5Q6040{)4 6~(t(O~41 VA.R lAr~l E
000000((47P,O'511F: ehL ;>0

1500 00000000 5Rl0UOBt. L 1.lflO(O.13} ~)ARA'1ETFP LIST ~000Dl ('10
COOQO{F14 5-~[OOC;:lC 14~1'!"OIO.1?1 fxrfQNAL CHI T fl, 1
00000008 50fODC4~· S r l L ,"12fO.l"1)
CC0C'COOC 5AF(1C08P. L 15.13h<O.t'.'I·~ F :(TFfP~I\;L CHr. 1 r\ 1
OOOOOOEC lJDf::f 8:' S~ .. 14.1 'So

OCOOOOF2 58fOnCQB l 14 ~ IS2 (0;, , r:-XTFt<NtL CHr 1 F 1
OCOO~CU 'SOEOOC4P: SI)/ ... 7210·,1
COOOOOEA 1813 LP 1'. :1
aooorOEC 41000001 LA 0.1 !O. 0)
C00:JOCFO 50003CO' Sf O~4{O.~) va.PI~8LF I

':iG9q~6 OOOOOOF~ SRIOnDR" 1,lfl4fD.l3l Dl\q ~~FTFR Ll ST 00000110
OC00t'OFP 1,:,·00 S" 0.0
oooooorA ~g~ODOQ4 L 15.148!0.131 EXTERNAl. CHelEl
OOOOOOFf on[F flASR 14.1 0:;

rcocoIOC 5elOD013C I 1.18~fO .. 13l PARAME:TP": llST n(l('l(W1_1~

00000104 41007030 LA O.48(O.7}
0000010e SOO01004 Si 0.410,11
COOQOID(lroe SR 0.0
COOOOIO~ '5 :~FOOO94 L 15~14g(OiP'1 f.X1H',rH,1.... (He:El
00000112 DOH BASP 14.15
00000114 5~IC[)OCO L 1.IQ2l0.(31 ptl,PAl-'IfTEP Ll <;1 000(,)('12!l
CQOOOllA 41007008 LA O. R! O. 71
OI)OCOlt(500010Clt S T 0.4 f{'i ~ 1)
000001<0 IBOO SR (1,0
(lOOeel?;:' 5'3FO[1094 L 15.14810.111 fxifPNAl [:-iC r f 1
OOOOCl n ODEF eASR 14.15
00000128 41101004 LA 7.410.71
r;OOOC12C 1).8603(\04 L 6.410.3) VARTABlf
00000130 41606001 LA 6.110 .. (")
COO0Cl,4 50fJO~()n4 Sf 6 .. 4 fO. 3) ''';AQ: TAFl E"
0000013(:1 SQ60201C C 6.23tO.2' 10 AT OOC0C1A(

coweoy }'V5 Pt,CE 005

L!N(NO. LABEL lOC HEX INST l-!':X INsr ASSE""f3.l'Ffl CO'MM'ENTS
000001,[. 47005C(O B~i-t qq(}qq6

00000140 5BEODOAI.,. L 14~164(O.111 El(TFPNAl (4(lUl
00000144 50EOOOltB Sf 14 1 72:10,11)
00000148 58fOOCAr L l5.16010 .. 11,) EXTEPNlIL (He! Ul
OOOCOI4(ODE'" BASS 14.15

1600 OOOOC14f 47F05CCO B 5
1700 20 00000152 5810l1CC4 ltt<H:IO.11)

00000156 SBfOOrC(l 14.204(0.131
COOOOl5A 50EOOC48 51 1-4 .. 72(0.1.,)
000OO15E 5SFOOCCR L 1'5.200(0.11)0 EX TERN "'- CH(T W2
00000102 ODE~ eASR 14d5

®'UMERIC CONSTAN15 !-EX 00000170 SIlf AYTES

(~~TYPF @lOC HEX @CONTENTS HEX
1*4 00000170 00000000
1·4 00000174 00000001
I", aoooens 00000002
1*4 OOOGonc 00000005
1*4 00000180 00000004
1*4 COOOO184 00000014
'*4 00000188 0000000<
1*, 000001 p,c OOOOOOOA
I· ... 00000190 00000008
1*' 0000019' 00000080
1*, 00000198 00000020
1*4 000001"C ooooooeo
1*4 COOOOIAO 00000033
1*4 COOOOI04 00000040
1*4 COOOOIA8 00000032

Figure 12. CSECT Listing, Continued

86

(element of an array). This information must be
obtained by inspecting the D2. X2, and B2 Rolds
of the instruction itself. As in the case of constants,
references to complex variables are fully com­
mented upon in both parts.

Subroutine caBs arc described by the word "ex­
ternal" followed by the name of the suhroutine. In
a number of suhroutine calls there can be two such
comments.

Argnments, or, specifically, adcons that contain
the base register 1 for arguments at object time, are
indicated by the \yonl "argument" and the name
of the argument. The actnal arguments themselves
arc identified as "variah1e" foll)yvcd by thc argu­
ment name.

Refcrences to local or global tcmporary storage
are printed as "Jocal temp" and "global temp," re­
spectively. Again, the location of the temporary
storage item must he obtained from the operand
field of the instruction.

Address constants arc descrihed hi" the names
of the storage classes the adcons ('o\'er and the pre·
relocation valnes of sl1ch adcons (zero values arc
not printed). The following items can appear in
the comments ('0111mn ill connection with adeem
references:

CODE
NU!\IERIC

PARAMETEH
LIST

LOCAL TE\1P
STCE

GLOBAl, TE\fP
STGE

NOl\--CO\fl\lO?\
VAH.

BLANK CO \1'. 1 0:'\

Name of a named
COMMOK

B;be rce;iskr ademl for ('s('cutahle code

Ihsc rCL';istr-r adcon for llulll('rical COJ1-

':-~tants

A(kon that contains the hase r{'"i-;tcr
for the paran1C'te]' list in a sllhrol1tillc'
call

Local temporary slorage hase rcgistcl
ndcon

Clohal temporell y ,tonge hase register
"dCOll

BaS!' rcc>;ist,'r adcoll for satiahles nol
dell]]",] ill any COilf1\fON

Blank (:0'''''10;"\ base r(',~i,tC'r ade(lll

Bas(, register ade(m for that named
CO!\f\fON

All numerical constants are listed at the end of the
CSECT (after the listing of executable code), 40. The
relative location of the numerical constants in the
CSECT is given, 41 , followed by the length in decimal
of the numerical constants, 42. Each constant is de­
scribed by its type and length, 43, location within
the CSECT, 44, and its internal representation, 45.
The types are:

I - £xed binary (integer)
R floating binary (real)
C - floating binary (complex)

lThe term "base register adcon H is used to refer to an adrlress constant
that is loaded into a base register.

The length is given in bytes, thus, for example:

1"4 means an integer constant of 4-byte length.

C"16 means a complex constant (floating bin­
ary) with a total length of 16 bytes - 8
bytes for the real part and 8 bytes for the
imaginary part.

Description of PSECT Listing

The information contained in the page heading line,
46, and PSECT title line, 47, is similar to that con­
tained in the corresponding lines of the CSECT listing.
Listed next is the relative location within the PSECT

and the length of the areas.
A sample l'SECT listing is shown in Figlln~ 13.

1. Register Save Areas 48: This area is used 10 pre­
serve register contents upon executing a call to a
subroutine.

2. Conrcrsion COllstants 49: This area contains the
necessary masks and working storage needed by
some in-line convcrsiollS (e.g., Rxed to floating).

3. Address COl/stallis 50, 51: Each ad con is de­
scribed by:
a, The location of the adcon relative to the base

of the pSEcr.

h. The contents (value) of the adeon prior to re­
location.

c. The control section referred to by the ad eon or,
in the case of arguments and external refcrences,
the item referred to by the adeon,

d. The "storage class referenced" describes what
part of the speciRed eontrol section is covered by
the adcon or \vhat argument or external name
corresponds to the adeon.

Following the description of the above three areas
is a listing of the individual items contained in the
PSECT, The Rrst item in this listing is the address con­
stants, 51. The address constants are followed by
six other groups of items, described below.
1. Parameter Lists 52: The listing of items in the

parameter list section of the FSECT is in a format
identical to that of the adcon listing. A number of
itCIllS may have no entries under "Control Section
Hefercnced" and "Storage Class Referenced." This
indicates that the contents of sneh parameters are
not known at compile time and that the parameter
is ('ompnted and stored in the indicated location
Ilpon execution of the program.

2. N/\M ELISTs 53: This area contains the internal
representation of ~A:\fELIST information. Only the
total size is printed.

3. Alpharnefics 54: Any alphameric constants, in­
cluding contents of FOR\IAT statements, are listed
by giving the starting byte of the character string
followed by the string itself.

Appendix A: Use of the FORTRAK Compiler 87

@COWBOY P SIZE

@REGISTER SAVE AREO

@CONVERSION CONSTANTS

@·,ft,COPESS CONS1ANTS

®LOC HEX CCI<fTENTS HEX
00000064 00000034
00000068 000001C8
OOOD006C 00000170
00000070 OOCOOOOO
C~000074 CC~OCOOO

00000078 00000220
CC00001C OOOOOCOC
00000060 ocececco
CV000084 00000000
Q0000088 00000000
ecoeoosc 00000000
00000090 COCOOCEe
00000094 OOQOOoeo
000Q0098 00000000
Oonn009C COCOOOFO
OOOOOOAO 00000000
00000004 00000000
00000008 OOOOOOF~
OOOOOOOC 00000000
coo Doose 00000000
00000084 00000100
00000088 OOOOOllC
OCOOOOBC 00000118
OO~OCOCO 00000120
000000C4 0000012e
000000C8 00000000
ooooooec (0000000

® PARA.ETER LIST

lOC HEX
00000000
00000004
00000008
OOOOOODC
CODOOOEO
000000E4
aMaODE8
eOOOOOEC
OCDOOOFO
CCOrOQFlj.
OOOOOOF8
000000-(

C.O~ROY I V5

LOC HE)(
00000100
tCOCOI04
coaOOl08
CDOOOloe
00000110
00000114
fOCQCl18
COCCOlle
000011120
00000124
cenco128
{';oonfl12C
CnoOOllO

CONTH!TS HE~'
ooooone
00000197
OOOOOlq~

00000138
oooonllC
000001 n
OOOOOIQF
C0000158
000001'3
00000000
COoOO IF 8
COOOOI00

CONTEN1S HEX
OOO~OI88

OOeOOlA?
C000019F
00000160
000001A8
00000ICC
OOOOOlA~

ooeeeoce
00000lA3
00000000
eOOOOOOO
COCC0128
00000000

ALPHA
(2E20",BI

544 RVTES 07121167 21:44:12

lOC "EX a~OOOOOO

LOC HEX 0000004C

LOC HEX 00000064

CON1ROL SECTION REFERENCEO
(SECT
PSECT
CSEc;
INDEX
NAp.lE
PSfCl
EXTERNAL
EXTERNAL
P'SECT
EXTERNAL
EXTfR~AL
PSECT
EXTERNAL
EX1ERNAL
P'SECT
EXTERNAL
.!::XTERrvAl
P'SECT
E(TfRN~t

EXTER.NAL
PSECT
PS€(T
PSECT
P'SECT
PSECT
EXTERNAL
EXTERNAL

LOC "EX OOODOOOO

CONTROL SECTION REFERENCED
(SECT
(SEC'
CSECT
NO""'
(SECT
(SECT
CSECT
PSECT
CSECT

POSEel
PS~CT

CONTROL SECTION REFERENCED
CSECT
CSECT
C'SECi
PSECT
CSECT
PSECT
(SECT

CSECT

PSECT

lce rEX O~000138

Loe HX 00000158

®~A~fllSTS

®,6lPf-iM~ERI(S

lOC HEX
00000158
00~00160 l'lTEST PRDGR:'M SA(·:PlE OUTPUT fOLlOilS"·O

@NON-COMMON VAR IABLES POTAL)

loe HE:::<
000001C8
(i(\QI)"lCC
00000100
COOOOlF8

@NAME

lOC HEX
00000000
00000014

]NIJEX

VARIAeLE
C
o

L lOC HEX VARIAeLE
00000000 L
0(000004 M

--~--------~

Figure 13. PSECT Listing

88

TYPE
1*4
1*4
R*4
.*4

TYPE
R*4
R*4

TYPE
1*4
1*4

Lec bEX 000001C8

S Ilf 76 ~YT ES

SIZE 24 AYTES

SIlt lO~ 8YTFS

STORAGF CLASS REFERENCEO
COOF
NON-CCMMON VAR.
NIJ/IAFRIC
I "-!Of)(
NAME
LOCAL TEMP STGE
(HeROl
(H(801
PARAMETER L[ST
CH(IA 1
(HCIAl
PARAMETER LIST
e~Cln

c.~c If 1.
PAR AMETER LIST
(HCIIJl
(He lUI
PilRAI,IETER LIST
C OMPUl
(CMPUT
Pt.RA~ETFR LIST
PARA,"1£TER LIST
PA.RI\METER LIST
P'ARAM:~TER. L! ST
PARAMETER LIST
rHe IWZ
c~c 1i00i 2

SIZE 100 ByTES

STORAGE CLASS RE~ERENCEO
NUMI=RIC
NUMERIC
NUM'fR Ie
NAMEL 1ST
NUMfRI(
f\!UMfR Ie
NUMfRIC
AlPHA~I:RICS

NUMER Ie

NON-(CMMflN V,AR.
N~N-CCMMDN VAR.

STORAGE CLASS REFERENCEO
NUM~R Ie
NUMEt:lIC
NUM!=.=RIC
ALPHAMERICS
NUMERIC
NON-CO"'1MON VAR.
NUMEPIC

NUMt:R Ie

P6PM~ETfR LlST

SIlE 2R BYTf'S

SIZE 105 BYH~

SIn 88 eYTES

SIZE 60 BYTES

SIZE 8 BVTfS

PAGE (">07

Sf Ift6,E20.8,E20. e,)

I
I

CQ'.,?:::"'h.P::,}C IC,...· 1..1lCOO!)O

e
OJOJ~4 41100(08
OCO~~p (08J(0a~

JOO?I(CO~)1QaO

Figure 14. Tahle of Initialized Variahles

COlo/ROY ~ \'5

SYMBOL TABLE

(~SY"ROl
A
8
(

(HCBOI
(}-ICIAl
(HC IF 1
C~ClUl

(HC IW2
CO~PUT

0
r
J
L
•
~UM

5
10
20

SCRT

@nPF
R ..
ROO
PH

(0ClASS
ARRAY 'VARIABLE
ARRAV VARIABLE
ARR.AY VARIABLE
EXTERNAL NA~E

ExTERt-;Al NAME
EJ(TER~At N4~E

EXTERNAL I'IiA""E
E'XTERNAL ~AME

EXT~R"IAl NA""E
ARRAY VARIABLE
5J r.tPl'E VARI ABLE
SiMPLE VARIABLE
SrMpLE VARIABLE
SJ""PlE VARIAdlE
"l:AMElIST

<2)
(O['.IJFPT F [} VM IJ

.. 0.1 C;00nc:- .. OJ

.C.looooor~CJ

... o.cr;r;OCf'F+D0

+C. OOCOtlOr.: +00

v!\PT A?LE

r (1 I

BII0" j.
AI II

fl.! 101

-

~-~~--------.--~~-.----~--~[

P&r:F I"o,q

(§STORAGf CLASS + nHSfT
NON-COMIolf}"J 0110000'30
NON-COMMON OOOOOOOR
NA~E (10000"00

NA~F. 00000014
NQN-COMMON 00001)004
NC1l;-C('MM~~,' ooononoo
I NOf)(00000(,{'()
11...Dfi noonOl"104
ro.AMH. r<;T onnonnoo
CO(lf OO('I:'!Q014
C~rH: nOOO('lOGF
CODE (lO0('1~1')7

L
900
910

S99QQ6
t;9QQQS
999f!J:99

SOURCE t ABEL
Sr.UR.CE LABEL
SCURCE LABEL
FORMAT LABEL
FOP~AT LABEL
COMPILER LABEL
C-e~PIlEP LABEL
CO~PIlEP lABEL

ALPHAMERrc:- OOr'lOOO(1n
ALPHA~FR,r OOOO{'008
(C'::E onOf'lC'OF4
cern: 00,)C-OO~?

C-CDt: (InOO~('I4('\

~---~.----.~----.. ---

Figure },'). Symbol Table Listing

4. Temporary Storage: As in the case of NAMELIST,
local and global temporary storage blocks are iden­
tjRed on the listing by their starting locations (rela­
tive to the PSECT'S base) and their respective sizes.
The example contains no temporary storage blocks.

5. Non-COMMON Variables 55: The listing of the
PSECT is completed by information about non-co~-r­
MaN variables. The starting location of the non­
COMMa" variable block amI its total size are given.
Each variable (or array) is described by its loca­
tion with respect to the base of the PSECT, the name,
and the type-length code. The type-length codes
have the same meanings as described under con­
stants.

6. Common Control Sections Listing 56; Any COM­
MON block - blank or named - is identified by its
name and the total size in bytes. All variables con­
tained in a co~nroN block are listed in the same
format as non-coM~roN variables. The locations are
relative to the base of the respective COMMON
block.

Description of Table of 1"litializecJ Variables

The page heading line, 56A, is identical to the head­
ing on the CSECT and PSEGr listings. The next line in
the listing contains the listing title, 56B, followed by
the column headings. The information contained in the
five columns is described below.

1. SECT 56C : This column contains the module
nHllle specified by # P if a main program. If a
BLOCK DATA subprogram L; compiled, the name of
the COMMON block \vill print. If more than one page
of listing is required, the name wiIl be repeated on
the Rrst line of data on each page.

2. Relative Location 560 : This column gives the hex­
adecimal value of the disp]ac.3ment of the variable
within the section.

3. Hexadecimal Value 56E: This column gives the
hexadecimal value of the preset variable as it
appears in the text.

4. Conrerted Value 56F This column contains the
preset value converted according to type of con-

Appendix A: Use of the FORTRAN Compiler 89

stant. These types are: hexadecimal, integer, real,
complex, logical, and literal.

5. Variable 56G: The variable name \vith subscript,
if applicable, prints in this column. Variables arc
listed in order by displacement within section.

Columns 2-.5 may also contain it "3-dot" notation,
56H , if the repetition factor of a preset value exceeds
5. In this case, only the first and last values of the
range print on the listing,

Description of Symbor Table Listing

The symbol table listing (symbol table sort) contains
an alphamerically sorted listing of symbols - names
of variables·, entry points, external references, labels,

COWE,]Y }vs

(~~)SY~BOL C~OSS-REFER~NCE L I ('T

~Y~BOL OEfI~ITlnrIS

(1-.c(Hl

(He IU 1

(\ole ht2

(C>.IPUT

CliwP,fly

900

f;f)(l 15CO

poc

(OwB:]Y } \IS-

UHHt CROSS-REFERENCE Ll ST

lABFL
~

OEF t;~2J REFERf"lCESCiV

00005 600 1600

00010 1000 'OC BOO

00020 1700 1400

00900 1800 90e

00910 1900 1500 I
L-....

Figure 16. Cross-referpnce Listing

90

etc. Each symbol is printed on rr line and is described
as foUmvs.

The narne of the symbol, 57, is followed by its
type-ll:ngth code, 58. The code has a meaning for
the itE'm represellted by the given symbo1. Entries
llndcr "class" further describe the item, and they are
self-explanatory, 59. "Storage class -+- offset," 60,
identifies the storage class to which a given symbol
hdongs anel t11e location within such storage class.
Under "storage class" there can be references to blank

COr-lr-W:\" code, alphameric, name of a named COl\DfON,

etc. External names arc not part of the compiled
module; therefore, no information can be given for
storage class + offset.

A sample Symbol Table Listing is shown in
Fignrc 1.5.

?OG 40(1 1100 1 <::00

?QO ltO" 1. 1 f'lC! 1":,nf1

3('\()

0

700 ClOO 1500

gOO 11',flO

goo 1"O(l

1 700

1100

.. co

qoo 11::00 1 '100 1 ~or

~oo

"(Hi 700

iJesaiption of Cross-reference Listing

The cross-reference listing is divided into two sections:
a listing of names (symbols), 61 , followed by a list­
ing of labels, 64. Both sections list the corresponding
items in alphamerically sorted sequence. Line num­
bers, as defined in the somce listing, are printed under
"definitions," 62 and 65, and "fl,ferences." 63 and
66 , for each item. \Vhenever an item is defined (e.g.,
label of a 1al1eled statement or variable name on the
left side of an assignment statement), the correspond­
ing line number is printed in the "definitions" column.
Any reference to an item causes an entry under "refer­
ences." Mllltiple entries for any item arc sorted in
order of increasing line numbers. Multiple references
to the same item in the same source line result in
Inultiple printing of the same line number for that
item. Compiler-generated labels arc not included in
the listing.

Figure 17.

COPIBOY ,'Ie,

HH\.!Y NAMF.
COWflOi

lOC ~FX

C'c.ooaCOQ

fY.TER:--.Al REFERENCE'S
C--lC 1 ,'!. 1

l. INF "!0~ LA3EI
CC('COC3 4

600 5 ccooa034
700 ::;SQ9QQ CC000040
noo caOCC(l5Z
qoo g<;C;~S8 00000062

1000 10 CCQ-Q(,Oqf
1100 (lOOOOO~?

140(; canOOOC4
1500 CCO')C('DO

<;<;'?Sqf:, (If"\CoaOF4
1600 CI)OOD14E
1700 20 fJOOOC152

CO\.lBOV

rO,'NEQSfflN CON,)TAr-.;TS

bDOxtS-S CONS1A''H'S

!\A~HIST5

~~ON-CQ~MO'~ vttPIAPLES (TOTAL I

Loe "-EX \JAR IAr~LE
000(,01(8 J
COQnC1CC I
eoo('rf'JlOO
01)0001'1= g

I\At>lf

lOC ~E)(VARTf,.BlE

C00000QO C
COOOOO14

INDEX

lee I-'EX 'vARtABlE
tcocnooo L
OCOOOO04

Storage Map Listing

C.-iCIUl (He 1 1<;2

42 P PYTE S

LOC HEX OOOO()OOO

LOC HEX 0000017C

ill/2 :'/lJ', J t :1.4: 1;'

lee HEX 00000('10('1

lee HeX OOOOOC"'-C

Lee HEX 00000061 ..

lce "EX OOOOO!'!8

u:c I-EX oooon 1'-'· R

LCIC HE) 0OO00lCR

TYPE
1*4
*.
R*4
R*4

TV PE
R*4
"'4

TVPf
1*4
1'4

A sample cross-reference listing is shown in
Figure J6.

Description of Storage Map !.isting

If an object code listing or both an object code listing
,mel a storage map listing are requested, the listing
prc)(luct'd will be as (lescrHwd in the detai1ed descrip­
tion of the Olltput module listing above. If a storage
map listing is requested and no object listing is re­
(llll'stelt the resultant listing \vill contain sumrnary
information for the rnodule, 67, CSEC'L 68, and for
the pSEcr, 69. This information includes the CSECT

and PSECT sizes, external definitions and references,
the location relative to the CSECT of all FORTRA:-;! state­
ment numbers, the size in the CSECT of the numeric
constants area, the relative location and the size of
tbe principle PSECT areas, and the location in the PSECT

of an variahle names
A sample storage map listing is shown in Figure 17.

PA(;(C03

<:. II t' 76 BYT[S

S tH.

S!1t: 10R fWTf5

SUf ?A 8YTF';

'''l~

SHE"

SIl~ 61) RYTFS

S IlE R BYTFS

Appendix A: Use of the FORTRAN Compiler 91

Compilation Completed Message: Following pro­
duction of requested listings, the page is restored and
the message CO:>'fPl.c,ATIO~ COi\fPLETED is written.

Destination of Compiler-Produced Listings

The destinations of compiler-produc~d listings depend
on wlJCtlwr the task is conversational or nonconversa­
tional, and on the value of the FTN command's LISTDS
operand.

Conversational Tasks

In conversational tasks. all compiler-produced listings
are placed in the list data set unless the LISTDS oper­
and of the FTN command specifies SYSOUT.

Printing of the list data sets prepared by the com­
piler is not automatic. Each time a unique modnle
name is encountered, a generation data group is estab­
lished. containing two generations. Each time the limit
(two generations) is reached. the oldest generation is
erased. The lIser may print only when he wants the
output listings, using: PHIXT LIsT.modulc-name f01-
100ved by the relative or ahsolute generation. The
Command System User's Guide presents a eOl'lplcte
explanation of the language processor listing data set
maintenance process.

Since a pending BULK!IO task will be established
when the pmr,T command is issued for the language
processor listing data set, the user must not attempt
to erase the data set (or otherwise remove it from
the system) unless the BSN is canceled first.

Nonconversational Tasl,s

In nonconvcrsational tasks, the system antomatically
puts compiler-produced listings on SYSOUT and prints
them. After printing, the listing no longer exists in the
system.

This system action can he overridden, however, by
the LISTDS operand of the FTN command. If you specify
LISTDS=Y, the system puts the listing in the list data
set and maintains it exactly as in a conversational task.

You can have the listing put in the list data set and
printed immediately by specifying LISTDS=Y and fol­
lowing the compiler source statements with an appro­
priate PRJ"T command.

Note that if you use a PRIKT command in a noncon­
versational task initiated from the terminal, you can
always cancel the printout by issuing a CAKCEL com­
mand. However, the CA~CEL command does not pre­
vent printing of a listing, or any part of a listing, that
is already waiting in the SYSOUT data set.

92

FORTRAN tV"Library Subprograms: Indirect
References

~dost FOl1T1L\X I\, library suhprograms are referred to
in a compiled program directly - i.e., by the same
name used in the source program; the statement

x = SIN(Y)

for example, leads to a call on the SIN program, and
SIX wiII he listed under external referenc:es in an ob­
ject code listing. CC'rtain other FORTRAN library sub­
programs are referred to by names created by the
compiler. These programs are listed as follows, with
their names.
CHCBGA
CHCBCB
CHCBCC
CHeBGD
CHCBHA
CHCBHB
CHCBIA
CHCBIB
CHCB]A
C!-ICBJB
CHCBJC
CHCBKA
CHCBKB
ClICBKC
CUCBKD
CHCBKE
CHCBMA
CHCB1,!B
CHCBCA
CHCBCB
CHCBDl
CHCIAI
CHCIEI
CHCIUl
CHCIVI
CHCIV2
CHCIWI
CHCIW2
CHCIW3
CHCIW,')

Raises an 1"4
Raises an 1"2
Raises an 1"2
Raises an 1"4

Raises an R"'1
H,lisC's an R"4
Raises an R ~8
Baise:; an R"8

Baises an R"4
Haises an 1"2
Haises an 1"4
Raises an R"8
Raises an 1"2
Ibises an 1"4
Haist's an R" 4
Haist's an R" 8
Ibises a C~ 16
Raises a C~lG

Baises a C"8
Ibises a C"8

numher to an 1"4 power
nnmber to an 1"2 power
number to an 1"4 power
number to an 1"2 power

nnmher to an 1"4 power
number to an 1"2 power
number to an 1"4 power
number to an 1"2 power
number to an R"4 power
number to an R"4 power
number to an R"4 power
number to an R"8 power
num ber to an R ~ 8 power
number to an R"8 power
number to an R"8 power
number to an R"4 power

number to an 1"4 power
number to an 1"2 power

number to an 1",1 power
numher to an 1"2 power

Initialize interrupt processing.

Initialize for an I/O call.

Transmit ,m I/O value.

Terminate an I/O call.

DUMP program
PDUMP program

EXIT program
STOr program call.
PAUSE program cail.
Called if FORTRAN subprograms are erroneous­
ly entered at their standard entry point.

Reference To Subroutines

Special considerations must be made when a FORTRAN
main program makes references to subprograms. If a
main program and its associated subprograms are
compiled together, and an error is detected in one of
the subprograms, that subprogram must be recom­
piled. The recompiled output module may be placed
in the same program Jibrary as the original or in a
different one. Depending on which method is chosen,
the results ,,,ill vary.

If the recompiled module is placed in the same
program library, the llser is asked if the module is a
replacement. If it is, (the default condition) the sys­
tem tries to unload anv module in the user's virtual

storage that has the same name. The unloader will
find a module but will not he able to unload it be­
cause of outstanding references. Unless the user
explicitly issues an UNLOAD command for his main
program, he will not get his new copy of t}IC sub­
program.

If the user defines a new program library, he will
not he asked if the module is a replacement. Conse­
quently, if he reruns the program, he will use the old
copy since it is still loaded.

The simpJest solution is for the user to unload the
main program before he starts recompilation. He can
also unload modules tbat have references to the new
module, but this might not work since thc modules
he tries to unload might satisfy references in other
modules. If the user unlm,ds his main program, he
avoids getting diagnostics from the loader during
compilation and ensures that the btest level of the
module is being used.

Destjr,aii~n of Output

Table 3 shows the destination of all output from any
compilation variation.

Compiler Restrict;!)ns
Limitations of virtual storage available to the com­
piler and the object programs generated by it impose
a number of restrictions on the size of a source pro­
gram capable of being compiled. These restrictions
are categorized according to complexity. The first
category, simple source program restrictions, can
easily be applied to individual source statements or
particular types of source statements. Simple source
program restrictions are listed in Table 4.

The term "file" is used in this section to refer to
compiler work areas.

The second category, complex restrictions, is com­
posed of restrictions that generally are too complex
tc anticipate in advance of compilation (e.g., the
storage requirements of the various tables internal to
the compiler are, in many cases, extremely difficult to
compute accurately, as the table sizes are complex
functions of the source program). Very fe,,,, programs
are of such a size or configuration that these complex
restrictions can be met. Therefore, the FORTRAN user
may not wish to concern himself with the complex
restrictions until he receives a diagnostic message;
then he can proceed to remedy the situation. Com­
plex source program restrictions are listed in Table 5.

Should the user wish to more accura te1y determine
the number of entries that can he made in the files
listed in Table 5, the following paragraphs provide
information allowing him to do so. For each file listed

in Table ,5, either a formula, an absolute nnmber, or
an average number is given as a measure of the num­
her of storage location;.; (hytes) in the file.

Symbol Table

Variahle or function-r::ame
Four-byte constant
Eight- hytc constant
Sixteen-byte COllstant
Label
Adcon

Progmm Representation File (PRF)

Equation
Unconditional GO TO

IF

Storage
Locations

28
16
20
28
20
16

Storage
Locations

16
16
28

Prograrn Representation File (PHF) con't. Locations

CALL 20
no 64
Average I/O Statement (Five list elements,

two of them subscripted) 74
Average Label Definition 12

Storage
Expression File (EF) Locations

Average Equation (Ten variables and
operators) 80

Unconditional GO TO 0
Average IF (Arithmetic IF) 80
Average CALL (One simple argument) 80
A Vf~rage DO 0
A verage Ilo Statement (Five list elements,

two of them subscripted) 100
Average L~1.bel Definition 0

Storage
Storage Specification Ust (SPL) Locations

A verage co~nvIOK (Three variables, arrays,
or block names) 20

Average EQUIVALENCE (Three variables) 30

Cross Reference Table (CIlL)
CRL size = (number of occurrences of statement

numbers + numher of occurrences of names)
x8

Preset Data Table (PDT)

The PDT size is estimated from the relation:

Storage
Locations

PDT size = CRL size (described above) +
NAf.1ELIST size (described below) + total for
the following four types of statements.

A v('rage DIMENSIOK (Two arrays of three
dimensions each) 24

Appendix A: Use of the FORTRAl'; Compiler 93

<:0 >-1 Tobi-: 5.
>I>-

"" r::r CC.::"Lfive AI;tion2 Ove,fiQn' A~'C:.':'lteJ DiDgnost;c C\)IYIr~",'.!i

(D tHJ'l1bec\ in

SR
(")
0
S
'Cl
(D

'" ':f)

0 .::
I')
t1>

"'0
0

"" ;i t:J dl'!fil~'l jh c iarger func!:on\,

S
!:ri
tli
~
::1,
;:;.
O·
t:l

'"

wo~~:,t'.,j(, OVf"f~(:N IN "H.A')~ :3

"Rc:;"t:kA1~-';;\-0~< U lif Fief i'oN A,~ 'I' TfSLr:c/~{pTLO;;'

!NTUNAL ';'!MflOL DiCT!ONA.R'y CVERflO"\

i lY3)t:CT Pf.:OGRAM MOJUlE EXCEEC:S P-LLQC!'IED SIZE

:;UB-S'c-f;!PT-i=XPRESsT6t~ i-s--roT; !jiG-- eli ("r p<lrr tA th~

/EP,f;[0',',11-0 :N PH/~Sl: J.

\ un CXPfl.1s.,,,r, ''''11 not ,uce':'d
,,;,roIl 1, .k •• ,~(: ::; 0 :;olTa~pr','d'.'~(ll be,~''''''''e,~

,:.t ('t' e:.;r"e"",)[1 in >OLrCe (,),-,j :ilp, ;".

fep;"$er>!Q~;t,r" r","I" orr tW<:l C;)'W, wheril th'", ,101 tn.le, var!obl{l di~
I-"hc,1t :he if1~i";(nQ! 'foO:' b.,<:;c'll;; qui! .. k'"91?; <::[1' !';;~.o!1rkd t·;:. De <:.->rnpJtcd

Wle Of 11«:",y

»0)' codrib'Jtl;\

k; ;cpre,en;oii"fl

1 Wher/t an tlxpli,-ir lim,1 is r,)1 given, :1>" I;,.,it i~ 0 ;::onpif'x ('_:roO::;;'l 0f ",the, i!",ib.

2 G~l1ercl correctivil a,tjo~ ;~ to divide 1',e n ;c;a'" pn:::~Jt:J'":1 C",j on/) or '110," ~cp(Hately,

Other corrt;ctiy./:! <1Cti(.·"I~ (]~-; nct~d in th;;! ;::O:~,;y.Il, elnd m.ay in lO<n€ o:;o,e, in prev'::;u~ corurnn~.

3 Th;s restriction i. he,e os wdl a~ ;~I Tobie.4!l~ in cerhnl

Table .3. Destination of Compiler Output

C07\!PILETI

VARIATIO:\,

Conversational - Input
from terminal keyhoard
or card reader.

OBJECT JI.10DULE

Llle,t job library
defined in task. Of

USEHLIB.

OUTPUT

sounCE

Data set named SOURCE.
module-name, created by
system.

LISTINGS

To list delta set member
11;]11WU LIST.module. To
SYSOUT whe11 user is­

CO:\lPILVH DlAC,OSTICS

To terminal, and to list
data set jf listim;s re­
quested.

/--------------1 sne, <111proprL,te PHIl'\T
Data 'et 11mlJed SOUHCE. command.
module-name, will be up-

Conversational - Pre­
stored data set.

dakd to reflect modifiea-

,'\1 onconversaEonal
Presto red data set.

tinDS.

To list data set if re­
quested; otherwise to
SYSOUT.

To SYSOUT data set if
no listings requested;
otherwis(',~ to list data
set only.

-----.-----------------~ N oncon H'rsational
Input after FTN.

Data set n:UG,c! SOUHCE.
module-nanw, created by
system.

Average CO~l:\lON (Three variables. arrays,
or block names) 24

Average Explicit Type Statement (Three vari­
ables, arrays. or function names, each v\lith
one initial data value) 72

A vcrage DATA Statement (Four variables, each
with one value) 64

Statemcnt Function Exprcssion File

A. vcrage eqllation (Tcn variables and
operators)

NOH-COMMON Variable Storage

Storage
Locations

80

Thc storage assignment for any variable may not ex­
ceed 221-1 relative to the assignment of the first non­
CO;,\gWN variable assigned. The assignment of this
variabJe is independent of its OV>11 length (save for
at most 1.5 bytes of pacldin" which might be neces­
sary for proper internal uligLmcnt), but depends
upon the assignments made by dlC cHnpiler to earlier
processed variables and upon the additional effect of
an EQIVALENCF. statement which might involve this
variable.

CO'Al1t.ION Variable Storage
The storage assignment for any variable may not ex­
ceed 221-1 relative to the origin of the CO~L\fON block
within which it is to be assigned. If this variable ap­
pears in a CO'vnlON statement, then the sum of the
lengths of the variables and arrays that \vcre declared
previously in the same COJ\I:>'lOK block is 221 or greater.
If the variable has been given EQUIVALENCE to a COM­

?\fON variable, then the EQUIVALENCE relationship is
sneh as to make the assignment of the variable CX~
ceed 224_1.

