
Systems

File No. 5370-36

Order No. GC28-2008-5

IBM Time Sharing System

System Programmer's Guide

IBM Time Sharing System (TSS) makes a distinction
between user and system programmers. This publication
is intended for persons responsible for maintaining.
modifying, or extending the system and discusses:

• Operating environment

• Program structure

• Coding practices and conventions

• Privileged supervisor call instructions

• Serviceability aids

• System macro definitions

• Changing TSS

• Privilege Class E

--- ------ --------- - ---- - - -----------.,-

TNL GN204106 (01 July 80) to GC28-2008-5

Sixth Edition (July 1919)

This edition revises and makes obsolete GC28-L008-4.
Among the modifications made to TSS that are reflected in
this edition are the following:

• Macros have been updated to reflect new operands, new
examples of Ube, etc., and aditorial corrections have
been JIlade.

• Co.plete descriptions of the following macros have been added:

ESEG EXCSEG ~APTDY RTTCTL

• Special operands available only to the systems programmer
have been added for the following macros:

DISCSEG lH.B PR RSVSEG

• Co.plete descriptions of the following systelll programmer
type commands have been added:

AuDPOOL BLDSVCT CNVTPOOL DISP
BLD~OOL CLlS SbTF DELPOOL DSCBS

D1MPRES GTF POOL?
FIXCAT MOVEUSER S~TRVN

• Descriptions have been added for the following: Deadline
Dispatcher; Generalized Trace Facility; Public (storage)
Pools; and Network Control Program (Rep) Suppor~. Also,
the System Enter COde, Virtual & Real ~e~ory SVC, and
Extended Program In~erruption Code tables have been
updated, and RtAM Log Entry Definitions nave been adde;i.

This edition reflects system changes made by PHPQ 5799 AXA
and Release 3.09 of the IBM Time Sharing system/3iO
(TSS/370), and remains in effect for all subsequent versions
or lIodit.ications ot TSS unless otherwise noted. Signi.ficant
changes or additions to this publication will be providea in
new editions or Technical Newsletters.

TRACl
TRACEND

It is possible that this mat~rial may contain reference to, or
information about, IBM products (machines and programs), proGrammina, or
services that are not a~nounced in your country_ Such references or
information must not be construed to mean that IBM intends to announce
such IBM products, programminq, or services in your country.

Requests for copies of IB~ publications should be made to
your IB~ re~resentative or to the IBM branch office serving
your locality.

A fOrlll is provided at the back of tb-is publication for
reader 8 3 comments. If the form has been removed, cOJllments
aay he addressed to: IBM Corporation, Time Shari.ng System"
Dept ~OM, 1133 nestchester Avenue, ihite Plains, Hew York
106011.

Copyright Int ernational Business Macbines corporation
1967, 1966, 1910, 1911, 1911, 1979

PREFACE

This publication viII aid you -- as a
system progra.mer -- to extend and modify
the IB! Time Sharing System. Available
progra •• ing facilities and necessary coding
conventions are described. Examples are
provided to give you an understanding of
vhat is involved in changing the system.

Part 1 contains both orientation and
hov-to information and is divided into:

• Section 1: An introduction to system
program.ing and system programmer's
facilities.

• section 2: The basic concepts and
structure of TSS.

• Section 3: Conventions to use when
coding routines for TSS.

• Section 4: Facilities available to
system programmers; information on how
they can be used and, in some cases,
changed.

• Section 5: Bow to write macro
definitions for use in the systea.

Part II provides a reference to macro
instructions (not described in Assembler
User ~acro Instructions) available to
system program.ers (and several options
available only to system programmers), and
is divided into:

• Section 1: How macro instructions are
described.

• Section 2: Descriptions of the macro
instructions, arranged alphabetically.

Part III discusses commands that are
available only to the system programmer, or
that have special options available only to
the system prograamer.

READER'S GUIDE

Several other TSS publications contain
information related to system progra •• ing
and monitoring.

• Concepts and Facilities, GC2S-2003,
presents the basic concepts and
features of TSS.

• System Generation and Maintenance,
GC2S-2010, describes the procedure for
creating and maintaining the source and
object forms of TSS; specifically, the
macro instructions and commands you aay
use to add, delete, or modify system
object modules.

• Time Sharing Support Syste., GC28-2006,
describes the on-line program ,error
analysis system designed specifically
for system programmers.

• 3ultiterminal-Task Programming and
Operation, GC28-2034, describes
multi terminal task programming
techniques. You should, of course, be
famiLiar with other IBM Time Sharing
System publications, such as:

Assembler Programmer's Gnide,GC28-2032

Assembler User Kacro Instructions,
GC2B-2004

iii

PART I: SYSTEft PROGRA~MING

SECTION 1: INTRODUCTION
What a System Prograaaer Does
Why TSS Is a ~odular System

The System Programmer
Systea Programmer Authority codes
Pri Yilege Class
Responsibilities of a System Programmer

System Generation
System eaintenance •

System programming Facilities
Bacro Instructions •

System Programmer ftacro Instructions
Restrictions on Use of System ~acro Instructions

co lilll allds
General Services •
Serviceability Aids
System Monitor Facilities

SECTION 2: SYSTE~ PROGRAMS
TSS Organization
Resident Programs

Getting started
Hormal Operation

Extended Control PSW •
The Prefixed Storage Area

Summary
Nonresident Prograllls •

Task structure •
Initial Virtual storage

Virtual Prograa Status Word
Interruption Storage Area

Storage Protection •
PriYileged Programs
»onprivileged Programs •

SECTION 3: SYSTEM PROGRAMMING CONVENTIONS
Resident (Supervisor) Programs

Conventions for Naming Object ftodules
Module Design Considerations •

Module Structure •
Getting Resident Working Space •
Secondary Entry Poin ts
System Control Blocks
System Control Block Names _
DUlllmy Sections

Enabling and Disabling Interruptions
Supervisor Linkage Conventions •

Programaing convention Comments
~onresident Programs •

Privileged Program Conventions •
lfaaing Conventi ons •
Writing Privi1eged System Programs

Konprivi1eged Programs _
Program Design Considerations
Linkage Conventions
Type-1 Linkage •

Use of the Save Area •
Contents of the General Registers
TransIer or Contro1

Type-2 Linkage •

iv

CON'l'ENTS

1

1
1
1
1
1
2
2
2
2
2
3
3
3
3
4
4
4

5
5
5
5
5
5
6
8
8
9
9
9

10
11
12
12

13
13
13
13
1q
15
16
17
17
18
19

• 20
• 21
_ 21

• 21
• 21
• 22
• 2IJ
• 24
• 25 _ 27

• 27
• 28
• 29
_ 29

The Saye Area
Content and Use of the General Registers
Transfer of Control

Type-1ft,/2 Linkage
i7pe-3 Linkage

The Save Area
Content and Use of General-Purpose Registers •
~ransfer of Control

Type-4 (Restricted) Linkage COnyentions
ijse of the General Registers
Transrer of Control

Linkage Convention Co.ments
Fence-sitters

Linkage to Fence-Sitters •
writing a Fence -Si tter
Linkage From Fence-Sitters to other Routines
Determining Fence-sitter Privilege

Virtual lIe.ory Loding
Rationale
Overview
Using the xxxYLOCK Macros

Supervisor Control Locks
VA~ Locking
Dynamic Schedule Table Transition
ENQ/DEQ Scheduling

SECTION 4: SYSTEM PROGRAMMER FACILITIES
P.esource Control Fa cili tie s

Accounting Overview
Installation Accounting Routines

Important Accounting Considerations
Accounting by User or Task ID
Accounting by Charge Number
Accounting on a Project Basis

Displaying and Altering Accounting Statistics
Retrieving and Modifying System Accounting Data Sets •

Creating Your Own Privilege Classes
Establishing Privileged Interruption Servicing Routines
Scheduling Time by a System Table
Deadl1ne Dispatcher

Active List Ordering
Schedule Table _
CPU/APU scheduling _
Real Tiae Task Flag

Addressing an I/O Device
TiMekeeping Facilities

Time Cells
categories of Time.
~imekeepin9 Operation
Setting the Interval Tiaer

RealTime ~aintenance •
Task Time ~aintenance
Tiaekeeping ~acro ~nstructions

Generalized Trace F acl1.i ty
Operat~on of the GTF Facility
GTF B1.ock and Record Format

Tiae Conversion Routine
Evaluating system Statistical Recording Fields

Ana1.ysis of Syste~ status Statistics
Adjusting Assembler Constants

Altering Constants •
Estimating liork A rea Storage Requireiient.s

Releasing Interlocks at ABEND
Public Pools -- General Description

Converting to a Pool System
Adding and Deleting Pools
Building a New Pool
Adding Voln.es to Existing Pools
Partitioning an Existing Pool
ftaintenance ••

Dataset DSCB Fecovery
Validating DSCB Slots

Checksum Procedure

TNt GN20-4106 (01 July 80) to GC28-2008-S

• 30
30

• 31
• 31

32
32
32
32
33

• 33
34
34
35

• 35
35
35

• 36
• 36

36
37
.:18
40
40
40
40

41
• 41
• 41
• 44
• 44
• 44
• .. 4
• 45

45
..5
46

• 46
46
47
41
48
48
1J8
48

• lid
48

• 48
• 48

48
49
49

• 50
• 51

51
52

• 52
52

• 52
• 53

53
53
54
56
56

• 56
• 56

56
• 56

56
56
56

• 56

v

TNL GN204106 (01 July 80) to GC28-2008-5

Virtual Mamory Supervisor Call Instructions
Real Heaory Supervisor Call Instructions
Accessing System Data Sets
SYSER DUlllp
Reliabiltiy Aids

Automatic ISA Replacement
Barrier Pages
Read Only Page Overwrite Protection

"odifying System ~acilities
Program Control System (peS)
~ime Sharing Support System (TSSS)

COllllllands
Symbols
Literal.s _
Operators

Terminal Access Methoa (TAMIl)
What is 'l'AMII?

eo.position of TAMil
RT1~ -- Real Terminal Access F,ethod
DCM - Device Control Modules
RTL~ Control Blocks
VTSS - 'lirtllal Terlilinal Support System
FCM - Pormat Control ~odules
VTSS Control Block Definition and S~tup

T18II Control Block Organization
V'lSS User Macro to SYSlh/SYSOl1T 'translation
V:l'SS RTAl'! Interrupt to l"CL and V'fCB Translation
Rl'Aft Virtual !!emory Request to TCT 'lranslation
RTAPI I/O Interrupt to Owner's Task. 1'51 Translation
RTAPI I/O Queue Organization
HTlft I/O Chaining

KCF Support for TSS
Assigning NCP Capability ~o TSS

TSS Restrictions tor ftAXSUBA all.} SUBAREA
Defining an NCP for TA~II

The PCCU macro
The BUILD macro:
The HOST macro:
The GROOP, LINE. PU and LU macros:
Defining the SCP ~etwork to TAMIl
Defining the NC£> and Rellote Termina.ls
Defining Switched SNA Major Noles

Organization of TAMIl ~CP/S~A Support
TAaII Format Control Module Support for the KCF

NCP Pathfinding Support Control Bl.ocks i'I.nd Handler
RTA!!/NCP Support

systen. Support Routine Addit.ions •
Device Control 50dules
IDSB! -- Add/Delete Subarea SiC (SYC212)
LCOliN -- Ccnnect TAMIl Tenlinal SVC Request. (SVC205)

TSS*.* ••• SYSRCS Data Set
Activation of an NCP/pEP or RP •
Deactivation of an NCPjPEP or EP
nu.p of an NCP/pEP or EF
Automatic Dumping and Restarting of an NCPjPEP or RP •
Trace of an NCP/pEP or EP Line

special Command Facilities for System Monitors
Reserving I/O Devices for a 1I0nconversational Task
Designating I/O Equipment

Symbolic Device Address
Vl~ Data Set Al~ocation on Drums •

Printing Data sets •
The Printing Options
Extended PRINT Command Facilities
Print Format for AD# lE and ED Options.

Special Macro InstUction lacilit.ies for Systellll Monitors
ftacro Instructions for HSA~

InterruptioD En try Handling
Designating Devices for MSA~

SECTION 5: DEFllUNG SYSTBt! l'lACRO INSTRUCTIONS
Conventional Types of Macro Definition

vi

57
57

• 58
58
59
59
59
59
59
61

• 62
• 62

63
63

• 63
• 63
• 63

66
66

• 67
• 6e

69
70
11

• 72
72
12
72
73

• 73
• 75
• 76
• 76
• 76
• 77

77
• 77
• 78
• 78
• 78
• 78

78
18
78
78

• 78
78
78

• 78
78

• 78
78
78

• 78
78

• 78
• 78
• 78
• 78
• 76
• 78
• 78
• 78

78
• 78

79
79

• 79
• 79

80
• 80

R-Type ~acro Definition
NUllber _
Absolute Expression
Code
Character string
Symbol
Linkage

S-'fype Macro Definition
Standard-Porm S-Type ~acro Definition

Relocatable Expression
Number and Absolute Expression
Code •
Character String and Text
S1 lilbol

L-Form S-Type Macro Dofinition
E-Form S-Type Macro Definitions

Nu.ber and Absolute Bxpression
Co(!e and Symbol
Linkage

30dified ll-Type M aero Definitions
ftodified S-Type ~acro Definitions

Techniqnes Used in Writing ~acro Definitions
Register Notation
Packing Parameters •
Defining Inner 3acro Instructions
Naming the First Executable Instruction
Setting the sign Bit •
Processing a Single Apostrophe •
Referring to the DCB •
Size Lillitation
Address Constants •
Terminal Apostrophe and Size Limitation
Keyword Operands and Standard Values
substring Notation Processing
B Attribute Usage
NI&SYSLIST Handling in ftixed Mode 3acro Instruction
Subscripts and SUblists
SETC Symbol Length
Logical Terms in Re1ational Expressions
Converting Deciaal to Hexadeciaal
Setting up Flag Bits in a Byte

Gaining Access to 8acro Libraries

PART II: SYS~EK MACRO INSTRUCTIONS

SECTION 1: ROW MACRO INSTRUCTIONS ARE DESCHIBED
lIame Field
Operand Field

Operand Forllls
Absolute Expression
Relocatable Expression
Register Notation
SYMbol.
Chara~~er string •
Text _
Data set Nallle

SECTIO! 2: SYSTEH ~ACRO INSTRUCTION DESCRIPTIOKS
ADDEV Add Device to Task symbolic Device List (R)
ADDPG Add Virtual Storage Pages (R)
ADSPG Add Shared Virtual Storage Pages (H)
ATPOL Poll for Pending Attention Interruption (0)
AUXPG Extract Auxiliary Storage Page Counts (O)
AUXSET -- Create Overload/Overdraw Interruption Contro1 Blocks
AVAUX -- Available Auxiliary HeRaining Count (R)
BHSG -- Send BULKIO Hessage
BPKD -- Create a Builtin Procedure Key (0)
STRUBL -- Set Last Called ID into BULKCO~H and S-entry Table •

