File No. S360-25
G(C28-2025-4 TSS

Systems Reference Library

Version 8.1

IBM System/360 Time Sharing System
FORTRAN Programmer's Guide

This publication describes how to use the By System /360 Time
Sharing System (Tss. 360} for compiling and executing programs
written in the ForTraN 1v language. It also describes how to use
the services and features of 1ss/360 that, while not directly re-
lated to FOorRTRAN programming, are frequently of use to the FOR-
TRAN programmer.

Firra Eprmion (September 1971)

This is a major revision of, and makes obsolete, C28-2025-3 and Technical News-
letters GN28-3067 and GN28-3141.

This edition is current with Version 8, Modification 1, of the IBM System/360
Time Sharing System (TSS/360), and remains in effect for all subsequent versions
or modifications of TSS/360 unless otherwise noted. Significant changes or ad-
ditions to this publication will be provided in new editions or Technical News-
letters. Before using this publication, refer to the latest edition of IBM System/360
Time Sharing System: Addendum, GC28-2043, which may contain information
pertinent to the topics covered in this edition. The Addendum also lists the
editions of all TSS/360 publications that are applicable and current.

Requests for copies of IBM publications should be made to your IBM repre-
sentative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for rcader’s comments.
If the form has been removed, comments may be addressed to IBM Corporation,
Time Sharing System/360 Programming Publications, Department 643, Neighbor-
hood Road, Kingston, N. Y. 12401.

©Copyright International Business Machines Corporation 1967, 1968, 1970, 1971.

This publication is a guide to the facilities of the M
System/360 Time Sharing System for the user of mBM
FORTRAN 1v. It is divided into three parts.

Part I is an introduction to the 1M System/360 Time
Sharing System, directed to the user of the FORTRAN 1v
language. It contains basic information needed for ef-
fective use of the system and all of the information
needed for effective use of Part II of this manual
Readers already familiar with the time-sharing system
might profitably scan Part I and go directly to Part II.

Part II is a set of annotated examples. They begin
with fundamental operations, such as logging on, and
in succeeding examples progress to increasingly sophis-
ticated concepts. The examples reproduce and com-
ment on the user-system dialog as it would appear
at a terminal with the exception that specific system
response messages are not identified. The examples
may be read for instruction; they may also be used as
models for accomplishing common tasks.

Part III is a set of appendixes containing reference
material for users who may need detailed information
about the system.

Much of the material in the introduction and the
appendixes duplicates or summarizes information in
the examples (Part I1) and other 1ss/360 publications.
Some material is unique, such as Appendix C, which
gives guidelines for efficient programming and a dis-
cussion of the effects of compiler optimization on the
use of the program control system (pcs).

Prerequisite Knowledge

Readers should be familiar with the M FORTRAN 1V
language, since this book does not describe the lan-
guage, but rather describes the use of the language in
the TSS/360 system.

Preface

The rorTrAN user will find the language specified in
these publications:

IBM System/360 Time Sharing System: IBM FOR-
TRAN IV, GC28-2007

IBM System/360 Time Sharing System: FORTRAN
IV Library Subprograms, GC28-2026

If additional knowledge of the time-sharing system
is needed, the following publications should be re-
ferred to:

IBM System/360 Time Sharing System: Concepts
and Facilities, GC28-2003, provides a broader
system survey than does this manual’s introduc-
tion.

IBM System/360 Time Sharing System: Command
System User’s Guide, GC28-2001, describes the
entire command language, including the program
control system.

IBM System/360 Time Sharing System: System Mes-
sages, GC28-2037, lists all of the messages pro-
duced by the system.

IBM System/360 Time Sharing System: Terminal
User's Guide, GC28-2017, gives details of the
facilities and operations of the various terminals
supported by Tss/360.

IBM System/360 Time Sharing System: Linkage
Editor, GC28-2005, describes the linkage editor.

FORTRAN programmers who wish to use assembler
language subroutines will need to be familiar with:

IBM System/360 Time Sharing System: Assembler
Language, GC28-2000

IBM System/360 Time Sharing System: Assembler
User Macro Instructions, GC28-2004

Part 1. Introduction

The System

Identifying You to the Svstem
Conversational Use of the System

Conversational Task Initiation

SYSIN and SYSOUT .
Virtual Storage
Sharing Time

System Catalog

Terminal Session Activity ...
Entering Commands o
Compiling and Running a Prog ram
Checking Out and Modifying Programs . .

Planning Problem Program Input/Output ... U

Specifying TSS/360 Problem Program I/0
Data Sets with Virtual Storage Organization

Physical Sequential Data Sets

Generation Data Groups .
Data Set Definition
Cataloging and Uncataloging Data Sets
Using System Storage U
Protecting and Sharing Data Sets
Maintaining Program Libraries
Copying, Modifying, and Erasing Data Sets R

Conversational Task Termination
Nonconversational Use of the System

Nonconversational Task Initiation

Nonconversational Command Procedure Processing

Nonconversational Task Termination
Mixed Mode Use of the Sy@tem

Remote Job Entry ..
Command Dxrectory

Part ll. Examples ...

Example
Example
Example

Example
Example

Example
Example
Example
Example
Example
Example
Example

Example
Example
Example
Example

Example

Example
Example

Example

Example

1:

2:

3:

O W -1

13:
14:
: References to Subroutines
16:
17:

18:
19:

20:

21:

Initiating and Terminating a

Conversational Task
Compilation and Correcting from

the Terminal
Compilation and Correction from
the Terminal
Compile and Run
Correcting and Recompiling a Prestored
Source Program

: Writing a Data Set and Printing It ...
: Reading and Writing Cataloged Data Sets .
: Multiple Compilation Before Execution ...
: Use of PCS Immediate Statements
10:
: Input and Output on Tape
12:

Use of PCS Dynamic Statements
Conversational Initiation of
Nonconversational Tasks .
Preparing a Job for Nonconversatlonal
Processing .
Storing DDEF Commands for Later U:,e N

Entering Data for Later Use
Data Set Considerations when Interruptmg
a FORTRAN Execution ...
Sharing Data Sets e
Manipuation of Several Forms of a
Program
Terminal Input of a Pre-Punched Program
for Compilation and Running
Intra-task Carryovers

Contents

Example 22: Survey of System Facilities and Some
Housekeeping Methods ...

Example 23:
Example 24: Tape and Disk Medium Transfers of
Virtual Access Method Data Sets ..
Example 25:
Example 26:
Example 27:

Example 28:

The Text Editor Facility ..

The User Profile Facility .

Part lll. Appendixes
Appendix A. Use of the FORTRAN Compiler

Generation Data Groups ...

The Text Editor Facility ...

Use of Procedure Deﬁmtlon (PROCDEF)

Entry and Correction of FORTRAN Source Statements ..

Format of Source Lines ...
Card Format Line (Both Nonconversational and

Console Card Reader) .
Character Sets — Card Format
Keyboard Format . .
Character Sets — Keyboard Format ..

Mixed Card and Keyboard Input ..

Efficient Correction Techniques . .
Entry of Keyboard Source Statements for Later
Punching and Recompilation
Compiler Diagnostic Action .
Compiler Options and Listings Produced
FORTRAN Parameters
Explicitly Defaulted
Implicitly Defaulted

Structure and Descnptlon of Compller Lxstmgs TR

Heading Page .)
Source Program Llstmg

General Description of Oﬁfﬁut Module Llstmg

Default Option Listing .

Detailed Description of Output Module Lletmg e

Description of PSECT Listing .

Description of Cross Reference Listing
Description of Storage Map Listing

Destination of Compiler-Produced Lmtmgs U
Conversational Tasks

Nonconversational Tasks . .
FORTRAN 1V Library Subprograms Indirect
References
Reference to Subroutmes o
Destination of Output
Compiler Restrictions

Description of Table of Initialized Variables
Description of Symbol Table Listing

Appendix B. PCS and FORTRAN Object Programs

General .
Commands and St‘ltementq .
Sequence of Operation
Conversational Mode
Nonconversational Mode ..
Notation e
Directives . A
Operators
Symbols . ..
FORTRAN Statement Numbers
Subscripted Symbols
Constants

Expressions
Arithmetic Fxpxcssmrxs
Logical Expressions

Ranges ...

Commands R

QUALIFY Commqnd

AT Command L .

DISPLAY Command

DUMP Command ‘

IF Command = ..

REMOVE Comm: and

CALL, GO, BRANCH Commands

SET Command R

STOP Command

PCS Diagnostics

Dimension Errors

Range Errors ...

Program Interruptlon

Dummy Arguments ...

Appendix C. Programming Considerations
Object Time Efficiency R
Object Code Optimization ... T .
Compiler Optimization . e
Efficient Use of FORTRAN Statements ...
Use of Linkage Editor to Improve Object Tlme
Efficiency
Use of Dynamic Loader to Impr()\c Object Time
Efficiency .
Use of Control Senhon Pankmg to Improve Ob)ent
Time Efficiency R
Effect of Compiler Ophmlzatlon on PCS Usage
Multiple Executions e .
Data Definition Considerations ...
Linking COMMON between \Iultlple Executions
Program Libraries . . L
Program Library List Control .
Substituting FORTRAN 1V-Supplied Subprograms .
Sharing Libraries
Recovering from Errors when Dynqmlcally Loldmg
Shared Code (PUBLIC) Considerations
Systern Naming Rules
User-Assigned Names
Reserved Names
External Symbols .. .
Reserved Names Assocnted Wlth Data Sets)
Compiler-Assigned Names
Miscellaneous Programming Conslderatmns .
Floating-Point Computations e
Object Program Interrupt Provisions
STOP/PAUSE/RETURN Differences .
Link-Editing FORTRAN Programs .
Use of RUN Command and Call Statement with
FORTRAN Subprogram Module Names
Initial Content of FORTRAN Variables

Appendix D. Assembler Language Subprograms .
FORTRAN Object Program Structure
Subprogram References ... U
Proper Register Usage
Reserving a Parameter Area
Reserving a Save Area .
Variable-Length Parameter Lists
Types of FORTRAN Calls .. . U
Linkage between FORTRAN and Assembler
Language Programs . .
CALL where the Argument is a Variable Name .
CALL where the Argument is a Subprogram Name ...
Using Data in COMMON
Referring to Variables in an Array .

100

100

101

101

101
101
101
102
102

. 103

103
104
104
105
105
105

105

105

106

. 107

107
107

.. 107
. 108

109

110

. 110

110
111
111

S 111
112

112
113

114
115

116
116

116

116
117
117
117
117
118

. 118

118

119

... 119
. 119
. 120

120

120

120
121

- 121

121
122

. 123
- 123

Appendix E. Specification of Data Set

Characteristics [OOSR PPRIRION 124
Data Set Creation and Stmcture 124
Access Methods .. . o124
Virtual Access Me thod 124
Physical Sequential {(PS) ... 125
Data Set Records . T 126
Variable-Length Formqt 126

Fixed-Length Format .
FORTRAN Records ...
Formatted Records

NAMELIST Records

Unformatted Records T 130
Summary of FORTRAN Datn Sct Formats ... 130
FORTRAN Operations on Data Sets ... 130
Generation of New Data Sets 130
Reading Existing Data Sets ... 132
From Outside TSS/360 . 132

From Other than FORTRAN Prodrams
on TSS/360 . -

From FORTRAN Pro;.,mm'\ on TSS/’SGO
Fxception Handling

Positioning Statements and chuencc Rules 133
Execution I/O Error Messages 133
SECURE Requirements for Noncomer@atlonal Tasks 133

Guide to DDEF Commands .
Basic DDEF Command
DPDNAME — I‘T\xFyyy e
DSORG =
DSNAME= .
Default of DDEF Commands
Conversational
Nonconversational
Full DDEF Command
DDNAME
DSORG
DSNAME
UNIT
SPACE
VOLUME
LABEL
DISP . . .
OPTION .
BET .o R
DCB......ooooo ST ORI
DDEF Summary ...
Sample DDEF Commands

Error Messages for the DDEF Command ... 145
Data Set Definition Rules for Language Processing 145
Data Set Definition Rules for TSS/360 Commands ... 145
Appendix F. Attention Considerations 148
Interrupting Execution 149
Interrupting Privileged Commands 149

Interrupting Nonprivileged Commands and User Prog,rams 149

Attention Levels 149
Using the Program Control System (PCS) with

ATTENTION 149
Responding to Attention Interruptions 149
Appendix G. Command Formats.................... 151
Operands 151
Metasymbols ... 151
General Forms . 152
Appendix H. Carriage and Punch Controls ... 162
Appendix I. Sample Program 163
Part One — Nonconversational 163
Part Two — Conversational 165

Figures

FIGURE

-0 O 0 =1 O Ul W DO

ok ek

o
w o

TITLE

System Catalog . SRS
A Simple Compile and Run ... :
Data Set Identification, FORTRAN Plog,xams
Catalog Example :
Sharing of Cataloged Data Sets . ..
Noncomersqhon’d Task Initiation
FORTRAN Paramcters .
Compiler Parameters Defmlt and Pxomptmg
Description ...

Heading Page

Source Program Llstmg

CSECT and PSECT Lxstmgs for Default Lmtmg
Options .

CSECT Llstmg
PSECT Listing ...

Tables

TABLE

[Colie JIEN We J; G NNWVIN O

Command Directory ..
Compiler Diagnostic Action s
Destination of Compiler Output
Simple Source Program Restrictions ...
Complex Source Program Restrictions

Shared Data Set Commands ... U
STOP/PAUSE/RETURN Differences ...
Linkage Registers
Dimension and Subscript Format .

FIGURE

14
15

TABLE

10
11

Hlustrations

TITLE

Table of Initialized Variables .

Symbol Table Listing . .

Cross-Reference Listing

Storage Map Listing

Save Area Format and Word Content

Maximum Record Lengths (Bytes) .

Record Formats — Virtual Sequential

Record Formats — Virtual Index Sequential

Record Formats — Physical Sequential

Basic DDEF Command .

Full DDEF Command
Card Listing for CO\V T RTINS

Compilation Listing for CONV

SYSOUT Listing for CONV L

Conversational SYSIN-SYSOUT for CO\TV :

TITLE

Data Set Format Summary . U
DDEF Parameter Requirements bv Data

Set Type
Data Set Deﬁmtmn Rules f(n Language
Processing
Data Set Definition Requirements for Commands
Responding to Attention Interruptions
Carriage Control Characters .
Punch Control Characters

PAGE

131
143

146
146
150
162
162

In the Time Sharing System/360 you can run a pro-
gram conversationally: you and the system can ex-
change information during the entering and execution
of your program.

To compile a program conversationally, you enter it
at a typewriter-like terminal. The system analyzes each
program statement as it is entered. If the system finds
an error, it tells you so and offers you a chance to cor-
rect it. When the whole program has been entered, it
is analyzed as a whole, and again you can correct any
errors the system may find. Then you can execute the
program and monitor its progress. For example, you
can intervene during execution to check on the current
value of a variable, or leave a flag to the system to
stop execution should a specified condition arise. You
can even make temporary patches to correct program
troubles.

You can also run a program nonconversationally —
for instance, when the program has been checked out
and you know it will run satisfactorily, or when you
cannot stay at the terminal to converse with the sys-
tem. Nonconversational {background) processing in
1ss/360 works much like batch processing in other M
systems.

You can run in mixed mode — that is, you can start
a program conversationally and switch to noncon-
versational processing. Once a program is running
nonconversationally, however, you may not switch
back to conversational processing.

The System

TSs/360 is a special set of programs that has been de-
signed to make it easier for you to use a computer:

® A supervisor program controls the overall operation
of the system, and provides the time sharing en-
vironment that lets a number of users employ the
system concurrently.

e A group of service routines perform program control
and data management functions for each user, as
well as for the system.

e A third set of programs allows you to compile and
develop your problem programs.

This publication explains how to use these programs,
without involving you in their structure or their de-
tailed internal operations.

Part I: Introduction

Identifying You to the System

Before you first use Tss/360 you must be granted access

to the system by either your system administrator or

your system manager.! They, in effect, join you tc the

system by storing the following information about

you:

o User Identification (userid) — a code that uniquely
identifies you to the system.

® Password — a code word used in validating your
attempt to get on the system under the above userid.
The password is a further protection against un-
authorized use of the system or unauthorized use of
your data sets or charge number.

® Charge Number(s) — account number(s) against
which your use of the system is charged.

® Priority — a code indicating the relative priority of
your work in the system.

® Privilege Class — a code identifying you as a user,
i.e,, an individual who can employ the special set of
commands reserved for users (as opposed to the
commands reserved for, say, the operator).

From the information supplied by your manager or
administrator, the system can recognize you, and
validate your use of the system when you wish to be-
gin processing. This information remains in the system
until your system manager or administrator withdraws
your right to use the system.

Conversational Use of the System

In conversational processing, you communicate with
the system by means of a terminal. The terminal is a
typewriter-like device. One type, the 1BM 2741, is an
1BM Selectric typewriter specially equipped for termi-
nal use; another type, the 1BM 1050 System, can in-
clude both a typewriter and a card reader. With the
1050 you can enter input into the system via the key-
board or the card reader. Your terminal may be lo-
cated at the computer installation or at a remote loca-
tion. In any event, all terminal operation is much the
same: you enter a command directing the system to do
certain work, the system responds, you enter another
command, etc. You don’t have to be an expert typist;
correcting typing errors is a straightforward process, as
shown in the examples.

1If you are interested in additional details on system management and ad-
ministration, refer to Manager’s and Administrator’s Guide.

Part I: Introduction 1

You will find that you do not require extensive com-
puter training to use Tss/360. You must know three
things:
® The procedure for setting up your terminal for oper-

ation. This is a matter of setting a few switches. This

manual does not discuss the procedures and settings
for the various terminals — see Terminal User’s

Guide or ask someone to show you the correct pro-

cedure for setting up your terminal.
® The TSS/360 FORTRAN IV Language, the lan-

guage in which you express your problem-solving
procedure. This language is used for illustration
throughout this publication; it is explained in detail

in IBM FORTRAN 1V. In Tss/360, you also have a

variety of mathematical and service subprograms

available for your use. These are described in FOR-

TRAN IV Library Subprograms.
® The TSS/360 Command System, involving the com-

mands you will use to converse with the system.

Almost every command is shown in the examples

in Part II of this manual. Many typical uses are

shown, but not every use of every command. Should
you need more information than is in the examples
or the appendixes, consult Command System User’s

Guide, which describes the commands in detail. The

commands are explained briefly at the end of this

introduction.

In conversational mode, you engage in dialog with

the system. The system responds to your requests,

confirms actions, and informs you of any errors.

Complete details on system response messages are

presented in the System Messages publication.

The work done between logging on and logging off
is called a task. You may run one or many programs as
part of a single task. The work you do on a task at a
terminal is called a terminal session. Since a task may
begin conversationally but end nonconversationally,
task is not necessarily synonymous with terminal
session.

Conversational Task Initiation

You use the following procedure to initiate conversa-
tional processing:

1. Make certain the terminal is set up for operation
under Tss/360 (proper switch settings, power on, etc.)

2. Either:

a. Dial up the system, if it has a telephone-like
modulator/demodulator (modem). The phone
number is determined by your installation.

b. Press the attention button on the terminal, if the
terminal is “hardwired” (i.e., directly connected
to the computer).

When you press the attention button or dial up the
system, you begin the log-on process and set up a
conversational task in the system. If you have been
granted access to the system, and identify yourself
properly in the rocoN command in accordance with
the parameters set up for you at join time, the system
completes the initiation of your task. (If you cannot
log on, you should notify your system manager or
system administrator.)

SYSIN and SYSOUT

From your point of view, initiating a task means that
the system has prepared itself to perform work for you.
You can now converse with the system as if you alone
were using it. You have unique communication paths
in the system, permitting it to read from and write to
your terminal independently of all other tasks. You
can thus define work for the system by issuing com-
mands, and the required programs and data will be
loaded into main storage and processed, as you spec-
ify, regardless of the work other users may be simul-
taneously specifying.

Your task’s input to the system contains the se-
quence of commands you issue; this sequence is called
sysix. Your system input stream can also include data
to be prestored in the system, or actual input records
to an executing program. When you are in the con-
versational mode, your terminal is your task’s sysiv
device. Your task’s system output stream, called svs-
ouT, is directed to the terminal. It consists basically of
system messages; it may also contain output from your
programs if you so choose. Because the terminal is thus
a combined sysiN/sysour device, the terminal listing
will contain a mixture of the two system streams.

You and every other user have your own unique
sYSIN/sysout. You also have the following:
® Your own virtual storage space
® A scheduled time interval in which your task is

executed
¢ Your own catalog

Virtual Storage
In 18s/360, you are not directly concerned with the
physical limitations on main storage. Special address-

ing techniques, internal to the system, provide you

with a storage capacity theoretically equal to the total
range of addresses that can be specified in an instruc-
tion. The system’s addressing techniques effectively
combine sections of main and secondary storage,
creating a virtual storage area in which your task
operates. Your installation will inform you of specific
virtual storage limits on your problem programs and
data.

Although you have large virtual storage capacity,
efficient programming is important; performance can

be degraded by excessive demands on the available
storage at an installation.

When you log on, the system routines essential to
your task are loaded into your virtual storage. These
routines are a permanent part of your virtual storage,
i.e., they remain there throughout your task.

You obtain other system routines by issuing com-
mands and executing programs. These routines are
loaded into, and unloaded from, your virtual storage
on a demand basis.

You control the residence in your virtual storage of
the linkage editor and your problem programs. (Refer
to the LoAD, LNK, RUN, CALL, GO, and UNLOAD com-
mands in the table at the end of this introduction.)

An important aspect of Tss/360 virtual storage man-
agement is the protection it provides. Each user has
his own storage space for program execution. Another
user cannot interfere with your executing programs,
nor can you interfere with his, because neither of you
can refer to the other’s virtual storage space.

Sharing Time

Others may be using the system at the same time you
are. The system appears to be serving each of you
exclusively because it is repetitively giving each of you
a time slice, or an interval, during which all the facili-
ties required by your task, including computer execu-
tion time, are in fact exclusively yours. Unless the sys-
tem is overloaded, its speed will allow it to do your
work as well as that of other users without the in-
tervals being apparent to you.

TSS /360 can also operate with several terminals
sharing a single task. This mode of operation is not
discussed in this publication; refer to IBM System/360
Time Sharing System: Multiterminal Task Program-
ming and Operation, GC28-2034 for a description.

System Catalog

Conceptually, the system catalog is very much like the
catalogs used in libraries. It is an index that points to
items that reside elsewhere. You use it initially to re-
cord the location of data, so that you don't have to
keep track of where the data is located and so that you
can later retrieve the data by its name alone. The
structure of the catalog protects your data sets from
being accessed by other users, unless you specifically
permit others to share them.

To understand the structure and significance of the
system catalog, you must become familiar with the
basic concepts of data set, data set name, and data set
residence.

A data set is a named collection of one or more rec-
ords. For example, all of the following are data sets:
a source program, a library of compiled programs, the

collection of FORTRAN input records needed by a pro-
gram.

A data set name uniquely identifies a data set. It is in
the form of one or more symbols separated by periods.
For example, ROCKET.TESTFIRE.APRIL14. Each symbol
can consist of from one to eight alphameric characters,
the first of which must be alphabetic. Starting from the
left, each symbol of the name is a category within
which the next symbol is a unique subcategory. A
fully qualified name identifies an individual data set.
A partially qualified name identifies a group of data
sets. For example, if ROCKETS.TESTFIRE.APRIL14 is a
fully qualified data set name, rockeTs and ROCKETS.
TESTFIRE are partially qualified names identifying
groups of data sets, one of which is ROCKETS.TESTFIRE.
APRILL4. The group ROCKETS.TESTFIRE is a subgroup of
ROCKETS.

For example, examine the gross structure of the sys-
tem catalog illustrated in Figure 1, and note the fol-
lowing:

1. The system catalog consists of a master index and
sets of subordinate catalog entries. It is, in effect, a
collection of separate catalogs. The system has its
own catalog and each user has his own catalog.

The various catalogs are an index of the data sets
associated with them. Data sets that are to be cata-
loged must reside on one or more direct-access or
magnetic tape volumes. A volume can be a remov-
able disk pack or a tape reel. Some direct-access
volumes are public, meaning that they are perma-
nently mounted while the system is running, and
they can be accessed by all users. Some direct-
access volumes, and all magnetic tape volumes are
private. This means that they are not mounted on
the system until needed, that they are demounted
when no longer needed, and that they can be used
by only one user at a time. Data sets on either pub-
lic or private volumes can be cataloged.

1o

When the system was generated at your installation,
all catalog entries for system data sets were created,
including sysnis, which contains the system routines
that are loaded on demand — for example, the FoRr-
TRAN-supplied subprograms.

Your master index entry in the system catalog is
created when your system manager or administrator
joins you to the system. At that time, your user identi-
fication is placed in the master index and another
special entry is created in your catalog for a data set
called your userLIB. Your USERLIB is your own private
library for object programs.

Except for userLiB, you control all entries in your
catalog by the way you name your data sets and by
the way you use the cataloging and uncataloging fa-

Part I: Introduction 3

Master Index TSGFw* Useridy Userid, Useridg % ; Userid,
; i I T
i ; !
| | | |
¥ ¥ ¥ Y v
Other Catalog
Entries
Catalog Catalog Catalog Catalog Catalog
Entries Entries Entries Entries . Entries
for for for for for
System User, Userg Userg User
Program
T
IR
I /
/ | FAR IR
/o /o
;o / | 7
7 T 7
/ 1\ A ; /
/ \ f | \ | h \ / | \
/ /. Y \ [N
/ \\ // I j! i ,\ x'{ 4 / E Y
Y vy MR T | Y4 Py s
jser User, ’ Usen
Data Sets SYSLIB User) 9 3 e er,
Data Set Data Sets Date Sets Data Sets

Figure 1. System Catalog

cilities of the system. Some of these facilities are for

entering, removing, and renaming catalog entries.

Others are for indicating which data sets can be

shared by others and to what extent. These facilities

are described later in this section. The key points here

are these:

® Your catalog exists in the system from the time you
are joined until the time your access privilege is
withdrawn.

¢ Cataloging data sets is the only means of retaining
data sets on public volumes from session to session.
It also simplifies later use of those data sets.

& You can share vour programs and data with others
or not as you wish.

Terminal Session Activity

Entering Commands

To enter commands, you simply type in the required
characters and press the return key on the terminal.
What vou type in, of course, depends on what vou
wish to do and the content of the commands required.
Each command has an operation part specifying what
is to be done (as ruN), and each may have one or
more operands that qualifies the operation (as roc—=
followed by the name of vour object program, say
MaIN. This qualifies the operation to mean “execute
my object program, MAIN).

If you enter an incorrect command, the system
issues a message which informs you of the error. The
system also issues messages that give you information
helpful in assessing the system’s activity relative to
vour task. System messages are issued automatically
as the conditions causing them arise.

Compiling and Running o Program

Suppose you wanted to simply compute sine A, for a
single value of A, and print the result at the termi-
nal. You might design the following source program to
do this:

A=2

SINE==SIN(A}

10 FORMAT (‘THE SINE OF ¥74, IS’ ,F74)

WRITE(6,10)A SINE

STOP

END

You could then compile and run that program by
the conversational task illustrated in Figure 2. The
Locon and Locorr commands are used to initiate and
terminate the task. FrN initiates FOrRTRAN compiler
processing. To control the compilation vou specify a
number of parameters: name of the compiled program,
listings you want, etc. The compiled program is auto-
matically stored in your USERLIB as an object program
module. You execute it by the caLL or ruNn command
to obtain your result.

1. Press the attention button System makes you an
or dial up system. active user.
Log on 2. Issue a LOGON com-
mand.
1. Issue a FIN command System compiles your
(FTN is the name of the source program; it then
FORTRAN compiler). stores your object pro-
2. Enter the parameters re- gram for you (in your
. quired to control the USERLIB).
Compile compilation (including the
name by which you want
o identify the object pro-
gram).
3. Enter your source pro-
gram,
1. Issue a CALL PGM com- System retrieves your
mand (where PGM s object program, exe-
Run the name you assigned cutes it, and prints the
your object program at result on your terminal:
compile time above). THE SINE OF 0.2000 IS
0.1987.
1. Issve a LOGOFF com- System terminates your
Log off mand. task and releases your
terminal.

Figure 2. A Simple Compile and Run

In T8s/360 your source programs can use many of the
system-supplied subprograms. For example, in the pro-
gram illustrated in Figure 2, you used the siN sub-
program. These programs reside in sysLis and are
available during execution when your program in-
vokes them. Similarly, you can design and compile
your own FUNCTION and SUBROUTINE subprograms,
store them in your userLIB (or some other library)
and use them during later program executions.

Checking Out and Modifying Programs

The ForTRAN compiler includes conversational prompt-
ing and diagnostic facilities that assist you in debug-
ging your source program. It also includes optional
facilities for storing and cataloging your source and
listing data sets, and for including an Internal Symbol
Dictionary (1sp) in your object module. An 1sp allows
you to make full use of the Program Control Sys-
tem (Pcs).

You can use pcs commands and statements to per-
form one, or any combination, of these:

1. Request display of data fields and instruction loca-
tions within your program, specifying these items
by their symbolic names as used in the source lan-
guage program.

2. Modify variables within your program, specifying
these variables by their symbolic names and speci-
fying the new value for each variable,

3. Specify the statements within your program at
which execution is to be stopped or started. When
program execution has been stopped, you may in-
tervene, as described in items 1 and 2, before you
direct resumption of program execution.

4. Specify the statements within your program at
which the actions described in items 1 and 2 are to
be automatically performed.

5. Obtain the values of your program’s variables at a
specified point in its execution, with the variables
formatted according to their types.

6. Establish logical (true or false) conditions that

allow or inhibit the actions described in items 3,
4, and 5.

The use of Program Control System facilities does
not impose any restrictions on your source coding. In
general, the use of program control facilities will
greatly simplify the preparation of source programs,
because many functions previously source-coded can
conveniently be made available after compilation. pcs
is discussed in greater detail in Appendix B.

Planning Problem Program Input/Output

In most Tss/360 installations, a problem program does
not communicate directly with unit record devices
(card reader/punches and printers). You organize
input/output data flow as follows:

1. Prior to program execution, you store input data in
the system on a direct-access device. If the data is
the output of a previously executed program, you
can simply write it on public storage during that
program so that it will be retained for subsequent
use. If the data involved is new input, you can pre-
store it using the following facilities:

e Text editor facilities
® pATA command

® Operator procedures, involving your card input
deck or magnetic tape reel

2. During program execution, you will generally Reap
input data from the direct-access device on which
you stored it; and you will wriTE output data to a
direct-access device (for later actual output, follow-
ing execution). However, in Tss/360, you also have
the following additional facilities for input/output
during program execution:

Input: You can READ a record dynamically from
your terminal, READ input data from the system’s
tape devices; or sET data in your program (based
on program conditions) if you like.

Part I: Introduction 5

Output: You can WRITE a record to your terminal,
WRITE output data on magnetic tape; and PAUSE
in your program, print out data or a message at
your terminal, and return control to the terminal
for insertion of additional commands and then
continue processing.

You can also stop your program and pispLAY the
final results of its computation.

3. Following execution, you can print out or punch on
cards the program output you stored on a direct-
access device, using the PrRINT and PUNCH com-
mands, respectively. You can also produce a mag-
netic tape for subsequent printing by issuing a
wt (write tape) command.

Since you can communicate with your programs
during their execution, you can design programs that
do not require use of conventional 1/0 devices; all 1/0
can be achieved via the terminal. For example, you
can design your programs so that when predetermined
events occur, intermediate results are printed out at
your terminal. You can then decide how you want to
proceed: supply additional or different data at that
time; change the sequence of program execution; stop
the programs; examine key final results prior to initia-
ting their final printout; etec.

Specifying TSS/360 Problem Program 1/0

In Tss/360, to specify problem program 1/0 activity,
you must consider both of the following:

1. Use of appropriate FORTRAN 1/0 statements in the
source program to indicate the data transfer or 1/0
control functions.

2. Use of {or omission of) pper (define data) com-
mands to identify the name, location, organization,
etc., of the data sets associated with the FORTRAN
1/0 statements.

Data Transfers: You use the FORTRAN READ and
WRITE statements to transfer data to and from your
program. You should regard a data set as a continuous
string of data which you have subdivided for separate
processing by your FORTRAN program; the subdivisions
are termed roRrTRAN logical records. FORTRAN logical
records are defined by one of the following:

1. A FormAT statement and a list referred to by an 1/0
statement (formatted records).

2. An 1/0 list appearing in an 1/0 statement that does
not contain a reference to a FORMAT statement (un-
formatted records).

3. A NAMELIST name appearing in an 1/0 statement
(NAMELIST records).

You define the overall relationship of a data set’s
records by specifying the data set’s organization. (You
do this in the ppEF commands discussed later in this
section.) In Tss/360, there are two fundamentally dif-
ferent types of data set organizations: virtual storage
data sets and physical sequential data sets.

Data Sets with Virtual Storage Organization

Data sets with a virtual storage organization can re-
side only on direct-access volumes. You process these
data sets on the basis of the records they contain. Vir-
tual storage data sets can have any of these specific
organizations:

1. Virtual sequential: This is the standard FORTRAN 1/0
data set organization; the term vs is used to describe
it. In a vs data set, the order of the logical records
is determined solely by the order in which the rec-
ords were created. In creating this type of data set,
you provide the system with a stream of records.
The system organizes the data into pages, and stores
the data set on a direct-access device. After the
data set has been created, you can read back the
records in the order in which they were created
merely by requesting one record after the other.

2. Virtual index sequential: A data set with this or-
ganization is referred to as a vi data set. As a FoRr-
TRAN user, you will probably use vi data sets only
when interfacing with programs written in assem-
bler langnage that require this organization. In a
vi data set, the records are organized in sequence
based on a data key associated with each record.
During FORTRAN program execution, you can create
and read vr data sets sequentially, but you cannot
use the random-access capabilities of this organiza-
tion.

There are two special types of vi data sets — line
data sets and list data sets. A line data set is one
that is organized by line number, where each line
is a record and is prefixed with the line number as
its key. Source programs are line data sets. You can
inspect and display these data sets by line number
using the LINE? command. Other commands enable
you to effect replacements, insertions, and deletions
on line data sets. Note: Records in a line data set
must be variable-length (format V); fixed-length
(format F) records are not permitted.

A list data set contains the listings produced as
output by the system’s language processors; it is
organized by line number, where each print line is
a record and is suffixed with a line number as its key.

In conversational mode, printing of language-proc-
essor listings is not automatic; you can have a listing
printed only if you issue a PrRINT command.

3. Virtual Partitioned. A virtual partitioned data set,
referred to as a ve data set, is used to combine in-
dividually organized groups of data into a single
data set. Each group of data is called a member,
and each member is identified by a unique name.
Program module libraries are a good example of a
vP data set. Your USERLIB is organized this way, and
the compiled program modules you store in USERLIB
are its members.

The partitioned organization allows you to refer
to either the entire data set (via the partitioned
data set’s name) or to any member of that data set
(via a name consisting of the name of the data set
qualified by the member name in parentheses).

The partitioned data set may be composed of
vs or vi members or a mixture of both. Individual
members, however, cannot be of mixed organiza-
tion,

Physical Sequential Data Sets

Data sets with a physical sequential organization can
reside on either direct-access or magnetic tape vol-
umes. The logical records in these data sets have an
organization which is determined solely on the basis
of their position relative to the beginning of the data
set. When these records are processed in T1ss/360, the
block is used as the unit of transfer to and from the
device involved. A block can consist of one or more
logical records. Data sets with physical sequential or-
ganization are called ps data sets. You will use ps data
sets each time you process magnetic tape in your
programs. Volumes containing data sets with ps or-
ganization can be interchanged among Tss/360 and
1BM System/360 Operating System installations.

Generation Data Groups

The cataloging facilities of Tss/360 provide an option
that assigns numbers to individual data sets in a se-
quentially ordered collection, thereby allowing you
to catalog the entire collection under a single name,
You can distinguish among successive data sets in the
collection without assigning a new name to each data
set. Because each data set is normally created from the
data set created on the previous run, the new data set
is called a generation, and the number associated with
it is called a generation number. The entire structure
of data sets of the same name is called a generation
data group (cpc). You can refer to a particular gener-
ation by specifying, with the common name of the
group, either the relative generation number or the
absolute generation name of the data set.

Data Set Definition

In a FORTRAN 1/0 statement, the data set referred to is
identified by an unsigned integer constant or integer
variable whose value may be any number from 1 to 99.
The relationship between a data set reference number
and the actual data set is provided in the pper com-
mand. This 1/0 technique provides you with a degree
of device independence; you do not need to change
vour program if the residence of data sets it processes
changes from one execution to another.

The basic method used to identify rorTRAN data sets
is illustrated in Figure 3. The system first relates the
data set reference number of the READ or WRITE state-
ment to the ddname operand of the corresponding
ppEr command. For rortran data sets, the ddname
operand of the ppEF command is always of the form
FTXXFyyy, where Fr indicates FORTRAN, xx is the data
set reference number, and yyy is a FORTRAN sequence
number used to- differentiate data sets, ie., in a se-
quence of data sets which are to be referred to by the
same data set reference number during the course of
program execution (at any one time, the data set
reference number refers to one data set only). Having

General

READ or WRITE Statement

data set reference number ‘ xxl

DDNAME=FT| xx| Fyyy

DDEF Command

DSNAME =1 dsname

dsname | in data set label

Data Set

Example

200 WRITE(| 6 \ , 10)A, SINE

DDEF FT Lé l FOO1, VS,DSNAME = |OQUTPUT

OUTPUT | is the

dsname of the data set to be written

Figure 3. Data Set Identification, FORTRAN Programs

Part I: Introduction 7

found the corresponding ppEF command, the system
then obtains the name of the data set from the dsname
operand of that opEF command. Other information in
the ppEF command (or already in the system, if the
data set is cataloged) is then used to determine such
things as: data set residence, i.e., where the data set
is (input data set) or is to be placed (output data
set); organization of the data set; routines necessary
to process the data set; etc.

All object time rorTraN data sets except those in
sysiN and sysoutT require a ppeF command. In both
conversational and nonconversational modes, if you
omit a ppeF command normally associated with a READ
or WRITE statement, the system will default to sysiv
or sysour. There are also FORTRAN statements which
automatically assume sYSIN or sYsouT (STOP, PAUSE,
and several 1/o statements from previously imple-
mented FORTRAN systems that were retained in TSs/360
FORTRAN). In a conversational task, sysiy and sysour
involve your terminal. In a nonconversational task, you
define the sysix data set (or submit it to the operator)
and the system defines sysour.

The ppEF command has other uses besides defining
the data sets used during execution of a program.
You can also use it to define the data sets used by
certain commands, to define job libraries, to define
a special data set (called pcsout) for the pumMe pro-
gram checkout command, and to concatenate input
data sets (i.e., relate them so that several different
data sets can be read in as if they were a single data
set).

Any ppEF command you issue during a task re-
mains in force throughout the task, unless you enter
a RELEASE command for that data set. The RELEASE
command is the opposite of the ppEF command: the
ppEF command sets up task control information for
the data set; the RELEASE command removes that in-
formation.

The ppEF commands used in a session or in a com-
mand procedure need not be issued directly during
the session or be included explicitly in the command
procedure. One, or more, or all, of the ppEF commands
needed can be made available by using the cpp (call
data definition) command.

The cpp command is used to retrieve one or more
ppEF commands from a data set; you must supply the
name of the data set. If this is all you specify, the
system assumes that you want to use all the DDEF
commands in the data set. If you want to use only
selected pDDEF commands, you identify each by its
ddname. You should prestore frequently used pDEF
commands in a data set and call them in this fashion
wherever possible. cpp can be used in either conver-
sational or nonconversational tasks.

In a conversational task, the system analyzes the
data set’s requirements at the time the ppEF command
is issued. It will then attempt to allocate the required
resources (and, for private volumes, issue any mount-
ing messages that are required} at that time. If the
required space cannot be allocated, or the specified
volumes cannot be mounted, the system will inform
you, thereby allowing you to proceed with other work.

The ppEF command is illustrated in the examples,
and is discussed in detail in Appendix E.

Cataloging and Uncataloging Data Sets

You can catalog and uncatalog data sets in several
ways. Sometimes cataloging is automatic; in other
cases, you must issue a cATALOG command to catalog
the data set. All data sets with virtual storage organi-
zation that reside in public storage are automatically
cataloged when they are created.

The caTaLoc command sets up the catalog entry for
the named data set. For example, suppose you are
user JoHNDOE and you want to catalog a data set
named ENG.PHYSICS.TEST2. If you issue a CATALOG com-
mand naming that data set, the system establishes en-
tries in your catalog, as shown in Figure 4.

1. From vour user identification, the system locates
your catalog in the system catalog (via the master
index).

o

It then sets up any indexes needed for each level
of qualifier in your data set name. (Some of these
may already exist.)

3. When it has established the lowest level index (in
this case, TEsT2), it records in the catalog the specif-
ic volume on which the beginning of the data set
is located.

The cararoc command can also be used to alter
the entry of a previously cataloged data set; i.e., you
can rename a cataloged data set. If you employ genera-
tion data groups {6pc), you must initially use the caTa-
Loc command to set up the structure for the cnc:
name, number of generations to be retained, disposi-
tion of old generations when the specified number of
retentions is exceeded, etc. Then you can use the DDEF
command to define new data sets as generation levels
of the ¢pg, or you can use the cataroc command with
the NEwNAME operand to rename an existing data set
as a generation level.

When you catalog a data set, you can specify either
read-only or unlimited access. You can always erase
yvour own data set, but if you have cataloged it with
read-only access, you cannot write into it, thus ensur-
ing against accidentally overlaying data.

You can use the DELETE command to remove a
catalog entry for a data set if:

== Data Set Name

LSS e User Supplied ——s]
Supplied i)
i Master Index

T T
[LOHN'JOEJENG.PHYS!CS.COMAR_TEET? "‘—“/’,{ JOHNBOE ’L lF}iANKLEG: l

i
|
'

{
B
= — b — — — - User Catalog — =— — — ———
\ ’ ! v

| JOHNDOE { ENG i i PAYRL TIJ
T

i
|
‘ i
! / |
| + |
> veics 1 | chem o !
| ENG I PHYSICS 1] HEw ['
N pe , r 3
PHYSICS [COMAR ! :
I L i
| _— ~ — '
! v T |
: COMA E TEST] ! T TEsTz I })
| T !
| | T T !
! TEZW SET DESCRIPTO T '
| TEST l DATA SET DESCRIPTOR i] |
i |
o o | 1
} Dato Set Control Block
{JOHNDOEA ENG. PHYSICS. COMARL, | | | 1 .
TEST 2 T IO S B N |
~————{DATA PAGE |-

D ;)
|

S T — J

e DY —
o |
_JoataracE

Figure 4. Catalog Example

1. You want to remove the catalog entry of a data set
from the catalog without erasing the data set, and

the data set resides on a private volume.

2. You want to remove the catalog entry of a data set
you are sharing from your catalog (because you no

longer have a need to share that data set).

tion. If you specify a fully qualified name, the data set
will be erased or deleted no matter what was specified
for DEPROMPT,

You have the option in certain commands, as PRINT
and puNcH, if a cataloged data set is involved, of speci-
tying whether it is to be erased or not after the output
operation.

Using System Storage

The system assumes that you want storage on a public
volume unless you specifically ask for storage on a
private volume. When it is necessary to retain the data
sets in the system, you make the most effective use of
TS$/360 by storing your data sets on public volumes.
Public volumes are always mounted and available for
allocation to your task, within the limits of public allo-
cation established for you by your installation.

If you use private volumes, you may need to
wait for devices to become available; in any case, you
must wait for the operator to mount the volume on the
device. Each time a request is made for a device on
which to mount a private volume, the system must
determine whether or not it can honor the request,
based on the current requirements throughout the
system for those devices. If the system cannot allocate
a private device to your task, one of two actions
occurs, depending upon the operational mode:
® In a conversational task, if the system cannot al-

locate the required space or if the required volumes

cannot be mounted, the system issues a diagnostic
message to you during the execution of the ppEF
command. The system cancels the ppEF command,
returns control to the terminal, and awaits another
command.

® In a nonconversational task, the system places your
task in abeyance until all private devices required
by the task are allocated. You must include a secure
command to reserve all devices that will be required
for private volumes during the execution of a non-

The ErRasE command can also be used for uncata-

loging. ERrASE removes the catalog entry, and erases
the data set as well if it resides on a direct-access vol-
ume. (Erasing means making the storage space of the
data set available for other use.)

So that you can specify whether you want to be

given one data set name at a time when you enter
either the ERASE or DELETE command, provision is made

to

set the value of peproMPT (a value contained in

your User Profile) to either vEs or No. If the value was
set to vEs, and you specify a partially qualified data
set name, you will be given one data set name at a
time for disposition. If the value was set to ~o, all
data sets grouped under this partially qualified name
will be erased or deleted without individual presenta-

conversational task. SECURE must appear immediately
after the Locon command, and only one SECURE com-
mand is allowed for each task. The devices specified
for private volumes will be reserved so that the task
can be executed without waiting for 1/0 devices; any
waiting that may be necessary to reserve the devices
occurs at SECURE time rather than during execution
time. The secure command is never used in a con-
versational task; it is mandatory only in noncon-
versational tasks that include references to private
volumes.

Protecting and Sharing Data Sets

You cannot gain access to any data sets other than
your own unless you have system authorization to do

PartI: Introduction 9

so, or you have been given authorization to share them
by another user who owns the data set(s) involved.

A shared data set is one that is cataloged and for
which the owner has issued a PERMIT command. It be-
longs to one user, but may be shared with other
users on any of the following bases:

1. Read-only access: The sharer may read the data
set, but may not change it in any way.

2. Read-and-write access: The sharer can both read
and write to the data set, but he may not erase it.

3. Unlimited access: The sharer, in effect, can treat
the data set as his own; he may thus even erase it.

You issue a PERMIT command to designate other
users who may share your data sets, and to indicate
the level of access those users may have. You also
use the PERMIT command to withdraw from previously
authorized sharers the right to continue sharing your
data. Each time you issue a PERMIT command, your
catalog is updated when the task is terminated by
LOGOFF or ABEND. Information on who can share which
of your data sets is stored in your catalog.

If you have been named in another user’s PERMIT
command, you must issue a sHARE command before
you can actually access the data sets he has authorized
you to use. To see how this command,is used, assume
that a sharer’s user identification is yMc200 and that
he has been permitted to share one data set. The data
set is owned by user rkr100, and is cataloged by him
under the fully qualified name ENG.PHYSICS.COMAR.
TEST2. Assume also that the sharer wants to name the
data set ENG.CHEM.NOTAR.TEST!. He would then issue

the sHARE command shown at the top of Figure 5. In

response to that command, the system would search
the owner’s catalog to see if the prospective sharer is
authorized. If he is not, the command is ignored; if he
is authorized, the system places the owner’s complete
name for the data set in the sharer’s catalog with a
pointer back to the master index. Whencver the sharer
subsequently refers to the data set by his name, the
system locates the data set by the search procedure
shown on Figure 5.

To be concurrently accessible by more than one
task, a data set must be cataloged and must be a
virtual storage data set (vs, Vi, or vP).

Maintaining Program Libraries

A program in T5S/360 can consist of one or more object
modules. An object module is the output of a language
processor or the linkage editor (exclusive of the list-
ing). All programs in Tss/360 are stored in object
module form in program libraries, which are vp data
sets. A program consisting of only one object module
is stored entirely within one library; however, if a
program consists of several object modules, those

10

modules may reside in different libraries, depending
on how you store them.
There are four categories of program libraries:

System library (sysLiB)

User library (UseRLIB)
User-defined job libraries

Linkage editor libraries

SYSLIB is accessible to all users on a read-only basis.

USERLIB is the private library assigned to you when
you are joined to the system. This library is auto-
matically built for you and made a part of your cata-
log by the system. UserLIB is thus available each time
you log on. If you do not use job libraries in a task,
all the object modules resulting from your use of
the Janguage processors are automatically placed in
USERLIB. You may wish to restrict your USERLIB to ob-
ject modules that you execute frequently or that you
use frequently in the buildup of other object modules.

The program library list is a defined hierarchy of
program libraries. It is initialized at log-on time, and at
that time consists of userLiB and sysriB. The library
at the top of the list always automatically receives all
object modules resulting from language processing.
As noted above, if no job libraries are defined, the
library at the top of the list is always uvserLiB. How-
ever, you can specify that a job library be added to
the program library list to receive the output of the
language processors. You do this by issning a DDEF
command defining that job library and containing
the opTiIoN—jOBLIB parameter. When this command
is executed, the name of that job library is added to
the top of the program library lst. That library then
receives all subsequent output of the language proc-
essors until another job library is defined (and it is
placed at the top of the list), or until a RELEASE com-
mand is issued for the first job library. The rop? com-
mand can be used to obtain a list of member names,
alias (entry point) names, and other member oriented
data from the task’s userLiB and such cataloged job
libraries as have been established by the user.

In addition to using the program library list to store
object modules, the system also uses this list to control
its order of search when looking for object modules
that must be loaded at execution time. The library at
the top of the list is always searched first, then the
next-to-the-top library, etc.; then, useruiB and, finally,
sysLiB. By using the linkage editor, you can move ob-
ject modules from one library to another.

Other user-defined libraries may be defined by pper
commands that omit the yoBLB parameter. They are
not placed on the program library list and cannot be
loaded. They are used principally with the linkage

tssued by

User 1mC200 | SHARE

ENG.CHEM.NOTAR.TESTI

RKP100,

ENG . PHYSICS.COMAR. TEST?

¥ 7

j
|
I

Sharer's Reference to Data Set

I

Owner’s {dentification of Data Set

Data Set's Owner

] JMC200 E l ENG. CHEM. NOTAR. TEST] 1
Master Index
|| oo 1] Rl ;emoo ! []
® T
@ @
T
|
JMC's User Catalog RKP's User Catalog o
[—-— ______________ B ‘ lri_ ————————————— —}
! JMC200 U e 1:[! 1 i i RKP100 [l ENG E{[] 3
! , | ‘ , l
{ ENG { l CHEM ili] I i ENG [1 PHYSICS :]] J i
|4 : | R : |
: CHEM ‘ } NOTAR :J]] { } PHYSICS [l COMAR :Il l }
| | | |
NOTAR TESTI | | I comar TEstt TESTZ |
: ; Ll] i] | i | L [,]I | |
! TEST ﬂ RKPIOO.ENG.PHYSICS.COMAR.TESTZE I ! TEST2 I DATA SET DESCRIPTOR E l {
|
Lo _ L]
Data Set Contro! Block
JOHNDOE. ENG. PHYSICS. COMAR.; | | | |

Figure 5. Sharing of Cataloged Data Sets

TEST2

[
jl DATA PAGE ‘—-’—J
. DATA PAGE

DATA PAGE
e DATA PAGE

DATA PAGE f-—

Part I: Introduction

11

editor. (Refer to Linkage Editor for an explanation
of linkage editor library control.)

Copying, Modifying, and Erasing Data Sets

You can use the cps command to make a copy of any
data set (or any member of a partitioned data set) to
which you have access except data sets whose records
are in undefined format (see Appendix E), such as
program module libraries. You can also use the com-
mand to renumber the lines of a line data set as it is
being copied. Both the original and copy data sets
must be defined in your task.

You can use the MopiFy command to insert, delete,
replace, or inspect records of a v data set, or of a vr
member of a vp data set. You have to identify the
record to be modified (by its key or line number).
You can review modifications, and play back corrected
lines for confirmation of your changes.

You can use the vv, vr, and Tv commands to copy
your data sets, depending on their origin and desired
destination. The vv command causes a vay data set
to be copied into public storage. The vr command
causes a vad data set to be reproduced on 9-track
magnetic tape. The 17v command retrieves and writes
into public storage a data set previously written on
9-track magnetic tape by the vr command.

You can use the erase command to erase data sets
that you own. If you are sharing someone else’s data
set, you can remove its entry from your catalog by
issning the DELETE command.

Conversational Task Termination
To terminate your conversational task, issue a LOGOFF
command. The system will then update its internal
accounting tables reflecting your use of the system
during the session.

If you later want to communicate with the system
again conversationally, you must again log on as de-
scribed in the section “Conversational Task Initiation.”

Nonconversational Use of the System

There are many applications where you will not re-
quire dynamic communication with the system or with
your problem programs in order to obtain the prob-
lem solutions you desire,

Nonconversational Task Initiation

Figure 6 illustrates the various ways in which you can
use the system for nonconversational processing.

You can issue the EXECUTE command in a conversa-
tional task to initiate nonconversational tasks. The
EXECUTE command names a cataloged command pro-
cedure that is to be executed. The command pro-
cedure functions as the sysiv data set for the noncon-
versational task. It must begin with a LocoN eommand;
end with a LoGorrF command; and, it must be pre-
stored in the system by you so that it can be retrieved
merely by its name. If private devices are required in
the task, a secure command must immediately follow
the LoGoN command.

You can issue priNT, PUNCH, and WT commands in
either a conversational or nonconversational task.
These commands are, in effect, one-command-proce-
dures. They initiate nonconversational tasks that trans-
fer data between a direct-access device and a printer,
card punch, or tape unit, respectively.

You can also have the operator initiate nonconver-
sational tasks for you. You supply him with a card
deck or magnetic tape; the contents of the deck or
tape depend on what you want done:

® If you want to enter data into the system for later
use (ie., prestore it) you prepare a card deck (or
magnetic tape) with a command procedure of the
following form:

DATASET descriptor card
Data cards
ZENDDS card J

card images

It you do this, the task set up by the operator will
transfer data from the input medium to a direct-ac-

Nonconversational Processing

In your conversational
task, issue:

BACK command
EXECUTE command
PRINT command
PUNCH command
WT command

* 6 8 00

Figure 6. Nonconversational Task Initiation

12

i

In your nonconversational Have the operator :

task, issue:
T e |ssue RT command
s PRINT command
s PUNCH command
o WT command

« Initiote card reoding

cess device and catalog it so that it is later available
to you by its name.
e If you want to enter a command procedure, you
prepare a card deck as follows:
LOGON card
Other commands & data cards
LOGOFF card

The task that is set up by the operator will execute
the commands in the command procedure you have
defined.
In all of the ways in which a nonconversational
task is initiated, the system action is basically the same:
1. The request to set up the nonconversational task is
enqueued and assigned a batch sequence number.
2. The individual requesting the task (you or the
operator) is sent the batch sequence number (to
later permit that individual to canNceL that task if
he wants).

3. The requested task is then executed when the re-
quired system resources become available.

Nonconversational Command Procedure Processing

When you use the EXEcUTE command to initiate a
nonconversational task, the commands are taken one
at a time from the cataloged command procedure
(sysin data set) you specified. The system specifies
the task’s sysour. You can read sysiN input in your
programs, in a manner similar to conversational mode,
if the data is properly positioned in the sysiv data set.
Similarly, you can write to sysout from your program.
Because there is no prompting in nonconversational
processing, you must specify every command com-
pletely. you must take care to have your commands in
proper sequence, you must include a sECURE command
to obtain any devices needed for private volumes, and
you must catalog any data sets you want to keep.

In nonconversational mode, listings produced by
language processors {by the FORTRAN compiler, the
assembler, or the linkage editor) are written auto-
matically on sysour unless you specify the LiSTDS
option (in the FTN, AsM, or LNK command) as “Y”.
If the ristps option is “Y”, the listing is put into the
list data set, as in the conversational mode, and will
not be printed until you issue a PRINT command.

Nonconversational Task Termination

The execution of nonconversational tasks (except
pRINT and puncH) is terminated when their LOGOFF

command is executed. The system then automatically
prints out the task’s sysout data set. For nonconversa-
tional tasks, the sysout data set consists of the com-
mands from sysiv that were executed, any data that
your program writes to sysouT, and the compiler-issued
diagnostic messages (if no listings were requested).

Tasks created by the prinT and puNcH commands
terminate when the data transfer is completed.

You can also terminate your nonconversational
tasks by issuing a caNCEL command identifying each
task to be terminated by its batch sequence number.

Mixed Mode Use of the System

You can begin a task at your terminal, and then issue
a Back command to have the task’s execution com-
pleted in the nonconversational mode. Before issuing
the Back command, you must have stored a sysIN
data set that is to function as the command procedure
and, if desired, input data for the nonconversational
portion of your task. You must also have issued ppEF
commands for any private volumes you may need. The
sysiv data set must not contain a LocoN command (be-
cause you have already logged on), but it should end
with a LocoFF command.

When you issue a Back command for a task, the
system determines whether it can provide sufficient re-
sources to continue your task nonconversationally. If
it cannot, the system will reject your request, and you
can try later.

Once your BACK request is accepted, your terminal
is inactive. You must then log on at your terminal
again to initiate a new conversational task if you want
to continue to use the terminal.

Remote Job Entry

The Tss/360 remote job entry feature makes high-
speed printing and card reading available at locations
outside the central computer installation. Each re-
mote station has a card reader to accept input and a
printer to produce output.

A complete description of this facility is provided in
IBM System/360 Time Sharing System: Remote Job
Entry, GC28-2057.

Part I: Introduction 13

Command Directory

Table 1 presents a guide to the commands of Tss/360
as presented in the examples and appendixes of this
book. The commands are grouped by general function.

Table 1. Command Directory

For each command, a sample usage and a statement
of its general effect are shown, along with the num-
bers of all the examples in Part II in which this par-

ticular command appears.

SAMPLE ILLUSTRATIVE
FUNCTION COMMAND USAGES EFFECT EXAMPLES
BACK BACK Switches your conversational task to non- 12
DSNAME=PROCI2A conversational mode. Here you specify
PROCI2A as the source of further commands.
CA CA Specifies that card input will follow. Causes 20
CB SYSIN to be switched to the card reader.
The A signifies that you want to convert card
input from 1057 card punch code to
EBCDIC. A CB would signify conversion
from 029 keypunch code to EBCDIC.
CANCEL CANCEL Terminates execution of nonconversational 19,20
BSN=0375 task to which the system had assigned batch
sequence number 0375,
EXECUTE EXECUTE Requests the execution in nonconversational 12
DSNAME=PROC12 mode of a sequence of commands contained
in data set PROCI12. You may then continue
in conversational mode at the terminal.

KA KB Specifies that keyboard input in folded mode 20

KB will follow (i.e. the lower case characters a-z
and | 7 ¢ are to be translated into their upper-
case equivalents (A-Z and $ # @). KA

Task would specify that you want to use the full
Management EBCDIC character set.

LLOGOFF LOGOFF Notifies system that you want to terminate All but
your task. The system may then query you example 3
regarding any uncataloged data sets.

LOGON ADUSERID, MYPASS®,, Identifies you to the system. You enter your All

ADACCT29 identification, password, and account number.

PROCDEF PROCDEF Defines a procedure (ZLOGON) which is 27

ZLOGON automatically executed each time you log
on, prior to any terminal processing you may
initiate,
SECURE SECURE Reserves devices for private volumes required 14, 21
(TA=19) for nonconversational tasks. This command at
the beginning of your sequence of commands
secures one 9-track tape unit.