T:lhle 4. Simple Source Program Hestrictions

I MAXIMUM

! NU~fHER SSSOCIATED

~ }TF~I OR SIZE

25

DIAC:-';OSTIC ~fESSAGE

'I:--;:::~;"kr nf argllments ILLEGAL !\'UMBEH
ill i."."h·lflcnt function OF AHGUMENTS

USED FOR :
L,~_ ... --::--_-;-_____ -:-:--__ I_;'l_:_N __ T (__ ~1 __ '-:IO~N __ T __ n-:a_m_c_' _-;

:\ lli,,:'e, ,)f nested 24 ST ATEMENT
st:it"I'\('ni function rUNCTIOr\ CALLS
rdc'Tn,!', .\;ESTED TOO DEEP -,,-------------_._-------1
]\.1IIn'",· of Je,vcls of S5 DO LOOPS NESTED
nt'i,"(DO loop'; \],,-,th TOO DEEP
u;piicil 'lnd implicit)

NumLcr of statement
Illlln! H.:fS in a cOlnpuh·.~d
or ,,,,h.(m,d CO TO

l\umhcr of named
CO\H.ION hlocks
~:I

l\imrl.JlT of signifiunt
chaf<~.('h.Tsl in a
S(H1ITC .'-,tah"lllcnt

Totnl si£c of an ,UIaI'

NUlnber of character',
[n a clw.ractcr ~fTinp-

,\1aximulll numher of
argurnenb in a ...:uh­
prograrn rcfCrf'l)Ce2-

l\1a~lmum numher of
cli1n(>H~ioH:--: 1n ,1u :nray

~Llxinnun "!1Hrnh('r of
preset variables

IIi:)

1320

250

12G

510

:\U\IHEH OF STATE­
~IE.'\T r\U.,1BEHS
EXCEEDS 255

TOO l\fAi\Y
COM\\O'! BLOCKS

lvlORE TnA'! l.'3:20
CHAIHCTERS
THIS AND FOLLOW­
ING CO.'\TlNCATION
UI\-ES WILl, BE
ICi\ORED

AHHAY name IS TOO
BIC
CHAH.ACTER
STRI.NG TOO I,OM:

FORMAL ABGt­
MENT ADCOl':
TABLE OVEH­
FLO\VED IN PHASE ._

variahk HAS MORE
THAN SEVEN
DIl\IENSI0NS

\VOHK ABEA OVER­
FLOW - I::>lCO~f­
PLETE TABLE OF
INITIALIZED
VARIABLES

'See "Format of Source Lines" for the rules to determine the
nmnber of significClllt characters in a sourc,e statement.

2Ser: also the more dcbiled discussion of thL, re;;triction in
Table .5.

Appendix A: Use of the FOHTHAN Compiler 95

Program File (PF)

Estimated from the relation:
PF size = (PRF size + EF size) x 0.9

Code File (CF)

Estimated from 7he relation:
CF size = PF size x 0.5

Adcon Page

The adcon page c:mtains certain address constants
required by the compiled program. The particular
address constants included in this page are implied
by the items listed belmv as contributing to space
required in the page.

The size of the adcon page can be estimated from
the relation:

(number of pages of constants referred to

+ number of pages of common or non-common
variables or arrays refelTed to

+ number of pages of gcnerated code estimatcd
and referred to

+ number of pages of local temporary storage
referred to

+ nmnber of pages of global temporary storage
rekrred to

+ number of literal occurrences of statement
numbers in assign statements

+ number of formal parameters

+ number of pages relative to a formal param­
eter referred to except the first page

+ number of literal occurrences of external func­
tion references or external subroutines re­
ferred to with at least one actual argument

+ number of list elements) x 4
+ (number of distinct external subprograms ref­

erenced) x 8
+ 8 if there are any i/O statements

+ 16 if any I/O statement has a list

Phase 2 Internal Table

The following relation gives an upper bound on the
size of entries in the table. Areas in the table are re­
used frequently.

96

Internal Table size = (number of occurrences of
varia bles excluding common, equivalence, and for­
mal arguments

+ number of variables in equivalence statements

+ number of groups of variables in equivalence
statements

-+- number of occurrences of a variable common
between groups of variables in equivalence
statements) x 8

+ (nnmber of DO statE'lnents - 1 + number of
branches into and out of DO loops) x 4

Optimi::ation Table (Triad Table)

If no IS]) requestE'd, estimated size of optimization
table = number of execntable statements x 36

If ISD requested, estimated size of optimization table
= numher of executable statements x 72

Pl'Og1'{/1I7 !Ii odllle Dictionflry

Estimated from the relation:
p::-.,w ,ize = (number of CO?l;\ION statements + 2)
x 8·1·

+ (number of ENTRY statements) x 28
+ (number of I/O statements) x 44
+ (number of CALL statements
+ (number of CALL statements + number of

external subprogram arguments which are any
of: variable or array name that is not a formal
parameter; ;'xpression; constant; function name
that is not a formal parameter) :; 8 + 88

Name Table Of Exte1'1lal Name List (ENL)

E:"JL size = (number of CO?fl\fO,,! statements + I1lnn­
bel' of m-:TRY statements + 3) x 8 + 4

Internal Symbol Dictionary (ISD)

Estimated from the relation:
ISD size = (number of COMMON statements + 2)
x 16
+ (number of executable statements) x 8
+ (number of variables + number of COMl\WN

statements + 2 + number of FORMAT statement
num bel's) x 241 + 24

Object Program Module (Text)

Estimated from the relation:
OPl\I size = (number of statemeats) x 24

NAMELIST

NA?1ELIST size = (number of names in NAl\IELIST

statements) x 2

The restrictions listed in Tables 4 and 5 are imple­
mentation restrictions; they apply only to this particu­
lar implementation of the FORTRAN language. They
are a supplement to the language restrictions given
in the publication IBM FORTRAN IV. Other than
restrictions specifically statcd in Tables 4 and 5, the
only implementation restrictions placed upon the lan­
guage are the limit of source statement size and
maximum number of dimensions in an array.

1 Assuming average of onc dimension per variable.

Apper:dix It !'CS cmd FORTRAN Obiect Frograms

General
This appendix discusses the use of the program control
system (}'cs) for debugging object modules produced
by the FOBTTIA:-: compiler. Command System Uscr's
Guide contains a complete description of the pcs lan­
guage components. Thi,: appendix discusses the ele­
ments of the language as it pertains to the FOHTRAN

user '.vho is debugging at the source Ianguage level.
pcs is a part of the command system and can be

used, along with othcr commands, whenever a user
program is loaued. pes provides the user complete
control over the execution of the program he is de-·
bugging. He can start and stop execution at selected
points, and he can examine and modify variables be··
fore, during, or after execution.

pcs commands are not part of the compiled module
and are never saved as a part of the module. In this
sense, pcs is an object-time checkout language and
not a compile-time checkout language. The only con­
nection betw;:;en the compiler and pcs is via the In­
ternal Symbol Dictionary (lSD), \vhich is produced by
the compiler when the user selects the :LSD option in
the FTN parameters. The ISr:· contains information
about all FORTRAN statements and local and common
variables in the module. The availability of an ISD

allows the user to check out his program using the
same names and statement numbers as those in the
source program without concern for the actual lo­
cation of his program in virtual storage. Tn addition,
when the ISD is selected at compilation time, the com­
piler inhibits the optimization of the object code gen­
erated, so that the user has available the complete
facilities of pes. Appendix C describes more funy the
object code optimization performed by the compiler
and its effect on pcs usage. The discussion here gen­
eraliy assumes that an ~SD is available for the module
and that references in the checkout statements to data
and FORTRAN statements are made symbolically.

This appendix contains sections describing the fol­
lowing:

• The general function of each pcs command and the
combining of commands to form pcs statements.

• The use of pcs in relationship to the task and the
executioa of the user's program.

o The notation used in forming pes commands.

• The fOim of each command, including restrictions
and considerations for its usage.

• pcs diagnostics.

Commands and Statements
pes commands have the following iunctions:

DISPLAY To display the contents of val-iables or ar­
rays on SYSOUT.

DUMP To dump the contents of a variable or ar­
ray into the PCSOUT data set for later print­
ing_

SET To modify the contents of an array or
variable.

CALL, GO, To begin, continue, or alter program ex-
BHANCH ecution.

STOP To stop program execution.

AT To predefine 8 point (a FORTRAN statement)
at which some action is to be performed
when the statement is reached during prc­
gram execution.

IF To define a condition that must be "true"
to activate other pes commands in the
statement.

Two or more of the above commands can be com­
bined in a prescribed manner to form pcs statements.
The IF command must always be combined with an­
other command; it cannot be used alone. The format
of a pes statement is as follows:

[AT] ... ; [IF]; [DISPLAY] ... ; [DUMP] ... ;

[SET] ... ; [{BRANCH1]
STOP f

----------------------~~-
The foIlO\ving tV;"O commands are always entered

indivichmlly:

QUALIFY To designate the module in which the
statements and variables to be used in pes
statements are defined.

HE\lOVE To delete previously entered pcs statements
containing the AT command.

Sequence of Op~ration
pes statements can be entered before, during, or
after module execution. In conversational mode, if
reference is made to an external symbol that has not
heen loaded, the lIscr is prompted to indicate whether
or not a module satisfying the reference is to loaded.
\Vhen a pcs statement is entered, the action requested
can be performed at one of two times. If the state­
ment contains no AT command, the actions are per­
formed immediately, and the terminal is returned to
command mode (in a non conversational task, the

Appendix B: PCS and FORTRAN Object Programs 97

next command is read from SYSIN). If the statement
contains an AT command (termed a dynamic statc­
ment), the actions are performed when the FORTRAK

statement number given in the pcs statement is
reached during program execution. He can then enter
any commands he wishes, including dynamic state­
ments that are to he effective during execution. The
CALL command, when used without an opC'rand, exc­
entes the Jast module referred to by the system. If an
object module is loaded after the main program is
loaded, the name of the main program should bc
specified as the operand of the CALL.

During execution, statements can be entered ,vhen­
ever execution is interrupted, \vhich can be the result
of a PAUSE statement or of the entry, prior to the CALL,

of a dynamic pes statement containing a STOP com­
mand. The conversational llser can also interrupt the
execution of a program by pressing the attention but­
ton. The STOP command can then be entered to obtain
the symbolic location in the program that is to be
executed 'whcn the GO command is used to resume
execution. (Refer to Appendix F for considerations
in the use of the attention hutton.)

Checkollt operations can he continued following
execution until any module referred to by a dynamic
statement is unloaded, at which time all pes state­
ments are removed from the user's object program
modules.

Associated with eaeh dynamic pcs statement is a
counter that is incremented by one for each occur­
rence of the events specified in the statement. This
counter can be referred to by the special character %.
The value of the conntcr can be displayed or dumped
and can be used in forming expressions. The counter
(%) referred to is always the one associated \vith the
statement in which it is referenced.

Since % is not a user's variable, it cannot bc changed
by a SET command.

Conversational Mode

psc commands entercd at the user's terminal (SYSIN)

are immediately checked for valid syntax. References
to variable names and statement numbers are checkcd
in the appropriate module's lSD. Syntax errors and
references to undefined symbols are reported to the
user via diagnostic messages.

All pcs output is printed at the user's terminal
(SYSOUT), except for the DU),!:P command output, which
is vvritten on the PCSOUT data set.

98

Nonconversational Mode

pcs can be used in nonconversational mode with the
following differences:

1. Erroncous pes commands produce a diagnostic on
the task's SYSOUT data set, and the commands are
ignored.

2 . .:\0 prompting is performed, and incorrectly en­
t('n~c1 commands are ignored.

3. pcs output goes to the task's SYSOUT; it is inter­
spersed with user and system responses. DUMP com­
mand output is writtcn on the PCSOUT data set.

4. If object program execution is interrupted by a
STOP, the next command is taken from the task's
SYSIN.

Notation
pes commands consist of directives, operators, sym­
bols, and constants. In a pcs statement these elements
are delimited by blanks. That is, blanks cannot be
embedded in variahles or constants, but they can be
used following a comma, semi-colon, and around arith­
metic, relational and logical operators, and paren­
theses llsed for grouping.

The character set is:

1. Thc letters A-Z (uppcr or lower case) and $ # @.

2. The digits 0-9.

,3. The special characters +­
, ! & % : blank.

,> < .. I • \'I (

Directives

The pcs directives are AT, DISPLAY, DU:r-lP, IF, QUALIFY,

HEJ\WVE, HrL\XCH, CALL, GO and STOP. Each directive
designates a pes command.

Operators

Operators used to form arithmetic and logical expres­
~:ions are:

TYPE

Arithmetic

I~ogical

Hcbtional

OPERATon

+

!
-,
&.

>
<:::

>=
.<==
1==

Addition
Subtraction
;vJultiplication
Division

MEANING

Lo:.;icztl inversion ur negation (NOT)
Logical it)tersectiotl (AND)
Logical union (OR)

Greater than (GT)
Lc,sthaL(LT)
Equal to (EQ)
Creater than or equnl to IGE)
Less than or equal to (LE)
Not equal to (NE)
"of greater than (LE)
Not less than (CE)

Symbols

Symbols refer to variable names, array names, and
statement numbers. They are referred to in pcs witll
the same names and numbers used in the FORTl1Al\

module.
pcs recognizes two kind.~ of symbols: external and

in lernal.
FOHTlL\~, externa1 symbols are:

• j\fodllle name

.. CSECT Harne (the module name suflixcd with #C 'j

.. PSECT name (the module nanw s11fflxed with #1')

" cO:\D.[O': block names

It FUl\CTIOl\ subprogram names

• S1. ' BHOUTINE subprogram names

.. ENTHY nam('~ in subprograuls

Internal symbols art' those defined within a single
compilation. FOHTHA.'.: statemellt flllmbers and FOrrInA'~
variahle or array names arc internal symbols. Internal
symbols can be referred to only if an lSD was rc­
quested whcn the module was cOlnpilcd. Further, each
internal syrnhol must be qualified to specify the pro­
gram name in which the symhol was defined.

Certain names that appear in a F01\11\AN source pro­
gram arc not availahle for llSC in pes statements, These
are names whose ollly OeClllTCI1l'CS in the source pro­

gram arc as ::W;" of the following:

L As a formal argument in a SL'BIlOl'TI'<F:, FUNCTI(L'\,

or E:\THY statement.

2. As a dummy argument in a statemellt function.

:3. As a type statement component without dimensions
or initial values.

l\amcs llscd only in these ways are ignored by the
compiler. No storage is alluC':ltcd for them, and no
lSI) entries are lnade.

Symho Is can he q llalificcl explicitly or illl plicit!v.
The internal symbol A is qualIfied explicitly as follo\\'s:

l.{AIN.A

An internal symhol is qualified Implicitl" as lo11cm-s:

QUALIFY l\IAIK

DISPLAY A

If a module has he en link-edited, internal svrnbols
can only he used if an ISD has he en requested as a
linkage editor option and in addition, an IS!) was IT

quested at compile time for the module defining the
internal symboL Each internal symbol in a link-edited
module, when referred to in a res statement, must be
qnalified hy both tbe module name originally as-

sign cd at compilation time, and the name assigned to
the link-l:ditcd output module, For example, if object
lllodu Ie), r AL,{ was link-edited into an output module
name TOTAL, the intcmal ~;ymbol A in J\IAIN is explic­
itly qualified as:

DISI'LAY TOTAL.:\lAIN.A

To 110:1' implicitly qualified illternal symbols, both ob­
ject mor1u 1e narnes mnst Lc sJl('ciBecl in the Q"CALlFL

(,lUALIFY TOTAL,1\lAIK

D,SPLAY A

The QUALIFY remains in effect until another QUALIFY

is given. Explicitlv qualified svmhols can still he CJl­

l<'rcd at any point.
Tht' special symbol ~kOi\f can be used to refer to

blank common; %CO:'>I can be llc,ed as either an external
or internal symbol.

1'C:, eOlmn~mcls Cell! rcief to dummy argllrnents to
suhprogranls. Thl' values of the arguments llsed an
those !'slablislwd at tit,· most recent execution of the
sllhllrogrnrn when ,11(' pes action is pcrformed. Dum­
my ar!';Il11wnts shOUld not be rcterred to if the action
requested in the command is to be pCTformccl prior
!o "lllTY to tllc SII hprngmrn.

FORTRAN Statement Numbers

FOHTllA:-': statement numbers arc those written hy the
us",']' ill the origimd <;'mr('(' program and shonJd not
he confused with Ihc line numbers that are assigned
to each source line h)' tI,l' compiler, Statements must
he- referred to their statement nmnhcrs, not line
rmmlwrs. Executable stat(,l1wnt numbers used as in­
ternal symbols can be incremented to refer to unnum·
be red sratenlCntc. The increment mnst be an integer
gr,'at(T than 7fT'L enclosed in parentheses, and im­
nwdiatcly following the' ';ta\cnwnt numhcL The incrc­
Ilwn! (I '\ rcffT" to tlw mllllhcred starcment itself.
TIHTcfore. S6(l' reicr,; to numhered strrh'illcnt 86:
SA: 2, H,fer:; to the J1(-xt ex('{'u/a7Jlc statement fol10\v-·

illg numlwnd statcm('nt "lB.
Executable: statements arc aritllll1ctic and logical

assignrnent statements. control statements, and inpnti
olltpnt statements. None\:ccutablc statements are spec­
ification statements and sllhprogram statements. Non­
executable statements should not bl; incremented, For
{xarnpk'. in the follrm ing statements:

10 lTEAD (1,20)A
20 FORT\f,\T (FG.2)

13 = A":3,14
,\VIUTF i2,SO)A,n
CO TO JO

to refer to the third statemcn~ (B =: A"'3.14), .10(2)
mllst he used: the FOH\fAT statement cannot be inerf':­
men ted since it is not executable.

Appendix B pes awl FOHTRAK Object Programs 99

Statement numbers refer to a statement's first line,
plus any continuation lines; therefore, continuation
lines need not be considered when using incremented
statement numbers.

If the first executable statement in a program is
unnumbered, the integer zerc· can be used to refer to
it. In the above enmple, if the READ statement were
unnumbered, 0 could be used to refer to it; 0(2)
would then be used to refer to the second executable
statement (i.e., B = A"3.14).

Sub!>cripfed Symbols

Internal symbols that Tefer to arrays can be sub­
scripted to refer to elements of their U)TUYS. A sub­
script can be any integer arithmetic expression that'
does not itself include U subscripted symbol. The sub­
script is enclosed in parentheses, following the internal
symbol naming the array. One subscript expression
must be used for each dimension; mnltiple subscripts
arc separated by commas.

An array that is a dummy argUlllent to a subpro­
gram can he subscripted. The>, dimensions of the array
are as defined in the subprogram. \Vhen an array has
adjustable dimensions, both the array and the dimen­
sion vailles used are those establdlCd at the most
recent execution of the subprogram.

Constants

Five classes of constants can be used to form expres­
sions in pes commands: integer, real, lwxadeeimal,
character, anel address constants. There are no com­
plex constants.

1. Integer constants are expressed in the same manner
as FORTRAN constants. For example: 9327, -fi42,

+1066, -67.

2. Real constants are expressed in the same manner
as FORTRAX constants. For example: 5764.1, 7.0E3,

lG.9D-03, +0 .•

.3. Hexadecimal constants aTe written with one or more
hexadecimal digits (0-9 and A-F), preceded by an
X, and enclosed by apostrophes. For example:
x'7654;121 0', X'FFFFFFFF', X'AC7', X'9FEC:l', X'OOFF'. A
hexadecimal constant is either truncated on the left
or filled with zeros on the left if its length is iri­
appropriate for the expre:,sion in which it appears.

4. Character constants can contain all letters, decimal
digits, and special characters. Those remaining un­
used combinations (of the 256 card punch com­
binations) that can be designated in a character
consicFlt entered on cards are described in Ter­
minal User's Guide. A character constant is en­
cksed in apostrophes. If an apostrophe is desired

100

as a character in a character constant, it must
be represented in the written statement by a pair
of apostl'Ophes, although only (ne apostrophe will
appear in storage. For cxamplc:'n.9s', 'HO'N ARE

you?', '{ 'i\f FINE'. If the length of the constants is
not appropriate for the context in vvhich it occurs,
the constant is truncated or filled with blanks on
the right.

;J. Adchess constants consist of the character A fol­
lowcd by a symbol enclosed in apostrophes. The
ailowable symbols are: external symbol with or
without offset, internal symboi with or without
offset, and suhscripted variable. The length of an
address constant is always four bytes; its value is
the address assigned to the symbol. Address con­
stants are evaluated at the time they are used.
The current value of any '.'ariabJe referenced as a
snbscript is used in computing the value of the
address constant. As a result, the value of an ac­
dress constant that contains a subscripted symbol
may vary during program execution. For example:
A';-;:.c'. :'I fE', A'AHHAY(I,J y.

Expressions

Arithmetic Expressions

Arithmetic expressions in pes are similar in most re­
spects to FORTRAN expressions. They can be used as
slIhscripts, as vall1e to which variables are to be set,
or as values to be compared in logical expressions.

The special character (%) can be used in an arith­
metic expression to refer to a counte~' incremented
hy arrivals at thc control point(s) specified in an AT

command (or a pes statement that includes one or
more AT commands).

There is no exponentiation or function evaluation
in res expressions.

The rn1cs for formation of an arithmetic expression
are as follows:

1. Any arithmetic expression can be enclosed in paren­
theses.

2. Arithmetic clements or expressions can be con­
nccted hy arithmetic operators to form other arith­
metic expressions, provided that no two arithmetic
operators appear in sequence and no arithmetic
operator is assumed to be present.

:1. A n arithmetic clemcnt or expression preceded by
a sign (either + or -) is permitted, whereas the
operators " and ! must be enclosed by elements
and/or expressions.

4. A 11 constants in an arithmetic expression must be of
the same type. Similarly. all variables in an arith-

me tic expression must be of the same type. Mixed­
mode arithmetic should not be attempted.

\Vhen division is performed in an integer arith­
metic expression, the integral part of the quotient
is rctained and the fraction is discarded.

Logical Expressions

A logical expression is used in an IF phrase and can
take any of the following forms:

l. A single logical v8riable.

2. Two or more logical variables, connected by the
logical operators & or I, denoting logical AND and
logical OR.

3. Two arithmetic expressions of the same type, con­
nected by a relational operator.

The rules for constmcting logical expressions are:

1. A logical expression that contains a relational
operator has the logic value "true" if the condition
expressed by the operator is met when the expres­
sion is evaluated. Otherwise, the expression has
the value "false."

2. The [logical operator must be followed by a logi­
cal expression or term. Similarly, the operators &
and I must be enclosed by logical expressions to
form more complex expressions.

3. Any logical expression can he enclosed in paren­
theses. Any logical expression containing two or
morc variables to which the [operator is to apply
mllst be enclosed in paentheses.

Logical cxprcssions that do not contain parenthetical
terms are evaluated in the following order: terms con­
nected by relational operators are evaluated, then terms
connected or modified hy logical operators. \Vhen
parenthetical terms arc included in a logical expres­
sion, evaluation is performed in the order indicated
above on the terms within parenthcses, then on the
reduced logical expression (reduced in that the paren­
thetical terms have been assigned a single logical
value) in the same order. Logical expressions are
evaluated by pes in the same manner as FORTIV\]';". The
major difference is the notation used for relational
and logical operators, as iJ1ustratcd in the foUO\ving
table:

FORTRAN OPERATOR

.CT.

.CE.

.LT.

.LE.

.EQ .

. NE.

. NOT.

.AND.

.OR.

pes OPERATOR

>
>=
<
<=

Runges

The DISPLAY, SET, and DUMP commands may have as
an operand two internal symbols separated by a colon
(:), thus indicating a range of variables and arrays to
be displayed or dumped. For example:

DISPLAY MAIN.I: j\IAIN.A

Commands
The following section describes, for each pes com·
mand, the format of the command and its operands,
and some examples of how it might b~ used in check­
ing out a program.

QUALIFY Comm~nd

The QUALIFY command allows the user to enter implic­
itly qualified internal symbols, which are all defined
in a single source program, after he has issued this
command with the appropriate defining program
name.

Example:

QUALIFY FTNPGM

where FTNPGM is the name of the compiled module.
[f the compiled object module has heen link-edited,
boLh the compiled object module name and the link
edit output module llame must he specified. An ISD

must be available in order to use this command. YVhen
an object modulc has been link-edited, an ISD must
have been requested for the output object module in
addition to the one requested at compile time. Only
one qUALIFY is in effect at a timc, and each successive
one overrides the previous one.

AT Command

The AT command causes control to be passed to
pcs when the named FORTRAX statement is reached but
before it is executed. Other actions (if any) in the pes
statemcnt are performed prior to resuming exccution.

The system assigns a pes statement number to each
statement containing an AT command.

Each time the statement specified in the AT com­
mand is reached during execution, a standard ontput
is presented to the user except where the statement
contains an IF condition that is found to be false. This
output includes the FORTRA)'! statement number at
which the command became effective, certain pro­
gram status information, and thc pes statement num­
ber. The program status information includes the vir­
tual storagc location of the instruction being executed
and the settings of scveral internal indicators .

Unless the pcs statemcnt containing the AT command
also contains a STOP, execution of the user's program

Appendix B: pes and FORTRA"J Ohject Programs 101

is automatically resumed following the actions re­
quested. Only CALL, DISPLAY, DUMP, IF, SET, GO, BRA)JCH,

and STOP can follow an AT. BHANCH and STOP must be
the last in the dynamic statement. A co command is
meaningless in an AT statement and will be ignored.

Two or more operands, each separated by commas,
can be speci£ed in an AT command, but each must be
the statement number of an cxecutahle statement.

Given the following statements in a SOlll'ce program
named MAINl;

IF (A) 10. 20 . .30

10 X = 1
GO TO 40

20 X = 2
GO TO 40

30 X=.3
40 IF (A . GT. B) GO TO 50

GO TO 60

50

60 STOP

The Row through the IF statements could be traced
with the res command.

QUALIl'Y MAINl

AT 10, 20, :)0, 40(2), 50

The counter referred to by the special character %
is incremented by one each time the executing pro­
gram arrives at a statement designated in an AT com­
mand. The conn tel' is incremented even when thc AT

command is included in a pes statement that contains
an IF phrase that is evaluated as false.

DISPLAY Command

The DISPLAY command is used to print the contents
of specified variables or arrays. The format of the out­
put is determined from the type and length of the
data.

The DISPLAY can have a list of operands, each sepa­
arated by a comma. In addition to simple variables,
the following can be displayed:

Arrays - \Vhen the operand of a DISPLAY is an array
name without a subscript, the entire array is
printed.

Ranges - 'When the first and last variable names, sepa­
rated by a colon, are specified, a series of arrays
and variables can be displayed. The user must be
aware of the storage locations assigned by thc
compiler, since the last variable to be displayed
must be in a higher storage location than the £rst
variable. The storage assignments made by the
compiler can be determined from the storage map
optionally selected at compilation time.

102

Control Section - \Vhen the name of a co:\r~lON block
is specified, the entire contents of the area is dis­
played. The entire PSECT containing all nOll-com­
mon variables can be displayed by specifying the
PSECT name. If tlle name of the CO~fMON block or
T'SECT is quali£ed by thc module name (i. e., speci­
Red as a qualified internal symbol), each variable
or array in the area is identified and formatted
according to its data type. YVhen the name is not
CJnalified by the ohject module naIl'll' (i. e., the
external symbol form is llsed), the contents of the
area are displayed in hexadecimal. This method
can bc used jf an IS!) is not available for the object
module, hut, again, a storage map should be avail­
ahle for locating the variables in storage.

\fodnle Kame - vVhen a modu1e name is specified as
an operand, a control section map is formatted.
The map contains such information as: the name,
location, and length of each control section; the
version of the module and each control section;
and the entry point and save area location of the
module.

Dnmmy Arguments - A.rgmnents to subprograms can­
not he displayed until the subprogram has been
entered and they have been replaced by the actual
argument values.

If the llSer is operating in conversational mode, he
can terminate the action of the DISPLAY command by
pressing the attention button at his terminal.

If a FORTRAl\- subroutine nan}('cl sunH consists of the
fo l10wing statements:

SUBItOGTINE SU}'I (A, l\, M)
COMMON B, C, D
REAL"8 A(N, M)
DO 20 J = 1. ~I
DO 10 I = 1, N

10 C = C+A(I, J)
20 CONTINUE

RETURN
END

Then the following would be valid DISPLAY com­
mands:

QUALiFY SUER
DISPLAY CJ,J

DISPLAY A

DISPLAY B;D

DUMP Command

to cause each vilriable in the list to he
formatted and printed.
to cause each element in the array to
be displayed.
This statement js eqtliv"lcnt to
DISPLAY A(I)} :AI 01)1,1)

to cause the contents of B, C and D
from the unnamed CO~Il\10:.J to he
printed.

The DC",'!P command is used to cause the contents of
specified variables or arrays to be written in the PCSOUT

data set.

The DUl\IP command provides exactly the same re­
sults as the DISPLAY command. DUMP should be used
when there are large amounts of data and/or when an
offline output of data is desired. The operand of the
lJUMP command is identical to that of the DISPLAY

command.
The DDEF command must be used to define the

PCSOPT data set before the DUMP command is issued.
If no definition has been given, the conversational
11ser is prompted to issue it. In a non conversational
task, jf the DDEF is not entered prior to the DUMP,

the task is terminated. The organization of the PCSOPT

data set is VI.

The user is prompted at log-off time as to whether
or not he wishes to catalog the data set. Since DUMP

output is not interspersed with SYSOUT output, the user
should provide a means of correlation if one is re­
quired.

Using the sample sonrce program from the DISPLAY

command description, the user might enter the fol­
lowing commands:

DDEF PCSOUT, VI, DSNAME=name
DUMP SUBR. ~£COM This command wonld canse the

contents of the unnamed CO:v1-
MON block (in this case, vari­
ables B, C, and D) to hE' format­
ted and placed in the PCSOUT
data set.

DUMP SUBR. StTBR#l'

IF Command

This command wOllld ('nuse the
contents of the subroutine's
PSECT to he formatted anel
placed in th .. l'CSOUT data set.
Included would he variables I
and J plus miscellaneous con­
stants generated hy the compiler
as needed for program execution.

The IF command is used to specify a logical expression
that must he tDle in order for any other commands in
the statement to be performed.

If the pes statement containing the IF also contains
one or more AT commands, the logical expression is
cvaluated when the statements specified in the AT com­
mand are reached. For example, the following state­
ments appear in a sonrce program named CALC:

5 DO 10 I = 1, 5000
CALL SUB (ANS)
IF (ANS) 20, 10, 10

10 COl\TIl\UE
20 STOP

If it is discovered that the upper limit of the DO loop
(5000) has been set too high, the following pcs state­
ment could be entered.

QU ALlFY CALC

AT 10;IF I=1000;STOP

Then, once execution starts, each time control
passes to statement 10, the value of 1 is tested for
equality to 1000. If I reaches the value of 1000 before
going to 20, the PCS STOP command is performed.

The counter associated with a pcs statement con­
taining the AT commands, referred to by the special
character %, is incremented by one whether or not the
logical expression in the IF is true.

The ;[; counter can be useful in controlling loops
in source programs and in controlling the effectiveness
of pes commands. For examplE', the above pes state­
ment could be replaced with:

QUALIFY CALC

AT 10;IF %=1000;ST01'

In the last statement, rather than testing the value of
the variable L a count is incremented each time con­
trol passes to statement 10. The STOP is activated when
the count reaches 1000.

Other uses of the % counter can be seen from the
following examples:

QUALIFY CALC

AT 10;IF %=l;DISPLAY AXS

The DISPLAY would be performed only on the first
:lrri\'al at statement 10

QUALIFY CALC

AT 10;IF %=(%/lO)"IO;DlSPLAY ANS

The DISPLAY would he performed every tenth time
statement 10 is reached. This example shows that the
fraction is discarded in integer division.

REMOVE Command

The HE MOVE command permanently cancels an dy­
namic pes statements whose numbers are specified as
operands. pcs produces a statement numher following
entry of each statement containing an AT command.
These statement numbers are used in the HE MOVE com­
mand to specify the pes statemellts to be canceled.

Taking the following somce statements as an ex-
ample:

C PROGRA~I MAIN
10 READ (1, 20)A
20 FORl\fAT (F6. 2)

IF (A) 10.30,30
:10 B = A".3.14

WHITE (2, 20)A, B
GO TO 10

then the fol1O\ving statements could be entered to
check the progress through the program:

LOAD MAIN
QUALIFY MAIN
AT 10(2); DISPLAY A
AT 30(2); DISPLAY B; STOP
CALL

Appendix B: PCS and FORTRAl\' Object Programs 103

When control reaches the IF statement, the value of
A is displayed; when the WRITE statement is reached,
the value of B is displayed. The STOP causes the next
command to he read. The user might then decide
that the program is executing correctly, and wish to
continue running without the checkout statements. He
could then enter:

RE1\fOVE 1, 2

GO

In this example, the numbers 1 and 2 are the pcs state­
ment numbers that have been assigned to each AT
command. They are printed immediately following
entry of the stai:ement either at the user's terminal if
in conversational mode or on the SYSOUT data set if in
non conversational mode.

CALl, GO, BRANCH Command;;

These commands can he 11See either as a separate com­
mand or as part of a pcs statement. The effect of these
commands is to transfer system control of a task from
command mode ta program execution mode.

The commands have three forms: CALL, GO, BHANCH.

1. CALL [module-narne]

The CALL command loads the module named in
the operand (unless it is already loaded) and
initiates execution at the beginning of the program.
Only main programs should be referenced by the
CALL command; otherwise. the results are unpre­
dictable.

2. GO

There is no operand. This command is used when
the user wishes to resume execution foilowing a
pcs STOP command, a FORTRAN PAVSE statement, or
an attention interrupt.

3. BRANCH [module.stmnt-no]

This is used when the user wishes to change the
£1m" of a program; it is equivalent to a GO TO state­
ment in the original source program. The object
module must be loaded and executing prior to is­
suing the BRANCH. This form cannot be used in
initiation of program execution or in situations that
are illegal in the FORTRAK language (e.g., illegal
entry into loops). The statement number must
be an executable statement.

For example, if the following statements appear in
a source program:

104

C PROGRAM MAINl

10 X = A
GO TO 20

20 X = B

.30 CALL SUBR(X)

and the user discovers that the GO TO statement has
the wrong statement number, he can temporarily
correct the invalid GO TO with the following pcs
statement, so that the rest of the program can be
debugged.

QV ALIFY ~,1AINl
AT 10 (2) ;BRANCH :~o

Note that the BRANCH command combined with an
AT cannot be used to insert a missing GO TO state­
ment without bypassing the statement referred to in
the AT. In the above example, if the GO TO had been
missing from the source program, the BRA::-<CH com­
mand would have to be made effective at statement
lO. In this case, the assignment statement x = A
would be bypassed, so that a SET comand would be
necessary to achieve the same results.

SET Command

The SET command is equivalent to an assignment statc­
mc,lt in the original source program. It enables the
ilser to change the contents of any variable or array
element. It has the form:

SET a=b

where a is any simple variable or subscripted array
element, and b is any logical or arithmetic expression.
A list is allowed; for example:

SET a=b, c=d, e=f

\Vhcn the SET is performed, the new value of the varia­
ble is displayed on SYSOUT in the same format as if
the nnme had appeared in a DISPLAY command if
LIl\IEN=I. This output is produced from the changed
field and reflects the results of conversions and ex­
pression ('valuation.

In a SET command, all variables and constants must
be of the same type. The permissible lengths vary \vith
the type. Real variables or constants must be 4 or 8
bytes in length, integer 2 or 4, and logical 1 or 4.

If the expression is a character constant that is not
the same lcngth as the variable, the character conO-tant
is either truncated or filled out on the right with
blanks. If the expression is a hexadecimal constant
that is not the same length as the variable, the hexa­
decimal constant is truncated or filled on the 1eft with
zeros.

In the example given for thc CALL, GO, and BRANCH
commands, the missing GO TO statement could be effec­
tively inserted by the following pes statement:

AT lO;SET x = A;BRANCH 30

The SET command is useful in setting variables to some
initial value, in correcting erroncous assignment state­
ments, and in inserting missing assignment statements.
It should not be used in a situation that is invalid in
the originai FORTRA" pre·gram. For example, in the fol­
lowing statements:

5 DO 10 I=J, K
L(I)=L(I)+M

10 CONTI~'mE

thcvalues of I, J and K cannot be changed by a dy­
namic SET command that may be activated at state­
ments 5(2) or 10. The SET command could be used at
statement .5, hm>"l:ver, to initialize the values of J and
K. For example:

AT ;';SET J = 1, K = ,,/2

The SET command, like DISPLAY and DU:NIP, can refer
to dummy arguments to a subprogram once the sub­
program has been entered.

A complex variable can be SET to the value of
another complex variahle, but it cannot be SET to a
constant 'laIne, nor can complex arithmetic be per­
formed \vith SET. For example, if a FORTHA:"J program
had the following specification statement

cm.IPLEX"'lG A, B, c(10, 10)

thc following SET commands would be valid:

SETA=B

SET C (1,1) = c (2, 1)

A SET command cannot refer to the control section
containing instructions gencrated by the compiler. The
virtual storage assigned to this control section by the
sy<;tem is protected so that its contents cannot be
changed.

STOP Command

The STOP command halts execution of a module and
prints the current instruction location and program
status information. STOP does not have an operand.
Execution of the modl11e can bc resumed with a RUN

or GO command; if execution is not resumed, any data
sets that the module has left open should be closed
with the CLOSE command.

pes Diagnostics
PCS, like the FORTRAN compiler, examines each state­
ment for validity and issues diagnostics alerting the
user to errors.

Diagnostics usua]]y are issued immediately upon
reading the command. The conversational user can
reenter the statement with the necessary correction
made. The nonconversational user has no chance to
correct errors; a diagnostic message is issued and the
pes statement is ignored.

Certain errors arc not detected until execution has
begun. These errors are the result of some action that
has been requested in a dynamic pcs statement (i.e.,
one containing an AT command). In a conversational
task, after the diagnostic is issued, the terminal is
placed in command mode. The user can then remove
the erroneous statement, reenter it correctly if he de­
sires, and continue execution with a GO. If he wishes
to pf'rform the corrected statement immediately, he
must use the statement number in the AT operand
of the BHANCH. In a nonconversational task, the diag­
nostic is written on the SYSOUT data set and the next
command is read from SYSIN. This may result in pre­
maturely terminating program execution.

The errors described below are those that are not
detected until execution has begun.