80
• 81
• 81
• 81

82
82

• 82
83 .. 84

• B4
• 84

84
as
86
86
88
88
88
88
89

• 90
90
90

• 90
_ 91

92
• 92
• 93

94
• 94

94
95
95
95
96
96
96
96

• 97
97
98
98

.100

.101

.101

.101

.101

.101

.101

.102

.104

.104

.104

.104

.107

.107

.107

.109

.110

.110
(O) .111

.111

.112

.113

.115

vii

TNL GN20-4106 (01 July 80) to Ge28·2008·5

CAHeL -- Cancel Realtime Interruption (0) _ •••
CHANGE -- Chang e Schedule Table Entry CR) ••••
CHDIHHRA -- Generate Type-lor Type-2 Linkage (O)
CHG.LOCK -- Exchange V~ Locks (0) • • • • •
CLOSE (~SAft) -- Disconnect Data Set Fro. User·s Problem Program (5)
CLRYLOCK -- Cle ar a VI! Lock (0) •• _ • • • • • • • • • •
CNSEG -- Connect Segllent to Shared Page Table (R)
CRTSI -- Create Task Status Index CR)
CSEG -- Connect Baaed Segment (0) • _ • • •
cvr -- Activate Communications Tector Table
DCB (!SA!) -- Set Up Data Control Block CO)
DCLASS -- Specify Privilege Class (0)
DELET -- Enter Delete t'rogralll (0) ••••
DELPG -- Delete Virtual Storage Pages (R)
DEQG~E -- Dequeue GQE from SCAR Table
DISABLE -- Disable System Interrupts • _ •
DISCSEG -- Disconnect Segment Group (0) ••••
DLIBK -- Transfer to Dynamic Loader for External Symbol Resolution (0)
DLTSI -- Delete Task Status Index to)
DSEG -- Disconnect Named Segment (0) •••
DSSEG -- Disconnect Shared Page Table From Seg.ent (R)
DUPCLOSE -- Close a Duplexed Data Set (S)
DDPOPEN -- Open Duplex Data Set (S) • • • •
ENABLE -- Enable system Interrupts • _ • _ •
ElIQGQE -- Enqueue GQE frolil SCAN Table _ •••
EHTER -- Enter Privileged Service Routine (R) ••••
ERROR -- Indicate supervisor Detected Error (0)
ESEG -- Exchange ~amed Segment to)
EXCSE;';' -- Exchange Segment Group (0)
EXPlID -- Expand Page CO) • • • • • •
FINISa (MSAft) -- End of Data Set CR)
FREELOCK -- Open a Resident Supervisor Service (O)
GET (!'ISAM) -- Get a Record (R) _ • • • •
GETADDR Get Syste& Address fro. CYT • • _ _
GETCORE -- Allocation Supervisor Storage Space
GETLOCK -- Lock a Resident supervisor Service (0)
GETPAG -- Get Virtual Memory Page ••••
GETWOliK -- Get Temporary Work Area •
GBC -- Get Next Character (0)
GPSEG -- GET/PUT Named Segment (0)
hOO~ -- Transfer Control from IV~ to Private Module (0)
ID -- Define BULKIO Module ID
IlIYOKE -- Transfer Control (0)
lOCAL -- I/O call (R) ••••
11'1 -- Inhibit Task Interruptions (0) •••••
LLIST -- Create Load List Entry (0)
LOCPAG -- Locat e Page (R) _.....
LOGYLOCK -- Define VM Lock Anchor (0) ••••
LYPSlf -- Load Y irtual Program status word (R) ••••
aAPrDY -- Connect, Disconnect, or Expand the TDY (0)
MOVGQE -- Mov~ GQB to Dew Scan Table Entry • • •
!OVYP -- Move Page Table Entries (B) • _ • • ••
!SGWR -- Issue System ~essage and Get Response (S)
NIB -- Generate Bode Identification Block (S)
O~~D -- Specify 05 DCB DSECT • • • • • • • • •
OPEN (ftSA~) -- Prepare the Data Control Block tor Processing (S)
OPENLOCK -- Reset a Resident supervisor Lock Byte (O)
OPNYLOCK -- Open YM Lock. (0) • • • • • • • • • • • • • •
PCSYC -- Enter Program Control System (0) • • • •
PGOU~ -- Write Virtual Storage Pages to External storage •
PR -- Print a Data Set (5) • • • • • • • • • • • • • • •
PRESE!T -- Present Current Schedule Level CR)
PTI -- Permit Task Interruptions (0) •• __ ••
PO~SE -- Pulse Schedule Table Entry Level CO} ••••
PURGE -- Purge I/O Operations (R) ••••
PUT (KSAri) -- Put a Record (R) • • • • • • • • •
QGQE -- Quene Interrupt on Task ••••• •••
QSVC -- Manipulate Resource Queue Entries SVC • • • •
RCALL -- Ca~l Another supervisor Routine • - ••

• •• 116
.117
.118
.119
.121
.122

• •• 122
• 12 It
.121i
.125
.126
.130
.130
.131
.132
.133

•• 134
.134
.135
.135
.136
.137
.138
.138

• •• 138
.139
.139
.11J1
.1Il~

.H2
• •• 142

.144

.145

.lq6

.147

.148

.150

.150

.151

.152

.152

.152

.153

.153

.151

.158

.161

.162

.162

.163

.163

.164

.164

.161

.16B
• •• 168

.169

.169

.170

.170
• _ .112

.172

.112

.112

.173

.115
_ •• 171

.178

.178

TNL GN20-4106 \01 July 80) to GC28·2008·5

RIll -- Reset DrUill/Disk InterlOGk (0) •••••••••
hECRDSTE -- Record Schedule Table Level Changes (O) ••••• • •••
RELCORE -- Release Allocated Supervisor Work Space • • _ • • ••••
RISSE'I -- Reset Device suppression Y'.ag (R) ••••••••
RBSE'IIR -- Reset Immediate Report Flag (O) ••••
In.SUlm -- Return to calling Progra. CO) •••• • • • • • • • •
RRTR~R -- Load Saved Registers and Return • • • •
EJELC -- Remote Job Entry Line Control (0)
RftDEV -- Remove Device From Task Symbolic Device List (R)
~MOVHLv -- Remove Page from Page Hold •• • • •
ROPAGE -- Read Only Page Protection Flag update eR)
P.PR~PT -- Send Message to Task
RSEG -- Reserve Segment (0) • • • •
RSPRV -- Restore Pd vilege (R) ••••
RSSERB -- Indicate RSS Logic Error •
RSVSEG -- Reserve Seg~ent Group «0)
RTRli -- Return and Cleanup Task (R)
R'l'TCIL -- Beal 'l'ime Task Cont::ol (0)
SA3PLE -- Sa~ple Statistical Recording Fields (0)
5AVER -- Supervisor Standard SAVE Function
SCHED - Schedule Table Entry (R)
S~RTSI -- Special Create Task Status Index (R)
SETAE -- Set Asynchronous Entry (Rl
S ETC'TL -- Set. Control Itegisters (P)
SETIR -- set Im~ediate Report Flag (0) • •
SETLOCK -- Set a Resident Supervisor Lock Byte (0)
SETSYS -- Set system Table Field (R) • • • • •
SE'l'TIM£R -- set Realtime Interval Pro. Resident Programs (S)
S~TTR Set Real. Time Interval (O) •••• _ • • • • • • • • • ••••
S~TTU Set User Tiller (R) ••••••••
SETUP Set Up Task Status Index Field (R)
SETUR Set Up Unit Record Device (R) •
SET'VLOCK -- Set VI! Lock (0) • _ • • • • • •
SETX? -- Set External Page Table Entries (R)
SETXT~ -- Set Up ~xtended Task Status Index Fi~ld (R)
SIPEHOOK -- System Performance Evaluation (0) ••••• •••••••
STORE Store Register Contents (OJ • • • • • • • • •
STXTR SET and XTRCT Table • • • • • • • • • • • ••
SYSER Indicate Nonresident-Program-Detected Error (0)
TSElfD Porce TilDe Sli.ce End (B) •••••••
TSTVLOCK -- Test VP. Lock (0) • • • • • • • • • •
TiAIT -- Wait for Terminal I/O Interruption (R)
OlLOw -- User F low for TSS and KTT (R)
UPD'l'USeR -- U¢ ate User Tables (0) • •
USAGE -- Display Resource Usage (S)
OSELOCli -- Lock User Table Entry (0)
VD~ER -- VAr. Data ~anagement Error Recovery (S)
VSENDk -- Send Message to Task and Await Response fO)
XTRCf -- Extract Task Status Index Field (R)
XTRCTL - Extract Control Registers (R) •
XTPSYS -- Extract System Table Field (F)
X~RXTS -- Extract Extended Task Status Index Field (R)
ZEROSST -- Zero Statistical Recording Fields (0)

PART III: SYSTEM ?ROGRA~~ER CO~~~NDS • • • • •
Command (dnd Special Option) Descriptions

ADDPOOL Command

• •• 179
.179
.180
.180
.181
.182
.182
.184
.185
.186

• •• 187
.187
.188
.189
.189
.190
.190
.191
.192

• •• 192
.193
.194
.194
.195
~196
.197
.198
.199
.~OO
.201
.201
.202

• • .208
• •• 208

.20a

.209

.210

.211

.211
• •• 213

.213

.214

.214

.217

.219

.219

.219

.221

.223

.224

.224

.225

.:l26

.228

.228

.228

.229 BLDPOOL Comaand •••••
BLDSVCT Command _ _ _ • • • • • • •• 230
CC (Check Catalog) Command
CLASSGTF Command •••••
CNV'l'POOL Command • • • • •
DORY -- Define a Data Set ••••• _ • •
DELPOOL Coall1and
DISP Command • • •
DSCBS COllimand
DDf!PRES CODlmand
FVV (Enter VA~ Volume) Command
l'IXCAT Command •
FIYDSCB Command

.230

.233

.234

.237
_ • • • • _ .237

.238
• • • • • • .238

.238
• • • • • •• 238

.239
• •• 239

ix

FIlVI Co •• and • _ • •
GTF (General Trace Facility) Co.mand •
aAPGH~ -- Create Task Storage Kap
KOVEUSER Command •
HEW5SG (Hew Updates for Kessages) Command
PATCLEAR (Clear Page Assignment Table) Command •
PATFIX (Fix Page Assignment Table) Com.and
POOL? Command
PRGfi COllllland
PRIlfT Command
SECURE COllllland
SETRVli Comlland
TRACE Co •• and
TRACEIID Com.and
OPDTDSER (Update User Tables) Co •• and
USAGE Comllland
YD!!P COllllland
YDSP eommand •
VPA~ COIlBland

APPENDIX A: SYSTEK ENTER CODE TABLE

APPEHDIX B: VIRTUAL AND REAL aEMORY SVCS •

..

APPENDIX C: TSS EXTBNDED PROGRA! IHTERRUPTIO. CODES

APPENDIX D: DYHAKIC LOADER

APPEHDIX E: ORGAHIZATIOK OF DIRECT ACCESS STORAGE
2305 DRDK STORAGE PORKAT
Disk Storage Foraats

APPENDIX F: RTA! LOG ENTRY DEFIIITIONS

APPEliDIX G: USER LIIUTS TABLE

APPEHDII H: FACILITIES BY PRIVILEGE CLASS AND AUTHORITY CODE •

APPEKDIX I: DEBUGGING AIDS FOR COKKOB SYSTE! PBOBLEBS

INDEX

x

.23" .2.

.24~

.242

.242

.242

.243

.247

.247

.248

.253

.25~

.2!:

.254

.254

.254

.254

.256

.259

.262

.264

.268

.273

.27'

.2i

.27b

.279

.280

.281

.283

.286

Figure 1.
Figure 2.
Figure 3.
Fi.gure ".
Pigure 5.
Figure 6.
PigUre, 7.
Figure 8.
Pigure 9.
Figure 10.
Pigure 11.
Pigure 12.
Figure 13.
Pigure 14.
Pigure 15.
Figure 16.
Pigure 17.
Pigure 18.
Pigure 19.
Pigure 20.
Pigure 21.
Figure 22.
Pigure 23.
figure 24.
Figure 25.
Fi9ure 26.
Pi9ure 27.
Pigure 28.
Pigure 29.
Pi9ure 30.
Pigure 31.
Fi9ure 32.
Fi9ure 33.
Figure 34.
Figure 35.
Figure 38.
Fi9ure 39.
,Figure 40.
Fi9ure 41.
Pigure 42.
PiC]Ure 43.

Figure 44.
Figure 45.
Pi9ure 46.
Figure "7.
Fi9ure 48.
Figure 51.
Figure 52.
Figure 53.
Pi9ure 54.
l'igure 55.

Extended control program status word
Relationship between real and 'absolute addresses ••
Virtual prograa status word
~ain storage page key assignaents
CPU and data channel key assignments • •
PSW and storage protection keys
Format of the standard save area • •
Virtual program linkage conventions
Saaple Data Structure for xxxYLOCK aaeros

UGUBBS

6
7

10
• 11
.. 11
• 12
• 26
• 27
• 38
• 52 Input foraats accepted by the time conversion routine

Results of time conversion • .. • • 52
Isseabler constants, changeable for large asseablies .. •
Overview of TIftII Organization
TIft!I Control Blocks - VTSS
TAft I! Control Blocks - RTI!
TAftII supervisor I/O Queues.
Determining the length of a character string ..
Standard and L-fora S-type aaero description •
Paraaeter list generated by L-form .. • • .. • •

• 53
• 65
• 72
.. 73
• 75
• 86

.. .. • 87
• 88
• 89 E-for., S-type macro description • .. • • •

Packing two half word parameters into register 1
How to enter aacro instructions

.. • 90
.103

Sources of DCB information for aSia
System error codes • • • • • • • • • • • •
Return codes for ftSlB PI.ISH macro instruction

.. 126
.140

........... •• 1'3
Return codes for as A! GET maero instruction
Pormat of fixed area of input/output request control

.144
block as set before lOCAL .155

Or9anization of a page list entry ••
Channel co .. and word list entry before lOCAL is issued • • • • .. • • • • •
Fixed area of I/O request control block as set by lOCAL
Channel colUland word list entry after task I/O interruption occurs •
Load 11 st entry • • • • • • .. • • • .. • •
I/O paging control block • • • • •
Return codes for ftSlft PUT maero instruction .. • • ..
Return codes for the SETUR aacro instruction •
System EBTER code table (part 1 of 2)
Virtual and Bea.1 !emory SVCS (part 1 of 4)
TSS Extended Program Interrupt Codes (1 of 5)
Dynaaic 1o~der three-part hash tab~e • • • • • • •
Effect of authority code in dynamic loader processing • • • •
Re1ationship of object aodu1es, CSECT, CSXCT attributes, sharability, and
storage key assignaent • .. • • • • • • • • • • • • • •
Organization of an IB! 2305 Drum • • • • • • • • • ..
Organization of IBft 2314 voloae for VAS
Pormat of IBa 2311 volume for VA!
Organiza.tioJl of an IB!! 3330 Disk • • ••
Organization of an IBft 3350 Disk • • .. •
systea-supplied values for user ~imits tabLe ..
Data areas to examine for common syste. prob1ems •
Supervisor interruption 10g
Task monitor interruption log
Save area format • _ • • • • .. • •

• ... 155
.156
.156
.156
.160
.171
.176
.20"
.262
.264
.268

• .. .273
.274

.275

.276
• .. .277

.277
• .. .278

.278

.280

.283

.284

.. 285

..285

xi.

PART I: SYSTEft PROGRAftftllG

This part describes a systea proqraaaer, his functions, the systea
facilities available to hia, and the systea prograa structures and con­
ventions that he aust observe when coding systea aodules.

SECTIOI 1: IITRODUCTIOI

Tiae Sharing Systea (TSS) is a set of prograas. Each prograa per­
foras a part of the overall job that the systea as a whole was designed
and developed to do. Systea prograaaiug with TSS involves adding to,
deleting froa, or aodifying these prograas.

What a Systea Proqraaaer Does

As a systea prograaaer, you are expected to be an e%perienced pro­
graaaer responsible for aodifying, extending, and generally adapting TSS
to suit the needs of your installation. To do this, you should be know­
ledgeable in two areas: (1) the design and construction of TSS, and (2)
the needs and capacity of your installation.

Why TSS Is a ftodular Systea

Any large, general-purpose proqraaaing systea is a coaproaise of the
aany conflicting deaands of its prospective users. Systea designers
atteapt to construct an efficient proqraaaing systeR that will satisfy
diverse deaands. All situations can never be anticipated. Generality
aust soaetiaes be sacrificed for efficiency. Realizing this, the deve­
lopers of TSS have produced a aodular systea whose parts can be changed.
The rules, suggestions, and operating considerations for changing the
systea are described in the following pages.