TIME TIME 15 Establishes the maximum amount of elapsed 2
time that a task will be allowed to run. Here
you have set a 15-minute limit on program
execution time.

USAGE USAGE Presents totals of system resources used 22
since LOGON and since you were joined to
system.

CATALOG CATALOG Causes your physical sequential output data 5, 11,21, 23,

DSNAME = set RESULTOL to be cataloged. The N in- 24
RESULTOL, dicates that the catalog entry is new. The
STATE=N, R indicates that you want to restrict access
ACC=R to the data set to a read-only.
Data Set CDD CDD DDPACK, Causes execution of the DDEF commands 14
Management DDMAIN14 defined by the data definition name
DDMAIN14, which you had stored in the
data set DDPACK.
CDS CDS Copies the data set MYDATA, naming the 18

14

DSNAMEI=MYDATA,
DSNAME2=MYDATALl

copy MYDATALI

Table 1. Command Directory (cont.)

SAMPLE ILLUSTRATIVE
FUNCTION COMMAND USAGES EFFECT EXAMPLES
CLOSE CLOSE Closes data sets from the command level 17
when normal processing has been interrupted
and closure from the program level is difficult
or impossible,
DDEF DDEF Defines a data set for the current task. 4,6,7,8,9,
DDNAME=LIBDD, Every data set you use must be defined for 10,11, 12,
DSORG=VP, the current task, even if previcusly cataloged. 13, 15, 17,
DSNAME=SCRATCH, You assign LIBDD as the name of the data 18, 21, 23,
OPTION=JOBLIB definition. The data set created by this DDEF 24
is a virtual partitioned job library named
SCRATCH.
DELETE DELETE Removes the entry for the data set DATAS 22
DSNAME=DATA5 from your catalog.
DSS? DSS? PHI,SIGMA Causes printing of information about your 22
data sets PHI and SIGMA.
ERASE ERASE Frases data set SCRATCH (releases direct- 4,5,7,8, 19,
DSNAME=SCRATCH access storage for other use), and, if 22
cataloged, deletes name from catalog.
EVV EVV Presents a private VAM volume to the sys-
DEVICE=2311, tem and catalogs the data sets on it. The
VOLUME=(123ABC), volume is a 2311 with volume serial number
USERID=ADUSERID 123ABC. The data sets are to be cataloged
in user ADUSERID’s user catalog.
PC?P PC? PHIL,SIGMA Causes printing of limited information about 22
your data sets PHI and SIGMA.
Data Set PERMIT PERMIT Permits the user with the user ID,ABPALID, 18
Management DSNAME=DATA, to have read-only access to all of your data
(Continued) STATE=N, set whose left-most name qualifier is DATA.
ACCESS=RO, The N signifies that this command creates a
USERID=ABPALID new sharer’s list, rather than updates on exist-
ing list.
POD? POD? Causes printout of information about each 22
PODNAME=USERLIB object module in your USERLIB.
RELEASE RELEASE Revokes the data definition established by 10,17
DDNAME=MYDD a previously issued DDEF named MYDD.
SHARE SHARE Creates an entry in your catalog for the data 18
DSNAME=MYDATA, set named DATA, to which you are author-
USERID=ADUSERID, ized access when the owner issues a PERMIT
OWNERDS=DATA command.
RET RET Modifies the RET field of the data set 16
DSNAME=ALPHA, descriptor to specify that data set ALPHA
RET=(TCU) be assigned to temporary storage with read/
write access and that it be deleted when it
is closed.
TV vV Causes data set copied on 9-track as 24
: DSNAME1=COPY], COPY1 to be reproduced on direct-access
DSNAME2—=COPY2 storage in VAM format under the name
COPY2.
VT VT Causes VAM data set named ORIGINI1 to 24
DSNAME1=ORIGIN1, be copied on 9-track magnetic tape as
DSNAME2=COPY1 COPY1.
vV A'AY Causes VAM data set named COPY2 to be 24

DSNAME1=COPY2,
DSNAME2=COPY3

copied into public storage under the name
COPY3.

Part I: Introduction

15

Table 1. Command Directory { cont.)

SAMPLE ILLUSTRATIVE
FUNCTION COMMAND USAGES EFFECT EXAMPLES
CORRECT CORRECT Causes the characters beginning with column 26
N1=100, 8 of line 100 in the current region to be
SCOL=8 displayed for correction purposes. Characters
are inserted, deleted or changed by keying in
correction symbols directly beneath the af-
fected character(s).
DISABLE and DISABLE DISABLE causes your modifications to the 26
ENABLE ENABLE data set to be provisional, pending execution
of an ENABLE command. By issuing a
STET command instead of an ENABLE,
you would cause all modifications made after
the DISABLE to be deleted.
EDIT EDIT Invokes the facilities of the Text Editor. 25,26
DSNAME =EX26 The operand identifies the data definition
name associated with the data set which is to
be edited.
END END Terminates processing of the Text Editor 25,26
or the PROCDEF command.
EXCERPT EXCERPT Excerpts lines 600 to 1000 from REGION2 26
DDNAME=NEW], of the data set associated with the data
RNAME =REGIONZ2, definition name NEW1 and inserts them into
N1=600,N2=1000 your current region. EXCERPT, following a
REVISE command, replaces a range of lines
in the current data set; following an INSERT
command, it adds to lines being typed in
from the terminal.
EXCISE EXCISE Deletes line number 0000200 from the cur- 25
N1=0000200 rent region.
Text INSERT INSERT Informs the system that you wish to insert 25
Editing 0000400 the following lines from SYSIN into the cur-
rent region, placing them immediately after
line 0000400,
LIST LIST Lines 100 to 500 of the current region 26
N1=100, are displayed.
N2=500
LOCATE LOCATE Searches the current region for the first 26
STRING=LINEF occurrence of character string LINEF. When
the string is found, the line containing it
is displayed.
NUMBER NUMBER Causes the lines within the current region 26
N1=2300, to be renumbered. N1 and N2 define the
N2=500, range to be renumbered. The numbering
BASE =300, will begin with 300 and increase in in-
INCR=350 crements of 50.
POST POST Makes all previous editing changes permanent 26
and puts Text Editor into disabled state,
making future caanges reversible.
REGION REGION Used after invoking the Text Editor, this 25,26
RNAME=FIXA command identifies a region name to be as-
signed a line or range of lines that are to be
edited.
DATA DATA Creates a new data set named PROCI2A. 12,14, 16
DSNAME=PROCI2A You do not need to issue a DDEF command
for data sets created by a DATA command.
By default, the data set organization is VS.
Data LINE? LINE? Causes printing of source lines 1200 to 1400 9, 10, 16, 19
Editing SOURCE.MAIN9, from the specified line data set.
(1200,1400)
MODIFY MODIFY Permits you, with subsequent parameters, to 5
SETNAME—= insert, replace, review, or delete lines in a

SOURCE.MAIN4

VISAM data set named SOURCE.MAIN4
containing FORTRAN source statements for
your program MAINA4.

18

Table 1. Command Directory (cont.)

SAMPLE ILLUSTRATIVE
FUNCTION COMMAND USAGES EFFECT EXAMPLES
PRINT PRINT Causes the current generation of the listing 2,4,5,6,
DSNAME= data set LIST.MAIN2(0) to be printed on 8, 10, 13,
LIST.MAIN2(O0), the high-speed printer. 14, 19, 20
ERASE=Y,
PRTSP=EDIT
PUNCH PUNCH Causes the 9th through the 88th characters 19
Bulk DSNAME= of each record of your source data set to
Output SOURCE.MAIN19, be punched. The first eight characters are
STARTNO=9, the line number and input key. Punching is
ENDNO=:88 done in nonconversational mode when sys-
tem resources are available.
WwT WT Causes the data set M220UT to be written 22
DSNAME =M220UT on magnetic tape for subsequent off-line
printing.
FTN FTN Activates the FORTRAN compiler. You name 2, 3,4,5, 8,
NAME=MAIN2 the object module to be produced in this 13, 20
compilation MAIN2. The system will assign
Program the name SOURCE.MAIN2 to the data set
Management it creates containing your FORTRAN source
statements. You have specified the default
values for the remaining parameters by omit-
ting them.
AT AT MAIN.17, Causes message to be printed on SYSOUT 10
MAIN.96(2) when execution of your program MAIN
reaches statement numbered 17 and when it
reaches the first executable statement after
the one numbered 96.
CALL CALL MAIN4 Causes loading and execution of your pro- 4,5,7,9,11,
gram MAIN4 at the first executable state- 13, 14, 15,
ment. 17,20,21,23
DUMP DUMP MAIN10#C, Causes a formatted dump of MAINI1Os 10
MAIN10#P CSECT and PSECT. It will be written in
the PCSOUT data set for later printing.
GO GO Causes execution of your current program 9, 10,15
to be resumed from the point of interruption.
iF AT 101; Causes execution of your program to stop at 10
IF A>B; STOP location 101 if the expression A>B is true.
Program DISPLAY DISPLAY MAIN9.ALPHA, Causes printout on SYSOUT of the current 9
Control MAINS.BETA contents of data fields ALPHA and BETA
in program MAINO.
LOAD LOAD BLKDATAS Causes your block data subprogram to be 8,10
transferred from your library to virtual stor-
age.
QUALIFY QUALIFY Causes subsequent references to symbols and 9, 10
MNAME=MAIN9Y statement numbers to be qualified by the
name MAIN9. You can now write AB instead
of MAIN9.AB, or 105 instead of MAINS.105.
REMOVE REMOVE 2 Deletes previously issued AT commands, or 10
PCS statements containing AT commands.
Here you specify deletion of the statement to
which the system assigned the number 2.
SET SET Sets value of BETA equal to 1.0. 9, 10
BETA=1.0
STOP STOP Stops program execution and causes printing 9
on SYSOUT of current instruction location
and program status information.
UNLOAD UNLOAD MAIN15 Removes the object module MAIN15 from 15,21

your virtual storage.

Part 1: Introduction 17

Table 1. Command Directory { cont.)

SAMPLE ILLUSTRATIVE
FUNCTION COMMAND USAGES EFFECT EXAMPLES
DEFAULT DEFAULT Sets the default value for the DSORG para- 28
DSORG=VS meter of the DDEF command to virtual
sequential (VS).
User PROFILE PROFILE Causes changes affected by DEFAULT and 28
Profile SYNONYM commands to become a perman-
Management ent part of your user profile.
SYNONYM SYNONYM Establishes a synonym for the name 28
DOPROGC=FTNPGM FTNPGM. This module can now be called
by the name DOPROG.

18

Part i is devoted to examples in which the dialog be-
tween you and the system appears (along with explan-
atory comments) as it would at the terminal. They are
typical examples of system use. Unlike the sample
programs in Appendix I, the examples in this section
have not been system-tested. You may, therefore,
observe minor differences between an example’s de-
scription in Part 1 and the printout you obtain if you
run the example itself. Use the examples, therefore,
only as a learning device, and as models for designing
your own work.

Commands and concepts are presented in an ordered
sequence: the most necessary and basic ones appear
first, and are reviewed in subsequent examples. The
examples are designed so that the beginner should read
them in sequence. Those familiar with the commands
and concepts can use the examples for reference.

FORTRAN programs are shown where they are neces-
sary to clarify use of the commands. Only the relevant
statements are included.

Part Il: Examples

The system issues various types of messages at your
terminal, as follows:

® Prompting Messages — request that you supply
command operands or other information. You are
prompted only for omitted parameters that have no
default option.

* Response Messages — either inform you of actions
the system has taken in executing a command or
request additional information.

e Diagnostic Messages — inform you of errors and
prompt vou for correction.

In these examples, lines typed by the system are
headed svs, lines you enter are headed you. Lines in
which both the system and you enter something are
headed s,v. Lines printed by vour program are headed
rceM, and cards entered from the terminal card reader
and printed are headed crp, for “card image printout.”

Part II: Examples 19

Example 1: Initiating and Terminating a Conversational Task

In this example, you initiate a simple conversational task and then terminate it. The commentary explains the
keyboard entries required to converse with the system,

To begin a conversational task, make sure that the terminal is properly prepared (refer to instructions
provided by your installation or to the Terminal User's Guide). When you dial up the system or press the atten-
tion button for the first time in your task, the system assumes a log-on operation and responds with the current
date and time. You then enter all the log-on operands.

During your dialog with the system, your commands are not entered into the system until you press the
return key.

YOU: (press the attentionbutton or dial up system)

From this point on, pressing the attention button halts current activity in most situa-
tions. Consult Appendix F for the specific action taken in each situation.

YO0U: LOGON ADUSERID,MYPASS*,,ADACCT24,A
9,4A,,P

You must enter the entire LOGON command on a single line. While typing the LOGON
operands, you realize that you have entered your charge number incorrectly. There-
fore, you backspace three characters, move the paper up one line by hand to avoid
overtyping, and reenter the corrected portion of the charge number. You then complete
the LOGON operands. If you wanted, vou could have cancelled the entire line by
typing a pound sign (#) and immediately pressing the return key; then you would
reenter the correct line.

SYS: (responds with the current release-level of the system, the date, time, and task
identification)

You can now communicate with the system by entering commands.

Explanation of LOGON Operands

ADUSERID First Operand — User Identification
This operand is the full identification assigned to you when you were joined to the sys-
tem,

MYPASS* Second Operand — Password

This operand is an installation-assigned code that provides protection against un-
authorized use of your user identification. In conversational mode, you must supply
a password if one has been assigned to you.

Third Operand — Addressing

Specifies whether 24-bit or 32-bit addressing is to be used for this task. If you default
this operand, the installation default value will take effect.

ADACCT29 Fourth Operand — Charge Number

This operand is the charge or account number that was assigned to you by your ad-
ministrator. The first two characters of your charge number also identify your admin-
istrator.

A Fifth Operand — Control Section Packing

This operand specifies whether control sections are to be packed (i.e., not placed on
separate pages), and the manner of packing to be used. The codes and their meanings
are:

20

P
S,Y XB
YOU: T.0Goff
SYS:

Code Meaning

A Pack all control sections
P Pack all prototype control sections (PSECTSs)
O Pack all control sections having neither public nor proto-

tvpe attributes

X Pack all control sections except prototype control sections
N No packing

Sixth Operand — Maximum Auxiliary Storage

This operand specifies the maximum amount of auxiliary storage to be allocated to your
task; you default this operand and use the installation default value.

Seventh Operand — Pristine Mode

This operand allows you to log on with only the system-supplied defaults, synonyms,
procdefs, and Character and Switch Table. Since you specified this operand as P, your
user library is defined; if you had specified it as X, your user library would not be

defined.

After logging vou on, the system prints a single underscore and then backspaces; this
is the standard signal that it is ready to receive your next command on the same line.
Here you specify that vou want folded mode; that is that certain lower case characters
(as a-z and | “¢) be translated by the system into their upper case equivalents (A-Z
and $ # @, respectively). Thus, with KB, you no longer need to perform shifting
operations.

When you initiate a conversational task, the system automatically assumes folded
mode; hence in this example you need not have specified KB. However, there are
other character control commands, such as KA, which invoke EBCDIC mode at the
keyboard. Thus, if you specify KA and at a later time in your session wish to return
to folded mode, you must enter KB.

Here you decide to conclude your session, so vou logoff. Note that LOGoff translates
to LOGOFF.

The system confirms your LOGOFF command.

Part II: Examples 21

Example 2: Compilation and Correction from the Terminal

In this example, you type in the source statements of a short program and correct several errors while compiling
the program. The compiled object module is stored in your vserviB. The listings you select are printed as a sepa-
rate task, only if requested using the PRINT command. After logging on, you issue:

S,Y: TIME 15
The TIME command establishes a period of time a task will be allowed to run in
virtual storage. You decide that 15 minutes will be adequate for your task and wish to
be alerted when this interval is exhausted. TIME is thus useful in controlling inad-
vertent loops and other abnormal actions occurring in programs.

5,Y: FTN NAME=MAINZ
This command activates the FORTRAN compiler. A compiled program is called an
object module. You name the object module to be produced in this compilation MAIN2.
The system creates a source data set, naming it SOURCE.MAIN2, which will contain
your FORTRAN source statements as vou entered at the terminal.

Because SOURCE.MAIN2 is a line data set residing in public storage, it is auto-
matically cataloged for yvou. Although vou did not explicitly issue a DDEF command,
there was an implied system issuance of DDEF associated with your FTN command.

The system also creates a list data set, named LIST.MAIN2, which will contain
the listing of the object moduic. The NAME parameter is not defaultable, although vou
could enter the command as FTN MAIN2. It is permissible to omit the NAME kevword.
Note, however, that when von omit the kevword and have several operands to enter,
vou must specify the operands in the order in which they are svntactically defined. In
this example vou specify the default values for the remaining parameters by simply
omitting them.

0000100 READ (5,10) A, B
0000200 FORMAT (F6.2)

The system prints line numbers. After each line number, vou skip a space and enter a
FORTRAN statement. You do not have to follow the FORTRAN card format when
entering source lines from the terminal. Skipping one space after the system prints the
line number improves readability. Since the svstem regards anv line with a C in column
1 as a comment line, skipping a space also prevents lines such as C = A"B from being
treated as a comment. When you want a comment line, vou should not skip a space, but
enter the C in column 1. '

[9p R 77
et

SYS: 0000200 E *** FORMAT STATEMENT DOES NOT HAVE STATEMENT NUMBER.

The compiler examines each statement for syntactical errors as soon as it is received.
200 is the line number of the statement in error, E is an error level code, indicating a
serious program error; the statement is ignored. Other error level codes are:
W A warning of a possible problem; the statement is compiled as written.
F Serious error; statement can only be partially compiled.
A Compilation cannot be continued.

See Appendix A for further details on compiler diagnostics.

SYS: 0000200 FORMAT (F6.2)

The system prints the line in error for vour review.

S,Y: #200,10 FORMAT (F6.2)

The system prints the number sign, #, after which you enter the line number of the
line to be corrected, followed by a comma and the replacement line. There must be at
least one space between the statement number (10} and the rest of the statement.

S,Y: #(press return key)

Another correction or change or even insertion of an entirely new line could be made
at this time. Since you wish to continue entering your program, you request the next
line number by pressing the return key.

22

®e o4 oo oo

0000300 ATB =— A * B

0000400 WRITE (6,20) A, B, ATB
0000500 STOP

0000600 END

0000400 F *** 20 STATEMENT NUMBER USED AS FORMAT IS NOT DEFINED.

After the END statement has been entered, the compiler diagnoses global errors, which
are errors that involve more than a single statement. In doing so, it found an error.

The system invites you to modify your source statements.

You may reply yes (Y) or no (N). Here you reply ves and wait for the system to invite
your modification.

S,Y: #400, WRITE (6,10) A, B, ATB
S,Y: #(press return key)

SYS:

While you are entering modifications, no error checking is done; however, the com-
piler rescans the entire program when it recompiles after modifications are completed.

The system continues compilation and informs you when finished.

S,Y: PRINT LIST.MAIN2(0), ERASE=Y, PRTSP—EDIT

SYS:

S,Y: LOGOFF
SYS:

The system will establish a nonconversational task to print the current generation of
LIST.MAIN2., The current gencration is specified by the (0) immediately after the
generation data group name. The PRTSP operand is specified as EDIT because the
system supplies control characters to format the listing. The ERASE operand is included
to eliminate the listing from the system after printing. Each listing is put into the list
data set (the data set beginning with LIST.).

The system ackowledges your PRINT command and informs vou of the batch sequence
number it has assigned to the printing task.
Now compilation is complete.

You are informed of the batch sequence number of the separate task created to
print the listings produced by the compiler.

The compiled object module now resides on the library at the top of vour program
library list — in this case, your USERLIB.

The system will confirm your LOGOFF command.

Part II: Examples 23

Example 3: Compilation and Correction from the Terminal

In this example, you type in the same ForTRAN program as in Example 2, but this time all applicable parameters
are shown. After logging on, you issue:

S,Y: FIN NAME—MAIN3,STORED—=N,VERID—A6/26,—
ISD=N,SLIST=Y,0BLIST—N, CRLIST=N, STEDIT=N, MMAP=N, —
BCD=N,PUBLIC=N,LISTDS=N,LINCR=(100,100)

This is the same FTN command as in Example 2, except that here all the FTN operands
are entered with their keywords. Each operand is described below. When entering com-
mands conversationally at the terminal, vou may continue them on another line if
necessary by entering a hyphen at the point where you wish to break the current line.

Explanation of FTN Operands

NAME—=

STORED=—

VERID=

ISD—

SLIST=

OBLIST=

CRLIST=—=

STEDIT=—

24

Object Module Name

You assign the name MAINS to the output object module to be created by the compiler.
The source data set for this object module is named SOURCE.MAINS; the listing data
set is named LIST.MAIN3(0).

This is the only FTN operand that may not be defaulted.

Prestored Scurce Data Set

You specify N so that you may enter source statements from your terminal rather than
compile from a prestored source data set.

Object Module Version Identification

You may assign a version identification to the object module in this case, A6/26. It
appears on output listings of the named program and is stored in a special field in your
object module. If you do not assign a version identification, you mav distinguish the
version of vour object module by using the system supplied “time stamp.” A time stamp
is always produced by the system; it gives the current time and date at which compila-
tion begins.

Internal Symbol Dictionary

This parameter permits vou to create an Internal Symbol Dictionary (ISD) during
compilation. An ISD is necessarv for the fullest use of the program control system (PCS).

Source Listing

The listings vou request with this and the next four parameters will form your listing
data set. (See Appendix A for a detailed explanation of these listings.) The system cre-
ates a name for this data set by prefixing “LIST.” to the module name you supplied as
the first assembler parameter (LIST.MAIN3), using generation data group logic.

The source listing shows the source input statements.

Object Listing

You indicate you do not want an object listing. The object listing shows the code
generated by the compiler. This code is in the form of assembler language statements
and hexadecimal machine language code. Ordinarily, it is not needed by FORTRAN
programmers.

Cross Reference Listing

This listing shows where, in the source program, each statement number and symbol
is defined or referred to. You have told the system not to produce this listing.

Edited Symbol Table

This listing indicates the characteristics and displacement for every symbol in the
source program. You have indicated you do not want a listing of this table.

SYS:

nwunnnn
e .

nwn

2R 2 B

s

s s

es 20 we

MMAP—

BCD—

PUBLIC=

LISTDS=

LINCR—

0000100
0000200
0000200
0000200

#200,10
(press

Memory Map

This listing contains summary information about the module, most of which is included
on other listings. You have declined a listing of a memory map.

Binary Coded Decimal

Since you are writing this at the terminal, the characters entered will be stored inter-
nally in the standard system EBCDIC form. If your source program were in the form
of cards or tapes from a system using BCD, the BCD code could be used. In BCD
mode, characters of either EBCDIC or BCD can be entered.

Private or Public CSECT Attribute

This parameter specifies whether the executable portion (not variables) of the object
module is to have a public or private attribute. You have selected a private attribute.
Public means that the resulting object program can be shared by other users. Most
FORTRAN users will want to take the default option (i.e., private).

For more detailed information regarding all FORTRAN compiler options, see Ap-
pendix A.

Listing Destination

This parameter specifies whether the listings vou request from the compiler are to be
placed in a list data set or placed directly on SYSOUT; it is ignored in a conversa-

tional task.

Starting Line Number, Increment

The system creates a line number for each of vour source statements. Although a part
of the source data set being formed (SOURCE.MAIN3), line numbers are not an in-
trinsic part of the FORTRAN program itself and have no specific relationship to any
statement numbers.

The starting line number and the increment number may contain three to seven
digits, of which the last two must be 00. Thus in the case here illustrated, the system
generated line numbers will be 100, 200, 300, etc.

The system requests each input source line by typing out a line number to the terminal
starting with 100. After you enter a source line, it is added to the source data set and
processed by the FORTRAN compiler.

READ (5, 10) A, B

FORMAT

(FB.2)

E *** FORMAT STATEMENT DOES NOT HAVE STATEMENT NUMBER.
FORMAT (F6.2)

FORMAT

The system prints the line in error for your review.
After the system prints the #, vou correct the erroneous statement.

(F6.2)

return key)

. and indicate that vou have finished making modifications.
The session continues as in Example 2.

Part II: Examples 25

Example 4: Compile and Run

In this example you enter and compile a short test program without error and then execute it. You execute your
task in conversational mode, using your terminal for both input and output. After logging on, you issue:

S,Y:
S,Y:
S,Y:
S,Y:
S,Y:
S,Y:
S,Y:
S,Y:
SYS:

26

DDEF LIBDD,VP, SCRATCH, OPTION—JOBLIB

This command defines a job library and causes it to be placed at the top of your program
library list. Object modules produced by compilations will be placed in it instead of in
your USERLIB, which is now second on your library list.

A DDEF command defines a data set during the session in which the command
appears. In general, every data set you use must be defined for the current session,
even if it has been previously cataloged.

LIBDD is the data definition name (DDNAME) for the job library data set named
SCRATCH. All libraries have virtual partitioned (VP) organization.

The OPTION indicates to the system that the data set you are defining is a job
library.

r%he system automatically catalogs SCRATCH as a new catalog entry and assigns
an “unlimited” (read/write) access qualifier to the library.

Your object module, MAIN4, will be placed automatically in your job library,
SCRATCH, when compilation has satisfactorily completed.

FTN MAIN4,N,,,,,Y,,Y,,Y,,{100,100)

0000100
000020010
0000300
0000400
0000500
00060600

READ

‘ [-line numbers
listing data set
public CSECT
BCD

storage map
edited symbol table
cross-reference listing
object listing
source listing
ISD

version identification
source prestored

Because no keywords were used in specifying which operands vou desired, you
must enter those operands in the order shown.

Only the first operand must be specified. The rest may be defaulted by including
a comma where the operand would appear. You must supply commas for defaults
prior to the non-defaulted parameter (e.g., the Y for public CSECT attribute), but
you need not supply trailing commas.

The system automatically catalogs SOURCE.MAIN4 as a new catalog entry and
assigns an “unlimited” (read /write) access qualifier to the library.

(5,10)A

FORMAT (F8.2)
ATC — A®3.14
WRITE (6,10)A,ATC

STOP
END

You type in vour program statements following the line numbers printed by the system.
You use a tab stop to space over 6 columns so that the statements have the appearance
of the standard card format. Such tabbing is not required, but it is recommended as a
visual aid to avoid errors. When entering source lines, a tab has the logical effect of a
single blank character. Example 2 shows a source program entered in free form. Ap-
pendix A discusses the use of tabs and spaces in entering source statements.

The system informs you of the satisfactory completion of the compilation.

SYS:
YOU:
PGM:

PGM:

PRINT LIST.MAIN4(O),PRTSP=EDIT

The system acknowledges your PRINT command and informs you of the batch sequence
number it has assigned to the printing task.

CALL MAIN4
The CALL command has two effects: it causes the loading of your object module and
initiates program execution at the first executable statement. Note that the NAME key-
word is omitted for the sake of brevity.
Since you gave no DDEF command for the data set reference number 5 in your
READ statement, the system will assume you want to obtain input from SYSIN, which
is the terminal when in conversational mode.

(unlocks terminal keyboard)

0.5

0.50

1.57
Since you gave no DDEF command for the data set reference number 6 in vour
WRITE statement, it will be defined as SYSOUT, which is also the terminal when
in conversational mode.

TERMINATED: STOP
This message is printed when execution reaches your STOP statement (source line 500).
You are now returned to command mode, indicated by the printout of the underscore.

ERASE SCRATCH

Before logging off you decide that vou want to erase the job library data set, SCRATCH,
containing the object module MAIN4, because you want to modify and recompile
SOURCE.MAIN4 at a later date. You conserve public storage and increase the effi-
ciency of the system by erasing all data sets not needed.

LOGOFF

The system confirms your LOGOFF command.

Part II: Examples 27

Example 5: Co:racting and Recompiling « Prestered Source Program

In this example you modify and recompile the source program source.aarxs which, being on a public volume,

was automatically cataloged for you in Example 4. You then run the new object module. After logging on, you
issue:

S,Y: MODIFY SOURCE.MAIN4

SYS:
You enter a MODIFY command to alter the source program entered in the previous
example.
S,Y:
R,100 The system prints a number sign to request each modification. You wish to review line
100 before modifying it, and enter the R (for review), a comma, and then the line num-
ber.

SYS: 0000100 READ(5,10)A

The system prints the line. When you entered the statements, you separated them from
their statement number with a tab character.

The system prompts for modifications with the number sign.

S,Y: #
100,1 READ(10,5,END—80)4A
You modify the line by typing, following the number sign, the line number, a comma,
and then the modified line. The system then prints another number sign.
S,Y: #
450, GO TO 1
You enter an entirely new line between 400 and 500.
S,Y:

#
500,80 STOP
You add the label 80 as referenced in the READ statement.

You type these two characters to signal the end of modifications.

S,Y: CATALOG SOURCE.MAIN4,STATE=U,ACC—U,NEWNAME—SOURCE.MAIN5

You use the CATALOG command to rename the current source data set SOURCE.-
MAINS5. At compilation time, its list data set will be named LIST.MAIN5(0) bv the sys-
tem. The first U indicates the updating of an existing catalog entry. The second U speci-
fies unlimited access for the data set.

S,Y: FIN MAIN5,Y,,Y
You enter the name and the rest of the FTN parameters you need: Y for prestored,
the second comma after the first Y to default the version id parameter, and Y for ISD.

SYS: 0000100 F *#* STATEMENT NUMBER USED AS FORMAT IS NOT DEFINED.

The compiler discovers an error in line 100. Note that this error was not detected dur-
ing vour use of the MODIFY command, since that command does no syntactical
checking. You decide to correct the line.

SYS: 0000100 1 READ(10,5,END=80)A

The svstem prints the line that caused the diagnostic and asks whether you want to
modify vour source statements.

Y
#100,1 READ{5,10,END=80)4A
(press return key)

LR
MG

Having made the necessary correction, you signal that you are finished by pressing the
return key. This is equivalent to the termination you indicated with %E during the
MODIFY command. Then the compiler will rescan vour source statements.

28

SYS:
The system informs you of the satisfactory completion of the compilation.

S,Y: PRINT LIST.MAIN5(0),PRISP—EDIT,ERASE—Y
SYS:
The system acknowledges vour PRINT command and informs you of the batch sequence
number it has assigned to the printing task.
The compiled object module is stored in your USERLIB. You now proceed to
run the modified program.

S,Y: CALL MAINS
Since you gave no DDEF command for the data set reference number 5 in your READ
statement, the system assumes you want to use the terminal for input.

SYS: (unlocks terminal keyboard)
YOU: 2.0
PGM: 2.00
6.28
Data set reference number 6 in your WRITE statement refers to the terminal for
output.

SYS: (unlocks terminal keyboard)

YOoU: 5.0
PGM: 5.00
15.70
SYS: (unlocks terminal keyboard)
YOoUu: 1.0
PGM: 1.00
3.14
SYS: (unlocks terminal keyboard)
YOU: %END

Satisfied that the program is now working correctly, you terminate execution by enter-
ing %END, which is the end-of-data indicator for SYSIN.

SYS: TERMINATED: STOP
Execution of MAINS5 being terminated, the system prints this message and then prompts
for the next command.

S,Y: ERASE USERLIB(MAINS)

You plan to recompile your program later, so you erase its object module from your
USERLIB. This will prevent name duplication in the future, and conserve public
storage space.

S,Y: LOGOFF
SYS:
The system confirms your LOGOFF command.

Part II: Examples 29

Example 6: Writing a Data Set and Printing It

In this example, you run a program that writes a data set that is much tco long to be conveniently printed at
your terminal. You run the program, and then request printing of the output data set on the high-speed printer as
a separate task. After logging on, you issue:

YOU: (press attention or dial up system)
LOGON ADUSERID,MYPASS*, ,ADACCTZ29

SYS: BO0O1 LOGON TASKID—F208 12/15/6% 10:12

S,Y: DDEF DDNAME--FI(07F001,DSORG=VSE,DSNAME-=M60UT,—
DCB—=(RECFM—FA,LRECL—80),DISP—=NEW

S,Y: CALL MAING

SYS: TERMINATED:

S,Y: PRINT DSNAME=

In preparation for the execution of your program, you define a cataloged data set
(MB0OUT) for data set reference number 7. You specify a virtual sequential (VS) data
set.

You specify that your record format is to be fixed-length (F) and the records con-
tain print control characters (A). Its records are to be 80 bytes long,

The MAINS object module is stored in your USERLIB.
It ends with these statements:

WRITE(7,10)ALPHA,BETA, GAMMA
10 FORMAT (1HO,3F20.5)

ENDFILE 7

STOP

END

The data set referred to in the WRITE7 and the ENDFILET7 statements is defined
by the FT07F001 data definition.

STOP
The system indicates the end of execution. The underscore on the next line indicates
return to command made.

M80UT,PRTSP—EDIT

To print your newly written data set, this command creates a separate task similar
to the tasks that have printed your listing data sets. Only the first operand, DSNAME=,
must be specified; the remaining operands mav be defaulted.

Explanation of PRINT Operands

STARTNO=—

ENDNO=—

PRTSP—=

ERASE=

ERROROPT=

30

First Byite Position

You want printing to begin with the first byte of each data set record. You can enter a
number consisting of one to six digits.

Last Byte Position

This parameter specifies at which byte in each data set record printing is to end. Since
your records arc shorter than the default length of 132, vour printing will end at the
last (80th) byte of each record.

Spacing Option

Since yvou want line spacing to be controlled by the control character your program
has supplicd in each record, you choose EDIT. (The default would be 1.) Selecting
EDIT requires that you default the next three parameters.

Erasure Option

This parameter is meaningful only if the data set being printed is cataloged. In that
case, you can specify that the data set be erased after it is printed.

Error Option

This parameter applies only to data sets on tape. It specifies the action to be taken if
an unrecoverable error is found while a data set record is being read.

FORM=— Type of Printer Paper

Here vou can specify the kind of printer paper you desire for your output. The operands
for this keyword are determined by your installation.

SYS:

The system informs you that it has created a separate task to print your data set.
S,Y: LOGOFF

SYS:
The system confirms your LOGOFF command.

Part II: Examples 31

Example 7: Reading and Writing Cataloged Data Sets

In this example, you run a program that reads one data set and produces two other data sets as output, as well
as printing some short messages at the terminal. After logging on, you issue:

S,Y: DDEF FT11F001,VS,IN11
S,Y: DDEF FT22F001,VS,0UT22A
S,Y: DDEF FT22F002,VS,0UT22B

You give data definitions for the three data sets to be used.

A DDEF command remains in effect only for the session during which it was issued.
Therefore, data definitions must be given even for data sets already cataloged. Data
definition names for FORTRAN 1/0 have the standard form, FTxxFyyy, where xx is
the data set reference number for an I/O statement, and yyy is the data set sequence
number. You may use any data set name, as long as it is unique.

Because the first data set, IN11, was created previously, the system default for
disposition is OLD. The next two data sets, OUT22A and OUT22B, are going to be
created in this task, so they receive a system default disposition of NEW. Note that
vou do not have to include explicitly in the DDEF commands the parameter DISP=
OLD for IN11, nor DISP=NEW for OUT22A and OUT22B.

The last two data definitions refer to the same data set reference number as in the
FORTRAN WRITE statement, i.e., 22. Since an ENDFILE statement is given, and
further WRITE statements are executed on the same data set reference number, two
distinct data sets will be created. The second number in the data definition for the
OUT22B data set name must be stepped from 1 to 2 to refer to the second data set
written.

S,Y: CALL MAIN7

You run your FORTRAN object module, which was stored in your USERLIB in a
previous session. MAIN7 includes these statements:

7 FORMAT (2F20.3)
10 READ (11,7,END=80)A,B

WRITE (22,7)A,B

GO TO 10
80 ENDFILE 22

-

WRITE(22,20)E,F

ENDFILE 22

20 FORMAT (1X,2A4)
WRITE (77,120)

90 STOP

120 FORMAT (26H FINISHED WRITING 2 FILES.)
END

The last WRITE statement will produce a short message on the terminal.

PGM: FINISHED WRITING 2 FILES.

Because you did not issue a DDEF command for data set reference number 77, the
system assumes vou want your output from the WRITE statement at the terminal.

32

SYS: TERMINATED: STOP

The system indicates the end of execution with this message. The underscore mark
indicates return to command mode.

S,¥: ERASE IN11l

You erase the input data set that is no longer needed. Erasing a data set deletes
its entry from your catalog and releases its storage space. You do, however, want to re-
tain your two output data sets that were automaically cataloged for you at DDEF time.

SYS: LOGOFF
The system confirms your LOGOFF command.

Part II; Examples 33

Example 8: Multiple Compilation Before Execution

In this example you enter a BLOCK DATA program, then compile prestored main and subprograms. You create a
new JjoBLiB, which you catalog. After logging on, you issue:

S,Y:

S,Y:

nnhrnn
R

S,Y:

SYS:

S,Y:
SYS:

5,Y:

SYS:

Y:
SYS:

34

DDEF DDLIBA,VP,LIBA,OPTION—JOBLIB

With this data definition you create a new job library to hold the object modules from
the three programs you are about to compile.

The system automatically catalogs LIBA as a new catalog entry and assigns an
“unlimited” {read/write) access qualifier to the library.

FTN BLKDATAS

You activate the FORTRAN compiler and specify the module name (BLKDATAS)
for your BLOCK DATA program. You will enter vour source statements at the terminal.
The system automatically catalogs vour source data set as SOURCE.BLKDATAS.

0000100 BLOCK DATA

0000200 DIMENSION AB(3),AC(3)

0000300 COMMON/XY/AB/EXTRA/AC, ANSWER
0000400 LOGICAL ANSWER

0000500 DATA AB(1)/.007/,AB(2)/71.1/,AB(3)/8200.0/,AC/3%.88/,—
. ANSWER/ . TRUE. /

The period preceding ANSWER is the continuation character and is therefore not
part of the statement.

0000600 END
Your program initializes data for labeled common blocks XY and EXTRA.

The system informs you of the satisfactory completion of the compilation.

PRINT LIST.BLKDATA8(0),PRTSP—EDIT

The system acknowledges your PRINT command and informs you of the batch sequence
number it has assigned to the printing task.

DEFAULT LPCXPRSS=Y

You indicate that you want the language processor “express mode” enabled. In express
mode, several modules can be compiled in succession; the FTN command is issued
for the first compilation, and only the module name is entered for succeeding
compilations.

FITN MAINS8, STORED==Y

The system informs you of the satisfactory completion of the compilation and requests
the name of the next module to be compiled.

SUBRS You enter the name of the next module to be compiled.

The system informs you of the satisfactory completion of the compilation.

_PRINT LIST.MAINS(O),,,EDIT

You enter a PRINT command preceded by a command system break character so that
the system will interpret the line as a command. Express mode is turned off, and the
system interprets the line as a command. The system acknowledges your PRINT com-
mand and informs you of the batch sequence number it has assigned to the printing task.

SYS:

PGM:

SYS:
S,Y:

PRINT LIST.SUBR8(0),PRISP=EDIT
BSN=—=0569

The system acknowledges by issuing the batch sequence number of the PRINT job.

LOAD BLKDATAS

A block data subprogram is the only program vou are required to load. Main programs
and subroutines they refer to are automatically loaded when you issue the RUN
command.

The system informs you that it has loaded BLKDATAS.
You must load the block data program prior to executing the main program.

CALL MAINS

Because you did not supply a DDEF for your WRITE statement in MAINS, the output
is received at your terminal.

2048 VARIATIONS TRIED.
ANSWER IS F
TERMINATED: STOP
ERASE SOURCE.BLKDATAS

You decide to erase your source data set. You retain your cataloged job library, LIBA,
containing the three new object modules.

LOGOFF

The system confirms vour LOGOFF command.

Part II: Examples 35

Example 9: Use of PCS Immediate Statements

In this example, you are executing a program for the first time. Since the program control system (PCS) pro-
vides complete debugging capability at execution time, you have not included any debugging aids in your com-
piled program. Anticipating the use of pcs, you requested an 1sp when the source program was compiled.

S,Y: DDEF DEFJOB1,VP,J0OB1l,0PTION—JOBLIB,DISP=0LD

This command defines a job library JOBI1, which contains the object module, MAINO.
JOB1 has been previously cataloged, but you must give this data definition to make
it available. Note that you did not have to specifv DISP=OLD explicitly because JOB1
was previously cataloged and the system defaults OLD in this case.

S,Y: CALL MAIN9
YOU: (press attention button)

You begin to run the program you wish to debug and then halt execution by pressing
the attention button. The appearance of an exclamation mark indicates the system’s
readiness to accept new commands.

YOU: QUALIFY MAIN9
After issuing this command, you can refer to internal symbols without the qualifying
module name; they will be qualified automatically by the prefix “MAINS.”

STOP
STOP AT MAIN9.86(4) PSW 2 0 0 004A3C12

The STOP command displays the FORTRAN statement number where the interrupt
occurred, or, if the statement is not numbered, the most recent number plus an incre-
ment. In this case the (4) indicates that the interrupt occurred during execution of the
third executable statement after statement number 86. The rightmost field of the PSW
gives the virtual storage address of the next instruction to be executed. See Appendix
B for more PCS information.

S,Y: LINE? SOURCE.MAINS, (1200,1400)

SYS: 0001200 7 ANGLEB—ANGLE1-ANGLEZ2
0001300 86 ALPHA=—COS (ANGLEA)
0001400 BETA=SIN (ANGLEB)

You request a printout of source lines 1200 to 1400 which you believe include state-
ment number 86. (Note the distinction between line numbers, which are not part of the
program, and statement numbers, which are.) To obtain a printout of the current
values of the variables ALPHA and BETA, vou issue a DISPLAY command.

S,Y: DISPLAY ALPHA, BETA
SYS: ALPHA—-}.17751984E4-00
BETA—-}.00000000E-+00

S,Y: SET BETA=1.0
Since you previously issued a QUALIFY command for MAINS, vou specify only the
internal names of the variables. Using this new information, you decide to change the
value of a key variable to determine if the program will run to successful completion.
You change the value of BETA and the system informs you of the new value.

You next enter a GO command. It causes execution to resume from the point of inter-
ruption.

SYS: TERMINATED: STIOP

The program runs to completion.

36

nn
o

wn =

LOGOFF

The system confirms your LOGOFF command.
Alterations you made with PCS commands exist in your program only while it is exe-
cuting in virtual storage.

Since PCS alterations do not affect your object module, permanent changes should
be made by modifying the source statements and then recompiling.

Part II: Examples 37

Example 10: Use of PCS Dynamic Statements

In this example, you use some of the more powerful commands of pcs. pcs provides trace facilities, conditional
program interruptions and modification of variables, and dumps. After logging on, you issue:

S,Y: DDEF DDCURR,VP,CURRENT,OPTION—JOBLIB

This DDEF command causes your job library CURRENT to be placed at the top of
your program library list. CURRENT has been previously cataloged and contains
compiled object modules.

S,Y: ERASE PCSOUT10

5,Y: DDEF PCSOUT,VI,PCSOUT10

The DDEF command defines the data set that will be filled by the PCS DUMP com-
mand; the data set can later be printed. Tt requires the data definition name PCSOUT
and virtual index sequential (VI} organization. You name the data set PCSOUT1LO0.
You precede the DDEF command with an ERASE command to ensure that PCSOUT10
does not contain any data before the DUMP command is issued.

S,Y: LINE? SOURCE.MAIN10,2100,2700,3200
SYS: 0002100 A=—ATAN(Y)

0002700 101 VAR=A®*"2

0003200 210 GG TO(301,302,303,304),7

You decide to display three of vour source statements in MAIN10, which has been
previously compiled and cataloged. With the compilation, you had requested an
internal symbol dictionary (ISD).

S,Y: LOAD MAIN1O

The system informs vou that it has loaded MAIN10.

In addition to its use for loading block data subprograms, you must use the LOAD
command if you wish to enter a PCS statement before execution begins. Since the LOAD
command does not initiate execution, you must eventually issue a GO or RUN command.

S,Y: QUALIFY MAIN1O

The QUALIFY command enables you to designate, before referring to a group of
internal names, the module in which these names are defined; thereafter, you may refer
to these names without explicitly qualifying them by module name.

S,Y: AT 101; IF A>B & J—1; SET X=1.0

SYS: 00001
This AT command will cause a message to be printed on SYSOUT when execution of
MAINIO reaches statement number 101 and the IF condition is true. In addition, the
IF and SET commands will cause the following: if A is greater than B at that time,
and J is equal to 1, then X will be set to 1. Execution will then proceed.

The system assigns a number to each command containing an AT statement (here

1) that can be used later for removing the statement.

S,Y: AT 210 STOP

SYS: 00002
You also request that execution be stopped when it reaches statement number 210.
Without the QUALIFY command vou would have had to write MAIN10.101 in the
first AT and MAIN10.210 in this one.

S,Y: MAIN1O
SYS: AT MAIN10.101 PSW 3 0 O OO5F2ABO 1
STOP AT MAIN10.210 PSW 4 0 O 0067D238 2

You execute the program. Your IF condition is fulfilled, X is set equal to 1, and your
program stops at statement 210, If the IF condition were not satisfied, the SET would
not be performed and you would not receive the X= printout. The number 1 appearing
at the end of the PSW output is the PCS statement number assigned by the system.

38

S,Y:

S,Y:

S,Y:

SYS:

S,Y:

SYS:
S,Y:

SYS:

DUMP MAIN1O#C, MAIN1O#P

RELEASE PCSOUT

You request a formatted dump of MAIN10’s CSECT and PSECT. It will be written
in the PCSOUT10 data set that you defined earlier.

If you wish to print the data set during this session, you must first issue a RELEASE
command for its data definition. This causes the data set to be closed.

PRINT PCSOUT10, ERASE=Y

REMOVE 1,2

GO

TERMINATED :
LOGOFF

The data set will be erased after it is printed.
The system acknowledges your PRINT command.

This command deletes the previously issued PCS statements that include AT commands.

You now resume execution of your program.

The program runs to completion, and you logoff.

The system confirms your LOGOFF command.

Alterations made to your program with the PCS commands {(SET, AT) exist only in
virtual storage. To make permanent changes to a program, reassemble from an altered
source data set. This causes the changes to be incorporated into the object module,
which you would then load.

Changes you make with the SET command remain in effect as long as the program
is loaded. (By contrast, all AT commands in any of your programs are completely re-
moved if vou implicitly or explicitly unload a module that is referred to by any AT
command.)

Logging off causes all of your programs to be unloaded from virtual storage.

Part II: Examples 39

Example 11: Input and Output on Tape

In the previous examples, all of your data sets resided on direct-access devices (disks) which were assigned to
public storage. In this example, your data sets reside on tapes, which are always private volumes.

You will run a previously-compiled program that reads a data set from a labeled tape and processes the in-
put data. Then it writes a new data set on another tape. After logging on, you issue:

S,Y: DDEF FTO1F001,PS,SAMPLEO1l

This command defines the data set that your program is to read. Since it is cataloged,
you need enter only these parameters. Omitted information about the data set’s charac-
teristics (record format, record length, organization) will be obtained from the tape
label that was created by the system when the data set was written. Information about
the volume on which the data set resides (9-track tape, private, volume serial number,
etc.) will be provided from the catalog entry.

SYS:

The system will inform you that the task is waiting for volume mounting. You will
be informed by the system when the wait is over.

S,Y: DDEF FT02F001,PS,RESULTO1,-
UNIT—(TA,9),LABEL=(,SL),VOLUME= (PRIVATE)

Here you define your output data set. It is not vet written, and is not cataloged, so you
must supply all the necessary DDEF parameters.

Because it is not yet written, the disposition fleld is defaulted to NEW. The data
set is to have physical sequential (PS) organization, is to reside on a 9-track tape, and
is to be provided standard labels (SL) by the system.

By omitting the DCB field, vou select the default options of variable length and
unblocked records. You do not specify the volume serial number in the VOLUME
field, so the system instructs the operator to choose a tape reel from the installation
pool. (Refer to Appendix E for further details on specifving DDEF parameters.)

SYS:
The system will inform you that the task is waiting for volume mounting. Again you
must wait until the tape is mounted.

S,Y: CALL MAIN1l
You execute your object program, which was stored in your USERLIB.
MAIN11 has the following significant I/O and related statements.

I.)IMENSION SAMPLE (250) ,RESULT (250)
10 FORMAT (250A4)

100 éEAD {1,10,END=900, ERR=—=800)SAMPLE

(.?ALL TRNFRM (SAMPLE,RESULT,250)

-

40

SYS:

S,Y:

S,Y:
SYS:

TERMINATED:

STOP

WRITE (2,10) RESULT
G0 TO 100
800 .
GO TO 100
900 ENDFILE 2
STOP
END

Your program concludes.

CATALOG RESULT(01,STATE—=N,ACC=R

LOGOFF

This command causes your output data set to be cataloged, thus recording its charac-
teristics and volume serial number in the catalog. You will still have to issue a DDEF
command in order to use this data set in a later session, but the system will retrieve
its characteristics from the catalog, so at a later session, a DDEF of the following form
will suffice:
DDEF ddname,, DSNAME=RESULTO1

The N indicates that the catalog entry is new (data set not currently cataloged).

You want to protect this new data set from accidental destruction in a later ses-
sion so you restrict the access to read only (R).

The system confirms your log-off request.
The private volumes (your two tapes) are demounted by the operator, and retained
at the installation.

This example can be run only in conversational mode. To run it nonconversa-
tionally, you would omit from the LOGON command your password, which is only
used conversationally, and add another command: SECURE (TA=2.9).

SECURE must appear immediately after the LOGON command. It would inform
the system of device requirements (here, two 9-track tape units) prior to execution of
the nonconversational task. Such tasks are described in later examples.

Part II: Examples 41

Example 12: Conversational Initiation of Nonconversational Tasks

It is often more convenient to have your programs run after you have left the terminal, that is, to have them run
in nonconversational mode. Two ways of doing this after logging on are shown in this example.

In Part 1, you begin your task conversationally and then use the Back command to switch its execution to

the nonconversational mode.

In Part 2, you construct a nonconversational task and then use the ExecuTE command to cause it to be exe-
cuted at a later time.

Part 1: The BACK Command

S,Y:

42

DATA PROC12A

With this command you build the SYSIN data set (named PROCI12A) that will provide
input to your task after you have switched to the nonconversational mode. You do not
need to issue a DDEF command for the data set created by a DATA command. By
default, the data set organization is VS.

#DDEF FTO9F001,VS, SPRING

#CALL MAIN12

(

#%END

#LOGOFF
#%E

BACK PROC12A

The system prompts (with #) for the first command to be executed in your nonconver-
sational task. This DDEF command defines the new data set for data set reference
number 9. It is to reside on public storage and is therefore automatically cataloged
for you.

MAIN12 contains a “READ{1,m) list” and a “WRITE(9,n) list” statement. You
omit a data definition for data set reference number 1 because you will provide input
data in PROCI12A, which will be used as SYSIN.

#(enter data to be read by MAIN12)

The DATA command accepts each line as a string of characters. Any mistakes you
make while creating this data set will not be detected until the BACK command is
executed,

When %END is read from SYSIN, it indicates the end of data to your program.

With the %E you indicate that your data set is complete. Now you are prompted with
an underscore.

The system informs you that your BACK command has been accepted.

Your BACK command has been accepted and the task will be continued immediately
as a nonconversational task beginning with the DDEF command. (Note that DDEF
commands for private volumes must be given prior to issuing the BACK command.)
Should you wish to cancel the task vou would issue a CANCEL command which
specified the batch sequence number.

Now vou can depart and let the task run, since PROCI2A is now its SYSIN and
includes 2 LOGOFF command for task termination. If you wish to initiate another task,
you must log on again.

The BACK command may not complete its operation if the attention key is de-
pressed shortly after issuing the command. The result is a nonconversational task
still connected to a terminal. Wait a few seconds before initiating logon procedures.

Part 2: The EXECUTE Command

S,Y:
S,Y:

DATA PROC12B
#LOGON ADUSERID,, ,ADACC29

The LOGON command is the only difference between this and the PROCI2A SYSIN
data set created in Part 1. Since the task whose commands and data are stored in
PROCI12B will be run later instead of being continued, you must provide a LOGON
command, ’

Note that a nonconversational LOGON omits the password. The remainder of
PROCI12B is the same as in Part 1.

DDEF FIO9F001,VS,SPRING
#CALL MAINl2 (same programas inPart 1)
(enter data to be read by MAIN12)

#BEND

#LOGOFF

#7PE

EXECUTE PROC12B

The system informs you that your EXECUTE command has been accepted.

Your request for a nonconversational task has been accepted by the system, and will

be executed when system resources are available. The SYSOUT of this task will consist

of system messages and any output to SYSOUT generated bv vour executing programs.
Because the terminal is active (you are still logged on) after an EXECUTE is

issued, another command sequence can be entered. In fact, another sequence similar

to the one illustrated could be issued to create other tasks.

LOGOFF

The svstem confirms your LOGOFF command.

Part II: Examples 43

Example 13: Preparing a Job for Nonconversational Processing

In this example, you put a series of commands and input data on cards. You will subsequently send them directly
to the installation operator, who will store the information from the cards into a data set. The data set will then
become the sysin for a nonconversational task (described in the cards) and will be queued for execution.

CARDS

LOGON ADUSERID,,,ADACCT29

When entered on a card, the LOGON command must start in the third card column,
and the first two columns must be blank. All the required LOGON parameters must be
included in the same card. The password is not used.

DDEF DDNAME= SCRATCH,VP,SCRATCH,OPTION—=JOBLIB

FTN MAIN13,LISTDS=Y

READ(5,10)4A

10 FORMAT (F8.2)
ATC=A*®3.141
WRITE(6,10)A,ATC
STOP
END

CALL MAIN13
099.70

%END

LOGOFF

44

The command will define a new JOBLIB on which to store the object module to be

created by the compiler. SCRATCH will automatically be cataloged for you by the
system.

Here you use the LISTDS operand, which works only in nonconversational tasks.
(If used in a conversational task, it is ignored.) By specifying LISTDS=Y, you cause
the listing to be placed in the list data set, as in conversational tasks. If you did not
specify LISTDS=Y, the listing would be printed automatically; then it would no
longer exist in the system.

Your source statements follow. Note that the requirements for direct input of a
FORTRAN source program at the terminal keyboard and on cards are not the same;
here you must conform to FORTRAN source coding format. This is discussed more
fully in Appendix A.

Your source program, SOURCE.MAIN13, will automatically be cataloged for you
by the system.

After compilation, the object module will reside on the library at the top of your pro-
gram library list, in this case, the job library SCRATCH. You do not issue a PRINT
command in this task. However, the listing data set procedure is retained as the latest
generation of LIST.MAIN13, and you can later print it if you wish by issuing the
following command: PRINT LIST.MAIN13(0),,, EDIT.

This command will initiate execution of your newly compiled module.

This card contains vour object time data.

The %END will signal the end of the program data. The % character must be in
column 1 of the card. This card must immediately follow the last input data card. This
card activates the “END=" option on a READ statement, if you have used it in your
program; if you have not, it initiates proper termination of the program execution when
a READ is executed after the end of data has been reached. If your program depends
on either of the above, and yvou have omitted the %END card, vour program will read
the subsequent commands as SYSIN data, producing abnormal results.

Enter LOGOFF beginning in column 3.

Three things in particular should be kept in mind when preparing a deck of cards for

processing:

1. Although the positioning of characters when typed in directly can be “free form,”
the positioning on cards is more closely fixed.

2. Any errors in preparing the deck will probably terminate the task, since the system
cannot prompt you for corrections.

3. The “modifications” and “continue” compilation prompts will not occur, so no Y or
N responses should be specified.

Example 14: Storing DDEF Commands for Later Use

In Part 1 of this example you create a data set containing ppEF commands for frequently used data sets. In Part
2 you cause them to be issued with a cop (call data definition) command. After logging on, you issue:

Part 1: Storing DDEF Commands

S,Y: DATA DDPACK.MAIN14,RTYPE=1I,BASE=1000,INCR=400

The DATA command can be used to store any kind of information that can be frans-
mitted through the terminal. Here you are going to use it to store your DDEF com-
mands in a data set you name DDPACK.MAINI4. The commands are stored as charac-
ter strings but are interpreted as commands when they are later retrieved with
the CDD command.

The I specifies that the data set is to be indexed. The first line number is to be
1000, and succeeding line numbers are to be incremented by 400. Default values for
each of these parameters is 100.

The data set, DDPACK.MAIN14, is automatically cataloged for you by the system.

S,Y: 0001000 DDEF YOURLIB,VP,MAINPGMS,OPTION=JOBLIB

The system prompts you for each line with a line number. You enter the first DDEF
to be stored. It is for the cataloged job library that contains your compiled program to
be run, MAIN14.

The DDEFs do not have to be stored in any special order in the data set, but their
ddnames must be unique.

S,Y: 0001400 DDEF FTOl1FO0O01,VS,IN14

Data set reference number 1, input for MAIN14, has been cataloged in an earlier
session under the name IN14,

S,Y: 0001800 DDEF FTO9F001,PS,DATA,UNIT=(TA,9),LABEL=—,~
S,Y: 0002200 (,SL),VOLUME= (,012170)

MAIN14 also expects input on data set reference number 9 from an uncataloged data
set residing on tape 012170. Note the use of hyphen to continue the command on the
next line,

S,Y: 0002600 DDEF FI51F001,VS,0UTPUT.MAIN14

Since MAIN14 output will be too large to be conveniently printed at the terminal,
this cataloged data set is to be defined to hold it.

S,Y: 0003000 %E
The %E indicates that input to the DATA command is complete.

S,Y: LOGOFF
The svstem confirms your LOGOFF command.

Your program, MAIN14, and its associated DDEF commands are ready for use. You
now check them out, to be sure there are no errors.

Part 2: Retrieving Stored DDEF Commands

After logging on, you issue:

S,Y: (DD DDPACK.MAIN14,YOURLIB
You cause the DDEF that defines your job library to be issued.

Part II: Examples 45

SYS: 0000, DDEF YOURLIB,VP,MAINPGMS,OPTION=JOBLIB

The system executes the specified DDEF command, prefixing four zeros to distinguish
it on your SYSOUT listing from those DDEF commands entered directly through
SYSIN. Any diagnostic would be printed at this point, as the system is now analyzing
the character string as a DDEF command.

S,Y: CDD DDPACK.MAIN14, (FTOlF001,FTO9F001,FTI51F001)

This command causes it and all the remaining data definitions to be executed. You may
enter any number of ddnames. Omitting this parameter causes all the DDEF commands
to be executed.

SYS: 0000 DDEF FTO1F0O1,VS,IN14
0000 DDEF FTO9F001,PS,DATA
UNIT=(TA,9),LABEL=(,SL),VOLUME=(,012170)

The system informs you that it is waiting for volume mounting.
You must wait until the operator mounts vour tape.

The system informs you that the task is now proceeding and the wait is over.

SYS: 0000 DDEF FT51F001,VS,OUTPUT.MAIN14

You begin execution of a program.

S,Y: CALL MAIN14

SYS: TERMINATED: STOP
Execution of your program is complete. The output of MAIN14 went to the data set
OUTPUT.MAIN14.

S,Y: PRINT OUTPUT.MAIN14,PRTSP—=EDIT

SYS: The system acknowledges your PRINT command.
S,Y: LOGOFF

SYS:
The system confirms your LOGOFF command.
The following card deck is all you need to run this task nonconversationally.