Dimension Err..:lrs

Each time the user refers to a subscripted array
in a pcs command, the subscript values are checked
against the dimensions of the array as declared in the
FORTRA'.; program. Since the values of variable sub­
scripts may vary during execution, the error is not
detccted until the command containing the invalid ref­
erence is performed. Constant subscripts that are in
error are detected when the statement is nrst read,
and the user is informcd immediately. If an array is
a dummy argumcnt, subscript errors are not detected
Ilntil the command is performed, since both the di­
mensions of the array and the subscripts may be
variahle.

Range Errors

A DISPLAY or DUMP command may have a~ its operand
a range of symbols. These symbols, which represent
the starting and ending storage locations to be printed,
mnst be in sequential order. \Vhen both symbols are
suhscripted arrays. the subscripts must be evaluated
to determine the particular element being referred to.
To illustrate:

QUALIFY MAINl

AT 10~DISPLAY A(I):A(J)

If, when control reaches statement 10, the value of I
is higher than the value of J, the range would be
invalid.

Program Interrupti;)n

Program interruptions can occur any timc an expres­
sion must he eva l11ated in a pes command. Five such
interruptions are recognized:

1. Fixed-point overflow exception

2. Fixed-point divide exception

3. Exponent-overflow exception

ApPf'TIciix B; PCS and FORTRAN Object Programs 105

4. Exponent-underflow exception

5. Floating-point divide exception

YVhen any of these interruptions occurs, a warning
message is issued to the lIser and the reqnested action
is not performed. These interrllptions arc not proc­
essed by the intcrruptioll handling module provided
hy thc compiler: therefore, any CALL OYEHFL or CALL

DVCIfK statemcnts do not recognize the interruption.
(Refer to Appendix C for more details on program
interrnptions.)

106

Dummy Arguments

YVhel1 dummy arguments are referred to in a pcs com­
mand, the subprogram in which they are declared
must be entered prior to the point where the command
is activated. Dummy argnments must not be used to
form a range of variahles to he displayed or damped.
There are also those conditions under which dum­
my arguments arc not defined in the ISD for the
S! Ibprogram.

This appcndix addresses a number of topics that can
assist the TSS/3GO FOHTRAN programmer in achieving
dHcient and trouble-free execution of his object pro­
gram. The sections of this appendix discuss:

1. Object-time efficiency through compiler optimiza­
tiOll, opti:nal usc of source statements, and use of
the linkage editor and dynamie loader.

2. Efl'ect of compiler optimization on the use of the
program control system (pcs), describing con"
dition~ under which the user may want to inhibit
optimization hy the compiler of thc object code.

:3. :\1 u hip Ie ('x C'C 11 liOIlS, to a leTt thc user to possible
pro!llem, whcll (,Xl'cllting IllOI'C than one program
between a LOCO); and a LOGOFF.

4. Library management.

.'J, System naming rules that prevent the user from
inadvertently choosing a subprogram or other ex­
ternal name such that a conHict would OCCllr be­
tween this namc and a system name.

6. Executing conllnands from within a FOHTHA.'\ pro-
gWlTL

7. ~'ris('cllanf'ous programming considcrations.

Object Time Efficiency

Object Code Optimization

Efficient object code can be achieved by optimizations
performed by the compiler, by optimal ordering of
source statements by the p"ogrammer, or both.

Compiler Optimization

This section dC'scribes optimization of the user's pro­
gram normally performed by the compiler. The section
"Effect of Compiler Optimization on pes Vsage" dis­
Cllsses the relation between compiler optimization and
use of the program control system (pcs).

A considerable amount of the compiler's effort is
devoted to producing an efficient object program. This
processing is caned "optimization." The effects of the
compiler's optimization can be seen by examining the
optional object code listing. It can be observed that
the instructions to perform certain computations are
sometimes not located where one would expect to find
them. This is due to the action of two optimization
processes: (1) recognition of "common" expressions
and (2) removal of expressions from DO loops.

Appendix C. Programming Considerations

Two oceurrcnces of the same expression in a FOR­

TnA~" program arc "common" if there is no possibility
of any of the operands rcceiving a new value between
the OCCllrrences and if program control cannot reach
thc second occurrellce without having passed the first
occurrence. In this situation, the compiler often gener­
ales code to e\alu<l/e the expression only at the first
occurrence and to reuse this value at the second and
latc)' occurrences.

If an expression occurs in a DO loop and if none of its
operands can havE' different values for different repe­
titions of the loop, the expression is "removable." The
compiler generates code to evaluate such an expression
hdon' entering the loop and to use the computed
value where needed inside the loop,

These processes can contribute much to the efRcien­
cy of the object program, but there is an important
siell' effect. If the program is testing for such condi­
tions as arithmetic overflow and divide check the
operations giving rise to these conditions may not oc­
cur at the expected place or with the expected fre­
quency. A. reJated optimization process is the compu­
fation by the compiler of an quantities ,-",hose operands
arc constants instead of the generation of instructions
to carry out the computation in the ohject program. If
the values of the constant operands are such as to
canse overflow, the overflow will take place during
compilation (causing a diagnostic message) rather
than cimin.g execution of the object program.

Cmnpiler optimization can also cause regi<;tcr con­
tcnt" to he llsed at points quite remote from the point
of IO:Hlilig. In some cases, frequently llsed address
constants may lw loaded into gcneral registers only
at the lJCginning of the program and kept there per­
manently for llSC' as needed. Other addresses, suhscript
f'xpn's'iiol1s, etc., may be held in registers across the
range of a DO loop or nest of loops. EveJl\"lhcre snch
"glohal" registcr assignments are not made, the con­
tcnts of any register, once estahTishcd, is remembered
and may, unde!' the proper conditions, be uscd later
with01lt reloading.

Subscript expressions, especially those involving DO

loop variables, receive extensive manipulation, and
their evaluation may he spread over several levels of
a DO loop nest. In such instances, an ocC'urrencc of a
loop varia hIe multiplied by other factors is evaluated
IJ\' initialization at tbe top of the loop and addition of
an increment at the bottom just before returning for
another iteration.

Appendix C: Programming Considerations 107

If the most recent value of a DO loop variable is al­
ways stored in its assigned location each time through
the loop, the DO loop variable is said to be "material­
ized." In many DO loops, there is no computational
need for ,he value of the loop variable and it may not
be materialized. Instead, a subscript expression in­
volving the loop variable will be tested to determine
the current numbcr of repetitions of the loop. A fea­
ture of the FORTRA::--T language is that no assumption
can be made about the value in the storage location
assigned to a DO loop variable after the loop has been
executed due to completion of the proper number of
repetitions, (This docs not apply to other exits from
the loop, since the existence of such exits as a GO TO

statement causes the compiler to materialize the loop
variable.)

Examination of the optional storage map of the ob­
ject program produced hy the compiler can show that
the storage assignments for nOll-cm.[}'WN variables are
not made in the order of declaration or appearance ~n
the source program, Rathcr, these variables are as­
signcd hy the compiler in an order intended to mini­
mize the numbcr of distinct address constants and
suhscripts needE'd in the oh;ect code. Undimensioned
variables are placed first, followed by arrays in order
of increasing sizE' and dimensionality. Variables whose
assignments are controlled by EQCIVALEKCE relations
uw nlaced after those that are not in EQUIVALENCE.

The purpose of EQCIVALEKCE is to permit overlays
to reduce ohj2ct-time storagc use, It is not intended
to permit intermingled references to the same storage
locations lw two different names. If X and Yare as­
signed to the same storage location by EQUIVALEKCE,

and a value is given to X, tlwre is no guarantee that
a subsequent reference to Y in the same program will
use this value, The compiler's optimization processes
do not recognize the relationship hetween X and Y.

Efficient Use of FORTRAN Statements

The above section described optimization performE'd
by the compiler on FORTRAN programs. Further optimi­
zation of the object code can sometimes be achieved
hy the FORTRAN user's being aware of USE'S of the
FORTRA;'\; language leading to more efficient object
code. Such uses are described here. Under no circum­
stances, however, is the user required to program in
accordance with the guidelines presented here.

The compiler's optimization is limited in various
ways, such as lack of freedom under the rules of the
FORTRAN language (e.g., the compiler ca;}not rearrange
variables in a COt-H.WK block) or lack of information
(e.g" the compiler cannot make any assumptions about
th;~ behavior of external subprograms).

108

In laying out user-controlled storage (COMHaN and
EfJUTYAU:,\CE). the nser can find it worthwhile to align
the storage locations for all variables to the proper
byte hOlll1darics for their arithmetic or logical type:
doublcworc1, ful1word, or halfword quantities should
be assigned to locations that are multiples of eight,
fonr, or two storage locations, respectively, from the
beginning of the area being laid out. This permits
acccss to these quantities hy machine ioad and store
instructions rather than by subroutines accessed as the
result of specification exceptions. (See the discussion
of object program interruption provisions in the
~·,Iiscenaneolls Programming Considerations section
he1ow.)

If the user, when o!-dering a COM~ION block, fol­
lows the same criteria nsed by the ~ompiler in laying
out non-co:\c ... ro:\ variable storage, the same bene­
fits accrue. Placing scalars first, then small arrays, etc.,
tends to improve the address coverage in the object
eodc and obviates the need for object-time boundary
alignment.

Since each co~nlOK block must he covered by its
own address constants, the use of a large number of
small CO~ft.ION blocks leads to less efficient addressing
than a few large blocks.

In passing information to a subprogram, explicit
arguments arc more expensive than implied arguments
in CO}'OlON. Not only must each individual argument
have i~s own address cover in a subprogram, but in­
structions in the subprogram prologue must be exe­
cuted to move the address in from the calling se­
quence. A group of arguments in a COMMO~ block,
however, ean all be aCldressed \vith the same address
constant and need no initialization.

The compiler's manipulation of expressions is re­
stricted by the FORTRAN language requirement that the
source program associations (both explicit associa­
tions detcrminerl by parentheses and those implied hy
left-to-right order) be respected. A +B+C must be
treated by the compiler as (A +B) +c. Common expres­
sions, removable expressions, and constant expressions
can be recognized only if the associativity permits,
Therefore, the efficiency-minded user writes expres­
sions in such <l way as to permit optimization.
For example, in A'" (2./3.), the division of constants
is done by the compiler; in (A "'2.) /3. it is not. If Kl

and K2 are unchanging in a DO loop on I, the sum
K1+K2 is computed outside the loop if K1+K2+1 oc­
cllrs; it is not removed from 1+ K1+ K2, or Kl + I + K2.

The compiler is unaware of the properties of sub­
programs external to a program being compiled. Even
for FORTRA~ Iv-supplied subprograms such as SIN, the
nser is free to substitute his own subprogram for the
library routine. Therefore, the compiler does no op-

tirnization on external function calls. If the user wants
to save execution time by eliminating redundant calls
on the same function with the same arguments, he
must do this himself in his FOHTHAN program. Only
the liser has the necessary knowledge of whether or
not a function uses or changcs variable:, in COMMO~,
changes its arguments, performs I/O, nms i;lternal
counters, etc. (The function Todines supplied in the
FOHTHA:'i' Iv-supplied subprograms do none of these
things.)

The use of mixed arithmetic types in expressions
and across the equal sign in assignment statements
leads to the execution of conversion functions, the
most expensive of which are those converting HEAL

to INTEGER and vice versa. Unnecessary use of mixed
types thus diminishes efficiency.

Although the compiler may remove expressions from
DO loops, it does not remove complete statements. For
example, every assignment statement occurring in a
loop results in at least a storing of a value into the
left-side variable on each repetition of the loop. For
efficiency, statements that arc entirely invariant \"iithin
a loop should not be placed inside the loop.

Much normal optimization is inhibited for DO loops
with extended range (i.e., a branch out of the loop to
execute some remote statements, followed by a branch
back into the]oop). This programming practice re­
duces the efficiency of those DO loops in which it is
used.

Computed GO TO statements with three or less des­
tinations produce less efficient code than eqaivalent
arithmetic IF statements.

At the time of writing his program, a user thinks
in terms of virtual storage, of which he has a very
large amount available. During execution of the pro­
gram, the system maps this virtual storage onto the
much smaller adual main stmage of the computer,
using a page (4096 storage locations) as the basic
unit. Each page of virtual storage referred to in the
program must be made available in main storage be­
fore the reference can be successfully made. Two at­
tributes of a program can decrease the efficiency of
TSS/3flO in carrying out this task, resulting in a loss of
system performance. These attributes are references
to a number of different pages in rapid succession and
a large number of total pages required. Some simple
programming and operating practices can alleviate
both problems.

When indexing a large multi-dimensional array, it
is better to vary the left-most subscript the most rap­
idly. This causes the array elements to be accessed in
order of their location in storage rather than out of
order. For example:

DO 24 J=l, 50
DO 24 I=l, 80

24 A(I,})=l.O

is better than
DO 24 I=l, 80
DO 24 }=1, 50

24 A(I,J)=l.O

from the point of view of page utilization.
In coding a subprogram, it may be worthwhile to

move the value of an argument into the subprogram
by setting a local variable equal to it, if the argument
is referenced frequently but is not an output argu­
ment of the subprogram. For example:

FUNCTION F(X)
XLOCAL=X

Y=XLOCAL/Z

(and other references to XLOCAL, rather than X)

is better than
FUNCTION F(X)

(and other references to X)

since in the latter case the actual argument presented
for X in a call on the subprogram is located in some
other module and, hence, probably on a page that
would otherwise not need to be accessed during the
execution of the program F.

The user can also minimize the number of pages
referred to, where the executable code generated for
his FORTnA" statements exceeds one page or extends
over many pages. The general rule for attaining mini­
mum page references for such programs is to place
infrequently used statements in a separate subpro­
gram. If this is inconvenient, the infrequently-used
statements could be placed in a separate area of the
program, near the end perhaps, while grouping to­
gether those areas of the program that "vill be exe­
cuted most frequently. Since calls on subprograms are
in general references to separate pages (unless link
editing is performed, as discussed below), it may be
more efficient to minimize the number of subprogram
calls within areas where optimum efficiency is desir­
able.

Use of Linkage Editor to Improve Obiect-Time Efficiency

Linkage editing is a valuable process for reducing the
total number of pages required for execution of a pro-

Appendix C: Programming Considerations 109

gram using many subprograms and for obtaining bet­
ter utilization of alIocated storage. Object program
loading time can abo he reduced hy linkage editing
to package tlw control sections together and tll1ls pro­
duce a dense packing of virtual storage. The order in
which programs arc packed should he such that as
few references as possihle are made by code in one
page to code in other pages. ~faximllm efficiency can
therefore be achie\'cd if the packing is done following
a study of relation between prograrr:s and hetween
clifFerent parts of large programs.

Use of Dynamic Loader to Improve Object-Time
Efficiency

Explicit unloading (using the UNLOAD command) of
modules th::lt are no longer of interest to the !lSl'r in
a session is a good practice if:

1. these moc1u les refcrred to a great many differen t
pages of virtual storage; and

2. no further references \viII be made to these pages

Use of Control Section Packing to Improve
Object-Time Efficiency

To allow the system to function more efficiently when
execllting object prograrn modules, a dYllamic method
is proVided for eomhining more than one control sec­
tion into a single page of virtual storage at execution
time. Fewer pages will thus he referred to. reducing
system paging rcqnirements. Control sections of like
attrihutes \vithin a module \viH be allocated con­
tiguous storage, with the sccondary control sections
aligned on doubleword boundaries. You elect the
type of control section packing to be used (if any)
in your LOGO); command.

Effect of Compiler Optimization on pes Usage

Appendix B contains a description of the use of pes
with FOHTHA); programs. In Appendix B it is stated
that the FOHTHA:,(llser should select the IS]) option to
ensure that the pcs statements operate corrcctly. The
following paragraphs explain why the pes llser should
gencrally request an lSD, and uncler what conditions
he need not request an ISD.

Due to the optimization method, use of pes with
optimized FORTHAN programs might easily lead to cr­
roneous results. For example, consider the fonowing
program:

110

50 D0200I=1,N
100 X(I)=A(I) + (B+l .0)
200 CONTINUE

The sum of (B+ 1.0) is in no way affected by tIll'
fact that a loop is occurring in which the sum is re­
quired, so the compiler computes the sum once, out­
side the loop, and uses this value inside the loop.
Suppose 1I0W thaI the lIS(T \v~mts 10 change the value
of B at statement 100 llsillg the pcs SET statement. A
flllly optimized object program would not be aware
that 13 has been reset, as (B+l.O) would not be re­
computed within thc loop; thm, the user's intent
would not he accomplished.

A secone! example of compHer optimization leading
to problems whcn pes is used would be where, in the
abovC' example, the FOHTIH'.' USCI' wants to use the
pes lHSPL,\ Y COJl1l11allcl to determine the enrrent value
of the loop variable 1. The object coelc would ha\'e
no livecl for I exccpt for counting passes through the
loop and inclt'xing into the X and A arrays, so no
code would be generated to save the current value of
I in the storage location assigned to 1. (Indeed, no
storage location may have been assigned to 1.) ThllS
a DISPLAY of I w01lld not prodnce the desired results.

It is clear that such complex restrictions on pes
llsage as implied hy the compiler optimization pro­
cedures would not be desirable. For this reason, the
FOHTHA'< lISC], rna\' request that the compilpr modify
its generation of the objcct program in sllch a manner
as to allm\' complete us!' of pes facilities on FORTRAN

ohject programs. The lISe!' requC'sts snell modification
of ohject coele g('lwration by specifying, following his
entrance of the FT:\: command, that he wishes an In­
lernal Symbol Dictionary (Isn). Such a request:

1. Inhibits optimization as required to allow an pcs
capabi1itics to he availahle

2. Produces an lSD. which allows the FORTI",\S user
cas\' reference to all svmhols within the FOHTRA:,(

slllJprogram

A user can still use PCS, of course. even if he does
not requcst an lSD. To do so, however. he must have
extensivC' kllowkdge of his ollject code to be assured
that his pes requests will givc the desired result.

There is one type of pes usage in wIlich the FOHTRAN

user mnst exercise considerable care, even if an ISD

is requeskd. This ww of pes can be described with
the aid of the following program:

DO 101=1, M
M=M+l

5 L(I)=L(IHM
10 CONTINUE

The statement M=j\H-l is clearly illegaJ, as it vio­
lates a FORTRAN language rule (and thc compiler pro­
duces a diagnostic message). Just as it is illegal in

the original Fon-mAN program, it should not be simu­
lated by compiling a program without the M=M+]
statement but directing pes to add one to M at state­
ment 5. Similarly, in the following example, the use of
pcs to specify that at statement 100 the program
should transfer control inside the DO 200 loop (u.~jng
thc pcs RU!\ directive) is 1Jot legal, as this would
violate a language rule v.cere it replaced by a GO TO

200 in the originaJ FOHTHAN program.

100

DO 200 1"c:2, 10
A(I)=A(I+l)/A(I-I)

200 CONTINUE

However, it is legitimate in the following program,
at statement 100, to direct the object codc to nUN at

statement 200, as this is ec]uivalf'nt to a GO TO 200 at
source statement 100, a legitimate branch.

50 READ (5,9, END=200) A, B
X=A "Q2+A/3.1416-A hB

HlO WRITE (6, 9)A, n
GO TO 50

200 STOP
9 FORMAT (2E20. 7)

END

Multiple Executions
"~ll1ltiplc eXl'cutions" refcrs to executing more than
one program hetwecn logging on and logging oif.

Data Definition Considerations

A DDEF command provides thc linkage between the
data set reference number used in the FOHTHAX pro­
gram and the actual data set. Once a ODEF has been
entered, it remains in effcct until LOG')FF unlcss the
definition is released or redcfined.

If hvo programs are executed in succession, the
following conditions could arise:

1. Both programs refer to the same data set "vith the
same data set reference number. One DDEF com­
mand issued prior to the execution of the first pro­
gram is sufficient for both executions if the data
set is read in both programs or written in the first
and read in the second. If, howcver, thc data set
is written in both programs and not rewound in
the first, the data is not automatically concatenated.
Data written in the first execution would be de­
stroyed by the write operation in the sccond exl'­
cution. If the user does not want this to occur, he
must take the steps outlined in item 3.

2. Both programs refer to the same data set with dif­
ferent data set reference nllmbers. Each execution
must hc preceded by a DDEF command giving the
ddname as appropriMc for the data set reference
number. Since thc second DDEF contains the same
dsname as the first, eJrcctively redefining it, the
:first definition nccd not hc released.

:3. Each program refers to a different data set with
the same data set refercnce munber. Each execu­
tion must be precedcd by a DDEF command giving
the dsname for the ddnamc. In addition, since the
second DDEF has the same dclname, the filst defini­
tion must be released priur to the second DDEL

'Vhcn a data set on a private volume is released,
thc input/output device is also released llnks~ an­
olher defim'cJ data set resides on that same volume.
In a 11011C'ollvcrsational task, if a device is freed by
a HELE.\SE comrrwnd, the user must account for this
when specifying the SEGUEE command. For example>,
if f\vo programs read thiIcrent data sets on separate
private volumes and both are referred to by data
set reference number L thc following procedure is
necessary:

a. SF:CUHE

h. DDEF

C. CALL

d. HELEASE

e. DDEF

f. RUN

Two deviCE'S - even though only one
device is needed at anyone time
For first data set
First execution
First data set
For second data set
Second execution

Linking COMMON Between Multiple Executions

\Vhcn {'xC'cnUng a series of programs in sequence, if a
prior module is not unloaded beforc the execution of
the next program. any external symbol reference in
the second module will he resolved, if possiblc, hy
definitions of that symbol in the first module. This
mayor may not bc desirable. If this iSllot desirable,
an UNLOAD command should be issued after the first
main program has completed execution, causing any
blank or named Co~r~lOXS to he removed from the
task's allocated storage. Any subsequent module that
is loadcd containing a CO!\B·lOX block would have stor­
age allocated as if it were thc first usage.

'Vhen the user do~,s want to pass the same COMMON

block from one execution to the next, the UNLOAD

command should not be entered. In this case, the
refercnccs to COM1\fON in the second execution would
he to the COM1\fO?\ that was allocated storage with the
nrst execution, if hoth arc unnamed or have the same
name.

Appendix C: Programming Considerations III

Program Libraries

Program Library List Con,rol

A program in TSS/160 can consist of onc or more object
modules. All programs in TSS/360 are stored in object
module form in program libraries, which are parti­
tioned data sets. A program consisting of only one
object module is stored entirely within one lihrary;
however, if a program consists of several object mod­
ules, those modules may reside in different libraries,
depending on ho\'.' the user has stored them. During
link editing and execution, the system can automat­
ically retrieve all object modules requircd, if the user
has defined the libraries containing those object mod­
ules. The method for doing this is describcd in the
following paragraphs.

There are fom categories of program libraries:

1. System library (SYSLIB)

2. User library (USERUB)

3. User-defined job libraries
4. Othcr user-dcfined libraries

TSS/360 does not aHo\v a library to contain morc
than one declaration of any external symbol, except
those control sections that have no content (e.g.,
named or blank CO~D.IO;"\, from a FORTRAN main or
subprogram) .

The system library contains some service routines
provided by the installation. It also includes the
FORTRA;"\' supplied subprograms.

The user library is the private library assigned to
each user \vhen he is joined to the system. This library
is automatically defined for him and made a part of
his catalog by the system. His user library is thus avail­
able each time he logs on. If the user does not specify
job libraries in a task, the object modules resulting
from his use of the language processors are placed in
his user library.

The user may want to restrict his USCI' library to
object modules that he executes frequently or that he
uses frequently in the buildup of other object modules.
The system's library list facilities make it possihle for
the user to control the contents of his user library.

The program library list is a defined hierarchy of
program libraries. It is initialized at log-on time and
consists of the user library and SYSLIB.

The library at the top of the list automatically re­
ceives all object modules resulting from language
processing. As noted above, if no job libraries are de­
fined, the library at thc top of the list is always the
user library. However, the user can specify that a
job library be added to the program library list to
receive the output of the language processors. He
does this by issuing a DDEF command defining that

112

job library and containing the operand OPTION=

JOBLIB. \Vhen this command is executed, the name of
that job library is added to the top of the program
library list. That Hhrary then receives all subsequent
module output of the language processors until an­
otber job library is defined (and is thus at the top of
thc list) or until a HELEASE command is issued for that
job library. A job library mllst always have a yp data
set organization; it can be defined on pubiic or private
volumes.

In acldition to using thc program library list to store
object modulcs, the system uses this list to control its
order of search when looking for object modules that
must be loaded at execution time. The library at the
top of the list is searched first, then the next-to-the-top
lihrary, etc. until finally, the user library and SYSLIB

are searched.
In summary, the user has the following basic library

setups for handling the object modules by the lan­
guage processors.

'" User library - As this is ahvays ayailable and is a1-
ways searched, the user may \vant to reserve it
for frequently used checked out programs. All
user's USERLIBS are kept in public storage and,
hence, arc always mounted on system devices.

(. Session JOBLIB - By issuing a DDEF command for
a ncw lihrmy at the beginning of a session, a
USCI' can create a library to contain all modules
assembled or compiled during the session.

• Cataloged Private Volume JOBLIB - A user can di ..
rect output to and retrieve it from a library of
infrequently used modules hy issuing a DDEF com­
mand for a cataloged joh library that resides on
a private removable disk pack. \Vhen using pri­
vate job lihraries in a non conversational task, the
usn must request (via SECURE) a device for that
job library. !\fodules can be entered in such a
library:
.. Automatically if the library is the latest defined

one in the session.
• By link-editing it from his USEBLIB, session job

libr8l'Y, or public dcyice job library and speci­
fying to the linkage editor the desired private
device job Jibrary as the output destination.

• Cataloged libraries on private volumes can
also be shared among users.

.. Cataloged Public Volume JOBLIB - This type of
library can be useful in setting up (and using) a
library of frequently used programs whose names
and external symbols conflict with other programs
in USEIlLIB. For example. versions of frequently
l1sed programs can be set up with one USEHLIB

and another in a joh library. All job libraries re-

siding on public volumes arc automatically cata­
loged at DnEF time and may be shared among
users.

During linkage editing, the program library list can
also he used to define to the system:

• The library that is to receive the link-edited object
module.

-0 The sequence in which libraries are to be searched
if the system must find other object modules to de­
fine references in the linkage-edited object module.

The fourth category of libraries may l, defined by
a DDEF command with the JOBLIB operand omitted.
Such libraries may be referred to by a linkage editor
r;.JCLUDE statement, but are not listed in the program
library list, and hcnce arc not included in the auto­
matic library search, nor arc they available to the
dynamic loadlT. Refer to Linkage Editor for an ex­
planation of linkage editor program libraries.

Since one Jibrary may not contain more than one
definition of any external symbol, different versions of
the same program must be kept in different libraries.
For example, a user has a checked-out program in
his USERLIB and wants to recompile the program with
modification but retain his original version until the
new version has been checked out. A DDEF with a
JOBLIB option causes the new module to be stored on
the job library rather than USERLIB. The user can con­
tinue after compilation \vith his checkout of the new
version, since any subsequent LOAD or RUN command
in the task naming the module retrieves the new ver­
sion from the job library. If, whGn the new version
has been successfully tested, the user wants to re­
place the old version with the new version, he can
linkage-edit the new version onto his USERLIB. Link­
editing can he used to copy a program module from
one library to another. If the user does not want to re­
tain the new version, he must either erase the module
on the job library or release the job library. Releasing
the library removes it from the program library list
and automatically causes subsequent retrievals of that
module to revert to USERLIB. Erasing the module does
not remove the job lihrary from the program library
Jist, but any subsequent references to that module are
resolved from USERLIB after the job library has been
searched unsuccessfully.

The POD? command facilitates the orderlv mainte­
nance of programs within various job libr~ries and
USERLIB. POD? enables the user to obtain on SYSOUT a
list of the member 11ames (and optionally the alias
names and other member-oriented data) of individual
members of cataloged VPAM data sets.

Substituting FORTRAN IV-Supplied Subprograms

All IB:M-supplied subprograms are stored on the system
library (SYSLIB). Any subprogram can be effectively
rcplaced by storing a user's version (with the same
name or en try point) on one of his own libraries,
since the system library is always the last one searched.
If the user stores his version on his user library, then
all of the user's programs, when executed, refer to his
version of the suhprogram. If the user wants to refer
selectively to either version, he should store his ver­
sion on a job library, so that it is selectcd in a given
task only if he has issued a DDEF for that job library.

\Vhen object modules are loaded by the dynamic
loader, any substitute modllles should be explicitly
loaded (using the LOAD command) prior to issuing
a RCK command for the main program. This guaran­
tees that the desired modul~"s will be used.

Note that, if a module is loaded explicitly, it will
not be unloaded when the calling module is unloaded,
i.e., it must be unloadcd explicitly using the U~LOAD
command.

When object modules are link-edited, references
to modules on the system library are left for dynamic
linking at LOAD time. If, however, the user has his own
version of a subprog:,am on a job library in the pro­
gram lihrary list during the linkage edit run, this ver­
sion is automatically included as part of his output
module. He cannot then attempt to select either ver­
sion of the subprogram during subsequent executions.

S:laring Libraries

A user can allow another user to share (i.e., access)
one or more of his cataloged job libraries. 'vVhen the
owner permits access to his job library, all of the ob­
ject modules on that data set are usable bv the sharer.
This does not imply that if the owner a~d/or one or
more sharers use the same program at the same time
they are sharing (co-using) the same ccpy in main
storage. This aspect is controlled by the public option
declaration at compiie time.

The data set owner isues a PERIvIIT command to des­
ignate the other users who can share his iob library
and to indicate the level of access for those' users. '

• Read-only access - the sharer can use the object
modules on the library but cannot add, replace, or
erase a module.

• Read-and-write access - the sharer can use any ob­
ject module 0i1 the library and can add or replace
modules. He cannot use the ERASE command to de­
lete a module from the library.

• Unlimited access - the sharer, in effect, can treat
the library as his own; thus he can even erase mod­
ules from it. However, \vhen any user with un-

Appendix C: Programming Considerations 113

limited access, including the sharer, attempts to
erase a shared VIOl' VP data set, the system will first
chcck to see if there are any active users of that
data set. If there arc active users, the system issues
a diagnostic and disregards the command. If there
are no active users, the system execuics the Ef1ASE

command.

To gain access to a data set for which he has been
previously authorized, the shan'r must isslle a SHARE

command, which places an entry for the owner's data
set name in the sharer's catalog. The sharer can then
enter a DDEF command for the data sct (with the JOB-

Tahle 6. Shared Data Sl't Commands

PERMIT

SHARE

ERASE

DELETE

114

BY OWNEH

~lust be issued prior
to the SHARE com­
mand by the sharers.

Kot allowed.

The owner can only
erase a member (ob­
ject module) from
his job library or
erase the entire li­
brary when no shar­
er is accessing that
member at the time
the ERASE com­
mand is issued. If
he erases theiob
library, the entry in
the sharer's catalog
is not removed. The
sharers must issue a
DELETE command
to remove the cntry
from their own cata­
log.

The owner can delete
a library or group of
libraries from his cat­
alog. An object mod­
ule alone cannot be
deleted.
\Vhen the owner de­
letes a shared job li­
brary the sharer's
catalog entry is not
removed.

BY SHAHEH

Not allowcd. A user
cannot permit access
to a dahl set that he
docs not own.

Must he issued prior
to any other refer­
cnccs to the data sets.
Once issued, the
sharer mav access
thc data sct until he
issues an ERASE or
DELETE. The
SHARE command
places an entry in
the sharer's catalog,
so that a further
CATALOG com­
mand is not neces­
sary.

A sharer can crase
only if he has been
gran ted unlimi ted
access. If he then
crases an object­
modnl", neither the
sharer's or owner's
catalog is affected.
If he erases the en­
tire job library, both
his catalog entry and
the owner's arc re­
moved.

A sharer can delete
his catalog entry for
a job library without
affecting the owner's
catalog. The sharer
must reissue a
SHARE command if
he again wants to re­
fer to the data set
that has been de­
leted.

Table 6. Shared Data Sct Commands (continued)

CATALOG

llY O'WNEH

The owncr can cata­
log a fully qualified
data set name. If that
llan1e is a COlnponcn t
of a partially quali­
fied name that the
owner has permitted
to be shared, all
sharers have immedi­
ate access to the
newly cataloged data
set.
H an ol\'ner changes

the name of a single
data set to whieh he
permitted access us­
ing a fully qualified
name, each sharer
must delcte his cata­
log entry and reissue
the SH.-\RE com­
mand with the own­
er s new name,

BY SHARER

A sharer that has
been granted un­
limited access can
change or add en­
tries to thc owner's
catalog. If he is per­
mitted to share a
group of data sets, he
can catalog a new
data set into the
group, but he must
include as part of the
name the partially
qualific(l name that
he used in the
SHARE command.
If he changes the
name of one of the
data sets in the
group, the new name
Il1tl st still contain the
partially qualified
name.
A sharer who has
becn granted unli­
mited access to an
individual data set
can never change
the data set name.

LIB option) in each task whc'l'c he wants to include
the library in his program library list.

Groups of job Jibraries with names having common
higher-order components can be specified by using
partially qualified names when the PERMIT is isslled.
For example, an mvner of two job libraries named
TRACK.SUBl and TRACK.SPB2 can aUow sharing of both
libraries hy using the partially qualified name TRACK

in the PER~nT command. In this case, the sharer must
also use the partially qualified name (as the dsname2
parameter) in the SHARE command, even though he
wants to access only one of the job libraries.

Table 6 lists the commands applicable to shared
data sets and the effect of the command on the user's
catalog.

Recovering from Errors When Dynamically
Loading

The dynamic loader takes all of the external references
in a module that is explicitly loaded or run and re­
solves them by searching the program library list.
\Vhile the loader is linking the object modules into
the user's virtual storage, diagnostics may be issued
indicating any of several error conditions that can
affect the eventual execution of that program.

• Name to be loaded or run not found in library
Either the user has specified the wrong name in the
LOAD or CALL command or the job lihrary containing

the object module has not been defined in the task
and, therdore, is not in the prograrn library list. III
the latter case, the convcrsational uscr can merely
enter the DDEF defining the job library and reissue
the command.

• Unresoh'cd references - If an object module refers
to a FC',CTIO:\ or SUllI\(YCTE\E that cannot he located
in any of the 1 ihrarics in the program lihrary list, a
diagnostic is issnccl specifying the namc that was
used in the reference. Further linking of other ohjcct
modules is not suspended, howeyer, so that the
main program and possibly other subprograms have
bcen placed in t he user's virtl1al storage. If the error
occurs ill a He, command, cxecution of the program
is not initiated.

If the 11scr wants to execute his program regard­
less of the error. he can reissue the C.\LL command.
Hr' mast, hOWCVCT, rqwat the name of the module
specified in the original CALL command. This is nec­
essary to dcfllH' the point at whidl execution is to
he initiated.

If the uscr anticipates that an object module \vi1l
have 1lllrcsolvcd references. he should first i5511(, a
LOAD command naming the module, followed by
a CALL command with the same' operand. This pro·
(;p(lllr(' is recommended for a noneonversational
task. since the Hser can]w asslIrcd that execution
will h' initiated regardless of unresolved references.

rf the user eloc's not wallt to CALL tbc version of
the program Illat has hecli put into his storag(', he
must issue' all P"\LOAD command. If he wants. he can
then cntcr a])[)F,F defining a joh lihrary that wa~
missing in [he first LOAf) attempt. A LOAD or CATL is­
sued at this point C<1nscs the entire linking proct'­
dure to be redone.

• Duplicate entry points - This condition can only
occur when two or morc object modules are being
linked from c1ifFprcnt libraries. For example, a user
might LOAD a main program from a lilmuy which
calls a suhroutine on another library. If in this case.
the subroutine had an FXTTIY statement \vhieh dupli­
cated the main program name or an ENTRY in the
main program, a diagnostic would be issued indi­
cating the error and the dllplicHted entry point
name. The second entry point is disregarded hy the
loader, so that as the loading process contin\les all
references to that entry point are resolved by the
first definition - in this case, the definition in the
main program rather than the subprogram. Subse­
quent execution of the program could give erroneolls
results if the refercnccs were incorrectly resolved.
The user sholllcl take some corrective measnrcs be­
fore attempting to LOAD or CALL again. (A possible

correction might be to change the E:\THY name by
linkage-editing the ohject modules onto another job
library. To avoid the possibility of sllch duplications
whclI working with a new library, the POD? com­
mand can be used to Jist the directory of the library.
The user can then circumvent the problem by setting
I1p an appropriate program library list before he at­
tempts to lOC1,l his program.

Shared Code (PUBLIC) Considerations
The system recognizes 11 control section as being either
private or sharable. KormalIy, both the PSECT and
the CSI:cr of the output module arc marked by the
compiler as private. However, if the public option is
selected in th(' FTX parameters, the CSECT is marked
as public. If the lihrary containing such a module is
a shared data ~ct (i.e .. PEH)'lIT and SIlAnE cOlnmancls
have been issucd), tllt' CSJ:cr is cOllsic1ercd sharable.

Eacll task is allocated its own copy of a private
CSECT; howevCl', allocation of public CSECTS occurs in
snch a way as to make the same physical copy of the
(SECT available to all tasks which have allocated the
(SECT to their respectivc virtual storages.

Sharing object code enhances the efficiency of the
;;,ystem. Paging is rcdllced since only one copy need
1)(' ill main storage or on the paging device; in addi­
tioll, shared routines can be exccuted simultan('ol1sh
hy more than one CPU.

Any llser-written FOHTI1A:'\ program can Ill' made
~harahlc by specifying the PUBLIC option in the FT:,\

parameters.
Prior to compiling the module, a DDEF must be is­

sucd defining the job library where the ohject module
is to he stored. Once the module is compiled, the
lIser mmt grant access to the joh lil1rary by isslling a
PERr-.IIT. This, of conrst', is not necessary if the object
moduli' is stored on a job lihrary previomly being
shared.