THB SYSTBft PROGRAftftBR

A prograaaer becoaes known to TSS as a systea prograaaer when he is
joined to the systea by the systea aanager or one of the systea adainis­
trators with a special authority code (0 or P) •

SYSTBft PROGRABftBR AUTHORITY CODBS

The JOIl coaaand contains an authority code which aayhave the values
U (user), P (systea prograaaer), or 0 (privileged systea prograaaer).
As a systea prograaaer, you will have been given an 0 or P. When a user
logs on, inforaation is taken froa the user table built by the JOII coa­
aand processor and inserted into the user's task status index (TSI) and
interrupt storage area (ISA). The STC queue processor controls what
prograas are allowed to issue privileged SVCs; it uses the authority
code inforaation the LOGOI processor stores in the task status index at
field (TSIP4) for this purpose. The dynaaic loader and proqraa control
systea use inforaation stored by the LOGOI processor in the interruption
storage area field (ISIUTH) to deteraine if the task aay perfora certain
privileged operations.

section 1: Introduction 1

•

PRIVILEGE CLASS

As a system program.er, you may be joined to the system with combined
privilege classes D and E; each class is associated with a particular
set of facilities available for your use. The system programmer with
class D and E privilege is often referred to, in TSS publications, as
the system aonitor. Authority 0 or P is not, however, a prerequisite of
Privilege E.

The assignment of privilege class D (along with your authority code
of P or 0) designates you as a systea prograamer. This privilege class
provides you with the facilities described in Assembler User Bacro In­
structions ~nd Command Systea User's Guide; in conjunction with your au­
thority code, class D also provides you with most of the facilities dis­
cussed under "Systea Prograaaing Facilities" in this pUblication.

The assignment of privilege class E, which designates you as a system
aonitor, extends the range of facilities available to you. Through cer­
tain options that only the privilege class E programmer can use in the
DDEF comaand and macro instruction, in the DCB aacro instruction, and in
the SECURE command, you can reserve specific I/O devices and directly
utilize unit record equipaent. It also provides you with the ability to
use the Multiple Sequential Access Mehtod (MSAM), denied to ordinary
users and to systea prograaaers who have not been assigned privilege
class E.

RESPONSIBILITIES OF A SYSTEM PROGRAMMER

Systea program.ers are responsible for generating the specific ver­
sion of TSS used at each installation and for troubleshooting and aain­
taining that system once it is generated. Maintenance involves analyz­
ing system probleas, designing changes (additions, deletions, etc.), and
incorporating IBM-issued changes applicable to the installation.

System Generation

Systea generation consists basically of reasseabling and replacing
system modules containing configuration-dependent tables and
installation-option parameters. System generation macro instructions
are used to control this operation. These macro instructions, as well
as the system generation process, are described in Systea Generation and
Maintenance, GC28-2010.

system Maintenance

You should not attempt
knowledge of the system·s
ed in each modification.
ling systea modifications
Maintenance.

to aodify TSS unless you have a thorough
logic, in particular of the interfaces involv­
Detailed information about methods of instal­
can be found in Systea Generation and

SYSTEM PROGRAMMING FACILITIES

A brief su.mary of the facilities available to system prograamers is
presented belove The facilities available to system program.ers are
usually invoked by issuing system-defined aacro instructions and com­
aands. Macro instructions are described in detail in Part II of this
publication. Commands are described in detail in Part III. General use
of these facilities by system programmers is described in section 4,
"Syste. Facilities," in Part I of this publication.

2

BACRO INSTRUCTIONS

Two groups of macro instructions are provided in TSS. One group is
made available to the ordinary user to aid him in managing his data and
programs. A second group is provided for system programmers to aid them
in the system generation process and in coding systea modules.

System Programmer Bacro Instructions

Many diIferent macro instructions are available to a systea programm­
er. He may use: the macro instructions provided ~or generating TSS and
adopting it to an installation's requirements, the macro instructions
employed within system code, and the macro instructions provided to the
ordinary user of TSS, as indicated below under "User Macro Instruc­
tions." If he has been joined to the system with both privilege classes
D and E, he can also employ macro instructions used by the the ~ultiple
Sequential Access Method (MSA!).

User Bacro Instructions: Macro instructions available to all TSS users
are described in Assembler User Macro Instructions.

system Generation Macro Instructions: system generation ~acro instruc­
tions perform several basic functions; they inform the software system
of the hardware configuration of an installation, they establish the
command system options and defaults, and they assign the task management
parameters that are used for dispatching and controlling tasks within
TSS. These task management parameters are used by TSS to manipulate
virtual storage, control paging operations, and regulate the size and
number of tasks by type. These macro instructions are described in
detail in System Generation and Maintenance.

system Macro Instructions: The system macro instructions used in system
programs and those available for the development of complex installation

, functions are described in detail in Part II of this publication; macros
, usable only in real memory are called supervisor macros.

Restrictions on Use of System Macro Instructions

Kost system macro instructions generate Supervisor Call instructions
(SVCs) to establish linkage to a system-provided routine. The dispatch­
ing of these system routines is controlled by SVC queue processors.
System programmers should be aware that use of many of these SVCs is re­
stricted by the queue processor (and occasionally by the system routine
that is called) to privileged users having a certain authority code.
SVCs issued in nonprivileged code generally pass control to system pro­
grams in privileged virtual storage; those issued in privileged code
pass cOLtrol to system programs in main storage. These are generally
referred to, respectively, as nonprivileged and privileged STCs. Some
SVCs can be executed in both nonprivileged and privileged code. A sum­
mary of the requirements for assembly and execution of particular SVCs
can be found in Appendix B.

COMMANDS

Hany ~ss commands are available only to system progra~mers. There
are also several commands, available to all TSS users, that have partic­
ular options that are available only to system programmers. These com­
mands generally require that a system programmer be joined to the system
with authority code 0 or P, privilege class E, or the userid TSS*****.

section 1: Introduction 3

The co •• ands defined for syste. prograaaers fall into three groups:
general services, serviceability aids, and syste •• onitor facilities.

General services

The general service co.aands provide syste. prograa.ers with sessage
saintenance and storage .aintenance facilities. Detailed descriptions
of these co •• ands are included under ·Syste. Progra •• er Co •• ands· in
Part III.

Serviceability Aids

The following co •• ands are for aonitoring system perfor.ance and for
analyzing sources of syste. errors.

• Progra. Control Syste. (PCS): A set of co.aands that enable you to
locate proble. sources in nonprivileged, virtual storage progra.s.
PCS also provides si.ilar, but restricted, facilities for trouble­
shooting privileged virtual storage prograas. (10 PCS facilities
are available for resident progra.s.) The use of these facilities
is discussed briefly in Part I, section 4. A detailed description
of the facilities can be found in Co •• and Syste. User·s Guide •

• Tiae Sharing Support Syste. (TSSS)= A support systea that enables
you to gain access to all storage (real, virtual, and auxiliary) and
all registers fro. a ter.inal. This support incorporates a coa.and
language which lets you dyna.ically aodify both syste. and user
tasks. Like PCS, it is a subsyste. within TSS; unlike PCS, it is
available only to the syste. progra •• er. The use of these facili­
ties is discussed sore fully in Part I, Section 4. A detailed de­
scription of the facilities can be found in Tiae Sharing support
Syste ••

Syste. ftonitor Facilities

A special set of coa.and options is available for system progra •• ers
that have a privilege class of E (syste •• onitor). These options allow
the progra..er to reserve unit record equip.ent for nonconversational
tasks, refer to devices sy.bolically, and to print ASCII data sets fro.
tape devices. The special operand values of the SECURE, DDEF, and PRIBT
co.sands, that provide the class-E programmer with these capabilities,
are described in Part I, section 4, under "Extended Syste. ftonitor
Facilities."

SECTION 2: SYSTEft PROGRAftS

TSS ORGAHIZATIOB

The programs that make up ~SS are of two types: resident programs,
which are brought into aain storage and left there until the aachine is
turned off; and nonresident or virtual storage programs, which are
brought into main storage as required and are removed from main storage
when the space is needed. During the operation of TSS, both kinds of
prograas interact by using a well defined interface. This interface is
described under "Tasks."

Resident prograas schedule the use of the systea's resources. They
aonitor multiprograa.ing and aultiprocessing in ~SS. Honresident pro­
graas provide services to the user, making it easier for hia to use the
system. An atteapt has been aade to separate these responsibilities as
much as possible.

RESIDENT PROGRARS

This section discusses the characteristics of the ~SS resident super­
visor. If you are priaarily interested in scheduling and resource allo­
cation, you will find this section of special interest.

GETTIBG STARTED

In TSS, a program called startup brings into main storage all modules
that make up the resident supervisor. Resident prograas have the saae
structure as any other TSS object modules; they have a prograa module
dictionary (PRD) and text. startup reads the various resident object
modules from a disk pack called the IPL voluae, resolves the syabolic
references between the modules, assigns them main storage, and resolves
address constants contained in thea. Startup also initializes prefixed
storage areas (PSis) and issues an external start to a second processing
unit, if one is attached.

Resident aodules initially contain address constants; however, once
startup has transferred control to the resident supervisor, these
address constants have been resolved and the relocation of resident pro­
grams is coaplete.

A nuaber of tables, or systea control blocks, are also initialized by
Startup. These tables enable the resident supervisor to keep track of
resources. One of these resources is aain storage space, which will be
reserved for the resident supervisor's use. Space not used for resident
prograas, or set aside for their use, is available for allocation to
nonresident programs.

BORRAL OPERATIOB

Extended Control PSW

When Startup transfers control to the resident supervisor, the IBft
central processing unit is in the extended control mode, the mode that
supports TSS on the Systea/310. The fora at of the extended control
prograa status yord (XPSW) is shown in Figure 1. Because resident pro­
grams operate unrelocated, bit 5 in the XPSW, the relocation bit, is
always O. The protection key is also 0, giving resident prograas access

section 2: System Programs 5

to all main storage. The privilege state bit is 0, too, since resident
programs operate in the supervisor state. Any program interruption in
the supervisor state is considered an error; to allow detection of pro­
gram interruptions, the four program mask bits are ls. The second word
of the XPSW contains the instruction address in bit positions 40-63.
~esident programs are responsible for controlling dynamic relocation of
non-resident prograas; they do not, themselves, run with the address
translator on. Addresses used by resident programs are always real ad­
dresses, limited by physical storage. The maximum allowable amount of
main storage is 16,777,216 bytes (224) •

• I i I i i I I i I I I i i i i i i i ,
Bit ,0,1,2,3,4,5161718 , , , , , , , , , 11,12113114,15,16117,18,'9,20 , , r , I , I , , 23,24 , 31,

I
First I I I I I I I II I
Word lO,BIOIO,OITIOIEI Key

I • • I I • I • I

I , I I I , LI fll WI PI
1 I ,

01 0, c,
,

CI
I

,
P!SKI ,

,
00000000 I ,

Second I ,
Word

Not

,0 000000 ° , Instruction Address

32

B

T
IO

E
Key
L
!
W
P
CC
P!SK
used

40

Program Event Recording, disallowed (0) or allowed (1),
subject to Event Bask Bits in control Register 9
Relocation, off (0) or on (1)
I/O interruption mask, disallowed (0) or allowed (1)
subject to Channel Bask Bits in Control Register 2
External interruption mask, disallowed (0) or allowed (1)
Storage protection key
Extended Control Bode, BC Bode (0) or EC Bode (1)
!achine check mask, disallowed (0) or allowed (1)
wait state, running (0) or waiting (1)
Problem state, supervisor CO} or problem (1)
Condition code
Program mask
Bit positions 0, 2-4, 16-17, 24-31, and 32-39;
a specification exception is recognized when these bit
positions do not contain zeros

Figure 1. Extended control program status word

The Prefixed Storage Area

63

When the multiprocessing feature is installed in a CPU most addresses
associated with storage reference by the CPU are processed by a
mechanism called Kprefixing. K All addresses subject to this processing
are referred to as KrealK addresses. Storage addresses which are not
subject to this processing, and all addresses that have been processed,
whether or not they are changed, are referred to as KabsoluteK
addresses.

As a result of the processing to form the absolute address, real ad­
dresses 0-4095 are interchanged with the 4,096 addresses of the block
that begins at the address identified in the prefix register. All other
real addresses remain unchanged.

The real addresses 0-4095 include the addresses of the assigned
storage locations that are implicitly generated by the CPU and channels,
and includes the addresses that can be specified by a program without
the use of a base address or an index. Prefixing provides the ability
to reassign this block of real locations for each CPU to a different
block in absolute main storage, thus permitting more than one CPU shar-

6

ring .ain storage to operate concurrently with a .ini.us of inter­
ference, especially in this processing of interruptions.

Because the prefixing .echanis. interchanges the real addresses, each
CPO can access all of absolute aain storage, including the first 4,096
bytes and the assigned locations for another cpu.

The relationship between real and absolute addresses is graphically
depicted in Pigure 2.

I
I
I
I
I ~ I

Prefixing
r-- - - - - - - --l 1
I I
I I

I Nochange---,--: --I
I
I

K1-----+-No Change-*"-----+----

I
I ~
I 4
I .",,:..

g..

~_:~:~ess~: Ll Address I /'1<
4096 Address

I { 4096

_Add~ess L __________ 1 !-Ad-d-~e-ss-.l...L--J ______ '---l--+----- _Address

o
Rea! Addresses
for CPU A

Absolute
Addresses

CD Real addresses in which the high-order 12 bits are equal to the prefix for this CPU (A or BI_

® Absolute addresses of the block that contains, for this CPU (A or BI, the assigned locations
in real storage_

Pigure 2. Relationship between real and absolute addresses

Real Addresses
for CPU B

The prefix is a 12-bit quantity located in the prefix register. The
register has the following foraat:

i i i I
1////////1 1////////////1
, I . ,
o 8 20 31

section 2: Systea Prograas 7

The contents of the register can be set and inspected by the prLvL­
leged instructions SET PREFIX and STORE PRBPIX, respectively. On set­
ting, bits corresponding to bit positions 0-1 and 20-31 of the prefix
register are ignored. On storing, zeros are provided for these bit
positions. The prefix register is initialized to zero.

Prefixing is applied to all references to main storage and to keys in
storage, except for references by a CPU to the permanently assigned
storage locations during performance of the store-status function, and
except for references by a channel to extended-logout locations, to I/O
d~ta, to indirect-data-address yords, and to CCWs. When dynamic address
translation is specified, prefixing is applied after the address has
been translated by the dynamic-address-translation mechanism. When
installed, prefixing is always active and is not subject to any mode
control.

When prefixing is applied, the storage address is translated as
follows:

a. Bits 8-19 of the storage address, if all zeros, are replaced with
bits 8-19 of the prefix.

b. Bits 8-19 of the storage address, if equal to bits 8-19 of the
prefix, are replaced with all zeros.

c. Bits 8-19 of the storage address, if not all zeros and not equal
to bits 8-19 of the prefix, remain unchanged.

In all cases, bits 20-31 of the storage address remain unchanged.

Only the address presented to storage is translated by prefixing.
The contents of the source of the address remain unchanged.

The distinction between real and absolute addresses is made even when
prefixing is not installed or when the prefix register contains all
zeros. In both of these cases, a real address and its corresponding
absolute address are identical.

The format of the prefixed storage area can be seen by copying the
dsect CRAPSA.

SU~~ARY

Besident prograas make up the part of TSS known as the resident su­
pervisor. The extended control mode of operation is normal for resident
programs. These programs, operating in the supervisor state with the
address translator turned off and with an XPSW protection key of zero,
can execute any System/370 (including all ~158 and ft168 aultiprocessors)
instructions and use all main storage except page zero in a dual system.
Each processing unit also has 16 general-purpose registers, Q floating­
point registers, 16 extended-control registers, an interval tiaer, an
address translator, and other components for fetching and executing
instructions.