CARDS

LOGON ADUSERID, , ,ADACCT29
SECURE (TA=1,9)

CDD DSNAME—DDPACK.MAIN14

RUN LOC—MAIN14

PRINT OUTPUT.MAIN14,PRTSP—EDIT
LOGOFF

46

Example 15: References to Subroutines

In this example you run two programs, MaIN15 and MaINxv, each having references to other programs. After
MAIN15 is loaded, a diagnostic warns you of an undefined reference. You ignore it and execute anyway. After
MaINxV is loaded, a diagnostic warns you of an undefined reference in a program called by nmainxv. In this case
you resolve the reference before executing. After logging on, you issue:

S,Y:

SYS:

S,Y:

SYS:

S,Y:

SYS:

S,Y:

CALL MAIN1S

The CALL command causes the system to load the specified object module and to
initiate its execution. During loading, the loader attempts to resolve any external refer-
ences by searching the libraries in the program library list and loading those modules
with definitions that satisfy the references. These new modules may in turn have refer-
ences to other modules.

#®# @8 2UNDEFINED REF (ACLRTN) IN MODULE (MAIN15).ADDRESS FFFFF0O0OO ASSIGNED

F025 MAIN15 ERROR

IN LOADING MODULE

FOO2 STATEMENT REJECTED

GO

CALL MAIN15

TERMINATED: SIOP

UNLOAD MAIN15

CALL MAINXV

Here a diagnostic is issued because the loader could not resoive a CALL for ACLRTN.
It assigns an invalid address that will cause an interrupt if it is executed. Since you are
certain that in this case the actual execution flow of MAIN15 will not go through the
CALL on ACLRTN, you decide to go ahead and execute.

You issue a GO command, but the system merely prints an underscore.

You then issue the CALL command with the required module name. This must be
done after the occurence of the FO02 diagnostic.

Your program runs to completion. ACLRTN was not called during execution, If it had
been, an invalid address diagnostic would have appeared and an abnormal task termina-
tion would have followed.

Now you want to run MAINXYV. You have to decide whether or not to unload MAIN15.
If you don’t unload it, any programs already loaded for MAIN15 that MAINXV also
uses will not have to be reloaded, thereby saving some time. On the other hand, if the
programs are not unloaded and then reloaded, the loader will not be able to check their
references, and any unresolved references they might have will go undetected. To be
safe, you unload MAIN15.

MAIN15 and anv other modules that were loaded because of references from it are
unloaded.

Now you initiate the loading and execution of MAINXV.

*x%#%%*UNDEFINED REF (PRESSR) IN MODULE (THRUST44) .ADDRESS FFFFO000 ASSIGNED
F025 THRUST44 ERROR IN LOADING MODULE.
F002 STATEMENT REJECTED.

THRUST44 was loaded because of a CALL to it from MAINXV.

THRUST44 in turn contained a CALL to PRESSR, which could not be located after a
search of all the libraries on the program library list. You remember that a job library
named ROCKETS has an object module which contains a definition for PRESSR.

DDEF MYLIBE,VP,ROCKETS,0PTION—JOBLIB,DISP=0LD

You issue a DDEF for the library ROCKETS to put it at the top of the program library
list.

Part I1: Examples 47

48

UNLOAD MAINXV

CALL MAINXV

TERMINATED :
LOGOFF

STOP

Then you unload MAINXYV from virtual storage.

Reloading MAINXV causes the loader to search the libraries in the program library
list again and it resolves the CALL to PRESSR from the newly defined library and
Joads the module containing the definition of PRESSR.

After execution is complete, you log off.

The system confirms your LOGOFF command.

Example 16: Entering Data for Later Use

In this example, you create two data sets, one containing a source program for compilation in a later session, the
other containing data to be read by the program stored in the first data set. After logging on, you issue:

S,Y: DATA SOURCE.ORBIT,I,2000,200

SOURCE.ORBIT is the name of the data set you are about to create. When the DATA
command is used, the system automatically supplies a data definition. The qualifier
“SOURCE” is needed because this data set is intended to be used as input to the
FORTRAN compiler. In earlier examples, where source statements were entered after a
FTN command, the source data set was created automatically and the qualifier,
SOURCE, was attached by the system.

The I specifies that the data set is to be indexed. The first line number is to be
2000, and succeeding line numbers are to be incremented by 200. Default values for
each of these parameters is 100.

The source data set, SOURCE.ORBIT, is automatically cataloged for you by the
system.

S,Y: 0002000C ORBIT CALCULATIONS,HIGH ECCENTRICITY

S,Y: 0002200

S,Y: 0002400

S,Y: 000280020

0002800
0003000%2200,

wnwn
<

S,Y: 0003000

The DATA command prompts for input by printing a line number. You enter a com-
ment line {(C in column 1). You may start typing immediately after the line number, or
use a tab stop to format the terminal printing of vour input. The tab stop may be set
at this time. When setting your tab stop, you should issue a line cancellation (a pound
sign at the end of the line) to cancel any of the spurious characters (tab, space, etc.)
that were generated when you set your tab.

DIMENSION A(100,100),B(1000)

REED

(5,10)A

You notice you made a mistake in line 2400.
Since the line has not yet been completed (you have not pressed the return key) you
cancel the line by using the # sign. You then tab over and enter the correct line.

READ (5,10)A
FORMAT (19H PERTUBAT

CALL

RBATION TABLE)

You make another error, but this time vou correct only the part in error. You back-
space 3 times, cancelling BAT, move the paper up once manually to avoid overtyping,
and continue the line correctly.

THRUST (A, B)
DIMENSION A(100,100),B(1000)

You notice another misspelling made earlier and decide to correct it by replacement.
The percent sign in the first typeable position has a special meaning to DATA when
of the form: %line number. It means that an insertion or replacement is to be made.
If the line number specified already exists, a replacement by the character string fol-
lowing the comma will be made. If the line number falls numerically between two
existing ones, an insertion will be made at that point.

In this correction and in the one after the next, the tab stop cannot be used because
of the double line numbers. Therefore, to maintain uniformity for future printouts of
your source data set, you enter six spaces between the comma and the source statement.

WRITE (6,10)B

The correction is made and you are again prompted for line 3000.

Part II: Examples 49

nwn
a-lla]

5,Y:

50

0003200%2700, 30

0003200

-

FORMAT (E13.6)

Instead of entering a line for 3200, you insert a new line between 2600 and 2800.

000700010 FORMAT (1X,2F10.6)

0007200%D, 2600
0007200 END
0007400%E

DATA TELEMOO1

When entering vour VS input data for your program via the DATA command (see
below), the system places a kevboard-card character for internal use prior to each
FORTRAN record. In this example, then, vour FORMAT statement must include
an X specification to skip one character for each record to be read so that your
program will skip over the unwanted system character.

The %D deletes line number 2600 from the data set. If a range of lines is to be deleted,
two line numbers are specified; the first line number must be lower than the second.

The %E indicates to the DATA command that your data set is complete.

You enter ancther DATA command, this time defaulting to no index, which means you
will create a virtual sequential (VS) data set. This data is to be read by the program you
just entered. Because this data set also resides on public storage, the system automati-
cally catalogs TELEMOO1 for you at this time.

#099.900000-08.732460
#093.247650-01.178940

#BE
RET TELEMOO1,PR

When a sequential data set is specified, line numbers do not appear; instead the system
prompts you for each line with the number sign. The tab key has not been used in
entering this data because it would then not be compatible with the input FORMAT
statement in ORBIT. Since a special character code is transmitted each time the tab
is depressed, allowance for use of the tab key would have to be made when writing the
FORMAT statement by using the X specification to skip one character for each time
you planned to press the tab key.

When a data set with virtual organization residing in public storage is automatically
cataloged for you, the system creates a new catalog entry and assigns an access quali-
fier of “unlimited” (read/write) to the data set.

You wish to change the system assigned access qualifier because this data set con-
tains important information which you do not want accidentally destroved. You there-
fore issue a RET command giving the data set name TELEMOO1. The operand after
the data set name specifiies the data set is to reside on permanent storage and have
the read-only attribute.

LINE? SOURCE.ORBIT, (2000,7400)

To check on the corrections made while entering your source statements, you use this
command to print the contents of the data set vou have just created. You specify the
first and the last lines to cause the printing of the entire data set.

SYS:

SYS:

Tab stops were used to make the terminal printout format resemble FORTRAN source card format. Note that, just
because vour ferminal printout format looks like card images, it does not mean that cards punched from this data set
can be used as FORTRAN source input. In this example they cannot. For a further discussion of punching source cards

0002000 C
0002200
0002400
0002700 30
0002800
0003000
0003200

0007000 10
0007200

ORBIT CALCULATIONS, HIGH ECCENTRICITY
DIMENSION A(100,100),B(1000)

READ (5,10)A

FORMAT (E13.6)

CALL THRUST(A,B)

WRITE(6,10)B

FORMAT (2F10.8)
END

D334 LAST LINE IN MEMBER OR DS IS 7200

0007200

LOGOFF

END

The system informs you that the last line of the data set is line numbered 0007200,
The space between the line numbers and the source statements is created by the
system. It indicates that the lines were originally entered from a terminal kevboard.

Lines entered from the terminal card reader are indicated by a C in that space.

The system confirms your LOGOFF command.

from a data set prepared at the terminal, see Appendix A.

Part 1I: Examples

51

Example 17: Data Set Censiderations When Interrupting a FORTRAN Execution

In this example, you run a program that uses a data set on a private disk as input. When execution begins, you
realize you have specified the wrong data set. To start over you release the data set and unload your program.
You then run with the correct data set. After logging on, you issue:

S,Y:

SYS:

S,Y:

S,Y:

PGM:

YOU:

SYS:
S,Y:

S,Y:

SYS:

52

DDEF FT11F001,VS,RESULTO1,OLD

This command defines the data set that provides input to your MAIN17 program. DCB
subparameters are not required for existing data sets on direct-access devices, since the
data set characteristics were recorded with the data set itself when the data set was
created.

The system informs you that the task is waiting for volume mounting. You must wait
for the operator to mount your disk.

DDEF FTO5F001,VS,TABLEOOL

CALL MAIN17

This command defines a new data set on public storage that is to contain some of your
program output. It is automatically cataloged for you by the system.

You default data set reference number 1, which was referred to in MAIN17, to
SYSOUT (terminal).

FIRST RECORD OF TEST RESULTS SHOWS
DATE OF TEST — 11/17/869
LOCATION A

ALTITUDE RANGE 20000.0 TC 30000.0

This is some of the output from MAIN17.

(press attention button)

UNLOAD MAIN17

RELEASE FT11F001

Realizing that you have specified the wrong data set and volume number in your DDEF
command, you stop execution of MAIN17 by pressing the attention button.

You make sure that all your data sets are closed. Remember that the data set TABLEOOGL
was to be created during this run. If some output had gone to this data set before you
pressed the attention button, and another RUN MAIN17 was issued without unloading,
whatever had been written in TABLEOOL would be left there after restart.

This command releases the DDEF command previously issued. You must issue it
before the FT11F001 data definition can be repeated for another data set.

DDEF FT11F001,VS,RESULT02,0LD

You define what vou believe to be the correct data set.

The system informs vou that the task is waiting for volume mounting. After being
notified that the operator has mounted disk number 012237, you again execute your
program.

S,Y: CALL MAIN17

.

You default data set reference number 1, which was referred to in MAIN17, to SYSOUT
(terminal).

PGM:

FIRST RECORD OF TEST RESULTS SHOWS
DATE OF TEST — 11/23/69

LOCATION B
ALTITUDE RANGE 5012.9 TO 6492.3

Everything now appears to be all right, so you allow execution to proceed to the exit
message and underscore.

SYS: TERMINATED: STOP
S,Y¥: LOGOFF

The system confirms your LOGOFF command.

Part I1: Examples 53

Example 18: Sharing Data Sets

This example shows how data sets can be shared by several users of the system. Part 1 shows a session during
which another user makes one of his data sets available to you. Part 2 shows how you copy the data set so that
you can make changes to it,

Part 1: Permitting Access to a Data Set

After logging on, user ABPALID issues:

S,U: PERMIT DATA,USERID-=ADUSERID,ACCESS—=—RO

He makes available to you his cataloged data set DATA with read-only access point.

S,U: RET DATA,R

He changes his own access to DATA to read-only.

S,U: DDEF FTO1FO01,VS,DATA

The user defines data set DA A for his new task; he now has read-only access to it.

S,U: PROG1
He executes PROGI, a program that uses data set DATA.

USR: LOGOFF
SYS:

The system confirms his LOGOFF command.

Part 2: Accessing a Shared Data Set

After logging on, you issue:

S,Y: SHARE DATA,USERID=ABPALID,OWNERDS=DATA

An entry will be created in vour catalog for data set DATA. This command would
have been rejected if the owner had not previcusly granted yvou access with the
PERMIT command.

S,Y: DDEF FTO3FT001,VS,DATA

You issue a DDEF command defining DATA for your task.

You can now execute PROGY, a program that uses data set DATA.

Note: FORTRAN T/O opens all virtual storage data sets for OUTPUT unless the data
set is read-onlv; read-only data sets are opened for INPUT. If a shared data set is
opened for OUTPUT, an interlock is set that prevents other users from having access
to the data set until it is closed.

54

YOU: LOGOFF
You must remember that if the owner erases or deletes one of his data sets which
vou share, its entry in vour catalog is not removed. To remove the entry from vour
catalog, vou must issue a DELETE command,

SYS:
The system confirms yvour LOGOFF command.

Part II: Examples 55

Example 19: Manipulation of Several forims of a Program

In this example, you examine a previously cataloged program. Then you remove all forms of it from the system.
After logging on, you issue:

S,Y:

SYS:

SYS:

YOU:

SYS:

S,Y:

38

LINE? SOURCE.MAIN19, (1,5000)

You would like to eliminate from the system any forms of a program named MAINI19
that you no longer need. You want to punch the source data set on cards, but first you
must determine whether such cards can be used as compiler input. So you issue this
command in order to examine the source data set.

The system informs you that the first line number in the data set is 000100. The system
then proceeds with the actual listing.

0000100CC THRUST CALCULATIONS FOR MK.l ENGINE
0000200CC WITH STANDARD ATMOSPHERE.

0000300C DIMENSION ATBL(10,1000),FORM(10)

0000400C10 FORMAT (10F10.6)

0000500C20 FORMAT (10A4,2I4)

0000600C READ (3,20)FORM,I,J

0000700C READ (3,FORM) (ATBL((II,JJ),II=1,1),JJ=1,7J)
0000800C WRITE (4,10)ATBL(I,

(press attention button)

Satisfied that the program is what you want, you terminate the LINE? command. The
C following the line numbers indicates the statements were originally entered via a card
reader. This means that, if you punch the source data set, the cards can later be used

for compiler input. (See Appendix A for a more detailed description of compiler input
format requirements.)

LINE? SOURCE.MAIN19,9999999

The system issues the last line in the data set as: 0013700C END
In order to determine the size of the data set, vou request the maximum possible line
number. This causes the last line of a line data set to be printed.

PRINT SOURCE.MAIN19

This command causes the creation of a nonconversational task that will print the
source data, and issues a batch sequence number for the nonconversational task.

PRINT BSN=0375

The system acknowledges vour PRINT command and assigns it a batch sequence
number (BSN).

PUNCH SOURCE.MAIN19,STARTNO—9,ENDN0O—88,ERASE=Y

You request the punching of the 9th through 88th characters of each record in your
source data set. The first eight characters are the line number and the input key. The
system creates a separate task that will perform the punching when system resources
are available.

You had to use the ERASE option in the PUNCH command, rather than a
separate ERASE command following it. The system will reject an ERASE command
if the data set referred to has an associated print or punch task pending. Most likely
the two tasks will be executed in the same order as they were entered. It is possible,
however, that they actually will be executed in reverse order. If so, the ERASE option
will be delayed until after the PRINT task has been completed. You should not insert
the ERASE option until the last print or punch data command in any sequence which
refers to the same data set. Tt is possible that the first one, for example the PRINT above,
could be executed in less time than it takes to tvpe in the next command; therefore the
ERASE option on the PRINT command could take effect before the PUNCH task
could be executed.

S,Y: CANCEL 0375
You now decide that a listing of the source data set is superfluous (since you will have a
source deck), so you cancel the printing task, referring to it by the batch sequence
number.

S,Y: ERASE LIST.MAIN19(-1)

Here you erase the generation that contains the earlier version of MAIN19.

S,Y: ERASE LIST.MAIN19(O0)

Here you remove the latest generation of LIST.MAIN19 which you created and cata-
loged when the program was compiled in an earlier session.

S,Y: ERASE USERLIB(MAIN19)

This command erases the last form of this program, the object module produced during
compilation.

S,Y: LOGOFF

The system confirms your LOGOFF command.

Part II: Examples 57

Example 20: Terminal Input of a Pre-Punched Program for Compilation and Running

In this example, you use a terminal that has a card reader. You switch back and forth between terminal keyboard
input and card input as you compile and execute a program.

You place a deck in your terminal card reader. Locox and r.ocorr command cards must begin in column
3, and their first two columns must be blank. All other commands may begin in column 1.

CARDS

FTN MAIN20,ISD=Y,LISTDS=Y
c MATRIX I/0 AND MULTIPLY
DIMENSION A(20),B(20),C(20),FORM(10)
10 FORMAT (10A4,I3)
15 READ(7,10)FORM,I
20 READ(7,FORM,END=30)(A(J),J=1,1), (B(K),K=1,I) Source

CALL MATMPY(A,B,C,I,I,I) Statements
WRITE (17 ,FORM) (C(J),J=1,1)
GO TO 20
30 STOP
END

PRINT LIST.MAIN20(0),PRTSP=EDIT
KB Return to keyboard

After logging on, you issue:

S,Y: CB (press reader start button)

This causes SYSIN to be switched to the card reader for one card. You can do this
any time the system is waiting for keyboard input if the desired cards are ready in the
card reader.

Since the terminal is in send-receive mode, each card image is printed on the
terminal as if it had been typed in at the keyboard.

CIP: LOGON ADUSERID,MYPASS*,,ADACCT29

This is the card image printout (CIP). You supply the LOGON command from the
card deck.

S5,Y: CB (press reader start button)

S,C: FTN MAIN20,ISD=Y,LISTDS=Y
The system prompts for source statements by issuing a line number. It then reads the
statements from the card reader.

S,C: 0000100C MATRIX I/0 AND MULTIPLY

S,C: 0000200 DIMENSION A(20),B(20),C(20),FORM(10)

S,C: 000030010 FORMAT (10A4,13)

S5,C: 000040015 READ(7,10)FORM, I

S,C: 000050020 READ(7,FORM,END=30) (A(J),J=1,1}), (B(K),K=1,1)

S,C: 0000600 CALL MATMPY(A,B,C,I,I,I)

S,C: 0000700 WRITE(17,FORM) (C(J),J=1,1I}

S,C: 0000800 GO TO 20

S,C: 000090030 STOP

S,C: 0001000 END

SYS:

YOU: Y
Even though vou selected the card reader, these responses must be entered from the
keyboard. The system will automatically revert to the card reader after these prompts.

SYS:

The system informs you that there were no errors.

58

CIF:

SYS:

CIP:

S5,Y:

S,Y:

CARDS

CIP:
CIP:
CIP:
CIP:
PGM:

PRINT LIST.MAIN20(0),PRTSP—EDIT

CANCEL 0137

CALL MAINZ20
(3F10.6)

The system acknowledges vour PRINT command and assigns it a batch sequence
number (BSN). For this example, assume a BSN of 0137.

The KB card is encountered, which switches control to the keyboard. The system’s
underscore prompt for a command is followed by the KB card image printout. This
results in another prompt for a command.

Since vou do not now want to see the listings produced by the compiler, you cancel
the task created to print them. Note that LIST.MAIN20(0) is cataloged for you in case
you want to print it later.

The system prompts you for input of data by unlocking the terminal keyboard. You
have the following deck readyv in the card reader and switch to card input by entering
CB at the keyboard.

Your READ statement refers to data set reference number 7. Since you did not supply
a DDEF for FTOTF001, yvou default for terminal input.

003

+03.600000—-04.723000+927.245000
—04.200000-409.000000-+403.400000

+05. —~ 6.

4-07.800000

+35. +01.300000—04.200000
—07.600000-+-03.700000483.0
-+11.100000—13.140000417.8

%END
KB

CALL MAINZ0
(3F10.8) 003

Your program reads its input data from the card deck.

-+03.800000—04.723000+407.245000
—04.200000-+09.000000-+03.400000
25.999969-61.210037 93.89157

+05. -6.

You default the data set reference number 17 so that vour sutput will be printed at
the terminal.

+07.800000

-+35. +01.300000—04.200000
54.431976116.639954 44.063965
—07.6000004-03.700000+83.0
+11.100000—13.140000+17.8
64.799973—-77.759964101.087952

CHCIW STOP
XB

LOGOFF

Your program concludes. The KB card causes SYSIN to be switched to the keyboard.

You then log off.

The system confirms vour LOGOFF commartid:

Part II: Examples 59

Example 21: Intra-Task Carryovers

In this example, you prepare a deck for nonconversational processing, taking into account carryover of data
definitions and coanion blocks within the task. Your rocox and rocorr commands begin in column 3; all
other commands may begin in column one.

CARDS
LOGON ADUSERID,, ,ADACCT29

LOGON command parameters must all be on one card. A task for nonconversational -
execution must be accurately prepared because most errors will cause premature
termination of the task or will make the results useless. Note that you do not enter a
password in nonconversational tasks.

SECURE (TA=3,9), (DA=1,2311)

The SECURE command is needed in all nonconversational tasks that use private vol-
umes, in order to secure devices on which to mount them. This command requests
three 9-track tape drives and one 2311 disk unit. Only two tapes will be used simul-
taneously; the need for securing three will be explained later in this example. If this
command is omitted or an insufficient number of units are reserved, vour task will be

terminated upon execution of the first DDEF command that requests a private device
that is not secured.

DDEF MYDISK,VP,MYLIBE,OPTION—JOBLIB

Since the data set MYLIBE is cataloged, the only parameters needed are those shown
here.

DDEF FTO1F001,PS,MYDATAOA,UNIT—(TA,9),VOLUME={(,324010), LABEL=—{(,SL)
This DDEF command and the next one include the additional parameters needed for
uncataloged data sets. The first command refers to an existing volume. Data set char-
acteristics will be obtained by the svstem from the label that was created when the
data set was first written on your private volume. You specify that standard labels exist.
Note the — in card column 72 signifying a continued command on cards. The next
card starts in column 16.

DDEF FTO2F001,PS,MYOUTOOB,UNIT—(TA,9),VOLUME= (PRIVATE),—
DCB= (RECFM=F, LRECL—=80) , LABEL—(, SL)

This DDEF command defines a new data set that is to reside on a private volume. By
specifving PRIVATE but omitting the volume serial number on the VOLUME para-
meter vou indicate that you want the operator to provide a tape from the installation
pool. With the LABEL parameter, vou indicate that you want the system to create
standard labels.

CALL MAIN21A

MAIN21A contains a “READ(1.n)list” statement that reads input from the data set
MYDATAOA. 1t creates the new data set, MYOUTOOB, with a “WRITE(2,n)list”
statement.

The data set reference numbers 1 and 2, in the READ and WRITE statements,
respectively, appear in the data definition names (i.e., FTO1F001, FT02F001).

UNLOAD MAINZ21A

Unloading a program once vou are through with it is often essential to successful pro-
gram execution, For example, MAIN21A and MAIN21B both have an unlabeled
(blank) COMMON block. You are not sure which COMMON block is larger. If
MAIN21B contains a larger COMMON block than MAIN21A, then you may encounter
problems when vou run MAIN21B because the loader will not allocate virtual storage
for a new COMMON block if there is one alreadv loaded from the RUN MAIN21A
command. Since the loader allocates each unlabeled COMMON block extra pages
of virtual storage, the larger COMMON block in MAIN21B may fit. If it does not,
MAIN21B will probably be terminated because of an invalid address reference. Un-
loading MAIN12 also ensures that the data sets it refers to are closed.

60

CATALOG MYOUTOOB,N

RELEASE FTO1F001

DDEF FTO1F001, ,MYOUTOOB,

In order to store the volume serial number in the catalog, this command must precede
the RELEASE command below. Because this is a new private volume you cannot
know the volume serial number in advance. By cataloging vou cause the system to
record the assigned volume serial number in the catalog. You can then define the data
set for a future session by supplying only the minimum parameters in the DDEF com-
mand. Although failure to catalog MYOUTOOB at this point would not have caused
erasure of MYOUTOOB, it would have made it inaccessible during the rest of this
task. In conversational mode the assigned volume serial number is printed out and
can be used in a DDEF command later in the same session.

The next program to be run, MAIN21B, will read the data set MYOUTO0OB with a
statement of the form READ(1,n)list. This read statement will also require a DDEF
command with a data definition name FT01F001. If another DDEF command named
FTO1F001 were issued at this time an ambiguity would result, since the data definition
FTO01F001 would refer to two different data sets. The system would detect the error,
reject the command, and print a diagnostic message. Therefore, you issue this RELEASE
command to make the data definition name, FTO1F001, available for use with MY-
OUTOOB. Releasing the data definition name also releases the data set name and any
secured devices it used. The RELEASE command in this example relinquishes one of
the secured tape drives to the system, leaving you with two.

OLD

You are, in effect, moving the data set name MYOUTOOB from data definition FTO2F001
to FTO1F001. There is no ambiguity because the system will remove the data set name
MYOUTOOB from the data definition FTO2F001. The system is also cognizant of the
volume in which the data set MYOUTOOB is resident and that MYOUTOOB has already
been mounted on a secured device for this task.

DDEF FTO2F001,PS,FINALOC,UNIT—{TA,9),VOLUME—(PRIVATE) ,~

DCB— (RECFM—FBA, LRECL—

RUN MAIN21B

CATALOG FINALOC,N

LOGOFF

50,BLKSIZE—=500), LABEL—(,SL)

The FT02F001 data definition was left without a data set name and is thus available
for use. This DDEF command now makes use of it to define a new data set named
FINALOC. The third secured tape unit (unused until now) will be used to mount the
necessary private tape volume.

A “WRITE(2,n)list” statement in MAIN21B will create the data set FINALOC.

This command will catalog FINALOC so that you need specify only the minimum
parameters when you issue a DDEF command for it in a future session.

Part II: Examples 61

Example 22: Survey of System Facilities and Some Housekeeping Methods

In this example you do some housekeeping, erasing unwanted programs, and transferring a souree program from
public storage to tape. After logging on, you issue:

S,Y:

SYS:

SYS:

v
oo

S,Y:
S5YS:
YOU:

PR R]
v =

62

PC?
This command is used to present the name, access, and, for shared data sets, the
owner’s identification for one or more cataloged data sets. Since you do not specify
any data set names heve, information about all vour cataloged data sets is presented.

DATA SETS IN CATALOG WITH QUALIFIER ADUSERID
ADUSERID.JOBLIBA, ACCESS:RW
ADUSERID.LIST.MAINTEST(0),ACCESS:RW
ADUSERID.M220UT, ACCESS:RO
ADUSERID.PROJECT.A, ACCESS:RO
ADUSERID.PROJECT.B, ACCESS:RO
ADUSERID.PROJECT.C, ACCESS:RW
ADUSERID.PROJECT.C2, ACCESS:RO
ADUSERID. SOURCE.MATRIX7, ACCESS:RW
ADUSERID. SQURCE.TRIALX, ACCESS:RW
ADUSERID.VERSICNS, ACCESS:RO,OWNER:MICHAELB

D5S? SOURCE.MATRIX?

You want more information about one of vour cataloged data sets, so you issue a DSS?
command. This command presents more detailed information than does the PC? com-
mand. If DSS? is specified without an operand, detailed staius information for all
yvour cataloged data sets is presented.

ADUSERID.SOURCE.MATRIX7
ACCESS: RW
VOLUME: 232323 (2311)

DS ORGANIZATION: VI PAGES: 002

REFERENCE DATE: 257/68 CHANGE DATE: 257/68

RECORD FORMAT: V RECORD LENGTH: 00132

KEY LENGTH: 00007 RELATIVE KEY POSITION: 00004

ERASE SOURCE.MATRIX?
ERASE LIST.MAINTEST(O)

You decide to erase two of the foregoing data sets. You would like to examine one
other data set before deciding whether to erase it.

LINE? SOURCE.TRIALX

0000100 C TRIALX IS BASED 0N FORMER TUBE TEST ROUTINE.

{press attention button)
The first line printed out is sufficient for vou to recognize this as an old program that
you no longer need. You halt further printing by pressing the attention button. You
erase it and another data set of numerical data associated with it.

ERASE SOURCE.TRIALX
ERASE PROJECT

The system: gives you the option of erasing (E) or retaining (R) the individual data set
cataloged under the generic name PROJECT, or erasing all of them (A).
You decide to erase all but PROJECT.B.

SYS:
YOU:
SYS:
YOU:
SYS:
YOU:

SYS:

S,Y:

S,Y:

SYS:

S,Y:

SYS:

S,Y:

S5,Y:

S,Y:

PROJECT.A
E
PROJECT.B
R
PROJECT.C
A

ERASE VERSIONS

DELETE VERSION5

POD? USERLIB

By typing A, you cause the system to erase PROJECT.C and those data sets whose names
would follow if prompting continued in this case, just PROJECT.C2).

The underscore indicates the end of PROJECT data sets, and you tell the system to dis-
pose of another obsolete data set.

The system informs you that VERSIONS is not youwrs to erase, and ignores your com-
mand.

VERSIONS is a shared data set for which you do not have unlimited access, which in-
cludes the right to erase.

The DELETE will remove cnly your catalog entry for VERSIONS but will not affect
the data set itself or the owver’s catalog,

Now you request a list of cach hiect module on your USERLIB.

ZCOX001 START PRESENT POD DUMP

MAIN7
MAIN1O
SUBMATRX

END OF PRESENT POD DUMP
ERASE USERLIB (MAIN?)
ERASE USERLIB(SUBMATRX)

POD? JOBLIPA

Individual members of partitioned dats set can be erased in this way without erasing
the entire data set, in this case your USERLIB.

This command can be used to obtain information about a library or any other VP
data set.

ZCOX001 START PRESENT POD DUMP

PROG14
MAIN1Z2

*

ERASE JOBLIBA

An entire library data set can be erased. In addition to erasing the data set, the ERASE
command also removes the catalog entry, thus having the effect for cataloged data
sets of ERASE and DELETE.

DDEF DD1,PS,TAPE.M220UT

You define the copy of the data set that will reside on tape.

WT M220UT, TAPE.M220UT,ERASE==Y

This command requests a nonconversational task to write the data set M220UT on
tape. The data set must be cataloged or defined for the current session. Several optional
parameters are defaulted such as blocking factor, line spacing, etc., described fully
in the Command System User’s Guide. ERASE specifies that the data set is to be erased
after completion of the WT task.

Part II: Examples 63

SYS

S,Y

S,Y
SYS

64

USAGE

LOGOFF

The svstem informs you that your request has been accepted.
Your request for writing the tape has been accepted and assigned a separate task. The
system will also inform you of the number of the tape onto which it was written.

You conclude your task.

You enter the USAGE command to inquire about the amount of system resources you
have used. Two totals are presented: 1) the amount resources used since LOGON, and
2) the total amount of resources used since you were joined.

The following resources are accounted for: permanent storage, temporary storage,
direct-access devices, magnetic tapes, printers, card reader-punches, bulk input, bulk
output, TSS/360 tasks, total time that your terminal was connected to the system, and
CPU time used.

The system confirms your LOGOFF command.

Example 23: Generation Data Groups

In this example you create a generation data group (cpc) to store related data sets. Data sets are stored and cata-
loged in a epc with a common set of qualifiers, the order the data sets are stored being used to identify each data

set. In the three parts of this example, you create a ¢pc and refer to generations of it by both relative and abso-
lute references.

Part 1: Creating a GDG

After logging on, you issue:

S,Y:

SYS:

S,Y:

SYS:

S,Y:

S,Y:
SYS:
S,Y:

SYS:

DDEF MYDISK,VP,MYLIBE,UNIT—(DA,2311),—
VOLUME—{(,230001), 0OPTION=JOBLIB,DISP—=0LD

You define a job library that resides on a private disk. It contains the object module
that you will execute during this task.

The system informs you that the task is waiting for volume mounting. You must wait
for the operator to mount your disk.

CATALOG GDG=TESTRSLT,GNO=5

This command creates a generation data group catalog entry. All data sets in this group
will have the name TESTRSLT as their leftmost qualifier. The second parameter speci-
fies that five data sets are to be retained in one group. When more than the specified
number has'been reached, the oldest generation of the group is erased.

DDEF FTO1FO001,PS,TESTDATA,~
UNIT=(TA,9),VOLUME={(,230002),DISP—=0LD, LABEL= (, SL)

The system informs you that the task is waiting for volume mounting. You must wait
for the operator to mount your tape.

The data set TESTDATA contains the input to the program, MAIN23, which creates
the first generation of your GDG.

DDEF FTO2F001,VS,TESTRSLT(--1)

CALL MAIN23
TERMINATED :
LOGOFF

STOP

The dsname in this data definition is a relative reference. Zero (0) refers to the most
recent member, minus one (—1) to the one just prior to the latest, minus two (—2) to
the one before that, etc. Your positive, nonzero reference (+1) indicates a future gen-
eration about to be created.

When the system has completed automatically cataloging TESTRSLT(+1),
TESTRSLT(41) will be known as TESTRSLT(0); when a new generation is entered
into a GDG, all of the relative generation numbers are reduced by one. If there were a
prior generation at this time, it would become (—1).

A data set which was written and cataloged during a previous session can be
added to this GDG. You would simply use the CATALOG command to change the
data set name to TESTRSLT(+1).

The system confirms vour LOGOFF command.

Part 1I: Examples 65

Part 2: Relative Reference to a GDG Member

After logging on, you issue:

5,Y: DDEF MYDISK,VP,MYLIBZ2,0PTION=JOBLIB,DISP—=0LD

SYS:
The system informs you that the task is waiting for volume mounting. You must wait
for the operator to mount your disk,
You request a different job library, containing a different version of the MAIN23 object
module. Although it is on a private volume you need only the four parameters shown
because it was cataloged. No indication is seen here of a volume serial number but
it is possible that this volume could be the same as the one in Part 1.

S,Y: DDEF FTO1lF001,VS,TESTRSLT(0Q),DISP—=O0OLD

S,Y: DDEF FTO2F001,VS,TESTRSLT(-+1)

This version of MAIN23 will take its input from the last GDG generation, and then
will create the next GDG gencration. Thus, the first DDEF command above defines
the input of MAIN23 and the second defines the output data set to be stored as a new
generation in the GDG established in Part 1.

S,Y: CALL MAIN23
SYS: TERMINATED: STOP
S,Y: LOGOFF

The system confirms vour log-off request.

Part 3: Absolute Reference to a GDG Member

After logging on, you issue:

S,Y: DDEF MYJOBL,VP,LIBEQCO5,0PTION-—=JOBLIB,DISP—0LD

You request a job library that resides on a public volume. No waiting for volume mount-
ing is necessary. A third version of MAIN23 will be used. This version also receives
its input from one of the GDG data sets, defined by the next DDEF command.

S,Y: DDEF FTO1lF001,VS,TESTRSLT.GO002V00,DISP=0LD

You refer to the GDG generation created in Part 2 by its absolute generation name.
The general form of this name is
qualifier.GxxxxVvy

where xxxx is the absolute generation number and vy the version number. The name
of the GDG is the qualifier. The generation number is automatically incremented as
new generations are cataloged; the version mumber is not. If vou wish to replace a
GDG generation by another version of the same gencration, vou have to supply the
version number by making it part of the absolule name vou refer to. The absolute
names of the two data sets created in Parts 1 and 2 are TESTRSLT.G000IV0C and
TESTRSLT.G0002V00.

S,Y: DDEF FTO2F001,VS,TESTRSLT(4-3}
$,Y: CALL MAIN23
- You supply a different relative generation number here. It will be added to the last
absolute generation number, leaving a gap in the absolute sequence for possible later
insertions (i.e., the absolute names TESTRSLT.G0003V00 and TESTRSLT.G0004V00
are omitted).

SYS: TERMINATED: STOP
S,Y: LOGOFF
SYS:

The system confirms your LOGOFF command.

668

Example 24: Tape- and Disk Medium Transfers of Virtual Access Method Data Sets

In this example, you copy vam data sets from one medium to another. Each of the following commands is illus-

trated: Tv (TAPE to vant), vr (vam to Tapk), and vv (vam to vart}, The data sets to be copied are assumed
to exist, and are cataloged. After logging on, you issue:

S,Y:

S,Y:

SYS:

v
o]

SYS:

S,Y:

SYS:

DDEF DDVTOUT,PS,COPY1l,UNIT=(TA,9),VOLUME=(PRIVATE)
You define the tape copy of the data set.
VT ORIGIN1,COPY1

Data set ORIGINI already exists as a VAM data set. COPY1 is the name assigned to
the magnetic tape copy of this data set.

When the data set is successfully copied. vou will receive a message indicating the
names of the input and output data sets, as well as the file sequence numbers and
volume serial numbers used.

DDEF DDVTOUT,PS,COPYZ,UNIT=(TA,9),VOLUME— (PRIVATE) ,LABEL=— (2, SL}

VI ORIGINZ2
Here the output data set name is defaulted, making necessary the preceding DDEF
command. The output data set name will be ADUSERID.TA000001.COPY2, where
TAO0G001 is an arbitrary number to assnre uniqueness for the fully qualified data set
name.

A system message will inform you when the data set is successfully copied. Any failure
to copy successfuly will result in a diagnostic message and cancellation of the command.

IV ADUSERID.TAO000001.COPY2,COPYBACK

The data set just produced on a 9-track magnetic tape is copied on direct-access storage
in VAM format.

A system message will inform vou of the success or failure of the copy operation.

VV ORIGIN3,COPY3

The data set named ORIGINS is copied into public storage and assigned the name
COPY3.

A svstem message will inform von of the success or failure of the copy operation.

DDEF PRIVDD,VI,COPY4,UNIT=—=(DA,2311),VOLUME=(,333333)
VV ORIGIN4,COFY4

You desire to copy the data set ORIGINA onto a private VAM volume #333333 and
name the output data set COPY4.

A svstem message will inform vou of the success or failure of the copy operation.
LOGOFF

You want to copy the data set ORIGINA outo a private VAM volume #333333 and
The system accepts vour LOGOFF request.

Part II: Examples 67

Example 25: The Te:xt Editor Facility

In this example, you use the Text Editor to create and edit data sets. The example illustrates only the more
basic features of the Text Editor facilities. After logging on, you issue:

S,Y:

S,Y:

S,Y:

nunnwm
e

S,Y:

SYS:
YOU:

YOU:

68

DEFAULT REGSIZE—8

EDIT EX25

REGION REGION1

0000100 LINEONEE
0000200 LINETWO
0000300 LINETHREE

0000400 _UPDATE

You enter a default value (in this example, 8 bytes) for the length you wish to allow
for the names of regions within the data set vou will edit.

You invoke the Text Editor and specify that data set EX25 is to be processed. Since
no DDEF command was issued for EX25, and the value of the REGSIZE parameter
is greater than zero, the svstem assumes that you wish to edit a region data set with
the following data set attributes: virtual index sequential data set organization, format-
V records. maximum logical record length of 256 bvtes, a key length of 15 bvtes (8-byte
region name and 7-bvte line number), and a relative key position of 4,

You specify a region name; vou will be invited to enter text for the region indicated.

You enter the data lines vou wish to be part of the region named REGION1. Each
time vou press the return key, the Text Editor prompts with the next line number.

You decide to make a change to the previous entries. Bv preceding UPDATE with an
underscore character (_), the Text Editor immediatelv executes the command.

FOR EACH LINE ENTER LINE NUMBER AND DATA

0000150 INSERT1

_INSERT 0000400

0000400 LINEFOUR
0000500 LINEFIVE
0000600 _END

EDIT EX25
EXCISE 200

INSERT 260,10
0000260 INSERT2
0000270 INSERT3
0000280 _END

LOGOFF

You add line number 150 to vour data set.

You now want to continue entering data at the point where you left off earlier. You
precede INSERT with an underscore character, since the system expects data and not
a command following UPDATE.

You terminate Text Editor processing. Since EX26 resides in public storage, and is
VAM organized, it will be automatically cataloged.

Line number 200 from the current region REGION1 will be deleted.

Text Editor processing is terminated.

You decide to terminate vour conversational task.

The system accepts the LOGOFF request.

Example 26: The Text Editor Facility

In this example, you make more extended use of the updating capabilities of the Text Editor. The example is
probably more complex than you might expect for a single terminal session, but it will serve to portray the
scope and flexibility of the editing commands that are available to you. After logging on, you issue:

S,Y: DEFAULT REGSIZE=S8

S,Y: EDIT EX26

S,Y:

S,¥: 0000100
S,Y: 0000200
S,Y: 0000300
S,Y¥: 0000400
S,Y: 0000500
S,Y: 00008600
S5,Y: 0000700
S,¥: 0000800
S,Y: 0000900
S,Y: 0001000
S,Y: 0001100

REGION REGIONZ

LINEA
LINEB
LINEC
LINED
LINEE
LINEF
LINEG
LINEH
LINEI
LINEJ
_END

S,Y: EDIT EX25

S,Y: REGION REGION1

You enter a default value (in this example, 8 bytes) for the length you wish
to allow for the names of regions within the data set you will edit.

You invoke the Text Editor and specify that data set EX26 is to be processed. Since no
DDEF command was issued for EX26, the same data set attributes are assumed as for
EX25 in the previous example.

You define a region name for EX26.

You enter the lines for REGION2 of data set EX26. You then terminate Text Editor
processing. Since EX26 is VAM organized and rvesides in public storage, it is auto-
matically cataloged when the Text Editor is invoked.

You again invoke the Text Editor and specify that data set EX25, region REGION1,
prepared in the previous example, is to be processed.

The system prompts you to enter a command.

S,Y: NUMBER300,500,BASE=300, INCR=50

S,Y: DISABLE

Lines 300, 400, and 500 are now numbered 300, 350, and 400.

This optional command makes the following data set changes provisional. These
changes can be made permanent by issuing an ENABLE command, after you are
satisfied all changes were entered properly.

S,Y: EXCERPT EX26,REGIONZ,600,1000

You wish to excerpt lines 600 to 1000 from REGION2 of data set and insert these lines
in the current data set EX25.

S,Y: CONTEXT ,LAST,STRING1—=LINE,STRING2-=LINE NUMBER

S,Y: ENABLE

The current region is searched for all occurences of the character string line. Wherever
it is found, LINE NUMBER will replace the occurrence.

Note: This facility is useful for symbol replacement in source language data sets.

Up this this point, the revisions made since DISABLE was issued above were tempor-
ary. With the execution of the ENABLE command, these revisions are now perma-
nent. A STET command, on the other hand, would have deleted all changes made since
the DISABLE was issued.

Part II: Examples 69

S,Y: CORRECT N1=100,SCOL=0

You now want to remove a single character from a line, starting with the first column
(relative column). Standard correction characters are assumed, by default.

SYS: LINEONEE
YoUu: = %
The result will be LINEONE.,

S,Y: EDIT EX26

You reopen the text editor for data set EX26.

5,Y: REGION REGIONZ
The current region is now REGIONZ.

S,Y: LOCATE ¢ ,LAST,LINEF
You want the entire data set EX26 to be searched for the character string LINEF.

SYS: 0000600 LINEF

The line in which LINEF is first discovered is displaved at the terminal.

S,Y: LIST100,LAST
The current region (REGIONZ2) will be displayed.

S5,Y: END
You terminate Text Editor processing.

S,Y: LOGOFF

The syvstem accepts your LOGOFF command.

70

Example 27: Use of Procedure Definition (PROCDEF)

In this example, you create a procedure, tailored to your needs, to be called at a later time just as if it were a
system-supplied command. After logging on, you issue:

PROCDEF FTNPGM
0000100 PARAM MODULE

0000200 FTN MODULE

0000300 PRINT LIST.MODULE(O),,,EDIT,ERASE
0000400 _END

%2 e os 02 eo

You have defined a procedure which will now be available for calling by he name
FTNPGM. It allows vou to define a module name for compilation. By calling the
established procedure, and giving a unique module name to use, both the compilation,
and printing of the resulting listing data sets can be accomplished.

S,Y: FINPGM MYMOD
The procedure established above (via PROCDEF) will now be activated. The actual
madule name MYMOD) will replace the dummy module name (MODULE) wherever

it occurs,
S,Y: PROCDEF SETUP
S,Y: 0000100 PARAM STORED—%1, ISD—=%2, SLIST—=%3, CRLIST=%4
S,Y: 0000200 DEFAULT STORED=—$%1, ISD—%2, SLIST—%3, CRLIST—%4
S,Y: 0000300 _END

This procedure will now be available to vary the default values for certain FTN
parameters.

S,Y: SETUP Y,N,Y,Y

Some FTN parameter default values have been adjusted to suit vour requirements.

S,Y: FTN MOD1
You now proceed with the compilation of MOD1 with the adjusted default values.

»

°

S,Y: PROCDEF ZLOGON
Here the operand (ZLLOGON) for the PROCDEF command is shown without the use
of a keyword.

S,Y¥: 0000100 DDEF STOREIT,VP,MYLIB,OPTION—JOBLIB

S,Y¥: 0000200 _END
You decide that each time vou LOGON vou would like a certain job library defined
for any object modules vou may produce. By assigning ZLOGON as the procedure
name, vou insure its automatic call as scon as LOGON is accepted. MYLIB is assumed
to be an cxisting cataloged data set. Since PARAM was not used vou cannot change
any of the values in the DDEF command.

S5,Y: LOGOFF

SYS:

The LOGOFF command is accepted by the system.

Appendix A: Use of the FORTRAN Compiler 71

Example 28: The User Profile Facility

In this example, you are shown how to manipulate your copy of the prototype user profile, made available to
you at JOIN time. This prototype profile is a member of your user library (USERLIB). After logging on, you
issue:

S,Y: DEFAULT DSORG=VS
The data set organization field was originally defaulted by the system to VI (index
sequential). You will now be using mostly VS organized data sets, so you set the default
value (for the DDEF command) to virtual sequential (VS).

S,Y: SYNONYM DOPROG—=FINPGM

The FTNPGM procedure named in Example 27 can now be invoked with either name:
DOPROG or FTNPGM.

S,Y: SYNONYM FINIS—DISPLAY 'TASK COMPLETED'
When FINIS is invoked, the message: TASK COMPLETED will appear on SYSOUT.
S,Y: PROFILE

The above changes apply to vour session profile only. You now decide to make the
changes a permanent part of your user profile.

S,Y: FINIS

SYS: —=TASK COMPLETED
Since the PROFILE command was invoked, FINIS may be used in all subsequent
sessions to produce the same message.

S,Y: LOGOFF

The system accepts your LOGOFF command.

72

The appendixes give detailed information on the use
of 1ss/360 by the rorTrRAN programmer; they contain
the following information:

A,

Use of the rortran Compiler: describes source
statement entry and correction and compiler diag-
nostics, output, and restrictions.

pcs and FORTRaAN Object Programs: describes the
use of pcs when debugging rorTRAN object pro-
grams at the source language level,

Programming Considerations: describes the pro-
gramming techniques that yield more efficient pro-
grams, the effect of compiler optimization on the
use of Pcs, system naming conventions, library
management, and several miscellaneous consider-
ations.

. Assembler Language Subprograms: describes the

techniques and conventions of incorporating as-
sembler-language subprograms into FORTRAN lan-
guage programs.

Part lll. Appendixes

. Specification of Data Set Characteristics: describes

the various record formats and data set organiza-
tions available to the ForTRAN user and explains
how and when to specify these characteristics for
a data set,

. Attention Considerations: describes the system’s

response to the attention key, which is a function
of the system’s current activity.

. Command Formats: describes the notation used

to present commands and gives the general form
of each of the Tss/360 users’ commands.

. Carriage and Punch Controls: lists the extended

ANSI FORTRAN carriage control and punch control
standard characters.

Sample Program: describes the sample program
that is distributed with the Tss/360 FORTRAN 1v
compiler.

Part III: Appendixes 73

Appendix A. Use of the FORTRAN Compiler

This appendix discusses the following topics:

1. Entry and correction of ForRTRAN source statements:
the format of keyboard and card source statements,
efficient source statement correction techniques,
and entering lines from the keyboard that can later
be punched and reentered as cards.

2. Compiler diagnostic action: the format and effect
of diagnostic messages and error severity codes
produced by the compiler.

3. Compiler options and listings produced: ¥~ pa-
rameters, listing options, indircct references to
FORTRAN 1v subprograms, and the destinations of
all compiler output,

4. Compiler restrictions: simple and complex source
program restrictions.

Entry and Correction of FORTRAN

Source Statements

This section discusses the following topics:

1. The format of FORTRAN source statements cntered
at the terminal keyboard, at the terminal card
reader, and at a card reader at the central com-
puting facility.

o

Guidelines for efficient scource statement correction
techniques.

3. Techniques for entering FORTRAN source keyboard
lines so that they can be punched and reentered
in card form for compilation.

Format of Source Lines
A FORTRAN source statement is composed of one or
more individual source lines. A source line consists of
a single card or a single line of keyboard input. There
are five types of lines:

Comment lines
Initial lines
Continued lines
Continuation lines
END lines

P o=

IS

The following paragraphs describe each of these types
of lines for both card and keyboard format.

For both card and keyboard statements, the maxi-
mum number of text characters that can be contained
in a statement is 1320. Card input lines normally con-

74

tain 66 text columns per card (columns 7-72); thus,
an initial line and 19 continuation lines are allowed.
The number of keyboard lines contained in 1320 char-
acters depends upon the position of the first character
in each line and the last character given prior to issu-
ing a carrier return in each line.

Card Format Line (Both Nonconversational and
Console Card Reader)

Comment lines are those lines with the letter C in
column 1. The compiler ignores these lines, but
includes them in the source listing. Comment lines
may appear anywhere within the source program
except immediately preceding a continuation line.
Initial lines in card format are lines with the
characters zero or blank in card column 6. An initial
line is the first line of a rorTRAN statement. Con-
tinued lines are lines whose content does not complete
the statement; that is, the statement is continued on
the following line. In card format, a line is not known
to be a continued line until the following line is in-
spected. A confinuation line is a line in a statement
other than the initial line, that is, a line whose con-
tent is a continuation of the preceding line. In card
format, a continuation line must contain a character
other than zero or blank in card column 6. An Exp
line is a line containing the Forrrax ExD statement.
Every source module must terminate with an Exp line.

Character Sets — Card Format

The ca and ¢B commands transfer control to the 1056
card reader, and specify the character set to be used.
ca is used to convert card input from 1057 card punch
code to EBcpIC. ¢B specifies conversion from 029 key-
punch code to Bcpic,

Keyboard Format

Keyboard lines are different from card lines in two
general ways: (1) the rigid column format of card
lines is relaxed in keyboard format and (2) the maxi-
mum number of characters in a line is greater (as
many as 130, depending upon the type of keyboard
being used).

Keyboard comment lines are similar to card com-
ment lines in that a keyboard comment line is identi-
fied by the letter C in the first typeable position, and
may appear anywhere within the source program ex-
cept immediately preceding a continuation line. Note
that the statement C = 1.0, for example, if begun

in type position 1, would be treated as a comment line.
A good general practice is to set tab stops and make
use of the tab key. This practice will {1} ensure that
a statement beginning with the letter C will not in-
advertently be processed by the compiler as a com-
ment line, and (2} provide a simple method for
formatting the input program on the terminai paper —
separating statement numbers from staternent text,
etes most examples in this appendix imply or expressly
describe use of tabs. The compiler considers a tab the
equivalent of one blank, when entering keyboard lines.
Thus, when reference is made to blanks, tab or blank
is implied. unless specifically stated otherwise.

Initial lines in keyboard format can contain a state-
ment number, as in card format. This statement num-
ber can begin in any type position (hereafter referred
to as position) and is distinguished from the text por-
tion of the line by being numeric rvather than having
an alphabetic character as the first character. State-
ment numbers can be preceded by any number of
blanks or tabs. A statement number can contain from
one to five numeric characters, each of which can be
preceded or followed by any number of blanks. A
statement number is terminated when either five
numeric characters have been encountered or a non-
numeric, nonblank character is encountered, which-
ever oceurs first. A statement number cannot be con-
tained on more than one line. Following the statement
number is the line text. The text must be separated
from the statement number by at least one blank, or
by the character zero. {(The user is warned that the
entry of a terminal line with a statement number of
100, for example, immediately followed hy the text
of the statement — ie., with no intervening blank —
causes the second zero of the statement number to be
treated as the character separating the statement num-
ber and the text, and the statement number will be
considered by the compiler to be 10, not 100.) The
text portion of a line is terminated either by a hyphen
(-3} followed by a carrier return (if the line is to be
continued), or by a return preceded by a character
other than a hyphen (if the line is not to be con-
tinued).

A keyboard continued line is one ending with a
hyphen and a carrier retwrn. The hyphen, of course.
is not considered part of the text.

A keyboard continuation line is the line following
a continued line. A continuation line cannot have a
statement number. The text portion of a continuation
line can begin in any position and can be preceded
by any number of blanks: it must also be preceded
by a single character other than blank or zero. This
single character is equivalent to the column 6 con-
tinuation character of card lines and thus is termed a

“floating continuation character.” In effect, the first
nonblank, nonzero character of a continuation line
is treated as a continuation character. The floating con-
tinuation character, which is not considered part of
the text, is useful for two reasons:

1. It allows the user to tab the continuation line (so
that it will fail directly beneath the preceding line)
without thereby causing a blank to be inserted in
his text; blanks or tabs are ignored in continuation
lines until the floating continuation character is en-
countered. This is an important consideration, for
example, in cases where a line break must occur
in the middle of a character string that does not
permit embedded blanks.

Lo

It lines entered via the console are to be punched
and later reentered in card format, the floating con-
tinuation character makes this possible (this is de-
scribed later in this appendix).

A keyboard exp line is a line containing the FORTRAN
Exp statement, Every source module must terminate
with an exp line.

Character Sets — Keyboard Format

ks and kB are used to specify the character set to
be used during keyboard input. xa specifies the full
escpic character set during input. kB indicates that
the lower-case characters {a-z and ! 7 ¢) be translated
into their upper-case equivalents (A-Z and $ £ @ re-
spectively).

It should be noted that a is in effect only for the
command during which it is issued. The system un-
derscore (inviting a new command) reverts to the
kg folded mode.

Mixed Card and Keyboard Input

FORTRAN source statements entered at the terminal
may be from cards, from the keyboard, or from a mix-
ture of the two, If the first line of a statement is from
a card, all lines in that statement must also be on
cards. If the first line in the statement is from the
kevboard, the following lines may be from the key-
board or from cards. Once the source of a statement
becomes cards, however, kevboard lines may no longer
be included in that statement.

Once a line is entered at the terminal in either card
or keyboard form, the source of the line (card or key-
board) is retained even though the line may be stored
in a prestored data set and later presented to the com-
piler from that source. Thus the above mixed-input
rules apply for both terminal input and later correc-
tions to that input.

The procedure for changing sources is as follows.
Keyboard lines will be expected by the system until

Appendix A: Use of the FORTRAN Compiler 75

c, ca, or cB is entered at the keyboard. Once these
characters have been entered, input lines are expected
to be on cards. If a card containing x, ka, or kB is en-
countered, lines are once again expected from the
keyboard. (See Terminal User's Guide for sysiv de-
vice selection and data translation).

Examples: In these examples, the following notes

apply:

1. The letter t represents depression of the tab key.
The keyboard position at which the carrier is to be
positioned as the result of a tab is implied by the
position of the next nonblank character in the
example. The following examples assume tab stops
are set such that the first depression of the tab key
causes the carrier to be positioned at type position
6 and the next depression causes positioning at
type position 7.

EXAMPLE FORMAT CARD OR TYPE POSITION

567
1 Card c COMMENT
Note: Comment line.
2 Card 50 Y¥Y=—1.0

Notk: Initial line with a statement number.

3 Card Y¥=2.0
NotE: Initial and continued line, no statement number.
Card X+B
Note: Continuation line.
4 Key C COMMENT
Note: Comment line.
5 Key 9 ¥=3.1416

Note: Initial line with a statement number.

6 Key 100t tZ=1.0-(CR)

NotE: Initial and continued line; tab to column 6, tab again
to skip the continuation character position, then at position 7
type first text character.

Key t X+3.0%B

Note: Continuation line; tab to position 6 for floating continu-
ation character, with text beginning in column 7.

7 Key 200t t¥Y=1.0-(CR)
NotEe: Initial and continued keyboard line.
Key CB
Note: To note a card line follows.

Card X+3.0%B

Note: Continuation card line.

76

2. The characters (Cr) represent a carrier return.
3. The character (-) is used as the continuation char-
acter by system default.

Efficient Correction Techniques

Conversational correction of FORTRAN statements is
normally made at one of two points in the compilation.
The first, termed here local correction, occurs follow-
ing the compiler’s scan of the statement just entered
and its printing at the terminal of any diagnostic mes-
sages associated with that statement. The second point
at which corrections are normally made occurs when
the entire program has becn entered (ie., when the
END statement has been entered) and a message similar
to, “MODIFICATIONS? ENTER Y OR N” has been typed at
the terminal. Corrections made at this point are termed
here global corrections. The distinction between global
and local corrections (and between different types of
local corrections) is important in that the user can
minimize the amount of processing required for a given
compilation by being aware of the effect corrections
have on the compilation process. The following para-
graphs describe efficient correction techniques in de-
tail. Before proceeding to this detailed discussion,
however, a general correction rule that applies in most
cases can be given: the most efficient correction tech-
nique is to correct erroneous statements immediately
after they are entered and the diagnostic is produced.
This is the most natural time to correct an erroneous
statement, and is a convenient guideline to use.

After all global corrections have been made, the
entire source program is rescanned, beginning with the
first source line of the program. When local corrections
are made, reinitiation of the source scan may or may
not be required, depending upon the type of correc-
tion made. It is desirable, of course, to minimize the
number of source scans. For this reason, corrections
noted below as reinitiating the source scan generally
should not be made until the time for global correc-
tions is reached. This rule does not apply where failure
to make a correction would result in many other diag-
nostics, such as an error in entering variables in a
DIMENSION list,

Discussion of compiler response to various types of
local corrections can be quite complex if all possible
combinations of conversational card and keyboard
corrections are covered. This section does not discuss
all possible types of corrections specifically, but gives
sufficient descriptive material and examples so that the
compiler response in any given case can be deter-
mined.