Endl user "",ho has hcen permitted access must then
issue a SHARE command, to make the appropriate
(,Iltry in his catalog for the lihrary. Again, this is not
llC'cessary if the uscr is already sharing the data set.
Each time the sharer wants to use the shared pro­
gram, he must iSSlle a nDEF for the joh lihrary prior
to loading the ohject ll1o(lule. The object code is only
truly shared (only one copy in main storage) when
('nell llser loads the pnblic control section from the
same shared joh librarv. A sharer who linkage-edits a
pllhlic control >;cction onto another library receives a
private copy each time the ohjeet module is loaded
from that library.

The owner of a data set may PER\UT any level of
access he wants regardless of the access designator

Appendix C: Programming Considerations 115

in the owner catalog. For example, if the owner cata­
log is marked "read only," the owner may not write
into his own data set, but he may PERMIT a higher
level access (read! write or unlimited) to a sharing
user. Because of this Rcxibility, the data set owner
should 1Je very cautious with critical data sets that he
has entered into the system.
Note: A program requiring more the 256 shared pages
of storage cannot be loaded in public storage. The
program will instead be loaded on private pages, and
each user sharing it will receive a private copy.

System Naming Rules

User-Assigned Names

The following names resulting in external symbols are
supplied by the user in his FORTHA:'-l" source program
or during compilation:

• :Modu Ie name (required)

• SlJBROUTI"E subprogram name

• FUNCTIOK subprogram name

to ENTRY names in subprograms (optional)

• Names of labeled COyL\fON

Names resulting in external symbols that are as­
signed in any Single compilation must be distinct from
eaeh other. In addition, since the system docs not al­
low anyone library to contain more than one defini­
tion of a particular external symbol, each name (ex­
cept names of CO~H.fO;,\ blocks) mnst he distinct from
any other symbol contained on the library that is
going to receive the object module. It is valid to have
the same names on different libraries. Since a named
or blank cmBrox is not listed in the directory of the
library as an external symbol associated with this
module, the name of the COJ'lL\fON area does not have
the preceding restriction. Also, since this name is not
listed in the directory, it cannot be explicitly referred
to by name (i.e., it cannot be loaded by its co"\nro'\

name).

The POD? command can be used to list external sym­
bols in a library, thus assisting the user in avoiding
duplication.

Reserved Names

External Symbols

The user can never assign an external name beginning
\-vith the characters sys. Names beginning with these
letters are reserved for certain system programs. Any
module stored on the user library or a job library start­
ing with these symbols can never be retrieved by that
name for execution, since resolution of SYS symbols for
loading and running is always attempted from the

116

system library. In addition, a diagnostic is issued if a
module loaded by another name contains an external
symbol heginning with SYS.

The user should be carefnl to avoid accidentally
duplicating the names of IBM-supplied subprograms.
Generally, he should avoid the use of all external
symhols starting with the characters CRG or any FOR­
THA'{-suP:Jliecl subprogram cntry point name (i.e., 51:,\.

cos, etc.) UllleSS he sppcincally wants to suhstitute for
such a subprogram one of his own.

Reserved Nemes Associated with Data Sets

The following list contains the reserved names that
are assigned ~o system functions:

RESERVED DD:'-l"AMES

SYSLIB
SYSULIB
SYSI:'-l"
SYSOUT
PCSOUT

Compiler-Assigned Names

RESERVED DSNA~fES

USERLIB
SYSLIB

For each FORTHAK program compiled, the compiler
makes the following name assignments resulting in
extcrna 1 symbols:

• CSECT name - The module name (truncated to six
characters if greater than six characters) is suffixed
with #C to form the CSECT name.

• PSECT name - The module name (truncated to six
characters if greater than six characters) is suffixed
\vith #P to form the PSECT name.

NOTE: Since a BLOCK DATA program has neither exe­
cutable instructions nor program variables, a CSECT or
PSECT name is not assigned.

It is the user's responsibility to ensure that the first
six characters of the mocblc name are unique from
others on the library receiving the object module.
Since chrrracters following the first six are truncated
to form the CSECT and pSEcr names, FORTHA" user may
want to follow the practice of limiting the module
names of compiled programs to six characters.

In addition to the CSECT and PSECT names, the fol­
lowing names are assigned to the compiler output
data sets:

souRcE.module - is the data set name assigned to the
line data set of source statements constructed dur­
ing the compilation. For example, a source pro­
gram with module name COWBOY will be assigned
the data set name SOURCE.COWBOY. If the input to
the compilations ,"vas from a prestored data set,
then the user must assign the name SOURCE.mod­
ule to the data set prior to the FTK command.

I

LIST.module - is the data set name assigned to the
data set created for all listings optionally selected
by the user. Note that this is the index name of
a generation data group.

Executing Commands from Within a FORTRAN Program

You can execute a command from within a FORTRAN

program by calling module CGCDB at entry point
SYSOBF. (CGCDB is a nonprivileged module residing in
SYSLIB.)

Code the CALL statement with these three arguments:

First argument: The command length. (The number
of characters in the command, not including the
scratch byte in the second argument. Count dou­
ble apostrophes -like those in the example below
- as one character.

Second argument: The command itself. Place this
argument in single apostrophes. The first charac­
ter of this argument must be a scratch byte that
should not be counted in the command length.

Third argument: The name of the area in your pro-
gram where you want the return code placed.

For example:
CALL SYSOBF (26,'-DISPLAy"AT STATEMENT 500'",mc)

In this example, an underscore is used as the
scratch byte.

Miscellaneous Programming Considerations

Floating-Point Computations

It must be kept in mind that, unlike integer arithmetic,
floating-point computations (types REAL and COMPLEX)

are not in general exact, due to roundoff, which may
cause the low-order bits of a result to be different from
the expected value. This consideration is especially
important when writing FORTRAN relations or arith­
metic li"S; exact equality of two floating-point quan­
tities which are the results of computation is not to be
expected. For example, consider:

Y=-O.loX

IF (10.00 y-x) 1,2,3

The zero branch to statement number 2 will probably
never be taken, since roundoff in the two multiplica­
tions, and the fact that 0.1 cannot be represented ex­
actly in a binary computer, will cause at least the
low-order bit of 10.00 Y to be different from that of
X, so the subtraction does not give a true zero.

Object Program Interrupt Provisions

This section contains descriptions of the procedures
followed when the user's program is temporarily in-

Page of GC28-2025-4
Issued February 1,1972
By TNL GN28-3204

terrupted due to certain types of interruptions. An
interruption is a computer-originated break in the flow
of processing. Program interruptions are those -result­
ing from improper specification or use of instructions
and data. The term "exception" is used to refer to
these types of interruptions.1 Six such exceptions occur
frequently enough during normal FORTRAN program­
ming to warrant special treatment. These are:

1. Fixed-point overflow exception
2. Significance exception
3. Exponent-overflow exception
4. Exponent-underflow exception
5. Floating-point divide exception
6. Specification exception

The procedure for handling the above exceptions
is as follows. The compiler generates code at the be­
ginning of all main programs that calls an interruption­
handling module.2 In this module the following opera­
tions are performed:

1. Initialization is performed such that the fixed-point
overflow and significance exceptions will be ig­
nored.

2. Initialization is performed such that a control will
be passed to an entry in an interruption-handling
module if any of the following four exceptions
occur:

a. Exponent overflow
b. Exponent underflow
c. Floating-point divide
d. Specification

At the first three of these entries, :Bags are set for
later interrogation by programs called as a result
of the CALL OVERFL (if exponent overflow or under­
flow occurred) and CALL DVCIlK (if divide check oc­
curred) statements. The contents of registers fol­
lowing an overflow or underflow is:

Exponent Overflow: The sign of the result is un­
predictable and the result characteristic is set to
127. In short precision, the high-order 24 bits of
the fraction are set to one, leaving the low-order
32 bits unchanged. In long precision, all 56 bits of
the fraction are set to one.

Exponent Underflow: The sign, characteristic and
fraction of the result are set to zero, yielding a true­
zero result. (In short precision, the contents of the
low-order 32 bit positions of the fraction remain un­
changed.)

lFor more detailed infonnation, see IBM System/360 Principles of Oper­
ation, Fonn A22-6821.
'For a more detailed description, see FORTRAN IV LlbrMII Subprograms.

Appendix C: Programming Considerations 117

Page of GC28-2025-4
Issued February I, 1972
By TNL GN28-3204

A speciflcation exception wi1I occur when a variable
is not on a proper word boundary. This condition may
exist in a FORTRAN program by forcing such misalign­
ment through the use of a COMMON and/or EQUIVA­

LENCE statement. The compiler issues a warning diag­
nostic if the user has forced such a misalignment, but
such a misalignment does not prevent him from exe­
cuting the program. An installation option specifies
that one of two courses of action is to be taken if a
specification interruption occurs:

l. Terminate the task.

2. Transfer control to a program that will perform the
desired operation, using instructions that will not
cause an exception due to the incorrect boundary
alignment, followed by continuation of the user's
program. This procedure is extremely inefficient,
and thus should be employed as little as possible.

STOP I PAUSEI RETURN Differences

Table 7 summarizes the use of the FORTRAN STOP,

PAUSE, and RETURN statements in both conversational
and nonconversational mode.

Link-Editing FORTRAN Programs

The standard entry point assigned to a link-edited
module is the first byte in the first control section that
is linkage-edited if no main program is included. If a
main program is included, the standard entry point
is the first byte in the first control section of the main
program. This procedure imposes the following rules
when linkage-editing FORTRAN modules:

l. If a task requires a BLOCK DATA subprogram, this
subprogram must be included prior to any module
containing a COMMON block for the same areas de­
fined in the BLOCK DATA subprogram.

2. A linkage-edited module does not retain the module
names of those modules included in the linkage
editing. Thus the module name in a CALL command
must be the name assigned to the linkage-edited

118

Table 7. STOP/PAUSE/RETURN Differences

EFFECT IN EFFECT IN

FORTRAN CONVERSATIONAL NONCONVERSATIONAL

STATEMENT MODE MODE

PAUSE n or 1. Prints the message PAUSE n or 'message
,

PAUSE "PAUSE n " or prints on SYSOUT ,
message' "PAUSE message " data set; execution

at the users termi- continues with the
nal. statement following

the PAUSE.
2. Prints an under-

score at terminal
requesting a com-
mand.

PAUSE n or 3. Program be PAUSE n or 'message
,

may
PAUSE continued at the prints on SYSOUT . message' statement follow- data set; execution
(cont) ing the PAUSE by continues with the

entering the RUN statement following
command. the PAUSE.

STOP n or 1. Prints "STOP n
.. 1. Prints STOP n on

RETURN at the user's termi- the SYSOUT data
(in main nal. set.
program) 2. Prints an under- 2. Reads the next

score at terminal command from the
requesting a com- SYSIN data set.
mand.

module; execution will begin at the standard entry
point of the module.

Use of CALL Command and CALL Statement with
FORTRAN Subprogram Module Names

It is not good practice to use the CALL command to
run FORTRAN subprograms or linkage-edited subpro­
grams without a main program. If this is attempted,
some interruption-handling mechanisms will be miss­
ing, and the subprogram's execution may be tenni­
nated abnonnally. A FORTRAN program must not
attempt to call a subprogram by its module name.

Initial Content of FORTRAN Variables

FORTRAN programmers should never assume that the
value of any variable is known unless the variable
has been set by an assignment statement or by a Type
or DATA statement in which initial values are specified.

Appendix D. Assembler Language Subprograms

A FOHTHA1'\ program can can assembler-language sub­
programs; similarly, an assemh1er language program
can call a FORTH A" subprogram. This appendix dis­
cusses hoth types of calls. The reader is also referred
to Assembler La 11 g ua,!I,c, GC28-2000; Assembler User
Uaem Instructions, GC28-2004; and IBM FORTRAN
IV Ubraru Sllbpro:.!,ranl, GC28-2026. The reader of this
appendix must be familiar with the assembler Ian ..
guage.

This appendix is divided into the followi1lg sect ions:

L FORTRAN Obiect Pmgmm Strllctll1'C: general
characteristics of FOHTHA ,,-compiled object pro·
grams.

2. Subprogmm References: register llSC, save areas,
and reJated information.

. 3. TtlJJCS of FORT'll;\I'/ (~(llis. a general description of
the manner in \"hicI! eompi1cr programs call· by­
name, call-by .. valuc, and pa;;s s111)program name';
in a parmncter list.

4. Unka[!(' between FO [{TR:1N and A,semlJlcr Lall­
guage Programs: Detailed cxamp1cs for FOHTK\'\

programs caHing assembler lang\lage Sll bprograms
and vice versa.

fORTRAN Object Program Structure
There are certain conditions of which assembler-lan­
guage llS('J'S writing codc to link to or from FOHTHAN

ohject code should he aware:

1. FORTRA'\ object code is reenterable.

2. A singlc CSECT and an associated PSECT arc gener­
ated for each compiled program not containing
COMMON.

3. Standard type-I linkages (described belm\') are
compilpd for subprogram references.

4. FOHTHAN main programs, but not subprograms, issuC'
a call on the CHCBD] entry to module CIICB)) prior to
any other operations. This call causes the fo1Jo\\'ing
(see Appendix C for a morc complete discllssion) :
a. Bits are set in the psw sllch that fixed-point over­

flow and significance exceptions arc ignored.
b, Initialization is performed sHch that four types

of exceptions cause control to be passed to the
system modules CIleBD or CHCBE, at which point
a flag is set for later interrogation, Thc four ex­
ceptions and the FOETRAN statements that test
the flag are:

Exponent-overflow
Exponent-underflow

CALL OVERFL
CALLOVERFL

Floating-point divide CALL DVCHK
Specification See below

A specification exception occurs where a variable
is not on a proper word boundary. This condition
can occnr in a FOHTRAN program when a 1ni5-
alignment is forced through the usc of the CO,,[­

J\[()N andior £(;Cl\'ALENCE staterncnts, The com­
piler issues a warning diagnostic if thc user has
caused sneh a misalignment, but program execu­
tion will be permitted. \Vhcn a specification
exception occurs, an entry in FORTH AN lv-supplied
suhprogram CHeBE is entered. According to the
option chosen hy the instaJ1ation whell the sys­
[ern was generated, CHCRI< either terminates the
prograrn or causes the requested operation to be
performed HS if no exception has occurred .

c. Clears any pointers to entrics in the DCB table,

If ;11; asscmhkr-lang\lage main program calls a
FOHTT\.\N snhprograrn and arithmetic overflow and
hOlmdary alignment prohlems nrc to be handled,
tIll' lIscr ml1~t either call ClICllDl as a part of his
initia lizatioll procednres in his main program or
provide assembler-language coding to accomplish
tI1is enel. ClICBDl issues sm, lJm and SPEC 111aCrO in­
structions witll the default priority.

Subprogram References

1'h is section gives general information concerning sub­
progrmn references by both FOHTHAN and assemhler­
langnage programs. The follOWing section gives specif­
ic ('xamp]cs for both types of references,

The FOI\THA'.' program can refer to a suhprogram in
h\o ways: hy a CAI.L statement or 1)), a fUllction refer­
('11('(' within an arithmctic expression. For example.
tIll' statcrllcnts

CALL SUBH(X, Y, z)
I=J'K+FUNC(L, M, N)

refer to a subroutine subprogram SUBIl and a function
subprogram FUNC, respectively.

For every suhprogram reference, the compiler gcn­
erates a type-I linkage. Similarly, FOHTBAN subpro­
grams expect to he called by a type-I linkage,

Associated with type-I linkage conventions are
thH'l' areas of ('onccrn: these ,1I'C:

I. Registcr usage
:2. Parameter lists
:3. Save areas

Appendix D: Assembler Language Subprograms 119

Proper Register Usa;1e

TSSj:;()O has assigned roles to certain registers used in
generating a linkage. The functiofi of each linkage
register is illustrated in Table 8. l'\otc that registers 2
through 12 are not assigned and, th11S, are always
available to the user for other purposes.

It is the responsibility' of the called module to main­
tain the integrity of general registers 2 through 12 so
that their contents are the same at exit as they were
at entry to the caIled progrr,m. It is the calling pro­
gram's responsibility to maintain the floating-point
registers and program mas~, around a call. General
registers 0, 1, and 13 through 15 must conform to the
indicated conventions; 0 and 1 may he destroyed by
the called module.

Tahle 8. Linkage Regi:·:ters

GEOIEHAL

REGISTER USAGE

o Integer Result Register (FORTRAN-supplied ,ub­
programs).

13

14

15

Parameter List Register - contains the address of a
list of pointers to input parameters.
Save Area Register - contains the Edclress of the
calling module's save area.

Return Register - contains address in callinl!
module at which execution resumes upon return.·'

Entry Point Register - contains nddress of the
entry point in the called module; also Return
Code Register _. contains return code set by called
module.

----.-----------------.-

By convention, general register 0 is used by a FORTRAN

FUNCTION statement subprogram to return the resultant
value computed in the subprogr<:m when the resl1ltant
value is an integer. \Vhen the resultant value is a
floating-point number, floating-point register 0 is used.
Complex numbers are returned in floating-point rcogis­
ters 0 (real part) and 2 (imaginary part).

Reserving a Pai'ameter Area

If a called module requires input parameters, the call­
ing module must supply the called module with the
location of a parameter list in general register 1. Each
entry in the parameter list must be on a fullword
boundary and represents the address of a parameter
being passed to the called module. If the parameter
list is variable in length, the length is specified as a
count of the number of addresses that compose the
list. This count is located one wo:·d before the first
word in the parameter list. Regardless of whether the
parameter list is of fixed or variable length, the param­
eter list register points to the first ,vord of the param­
eter list. The CALL macro instruction can be used to
generate the parameter list, as well as to Jink to the
called module. The FORTRAN CALL statement does not
generate a variable length parameter list count.

120

Reserving a Save Area

It is the responsibility of the calling module to supply
a 19-word area to be used by the called module. Fig­
ure 18 shows the layout of the save area and briefly
describes the information saved in the area by the
calling and ca Hed module. Of particular interest in
this save area (for trace purposes) are the following
two words:
\Von12 - The "hackward pOinter." This wmd always

points to the sayc area of the module that called
tIle module whose save area is being inspected.

\Vord :3 - The "forward pointer." This word contains
the address of the save area of tIl(' module hst
called hy the program whose save area is heing
inspected. The low-order hit of this word is set to
ze1"O as the callecl program is entered and set to 1
upon exit if the T option in the RETURN macro in­
struction is used. (The FORTP-AN RETURN statement
also causes this hit to be set). This bit is useful
in determining th~ flow of control during pro­
gram execution.

SAREA -'> Contain~ the length of the· sav~ area· in bytes, oJ
(word 1) minimum of 76.

. -
SAREA + 4 -'> The address of the collins module's save area. I
(word 2) This field is set by the called module in its owj

save area.

SAREA + B -'> The address of the next save area; that is, the I
(word 3) save area of the called module. This field is set.

by the called module. . . --
SAREA + 12-'> The contenfs of register 14 confaining the ad-
(word 4) . dress to which return from the called module is

mode. This field is set by the called module in the
calling module', save area.

SAREA + 16-'> -,he contents of register 15, containing the ad·
(word 5) dress to which entry into the called module is

mode. This field is set by the called module in
the calling module's save a rea.

SAREA + 20-'> The contents of register O. Value in register 0 set
(word 6) by calling module and saved by called module.

SAREA + 24-'> . The content. of register 1.
(word 7)

SAREA + 28-'> The contents of register 2.

(word 8)

SAREA + 32 -'> The contents of register 3.
(word 9)

r-.
Eight words containing the conlents of registers
4-11. r--.

SAREA + 68 -'> The contents of register 12.
(word 18)

SAREA + 72 -'> The address of the PSECT of the called module.
(word 19) This field must be set by the calling module, by

storing the R-value of the called entry point in it. -. -
Figure 18. Save Area Format and Content

Variable.Length Parameter i.ists

FORTRAN will not provide a Tss/360 variable-length
parameter list (except to the DUMP/PDU~IP programs),

nor can any Tss/:lGo-suppIied subprograms except DUMP
and PDU~fP process a variable parameter list passed
to thcm.

Types of FORTRAN Col/.o;
A FORTRAK program can call a subprogram with two
basic types of parameters.

The first type is one in which a parameter is the
name of a variable, the value of which is to be op­
erated on in assignment statements, transfer of control
statcmel;ts, etc. (This is thc usual usc of parameters
in a subprogram reference.) An '2xample of this use
follows:

C PROGRAM MAl:\)
CALL SUBR(A, B)

SUBHOUTlNE SUBR(X, Y)

END

The call of SUBR in programl\lAIN above results in
MAIK passing to SUER in Q parameter list the addresses
of A and B; both A and B, in this example, lie within
;\1AI::\. SUBn references to its dummy arguments X and
Y will result in references to A and B within "'-lAIN, as
SPER ll:;es the parameter list passed at the CALL to ob­
tain the location of X and Y.

The above type of calls is referred to as "call-by­
name." Some compilers also have implemented "can­
by-value." Although the TSS/360 compiler treats this
type of call identically \yith a call-by-name, a brief
discussion of call-by-value is gIven here to note the
differences.

In a call-by-value linkage, references to X and Yare
treated differently. Rather than referring to the values
of X and Y stored in ~1AIN (and known to :NIAIN as A
and B), a call-by-value causes SURR to obtain the cur­
rent values of A and B from MAIN and store them
within SURR. All references to X and Y in SUBR wiiI
then refer to the locally stored (i.e., within SUBR)
values, rather than thc values in ~IAIN. The values are
identical, of course, so the end result is the same.

The second basic type of call is one in whicb the
passed parameter is the name of a subprogram. An
example of such a linkage is:

C PROGHAM MAIN

EXTERNAL FUNC

CALL SUBR(A, FUNC)

END
SUBHOUTINE SUBR(X, BETA)

Y=BETA(U, V, \'V)

HETUHN
END

In this example, program ~fAW does not pass the lo­
cation of FUKC, as FDXC is not a variable name but is
the name of a function type subprogram. In this case,
MAIX passes the location of a parameter list, contain­
ing the V and R-valucs for FUNC (rather than the loca­
tion of a variable, as is the normal case), and SUBR
llSCS this information \\'hen referring to the function
that SUBR knows as BETA.

Linkage Between FORTRAN and Assembler
Lcmguage Programs
This section describes the linkage between calling and
called programs for calls in which the name of a vari­
ahle and the name of a slihprogram are z,rguments of
the call.

CA!.l Where the Argument ~s C! Variable Name

In the following example, showing the FORTRAN-as­
sembler language interface, a FORTRAN main program
:\fAJl'< calls an assembler-language subroutine, ASUBR,
which calls a FORTRAN subroutine named FSUBR.

The source statements for the FORTRAK main pro­
gram are given below, where the leftmost numbers are
the system-assigned line numbers, used for reference.

OOOOlOOC MAINPHOGRMv1 FOR INTERFACE EXAMPLE

0000700
0000800
0000900

CALL ASUBR (A ,B)
STOP 'END OF EXAMPLE'
END

The CALL statement at line 700 generates object
code equivalent to the following:

LA 1,3, MAIN #P Caller's PSECT and save
area base register

LA 1.5, ASUBVR V-and R-values for
ASUBR

LA
L
ST
L
BASR

1, PLIST
14,4(15)
14,72(13)
1.5,0(15)
14, 15

Parameter list
R-value
To PSECT 19th word
V-value for ASUBR
Call ASUBR

Appendix D: Assembler Language Subprograms 121

~fAIN#P PSECT Calkr's PSECT
DC F'76' Save area
DC IBF'O'

ASUBVH DC V(ASUBR) V-and H-\'alncs for called
pro~mm

DC H(ASUBH)
PLIST DC A(A) Parnmclcr list

DC A(B)

END

The purpose of subroutine AS1JBR is to exchange the
values of A and B,

ASUBHP

ASUBHC

ASCBR

PSECT
E:\,TRY

DC
DC
CSECT
USING
SAVE

L

S1'

ST

LR

USING
LH
DBOr

USING
LM
L
L
ST
5T

(Call
FSUBH,
shown
later)

L

ASCBH

{<"7B'
IBF"O'

ASOBH,15
(14,12)

111, 72(1:1)

11,8(1:3)

1:3, '1(14)

1:3, 14

ASUBHP,13
12,I,S
15

ASCBR,I:?
0,7,0(1)
2,0(0)
3,0(7)
2, O(7)
3,0(6)

13,4(13)

RETURi\ (14,12)

END

Hcquirctl I'm U-value
linking
Save area

Save registers in caller's
save area
eet H-\'aluc from caller's
I'SECT
Scne in caller's I'SECT
for later tracing of calk
if de'iirccl
Sa ve aetch ('ss of caller's
save area (PSEGT) in
ASUBH save area
(rSECT) for later
tracing of calls
13 no;~' ha'; ~l(ldress of
PSECT

II se register 12 as base
register, as CALL belo\\'
de~troys register 15

Addresses of A and B
Valne of A
Value of 13
A stored in B
13 stored in A

Hestore 13 to caller's
PSECT
Hestore l'egisters and
return

The call by assembler-language program ASUBR on
FORTRAN subroutine FSUBR is described next.

ASUBRP PSECT

122

rSUBUVR ADCON IMPLICIT,EP=FSUBR
FSAB DS}i Address of A (in ?\1AIN)

DS F Adelress of 13 (in :\fAIN)

ASUBHC CSECT

U1
STM

6,7,0(1)
6,7, FSAB

LA 15, FSUBHVH

Address of A, B
To parameter list

GALL (15),MF=(E,FSAB)

Many forms of the CALL macro instruction can be
used. In the form of the CALL macro instruction used
ahove, the generated code is:

LA
L
ST
L
BASH.

l,FSAB
14,16(15)
14,72(13)
15,12(15)
14, LS

Point to parameter list
R-value
To save area
V-value
CALL

The above CALL of the FORTRAN subroutine FSUBR
uses a V-and-H-value pair in the linkage, This type or
linkage is required, as FSUBR (like all FORTRAN-com­
piled programs) is reenterable; thus, the called pro­
gram must include a PSECT, Note also that a program
calling a FORTRAN subprogram must provide the ad­
dress of a 19-word save area in register 13, and the
FOHTIHX subprogram called modifies the contents of
this s,we area by storing registers in it. Generally, the
first 19 words of tIle caller's PSECT are reserved for this
save arca, but it is legitimate to point to a save area
elsewhere in the program.

CALL Linkage Where the Argument Is a
Subprogram Name

An example was given earlier of a main program pass­
ing the name of a function FVXC to subrolJtine SUBR.
The FOH1.1'AN statements were:

C PHOGHAM MAIN

EXTEHNAL FU\lC

CALL SUBIl (A, FUNC)

END

SUBHOUTi\IE SUBH (X, BETA)

Y=BETA (lJ, v, W)

BETULiN
END

The code generated in 7\IAIN for tbis example is the
equivalent of the following:

(f'ro!!;Jam \1A1'i CSECT)

L
LA
C;\LL

(Program \IAI'i PSECT)

SLBHVH ADCON
PARAM DC

VRPAIH

DC

DC
DC

15, SUBRVn
L PARAM
([.5)

IMPLICIT,EP==SUBH
A(A)
,\(VRPAIH)

V(FUNC)
R(FUNC)

VVhen referring to FU'>C (known to SUBR as function
BETA), su bprograrn SUER does not generate for BETA,

but llSes tIle V- and H.-values passed in the parameter
list.

Using Data in COMMON

Both named and blank C07\[~IONS in a FOHTRAN IV pro­
gram can tX' rderred to])y an assembler-language
snl,program. To refer to named CO?\[]\[()i'\, the V-type
address constant

name DC V (name of COl\nroN)

is used.
A h1«nk COH]\WN may also he defined (by the CO":'l!

instruction) in an asscnlbler-Ianguage program. After
the first program containing a blank COMMON is
loaded, all bl::tnk CO]\L\lONS in subseqnently loaded
programs are rejected; any references to the blank
COl\f1,WN are tied to the already loaded one, thus mak­
ing data in the first blank COMMON accessible to more
than one program.

Referring to Variables in an Array

For an array, the address of the first variable in the
array is placed in the paramcter list. An array (for
c,ample, a three-dimensional array c(:1,2,2)) appears
in this format in main storage:

C(I,l,l) C(2, 1,1) C (.1, 1, 1) C(1,2,1)t

L+c ('). ,) 1) , , ~, C(3,2,1) C(1,1,2) C(2,1,2) 't

C:C (3,1,2) C(1,2,2) C(2, 2, 2) C(3,2,2)

Table 9 shows the geI)eral subscript format for arrays
of 1, 2, and ,3 dimensions.

Table 9. Dimension and Subscript Format

AHHAY A SUBSCnTPT FORMAT

A(Dl) A(Sl)
A(DI, D2) A(51,S2)
A(01, D2, D3) A(Sl, S2, S3)

OJ, D2, and D3 are integer constants llsed in the
DI~rEl\SION statement. Sl, S2, and s·" •. J are subscripts
used with suhscripted variables.

The address of the first variable in the array is
placed in the Est. To retrieve any other variables in
thc array, the displacement of the variable (that is,
the distance of a variable from the first variable in the
array) must be calculated. The formulas for computing
the displacement (msPLc) of a variable for one-, two-,
and three-dimensional arrays are

DlSPLC=(SI-1)"L
DISPLC= (Sl-1)"L'-(S2-1) "DI-L
DISl'LC= (S1-1) ~r.+- (S2-l) "Dl" L-j-(S:3-1) "D2 ~D 1 01,

where
L is the length of each variable in the array.

For example, the variable c(2,1 ,2) in the main pro­
gram is to be moved to a location ARVAR in the
subprogram. Using the formula for displacement of
variables in a three-dimensional array, the displace­
ment (DISI') is calculated to be 28. The following in­
structions can be used to move the variable:

LA G,8(l3)
LA 8, DISP
L fl,O(6,8)
ST 9, ARVAR

Appendix D: Assembler Language Subprograms 123

Appendix E. SpecificaHoli of Data Set Characteristics

This appendix discusses eight topics associated with
defining and precessing data sets with FORTRAN ob­
ject programs. The 5rst of these, "Data Set Creation
and Structure," gives a description of the format, crea­
tion, and structure of data sets written and read by
FORTRA:,>:-compiled modules.

Next, the section "Operation on Data Sets," de­
scribes techniques for: creating new data sets, print
and punch output, processing data card input, and
reading data sets created by other TSS/:JGO FORTRAN pro­
grams or os/%o FORTRAN programs. Also included are
discussions of: exception handling (I/O errors and
eud-of-data-set handling); use of HEWIND, ENDFILE, and
BACKSPACE statements; and exeeutio:1 r/o errol' mes­
sages.

The next section, "SECURE Requirements for Non­
conversational Tasks," includes considerations in de­
termining the number of private devices needed
during processing of a non conventional task.

"Guide to DDEF Commands" describes in detail how
to write DDFF commands for all allowable FORTHAN
object -time processing. This section is divided into
a description of the hasic DDE1' command, which may
satisfy a11 normal user requiremcnts; the default of
DDEF commands, which discnsses SYSIN/SYSOUT I/O;

and the full DDEF command, describing extended proc­
essing facilities.

The section "Sample])DE1' Commands" prcsents and
explains a Yariety of DDEF command uses. The final
three sections of this appendix are "Error Messages
for tbe DDEF Command," "Data Definition Rules for
Language Processing." and "Data Definition Rules for
TSS/:l!iO Commands."

Data Set Creation and Structure
This section describes the format, creation, and stnlc­
ture of data sets \vritten and read by FORTRAN-com­
piled modules.

Ii1 creating and using data sets, the llser is con­
cerned with two things: the logical record format a,1d
the data set organization. A logical record is the unit
of information processed by the user's program - that
is, the specific number of contiguous bytes of informa­
tion that is to be read or written by a FORTRAN pro­
gram. TSS/360 recognizes three formats for logical
records:

124

1. Format F, for logical records of a fixed length.

2. Format V, £(..r logical records of varying length.
:3. F'ornlat {T) for logical records of undefined format.

4. Format D, for ASCII tape records.

Ddailed descriptions of these three formats are given
later in this section.

The data set organizations are spoken of in terms of
the TSS/:1GO access methods used to manipulate them;
that is, the particular set of system routines that are
used to transfer data records between virtual storage
and a data set in external storage that is organized in
a particular way. The TS:;/:>ti() access methods arc
described below.

Access Methods

Data set records are transferred to and from rio
d(',~ices and virtual storage by system programs known
as acccss methods. There are two primary access
nwthods.

1. Firtllal Access Method (FAM): The access method
llsed in TsS!:lfiO unkss the data sets must be inter­
clmngcd with programs running in the IBM Sys­
tCll1:360 Operating System or the Model 44 Pro­
gramming System, or the data sct is to be written
on magnetic tape.

2. Basic Sequential Access Method (BSA.M) alld
QuclIed Seqllential A.ccess Method (QSAZH): Used
to read and 'Hite records that can be read and writ­
ten with pm grams running under control of the
IB'.! Sy,tcm!:360 Operating System or the Model
44 Programming System, or when the data set is to
be written on magnetic tape.

The choice of access methods and record formats
(see helow) are origjnally determined by the param­
eters in the DDEF command. A later section of this
appendix contains a complete discussion of how DDEF
commands are written.

Virtual Access Method

Users create, read, and process virtual access method
(VAAl) data sets on the basis of logical records. The
system, however, hlocks thcse records by pages (4096
bytes) amI lISes the page as the unit of transfer be­
tw('cn the cl ired -access device and the user's virtnal
storage. The system also Cl1S111TS that only those pages
of a data set that mc actnal1y required are resident in
virtual storage.

Virtual storage data sets can be classified as:

1. Virtual sequential (vs)
2. Virtual indt'x sequential (VI)
3. Virtual partitioned (vp)

VAM data sets must reside on direct-access volttmss
(not tape) that are specifically formatted fo!' T5S/3(;0.
Labels and other related tables pertaining to the data
set for VA1\J are not the same as those in an OS/360-
generated direct-access data set. Therefore, data sets
written with VAM cannot be read with a program run­
ning under the IBM System i :360 Operating System or
the Model 44 Programimng System.

For FonTRA'\;, fonnat-U records in any VA/vI data set
are created as format-F with a record length of 4096
hytes.

Virtual Sequential (V5): In a virtual sequential (vs)
data set, the order of the logical records is determined
hy the order in which they are created. vs permits
logical records up to J ,048,576 bytes (2.36 pages) in
length.

Most FORTRAI'\ programs read and write logical
records using vs in format V. This access method, with
this format. is sIlfficient to handle nearly every applica­
tion, and only when records are specially formatted
will the user have to llse some other combination of
access method and record format.

Virtual Index Seqlle1!tial (VI): Virtual index se­
quential records are similar t~ virtual sequential rec­
ords with the addition of an extra field called the key.

In VI data sets, it is only possible to have format-V
or -F records; format-U records are not permitted.
Logical record length is limited to 4000 bytes; key
length cannot exceed 255 bytes, but keys can be any­
where in the record.

The records in the data set are ordered by asceGd­
ing sequence of the key field. A FORTRAN program can
read any VI data set sequentially and records are pre­
sented in ascending key order. FORTRAN cannot read VI
records by key - that is, nonsequentially. 'When read­
ing a VI record, the user must account for the key in
his FORMAT statement since the key is considered part
of the record and must be maintained by the user. An
assembler-language subprogram may be used to read
records nonsequentially. Writing a VI data set with a
FORTRA)! program ean be done sequentially; however,
the key field in the record is checked and used by data
management. Therefore, the user must layout the
logical records so that an ascending key, according
to the System/360 8-bit code, appears in the same
place on every record. For example, the following
FORTRAN statements could be used to write a VI data
set which contains a 6-character ascending key at the
beginning of each logical record.

DIME"lSION DATA (40)
KEY = 0

10 KEY = KEY -1- 1
WHITE (7,200) KEY, DATA

200 FOHMAT (I6, 40F5. 1)

GO TO 10

To S1 Lrnmarize, since TSS/:lGO FORTRAN does not have
random access capahility, VI records are of limited use
to the FORTRA".; user. VI would be used primarily to
construct records that are to be read by non-FORTRAN
programs, and in writing these records it is the respon ..
sibilily of the user to supply the KEY in the record.

Virtual Partitioned (VP): Partitioned data sets may
contain both VI or vs data set organization. Logical
records are grouped into named subdivisions so that
processing can take place on anyone of them, caned a
membcr of the partitioned data set. Each member can
be treated as an individual data set.

To create and operate on a member of a partitioned
data set. the user writes a DDEF command to (1) in­
dicate a DSORG of either vsp or VIP in the subfield of
the DeB parameter and (2) append a member name
(in parentheses) to the DSNA'vIE. Only one DDEF com­
mand can be issued for the partitioned data set at one
time; hence, only one member may be procesc;ed at
anyone time.

Physical Sequential (PS)

Physical Sequential (l's) data sets are written by the
hasic sequential access method (BSAM), and queued
sequentia 1 access method (QSA'vI). However, this is
normally done only to communicate with the IBM
System/:360 Operating System or the Model 44 Pro­
gramming System, or if the data set is to be written
on magnetic tape.

BSA'.l can support any of the record formats - F
(bloc-hd and unblocked), V (blocked and unblocked),
U (un blocked only), and D (blocked and unblocked).
If the user wants to process blocked records with
BSA:\f, he mmt perform all deblocking first. If the
user needs to process blocked records, FORTRA)! I/O
will automatically perform the deblocking function.