ROIRESIDBIT PROGRA!S

lonresident, or virtual storage, prograas are programs that operate
with the address translation unit turned on; they do not permanently
reside in main storage. There are two kinds of virtual storage pro­
grams: privileged and nonprivileged. Por a conceptual understanding of
virtual storage, see Concepts and Facilities and System Logic Summary.

8

TASK STRUCTURE

The nonresident portion of TSS, as wel1 as a userls application pro­
grams, operate within the context of individual tasks. To the system
user, the task is an individual work requirement; to the system itself
(and the resident supervisor in particular), the task is a unit of acti­
vity to be allocated system facilities, including a periodic time-slice
of the cpu.

A task has a virtual storage whose size is essentially independent of
the physical main storage available to the resident supervisor. Virtual
storage is organized into pages of 4096 bytes, which are further
collected into segments of 16 pages. Virtual storage consists of a max­
imum of 256 segaents (16,777,216 bytes) with 24-bit addressing.

Just as OS subdivides its instruction set into two states, supervisor
and problea, a task may run with a privileged or a nonprivileged in­
struction set. The privileged instruction set, somewhat analogous to
the supervisor state, contains alIOS problem state instructions and
those SVC (Supervisor Call) instructions designated as privileged. The
nonprivileged instruction set, somewhat analogous to the problea state,
contains alIOS problem state instructions and those SVC instructions
designated as nonprivileged.

Each task contains not only any application prograas called by the
user (in the form of object modules), parts of data sets referred to by
these programs, and dynaaically acquired virtual storage data areas, but
also those portions of the TSS control program which are nonresident and
any system facilities specifically requested (such as language proces­
sors). But each task does not have to have a separate copy of the non­
resident system modules (the nonresident TSS control program); it shares
with other tasks the a single copy of nonresident system modules in main
storage.

IHITIAL VIRTUAL STORAGE

The task monitor and a number of programs (both privileged and non­
privileged) are collected into what is called initial virtual storage or
initial virtual aemory (ITft). startup establishes initial virtual
storage by constructing a standard set of segment and page tables to be
used by each newly created task. Initial virtual storage programs are
never dynamically loaded; they are permanently resident in virtual
storage. Of course, IV! programs are paged in and out of main storage.
All other privileged prograas are brought into virtual storage, as re­
quired, by the dynamic loader (which must be part of IV!). Virtual
storage is never "empty·; it always contains at least the programs that
aake up the IV!.

Virtual Program Status Word

Each task has 16 general-purpose registers and 4 floating-point regi­
sters available to it. The status of a task is described by its virtual
program status word (VPSW), which is shown in Figure 3.

section 2: System Programs 9

i i
Bit ,0,1

, I
Pirst , I
Word IPllIot

I
Second I
Word ,

•

iii i. i
31415,61718 9110
"~'If ,
I11II I

usedlXIAITIIIILCI
I • , • ,

i I I I i
11,12,13,14115,16

, 1 I , t
I I I I ,

CC IFO,DOIEO,S?,

Instruction address

j

311 , ,
Interruption code 1 ,

P Privilege. (0) privileged or (1) nonprivileged

Bits 4-7 are the task .ask and are interpreted:

X External interruptions
A Asynchronous interruptions
T Timer interruptions
I Synchronous interruptions

ILC Instruction length code
CC Condition code

Bits 12-15 are interpreted:

FO Pixed point overflow mask
DO Deciaal overflow mask
EU Exponential overflow mask
SP Loss of significance mask

For all of the above masks, one peraits an interruption on the
occurrence of the condition and zero inhibits the interruption.

Figure 3. Virtual program status word

Interruption Storage Area

A task is interrupted by a virtual, or task, interruption. When this
occurs, the information constituting the current VPSW is stored in a
predetermined area of virtual storage (depending on the type of inter­
ruption), becoaing the old VPSW. A new VPSi, obtained fro. another
location in that area, becomes the current VPSi. The area, called the
interruption storage area (ISA) is analogous to the prefixed storage ar­
ea (PSA) in the system's real main storage. The interruption storage
area is bytes 0 through 8190 of virtual storage.

There are eight different virtual, or task, interruptions: program,
supervisor call, external, asynchronous I/O, task-timer, synchronous I/O
recoverable data set paging error, and VSS. The occurrence of four of
these interruptions is controlled by the task mask in the VPSW, analo­
gous to the system mask in the PSW. If the mask bit corresponding to a
given interruption type is 0, or if the interruption storage area is
locked (ISALCK set by the ITI macro instruction), interruptions for that
type are saved by the resident supervisor, until the mask bit is set to
1.

Each task has an instruction set consisting of alIOS problea state
instructions and a number of supervisor call instructions. The supervi­
sor call instructions are further divided into SVcs that can be issued
only by privileged programs, SYCs that can be issued only by privileged
or nonprivileged programs depending on the authority code of the pro­
grammer. The privileged SVCs are analogous to OS supervisor state in­
structions. Each of these SVCs is described in detail later.

The current VPSW, contained in field ISACVP, includes the address of
the instruction following the last instruction executed prior to the in-

10

terruption. While the interruption is being serviced or is waiting to
be serviced, this address is significant in that it points to the in­
struction at which execution is to be resumed. Once execution is
resumed, the current VPSW continues to point to the saae instruction;
the address is not incremented as each instruction is executed and,
therefore, loses its significance.

STORAGE PROTECTION

Although the virtual prograa status word doesn't contain a key,
storage protection is in effect for virtual prograas. The resident su­
pervisor assigns storage keys to virtual prograas when it creates exter­
nal page table entries for thea; it sets keys in the sain storage pages
it allocates (see the ADDPG and ADSPG macro instruction descriptions).
Each main storage page is assigned a storage protection key; Fignre 4
illustrates these assignments.

I i i

'Type of Page I Key ,Fetch Protection Bit
I I
I Nonprivileged read/Vrite I 1 off
'Nonprivi1eged read-only I 2 off
'Privileged , 2 on
'Engaged in paging operation I 3 off
,Storage obtained from supervisor' 4 off , core allocation ,
IResident supervisor , 5 on
•
Pigure 4. ftain storage page key assignments

The ability of a CPO or a data channel to have access to main storage
is controlled by the protection key contained in storage and the privi­
lege key used by the CPO (PSW) or data channel (CAW). The resident su­
pervisor assigns keys to prograas and channel prograas before starting
them; these assignments are shown in Figure 5.

I
I Category
I
,Processing Unit Programs
I Honprivi1eged
I Privileged
I Resident supervisor
I
,Data Channel Prograas
I Honprivileged I/O
I Privileged I/O
I Paging I/O
, IORCB I/O
I Sense data I/O
I

, , , , ,
I , ,
I ,
I
I

Key

1
o
o

1
2
3
4
4

Figure 5. CPU and data channel key assignments

Figure 6 shows the significance of various combinations of PSW and
storage keys and the programs to which they may be assigned. Those
within the heavy line designate nonprivi1eged user key coabinations.
The other combinations are available only to privileged systea prograas.
Storage protect key 2P is the saae as key 2 but with fetch protection
added.

section 2: System Prograas 11

I

I ,
0 I

PSW I
I

~ey I ,
1 ,

I
•

Storage ~ey

A

1 2

•
I , Read

Read-Write I write
I ,
I , Read

Read-Write , Only
I
•

--------------~v~------------------

Bonprivileged
User

•
I
I ,
I
I
I
I
I
I
•

Figure 6. PSW and storage protection keys

PRIVILEGED PROGRlftS

2P

Read
write

,
I
I Privileged
, execution
I ,
I
I Bonprivileged
I execution
I ,

1 privileged prograa is a virtual progra. recognized by having its
virtual progra. status word (TPSW) privilege bit (bit 0) set to 0, ana­
logous to the privileged state bit (bit lS) in the real PSW. 1 privi­
leged progra. differs fro. a nonprivileged user progra. in two principal
ways: it operates with a PSW protection key of 0 and it .ay issue .ost
Supervisor Call instructions. 1 privileged progra. can access all vir­
tual storage in its own task; it cannot access private virtual storage
in other tasks.

Privileged progra.s exist to provide services to nonprivileged pro­
graas. Privileged service routines that can be called by users are
"connected" to the task .onitor through a table, called the ERTER table
(see the EBTER .acro instruction); other privileged service routines are
closed subroutines used only by privileged callers.

ROB PRIVILEGED PROGRlftS

1 nonprivileged progra. operates in a task. The storage of this task
contains all progra.s that .ake up IV! and any other progra.s that have
been brought into virtual storage by the dyna.ic loader. 1 nonprivi­
leged syste. progra. aay be part of IV! (the asse.bler is an exa.ple of
a nonprivileged initial virtual storage progra.) •

1 non privileged progra •• ay use any OS proble. state instruction and
any nonprivileged Supervisor Call instruction. Bonprivileged systea
prograas .ay not, in general, use the privileged Supervisor Call in­
structions. The resident supervisor uses the task status index to de­
teraine whether a prograa can issue privileged SVCs.

Since a nuaber of SVC codes are used by the resident supervisor, a
kind of substitute SVC, called EITER, is used for .ost transfers of con­
trol fro. nonprivileged to privileged prograas. 1 nonprivileged progra.
can't transfer control to a privileged progra. with a branch instruction
since all privileged progra.s are fetch protected fro. all nonprivileged
progra.s ~oth systea and user). EBTER codes, analogous to STC codes,
are used by the task aonitor to deter.ine where to transfer control.

12

SEC~ION 3: SYSTEft PROGRAMMING CONYENTIONS

The programming conventions that system programmers must observe when
coding modules that are to be made a part of the resident or nonresident
portion of ~SS control programs are discussed below.

RESIDE~ (SUPERYISOR) PROGRAMS

CONYENTIONS FOR NAftING OBJECT MODULES

All TSS programs have standardized object module names, control sec­
tion names, and entry point names. When an object module becomes part
of the system, any reference to it .ust use the module name, an entry
point name, or a control section name. TSS object module names consist
of five characters; those TSS modules that are part of the resident su­
pervisor have naaes with the form:

CEAxx

where xx are alphameric characters that identify the module within the
resident supervisor. All TSS object module names begin with C; the
characters EA identify resident supervisor modules.

All entry point and control section names begin with the module name,
like this:

CEAxxn

where n is a character that identifies the entry point or control sec­
tion within the object module. Note that special characters are not
used in TSS names.

As an example, the pathfinder module in the resident supervisor has
the name CEAlS; its entry points are CEAASP, CEAASR, and CEAASS.

There are other sets of modules that are in the resident part or TSS.
These components and their naaing conventions are:

Resident BTAM
Resident ass
Machine check recovery

KODOLE DESIGN COHSIDERATIONS

CEDxx
CEHxx
CKAxx

Assume that you have a change to TSS in mind, and that you clearly
understand the logic of the change you wish to make. How do you con­
struct the program? Resident programs are different from nonresident
programs in one major way: Resident progra*s do not contain prototype
control sections (PSECTs). The purpose of a prototype control section
is to contain any part of a program that changes during relocation or
execution. As pointed out previously, resident programs are never relo­
cated or never change addresses during execution. The address constants
used by resident prograas are resolved during startup; they will not be
changed after the system is initialized. The only items in the resident
supervisor that can change are the variables used by resident programs.
These variahles are kept in registers, system control blocks, vr working
storage obtained fro. the supervisor core (main storage) allocation sub­
routine~ Your progra~ must be designed to use one of these areas for
holding variable information; which one you use depends on what you are

Section 3: System Programming conventions 13

attempting to do. The key test of a resident prograa's correct con­
struction is that it be simultaneously executable by aultiple processing
units. If the registers are used as working storage, multiple proces­
sors may simultaneously execute the program, since each processor supp­
lies its own registers. If a system control block is used, the lock
byte controls the modification of variable inforaation. If storage ob­
tained fro. the supervisor core allocation subroutine is used, each
allocation of storage is kept separate from the others to ensure the
protection of variables.

Rodule structure

Like any other object module, a resident module consists of a prograa
module dictionary (PRD) and text. Usually, a resident prograa contains
a single read-only, nonprototype control section. 1 resident program
may contain address constants to be coaputed and placed into the text by
Startup. The read-only control sections do not change; they are never
aodified during program execution.

In addition to read-only control sections, the resident supervisor
contains tables or system control blocks. 1 systea control block is
data in main storage, organized in some way known to the programs that
use it. The system table, CBBSYS, is an example of a systea control
block used by a nuaber of resident prograas; it contains such inforaa­
tion as paraaeters used for task aigration, limits of task size and nua­
ber, and other values affecting the overall operation of the systea.

If there is any possibility that one processor can change a system
control block at the same time another processor is working on it, the
control block must be protected, or interlocked, with a lock byte. 1
lock byte is a single byte used to control access to variable inforaa­
tion. The test and set instruction is used to find out whether a lock
byte is on or off (and also to turn it on). Por example:

TEST TS
BO

LOCK
WAIT

tests a lock byte called LOCK; if LOCK is all l's, control is trans­
ferred to WAIT. A lock byte is set (or on) if it is all l's (actually,
only the high-order bit is tested); it is reset (or off) ~f it is all
O·s.

since the correct loc~ing and unlocking of TSS lock bytes is critical
to the running of a multi-cpu systea, TSS prograas ahould use two
macros, GETLOCK and PREELOCK, to perfora these functions. These aacros
generate code, provide some tracing data for debugging and generate sys­
tem errors in a standard way.

Some programs do not need to
tines of prograas that do test.
ly tested (and do not contain a
the entire queue is interlocked

test lock bytes, since they are subrou­
Some control blocks are not individual­

lock byte) but are gathered into queues;
instead of its meabers.

A lock byte is reset when the prograa that set it has finished using
the protected information. In most cases a second processing unit will
only wait a certain length of time for a lock byte to be reset; if the
lock byte is not reset within that time period, a minor system error is
recognized. When control is returned to the point of interruption by
the error routine, the protected data becoaes available.

In addition to read-only control sections and interlocked system con­
trol blocks, the resident supervisor contains a number of pages (or a
"pool") of main storage that may be used, as required, by resident pro­
grams. The program controlling the use of this storage pool is the su­
pervisor core allocation module. Since the supervisor core allocation

14

module itself cannot require the allocation of storage space to free
working registers, it saves the registers in a special area in the PSA.

Relatively few system control blocks continuously require main
storage space; most have transient storage needs. Resident programs
usually obtain storage space for transient data fro. the supervisor core
allocation module. When the need for this data no longer exists, the
space is returned to the snpervisor core release SUbroutine; this dynam­
ic allocation of main storage space ensnres that the resident supervisor
doesn't tie up more storage space than it actually needs. ~ost tran­
sient data areas cannot be used simultaneously by separate processing
units; these control blocks are not interlocked. A few transient data
areas, however, can be used by separate processing units; these are
interlocked.

Some data areas are known only to one processing unit because one of
its registers points to the data area; other data areas are known to all
processing units because the address of the data area is kept in co •• on
main storage.

Getting Resident Working Space

Working space is not assembled into resident programs for two rea­
sons: (1) it is inefficient to assemble space that may not be used into
a program, and (2) the resident program would have to schedule the use
of that space if the program were to be simultaneously executed by
separate processing units.

Resident programs use four 1Il0duiesto obtain working space for their
execution. These routines are supervisor core (main storage) allocation
(CEAL01), supervisor core release (CEAL02), user core allocation
(CEANB), and user core release (CEAL04). User main storage is allocated
from one pool and supervisor main storage frOB another, but the supervi­
sor pool may be replenished frOB the storage released by user core re­
lease. The supervisor core allocation rontine satisfies requests for
resident working space such as control blocks like the generalized queue
entry (GQE) and the task status index (TSI). The user core allocation
routine satisfies requests for storage for extended task status indexes
(XTSI) and for nonresident program pages.