Discussion of compiler response to local corrections
requires a definition of three terms:

1. Partial statement — a statement currently being en-
tered. For card input, a statement is partial until
a noncontinuation line is entered to terminate the
statement. Keyboard statements are partial until a
line is entered that is not a continued line or a com-
ment line. An example of a partial keyboard state-
ment is the following (i.e., the line is noted as being
a continued line, but the continuation line has not
yet been entered):

X=A+B—(CR)

2. Tentative statement — the last complete statement
entered to the compiler. A keyboard statement be-
comes tentative when the last line of the statement
is not a continued line, causing the line to be
scanned by the compiler. This statement will re-
main tentative until a new statement is completely
entered. Thus a new statement may be begun with-
out changing the tentative status of the previous
statement, but once the new statement has been
completely entered, the statement held in tentative
status becomes committed (see below). Entry of
comment lines does not affect the status of tentative
statements. Such lines are included in the listing
but otherwise ignored.

3. Committed statement — the statement preceding a
tentative statement. The relation between a com-
mitted statement and a tentative statement is iden-
tical to the relation between a tentative statement
and a partial statement: once a statement becomes
tentative, the preceding statement becomes com-
mitted. In the following example, entrance of the
(non-continued) second statement causes the sec-
ond statement to become tentative and causes the
first statement to become committed. Both are
keyboard lines.

X=A+B(CR)
v=x"*2(cRr)

Entry of comment lines does not affect the status
of tentative or committed statements — such lines are
included in the listing but otherwise ignored.

The relation between the above types of statements
and compiler response to corrections is as follows:

1. Tentative and partial statements can be corrected
without causing a reinitiation of the source scan.

2. Correction of committed statements causes reiniti-
ation of the source scan from the beginning of the
program.

3. Insertion of a new statement between a committed
and a tentative statement does not cause a rescan

of the entire program. Such an insertion causes a
rescan of the tentative statement, however.

The above rules can be more easily understood by
inspection of the following examples. In these exam-
ples, line numbers are seven digits with the last two
digits zero, the format in which they are printed by
the system A line number underneath a number sign,
#. is a correction line. Such line numbers need
not be seven digits long and need not have two
trailing zeros. This notation is consistent with the
system convention by which printing of a diag-
nostic is followed by printing a number sign solic-
iting a correction by the user. The correction line
numbers are followed by a comma, also consistent
with system conventions. Line numbers preceded by
a percent sign (%), where the % is entered by the user,
are unsolicited corrections — that is, corrections orig-
inated by the user and not arising from the system’s
diagnostic action.

Conversational corrections also affect the source list-
ing, as follows:

1. Source statements and their associated diagnostics
are not added to the source listing until the state-
ments are committed. Thus, the terminal listing may
contain many diagnostic messages, but the source
listing contains only those diagnostics not corrected.

o

Corrections causing reinitiation of the source scan
cause the source listing plus diagnostics associated
with the previous source scan to be lost, since the
results of the new source scan replace those of the
previous scan.

Example 1.

LINE NO. FORMAT CARD OR TYPE POSITION

1 567
0000200 Key zZ=—1.0
0000400 Key Y—2.0
0000600 Key DO 10 I=1,10

Note: In this example, all lines begin in type position 1, a
dangerous practice as any lines beginning with a C are con-
sidered comment lines.

0000800 X(I)=

NotE: Causes a diagnostic, as no DIMENSION (or equivalent)
statement is included.

Key

#
100, Key DIMENSION X(10)

Note: Making a correction prior to the committed statement
{line 600) causes reinitiation of the source scan. Note that this
statement could have been inserted at 700 rather than 100
without causing reinitiation of the source scan.

Appendix A: Use of the FORTRAN Compiler 77

Example 2.

LINE NO. FORMAT CARD OR TYPE POSITION

1 567

0000100 Key t tZ2=10.0(CR)
0000200 Key t t¥=3.0-(CR)
0000300 Key t X=B-(CR)
0000400 Key t X+C=(CR)
NortEs:

The t indicates the tab key has been depressed, as discussed
earlier.

The user is requested to enter line 500, but he realizes that
line 300 must be corrected. When the correction of line 300 is
made, the statement starting at line 200 is in partial status.
This correction does not cause reinitiation of the source scan.

0000500%300, Key t X-B-(CR)

Note the use of floating continuation characters in lines 300

and 400.
0000500 Key t X-+D(CR)

Note: Entry of line 500 completes the statement. The compiler
then processes the composite statement Y=23.0—B-+-C+4D.

Example 3.
LINE NO. FORMNAT CARD OR TYPE POSITION
1 5687
0000400 Key X—1(CR)
0000500 Key B—=2(CR)}
0000600%400, Key X=2(CR)

Note: The user is requested to enter line 600. When line
500 was entered, the statement of line 400 became committed.
The correction of line 400 thus causcs reinitiation of the source
scan.

Entry of Keyboard Source Staiements for Later
Punching and Recompilation

The entry of source statements such that they can be
later punched out and reentered in card format is
governed by the following considerations:

1. Source lines reside in a line data set in a format in
which the initial input source line is preceded by
eight characters — a 7-byte zoned-decimal key and
a character specifying to T1ss/360 that the source
line was entered in card form or at the terminal

keyboard.

2. A continued line (hyphen preceding the carriage
return) when punched and reentered in card for-
mat retains the hyphen unless precautions are taken
to remove it (see helow).

3. Keyboard input positioning requirements are much
more flexible than for card input.

78

Thercfore:

1. Keyboard input lines must contain all statement
numbers in columns 1-3.

ro

Kevboard input lines must contain no tabs.

3. Keyboard input lines must contain all floating con-
tinuation characters in position 6.

4. Text must be contained between position 7 and a
position not greater than 72, as source card lines
cannot be scanned bevond column 72 for characters
to be included in the text.

5. Continucd lines must all contain the hyphen con-
tinue character in a column such that the puxch
command (sce below) will cause the hyphen not
to be punched.

8. The column chosen in the ruxcrr command for
termination of punching must be such that no lines
contain fext beyond this column.

If input lines arc prepared in accordance with the
above rules, the line data set can then be punched,
using the ruxca command. The parameters supplied
in the ruxcrr command are: startno, the position in
the source line as it resides in the line data set that
will be punched as column 1 of the card; and endno,
the position in the source line that will be last
punched in the card. If the program contains no con-
tinuation lines (one line per source statement), good
choices for startno and endno would be 9 (to skip 8
bytes — the 7-byte line number and the card or key-
board character} to 88 (to punch up to 80 columns of
text from each source line — this choice assumes no
source lines contain more than 80 columns of text).

The selection of 9 for startno will nearly always be
the proper choice. The endno sclection will vary, of
course, depending upon position of text and continu-
ation characters in the program source lines.

Compiler Diagnostic Action

This section describes the format of all diagnostic
messages produced by the Tss/360 ForTRAN compiler,
It includes a description of the ervor severity code and
error level associated with cach message, and describes
the effect of error severity upon requests to execute
the compiled program. Refer to System Messages for
a description of each diagnostic and the source pro-
gram crrors that cause it.

The rortraAN compiler issues diagnostic messages
for source program errors, for viclations of compiler
space and size restrictions, and for apparent machine
errors. These messages are inchided in the source
program listing produced by the compiler if a listing

is requested; they are also printed at the terminal in
conversational mode. (A detailed description of the
destination of diagnostic messages for all combinations
of input sources, options requested, etc., is given in
Table 3 later in this appendix.)

Nearly all compiler diagnostic messages are printed
on one line. The format of this line is:
text

number code ***
(In the two-line messages, the second line follows the
first and omits the number and code fields.)

The “number” parameter is the source program line
number (not a FORTRAN statement number) of the
first line of the statement to which the message ap-
plies. Messages concerning errors that the compiler
does not associate with any specific statement carry
the line number of the source program END statement.

The “code” parameter is a one-letter indicator of the
severity of the error and the action taken by the com-
piler. The letters used, the severity of errors associated
with each letter, and a brief description of compiler
action taken are given in Table 2.

When a FORTRAN main program is to be executed
using the caLL command, the module named in the
caLL command and all modules called by this module
are inspected during the loading process to see wheth-
er any have been compiled with level-2 errors (se-
verity codes E or F). Any module containing an error
level of 2 causes a diagnostic message naming the
module and the error level to be printed on the user’s
SYSOUT.

Table 2. Compiler Diagnostic Action

Page of GC28-2025-4
Issued February 1, 1972
By TNL GN28-3204

The “text” parameter in diagnostic messages is a
verbal description of the condition that caused the
message. Names, statement numbers, etc., from the
FORTRAN source program being compiled are included,
where applicable. In addition to information to locate
and identify the condition, often “text” specifies the
actions taken by the compiler in F-code messages.
Occasionally the object code listing must be inspected
to determine the actual compiler action.

Occasionally, two or more identical messages are
produced for a source program statement in which
the erroneous situation appears to occur only once.
This is due to the conjunction of two conditions: (1)
the error is not serious enough to force the compiler
to abandon processing the statement and (2) the
statement is of a kind that requires more than one
scan by the compiler. Examples of such conditions
are (1) when an argument of a statement function is
in error and the argument is used more than once in
the statement function definition and (2) when cer-
tain types of errors are made in an 1/0 statement list.

The compiler does not attempt to make systematic
checks for machine failure. However, in the course
of processing, it may test for conditions that ought
never to arise, according to the design of the compiler.
If any such condition is detected, an A-code message
is issued advising of machine or compiler error. These
messages should be brought to the attention of system
maintenance personnel.

Although the conversational user may know that a
certain diagnostic is to appear at a particular place in

CODE SEVERITY

DESCRIPTION

ACTION

w Warning,
Level-1 error

The message is a warning that the compiler has detected either a situation
that may not be as the programmer intended or a use of a language feature
that is acceptable to the TSS/360 FORTRAN compiler but is unacceptable
to other implementations of IBM System/360 FORTRAN. In either case,
the statement is compiled exactly as written,

Statement compiled
as written

E Serious,
Level-2 error

The message is a notification that the compiler has detected a serious source
program error. Compilation continues, completely ignoring the offending
statement, and the gbject program is generated as if the statement had not
occurred. (Although the offending statement is deleted from the compilation,
the program is marked as containing a serious error if the offending state-
ment is not replaced. The presence of a serious error causes a diagnostic
message to be printed on the user’s SYSOUT data set at load time.

Statement deleted

F Serious,
Level-2 error

This message is also a notification that the compiler has detected a serious
error. The compilation continues by partially compiling the statement. The
effect of F-code errors on the generated object program can frequently be
determined from the text of the message, but occasionally examination of
the object code listing is required. Object program execution is not
recommended.

Statement partially
compiled

A Serious,
Level-3 error

The message is a notification of a situation serious enough to prevent con-
tinuing the compilation. After issuing an A-code message, the compiler
exits to the command-language level. These messages are concerned with
violation of compiler size or space restrictions.

Compilation discon-
tinued; no object
module produced

Appendix A: Use of the FORTRAN Compiler

79

Page of GC28-2025-4
Issued February 1, 1972
By TNL GN28-3204

his program, or he may recognize a diagnostic as it
begins to appear at the terminal, he should not try to
save time by pressing the attention key to prevent full
diagnostic text printout. Little time can be saved,
since a RUN command must be entered after an atten-
tion, and much time may be lost, since the compiler
will reinitiate compilation with the first source line
if certain of its diagnostics are so interrupted.

Compiler Options and Listings Produced
This section discusses three topics:

1. The parameters that must be supplied to the com-
piler when the FTN command is given.

2. The listings produced by the compiler when re-
quested by user-supplied parameters.

3. A list of ForTRAN Iv supplied subprograms which
can be called by the compiler as a result of ex-
ponentiation, interrupt handling, 1/0 processing, or
STOP Or PAUSE statement usage.

4. The destination of all output from the compilation.

FORTRAN Parameters

After issuing a FIN command, the user must enter a
parameter providing the module name for this com-
pilation. A list of compiler parameters is given in
Figure 7, and explained in detail following the figure.
The notation used in Figure 7 is explained in Appen-
dix G, “Command Formats.”

Some of the compiler parameters listed in Figure 7
must be provided by the user; others may be left un-
specified and default values will be chosen. In some
cases the user will be prompted for missing para-
meters; in other cases he will not. Figure 8 shows the
relation between parameter specification and the com-
piler conditions. In Figure 8 the terms “explicitly de-
faulted” and “implicitly defaulted” are used as dis-
cussed below:

Explicitly Defaulted

A comma is issued immediately following entrance of
the preceding parameter, rather than entering a value
for the new parameter followed by a comma. For ex-
ample, module aLpra, with prestored source lines, is
to be compiled, explicitly defaulting the version iden-
tification, but supplying values for all other parame-
ters. The proper parameter description is:

ALPHA, Y,,Y,Y,Y,Y,Y,Y,Y,Y

Implicitly Defaulted

In the example of the preceding paragraph, the user
could depress the return key following entrance of the
Y specifying an 1sp is to be produced. This action
causes all parameters following the 1sp option to be
implicitly defaulted.

The parameters shown in Figure 7 are descnbed
as follows:

NAME — specifies the name of the object module to
be created. Prior to selecting the module name,
the user should refer to Appendix C for a discus-
sion of Tss/360 naming conventions, in order that
a module name not be chosen using a reserved
system name. The source data set for the module
is named by appending a period and the module
name to the characters source. For example, mod-
ule arpHA will have a source data set name
SOURCE.ALPHA, The module name must be unique
to the library that includes it (i.e., it must not be
the same as any entry point, controi section name,
or module name in that library). Similarly, the
module name must not be the same as any com-
MoN block, FUNCTION, SUBROUTINE or any variable
name used within the program being compiled.
The name consists of one to eight alphameric
characters, the first of which must be alphabetic.
It is recommended that module names be six or
fewer characters, as discussed in Appendix C.

Default: None; a module name must be specified.

OPERATION OPERAND

FTN NAME =module name

[, STORED= &}]

[, VERID =version identification] [, ISD={Y|N}]
[, SLIST={Y|N}] [, OBLIST={Y|N}]

[, CRLIST={Y|N}] [, STEDIT =
[, MMAP={Y|N}] [, BCD={Y|N}]

[, PUBLIC=(Y|N}]
[, LISTDS={Y|N}]

{Y|N}]

[,LINCR = (first line number, increment)]

Figure 7. FORTRAN Parameters

80

System Action

Parameter User Action

Nonconversational Mode

Conversational Mode

Explicitly or

LT Task terminated
implicitly defaulted

Prompting for parameter will occur

Module

Not defaulted

Processing continues with
user-supplied parameter

Explicitly defoulted

Default values selected

All other options lmplicitly defaulted

Default values selected

Not defaulted

Processing continues with
USeI"SUPpl;ed parcme?er

Figure 8. Compiler Parameters Default and Prompting Description

STORED — specifies whether or not the source data
set is prestored (if so, it must have been named
source.module). The allowable values are Y or

N.
Default: N.

VERID ~ specifies the version identification to be as-
signed. The version identification consists of one
to eight alphameric characters.

Default: If a version identification is not assigned,
the version of the object module may be deter-
mined by using the system supplied “time stamp.”
A time stamp is always produced by the system;
it gives the current time and date at which the
compilation begins. This time will be different
from the time at which any other compilation be-
gins, thus allowing positive identification of the
compilation output. The compilation listing will
contain an edit of the time stamp in the following
format: Mo/pp/YY HH:MM:ss giving the time of
the compilation in month, day, year, hour, min-
ute, and second.

ISD — specifies whether an internal symbol dictionary,
which is required for extended use of pcs, is to
be produced. The allowable values are Y or N.

An 150 should not be requested unless rcs is to
be used with this compilation since the request
for an 1sp also inhibits compiler optimization. See
Appendix C for a full discussion of this topic.

Default: Y.

SLIST — specifies whether a source program listing is
to be produced. The allowable values are Y or N.
Default: Y.

OBLIST — specifies whether an object program listing
is to be produced. The allowable values are Y or
N.

Default: N.

CRLIST — specifies whether a cross reference listing is
to be produced. The allowable values are Y or N.

Default: N.

STEDIT — specifies whether the symbol table is to be
listed. The allowable values are Y or N.
Default: N.

MMAP — specifies whether a storage map is to be pro-
duced. The allowable values are Y or N.
Default: N.

Appendix A: Use of the FORTRAN Compiler 81

BCD — specifies whether input includes sco (binary-
coded decimal) or EBcpic form of special char-
acters. The allowable values are Y for scp or N.
If Y {8cp) is chosen, either Bcp or EBCHIC input
may be used. Thus EBCDIC corrections may be
made to Bcp source lines. This option is included
for compatibility with FORTRAN programs written
for previous M systems. If the user is uncertain
as to whether his program uses the Bcp or EBCpIC
form of special characters, the user should choose
the Y option, thereby giving himself complete
flexibility.

Note: If the eBcpIC option is selected, statement num-
bers passed as arguments must be preceded by an
asterisk (&n). However, if the Bcp option is selected,
statement numbers passed as arguments must be pre-
ceded by a dollar sign ($n), and the $ character must
not be used as an alphabetic character in the source
module. (n represents the statement number.)

Default: N.

PUBLIC — specifies whether the exccutable part of
the module (the csecr, described below) to be
created is to have a public or private attribute.
Allowable values are Y or N; Y indicates public;
N indicates private. If the public attribute is
chosen, other programmers may use the same
program if they are also given access to the li-
brary in which this module is stored. The means
for so doing are described in Appendix C.

Default: N.

LISTDS — specifies whether the requested listings are
to be placed in the list data set or on sysour.
Allowable values are Y or N. If Y is chosen, the
listings are placed in the list data set and can be
printed at any time with the rrixT command. If
N is chosen, the listings are placed on sysout; in
other words, it is printed automatically but not
kept in the system.

Default in conversational mode: Y.

Default in nonconversational mode: N.

LINCR(line) — specifies the line number to be as-
signed to the first line of the data set. The line
number contains three to seven digits, of which
the last two must be 00.

Default: 100.

82

LINCR (increment) - specifies the increment to be
applied to develop successive line numbers. The
increment may contain three to seven digits, of
which the last two must be 0. It cannot be nega-
tive.

Default: 100.

Example: A user specifies the following parameters
when issuing the Fry command:

COWBOY,N,V5,Y,Y,,,Y,,.,,

Thus, the name of the user’s object module is cowsoy;
the source data set is not prestored; the first line
number of the data set is the default value of 100;
subscquent line numbers are incremented by the de-
fault value of 100; the version identification is V5 (not
a time stamp); an internal symbol dictionary is to be
produced, a source listing is to be produced (this
parameter could have been defaulted with the same
result); an object listing and cross-reference lhisting
are not to be produced (the default options); a sym-
bol table edit is to be produced; no storage map is to
be produced (the default option); no Bcp special
characters are to appear in the input (the default
option); and the csecr of the module to be created
is to have the private attribute (the default option).

Structure and Description of Compiler Listings

The compiler will prepare a listing if one or more of
the five listing options are requested. The five types
of listings are: source program listing, object pro-
gram listing, cross-reference listing, symbol table list-
ing, and storage map listing. The listings produced
vary somewhat, depending upon the combination of
listing options chosen,

The figures that follow show the listings produced
for a compilation requesting the default listing op-
tions (source listing only), a compilation requesting
all five listings and a compilation requesting only a
storage map listing. A description is given for all
sample listings. This description includes both a gen-
eral discussion of items contained in a particular list-
ing and references to particular items in the listing.
Where appropriate, a reference number in bold-face
type will be given in the listing description, for ex-
ample, 1. Such numbers refer to the encircled num-
bers on the listing itself that correspond to the item
being discussed.

(Z)VERSIDN 07/10/67 OF THE TSS FORTRAN COMPILER ENTERED

@

7N
&)
-

THE MODULE NAME AND VERSTON FOR THIS CCMPYILATICN ARE COWBQY

*V5

PaRE 003

(g)UPTIGNS*~9UBLIC CSECTIN}+BELD MODE{N),PRODUCE ISDEN}. LISTINGS--SOURCF{Y},NBJECTIN}.CROSS REFIN),SYMBDL TABLF(N),MEMORY MARIN},

Figure 9. Heading Page

6) O]
CUVE‘;)(V V5 PAGE 007
16t
100 € EXAMPLE PROGRAM TO DEMCNSTRATE TSS/360 FORTRAN COMPILER L ISTINGS
200 DIMENSICN A(10),B110)
300 COMMON /NAME/C(S5]1.D1(5,21 /INDEX/L M
4C0 DATA A/10%0.0/.B/10%1.0/
500 NAMELIST /NuM/L
600 5 DD 10 1=1.2
7CC6 READ (S.NUM)
8Co 00 10 J=1.t
9€0 READ (5,90C) D(I,J)
1000 10 CONTINUE
1100 CALL COMPUTIA,8)
tzeo ¢ DELIBERATE DIAGNOSTIC FOR TLLUSTRATIVE PURPOSES.
B 13C0 X=AL(1)
\2/0001300 E #%* ILLEGAL EXPRESSION IN SUBSCRIPT ON A
1400 IF{L.GE.M)GO TO 20
1500 WRITE (6+910) (1,A(1),8B(1),[=1,1C}
1¢00 GO TO &
1700 20 STOP
1800 900 FORMATI(2E20.8)
1500 S1C FORMATI*ITEST PROGRAM SAMPLE CUTPUT FULLCWS® /7'0 ¢ a
2000 X BYA{1E4E20.8,520.8}])
2100 END

Figure 10. Source Program Listing

Heading Page

A heading page containing three lines is produced if
any edits are requested. These heading lines describe:
an identification of the version of the compiler being
used 1, the module name 2 and version (or time
stamp, if version has been defaulted) for the compila-
tion 3, and a record of the options (other than verid)
selected for the compilation 4. An example of a head-
ing page appears in Figure 9. In this example, the
user supplied the module name cowsoy, version iden-
tification V3, and defaulted all other parameters.

Scurce Program listing

If a source listing is requested, the first listing pro-
duced following the heading page is the source pro-
gram listing. The source program listing will contain
the diagnostic messages for each statement following
the statement. A sample source program listing is
shown in Figure 10. The first line of all listings con-
tains the module name, 5, and the version identifica-
tion, 6. All source lines are preceded by the system-
assigned line number, 7. A diagnostic message is
included in the sample source listing 8.

General Description of Output Module Listing

Following the source program listing, listings of the
compiled object program module are given. In general,
the listing of a Tss/360 FORTRAN output module follows
the actual organization of the output module. For any

FORTRAN source program other than a BLOCK DATA sub-
program, the compiler generates an output module
that consists of at least two control sections — a csect!
and a psect. The csEcr contains executable code and
other information that will not be changed during
program execution. The name of the csecr is derived
from the user-supplied module name by appending
the two characters #C to the module name, or its left-
most six characters. The psect is a prototype control
scction that contains a register save area, address con-
stants (adcons), parameter lists, NAMELIST informa-
tion, non-coMMoON variables, and local and global
temporary storage. The name of the psEct is generated
in the same manner as the name of the csect, the
suffix for the psect being #P. If conyon areas are de-
fined, each comyon (blank and any named coymon)
is represented by a common control section in the
object program module,

The BLocK DATA subprogram generates an output
module that contains one or more common control
sections. There is no CSECT or PSECT.

Default Option Listing

If the default options are chosen, an abbreviated de-
scription of the csect and psecr is given. The sample
shown in Figure 11 contains header information and

YThe term “CSECT” generally refers to a control section other than a
PSECT or a COMMON control section: In documentation or listings
where compactness is necessary, the user may find CSECT referring to
control sections in general.

Appendix A: Use of the FORTRAN Compiler 83

PAGE 003
coweoy S1ZE 972 BYTES
o\ ENTRY NAME LOC REX
13)coWBoY @oooooooo
EXTERNAL REFERENCES
CHCBOL CHCTAL CHCIEL cHCIUL CHCIW2 CoMPUT
(i®cowsovsc STZE (D)sze ByTES (8)07/21/67 21144112
(9)cnoe LOC HEX 00000006 SIZE 356 BYTES
(2ONUMERIC CONSTANTS LOC HEX 00000170 SIIE 60 BYTES
COWBOY V5 PAGE 004
(@D coweavie S1ZE (@2 544 avTES 07/21/67 21:4:12
[REGISTER SAVE AREA LOC HEX 00000000 SIZE 76 RYTES
CONVERSION CONSTANTS LOC KEX 0000CN4C S1ZE 24 BYTES
ACORESS CONSTANTS LEC HEX 00000064 SIZE 108 BYTES
NAMELISTS LOC FEX 00000138 s17E 2R RYTES
ALPHAMERICS LOC HEX 000DN157 SIZE 105 RYTES
NON-COMMDN VARTABLES (TOTAL) LOC HEX 000001CS S17E AR RYTES
NARE s1ze &0 BYTES
| INDEX S17E A mYTES
Figure 11. CSECT and PSECT Listings for Default Listing Options
@CUHBUV V5 PAGE 003
2
25 coweny S1ZE quz BYTES
@ENTFY NAME LOC HEX
COWROY 00000000
(@exTERNAL REFERENCES
creRDL CHCIAL CHCIEL CHCIUL CHC T2 compuT
30) CONBOYHT SI12E @428 BYTES 07/21/67 21:44:12
CODE LOC HEX 00000000 SIZE 33356 BYTES
® @ Gueeg
L]NE NO. (35)LABEL 10C HEX INST HEX INST TASSEMBLER COMMENTS
00000000 90€ECDOOC STM 14,12.12(13)
00000004 58EQNC48 L 14+72(0,13)
00000008 S0EQDO08 5T 14,8(0,13)
0000000C SODOEOD4 ST 13,4(0,14)
00000010 18D€ LR 13,14
00000012 $8C0ODO7T8 L 12,120(0,13) LOCAL TEMP STGE 00000220
0000001 & SBEODN8O L 14.12800,13) EXTERNAL CHCBD1
0000001 A S0EQDC48 57 14.72(0.13)
000D001€E S8FODOTC L 15+124(0,13} EXTERNAL CHCBDL
00000022 ODEF 8ASR 14,15
00000024 5820D06C L 2.108(0,13) NUMER TC 00000170
tooo0028 5830DC68 L 3.,104(0.,13) NON-COMMON VAR. nooooICs
0006002C 58400070 L 4,11200,13) INDEX
0€000030 58500064 L 5.10010.13) caoe 00000034
0000003¢%
600 5 00000034 58600074 L 64115610.13) NAME
00000038 58700074 L T.116(0,13) NAME
0000003C 41707008 LA T7.810.7)
700 $99999 CO000040 58100084 L 1+132(0.13) PARAMETER LIST cooonone
00000044 SBEQDOBC L 14.14010,13) EXTERNAL cHC A1
00000048 S0EQD048 ST 14,72(0,13)
0000004C 58FOD08E L 15.136(0,13) EXTERNAL CHCIAL
00000050 0DEF BASR 14,15
800 00000052 1886 LR Be6
00000054 41100014 LA 1.2010.01
00000058 5C004000 N 0.010,41 VARTABLE L
€000005C 41116000 LA 1400161
00000060 1891 LR 9.1
900 999998 Q0000062 58100090 L 1.14410,13} PARAMETER LIST C000COED
00000066 S8€E0DOBC L 14,1401{0,13} EXTERNAL CHCTAY
0000006A S50E00048 ST 14,7210,13)
0000006E $8F0D088 L 15+13610,13) EXTERNAL CHCIAY
00000072 QDEF BASR 14,15
00000074 SBE0DO98 L 14.152(0,13) EXTERNAL CHCTEL
00000078 SOEQD048 ST 14.72(0,13)
0000007C 5810009C L 1.15610,13) PARAMETER LIST 000000F0
000000BO 41008014 LA 0.20(0.8}
00000084 50001004 5T 0,4(0,1)
00000088 1800 SR 0,0

Figure 12. CSECT Listing

a summary of psect and csect information. In the
header information, a line is given containing the
module name 9 and the version identification, 10.
Next, the module name is repeated, 11 and the size
in decimal of the module (csecr plus psEcr) is given,
12. The name of the entry point follows, 13 with
the location of this entry point relative to the csecr,
14 . Next are listed all externai references made by
the compiled program, 15. Oaly one of the external
referencas listed (compur) is also found in the source
program. The other external names all begin with the
three letters cmc, which identifies them as FORTRAN
v-supplied subprograms called by the object program.
A list of all such programs, with their names, is given
at the end of this appendix.

The name of the csecr, 16, and the number of
storage locations in the csect, 17, are then given.
Also contained on this line is the time stamp asso-
ciated with the csect, 18. This time stamp is the
same as that supplied for version identification, if the
user defaulted this compilation parameter, or is ob-
tained by the compiler for identification of the csecr.
Following this line is the size, 19, and relative loca-
tion, 20, of the two types of information contained
in the csecr,

The next section gives a summary of the psect con-
tents. The line containing the name, 21, and size,
22, of the psrcr is followed by the relative location
and size of the seven principal areas in the rsecr, 23.

Detailed Description of Output Module Listing

If an object code listing is requested, a detailed listing
of the csect and psecr (or coMMON control section,
for BLOCK pATA subprograms) is given. Figures 12 and
13 contain examples of csecr and psect listings, re-
spectively. In addition, a listing of initialized variables
is given. Figure 13A contains an example of the Table
of Initialized Variables. The three listings are de-
scribed below,

Header Information: Each page of the listing is
headed by a line containing the user-specified module
name, the version, and the page number, 24. The
next line in the listing contains the module name,
25 | and the module size in decimal, 26 . This size
is the total number of bytes occupied by the csecr
and the psect, excluding comyon control sections.
This information is followed by a table of all entry
names, 27, and their locations (hexadecimal) rela-
tive to the base of the csect, 28 . The header informa-
tion is completed by a list of all references to external
routines, 29 .

Description of CSECT Listing: A line containing the
name, 30, and size, 31, of the csecr is printed im-
mediately preceding the code. Next is a line giving

the location of the executable code relative to the

csect, 32, followed by the size in decimal of the ex-

ccutable code, 33 . Following this line are siz columns,
described below.

1. Line Number 33: The line numbers correspond
to line numbers in the source data set. Each iine
number appears on the same print line as the first
exccutable instruction of the respective source
statement. Line numbers of nonexecutable state-
ments { DIMENSION, COMMON, DATA, etc.) are omit-
ted. However, CONTINUE statements are included in
the listing.

2. Label 35 : Any entry name, statement number, or
compiler-generated label is printed on the same line
as the first instruction of the corresponding source
statement that defines such a label. Compiler-
generated labels indicate the destination of some
compiler-generated branches. All compiler labels
are six-digit numbers and are generated in a de-
creasing sequence starting with 999,999. {In some
cases, the compiler-generated labels are not in de-
scending sequence, and gaps may occur in the
descending sequence due to compiler code op-
timization.)

3. Hexadecimal Locction 36 : This column gives the
location of the first byte of each instruction relative
to the base of the csecr.

4. Instruction {Hexadecimal) 37 : Each instruction is
represented by its machine language (hexadeci-
mal) configuration.

5. Instruction (Assembly Type) 38 : Each instruction
is represented by its assembler language equiva-
lent. All items in the operand field are decimal in-
tegers. No extended mnemonics are used except in
conditional branches, where the operand field con-
tains the label of the branch terminal.

6. Comments 39 : Whenever the operand (in storage)
of an Rx- or Rs-type instruction can be meaningfully
described, the description is printed in the com-
ments column of the appropriate line.

A referenced constant is commented by its value,
which is printed in conventional FORTRAN repre-
sentation, and by its location (hexadecimal) rela-
tive to the base of the csect. Each part — real and
imaginary — of a complex constant is commented.
Certain fixed binary constants can be commented
upon with their values and storage locations, al-
though the instructions do not actually refer to the
constants but obtain them by other means (e.g., an
SLL instruction).

References to variables and elements of arrays
contain the word “variable” followed by the vari-
able or array name. No attempt is made to identify
a reference to a specified subscripted array variable

Appendix A: Use of the FORTRAN Compiler 85

COWBOY V5 PARE ON4

LINE NO. LABEL LOC HEX INST HEX INST ASSEMALFR COMMENTS
30000014 58FOD0S4 L 15,148(0,13) EXTERNAL CHCIFY
CO000CSE ODEF EASK 14515
00000090 53ENDOAG L 144146{0.13) EXTFRNAL CHCTUT
000006394 50E00048 ST 14,7260.1)
60000C98 58FONCAD L 154160¢0, 131 EXTERNAL CHETUY
€eno009C oneEr BASR 14,15
1000 10 00C00QSE 41808014 LA 8,2010.8)
00000042 198¢ CR B9
0OC000AL 4770502¢ BNE 999998
00000048 41606006 LA 6,410,56)
! Q0N000AC 1967 CR 6,7
i QCOCCOLE 47705008 BNE 969999
i 1100 000000R2 58100048 L 1.14%10,131 DARAMETER L1ST 0D05EoFR
| QDO000RE SREQDCRD L 14417608, 121
! 00000074 SPEODC4% ST 14,72(0.13)
0000008 F 5BFODDAC L 15.172¢0.13) EXTERNAL coMpyT
| £OGOB0C2 opEE BASR 14.15
1400 Q00600C4 58604000 L 6,010, 4} VAR LARLE L
£00000CS 59604004 C £.610,41 VAR IARLE “
£00060CC 47BOSLLF BNL 20
1500 00000000 58100084 L 1,18040,131 PARAMETER L1ST 00000100
000006074 SAECOCRL L 14,14010,13) EXTERNAL CHCTAL
00000008 SOEORC4S ST 14,7210,13)
£Co0oTonc 58F00081R L 15,13640,17%} EXTERNAL CHETA)
000000ES 0DEF BASR 14.15
0000002 58E£0DC98 L 14,152(2 EXTERNAL CHOTEL
COCOTQFE SOE0DC4ER ST 14,7210.5%
CO0000% A 1873 LR 7,3
0CO0COEC 41000001 LA 0,110,060
CO0D0CFO 50003004 ST 0D.400.3) VARTABLE 1
599996 0O0000GF4 55100088 L 1,1084(0,13) DARAMETER LIST foreot1e
000000 R 1800 SR 0,0
; 0CO000F A 58F0D0%% L 15,148(0,13) EXTERNAL CHECIEL
{ GCO000FE 0DEF BASR 14,15
! cooeoioe 5810D08C L 1,188(0413) PARAMETER LIST 0ARONYI R
00000104 41007030 LA 0.,48(0,7)
00500108 50001004 ST 0.410,11
£000810C 1800 SR N.0
0000016¢ S3FOD094 L 15,148(0,1%1 EXTERNAL CHOTE]
€0000112 0DEF BASR 14,15
00000114 581C00CO v 1.19200,13) PARAMETER L1ST 0oeoR120
08000118 410070048 LA 0,8(0,71
00000110 50001004 ST 0.4(0.1)
00000120 1800 SR 0,0
00000122 58FODOGH L 15,148(0,17) EXTERNAL CHCTEL
00000126 ODEF BASR 14,15
£0000128 41707004 LA T.410,7}
£000012C 58603004 L 6,4(0.3) VARTABLE 1
00000130 41606001 LA 6411046}
00000134 50603004 ST 64410.3) VAR TARLE 1
600001128 5960201C c 6.2010, 2 10 AT 0OCOCIAC
COWRDY ,v5 PAGE 005
LINE NO. LABEL LOC HEX INST HEX INST ASSEMBLER COMMENTS
0000013C 47D050€0 BNH 999996
00000140 58E0DOAL L 144166¢0,13) EXTERNAL CHCTUT
00000144 S0EONQ4S ST 14,72(0,1%)
00000148 58FODCAD L 15.16000.131 EXTERNAL cagTu
0000014¢C ODEF BASR 14,15
1600 CODUOL4E 4TFO5000 B 5
! 1700 20 00000152 581000C4 L 1.1961C, 13}
00000156 58E0D0CC L 14,204(0,13)
©000015A 50E0DC48 ST 14.72(0.13)
0000015F 58F000CH L 5,200{0,13%) EXTERNAL CHCTW?
£O000162 ODEF BASR 14,15
G?DNUMER!C CONSTANTS (“Yioe rex onoonl7o 13733 Q?\ o RYTES
antvop 44)Loc HEx (45)CONTENTS HEX
1%4 €0060170 00080000
1x4 €0000174 00000001
1*4 £0noC17a 00000002
T*4 0000017C 00000005
%4 00000180 00000004
1%4 €0000184 00000014
1es 00000188 00000006
144 €000018C 00000004
1*4 00000190 00000008
1%4 00000194 00000080
1%4 £0000198 00000020
I%4 0000019C £00000C0
1%4 €Q0001A0 00000033
%4 C00001A4 0C000040
1#4 CO0001A8 00000032

Figure 12. CSECT Listing, Continued

86

(element of an array). This information must be
obtained by inspecting the D2, X2, and B2 fields
of the instruction itself. As in the case of constants.
references to complex variables are fully com-
mented upon in both parts.

Subroutine calls are described by the word “ex-
ternal” followed by the name of the subroutine. In
a number of subroutine calls there can be two such
comments.

Arguments, or, specifically, adcons that contain
the base register? for arguments at object time, are
indicated by the word “argument” and the name
of the argument. The actual arguments themselves
are identified as “variable” followed by the argu-
ment name.

References to local or global temporary storage
are printed as “local temp” and “global temp,” re-
spectively. Again, the location of the temporary
storage item must be obtained from the operand
field of the instruction.

Address constants are described by the names
of the storage classes the adcons cover and the pre-
relocation values of such adcons (zero values are
not printed). The following items can appear in
the comments column in connection with adcon
references:

CODE Buse register adeon for excentable code
NUMERIC Base register adcon for numerical con-
stants
PARAMETER Adcon that contains the base register
LIST for the parameter list in a subroutine
call
LOCAL TEMP Local temporary storage base register
STGE adcon
GLOBAL TEMP Clobal temporary stovage base register
STGE adcon
NON-COMMON Base register adeon for variables not
VAR. declared in any COMMON

BLANK COMMON

Name of a named

COMMON

Blank COMMON base register adcon

Base register adeon for that named
COMMON

All numerical constants are listed at the end of the
csect (after the listing of executable code), 40. The
relative location of the numerical constants in the
CSECT is given, 41, followed by the length in decimal
of the numerical constants, 42. Each constant is de-
scribed by its type and length, 43, location within
the csect, 44, and its internal representation, 45 .
The types are:

I — fixed binary (integer)
R — floating binary (real)
C — floating binary (complex)

1The term “base register adcon™ is used to refer to an address constant
that is loaded into a base register,

The length is given in bytes, thus, for example:
I¥*4 means an integer constant of 4-byte length.
C*16 means a complex constant (floating bin-
ary) with a fotal length of 16 bytes — §
bytes for the real part and 8 bytes for the
imaginary part.

Description of PSECT Listing

The information contained in the page heading line,

46 , and rsecr title line, 47, is similar to that con-

tained in the corresponding lines of the csecr listing.

Listed next is the relative location within the psecT

and the length of the arcas.

A sample psecr listing is shown in Figure 13.

1. Register Save Areas 48 : This area is used to pre-
serve register contents upon executing a call to a
subroutine.

. Conversion Constants 49 : This area contains the
necessary masks and working storage needed by
some in-line conversions (e.g., fixed to floating).

3. Address Congstants 50, 51: Each. adcon is de-
scribed by:

a. The location of the adcon relative to the base

of the psect.

b. The contents (value) of the adcon prior to re-
location.

¢. The control section referred to by the adcon or,
in the case of arguments and external refcrences,
the item referred to by the adcon.

d. The “storage class referenced” describes what
part of the specified control section is covered by
the adcon or what argument or external name
corresponds to the adcon.

Following the description of the above three areas
is a listing of the individual items contained in the
psEcT. The first item in this listing is the address con-
stants, 51. The address constants are followed by
six other groups of items, described below.

1. Parameter Lists 52 : The listing of items in the
parameter list section of the psecr is in a format
identical to that of the adcon listing. A number of
items may have no entries under “Control Section
Referenced” and “Storage Class Referenced.” This
indicates that the contents of such parameters are
not known at compile time and that the parameter
is computed and stored in the indicated location
upon execution of the program.

2. NAMELISTs 53 : This area contains the internal
representation of NaMreList information. Only the
total size is printed.

3. Alphamerics 54 : Any alphameric constants, in-
cluding contents of FormaAT statements, are listed
by giving the starting byte of the character string
followed by the string itself.

S

Appendix A: Use of the FORTRAN Compiler 87

46)cowsay V5

(GRS S1zE
(48)REGISTER SAVE AREA
19)CONVERSTON CONSTANTS

(50)aDDRESS CONSTANTS

(Do wex CONTENTS HEX
00000064 00000034
00000068 cecoo1cs
0000006C £0000170
00000070 00C00000
09000074 ccooooee
06000078 00000220
€000007¢ 00000000
0000n080 coceeoes
00000084 00000000
60000088 5000000
0€00008C 00000000
00000090 00CCOCEC
00000¢94 ©09000CN
0000096 €0200000
00RN005C COCO00F O
0C00N0AD 00000000
€C0000A4 €0000007
000G00AE CO0D0OF 8
C00000AC £0000000
0000008¢ £00000C0
£COD0CR4 96000100
€0000088 0000011C
0000008¢C 00000118
£co000Co coten120
000000C4 0000012¢C
£00000C8 £0000000
000000CC 0000000

GﬁDPARAMETER LIST

LOC HEX CONTENTS HEX
00000000 £00C017C
00000004 £0000197
£00co0ns 00000198
960000DC 60000138
000000ED 0000017¢C
CCO000E4 €0000157
000000E8 000001 9F
€CO000EC 00000158
CCO00OFO €00C01A3
€0OC00F4 00000000
000COCFR COCOO1F 3
000006FC £0000100
COWBOY V5
LOC HEX CONTENTS HEX
00000100 0nou01868
£00C0104 Q0C001A7
€0000108 0CO0019F
cOnEn1ac 10000160
00000110 00000148
00000114 £00001CC
C0COC1LE 00000142
€0Ceo11C occceone
00000120 000CO1A2
00000124 €eecoooe
c0OC0128 €0CC000C
£nana12c £occo12e
000001 30 60C00000

S3)NAMEL1STS

54) SLPHAMERILS
LDC HEX ALPHA
00000158 (2520.8)
€00C0160

<:)NGN—CDHMON VARTABLES {7OTAL)

L0C HEX VARIABLE
000001C8 J

LeialeLaleh Entol 1
ooo0g109 B
J00001F8 A

SE)NAME

LOC HEX VARIABLE
€0000000 C
00000014 b

INDEX

LDC HEX VARIABLE
0Co00000 L

eletudelelolol) L

544 BYTES 07/21/67 21:4h4:12

LCC rEX §0000200

LOC HEX 0000004C

LOC HEX 0ON0O00D64
CONTROL SECTION REFERENCED
CSECT
PSECT
CSECY
INDEX
NAME
PSELT
EXTERNAL
EXTERNAL
PSECT
EXTERNAL
EXTERNAL
PSECT
EXTERNAL
EXTERNAL
PSECT
EXTERNAL
EXTERNAL
PSECT
EXTERNAL
EXTERNAL
PSECY
PSECT
PSECT
PSECTY
PSECT
EXTERNAL
EXTERNAL

LOC FEX 00020000

CONTROL SEZYION REFERENCED
CSECY

CSECY

CSECT

Num

CSECT

CSECTY

CSECT

PSECT

CSECT

PSELTY
PSECT

CONTROL SECTION REFERENCED
CSECT
CSECT
CSECY
PSECT
CSECT
PSECT
CSECT

CSECT

PSECT

LCC FEX COOCO138

LOC HEX 000DD158

t*1TEST PROGRAM SAMPLE QUTPUT FOLLOWS®*/'0 1

LCC HEX 000001C8

TYPE
1+4&
1*4
R¥4
R¥4

TYeE
R¥4
R*4

TYPE
194
1%4

PAGE

SI1ZE T4 BYTES

S1z¢e 24 BYTES

SIZE 108 BYTFS
STORAGE CLASS REFERENCED
CODE

NON-CCMMON VAR.

NUMFRIC

INDEX

NAME

LCCAL TEMP STGF

CHCADL
CHCEDY
PARAMETER
CHCYIAL
CHCIAL
PARAMETER
CHCIEY
CHCIES
PARAMETER
CHO UL
cHC UL
PARAMETER
COMpuT
CCMPYT
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
CHCIWZ
CHCIW2

LIST

LIST

LIST

LIST

LIST
LIsT
LIST
LiIsy
LIST

SI1ZE 100 BYTES
STORAGE CLASS REFERENCED
NUMFR IC

NUMER1C

NUMERTIC

NAMEL IST

NUMERIC

NUMERIC

NUMERIC

ALPHAMERICS

NUMER IC

NON-COMMON VAR,
NON-CCMMON VAR,

STORAGE CLASS REFERENCED
NUMERIC

NUMERIC

NUMERTC

ALPHAMERICS

NUMERTC

NON-COMMDN VAR,

NUMERIC

NUMERIC

PARAMETER L IST

S1ZE 28 BYTES
SIZE 105 BYTES
A B'/(16,E20.8.£20.8))
SIZE 88 BYTES
SIZE 60 BYTES
SIZE 8 BYTES

L1

Figure 13. PSECT Listing

88

OWBTY . VS pAGE 998
@TA%:,F OF INLITIALTZET VARIABLES
Rg# T
SECT LOCATION HEXADECIMAL VALUFE CONVERTED VALLE VARYT ARLE
CQWEOYEPOOCION 41100000 4041500005401 Bl
0001F4 41104063 +0. 1000005461 §r10)
000YFE C029700N +0,C000007+00 ALY
. . . .
30021C 00000000 +Ca 0NCOOOF 400 AC1OY
Figure 14. Table of Initialized Variables
COWRDY SV5 PAGE NOR
SYMBOL TABLE SCRT
7 5 TN <0
27)sympoL @Tvp; (’i’cuss (égsronacs CLASS + DFFSET
A Re4 ARRAY VARIABLE NON-COMMON annocn30
B R*4 ARRAY VARTABLE NON-COMMCN 00000008
C R*g ARRAY VARIABLE NAME [daleDols]alelq]
CHCBD1 EXTERNAL NAME
THCTAL EXTERNAL NAME
CHCIF1 EXTERNAL NAME
ceC Tul EXTERNAL NAME
CHCIW2 EXTERNAL NAME
coMPUT EXTERNAL NAME
D R®G ARRAY VARIABLE NAVME 0000014
1 1%4 SIMPLE VARIABLE NON-COMMON 00000004
J 1%4 SIMPLE VARIABLE NCN-COMMON 00000000
L 1%4 SIMPLE VARIABLE INDEX 500000CN
N 154 SIMPLE VARIABLE INDEX nonNONNG
NUM NAMELTST NAMEL IST 00000000
5 SOURCE LABEL care 00000024
10 SOURCE LABEL cone No00NOSE
20 SCURCE LABEL cone 00500152
900 FORMAT LABEL ALPHAMERI(ponoonnn
910 FORMAT LABEL ALPHANERIT 00000008
599996 COMPILER LABEL COrE 000N00F4
599958 COMPILER LABEL cene 00000052
999999 COMPILER LABEL CoDE nnNoONan

Figure 15. Symbol Table Listing

4. Temporary Storage: As in the case of NAMELIST,

v

local and global temporary storage blocks are iden-
tified on the listing by their starting locations (rela-
tive to the psecT’s base) and their respective sizes.
The example contains no temporary storage blocks.
Non-COMMON Variables 55 : The listing of the
psecT is completed by information about non-coMm-
MoN variables. The starting location of the non-
comMmon variable block and its total size are given.
Each variable (or array) is described by its loca-
tion with respect to the base of the psecr, the name,
and the type-length code. The type-length codes
have the same meanings as described under con-
stants.

Common Control Sections Listing 55%: Any coM-
MoN block — blank or named — is identified by its
name and the total size in bytes. All variables con-
tained in a comMon block are listed in the same
format as non-coMMon variables. The locations are

relative to the base of the respective common
block.

Description of Table of laitialized Variables

The page heading line, 56A , is identical to the head-
ing on the csecr and psecr listings. The next line in
the listing contains the listing title, 56B , followed by
the column headings. The information contained in the
five columns is described below.

1.

SECT 56C : This column contains the module
name specified by #P if a main program. If a
BLOCK DATA subprogram is compiled, the name of
the convmon block will print. If imore than one page
of listing is required, the name will be repeated on
the first line of data on each page.

Relative Location 56D : This column gives the hex-
adecimal value of the displacement of the variable
within the section.

Hexadecimal Value 56E : This column gives the
hexadecimal value of the preset variable as it
appears in the text.

Converted Value 56F : This column contains the
preset value converted according to type of con-

Appendix A: Use of the FORTRAN Compiler 89

stant. These types are: hexadecimal, integer, real,
complex, logical, and literal.

5. Variable 566G : The variable name with subscript,
if applicable, prints in this column. Variables are
listed in order by displacement within section.

Columns 2-5 may also contain a “3-dot” notation,
56H , if the repetition factor of a preset value exceeds
5. In this case, only the first and last values of the
range print an the listing.

Description of Symbol Table Listing

The symbol table listing (symbol table sort) contains
an alphamerically sorted listing of symbols — names
of variables, entry points, external references, labels,

ete. Each symbol is printed on a line and is described
as follows.

The name of the symbol, 57, is followed by its
tvpe-length code, 88 . The code has a meaning for
the item represented by the given symbol. Entries
under “class” further describe the item, and they are
self-explanatory, 59 . “Storage class - offset,” 60,
identifies the storage class to which a given symbol
belongs and the location within such storage class.
Under “storage class” there can be references to blank
coMnoN, code, alphameric, name of a named coaivon,
ete. Tixternal names are not part of the compiled
module; therefore, no information can be given for
storage class -+ offset.

A sample Symbol Table Listing is
Figure 15.

shown in

COWRAY V5

!EDSY"EGL CROSS-REFERERCE L1SY
SYMBOL DEFINITINNS :;
A
e
C
(HCEDL
CHCTAL
CHCIEY
CHCIUL
CHCTW?2
camMpPyT
COWROY
| T 300
] 1 600 150
INDEX
J 200
L
| #
NAME
NUM
COWBOY V5
ég}LAPEL CROSS-REFERENCE LIST —
LABFL DEFQ%D RFFERENCESQg&
cooes 400 1600
00010 100¢ ACC BOO
€o020 1700 1400
00900 1800 sgC
€0S1¢ 1900 1500

L

ppne Ana

téiﬁnrprmecrs
200 400 1100 1500
7200 400 1100 1500
100
n
700 800 1500
300 1800
Qpn 1500
1700

1100

900 1500 1500 1€00

260 500 800 1400

00 1400

500 700

PAGE MR

Figure 16. Cross-reference Listing

90

Description of Cross-reference Listing

The cross-reference listing is divided into two sections:
a listing of names (symbols), 61, followed by a list-
ing of labels, 64. Both sections list the corresponding
items in alphamerically sorted sequence. Line num-
bers, as defined in the source listing, are printed under
“definitions,” 62 and 65, and “references,” 63 and
66 . for cach item. Whencver an item is defined (e.g.,
label of a labeled statement or variable name on the
left side of an assignment statement), the correspond-
ing line number is printed in the “definitions” column.
Any reference to an item causes an entry under “refer-
ences.” Multiple entries for any item are sorted in
order of increasing line numbers. Multiple references
to the same item in the same source line result in
multiple printing of the same line number for that
item. Compiler-generated labels are not included in
the listing.

A sample cross-reference listing is shown in

Figure 16.

Description of Storage Map Listing
If an object code listing or both an object code listing
and a storage map listing are requested, the listing
produced will be as described in the detailed descrip-
tion of the cutput module listing above. If a storage
map listing is requested and no object listing is re-
ruested, the yesultant listing will contain summary
information for the module, 67, csecr. 68, and for
the psecr, 69 . This information includes the csecr
and psect sizes, external definitions and references,
the location relative to the csect of all FORTRAN state-
ment numbers, the size in the ¢secr of the numeric
constants area, the relative location and the size of
the principle rsecy areas, and the location in the psecr
of all variable names.

A sample storage map listing is shown in Figure 17.

COWBOY V5 PAGE ©03
CONBLY S{ZE 72 BYTES
ENTRY NAME LOC REX
COWROY 0ceeecce
EXTERNAL REFERENCES
CrCROL CHCTAL CHCIEL CHCIUL CHO TwW2 CaMpuT
‘f{zﬁ)cnweuv’%c 3843 428 AYTES 07/21/67 21:44:12
cope LCC KEX pooangen 51ZE 356 BYYES
LINE NO. LABEL L3 MEX
COngn03s
600 S CCODCO34
700 $59999 CC000040
800 £000C0s2
900 955998 00000062
1000 10 CO0CCOSE |
1100 00000082 |
1400 £aN000Cs l
1500 €eeNCene |
555556 0N0000F4
1600 €200014€
1700 20 60000152
‘ NUMFRIC CONSTANTS LOC HEX £000017¢ s17% 60 RYTES
|
E rOWROY V5 PAGE 004
J |
COWADY 2P SIZE S44 BYTES G7/21/67 21:44:17 |
RECISTER SAVE AREA LCC HEX 00000000 S1ZF 76 RYTES
CONVERSION CONSTANTS LEC HEX 0000004C STZE 24 BYTFS
BODRESS CONSTANTS LCC HEX 0ADD006KL SI7E 108 AYIES
NAMELISTS LCC HEX 0C0CO128 STZE 2P RYTES
ALPHAMERICS LCC KEX 00000158 S17F 105 AYTES
NON-COMMON VARIABLES (TOTAL) LOC HEX O00ONICR S1ZE f8 BYTES
LDC HEX VARTAGLE TYPE
ceeenics Rl 1*4
coanglce 1 14
£0000100 8 R*4
angoC1Fa A R¥E4
NAME SI1Z2F 60 RYTES
L0C HEX VARIABLE TYPE
£C000000 d R4
0000014 D Reg
INDEX SI1ZE 8 BYTES
LEC HEX VARTABLE TYPE
€C0C0000 L 1%4
0CCoC004 M 1%4 |

Figure 17. Storage Map Listing

Appendix A: Use of the FORTRAN Compiler 91

Compilation Completed Message: Following pro-
duction of requested listings, the page is restored and
the message COMPILATION COMPLETED is written.

Destination of Compiler-Produced Listings

The destinations of compiler-producad listings depend
on whether the task is conversational or nonconversa-
tional, and on the value of the FT~v command’s LisTDS
operand,

Conversational Tasks

In conversational tasks, all compiler-produced listings
are placed in the list data set unless the LisTns oper-
and of the rr¥ command specifies sySoOUT.

Printing of the list data sets prepared by the com-
piler is not automatic. Each time a unique module
name is encountered, a generation data group is estab-
lished, containing two generations. Each time the limit
(two generations) is reached, the oldest generation is
erased. The user may print only when he wants the
output listings, using: prixT risT.module-name fol-
lowed by the relative or absolute generation. The
Command System User’s Guide presents a corplete
explanation of the language processor listing data set
maintenance process.

Since a pending BuLk/10 task will be established
when the priNT command is issued for the language
processor listing data set, the user must not attempt
to erase the data set (or otherwise remove it from
the system) unless the BsN is canceled first.

Nonconversational Tasks

In nonconversational tasks, the system automatically
puts compiler-produced listings on sysout and prints
them. After printing, the listing no longer exists in the
system.

This system action can be overridden, however, by
the Listps operand of the Fr~ command. If you specify
LIsTDS=Y, the system puts the listing in the list data
set and maintains it exactly as in a conversational task.

You can have the listing put in the list data set and
printed immediately by specifying vistos=y and fol-
fowing the compiler source statements with an appro-
priate PRINT command.

Note that if you use a PRINT command in a noncon-
versational task initiated from the terminal, you can
always cancel the printout by issuing a CANCEL com-
mand. However, the caxcer, command does not pre-
vent printing of a listing, or any part of a listing, that
is already waiting in the sysour data set.

92

FORTRAN IV-Library Subprograms: Indirect
References

Most rorrran 1v library subprograms are referred to
in a compiled program dircetly — ie, by the same
name used in the source program; the statement

X = SIN(Y)

for example, leads to a call on the siv program, and
six will be listed under external references in an ob-
ject code listing. Certain other ForTrRAN library sub-
programs are referred to by names created by the
compiler. These programs are listed as follows, with
their names.

CHCBGA Raises an I*4 number to an I*4 power
CHCBEGB Raises an I#2 number to an 1¥2 power
CHCBGC Raiscs an T#2 nuinber to an 1%4 power
CHCBGD Raises an I¥4 number to an I¥2 power
CHCBHA Raises an R%4 number to an I*4 power
CHCBHB Raises an R®4 number to an I*2 power
CHCBIA Raises an R*8 number to an 1¥4 power
CHCBIB Raises an R*8 number to an I*2 power
CHCBJA Raises an R®4 number to an R*4 power
CHCB]B Raises an 1#2 number to an R*4 power
CHCB]JC Raises an I%4 number to an R*4 power
CHCBKA Raises an R®8 number to an R*8 power
CHCBKR Raises an I*2 number to an R*8 power
CHCBKC Raises an 174 number to an R*8 power
CHCBKD Raises an R*4 number to an R*8 power
CIICBKE Raises an R*8 number to an R*4 power
CHCBMA Raises a C*16 number to an I*4 power
CHCBMB Raises a C*16 number to an I¥2 power
CHCBCA Raises a C*8 number to an I#4 power
CHCBCB Raises a C*8 number to an I¥2 power
CHCBD1 Initialize interrupt processing.

CHCIA1L Initialize for an I/0 call.

CHCIE1 Transmit an I70 value.

CHCIU1 Terminate an 1/0 call,

CHCIV1 DUMP program

CHCIV2 PDUMP programn

CHCIW1 EXIT program

CHCIW2 STOP program call.

CHCIW3 PAUSE program cail.

CIHCIWS Called if FORTRAN subprograms are erroneous-

ly entered at their standard entry point.

Reference To Subroutines

Special considerations must be made when a ForTRAN
main program makes references to subprograms. If a
main program and its associated subprograms are
compiled together, and an error is detected in one of
the subprograms, that subprogram must be recom-
piled. The recompiled output module may be placed
in the same program library as the original or in a
different one. Depending on which method is chosen,
the results will vary.

If the recompiled module is placed in the same
program library, the user is asked if the module is a
replacement. If it is, (the default condition) the sys-
tem tries to unload any module in the user’s virtual

storage that has the same name. The unloader will
find a module but will not be able to unload it be-
cause of outstanding references. Unless the user
explicitly issues an unLoap coramand for his main
program, he will not get his new copy of the sub-
program.

If the user defines a new program library, he will
not be asked if the module is a replacement. Conse-
quently, if he reruns the program, he will use the old
copy since it is still loaded.

The simplest solution is for the user to unload the
main program before Le starts recompilation. He can
also unload modules that have references to the new
module, but this might not work since the modules
he tries to unload might satisfy references in other
modules. If the user unloads his main program, he
avoids getting diagnostics from the loader during
compilation and ensures that the latest level of the
module is being used.

Destirajizn of Output
Table 3 shows the destination of all output from any
compilation variation.

Compiler Restrictions

Limitations of virtual storage available to the com-
piler and the object programs generated by it impose
a number of restrictions on the size of a source pro-
gram capable of being compiled. These restrictions
are categorized according to complexity. The first
category, simple source program restrictions, can
easily be applied to individual source statements or
particular types of source statements. Simple source
program restrictions are listed in Table 4.

The term “file” is used in this section to refer to
compiler work areas.