QSAl\f, on the other hand, supports both blocked and
unblocked records. In the case of blocked records,
QSAM ,,,,ill automatically provide the deblocking func­
tion of the useI'.

10S data sets are built around physical blocks that
contain one or morc logical records in format F, V, or
U.Format-U H'c(m1s arc considered unblocked.

PS data sets may he written either on magnetic tape
or direct-access devices. To read a pg data set the user

Appendix E: Specification of Data Set Characteristics 125

must first ensure tllat it is available to the system on
the correct device Hnd then indicate to f1C system the
data set's special characteristics, Thc3C two functions
are performed by speciaJ parameters in the DDEF com­
mand, (These are d('s(~rihed in a bter section of this
appendix,)

Dtti'C! Set Records

A logical record is a specified number of
bytes of information tbit is to he read ill or written
out a program,

1. Format F: If a data set is made up of records that
are all of the same length, it is format F, for fixed
length, There are no sj):'cial restrictions on the Call,

tents of a format F Jogi('al record; however, differ­
ent access methods set limits on record size (see
Figure 18)

2, Format '/: If a data set is made up of records that
are of varying length, i" j" format V. for yariabk
length, Again. the different access methods set
limits on record size ..

3" POflnat (}: /1. third class of record is fOflnat t~·, fo;~

undefined length, For rcconL: on YS data sets, for­
mat G record, are always eon~idert'd to he format
F with a record length of 409fl or a multiple
of 4096; for recoreL em l'S clata sets, the r('co)"(1
length is determined some physical bOllndary
that is recognized hy the devlu' that: reads the
record,

4, Format D: If a data set contains i,SCIl records, for­
mat D must be specified. Format-D recorcls are
\'ariahle in length,

The ahov'C considerations for using fonnat·F records
with FORTRA.:' programs do not appJy to llnformatted
HEAD or WRITE records.

~ __ +--._v_s _-+I_i~ PS 1
! _, ~~_(k_e_d_l'--- Blocked .~

1,048,576 'I 4000 I 32760 i 32760 I'
V 1,048,572. 4000 I 32756 ! 32756 1
B 4096' I : 32760 ! I D i I I 32760 L 32760 I

l 'AI! ~crmat records are multiples of 4096 ~
Figurp 19, Mm:imllln Hecord Lem-;ths (Rytes)

Variable-l.ength Format

1. Record J~cnE;ths: vs l'orrnat-V records can contain
from 1 to 1,048,572 bytes of elata, Vi format·· V rec­
ords can contain from 1 to 3096 hytes of data, PS

format- V records can coni<1in from 1 to 32,752 bytes
of data,

The record length is indicated at the start of each
recore!, 1'S records (blocked and unblocked) have a
two-byte binary number followed by hllo byte:"

126

reserved for system nse, nand vs records
have a four-byte binary number. FooxrH.'s-wriUen
pmgrams can H'ad 1'5 data scts and write them on
VI or \'s and vke versa,

2, and iVtiring: FORTnA:', processes input
and output formal-V records ('x,L'tlv as if they were
fOrInat F (i.e" the record-length arc not trans­
Jnittcd into nser storage no!' do they need to be
COllstnlClt'd by the user before issuing a ,VRITE), No
padding of output record.s ever takes place, All un­
formatted FORmA" rcconls are written as format V
with spanning control hits in either the first byte
of a n or vs record or thc third byte of a 1'5 record;
again this special hyte is handied by the system.

Bot!l form;lr,·Y and -F record:; can occur in any
the different data set organizations, alth~mgh they can­
not hc mixed in anyone data set The organization to
be used for an ontput data set is spcciHed in the DDEF

command, The organizatioll used for an input data
set can he dc-termined from the data set standard
lahels, from infonnatioll in the svsten; catalog, or
from the DDEF command,

FOHTRAN" I/O always writm; fonnat V recoras unless
otherwise instnlcted by the DDEF command.

The user\: source program need never be ccmcerned
whethc]' formal-V or -F recon15 art' rearl or
writkn, since FOllT1P .. " \-viE C::lnstruct the records
properly and transmit them to file rio device as in­
stnwtco, The same is truc for formal-U records, but
their usc shOUld he restricted to I'S data sets, since VA!'"

generates vcry large rccorcL for format "G.
Figures 20, 21 and 22 show the variolls records for­

mats noder different data set organizations.

Fixed-Length Format

L Record Lcn~th,' v;: fonnat-F records can be any
length horn 1 te' 1,0-48,576 hytes, YI format-F rec­
orch can be any length from 1 to 4,000 hytes, PS

tormat-F rccords ('all 1)(' allY length from 1 to :32,760
bytes. nnbJocked records les~ than l~i bytes in
length arc rejected if :l. reacting error occurs (i.e"
no recovery attempt is made), Therefore, unblocked
records of less than [:3 L,'tcs are not recommended.
Bloeked records mc automatic all" at least 1.3 hytes
long,

n Bloch-in,,: forlll([t,F records: AlW spcciGcation of
block size (in the DnEF commaml) is ignored for
hlocking or fonllat-F records in Y}\.:\f data setc. The
block size of fOlTn:d-F records in FS data sets must
be an integral m,:itipie of the record size,

:3. ,Vii/ing' If a (bu set is defined as containing for­
rnnt-, F rectJfds~ ~:T!y ~Jhort records \\Titten hy a FOB-

Fixcd-iFcr:gt!·
i:Forrr-'Jt F'! [-:~~~~I---T-:f:ORD 2 I __ ReCORD 3 l-=~~=::-;O~~~~] __ ~'CORD 6 IJ

! -,----'--- i i

1 Pc:ge - 1 Page - -- -- J.- 1 Pa[-,c - -- -- -------..l

• Maximum recc,rd !cr~gth: 1, :)42, 576 bytes.

• Sy:,terr: outomatically l<eeps tmc:.(of ,-:'--..ledap ~lC"OS'~ page boundaries.

VCI'IOb\e-!cn:;th

,:F,:'I'f)";ot'II

1-4--- Record' ~--- -- - ~ Record 2 - --- --~-- Reccrd :3 - ~ --- Recurd ,~ --- ---"1

! l ! j I

loW l--D-i'-TA--[:;I-;-T [)-A~T~A~~~~~I~-. __ b-~~~I~~_:~~-~' --b-W J---__ DA_T~ ~
.. --- - ----~-- 1 Pag f' 1 Page 1 ?oge

• The FORTRAt'--4 L/O t'oL't;~)':;':. maintain the firs! ! >;;'.lei-- record.

Undef;ner~

(F o~nlOt U)

The user need onht be ow(!re of the DATA pudiori,

o Rec-:J!"::.! lengrh; multiple IQ96 byreso

SC'_!'_""-';

I~ (;cnrd 4 ~---.. -
I

.5 -- ~

1O-fGI-------- - 1 - ~,

h~e"nol I-(::(:c~rd hr~11af5- °'To/ diFfer frem t~lC cxternn' (::cc;rd fon,YJts de:;cribcn in ~"IS
F:::-r c:<r:-innatioo or :nt'.?rr:ClI record -tonw_lts, see :tHA Systern/360 Time Shming Sy~h::.r:1

::iqme 20, H('(:ord 17onn:,t5 -- Virtual Se'ltwnlhil

TH:\;\iprograrn arc padded \\,ith trailing hlanks or
binary Z(TO~;: '-0 the required size. Attempts to write
logical rt'Corc;" greater than the size specified will
cause diagnostic'" :mcl the record \\-ill he split.

1. I1carling: Url1lv,J l'(irtions of an input record cause
no error indication and arc simplY ignored. At­
tempts to read }o£((<lt rec01'(l, longer than the size
of the format-F records ('.'l1:,('; d di;lg110StiC and the
nc:\t logicaJ record \,;ill h' 't; fulHil the request.

FORTRAN Records

YVithill tlie four classes of logical rccuI{Is (j,e., F, V,
C or D) ,lire }-mnnA" L'n routines COll~trllct three dif­
ferent types of records. depending on the FORTnA;\;

language statements used to wr;te the records. These
three types of records nre formatted, NAJ\fELTST, and
lmformatte(j,

Formatted Records

A. FORTRA,{ program most commonly reads or writes
logical records whose length is defined by the FOH:\IAT

statement and the list. Thus:

FOR\IA T I1~H RESULTS ARE

can be referred to in a \\'lUTE statement \vithout list in

orelt'r tu write a single logical record of 15 hytes.
'\ ltcIT<atiH'ly:

procl:ill'S a logical record of :20 bytes if the WRITE
siatellH'ni has a singh: (simple) variable name in the
list, 2;) bytes for two names, etc., up to 40 bytes for
five rnnH'S in tlw list-. Jt there arc more than five simple
\'arialJks ill the lisl. a mmrlwr of additional records
are \\Tirren, all of which l'xcCpl possibly the last) are
-10 bv'I's in length, since the FOTI:\IAT specification
specifics 40-byte

\Vilen FOHTIlA" TiO has huilt 1Ip a logical output

record according tu the rnks specified by the FOIlTRAN

1\' Jangllage, it incorporate:; the resulting record into
any data set lonnal, addillg a length indicator, if re­
qnired for format- V records, and making up a hlock
for F frHTn~lt blocked records,

If lhc 1!."<T 11;1'; rcqllcsred fornlat-F or ,-V recon1s for
a 11 en dput data sct (ill a DDEF command), none of the
generated logical records should exceed the maximum
permitted logical record length specified in the DDEF.

Two or rnorc data set records are generated in sueh
a case, and a diagnostic is issued,

If an attempt is made to read a logical record longer
than the one on the input ltata set, a diagnostic mes-

Appendix E: Specification of Data Set Ch'll'aetcristics 127

Fixed-length
(Format F)

Initial Key

,--Record 1

I Key I DATA

-t- --- Record 2 -----~­
I

, Key -, DATA

-- Record 3-- ---~---------Record 4-------

I
--.I

I

Key DATA. Key DATA I }
Imbedded ~

j-==----Record I ----------1 ------ Record 2------~--- . "- Record 3 - ------- .. ~ -- ---

I
-Record 4-------->-j

,--

I
First Pert KEY End Part First Por+ KEY End Port First Pent KEY End Part F i fST Part KEY End Part

of Data of Data of Doto of Data of Dato of Data or Dota or Data

Variable-length
(Format V.l

L..

In it iol Key r-=---=== --- Record I -----...----- -- ---RecOl'd 2 Record 3

CW'T'-K-e-Y-'---D-A-T A--';--b-~-~-I --'--K-ey-, -rl-~~_D_A_T_A_' --L_b __ f_I_~ --.J __ K_e._! _.l..-__ D,_A. '_' A __ LI_--l}

r- - Record I -- - .;..-------
I

FirsT Pod
of Data

KEY
End Part
of Data

• l'/lo~--(;mLJm logical record length: 4000 :lyres..

• MaxirnlJ!T, number of records pel' data page: 1:~00.

," MaXimum key length: 255 byte::;_

13 Maximum nurnber of data pages: 65,000,

• Maximu!Yl !llimber of overflow pages: 240.

r

• Max:rnuM nl~'11be! of records pel- overflow ,:Joge: 255.

• No limit to ~he numbN of directory pog>::!:;..

- - RecOI'd 2 ----

rils-t Port
ot Data

KEY
End Part
of Data

--1"-­
I

b~H

Record 3 -- ---------,
I

First Port
KEY

End Part
or Data of Data

• User responsible for Key and DATA port" of eoch record.

• FORTRAN I /0 mQ;nto;n~ firsT fo\...'(oytes of format-V records.

Figure 21. Record Formats - Virtnal Index Sequential

sage is issued and the next record will be read to
fulfill the READ.

Parameters in the DDEF command that differ from
those of an input data set override the latter, and will
cause errors.

A summary of formatted FORTHAN records is as fol­
lows:

L FOHTRAN logical record of X bytes written on a data
set with format-F records with a logical record
1ength (LHECL) of Y bytes:

(a) X = y

(b) X less than Y

(c) X greater than Y
(error)

128

FORTRAl'<
Data Set

Blanks

FORTRAN I~~
Data S.:.e.:.t _______ .JI

FORTRAN .~

L-__ D_at_d_S_e_t _....II ~
Write on Next Record

2, FORTRAN logical record of X bytes written on a data
set with format-V records, LRECL is unimportant,
provided it is not set to less than X.

FORTRAN
Data Set

~----------

X+4(VAM)
X+8(PS)

3, FORTHAN logical record of X bytes read from a data
set with format F records with an LRECL of Y bytes:

(a) X = y

(b) X less than Y

Data Set

FOR.TRAN

Data Set I
~F_O_R_T_R_A_N_...JI ~

Not Processed

F;xeci-len~]th

Blc·::ked
(Ferenc, FB)

Variobie-lc-n9th
(FornlQt

\/arioble-Iengrh,
Blocked
(Format VB)

LJndefined
IFor"f]ot U)

1 L----L I_~EC_ORD 1 --1-1 ~I _RECO_RD 2 -----,--I [RECO._RD 3 --,-----,I 1

• Maximum record length - 32,760 bytes._

• EUCh block ~reoted cos a bgico! record.

f4- Block ~~..., r- ... Short Block ··4 f<'-.~ ._._-- Bleck ..,

1L __ j! ___ RE_C_I __ LI __ R_EC __ 2~I __ R_E_C_3~IL' __ 1L-_RE_C_4 __ LI __ R_EC __ 5~i __ ~i __ p_E_C_6 __ LI __ R_EC __ 7-L __ R_Ec __ s_l::J

• Mcximum block length - 32}760 byte~.

• Blocking factol' IS usually constant; h0wever, date ')et may contain tr~lncated 01' sl10rt blocks.

• FORTRAN)/0 does not tiun,::.ate output bJocb except ot end of data ~ct .

t I
DATA I I

• Mox:mum logical record length - 32,756 bytes.

!II Leng'-h control fields suppl ied by FORTRAN I/O.

k·
I

Lr~j

.... -. . f ~ 1 --.-~. ~.-~-~.
r \

.. -_ .. __ ... _. LL2

....... ~.. i 12 ~
I

DATA I}
~~- LL2 ~ ..

Continued below

r
~-

~---- . ~. H 3 -~·T· H 4

~-L-L-2b-b----+I---f-~-Jb-b---'r--D-A-T-A--+i---~t-4-b-b----'--D-A-T-A--'Ir-~i

• Moxi',um log ieal record length - 32, ?S6 bytes.

• ~e!lgrh cont;o! fields ~uppi;€d by FORT~AN 1/0.

• Format-V one blocked forrnot-\/ records cannot be pr:JCe"Sc,'2I.J on 7-t~'C1Ck tape units without dote COflVCI"sion feature.

r-~-- Recod 1 --- --~----Ke("orc 2-"-"--T- - -- Record 3 .. _-- T-- Record !,. - -1
[

1

I =r I I i DC.O~ Dato Dotu Dato

• Recc,rd length· defined by physical bounds recoSlnized by the sfcn:;ge device,

Figure 22. Record Formats - Physical Sequential

(C) X greater than Y
(error)

Read From Next Record

Data Set I ,.--1'----,

[FORTRAN' ~

4. FORTRAN logical record of X bytes read from a for­
mat V data set logical record with a data length of
Y (data set LRECL in the DDEF command is unimpor­
tant unless it is deliberately set smaller than max­
imum likely Y):

(a) X = Y
Y+4(VAM)
Y+8(PS)

Data Set

FORTRAN

(b) X less than Y ---------------------------, C='''''I' ___ ...;D:..;a=ta,:.,.;s:..:.e-=-.t ---'-r--'--.-J
. FORTRAN

Not Processed

(c) X greater than Y (error)
Read From Next Record

r==·-----------------D-a-t-a-S-et---,I,.--I'----,

FORTRAN J L-___ .~::..:.:..:..;:.::.;.:,.~ ___ .

NAMEL/S1 Records

FORTRAN NAMELIST records are written based on a
NAMELIST variable list that provides a NAMELIST desig­
nator name followed by a number of variable or array
names,

Appendix E: Specification of Data Set Characteristics 129

This results in the generation of at least three logical
records:

1. A record containing only the NA~IELIST designator
name preceded by an ampersand (&), which starts
.in character 2 of the record

2. One or marc records containing items of the form
variable-name = integer, real, complex, or logical

number

:3. A final record containing &END, which starts in the
second character of the recoru.

The user has no control ovcr the spacing or size of
items in the second class of record; this depends on
the size of the number field required to represent the
variable. Typical output might appear as:

&;\fAl\IEl
A='17. 00000, 1=5, N=-767()9,XXX~c=-O, 12:31.S67E-07
&E;\fD

If format V is specified, records of different lengths
arc written, but none exceeds 120 bytes,

if format F is specified, the specified logical record
length in the DDEF is l1secl. The logical rccord length
can be set to 120 to facilitate subscqnent printing of
the data set.

H format U is specified (\vith a data set organiza­
tion of pS), unbJockecl records (format V) are di­
H~ctcd to the output device.

If the DDEF command for a Ki\::-mLIST output data S(~t
is defaulted, output j, directed to SYSOUT as variable­
length rccords of up to 120 bytes. It is either written
conversationally at the Ilscr's tcrmina1 or stored on a
system data set (SYSOUT) for suh-;cqncnt printing.

Since key information cannot he maintained within
KA"fEL1ST records, NA?\IEUST records with a data set
organization of VI are not permitted.

If NAMEUST input is from SYSII'\, thc terminal entries
for conversational input should be exactly the same as
wOlild be punched on a data card. A prompting mes­
sage' rt'qncsting ~A"IEUST input is printed.

UnFormatted Records

Unformatted FOHTRAN logical records are written only
nnder the control of a list with no FOrr\fAT statement.
Data is transferred to the ontput data set in internal
representation copied from virtual storage.

All llnformaupd output is lmule up into format-V
records using, jf necessary, a standard pair of bits in­
dicating that a given record is incomplete and extends
into the next record. For VSA\1 records, the first two
bits of the nrst byte in the record length field are used,
For BSAM records, the last two hits of the third byte
in the block length field are used. Tlw hits of this hyte
[Ire given the following meaning:

130

VSAM BSAM Meaning

Bit () (first) 6 This recorel spallS into the next record.

Bit 1 7 (last) This reeord spam hom the last record.

Unformatted records written by the IBM System/
:1GO Operating System with PS organization are proc­
essed corrcctly by TSS.':iGO,

\"hen the DDEF command for an output data set is
defaulted and unformatted records are written, they
are converted to hexadecimal and appear in this form
at the terminal or in the listing. The spanning indica­
tor and record length are printed. ,"Vhen the DDEF

command for an input data set is defaulted and un­
fonnatted records arc to be read, the prompting mes­
sage reminds the mer that hexadecimal data should
he entered, The 1lscr is not reqnircd to cnter hexa­
decimal data for the length Held and spanning indica­
tor, If one line of input is not enough to fl11 the
clenwnts of the Ji':t, <ldclitional requests are made for
more lines until ('lIough data is received. Inya1id hexa­
decimal charackrs canse ;1 reqnest for a new line of
data. A hLmk in the input lillc is treated as marking
the end of lWX:ldccima! data, and any further ehar­
:lct('r~ in the line are ignored.

Summary of FORTRAN Data Set Formats

Tal,k 10 snmmarizes the allowable data set organiza­
tions and logical record structure for data sets created
ell' proccs~cd hy FORTR\"l object programs.

,FORn~AN Operations on Data Sets

Generation of New Data Sets

A FORTH,,;, program can write an output data set to
be used as intermediate data, print or punch output,
or 10 1)(' processed latc] other programs.

1. IlItcnncdiatc Output: This requires use of the sim-
form of DDLT described Hnder hasic DDEF com­

maml. Ddalllt characteristics are suitable for an
applications and for any '2ombinatioll of READ,

\ViUTE, and control statcIlwnts.

2. Print 01' Punch OutrJllt: The default parameters of
the basic DDEF command arc aeccptalJle, Unfor­
m:1t! cd records ,<ihonld 1101 "he' interspersed '.",lth for­
matted. The PlUNT or CATALOC command should be
issued for the data set before LOCOFF. In conversa­
tional opcratioIl, defaniting the DDEF command will
cause the output to hc printed at the terminal.

OutPlIt lkfedion 1,Vithin TSS/360: The simplest
fmll! of PDFF command can he use,l and the data
set will he catalngf'd since nc\; data sets defined
hv t1:(' basiC' DllT:F commaml reside on jJllbHc stor­
age, The data set may reside on dlhcr a public or
~)rivatc '/olunle.

Tahle 10. Dati; Set Format Summary

DA.TA SET

OHGA':!ZATIO."

vs

VS

V]

VJ

RECORD

FOH;-,IA'l

V'

F

V'

LO(~ICAL HECOHD LEKGTH

(LHECL) '\OTES

I. Max lcnl';lll =] ,048,57G
2. Default length = 133
3. Paddilil'; occurs if outPllt less

than spcccifiecl
4. Error if output greater than

specified

1. Max lellgth = 1,OJ8.,572.
.0 Dd,"dtil'llgtil .,,' .1002
3.]'\0 padding if Olltput less

than specified
.1. Erwr if output grcatl'r jlrm

specillec1

1. j\!ax !cngtL ~= ·i,OOO
2. DeLmlt j"llgti, c.: 1:3.'3
3, Padding occur." if ()utPl1t]C'~.-.;

than specified
. /. Error if output gr('ale, thlm

,pcciflec1

:''/1<1\ IcngtL =.: ·1,000
2. Dt'Lmlt \('''0)1: ::-_'" 4,000
3. No padditl!!, of IlJgiea, record,
Lf. Error jf Olltput greater than

sjlcciflr>Ci

(DJSF=NEW)

ni~QlJ IHED

PAH-\;-,IETEHS

1 Txx!'Y'Y, VS
DS>:A\lE=
HECF\f=F
LnEC~L=

FTx,Fvn. VS
D5'\\ \ fE ._-

T·'T.'!,!'),;.')" Vi
DS:\i\\1F.·::
HFCTM::c.:F

·-i KE1'~_,E\)~=

:}, H.Kf/:=:;'

[,"J xx Fy-': .V', VI
DS.\:.\ \1 E ::-::
FTYi.Ef\ ::

'. !lJ.~P='

. _--_._----
PS F

PS FB

PS \71

l. ~Ia,. kngtll =: 32,760
2. Default lr>Ilglh =:: 13:3
:1. Pnddill.~ occurs if out L)trt lC':~s

than sllcdfied
,J, Ern't' if onlllut greater thim

specified

1.]\ia, length :.c: :32,7 GO
2. Default !engt!' :::: 1:>3
:3. Padclini'; uccurs if {)utl1nt lcs\

t h:nl spccified
L Errur if OHtput greater thcln

:-;peciBed

I. \L(', ien;!,tL = :12.75fi
2. DcL!lIlt length ::: ·1002,
3. No padding
4. Enor if onlput greater lhan

specifle(]

1 IBM-\nPJlJ ie,1 default paramctr:r

DS:-\,\\\E=
HFCF\)c"F
I".HF~:-=L:.:~:

!' T~" Fyyy'. PS
DS:\.\1IIE=.::
HECI'\1=,Fn

>. LHECL=~

I,'T"'Y),:,),. PS
:~, DS:\:\\iE:cc

2Formll.l-t: HTOIds ,HC treated !lS Furma! F witl,]cllgtll of 40'JO ill VS
"HKIJ mn,1 allow for th,' 4·hyte indicator

NOTES

L l\"c(,,,,L (He ,dways Llm·ked.
l. Do not u;·(' for unformatted I/O.
.'1 ;\ (} t~t pes,

It,_"'"Cl"(l" .He (th\'~1.Ys hlocked.
2. Can tiC used lor formatted, unformatted

myi ~;A:'I.n;UST logical records.
:,.](,lH(th imhcalm at begillllill!~ OJ

logic~d ITCO('rJ~ not trnnsmiltcd to
n~~c.r'~ stor~-tge.

Xu Llpes.

~_. hC[.'(Jrd ~ ;1H' ~ll\\'(lY~'; blocked.
2. D:) not n,,' for Ilnformatted I/O.
,J. !-',cr mmt :;ul'ply key in the record.
'f. bpcs .

i. d:> are ah,,-ay,'-, blue-ked.

4.

,;~n 1)(~ u',cd h)r fonnat(cd logical n;cord,~
: ~,lH_l unfnnnattcd u~ing core .in the k~~y,1"

',{'I rnns:: ~~llPlily' key ill the record.
lcn!(th incliC'nh)c ~It heginning of

Jog1('rd rccnn1, not tr;1l1Snlith:·d to
n..;er-~ S~Ol':1f"e.

:,1 ;,,() Ltpes .

i < F;,.'coHl .. ,-JC unblocked.
VO\('111(, may L" tape.
D·) not n'·" for l:nfonnattcclI!O.

4. IB\l SY~".i·1Il..'3(iO Ojlel ating System
UTnes can b{~ \\Titten/rcad.

1. !'d'1.\i~f!lnL hlo(L: length i:._ ,'32,760.
;, l)efau1t- hiock -knglll is :3D~H}

vol-

), HilleL ['-'ng!h must be a multiple of
i .. HLC-L.
".;)11 lit' u:,cd fur {onnaU(d logical records

111:ly be hlt)C<

6. iBI\l Syotemi:30(j Operating Systern \'ol-
n2rws- t';111 he \i/riitcn/rc'act.

... Cannot be specified fOl Ascn data sets.

\!l\.l)mm, hIPd, length is :32,7GO.
2. DcLnlt block length is 4090.
J. nbd: l"'l.gtl, mllst he " multiJ.'le or

!.,HEC:I! .
. 1. ClI' 10" lbCd fDr fOnJwltcd. nntonnallec/

.-mei :, A"-IEL1ST records.
'. Vohll'lC' nuy he tape.

(i. 1]\\1 Sys(cmi:;()() Operating System vol­
un]!' ,:~m i>c written/read.

1cn,t.;lh jndlc~l.tor at beginlling of
!'Wil'a] record, not iransm:lte(] to

11.-.;cr's slora~-~c.

Appcndi~ E: Sp(,dficatinn of Data Set Characteristic, 131

If the data set is to be used subsequently by
others, a PER"UT command must be issued for the
data set so that those who wish to use it can
SHARE it.

4. Output Retention Outside TSS/3()O: A data set to
he llsed on another Tssi;;r;o system is trC'aled as if
it were to be used on the same system, Imt a private
\'olume must be requested. However, if the data set
is to be used on anoth(T system (not a T~;;S/;\(j() sys­
tem), a full JlDEF command is required for one of
the lOS data sct types Oil either direct-access storage
or tape. The data scr should be 01l a private volume.
All tapes should Imve standard labels, so that they
can be processed on TSS/:)(;O and most other sys­
tems) with a rninir11111n of DDE!' command para­
meters.

Reading Existing Data Sets

A .FORTRA" object program may llse input data sets
from a number of differcnt sources and with different
characteristics,

From Outside T55/360

1. Card decks. Card decks may be placed in a termi­
nal card rcader and read directly by FORTRAN when
the DDEF command fer tlle input data set is de­
faulted. Another method is to submit to the TSSj:l60
operations center the card deck made up as input
to a system program that generates VA1\1 data sets
from carel dccks. The card deck is sct up for a
non conversational task in one of two ways:

a. The deck contains a LOGON card and command
cards that CALL a specificd FOHTHAl'\ pOl'gram. The
data cards follow the CALL card; the last data
card is foIlowC'd by a card with 5i'END in columns
1-4, by additional systcm command cards, aBd
finany by a LOGOFF card. The entire (:eck causes
FORTRAN execution similar to that in a hatch en­
vironment. Thc resulting VAM data set serves as
SYSI" but cannot be cataloged or retained in the
system. (See Example 13 in this manuaL)

b. A. data descriptor card immediat-3ly precedes the
first data card. The data descriptor card is de­
scribed in Command Systcm User's G1Iide. Fol­
Imving the last data carel is a card with %EKDDS
starting in column 3. The resultant data set is
cataloged and is accessihle to FORTRAN programs
by means of the basic DDEF command.

2. Magnetic Tapes, If the tape is to be lIsed frequent­
ly, the system operator should he requested to make
a vs data set from the tape using a program similar
to tbat mentioned above for bulk input from cards.

132

The operator wil1 create a standard cataloged
vs data set that is accessible to the user for any
session.

The alternative approach is to treat the tape as
a private \'olllmc, request it on DDEF command:; with
DSORG set to ps, and specify the additional param­
eters as eliscnssed in "Full DDEF Command" in this
appendix. 'Vhen the tape has no labels, a number
of])DEF command parameters must be specified
that are normally obtained from the tape label.
However, if the data set is cataloged (CATALOG
command following DDEF command), it again be
comes po~sihle to nse the hasic DDEF command.

.'3. Dircct-Access Volllmes (Not VAM). To <lse direct
necess volumes from outside Tss/360, supply appro­
priah' DUEF commands for J)SOHC of PS with the
parameters gin'l1 in this Appendix. Issuing a CATA­
LOG command following the DDEF command will
make l·s-type direct-acccss volumes more conveni­
ent to process in future sessions.

From Other Than FORTRAN Programs on T55/360

FORTR\N I/O can he llsed to process most input VA1\1
data sets created under TSS/;1GO. Thc hasic DDEF com­
mZlm1 is used. Any input logical record that can be
rcpresented :IS a print line can be prGces~ed hy a
FOIURA,\, program haYing the right FOR1\IAT statement.

If a non-FOETHA:" program has written a non-VAM
data set such as a tape or direct-access volume on
Tss!::r;o, the l1ser should proceed as if the volume had
originatctl outside TSS/:]{)O.

From FORTRAN Pr<:-g:ams on)"55/360

Thcre an' no special considerations when exchanging
data scts hctwcen TsshGO FORTH A" programs

Exception Handling

If a READ statement is being executed :md it contains
the optional spccification of F,,,\)= or ERR=, and an
end or error condition exists. control transfers to the
11ser program without eITor message or interruption.

If an end-data-set condition exists and E:"D= causes
('ontinned execution, further READS on the same data
set canse a search for another DDEF command (e.g.,
one with a I)[)'\'.-'-'.IE of FT01F00:2 instead of FT01F001).

If an error conrlition exists, the llser can attempt to
hackspace and read again as many times as he wants.

If DSOHG is v, for magnetic tape, the system's error
recovery proccchn'es are applied to read or write
errors unless suppressed by the D.ISK option in the
DDEF command. If the error is Imrecoverable, the pro­
gram terminates (system EXIT is called by the I/O
routines) unless a HEAD with the EHH option is being
processed. If the nrSK option has been used to sup-

press one or more of the standard error procedures,
this suppresses either termination of the progmm or
transfcr to the ERH location.

If DSOHG is PS for direct access, the system's error
recovery procedures attempt to use alternate tracks.
Thus, when a track is found to be defective, the sys­
tem assigns the next available alternate track. The
FOHTHAN lIser has 110 control over this action and is not
H\vare of it.s taking plac(' C'\ccpt that in the evcnt that
no alternate track is available for a WIUTE, the program
will he terminated.

Positioning Statements and Sequence Rules

VVhen operating with VA1\1 or ps-type data sets, the
system attempts to interpret and execute each FOHTRAN

positioning statement in accordance with the organi­
zation of the data set in question.
1. For SYSOUT and SYSIN, all positioning statements are

ignored unless they violate rules 2 through .5.
2. An attempt to l1se E1\:DFILF. on a data set that has so

far only been llscd as input canses an error message
and CXl'clltion is terminated.

3. \Vhen E1\:DFILF. is Ilsc(1 on an output data set,
suhsequcnt WRITE statenlCnt': relate to a different
ddnanw (i.e., another DllEF command), such as
FTOl F002 instead of FTOIFOOl.

4. The seql1ence of statements 'YRITE-ENDFIl.E-READ

canse an error message and program termination.
The sequence WHITE-EXDFILE-REWIND-HEAD is ac­
ceptable.

.7. An initial HF.WIND has no meaning for VA,\I data sets
that arc always accessed starting at the first record;
hence, it is ignored. Thc sequence READ-REWIl'\D­

HEAD is acceptable and causes a return to sequential
processing starting at the first record of the first
data set associated with the data set reference num­
ber. Also READ-READ-BACKSI'ACE-READ is acceptable.
Attempts to BACKSPACE when positioned at the first
record of a data set are ignored.

Execution I/O Error Messages

A.ll FOHTRAX I/O crror messages are directed to SYSOUT;

that is, they appear at the terminal during conversa­
tiona 1 mode or are listed after a llonconversational task
is complete.

All messages except those that cause a system panse
start \vith a five-character name that identifies the I/O

routine issuing the message. The names always start
with the four letters cncr and end in one of the letters
A through Y.

Most messages consist of a fixed portion, usually 40
})ytes in length, followed by a variable portion of
about 20 bytes that contains the variable information
associated with the message.

'Vhen a FORTRA1\: PAUSE statement is executed, the
user is permitted to enter any command other than
LOAD, UNLOAD, or CALL name, and then to continue exe­
cution of the program with GO. In noneonversational
mode, the PAUSE message is written on SYSOUT and
program exeeution continues.

Certain error conditions do not permit further exe­
cution of the program, such as an end-data-set condi­
tion from a READ statement with no END= specified.
This eallses the printing of a message; then control is
transferred to the system termination routine, EXIT.

Any data sets that the program has left open can be
closed \vith the CLOSE command.

SECURE Requirements for Nonconversational
lash
Nonconversational tasks arc enqueued until the sys­
tem is able to fill the requirements for private devices.
This list of requirements is made available to the sys­
tem by means of a SECUHE command which the user
must include in the task's command procedure as the
first command after LOGON. Then as each DDEF is read
and processed, the required devices are allocated
from those that have he en seeured for the noncon­
vcrsational task. Any attempt to allocate more than
arc available will cause the task to be terminated.

In determining the number of devices needed in a
task, the following points should be considered:

• The number of devices should be at least equivalent
to the 110m ber of data sets on different private vol-
1lmes \v1lich are opened at anyone time. Two or
more data sets residing on the same private volume
may require only onE' device (the exception is de­
scrihecl below).

• If two different data sets residing on separate vol­
umes arc llsed in sequence (i.e., the first is closed
before the seeond is opcned) the system can be
directed to alloeate the same device to hath by
inclllding the UNIT=AFF option in the second DDEF

along with tlw])D:-':A,\fE of the first DDEF command.
"7hen the Ul'\IT=AFF option is selected, the device
types of both data sets must be compatible, and
neither should be new data sets residing on direet­
access devices.

• If two different data sets on the same or different
private volumes are de:fined by the same DDN!~ME,
the UNIT=AFF option may not be selected, regardless
of whether the references are in the same module or
not. If the same data set reference number is used
in different programs in a multiple execution task,
then the first data set must he released prior to the
second DDEF; thus, two devices must be secured for

Appendix E: Specification (If Data Set Characteristics 133

the data sets even though both data sets are not open
at the same time. If both data sets arc processed
serially in the same program (i.e., the end of the
data set is reached, followed by a READ on the same
data set referencc number) then two DDEF com­
mands arc nccessary with the same data set refer­
enc(' numlxT ill their 1)]):\"\ ;-'fE and with successive
data set sequence numbers. In this case, one device
is sufficient bccause the unit affinity option may be
used.

If several data sets are to be serially processed
with unit affinity specifecl, each data set may have
unit affinit" with only the most recently processed
data set. Note that unit affinity may only be speci­
ned for physical sequential data sets.

If, however, the data sets are not processed serially
in the same program, tIle Hrst data set mllst be re­
leased prior to the second DDEF. Therefore, two
devicE'S are necessary since the RELEASE command
removed the device from the task's allocation prior
to the second DDEF command.

Guide to DDfF Commands
This section discusses:

1. Basic DDEF Commands - describing tlw general
form of the basic DDEF command and its uses.

2. Dcfanlt of DDEF Commands - describing the con(11-
tions ,>"hcre DDEF commands arc debutable and suh­
sequent system action.

3. Fun DDEF CommallCl - describing the gcneral form
of the fulllJDEIC command for the FORTHA~ user. In­
cluded is a table illustrating f01' each type of data
set, the required and optional DDFF parameters.

The DDEF command is Ilsed to establish a data set
in the system and describe its characteristics. In gen­
eral, any data set rccluired by a FOlUHA'{ ohject pro­
gram dnring execution must be specified in a DDEF

command.
A DDEF command can be issued at any time within

the session prior to the CALL command for the pro­
gram in \vhich the data set is to be used. Each DDEF

command is valid only during the task in which it is
issued: previously defined data S0ts must be redefined
at every task that refcrs to them. A IlDEF command
that has hcen entered can be canceled by a HELEASF

command.
Normally, FOHTHA" llsers require only basic nDEF

commands, defaulting almost all of the operand Helds.
In some cases, DDEF commands themselves can be de­
faulted. in which case the S1'S1" or S1'SOUT data set for
input and output respectively is chosen. r-.,·iore complex

134

DJ>EF commands can be used if the data formats re­
(ruin~ it.

Input !ontput statements, such as HEAD, WHITE, RE­

VVI~lJ, BACKSPACE, and EKDFlLE, apply to collections of
data that are referenced within H FORTHA1\: program as
integer numbers:

HEAD (2:1) A OH ,VRITE (J) B

Since the reference is lo the data ratllcr than any
spcc-iHc de\'icc this l1\lmber is cailcd the data set ref­
erence number.

The data set reference 11nmher Ilserl within a FOR··

Tn.'>:\" program mllst he associated with n data set name
or DS~i\\rE hefore the system can read or write it. This
lTlatinnship is ('stahlishcc1 hr reference to a DDE!" com ..
mand that links a data set reference nllm ber. a data
definition name (DD",\A\IE), alld a data set name
(JlS:\" X\ fL .