The supervisor core allocation subrontine is a special program, since
it has private space in the prefixed storage area (PS!), which it uses
to store the contents of the general registers. It must nse this area
since there is no subroutine that it can call to get working space.
Programs that call the supervisor core allocation subroutine must save
registers 0, 1, 14, and 15 before transferring con~rol. They canlt do
this without working space, though, so four words in the prefixed area
(PSASCU) are set aside for programs calling the supervisor core alloca­
tion subrontine. This lets a called program immediately become a call­
ing prograa without losing the contents of any of the general registers
that were supplied to it. Since a program calling supervisor core allo­
cation mnst use registers 0, 1, 14, and 15 to transfer control (and
parameters), it would lose the original contents of these registers if
it had no place to save them. A typical nse of the supervisor core
allocation subroutine might look like this:

section 3: System Prograllming Conventions 15

SUBR USIIlG *,15 REGISTER 15 CONTAINS BASE
COpy CHAPSA GET THE DSECT
USING CHAPSA ,0 PSA DSECT NEEDS NO BASE
CSECT REESTABLISH CSECT
STft 14,1,PSASCU SAVE REGS 0, 1, 14, and 15 III PSA
LA 0,128 REQUEST 128 BYTES
SR 1,1 OPTIONS ALL ZERO
L 15,ADCON POINTER TO SUPVR CORE ALLOC
BASR 14,15 TRANSFER CONTROL

RTRN LR 8,1 SAVE ADDRESS
Lft 14,1,PSASCU RESTORE REGS 14, 15, 0, AND 1
•
•
•

ADCO. DC V (CEAL01) ADDR SUPVR CORE ALLOCATIOll ROUTIlfE

In this exaaple, vhen supervisor core allocation returns control,
register 1 points to a 128-byte area of main storage that can be used
for any further transient storage needs this program may have. The su­
pervisor core allocation subroutine viII not disturb the register con­
tents saved by this program in PSASCU since supervisor core allocation
has its own save area in the PSA (PSACAS).

To give this space back to the supervisor core release module, the
program might be coded like this:

DONE STM
LR
LA
L
BASR

RTRlf Lft
BR

ADClI2 DC

114,1,PSASCU
1,8
0,128
15,ADCN2
114,15
14,1,PSASCU
14
V (CEAL02)

SAVE REGS
ADDRESS OF SPACE WE'RE RETURNIlfG
GIVE BACK 128 BYTES
POINTER TO SUPVR CORE RETR.
TRANSFER CORTROL
RESTORE REGS
RETURN TO ORIGINAL CALLER
ADDR SUPVR CORE RELEASE

This viII return for reallocation the 128 bytes obtained in the previous
example.

Tvo macros, GETCORE and RELCORE, are used in TSS to standardize and
simplify these linkages.

For transient vork areas that viII not be needed after the module
returns to the prograa that called it, e.g., register save areas, aes­
sage areas, parameters for a subroutine, etc .. , a macro, GETWORK, is to
be used. This macro allocates space from a preallocated stack. It uses
far less instructions than calling supervisor core allocation and the
space does not have to be released.

Secondary Entry Points

Resident modules vith more than one entry point are designed so that
their base register alvays points to the primary entry point, even if
control of the aodules has been transferred to a secondary entry point.
Sometimes it's done like this:

16

BASE
EBTRYl

EBTRY2

ADCO]i

EQU
USI1IG
•
•
•
BA5R
USDIG
L
USIBG
•
•
•
DC

System Control Blocks

15
*,B15E

BASE"O
*,BASE
BASE"ADC01i
EllTRY1"BASE

A (EllTRY 1)

The resident supervisor consists of three parts: read-only control
sections, system control blocks, and a pool of dynaaically allocatable
main storage. The resident supervisor uses the storage pool to create
transient system control blocks such as the generalized queue entry
(GOE) and the page control block (PCB). During their "lifetiaes,," tran­
sient control blocks are resident in main storage. Transient control
blocks exist only as long as they are needed; this may be a few aillise­
conds or a few minut-.es. When they are no longer needed, the main
storage space they occupy is returned for reallocation; they are not
paged out to auxiliary storage.

The resident supervisor also creates nonresident systea control
blocks. Bonresident system control blocks exist on auxiliary storage
and are brought into main storage only when needed. They exist on some
storage device for a relatively long tiae, for example" for an entire
terminal session. Their tiae in aain storage may represent only a saall
fraction of their lifetiae in the systea.

system Control Block Naaes

A systea control block usually requires two names: the naae of the
du.my section (DSECT) that describes its format" and the symbolic
address that points to the inforaation described by the du •• y section.
All TSS programs, resident and nonresident" use the saae rules to naae
system control blocks. A duaay section name looks like this:

CHAux

The characters xxx identify the du.ay section. All fields used with­
in the duamy section look like this:

xxxfff

The characters xxx are the same as the last three characters of the
du.my section name. The characters fff are any three characters that
identify the field within the dumay section. For example, these are the
assembler stateaents for a typical dum.y section:

CHAABC DSECT CONTROL BLOCK lIAIIE
ABCPCA DS 1P FIELD lUIIE
ABCRJG DS 411' FIELD llAI!E
ABCXYZ DS 3C FIELD BAilE
ABCPLG EQU ABCXYZ PLAG lUBE
ABCFLGI! EQU X'SO' FLAG I!A5K

]iote that the field name, ABCFLG" is the name of a byte containing a
flag bit. The field ABCPLGB can be used as a aask byte in a test under

section 3: system Programming Conventions 17

aask instruction CTB) to test the condition of the flag. Mask naaes are
of the form:

xxxiff!

where xxxfff is the name of the dummy section field to which the mask is
applied. For more information on using a dummy section, see "Du.my Sec­
tions" below.

The dummy section is, of course, only a description of information:
it does not supply anything more than the format of the inforaation it
describes. Symbolic addresses that point to non-transient areas of
storage described by dummy sections are named like this:

CHBxxx

where the characters xxx are the same as the last three characters of
the dummy section name. For exaaple:

DATA DC V (CHBABq

DATA contains an address constant pointing to an area of storage
organized as described by the duamy section CHAABC.

Remember, CHAxxx says what the information looks like; ~xxx says
where the information is located. The DSECT can be used for both non­
transient system control blocks and for transient areas (which cannot
use CHBxxx). Symbols generated by .acro instructions always begin with
CHD. For example:

CHD103 !NOTE 3,'ERROR'

might be found in a macro definition.

Dummy Sections

The dummy section (DSECT) is used extensively throughout TSS so that
parts of the system can refer to coa.only used data items by syabolic
names. You can refer to a field in a system control block by the naae
assigned to that field in the dummy section; this frees you fro. having
to use the field's numeric location. (Actually, the dummy section supp­
lies a number of symbolic field names, lengths, and relative positions
which the assembler translates into numeric displacements.) You needn't
worry about the specific physical structure of the system control block
to which you are referring if you use a DSECT to describe the control
block. All you need be concerned with is the field structure (bit,
byte, halfword, etc.). You don't care where the field is located within
the system control block. Thus, if the field position changes, but the
field length, boundary alignment, and the meaning of its contents don·t
change, your program will still run properly after it is reasseabled.
Reassembly is necessary since displacement values may have changed as a
result of using the new du.my section.

In TSS, the du.my section is aore than a prograamer convenience.
Dummy sections for system control blocks, obtained from the asseabler
copy/macro library, ensure that all programs using the saae system con­
trol block use the identical for.at. The set of TSS du •• y sections can
be viewed as a central, current description of a11 system control
blocks.

A typical TSS dummy section is illustrated in Figure 8 under "Linkage
ConVention," later in this section. Several conventions apply to duamy
sections. These conventions minimize the need for redesigning programs
if the dummy sections they use are changed. Dummy section fields that
are integral multiples of bytes in length are referred to in a program

18

by using the name of the field. Fields that are less than one byte long
are referred to by using a mask; we must do this because the central
processing unit cannot directly address a field shorter than a byte.
The name of the mask associated with a field that is less than one byte
long is obtained by adding the character B to the field naae. If we
wanted to determine whether the field VPSAI were a 1, we might write:

TB
BZ

VPSAI,VPSAIB
FIELDOFP

TEST UNDER BASK
BRANCH IF ZERO

The programmer doesn't have to know where the field VPSAI is located
within the system control block or what bit pattern defines the mask
VPSAIB. This inforaation is supplied by the dummy section which he
incorporates into his program from the assembler copy/macro library.
The field he is testing with the Test Under Bask (TB) instruction need
not be restricted to a single bit. It can be any combination of up to
eight bits, as long as all the bits fall within one byte. The condi­
tional branch instruction can be used to determine if the bits he is
testing are all l's, all O's, or mixed.

For bit fields, the field naae is always the name of the byte in
which the bits appear. Since a single byte can have up to 256 different
conbinations of bits, a single byte could have up to 256 different bit
fields. We frequently find, therefore, that the names of different bit
fields are synonomous; that is, they point to the same byte. The bit
mask corresponding to the field name must be used to extract the proper
bits.

The duamy section itself does not take up program storage space; it
is used exclusively to describe a storage area to which it is applied.
To properly use a dummy section, first load a register with an address
constant pointing to a storage area containing information described by
the dummy section. Then issue a USIBG statement to tell the assembler
that the corresponding dummy section format is to be applied to the
storage area pointed to by the register given in the USING statement.
It looks like this:

L
USING

5,ADCON
CHAVPS,5

assuming that ADCON has been defined as:

ADCON DC V (WORKAREA)

This would apply the format given by CHAVPS to the storage area be­
ginning at the symbolic location WORKAREA.

You can define your own du.my sections and use them as you see fit.
In most cases, though, you will get the dum.y section fro. the assembler
copy/macro library (see section 4, "Generating and ftaintaining TSS") by
issuing a COpy statement with the name of the dum.y section as the
operand. Here is an example:

COpy CHAVPS

The dummy section on the assembler copy macro-library is included in
your prograa at the point of the COpy statement. This enables you to
symbolically refer to the system control block CHAVPS (see System Con­
trol Blocks) •

EVABLIBG ABD DISABLING IBTERRUPTIOVS

Because they operate in the supervisor state, resident programs can
enable and disable interruptions by setting and resetting the system

section 3: system programming conventions 19

aask or by altering the contents of extended-control registers. The
instruction

S5B =X'OO'

sets bits 0 through 7 of the extended prograa status word to zero. The
processing unit affected interprets these bits as: prograa event reco­
rding off, address translator off, and I/O and external interruptions
disabled. To restore interruptions,

5Sft =X'03'

is interpreted by the processor as: prograa event recording off,
address translator off, and I/O and external interruptions enabled. If
you wish to aodify the extended-control registers, the instructions:

STCTL
L
H
ST
LCTL

2,2,SAVB
6,SAVE
6,=X'BPPPPFFF'
6,SCRATCB
2,2,SCRATCH

save the contents of control register 2 and disable interruptions froa
channell (as viewed by the processing unit issuing the LeTt). The
instruction:

LCTL 2,2,SAVE

restores the original contents of control register 2. The work areas
for SAVE and SCRATCH would be obtained using the supervisor core alloca­
tion subroutine.

SUPERVISOR LIHKAGE COHVBHTIOHS

A resident prograa links to subroutines by using (1) a v-type address
constant or (2) an A-type address constant and an BXTRH stateaent.
Startup resolves all syabolic references aaong resident prograas, and
supp1ies the correct va1ues for the address constants. Resident pro­
grams never use R-type address constants (they do not contain prototype
control sections). One resident prograa transfers contr01 to another by
a Branch-and-Store ~ASR) instruction. Any understanding between the
calling and the called prograas concerning the contents of the general
registers is arbitrary and depends on the particular prograas involved.
The calling prograa aust know what register the ca1led prograa is using
as an entry base register. To transfer control, the calling prograa
loads the address of the called prograa's entry point into the called
prograa's entry base register, like this:

L BASE,=V(entry point naae)

Then the calling prograa branches to that entry point:

BASR 14,BASE

The called prograa expects its entry base register to contain the
address of its entry point. The called prograa usually begins like
this:

USING *,BASB

to tell the asse.bler that register BASB contains the address of the
called prograa's entry point when control is transferred.

20

To standardize program linkage, TSS resident supervisor uses a Commu­
nication Vector Tahle (eVT). The CVT contains all the entry points for
TSS supervisor modules. A macro, RCALL, will load the entry point
address in register 15 and link to the called program with a BASR 14,15.

To standardize linkages and provide some traceback information, two
macros, SAVER and :aETRNR, are used. These are used in the same area as
that used by the G:ETWORK macro.

Programm ing Conven·tion Comments

There is no requirement for resident programs to use particular regi­
sters as base regi;sters, return registers, or parameter registers; how­
ever, almost all r,asident programs use these registers:

Register 0 -- parameter register
Reg ister 1 -- parameter register or ad.dress of parameter list
Register 14 return address of calling program
Register 15 -- entry point of program being called

Because of these r'agister assignments, most programs being called begin
with:

USING *,15
and end with:

B:~ 14
or the equivalent.

A num ber of resident programs, such as SVC processing routines, re­
turn con trol to a .location pointed to by a V-type address constant
instead of branchilllg to the address contained in register 14. Por
example:

THRU L
BR

A DeN 3 DC

14,ADCN3
14
V (CEAHND)

GET RETURN ADDRESS
~RANSPER CONTROL
AD DR SVC Q PROC RETURN

is the way that an SVC processing routine can transfer control back to
the supervisor call queue processor. This is done because most SVC pro­
cessors require tW!) COIUlon functions to be pettoned, and this portion
of the SVC queue processor proy-ides them with the functions.

NONRESIDENT PROGRAI~S

PRIVILEGED PROGRAM CONVENTIONS

Naming Cony-entions

As discussed in the section about naming resident supervisor pro­
grams, all TSS modllie names begin with the letter C.. All privileged
module names have the fora:

CZxxx

where the characters xxx identify all module names beginning with CZ.
All control section names and entry point names of nonresident privi­
leged modules add a character to the end of the module nam.e to forlll a
unique entry point or control section nams. This is analogous to the
way entry point and control section names are formed for resident super­
rvisor modules. For example, an entry point of privileged module CZCJT
might be CZCJTlI.

Dummy sections for system control blocks are used by nonresident pri­
vileged programs in the same way that they are used by resident supervi-

Section 3: System Programming conventions 21

sor prograas. All system du •• y section names begin with CBA; the loca­
tion of the first byte of data described by a system dummy section is
named by a label beginning with CBB. CBAXYZ is a dummy section describ­
ing data located at a virtual storage address equivalent to CHBXYZ.

The dynamic loader treats all external symbols beginning with the
characters SYS as system names. (A control section without either the
PBVLGD or SYSTEM attribute cannot define system names as external sym­
bols.) (See Figure 41 for the effect of authority codes in dynamic
loader processing.)

writing Privileged System Programs

virtual storage (that is, nonresident) system programs are divided
into two classes: programs that make up initial virtual storage and
programs that are dynamically loaded. Initial virtual storage (IV!) is
composed of all those system programs (both privileged and nonprivi­
leged) needed to dynamically load a program and those system routines
that are frequently used by an installation. Privileged programs that
are not part of IVft are brought into virtual storage, as required, by
the dynamic loader and the miscellanous programs it uses foe assistance.

In writing a system program, you must know whether a program to be
called is in IVM or not. Any program in IV! should not be explicitly
called since this causes unnecessary system processing.

The ase of the E option in the CALL requires action by the dynamic
loader; only programs outside of IVH may use CALL with the E option.

Almost all TSS programs can be shared by several users. When a pro­
gram is shareable, or public, it must be put together in a special vay_
Each public program is thought of as consisting of two parts.

One part is made up of all the instructions and data in the program
that never change because of relocation in virtual storage by the dynam­
ic loader or because of execution by a processing unit (variables).
This part of a public program is constant; it never changes under any
circumstances.

The second part of a public program consists of those parts that may
change because of relocation or execution: the program·s address con­
stants and variables.