The second category, complex restrictions, is com-
posed of restrictions that generally are too complex
tc anticipate in advance of compilation (e.g., the
storage requirements of the various tables internal to
the compiler are, in many cases, extremely difficult to
compute accurately, as the table sizes are complex
functions of the source program). Very few programs
are of such a size or configuration that these complex
restrictions can be met. Therefore, the FORTRAN user
may not wish to concern himself with the complex
restrictions until he receives a diagnostic message;
then he can proceed to remedy the situation. Com-
plex source program restrictions are listed in Table 5.

Should the user wish to more accurately determine
the number of entries that can be made in the files
listed in Table 5, the following paragraphs provide
information allowing him to do so. For each file listed

in Table 5, either a formula, an absolute number, or
an average number is given as a measure of the num-
ber of storage locations (bytes) in the file.

Storage
Symbol Table Locations
Variable or function-r:ame 28
Four-byte constant i6
Fight-byte constant 20
Sixteen-byte constant 28
Label 20
Adcon 16
Storage
Program Representation File (PRF) Locations
Equation 16
Unconditional o To 16
IF 28
Program Representation File (PRF) con’t. Locations
CALL 20
no 64
Average 1/0 Statement (Five list elements,
two of them subscripted) 74
Average Label Definition 12
Storage
Expression File (EF) Locations
Average Equation (Ten variables and
operators) 80
Unconditional co To 0
Average 17 (Arithmetic 1F) 80
Average cary (One simple argument) 80
Average po 0
Average 1/0 Statement (Five list elements,
two of them subscripted) 100
Average Label Definition 0
Storage
Storage Specification List (SPL) Locations
Average comMox (Three variables, arrays,
or block names) 20
Average mQUIvALENCE (Three variables) 30

Cross Reference Table (CRL)
CRL size —= (number of occurrences of statement

numbers -}- number of occurrences of names)
x 8

Storage

Preset Data Table (PDT) Locations
The ppT size is estimated from the relation:

PDT size — CRL size (described above) -+

NaMELIST size (described below) -+ total for

the following four types of statements.
Average DIMENSION (Two arrays of three

dimensions each) 24

Appendix A: Use of the FORTRAN Compiler 93

Table 5. Complex Source Program Restrictions

¥6

2

| Associated Diognostic Message(s) Carrective Action

- = B 1 o O
Too many nomes, constants, and statement numbers in the | SYMBOL TABLE OVERFLOW, SPLIT PROGRAM AND COMPILE
saurce program. | PARTS SEPARATELY
| SYMBOL TABLE OVERFLOW, TOO MANY MAMES
CONSTARTS, AND FORMATS
SYMBOL TARLE OVERFLOV/ i PHASE 2. RETURM 15 TO hex

T

ftem (Storage limit!) i Overflow Cause Comments
Symbol Table (limited 15 20 pages; 81,920 bytes) [
;

unction references and
ripts ca
cantly to the

Progrem Representation File and Frpression File (limited ta 60 Saurce program foo large .

pages; 245,740 bytes)

steil vorisbles fwhose

may contribute sign

Storage Specification List (limired fo 60 pages; 245,760 bytes) Too much COMMON or EQUIVALENCE information.

FQUIVALENCE INFC

Cro8 Refarence Table (see Prevel Data Tobie] Defining ond rferencing too many variobles and stotement | CROSS-REFERENCE TABLE OVE I
numbers. ! ~) L —
“Presst Data Tokle (Prese! Data Table plus Crass Reference Toble Too mony initial values, nome lists, ond formars, | In programs containing a terge number of eriries in DATA TABLE OVERFLOW. TGO MANY INITIAL VALUTS, NAME~ | Use Block Data s
limited to 32 poges; 131,072 bytes) : ents, Praset Dot Table storage requirements may ve LISTS, AMD FORMATS i
A repest consients wh S i

CRFLOW, TOO FAANY 3TATE

ummy uret o definitions is

Statament Function Expression File (limiied ta 110,480 bytes)
_ too lorgs.,

Too mary nen-COMMUN verial

Srim T T NON-COMMON VARIAELE -
AR

"OMMOM Variable Sforage i the saurce pro i

Nen

mplex arithmetic may PARTS SEPARATELY.
area,

whseripred variables, and
ignificonty 1o the size of

EORMON Variable Trorass TFon mony COMMEN voriables in the source proge 7 FIMENT TO COMMON VARIABLE name 15
L . ! — S SN - S — TOQ LARGE - — — B
Progrom File (limited to 60 pages; 245,760 bytes) | Source program toc large. B - o § | PROGRAM FILE OVERFLOW IN PHASE 3 | B R -
Code File (Iimited to 60 pages; 245,760 bytes) [Sourse program tao Torse. Excessive wse of deer fatement fonctions, muli- ["CODE TILE GVERFLOW. SPLIT PROGRAM AND COMPLIE
i

suonouysey weidorg 9oinog xafdwio]y 'g 9[qe],

Adean Page (4096 bytes) | Source program too lurge. Total of ol statement numbers in assigned GO TO) storements, the | ADCON PAGE OVERFLOW, SPLIT PROGRAM AND COMPILE B
! number of input/outaur Hiats, and the number of function PARTS SEPARATELY,
N P - R) referances confribure significontly to the size of this ar . ~ e]
Fhase 2 Intemal Tabie LT weny non-G L RGN vor nemes and of 1oo many ihe avoiluble space for sorting non-COMMOR verish INTERINAL TABLE ¢
: | rumas in EQUIVALENCE statements, determine storage anignments, or for solving EQUIVALENCE lscation
| | refationshigs, bas been exceeded

Optimization Teble (limited to are primarily re iN PHAS

source progr

extent of subs !

ipted voricele storag

Frogram Module Dictionary (limifed o & pages, 24, 576 bytes) Soures program foo large. T The amount of storage specified in DIMENS [ON statermants, the
number of subprogram references, ond the number of L'D state-

- ments contribure significantly to the size of this ureg,
Mame Toble amal Naome List) {limited 10 2 poges; 8, 192 bytes) | Too many ENTRY statements,
R — [e — S - et .
ionary (limited to 10 poges; 40,960 bytes) Yoo many varlabies and source stotements, | INTERNAL SYMBOL DICTIONARY OVERFL

| OBJECT PROGAAM MODUILE EXCES

Object Program Module (limited to 42 pouss; 172,032 bytes) Saures prog |
Name List {common ane removed expiessinn tuble) There may & DAME LIST DEPLETED IN PHASE 3.
are |

- N P P -
Number of terams in the internal Linear for TABLE CVERFLOW, SUBSCRIPT EXPRESS! Use o

ded by (the number of dimensions 1

subseript pricy to i s

]
In certain cases the moximum is somewhot less than 126; The | FORMAL ARGUMENT ADCON TABLE OVERF
Preset Data Table, the Cross Reference List (CRL), ond the Formal |
Argument Adcon List (FAAL), share a common work area of 32 |
pages. The space allatted to the FAAL is only thet not needed by |

H the orher twa. vg the CRL cprion will lenve mora space

for the FAAL. :

Do not request o Crass

aximum number of formal argumends in a fur
routine subprogram is {imited to 126.

listing.

et fungtion referances are o od infine;
{58, the use of desply nesred sfotement funct
periboty significnntly 1o the size of the inte

nts ba function references) in an expression ma

erally thetr is @ ona~to-one correspurance between
! ¥ r exprestion in the source storemant and the in
teine representation.
and where the Internal regressntation moy become quite large:

sertotion of the express

el i

here are fwo cases where this is nof true, | £, Variable subsciipts, and subseriprs with varigble di

mensiont, are expanded to a lineor form to be camputed |
during object program exacution. The use of many

multidimensioned subseripted variobles may contribute
Ficantly to the size of the internal representotion

1. Statement function references.

i
|
!
]
2. Subscripts, !

B

s
3
s

<
]
3
g

|
|

! Whers an expiicit limit is not given, the fimit is o complex funchion of other limits.

2 Ganeral corrective action is to divide the program into o main program und one of
Qihec corractive acticns ore notad in the “orrective Action' column, end may

mors subpragroms, and compile the parts separately.
same cases be implied from information in previsus columns.

3 This restriction is listed here as wel! o5 in Table 4 as in certain cases tha cesti

ion may be a complex one.

Table 3. Destination of Compiler Output

COMPILER

ouUTPUT

VARIATION OBJECT MODULE

SOURCE

LISTINGS COMPILER DIAGNOSTICS

Latest job library
defined in task, or
USERLIB.

Conversational — Input
from terminal keyboard

or card reader. system.

Data set named SOURCE.
module-name, created by

To terminal, and to list
data set if listings re-
quested.

To list data set member
named LIST.module. To
SYSOUT when user is-

Conversational — Pre-

stored data set.

tions.

Nonconversational —

Data set named SOURCE.
module-name, will be up-
dated to reflect modifica-

sues appropriate PRINT
command,

To list data set if re- { To SYSOUT data set if

Prestored data set. quested; otherwise to | no listings requested;
SYSOUT. otherwise, to list data
set only.
Nonconversational — Data set named SOURCE.
Input after FTN. module-name, created by
system.
Average coMyoN (Three variables, arrays, Tuble 4. Simple Source Program Restrictions
or block names) 24 ! MAXINMUM
e s . . R NUMBER ASSOCIATED
Average Explicit Type Statement (Three vari- — OR SizE DIAGNOSTIC MESSAGE
ables, arrays. or function names. cach with N omber of arguments 25 ILLEGAL NUMBER
one initial data value) 72 in o siatement Function OF ARGUMENTS
Average pata Statement (Four variables, each USED FOR
. FUNCTION name
with one value) 64 T e
N sei of nested 24 STATEMENT
staternent function FUNCTION CALLS
St()?‘(tge references NESTED TOO DEEP
Statement Function Expression File Locations Number of levels of 53 DO LOOPS NESTED
Averace equati (Ten variables and nested 5O loops (both TOO DEEP
AVEY dgt L(l\l(ltl()rl (1o variables an (,\pif('!’t and imp‘iciﬂ
operators) 80 Number of statement 355 NUMBER OF STATE-
numbers in a computed MENT NUMBERS
or assigned CO TO EXCEEDS 255
/ T Vi F . . o -
Non-COMMON Variable Storage Number of named 118 TOO MANY
The storage assignment for any variable may not ex- COMMON blocks COMMON BLOCKS
ceed 2211 relative to the assignment of the first non- Number of signiftcant 1320 MORE THAN 1320

commoxn variable assigned. The assignment of this
variable is independent of its own length (save for
at most 15 bytes of padding which might be neces-
sary for proper internal aligrinent), but depends
upon the assignments made by the compiler to earlier
processed variables and apon the additional effect of
an EQIVALENCE statement which might involve this
variable.

COMMON Variable Storage

The storage assignment for any variable may not ex-
ceed 27%-1 relative to the origin of the conmvon block
within which it is to be assigned. If this variable ap-
pears in a coMMON statement, then the sum of the
lengths of the variables and arrays that were declared
previously in the same coamvon block is 224 or greater.
If the variable has been given EQUIVALENCE to a coM-
MON variable, then the EQuIvALENCE relationship is
such as to make the assignment of the variable ex-
ceed 22%-1.

CHARACTERS

THIS AND FOLLOW-
ING CONTINUATION|
LINES WILL BE

characters! in a
source statement

IGNORED
Total size of an array 2%.1 bytes ARRAY nume 1S TOO
BIG
Number of characters 235 CHARACTER
in a character string STRING TOO LONG
Maximum number of 126 FORMAL ARGU-

MENT ADCON
TABLE OVER-
FLOWED IN PHASE 3

arzuments i a sub-
program reference?

Maximum number of
dimensions in an array

7 variable HAS MORE
THAN SEVEN
DIMENSIONS

510 WORK AREA OVER-
FLOW — INCOM-
PLETE TABLE OF
INITIALIZED

VARIABLES

Maximum number of
preset variables

See “Format of Source Lines” for the rules to determine the
number of significant characters in a source statement.
2Sce also the more detailed discussion of this restriction in

Table 5.

Appendix A: Use of the FORTRAN Compiler 95

FProgram File (PF)
Estimated from the relation:
PF size — (PRF size + EF size) x 0.9

Code File (CF)
Estimated from the relation:
CF size — PF size x 0.5

Adcon Page
The adcon page contains certain address constants
required by the comipiled program. The particular
address constants included in this page are implied
by the items listed below as contributing to space
required in the page.

The size of the adcon page can be cstimated from
the relation:

(number of pages of constants referred to
-+ number of pages of common or non-common

variables or arrays referred to
number of pages of generated code estimated
and referred to
number of pages of local temporary storage
referved to
number of pages of global temporary storage
referred to
number of literal occurrences of statement
numbers in assign statements
number of formal parameters
number of pages relative to a formal param-
eter referred to except the first page

+ o+ o+ 4+

number of literal occurrences of external func-
tion references or external subroutines re-
ferred to with at least one actual argument
number of list elements) x 4

(number of distinct external subprograms ref-
ereiced) x 8

§ if there are any i/0 statements

++

16 if any 1/0 statement has a list

Phase 2 Internal Table
The {ollowing relation gives an upper bound on the
size of entries in the table. Areas in the table are re-
used frequently.
Internal Table size = (number of occurrences of
variables excluding common, equivalence, and for-
mal arguments
-+ number of variables in equivalence statements
-+ number of groups of variables in equivalence
statements

-+ number of occurrences of a variable common
between groups of variables in equivalence
statements) x 8

96

- (number of po statements — 1 <+ number of
branches into and out of po loops) x 4

Optimization Table (Triad Table)
If nc 1sp requested, estimated size of optimization
table = number of executable statements x 36

If 1sp requested, estimated size of optimization table
== number of executable statements x 72

Program Module Dictionary
Estimated from the relation:

pap size = (number of coaMoxN statements 4 2)
x 84

-+ (number of EXTRY statements) x 28

-~ (number of 1/0 statements) x 44

-+ (number of caLL statements

-+ (number of cart statements - number of
external subprogram arguments which are any
of: variable or array name that is not a formal
parameter; oxpression; coustant; function narme
that is not a formal parameter) = 8 + 88

Name Table or External Name List (ENL)
ENL size = (number of conmniox statements + num-
ber of ExTRY statements 4+ 3) x 8§ + 4

Internal Symbol Dictionary (I1SD)
Estimated from the relation:
1sp size = (number of ceaMON statements + 2)
x 16
-+ (number of executable statements) x &
4- (number of variables 4 number of commexN
statements 4 2 -+ number of FORMAT statement
numbers) x 24! -+ 24

Object Program Module (Text)
Estimated from the relation:

opPM size = (number of statements) x 24
NAMELIST
NAMELIST size = (number of names in NAMELIST

statements) x 2

The restrictions listed in Tables 4 and 5 are imple-
mentation restrictions; they apply only to this particu-
lar implementation of the rorTRAN language. They
are a supplement to the language restrictions given
in the publication IBM FORTRAN IV. Other than
restrictions specifically stated in Tables 4 and 5, the
only implementation restrictions placed upcn the lan-
guage are the limit of source statement size and
maximum number of dimensions in an array.

1Assuming average of one dimension per variable.

Apper:dix B. PCS end FORTRAN Object Frograms

General
This appendix discusses the use of the progiam control
system (rcs) for debugging object modules produced
by the rorrrarx compiler. Command System User’s
Guide contains a complete description of the pcs lan-
guage components. This appendix discusses the ele-
ments of the language as it pertains to the FORTRAN
user who is debugging at the source language level.
rcs is a part of the command system and can be
used, along with other commands, whenever a user
program is loaded. rcs provides the user complete
control over-the execution of the program he is de-
bugging. He can start and stop exccution at selected
points, and he can examine and modify variables be-
fore, during, or after execution.
pcs commands are not part of the compiled module
and are never saved as a part of the module. In this
sense, pcs is an object-time checkout language and
not a compile-time checkout language. The only con-
nection between the compiler and pcs is via the In-
ternal Symbol Dictionary (isp), which is produced by
the compiler when the user selects the isp option in
the ¥r~ parameters. The st contains information
about all FortrRaN statements and local and common
variables in the modale. The availability of an 15D
allows the user to check out his program using the
same names and statement numbers as those in the
source program without concern for the actual lo-
cation of his program in virtual storage. In addition,
when the 1sv is selected at compilation time, the com-
piler inhibits the optimization of the object code gen-
erated, so that the user has available the complete
facilities of pcs. Appendix C describes more fully the
object code optimization performed by the compiler
and its effect on pcs usage. The discussion here gen-
erally assumes that an isp is available for the module
and that references in the checkeut statements to data
and FORTRAN statements are made symbolically.
This appendix contains sections describing the fol-
lowing:
® The general function of each pcs command and the
combining of commands to form pcs statements.

e The use of pcs in relationship to the task and the
execution of the user’s program.

© The notation used in forming pcs commands.

e The foim of eack command, including restrictions
and considerations for its usage.

e pcs diagnostics.

Zommands and Statements

rcs commands have the following functions:

pispay To display the contents of variables or ar-
rays on SYSOUT.

DUMP To dump the contents of a variable or ar-
ray into the pcsout data set for later print-
ing.

SET To modify the contents of an array or
variable.

carr, co, To begin, contirue, or alter program ex-

BRANCH ecution.

STOP To stop program execution.

AT To predefine 2 point (a FORTRAN statement)
at which some action is to be performed
when the statement is reached during pre-
gram execution,

IF To define a condition that must be “true”
to activate other pcs commands in the
statement.

Two or more of the above commands can be com-
bined in a prescribed manner to form pcs statements.
The 1F command must always be combined with an-
other command: it cannot be used alone. The format
of a rcs statement is as follows:

[AT] ... [IF]; [DISPLAY] ...; [DUMP].. ;

[SET] .. HBI;;I(\;%H}]

The following two commands are always entered
individazally:

QuaLiFy To designate the module in which the
statements and variables to be used in pcs
statements are defined.

rEntove To delete previously entered pcs statements

containing the AT command.

Sequence of Operation

pCs ctatements can be entered before, during, or
after module execution. Ir conversational mode, if
reference is made to an external symbol that has not
been loaded, the user is prompted to indicate whether
or not a module satisfying the reference is to loaded.
When a pcs statement is entered, the action requested
can be performed at one of two times. If the state-
ment contains no AT command, the actions are per-
formed immediately, and the terminal is returned to
command mode (in a nonconversational task, the

Appendix B: PCS and FORTRAN Object Programs 97

next command is read from sysin). If the statement
contains an AT command (termed a dynamic state-
ment), the actions are performed when the rForTRAN
statement number given in the pcs statement is
reached during program execution. He can then enter
any commands he wishes, including dynamic state-
ments that are to be effective during execution. The
caLL command, when used without an operand, exe-
cutes the last module referred to by the system. If an
object module is loaded after the main program is
loaded, the name of the main program should be
specified as the operand of the carL.

During execution, statements can be entered when-
ever execution is interrupted, which can be the result
of a PAUSE statement or of the entry, prior to the caLL,
of a dynamic pcs statement containing a sTOP com-
mand. The conversational user can also interrupt the
execution of a program by pressing the attention but-
ton. The sTop command can then be entered to obtain
the symbolic location in the program that is to be
executed when the co command is used to resume
execution. (Refer to Appendix T for considerations
in the use of the attention button.)

Checkout operations can be continued following
execution until any module referred to by a dynamic
statement is unloaded, at which time all pcs state-
ments are removed from the user’s object program
modules.

Associated with each dynamic rcs statement is a
counter that is incremented by one for each occur-
rence of the events specified in the statement. This
counter can be referred to by the special character %.
The value of the counter can be displayed or dumped
and can be used in forming expressions. The counter
(%) referred to is always the one associated with the
statement in which it is referenced.

Since % is not a user’s variable, it cannot be changed
by a sEr command.

Conversational Mode

psc commands entered at the user’s terminal (sysiv)
are immediately checked for valid syntax. References
o variable names and statement numbers are checked
in the appropriate module’s 1sp. Syntax errors and
references to undefined symbols are reported to the
user via diagnostic messages.

All pcs output is printed at the user’s terminal
(sysout), except for the pump command output, which
is written on the pcsour data set.

o8

Nonconversational Mode

pcs can be used in nonconversational mode with the
tollowing differences:

1. Erroneous pcs commands produce a diagnostic on
the task’s sysour data set, and the commands are
ignored.

2. No prompting is performed, and incorrectly en-
tered commands are ignored.

3. rcs output goes to the task’s sysour; it is inter-
spersed with user and system responses. DUMP com-
mand output is written on the pcsour data set.

4. If object program execution is interrupted by a
stopr, the next command is taken from the task’s
SYSIN.

Notation
rcs commands consist of directives, operators, sym-
bols, and constants. In a rcs statement, these elements
are delimited by blanks. That is, blanks cannot be
embedded in variables or constants, but they can be
used following a comma, semi-colon, and around arith-
metic, relational and logical operators, and paren-
theses used for grouping.
The character set is:
1. The letters a-z {upper or lower case) and § # @.
2. The digits 0-9.
3. The special characters 4+ — , > < 7| =. % (Y ;
’ / & % : blank.

Directives

The vcs directives are AT, DISPLAY, DUMP, IF, QUALIFY,
REMOVE, BRANCH, caALL, co and stop. Each directive
designates a pcs command.

Operators
Operators used to form arithmetic and logical expres-
sions are:

TYPE OPERATOR MEANING
Arithmetic +- Addition
— Subtraction
o Multiplication
/ Division
Logical 1 Logical inversion or negation (NOT)
& Logical intersection (AND)
| Logical union (OR)
Relational > Greater than (GT)
< Less than (LT)
= Equal to {EQ)
> Creater than or equal to {GE)

= Less than or equal to (LE)
= Not equal to (NE)

1> Not greater than {LE])
<L Not less than (GE)

Symbols
Symbols refer to variable names, array names, and
statement numbers, They are referred to in pcs with
the same names and numbers used in the FORTRAN
module.

rcs recognizes two kinds of symbols: external and
internal.

FORTRAN external symbols are:
¢ Module name
e cscer name (the module name suffived with #C)
e psect name (the module name suffixed with #P)
o coxintoN block names
® FUNCTION subprogram names
® SUBROUTINE subprogram names

® EINTRY names in Sl'lbl)l‘()gl":ll')’k.‘]

Internal symbols are those defined within a single
compilation. FORTRAN statement numbers and FORTRAN
variable or array names are internal symbols. Internal
symbols can be referred to only if an 1sp was re-
quested when the module was compiled. Further, each
internal symbol must be qualified to specify the pro-
gram name in which the symbol was defined.

Certain names that appear in a FORTRAN source Pro-
gram are not available for use in res statements. These
are names whose only occwrrences in the source pro-
gram ave as any of the following:

1. As a formal argument in a SUBROUTINE, FUNCTION,

Oy ENTRY statement.

o

As a dummy argument in a statement function.
3. As a type statement component without dimensions
or initial values.

Names used only in these ways ave ignored by the
compiler. No storage is allocated for them, and no
1SD entries are made.

Svmbols can be qualified explicitly or implicitly.
The internal symbol A is qualified explicitly as follows:

RMAIN A
An internal symbol is qualified implicitly as follows:
QUALIFY MAIN

.
.

DISPLAY A

If a module has been link-edited, internal symbols
can only be used if an 1sp has been requested as a
linkage editor option and in addition, an 15D was re-
quested at compile time for the module defining the
internal symbol. Each internal symbol in a link-edited
module. when referred to in a rcs statement, must be
qualified by both the module name originally as-

signed at compilation time, and the name assigned to
the link-edited output module. For example, if object
module aaiv was link-edited into an output module
name ToTAL, the internal symbol A in MAIN is explic-
itly qualified as:

DISPLAY TOTAL.MAIN.A

To use implicitly qualified internal symbols, both ob-
ject module names must be specified in the guarry:
QUALIFY TOTAL.MAIN
DISPLAY A

The ouariFy remains in effect until another QuUALIFY
is given. Explicitly qualified symbols can still be en-
tered at any point.

The special symbol %cos can be used to refer to
blank common; Zcoy can be used as either an external
or internal symbol.

rcs cornmands can vefer to dummy arguments to
subprograms. The values of the arguments used are
d at the most recent exccution of the
subprogramm when the pes action is performed. Dum-

those establishe

my argaments should not be referred to if the action
requested in the command is to be performed prior
to entry to the subprogram.

FORTRAN Statement Numbers

FORTEAN statement numbers are those written by the
user in the original sonree program and should not
he confused with the line numbers that are assigned
to each source line by the compiler. Statements must
be referred to by their statement numbers, not line
numbers. FExecutable statement numbers used as in-
ternal symbols can be ineremented to refer to nnnum-
bered statements. The inerement must be an integer
greater than zero, enclosed in parentheses, and im-
mediately following the statement number. The incre-
ment (1) refers to the wunbered statement itsell.
Therefore. 86(1) refers to numbered statement 86;
86{2} veters to the next excoutable statement follow-
ing numbered statement 86,

Executable statements are arithmetic and logical
assignment statements, control statements, and input/
output statements. Nonexecutable statements are spec-
ification statements and subprogram statements. Non-
executable statements should not be incremented. For
example, in the following statements:

10 READ (1.20)A

20 FORMAT (F6.2)

B=A"3.14

WRITE (220)A8

GO TO 10
to refer ta the third statement (B = A®3.14}, .10(2)
must be used; the ForvAT statement cannot he incre-
mented since it is not executable.

Appendix B: PCS and FORTRAN Object Programs 99

Statement numbers refer to a statement’s first line,
plus any continuation lines; therefore, continuation
lines need not be considered when using incremented
statement numbers.

If the first executable statement in a program is
unnumbered, the integer zerc can be used to refer to
it. In the above example, if the READ statement were
unnumbered, 0 could be used to refer to it; 3(2)
would then be used to refer to the second executable
statement {i.e, B — A®3.14).

Subscripted Symbols

Internal symbols that refer to arrays can be sub-
scripted to refer to elements of their arrays. A sub-

script can be any integer arithmetic expression that’

does not itself include a subscripted symbol. The sub-
script is enclosed in parentheses, following the internal
symbol naming the array. One subscript expression
must be used for each dimension; multiple subscripts
are separated by commas.

An array that is a dummy argument to a subpro-
gram can be subscripted. The dimensions of the array
are as defined in the subprogram. When an array has
adjustable dimensions, both the array and the dimen-
sion values used are those established at the most
recent execution of the subprogram.

Canstants

Five classes of constants can be used to form expres-
sions in Pcs commands: integer, real, hexadecimal,
character, and address constants. There are no com-
plex constants.

1. Integer constants are expressed in the same manner
as FORTRAN constants. For example: 09327, —642,
+1066, —67.

2. Real constants are expressed in the same manner
as FORTRAN constants. For example: 5764.1, 7.0E3,
16.9D—03, +0. .

3. Hexadecimal constants are written with one or more
hexadecima! digits (0-9 and a-r), preceded by an
X, and enclosed by apostrophes. For example:
X'76543210°, XFFFFFFFF, XACY, X9FEC3, X00FF. A
hexadecimal constant is either truncated on the left
or filled with zeros on the left if its length is in-
appropriate for the expression in which it appears.

4. Character constants can contain all letters, decimal
digits, and special characters. Those remaining un-
used combinations (of the 256 card punch com-
binations) that can be designated in a character
constant entered on cards are described in Ter-
minal User’s Guide. A character constant is en-
closed in apostrophes. If an apostrophe is desired

100

as a character in a character constant, it must
be represented in the written statement by a pair
of apostrophes, although only one apostrophe will
appear in storage. For example: '$3.98, "HOW ARE
vou”, T "M ring. If the length of the constants is
not appropriate for the context in which it occurs,
the constant is truncated or filled with blanks on
the right.

5. Address constants consist of the character A fol-
lowed by a symbol enclosed in apostrophes. The
allowable symbols are: external symbol with or
without offset, internal symboi with or without
offset, and subscripted variable. The length of an
address constant is always four bytes; its value is
the address assigned to the symbol. Address con-
stants are evaluated at the time they are used.
The current value of any variable referenced as a
subscript is used in computing the value of the
address constant. As a result, the value of an ad-
dress constant that contains a subscripted symbol
may vary during program execution. For example:
A'NAME, AAnBAY(LT) .

Expressions

Arithmetic Expressions
Arithmetic expressions in rcs are similar in most re-
spects to FORTRAN expressions. They can be used as
subscripts, as value to which variables are to be set,
or as values to be compared in logical expressions.

The special character (%) can be used in an arith-
metic expression to refer to a counter incremented
by arrivals at the control poini(s) specified in an ar
command (or a pcs statement that includes one or
more AT commands).

There is no exponentiation or function evaluation
in PCS expiessions.

The rules for formation of an arithmetic expression
are as follows:

1. Any arithmetic expression can be enclosed in paren-
theses.

8]

Arithmetic clements or expressions can be con-

nected by arithmetic operators to form other arith-

metic expressions, provided that no two arithmetic
operators appear in sequence and no arithmetic
operator is assumed to be present.

3. An arithmetic element or expression preceded by
a sign (either + or —) is permitted, whereas the
operators ® and / must be enclosed by elements
and/or expressions.

4. All constants in an arithmetic expression must be of

the same type. Similarly, all variables in an arith-

metic expression must be of the same type. Mixed-
mode arithmetic should not be attempted.

When division is performed in an integer arith-
metic expression, the integral part of the quotient
is retained and the fraction is discarded.

Logical Expressions

A logical expression is used in an 1F phrase and can

take any of the following forms:

1. A single logical variable.

2. Two or more logical variables, connected by the
logical operators & or |, denoting logical anp and
logical om.

3. Two arithmetic expressions of the same type, con-
nected by a relational operator.

The rules for constructing logical expressions are:

1. A logical expression that contains a relational
operator has the logic value “true” if the condition
expressed by the operator is met when the expres-
sion is evaluated. Gtherwise, the expression has
the value “false.”

2. The 71 logical operator must be followed by a logi-
cal expression or term. Similarly, the operators &
and | must be enclosed by logical expressions to
form more complex expressions.

3. Any logical expression can be enclosed in paren-
theses. Any logical expression containing two or
more variables to which the ™ operator is to apply
must be enclosed in parentheses.

Logical expressions that do not contain parenthetical
terms are evaluated in the following order: terms con-
nected by relational operators are evaiuated, then terms
connected or modified by logical operators. When
parenthetical terms are included in a logical expres-
sion, evaluation is performed in the order indicated
above on the terms within parentheses, then on the
reduced logical expression (reduced in that the paren-
thetical terms have been assigned a single logical
value) in the same order. Logical expressions are
evaluated by pcs in the same manner as FORTRAN. The
major difference is the notation used for relational
and logical operators, as illustrated in the following
table:

FORTRAN OPERATOR PCS OPERATOR

.GT.
.GE.
LT.
.LE.
.EQ.
NE.
.NOT.
.AND.
.OR.

Il

—e) {l\/\V\/

Runges

The nispray, seT, and pumMp commands may have as
an operand two internal symbols separated by a colon
{:), thus indicating a range of variables and arrays to
be displayed or dumped. For example:

DISPLAY MAIN.I: MAIN.A

Commands

The following section describes, for each pcs com-
mand, the format of the command and its operands,
and some examples of how it might be used in check-
ing out a program.

QUALIFY Command

The @uaLiry command allows the user to enter implic-
itly qualified internal symbols, which are all defined
in a single source program, after he has issued this
command with the appropriate defining program
name.

Example:

QUALIFY FITNPGM

where FINPGM is the name of the compiled module.
[f the compiled object module has been link-edited,
hoth the compiled object module name and the link
edit output module name must he specified. An 1sp
must be available in order to use this command. When
an object module has been link-edited, an 1sp must
have been requested for the output object module in
addition to the one requested at compile time. Only
one QUALIFY is in effect at a time, and each successive
one overrides the previous one.

AT Command

The AT command causes control to be passed to
rcs when the named FORTRAN statement is reached but
before it is executed. Other actions (if any) in the pcs
statement are performed prior to resuming execution.

The system assigns a pcs statement number to each
statement containing an AT command.

Each time the statement specified in the AT com-
mand is reached during execution, a standard output
is presented to the user except where the statement
contains an 1F condition that is found to be false. This
output includes the FORTRAN statement number at
which the command became effective, certain pro-
gram status information, and the pcs statement num-
ber. The program status information includes the vir-
tual storage location of the instruction being executed
and the settings of several internal indicators.

Unless the pcs statement containing the at command
also contains a sTop, execution of the user’s program

Appendix B: PCS and FORTRAN Object Programs 101

is automatically resumed following the actions re-
quested. Only CALL, DISPLAY, DUMP, IF, SET, GO, BRANCH,
and stop can follow an aT. BRancH and sTop must be
the last in the dynamic statement. A co command is
meaningless in an aT statement and will be ignored.

Two or more operands, each separated by commas,
can be specified in an AT command, but each must be
the statement number of an executable statement.

Given the following statements in a source program
named MAINT:

IF {A) 10, 20, 30

10 X=1
GO TO 40

20 X =2
GO TO 40

30 X=23

40 IF (A.GT.B) GO TO 50
GO TO 60

50 .

60 STOP

The flow through the 17 statements could be traced
with the vcs command.

QUALIFY MAIN1

AT 10, 20, 30, 40(2), 50

The counter referred to by the special character %
is incremented by one each time the executing pro-
gram arrives at a statement designated in an AT com-
mand. The counter is incremented even when the aT
command is included in a pcs statement that contains
an IF phrase that is evaluated as false.

DISPLAY Command

The pispLay command is used to print the contents
of specified variables or arrays. The format of the out-
put is determined from the type and length of the
data.

The pispLAY can have a list of operands, each sepa-
arated by a comma. In addition to simple variables,
the following can be displayed:

Arrays — When the operand of a pispray is an array
name without a subscript, the entire array is
printed.

Ranges — When the first and last variable names, sepa-
rated by a colon, are specified, a series of arrays
and variables can be displayed. The user must be
aware of the storage locations assigned by the
compiler, since the last variable to be displayed
must be in a higher storage location than the first
variable. The storage assignments made by the
compiler can be determined from the storage map
optionally selected at compilation time.

102

Control Section — When the name of a comatox block
is specified, the entire contents of the area is dis-
played. The entire psect containing all non-com-
mon variables can be displaved by specifying the
rsecT name. If the name of the coamron block or
pseCT is qualified by the module name (i. e., speci-
fied as a qualified internal symbol), each variable
or array in the area is identified and formatted
according to its data type. When the name is not
qualified by the object modale name (i. e, the
external symbol form is used), the contents of the
area are displayed in hexadecimal. This method
can be used if an 1sp is not available for the object
module, but, again, a storage map should be avail-
able for locating the variables in storage.

Module Name — When a module name is specified as
an operand, a control section map is formatted.
The map contains such information as: the name,
location, and length of each control section; the
version of the module and each control section;
and the entry point and save area location of the
module.

Dummy Arguments — Arguments to subprograms can-
not be displayed until the subprogram has been
entered and they have been replaced by the actual
argnment values.

If the user is operating in conversational mode, he
can terminate the action of the pisrray command by
pressing the attention button at his terminal.

If a FORTRAN subroutine named suBr consists of the
following statements:

SUBROUTINE SUM (A, N, M}
COMMON B, C. D
REAL®S A(N, M)
DO20T =1, M
DO101=1.N
10 C=C+A(LT)
20 CONTINUE
RETURN
END

Then the following would be valid pispLay com-
mands:

QUALIFY SUBR
DISPLAY CL]

to cause each variable in the list to be
formatted and printed.

DISPLAY A to cause each element in the array to
be displayed.

This statement is equivalent to
DISPLAY A{1,1):A(NM)

to cause the contents of B, C and D
from the unnamed COMMON to be
printed.

DISPLAY B:D

DUMP Command

The punsp command is used to cause the contents of
specified variables or arrays to be written in the pcsovT
data set.

The pump command provides exactly the same re-
sults as the pispray command. pump should be used
when there are large amounts of data and/or when an
offline output of data is desired. The operand of the
punMP command is identical to that of the pispLAy
command.

The pper command must be used to define the
pcsouT data set before the puate command is issued.
If no definition has been given, the conversational
user is prompted to issue it. In a nonconversational
task, if the pper is not entered prior to the pumr,
the task is terminated. The organization of the pcsour
data set is v1.

The user is prompted at log-off time as to whether
or not he wishes to catalog the data set. Since pump
output is not interspersed with sysout output, the user
should provide a means of correlation if one is re-
quired.

Using the sample source program from the pispray
command description, the user might enter the fol-
lowing commands:

DDEF PCSOUT, VI, DSNAME —name

DUMP SUBR. 2COM This command would cause the
contents of the unnamed COM-
MON block (in this case, vari-
ables B, C, and D) to be format-
ted and placed in the PCSOUT

data set.

DUMP SUBR. SUBR#P

This command would cause the
contents of the subroutine’s
PSECT to be formatted and
placed in the PCSOUT data set.
Included would be variables I
and J plus miscellaneous con-
stants generated by the compiler
as needed for program execution.

IF Command

The 1r command is used to specify a logical expression
that must be true in order for any other commands in
the statement to be performed.

If the pcs statement containing the 1F also contains
one or more AT commands, the logical expression is
evaluated when the statements specified in the AT com-
mand are reached. For example, the following state-
ments appear in a source program named CALC:

5 DO16I = 1, 5000

CALL SUB(ANS}
IF (ANS) 20, 10, 10

10 CONTINUE

20 STOP

If it is discovered that the upper limit of the po loop
(5000) has been set too high, the following rcs state-
ment could be entered.

QUALIFY CALC
AT 10;IF 1=—1000;5TOP

Then, once execution starts, each time control
passes to statement 10, the value of I is tested for
equality to 1000. If I reaches the value of 1000 before
going to 20, the pcs stor command is performed.

The counter associated with a pcs statement con-
taining the atT commands, referred to by the special
character %, is incremented by one whether or not the
logical expression in the 1F is true.

The % counter can be useful in controlling loops
in source programs and in controlling the effectiveness
of rcs commands. For example, the above pcs state-
ment could be replaced with:

QUALIFY CALC
AT 10;IF %==1000;STOP

In the last statement, rather than testing the value of
the variable I, a count is incremented each time con-
trol passes to statement 10. The stop is activated when
the count reaches 1000.

Other uses of the % counter can be seen from the
following examples:

QUALIFY CALC

AT 10;IF %=—1;DISPLAY ANS

The pispray would be performed only on the first
arrival at statement 10

QUALIFY CALC
AT 10;1F %=(%/10)"10;DISPLAY ANS

The pispray would be performed every tenth time
statement 10 is reached. This example shows that the
fraction is discarded in integer division.

REMOVE Command

The reErxOVE command permanently cancels all dy-
namic pcs statements whose numbers are specified as
operands. rcs produces a statement number following
entry of each statement containing an AT command.
These statement numbers are used in the REMOVE com-
mand to specify the res statements to be canceled.
Taking the following source statements as an ex-
ample:
C PROGRAM MAIN
10 READ (1, 20)A
20 FORMAT (F6.2)
IF (A} 10, 30, 30
30 B = A®3.14
WRITE (2, 20)A, B
GO TO 10
then the following statements could be entered to
check the progress through the program:
LOAD MAIN
QUALIFY MAIN
AT 10(2); DISPLAY A
AT 30(2); DISPLAY B; STOP
CALL

Appendix B: PCS and FORTRAN Object Programs 103

When control reaches the 1r statement, the value of
A is displayed; when the wriTE statemert is reached,
the value of B is displayed. The stcp causes the next
command to be read. The user might then decide
that the program is evecuting correctly, and wish to
continue running without the checkout statements. He
could then enter:

REMOVE 1, 2
Go

In this example, the numbers 1 and 2 are the pcs state-
ment numbers that have been assigned to sach At
command. They are printed immediately following
entry of the statement either at the user’s terminal if
in conversational mode or on the sysout data set if in
nonconversational mode.

CALL, GO, BRANCH Cemmands
These commands can be used either as a separate com-
mand or as part of a pcs staternent. The effect of these
commands is to transfer system control of a task from
command mode to program execution mode.

The commands have three forms: CALL, GO, BRANCH.

1. carr [module-name]
The carr command loads the module named in
the operand (unless it is already loaded) and
initiates execution at the beginning of the program.
Only main programs should be referenced by the
caLr. command; otherwise, the results are unpre-

dictable.

2. co

There is no operand. This command is used when
the user wishes to resume execution foilowing a
PCs sTOP command, a FORTRAN PAUSE statement, or
an attention interrupt.

3. BRANCH [module.stmnt-no]

This is used when the user wishes to change the
flow of a program; it is equivalent to a co To state-
ment in the original source program. The object
module must be loaded and executing prior to is-
suing the BrancH. This form cannot be used in
initiation of program execution or in situations that
are illegal in the rorTrAN language (e.g., illegal
entry into loops). The statement number must
be an executable statement.

For example, if the following statements appear in
a source program:
C PROGRAM MAIN1

10 X=A
GO TO 20
20 X

104

30 CALL SUBR(X)

and the user discovers that the co To statement has
the wrong statement number, he can temporarily
correct the invalid co To with the following pcs
statement, so that the rest of the program can be
debugged.

QUALIFY MAIN1
AT 10(2);BRANCH 30

Note that the BraNcH command combined with an
AT cannot be used to insert a missing co TO state-
ment without bypassing the statement referred to in
the at. In the above example, if the co To had been
missing from the source program, the Braxcu com-
mand would have to be made effective at statement
10. In this case, the assignment statement x = A
would be bypassed, so that a seT comand would be
necessary to achieve the same results.

SET Command

The seT command is equivalent to an assignment stata-
ment in the original source program. It enables the
user to change the contents of any variable or array
element. It has the form:

SET a=—Db

where a is any simple variable or subscripted array
element, and b is any logical or arithmetic expression.
A list is allowed; for example:

SET a=b, c=d, e=f

When the ser is performed, the new value of the varia-
ble is displayed on sysout in the same format as if
the name had appeared in a pisprAy command if
LiMEN—L This output is preduced from the changed
field and reflects the results of conversions and ex-
pression evaluation.

In a seT command, all variables and constants must
be of the same type. The permissible lengths vary with
the type. Real variables or constants must be 4 or 8
bytes in length, integer 2 or 4, and logical 1 or 4.

If the expression is a character constant that is not
the same length as the variable, the character consctant
is cither truncated or filled out on the right with
blanks. If the expression is a hexadecimal constant
that is not the same length as the variable, the hexa-
decimal constant is truncated or filled on the ieft with
ZEros.

In the example given for the cair, co, and BrRANCH
commands, the missing co To statement could be effec-
tively inserted by the following pcs statement:

AT 10;SET X — A;BRANCH 30

The seT command is useful in setting variables to some
initial value, in correcting erroneous assignment state-
ments, and in inserting missing assignment statements.
It should not be used in a situation that is invalid in
the original FORTRAN pregram. For example, in the fol-
lowing statements:

5 DO10I=],K

L(I)=L(I)4+M

10 CONTINUE
the values of I,] and K cannot be changed by a dy-
namic SET command that may be activated at state-
ments 5(2) or 10. The ser command could be used at
statement 5, however, to initialize the values of j and
K. For example:

AT5SET J = 1, K = N/2

The seT command, like pisrLay and punp, can refer
to dummy arguments to a subprogram once the sub-
program has been entered.
A complex variable can be sEr to the value of
another complex variable, but it cannot be seT to a
constant value, nor can complex arithmetic be per-
formed with ser. For example, if a FORTRAN program
had the following specification statement
COMPLEX"16 A, B, ¢(10, 10)

the foliowing sET commands would be valid:
SET A == B
sev c(1,1) = cfe, 1)

A ser command cannot refer to the control section
containing instructions generated by the compiler. The
virtua! storage assigned to this control section by the
system is protected so that its contents cannot be
changed,

STOP Command

The stop command halts execution of a module and
prints the current instruction location and program
status information. stor does not have an operand.
Execution of the module can be resumed with a rux
or co command; if execution is not resumed, any data
sets that the module has left open should be closed
with the cLosE command.

PCS Diagnostics

pcs, like the vorTRAN compiler, examines each state-
ment for validity and issues diagnostics alerting the
user to errors.

Diagnostics usually are issued immediately upon
reading the command. The conversational user can
reenter the statement with the necessary correction
made. The nonconversational user has no chance to
correct errors; a diagnostic message is issued and the
rcs statement is ignored.

Certain errors arc not detected until execution has
begun. These errors are the result of some action that
has been requested in a dynamic pcs statement (i.e.,
one containing an AT command). In a conversational
task, after the diagnostic is issued, the terminal is
placed in command mode. The user can then remove
the erroneous statement, reenter it correctly if he de-
sires, and continue execution with a co. If he wishes
to perform the corrected statement immediately, he
must use the statement number in the AT operand
of the Branci. In a nonconversational task, the diag-
nostic is written on the sysour data set and the next
command is read from sysmv. This may result in pre-
maturely terminating program execution.

The errors described below are those that are not
detected until execution has begun.

Dimension Errurs

Each time the user refers to a subscripted array
in a rcs command, the subscript values are checked
against the dimensions of the array as declared in the
FORTRAN program. Since the values of variable sub-
scripts may vary during execution, the error is not
detected until the command containing the invalid ref-
erence is performed. Constant subscripts that are in
crror are detected when the statement is first read,
and the user is informed immediately. If an array is
a dummy argument, subscript errors are not detected
until the command is performed, since both the di-
mensions of the array and the subscripts may be
variable.

Range Errors
A pISPLAY or puMmp command may have as its operand
a range of symbols. These symbols, which represent
the starting and ending storage locations to be printed,
must be in sequential order. When both symbols are
subscripted arrays, the subscripts must be evaluated
to determine the particular element being referred to.
To illustrate:

QUALIFY MAIN1

AT 10;DISPLAY A(1):A(T)

If, when control reaches statement 10, the value of 1
is higher than the value of], the range would be
invalid.

Program Interruption

Program interruptions can occur any time an expres-
sion must be evaluated in a rcs command. Five such
interruptions are recognized:

1. Fixed-point overflow exception

2. Fixed-point divide exception

3. Exponent-overflow exception

Appendix B: PCS and FORTRAN Object Programs 105

4. Exponent-underflow exception
5. Floating-point divide exception

When any of these interraptions occurs. a warning
message is issued to the user and the requested action
is not performed. These interruptions are not proc-
essed by the interruption handling module provided
by the compiler; therefore, any CALL OVERFL or CALL
pvcHK statements do not recognize the interruption.
(Refer to Appendix C for more details on program
interruptions.)

106

Dummy Arguments

When dummy arguments are referred to in a pcs com-
mand, the subprogram in which they are declared
must be entered prior to the point where the command
is activated. Dummy arguments must not be used to
form a range of variables to be displayed or dumped.
There are also those conditions under which dum-
my arguments are not defined in the 1sp for the
subprogran,

This appendix addresses a number of topics that can

assist the Tss/360 FORTRAN programmer in achieving

efficient and trouble-free execution of his object pro-

gram. The sections of this appendix discuss:

1. Object-time efficiency through compiler optimiza-
tion, optimal use of source statements, and use of
the linkage editor and dynamic loader.

PO

. Effect of compiler optimization on the use of the
program control system (pcs), describing con-

ditions under which the user may want to inhibit
optimization by the compiler of the object code.

(o]

Multiple executions, to alert the user to possible
problems when executing more than one program
between a LocoN and a LOGOFF.

Library management.

o

W

. System naming rules that prevent the user from
inadvertently choosing a subprogram or other ex-
ternal name such that a conflict would occur be-
tween this name and a system name.

6. Executing commands from within a FORTRAN pro-

gran.

7. Miscellancous programming considerations.

Object Time Efficiency

Object Code Optimization

Efficient object code can be achieved by optimizations
performed by the compiler, by optimal ordering of
source statements by the programmer, or both.

Compiler Optimization

This section describes optimization of the user’s pro-
gram normally performed by the compiler. The section
“Effect of Compiler Optimization on pcs Usage” dis-
cusses the relation between compiler optimization and
use of the program control system (ecs).

A considerable amount of the compiler’s effort is
devoted to producing an efficient object program. This
processing is called “optimization.” The effects of the
compiler’s optimization can be seen by examining the
optional object code listing. It can be observed that
the instructions to perform certain computations are
sometimes niot located where one would expect to find
them. This is due to the action of two optimization
processes: (1) recognition of “common” expressions
and (2) removal of expressions from po loops.

Appendix C. Programming Considerations

Two occurrences of the same expression in a FOR-
TRAN program are “common’ if there is no possibility
of any of the operands receiving a new value between
the occurrences and if program control cannot reach
the sccond occurrence without having passed the first
occurrence. In this situation, the compiler often gener-
ates code to evaluate the expression only at the first
occurrence and to reuse this value at the second and
later occurrences.

If an expression occurs in a po loop and if none of its
operands can have different values for different repe-
titions of the loop, the expression is “removable.” The
compiler generates code to evaluate such an expression
before entering the loop and to use the computed
value where needed inside the loop.

These processes can contribute much to the efficien-
cy of the object program, but there is an important
side effect. If the program is testing for such condi-
tions as arithmetic overflow and divide check, the
operations giving rise to these conditions may not oc-
cur at the expected place or with the expected fre-
quency. A related optimization process is the compu-
tation by the compiler of all quantities whose operands
are constants instead of the generation of instructions
to carry out the computation in the object program. If
the values of the constant operands are such as to
cause overflow, the overflow will take place during
compilation (causing a diagnostic message) rather
than during exceution of the object program.

Compiler optimization can also cause register con-
tents to be used at points quite remote from the point
of Ioading. In some cases, frequently used address
constants may he loaded into general registers only
at the beginning of the program and kept there per-
manently for use as needed. Other addresses, subscript
expressions, ete., may be held in registers acress the
range of a po loop or nest of loops. Even where such
“global” register assignments are not made, the con-
tents of any register, once established, is remembered
and may, under the proper conditions, be used later
without reloading.

Subscript expressions, especially those involving po
loop variables, receive extensive manipulation, and
their evaluation may be spread over several levels of
a no loop nest. In such instances, an occurrence of a
loop variable multiplied by other factors is evaluated
by initialization at the top of the loop and addition of
an increment at the bottom just before returning for
another iteration.

Appendix C: Programming Considerations 107

If the most recent value of a po loop variable is al-
ways stored in its assigned location each time through
the loop, the po loop variable is said to be “material-
ized.” In many po loops, there is no computational
need for the value of the loop variable and it may not
be materialized. Instead, a subscript expression in-
volving the loop variable will be tested to determine
the current number of repetitions of the loop. A fea-
ture of the rorrtraN language is that no assumption
can be made aboat the value in the storage location
assigned to a po loop variable after the loop has been
executed due to completion of the proper number of
repetitions. (This does not apply to other exits from
the loop, since the existence of such exits as a co TO
statement causes the compiler to materialize the loop
variable.)

Examination of the optional storage map of the ob-
ject program produced by the compiler can show that
the storage assignments for non-conmon variables are
not made in the order of declaration or appearance in
the source program. Rather, these variables are as-
signed by the compiler in an order intended to mini-
mize the number of distinct address constants and
subscripts needed in the object code. Undimensioned
variables are placed first, followed by arrays in order
of increasing size and dimensionality. Variables whose
assignments are controlled by EQuivarexce relations
are vlaced after those that are not in EQUIVALENCE.

The purpose of EQUIVALENCE is to permit overlays
to reduce object-time storage use. It is not intended
to permit intermingled references to the same storage
locations by two different names. If X and Y are as-
signed to the same storage location by rQUIvALENCE,
and a value is given to X. there is no guarantee that
a subsequent reference to Y in the same program will
use this value. The compiler’s optimization processes
do not recognize the relationship between X and Y.

Efficient Use of FORTRAN Statements

The above section described optimization performed
by the compiler on FoRTRAN programs. Further optimi-
zation of the object code can sometimes be achieved
by the ForTRAN user’s being aware of uses of the
FORTRAN language leading to more efficient object
code. Such uses are described here. Under no circum-
stances, however, is the user required to program in
accordance with the guidelines presented here.

The compiler’s optimization is limited in various
ways, such as lack of freedom under the rules of the
FORTRAN language (e.g., the compiler cannct rearrange
variables in a common block) or lack of information
(e.g., the compiler cannot make any assumptions about
tha behavior of external subprograms).

108

In laying out user-controlled storage (comrion and
EQUIVALENCE), the user can find it worthwhile to align
the storage locations for all variables to the proper
byte boundaries for their arithmetic or logical type:
doubleword, fullword, or halfword quantities should
be assigned to locations that are multiples of eight,
four, or two storage locations, respectively, from the
beginning of the area being laid out. This permits
access to these quantities by machine load and store
instructions rather than by subrontines accessed as the
result of specification exceptions. (See the discussion
of object program interruption provisions in the
Miscellaneous Programming Considerations section
below.)

If the user, when ordering a comyon block, fol-
lows the same criteria used by the compiler in laying
out non-comnioN variable storage, the same bene-
fits accrue. Placing scalars first, then small arrays, ete,,
tends to improve the address coverage in the object
code and obviates the need for object-time boundary
alignment.

Since each comMmon block must be covered by its
own address constants, the use of a large number of
small common blocks leads to less efficient addressing
than a few large blocks.

In passing information to a subprogram, explicit
arguments are more expensive than implied arguments
in convioN. Not only must each individual argument
have its own address cover in a subprogram, but in-
structions in the subprogram prologue must be exe-
cuted to move the address in from the calling se-
quence. A group of arguments in a commox block,
however, can all be addressed with the same address
constant and need no initialization.

The compiler’s manipulation of expressions is re-
stricted by the ForTrRAN language requirement that the
source program associations (both explicit associa-
tions determined by parentheses and those implied by
left-to-right order) be respected. a+B+c must be
treated by the compiler as (a+B)+c. Common expres-
sions, removable expressions, and constant expressions
can be recognized only if the associativity permits.
Therefore, the efficiency-minded user writes expres-
sions in such & way as to permit optimization.
For example, in 4*(2./3.), the division of constants
is done by the compiler; in (a®2.}/3. it is not. If x1
and k2 are unchanging in a po loop on I, the sum
k1+K2 is computed outside the loop if x1+x2+1 oc-
curs; it is not removed from 1+Xx1+X2, or K1+I1+K2.

The compiler is unaware of the properties of sub-
programs external to a program being compiled. Even
for rortrAN 1v-supplied subprograms such as siN, the
user is free to substitute his own subprogram for the
library routine. Therefore, the compiler does no op-

timization on external function calls. If the user wants
to save execution time by eliminating redundant calls
on the same function with the same arguments, he
must do this himself in his FortrRAN program. Only
the user has the necessary knowledge of whether or
not a function uses or changes variables in commox,
changes its arguments, performs 1/0, runs internal
counters, ete. (The function routines supplied in the
ForTRaN 1v-supplied subprograms do none of these
things.)

The use of mixed arithmetic types in expressions
and across the equal sign in assignment statements
leads to the execution of conversion functions, the
most expensive of which are those converting ReaL
to INTEGER and vice versa. Unnecessary use of mixed
types thus diminishes efficiency.

Although the compiler may remove expressions from
po loops, it does not remove complete statements. For
example, every assignment statement occurring in a
loop results in at least a storing of a value into the
left-side variable on each repetition of the loop. For
efficiency, statements that are entirely invariant within
a loop should not be placed inside the loop.

Much normal optimization is inhibited for po loops
with extended range (i.e., a branch out of the loop to
execute some remote statements, followed by a branch
back into the loop). This programming practice re-
duces the efficiency of those po loops in which it is
used.

Computed o To statements with three or less des-
tinations produce less efficient code than equivalent
arithmetic 1¥ statements.

At the time of writing his program, a user thinks
in terms of virtual storage, of which he has a very
large amount available. During execution of the pro-
gram, the system maps this virtual storage onto the
much smaller actual main storage of the computer,
using a page (4096 storage locations) as the basic
unit. Each page of virtual storage referred to in the
program must be made available in main storage be-
fore the reference can be successfully made. Two at-
tributes of a program can decrease the efficiency of
TSS/360 in carrying out this task, resulting in a loss of
system performance. These attributes are references
to a number of different pages in rapid succession and
a large number of total pages required. Some simple
programming and operating practices can alleviate
both problems.

When indexing a large multi-dimensional array, it
is better to vary the left-most subscript the most rap-
idly. This causes the array elements to be accessed in
order of their location in storage rather than out of
order. For example:

DO 24 [=1, 50
DO 24 T=1, 80
24 A(L])=1.0
is better than
DO 24 1=1, 80
DO 24 =1, 50
24 A(LJ)=1.0
from the point of view of page utilization.

In coding a subprogram, it may be worthwhiie to
move the value of an argument into the subprogram
by setting a local variable equal to it, if the argument
is referenced frequently but is not an output argu-
ment of the subprogram. For example:

FUNCTION F(X)
XLOCAL=X

Y—=XLOCAL/Z

(ai)d other references to XLOCAL, rather than X)
is better than
FUNCTION F(X)

Y=X/Z

(and other references to X)

since in the latter case the actual argument presented
for X in a call on the subprogram is located in some
other module and, hence, probably on a page that
would otherwise not need to be accessed during the
execution of the program F,

The user can also minimize the number of pages
referred to, where the executable code generated for
his FORTRAN statements exceeds one page or extends
over many pages. The general rule for attaining mini-
mum page references for such programs is to place
infrequently used statements in a separate subpro-
gram. If this is inconvenient, the infrequently-used
statements could be placed in a separate area of the
program, near the end perhaps, while grouping to-
gether those areas of the program that will be exe-
cuted most frequently. Since calls on subprograms are
in general references to separate pages (unless link
editing is performed, as discussed below), it may be
more efficient to minimize the number of subprogram
calls within areas where optimum efficiency is desir-

able.

Use of Linkage Editor to Improve Obiect-Time Efficiency

Linkage editing is a valuable process for reducing the
total number of pages required for execution of a pro-

Appendix C: Programming Considerations 109

gram using many subprograms and for obtaining bet-
ter utilization of allocated storage. Object program
loading time can also be reduced by linkage editing
to package the control sections together and thus pro-
duce a dense packing of virtual storage. The order in
which programs arce packed should be such that as
few references as possible are made by code in one
page to code in other pages. Maximum efficiency can
therefore be achieved if the packing is done following
a study of relation between programs and between
different parts of large programs.

Use of Dynamic Loader to Improve Object-Time
Efficiency

Explicit unloading (using the unrLoap command) of
modules that are no longer of interest to the user in
a session is a good practice if:

1. these modules referred to a great many different
pages of virtual storage; and

1o

no further references will be made to these pages.

Use of Control Section Packing to Improve

Object-Time Efficiency

To allow the system to function more efficiently when
executing object program modules, a dynamic method
is provided for combining more than one control sec-
tion into a single page of virtual storage at cxecution
time. Fewer pages will thus be referred to, reducing
system paging requirements. Control sections of like
attributes within a module will be allocated con-
tiguous storage, with the secondary control sections
aligned on doubleword boundaries. You elect the
type of control section packing to be used (if any)
in your Loco~ command.

Effect of Compiier Optimization on PCS Usage

Appendix B contains a description of the use of pcs
with rorrrax programs. In Appendix B it is stated
that the ForTrAN user should select the 1sp option to
ensure that the rcs statements operate correctly. The
following paragraphs explain why the rcs user should
gencerally request an 1sp, and under what conditions
he need not request an 1sp.