Command forma! specification conventiollS are
lisl\'(1 in Appendix C.

Basic DDH Command

The hasic D])EF commands ma)' be used for any
cataloged input data set except those on llnlahelcd
tapes. For a ncw data set it specifics public \'ohmIC
rcsill(,l1c(', a virtual sequential (vs) data set organiza­
tion, and variahlc length records (format VA). Data
Sl'ts defined with this hasic DTlEr eommand must he
cataloged hv the system. Th(' hasie DDEF command
is shown in Figure 2.1.

Operation Operand !
I

DDEF DDNAME::.:dolo definition name .. [DSORG:= {VIVS·VP}].1
DSNAME=do!a set name I

DDNAME=FTxxFyyy

The !)])"'\X"IE parameter 111m! he of tile Following for··
mat:

FTxxFyyy

where xx is the data set reference numher used within
the program and must be two integer digits in the
range 00-99; for C'xample. a program containing the
FORTHA:\" statement HEAD (5. liO)1\ requires a DDEF com­
mand with DD"X\fE parameter FTO,iF001. The yyy is the
thrce integer digits 001, ("\;ccpt as noted below. The
y}'y portion of the DD."·\\fE permits operations on mui­
tiple data sets with the same data set reference Dum ..

bcr. For example, when a 1,EAD (,";, EKD~-to) is used
and an l'nd-of-data-sct condition o('cms. sl1ccessiv('
HEAD statements applying to data set reference nllm-

ber ;5 take place on DD);AME FT{LiF002; therefore, two

DDEF commands should be snpplied, one for FTO:;F001

and the other for FT();-)F002. Similarly, \vhen a WHITE (:;)

statement is followed by EKDFILE s. succes~ive wmTE

(;i) statements take place on DDNA1\IE FTO;)FlJ02; there­
fore, two DDEF commands should be sllpplied, one for
FTO:lFOOI and the other for FTO,;F002.

If a DDNAME with yyy higher than 001 is llsed, DDEF

commands for all yyy between 001 and the higher
number must be provided. The various data scts using
the same data set reference numher may have eom­
p1etely different characteristics and may be stored on
the same or different devices,

DSORG=

Specifics the data set organizatio:L In the hasic DDEF

command, this shou Id be specified [IS vs (virtual se­
quential), Other data set organizations and their use
are descrihed later in this appendix in "Full DDEF

Commancl."

DSNAME=

The DS:'\.\,\!E paramder clcscription DS:,\:\\IE=.-=name
specifies the naI11(~ of the data set. This is the name
uncler which the data set is to bc cataloged or referred
!o by other commands during the session. It contains
one or mol'(' simple names, each simpll' name having
one to c'ight alphameric characters, the first of which
nmst be alplJabetiC'. A period is used as separator be­
tween simple names, The maximum number of charm'­
tel'S, including periods, is 3,,), The maxim1lm l111mbcr
of simple name:: is J8.

For manv cases the])""A\11-: will consist of only olle
simple IlHlrlC such as:

DDEF FTOllFO() 1, VS,DS:-V,·.\lE==OCTPUT,DISP==7\:FW

A llS"\,A\IE rnav he of valuc in descrihing thc con­
tents of the data set, Thus, a program that generates
~l ted,]c of random 1111111he1'5 and a tahlc of sq1lare roots
wjth tbe (lata set reference nllml)(']'s 1 and 2, respec­
tin+I', might employ the J)IlEF commands:

DnEF F1'OIF()01, YS, TAllLE.llA1\XUM

DllEF F"fn::FOfll. VS, DSXA),1E=TABLE.SQHROOTS

A simple means of obtaining unique meaningful
DS-"A~rES is to lIS(> the program module l1:l11W as the
first simple lI,nnf' amI the D[):\A \IE as the secontl simple
name. Tlwl'eforc. a program called EXS\fOOTII that
writes its output on data set reference nmnber 10
might he given DDEF cornmancl parameters:

DnEF' F1'1 (!FOO" \,S,DSXA\ lEo=EXS1\[OOTII.FTlOFOO I ,OUTPUT

Use of partitioned data set member names and rela­
tive generation numbers are for a special kind of data
set discllssed in detail in this appendix under "Full
DDEF Command," hut their effect on DSNAJ\fES is de­
scrihed briefly below.

The nSN:\1\IE may continue one of two additional
kinds of simple names, The first is written within pa­
rcntheses and is Hot preceded hy a period. The second
is a simple name of the form GxxxxVyy, where xxxx is
a 4-digit numeric gcneration number and yy is a 2-
digit llumeric \'ersion.

If a simple name is not separated from the previous
nanw by a period and is within parentheses at the end
of a DSl\'A\lE, it may 1)(' the name of a member of a par­
titiorwcl data set (first character must he alphahetic)
or a relative generation number (zero or a signed
integcr) ,

E:ramples:

l\fATIILTB (SORT)

PAYHOLL(O)

PAYROLL(-1)
PAYHOl.L(+1)
PAYHOI ,i .. COOO5YOO

Means th(' SQRT memher of the pmti­
tioned data set 1\1 A TIlLIB

l\IC<lllS the most recent gelleration of
PAYROLL
Means the last genemtion of PAYROLL
\leans the next generation of PAYHOLL

Fifth nhsollltc generation

If a llSNAl\lE is to contain generation names, the
J)S"\"\\[I': pnlj)er is limih'cl to 26 eharactC'l's, including
periods.

Default of DDH Commands

\VllcTl an T 0 statement is cl1cOImtered during the ex­

ecution of FOHTHAN programs and the data set refer­
ence 11llm1)(']' is ol1e that has not already been llsed,
the 1'0 routines make a se;lH,h of user DDEF commands
issucd so fm. This search is hascd on the appropriate
ddnanH' constructed from the data set reference llllm­

hel' according to the convention 17TxxFyyy. If no snch
command is found, the terminal is defaulted.

Conversational

Hnnning conversationally with a defaulted DDEF

comrnand means that any WHITE statements in the pro­
gram cause data to he printed at the terminal. Unfor­
matted WIUTE statements resnit in the printing of
hexadecimal data, Fonnattccl or NA1\1ELIST WRITE state­
mcnts lead to the output of print lines identical to
those that would appear on a line printer except that
the page skip carriage control character is treated as
a triple space amI, if the terminal has a print line size
shorter than a generated FOHTHAN logical record, two
or more lines arc output (np to a maximum permitted

Appendix E: Specification of Data Set Characteristics 135

logical record length of 256 bytes). The first char­
acter in the record does not appear but is handled as
a carriage control character.

Running conversationally with a defaulted DDEF
command means that any READ statement requires in­
put from the terminal.

The expression 9hcKD is needed to indicate the end of
data to be read by the lIscr's objed program from
SYSI:\. It can be punched on a card for nonconversation­
al processing (or entry through the terminal card read­
er) or entered throngh the terminal keyboard. The
FORTRAN I/O subroutines detect the end of input by an
end-of-data set condition. The system recognizes the
expression, %END, and generates an end-of-data set in­
dication, which is transmitted to the FORTRAK sub­
routines. \Vhen a command sequence which has data
lines or eards included with it is stored as a SYSIl'\
data set for processing (see Examples 11, 12, and 16).
the ~{E,\D must follow the last line of data.

It is possible to include any number of ;tE:\D cards in
an input deck if tl1c mer wishes to section his deck. If
the E'\D=option is used in a FORTRAK read statement
each %END would then indicate the end of a section of
data.

I/O control operations such as REWIND, E"lDFILE, and
BAf:KSPACE are ignorC'd when the corresponding DDEF
command has been defaulted convcrsationaJIy.

The r/o statements READ (with no data set refer­
ence number) and PHIl'\T lead to automatic default to
terminal I/O without prompting for DDEF commands.

Nonconversotionol

vVhen an I/O statement is encountered during execu­
tion of FORTRAN programs in nonconversational mode
and the data set reference number has not already
heen used, a search for the DDEF is made. If no DDEF
with the proper data set reference number is found
and the I/O operation is WRITE, then output is directed
to the system-assigned output data set, SYSOUT. The
uscr receives a listing of SYSOUT, hut the data set is not
cataloged for subsequent llse. If the I/O operation is
READ, an attempt is made to read from the SYSIN data
supplied by the user when the task was submitted. It
should contain data following the RUN command if
READ statements without corresponding DDEF com­
mands arc to be executed. The characteristics of this
data set depend on limy it, in turn, was created; it can
be either vs or VI and normally contains fixed-length
80-character records. \Vhen reading from SYSI1\'. a rec­
ord consisting of the characters 5!'Ei'rD is assumed to l1E'
an end-data-set indicator, which causes either termin­
ation or transfer to the EKD=location specified in the
READ statement. If the SYSIN data set is exhausted,

136

(i.e., there is no %E:-.ID on SYSIK) the same action takes
place, hut crrors will arise if the LOGOFF command has
bce!] read as FORTRA'\ data.

Therefore, data sets and multiple data sets can be
read from SYSIN, but it is the user's responsihility to
guard against reading commands as if they ,vere data.
Further, the lISe]' should read all data on SYSIN to
avoid that data being intl'rpreted as commands.

rio control operations such as HEWIl'\D, El'\DFILE, and
BACKSPACE arc ignored when the corresponding DDEF
command has been defaulted nonconversationally.
The do statements READ (with no data set referenee
numhcr) and l'HTl'\T lead to automatic default to SYST?\

and SYSOUT.

Once a data set has been defaulted to SYSOUT (i.e., a
WHITE has been executed where no DDEF "vas sup­
plied), a subsequent attempt to READ the same dat~
set reference numher will cause execution to be tel
minated.

Full DDEF Commend

Those portions of a DDEF command that are applicable
to determine or specify the characteristics of a data
set operated on by FORTRA'\ programs are presented
in Figure 24. Other parameters and options of the gen­
eral D1JEF command. as described in the puhlication
Command System User's Guide, are not given hecause
they are ignored or overridden by the FORTRAN I/O
routines.

Specification of DDEF commands for peripheral de­
vices of the cpe is also described in the puhlication
Command System User's Guide.

The DDEF command that defines a cataloged data
set is hrief amI simple. The only required operand
fields are DD:-.IA,\rE and DSNAME. Other operand fields
are un:1ccessary since other information about the
data set is describcd in its catalog entry. For a cata­
loged data set if SPACE, UKIT, LABEL, or VOLU,\fE oper­
ands are entered, diagnostics will he displayed as ap­
propriate. However, the associated fields will be taken
correctly from the existing catalog entry.

DDEF commanc]s that define uncataloged data sets
can he divided into two gro\lpS: (1) those defining
new data sets (data sets that are to be generated dur­
ing the l'1m Imt do not yet exist) and (2) those de­
fining old (already existing, but uncataloged) data
sets. These old, \lncataloged data sets can exist only
on private vol\lmes.

To define a new data set that is to be written on a
puhlic volume, the user can use the DDNA}'1E, DS:-.IAME,
SPACE, DSORG, and LABEL operand fields. Exactly which
fields he uses other than DD:-.IA,\1E and DSNA'ME, which
arc required, depends on the character of his partic-

OPERATION OPERAND

DDEF DDNAME .~ data definition name

-[,DSORG ~ {VIIVP! VSIPS}]

DSNAME ~ { data set name }
, * data set name

[({ DA [,direct-access device type]})]
,UNIT = TA [,tape type]

symbolic device address

[,SPACE ~ ({ CYL ITRKlrecord length}, primary]
[, secondary] [,HOLD])

[([PUBLIC J [fPRIVATE t) J
,VOLUME~ PRIVATE ,)volumeseriolnumber""j

volume sequence number ~ ,

[,LABEL = [file sequence nurn~er] [..{NL I SL IAL} J]
[,RETPD = retentIOn period]

[,DISP~c {OLDINEWIMOD}]

[,OPTION = {CONC I JOBLIS }]

[,RET = retention code]

[,DCB = ([datan~e:~itionJ [DSORG=code] [, RECFM=code]

[, LRECL=integer J [, BLKSIZE=integer]

I [, KEYLEN=integer] [,RKP=integerJ
I [, PAD=integer J [, DEVD=cade J

L DEN=integerJ [, TRTCH=code]

[,BUFNO=integer] [,OPTCD= {WIA}]

[, IMSK=cade J [. BFOFF=integer])]

Figure 24. Full DDEF COlllmand for the FORTHA!\' User

1I1ar data set. To define a new data set that is to be writ ..
ten on a private volume, the user must give DDNA~1E,
J)S,,\Al\fE, UNIT, and VOLUl\1E operands. If he wants, he
can also furnish DSORG, SPACE, LABEL, and DISP fields as
well,

The user defines an old, uncataloged data set by
specifying the DDNAME, DSNAME, VOLUME, Ul\'IT, and
DISI' fields. The remaining fields can be defaulted for
all data sets except unlabeled tapes.

The description of the basic DDEF command given
previously in this appendix also applies to the full
DDEF command. If DISP=OLD, the full DDEF command
can be used to override data set specifications already
given in the standard label; however, the user is cau­
tioned that to do this may cause errors in processing
the data.

,"Vhen DISP=l\'EW, data sets can be defined that dif.-

fer radically from the standard data set resulting from
the basic DDEF command. In particular, the user can
define output data sets to be made compatible to other
systems.

DDNAME

This operand is used exactly the same way as in the
hasic DDEF command. Refer to "Basic DDEF Command"
in this appendix.

DSORG

In the basic DDEF command this is virtual sequential
(vs). The other options are virtual index sequential
(VI), virtual partitioned (vP), 1 and physical sequential
(PS).

IThe DSORG parameter is also present within the DCB sublist of the full
DDEF command. This distinguishes between the different forms of VP,
namely virtual index sequential partitioned (VIP) and virtual sequential
partitioned (VSP), and identifies the organization of the partitioned data
set n)ember to be processed.

Appendix E: Specification of Data Set Characteristics 137

The ps option must be used for tapes or disks that
originate outside the TSS/3t)O environment and for
tapes or disks that are to be written under TSS/;)(j{i and
then transferred to other systems for processing.

The data set organization options other than the
standard vs are available for the benefit ()f the FOR­

TRAK user who wants to process index sequential or
partitioned data sets, either to take advantage of their
special features or to communicate with assembler
language programs.

Each member of a partitioned data set is treated a5
an independent data set, and the FORTRAN user need
not be mvare of whether it is a member of the data
set or not. However, only one DDEF command can
he issued for a Vp data set and, therefore, only one
member can he processed during a single FORTRAK

execution.
Virtual index sequential can be used only if there is

no :'>JAl\JELIST input/output for the data set and if the
user takes the responsibility (for output data sets) of
making certain that all logical records cont[lin a se­
qnential key in a specified location. The location and
length of this key are given [lS RKP= and KEYLEN=

within the DCB snbJist of the full DDEF command. NAME­

V"T output cannot be placed on a VI data set because
there is no way for the user to ensure a sequential key
in a given location in every record.

DSNAME

The prcvious description in this appenrlix under Basic
DDEF Command on this suhject applies to the full DDEF

command.
If Dsonc is YP, a mernber name must he ~pcC'ifl('d as

part of the DS:'>J.\:\!E. No more than one memher of a
partitioned data set can be procpssed at one time.

The ... data set name option of the full DDEF com­
mand is needed only when processing tape or disk
data sets \vrittcn by the IB?-.1 System/360 Opcrating
Systcm with 44-charactcI data set names. Therefore,
this option is used only with a DSOHC of ps. Subsequent
references to thc name do not include the asterisk
prefix.

UNIT

This operand is only required \vhcn DSOTIr; is ps. It can
be defaulted even in that case if the data set is cata­
loged.

UNIT= (DA, {gi~})

Specifies direct-access (either a 2311 Disk Storage
Drive or a 2314 ;\·fulti-disk Storage Drive).

UNIT=(TA,{717DCj9})

138

Specifies that a tape unit (7-track, 7-track with data
conversion, or 9-tmck) is required for the data set. If
givcn, it should agree with the DEVD parameter in the
DCB field.

CK'IT= (symbolic (]cvic(; address)

Specifies the symbolic device address of a non-stand­
ard device.

SPACE

The SPACE parameter is ncver required for existing
data sets. It can be lIsed for new virtna! storage data
sets (DSOHC is VI, \'S, or vp) to request an initial alloca­
tion of puhlic storage that is different from that speci­
fied at system generation time. Its function in this
respect is of interest only if the expected size of the
data set is either much larger or nmch smaller than the
standard system allocation. In these cases, it permits
somewhat greater efficiency in storage allocation. Even
jf the storage rcqllin'd is greater than the st~mdarcl
allocation, additional storage is :mtonwhcally i~Sl1Cd

so that the Sl',\CE parameter is never required for vir­
tllal storage data sets.

FOl'mZ

SPACE=(, primary L secondary] [, HOLD])

This form is used to request allocation parameters for
virtual storage data sets that differ from the system
standard. Primary amI spcondary allocation are in
space units of t096 h\'tes (pages). Primary specifies
the lllllllber of initial space units tel be allocated to the
data set. It is 01H' to three digits. Secondary is the
lI11mlwl' of space ullits to 1)(' allocated each time the
space allocateci to the data set has 1>e('n exhausted
and more data i., to he writh'1'. Thi:; allocation con­
sists of a 0]]('- io thrcc-digit ckcirnal nllmlJt'r.

The HOLD option within the SPACE parameter spcc­
ifi(,s that llllused storage assigned fo the data set is not
to be released when tlie clata set is closed.

Form 2

SPACE= ({TRK'CYLlrccord length},primary [,secondary]
L HOLD])

This form is 11scc1 for direct-access devices where
ll!"OHC is 1'S. It ~l11ocaks space in units defined by the
first Sll hp~\r:ll1l(,tcr, namcly traeJ.::s, cylinders. or record
lengths.

VOLUME

Form 1

VOLUME= (\PHIVKE . l)
(, voluIlle senal number [, ... J f

The VOLU\1E parameter is required for old, l1ncat-

alnged data sets that reside on private volumes. It can
also be supplied for new data sets that arc to resid(~
on privak volumes. Volmnc "erial lwmL('rs can]w one
to si, al[)lJ;mwric characters and shoulc1l11liqucly idcl1-
tih' a p,uticlIbr disk pack or tape red that is to be
mmmtcd. If Pl\1VATE is specified and DISP==NEW, the
.')vsteIn obtains an ;wailahle \'o!mne and informs tIi('
l\sc'r of the \'nhmw se!ecteel.

in tllcl"cfClre, this form of the VOI.l:T\lE field
is n("f'dcd Ollly for data sets that arc not cat'lloged. It
applies nlainl~' when Dsonc is lOS and a disk pack OJ"

tape gelH'l'nte([h\ the IB\f Systcrn360 Operating
SvstCIli j, jo 1)(' read.

Forni :.2

\\']F'lt' u. data sd extcnds over 1110re than one vol­
ume. specifies the sequence number of the first of the
d:tl:, ,('1 I.U 1,(, le~t(l or written. This consists of a onc­
l~) i ! n111111w1'. It is lllC<lllingf'ul onlv if the data
set hus 1':; Ol,) . .:;ani/:lIioll, is cataloged, and its earlier
\'oll:IIH"'; arc not to h, processed,

Form :3

This form is used for a new public data set if the
nS(,l specincs a device type in the UNIT parameter. If
PFflLlC is spec-Wed, the volullw serial number is not
recognized, PUBL1C "is also aSSllI11Cd if the VOLU1\lE

pamrnetc]' is not specified.

l.ABEI

This parameter appiies only when the data set or··
galllzation is ps, It is gencrally nsed only when mag ..
lll'tic :UT to be processed, since all data sets on
ctir('ci<1C'U'<;S \oIull1('s have lalwls knowll as Data Sct
Control Bloch (llSClIS:'. The HFTI'D sllhparamcter, how­
el,(T, is appiiclhlc lo all I'S data sets.

Jf !I!r C111irc LABE[, field is dt,faultecL the bbcling
COll\'('nLimIS specified by the installation are assigned.
How(,\(,L ii' tIl!: (/at,! sdis cataloged, lahel informa,
hon i,\ rctri('\c<l from HlI' catalog.

l,ABF:I.cc (file ""lm'llct' nllllllwr)

The file sequence I1mnhcr (alit' or two decimal digits
specifics the number of a data set on a tape volume
containing multiple data sets. By specifying LABEL, th"
user can skin ovcr ot her data sets and the tape is posi,
tioned to t(;e data set he wants. If the user subse,
quently issues a HEWI'-;'I> instruction, the tapc will 1)('
positioned to the heginning of the data set he is using
(not necessarily to the beginning of the tape).

Form 2

LABEL=(, [NLiSLlAL], HETPD=days}

The OptiOllS shown are l\L for no labels, SL for
standard labels and AL for ASCII labels. The exact
mea1ling of' standard la hels is installation dependent.
The :\L option should not be used for FOHTHA1\' output
dabl sets unless a definite reason exists, since a tape
data set without labels requiJ't,s a more complicated
DDTT command when read back by a FOHTI\i\'-;' program
than 011(' \vith Jahels.

HET!']) specifics the Illimber of retention days and
applies to output tapes with standard lahels and to
direct-access output.

If defaulted, RETPD is set to zero to permit immedi­
ate rewriting of an~J tape or direct access data set.

DISP

1 OLD ~'
DISI' = NEW

MOD

ilISPc""OLD alld DISP==:l'\KW do not affect a data set's
status, Their only Function is to guard against llse of
the \vrong da ta set.

H mSP==l\EW is explicitly sp"cined, the system veri­
fies that the lJS'-;'A:-IE does not duplicate one that is
:llrcl(k iii the llser's catalog or one that has been
fO\1l!d 'ill a pnTions DInT command in the samc task.
If a dllpJication occur;; in c01lversational mode, the

In iSSlll'S an error messagc. In nonconversational
rnock, the task is termillated.

If DISP::::c_'OLIJ is cxplicitly specified, the system
searches for an existing data set with the same
J)S:\,'\lL If it cannot find sHch a data set, it issues an
(']TOI message; in nOllc()1lversational modc. the task is
len II i !lake!.

If tlil' IIser clot's not specify DISP, and if the system
filHis a (lita set with the specified DSNAME, it assumes
I kd it is to lISC that data set. If it cannot find such a
dah sd. it creates a nC'w data set with that DSNAME.

mSP:cc:J\fOD applies only whcn the data set organiza­
tion is 1'S and a private volume is being processed.
This option causes logical positioning after the last
record of the data set. Additional 'VHITE statements
are then possihle to expand the data set. This option
applics mainly to magnetic tapes_

OPTION

OPTIOK=r:ONC

Specifics that a data set is being added to the con­
cat~~nat('(l data set named as I)DXAME. The order of
('ollcatenatc·d data sets is the same as the order in
\\'llich they arc defined. Only existillg 1'S data sets can
Ii<' COil catenated.

OPTION = JOIlLlB

Appendix E; Specification of Data Set Characteristics 139

Specifics that the data sct is to he used as a job li­
brary. The data set nmne specified in the DSJ'JA"m field
is entered into the program library list. The data set
organization mllst be vp.

RET

The nET parameter allows the owner of a virtnal stor­
age data set to specify the storage type, and deletion
and ace('ss attributes of a data set:

The storage types are:

P - permanent storage

T - temporary storage
- if neither is specified, penn anent storage (P) is assumed.

The access attributes are:

C -~~ delete [It CLOSE

L - dFlde at LOCOFF
- if not speCified, deletion at LOGOFF (L) is assumed

for a temporary (T) data set.
- a permanent data set (P) is not deleted automatically.

The access attributes are:

U - read/write

11. - read-llllly
- if neither is specified, read/write (U) is assumed.

DeB

A data control hloek (DCB) is one of the major control
tables llsed for communication between 'fSS/:Hi(j data
management and allY program requiring control of a
data sct. For every distinct data set reference number,
the FOHTHAJ'J inplltioutput routines build a DCB as it is
C'ncolllltered in e.';ccllting the object program. The
DCB is initially void, but can be filled from infor­
mation in the DDEF commands, by the I/O routines
after the DDEF command has hccn c.';aminpcL or l)y the
input data set labels. Therefore, any required informa­
tion not in the DDEF command is entered from one of
these sources; in particular, record format (HECFM)

and logical record length (LRECL) take on values de­
termined by the characteristics of an existing data set
(DISP=OLD) or by FORTRAK input/output standards
for RECF).I=VA where LHECL is not required. The only
DeB parameters of critical interest to the FORTRA,", user
are HECF)'{ and LHECL, and the only time these affect
him is when LRECL is smaller than a logical input or
output FORTRAN record defined witbin the program.
This condition will cause an error message.

Aside from LRECL and REcnr, the remaining DCB

parameters can be grouped into those related to a
DSORG of VI (KEYLEN, RKP, and PAD) and those related
to a DSORG of PS (DEVD, DE'"', TRTCH, OPTCD, BLKS1ZE, and
IMSK).

140

Den Parameters - RECFM, U1ECL, and J3LKSIZE:
HEel":'> [specifics the forma t or character of the records
in the data set:

1 U[T][AIM] }
, VenT] [AIM]

HEC£'M = FrBITIBT][AIMl
, D[B] !

\\ 'hnC' [he record format is:
{' -- llnddil1('(l-Jen~th records

- if])SOJ\{; is \~s 'or Y], this means record size is 4096 bytes
-- if ilSOHC i.s ['S, this means [ecorels have physical boundaries

(on a tape) and can vary in length, also known as
blocksize.

V - variable-length records (EBCDIC)
- each record contains in the first four hytes a hinary count

of the number of bytes in the record
- maximllm data hyte limit is:

1,048,572 bytes for VS
4,000 bytes for VI

:32,756 hytes for PS
- maximum data byte limit for formatted records with VS

is 4092 bytes.

F - fixed-length records
- maximum record length is:

1,048,576 bytes for VS
4,000 bytes for VI

32,760 bytes for PS
- maximum formatted record length with VS is 4092 bytes.

D - variable-length records
- for ASCII tapes only
- can be specified only as a DCB subparameter of DDEF

command.

\Vhere the physical attributes are:
B - blocked records (meaningful only for ps); the maximum

blocksize is 32,760 bytes
- IlLKSIZE must be an integral multiple of logical record

length for format-I;' records

T - track overflow employed
- applies only to disk data sets with DSORGPS

- may causc errors if omitted when track overflow is to be
lIsecl for writing Ycry long records.

LRECL mnst be 4 bytes greater than the largest for­
malted logical FOBTRA=-- record that is to be read or
written. If defaulted for format·~V records, it is as­
sumed to be 4096 for vs and 4000 for VI. If larger vs
records arc anticipated, it must be specified by the
user. Format-V records with a DSORG of PS are proc­
essed with an assumcd LlmCL of 4096, which can also
he rais('c1 hy the llser.

'Vhen using VSM,{, the FORTBAN BACKSPACE state­
ment may not he llsed to backspace a data set of un­
ddil1('d format (RECF.\I=U).

The A or Ivl options Hnder BECFl\[relate to whether
extended AJ'JSI FORTRAN control characters or machine
code control characters appear as the first byte of
every record. The A option (default value) is usually
preferred, since most formatted l"OHTRAN records make
use of extended A,",S1 FOHTRAN control character con­
ventions. If ,",A;,fELlST records are written, the A can be
specified (or chosen by defanlt) since aU records start

with a hlank. The M option shou1d not be speeified
unless the user has coded hexadecimal data into the
first byte of every record. This option can he ignored
by most users.

llLKsrZE is required only if RECF?-.I is Fn (fixerl-lcngth
hlocked records) and this option, in turn, is meaning­
ful onlv jf Dsonc is ps. In this case, it mnst be a mul­
tiple of LRECL. Otherwise, anv value given is ignored
and replaced by LRFCL

E'<lll1plcs of how t(; usc thc RECFJ\I. LHECL, and
BLI,<;JZE pararrlCters are shown below (they are not
complete nnEF commands; onlv the DSOHC and DCB

portion is shown).

VS, DCB=(RECFr-.r=F, LHECL=80) VS SO-character
fixed-length records

VS, DCB= (RECFM = V) VS variahle-Iength
records (standard)

VS, DCB= (RECF\l=FA, LRECL= I.en)
VS data set for
listing

VI, DCB=(HECF\I=V, RKP=4. KEYLEN=4)

PS, DCll=(HECFM=FB, LHECL=lOO,
BI J(STZE = 1 000)

VI varia hie-length
records with 4-hvte
key in initial position
(after 4-bvte
control w(;rd)

PS fixed-length
hlockcd with 10
records per block

DeB Parameters - VI Associated: If DISP=NEW and
OSOIIC is VI, the user must specify record key position
(HKP), key length (KElLE:"J), anel optionally padding
percent (PAD). The relative key position (RKI') spec­
ifies thc displacement of the key field from the first
hyte of the logical record. Since VISAJ\[records cannot
(~xccccl 4000 bytes, any value between 0 and 3999 can
lJe specified. The first four bytes of a format-V logical
record are reserved for length information. Therefore,
if HECF.\I=V, RKI' must be foU!' l-ytes higher (4 :c::: RKP

:c::: 3999) than for the same data set with RECFM=F.

KEYLEi\ is the length in bytes of the key associated
with a record. The maximum value is 255.

PAD specifics the percent of space (to a limit of 50
percent) to be left available within the pages of a VI

data set, thus providing for insertions within pages.
The FORTHAN user can use VI data sets as output pro­
vided he ensures that the specified key field is main­
tained with appropriate data in collating sequence (as­
ccnding) from record to record. This is most easily
done by spccifying an integer output field as in the
following example of a FORTRAN program for reading
input records and copying them to a VI data set.

1 FORMAT (IX, I5, 6A4)
2 FORMAT (6A4)

DI),IEl\SION A(6)
1=0

,\ READ (1, 2, END=4) A
1=1+1
WHITE (2,1) I,A
GO TO 3

>I STOP
END

DDEF commands are:
DDEF FT011"001, , DSNAIvtE=INPUT, DISP=OLD
DDEF FT021"001, VI, DSNAME=OUTPUT,

DCB=(RKP=I, KEYLEN=5, RECFM=F,
LHECL=30), DISP=NEW

The user cannot write NAMELIST records on a VI data
set. The lIser should exercise caution in maintaining
the kcy when writing unformatted records on VI data
sets.

DCB Paramctcrs - PS A.ssociated: If DSOHC is ps, a
large nnmber of DCB parameters can be used that
otherwise have no meaning. As previously discussed,
thc 13LKSIZE parameter is required if RECF!"f=FB. In
addition, the parameters listed below apply.

1. DEVD: Specifies the device on which the data set
resides. It is not required for cataloged data sets;
it can be one of the following:

a.])1\ specifies direct-access (disk formatted in ac­
cordance with IBM Systcm/360 Operating Sys­
tem conventions). In this case KEYLEN has a
special meaning since it specifics how many of
the initial bytes of each }'ccord are to be written
on the disk (or read from it) as a key. This con­
dition has no connection with VI and the key
cannot he llsed for random access by the FOR­

THAC; user. If all processing is to be done on
T~S/:;()O, it is llot necessary to use it. Ho\vever, if
a data set is to he written on a disk pack for the
p1lrpose of being processed on another lB~f sys­
ten (e.g., IBI\f System!360 Operating System),
the nse of KEYLEN may be required.

h. TA specifics magnetic tape. If 7-track tape is
specified in the UXIT parameter, DE~ is given a
value of 0,], or 2 for recording density of 200,
556, or 800 bytes, respectively. If 7-track tape is
to be read, TRTCH can be given as C for data
conversion, E for even parity, and T for BeDIC to
EBCDIC conversion, The defaults arc odd parity
and no translation.

2. BUFNO=l: Physical se<luentiall/o normally takes
pJace with two buffers. The user can reduce space
allocation requirements by specifying the number
of buffers as only one. Any other value given to
fWFr\O is disregarded.

:3. OPTCD=vV: Applies only for direct-access output,
cames additional checking of all write operntions.
This will increase execution time. OPTCD = A is
specified for an ASCII tape.

Appendix E: Specification of Data Set Characteristics 141

4. IMSK=coclc: SpecifIes a 4-bytc hexadecimal num­

ber wbose bit pattern indicates the system's e1'ror­
handling pnicedlll'eS to be invoked. If FFFFFFFF is
written, the wstem is to apply all optional error
recovery procedures. This is the default condition.
If 00000000 is written, the systern is to apply none
of its optional enor recovcry procedures. If any
other 4-by\e hexadecimal number is written, the

system appUes its error-recovery procedures WhCT­
evcr a bit is set to one in l'\ISK whieh corresponds

to an error condition. The nrst hvo hytes corre­
spond to thc first two bytes of the channel status

word. and the other two correspond to the first two

sense bytes. Bit positions in each byte for specifica­
tion of systcm error recovery procedure arc in the
following format:

x.."'(XXXXXB XCXXXXXD YEFGlfIYY YYYYYYYY

whcre a 1-1)it in a given position indicates that tJw
system is to handle the associated error condition.

X System never tests this bit to dct(']'mine cntry
to retry routines

Y Device-dependent conditions

B Unit exception

C Incorrect length
D --- Channel chaining check

E Intervention required
F Bns-out parity

G Equipment check
H - Da ta cheel,

r Overrun

DDEF Summary

Tahle 1 I shows, for each type of data set the required
and optional parameters for the DDEF command. The

m,ljor catcgorv is device type (direct-access or tape),

followed hi' disposition (new or old) for dirf'ct-acccss
clevice. Data sets residing on magnetic tape arc

grouped as cataloged (CAT) or uncata 10gec1 (u~c),

and labeled (lAB) or nnlaJ)eled (UNL).

Sample DDEF Commands

Commands arc presentcd here in incrcasing order of
complexity and decreasing order of likely applicability.

1. DDEF FT01F001,VS,SCHATCH

Can apply to a program containing such statements
as WRITE (1), READ (1), BEwr"D 1, etc., on a temporary

(scratch) data set.
The first parameter, FTOIFOOI, is built according to

the skeleton FTXXFyyy, where xx is the data set refer­
cnce number used in the program (01 in this case) and
yyy is a sequence number (generally 001).

vs indicates virtual sequentiaL

142

The DSl\'Al\lE can be any valid name made up of
cight-letter components connected with penods.

'2. DDEF FTO:W001"DS~A1\m=SCHATCH.0]\;E
JJDEF FTO[FOO 1 "DS'J :DIE-_:ccSCHATCH.TWO

Illustrates the USE' of two scratch data sets, dis­
tinguished b:: having different DSl\'"A:\fES.

3. DllEF FTO."jFOO] ,VS,DS0fAME=--::SCRATCH,DISP=NEW

'fllis may he qscd jf thc data set named SCRATCH

is either not yet in e",istence or has not becIl cataloged.

L DDEF FTO(\F001,YS,DSNA:\lE=SCHATCH,DISP=OLD

This may he llScd jf the ckta set named SCRATCH is

already in (,,(lstencc and lHls hecn cataloged.

5. DDEF .TLIB,VP,DS]'\A1>.n·:=O'V,"EH.JOBLIB,OPTION=,T0B­
LIB

This \voukl nCHT he llscc1 with object time I/O but
call he applied WhCll the nser wants to compile pro­
grams onto a jnh library other than the standard USER­

LIB that I.OCON supplies.

DIS!' is defa\llted to NE\V only on the first usc of the
data sct OWNEH.JOBLIB. Subsequent action (compiling
new members, etc) requires the same DDEF command

but DISI' is defaulted to OLD. (Job libraries are de­

scribed in \ ppcllclix C.)

6. DDF.F FT07F001,VS.DS'JA:\IE=OFIPCT.F120,DCB=

(RECFlI.I=F,LHECL=120)

Creaks a new vs data set with fixed-length records
of J 20 bytes. The DS]'\.nm can be anything; a suggested
tcclmiqllc is to incorporate information defining the

kind of data set.

Thc DCB parameters appear within parentheses and
consist of I1FCF\L mcaning record format, and LHECL,

ml'<1lling logical record length.
If DISP=NEW and no DCB parameters are given, it is

ass1lmed that neEcc_-=: (HECF'.'f=V, LHECL=-!O%). If DISP=

OLD, the data set characteristics that appear in the
data set label are used.

The above DOFF command should not be Hsed with
DTSP"-::OI.D. since the DCB parameters may not be cor­

rect.

7. DDEF FTOSF001, VS,DSl\' A1\ [E =-=OUTP1JT .F120,DlSP=OLD

This is the correct way to read back the data set
created])y thc last example.

S. nDEF' FT()(lFOO I, VS,DSNA]\[E=DATA.V,DCB= (RECFJ\f=V,

LHECL=lO'lG)

This has the same effect as DDEF FTO'lFOO I "DSXA\1E=
D\TA.V, sincc V and 4096 are the default vaInes sup­
plied for RECF':\f and LRECL by the FOHTHAN I/O routines.

9. DDEF F1' 1 OFO() I,vI,nSNA:\IE=LIST.VIFSO,DCB= (RECFl\1:=

F,LHECL=~(),HK1'=O,KEYLEN=5)

n indicates virtual index sequential. This can be
omitted jf the insta1lation-ddined option is VI.

Table 11. DDEF Parameter Requirements by Data Set Type

Notes: I. Reguired for RECFM=FB. BLKS1ZE must be 0 multiple of LRECL.
2. Specify largest V ~ype record expected. Default values. ore as described in this appendix.
3. Specify or.iy if private volume des.ired.
4. Refer to "DeB Parameters - PS Associated ll in this appendix.
5. Specify NL for unlabeled dato sets. A file sequence number moy be specified.
6. Only rcienlion period (RETPD) may be 5pecified.
7. Defoul tis 4092 bytes.
8. Default i, 4000 bytes.
9. Only meaningful if existing data set being extended.