The parts of a public program that may change -- the address con­
stants and variables -- are collected in a prototype control section
(PSECT). All other control sections of a public program should be given
the attribute READOBLY, since they can never be modified. Exceptions
are the tables, such as the symbolic device allocation table (SDAT),
that are protected with lock bytes and are shared, nonread-only control
sections. The division of a public program into prototype control sec­
tions and read-only control sections allows a nuaber of different tasks
to share the same program without destroying one another's results.
This is accomplished by giving each task that is sharing the public pro­
gram its own private copy of the prototype control section, while allow­
ing each task to share a single copy of the read-only control sections.
In this way, each task has a private copy of those parts of the public
program that may change, thus preventing tasks from destroying one ano­
ther's variables and allOYing each task to have its own address
constants.

You should take care not to confuse intertask reenterability with
intratask reenterability. The use of prototype and read-only control
sections permits programs to be shared among many different tasks; this
is intertask reenterability. The use of a prototype control section for
storing variables does not automatically guarantee that, within a single

22

i-,
I

task, a proqram c~n be reentered. All programs are freely interruptable
by any real (not l'irtual) interruption. When such an interruption
occurs, before cotttrol is returned to the interrupted program in virtual
storaqe, the resiclent supervisor checks whether there are any pending
task-interruptions. If there are pending task-interruptions, if the
corresponding task.-mask bit in the virtual program status word is set to
1 (enabling task-i.nterruptions) and if the ISA lock byte is zero, con­
trol is returned IltOt to the interrupted proqraa, but to the task 1loni­
tor. The task mon.itor, after some housekeeping, transfers control to
the appropriate ta.sk-interruption-handlinq routine. In some instances,
the interruption handler lIay have to use the interrupted program as a
subroutine. When this happens, the interrupted program is beinq reen­
tered. It is thus: task-interruption sensitive 'and it lIust be con­
structed to allow for this sensitivity. The prototype control section
is no help in peraittinq intratask proqram reenterability since, within
this single task, there is only one prototype control section for each
public program and only one copy of variables and address constants can
be preserved in it.

Although address constants change as a result of program relocation
and are placed in a public program's prototype control section, and may
assume different values from task to task, they are not considered
variables within a task. Once supplied by the dynamic loader (or by
startup for IVK), an address constant within a given prototype control
section will not change.

Within a single task, we are concerned about those parts of a program
(public or otherwise) that change as a result of that program's execu­
tion by a processinq unit. If a program that stores variables in fixed
areas of virtual storage can be called by a nuaber of other prograas, it
aust protect itself against task-interruptions. If a program aust be
interruptable ~y task-interruptions), it must use GETKAIW (or somethinq
equivalent) to dynamically allocate virtual storage and thus prevent the
accidental destruction of variables. GET and PUT are examples of pro­
grams that can be in use by one program, interrupted, and reentered for
use by another program within the sa.e task.

If, in a privileged program, you want to disable task-interruptions
durinq some processinq, you can use the maero instruction ITI (inhibit
task interruptions',; to enable task-interruptions, the macro instruction
PTI (permit task interrupts) may be used (see Appendix A). Por example:

LOCK ITI DISABLE TASK INTERRUPTIOHS
KISCELLAREOUS INTERRUPTION-SENSITIVE CODING

PTI ENABLE TASK IRTERRUPTIONS

shows how task-int.~rruption miqht be disabled and restored in a program.

Excluding du.my sections, which are not true control sections (see
"Du.my Sections"), you may have tvo kinds of control sections in your
proqram: prototype (PSECT) and nonprototype (CSECT). Prom the stand­
point of the dynall:Lc l.oader, there is very little difference between a
PSECT without qualifying attributes and a CSEeT without qualifying
attributes. Throughout TSS, however, PSECTs are used in public programs
to contain address constants and variables; you should think of proto­
type control sections as the private part of shared program modules.

Be careful not 1:0 confuse the attributes PRIVLGD and SYSTEK. PRIVLGD
includes SYSTE!!; el'ery privileged program is a system prograa as far as
the dynamic loader is concerned. SYSTEK does not necessarily include
PRVLGD, however; e,rery system program is not privileqed.

Section 3: System Prograaming Conventions 23

You might code a sample privileged program like this:

TITLE 'SAftPLE PRIVILEGED PROGRAft'
DCLASS PRIYILEGED THIS ALLOWS PBIV

BACRO EXPABSIORS
COpy CHAISA GET POR!UT 01"

ISA
CZABP PSECT PRYLGD PUT ALL THE

ADCOBS AWD
YARIABLES HERE

EXTIU. CHBXYZ LOCATIOW OF
TABLE XYZ'S DATA

CACABC CSECT BEADOWLY,PUBLIC,PBYLGD PURE PROCEDURE
SEC'fIOW ABYTHIBG
HERE BUT ADCOBS
ABD VARIABLES

END CZABC

KOKPRIVILEGED PROGRAMS

There isn't a great deal of difference between a privileged and a
nonprivileged systea program; alaost everything written above about pri­
vileged system programs applies to nonprivileged system programs. The
most significant difference between them is that nonprivileged system
programs operate with an extended program status vord protection key of
1; they cannot read or write privileged control sections.

PROGRAM DESIGN COVSIDERATIOBS

In thinking about nonprivileged programs, don't confuse the privilege
of a prograa with the authority of the prograamer who directed that the
program be loaded. Despite any asse.bler language declarations, any
prograa you write is implicitly a system program as long as you log on
using your user ID with a P or 0 authority code. Remember that all sec­
tions you load using your P or 0 authority code are private; the dynamic
loader ignores the PUBLIC attribute. Only a task having a 0 authority
code can load a control section having the PUBLIC attribute, and then
only if the module containing the control section is in a shared data
set. (A module requiring more than 256 shared pages will not be loaded
as public, however; the module viII be loaded with private pages.)

A fence-sitter is a system module that assumes the privilege of the
calling module. such a module should not be designed to issue privi­
leged SVCs based on the authority code of the user. If this vere done,
and a program.er with a user authority code (0) attempted to use the
fence-sitter, he wouldn't succeed. To be on the safe side, when you
write system programs, you should alvays give the control sections the
attributes they need to be able to run; do not rely on your authority
code unless all intended users viII have an equivalent authority code.

Bonprivileged system programs accessible to user programs have module
names that begin with SYS. Analogous to the resident supervisor and
privileged programs, control section and entry point names are formed by
adding a character to the end of the module name. For instance, SYSABC
is an entry point in the nonprivileged system prograa SYSAB. Hames be­
ginning with SYS can be freely referred to by all programs, privileged
or otherwise; SYS names can only be defined by control sections with the
SYSTEB attribute (see Appendix D for further details) •

Vonprivileged system prograas not accessible to user prograas gener­
ally use symbols beginning vith CE.

24

LIIKlGE COBYEITIOIS

The purpose of a linkage convention is to standardize the aethod of
transferring inforaation and control froa one prograa (the calling pro­
gram) to another (the called program). Standardization allows the use
of system macro instructions for the generation of prograas. TSS uses a
nuaber of linkage conventions designed to fit a variety of situations
while atteapting to keep the conventions as similar as possible.

TSS linkage con<ventions require the calling prograa to supply a save
area for use by th'9 called prograa. A save area is an area of virtual
storage, accessibl'9 to the called prograa, in which it can save the con­
tents of registers, if necessary. Also, a save area contains forward
and backward point,ars to other save areas, forming a chain. If one pro­
graa calls a second, and the second program calls a third, the pointers
relate the respect:i.ve save areas. fOhus, if you know where one save area
is located, you call find the others. The format of the save area used
in TSS is shown in Pigure 7.

The four basic linkage conventions followed by TSS programs residing
in virtual storage are sum.arized in pigure 8. Bote that type-l has a
variation {type 1ft}, making five ways to link proqraas. These are the
only linkaqe convelltions in use among 'Virtual storage program in TSS.
All TSS programs al:-e constructed to recei'Ve or transfer control, using
one of these linka~Je types. To add to or modify TSS programs you must
use these linkage Gon'Ventions.

In general, TSS system programs use macro instructions for linking
programs. Some ma(:ro instructions generate more than one type of pro­
gram linkage; for oxaaple, GETftlI. can generate either a type-lor a
type-2 linkage.

The called prograa frequently does not know which linkage type was
used to tnn sfer c()ntrol to it; usually, it does not need to know.
There are exceptiOIIS which are covered later. The linkage type must be
known by the calliIlq proqrams, since it is the calling prograa that sup­
plies the linkage instructions, sa'Ve area, and register contents.

Section 3: System Programming Conventions 25

i
,CHASAY
1
I
I
I SAYLEI
I
,SAYBPT
1*
I
,SAVPPT
1*
I
,SAVR14
I
,SAVR15
r
I SAYRO ,
,SAVRl
I
ISAYR2 ,
ISAYR3
I
,SAYR4
I
tSAYR5 ,
ISAVR6 ,
ISAYR1
I
tSAYR8 ,
ISAYR9
I
,SAVR10
I
ISAVR11 ,
ISAVR12 ,
fSAYPCT
1*
t*
1*
I

i
,DSECT
I
IDS

DC

DS

DS

DS

DS

DS
I
IDS
I
IDS
t
IDS
I
IDS
I
IDS
I
IDS ,
IDS
I
IDS
I
IDS
I
IDS
I
IDS
I
IDS
I
tDS
I
I
J

OP

lP

lP

lP

lP

lP ,
,'P
I
flP
I
11P
I
,11"
I
11F ,
11P ,
11P
I
11F ,
11P
I
,1P
I
,1F
I
IlP
t
11P
I
t ,

FORKAT OP STARDARD 19-WORD SAVE AREA

ALIGN OR WORD BOURDARY

LEBGTH OP SAVE AREA ABD APPEBDAGES II BYTES

BACKWARD POIRTER. ADDRESS OP SAVE AREA, IF ARY,
USED BY CALLIHG PROGRA!

j ,
I
I
r ,
I
I
I
I

PORWARD POIRTER. ADDRESS OP SAVE AREA, IP ARY, ,
SUPPLIED BY USER OP THIS AREA TO PROGRAKS IT CALLS ,

USED BY CALLED PROGRAK TO SAVE GPR 14

USED BY CALLED PROGRAR TO SAVE GPR 15

USED BY CALLED PROGRA! TO SAVE GPR 0

USED BY CALLED PROGRA! TO SATE GPR 1

USED BY CALLED PROGRA! TO SAVE GPR 2

USED BY CALLED PROGRAK TO SAVE GPR 3

USED BY CALLED PROGRA! TO SAVE GPR 4

USED BY CALLED PROGRA! TO SAVE GPR 5

USED BY CALLED PROGRA! TO SAVE GPR 6

USED BY CALLED PROGRA! TO SATE GPR 7

USED BY CALLED PROGRA! TO SAVE GPR 8

USED BY CALLED PROGRAK TO SAVE GPR 9

USED BY CALLED PROGRA! TO SAVE GPR 10

USED BY CALLED PROGRA! TO SAVE GPR 11

USED BY CALLED PROGRA! TO SAVE GPR 12

R(ENTRY POIKT) THIS IS SET BY THE CALLING
PROGRAft BEPORE TRARSPERRIBG COBTROL ABD
POIRTS TO THE CORTROL SECTIOH IV WHICH THE
CALLED SYftBOL IS DEPIBED AS AB EBTRY POIBT

t
I
1
I
I ,
I
I ,
I ,
I , , ,
I , , , ,
I
I
I ,
I , , , ,
t
I , ,
I , ,

I
I
r
I
I
r
I

Notes: ,
1. If a program is called and, in turn r calls another progra., it I

must, upon receiving control, establish its own save area, save ,
the address of the calling progra.'s save area in the second word,
of its own save area and save the address of its own save area inl
the third word of the calling program's save area. I

I 2. , I
Field SAVPCT contains the R-con of the called progra.·s entry I
point. This R-con mayor may not be an address of a PSECT. If ,
the called progra. vas asse.bled without prototype control sec- I
tions (PSECTs)r the control section containing the EITRY state- I
ment for the entry point being used by the calling progra. will I
be the control section pointed to by SAYPCT. See IB! Ti.e Shar- I
inq System: Assembler Language, GC28-2000, for more details con-,
cerning R- and V-type address constants. I

I
f ,
I
I
r "L ___ --J

Pigure 7. Pormat of the standard save area

26

r

Type Transfer Save-aree I --I --j I
'I Parameter Entry-Po;....,t Return I Save-Area PS Eel

Registers Addres5 ;'1 Address in I Address in ! Address in

I--___ --I _______ . _______ }_~a:'=:~~;--~~~;e:~ ~ _ f~'t~-~-- _~ ~_Re~~_~~~g;ste~
1 (normal) : GPR 1 i GPR 15 GPR 14 I GPR 13 N/A

Control Formct

via

BASR Standard
I ;

, GPR 0-1 GPR 15 GPR 14 I GPR 13 N/A

i
SVC 121 Standard
(ENTER)

lMj2 BASR or Standard GPR 1 GP? 15 GPR 14 GPR 13 N/A
SVC 121
(ENTER)

3 CALL (CZCJL) Standard GPR I GPr, 15 GPR 14 GPR 13 N/A
leave-Privilege

I

BASR None GPR 0- 6 GPR 15 CP'l 14 None I CPR 13
I
I

(restricted)
4

I
I

L
Also used for return code f if any.

Very often, but not always, the PSECT and the SQve-(nea address ore the serpe.

Figure 8. Virtual. prograa linkage conventions

ftPE-1 LInAGE

Type-1 (in sOaEt publications, shown as "type-I") linkage is used for
transferring contJ~ol and inforaation between two prograas of the saae
privil.ege. A non privileged prograa aay not use type-l linkage to call a
privileged prograM; a privil.eged proqraa aay not use type-1 linkage to
call a nonprivilec;red proqraa. Type-1 l.inkage involves these
conventions:

• Using the staIldard save area

• Using specific registers for designated functions

• Using the Branch-and-Store instruction for the transferring of
control

• preserving registers.

Use of the Save AJ:'ea

You will. find it hel.pful. to refer to Figure 1 for the foll.owing dis­
cussion. Whenever a prograa uses type-l linkage to cal1 another pro­
graa, the calling prograa aust supply a save area for use by the called
prograa. Before transferring control to the called proqraa, the calling
prograa puts certain inforaation, if applicable, into the save area.
The calling program is required to preset soae fields of the save area;
it aay preset others. The first word of the save area (SAYLE.) aust
contain the length, in bytes, of the save area (ainiaua 16 bytes) and
any appendages to it. The 19th word of the save area (SAVPCT) must con­
tain the R~ype address constant (R-con) of the entry point to which the
calling progaa is transferring control.

The R-value is the address of the control section in which the entry
point is defined. The technique in TSS for associating a modifiable
control section wi,th a nonaodifiable, reenterabl.e control section is to
pl.ace the definitil:>n of the entry point to the reenterable control sec­
tion (the ElITRY stilteaent) in the control section that is to be aodifi­
able (usually a prc)totype control secti.on). Thus, the R-type address

section 3: Systea Prograaaing Conventions 27

constant for a symbol which is an entry point to the reenterable part of
a program provides the address of the modifiable part of that program.
In addition to naming an entry point, an R-con can be established for a
control section name or an object module name. If a control section
name is used, the R-value points to the beginning of the control sec­
tion. If a module name is used, the R-value points to the first proto­
type control section contained in the module. If the module does not
have any prototype control sections, the R-value points to the first
nonprototype control section.

One other field that must be set by the calling program, prior to
transferring control to the called prograa, is the second vord (SAVBPT)
of the save area. This field is a pointer to a save area used by the
calling program when it called. The calling program may not be using a
save area, though, and this field may contain zero. If this field does
not contain zero, the called program may assume ~hat it points to the
save area being used by the calling program.

All other fields of the save area may contain anything. The called
program should not assume that fields other than the length field, the
R-con field, and the backward-pointer field contain meaningful
information.