Due to the optimization method, use of rcs with
optimized FORTRAN programs might easily lead to er-
roneous results, For example, consider the following
program:

50 DO200I=1,N

100 X(I)=A(I) -+ (B+1.0)
200 CONTINUE

110

The sum of (B--1.0) is in no way affected by the
fact that a loop is occurring in which the sum is re-
quired, so the compiler computes the sum once, out-
side the loop, and uses this value inside the loop.
Suppose now that the user wants to change the value
of B at statement 100 using the rcs ser statement. A
fully optimized object program would not be aware
that B has been reset, as (B-+1.0} would not be re-
computed within the loop; thus, the user’s intent
would not be accomplished.

A second example of compiler optimization leading
to problems when pcs is used would be where, in the
above example, the Forrran user wants to use the
pcs pisPLAY command to determine the current value
of the loop variable 1. The object code would have
no need for T except for counting passes through the
loop and indexing into the X and A arravs, so no
code would be generated to save the current value of
I in the storage location assigned to I. (Indeed, no
storage location may have been assigned to 1.) Thus
a pispLAY of T would not produce the desired results.

It is clear that such complex restrictions on Pcs
usage as implied by the compiler optimization pro-
cedures would not be desirable. For this reason, the
FORTRAN user may request that the compiler modify
its generation of the object program in such a manner
as ta allow complete use of res facilities on FORTRAN
object programs. The user requests such modification
of objccet code generation by specifying, following his
entrance of the Frx command, that he wishes an In-
ternal Symbol Dictionary (1sp). Such a request:

1. Inhibits optimization as required to allow all pcs
capabilitics to be available

2. Produces an 1sp, which allows the rorTRAN user
casy reference to all symbols within the rorrrax
subprogram

A user can still use rcs, of course, even if he does
not request an 1. To do so, however, he must have
extensive knowledge of his object code to be assured
that his rcs requests will give the desired result.

There is one type of res usage in which the ForTrax
user must exercise considerable care, even if an 1sp
is requested. This use of rcs can be described with
the aid of the following program:

DO 101=1, M
M=M+}1
5 L(I)=L(I)4+M
10 CONTINUE

The statement M—=M--1 is clearly illegal, as it vio-
lates a rorTRAN language rule (and the compiler pro-
duces a diagnostic message). Just as it is illegal in

the original ForTRAN program, it should not be simu-
lated by compiling a program without the M=M-}-1
statement but directing rcs to add one to M at state-
ment 5. Similarly, in the following example, the use of
pcs to specify that at statement 100 the program
should transfer control inside the no 200 loop (using
the rcs wux directive) is not legal, as this would
violate a language rule were it replaced by a co To
200 in the original FORTRAN program.

100

DO 200 1=2, 10
AT =A(I4+1)/A(1-1)
200 CONTINUE
However, it is legitimate in the following program,
at statement 100, to direct the object code to rRUN at
statement 200, as this is equivalent to a co To 200 at
source statement 100, a legitimate branch.
50 READ (5,9, END=200) A, B

X=A®°24 A/5.1416—A""B
100 WRITE (6, 9)A, B

GO TO 50
200 STOP
9 FORMAT (2E20.7)
END

Muliiple Executions

“Multiple executions™ refers to executing more than
one program between logging on and logging off.

Data Definition Considerations

A ppEF command provides the linkage between the
data set reference number used in the rorTRAN pro-
gram and the actual data set. Once a voer has been
entered, it remains in effect until rocory unless the
definition is released or redefined.

If two programs are executed in succession, the
following conditions could arise:

1. Both programs refer to the same data set with the
same data set reference number. One ppEF com-
mand issued prior to the execution of the first pro-
gram is sufficient for both executions if the data
set is read in both programs or written in the first
and read in the second. If, however, the data sct
is written in both programs and not rewound in
the first, the data is not automatically concatenated.
Data written in the first execution would be de-
stroved by the write operation in the second exe-
cution. If the user does not want this to occur, he
must take the steps outlined in item 3.

2. Both programs refer to the same data set with dif-
ferent data set reference numbers. Each execution
must be preceded by a pprr command giving the
ddname as appropriate for the data set reference
number. Since the second ppEF contains the same
dsname as the first, cffectively redefining it, the
first definition need not be released.

3. Each program refers to a different data set with
the same data set refererice number. Each execu-
tion must be preceded by « ppEF command giving
the dsname for the ddname. In addition, since the
second ppEF has the same ddname, the first defini-
tion must be released prior to the second pogr.
When a data set on a private volume is released,
the input/output device is also released unless an-
other defined data set resides on that same volume.
In a nonconversational task, if a device is freed by
a RELEASE command, the user must account for this
when specifying the secure command. For example.
if two programs read different data sets on separate
private volumes and both are referred to by data
set reference number 1, the following procedure is
necessary:

a. secure Two devices — even though only one

device is needed at any one time

b. PDEF For first data set

¢. CALL First execution

d. reLEasE Tirst data set

€. DDEF Tor second data set
f. ruN Second execution

Linking COMMON Between Multiple Executions

When executing a series of programs in sequence, if a
prior module is not unloaded before the execution of
the next program. any external symbol reference in
the second module will be resolved, if possible, by
definitions of that symbol in the first module. This
may or may not be desirable. If this is not desirable,
an uNLoAD command should be issued after the first
main program has completed execution, causing any
blank or named comvyons to be removed from the
task’s allocated storage. Any subsequent module that
is loaded containing a comyon block would have stor-
age allocated as if it were the first usage.

When the user does want to pass the same coMMON
block from one execution to the next, the UNLoAD
command should not be entered. In this case, the
references to commMon in the second execution would
be to the cosmaion that was allocated storage with the
first execution, if both are unnamed or have the same
name.

Appendix C: Programming Considerations 111

Program Libraries

Program Library List Conirol
A program in TSs/360 can consist of one or more object
modules. All programs in Tss/360 are stored in object
module form in program libraries, which are parti-
tioned data sets. A program consisting of only one
object module is stored entirely within one library;
however, if a program consists of severai object mod-
ules, those modules may reside in different libraries,
depending on how the user has stored them. During
link editing and execution, the system can automat-
ically retrieve all object modules required, if the user
has defined the libraries containing those cbject mod-
ules. The method for doing this is described in the
following paragraphs.

There are four categories of program libraries:
1. System library (sysiiB)
2. User library (userL1B)
3. User-defined job libraries
4. Other user-defined libraries

155/360 does not allow a library to contain more
than one declaration of any externai symbol, except
those control sections that have no content (e.g.,
named or blank common from a FORTRAN main or
subprogram).

The system library contains some service routines
provided by the installation. It also includes the
FORTRAN supplied subprograms.

The user library is the private library assigned to
each user when he is joined to the system. This library
is automatically defined for him and made a part of
his catalog by the system. His user library is thus avail-
able each time he logs on. If the user does not specify
job libraries in a task, the object modules resulting
from his use of the language processors are placed in
his user library.

The user may want to restrict his user library to
object modules that he executes frequently or that he
uses frequently in the buildup of other object modules.
The system’s library list facilities make it possible for
the user to control the contents of his user library.

The program library list is a defined hierarchy of
program libraries. It is initialized at log-on time and
consists of the user library and sysLis.

The library at the top of the list automatically re-
ceives all object modules resulting from language
processing. As noted akbove, if no job libraries are de-
fined, the library at the top of the list is always the
user library. However, the user can specify that a
job library be added to the program library list to
receive the output of the language processors. He
does this by issuing a ppEr command defining that

112

job library and containing the operand orriON=—
JoBLIB. When this command is executed, the name of
that job library is added to the top of the program
library list. That library then receives all subsequent
module output of the language processors until an-
other job library is defined (and is thus at the top of
the list) or until a RELEASE command is issued for that
job library. A job library must always have a ve data
set organization; it can be defined on public or private
volumes.

In addition to using the program library list to store
object modules, the system uses this list to control its
order of search when looking for object modules that
must be loaded at execution time. The library at the
top of the list is searched first, then the next-to-the-top
library, ctc. until finally, the user library and sysvis
are searched.

In summary, the user has the following basic library
setups for handling the object modules by the lan-
guage processors.

® User library — As this is always available and is al-
ways searched, the user may want to reserve it
for frequently used checked out programs. All
user’s USERLIBs are kept in public storage and,
hence, are always mounted on system devices.

¢ Session JOBLIB — By issuing a ppeF command for
a new library at the beginning of a session, a
user can create a library to contain all modules
assembled or compiled during the session.

¢ Cataloged Private Volume joBLB — A user can di-
rect output to and retrieve it from a library of
infrequently used modules by issuing a ppErF com-
mand for a cataloged job library that resides on
a private removable disk pack. When using pri-
vate job libraries in a nonconversational task, the
user must request (via secure) a device for that
job library. Modules can be entered in such a
library:
¢ Automatically if the library is the latest defined
one in the session.

¢ By link-editing it from his userLiB, session job
library, or public device job library and speci-
iving to the linkage editor the desired private
device job library as the output destination.

¢ Cataloged libraries on private volumes can
also be shared among users.

¢ Cataloged Public Volume josrLiB — This type of
library can be useful in setting up (and using) a
library of frequently used programs whose names
and external symbols conflict with cther programs
in UsERLIB. For example, versions of frequently
used programs can be set np with one USERLIB
and another in a job library. All job libraries re-

siding on public volumes are autematically cata-
loged at pper time and may be shared among
users,

During linkage editing, the program library list can
also be used to define to the system:

® The library that is to receive the link-edited object
module.

= The sequence in which libraries are to be searched
if the system must find other object modules to de-
fine references in the linkage-edited object module.

The fourth category of libraries may ¥« defined by
a ppEF command with the joBLIB operand omitted.
Such libraries may be referred to by a linkage editor
INCLUDE statement, but are not listed in the program
library list, and hence are not included in the auto-
matic library search, nor are they available to the
dynamic loader. Refer to Linkage Editor for an ex-
planation of linkage editor program libraries.

Since one library may not contain more than one
definition of any external symbol, different versions of
the same program must be kept in different libraries.
For example, a user has a checked-out program in
his userLiB and wants to recompile the program with
modification but retain his original version until the
new version has been checked out. A pper with a
JOBLIB option causes the new module to be stored on
the job library rather than userLis. The user can con-
tinue after compilation with his checkout of the new
version, since any subsequent LoAD or RUN command
in the task naming the module retrieves the new ver-
sion from the job library. If, when the new version
has been successfully tested, the user wants to re-
place the old version with the new version, he can
linkage-edit the new version onto his userLiB. Link-
editing can be used to copy a program module from
one library to another. If the user does not want to re-
tain the new version, he must either erase the mocule
on the job library or release the job library. Releasing
the library removes it from the program library list
and automatically causes subsequent retrievals of that
module to revert to userLis. Erasing the module does
not remove the job library from the program library
list, but any subsequent references to that module are
resclved from userLie after the job library has been
searched unsuccessfully.

The rop? command facilitates the orderly mainte-
nance of programs within various job libraries and
USERLIB. POD? enables the user to obtain on sysour a
list of the member names {and optionally the alias
names and other member-oriented data) of individual
members of cataloged vpam data sets.

Substituting FORTRAN IV-Supplied Subprograms

All 18m-supplied subprograms are stored on the system
library (sysLiB). Any subprogram can be effectively
replaced by storing a user’s version (with the same
name or eniry point) on one of his own libraries,
since the system library is always the last one searched.
If the user stores his version on his user library, then
all of the user’s programs, when executed, refer to his
version of the subprogram. If the user wants to refer
selectively to either version, he should store his ver-
sion on a job library, so that it is selected in a given
task only if he has issued a pper for that job lbrary.

When object moduies are loaded by the dynamic
loader, any substitute modules should be explicitly
loaded (using the 1.0Ap command) prior to issuing
a RON command for the main program. This guaran-
tees that the desired modules will be used.

Note that, if a module is loaded explicitly, it will
not be unloaded when the caliing module is unloaded,
ie., it must be unloaded explicitly using the u~xroap
command.

When object modules are link-edited, references
to modules on the system library are left for dynamic
linking at Loap time. If, however, the user has his own
version of a subprogram on a job library in the pro-
gram library list during the linkage edit run, this ver-
sion is automatically included as part of his output
module. e cannot then attempt to select either ver-
sion of the subprogram during subseguent executions.

Sharing Libraries
A user can allow another user to share (i.e., access)
one or more of his cataloged job libraries. When the
owner permits access to his job library, all of the ob-
ject modules on that data set are usable by the sharer.
This does not imply that if the owner and/or one or
more sharers use the same program at the same time
they are sharing (co-using) the same ccpy in main
storage. This aspect is controlled by the public option
declaration at compiie time.

The data set owner isues a PERMIT command to des-
ignate the other users who can share his job library
and to indicate the level of access for those users.

* Read-only access — the sharer can use the object
modules on the library but cannot add, replace, or
erase a module.

e Read-and-write access — the sharer can use any ob-
ject module on the library and can add or replace
modules. He cannot use the ERASE command to de-
lete a module from the library.

e Unlimited access — the sharer, in effect, can treat
the library as his own; thus he can even erase mod-
ules from it. However, when any user with un-

Appendix C: Programming Considerations 113

limited access, including the sharer, attempts to
erase a shared v1 or ve data set, the system will first
check to see if there are any active users of that
data set. If therc are active uscrs, the svstem issues
a diagnostic and disregards the command. I there
are no active users, the system executes the ERASE
command.

To gain access to a data set for which he has been
previously authorized, the sharer must issue a SHARE
command, which places an entry for the owner’s data
set name in the sharer’s catalog. The sharer can then
enter a ppEF command for the data set {with the yos-

Table 6. Shared Data Set Commands

Table 6. Shared Data Set Commands (continued)

BY OWNER

BY SHARER

CATALOG

The owner can cata-
log a fully qualified
data set name. If that
name is a component
of a partially quali-
fied name that the
owner has permitted
to be shared, all
sharers have immedi-
ate access to the
newly cataloged data
set.

If an owner changes
the name of a single
data set to which he
permitted access us-
ing a fully qualified

A sharer that has
been granted un-
limited access can
change or add en-
tries to the owner’s
catalog. If he is per-
mitted to share a
group of data sets, he
can catalog a new
data set into the
group, but he must
include as part of the
name the partially
qualified name that
he used in the
SHARE command.
If he changes the

BY OWNER Y SHARFR

PERMIT Must be issued prior | Not allowed. A user
to the SHARE com- | cannot permit access
mand by the sharers. | to a data set that he

does not own.

SHARE Not allowed. Must be issued prior

to any other refer-
ences to the data sets.
Once issued, the
sharer wmayv access
the data set until he
issues an ERASE or
DELETE. The
SHARE command
places an entry in
the sharer’s catalog,
so that a further
CATALOG com-
mand is not neces-
sary.

ERASE The owner can only | A sharer can erase
erase a member (ob- | only if he has been
ject module) from | granted unlimited
his job library or | access. If he then
erase the entire li- | erases an ohject-
brary when no shar- | module, neither the
er is accessing that | sharer's or owner’s
member at the time | catalog is aflected.
the ERASE com- | If he erases the en-
mand is issued. If | tire job library, both
he erases the job | his catalog entry and
library, the entry in | the owner’s are re-
the sharer’s catalog | moved.
is not removed. The
sharers must issue a
DELETE command
to remove the entry
from their own cata-
log.

DELETE The owner candelete | A sharer can delete
a library or group of | his catalog entry for
libraries from his cat- | a job library without
alog. An object mod- | affecting the owner’s
ule alone cannot be | catalog. The sharer
deleted. must reissue a
When the owner de- | SHARE command if
letes a shared job li- | he again wants to re-
brary the sharer’s | fer to the data set
catalog entry is not | that has been de-
removed. leted.

114

name, each sharer | name of one of the
must delete his cata- | data sets in the
log entry and reissue | group, the new name
the SHARE com- | must still contain the
mand with the own- | partially qualified
er’s new name. name,

A sharer who has
been granted wunli-
mited access to an
individual data set
can never change
the data set name.

1B option) in each task where he wants to include
the library in his program library st

Groups of job libraries with names having common
higher-order components can be specified by using
partially qualified names when the peryIT is issued,
For example, an owner of two job libraries named
TRACK.SUB1 and TRACK.sUB2 can allow sharing of hoth
libraries by using the partially gnalified name Track
in the PERMIT command. In this case, the sharer maist
also use the partially qualified name (as the dsname,
parameter) in the sHARE command, even though he
wants to access only one of the job libraries.

Table 6 lists the commands applicable to shared
data scts and the effect of the command on the user’s
catalog.

Recovering from Errors When Dynamically
Loading

The dynamic loader takes all of the external references
in a module that is explicitly loaded or run and re-
solves them by searching the program library list.
While the loader is linking the object modules into
the user’s virtual storage, diagnostics may be issued
indicating any of several error conditions that can
affect the eventual execution of that program.

¢ Name to be loaded or run not found in library —
Either the user has specified the wrong name in the
LoaD or cALL command or the job library containing

the object module has not been defined in the task
and, therefore, is not in the program library list. In
the latter case, the conversational user can merely
enter the pper defining the job library and reissue
the command.

Unresolved references — If an object module refers
to a FUNCTION or sUBROUTINE that cannot be located
in any of the libraries in the program librarv list, a
diagnostic is issued specifying the name that was
used in the reference. Further linking of other object
modules is not suspended, however, so that the
main program and possibly other subprograms have
been placed in the user’s virtual storage. If the error
occurs in a rux command, execution of the program
is not initiated.

If the user wants to exceeate his program regard-
less of the error, he can reissue the care command.
He must, however, repeat the name of the module
specified in the original carr command. This is nec-
essary to define the point at which execution is to
be initiated.

If the user anticipates that an object module will
have unresolved references, he should first issue a
roap command naming the module, followed by
a carL command with the same operand. This pro-
cedure is recommended for a nonconversational
task, since the user can be assured that execution
will be initiated regardliess of unresolved references.

If the user does not want to carrn the version of
the program that has been put into his storage, he
must issue an uxroap command. If he wants, he can
then enter a porr defining a job library that was
missing in the first Loan attempt. A LOAD or CALL is-
sued at this point causes the entire linking proce-
dure to be redone.

Duplicate entry points — This condition can only
occur when two or more objeet modules are being
linked from different libraries. For example, a user
might LoAp a main program from a library which
calls a subroutine on another library. If in this casc.
the subroutine had an exTryY statement which dupli-
cated the main program name or an ENTRY in the
main program, a diagnostic would be issued indi-
ating the error and the duplicated entry point
name. The second entry point is disregarded by the
loader, so that as the loading process continues all
references to that entry point are resolved by the
first definition — in this case, the definition in the
main program rather than the subprogram. Subsc-
quent execution of the program could give erroneous
results if the references were incorrectly resolved.
The user should take some corrective measures be-
fore attempting to LoaD or cALL again. (A possible

correction might be to change the ExTRY name by
linkage-cditing the object modules onto another job
library. To avoid the possibility of such duplications
when working with a new library, the rop? com-
mand can be used to list the directory of the library,
The user can then circumvent the problem by setting
up an appropriate program library list before he at-
tempts to load his program.

Shared Code (PUBLIC) Considerations

TLe system recognizes a control section as being either
private or sharable. Normally, both the psect and
the csect of the output module are marked by the
compiler as private. However, if the public option is
selected in the Frnvparameters, the csecr is marked
as public. If the library containing such a module is
a shared data set (i.c., peranr and sHARe commands
have been issued), the csect is considered sharable.

Each task is allocated its own copy of a private
csect; however, allocation of public csects occurs in
such a way as to make the same physical copy of the
csrct available to all tasks which have allocated the
csect to their respective virtual storages.

Sharing object code enhances the efficiency of the
system. Paging is reduced since only one copv need
be in main storage or on the paging device; in addi-
tion, shared routines can be executed simultaneonsly
by more than one cru.

Any user-written FORTRAN program can be made
sharable by specifying the rusric option in the Frxn
parameters,

Prior to compiling the module, a poer must be is-
sued defining the job library where the object module
is to be stored. Once the module is compiled, the
user must grant access to the job library by issuing a
verMIT. This, of course, is not necessary if the object
module is stored on a job library previously being
shared.

Each user who has been permitted access must then
issue a sHARE command, to make the appropriate
entry in his eatalog for the library. Again, this is not
necessary if the user is already sharing the data set.
Each time the sharer wants to use the shared pro-
gram, he must issue a vorr for the job library prior
to loading the object module. The object code is only
truly shared (only one copy in main storage} when
cach user loads the public control section from the
same shared job library. A sharer who linkage-edits a
public control section onto another library receives a
private copy each time the object module is loaded
from that library.

The owner of a data set may perMIT any level of
access he wants regardless of the access designator

Appendix C: Programming Considerations 115

in the owner catalog. For example, if the owner cata-
log is marked “read only,” the owner may not write
into his own data set, but he may perar a higher
level access (read/write or unlimited) to a sharing
user. Because of this flexibility, the data sct owner
should be very cautious with critical data sets that ke
has entered into the system.

Note: A program requiring more the 256 shared pages
of storage cannot be loaded in public storage. The
program will instead be loaded on private pages, and
each user sharing it will receive a private copy.

System Naming Rules

User-Assigned Names
The following names resulting in external symbols are
supplied by the user in his FORTRAN source program
or during compilation:

.

Module name (required)

¢ SUBROUTINE subprogram name

® FUNCTION subprogram name

¢ ENTRY names in subprograms (optional)

Names of labeled coaton

Names resulting in external symbols that are as-
signed in any single compilation must be distinct from
each other. In addition, since the system does not al-
low any one library to contain more than one defini-
tion of a particular external symbol, each name (ex-
cept names of coaraton blocks) must be distinet from
any other symbol contained on the library that is
going to receive the object module. It is valid to have
the same names on different libraries. Since a named
or blank coamox is not listed in the directory of the
library as an external symbol associated with this
module, the name of the comaron area does not have
the preceding restriction. Also, since this name is not
listed in the directory, it cannot be explicitly referred
to by name (i.e., it cannot be loaded by its coxmarox
name).

The rop? command can be used to list external sym-
bols in a library, thus assisting the user in avoiding
duplication.

Reserved Names

External Symbols

The user can never assign an external name beginning
with the characters sys. Names beginning with these
letters are reserved for certain system programs. Any
module stored on the user library or a job library start-
ing with these symbols can never be retrieved by that
name for execution, since resolution of sys symbols for
loading and running is always attempted from the

116

system library. In addition, a diagnostic is issued if a
module loaded by another name contains an external
symbol beginning with sys.

The user should be careful to avoid accidentally
duplicating the names of 1Bat-supplied subprograms.
Generally, he should avoid the use of all external
symbols starting with the characters cHC or any FOR-
TRAN-supplied subprogram entry point name (i.e., six,
cos, ete.) unless he specifically wants to substitute for
such a subprogram one of his own.

Reserved Ncmes Associated with Data Sets
The following list contains the reserved names that
are assigned o system functions:

RESERVED DDNAMES RESERVED DSNAMES

SYSLIB USERLIB
SYSULIB SYSLIB
SYSIN

SYSOUT

PCEOUT

Compiler-Assigned Names

For each rowrrrax program ccmpiled, the compiler
makes the following name assignments resulting in
external symbols:

¢ csEcT name — The module name (truncated to six
characters if greater than six characters) is suffixed
with #C to form the csecr name.

® psect name — The module name (truncated to six
characters if greater than six characters) is suffixed
with #P to form the rsect name.

Note: Since a BLOCK DATA program has neither cxe-
cutable instructions nor program variables, a csect or
PSECT name is not assigned.

It is the user’s responsibility to ensure that the first
six characters of the module name are unique from
others on the library receiving the object module.
Since characters following the first six are truncated
to form the csect and PSECT names, FORTRAN user may
want to follow the practice of limiting the module
names of compiled programs to six characters.

In addition to the csectr and pseEct names, the fol-
lowing names are assigned to the compiler output
data sets:

source.module — is the data set name assigned to the
line data set of source statements constructed dur-
ing the compilation. For example, a source pro-
gram with module name cowsoy will be assigned
the data set name source.cowsoy. If the input to
the compilations was from a prestored data set,
then the user must assign the name source.mod-
ule to the data set prior to the FrN command.

uist.module — is the data set name assigned to the
data set created for all listings optionally selected
by the user. Note that this is the index name of
a generation data group.

Executing Commands from Within a FORTRAN Program

You can execute a command from within a FORTRAN
program by calling module cccpB at entry point
SYSOBF, (CGeDB is a nonprivileged module residing in
SYSLIB.)

Code the caLL statement with these three arguments:

First argument: The command length. (The number
of characters in the command, not including the
scratch byte in the second argument. Count dou-
ble apostrophes — like those in the example below
— as one character.

Second argument: The command itself. Place this
argument in single apostrophes. The first charac-
ter of this argument must be a scratch byte that
should not be counted in the command length.

Third argument: The name of the area in your pro-
gram where you want the return code placed.

For example:
CALL SYSOBF (26, _DISPLAY AT STATEMENT 500 ,IRC)

In this example, an underscore is used as the
scratch byte.

Miscelluneous Programming Considerations

Floating-Point Computations

It must be kept in mind that, unlike integer arithmetic,
floating-point computations (types REAL and cOMPLEX)
are not in general exact, due to roundoff, which may
cause the low-order bits of a result to be different from
the expected value. This consideration is especially
important when writing FORTRAN relations or arith-
metic 1¥s; exact equality of two floating-point quan-
tities which are the results of computation is not to be
expected. For example, consider:

Y = 0.1*x
F (10.0°Y-Xx) 1,2,3

The zero branch to statement number 2 will probably
never be taken, since roundoff in the two multiplica-
tions, and the fact that 0.1 cannot be represented ex-
actly in a binary computer, will cause at least the
low-order bit of 10.0* Y to be different from that of
X, so the subtraction does not give a true zero.

Object Program Interrupt Provisions

This section contains descriptions of the procedures
followed when the user’s program is temporarily in-

Page of GC28-2025-4
Issued February 1, 1972
By TNL GN28-3204

terrupted due to certain types of interruptions. An
interruption is a computer-originated break in the flow
of processing. Program interruptions are those result-
ing from improper specification or use of instructions
and data. The term “exception” is used to refer to
these types of interruptions.! Six such exceptions occur
frequently enough during normal FORTRAN program-
ming to warrant special treatment. These are:

Fixed-point overflow exception
. Significance exception
Exponent-overflow exception
Exponent-underflow exception

. Floating-point divide exception
. Specification exception

D G 0

The procedure for handling the above exceptions
is as follows. The compiler generates code at the be-
ginning of all main programs that calls an interruption-
handling module.? In this module the following opera-
tions are performed:

1. Initialization is performed such that the fixed-point
overflow and significance exceptions will be ig-
nored.

2. Initialization is performed such that a control will
be passed to an entry in an interruption-handling
module if any of the following four exceptions
occur:

a. Exponent overflow
b. Exponent underflow
c. Floating-point divide
d. Specification

At the first three of these entries, flags are set for
later interrogation by programs called as a result
of the caLL overrL (if exponent overflow or under-
flow occurred) and carL pvcak (if divide check oc-
curred) statements. The contents of registers fol-
lowing an overflow or underflow is:

Exponent Overflow: The sign of the result is un-
predictable and the result characteristic is set to
127. In short precision, the high-order 24 bits of
the fraction are set to one, leaving the low-order
32 bits unchanged. In long precision, all 56 bits of
the fraction are set to one.

Exponent Underflow: The sign, characteristic and
fraction of the result are set to zero, yielding a true-
zero result. (In short precision, the contents of the
low-order 32 bit positions of the fraction remain un-
changed.)

tFor more detailed information, see IBM System/360 Principles of Oper-
ation, Form A22-6821.

2For a more detailed description, see FORTRAN IV Library Subprograms.

Appendix C: Programming Considerations 117

Page of GC28-2025-4
Issued February 1, 1972
By TNL GN28-3204

A specification exception will occur when a variable
is not on a proper word boundary. This condition may
exist in a FORTRAN program by forcing such misalign-
ment through the use of a coMmmon and/or EQuUIVA-
LENCE statement. The compiler issues a warning diag-
nostic if the user has forced such a misalignment, but
such a misalignment does not prevent him from exe-
cuting the program. An installation option specifies
that one of two courses of action is to be taken if a
specification interruption occurs:

1. Terminate the task.

2. Transfer control to a program that will perform the
desired operation, using instructions that will not
cause an exception due to the incorrect boundary
alignment, followed by continuation of the user’s
program. This procedure is extremely inefficient,
and thus should be employed as little as possible.

STOP/PAUSE/RETURN Differences
Table 7 summarizes the use of the ForTRAN sTOP,

PAUSE, and RETURN statements in both conversational
and nonconversational mode.

Link-Editing FORTRAN Programs

The standard entry point assigned to a link-edited
module is the first byte in the first control section that
is linkage-edited if no main program is included. If a
main program is included, the standard entry point
is the first byte in the first control section of the main
program. This procedure imposes the following rules
when linkage-editing FORTRAN modules:

1. If a task requires a BLOCK DATA subprogram, this
subprogram must be included prior to any module
containing a comMoN block for the same areas de-
fined in the BLOCK DATA subprogram.

2. A linkage-edited module does not retain the module
names of those modules included in the linkage
editing. Thus the module name in a cALL command
must be the name assigned to the linkage-edited

118

Table 7. STOP/PAUSE/RETURN Differences

EFFECT IN EFFECT IN
FORTRAN CONVERSATIONAL NONCONVERSATIONAL
STATEMENT MODE MODE
PAUSE nor 1. Prints the message | PAUSE n or ‘message’
PAUSE “PAUSE n” or prints on SYSOUT
‘message’ “PAUSE message” | data set; execution
at the users termi- | continues with the |
nal. statement following
the PAUSE.

2. Prints an under-
score at terminal
requesting a com-
mand.

PAUSE nor |3. Program may be

PAUSE n or ‘message’

score at terminal

PAUSE continued at the]prints on SYSOUT
‘message’ statement follow- |data set; execution
(cont) ing the PAUSE by |continues with the
entering the RUN |statement following
command. the PAUSE.
STOPnor 1. Prints “STOP n” | 1. Prints STOP n on
RETURN at the user’s termi- the SYSOUT data
{in main nal. set.
program) ., Prints an under- | 2. Reads the next

command from the

requesting a com- SYSIN data set.

mand.

module; execution will begin at the standard entry
point of the module.

Use of CALL Command and CALL Statement with
FORTRAN Subprogram Module Names

It is not good practice to use the caLL command to
run FORTRAN subprograms or linkage-edited subpro-
grams without a main program. If this is attempted,
some interruption-handling mechanisms will be miss-
ing, and the subprogram’s execution may be termi-
nated abnormally. A FORTRAN program must not
attempt to call a subprogram by its module name.

Initial Content of FORTRAN Variables

FORTRAN programmers should never assume that the
value of any variable is known unless the variable
has been set by an assignment statement or by a Type
or DATA statement in which initial values are specified.

Appendix D. Assembler Language Subprograms

A FoRrTRAN program can call assembler-language sub-
programs; similarly, an assembler language program
can call a rorrrax subprogram. This appendix dis-
cusses both types of calls. The reader is also referred
to Assembler Language, GC28-2000; Assembler Uscr

Macro Instructions, GC28-2004; and IBM FORTRAN

IV Library Subprogram, GC28-2026. The reader of this

appendix must be familiar with the assembler lan-

guage.
This appendix is divided into the following scections:

1. FORTRAN Object Program Structure: general
characteristics of romrrrax-compiled object pro-
grams.

2. Subprogram References: vegister use, save arcas,
and related information.

3. Types of FORTRAN Calls: a general description of
the manner in which compiler programs call-by-
name, call-by-value, and pass subprogram names
in a parameter list.

4. Linkage between FORTRAN and Assembler Lan-
guage Programs: Detailed cxamples for romrrrax
programs calling assembler language subprograms
and vice versa.

FORTRAN Object Program Structure

There are certain conditions of which assembler-lan-

guage users writing code to link to or from FORTRAN

object code should be aware:

1. ForTRAN object code is reenterable.

2. A single csect and an associated psect are gener-
ated for each compiled program not containing
COMMON.

3. Standard type-1 linkages (described below) are
compiled for subprogram references.

4. FORTRAN main programs, but not subprograms, issuc
a call on the cucep1 entry to module cucsp prior to
any other operations. This call causes the following
(see Appendix C for a more complete discussion):
a. Bits are set in the psw such that fixed-point over-

flow and significance exceptions are ignored.

b. Initialization is performed such that four types
of exceptions cause control to be passed to the
system modules cucep or cHCBE, at which point
a flag is set for later interrogation. The four ex-
ceptions and the ForTRaN statements that test
the flag are:

CALL OVERFL
CALL OVERFL

Exponent-overflow
Exponent-underflow

Floating-point divide CALL DVCHK
Specification See below
A specification exception occurs where a variable
is not on a proper word boundary. This condition
can occur in a FORTRAN program when a mis-
alignment is forced through the use of the coa-
MoN and/or EQUIVALENCE statements, The com-
piler issues a warning diagnostic if the user has
caused such a misalignment, but program execu-
tion will be permitted. When a specification
exception occurs, an entry in FORTRAN 1v-supplied
subprogram cHese is entered. According to the
option chosen by the installation when the sys-
tem was generated, cracpe either terminates the
program or causes the requested operation to be
performed as if no exception has occurred.
c¢. Clears any pointers to entries in the DCB table.
I an assembler-language main program calls a
FORTRAN subprogram and arithmetic overflow and
boundary alignment problems are to be handled,
the user must either call cruespr as a part of his
inttialization procedures in his main program or
provide asscmbler-language coding to accomplish
this end. crcBpi issues sig, MR and SPEC macro in-
structions with the default priority.

Subprogram References

This section gives general information concerning sub-
program references by both rorTran and assembler-
langnage programs. The following section gives specif-
ic examples for both types of references.

The rorTrRAN program can refer to a subprogram in
two ways: by a cALL statement or by a function refer-
ence within an arithmetic expression. For example,
the statements

CALL SUBR(X, Y, Z)
I=J+K+FUNG(L, M, N)

refer to a subroutine subprogram susr and a function
subprogram FUNc, respectively.

For every subprogram reference, the compiler gen-
erates a type-1 linkage. Similarly, ForTraN subpro-
grams expect to be called by a type-I linkage.

Associated with type-1 linkage conventions are
three arcas of concern; these are:

l. Register usage
2. Parameter lists
3. Save areas

Appendix D: Assembler Language Subprograms 119

Proper Register Usayge

15s/360 has assigned roles to certain registers used in
gencrating a linkage. The function of cach linkage
register is illustrated in Table 8. Note that registers 2
through 12 are not assigned and, thus, are always
available to the user for other purposes.

It is the responsibility of the called module to main-
tain the integrity of general registers 2 through 12 so
that their contents are the same at exit as they were
at entry te the called program. It is the calling pro-
gram’s responsibility to maintain the floating-point
registers and program mask around a call. General
registers 0, 1, and 13 through 15 must conform to the
indicated conventions; 0 and 1 may bhe destroved by
the called module.

Table 8. Linkage Registers

GENERAL
REGISTER
0 Integer Result Register (FORTRAN-supplied sub-
programs).
1 Parameter List Register — contains the address of a
list of pointers to input parameters.
13 Save Area Register — contains the address of the
calling module’s save area.
14 Return Register — contains address in calling
module at which execution resumes upon return.
15 Entry Point Register — contains address of the
entry point in the called module; also Return
Code Register — contains return code set by called
module.

TSACGE

By convention, general register G is used by a FORTRAN
FUNCTION statement subprogram to return the resuitant
value computed in the subprogram when the resultant
value is an integer. When the resultant value is a
Hoating-point number, floating-point register 0 is used.
Complex numbers are returned in floating-point regis-
ters 0 (real part) and 2 (imaginary part).

Reserving a Parameter Area

If a called module requires input parameters, the call-
ing module must supply the called module with the
location of a parameter list in general register 1. Each
entry in the parameter list must be on a fullword
boundary and represents the address of a parameter
being passed to the called module. If the parameter
list is variable in length, the length is specified as a
count of the number of addresses that compose the
list. This count is located one word before the first
word in the parameter list. Regardless of whether the
parameter list is of fixed or variable length, the param-
eter list register points to the first word of the param-
eter list. The caLL macro instruction can be used to
generate the parameter list, as well as to link to the
called module. The FORTRAN cALL statement does not
generate a variable length parameter list count.

120

Reserving o Save Arza

It is the responsibility of the calling module to supply
a 19-word area to be used by the called module. Fig-
ure 18 shows the layout of the save area and briefly
describes the information saved in the area by the
calling and called module. Of particular interest in
this save arca (for trace purposes) are the following

two words:

Word 2 — The “backward pointer.” This word always
points to the save area of the module that called
the module whose save area is being inspected.

Word 3 — The “forward pointer.” This word contains
the address of the save area of the module last
called by the program whose save area is being
inspected. The low-order bit of this word is set to
zero as the called program is entered and set to 1
upon exit if the T option in the RETURN macro in-
struction is used. (The FORTRAN RETURN statement
also causes this bit to be set). This bit is useful
in determining the flow of control during pro-
gram execution,

SAREA -
(word 1)
SAREA 1 4 —
(word 2)

SAREA + 8 —
(word 3)

SAREA + 12 ->
{word 4)

SAREA +- 16 ->
{word 5)

SAREA 4 20—
(word 6)

SAREA -+ 24 —>
(word 7)
SAREA 4- 28>
(waord 8)

SAREA + 32>
(word 9)

SAREA |- 68 >
(word 18)

SAREA 4 72 >
(word 19)

Contains the length of the save area in bytes, a
minimum of 76.

The address of the calling module’s save area.
This field is set by the called module in its own
save area.

The address of the next save area; that is, the
save area of the called module. This field is set
by the called module.

The contents of register 14 containing the ad-
dress to which return from the called module is
made. This field is set by the called module in the
calling module’s save area.

The contents of register 15, containing the ad-
dress to which entry into the called module is
made. This field is set by the called module in
the calling module’s save area.

The contents of register 0. Value in register O set
by calling module and saved by called module.

The contents of register 1,

The contents of register 2.

The contents of register 3.

Eight words containing the contents of registers
4-11.

The contents of register 12.

The address of the PSECT of the called module.
This field must be set by the calling module, by

storing the R-value of the called entry point in it

Figure 18. Save Area Format and Content

Variable-Length Parameter Lists

FORTRAN will not provide a Tss/360 wvariable-length
parameter list (except to the pump/PDUMP programs),

nor can any Tss/360-supplied subprograms except pump
and pbuatp process a variable parameter list passed
to them.

Types of FORTRAN Calls

A FORTRAN program can call a subprograin with two
basic types of parameteis,

The first type is one in which a parameter is the
name of a variable, the value of which is to be op-
erated on in assignment statements, transfer of control
statements, etc. (This is the usual use of parameters
in a subprogram reference.) An ecxaraple of this use
follows:

C PROGRAM MAIN
CALL SUBR(A, B)

SUBROUTINE SUBR(X,Y)

END

The call of suBr in program MAaIN above results in
MAIN passing to SUBR in a parameter list the addresses
of A and B; both A and B, in this example, lie within
MAIN. SUBR references to its dummy arguments X and
Y will result in references to A and B within »MaAIN, as
SUBR uses the parameter list passed at the caLL to ob-
tain the location of X and Y.

The above type of calls is referred to as “call-by-
name.” Some compilers also have implemented “call-
by-value” Although the rtss/360 compiler treats this
type of call identically with a call-by-name, a brief
discussion of call-by-value is given here to note the
differences.

In a call-by-value linkage, refererces to X and Y are
treated differently. Rather than referring to the values
of X and Y stored in aam~ {and known to MAIN as A
and B), a call-by-value causes sUBR to obtain the cur-
rent values of A and B from MaiN and store them
within suBr. All references to X and Y in suBr will
then refer to the locally stored (i.e., within SUBR)
values, rather than the values in maIn. The values are
identical, of course, so the end result is the same.

The second basic type of call is one in which the
passed parameter is the name of a subprogram. An
example of such a linkage is:

C PROGRAM MAIN

EXTERNAL FUNC

CALL SUBR(A, IF'UNC)

END
SUBROUTINE SUBR(X, BETA)

Y=BETA(U, V, W)

RETURN
END
In this example, program aain does not pass the lo-

cation of FUNC, as FUNC is not a variable name but is
the name of a function type subprogram. In this case,
MaIN passes the location of a parameter list, contain-
ing the V and R-values for Func (rather than the loca-
tion of a variable, as is the normal case), and suBR
uses this information when referring tc the function
that suBr knows as BETA.

Linkage Between FORTRAN and Assembler
Lenguage Frograms

This secticn describes the linkage between calling and
called programs for calls in which the name of a vari-
able and the name of a subprogram are arguments of
the call.

CALL Where the Argument !s a Variable Name
In the following example, showing the ForTRAN-as-
sembler language interface, a FORTRAN main program
MaIN calls an assembler-language subroutine, ASUBR,
which calls a ForRTRAN subroutine named FsusBr.

The source statements for the FORTRAN main pro-
gram are given below, where the leftmost numbers are
the system-assigned line numbers, used for reference.

0000100C MAIN PROGRAM FOR INTERFACE EXAMPLE

0000700
0000800
0009900

CALL ASUBR (A ,B)
STOP ‘END OF EXAMPLE’
END
The cain statement at line 700 generates object
code equivalent to the following:

LA 13, MAIN#P Caller’s PSECT and save
area base register

LA 15, ASUBVR V-and R-values for
ASUBR

LA 1, PLIST Parameter list

L 14,4(15} R-value

ST 14,72(13) To PSECT 19th word

L 15,0(15) V-value for ASUBR

14, 15 Call ASUBR

BASR

Appendix D: Assembler Language Subprograms 121

Caller’s PSECT

Save area

MAIN#P PSECT

DC 76’

DC 18F%
ASUBVR DC V{ASUBR) V-and R-values for called
program

DC R{ASUBR)
PLIST DC A(A) Parameter list

DC A(B)

END
The purpose of subroutine asuBr is to exchange the
values of A and B.

ASUBRP PSECT

ENTRY ASUBR Required for R-value
linking

DC 76 Save area

DC 1810’

ASUBRC CSECT
USING ASUBR, 15
ASUBR SAVE (14,12) Save registers in caller’s

save area

L 14,72(13) Get R-value from caller’s
PSECT

ST 14, 8(13) Save in caller’s PSECT
for later tracing of calls,
if desired

ST 13,4(14) Save address of caller’s
save area (PSECT) in
ASUBR save area
{PSECT) for later
tracing of calls

LR 13, 14 13 now has address of
PSECT

USING ASUBRP, 13

LR 12, 15

DROP 15 Use register 12 as base
register, as CALL below
destrays register 15

USING ASUBR, 12

LM 6,7,0(1) Addresses of A and B

L 2,0(86) Value of A

L 3,0(7) Value of B

ST 2, 0(7) A stored in B

ST 3,0(6) B stored in A

(Call

FSUBR,

shown

later)

L 13,4(13) Restore 13 to caller’s
PSECT

RETURN (14,12) Restore registers and
return

END

The call by assembler-language program AsuBr on
FORTRAN subroutine rsusr is described next.

ASUBRP PSECT

122

FSUBRVR ADCON IMPLICIT,EP=FSUBR

FFSAB DS ¥ Address of A (in MAIN)
DS ¥ Address of B (in MAIN)
ASUBRC CSECT

Address of A, B
To parameter list

LM 6,7,0(1)
STM 6.7, FSAB

LA 15, FSUBRVR
CALL {15), MF=(E, FSAB)
Many forms of the caLL macro instruction can be
used. In the form of the caLL macro instruction used
above, the generated code is:

LA I, FSAB Point to parameter list
L 14, 16(15) R-value

ST 14,72(13) To save area

L 15,12(15) V-value

BASR 14,15 CALL

The above caryn of the FORTRAN subroutine FSUBR
uscs a V-and-R-valae pair in the linkage. This type of
linkage is required, as ¥suBr (like all ForTRAN-cOm-
piled programs) is reenterable; thus, the called pro-
gram must include a psect. Note also that a program
calling a FORTRAN subprogram must provide the ad-
dress of a 19-word save area in register 13, and the
FORTRAN subprogram called modifies the contents of
this save arca by storing registers in it. Generally, the
first 19 words of the caller’s psect are reserved for this
save area, but it is legitimate to point to a save area
elsewhere in the program.

CALL Linkage Where the Argument Is a
Subprogram Name

An example was given earlier of a main program pass-
ing the name of a function ruxc to subroutine susr,
The ForTRAN statements were:

C PROGRAM MAIN
EXTERNAL FUNC
CALL SUBR (A, FUNC)

END
SUBROUTNIE SUBR (X, BETA)

Y=BETA (U, V, W)

RETURN
END
The code generated in mamx for this example is the
equivalent of the following:
{ Program MAIN CSECT)

L 15, SUBRVR
LA 1, PARAM
CALL (15)

{ Program MAIN PSECT)

SUBRVR

ADCON IMPLICIT EP==SUBR
PARAM DC A(A)

DC A(VRPAIR)
VRPAIR DC V(FUNC)

DC R(FUNC)

When referring to rexe (known to susr as function
BETA), subprogram suer does not generate for BETA,
but uses the V- and R-values passed in the parameter
list.

Using Data in COMMON

Both named and blank coyatons in a FORTRAN 1v pro-
gram can be referred to by an assembler-language
subprogram. To refer to named coanvox, the V-type
address constant

name pc V(name of coraoON)

is used.

A blank coamion may also be defined (by the com
instruction) in an assembler-language program. After
the first program containing a blank conmon is
loaded, all blank coanvions in subsequently loaded
programs are rejected: anv references to the blank
coMMON are tied to the already loaded one, thus mak-
ing data in the first blank conzatoN accessible to more
than one program.

Referring to Variables in an Array

For an array, the address of the first variable in the
array is placed in the parameter list. An array (for
example, a three-dimensional array ¢(3,2,2)) appears
in this format in main storage:

C(LL1D) C2,L1) CBLL C(L21)=—
L>cl2.2.1) ¢3.2.1) ©(LL2) o2 1,2)—
Lscia2) C(L22) €222 C322)

Table 9 shows the geperal subscript format for arrays
of 1, 2, and 3 dimensions.

Table 9. Dimension and Subscript Format

ARRAY A
A(D1)
A(D1,D2) A(S1,82)

A(DI, D2, D3) A(S1, 82,83}
D1, D2, and D3 are integer constants used in the

DIMENSION statement. S1, S2, and S3 are subscripts
used with subscripted variables.

SUBSCRIPT FORMAT
A(S1)

The address of the first variable in the array is
placed in the list. To retrieve any other variables in
the array, the displacement of the variable (that is,
the distance of a variable from the first variable in the
array) must be calculated. The fermulas for computing
the displacement (pisprc) of a variable for one-, two-,
and three-dimensional arrays are

DISPL.C=(S1-1)"L

DISPLC={S1-1)*L-+(S2-1)*D1I"L

DISPLC={S1-1)*1.--{S2-1)*DI1*L-+}(S3-1)*D2*D1"1,

where
L is the length of each variable in the array.

For example, the variable ¢{2,12) in the main pro-
gram is to be moved to a location ARvVAR in the
subprogram. Using the formula for displacement of
variables in a three-dimensional array, the displace-
ment (pisp) is calculated to be 28. The following in-
structions can be usced to move the variable:

LA 6,8(13)

LA 8, DISP

L 9,0(6,8)
ST 9, ARVAR

Appendix D: Assembler Language Subprograms 123

Appendix E. Specificatior: of Data Set Characteristics

This appendix discusses eight topics associated with
defining and precessing data sets with FORTRAN ob-
ject programs. The frst of these, “Data Set Creation
and Structure,” gives a description of the format, crea-
tion, and structure of data sets written and read by
FORTRAN-compiled modules.

Next, the section “Operation on Data Sets,” de-
scribes techniques for: creating new data sets, print
and punch output, processing data card input, and
reading data scts created by other T8s/360 FORTRAN pro-
grams or 0s/360 FORTRAN programs. Also included are
discussions of: exception handling (1/0 errors and
end-of-data-set handling); use of REWIND, ENDFILE, and
BACKSPACE statements; and execution 1/0 error mes-
sages.

The next section, “secure Requirements for Non-
conversational Tasks,” includes considerations in de-
termining the number of private devices needed
during processing of a nonconventional task.

“Guide to poer Commands” describes in detail how
to write pper commands for all allowable rorrrAN
object-time processing. This section is divided into
a description of the basic pper command, which may
satisfy all normal user requirements; the default of
ppEF commands, which discusses sysmi/sysour 1/0;
and the full ppEr command. describing extended proc-
essing facilities.

The section “Sample vprr Commands™ presents and
explains a variety of pper command uses. The final
three sections of this appendix are “Error Messages
for the pper Command,” “Data Definition Rules for
Language Processing.” and “Data Definition Rules for
1ss/360 Commands.”

Data Set Creation and Structure

This section describes the format, creation, and struc-
ture of data sets written and read by FORTRAN-com-
piled modules.

In creating and using data scts, the user is con-
cerned with two things: the logical record format and
the data set organization. A logical record is the unit
of information processed by the user’s program — that
is, the specific number of contiguous bytes of informa-
tion that is to be read or written by a FORTRAN pro-
gram. TSS/360 recognizes three formats for logical
records:

124

1. Format F, for logical records of a fixed length.

2. Format V, for logical records of varying length.

3. Format U, for logical records of undefined format.
4. Format D, for ascu tape records.

Detailed descriptions of these three formats are given
later in this section.

The data set organizations are spoken of in terms of
the 1ss/360 access methods used to manipulate them;
that is, the particular set of system routines that are
used to transfer data records between virtual storage
and a data set in external storage that is organized in
a particular way. The 183/360 access methods are
described below.

Access Methods

Data set records are transferred to and from 1/0
devices and virtual storage by system programs known
as access methods. There are two primary access
methods.

1. Virtual Access Method (VAM): The access method
used in Tss /360 unless the data sets must be inter-
changed with programs running in the IBM Sys-
tem /360 Operating System or the Model 44 Pro-
gramming System, or the data set is to be written
on magnetic tape.

. Basic Sequential Access Method (BSAM) and
Qucued Sequential Access Method (QSAM): Used
to read and write records that can be read and writ-
ten with programs running under control of the
IBM System/360 Operating System or the Model
44 Programming System, or when the data set is to
be written on magnetic tape.

o

The choice of access methods and record formats
(see below) are originally determined by the param-
eters in the ppEF command. A later section of this
appendix contains a complete discussion of how pper
commands are written.

Virtual Access Method

Users create, read, and process virtual access method
(vam) data sets on the basis of logical records. The
system, however, blocks these records by pages (4096
bytes) and uses the page as the unit of transfer be-
tween the direct-access device and the user’s virtual
storage. The system also ensures that only those pages
of a data set that are actually required are resident in
virtual storage.

Virtual storage data sets can be classified as:

1. Virtual sequential (vs)
2. Virtual index sequential (v1)
3. Virtual partitioned (ve)

vaMm data sets must reside on direct-access volumss
(not tape) that arve specifically formatted for Tss/360.
Labels and other related tables pertaining to the data
set for vaM are not the same as those in an 0s/360-
generated direct-access data set. Therefore, data sets
written with vaat cannot be read with a program run-
ning under the IBM System /360 Operating System or
the Model 44 Programimng System.

For ForTrAN, format-U records in any vam data set
are created as format-F with a record length of 4096
bytes.

Virtual Sequential (VS): In a virtual sequential (vs)
data set, the order of the logical records is determined
by the order in which they are created. vs permits
logical records up to 1,048,576 bytes (256 pages) in
length.

Most vorrrRAN programs read and write logical
records using vs in format V. This access method, with
this format, is sufficient to handle nearly every applica-
tion, and only when records are specially formatted
will the user have to use some other combination of
access method and record format.

Virtual Index Sequential (VI): Virtual index se-
quential records are similar to, virtual sequential rec-
ords with the addition of an extra field called the key.

In v1 data sets, it is only possible to have format-V
or -F records; format-U records are not permitted.
Logical record length is limited to 4000 bytes; key
length cannot exceed 255 bytes, but keys can be any-
where in the record.

The records in the data set are ordered by ascerd-
ing sequence of the key field. A FORTRAN program can
read any vr data set sequentially and records are pre-
sented in ascending kev order. FORTRAN cannot read vi
records by key — that is, nonsequentially. When read-
ing a vr record, the user must account for the key in
his FORMAT statement since the key is considered part
of the record and must be maintained by the user. An
assembler-language subprogram may be used to read
records nonsequentially, Writing a vi data set with a
FORTRAN program can be done sequentially; however,
the key field in the record is checked and used by data
management. Therefore, the user must lay out the
logical records so that an ascending key, according
to the System/360 8-bit code, appears in the same
place on every record. For example, the following
FORTRAN statements could be used to write a vi data
set which contains a 6-character ascending key at the
beginning of each logical record.

DIMENSION DATA (40)
KEY =0

10 KEY = KEY -+ 1
WRITE (7, 200) KEY, DATA
200 FORMAT (16, 40F5. 1)

GO TO 10

To summarize, sitce T8S/360 FORTRAN does not have
random access capability, vi records are of limited use
to the FORTRAN user. vi would be used primarily to
construct records that are to be read by non-FORTRAN
programs, and in writing these records it is the respon-
sibility of the user to supply the xey in the record.

Virtual Partitioned (VP): Partitioned data sets may
contain both vi or vs data set organization. Logical
records are grouped into named subdivisions so that
processing can take place on any one of them, called a
inember of the partitioned data set. Each member can
be treated as an individual data set.

To create and operate on a member of a partitioned
data set, the user writes a ppEF command to (1) in-
dicate a psorc of either vsp or vip in the subfield of
the pcB parameter and (2) append a member name
{(in parentheses) to the psvame. Only one DDEF com-
mand can be issued for the partitioned data set at one
time; hence, only one member may be proceszed at
any one time.

Physical Sequential (PS)

Physical Sequential (ps) data sets are written by the
basic sequential access method (Bsaa), and queued
sequential access method {gsant). However, this is
normally done only to communicate with the IBM
System/360 Operating System or the Model 44 Pro-
gramming System, or if the data set is to be written
on magnetic tape.

BsaM can support any of the record formats — F
(blocked and unblocked), V {(blocked and unblocked),
U (unblocked only), and D (blocked and unblocked).
If the user wants to process blocked records with
BsaM, he must perform all deblocking first. If the
user needs to process blocked records, ForRTRAN 1/0
will automatically perform the deblocking function.

osam, on the other hand, supports both blocked and
unblocked records. In the case of blocked records,
@sam will automatically provide the deblocking func-
tion of the user.

»s data sets are built around physical blocks that
contain one or more logical records in format F, V, or
U. Format-U records are considered unblocked.

rs data sets may be written either on magnetic tape
or direct-access devices. To read a ps data set the user

Appendix E: Specification of Data Set Characteristies 125

must first ensure that it is available to the system on
the correct device and then indicate to the system the
data set’s special characteristics. Thesc two functions
arc performed by special parameters in the poEF com-
mand. {These are deseribed in a later section of this
appendix,)

Data Set Records

A logical record is a specified number of contiguous
bytes of information that is to be read in or wiitten
out by a program.

1. Format F: If a data set is made up of records that
are all of the same length, it is format F, for fixed
length. There are no spacial restrictions on the con-
tents of a format F logical record; however, differ-
ent access methods set Hmits
Figure 18).

Format V: If a data set is made up of records that
are of varving length, it is format V, for variable
length. Again, the different access methods set
limits on record size.

on record sive (see

.[\’)

153

3. Format U: A third class of record is format U, for
undefined length. For records on vs data sets, for-

mat U records are always considered to be format
F with a record longtn of 4096 bytes or a multiple
of 4096; for records on ps data sets,
length hy some physical boundary

the record

is determined
that is recognized by the device that reads the
record.

4. Format D: If a data set contains asci records, for-
mat D must be specified. Format-D records are
variable in length,

The above considerations for using format-T' records

with ForTRAN programs do not apply to unformatted

READ O WRITE !,'f.’,COrdS.
V§ Vi BS

Record

Format Unblocked Blocked
F 1,048,576 4000 32760 3275C
v 1,048,572 4000 32756 32756
u 4096* i 32760
D | 32760 32760

*All U-format records are multiples of 4096.

Figure 19. Maximum Record Lengths (Bytes)

Variable-length Formai

1. Record Lengths: vs format-V records can contain
from 1 to 1,048,572 bytes of data. vi format-V rec-
ords can contain from 1 to 3096 bytes of data. rs
format-V records can contain from 1 to 32,752 hytes
of data.

The record length is indicated at the start of each

record. s records { blocked and unblocked) have a
two-byte binary number followed by two bytes

128

reserved for system use. vi and vs blocked records
have a [om«—x)q(Linary number. ronrtraN-written
programs can read Ps data sets and write them on
vi or vs and vioe v

2. fleading and Writing: FORTRAN L'0 oce ses input
and output format-V records exactly as if they were
format I {i.e,, the 1ec01d—1ength bvtes are not trans-
mitted into user storage nor do they need to be
constructed by the user before issuing a wrrre). Mo
padding of output records ever takes place. All un-
formatted FORTRAN records ave written as format V
with spanning control bits in either the first byte
of a v1 or vs record or the third byte of a ps record;
again this special bvte is handied by the system.

]

Both format-V and -F records can oceur in any of
the different data set organizations, although they can-
not be mixed in any one data set. The organization to
be used for an output data set is specified in the pper
commmand. The organization used for an input data
be determined from the data set standard
labels, from information in the system catalog, or
from the pper command.

FORTRAN 1/0 always writes format V records unless
otherwise instructed by the pper command.

The user’s source program need never be concerned
whether format-V or -F records are being read or
written, since construct the records
and transmit them to the 1/0 device as in-
structed. The same is true for format-U records, but
their use should be restricted to ps data sets, since vant
generates very large records for format Ul

Figures 20, 21, and 22 show the various records for-
mats under different data set organizations.

sct can
¥

ForTraN will
properly

Fixed-Length Format

1. Record Lengths: vs format-F records can be any
length {from 1 to 1,048,576 bytes. vt format-F rec-
ords can he any length from 1 to 4,000 bytes. s
format-F records can be anv length from 1 to 32,760
bytes. Unblocked records less than 13 bytes in
length are rejected if a reading error occurs (ie.
no recovery attempt is made). Therefore, unbiocked
records of less than 13 bytes are not recommended.
Blocked records are automatically at least 13 bytes
long,.