10. Required for nonVAM dota sets,

Legend: Shaded - Field not required 1n DDEF c{.Imrw .. :mo
X - Field required in DDEF command
o - Field optiooal

-IBM-suppl ied default

The additional DCB pararnetcl's define a new data set
having a sequential key in evcry record in thc first five
bytes. The user must make sure that the key is in
ascending sequcnce (e.g., by using a format such as
FORl\fAT (I:;' ...) and incrementing the key in the out­
put list before each write).

RKP means record key position relative to the first
byte of the record. KEYLEX means key length in bytes.

10. DDEF FTllF001,VI,DSKAME=LIST.\'1V,DCB= (RECFI\I=

V,RKP= 4,KEYLEr\= 5)

This differs from sample 9 only in that it is for vari­
able-length records. LRECL can be omitted or set as

high as 4000, which is the maximum possihle value
for H.

RKP=4 because each logical record has a four-byte
length BeId that is not maintained by the user but
supplied automatically by the FORTRAN I/O routines;
it is followed by a five-byte sequential key that is
maintained by the user.

11. VDEF FTJ2FOOJ,VI,DSNAl\fE=LIST.VIF80

DDEF FT11FOOl,VI,DSNAl\IE=LIST.VIV

The above DDEFS might be used to rcad back the
data sets created by 9 and 10, respectively.

Note how characteristics are defaulted. They will

Appendix E: Specification of Data Set Characteristics 143

be filled in from the catalog and input data set labels.
Note also that DISP in this case is defaulted to OLD.

12. DDEF FT1UFOOl,PS,DSNA~rE=TAPE.OS3GO,DCB= (RECF:\f

=FB,LRECL=80,BLKSIZE=SOO,DEVD=TA) ,UNIT=

(TA,9) ,VOLUME=(PIUYATE),LABEL=(,SL,RETPD=50)

A DDEF such as this might be used to instruct the
operator to mount a scratch t:1pe on a 9-track drive
(the volume identinc:1tion is sent to the user after
entry of the DDEF command). It is written with blocked
SO-character records, at 10 records per block. The
density, DEN, and TrlTCI! Dcn subparameters do not ap­
ply sim'c 9-track tape is specificd.

Assuming the vol lIme serial nnmhcl' assigned is
00896, the next DDEF may be used to read the tape
had, into a FORTRAN program.

13. DDEF FT20F001,PS,DSNAME=TAPE.OS360,VOLU).IE=

(,000596) ,UNIT= (TA, \l)

DCB parameters are not needed if the installation de­
fault for LABEL is (,SL) which has been assumed in this
example.

14. DDF:F FT20FOOl,PS,DsJ"Al\m=TAPE.OS:lfiO

This assumes that when]2 was created it was
cataloged. The act of cataloging a data set makes it
much easier to write DDEF statements for retrieving it.

1.5. DDF:F FT21F001,VS,DSNAME=I'RIVATE.VA},I,VOLUME=

(PRIVATE)

VAM data sets may be "vritten on private volumes,
provided the volumes are correctly formatted. T}-}e
actual identification of the volume used is sent back
to the lIser. Data set characteristics by default will be
RECF:\J=V,LRECL=4096.

16. DDEF FT22F001,VS,DSKAME=PRIVATE.YAM

This reads back the data set created by 15. It is
assumed that it has been cataloged.

17. DDEF FT23FOOl,PS,DSNAME=DISK.OS:l()O,DCB= (RECF}.!

=FB,LRECL=40,DEVD=DA,BLKSIZE=clOO), UNIT=

(DA,2311) ,VOLUME=(PRIVATE),SPACE=(400,500,20)

A data set is to be written on a ps-formatted direct­
access volume to be mounted for private use. Space is
to be reserved for 500 blocks of 400 bytcs each, each
block containing 10 logical records of 40 bytes. Each
secondary allocation is to be 20 blocks of 400 bytes
each. The device type is 2311.

18. DDEF FT24F001,PS,DSNAME=DISK.OS360

This reads back the data set created in 17. It is
assumed that it has been cataloged.

144

19. DDEF FT2;'iFOO I,PS,DSNAYfE=DISK.OS360

VOLU}.1E= (,057H\) ,UXIT= (DA,2311)

This is thc same as 18, but is used if the data set
had not been cataloged. The operator must be in­
formed of the volume identification and device type.
:\ 11 other data set characteristics will be obtained by
the system from standard direct-access labels, which
must 1)(' present on all dircct-acccss volumes.

20. DDEF FT2IiF001,PS,DSNAME=BADSYS.TAPE,DCB=

(RECFl\f=F,LRECL=SO,DEVD=TA),UNIT=(TA,9),

L\BEL= (,NL) ,VOLU:\IE= (PRIVATE)

This is not recommcnded unless the tape is to be
lIscd by another system that cannot process standard
tape labels.

A tape reel is to be mounted and the user informed
of its identification. Since no labels are written, the
characteristics of the data set and its name are not
apparf'nt to any program reading the tape back.

21. DDEF FT27'FOO I,PS,DSNAME=BADSYS.TAPE,DCB=

(RECF:\[=F,LRECL=SO,DEYD=TA),UXIT=(TA,9),

LABEL= (,KL), VOLUME = (009876)

This is needed to read back the tape made by 20
(assnming that yolume 009876 was assigned to it).
OnJy DISP=OLD can be defaulted since therc are no
tape lalw]s and it was not cataloged.

22. D])EF FT2SF001,PS,DSl'\AME=BADSYS.TAPE,DCB=

(TIECFM=F,LRECL=RO) ,DISP=OLD

This is needed to read back the tape made by 20,
provided it has bcen cataloged. DCB parameters are
still needed, hut VOLU}.IE, Ul'\IT, DEVD, and LABEL param­
eters are supplicd from the system catalog.

23. DDEF FT29FOO 1,VS,DSNAl\IE=}.IULTIPLE.PARTl

DDEF FT29F002, VS,DSNA).IE=).fUL TIPLE.PATIT2

DDEF vr:!!!Flli1:l,VS,DSNA:\fE=:MULTIPLE.l'ART:l

The three DDEF statements apply to a program that
ext'cutes the following sequence of statements:

WRITE (29) ... ENDFILE 29 ... ,VRITE(29) ... END­

FILE 29 ... WRITE (29)

24. DDEF FT:lOF001,VS,DSNAME=l\IULTIPLE.PART1.V

DDEF FT:10F002, VS,DSN AME=:\·IUL TIPLE.PART2.F ,DCB=

(RECFl\I=F,LRECL=100)

DDEF FT30F003,VI,DSNAME=:\IULTIPLE.PART3.VIF80,

DCB= (RECFl\I=F,LRECL=80,RKP=O,KEYLEN=5)

This is similar to 23, except that the three data sets
have different characteristics.

25. DDEF FT~lF001"DSNAME=MULTIPLE.PARTl

DDEF FT31F002"DSNAME=MULTIPLE.PART2

DDEF 1'T31 F003 "DSNAME=MULTIPLE.PART3

This is similar to 23, but applying to a program that
reads the three data sets back as follows:

1 READ (31, END=2)

GO TO 1
2 READ (,'31, END=:3)

GOT02
3 READ (31, END=4)

GOT03
4 STOP

[Process MULTIPI.E.PARTl]

[Process lvIULTIPLE.PART2]

[Process MULTIPLE.PART'3]

Error fviessages for the DDEF Command

The user's replies to diagnostic messages issued for
his DDEF command should be guided by the following:

1. If the diagnostic message calls for reentering an
element within a given operand field, only that
element should be reentered, Preceding and/or
follmvir,g delimiters are unnecessary. Default is
acceptable.

2. If the diagnostic message calls for reentering a
complex operand field, the whole field should be
reentered, including keyword and equal sign. De­
fault is acceptable.

3. If the diagnostic message calls for reentering an
operand field that consists of only one clement in
addition to the keyword, the reply may be either
the element alone, or the keyword, equal sign, and
element.

4. If the diagnostic message calls attention to an in­
consistency and asks the user to (re) enter one of
two or three specified operands, the reply must be
a complete operand field. Default is acceptable
only if so stated in the message.

The user is informed if the DDEF command cannot
be completed. This can occur for one of the following
reasons:

1. Invalid punctuation in thc operand string.

2. User's volumc(s) cannot be mounted.

3. Sufficient space cannot be allocated.

4. More than three 10gicaJ inconsistencies were de­
tected in the DDEF command.

·Whenever possible, correction and completion of the
command is attemptcd. But if diagnostic messages in­
dicate that an operand has been misunderstood be­
cause of a punctuation error in the operand string, the
user should interrupt the operation (by pressing the
attention key) and reenter the corrected command.

The user must never reenter an operand or part of
an operand that has not been requested.

If a keyword is missing or invalid, the pertinent
element following it must he reentered after the cor­
rected keyword and equal sign are typed.

If an operand occurs twice in the operand string,
the second occurrence is preferred. All elements be­
longing to the earlier occurrence are erased.

DDEF prompting messages are issued according to
the operand information already supplied. Unneces­
sary prompting is kept to a minimum.

If the user's problem program is heing executed in
conversational mode and an llnclefined DDXA::'-fE is
referenced, prompting messages for DDEF operands
arc issucd to the llser.

Data 5et Defidtion Rules for Language
Processing

Table 12 provides information relating to the organiza­
tion of and DDEF requirements for data sets involved
in assembly, compilation, and linkage editing.

Data Set Definition Rules for
T55/360 Commands

Table 1.3 provides information relating to the structure
of and DDEF requirements for data sets processed by
TSS/3GO commands.

Appendix E: Specification of Data Set Characteristics 145

Table 12. Data Set Definition Rules for LanguaL(e Processing

CO]l.!MAXD HELATED DATA SETS D .. TA SET DEFIXITIO;\l HULES DSORG

Source program data set Source pro~raln data sets: If :;upplied as part of

FTN S1ST:': data ~l't, these data sets do not re(luire any

(FORTfI:\i\)
Object module further data ,,-,t definition. If supplied as prestored VI

data set, thev must he cataloged. No DDEF is re-
Listing data set qui red for thc:se commands.

Source program data set Ohject module: The module is placed in library at
ASM top of progr,ul1 lihrary list. If job library is to re-

VI' (ASSE:-.mLER)
Object module ccive obje,'t module, DDEF comm,md is required to

define library.

Listing data set Listing: '<;0 DDEF eommancl required. VI

Source prograTn data set Same rules as for FT1\ and AS~1.

Libraries that are to
Each lihrary referred to by Ii\CLUDE statements

supply object modules
except USEHLIB and each ioh lihrarv used hv auto- VI'
matic call mnst he dcfined hy a DDEF cnm~and.

LNK
(LINK If lihrary at top of progrnm library list is to receive
EDITOR) output object module, no additional DDEF in this

Library to receive output task.
VP ohject module If another library is to receive, output, it mnst be

defined hy previous DDEF command and be specified
hy its DDNAME to linkage editor.

l.isting data set 1\0 DDEF command required. VI

Table 13. Data Set Definition Requirements for Commands

COMMAND HE LA TED DATA SETS DSORG DATA SET DEFI:\TITION

BACK :--Jew SYSI:--J clata sct that is to (:on- VS, VI \:cw SYSI\: ,bta sct must be cataloged, or de-
tro1 completion of this task in non- Hncd by previous DDEF command in conversa-
conversational mode. tional portion of this task.

CATALOG Data set to be cataloged. I'S Data set to he cataloged must be defined by
previous DDEF command in this task, unless
UPD A TE option specified.

CDD Data set containing only DDEF VI Data set must he cataloged, or defined in current
commands. task.

Data set to be copied: existing data VS, VI Data set to be copied must be cataloged or de-
set or memher of partitioned data fined by previous DDEF command in this task.

CDS
set.

Copy data set: can be data set or VS, VI Copy data set is deHncd by this command.
memher of partitioned data set.

DATA Data set to be entered. VS, VI i\o DDEF command is required if the data set
(See l\ote 2) is to reside on puhlic storage; data follows this

command in input stream. If tJw data set is to
reside on private storage, a DDEF must be
issued lwforc the command.

DEFAULT User profile data set in USERLIB. VI' Data set must he defined in current task.

DELETE Data set whose name is to be re- any 1\'0 DDEF command required for this command,
moved from catalog.

DSS? Data ,ets whose status is desired. any Each data set whose status is to be presented
must be cataloged; no DDEF command required
for this command.

146

Table 13. Data Set Definition Requirements for Comm~1.nds (continue,l)

CO.\IMAND

DITMP

EDIT
(See 1\ole 1)

END
(See Note 2)

[BASE

[VV

L:\FCUTE

U,\E?

LOAD

\10])I[<Y

PC?

PEH\!lT

PHT'\T

FT01
ASM
LNK
User­
written
problem
pro,grarn

I'l(()CDEF

PHOFILE

REGION
(See Note 1)

HELEASE

HET

BELATED DATA SETS

Data set to be printed ,IS a rcult of
program contwl command DClvlP.

Data set to 1,,-, proc('"sccl hy the
T,'xt Editor.

Data ,,'t being processed by the
Text Eclitor, or indicates PROCDEF
Cmnmand completion.

Dab set to he nased.

Data sets \\'l1o.'e llames are to be
entered in the e:1talog.

S1'Sl N data set for nonconvcrsa­
tiollal t,rsk .,(,(up hy this command.

Line (bter ;;<'1 nmtailling lines to be
presented.

Ohject module to be loaded.

Data set> fOT "'hi,)} ,\raring is l)er­
rnittl'll.

\·irtuai partiliclIll'cl data sd for which
inform'ltion ahmt it..; lllemhers is
gl\'cn.

Data sci to he printed.

Data set which cOIl,ists of other
commands. to becomc a user-written
procctluIc.

Fser profile data set in USEHLIB,
,(·,;.iOll prnfile in task virtual storage.

Data set to be punched on cards.

DaL1 sd to he proccs"'cl by the Text
Editor.

Data set to he rdeasee!.

VA1\[clata set whose data set de­
scriptor is to be changed.

DSOHC

VI

VI

VI

VS, VI, VI'

VS, VI, VI'

VS, VI

VI

VI'

any

any

VI'

PS, VS, VI

VI

VI'

VS, VI

VI

any

DATA SET DEFINITION

DDEF command w1]()sl' DDNA't<.IE is PCSOUT
mnst be ckfinccl prior to execution of DUMP
comm,md.

Data set nIust he cataloged, defined in current
task, or defined by this command.

?\o DDEF command rcqnired for this command.

])'lta set to he crased must he cataloged.

]\;0 DDEF command required by this command.

Data set mli.,t he catdogcd; no DDEF command
required by this command.

Line data set must he cataloged or defined by
previous DDEF command ill this task.

Ohject module to bc loaded is identified by exter­
nal name specified in this command; it must be
in a library in the current program library list.

Dataset ml>'t he cataloged or defined by pre­
violls DDEF command in this task.

Fach data set whose status is to be presented
must he cataloged; no DDEF command required
for this command.

Data sds [or which sharing is permitted must
he cataloged; 1I0 DDEF eonunand required for
III is cmnn;awJ.

Virtnal pirrtitiollCcl data sct must be cataloged,
or defined by previolls DDEF command in this
task.

Data sd must h<: cataloged or defined by previ­
ous DDEF command in this task. Data scls on
unlabeled tapes must be defined by a DDEF
command.

DaLl set mll.st be defined in current task.

D'lta sets mmt he defined in current task.

Data set mmt he catalogccl or he defined hy 11re­
,iuus DDEF command in this task.

Data sd must be catalogccl, or defined in current
task.

Data ,set to be l'eleascd must be defined in pre­
vious DDEI' command in this task.

,\ppcntlix E: Specification of Data Set Characteristics 147

Tahle 13. Data Set Definition Rt'quircments for Commands (continued)

______ C_O_~_I~f_A_N_'D _________________ TI_E_L_A_T_E_~D __ n_A_T_A __ S_E_T_S _______________ D_S_O_TI_G_· ___________________ D_A_T_,_,_S_L_'T __ D_E_F_I_N_'T_I_O_N __________ _

SHARE

SY;.JO!\Y!\1

TV

VT

VV

WT

Data sets for which sharing is re­
quested.

User profile data set in USERUB,
session profile in task virtu:ll stor-
age.

Physical sequential data set (from a
V1' operation) to be writtcn on a
V/\'/I.1 volume.

VA.:\l data set to be copied to mag­
netic tape <IS a physical seqlleEtial
ebta set.

VA'/I.f dal:l set to he cop;pd into
direct access storage.

Dala set to he recorded on magnetic
tape in print format.

any

VI'

PS

VS, VI, VP

VS, VI, VP

VS, VI

Data sets for which sharing is requested must
be cataloged; no DDEF comrrand required by
this command.

Data sets must bc defined in current task.

Data set (input) must be cataloged, or defined
in current task.

Data sct (input) must be cataloged or defined
in current task.

Data set (input) must be cataloged, or defined
in current task.

Data set must be cataloged or defined by previ­
ous DDEF command in this task.

l'\otel: These arc the basic directive commands of the Text Editor. Sec Command System User's Guide for details concerning
the data manipulation commands of this facility.

l\'otc 2: If thc DATA command was used to create the data sct within the current task, then the data set is defined as if a
DDEF command had been issued by the mer directly. If the datcl set is abo VAM organized and resides in public stor­
age, it is automatically cataloged.

148

Interrupting Execution
Pressing the ATTENTION button on the terminal lets the
user interrupt the execution of programs within his
task. The effect of the ATTENTION interruption depends
upon the privilege class of the interrupted module,
the nature of the module (some privileged modules
are sensitive to attention interruptions and some are
not), and even the language in which the source pro­
gram is written.

Interrupting Privileged Commands

If ATTENTION is pressed during the execution of a
plivileged command imbedded within a commrmd
string (one or more commands in one sysin line), the
system responds by printing an asterisk (.,,) at the
terminal, meaning "more commands remain to be
processed." To display a list of remaining commands,
the user responds by issuing STRING (see Table 14).
All commands processed during or before the attention
interruption can be assumed to have successfully exe­
cuted if the system issues no diagnostic message. To
resume execution of the rcmaining commands, the user
may press RETlJRN, or he may ignore the remaining
commands by issuing ne,v commands unrelated to the
interruption.

If ATTEKTION is pressed during the execution of a
singly issued privileged command, or during execution
of the last command in a command string, the com­
mand will normally complete execution and prompt
the user to enter another command. If the ATTENTIO:\

interruption prevents the command from completely
executing, however, the system issues a diagnostic
message.

Interrupting Nonprivileged Commands and l)ser
Programs

If ATTENTION is pressed during the execution of a non­
privileged command (all language processors, for ex­
ample, are nonprivileged), or during the execution
of a user's program (including FORTRA:-< library sub­
programs), the system responds by printing an excla­
mation point (!) at the terminal. The user may invoke
pcs commands to display critical fields and modify
values (see "Using the Program Control System," in
this appendix), or, to resume processing at the point

Appendix F. Attention Considerations

of interruption, he may issue GO (or press the RETURN

key).

Attention Levels

\Vhcn a user stops program execution by pressing
ATTENTION, the status of the interrupted program is
saved and can be restarted later at the point of inter­
ruption by issuing the GO command. Privileged com·
mands cannot be restarted, however.

Nonprivileged commands (FTN or EDIT, for exam­
pIe) and user-written programs coded in assembler
language or in PL/1 can be interrupted and saved at
10 levels: each time a nonprivileged program or com­
mand is interrupted by ATTENTION, its status is saved
so that it can be restarted later.

As many as 10 such programs can be interrupted
and saved for later execution (10 ATTENTION levels).
ATTEKTION interruptions of more than 10 non privileged
programs (that is, a request for more than 10 ATTEN­

TION levels) will cause the status of the earliest-saved
level to be lost.

FORTRAN programs interrupted by ATTEl'I"TIOK can
be saved, too, but only one FORTRAN program can be
saved: calling a second FORTl~AK program will cause a
FORTRAN program previously saved at any level to be
lost.

Using The Program Control System (PCS) with
ATTENTION

User-written programs may be interrupted during exe­
cution by pressing the ATTENTION key. The interrupted
program and an related data sets are frozen when the
attention interruption is received. Using pcs com­
mands, the user can inspect any portion of the object
module, he can display or modify the values of vari­
ables, registers, or object code, and resume execution
using the values he has modified.

See Appendix B, "PCS and FORTRAN Object Pro­
grams," in this book, for further information about
using the Program Control System. For complete in­
formation about using pes commands, see Command
System User's Guide.

Responding to Attention Interruptions

Table 14 shows how the user can make full use of the
multi-level ATTE:-':TION handling capability of TSS/il60.

Appendix F: Attention Considerations 149

Table 14. Responding to Attention Interruptions

150

When the ATTENTION key is pressed, the system
responds with one of three condition symbols:

By these actions, the
user calls for the system
reaction listed in the
block under the
corresponding
condition symbol:

By issuing the GO
command ...

By issui ng any
command .•.

By pressing the
RETURN key ..

By pressing the
ATTENTION key

By entering STRING
to list remaining
commands in an
interrupted string

By entering STACK
to list names of active
nonprivileged programs
(in the order in which
they may be retrieved).

By entering EXIT
to end the currently
active program

By entering RTRN
to cance I command
stri ngs and user
programs ot every

attention leve I •.

By entering PUSH
to save the status of
the current Iy active
program

! (to denote the
interruption of
nonprivileged
programs or
commands)

the current user
program is
resumed

the command is
executed

the current user
program is
resumed

the system returns

an exclamation
point (nothing is
changed)

the system
di sp lays the
unexecuted
command stri ng,
j f it exists

* (to denote the
interrupti on of
an unfinished,
privi leged
command string)

I or user's
Zommand prompt
(denotes completion

of program or
command string)

the most recently interrupted user program is resumed and
intervening command strings are cancelled

the command is
executed and the
current command

string is cancelled

the current

command string is
resumed

the system ret urns
an asterisk

(nothing is
changed)

the system
displays
unexecuted
commands in the
current command

string

the command is
executed

the system prompts
the user to enter
a command

the system prompts
the user to enter
a command

the system returns
a diagnostic
message

the system disolays the names of active user programs at every ATTENTION level

ends the currently
active program,
resumes command
string if it exists

ends the most recently interrupted program and resumes
its associated command string ... cancelling subsequent
command strings

command strings and user programs are cancelled by the system at every ATTENTION level

the system saves the status of the currently active program in ISA Long Save 1 (iSALS1)

This appendix explains the notation used in command
descriptions and presents the general form of each
TSS/360 user's command.

The command language statements given in this
appendix and in Appendixes A and E use the conven­
tions given below in their notation.

Operands
A positional operand is represented by:

value-mnemonic or operand-name
In the first case, the user writes only a value of one
of the forms specified by the value mnemonic. In the
second case, the operand name is merely a means of
referring to the operand in the format description;
the hyphen simply separates elements of the operand
description and is not written in the actual operand.

A keyword operand is represented by:

KEywoRD=value-mnemonic or KEYWORD==operand
name

The user first writes the keyword and the equal sign,
and then eithcr a value of one of the forms speci­
fied by the value mnemonic, or an operand name, as
required.

The following general rule applies to the interpreta­
tion of operand representations in a format description:
,vhcn the operand is written, anything shown in upper­
case letters must be written exactly as shown; any­
thing shown in lower-case letters is to be replaced with
a value providcd by the user. Thus, in the case of a
h~y\vord operand, the keyword and equal sign are
written as shown, and the value mnemonic is replaced,
In the ease of a positional operand, the entire operand
representation is replaced.

Some operands are not represented in format de­
scriptions hy operand names or value mnemonics. In­
stead, they are represcnted by one or morc upper-case
character strings that show exactly how the operand
should be written. These character strings are called
coded values, and the operands for which they are
written are called coded value operands.

A coded value operand results in either a specific
value parameter or a specific sequence of executable
instructions.

\Vhen a positional operand can be written as only
one coded value, the operand is shown simply as the

Appendix G. Command Formats

coded value; an additional lower-case operand name
is not uscd, For example, a positional operand could
be represented by:

J\lYDATA

A keyboard operand could he represented by:

KEYWORD=MYDATA

If a positional operand can be written as anyone
of two or more coded values, an additional lower-case
operand namc mayor may not be llsed, The choice of
which is done is determined by whether or not a name
can be meaningfully used to refer to all values of thc
operand. For example, a positional operand could he
shown as either of the following:

{xLlsL}

mode-{NLlsL}

In both of the ahove examples, the braces indicate
that the coded values are grouped together in one
operand representation, and the vertical stroke in­
dicates that either one of the coded values can be writ­
ten. The braces and vertical strokes are metasymbols.

Metasymbols
Metasymbols are symhols that convey information to
the programmer, but are not \yritten by him, They as­
sist in showing the programmer how and when an
operand should be written. The metasymbols llScd in
this publication are:

1. I This is a vertical stroke and means "or." For ex­
ample, AlB means either the character A or the
character' B. Alternatives are also indicated by
being aligned vertically (as shown in the next
paragraph) .

2. {} These are braces and denote grouping. They
are llsed most often to indicate alternative op­
erands. For example:

{NL[SL}

{~~}
The bvo examples above are equivalcnt; either NL
or SL must be written.

:3. [] These are hrad:ets and denote options. Any­
thing enclosed in brackets can be either omitted

Appendix C: Command Formats 151

or written once in the command. For example:

[NL]

[XL!SL]

[NL 1
SL ~

The second and third examples above are equiv­
alent; NL or SL or neither can be written. The under­
lining indicates that, if neither is written, SL is
assumed. Braces used for grouping inside brackets
arc redundant.

4. This is an ellipsis. It denotes occurrence of
the preceding syntactical unit one or more times in
succession. A syntactical unit is any combination of
operand representations, commas, parentheses, and
mctasymbols, enclosed in braces. For example:

OPERATION OPERANDS

ABEND

OPERATION OPERAKDS

ABENDREC

OPERATION OPERANDS

{symbol,} ...

The above example indicates that a symbol fol­
Imved by a comma can be ,vritten any number of
times. but it must be written at least once. The
braces denote grouping, and arc the extremities of
the syntactical unit to which the ellipsis refers.

General forms

Each of the TSS/3GO user's commands is shown below
in its general form. Detailed specifications for these
commands are given in Command System Users
G1tide; this list is intended for quick reference only.
Note that only the basic form of the DDEF command
is given; the full form appears in Appendix E.

ASM
NAME=module name r ,STORED= {~}]
[,MACROLIB= ({data definition name of symbolic portion, data definition name of
index portion} L ...])] LVERID=version identification]
[.ISD={YIN}] [,SYMLIST={YIt\}] [,ASMLIST= {,YI"J}]
LCRLIST={YIN}] LSTEDIT={YIN}] [,ISDLIST={YIN}]
[,PMDLIST={YIN}]
[,LISTDS = {YI N}]
[,LINCR= (first line number, increment)]

OPERATION OPERAI\:DS

AT instruction location [, ...]

OPERATION OPERANDS

BACK DSNAME=data set name

OPERATION OPERAKDS

BEGIN application name [application parameters]

Note: For
MT IT use only

152

OPERATION OPERA:-.iDS

BRANCH INSTLOC=instruction location

OPERATIO:-.i OI'EHANDS

BUILTIN NAME=commaml name, [,EXTNAME=BPKD macro instruction name]
[,DSNAME = data set name]

OPERATION OPERANDS

C

OPEHATION OPEHANDS

CA

OPERATION OPERANDS

CALL
[NAME= 5 entry-point name} [,module parameters]] l module name

OPERATION OPERANDS

--
CANCEL BSN = batch sequence number

Form 1

OPERATIO:"l OPERANDS

CATALOG DSNAME=current data set name [,STATE= {N I U}]
[,ACC= {R I U}] LNEWNAyfE=new data sct name]

Form 2

-
OPERATION OPERANDS

CATALOG GDG=generation data group name,
GNO=number of generations [,ACTION={AIO}]
[,ERASE= {Y IN} 1

OPERATIO:-.i OPERANDS

CB

OPERATION OPERANDS

CDD [\ data definition name " .)}j DSNAME=data set name '1 (<la ta definit ion name,

-

Appendix G: Command Formats 153

OPERATION OPERANDS

CDS DSKAMEI = input data set name [(member name [, 0 0 oJ)]
,DSNAME2=Copydata set name [(member name)]
[,ERASE={Yi N}]

[' SCOPYBASE=first liue number [COPYIl\'CR=incremcnt]l]
1 REPLACE = {RII} J

OPERATION OPERANDS

CLOSE [DSNAME=data set name] [,TYPE=T]
LDDNAME=data definition name]

OPERATIO;-..r OPERANDS

CHCPASS [password]

OPERATION OPERANDS

CONTEXT [Nl=starting position] [,K2=ending position],
STRINGl=search string [,STHIKC2=repbcement string]

OPERATION OPERANDS

CORRECT [N1 =starting line] [,N2=ending line]
[,SCOL= first column] [,CORMARK=correction markers]
[,CHAR={Cj:VIIH})

OPERATION OPERANDS

DATA DSNAME=data set name

[CN }]
CARD

,RTYPE= S
jI } f,BASE=first line number, INCR=increment]
lLINE

OPERATION OPERANDS

DDEF DDNAME=data definition nllme [,DSORG={VIIVS!VP}]
,DSNAME=data set name

OPERATION OPEHAXDS

DDNAME? [JOB LIB = {Yil\'}]

OPERATION OPEHANDS

DEFAULT {operand = [value]} [, 0 ••]

OPERATION OPEHANDS

DELETE [DSNAME=data set name}

154

OPERATIOX OPERAXDS

DISABLE

OPERATION OPFRAt· DS

DISPLAY fdata field or l'xpres,ioll [,. ..]}
lID? data field name

OPERATIOX {)PEHAr-.:]lS

Dl>.lPRST FHOMDEV = {'2:1 I I '2:3UI2400},
FRVOl ,ID = {volid i (volid [,volid])},
TODEY =~ {2:3112311 i2400}
[,TOVOLID= }volidl (volid r,volid) I'RI "ATE}]
[,0JEWVl JD=volidJ [,WIUTCHK= {YES\NO}]
[.LAFEL= {HETAI0:iNO}] [,] ,RUl\1\IODE= {BACK FOHE}

OPERATION OPERANDS

DSS?
[NAMES= f (bta set name } J

1 (data set name, ...)

OPERATION ()PEnA~DS

DUMP f data field or "xprc;,sion [, ... J(
lIO? data field nnme I

OI'ERATIOX OPERANDS

EDIT DSl\A1\IE=data set name [(mt'mhcr name)] [, Hl\i\1\lE = region name]
[,HECSIZE= region ll"llnc length]

OPERATION OPEI\ANDS

ENABLE

OPERATION OPERANns

END

OPERATION OPERANDS

ERASE [DSl\AME=data set name]

OPERATION OJ'En 'o'IlS

EVV DEYICE=cle\ ict' type. VOLU1\lE = (\ nhllll<' s"rial Illlmlll'rL ... 1

OPERATION OPERANDS

EXCERPT DSNAME=data set name [(member name)]
[,RNAME=region name]
r.N! =starting line [,0J2=cnding line]l

Appendix C: Command Formats 155

-
OPERATION OPERANDS

EXCISE [Nl=starting line] [,N2=ending line]

OPERATION OPERANDS

EXECUTE DSNAME=data set name

OPERATION OPERANDS

EXHIBIT
OPTION =

(I3WQ [, TYPE = {ALLlBSJ\'-nllmber}) }
)UID L TYPE = {ALLICONVIBACKIUID userid})

OPERATION OPERANDS

EXPLAIN r- MSGID
-

ORIGIN

r~ } TEXT
HESPONSE [,mcssagc identification]
MSGE
MSGS

~

OPERATION OPEHANDS

FTN NAME=modllle name

r sYll ,STOHED= 11\'\.
[,VERID=version identification] [,ISD={YIN}]
[,SLIST={YIN}) [,OBLIST={YIN}] [,CHLIST={YIN}]
[,STEDIT={YIN}] [,MMAP={YIN}] [,BCD={Y1N}] [,PUBLIC={YIN}]
[,LISTDS={YIN}]
[,LE,CH= (first line numher, incrcment)]

OPERATION OPEHA'\DS

GO

OPERATION OPEHANDS

IF condition

OPERATION OPERANDS

IJ\'SERT [Nl=preceding line] [,INCR=increment]

OPERATION OPEHAi\;DS

JOBLIBS DD:\TA!,.,IE=data definition name

156

OPERATION OPERA-";DS

K

OPERATION OPEHANDS

KA

OPEHATlON OI'ERA-";DS

KB

OPEHATlON OI'EHANDS

KEYWORD [COMi'\AtvIE=command name]

OPERATIO:s' OPERANDS

"-
LINE? [JIine number 1

[, ...]] DSNAME=data set namc , l (first line number, last line numher) J

OPERATION OPERANDS

LIST [NI={starting position:CLPiLAST}] [,i'\2={ending position!LAST}] LCHAR={C!IIM}]

I
OPEHATlON OPEHANDS

LNK NAME=module name [,STORED={YIJ\"}]
[,LIB = data definition name of library] [, VERID= version identification]
[,ISD={Y IN}] [,PMDLIST={Y!N}]
[,LISTDS={Y[N}]
[,LINCR=(first line number, increment)]

OPERATION OPEHANDS

.. -
LOAD [J\"AME=entry-point name}

._---

OPERATION OPERANDS

LOCATE [Nl = starting position] [,N2= ending position]
[,STRING=character string]

OPERATIO-"; OPERAXDS

LOGOFF

Appendix G: Command Formats 157

OPERATIO:\'

LOGON

OPERATION

"-ICAST

OPEHATlON .
MCASTAB

OPERATION

MODIFY

OPERATIOK

l\UMBER

OPERATION

PC?

OPERATION

PER.\1IT

OPEHATIO.'\

PLI

OPERATION

POD?

OPEHATJON

POST

158

OPERANDS

user identification, [password] , [addressin,g] , [charge number]
, [control section packing] , [maximum auxiliary storage]
, [pristine], [user IVM]

OPEHAXDS

[ECB = cnd-of-hlock character]
[,C01\T=continuation chnracter]
[,CLI' = 1 lH'ak character]
[,TRP= transient statement prefix character]
[, RCC = concatenation character]
[,SS1\1 = system seopc mask]
[, USM = user scope mask]
LKC= keyhoard! card reader character]
[,RS = carricu!e rcturn snpr('ssion character]
[,CP= cOl1lmand-prompt string]

OPEHA,>"DS

[I\:THA:\ = {Yi0:J] [,OUTHA0: = {YI1\'}]

OPERANDS

5ETNAME=data set name [,CONF=R]
[,LRECL=record length, KEYLEN=keylength, RKP=key displacement,
RECFM = {VIF}] [,FT\: = {YI1\'}]

OPERANDS

[N I = starting line J [,l\2=ending line]
[,NBASE= base mlmher] [,INCR = increment]

()PEHA",'l)S

[1\'A.\IE5= \ data set name } J
((data set !lame, .. '),

OPERANDS

DS\:i\..\IE={d"la set name;~ALL}
[,USERID={(user iclentification[, ...]) I "ALL}] [,ACCESS= {HiROlmViU}]

OPFHANDS

[NAME=moclll!c name] [,PLIOPT=eompiler option list)
[,PLCOPT=lan,Ullage controller options] [,SOURCEDS = source data set name]
[,1vlERGELST=converter input list] [,~!EHCEDS=converter input data set)
[,l\fACRODS = intermediate datil set name) [,PRVDS=c1ata set name)

OPEHANDS

[PODNAME=data set name] [,DATA=Y] LALIAS=Y] [,l>,WDULE= {~~~~e}]

OPEIl;\XDS

OPEHATlO:> OJ>EIlA "DS

PRINT DSNAME=data set name LSTARTNO=first byte position]
LENDNO=last byte postion]

['Pl\TSP~ rDlT [,PAGE~Pl }]
rl1
j2t [,HEADER=H] [,LINES=Iines per page]
13J

[,ERASE= {YIN}l [ERROPT= {ACCEPT I SKIP lEND}]
[,FORM = paper form 1 r,STATIO'\==station identification]

OPERATION OPER.c\.:-iDS

PR!vlPT :\15CTD = mcssage identification
[,{INSEHTn= inserted characters} [, ...]]

OPERAT10,," OPEH.,\;-..;ns

PHOCDEF NA\lE=procedure name l,DSi\:A\lE=data set name]

OPEHATION OPEHANDS

PROFILE CSW={N\Y}

-
.-

OPEI1ATIO:-': OPFHAX"ns

PU,\CH DS,\A\lE=data :;et name
["STARTNO=first byte position] [,ENDNO= last byte position]
[,STACK={l1213\EDIT}] r,ER\SE={Y,N}! [,FORM=eard stock]

OPEHATIO" OPEHANDS

()UAUFY MNAME= [link-edited module name.] object-module name

OPERATION OPERA:-.:'DS

HEGION rnNAJl.lE=region name]

OPERATION OPEHANDS

HELEASE DDNA\lE=data definition name [,DSNA\lE=data set name]
[,{SCRATCHiHOLD}]

OPERATION OPERANDS

RE't\lOVE {statement numher [, ... J}
ALL

OPERATION OPEHA:-':DS

RET DSNAME=data set name
,RET={PIT} {LjC} {Din}

Appendix G: Command Formats 159

OPERATION

REVISE

OPERATION

RUN

OPERATION

SECURE

OPEHATION"

SET

OPERATION

SHARE

I
OPEHATION

STET

OPERATION

STOP

OPERATION

SYNONnt

OPEHATION

TIME

OPERATION

TV

OPERATIOX

UN1,OAD

160

OPERANDS

[Nl=starting line] [,N2=ending line]
[,INCR = increment]

OPERA"\DS

[LOC==cntrr point name]

OPERANDS

.-

S (TA=number of devices, [type of deVice])}
1 (DA=numhcr of devices, [type of devi c';]) .