After receiving control, the called program must save the contents of
all the general registers, except register 13, in the save area. At the
tiae the called program receives control, register 13 contains the
address of the save area. The other registers are stored in the save
area by using register 13 as a base address; e.g., ST8 lQ,12,12(13)
saves all the general registers, except 13, in the proper locations of
the save area pointed to by register 13. If the called program wishes
to use register 13 for its own purposes, it must save register 13 in the
backward pointer of its save area. If the called program is going to
call another program, and is going to provide a save area for that pro­
gram, it aust store register 13 in the second word of that save area.
In this instance, register 13 serves as the backward pointer. Optional­
ly, the user can store register 13 someplace else, not in a save area.
If you save register 13 in a save area that you make available to anoth­
er program, you depend on that program not to write over the save area.
If that program is unreliable, you might want to save register 13 in an
area accessible to your prograa alone. That precaution will enable you
to restore the registers regardless of what the program you call does to
the save area you provide.

The called program does not need to save and restore the floating­
point registers. If the contents of the floating-point registers are to
be preserved, it is the responsibility of the calling program to save
their contents and the contents of its interruption mask.

contents of the General Registers

Registers 13, 1Q, and 15 must be preset by the calling program.
Register 13 must contain the address of the first byte of the save area
that the calling prograa is providing for the called prograa. This
address must be on a fullword boundary; that is, the two low-order bits
of the address aust be zero. Register 14 must contain the address to
which control is to be returned by the called prograa. Register 15 must
be set to contain the address of the entry point in the called program.

A number of macro instructions can be used to generate type-1 link­
ages to specific programs. Examples of these aacro instructions are
CALL, GET, PUT, OPE., and CLOSE. In using CALL, you specify the name of
the program to which you want to transfer control; in using GET, howev­
er, the name of the program to which control is to be transferred is
supplied by the macro instruction.

28

The called proqca. always uses register 15 as a return-code reqister,
if return codes ar,a applicable. If a para.eter list is passed in
reqister 1, thereaust be an unelerstandinq between the called and call­
ing prograas as to its content. In variable-length lists, the word pre­
ceding the first Y'!)rd of the parueter list contains a count of the nu.­
ber of para.eters in the list. Each folloYinq entry is the adelress of a
para.etar that has been prestoreel. Bote that in co •• anel syste. rou­
tines, a variable-.iellgth list is al.ost always assu.eel.

Transfer of Contro:!.

A type-1 linkage always causes control to be transferred fro. the
calling prograa to the calleel progra. by usinq the Branch-and-Store
(BASI) instruction. Specifically, the resident supervisor is never used
to assist in trans:ferring control (no interruption occurs), since the
calling and the called prograas have the saae privilege.

Register 1 .ay be preset by the callinq prograa with the address of a
para.eter list. Rflqister 1, 13, 14, and 15 are the only registers used
by type-1 linkage.

The CALL .aero instruction shoulel be useel to qenerate a noraal type-1
linkage. The use ()f CALL is discussed in Asseabler Oser lIacro
Instruct ions •

EXAftPLE: A prograll transferring control to another proqra. via a type-l
linkaqe .iqh t use 1:hese instructions:

•

•

L 13,=A(SAVEREA)

OS 111<;
L
ST
L
L
BASR

CHASAV,13
6,=R (SUBR)
6,SAVPC'r
15 ,=V (SUBR)
1 ,=A (PARLIS'l)
14,15

LOCATIO. OF SPACB rOR STAIDARD
SAVE AREA
IlfDICATE rORftAT
GET R-COI OF CALLED PROGRAlI
STORE R-COI II SAVE AREA
GET ADDRESS OP ElITRY POllfT
SET POIBTEI TO PARAlIBTER LIST
PUT BETOIB ADDRESS IB GPI 14
ABD BRAlfCH

The proqra. receivinq control aight use these instructions:

XYZ

ABC
SOBR
LR
L
ST
ST

PSECT
Elf TRY SOBR BAKE RAlIE SOBR EXTERBAL
CSECT READOBLY
STlI 14,12,12(13) SAVE ALL REGISTERS
14,13
13,72 (13)
13,8 (14)
14,4 (13)

to save the general registers and establish definitions for the V-cons
and I-cons of the Due SOBR. WheD its processing is finished, the pro­
graa SUBR aiqht do this:

EXIT

TYPE-2 LIlfltl GE

Lft 14,12,12 (13)
LA 15,4
BR 14

RESTORE REGISTERS
SET IETUR. CODE "
RETUa. TO CALL rIG PROGRAlI

Type-2 linkaqe is useel when the callinq progru is nonprivileqed and
the called proqraa is privileged. All progra.s designed to be called
via type-2 linkage run in the privileged proble. state. Type-2 linkage
involves these conventions:

Section 3: Systea proqra •• ing Conventions 29

• Using the standard save area

• Standardizing the content and use of the general-purpose registers

• Standardizing the method of transferring control

• Preserving registers.

The Save Area

The standard 19-word save area is used in type-2 linkage (see Pigure
7). Unlike type-1 linkage, the calling program does not provide this
save area. Instead, it is provided by the task monitor, which trans­
lates the type-2 linkage into what appears to the called program to be a
modified type-l linkage. The transfer of control froa the calling to
the called program is through the supervisor when type-2 linkage is
used. Coding contained in the task monitor is, therefore, an integral
part of the linkage.

Before passing control to the called prograa, the task monitor
initializes a save area for the called prograa's use. The length field
(SAVLER) contains a byte count of 76 (deciaal); the backward pointer
(SAVBPT) is zero. The last word of the .save area (SAVPCT) contains the
R-con of the entry point of the called program. All other bytes of the
save area are unpredictable. All programs designed to be called via
type-2 linkage can assuae that the save area pointed to by register 13
is arranged in this way.

Content and Use of the General Registers

Type-2 linkage conventions assign special functions to registers 0,
1, 13, 14, and 15. The calling program is responsible for presetting
registers 0, 1, and 15. The calling prograa loads register 0 with a
parameter that is not an address or, occasionally, the address of a sys­
tea control block; it loads register 1 with a non-address parameter, or
a parameter list address, or the address of a systea control block; it
loads register 15 with a code, called an ENTER code. The ENTER code
identifies the prograa to be called as would an SVC code in other sys­
tems. When control is returned to the calling prograa, the contents of
registers 2 through 14 will be unchanged. Registers 0 and 1 .ay be used
by the called prograa for returning results. If the called prograa sup­
plies a return code, it must use register 15.

The task monitor saves all the general-purpose and floating-point
registers in its own save area; the task monitor builds a save area for
the called program's use, as described in the previous section. The
task monitor sets a pointer to this save area in register 13. The con­
tents of registers 0 and 1 are set as received from the calling prograa.
Register 15 is set to the address in the called program to which the
task monitor will transfer control. This address is determined by the
task monitor, using the ENTER code that was in register 15 when control
was received by the task monitor. Register 14 is set to the address in
the task monitor to which control is to be transferred by the called
program when it has executed. The contents of registers 2 through 12
are unpredictable; they should not be assumed, by the called progra., to
be significant.

The called program aust save the contents of the general registers,
since the task monitor requires the contents of the registers passed to
the called prograa to remain unchanged. The called prograa must return
control to the address in register 14. The called program may put a re­
turn code in register 15; it may put results in registers 0 and 1.
Registers 0, 1, and 15 will be passed back to the calling program as
they are received fro. the called program when it returns control to the
task monitor.

30

Transfer of Contro:b

The ca1ling proqram transfers control to the called program by issu­
ing SVC 121.

An SVC 121 can be generated by issuing the EBTER macro instruction.
SVC 121 pass es con'crol through the task monitor to the called program.
ftost of the time ElfTER is used as an inner macro instruction. For exam­
ple, the macro instruction GETftAIW generates an EBTER if the program in
which GETftAIB is issued has been declared by the programmer to be non­
privileged (DCLASS USER). All programs that transfer control via SVC
121 must adhere to type-2 linkage conventions.

EXAMPLE: Assume that you want to get 76 bytes of virtual storage, pos­
sibly for use as a save area; you might code it like this:

SR
LA
LA
SVC

1,1
0,76
15,40
121

SET OPTIOBS: BOBPRIVILEGED, VARIABLE, BYTE
BYTE COUBT 76
EITER CODE 48 -- GETftAIB (BYTE)
TRABSPER COBTROL

Control will be re1:urned to the instruction following the SVC after GET­
ftAIB has been executed. If you had wanted to use the macro instruction
GETftAIB, you could have written, GE'.fftAIN B,LV=16 which would have
generated equivalent (prefered) instructions.

TYPE-1ft/2 LINKAGE

Type-1ft/2 * linkC!lge applies only to called programs that can be called
via both type-l and type-2 linkages. Programs called by type-2 linkage
are always privileged programs. The calling program, however, may be
privileged, in whic:h case a modified type-l (type-1ft) linkage is used
(with both registers 0 and 1 usable as in type-2 linkages); or the call-
ing prograa may be nonprivileged, in which case type-2 is used. Since
the task monitor ma.kes all type-2 linkages appear, to the called pro­
gram, as type-l, the called program ordinarily is not affected by the
privilege of the ca.lling program.

If a privileged program is being called via type-1ft/2, it may need to
determine the privi.lege of the caller. It can do this by comparing the
return address in J:'egister 14 to the address of the point in the task
monitor to which control is returned when a type-2 linkage has been
used. Por example:

CL
BE

14 ,=V (CZCJER)
BPCLLR

COftPARE GPR 14 TO TYPE-2 RETURN
IF EQUAL, CALLER IS KOBPRIVILEGED
IP UBEQUAL, CALLEB IS PRIVILEGED ABD
TYPE-l LIBKAGE IS USED

If the calling program is nonprivileged, the privileged ,called pro­
graa must issue a CKCLS or a PIREC macro instruction on all addresses
passed to it from the nonprivileged routine to insure that it wonlt
change a privileged address for the nonprivileged program. The calling
program uses either a type-1ft or a type-2 linkage as described previous­
ly; if the called program can be called by either of these linkage
types, it is using type-lft/2. The calling program treats this linkage
as described under type-2.

*The use of ft with type-1 linkage indicates that register 0 may also be
used as a parameter register - in addition to register 1. Begister 0
may contain a parameter or a pointer to a system control block.

section 3: system program.ing Conventions 31

TYPE-3 LI!KlGE

Type-3 linkage is used when the ca1ling prograa is privileged and the
called prograa is nonprivileged. All prograas designed to receive con­
trol by a type-3 linkage are designed to run in the nonprivi1eged state.
Type-3 1intage involves standardizing:

• The save area

• ~e content and use of the general-purpose registers

• The .ethod of transferring control

• Preserving registers.

The Save Area

Type-3 linkage requires the standard 19-word save area; however, the
save area is not supplied by the ca1ling progra.. It is supplied by the
Leave Privilege subroutine of the task aonitor. The calling progra.
calls the Leave Privilege subroutine, which supplies and initializes a
save area for use by the ca1led progra. (see Pigure n. The Leave Pri­
vilege subroutine establishes a 19-word save area which is not read- or
write-protected; the nonprivi1eged ca11ed progra. can gain access to it.
The Leave Privilege subroutine sets the first word (SAVLE!) equal to 76.
The last word of the save area (SAVPCT) is loaded with the R-con of the
ca11ed progra.'s entry point. The calling progra. supplies this R-con
to the Leave Privi1ege subroutine which inserts it into the save area.
The re.aining 17 words are unchanged.

content and Use of General-Purpose Registers

Type-3 linkage standardizes the use of registers 0, 1, 13, 14, and
15: the contents of the other registers are as they were at the ti.e the
privileged progra. was entered. The contents of the other registers
will be returned, intact, to the ca11ing prograa. Registers 0 and 1 are
used as in type-2 linkages. These registers are passed to the called
progra. as received by the Leave Privi1ege SUbroutine fro. the calling
progra.. The Leave Privilege subroutine 10ads register 13 with a point­
er to the save area it is supplying for the called progra.. It loads
register 15 with the address of the entry point in the called progra. to
which it will transfer control. Then it loads register 14 with the
address of an SVC 120 (BSPRV) instruction, which is in the part of the
interruption storage area (ISA) that nonprivileged progra.s can read and
write.

Transfer of Control

Control is transferred fro. the calling progra. to the Leave­
Priv~ege subroutine with the standard type-l linkage. Contro1 is
transferred fro. the Leave privilege subroutine to the called progra. by
an SVC 254 (LVPSW). The use of type-3 linkage always results in an SVC
interruption.

EXABPLE: within a privileged progra., if you want to call a nonprivi-
1eged subroutine, you .ight write:

32

*

L
L
ST
LA
L

13,=A (SATEAREA)
14 ,=R (CZCJLE)
14,72 (13)
1,PARAKTRS
15,=V (CZCJLE)

14,15

GET ADDRESS OF SAVE AREA FOR LYPRY
R-CON OF LEIVE-PRIVILEGE SUBROUTINE
PUT R-CON IN 19TH WORD OF SAVE AREA
PARAKETER LIST INTO GPR 1
EITRY POINT OF LEAVE-PRIVILEGE
SUBROUTINE

PARAKTRS
BASR
DC
DC
DC
DC
DC
DC
DC

A (ADCOllS)
A (PARlI!1)
A (PARIK2)
V (CALLED)
R. (CALLED)

TRARSFER TO LEAVE-PRIVILEGE SUBR
POINTER TO Y- AID R-CONS

ADCONS

PARA!! 1
PARA!!2

P'O •
P 1 54'

POINTER TO PARAKETER 1
POINTER TO PARAHETER 2
ENTRY POIBT OP CALLED ROUTINE
R-CON OF ENTRY POINT
PARAKETER 1
PARAMETER 2

The Leave Privilege subroutine yill get space to set up a save area
for use by the called program. It yill load parameters one and tyO into
general registers () and 1. It will set up registers 13, 14, and 15, as
described previously, and transfer control to the called prograa via an
SYC 254 (LVPSW).

When the called prograa has been executed, it might return control
like this:

LA
LA
BR

tl,RESOLT1
I,RESULT2
'14

RETURN OF RESULTS
TO CALLING PROGRAK
RETURR TO CALLER

General registel: 111 points to an SYC 120 (RSPRV) which viII cause the
Restore Privilege l:outine to be entered. The Restore Privilege routine
yill restore the calling routine's original register contents, yithout
disturbing registers 15 (the return code register), 0, and 1 (the result
registers).

TYPE-4 (RESTRICTED) LIIIIUGE CONYEITIOIS

Type-4 linkage 1s used by TSS programs under restricted circumstances
for the sake of lirikage efficiency. It is found principally in the cod­
ing of the languagE! processors.

Type-4 linkage liay be used between tyO programs if all these condi­
tions are met:

• Both the called and the calling prograas use the same prototype con­
trol section (PSECT).

• The values of address constants required for the linkage have al­
ready been supplied by the dynamic loader.

• The called program is not designed to accept type-l, -2, or -3 lin­
kage at the saae entry point to be used for type-II.

• Both the called and the calling programs have the same privileges.

Type-II linkage conventions standardize the use of the general regis­
ters and the method of transferring control. There is no standard save
area for type-4 linkage.

Use of the General :!leqisters

Registers 0 thro\~gh 5 are used by type-4 linkage as paraaeter regis­
ters or as pointers to parameter lists. These registers may be used by
the calling prograa to supply inforaation to the called program, or by
the called program 'co return information to the calling prograa. In

section 3: System programming Conventions 33

general~ the calling program must not assume that the contents of any of
these registers will be returned intact br the called program. It is
the responsibility of the calling program to load the address of the
com.on PSECT into register 13 before transferring control to the called
progra.. The calling pro grail. Bust set~ in register 15~ the address of
the entry point to which it will transfer control; the address to which
control is to be returned is set in register 14. The called progra.
uses reg.ister 15 as a return code register, if applicable.. The contents
of registers 6 and 7 are immaterial. neither progra. should .ake assu.p­
tions about the contents of these registers. Registers 6 and 7 need not
be saved by the called prograa.