2. Blocking format-F records: Anv
block size
blocking of

specification of
{in the poEr command) is ignored for
‘ormat-TF records in vast data sets. The
ccords in vs data sets must

i
hlock size of format-TI 1
ste of the record size.

be an integral rml ip

set is defined as containing for-
ecords, anv short records written by & For-

3. Wikting: I a d
mat-1

Fixed-length .)) o
(Format F) RECCRD 1 RECORD 2 RECORD 3 RECORD 4 RECORD 5 RECCRD &
N
1
! l
e - -— 1 Page ———mmrmm e o] —erem = e | Page - — 1 Page—-— e
o Maximum record length: 1,048,576 bytes.
e System aufomaoticaily keeps track of overlap across page boundaries.
Veriaple-length 24*7 ~ Record T - — Record 2 —o -— Record 3 -»»;—4 -
{Formet Vi i i i
b2 DATA bi§? DATA LiR? DATA by DATA 5
i«
| i]
| — B T —————— —— 1 Page - - - 1 Page - e
o Maximum record fength: 1,048,576 bytes.
s System automatically keeps track of overlap across page boundaries.
o The FORTRAN 1/O routines maintain the first four bytes of zach record.
The user need only be aware of the DATA partion.
Undefined (e RECOTE b g — Record 2 ——pla—— Record e e Record 4 ,_,,.,r‘“_ Recovd 5 ey
{Format U} | 1 |
|
Data Dato Dato § Dota Data
el
| i i | :
4 — | Poge—————wla——] Foge ——— we—— | Puge e { Poge -- - Page !
e Record length; multiple of 4094 bytes.
s Maximum record fength; 1,048,576 hytes.
e VSAM data sets cannot be written on volumes containing physical ciob data sets,
Note: Internal record formats may differ from the external record formats described in

For an explanation of interral recard formats, see BM System/360 Time Sharing
Figure 20. Record Formats — Virtual Sequential

1raN program are padded with trailing blanks or
binary zeros to the required size. Attempts to write
logical records greater than the size specified will
cause diagnostics and the record will be split.

Reading: Unused portions of an input record cause
no crror indication and are simply ignored. At-

1,
4

tempts to read logical records longer than the size
of the format-F records causes a diagnostic and the
next logical record will be voad 1o

FORTRAN Records

Within the four classes of logical recards (e, F, V,
U or D), the ForTRAN 1/0 routines construct three dit-
ferent types of records, depending on the FORTRAN
language statements used to write the records. These
three tvpes of records are formatted, NamerLisT, and
unformatted.

Formatted Records

A FORIRAN program most commonly reads or writes

logical records whose length is defined by the rorviaT

statement and the list. Thus:
FORMAT (15H RESULTS ARE

can be referred to in a wriTE statement without list in

Socess Methads PLM, GC28-2014.
order to write a single logical record of 15 bytes.

Altervatively:

=

TFORMAT (I5H RESULTS ARE , 3I5)

produces a logical record of 20 bytes if the wrITE
statement has a single (simple) variable name in the
list, 23 bytes for two names, ete., up to 40 bytes for
five names in the list, If there are more than five simple
variables in the list, a number of additional records
are written, all of which {except possibly the last) are
40 bytes in fength, since the roratar specification
specifics 40-byte records.

When rorrran 170 has built up a logical output
record according to the rules specified by the ForTRAN
v language, it incorporates the resulting record into
any data set format, adding a length indicator, if re-
quired for {fermat-V records, and making up a block
for I format blocked records.

If the user has requested format-F or -V records for
an output data set (in a pp¥F command), none of the
generated logical records should exceed the maximum
permitted logical record length specified in the DDEF.
Two or more data set records are generated in such

ol

y1

a case, and a diagnostic is issued.

If an attempt is made to read a logical record longer
than the one on the imput data set, a diagnostic mes-
127

Appendix E: Specification of Data Set Characteristics

Fixed-length Initial Key

(Format F) ’4~~— Record 1 ~—tla—— ——— Record 2 —trla—— Record 3 —— wvvv‘%w**f!?ecord 474——47
Key DATA Key DATA Key DATA Key DATA
Imbedded Key
}.‘,‘N—_ Record 1 A—vafT = Record 2 ——————pe - —Record 3 —pte - -Record 4——p
) i |
First Part . End Part First Part End Part First Part . End Part First Part [,/ End Part
KEY KEY KEY KEY
of Data of Data of Date of Data of Data of Data of Data of Data
Variable-length
(Format V) initicl Key
j< Record 1 — >le Record 2 -~ > Record 3 >
z ! ;
X34 Key DATA 223 Key DATA b} Key DATA
Inbecled Key
‘F___A,,;i__ Record | bt Record 2 *T—W Record 3
: |
First Part End Part . First Part |- End Part First Part End Part
KEY 12 KEY b KEY
beee of Data of Data b22e of Dotz 8 of Data bti of Data of Data

o Maximum logical record length: 4000 bytes.

o Maximum number of records per data page: 1300,

« Maximum key length: 255 bytes.

s Maximum number of data poges: 65, 000.

o Maximum number of overflow pages: 240,

e Maximum number of records per overflow noge: 255,

o No limit to the number of directory pages.

e User responsible for Key and DATA parts of each record.

e FORTRAN 1/0O maintains first four bytes of format-V records.

Figure 21. Record Formats — Virtual Index Sequential

sage is issued and the next record will be read to

fulfill the rEAD.

Parameters in the oper command that differ from

2. ForTRAN logical record of X bytes written on a data

set with format-V records. rrecL is unimportant,

those of an input data set override the latter, and will

cause errors.

A summary of formatted rorTRAN records is as fol-

lows:

1. ForTrAN logical record of X bytes written on a data
set with format-F records with a logical record
length (LrECL) of Y bytes:

(a) X =Y

(b) X less than Y

(c) X greater than Y
(error)

128

(a) X =Y

provided it is not set to less than X.

FORTRAN

Data Set

(b) Xless than Y

FORTRAN
Data Set
Blanks
FORTRAN | ————
Data Set]
FORTRAN l
Data Set —

Write on Next Record

X+
X+

4(VAM)
8(PS)

3. ForRTRAN logical record of X bytes read from a data
set with format F records with an LrecL of Y bytes:

Data Set
FORTRAN
Data Set I
FORTRAN I —

Not Processed

Fixed-length RECORD 1 RECORD 2
(Format F}

RECORD 3 j

s Maximum record length - 32,760 bytes.

s FEach block freated as a logical record.

- Block e la—— Short Block ——] | — — Block ——————ny
Fixed-length
Blocked REC 1 REC 2 REC 3 REC 4 REC 5 REC & REC 7 REC 8
(Format FB)

» Maximum block length ~ 32,760 bytes.

e Blocking factor is usually constant; however, data set may contain truncated or short blocks.

o FORTRAN |/O does not truncate output blocks except at end of data set.
o e LUy e el £ B —
D 1 - P {Fre—
, 1
Variable-length i X
(Format V) }
LLybb 22 |bb DATA LLobb i’Pzab DATA {

o Maximum logical record length - 32,756 bytes.

o Length control fields supplied by FORTRAN 1/0.

o e e L
, ! T 1 A —
Varidble-length, |
Blocked
(Format VBj % LL,bb 22 kb DATA 88 ,bb DATA Continued below
O - —— Llp - e —ad
]
e T Y O 1 e —
{ Lighb 20 3bb DATA 20 jbb DATA
e Maximum logical record length - 32,756 bytes.
e Length control fields supplied by FORTRAN 1/O.
» Format-V and blocked format-V records cannot be processed on 7-track tope units without date conversion feature.
o Record 1 —————#ett-——— Recard 2 - st Rocord 3 ——tta—— Record 4 —“—"-‘
Undefined
(E +]
(Farmat U Data Data Datz Dota
e Record length: defined by physical bounds recognized by the storage device.
Figure 22. Record Formats — Physical Sequential
(¢) X greater than Y Read From Next Record (b) X less than Y
{error} Data Set ' ’ Data Set
FORTRAN | [FORTRAN |

4. rortrAN logical record of X bytes read from a for-
mat V data set logical record with a data length of
Y (data set LrecL in the ppEF command is unimpor-
tant unless it is deliberately set smaller than max-
imum likely Y):
(a) X =Y

Y+4(VAM)
Y+-8(PS)

I Data Set
| FORTRAN

Not Processed

{c¢) X greater than Y (error)
Read From Next Record

| Data Set | ————
| FORTRAN

NAMELIST Records

FORTRAN NAMELIST records are written based on a
NAMELIST variable list that provides a NAMELIST desig-
nator name followed by a number of variable or array
names.

Appendix E: Specification of Data Set Characteristics 129

This results in the generation of at least three logical
records:

1. A record containing only the NamMEeLsT designator
name preceded by an ampersand (&), which starts
in character 2 of the record

2. One or more records containing items of the form
variable-name = integer, real, complex, or logical

number

3. A final record containing &exp, which starts in the
second character of the record.

The user has no control over the spacing or size of
items in the second class of record; this depends on
the size of the number field required to represent the
variable, Typical output might appear as:

&NAME]

A=47. 00000, I=5, N=~76709 XXX =—0. 123456707

&END

If format V is specified, records of different lengths
are written, but none exceeds 120 bytes,

If format I is specified, the specified logical record
fength in the ppgr is used. The logical record length
can be set to 120 to facilitate subsequent printing of
the data set.

If format U is specified (with a data set organiza-
tion of rs), unblocked records (format V) are di-
rected to the output device.

If the pper command for a NayEeLIST output data set
is defaulted, output is directed to sysour as variable-
length records of up to 120 bytes. It is either written
conversationally at the user’s terminal or stored on a
system data set {sysour) for subsequent printing.

Since key information cannot be maintained within
NANMELIST records, NAMELIST records with a data set
organization of v are not permitted.

If NaNELIST input is from sysin, the terminal entries
for conversational input shouid be exactly the same as
would be punched on a data card
sage requesting NAMELIST input is printed,

A prompting mes-

Unformatted Records)

Unformatted rortraN logical records are written only
under the control of a list with no FormaT statement.
Data is transferred to the output data set in internal
representation copied from virtual storage.

All unformatted output is made up inta format-V
records using, if necessary, a standard pair of bits in-
dicating that a given record is incomplete and extends
into the next record. For VSAM records, the first two
bits of the first byte in the record length ficld are used.
For BSAM records, the last two bits of the third byte
in the block length field are used. The bits of this byte
are given the following meaning:

i30

VSAM BSAM Meaning
Bit O (first) 6 This record spans into the next record.
Bit 1 7 (last) This record spans from the last record.

Unformatted records written by the IBM System/
360 Operating System with ps erganization are proc-
essed correctly by Tss/360.

When the pper command for an output data set is
defaulted and unformatted records are written, they
are converted to hexadecimal and appear in this form
at the terminal or in the listing. The spanning indica-
tor and record length are printed. When the pper
command for an input data set is defaulted and un-
formatted records are to be read, the prompting mes-
sage reminds the nser that hexadecimal data should
be entered. The user is not required to enter hexa-
decimal data for the length field and spanning indica-
tor. If one line of input is not enough to fill the
elements of the list, additional requests are made for
more lines until enough data is received. Invalid hexa-
decimal characters cause a request for a new line of
data. A blank in the input line is treated as marking
the end of hexadecimal data, and any further char-
acteys in the line are ignored.

Summary of FORTRAN Data Set Formats

Table 10 summarizes the allowable data set organiza-
tions and logical record stricture for data sets created
or processed by Forrraw object programs.

FORTRAN Operations on Data Sets

Generation of New Data Sets

A FORTRAN programn can write an output data set to

be used as intermediate data, print or punch output,

or to be processed later by other programs.

1. Intermediate Qutput: This requires use of the sim-
plest form of poiy deseribed ninder basic ppeEr com-
mand. Default characteristics are suitable for all
applications and for any combination of Reap,
WRITE, and control statements,

2. Print or Punch Cutput: The default parameters of
the basic poer command are acceptable. Unfor-
matted records shouid not be interspersed with for-
matted. The parvt or caTaroc command should be
issued for the dara sot hefore rocorr. In conversa-
tional operation, defaulting the pper command will
cause the output to be printed at the terminal.

2. Cutput Reteriion Within TSS/360: The simplest
forme of porr command can be used, and the data
set will be cataloged since new data sets defined
by the basic pory command reside on public stor-
age. The data sct may reside on either a public or
private volume.

Table 10. Data Set Format Summary

{ DISP==NEW)
REQUIRED

DATA SET RECORD LOGICAL RECORD LENGTIH PARAMETERS
ORGANIZATION FORMAT (L.RECL) NOTES IN DDEF NOTES
VS I 1. Max length = 1,048,576 o FixxFyvy, VS 1. Records ave always blocked.
2. Default length = 133 2. DSNAME = 2. Do not use for unformatted /0.
3. Padding occurs if output less 5. RECIFM=F 3. No tapes.
than specified 4. LRECL=
4. Error if output greater than
specified
A V! 1. Max length = 1,048,572 E, L. Iw sords are ‘J" avs blocked.
2. Defanlt length == 1092 g 9. Can be used for formatted, unformatted
3. No padding if output less and NAMELIST logical records.
than specified 3. 4-byte leneth indicator at beginning of
4. Error if output greater than d(]l focical record, not transmitted to
specified user’s storage.
4. No tapes
Vi o 1. AMax length == 4,000 “T\'\'Fvyv 1. Kecords are abways blocked.
2. Detault length 133 3. \ A "\H,M 2. Do not use for unformatted 170,
3. Padding occurs if output fess 3. User must supply kev in the record.
than specified 4. No tapes.
4. Error if ouiput greater than
specified
Vi Vi 1. Max length = 4,000 . Records are .{ii\x s blacked.
2. Default fmxgﬁ? 4.000 2. Cun be wwed for formatted logical records
3. No padding of fogicai records Cand unformetted using core in the key).
4. Error if output greater than 3. User must supply key in the record.
specified 4, d-bvte length indicator at heginning of
cach Jogical record, not transmitied to
user’s storage.
. No tapes.
S I i. Max length = 32,760 I, Records are unblocked.
2. Default lencth 2. Volume may be tape.
3. Padding occurs if output less RI C ! Mo T 3. Do not use for unformatted 170,
than specified LRECL= 4. IBM Systemn/360 Operating System vol-
4. Error if ontput greater than umes can be written/read.
specified
PS FB . Max length = 32,760 1. Maxinnuar biodk lenoth is 32,
Default fenath == 133 2. Default Blook fength is 3990,
Padding occurs i output less 3. Block fength must be a multiple of
than specified 4. L Rl‘ (;1,_ LRECL.
4. Error if output grcater than g BLESIZE = 4. Can be nsed for formatted logical records
specified only.
5. Volume may be tape.
6. IBM Systems/360 Operating System vol-
wnes can be written/read.
7. Cannot be specified for ASCIT data sets.
PS Vi 1. Max length = oo Flsxloyyy, PS 1. Maximum block length is 32.760.
2. Default }rn;th = J()C)? . DSNAMI = 2. Default block length is 4096.
3. No padding 3. Block leasth must be o multinle of
4. Error if oniput greater than LRISCL.
specified 4. Cun be wed tor formalted, unformatted
and NAMELIST records.
5. Volume may be tape.
G. IBM Systemn/360 Operating System vol-

wme can be written/read.

4-byvte length indicator at beginning of
cach logical record, not transmitted to
user’s storage.

HBM-supplied default parameter
2Format-U records are treated as Formal ¥ with length of 4096 in VS
SRKT must allow for the 4-byte indicator

Appendix I7: Specification of Data Set Characteristics

131

If the data set is to be used subsequently by
others, a pERMIT command must be issued for the
data set so that those who wish to use it can
SHARE it.

4. Qutput Retention QOutside TSS/360: A data set to
be used on another Tss /360 system is treated as if
it were to be used on the same system, but a private
volume must be requested. However, if the data set
is to be used on another svstem {not a 1ss/360 Sys-

tem), a full porr command is required for one of

the ps data set types on either direct-access storage
or tape. The data set should be on a private volume.

All tapes should have standard labels, so that they

can be processed on rss 360 and most other sys-

tems) with a minimum of pprEF command para-
meters.

Reading Existing Data Sets

A FORTRAN object program may use input data sets
from a number of different sources and with different
characteristics.

From Outside TS5/360

1. Card decks. Card decks may be placed in a termi-
nal card reader and read directly by rorTRAN when
the ppEF command for the input data set is de-
faulted. Another method is to submit to the Tss/360
operations center the card deck made up as input
to a system program that generates vam data sets
from card decks. The card deck is set up for a
nonconversational task in one of two ways:

a. The deck contains a Locox card and command
cards that caLr a specified rForTrRAN porgram. The
data cards foliow the carr card; the last data
card is followed by a card with %Exp in columns
1-4, by additionai systerr command cards, and
finally by a rocorr card. The entire ceck causes
FORTRAN execution similar to that in a batch en-
vironment. The resulting vaa data set serves as
sYSIN but canriot be cataloged or retained in the
system. (See Example 13 in this manual.)

b. A data descriptor card immediately precedes the
first data card. The data descriptor card is de-
scribed in Command System User’s Guide. Fol-
lowing the last data card is a card with Zexpps
starting in column 3. The resultant data set is
cataloged and is accessible to FORTRAN programs
by means of the basic ppEF command.

2. Magnetic Tapes. If the tape is to be used frequent-
ly, the system operator should be requested to make
a vs data set from the tape using a program similar
to that mentioned above for bulk input from cards.

132

The operator will create a standard cataloged
vs data set that is accessible to the user for any
session.

The alternative approach is to treat the tape as
a private volume, request it on ppeF commands with
DSORG set to ps, and specify the additional param-
eters as discussed in “Full pper Command” in this
appendix. When the tape has no labels, a number
of porF command parameters must be specified
that arc normally obtained from the tape label.
However, if the data set is cataloged (cararoc
command following ppeF command), it again be
comes possible to use the basic ppEF command.

3. Direct-Access Volumes (Not VAM). To use direct
access volumes from outside Tss/360, supply appro-
priate ppEF commands for psorc of ps with the
parameters given in this Appendix. Issuing a CATA-
oc command following the ppEF command will
make ps-type direct-access volumes more conveni-
ent to process in future sessions.

From Other Than FORTRAN Programs on 755/360

FORTRAN 1/0 can he used to process most input vam
data scts created under Tss/360. The basic DDEF com-
mand is used. Any input logical record that can be
represented as a print line can be precessed by a
FORTRAN program having the right FOrRMAT statement.

If a non-rorTRAN program has written a non-vam
data set such as a tape or direct-access volume on
1ss/360, the user should proceed as if the volume had
originated outside Tss/360.

From FORTRAN Prng:ams on 7SS/360
There are no special considerations when exchanging
data sets between T$s/360 FORTRAN programs.

Exception Handling

If a reAD statement is being executed and it contains
the optional specification of Exp= or ereR=, and an
end or error condition exists, control transfers to the
user program without error message or interruption.
If an end-data-set condition exists and Exp= causes
continued execution, further rREADs on the same data
set cause a scarch for another ppEF command (e.g.,
one with a ppxaste of ¥ro1roo2 instead of Froiroot).
If an error condition exists, the user can attempt to
hackspace and read again as many times as he wants.
It psorc is ps for magnetic tape, the system’s error
recovery procedurcs are applied to read or write
errors unless suppressed by the sk option in the
porr command. If the error is unrecoverable, the pro-
gram terminates (system Exit is called by the 1/0
routines) unless a reEap with the ERR option is being
processed. If the sk option has been used to sup-

press one or more of the standard error procedures,
this suppresses either termination of the program or
transfer to the Err location.

If psorc is s for direct access, the system’s error
recovery procedures attempt to usc alternate tracks.
Thus, when a track is found to be defective, the sys-
tem assigns the next available alternate track. The
FORTRAN user has no control over this action and is not
aware of its taking place except that in the event that
no alternate track is available for a warte, the program
will be terminated.

Positioning Statements and Sequence Rules

When operating with vam or ps-type data sets, the

system attempts to interpret and execute each FORTRAN

positioning statement in accordance with the organi-
zation of the data set in question.

1. For sysout and sysiv, all positioning statements are
ignored unless they violate rules 2 through 5.

2. An attempt to use ENDFILE on a data set that has so
far only been used as input causes an error message
and execution is terminated.

3. When enxprite is used on an output data set,
subsequent wWrITE statements relate to a different
ddname (i.e., another pprF command), such as
FT01r002 instead of FTo1Fo01.

4. The sequence of statements WRITE-ENDFILE-READ
cause an crror message and program termination.
The scquence WRITE-ENDFILE-REWIND-READ iS ac-
ceptable.

5. An initial zewinp has no meaning for van data sets
that are always accessed starting at the first record;
hence, it is ignored. The sequence READ-REWIND-
READ is acceptable and causes a return to sequential
processing starting at the first record of the first
data set associated with the data set reference num-
ber. Also READ-READ-BACKSPACE-READ is acceptable.
Attempts to BACKSPACE when positioned at the first
record of a data set are ignored.

Execution 1/ O Error Messages

All ForTRAN 1/0 error messages are directed to sysour;
that is, they appear at the terminal during conversa-
tional mode or are listed after a nonconversational task
is complete.

All messages except those that cause a system pause
start with a five-character name that identifies the 1/0
routine issuing the message. The names always start
with the four letters crict and end in one of the letters
A through Y.

Most messages consist of a fixed portion, usually 40
bytes in length, followed by a variable portion of
about 20 bytes that contains the variable information
associated with the message.

When a FORTRAN PAUSE statement is executed, the
user is permitted to enter any command other than
LOAD, UNLOAD, Or CALL name, and then to continue exe-
cution of the program with co. In nonconversational
mode, the PAUSE message is written on sysour and
program execution continues.

Certain error conditions do not permit further exe-
cution of the program, such as an end-data-set condi-
tion from a READ statement with no Exp= specified.
This causes the printing of a message; then control is
transferred to the system termination routine, EXIT.
Any data sets that the program has left open can be
closed with the crose command.

SECURE Requirements for Nonconversational
Tasks

Nonconversational tasks are enqueued until the sys-
tem is able to fill the requirements for private devices.
This list of requirements is made available to the sys-
tem by means of a SecURE command which the user
must include in the task’s command procedure as the
first command after LocoN. Then as each ppEF is read
and processed, the required devices are allocated
from those that have been secured for the noncon-
versational task. Any attempt to allocate more than
are available will cause the task to be terminated.

In determining the number of devices needed in a
task, the following points should be considered:

e The number of devices should be at least equivalent
to the number of data sets on different private vol-
umes which are opened at any one time. Two or
more data sets residing on the same private volume
may require only one device (the exception is de-
scribed below).

* If two different data sets residing on separate vol-
umes are used in sequence (i.e., the first is closed
before the second is opened) the system can be
directed to allocate the same device to both by
including the UNIT=AFF option in the second PDEF
along with the ppNvamEe of the first ppEF command.
When the uxiT=AFrF option is selected, the device
types of both data sets must be compatible, and
neither should be new data sets residing on direct-
access devices.

e If two different data sets on the same or different
private volumes are defined by the same ppNaME,
the UNIT=—AFF option may not be selected, regardless
of whether the references are in the same module or
not. If the same data set reference number is used
in different programs in a multiple execution task,
then the first data set must be released prior to the
second ppEF; thus, two devices must be secured for

Appendix E: Specification of Data Set Characteristics 133

the data sets even though both data sets are not open
at the same time. If both data sets are processed
serially in the same program (i.e., the end of the
data set is reached, followed by a rReEaD on the same
data set reference number) then two pDEF com-
mands are necessary with the same data set refer-
ence number in their ppxaxte and with successive
data set sequence numbers. In this case, one device
is sufficient because the unit affinity option may be
used.

If several data sets are to be serially processed
with unit affinity specifed, each data set may have
unit affinity with only the most recently processed
data set. Note that unit affinity may only be speci-
fied for physical sequential data sets.

If, however, the data sets are not processed serially
in the same program, the first data set must be re-
leased prior to the second poer. Therefore, two
devices are nccessary since the RELEASE command
removed the device from the task’s allocation prior
to the second ppEF command.

Guide to DDEF Commands

This section discusses:

1. Basic pprr Commands — describing the general
form of the basic porr command and its uses.

2. Default of pper Commands — describing the condi-
tions where poEF commands are defautable and sub-
sequent system action.

Full pper Command — describing the general form
of the full ppEF command for the rorrrax user. In-
cluded is a table illustrating for each type of data
set, the required and optional ppEF parameters.

S.‘,-J

The ppEF command is used to establish a data set
in the system and describe its characteristics. In gen-
eral, any data set required by a FOrTRAN object pro-
gram during execution must be specified in a ppEF
command,

A pprF command can be issued at any time within
the session prior to the carr command for the pro-
gram in which the data set is to be used. Each pprr
command is valid only during the task in which it is
issued; previously defined data sets must be redefined
at every task that refers to them. A pper command
that has been entered can be canceled by a RELEASE
command.

Normally, FORTRAN users require only basic DpEF
commands, defaulting almost all of the operand fields.
In some cases, ppEr commands themselves can be de-
faulted, in which case the sysix or sysout data set for
input and output respectively is chosen. More complex

134

pper commands can be used if the data formats re-
quire it.

Input/output statements, such as READ, WRITE, RE-
WIND, BACKSPACE, and ENDFILE, apply to collections of
data that are referenced within a FORTRAN program as
integer numbers:

READ (23)A OR WRITE (J)B

Since the reference is to the data rather than any
specific device, this number is called the data set ref-
erence number.

The data set reference number used within a For-
TRAN program must be associated with a data set name
or psNaME before the system can read or write it. This
relationship is established by reference to a poErF com-
mand that links a data set reference number, a data
definition name (povane), and a data set name
(DSNANL),

Command format specification conventions are
listed in Appendix G.

Basic DDEF Command

The basic ppEF commands may he used for any
cataloged input data set except those on unlabeled
tapes. For a new data set it specifies public volume
residence, a virtual sequential (vs) data set organiza-
tion, and variable length records (format va). Data
sets defined with this basic ppEF command must be
cataloged by the system. The basic pperF command
is shown in Figure 23.

Qperation Operand

DDEF | DDNAME==data definition name, [DSORG={VI Vsivp}],

DSNAME -=data set name

Figure 23. Basic DDEF Command

DDNAME —FTxxFyyy

The poxante parameter must be of the following for-
mat:

FTxxFyyy

where xx is the data set reference number used within
the program and must be two integer digits in the
range 00-99; for cxample, a program containing the
FORTRAN statement READ (5, 60)A requires a DDEF com-
mand with poNaMe parameter Frosroet. The yyy is the
three integer digits 001, except as noted below. The
vyy portion of the ppxaate permits operations on mul-
tiple data sets with the same data set reference num-
ber. For example, when a BEap (5, Exp=40) is used
and an end-of-data-set condition occurs, successive
READ statements applying to data set reference num-

ber 5 take place on poNaME FrosFoo2; therefore, two
ppEF commands should be supplied, one for ¥rosroot
and the other for Frosronz. Similarly, when a write (5)
statement is followed by vxpriLE 5, successive WRITE
(5) statements take place on PONAME Frosr002; there-
fore, two poer commands should be supplied, one for
F1057001 and the other for Frosrooz.

If a ppxanEe with yvy higher than 001 is used, pper
commands for all yyv between 001 and the higher
number must be provided. The various data sets using
the same data set reference number may have com-
pletely different characteristics and may be stored on
the same or different devices.

DSORG—

Specifies the data set organization. In the basic ppEr
command, this should be specified as vs (virtual se-
quential). Other data set organizations and their use
are described later in this appendix in “Full oorr
Command.”

DSNAME =
The psyarzr parameter description DSNAME=name
specifies the name of the data set. This is the name
under which the data set is to be cataloged or referred
to by other commands during the session. It contains
onc or more simple names, cach simple name having
one to eight alphameric characters, the first of which
must be alphabetic. A period is used as separator be-
tween simple names. The maximum number of charac-
ters, including periods, is 35. The maximum number
of simple names is 18,

For many cases the psxaare will consist of only one
simple name such as:

DDEF FTOGF001,VS,DSNAME—OUTPUT,DISP==NEW

A psnasze may be of value in deseribing the con-
tents of the data sct. Thus, a program that generates
a table of random numbers and a table of square roots
with the data set reference numbers 1 and 2, respec-
tively, might employ the ppeEr commands:

DDEF FTOIF001, VS, TABLE.R
DDEF

FTG2FO001, VS, DSNAMEZTITABLE.SQRROOTS

A simple means of obtaining unique meaningful
DSNAMES is to use the program module name as the
first simple name and the poxavie as the second simple
name. Therefore. a program called exsntoorn that
writes its output on data set reference number 10
might be given ppEF command parameters:

DDEF FTI0F001, VS, DSNAME=EXSMOOTIH.FT10F001.0UTPUT

Use of partitioned data set member names and rela-
tive generation numbers are for a special kind of data
set discussed in detail in this appendix under “Full
mper Command,” but their effect on psvanes is de-
seribed briefly below.

The psnaME may continue one of two additional
kinds of simple names. The first is written within pa-
rentheses and is not preceded by a period. The second
is a simple name of the form GxxxxVyy, where xxxx is
a 4-digit numeric generation number and yy is a 2-
digit numeric version.

If a simple name is not separated from the previous
name by a period and is within parentheses at the end
of a psxanE, it may be the name of a member of a par-
titioned data set (first character must be alphahetic)
or a relative generation number (zero or a signed
integer).

Examples:

MATHLIB(SORT) Means the SORT member of the parti-
tioned data set MATHLIB

PAYROLL(0) Means the most recent generation of

PAYROI.L

Means the last generation of PAYROLL
Means the next generation of PAYROLL
Fifth absolute generation

PAYROLL(-1)
PAYROLL{ +1)
PAYROLI..G0005Y00

If & psvaate is to contain generation names, the
psNantE proper is limited to 26 characters, including
periods.

Default of DDEF Commands

When an 170 statement is encountered during the ex-
cention of Fortran programs and the data set refer-
ence number is one that has not already bheen wsed.
the 170 routines make a search of user ppEF commands
issued so far. This scarch is based on the appropriate
ddname constructed from the data set reference num-
ber according to the convention FTxxFyyv. If no such
command is found, the terminal is defaulted.

Conversational

Running conversationally with a defauited pprr
command means that any wiTe statements in the pro-
gram cause data to be printed at the terminal. Unfor-
matted WRITE statements result in the printing of
hexadecimal data. Formatted or NAMELIST WRITE state-
ments lead to the output of print lines identical to
those that would appear ou a line printer except that
the page skip carringe control character is treated as
a triple space and, if the terminal has a print line size
shorter than a generated rorrraN logical record, two
or more lines are output (up te a maximum permitted

Appendix E: Specification of Data Set Characteristics 135

logical record length of 256 bytes). The first char-
acter in the record does not appear but is handled as
a carriage control character.

Running conversationally with a defaulted bper
command means that any REaD statement requires in-
put from the terminal.

The expression Zexp is needed to indicate the end of
data to be read by the user’s object program from
sysIx. It can be punched on a card for nonconversation-
al processing {or entry through the terminal card read-
er) or entered through the terminal keyboard. The
FORTRAN 1/0 subroutines detect the end of input by an
end-of-data set condition. The system rccognizes the
expression, ZexD, and generates an end-of-data set in-
dication, which is transmitted to the rForTrRAN sub-
routines. When a command sequence which has data
lines or cards included with it is stored as a sysix
data set for processing (see Fxamples 11, 12, and 16),
the Yexp must follow the last line of data.

It is possible to include any number of %exp cards in
an input deck if the user wishes to section his deck. If
the Exp=option is used in a FORTRAN read statement
each Zexp would then indicate the end of a section of
data.

1/0 control operations such as REWIND, ENDFILE, and
BACKSPACE are ignored when the corresponding ppEF
command has been defaulted conversationally,

The 1/0 statements REap (with no data set refer-
ence number) and rrixNT lead to automatic default to
terminal 1/0 without prompting for ppEF commands.

Nonconversational

When an 1/0 statement is encountered during execu-
tion of FORTRAN programs in nonconversational mode
and the data set reference number has not already
been used, a search for the pper is made. If no ppEF
with the proper data set reference number is found
and the 1/0 operation is wriTE, then output is directed
to the system-assigned output data set, sysour. The
user receives a listing of sysour, but the data set is not
cataloged for subsequent use. If the 1/0 operation is
READ, an attempt is made to read from the sysiv data
supplied by the user when the task was submitted. It
should contain data following the run command if
READ statements without corresponding oppEF com-
mands are to be executed. The characteristics of this
data set depend on how it, in turn, was created; it can
be either vs or vi and normally contains fixed-length
80-character records. When reading from sysiv. a ree-
ord consisting of the characters Zexp is assumed to be
an end-data-set indicator, which causes either termin-
ation or transfer to the Exp=location specified in the
ReaD statement. If the svsin data set is exhausted,

136

(i.c., there is no ZEND on sysiN) the same action takes
place, but errors will arise if the Locorr command has
been read as FOorRTRAN data.

Therefore, data scts and multiple data sets can be
read from sysiN, but it is the user’s responsibility to
guard against reading commands as if they were data.
Further, the user should read all data on sysiN to
avoid that data being interpreted as commands.

1/0 control operations such as REWIND, ENDFILE, and
BACKSPACE are ignored when the corresponding DDEF
command has been defaulted nonconversationally.
The 1/0 statements ’eap (with no data set reference
number) and prriNt lead to automatic default to svysi~
and sysour.

Once a data set has been defaulted to sysour (ie., a
wRITE has been executed where no ppoEF was sup-
plied), a subsequent attempt to READ the same dat:
set reference number will cause execution to be te:
minated.

Full DDEF Commuand

Those portions of a ppEr command that are applicable
to determine or specify the characteristics of a data
set operated on by FORTRAN programs are presented
in Figure 24. Other parameters and options of the gen-
eral poeF command, as described in the publication
Command System User’s Guide, are not given because
they are ignored or overridden by the rortrAN 1/0
routines.

Specification of pper commands for peripheral de-
vices of the cru is also described in the publication
Command System User's Guide.

The pper command that defines a cataloged data
set is brief and simple. The only required operand
fields are ppxaxte and psname, Other operand fields
are unnccessary since other information about the
data set is described in its catalog entry. For a cata-
loged data set if spAcE, UNIT, LABEL, Or VOLUME oper-
ands arc entered, diagnostics will be displayed as ap-
propriate. However, the associated fields will be taken
correctly from the existing catalog entry.

ppeF commands that define uncataloged data sets
an be divided into two groups: (1) those defining
new data sets (data sets that are to be generated dur-
ing the run but do not vet exist) and (2) those de-
fining old (already existing, but uncataloged) data
sets. These old, uncataloged data sets can exist only
on private volumes.

To define a new data set that is to be written on a
public volume, the user can use the DDNAME, DSNAME,
SPACE, DSORG, and TARFL operand fields. Exactly which
fields he uses other than ppxavE and psyvame, which
are required, depends on the character of his partic-

OPERATION OPERAND

DDEF DDNAME = data definition name

[,DSORG :{ VI|VP | VS]PS}]

DSNAME = { data set name }
! * data set name
r DA [,direct-access device ‘rype])
SJUNIT = < TA [,tape type] *)]
L symbolic device address }

,SPACE = ({ CYL | TRK | record lengfh} , primary }
[,secondary][,HOLD])

PUBLIC (PRIVATE g
, VOLUME —':(PRIVATE , tvoiume serial number, ... ‘)

volume sequence number

,LABEL = [file sequence number] [, {NL fsti AL}]]
[,RETPD = retention period]

,DISP = {OLDINEW[MODH
_OPTION = {CONCt JOBLIB }]

RET = retention code]

¢

. DCB = (‘:dcm definition

T

[. DSORG=code] [, RECFM=code]

[LRECL=integer] [, BLKSIZE=integer]
[, KEYLEN=integer] [,RKP=integer]
[,pa D=integer | [, DEVD=code }

[, DEN=integer] [, TRTCH=code]
[,BUFNOC=integer] [,0OPTCD={wial]
[, IMSK=code] [, BFOF F=integer]>

name

Figure 24. Full DDEF Command for the FORTRAN User

ular data set. To define a new data set that is to be writ-
ten on a private volume, the user must give DDNAME,
pSNAME, UNIT, and voLUME operands. If he wants, he
can also furnish psorc, space, LABEL, and pisp fields as
well,

The user defines an old, uncataloged data set by
specifying the DDNAME, DSNAME, VOLUME, UNIT, and
pise ficlds. The remaining fields can be defaulted for
all data sets except unlabeled tapes.

The description of the basic ppEF command given
previously in this appendix also applies to the full
ppErF command. If pisp=orp, the full pbEF command
can be used to override data set specifications already
given in the standard label; however, the user is cau-
tioned that to do this may cause errors in processing
the data.

When pisp—=xEw, data sets can be defined that dif-

ter radically from the standard data set resulting from
the basic ppEr command. In particular, the user can
define output data sets to be made compatible to other
systems.

DDNAME

This operand is used exactly the same way as in the
basic ppeEF command. Refer to “Basic ppEr Command”
in this appendix.

DSORG

In the basic ppEF command this is virtual sequential
(vs). The other options are virtual index sequential
(vr), virtual partitioned (ve),! and physical sequential
(ps).

I:1:1_1.(3 DSORG parameter is also present within the DCB sublist of the full
DDEF command. This distinguishes between the different forms of VP,
namely virtual index sequential partitioned (VIP) and virtual sequential

partitioned (VSP), and identifies the organization of the partitioned data
set member to be processed.

Appendix E: Specification of Data Set Characteristics 137

The ps option must be used for tapes or disks that
originate outside the Tss/360 environment and for
tapes or disks that are to be written under Tss/360 and
then transferred to other systems for processing.

The data set organization options other than the
standard vs are available for the benefit of the rFor-
TRAN user who wants to process index sequential or
partitioned data sets, either to take advantage of their
special features or to communicate with assembler
language programs.

Each member of a partitioned data set is treated as
an independent data set, and the FORTRAN user need
not be aware of whether it is a member of the data
set or not. However, only one ppEF command can
be issued for a vp data set and, therefore, only one
member can be processed during a single FORTRAN
execution.

Virtual index sequential can be used only if there is
no NAMELIST input/output for the data set and if the
user takes the responsibility (for output data sets) of
making certain that all logical records contain a se-
quential key in a specified location. The location and
length of this key are given as rkp~ and XEYLEN=
within the pcs sublist of the full porEF command. NAME-
LisT output cannot be placed on a vi data set because
there is no way for the user to ensure a sequential key
in a given location in every record.

DSNAME

The previous description in this appendix under Basic
pper Command on this subject applies to the full ppErF
command.

If psorc is vp, a member name must be specified as
part of the psxanme, No more than one member of a
partitioned data set can be processed at one time.

The *data set name option of the full ppEF com-
mand is needed only when processing tape or disk
data sets written by the IBM System/360 Operating
System with 44-character data set names. Therefore.
this option is used only with a psorc of ps. Subsequent
references to the name do not include the asterisk
prefix.

UNIT
This operand is only required when psorc is ps. It can
be defaulted even in that case if the data set is cata-

loged.

_ {2311
UNIT= (DA, 12314

Specifies dircet-access (either a 2311 Disk Storage
Drive or a 2314 Multi-disk Storage Drive).

UNIT=(TA,{7|7DC|9})

138

Specifies that a tape unit (7-track, 7-track with data
conversion, or 9-track) is required for the data set. If
given, it should agree with the pEvD parameter in the
ves feld,

UNIT = (symbolic device address)

Specifies the symbolic device address of a non-stand-
ard device.

SPACE

The space paramecter is never required for existing
data sets. It can be used for new virtual storage data
sets (DSORG is VI, vs, or vP) to request an initial alloca-
tion of public storage that is different from that speci-
fied at systemn generation time. Its function in this
respect is of interest only if the expected size of the
data set is either much larger or much smaller than the
standard system allocation. In these cases, it permits
somewhat greater efficiency in storage allocation. Even
if the storage required is greater than the standavd
allocation, additional storage is automatically issued
so that the space parameter is never required for vir-
tuad storage data sets.

Form 1
SPACE=(, primary [, secondary] [, HOLD])

This form is used to request allocation parameters for
virtual storage data sets that differ from the system
standard. Primary and sccondary allocation are in
space units of 4096 bytes (pages). Primary specifies
the number of initial space units to be allocated to the
data set. It is one to three digits. Secondary is the
number of space units to be allocated each time the
space allocated to the data set has been exhausted
and more data is to be writterr. This allocation con-
sists of a one- to three-digit decimal number.

The 1oLp option within the space parameter spec-
ifics that unused storage assigned to the data set is not
to be released when the data set is closed.

Form 2
SPACE=({TRK!CYL|record length} primary [,secondary]
[, HOLD])

This form is used for direct-access devices where
psorac is ps. It allocates space in units defined by the
first subparameter, namely tracks, cylinders, or record
lengths.

VOLUME
Form 1
[PRIVATE

VOLUME=(1, volume serial number [, . ..] })

The voLuate parameter is required for old, uncat-

aloged data sets that reside on private volumes. It can
also be supplied for new data sets that are to reside
on private volumes. Volume serial numbers can be one
to six alphameric characters and should uniquely iden-
tifyv a particular disk pack or tape reel that is to be
mounted, Tf privatn is specified and pisp==NEw, the
system oblains an available volume and informs the
nser of the volume selected,

In general, therefore, this form of the vovrune field
is needed only for data sets that are not cataloged. Tt
applics mainly when psore is ps and a disk pack or
tape gencrated by the IBM System /360 Operating
Svstems is to be read.

Form 2
VOLUME = (volume sequence numbher)

Where a data set extends over more than one vol-
ume, specifies the sequence number of the first of the
data set to be read or written. This consists of a one-
to four-digit number. It is meaningful only if the data
set has s oorganization, iy cataloged, and its earlier
voluines are not to be processed.

(V]

Form .
VOILLUME=PUBILIC

This form is used for a new public data set if the
user specifies a device type in the uxrr parameter. If
PUBLIC is specified, the volume serial number is not
recognized. puBLIC is also assumed if the vorumE
parameter is not specified.

LABEL

This parameter applies only when the data set or-
ganization is ps, It is generally used only when mag-
netic tapes are to be processed, since all data sets on
direct-access volumes have Tabels known as Data Set
Control Blocks (psees). The rerrp subparameter, how-
ever, iy applicable (o ali »s data sets.

If the entire vaner field is defaulted, the labeling
conventions specified by the installation are assigned.
However, if the data set is cataloged, Tabel informa-
tion is refrieved from the catalog.

Form 1
LABEL = (file sequence number)

The file sequence number {(one or two decimal digits)
specifies the number of a data set on a tape volume
containing multiple data sets. By specifying rLaser, the
user can skip over other data sets and the tape is posi-
tioned to the data set he wants. If the user subse-
quently issues a REWIND instruction, the tape will be
positioned to the beginning of the data set he is using
(not necessarily to the beginning of the tape).

Form 2
LABEL=(, [NL|SL|IAL], RETPD=days)

The options shown are NL for no labels, su for
standard labels and avL for ascm labels. The exact
mecaning of standard labels is installation dependent.
The ~NL option should not be used for ForTRAN output
data sets unless a definite reason exists, since a tape
data set without labels requires a more complicated
noeF command when read back by a FORTRAN program
than one with labels.

reTPD specifies the number of retention days and
applics to output tapes with standard labels and to
direct-access output.

If defaulted, reTPD i3 set to zero to permit immedi-
ate rewriting of any tape or direct access data set.

Disp

OLD
DISP = ! NEW
MOD

pisp==onn and pise==NEw do not affect a data set’s
status. Their only function is to guard against use of
the wrong datu set.

If pisp==~ew is explicitly specified, the system veri-
fies that the psvaare does not duplicate one that is
alrcady in the user’s catalog or one that has been
found in a previous pory commmand in the same task.
If a duplication occurs in conversational mode, the
systom issues an error message. In nonconversational
mode, the task is terminated.

If pisp=—orp is explicitly specified, the system
searches for an existing data set with the same
psxanir. If it cannot find such a data set, it issues an
ervor message: in nonconversational mode, the task is
terminated.

If the user does not specify pise, and if the system
finds a data set with the specified psNAME, it assumes
that it is to use that data set. If it cannot find such a
dats set, it ereates a new data set with that psNaME.

msp==a1op applies only when the data set organiza-
tion is s and a private volume is being processed.
This option causes logical positioning after the last
record of the data set. Additional wriTE statements
are then possible to expand the data set. This option
applies mainly to magnetic tapes.

OPTION
OPTION = CONC
Specifies that a data set is being added to the con-
catenated data set named as poxame. The order of
concatenated data sets is the same as the order in
which they are defined. Only existing vs data scts can
be concatenated.

OPTION — JOBLIB

Appendix E: Specification of Data Set Characteristics 139

Specifies that the data set is to be used as a job li-
brary. The data set name spcecified in the psxae field
is entered into the program library list. The data set
organization must be vp.

RET

The rET parameter allows the owner of a virtual stor-
age data set to specify the storage type, and deletion
and access attributes of a data set:

RET=([P/T] [CL] [U|R])

The storage types are:
P — permanent storage

T — temporary storage
— if neither is specified, permanent storage (P) is assumed.

The access attributes are:
C — delete at CLOSE
L — delete at LOGOFF
—if not specified, deletion at LOGOFF (i.) is assumed

for a temporary (T) data set.
— a permanent data set {P) is not deleted automatically.

The access attributes are:
U — read/write

R — read-only
— if neither is specified, read/write (U) is assumed.

DCB

A data control block (peB) is one of the major control
tables used for communication between T1ss/360 data
management and any program requiring control of a
data set. For every distinet data set reference number,
the FortraAN input/output routines build a pcs as it is
cncountered in executing the object program. The
pce is initially void, but can be filled from infor-
mation in the ppEF commands, by the 1/0 routines
after the pper command has been examined, or by the
input data set labels. Therefore, any required informa-
tion not in the pper command is entered from one of
these sources; in particular, record format (REcrFyM)
and logical record length (Lrecr) take on values de-
termined by the characteristics of an existing data set

7

(pisp—orp) or by FORTRAN input/output standards
for RECFA—vaA where LRECL is not required. The only
pCB parameters of critical interest to the FORTRAN user
are rECFM and LRecL, and the only time these affect
him is when rrecL is smaller than a logical input or
output rorTrRAN record defined within the program.
This condition will cause an error message.

Aside from trect and RreEcrM, the remaining pcB
parameters can be grouped into those related to a
psorc of vi (KevLEN, rR&kP, and pap) and those related
to a DSORG of Ps (DEVD, DEN, TRTCII, OPTCD, BLKSIZE, and
IMSK).

140

DCHRB Parameters — RECFM, LRECL, and BLKSIZE:
reckat specifies the format or character of the records
in the data set:
CUTTTIAM] 3
. 5 VIB'T][AM]
RECTM =) FI.BITIBT] !-AENI]
. D[B]
Where the record format is:
U7 — nndefined-length records
— if psona is vs or vi, this means record size is 4096 bytes
— if nsorc is ps, this means records have physical boundaries
(on a tape) and can vary in length, also known as
blocksize.

V — variable-length records (EBCDIC)
— cach record contains in the first four bytes a binary count
of the number of bytes in the record
— maximum data byte limit is:
1,048,572 bytes for VS
4,000 bytes for VI
32,736 hytes for PS
— maximum data byte limit for formatted records with VS
is 4092 bytes.

F — fixed-length records
— maximum recerd length is:

1,048,576 bytes for VS
4,000 bytes for VI
32,760 bytes for PS
— maximum formatted record length with VS is 4092 bytes.

D — variable-length records
— for ASCII tapes only
—can be specified only as a DCB subparameter of DDEF
command.
\Where the physical attributes are:
B — blocked records {meaningful only for ps); the maximum
blocksize is 32,760 bytes
— BLKSIZE must be an integral multiple of logical record
length for format-F records

T — track overflow employed

— applies only to disk data sets with nsorces

— may cause errors if omitted when track overflow is to bhe

used for writing very long records.

LRECL must be 4 bytes greater than the largest for-
matted logical vorTrAN record that is to be read or
written. If defaulted for format-V records, it is as-
sumed to be 4096 for vs and 4000 for vi. If larger vs
records are anticipated, it must be specified by the
user. Format-V records with a psorc of ps are proc-
cssed with an assumed LrecL of 4096, which can also
be raised by the user.

When using vsam, the FORTRAN BACKSPACE state-
ment may not be used to backspace a data set of un-
defined format (RECFNI—U).

The A or M options under rRecFa relate to whether
extended axst FORTRAN control characters or machine
code control characters appear as the first byte of
every record. The A option (default value) is usually
preferred, since most formatted rortrax records make
use of extended ANsr FORTRAN control character con-
ventions. If NAMELIST records are written, the A can be
specified (or chosen by default) since all records start

with a blank. The M option should not be specified
unless the user has coded hexadecimal data into the
first byte of every record. This option can be ignored
by most users.

BLESIZE is required only if rRecrat is FB (fixed-length
blocked records) and this option, in turn, is meaning-
ful only if psorc is ps. In this case, it must be a mul-
tiple of LrecL. Otherwise. any value given is ignored
and replaced by LRECL.

Fxamples of how te nse the recry, LrecL, and
BLRSIZE paramcters are shown below (they are not
complete ppEF commands; only the psorc and pcs
portion is shown).

VS, DCB=(RECFM=T, .RECL.=80) VS 80-character
fixed-length records
VS variable-length
records {standard)
VS, DCB= (RECFM=FA, 1.RECL=133)
VS data set for
listing
VI, DCB= (RECFM=V, RKP=4, KEYLEN=4)
VI variable-length
records with 4-byte
key in initial position
(after 4-byte
control word)
PS, DCB=(RECFM=FDB, LRECL. =100,
BLKSIZE = 1000)

VS, DCB= (RECTFM =V}

PS fixed-length
blocked with 10
records per block
DCB Parameters — VI Associated: 1f pisp—NEw and
DSORG is vI, the user must specify record key position
(rxr), key length (keviex), and optionally padding
percent (rap). The relative key position (rkr) spec-
ifies the displacement of the key field from the first
byte of the logical record. Since visam records cannot
exceed 4000 bytes, any value between 0 and 3999 can
be specified. The first four bytes of a format-V logical
record are reserved for length information. Therefore,
if RECFM—vV, RKP must be four bytes higher (4 < rxp
< 3999) than for the same data set with RECFM—F.
KEYLEN is the length in bytes of the key associated
with a record. The maximum value is 255.
paD specifies the percent of space (to a limit of 50
percent) to be left available within the pages of a vi
data set, thus providing for insertions within pages.
The voRTRAN user can use vI data sets as output pro-
vided he ensures that the specified key field is main-
tained with appropriate data in collating sequence (as-
cending) from record to record. This is most casily
done by specifying an integer output field as in the
following example of a FOoRTRAN program for reading
input records and copying them to a vr data set.
1 FORMAT (1X, I5, 6A4)
2 TORMAT (6A4)

DIMENSION A(8)
I=0

3 READ (1,2, END=4) A
WRITE (2, 1) 1, A
GO TO 3
4 STOP
END
DDEF commands are:
DDEF FTO1F0Q1, , DSNAME=INPUT, DISP=0OLD
DDEF FFT02F001, VI, DSNAME=0UTPUT,
DCB= (RKP=1, KEYLEN=5, RECFM=F,
[LRECL.=30), DISP=NEW

The user cannot write NAMELIST records on a vi data
set. The user should exercise caution in maintaining
the key when writing unformatted records on vi data
sets.

DCB Parameters — PS Associated: If psorc is ps, a
large number of pcs parameters can be used that
otherwise have no meaning. As previously discussed,
the BLkSIZE parameter is required if RECFM=—=FB. In
addition, the parameters listed below apply.

1. DEVD: Specifies the device on which the data set
resides. It is not required for cataloged data sets;
it can be one of the following:

a. pa specifies direct-access (disk formatted in ac-
cordance with IBM System/360 Operating Sys-
tem conventions). In this case xEvLEN has a
special meaning since it specifies how many of
the initial bytes of each record are to be written
on the disk {or read from it) as a key. This con-
dition has no connection with v and the key
cannot be used for random access by the For-
traN user. If all processing is to be done on
T¢8/360, it is not necessary to use it. However, if
a data sct is to be written on a disk pack for the
purpose of being processed on another 1BM sys-
ten (e.g., IBM System/360 Operating System),
the use of xEyLEN may be required.

b. Ta specifies magnetic tape. If 7-track tape is
specified in the UNIT parameter, pEN is given a
value of 0, 1, or 2 for recording density of 200,
556, or 800 bytes, respectively. If 7-track tape is
to be read, trrci can be given as C for data
conversion, E for even parity, and T for Bcpic to
Ercpic conversion. The defaults are odd parity
and no translation.

2. BUFNO=1: Physical sequential 1/0 normally takes
place with two buffers. The user can reduce space
allocation requirements by specifying the number
of buffers as only one. Any other value given to
BUFNO is disregarded.

3. OPTCD—W: Applies only for direct-access output,
causes additional checking of all write operztions.
This will increase execution time. opTCD — A is
specified for an ascrm tape.

Appendix E: Specification of Data Set Characteristics 141

4. IMSK=code: Specifies a 4-byte hexadecimal num-
ber whose bit pattern indicates the system’s error-
handling procedures to be invoked. If ¥FFFFFFF is
written, the system is to apply all optional error
recovery procedures. This is the defauit condition.
If 00000000 is written, the system is to apply none
of its optional error recovery procedures. If any
other 4-byte hexadecimal number is written, the
systemy applies its error-recovery procedures wher-
ever a bit is sct to one in sk which corresponds
to an error condition. The first two hytes corre-
spond to the first two bytes of the channel status
word, and the other two correspond to the first two
sense bytes. Bit positions in each byte for specifica-
tion of system error recovery procedurc are in the
following format:
XXXXXXXB XCXXXXXD YEFGHIYY YYYYYYYY

where a 1-bit in a given position indicates that the

system is to handle the associated error condition.

X = System never tests this bit to determine entry
to retry routines

Y — Device-dependent conditions
B = Unit exception
C = Incorrect length
D — Channel chaining check
E = Intervention required
' = Bus-out parity
G = Equipment check
H — Data check
I = Overrun
DDEF Summary

Table 11 shows, for each type of data set the required
and optional parameters for the vper command. The
major category is device type {direct-access or tape),
followed by disposition (new or old) for direct-access
device. Data sets residing on magnetic tape are
grouped as cataloged (car} or uncataloged (uxc),
and labeled {raB) or unlabeled (unt).

Sample DDEF Commands

Commands are presented here in increasing order of
complexity and decreasing order of likely applicability.

1. DDEF FT01F001,VS,SCRATCH

Can apply to a program containing such statements
as WRITE (1), READ (1), REWIND 1, etc., on a temporary
(scratch) data set.

The first parameter, Froiroot, is built according to
the skeleton Frxxryyy, where xx is the data set refer-
ence number used in the program (01 in this case) and
yyy is a sequence number (generally 001).

vs indicates virtual sequential.

142

~

The psvanME can be any valid name made up of
cight-letter components connected with periods.
2. DDEF FTO3F001,,DSNAME==SCRATCH.ONE

DDEF FTOAF001,,DSNAME==SCRATCILTWO

Mustrates the use of two scratch data sets, dis-
tinguished by having different psNaMEs.
3. DDEF FTO5F001,VS,DSNAME—"SCRATCH,DISP—=NEW

This may be used if the data set named scratch
is cither not vet in existence or has not been cataloged.
‘. DDEF FTO6F001,VS,DSNAME==SCRATCH,DISP=—OLD

This may be used if the data set named scrRATCH is
already in existence and has been cataloged.

5. DDEF JLIB,VP,DSNAMI
LIB

OWNER. JOBLIB,OPTION=—=JOB~

This would never be used with object time 1/0 but
can be applied when the user wants to compile pro-
grams onto a job library other than the standard vuser-
LB that r.ocon supplies.

pise is defaulted to New only on the first use of the
data set owNEeR.joBLIB. Subsequent action (compiling
new members, ete) requires the same ppbEF command
but pise is defaulted to orp. (Job libraries are de-
seribed in Appendix C.)

6. DDEF FTOTF001,VS,DSNANME——OUTPUT.F120,DCB=—
{ RECFM~—F,LRECL™—120)

Creates a new vs data set with fixed-length records
of 120 bytes. The psnaMr can be anything; a suggested
technique is to incorporate information defining the
kind of data set.

The neB parameters appear within parentheses and
consist of recra. meaning record format, and LrECL,
meaning logical record length.

If pisp—=nEw and no pcB parameters are given, it is
assumed that pcB= (RECFAI=V, LRECL=4096). If pDIsSP—=
orp, the data set characteristics that appear in the
data set lIabel are used.

The above porr command should not be used with
pIsP==OLD, since the pcs parameters may nat be cor-
rect.

7. DDEF FTOSF001,VS,DSNAME=—QUTPUT.F120,DISP==OLD

This is the correct way to read back the data set
created by the last example.

8. DDEF FTO9F001,VS,DSNAME==DATA.V,DCB=={ RECFM—V,

LRECL=—1096)

This has the same effect as DDEF FT09F001,,DSNAME=—
pata.v, since V and 4096 are the default values sup-
plied for rEcFM and LrECL by the FORTRAN 1/0 routines.
9. PDEF FTI0F001,VI,DSNAME==LIST.VIFS0,DCB==(RECFM—

F,LRECL=80,RKP~=0,KEYLEN==5)

v1 indicates virtual index sequential. This can be
omitted if the installation-defined option is v

Table 11. DDEF Parameter Requirements by Data Set Type

- |
= f Direct Access Tape
New Dota Set QOld Data Set
old New or
! UNC Old
! CAT UNC
VS Vi N4 PS an 'S UNL
dorg | VI | ops | cAT | caT UNC
VP LAB UNL LAB
DDNAME X X X X X X X X X X X
DSORG Vs Vi VP PS 10 X PS [) PS
DSNAME X X X X X X X X X ES X
DCB [DSORG o VIP | VSP :) .
FIVIUJ|F |V F |V | U FiIViu {F IV iU
RECFM X] *IX | X | * X | X 1 X XXX XXX
LRECL X117 X118 _)_(7 2 : Xi2 X112
BLKSIZE 1 e {1 1 :
KEYLEN XX 4 4 | 4 4 ;
RKP X
PAD i 0101} s s
BUFNO : A | A 0 010 g '] 0j0;0 0 000
OPTCD M M 0 00 9 Szl
DEVD E E DA | DA | DA DA TA [TA|{TA|TA
DEN . 0 0]0]|0
JRTCH A A ¢ 00t 0O
IMSK : , s | s {oloj¢c 0 0 (0]0/0} 0 Jojoj0
UNIT : . X X1 X X X X1 X1 X
SPACE v i9 |99l i e
VOLUME S X X | X X X X XX X
LABEL 6166 o 5
DISP * * * X
OPTION 0
RET j0j0ojojolo
Notes: 1. Required for RECFM=FB. BLKSIZE must be a multiple of LRECL.
2. Specify largest V type record expected. Default values are as described in this appendix.
3. Specify only if private volume desired.
4. Refer to "DCB Parameters - PS Associated” in this oppendix.
5. Specify NL for unlabeled data sets. A file sequence number may be specified.
6. Only retention period {(RETPD) may be specified.
7. Default is 4092 bytes.
8. Default is 4000 bytes.
9. Only meaningful if existing data set being extended.
10. Required for nonVAM data sets.

Legend: Shaded - Field not required in DDEF command

X - Field required in DDEF command
0 ~ Field optional
* ~1BM-~supplied default

The additional pcs parameters define a new data set
having a sequential key in every record in the first five
bytes. The user must make sure that the key is in
ascending sequence (e.g., by using a format such as
FORMAT {15, . . .) and incrementing the key in the out-
put list before each write).

RKP means record key position relative to the first
byte of the record. kEYLEN means key length in bytes.