OPERANDS

{datu]ocution=va!uc} [, . 0 0]

OPEHANDS

[, ... J

DSNAME=data set name, tJSERID=owncr's USt>r identification]
[,O'VNERDS = {owner' ,lata set name I "'ALL}]

-
OPEHA"-:DS

OPEHAxns

OPERAKns

{tt>rm=[va!uc] } [, 0 0 .J

OPEHANDS

[lvHNS=minutes]

OPERANDS

DSNAME1=tape data set name
[,DSNA~H<:2= VAM data set name]

OPERA;">O;DS

[NAl\IE=entry-point name]

-

I

I

OPERATIO;\"

UPDATE

OPERATION

USAGE

OPERATION

VT

OPERATION

VV

OPERATION

\VT

OPERATION

ZLOCON

OPERANDS

OPEHA;-';DS

OPERANDS

DSNAMEl=VAM data set name
LDSNAME2=tape data set name]

OIlERANDS

DSNA~IEl=current data set name
[,DSNAME2=new data set name]

OPERANDS

DSKAl-.fE=current data set name LDSNAME2=tape data set name]
[,VOLUME=tape \'Olume number] [,FACTOB.=blocking factor]
LSTARTNO = first byte position] [,E:'-JDNO=last byte position]
[,PRTSP={l1213iEDIT}] LHEADEIL=H] [,LINES=lines per page]
LPAGE=l'] [,ERASE={YIN}]

OPERANDS

Appemlix G: Command Formats 161

Appendix H: Carriage and Punch Controls

The carriage and punch controls shown in Tables 15
and 16 are recommended as standard; four of them
are standard FORTRAK control characters. "They are in­
stallation variable, however, depending upon system
output routines and, for carriage control, the printer's
carriage control tape.

In conversational mode where SYSOUT is the user's
terminal rather than an amine printer, all carriage
control dlaracters other than 0 and 1 cause a singJe
line skip to occur prior to printing of the line. The
carriage control character 0 causes an additional line
skip prior to printing of the line, as with amine printer
processing. The carriage control character 1 canses
three lines to be skipped prior to printing of the line.

Table 15. Carriage Control Characters

FUNCTIO~

·Skip no line before printing
·Skip I line before printing
·Skip 2 lines before printing

Skip 3 lines before printing
"Skip to channel 1 before printing

Skip to channel 2 before printing
Skip to channel 3 before printing
Skip to channel 4 before printing
Skip to channel 5 before printing
Skip to channel 6 before printing
Skip to channel 7 before printing
Skip to channel 8 before printing
Skip to channel 9 before printing
Skip to channel 10 before printing
Skip to channel 11 before printing
Skip to channel 12 before printin[!

°Standard FORTRA.\' control characters.

Table 16. Punch Control Characters

FUNCTIO"

Select punch pocket 1
Select punch pocket 2

CHAHACTER

+
blank

()

-
1
2
3
4
5
6
7
8
9
A
B
C

CHARACTEH

v
w

o As used in this book. "FORTRA:\ control characters"
refers to the control characters defined hy American i\'ational
Standard FORTHAi\', ANSI X3.~)-H)GG.

162

Part One - Nonconversational
In part onc of this appcndix, a user enters a program,
CONY, to read matrix A and matrix B as input. The
product, matrix C, is then computed and all three
matrixes are printed as output. The matrices are real
and stored a column at a time (i.e., the Idtmost sub­
script varying most rapidly) in order to minimize the
amount of storage "paging" required. The eard listing
for CON\' is shown in Figure 25. The program compiles
without error and is executed.

After the compilation has been completed, the user
receives a compilation listing, shown in Figure 26, and
a SYSOUT listing, shO\vn in Figure 27, which includes
the commands, system messages, and three matrices
A, B, and C.

Appendix I. Sample Program

~ LOGON ADUSERIO.ADACCTZq

C FT~ NAM:A;R::N:~L~::L;C:TION EIA~PLE
DIMENSION A[8.81.818.81.(8.81
DATA C!64*C.OI
READ! 2.U L.~.N
DO 10 J:l.M

10 REAO(Z.2) [A(J,II.I:l.Ll
00 20 J:l.N

20 REAO[Z.21 IBIJ,II.I=l.MI
00 30 K:l."
DO 30 J:l.N
DO 30 I=l,l

30 C[I.JI=CI!.JI>AII.Kl*BIK.Jl
DO 40 J:l,~

40 WRITE(!.3) [AIJ,I).I:I.LI
VIR 1 TE (3." I
00 50 J=l.N

50 WRITE(3d) (BIJ,li.I=I.MI
"RITE 13.51
DO 60 .1=I,N

60 WRITEI3.31 (CIJ, It.j:l.Ll
STOP

1 FORMAT [312)
2 FORMAT (SFIO.Ol
3 FORMAT (' ·.8FI0.3)
4 FORMAT (14X.'X·1
5 FORMAT 1141,'=')

END

RUN CONV

3. Q

5.0
7. 0

31 . J
37.0
41.0

;tEND
lOGOFF

Ii. f)
1::; . I)

17. J
f-/ :; • 0

if 7. 0
5:, . 0

FiguTt: 25. Card Listing for CONV

19. 0
25. 0
2').0
59.0
Gl.O
6,; . Q

Appendix 1: Sample Program 163

VERSTON 07/10/67 OF THE TSS FORTRAN CO~PIlER ENTERED P,t.GE OOt

THE MODULE NAME AND VERSION. FOR. THIS CO,",PIlAlICN ARE CO~V .VS

nPTION$--PUSlJC CSECTt"J).8CD MODE(N~,.PROOVCE ISOfN). lIST1NGS--'::;f1\}RCF{V)~O~JECTfN)~CROS<; REFf"J).$VMAOl TABlEfNl~·E"'DRY I.!AP{I'.!I ..

CON"

100
ZOO
300
400
500
600
700
BCD
900

1000
1100
1200
1300
1400
1500
1600
1700
1aOO
I~OO
2000
2100
noo
2300
2~OO
2500
2600
2700

CONY

,VI

10

20

30

40

50

60

1
2
3
4
5

CONY , v5

CONY

ENTRV NAME
(CNV

MAHHX: ftilVlTIPlJCATIOl\ EXAMPlf
DIMENSION A(8.8) .B(6 ... 8).C{8.8)
DA1A (/64.0.01
READ(2.11 l.M,N
DO 10 J=l.M
RE.AD(2,2' IA(J, Il"I=l.lJ
DO 20 J:l.N
REaO{2.21 fBtJ, I).J =1.MI
DO 30 K=l,M
DO 30 J:l,N
DC 30 J =I,L
((I,JI=C(I .J ... All.K) $S(K ,J)
DO 40 J=l.~
WRITff3,3) (At J, O.t=l.l)
WRITE f 3"/tl
00 50 J=l,N
WPITE(3.3l (B f J 1 I). 1=1, "')
WR lTE (3,. ~)
DC 60 J=l,.N
WRITE{3,3) (C(v, I J,I=l,Ll
STOP
FOR'" AT (3 12.
FORJroIAT (eno.O)
FORMAT {' ~,.8FIO.31

F(RM.4T (l~X.' X' I
FCR"'AT (14)(~ '-=-')
ENO

SIZE

lec HEx
OCOOOOOO

2204 BYTES

EXTERNAL REFERENCES
CHOBOI CHorAl CHC I E1

CONV~C SIZE ~08 8YTfS

COOE

NUMERIC CONSTANTS

CONY .. V5

CON VIP SI IE 1296 BYTES

REGISTER SAVE AREA

CONYERS ION CONSTANTS

aOORESS CONSTANTS

lOC.l TEMPORARy STORAGE

NON-COMMON VAR'ABlES (TOTAll

• \15

COMPILATION COMPLETED

Figure 26. Compilation Listing for CONY

164

PAGE 002

PAGF 003

CHCIUI (HCtW2

07/13/b7 14:23:15

LOC HEX 00000000 S IlE E64 P,YTES

lOC HEX 00000360 SIH 44 8YTES

PAGE 004

07/13-'&7 14: 23: 15

Loe "EX 00000000 SIlE 76 BYTES

lOC hEX 0000004C S IlE 24 8'fTfS

lOC HE' 000000 .. S 17 E 124 BYTES

Loe eEX 00000180 SIlE 43 RYTf S

lOC HE' OO(H)04F8 Sllf 24 RYTES

lOC HEX OOOOOHD S IlE 192 !WTES

PAGE 00.5

LOGON ADUSERID,ADACCT29
FTN NAME=CONV

CONV
3.000
5.000
7.000

31.000
37.000
41.000

1279.000
1579.000
2035.000

LOGOFF

11.000
13.000
17.000
X
43.000
47.000
53.000

1653.000
2045.000
2637.000

19.000
23.000
29.000

59.000
61. 000
67.000

2121.000
2629.000
3393.000

Figure 27. SYSOUT Listing for CO:"JV

Part Two - Conversational
In this part, a lIser writes and compiles a program to
solve the same problem as solved in part one. He then
nms it on-line. He Ilses his console for hath inpnt and

outpllt, switching it to become the equivalent of SYSIN

and SYSOUT, i.e., the standard system input and output,
as shown in Figure 28. A sample SYSOUT listing is
shown in part one.

USR:

SYS:

S, U:
S, U:
S, U:
S, U:
S, U:
S,U:
S, U:
S, U:
S,U:
S,U:
S, U:
S, U:
S, U:
S, U:
S,U:
S,U:
S, U:
S, U:
S, U:
S, U:
S, U:
S, U:
S, U:
S, U:
S, U:
S, U:
S,U:
S,U:

SYS:

(presses attention button or dials up system)

LOGON ADUSERID,MYPASS':<, ,ADACCT29

BOOI LOGON TASKID=FFF9 07/25/68

FTN NAME=CONV
- 0000100C

0000200
0000300
0000400
0000500
0000600 10
0000700
0000800 20
0000900
0001000
0001100
0001200 30
0001300
0001400 40
0001500
0001600
0001700 50
0001800
0001900
0002000 60
0002100
0002200 1
0002300 2
0002400 3
0002500 4
0002600 5
0002700

MATRIX MULTIPLICATION EXAMPLE
DIMENSION A(8,8),B(8,8) ,C(8,8)
DATA C/64~0.01
READ(2,1) L,M,N
DO 10 J=I,M
READ (2 , 2) (A (J , I) ,I = 1 , L)
DO 20 J=l,N
READ(2,2) (B(J,I),I=I,M)
DO 30 K=l,M
DO 30 J=l,N
DO 30 I=l,L
C(I,J)=C(I,J)+A(I,K)~B(K,J)
DO 40 J=I,M
WR I TE (3 , 3) (A (J , I) , 1=1 , L)
WRITE (3,4)
DO 50 J=l,N
WRITE(3,3) (B(J,I) ,I=l,M)
WRITE (3,5)
DO 60 J=I,N
WRITE(3,3) (C(J,I),I=I,L)
STOP
FORMAT (312)
FORMAT (8FI0.0)
FORMAT (' ',8FI0.3)
FORMAT (14X, 'X')
FORMAT (14X,' =')
END

The system asks whether it should continue proce,sing.

Figure 28. Conversational SYSIN-SYSOUT for CONY

Appendix I: Sample Program 165

USR:
SYS:
S,U:
S, U:

SYS:
USR:
SYS:
USR:
SYS:
USR:
SYS:
USR:
SYS:
USR:
SYS:
USR:
SYS:
USR:
PGM:

SYS:

USR:
S,U:
S, U:

Y
The system informs the user that it found no errors.

~RINT LIST.CONV(O) ",EDIT,ERASE
.QALL CONV
The keyboard unlocks indicating the system will accept input data.

333
The keyboard unlocks indicating the system will accept input data.

3.0 11.0 19.0
The keyboard unlocks indicating the system will accept input data.

5.0 13.0 17.0
The keyboard unlocks indicating the S\'stCIl1 will accept input data.

7.0 17.0 29.0
The keyboard unlocks indicating the system will acccpt input data.

31.0 43.0 59.0
The keyboard unlocks indicating the system will accept input data.

37.0 47.0 61.0
The keyboard unlocks indicating the system will accept input data.

41.0 53.0 67.0

3.000 11. 000 19.000
5.000 13.000 23.000
7.000 17.000 29.000

X
31.000 43.000 59.000
37.000 47.000 61.000
41. 000 53.000 67.000

1279.000 1653.000 2121.000
1579.000 2045.000 2629.000
2035.000 2637.000 3393.000

CHCIW STOP
ERASE SOURCE.CONV
LOGOFF
The system acknowledges log-off.

Figure 28. COIlYe[sationuI SYSIN-SYSOFT for CO:\,V (continued)

Index 166

;~ (UlllivaJent to PCS statement counter)
;CrCOM as a symbol
Ji>EKD
XL
70END

1\BEI\D command
ABEi\DREG command
& COM as a symbol
& E,\D
AS:\f command

assemhler langllClge programs
AT command

description
example
general form

Attention button
Attention cOlbidemtions

BACK command
continuation following
,lata set requirements
example
general form

Backspace
Backward pointer
Base rcgi.,ter adeon
Basic DD£F command
Basic sequential access method (BSAM)
Batch SC(lUencc number
BCD FT,\ command l)aramcter
BECII\ command
Blank character
Blank COM!lION
BLKSIZE Parameter for DDEF command
BLOCK DATA Subprogram

example
linkage editing
listing
llan1C assignment

Blocking recorels
Braces {}
Brackets []
BRAI\CH l'Olmnand

description
general form

BSN
BSA:\!
B1.)F:\O pmanwter for DDEF command
BUILTIN command

C command
CA command
CALL command

description
directory of examples
general form

Call data definition command
(see CDD command)

Calling
assemblE'r langnagc proi!rams
DVCHK
FOHTRAN subroutines
O\'ERFL.

98, 103
99

29,44,136
59,60,71,75

130

1.52
152
99

130

14G,152

101, 102
38, 17

152
10,20,52, 149-1.50

149-150

13
146

14, 42
152
13:3
120
87

134
124-125

27
80,82

152
130
12.3
140

34-35
118
85

115-116
126
151
151

105
15:3
27

124-125
141
15:3

153
];1,58,15:1

105
17

1.53

119-123
106

121-122
106

CAI\:CEL mmmand
example
general forn1

(,:ancc1illg
data definitions
line
pes statements

Card decks from outsic11' TSS/360
Carriage control characters
CATALOG command

data ",t requirements
directory of examples
general form
shan'cJ data sets

Catalog
access typcs
,1:1 ta sets
indexes
prestorcd data
private data set

eB command
CDD command

data set n'qllircments
example
g(,lwr,tl form

CDS command
data set requirements
description
example
gl'l1era 1 form

CF
Ch;lnging

cOlltl'nts of variahle
program Hmv

Character constant in PCS expression
Chaq.c:c numher
CHCPASS command
CLOSE command
Code oplimi7.ation
Cork file (CF)
Command

cl"scriptions
directory
(executing in FOHTHAN pwgrams
formats
language
operands
parameter defaults
prompting

Comment line
CO\lMOi\

control section listing
data use
display
efficiencv considerations
multiple- execution
stat,'ment misuse
svmbol resolution
l;nloading hlocks
variahle ~torage allocation
variahh) storage size

Compilation
sample listing
terminal

Index

14,59
153

9
20,49

103-104
132

:31,140.162

146
14

153
114

8-10
8-9

3,8-9
9

41
14, 58, 1.53

146
15,46

153

146
12

15,49
154
102

104-105
104-105

100
1

154
1.54
107
102

151
14

117
151

2
151
20

4
22

85
123
103
108
III
119
111
60
60
95

164
22

Index 167

Compile and run
Compiler

(sce FORTRAN)
Complex numhers
Constants in PCS c:qlres,jons
COKTEXT command
Continue

character
form of CALL command
compilation
line

Control clwradcr
carriage

Con tral section
display
listing
name
packing
public
sktred

Conversational mode
processing
sample program
source statcmE'nt correction
SYSIN /SYSOUT example
task initiation

Copy data set command
(sec CDS command)

Copying data sets.
connECT command
Correction

DDEF command
PCS statement crrors
source statement ..

CrE'ation
generation data group
job library
listing data set name
source data set name

cnLIST FTK command parameter
CRL

(see cross-reference tahle)
Cross-referencc listing

description
FT:\, command parameter
sample

Cross-reference table
CSECT

(see control section)

Data control block parameters
DATA command

data set requirements
directory of examples
general form
interruption considerations
prompts

Data set
cataloging
erention
erasing
generation
indexed
labels
name, moving
name, qunlifiers
name, restrictions
organization
partitioned
physical sequential

Index 168

5,26

120
100
154

78
104
2,)

20,8.'5

:31, 1fi2

102
84

8'3.99
110
11.'5
ll.s

1
165
77

.16:3
2,20

12
l6. 15!

145
7G, 77

22, 76, 77

6.5
26
24
49
81

102

91
81
90

105

140-142,52

146
16

154
149

4f)

8,135
124

12
130
49

60, 139
61

8
1.35

6, 124
125, 7

7,124,125

printing
protection
record

(wc record)
reference lJ umber
fC'llloving catalog entry
requirements for commands
sharing
structure
VI
virtual il1l1n scquential
virtual partitioned
virtu,d sequcntial
VP
VS

D'lta sl't definition
description
requirements for commands

D,rh sl't name
descrilltion
list
(lualification
H'strictions
source

Data set orQani7ation
requirements for commands
table

Data set refercnce numher
Data set status? command

(sec DSS? command)
DCB
DDEF command

catalog,'d data set
(-orr{-,,(,tion

ddnamc parameter
defaulting
description
clia.gnostics
directory of ('x'lmples
I.(erwral form
inten'han,geah ility
multiple execution use
new data set
"Id data set
on1ission
paranwters
retrieving
sloring (sec CDD command)
uncataloged data set

cldnanw p,uametcr of DDEF command
DDNAME? command
Debugging
Debult compilation parameters
DEFAULT command
Default command parameters
Default FTK command parameters
Default option listing

description
sample

Defective track
Define data command

(set' DDEF command)
Defining job library
DELETE command

,lata set requi remen ts
example
general form
shared data set
use

Deletion line durinl.(DATA command
Delimiters for PCS statements

30,31
9

27,60
8

146-147
9

124
12,5.6
l25,6
125, 7
12.5,6
12.5, 7
125.6

7,146
146-147

3, 138
24,123

3
135

.35,49

146-147
131

27,60

140-142,52

40
14.5

7,137
136
132
145

14
154

7
60, III

137
137

8
137

8,46

60
137
154

36,96
26

18,146,154
20,24
80-82

83-85
84

133

26,140

146
63

154
114

15
50

114

Ddermining size of data set
DEVD pmamder for DDEF

command
Device reserving
Diagnostics

(see messages)
l)iagnostic nl{'l)sagcs

(see llH-:ssagcs)
Dialog with system
Dial up ,y,tcm
DIH macro instrndion
DISABLE command
DISP parameter for DDEF command
DISPLA Y command

description
example
general form

Displaying rt'cords
Disposition of data sets at log-off
D~IPHST command
DO loop efficiency considerations
clc1name par,nnctcr of DDEF command

description
dsname parameter of DDEF command
dsm,l(parameter of DDEF comm,md
DSS? command

(bta set requirements
example
geneml form

Dnmmy argument:, in PCS command
DUMP command

data set requirements
description
example
general form

duplication of symbols
DVCHK

E-code message
EDIT command
EDIT featllIe of PIU1\T command
efficiency (sec optimization)
ellipsis (...)
E:\!ABLE command
END command
E\;D statement
End option of READ statement
END FILE statement
End-elata-set condition
End-of-data indicator
Entering

commands
command seq\1cnce
data
source statcments for pnnching

Entry point register
ENTRY statement
EQUIVALENCE statement
EHASE

PRI1\T command parameter
PUNCH command parameter

ERASE command
data set requirements
directory of examples
general form
shared data set

Erasing
library
listing data set
member of partitioned data set
program library list

56

141
9

2
20

119
16,155

32, 131, 135, 140

102
36,17

1.5.5
12

llO
15.5
109

133, 134
1.35, 138, 145

1.'35,137

146
15,62

155
106

147
109

17,38,103
155

112, 113, 115
106

79
15. 147, 15.5

31

1.51
16, 15.5

1.5,147,155
23,76

44
32,133

132
29

4
13
12
78

120
115

108,119

31
56

147
15

155
114

63
58
63

113

EBR option
!·:HHOH llarameter of PHI"lT command
Error

code
I/O
nlE'Ssages

(see n1cssages)
\IODIFY command
noncotlv('rsational mode
recoV('ry procedure

EVV command
Excepti< m handing
EXCFHPT command
EXCISE command
EXECUTE command

,bta set Tequiremenb
example
general fornl

EXl'(,lItahlc statement
EXIUBlT command
EXIT statcnwnt
EXPLAI1\ command
Explicit symhol qnalification
Exponcnt-o\'prHow
Exp(>l1cnt-lIml(Tflow
Exprc"ion File (EF)
External Name List (ENL)
Exll'rnal symbols

F-codc 111cssa,ge
File scql1cnce numher
Fixed kngth record format
Fi'>;e,j'point divide
Fixed··point overflow
Floating continuation character
Floatin:c:-point computations
Floalinl.!-point divide ('xception
FORMAT statement
format of commands
F onnatted records
FOHM"10 for PRINT command
Forms of a program
FOr\varc1 pointer
FORTHAN CALLs
FOHTRAN

card i'ormat
contl'Ol characters
(".;temal symhols
dh(~nustic messages
error checking
internal symhols
1/0 statement
listings
optimization
parameters
command records
restrictions
statement nl1mbers
vnriahles, initial content

FORTRAl\ IV library suhprograms
calling
description
Ii st of names
substitution

Free form terminal entry
FTN command

data set requirements
directory of examples
,general form
parameters

FTxxFyyy

132
31

22, 79
132

28
45
27

155
117, 119, 132

16, 155
16, 156

147
14,42

156
116
156
132
156
99

105,117
105,117

93-94
96

11.5, 116

80
139

126, 127
105

105,117
75

116
105,117

14, 127
151
127
31
56

120
121

22
162
99

78.79.92
23
99
8

83·91
107,110

35,80,82
8

93-96
99

118

118
2

92
97
26

146
17

1.'56
80

7,134

Index 169

Full messages
FUI\CTIOI\ ollbprogram

GDG
Generation data group
Global corrections
Global errors
GO commaml

description
directory of cxamples
general format

HEADER parameter of PRII\T command
Hexadecimal const<mt in PCS

expression
HOLD option on DDEF command
Housekeeping methods
Hyphen (-) as continue character

IF command
description
example
general fonnat

Illegal address assigmnent
IMSK parameter f~r DDEF command
Indexed data sct
Input/Output

error nlcssagcs
list
procedures
statement
tape

I'\'SERT command
L,tcgc'r constant in PCS expression
Integer result register
Internal symhol dictionary

creation
size
llse in PCS

Internal svmhols
effect (;f linkngc ecliting

Interruptions
durin.Q message printont
handling
resuming execution
symbolic location

ISD
(sec Internal symhol dictionary)

ISD FTN command parameter

TOBLIB
(sec Job Library)

JOBLlB option in DDEF
command

JOBLIBS command
Job library

adding
contents
ereation
use

Job processing
Joining the system

K command
KA command
KB command
KEY\VORD command

LABEL parameter in DDEF command
Library hierarchy
library

obtaining infonnation
search
user (see user library)

Index 170

20
.'),120

65, 7
6,'),7

70
2,1

104
17
17

156

.'31

100
1:19

62
78

103
38

1.56
47

132
49

133
55

5
6

40
16, 156

100
120

81
96

97, llO

99

149
52, 132, 149

3f3, 150
98

81

26,140
1.56

10
10

34,112
10
44

1

157
14,58,1.57
14,58,157

1.'37

60, 146
12

63
12,47,48

LINCH FTN command parameter
LI:\E? command

data set requiremt'nts
directory of examples
general form

Line data set
Line nnmher FTN command parameter
Line numher increrIlE'nt FTN command

parameter
Linkage

hdwl'cn FORTRi\I\ and assembler language
programs

type I
Linka.ue editor

efficiency considerations
progran{ libraries
lise

LIST
command
data set name

LISTDS operand of FTN command
Listing data set
L:\K command
LOAD command

hefor(' PCS statements
BLOCK DAT\ subprogram
CALL statement
,lata set requirements
error.";

example
general form
interruption considerations
obi' 'ct moduJrs
program with errors

Load-aml-nlll form of CALL command
Local corrections
LOCATE command
Logical record

(sec record)
LOCOFF command

C()J1\'TL'ational task
directory of example,
genpral fonn
nOllconvcrsationaI task

LOCO?\' command
conversational task
directory of examples
general fOlm
non conversational task

Log-on process
LRECL parameter in DDEF

command

M-machine code control chara"ter
~JCAST command
MCASTAB command
:t>.H.IAP FTN command paramcit'r
~1agnetic tapes,

non-TSS/360
~\lastcr Index
M,'mory map FTN command

parameter
;\fcssages

conversational output
DDEF command
diagnostic
option
prompting
response
types

Mctasymbol
Misspelling during DATA command

82

147
16

157
6

82

82

122
119

109, no
112,113

117

16, 157
24,116
n, 82

6,24,82,83
157

38
35
47

147
98

17,38
1.57
150
120
28

104
76

10,1.57

12
14

157
1.'3, 44

2,20
14

158
43

2,20

131, 140

162
158
158

81

132
3

81

79
145

4,19
20
19
19
19

151
49

Mixed arithmetic
:VExed input (card and keyl)oarcl)
\fixed mode
MODIFY command

data set requirements
example
general form

Modification
chtu sets
source statement
terminating

i>.!odllle name FTN command parameter
\!llltipk l'xE'cntions

NA\lE FT1' command parameter
NA\lELlST

indication in PSECT listing
size
writing records
END

);amcs
list data set
qualification
rules
slwrn\ data set
source (lata set

:\on-COM\ION variahle storage size
N ol1eOlI\'er",tional

LOCON command
processing
program control system
sHrnplc program
~ECt'RE reC}llirt'mcnts
task initiation

1'onexcclltable statPl1]ent
:\P:\fBER command
Nllmllf'f of clevices required
:\ 11l1wric,\l constants indication

in CSFCT listing

Ohjcd listing FTl\ cOImnancl parameter
Object module
Ohject program module

(see object module)
Ohiect time efficiencv
OBLIST FT:\ comma~cl parameter
OFF

(see LOCOFF command)
Operand

keyword
po,itional

OPTCD parameter for DDEF
command

Optimization
compiler
page reference
unloading
user prognun

Optimization table
size

OPTIO:\ parameter of DDEF
command

Order of search
Output

destination
us(' on other system

Output module li~ting
OVERFL

PAD p,nameter of DDEF
command

109
74
13

147
16,28

1.'58

12
28
28
80

111

80

87
103

6,129
130

24,116
113
11.5

55
35
95

4:3
20,44,60

98
16:3-164

143
20,42

99
16, 1.'58

133

87

81
5,22,119

107
81

151
151

141

107
93

110
107, 108

96

140
112

95
131

83,84,86,89
106

141

P:lg(' IlIllnbering parameter of PRI::'>lT
command

Fa~e utili/ation
Paging

reduction
P.:lr1.lnlcter arC:1
Parameter list

indication in ['SECT bting
length
H'gister

l'<utitiollcd data set
(sec virtual partitioned)

Password
PAUSE statemcnt

description
difrerent'(' betwcen STOP amI HETUR1'

PCS
(see pm.l':ram control system)

I'CSOUT data set
PC? command
';, (cquivalent to PCS statemL'nt counter)
~; EI\D

L
i'EH:\fIT command

catalog alteration
data set requirements
desniption
example
general form

Permitting access
Phasp 2 internal table
PF

(s< '(' proL(ram file)
Physical s('(lUt'ntial

chta set
organ ization
r(,cord format

I'Ll conn11,md
POD? command
Positioning statement
POST command
Preset data fa hIe (PDT)
Presto1'''

DDFF commands
pnlC'l'dllre
SOllre" program

Prcstornl S011rce data 'iet FORTRA::'>l
parameter

l'HINT command
data set record formats
data spt requirements
description
directory of examples
general form

Priority
PHIVXrE option of

DDEF command
Private volume

device allocation
job lihrary
mounting

Privikge class
PRrvll'T command
Prohlem program

communication
residence

PROCDEF command
PHOFILE command
Program

interruption
library

31
109

115
120

87,88
120
120

1,20

6
117

98, 102
158

98, 103
29,44,136

59,60,71,75

54
147

10
15,54

158
54
96

125
7

129, 131
1,'58

15, 147,158
133
1,'58
95

8
13

28,49

81

31
147

12
17

159
1

139

9
112

9
1

159

5
10

14, 147, 159
18, H7, 159

38,105,117
III

Index 171

IBM - Sys/360 Time Sharing - Cal., sh., Typwtr. - ro-mark 34012 8-9-71 DC

manipulation
module (see object module)

Program control system
command language
data sct printing
diagnostics
dynamic statement
expressions
immediate statement
list of commands
optimization considerations
removal of alterations
restrictions
statement counter
statement number
use
%

Program data
end indication

Program File (PF)
Program library
Program library list

description
order of search
removal of library

Program module
(see object module)

Program module dictionary size
Program representa tion file (PHF)
Program status word
Programming considcrations
Prompting
Protection

against l111allthorizf'll usc
storage

Prototype section
listing
name

PS
(sec physical SC(lllential)

PSECT
(see prototype section)

PSW
PUBLIC FTN command parameter
Public

considerations
control sedion attribute
volumes

PFNCH command
control charactcrs
data set requirements
example
general form
prestored source statements

Qualification
data set name
internal symbols
nan1es

QUALIFY command
description
example
general form

H-value
READ statement

data sets
defaulted data set
DDEF command
direct-access device

Index 172

56

98
39

105
26,98

100
36,97
17,97

110
37

110
98, 103

38
13,97

98, 103

44
95

111

10,26, 111,112
114
113

96
95
36

107
20,24

1
2

84
116

36
27,82

llS
25

9

162
147

17,56
159
78

3
99
5S

101
17,36,38

159

32, 132
13:3
27

5

fixed-len gth records
E\: D option
restrictions
tape devices
terminal
variable length records

Head tapccommancl
(see HT command)

Hl"l(!-and-writc shared data set
a('ces~

Head-only
catalogec1 data set access
shared data set aceess

Heal constant in PCS exprE'ssion
HECFM parameter in DDEF

command
Hecord

format
length
structure

Hderence
indication on listing
resolving
to subroutine

HEClON command
Ikgister

save area
use

Hl'lativegcneration name
Relative refcrence
HELEASE command

data set requirements
description
example
general form
interruption considerations
joh lihrary
multiple exC'cution

HEil.fOVE command
description
example
general form

REPEAT command
Heplacing records
Heserving devices
H",olving external references
Hcsllmillg l'scl'utioll aftl'T interruption
RET command
Retaining data sets
HETPD paramcrer of DDEF

command
Iktricvill!.; DDEF commands
HETUH\: macro instruction
HetlHn Tegister
Hevicwing source statements
HEVISE command
HEWI:\D statement
RT command
HUr\ command

description
gcneral form

Sample program
conversational
n 011 ('011 versational

Save moea
Save area register
Search order
S I':CUHE command

description
example

126, 127
133
137

6
5

126

10,113

10
10,113

100

140

124
126
131

85
47
47

16, 147, 159

87
120

65
65

147
16

15, .39,52
159
52
10

60, III

103
17,39

159
158
12
1.3
47

36.44. ISO
159

9,139

139
9,46

120
120
28

160
133
12

27,104
160

165-166
163
120
120

10

9,133
14,41,60

general form
Service routines
Session
SET command

description
example
general form
restrictions

Setting tab stops
Severity code for compiler

diagnostics
SHARE command

catalog
data set requirements
example
general form

Shared data set
access
authorization
coding considerations
description
example
libraries
removal of catalog entry

Significance exception
SIR macro instruction
SLIST FTN command parameter
SOURCE data set name qualifier
Source listing

FTN parameter
sample

Source program
complex restrictions
listing
simple restrictions

Source statement
(see sta temen t)

SPACE parameter of DDEF command
Spacing option of PRINT command
SPEC macro instruction
Specification exception
Statement

comment
committed
continuation
END
format
initial
keyboard
limitations
line number
number
partial
tentative

Statement function expression file
STEDIT FTN command parameter
STET command
STOP command

description
example
general form
interruption considerations
PAVSE comparison
RETURN comparison

Storage map listing
Storage

optimization
protection

Storage references indication in
CSECT listing

Storage specification list (SPL)

160
1
2

104
17,38

160
105
49

79

55
114,144

15,54
160

10,54,113
.......... 10

115
10
54

113
8

117
119

81
49

82
83

94
83
93

139
31

119
117,119

74
76
74
74

74,78
74

74,75
74

22,24
75
76
76
95
81

160

5, 105
17,36

lAO
149
117
117

98,99

lOR
3

84,87
9:3

STORED FTN command parameter
Storing DDEF commands
Stroke (1)
Subprogram

FUNCTION
IBM-supplied
name as CALL argument
reference
SUBROUTINE

Subroutine calls indicated in
CSECT listing

SUBROUTIl\E subprogram
Subscripted symbols
Supervisor program
Switching between card and keyboard

input
Symbol tahle edit FTN command parameter
Symhol table

listing
size

SYNONYM command
Syntactit'al errors
System

administrator
catalog
library
manager
resources

System routine residence
SYSIN

conversational
dl'scription
noncollvprsational

SYSLlB
SYSOBF
SYSOUT

conversational
description
l1oncoTlversational

T option in RETURN macro instruction
Tab stops
Tahle of Initializpd Variables
Task
TC'rminal

card reader input
I/O
keyhoard input
mode
operation
session

Termination
input line
session

TIME command
Time interval
Time Slice
Time St,tmp
Track facility
Triad tahle

(see Optimization table)
TV command
Tn)!' I linkage

Unhlocked records
Uncataloged data sets

"rasure at lo.g-off time
procedure

Undefined
record formnt (U)
references

77
46
99

5, 120
123
122
120

5

85,87
5

100
1

58
81

89-90
102

18,147,160
22

1
3

10,112
1

13
3

2,163
2

12-13
10,112

117

163
2

12-13

120
26,74
89,90

1,2,12,20

50
5-6
50
58

1
2

130
4,45

]4, 160
3
3

81
120

2.'3,147, WO
119

125

23
8

126
47

Index 173

Underscore
Unformatted records

description
writing

UNIT parameter of DDEF command
Unlimited access

cataloged data sets
shared data sets

UNLOAD command
after interruption
CO~H\IOl'\ blocks
efficiency considerations
example
FORTRAN compiler
general form
log-off time
object module
unreferenced programs

Unlocking keyboard
Unresolved references
UPDATE command
USAGE command
User catalog
User defined librarv
User identification'
User Library

cataloging
contents
description
organization

Useric1
USEHLlB

(see User Lihrary)

V-value
VA~1

(sec virtual access method)
Varia hIes in array
Variable-length parameter list
Variable-length record format (V)
VEHID FTN command parameter
V crsion identification
Vertical stoke i
VI

(sec virtual index se(!uential)
Virtual access method (V AM)

(sec also: virtual index sequential;
virtual partitioned; virtual ser]uentiaI)

Virtual index sequential
data control block parameters
data set
organization
record fOlTIlats

Index 174

150

6
1:30

1:33, 1:38

6
9-10

52
60

110
17,47

35
160
39

113
47
27

114
161
161

8
10

1

23
10

8,17
10

1

122

123
120
127
81

24,81
151

124

141
6,12.5

6
126

Virtual partitioned
data set
displaying characteristics
organization

Virtual sequential
creation
data set
organization
record formats

Virtual storage
description
structure

VISA}V1
(see virtual index sequential)

Volseqno
(sec volume sequence number)

Volserno
(see volume serial number)

Volumes
Volume sequence number
Volume serial number
VOLU~vJE parameter of DDEF command
VP

(see virtual partitioned)
VPAM

(sec virtual partitioned)
VS

(Sf'e virtual sequential)
VSAM

(see virtual sequential)
VT command
VV command

\V-Code message
\Vithdrawing authorization to shared

(bta .',ds
\Von1 hourclaries exception
\Vritc statement

cataloged data set
DDEF command
c1escription
fixed-length rceords
variable-Icngth records

\\'rite tape command
(see \VT command)

\VT command
data set requirements
example
general form

ZLOGON

7, 125
63
63

50
6, 125

6
126, 127

2-3
109

3,5
1.39

61, 139
1.39

15, 148,161
15, 148, 161

79

10,54
119

32
27
30

126
126

148
17,63

159

14, 161

GC28-2025-4

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A.onlyi

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
ilntemationali

" o
"" --I

~
Z

Cl
C

D...
ill

Technical Newsletter File Number 5360-25

Base Publication No. GC28-2025-4

This Newsletter No. GN28-3204

Date February 1, 1972

Previous Newsletters

IBM System/360 Time Sharing System:
FORTRAN Programmer's Guide

© IBM Corp. 1967, 1968, 1970, 1971

This Technical Newsletter provides replacement pages for the
subject publication. Pages to be inserted and/or removed are:

79-80
117-118

A change to the text is indicated by a vertical line to the
left of the change.

Summary of Amendments

• The description of the effect of a level-2, severity
code "E" error diagnostic has been modified.

• Errors in the description of the parameters required
by SYSOBF have been corrected.

IBA1 Corporation. Dept. 643, Neighborhood Road, Kingston, N. Y. 12401

None

'WINTED IN U S. A