10. DDEF FT11F001,VI,DSNAME—LIST.VIV,DCB=(RECFM =
V,RKP—4,KEYLEN =5)

This differs from sample 9 only in that it is for vari-
able-length records. LReECL can be omitted or set as

high as 4000, which is the maximum possible value
for vi.

rkP=4 because each logical record has a four-byte
length field that is nof maintained by the user but
supplied automatically by the FORTRAN 1/0 routines;
it is followed by a five-byte sequential key that is
maintained by the user.

11. DDEF FT12F001,VI,DSNAME—LIST.VIFS0
DDEF FT13F001,VI,DSNAME—LIST.VIV

The above ppers might be used to read back the
data sets created by 9 and 10, respectively.
Note how characteristics are defaulted. They will

Appendix E: Specification of Data Set Characteristics 143

be filled in from the catalog and input data set labels.
Note also that pisp in this case is defaulted to ovp.

12. DDEF FT19F001,PS,DSNANE—TAPE.0S360,DCB=(RECFM
=FB,LRECL==80,BLKSIZE™=800,DEVD=—TA },UNIT—
(TA,9),VOLUME=—(PRIVATE),LABEL==(,SL,RETPD=50)

A ppEF such as this might be used to instruct the
operator to mount a scratch tape on a 9-track drive
(the volume identification is sent to the user after
entry of the ppEF command). Tt is written with blocked
80-character records, at 10 records per block. The
density, pEN, and TRTCH DCB subparameters do not ap-
ply since 9-track tape is specified.

Assuming the volume serial number assigned is
00896, the next ppEF may be used to read the tape
back into a FORTRAN program.

13. DDEF FT20F001,P5,DSNAME==TAPE.0S360,VOLUME=
(,000896) ,UNTT==(TA,9)

pCB parameters are not needed if the installation de-
fault for LaBeL is (,s..) which has been assumed in this
example.

14. DDEF FT20F001,PS,DSNANME==TAPE.OS360

This assumes that when 12 was created it was
cataloged. The act of cataloging a data set makes it
much casier to write pDEF statements for retrieving it.

15. DDEF FT21F001,VS,DSNAME=—PRIVATE.VAM,VOLUME=
(PRIVATE)

vaMm data sets may be written on private volumes,
provided the volumes are correctly formatied. The
actual identification of the volume used is sent back
to the user. Data set characteristics by default will be
RECFM =V, LRECL==1096,

16. DDEF FT22F001,VS,DSNAME=PRIVATE.VAM

This reads back the data set created by 15. It is
assumed that it has been cataloged.

17. DDEF FT23F001,PS,DSNAME—DISK.0S5360,DCB— { RECFM
—FB,LRECL==40,DEVD=—DA,BLKSIZE==400) ,UNTi'=
(DA,2311) ,VOLUME=(PRIVATE),SPACE=(400,500,20)

A data set is to be written on a ps-formatted direct-
access volume to be mounted for private use. Space is
to be reserved for 500 blocks of 400 bytes each, each
block containing 10 logical records of 40 bytes. Each
secondary allocation is to be 20 blocks of 400 bytes
each. The device type is 2311.

18. DDEF FT24F001,PS,DSNAME=—DISK.0S360

This reads back the data set created in 17. It is
assumed that it has been cataloged.

144

19. DDEF FT25F001,PS,DSNAME-—DISK.08360
VOLUME==(,05789) ,UNIT=—(DA,2311)

This is the same as 18, but is used if the data set
had not been cataloged. The operator must be in-
formed of the volume identification and device type.
All other data set characteristics will be obtained by
the system from standard direct-access labels, which
must be present on all direct-access volumes.

20. DDEF FT26F001,PS,DSNAME-—BADSYS.TAPE,DCB=—
(RECFM==F,LRECL.—80,DEVD==TA },UNIT==(TA,9),
LABEL— (,NL),VOLUME=—(PRIVATE)

This is not recommended unless the tape is to be
used by another system that cannot process standard
tape labels.

A tape reel is to be mounted and the user informed
of its identification. Since no labels are written, the
characteristics of the data set and its name are not
apparent to any program reading the tape back.

21. DDEF FT27F001,PS,DSNAME==BADSYS.TAPE,CCB=
{ RECF\(=F,LRECL—=80,DEVD—TA),UNIT=(TA,9),
LABEL— (,NL },vOLUME= (009876)

This is needed to read back the tape made by 20
{assuming that volume 009876 was assigned to it).
Only psp—=orp can be defaulted since there are no
tape labels and it was not cataloged.

22. DDEF FT28F001,PS,DSNAME—BADSYS.TAPE,DCB—
(RECFM=—F,LRECL==80) ,DISP==OLD

This is needed to read back the tape made by 20,
provided it has been cataloged. pcB parameters are
still necded, but voruag, untT, DEVD, and LABEL param-
cters are supplied from the system catalog.

23. DDEF FT209F001,VS,DSNAME=—=MULTIPLE.PART1

DDEF FT20F002,VS,.DSNAME—MULTIPLE.PART2
DDEF FT20FG03,VS,DSNANE—=XIULTIPLE.’ART3

The three pprr statements apply to a program that
executes the following scquence of statements:

WRITE(29) . . . ENDFILE 29 .
FILE 29 . . . WRITE(29)

.. WRITE(29) . . . END-

24, DDEF FT30F001,VS,DSNAME=—MULTIPLE,PARTL.V
DDEF FT30F002,VS,DSNAME=—MULTIPLE.PART2.F,DCB==
{ RECFM=—F,LRECL—100)
DDEF FT30F003,VI,DSNAME=—MULTIPLE.PART3.VIF30,
DCB=— (RECFM —F,LRECL—80,RKP——0,KEYLEN=5)

This is similar to 23, except that the three data sets
have different characteristics.

25. DDEF FT31F001,,DSNAME=—MULTIPLE.PART1
DDEF FT31F002,,DSNAME=—MULTIPLE.PART2
DDEF FT31F003,,DSNAME—MULTIPLE.PART3

This is similar to 23, but applying to a program that
reads the three data sets back as follows:

1 KEAD (31, END=2
' [Process MULTIPLE.PARTI]

GO TC 1
9 READ (31, END=3)

[Process MULTIPLE.PART2]

GO TO 2
3 READ (31, END=4)

[Process MUL'TIPLE.PART3]

GO TO 3
4 STOP

Error Messages for the DDEF Ccmmand

The user’s replies to diagnostic messages issued for
his ppEF command should be guided by the following:

1. If the diagncstic message calls for rcentering an
element within a given operand field, oaly that
element should be reentered. Preceding and/or
following delimiters are unnecessary. Default is
acceptable.

2. If the diagnostic message calls for reentering a
complex operand field, the whole field should be
reentered, including keyword and equal sign. De-
fault is acceptable.

3. If the diagnostic message calls for reentering an
operand field that consists of only one element in
addition to the kevword, the reply may be either
the element alone, or the keyword, equal sign, and
element.

4. If the diagnostic message calls attention to an in-
consistency and asks the user to (re)enter one of
two or three specified eperands, the reply must be
a complete operand field. Default is acceptable
only if so stated in the message.

The user is informed if the ppEF command cannot
be completed. This can occur for one of the following
reasons:

Invalid punctuation in the operand string.
User’s volume(s) cannot be mounted.
Sufficient space cannot be allocated.

LA

More than three logical inconsistencies were de-
tected in the ppEF command.

Whenever possible, correction and completion of the
command is attempted. But if diagnostic messages in-
dicate that an operand has been misunderstood be-
cause of a punctuation error in the operand string, the
user should interrupt the operation (by pressing the
attention key) and reenter the corrected command.

The user must never reenter an operand or part of
an operand that has not been requested.

If a keyword is missing or invalid, the pertirent
clement following it must be reentered after the cor-
rected keyword and equal sign are typed.

If an eperand occurs twice in the operand string,
the second occurrence is preferred. All elements be-
longing to the earlier occurrence are erased.

PDEF prompting messages are issued according to
the operand information already supplied. Unneces-
sary prompting is kept to a minimum.

If the user’s problem program is being executed in
conversational mode and an undefined ppxaME is
referenced, prompting messages for DDEF operands
are issued to the user.

Data Set Defirition Rules for Language
Processing

Table 12 provides information relating to the organiza-
tion of and ppEF requirements for data sets involved
in assembly, compilation, and linkage editing,.

Data Set Definition Rules for
TS5/360 Cormmands

Table 13 provides information relating to the structure
of and ppEF requirements for data sets processed by
T8S/360 commands.

Appendix E: Specification of Data Set Characteristics 145

Table 12. Data Set Definition Rules for Language Processing

COMMAND RELATED DATA SETS DATA SET DEFINITION RULES DSORG
Source program data set Source program data sets: If supplied as part of
FTN X SYSIN data set, these data sets do not require any
. AN Object module further data set definition. If supplied as prestored VI
(FORTRAN) : ;
. data set, they must be cataloged. No DDEF is re-
Listing data set cuired for these commands.
. jec > is ed in library at
Source program data set Object module: The module is 'placu'd in I{ y
\ASM] Pros ¢ top of program library list. If job library is to re- VP
(ASSEMBLER) . ceive ohject module, DDEF command is required to
Object module VT
define library.
Listing data set Listing: No DDEF command required. VI
Source program data set Same rules as for FTN and ASM.
Librarics that ¢ Each library referred to by INCLUDE statements
. ?{rui. ‘?t arelol except USERLIB and each job Library used by auto- VP
Supply object modules matic call must be defined by @ DDEF command.
LNK
(LINK If library at top of program library list is to receive
EDITOR) output object module, no additional DDEF in this
Library to receive output task. VP
object module If another library is to receive output, it must be
defined by previous DDEF command and be specified
by its DDNAME to linkage editor.
Listing data set No DDEF command required. VI

Table 13. Data Set Definition Requirements for Commands

COMMAND RELATED DATA SETS DSORG DATA SET DEFINITION
BACK New SYSIN data set that is to con- VS, V1 New SYSIN data set must be cataloged, or de-
trol completion of this task in non- fined by previous DDEF command in conversa-
conversational mode. tional portion of this task.
CATALOG Data set to be cataloged. PS Data set to be cataloged must be defined by
previous DDEF command in this task, unless
UPDATE option specified.
CDD Data set containing only DDEF VI Data set must be cataloged, or defined in current
commands. task.
Data set to be copied: existing data VS, VI Data set to be copied must be cataloged or de-
set or member of partitioned data fined by previous DDEF command in this task.
set.
CDS
Copy data set: can be data set or VS, VI Copy data set is defined by this command.
member of partitioned data set.
DATA Data set to be entered. VS, VI No DDEF command is required if the data set
(See Note 2) is to reside on public storage; data follows this
command in input stream. If the data set is to
reside on private storage, a DDEF must be
issued before the command.
DEFAULT User profile data set in USERLIB. VP Data set must be defined in current task.
DELETE Data set whose name is to be re- any No DDEF command required for this command,
moved from catalog.
DSS? Data sets whose status is desired. any Fach data set whose status is to be presented

must he cataloged; no DDEF command required
for this command.

146

Table 13. Data Set Definition Requirements for Commands (continued)

COMBMAND RELATED DATA SETS DSORG DATA SET DEFINITION
DUMP Data set to be printed as a reult of A% DDEF command whese DDNAME is PCSOUT
program control command DUMP. must be defined prior 1o execution of DUMP
command,
EDIT Data set to be processed by the Vi Data set must be cataloged, defined in current
(See Note 1) Text Editor. task, or defined by this command.
END Data set being processed by the A% No DDEF command required for this command.

(See Note 2

Text Fditor, or indicates PROCDEF
Command completion,

FERASE

Data set to be erased.

VS, VI, VP

Data set to be erased must be cataloged.

EVV

Data sets whose names are to be
entered in the catalog.

VS, VI, VP

No DDEF command required by this command.

ENECUTE

SYSIN data set for nonconversa-
tional task set up by this command.

VS, VI

Data set must be cataloged; no DDEF command
required by this command.

LINE? Line data sct containing lines to be VI Line data set must be cataloged or defined by
presented. previous DDEF command in this task.

CFTN Object module to be loaded. VP Object module to be loaded is identified by exter-
L ASM nal name specified in this command; it must be
| LNK in a library in the current program library list.

LOAD < User- ~

1 vord [
! swritten !
problem

| program

AMODIFY Dala set to be changed. Vi Data set must be cataloged or defined by pre-
vions DDEF command in this task.

PC? Data sets whose status is desired. any Each data set whose status is to be presented
must be cataloged; no DDEF command required
for this command.

PERMIT Data sets for which sharing is ver- any Data sets for which sharing is permitted must

mitted. be cataloged; no DDEF command required for
this command.

PoDn? Virtual partitioned data set for which vr Virtual partitioned data set must be cataloged,
imformation about its members is or defined by previous DDEF command in this
viven, task.

PRINT Data set to be printed. PS. VS, VI Data set must be cataloged or defined by previ-
ous DDEF command in this task. Data sets on
unlabeled tapes must be defined by a DDEF
command.

PROCDER Data set which consists of other Vi Data set must be defined in current task.

commands, to become a user-written
procedure.

PROFILE User profile data set in USERLIB, VP Data sets must be defined in current task.
session profile in task virtaal storage.

PUNCH Data set to be punched on cards. VS, VI Data set must be cataloged or be defined by pre-

vious DDETF command in this task.

REGION Data set to be processed by the Text VI Data set must be cataloged, or defined in current

(See Note 1) Editor. task.

RELEASE Data set to be released. any Data set to be released must be defined in pre-
vious DDEF command in this task.

RET VAM data set whose data set de- VS, VI, VP Data set must be cataloged.

scriptor is to be changed.

Appendix E: Specification of Data Set Characteristics 147

Table 13. Data Set Definition Requirements for Commands (continued)

DATA SET DEFIN'TION

COMMAND RELATED DATA SETS DSORG
SHARE Data scts for which sharing is re- any Data sets for which sharing is requested must
quested. be cataloged; no DDEF command required by
this command.
SYNONYM User profile data set in USERLIB, VP Data sets must be defined in current task.
session profile in task virtual stor-
age.
TV Physical sequential data set (from a PS Data set {input) must be cataloged, or defined
VT operation) to be written on a in current task.
VAM volume.
VT VAM data set to be copied to mag- VS, VI, VP Data set (input) must be cataloged or defined
netic tape as a physical sequertial in current task.
data set.
\AY VAN data set to be copied into VS, VI, VP Data set (input) must be cataloged, or defined
direct access storage. in current task.
WT Data set to be recorded on magnetic VS, VI Data set must be cataloged or defined by previ-

tape in print format.

ous DDET command in this task.

Note 1: These are the basic directive commands of the Text Editor. See Command System User’s Guide for details concerning

the data manipulation commands of this facility.

Note 2: If the DATA command was used to create the data sct within the current task, then the data set is defined as if a
DDEF command had been issucd by the user directly. If the data set is also VAM organized and resides in public stor-
age, it is automatically cataloged.

148

Interrupting Execution

Pressing the ATTENTION button on the terminal lets the
user interrupt the execution of programs within his
task. The effect of the aATTENTION interruption depends
upon the privilege class of the interrupted module,
the nature of the module (some privileged modules
are sensitive to attention interruptions and some are
not), and even the language in which the source pro-
gram is written.

Interrupting Privileged Commands

If atrEnTION is pressed during the execution of a
privileged command imbedded within a command
string (one or more commands in one sysin line), the
system responds by printing an asterisk (*) at the
terminal, meaning “more commands remain to be
processed.” To display a list of remaining commands,
the user responds by issuing striNc (see Table 14).
All commands processed during or before the attention
interruption can be assumed to have successfully exe-
cuted if the system issues no diagnostic message. To
resume execution of the remaining commands, the user
may press RETURN, or he may ignore the remaining
commands by issuing new commands unrelated to the
interruption.

If arreEnTION is pressed during the execution of a
singly issued privileged command, or during execution
of the last command in a command string, the com-
mand will normally complete execution and prompt
the user to enter another command. If the aATTENTION
interruption prevents the command from completely
executing, however, the system issues a diagnostic
message.

Interrupting Nonprivileged Commands and User
Programs

If aTTENTION is pressed during the execution of a non-
privileged command (all language processors, for ex-
ample, are nonprivileged), or during the execution
of a user’s program (including rortrAN library sub-
programs), the system responds by printing an excla-
mation point (!) at the terminal. The user may invoke
pcs commands to display critical fields and modify
values (see “Using the Program Control System,” in
this appendix), or, to resume processing at the point

Appendix F. Attention Considerations

of interruption, he may issue co (or press the RETURN
key).

Attention Levels

When a user stops program execution by pressing
ATTENTION, the status of the interrupted program is
saved and can be restarted later at the point of inter-
ruption by issuing the co command. Privileged com-
mands cannot be restarted, however.

Nonprivileged commands (FTN or Epit, for exam-
ple) and user-written programs coded in assembler
language or in PL/1 can be interrupted and saved at
10 levels: each time a nonprivileged program or com-
mand is interrupted by ATTENTION, its status is saved
so that it can be restarted later.

As many as 10 such programs can be interrupted
and saved for later execution (10 ATrENTION levels).
ATTENTION interruptions of more than 10 nonprivileged
programs (that is, a request for more than 10 ATTEN-
TION levels) will cause the status of the earliest-saved
level to be lost.

FORTRAN programs interrupted by ATTENTION can
be saved, too, but only one FORTRAN program can be
saved: calling a second FORTRAN program will cause a
FORTRAN program previously saved at any level to be
lost.

Using The Program Control System {PCS) with
ATTENTION

User-written programs may be interrupted during exe-
cution by pressing the atrenTION key. The interrupted
program and all related data sets are frozen when the
attention interruption is received. Using pcs com-
mands, the user can inspect any portion of the object
module, he can display or modify the values of vari-
ables, registers, or object code, and resume execution
using the values he has modified.

See Appendix B, “PCS and FORTRAN Object Pro-
grams,” in this book, for further information about
using the Program Control System. For complete in-
formation about using rcs commands, see Command
System User’s Guide.

Responding to Attention Interruptions

Table 14 shows how the user can make full use of the
multi-level arreExTiION handling capability of 1ss/360.

Appendix F: Attention Considerations 149

Table 14, BResponding to Attention Interruptions

When the ATTENTION key is pressed, the system

responds with one of three condition symbols:

By these actions, the
user calls for the system
reaction listed in the
block under the
corresponding
condition symbol:

I (to denote the
interruption of
nonprivileged
programs or
commands)

* (to denote the
interruption of
an unfinished,
privileged
command string)

, or user's
command prompt
{denotes completion
of program or
command string)

By issuing the GO
command . . .

the current user
program is
resumed

the most recently interrupted user program is resumed and
intervening command strings are cancelled

By issuing any
command . . .

the command is
executed

the command is
executed and the
current command
string is cancelled

the command is
executed

By pressing the
RETURN key . . .

the current user
program is
resumed

the current
command string is
resumed

the system prompts
the user to enter
a command

By pressing the

the system returns

the system returns

the system prompts

ATTENTION key . . . an exclamation an asterisk the user to enter
point {nothing is {nothing is « command
changed) changed)

By entering STRING the system the system the system returns

to list remaining displays the displays a diagnostic

commands in an unexecuted unexecuted message
interrupted string . . . command string, commands in the
if it exists current command

string

By entering STACK

to list names of active
nonprivileged programs
(in the order in which

they may be retrieved). .

the system displays the names of active user programs at every ATTENTION level

By entering EXIT
to end the currentiy
active program . . .

ends the currently
active program,
resumes command
string if it exists

ends the most recently interrupted program and resumes
its associated command string, cancelling subsequent

command strings

By entering RTRN

to cancel command
strings and user
programs at every
attention level . . .

command strings and user programs are cancelled by the system at every ATTENTION level

By entering PUSH
to save the status of
the currently active
program

the system saves the status of the currently active program in ISA Long Save 1 (ISALST)

This appendix explains the notation used in command
descriptions and presents the general form of each
TSS/360 user’'s command.

The command language statements given in this
appendix and in Appendixes A and E use the conven-
tions given below in their notation.

Operands

A positional operand is represented by:
value-mnemonic or operand-name
In the first case, the user writes only a value of one
of the forms specified by the value mnemonic. In the
second case, the operand name is merely a means of
referring to the operand in the format description;
the hyphen simply separates elements of the operand
description and is not written in the actual operand.
A keyword operand is represented by:

KEYWORD=value-mnemonic or KEYWORD:=—operand
name

The user first writes the keyword and the equal sign,
and then either a value of one of the forms speci-
fied by the value mnemonic, or an operand name, as
required.

The following general rule applies to the interpreta-
tion of operand representations in a format description:
when the operand is written, anything shown in upper-
case letters must be written exactly as shown; any-
thing shown in lower-case letters is to be replaced with
a value provided by the user. Thus, in the case of a
keyword operand, the keyword and equal sign are
written as shown, and the value mnemonic is replaced.
In the case of a positional operand, the entire operand
representation is replaced.

Some operands are not represented in format de-
scriptions by operand names or value mnemonics. In-
stead, they are represented by one or more upper-case
character strings that show exactly how the operand
should be written. These character strings are called
coded values, and the operands for which they are
written are called coded value operands.

A coded value operand results in either a specific
value parameter or a specific sequence of executable
instructions.

When a positional operand can be written as only
one coded value, the operand is shown simply as the

Appendix G. Command Formats

coded value; an additional lower-case operand name
is not used. For example, a positional operand could
be represented by:
MYDATA
A keyboard operand could be represented by:
KEYWORD==MYDATA

If a positional operand can be written as any one
of two or more coded values, an additional lower-case
operand name may or may not be used. The choice of
which is done is determined by whether or not a name
can be meaningfully used to refer to all values of the
operand. For example, a positional operand could be

shown as either of the following:
{~NL|sL}

mode-{~L|sL}

In both of the above examples, the braces indicate
that the coded values are grouped together in one
operand representation, and the vertical stroke in-
dicates that either one of the coded values can be writ-
ten. The braces and vertical strokes are metasymbols.

Metasymbols

Metasymbols are symbols that convey information to

the programmer, but are not written by him. They as-

sist in showing the programmer how and when an
operand should be written. The metasymbols used in
this publication are:

1. | This is a vertical stroke and means “or.” For ex-
ample, A!B means either the character A or the
character B. Alternatives are also indicated by
being aligned vertically (as shown in the next
paragraph).

2. {} These are braces and denote grouping. They
are used most often to indicate alternative op-
erands. For example:

{~NL|sL}

frr)

lsef
The two examples above are equivalent; either NL
or sL must be written.

3. [1 These are brackets and denote options. Any-
thing enclosed in brackets can be either omitted

Appendix GG: Command Formats 151

or written once in the command. For example:
[~L]
[~LisL]

{symbol,} . ..

The above example indicates that a symbol fol-
lowed by a comma can be written any number of
times, but it must be written at least once. The
braces denote grouping, and are the extremities of

NL

SL
The second and third examples above are equiv-
alent; NL or st or neither can be written. The under-
lining indicates that, if neither is written, sv is

assumed. Braces used for grouping inside brackets
are redundant.

the syntactical unit to which the ellipsis refers.

General Ferms

Each of the Tss/360 user’s commands is shown below
in its general form. Detailed specifications for these
commands are given in Command System User’s
Guide; this list is intended for quick reference only.
Note that only the basic form of the ppEF command
is given; the full form appears in Appendix E.

4. . .. This is an ellipsis. It denotes occurrence of
the preceding syntactical unit one or more times in
succession. A syntactical unit is any combination of
operand representations, commas, parentheses, and
metasymbols, enclosed in braces. For example:

OPERATION OPERANDS
ABEND
OPERATION OPERANDS
ABENDREG
OPERATION OPERANDS
ASM (Y
NAME=module name | STORED= IN}
[LMACROLIB=({data definition name of symbolic portion, data definition name of
index portion} [, ...])] [LVERID=version identification]
[ISD={Y|N}][.SYMLIST={Y|N}][,ASMLIST={Y|N}]
[.CRLIST={Y|N}] [.STEDIT={Y|N}] [LISDLIST={Y|N}]
[LPMDLIST={Y|N}]
[LLISTDS={Y|N}]
[LLINCR= (first line number, increment)]
OPERATION OPERANDS
AT instruction location [, . . .]
OPERATION OPERANDS
BACK DSNAME=data set name
OPERATION OPERANDS
BEGIN application name [application parameters]
Note: For
MT/T use only

152

OPERATION

OPERANDS

BRANCH INSTLOC=instruction location
OPERATION OPERANDS
BUILTIN NAME =command name, [EXTNAME=BPKD macro instruction name]
[,DSNAME = data set name]
OPERATION OPERANDS
C
OPERATION OPERANDS
CA
OPERATION OPERANDS
CALL [NAME= {enggéﬁ?ér;taxzzne} [,module parameters]]
OPERATION OPERANDS
CANCEL BSN =batch sequence number
Form 1
OPERATION OPERANDS
CATALOG DSNAME=current data set name [,STATE={N|U}]
[LACC={R|U}] [NEWNAME=new data set name]
Form 2
OPERATION OPERANDS
CATALOG GDG=generation data group name,
GNO =number of generations [, ACTION={A|O}]
LERASE={Y|N}]
OPERATION OPERANDS
CB
OPERATION OPERANDS
CDD (ixi
_ . {data definition name
DSNAME=data set name {’ } (data definition name, . . .)

Appendix G: Command Formats

153

OPERATION

OPERANDS

CDS

DSNAME]1=input data sct name [(member name [,...])]
,DSNAME2=Copy data set name [{ member name)]
[LERASE={YIN}]
, {COPYBASE —=first line number [COPYINCR=1increment] |
{REPLACE={R|I}

OPERATION OPERANDS
CLOSE [DSNAME =data set name] [,TYPE=T]
[,DDNAME =data definition name]
OPERATION OPERANDS
CHGPASS {password]
OPERATION OPERANDS
CONTEXT [N1=starting position] [,N2=ending position],
STRING1 =search string [, STRING2=replacement string]
OPERATION OPERANDS
CORRECT [N1=starting line] [,N2=ending line]
[,SCOL=first column] [,CORMARK = correction markers]
LCHAR={C|M|H}]
OPERATION OPERANDS
DATA DSNAME=data set name
FTN
CARD
JRTYPE=< S
(I [, BASE =first line number, INCR==increment]
|LINE
OPERATION OPERANDS
DDEF DDNAME=data definition name [,DSORG={VI|VS|VP}]
,DSNAME=data set name
OPERATION OPERANDS
DDNAME? [JOBLIB={Y|N}]
OPERATION OPERANDS
DEFAULT {operand=[valuel} [, .. .]
OPERATION OPERANDS
DELETE 'DSNAME =data set name]

154

OPERATION OPERANDS
DISABLE

OPERATION OPFRANDS
DISPLAY

(data field or expression [, ...]
1ID? data field name

OPERATION

OPERANDS

DMPRST FROMDIEV = {2311!2314]24007%,
FRVOLID = {volid{(volid [,volid]}},
TODEV={2311 2311 iQ"lOO}
[,TOVOLID= }volid| (volid[,valid) PRIVATE}]
[NEWVLID=volid] [WRITCHK={YES|NO}]
[LLAREL= {HETAL\%NO 11 [LILRUNMODE={BACKFORE}
OPERATION OPERANDS
DSS? fdata set name
[NAMES: 1(data set name, .. .}}
OPERATION OPERANDS
DUMP {data field or expression [, .. .1}
1ID? data field name |
OFERATION OPERANDS
EDIT DSNAME=data set name [(member name)] [, RNAME =region name]
[LREGSIZE ==rcgion name length]
OPERATION OPERANDS
ENABLE
OPERATION OPERANDS
END
OPERATION OPERANDS
ERASE [DSNAME =data set name]
OPERATION OPERANDS
EVV DEVICE =device type, VOLUME = {volhune serial number[, .. .]
OPERATION OPERANDS
EXCERPT DSNAME =data set name [{ member name)]

[LRNAME =region name]
[,N1=starting line [N2=ending line]]

Appendix G: Command Formats

1

[#]}

Ut

OPERATION OPERANDS

EXCISE [N1=starting line] [,N2=ending line]
OPERATION OPERANDS
EXECUTE DSNAME =data set name
OPERATION OPERANDS
EXHIBIT OPTION — {BWQ [, TYPE={ALL|BSN-number}]
= |UID [, TYPE={ALL|CONV[BACK|UID userid}]

OPERATION OPERANDS

EXPLAIN MSGID
ORIGIN
word
TEXT
RESPONSE [,message identification]
MSGE
MSGS

OPERATION OPERANDS

FTN NAME=module name

STORED= {\!

STORED N\J

[LVERID=version identification] [, ISD={Y|N}]

[LSLIST={Y|N}] [,OBLIST={Y|N}] [,CRLIST={Y|N}]
[,STEDIT={Y|N}] [MMAP={Y|N}] [.BCD={Y|N}] [,PUBLIC={Y|N}]
[LLISTDS={Y|N}]

[,LINCR = (first line number, increment)]

OPERATION OPERANDS

GO
OPERATION OPERANDS

IF condition
OPERATION OPERANDS

INSERT [N1=preceding line] [, INCR=increment]
OPERATION OPERANDS

JOBLIBS DDNAME = data definition name

156

OPERATION OPERANDS
K
OPERATION OPERANDS
KA
OPERATION OPERANDS
KB
OPERATION OPERANDS
KEYWORD [COMNAME = command name]
OPERATION OPERANDS
LINE? Jline number
DSNAME =data set name |, } IL...]
L(ﬁrst line number, last line number) |
OPERATION OPERANDS
LIST [NI=/{starting position'CLP|LAST}] [,N2={cnding position|LAST}] [,CHAR={C|H M}]
OPERATION OPERANDS
LNK NAME=module name [, STORED={Y|N}]
[,LIB=data definition name of library] [,VERID==version identification}
[LISD={Y|N}] [,PMDLIST={Y|N}]
[LLISTDS={Y|N}]
[LLINCR= (first line number, increment)]
OPERATION OPERANDS
LOAD [NAME =—entry-point name]
OPERATION OPERANDS
LOCATE [N1=starting position] [,N2==c¢nding position]
[LSTRING =character string]
OPERATION OPERANDS
LOGOFF

Appendix G: Command Formats 157

OPERATION OPERANDS
LOGON user identification, [password] , [addressing] , [charge number]
, [control section packing] , [maximum auxiliary storage]
, [pristine], [user IVM]
OPERATION OPERANDS
MCAST [ECB=end-of-block character]
[,CONT =continuation character]
[.CLP=Dbreak character]
[,TRP=transient statement prefix character]
[, RCC=concatenation character]
[,SSM =system scope mask]
[,USM =user scope mask]
[LKC=keyboard/card rcader character]
[LRS =carriage return supression character]
[LCP=command-prompt string]
OPERATION OPERANDS
MCASTAB [INTRAN={Y|N}] [LOUTRAN={YN}]
OPERATION OPERANDS
MODIFY SETNAME=data set name [,CONF=R]
[LLRECL =record length, KEYLEN=keylength, RKP=key displacement,
RECFM={V/F}] [,FTN={Y|N}]
OPERATION OPERANDS
NUMBER [N1=starting line] [, N2=-cnding line]
[, NBASE=base number] [, INCR=increment]
OPERATION OPERANDS
PC? ! ame
NAMES — ((}ata se‘t name
| {data set name,...)|
OPERATION OPERANDS
PERMIT DSNAME = {data set name|[*ALL}
[LUSERID ={(user identification[, . . .]) |*ALL}] [[ACCESS={R|RO|RW|U}]
OPERATION OPERANDS
PLI [INAME=module name] [,PLIOPT =compiler option list]
[,PL.COPT=language controller options] [,SOURCEDS =source data set name]
LMERGELST == converter input list] [[MERGEDS=converter input data set]
[LMACRODS = intermediate data set name] [,PRVDS=data set name]
OPERATION OPERANDS
POD? [PODNAME=data set name] [,DATA=Y] [,ALIAS=Y] [,MODULIC: {‘;ﬁf”
OPERATION OPERANDS
POST

158

OPERATION OPERAXDS

PRINT DSNAME=data set name [, STARTNO=first byte position]
[LENDNO=last byte postion]

JPRTSP= [EDIT

1
{2} [[HEADER=H] [,LINES=lines per page] [, PAGE=P]
13)

LERASE={YIN}] [ERROPT={ACCEPT|SKIP|END}]

[LFORM =paper form] [,STATION =station identification]

OPERATION OPERANDS

PRMPT MSGID =message identification
L{INSERTn=inserted characters} [, ...]]

OPERATION OPERANDS

PROCDEF NAME=procedure name [[DSNAME=data set name]
OPERATION OPERANDS

PROFILE CSW={NIY}
OPERATION OPERANDS

PUNCH DSNAME=data set name

[,,.STARTNO=first byte position] [, ENINQO=last byte position]
[.STACK={112|3|lEDIT}] [[ERASE={Y|N}] [[FORM=card stock}

OPERATION OPERANDS

QUALIFY MNAME = [link-edited module name.] object-module name
OPERATION OPERANDS

REGION [RNAME =region name]
OPERATION OPERANDS

RELEASE DDNAME =data definition name [,DSNAMI =data set name]

[L{SCRATCH|HOLD}]

OPERATION OPERANDS
REMOVE statement number [, .. .]
ALL
OPERATION OPERANDS
RET DSNAME==data set name

JRET={P|T} {L|C} {U|R}

Appendix G: Command Formats

OPERATION OPERANDS

REVISE [N1=starting line] [,N2=ending line]
[,INCR=increment]

OPERATION OPERANDS
RUN [LOC=entry point name]
OPERATION OPERANDS
SECURE {(TA=number of devices, [type of device]) []
1(DA=number of devices, [type of device]){ ="~

OPERATION OPERANDS
SET {data location=value} [, ..]
OPERATION OPERANDS
SHARE DSNAME=data sct name, USERID —=owner’s user identification]

[LOWNERDS = {owner’s data set name|*ALL}]

OPERATION OPLERANDS
STET

OPERATION OPERANDS
STOP

OPERATION OPERANDS
SYNONYM {term=[value] } [,...]

OPERATION OPERANDS
TIME [MINS =minutes]

OPERATION OPERANDS
TV DSNAMEIl =tape data set name

[LDSNAME2=VAM data set name]

OPERATION OPERANDS

UNLOAD [NAME =entry-point namc]

160

OPERATION OPERANDS
UPDATE
OPERATION OPERANDS
USAGE
OPERATION OPERANDS
VT DSNAME>1=VAM data set name
[LDSNAME2=tape data set name]
OPERATION OPERANDS
A" DSNAMEI1 =current data set name
[LDSNAME2=new data set name]
OPERATION OPERANDS
WT

DSNAME =current data set name [,DSNAME2-=tape data set name]
[LVOLUME=tape volume number] [, FACTOR =blocking factor]
[,STARTNO = first byte position] [, ENDNO=last byte position]
[,PRTSP={1]2|3|EDIT}] [, HEADER=H] [,LINES=lines per page]
[[PAGE=P] [ERASE={Y|N}]

OPERATION

OPERANDS

ZLOGON

Appendix G: Command Formats

161

Appendix H: Carriage and Punch Controls

The carriage and punch controls shown in Tables 15
and 16 are recommended as standard; four of them
are standard FORTRAN control characters. *They are in-
stallation variable, however, depending upon system
output routines and, for carriage control, the printer’s
carriage control tape.

In conversational mode where sysour is the user’s
terminal rather than an offline printer, all carriage
control characters other than 0 and 1 cause a single
line skip to occur prior to printing of the line. The
carriage control character 0 causes an additional line
skip prior to printing of the line, as with offline printer
processing. The carriage control character 1 causes
three lines to be skipped prior to printing of the line.

Table 15. Carriage Control Characters

FUNCTION CHARACTER

®Skip no line before printing

#Skip 1 line before printing blank

#Skip 2 lines before printing 0
Skip 3 lines hefore printing

®Skip ta channel 1 before printing
Skip to channel 2 before printing
Skip to channel 3 before printing
Skip to channel 4 before printing
Skip to channel 5 before printing
Skip to channel 8 before printing
Skip to channel 7 before printing
Skip to channel 8 before printing
Skip to channel 9 before printing
Skip to channel 10 hefore printing
Skip to channel 11 before printing
Skip to channel 12 before printing

*Standard FORTRAN control characters.

OO0 -1 Ut W |

Table 16. Punch Control Characters

FUNCTION CHHARACTER

Select punch pocket 1 v
Select punch pocket 2 w

“As wused in this book, “FORTRAN control characters”
refers to the control characters defined by American National
Standard FORTRAN, ANSI X3.9-1966.

162

Part One — Nonconversational

In part one of this appendix, a user enters a program,
conv, to read matrix A and matrix B as input. The
product, matrix C, is then computed and all three
matrixes are printed as output. The matrices are real
and stored a column at a time (i.e., the leftmost sub-
script varying most rapidly) in order to minimize the
amount of storage “paging” required. The card listing
for conv is shown in Figure 25. The program compiles
without error and is executed.

After the compilation has been completed, the user
receives a compilation listing, shown in Figure 26, and
a sysouT listing, shown in Figure 27, which includes

the commands, system messages, and three matrices
A, B, and C.

Appendix |. Sample Program

LOGON ADUSERID.ADACCT2S
FTM NAME = CONV, 150 = N

10

20

30
40

50

R N

MATRIX MULTIPLICATION EXAMPLE
DIMENSIGON Af8,8).8(8,8},C(8,8)
DAYA C/64%C.0/

READ(2,1) L+M,N

00 10 J=1,M

READ(2,2) (A(yY, DN,I=1,1)

00 20 J=1.N

READ(2,2} (BUL,1)51I=1,M)

DO 30 K=1,M

DO 30 J=1.N

DG 30 I=1.L
C{IeJ)=ClI1,J)+A{I,K}%B(K,J)
D0 40 J=1.M

WRITE(3,3) (A{U, 11el=1s)
WRITE (3,4)

00 50 J=1.N

WRITE(3,3) (BlJ,Ti,1=1,M)}
WRITE (3,5)

00 60 J=1.N

WRITE(3,3) (CtJ,1).1=1,01)
sYge

FORMAT (3121}

FORMAT (8F10.01

FORMAT (' ',8F10.3)

FORMAT (14X.'X'}

FORMAT (14X,'=")

END

RUN CONV

2w

%END
LOGOFF

P R]

—
=]
ry =
w
oo

ccoooo
-~
»
cococwe
vl
[¥e]
oo

o
A
[

Figure 25. Card Listing for CONV

Appendix I: Sample Program

163

VERSION 07/10/767 OF THE TSS FORTRAN CONMPILER ENTERED
THE MODULE NAME AND VERSION FOR THIS COMPILATICN ARE CONV

NPTIDNS--PUBLIC CSECT{N).BCD MODE!N},PRODUCE ISOD(N}.

CONV W5
100 € MATRIX MULYIPLICATION EXAMPLE
200 DIMENSION A(B,8) B{8,8}.C(8,8)
100 DATA C/64%0.0/
400 READ(2,11 LeMsN
500 DO 10 J=1,M
600 10 READ(2,2) (ATJ,i),1=1,L1)
700 DO 20 J=1,N
8co 20 READ(2+2) (81U, 1).1=1,M)
900 0O 30 K=1,M
1000 00 30 J=1,N
1100 DG 20 I=1,L
1200 30 COI,J)=CI,J)+ALT.KI*B(K,J)
1300 DO 40 J=1,M
1400 40 WRITE(3,3) (A(J,1),1=1,1)
1500 HRITE (3,4)
1600 DO SO J=1,.N
1700 50 WRITE(343) (BlJ,1)e1=1,M)
1800 WRITE (3,5)
1900 DC 60 J=1,N
2000 60 WRITE(3,3) (Cl,1),1=1,0)
2100 sToP
2200 1 FORMAT (212)
2300 2 FORMAT (EF10.0)
2400 3 FORMAT {* *,8F10.3)
2500 4 FCRMAT (14X,*x*}
2600 S FORMAT (14X,%=")
2700 END
CONY R
CONV STZE 2204 BYTES
ENTRY NAME LOC HEX
Conv 00000000
EXTERNAL REFERENCES
CHEBD1 CHCTAL CHCIEL CHCIU1
CONVEC SIZE 908 BYTES 07/13/67
COOE LOC HEX
NUMER IC CONSTANTS LOC HEX
conv R
CONV#P SI1ZE 1296 BYTES 07713767
REGISTER SAVE AREA LOC HEX
CONVERSION CONSTANTS LOC HEX
ADDRESS CONSTANTS LOC HEX
ALPHAMERICS LaC HEX
LOCAL TEMPORARY STORAGE LOC HEX
NON-COMMON VARIABLES {TOTAL) LOC HEX
coNY W5

COMPILATICON COMPLETED

PAGE 0Ol

V5

LISTINGS--SOURCE(Y),0BJECTIN},CROSS REF{N),SYMBOL TABLE(N),~EMORY MAP(N}.

PAGE 002
PAGE 002
CHC I W2
14:23:15
00000000 S1ZE B84 RYTES
00000360 51z¢€ 44 BYTYES
PAGE D04
14:23:15
00000000 SIZE 76 RYTES
0000004C S1ZF 24 BYTES
00000064 SITE 124 BYTES
00000180 Stze 43 RYTES
000004F8 S12€E 24 BYYES
000001€0 S1ZE 792 BYTES
PAGE 0US

Figure26. Compilation Listing for CONV

164

LOGON ADUSERID, ADACCT29
FIN NAME—CONV

CONV
3.000 11.000 19.000
5.000 13.000 23.000
7.000 17.000 29.000
X
31.000 43.000 59.000
37.000 47.000 61.000
41.000 53.000 67.000

1279.000 1653.000 2121.000

1579.000 2045.000 2629.000

2035.000 2637.000 3393.000
LOGOFF

Figure 27. SYSOUT Listing for CONV

Part Two — Conversational output. switching it to become the equivalent of sysiN
In this part, a user writes and compiles a program to and sysour, i.e., the standard system input and output,
solve the same problem as solved in part one. He then as shown in Figure 28. A sample sysout listing is
runs it on-line. He uses his console for both input and shown in part one.

USR: (presses attention button or dials up system)
LOGON ADUSERID,MYPASS*, ,ADACCT29
SYS: BOOl1 LOGON TASKID—FFF9 07/25/68

S,U: FTN NAME—CONV

S,U: 0000100C MATRIX MULTIPLICATION EXAMPLE
S,U: 0000200 DIMENSION A(8,8),B(8,8),C(8,8)
S,U: 0000300 DATA C/64%0.0/

S,U: 0000400 READ(2,1) L,M,N

S,U: 0000500 DO 10 J=1,M

S,U: 0000600 10 READ(2,2) (A(J,I),I=1,L)
S,U: 0000700 DO 20 J=1,N

S,U: 0000800 20 READ(2,2) (B(J,I),I=1,M)
S,U: 0000900 DO 30 K=1,M

S,U: 0001000 DO 30 J=1,N

S,Uz: 0001100 DO 30 I=1,L

S,U: 0061200 30 C(I,J)=C(I,J)-LA(I,K)*B(K,J)
S,U: 0001390 DO 40 J=1,M

S,U: 0001400 40 WRITE(3,3) (A(J,I),I=1,L)
S,U: 0001500 WRITE (3,4)

S,U: 0001600 DO 50 J=1,N

S,U: 0001700 50 WRITE(3,3) (B(J,I),I=1,M)
S,U: 0001800 WRITE (3,5)

S,U: 0001900 DO 60 J=1,N

S,U: 0002000 60 WRITE(3,3) (C(J,I),I=1,L)
S,U: 0002100 STOP

S,U: 0002200 1 FORMAT (312)

S,U: 0002300 2 FORMAT (8F10.0)

S,U: 0002400 3 FORMAT (' ',8F10.3)

S,U: 0002500 4 FORMAT (14X, 'X')

S,U: 0002600 5 FORMAT (14X,'=")

S,U: 0002700 END

wn
<
wn

The system asks whether it should continue processing.

Figure 28. Conversational SYSIN-SYSOUT for CONV

Appendix I: Sample Program

165

USR:
SYS:
S,U:
S,U:
SYS:
USR:
SYS:
USR:
SYS:
USR:
SYS:
USR:
SYS:
USR:
SYS:
USR:
SYS:
USR:
PGM:

SYS:
USR:
S,U:
S,U:

Y
The system informs the user that it found no errors.
PRINT LIST.CONV(O),,,EDIT,ERASE
CALL CONV
The keyboard unlocks indicating the system will accept input data.
333
The keyboard unlocks indicating the system will accept input data.
3.0 11.0 19.0
The kevboard unlocks indicating the system will accept input data.
5.0 13.0 17.0
The keyboard unlocks indicating the syvstem will accept input data.
7.0 17.0 29.0
The keyboard unlocks indicating the system will accept input data.
31.0 43.0 59.0
The kevboard unlocks indicating the system will accept input data.
37.0 47.0 61.0
The keyboard unlocks indicating the system will accept input data.
41.0 53.0 67.0

3.000 11.000 19.000
5.000 13.000 23.000
7.000 17.000 29.000

X
31.000 43.000 59.000
37.000 47.000 61.000
41.000 53.000 67.000

1279.000 1653.000 2121.000

1579.000 2045.000 2629.000

2035.000 2637.000 3393.000

CHCIW STOP
ERASE SOURCE.CONV
LOGOFF

The system acknowledges log-off.

Figure 28. Conversational SYSIN-SYSOUT for CONYV {continued)

Index

166

% (equivalent to PCS statement counter) .

ZCOM as a symbol
%END e

GLo
YEND

ABEND command
ABENDREG command
& COM as a syml)ul
& END .
ASM command
assembler language programs
AT command
deseription
example
general form
Attention button ..
Attention considerations

BACK command
continuation following
data set requirements
example
general form

Backspace :

Backward pointer . ..

Base vegister adcon .

Basic DDEF command .

Basic sequential access method (BS A\’()

Batch sequence number .

BCD FTN command par 1m(t(1
BEGIN command
Blank character
Blank COMMON
BLKSIZE Parameter for DDEI u)mnnnd
BLOCK DATA Suhpm”x am

example R

linkage odxtmg I
listing e
name assignment
Blocking records
Braces {}
Brackets [] .
BRANCH u)mmand
description
general form
BSN
BSAM .

BUF\O par: uﬁetm for DDEF mmmmd v .

BUILTIN command

C command

CA command

CALL command
description
directory of anp]e
general form
Call data definition (ommand
(sece CDD command)

Calling
assembler language programs

DVCHK

FORTRAN subroutines

OVERFL . ..

2(] 44 136
. 59,60,71,75
130

152
152

146, 152

101, 102

38,17

152

10, 20, 52, 149-150
. 149-150

14, 42
15‘7
... 133
. 120
.. 87
134
124-125
.27
80 82
152
.. 130
123
. 140

. 342353
e 118

. 85

115 116

126

- 151

. 151

. 105
153

e 27
124-125
141

153

e 133
14, 58, 153

105

119-123
. 106
121-122
106

CANCEL command
example ...
general form

Canceling
data definitions
line
PCS stateme nt\

Card decks from ()11&1(1('195/360 »

Camag(control characters
CATALOG command
data set requirements ..
directory of examples
general form
shared data sets ..
Catalog
access types
data sets .
indexes R
prestored de m
private data set
CB command . ..
CDD command
data set requirements
example
general form
CDS command
data set requirements
deseription
example
eeneral form
CF
Changing
contents of variable
program flow

Charge number

CHGPASS command

CLOSE command .

Code optimization

Code file (CF)

Command
descriptions
directory

executing in PORIRA\ programs ..

formats .
language
operands
parameter defqultq
prompting
Comment line
COMMON
control scetion listing
data use
display
efficiency considerations
multiple execution .
statement misuse
symbol resolution
unloading blocks
variable storage allocation
variable storage size

Compilation
sample listing
terminal

Index

PPN 14, 59

. 153

... 20,49

. 103-104
e 132
31, 140, 162

i 146
e U 14
. 153

114

. 8-10

... 89

. 3,89

9

. 41
14 58 153

e 146
... 15,46
. 153

104-105

e 1044105

Character constant in P(“% cxpxe\xxon

100
o1
154
.. 154
. 107
102

151
.14
117
151
2
151
20
.4
.22

.. 85
123
. 103
. 108
111
119
111
............... 60
...... .. 95

. 164

22

167

Compileand run - 5,26 printing ... ST o R . 30,31

Compiler protection . 9
(see FORTRAN) record
Complex numbers U 120 (see record)
Constants in PCS expressions 100 reference number 27,80
CONTEXT command . . TR o 154 removing catalog entry TR 8
Continue requirements for commands ... 146-147
character) [ETTTTTUOTTTT L .78 sharing
form of CALL u)mmdnd e . . lo4 structure
compilation ... L R o 23 VI o R R
line R AU U ... 20,85 virtual m(h\ s qu(‘nh(ﬂ R . 125,86
Control character virtual partitioned .. 1257
carriage L. 31,162 virtual secquential o ... 125,6
Control section vp U B U 1257
display U 102 vsS S 125, 6
listing [T . 84 Data set definition
NAME 83,99 description . e .. 7,146
packing R BT ... 110 requirements for Lommands 146-147
public U e 115 Data set name
shared . IR . 115 description 3138
Conversational mode list L R ... 24,123
Processing ... ST | qualification SRS ORURURUPPRRR 3
sample program ... IETUUURO e 165 restrictions . . 135
source statement (01r((t10n T L T7 source S RO PRPRPRR R 35, 49
SYSIN/SYSOUT ex: 1mple U ... 163 Data set mmm/ahon
task initiation TN 2,20 requirements for commands 146-147
Copy data set command table RO 131
{see CDS command) Data set reference nnmber A ... 27,60
Copying data sets ... e e 12 Data set status? command
CORBRECT command N 16 154 {see DSS? (-ommzmd)
Correction DCB . [P . .. 140-142, 52
DDEF command 145 DDEF u)mmand
PCS statement errors : U - 76,77 cataloged data set 40
source statement 22,76, 77 correction . RO 145
Creation ddname parameter e 7,137
generation data group o L . . 65 defaunlting T B . 136
job library I e . . 26 description TR OO 132
listing data set name R 24 diagnostics ... 145
source data set name 49 directory of ¢ \ampk\ o .14
CRLIST FTN command pammeter . i 81 cencral form o U 154
CRL interchangeability . . 0T
(see cross-reference table) . . 102 multiple executionuse 80,111
Cross-reference listing new data set . . . RS e 137
description SO RRUUEPUUPRRIPR TR * | | old dataset . . . 137
FTN command pammeter . B O ... 81 omission . B PR . 8
sample ... IR e 90 parameters U e 137
Cross-reference ta)Ie e S 105 retrieving ... S RN RPP 8,46
CSECT storing (sce CDD commx md)
{ see control section) uncataloged data set 60
ddname parameter of DDEF (ommand U 137
DDNAME? command ... B 154
Data control block parameters - Lo 140-142,52 Debugging ... R ... 38,96
DATA command Default Lompxhhon pdl dmetom e . 26
data set requirements o ... 146 DEFAULT command ... 18 146 154
directory of examples 16 Default command parameters 20,24
general form e . 154 Default FTN command parameters ... 80-82
interruption conside ratlons . e . . 149 Default option listing
prompts TR - 49 description . . U 83-85
Data set sample . . BT .. 84
cataloging ... PP ISR 8, 135 Defective track 133
creation o Define data command
erasing {see DDEF command)
generation Defining job library 26, 140
indexed .. . e U DELETE command
labels ... data set requirements
name, moving . : example .
name, qualifiers .. . general form o
name, restrictions shared data set ORI .
organization use ...
partitioned e Deletion line during DATA command .
physical sequential ... Delimiters for PCS statements

Index 168

Determining size of data set
DEVD parameter for DDEF
command
Device reserving
Diagnostics
{ see messages)
Diagnostic messages
(see messages)
Dialog with system
Dial up system
DIR mac TO instruction
DISABLE command

DISP parameter for DDEF commmd o

DISPLAY command
description IR
example . R
general form .
Displaying records . .
Disposition of data scts at log-off
DMPRST command B
DO loop efficiency (‘(msldemhons .
ddname parameter of DDEF command
description

dsname parameter of DDEF command .

dsorg parameter of DDEF command
DSS? command

data set requirements

example ...

general form
Dummy arguments in PFS (ommand
DUMP command

data set requirements

description

example

general form
duplication of symbols

DVCHK

E-code message
EDIT command

EDIT feature of PRINT command

efficiency (see optimization)
ellipsis {...) .
ENABLE wmmand
END command
END statement)
End option of READ statcment
END FILE statement
Fnd-data-set condition .
End-of-data indicator
Entering
commands .
command sequence .
data

source statements for punchlng e

Entry point register .
ENTRY statement
EQUIVALENCE
ERASE

PRINT command parameter

32,

statement ...

PUNCH command parameter

ERASE command
data set requirements
directory of examples ...
general form
shared data set .
Erasing
hbn ry .
l1stm5, data set

member of pﬂrtmoned data set
program library list

56

. 141

2

20

. 119

o 16,155
131, 135, 140

102
36, 17
155

12
110

155
109

133, 134
135, 138, 145
135, 137

... 146
. 15,62
...... 155

147

. 109
17 ‘38 103
e 153
112 113,115
106

.79
15, 147 153

< 1 |

e 1581
... 16,155
. 15,147,155

23,76

N 5
S 12

T8

120
115
. 108,119

.31
56

. 147

ERR option e 132
FERROR pdmmd(x ()f PRI\T command R 031
Error

code ... ST TR U U SR PSRRI 22,79

1,0 L o 132

messages

(sce messages)

MODIFY command ... 28

nonconversational mode . I ... 45

recovery procedure e 2T
VY command 155
Exception handing . 117,119, 132
EXCERPT command 16, 155
<XCISE command . .16, 156
EXECUTE command

data set requirements 147

example 14, 42

general form 156
Ixecutable statement 116
EXHIBIT command PR 156
EXIT statement ... [OO UTRURIN 132
EXPLAIN command 156

Explicit symbol qualification 99

Exponent-overflow ... 105, 117
Exponent-underflow .. 105, 117
Faxpression File (EF) 93-94

Ixternal Name List /ENL) N 96

External symbols . 110 116
F-code message 80
File sequence number RO 139
FFixed length record format 126 127
Fixed-point divide ... 105
Fixed-point overflow 105, 117

Floating continuation character o R .75

FFloating-point computations ... 116
Floating-point divide exception .. . 105,117
FORMAT statement 14,127
format of commands . 151
Formatted vecords R o127
FORMNO for PRINT Command 31
Forms of a program ... BB
Torward pointer . . e ..0120
FORTRAN CALLs .. e 121
FORTRAN
card format - . U 22
control characters . [162
external symbols 99
diagnostic messages 78, 79 92

error checking
internal symbols
1/0 statement

listings

optimization

parameters ...

command records 8

restrictions.. U - 93-96

statement numhers .99

variables, initial content . 118
FORTRAN 1V library subpms_,x ams

calling 118

description IR OSSOSO U UTP OO U PRSI 2

list of names 92

substitution . . o 9T
Free form terminal entry . [T . 26
FTN command

data set requirements U ... 148

directory of examples 1T

gencral form . .. 156

parameters

FTxxFyyy

169

Index

Full messages . [SUSUUTRTUT TR
FUNCTION subpl()gldm U

GDG
Generation data gmup
Global corrections
Global errors
GO command
description
directory of e-\"lmple
general format

HEADER parameter of PRINT command
Hexadecimal constant in PCS

expression
HOLD option on DDLF command
Housekeeping methods RUTTT .
Hyphen (-) as continue dmrattel

IF command
description
example .
general format

Illegal address assignment

IMSK parameter for DDEFvVu)mmand . o

Indexed data set

Input/Output
error messages
list
procedures

statement . e

tape

INSERT command

Integer constant in PCS expression
Integer result register .
Internal symbol dictionary
creation .
size .
use in PC§
Internal symbo]s
effect of linkage editing
Interruptions
during message printout
handling
resuming execution .. .
symbolic location
iSD
(see Internal symbol dictionary)
ISD FTN command parameter

JOBLIB

(see Job Library)
JOBLIB option in DDEF

command . e,
JOBLIBS command
Job library

adding

contents

creation .

use
Job processing .
Joining the system

K command ..
KA command .
KB command .
KEYWORD commfmd

LABEL parameter in DDEF command

Library hierarchy .

library
obtaining information ...
search
user (see user library)

Index 170

100
139
.62
.78

97, 110

99

‘ 149

. 52,132, 149

36, 150
. 98

. 81

PR 157
. 14 58, 157

'”:}‘ 14,58, 157

,,,,, 157

60, 146
.12

.............. 63
12, 47 48

LINCR FTN command parameter .. . 82
LINE? command

data set requirements . . 147

directory of examples . . 16

general form ... 157
Line data set ... B
Line number FTN mmmmd p'lmmeter . . 82
Line number increment FTN command

parameter ..o 82
Linkage

hetween FORTRAN and assembler language

programs . T . 122

tvpe T 119
Linkave editor

cfficiency considerations 109, 110

program libraries - 112,113

USE 117
LIST

command .18, 157

data set name ... T . 24,116
LISTDS operand of FTN command ... 13,82
Listing data set 6,24, 82,83
LNK command 157

LOAD command
before PCS statements
BLOCK DATA mbpmmdm .
CALIL statement L
data set requirements
erTors
example
general form
interruption umﬂdcmtmm)
object modules
program with errors

Load-and-run form of CALL Comm"md . .. 104
Lacal corrections TR L e 76
LOCATE command RO P U PR 16,157
I.ogical record

{sec record)
LOGOFI command

conversational task 12

directory of examples e 14

cgeneral form 15"

nonconversational tasl\ 13,44
LOCON command

conversational task . 2,20

directory of examples ... 14

general form .. 108

nonconversational ta\k R . o 43

Log-on process ... 2 20
[.REECL parameter in DD]"I*

command 131, 140
M-machine code control character ... 162
MCAST command 158
MCASTAB command 158

MMAP FTN command pqmmeter . L 8
Magnetic tapes,

non-TSS5/360 BT 132
Master Index . . RO 3
Memory map FTN command

parameter81
Messages

conversational output . 79

DDEF command 145

diagnostic B S PUTP R 419

option . .. e e o 20

prompting . . 019

response e . RETPUTUTRON 19

types U . e 19
Metasymbol .. . 151
Misspelling durmg DAT‘\ command 49

Mixed arithmetic . ..
Mixed input (card and Le)board)
Mixed mode . ..
MODIFY command
data set requirements
example
general form
Modification
data sets
source statement
terminating
Module name FTN command pdmmstu
Multiple executions ..

NAME FTN command parameter
NAMELIST
indication in PSECT listing
size
writing records
END
Names
list data set ..
qualification
rules
shared data S(t
source data set

Non-COMMON variable stma'fc size .

Nonconversational
LOGON command .
processing
program control \)'st(‘
sample program
SECURE requirements
task initiation
Nonexecutable statement
NUMBER command
Number of devices required
Numerical constants indication
in CSECT listing

Object listing FTN command parameter
Object module .
Object program module
(see object module)
Object time cfficiency
OBLIST FTN command pammete
OFF
(see LOCGOFF command)
Operand
keyword
positional .
OPTCD parameter fox DDL F
command
Optimization
compiler
page reference
unloading
user program
Optimization table
size .
OPTION parvame ter of DDEF
command
Order of search
Output
destination
use on other svstem
Output module listing
OVERFL

PAD p