The contents of registers 8 through 12 must be saved by the called
progra. if the called prograll. changes them. The calling progra. may es­
tablish any of registers 8 through 12 as common registers; the calling
program Bay do this only if it has not been called by a type-4 linkage.
A co •• on register is a register whose function is understood similarly
by the calling and the called progra.s. If the function performed by a
com.on register, such as pointing to a control block, is required by the
cal.led program/? the called program lIlay assume that the contents of the
common regi.ster can be used, as mutually understood between the calling
and the called prograas. The function of common registers must remain
constant in all programs called, in turn .. by the called program; their
functions .ust be returned intact to the calling program. The designa­
tion of co •• on registers and the nature of their contents are not part
of this convention; the use of COBllon registers are an understanding be­
tween the calling and the called prograas.

Transfer of Control

Control is transferred to the called program by using the
instruction:

BASR 14,15

When using type-4 linkage, interruptions must be aasked off; if an
interruption occurs, an unrecoverable system error viII result.

LIHKAGE COHYEHTIOB COftftEBTS

This discussion omits type-4 linkage, which is found principally in
the TSS assembler, FORTRAN and PL/I coapilers, and the linkage editor.
Type-4 linkage is used tominiaize the overhead associated with prograa
linkage by capitalizing on certain situations that occur in those
programs.

We can look at program linkages in two ways: the calling program is
the activator; it organizes the linkage information and transfers con­
trol. Th~ called program has a Bore passive role; it receives control
and assumes that the linkage information has been organized according to
the rules. For some linkage types, a program is inserted between the
calling and the called prograss; this program performs so.e of the du­
ties normally associated with the caller. In type-2 linkage .. the task
monitor's Rnter routine is interposed betveen the calling and the called
prograss; in type-3, the Leave Privilege subroutine is between the call­
ing and called programs.

Fros the viewpoint of the called prograII. .. most callers look the same.
Type-1 linkage doesn't use register 0; the other linkage types mar.
This is the principal difference from the called program's viewpoint.
The called prograll say return the contents of register 0 to the caller
when type-1 is used; for the others, the contents of register 0, if not
seaningful .. can be ignored. Because of this sisilarity of appearance to
the called prograll, manr called progralls can be written in such the saae

34

way. For instance, the SAVE aaero instruction can be used to save the
contents of the registers in the standard save area supplied by the
calling prograa, and the RETURI aaero instruction can be used to restore
the registers, load a return code, and return control to the caller.
The .acro instructions SATE and RETURI apply to types-l, lB, 2, and 3
linkage.

PEICE-SITTERS

There are a nuaber of prograas in TSS that have no built-in privi­
lege; these prograas assuae the privilege of the calling prograa. They
are called "fence-sltters."

Linkage to Pence-si,tters

Pence-sitters Cal!1 be called through a type-l linkage by either a pri­
vileged or a nonpri'l,ileged routine. These routines are assigned a hard­
ware storage protec·tion key that aakes thea read-only to nonprivileged
routines. Whenever a type-l linkage is perforaed, the PSW protection
key is unchanged. 'fherefore, when called fro. a nonprivileged prograa,
a fence-sitter routlne is a nonprivileged routine. Whenever a fence­
sitter service routine is called fro. a privileged routine, the PSW pro­
tection key is zero~ and the fence-sitter becoaes a privileged routine.
This convention is 4!stablished to efficiently transfer control to those
systea service routines that link to other (privileged) service routines
infrequently.

Soae fence-sitter routines have initial entry point naaes beginning
with the letters SYS. ~his distinguishes thea froa service routines
that aust be linked to froa a nonprivileged routine through the BITER
aechanisa. Other fE~nce-sitter routines are linked to froa aacro in­
struction expansions which use address constants which were filled into
a data control block by a privileged access aethod routine.

Writing a Fence-Sitter

Pence-sitters aust be constructed carefully. If a nonprivileged pro­
graa is using a fenc:e-sitter and the fence-sitter is interrupted, it is
quite possible that a privileged prograa will use the fence-sitter dur­
ing the period of iJtterruption. ~he fence-si.tter aust, therefore, be
reenterable wi thin t.he task. Prograas aay be reentered between tasks or
within a task. The use of a prototype control section (PSBCT) enables
different tasks to n,se the saae read-only control section. Within a
task, however, a pro·graa is generally aade up of one nonprototype con­
trol section (which aay be shared with other tasks), and one prototype
control section (which is never shared with other tasks) •

Interruptable service routines, to be reenterable within a task, use
aultiple save areas and dynaaieally allocated virtual storage (via
GETBAII) •

Pence-sitters can use a nuaber of techniques to prevent the destruc­
tion of data if they are interrupted and reentered. So.e fence-sitters
do not have a PSECT; if they have one, they never aodify it. Other
fence-sitters require the calling prograa to supply working storage;
still others use GETBAII to obtain working storage.

Linkage Proa Pence-Sitters to Other Routines

If a fence-sitter routine needs to link to a privilegE!d service rou­
tine, the fence-sitter uses either a type-lor a type-2 linkage, depend­
ing upon the priviletJe class of the routine that invoked the
fence-sitter.

section 3: Systea Prograaaing Conventions 35

Deteraining Pence-Sitter Privilege

The fence-sitter can determine the privilege of the calling routine
by checking the privilege bit in the TPSW contained in field ISACVP.
Parameters can also be supplied by the calling program to tell the
fence-sitter what privilege it has. ~he fence-sitter can also deteraine
the privilege of the calling program by using other information supplied
by the calling program, such as the data control block (DCB).

Por example, TSS QSIB is designed as a fence-sitter, and will run in
the saae privilege status as the routine that invokes it. since it is
most often invoked by the problem program, it usually runs in the privi­
lege of the user and mayor may not be of the same privilege as the BSAB
modules that it invokes. All the BSAft modules invoked, except WOTB, are
privileged routines. Is BOTE is also constructed as a fence-sitter, and
will take on the privilege status of QSAB whenever it is invoked, type-1
linkage is always established to invoke BOTE.

Before establishing linkage to any of the other BSAB modules, it is
necessary to determine the status of QSAB SUbsections. QSAB routines
perform this function with respect to their BSlft counterparts by testing
the first bit of the VPSW in the ISI. If QSAB is privileged, type-1
linkage is established, using the address constants defined within the
data control block. If it is not privileged, type-2 linkage is estab­
lished via the BITER sve.

VIRTUAL BEBOR! LOCKIBG

Rationale

To provide inter-task serialization (that is, the assurance that only
one task at-a-time can alter a control block), most shared virtual
memory control blocks include space for a Lock Byte, co.monly known as a
·VB Lock". Iny task which has need to alter the block or to read the
block without interference can ·set the lock-, perform its function, and
"open the lock"; no other task which observes the lock protocol can
interfere.

The -Test and Set· (~S) instruction is used to set the lock -- bit 0
(XISO') QA indicates ·set-. The TS instruction provides inter-processor
and inter-task serialization and sets the byte to X'PP·. The lock may
be opened by doing: BlI 10ck,X'OO'.

The TS instruction sets the condition code so that the status of the
lock, at the instant of the set attempt, may be determined. If the lock
is found to be set ~y another task), the task wanting to lock must wait
until the lock is opened. The waiting process must include retry of the
TS instruction.

To provide the resident supervisor with information about tasks which
are waiting for VB Locks, a special use of the ·Time Slice End" (TSERD)
supervisor call macro has been defined. This peraits adjustment of task
scheduling as well as detection of excessive waiting time. If a lock
appears to be "frozen-, the tastes) waiting on it will be given a task
program interrupt.

To provide the task monitor program with information about lock acti­
vity in a task, a one-byte counter ISAVLKCT and a one-bit flag ISAVLK/
ISAVLKB have been defined in the Interrupt storage Area (CHAISA) control

36

block. These also provide information useful to debugging of lock­
related problems.

A system routine, CZACS, is available and should be used to provide
release of 'I! locks in the event of abnormal teraination ox a task.
Reter to "Releasing Interlocks at Abend" in section 4.

The xxxYLOCK aacros provide a consistent aeans of observing proper V!
~ock protocol and siaplify prograa coding, especially in the case of
lI.lti-level an~or chained control blocks. All V! Lock processing Blust
use these macros to ensure proper protocol. The only exception is a
small set of Virtual Access Method locks which are handled only via
aodules CZCOH and C'2:COI.

Overview

There are six macros in the xxxVLOCK set: CHGYLOCK, CLRTLOCK, LOGT­
LOCK, OPBTLOCK, SETVLOCK, and TSTTLOCK. A brief description of each is
as follows:

"LOG" generates it control block in which the other five macros record
lock sta tu!> ..

"SBT" sets a specified V! Lock and records it in a specified LOG.

"OP»" opens the VM Lock recorded in a specified LOG.

"CHG" exchanges 1:wo LOGS, to facilitate processing of chained control
blocks witl:. individual locks.

"TST" interrogatE:s a LOG to determine the status of the recorded '1M
Lock.

"CLRn opens the VB Lock recorded in a specified LOG, in a special
manner related to ABB»D Interlock Release.

The following definitions apply to this discussion of VB Locks:

Tree: a set of two related but different control blocks organized
in two logical1y-distinct "levels". The first level is one control
block. 7he second level is generally a detail expansion of the
first and may be a single control block but is usually a list or
chain. The specific address of at least the first lIeaber of the
second level is usually recorded in the first level block and pro­
bably varies ov'er some short period of time. The address of the
first level is ,often fixed at systell startup or task logon

List: a set of two or aore copies (salle layout, different content)
of a control block which occupy consecutive locations in virtual •
aeaory.. Any on'~ can be referenced given the address of the firs;t.,
the length of each (usually fixed), and the number of aembers. .

Chain: a set oj: two or lIore copies of a control block which occupy
arbitrary locat10ns in virtual lIeaory, where each aeaber contains
the address of the next meaber in the logical order. Anyone can
be referenced gj.ven the address of the first. The first level of a
tree lIay be a aEtmber of a chain or a list.. The second level of a
tree usually is a chain or a list.

Section 3: Systea Prograllming Conventions 37

Using the xxxVLOCK Bacros

Consider the follovinq data structure for illustratinq the use of the
xxxVLOCK aacros.

BXBAS BI1lIT

• i I I I i • i i i , i i ...
lock------IBASLK' I fIlI'fLKt , ,1lI'fLK, II1ITLKI " byte I I , , • II • II • I I , I I " If r ,space

• I , of , II I.for
nuaber----IBASCIT I first<--,1ITFDT if I ,1lI'f!"D'f B, ,IIT!"D'f 0, ,other
of BIIlIT , f EIDE'f , It fI f I block (s) , , I " " " • , I II II II
first<----, BAS 1111' I f " " II
JUIHT • • I • I I I 1.1

EXDBT"W" EIDET "A" BXDET "B" EXDBT "C"
I i • I i • • • • IDETLKI IDETLKI IDE'fLKI tDE'fLKI I
I • , ,

I • I • I
I I I I I
I I I I f • ,
IDBTPRE >0 IDETPltE -t->"C" IDBTPRE -t->O IDBTPRB -t->"B" , I , , , I I
I DB TnT >0 ,DETlIXT I >0 ,DETlIXT -+->"C" IDETliXT -f->"A"
I I , • • I I
I I , f f , ,
• • I • • I ,

!"iqure 9. Sample Data Structure for xxxVLOCK Bacros

The only constant available to the sa.ple proqram is the address of
EXBAS. system DSBCTs are assumed to be available for EXBAS, EX1lIT, and
EXDE'f.

The objective of the sample proqram is: to find a particular "class"
of BX1lIT (the second in the exaaple layout); to find the last BIDET; and
to add a new EXDET before the last (due to some priority scheme). The
number, but not the order, of BXIliT may be chanqed by any task. The
number and order of EXDET may be chanqed by any task.

In the PSECT of a module you may code the follovinq VM Lock Anchor:

LBAS LOGVLOCK , RBCORD EXBAS.BASLK
LIHT LOGYLOCK , RECORD EXIBT.IBTLK
LDBTl LOGVLOCK , RBCORD BXDET.DBTLK "1"
LDBT2 LOGYLOCK , RECORD EXDE'f.DETLK "2"
LDBTA LOGYLOCK , RBCORD EXDBT.DBTLK "BEW"

...............

38

Pick up the address of EI8AS, provi1ing addressability by the DSECT,
and then:

SBAS SETVLOCK BASLK ,LEAS LOCK EIBAS

'Next, pick up the address of the first Elnii' froll BASINT.

After providing addressability for RXINT, you can DROP the addressabili­
ty for EXBAS (not required for the OPNVLOCK later).

QINT EQU *
Test EXI~T to find out if it is the one you want. If it is, go to OBAS.
If it is nc,t, check BASCHT to see if there are any liore EXIllTs. If
there are no more EIINTs, go to NINT.

To check the next EXIN'I', increment your EXIllT base register by t.he
length of l':XINT, and go to QINT.

HINT OPNVLOCK LiH;:;

Here, you have run out of FXINT $' f:O you can log a SYSER, or whatever If
and end thE, program.

AssulIIing YUll have found the EXINT you want, you can:

OBAS SETVLOCK INTLK,LIIT
OPNVLOCK LBA S

LOCK DESIRED EXINT
UNLOCK EIBAS

Then pick up the address of the first EXDET frolll INTFD1' and DROP addres­
sability for EXINT. Nov you lIIust setup addressability for EXDET, and

SDET

QDET

SETVLOCK DETLK,LD!T1

OPNVLOCK LINT
EQU *'

FIRST ("B")

(fin. DC K EITIi T

Yoa are nOll sitting on an ("B", .. e "A") lU:DET, looking for the last
EXDET. ChHck DET1UT and, if it 1.8 zer.o, you are on the last ("A"), so
you go to 1IDE1'.

otherwise (lfB", "C") ~ needing "1;;0 go to the next EXDE1', you load ("C" ,"11f)

DETliXT int() your RXDE1' base register. and

CLRVLOC.K
CHGVLOCK
SETVLOCK

Then go to QDET

LDET2
LDET1,LDET2
DETLK,LDETl

PRIOR (0,"8 M)

EXCHANGE ("B"/O,"C"/B)
liEXT ("C", Itl")

ADET EQ\) '"

You are nOl. sitting on the last C"A") EXDET, needing to add a new EXDET
before thi:. one. Find a slot to build a new EXDET and init.ialize it to
o.

Section 3: Systea Programming Conventions 39

Now is t.he time to change the cnrrent ("A") DETPRE p

L PREREG,DETPRE
ST NEWBAS,DETPBE

iii "Cft! FROl'l "Au
a NEW Ilil'O "A"

Then load your EXDET base frolll PREREG to COVer the previolls ("Cit) El.DET
and

L n.TREG.DETNXT
ST NEWBAS,DETNXT

ii flAW PROM "c,.
w N'EW INTO "CM

Nov you are ready to ftl1 in the n€~w EIDET; loa(l your EXDET base froll
liEWBAS. and

SETVLOCK
OPNVLOCK
OPNVLOCK

DETLK ,LDE'r A
LDETl
LDET2

ST PREREG.DETPRE
ST HXTBEG,DETNXT

J'EW
NEXT' ("A")
PRIOR (ftCII)

if ftC" to new
iii *"A" to new

Fill in the nev BIDET you are on, and

OPNVLOCK LDET! NEW

Nov end the program. which should include:

TSTVLOCK
TSTVLOCK
TSTVLOCK
TSTVLOCK
TSTVLOCK

LDRT! .errorDA
LDET2,errorDl
LDETl ~errorD2
LIIT,errorI
LBAS,errorB

l.OCK
* WAS
** LEI'''.!'
*** SET,
**** P.BEND

Your ABEND Interlock Release Routine should include:

Cl.RVLOCK
CLRVLOCK
CLRVLOCK
CLI/VLOCK
CLRYLOCK

LDETl!.
LDI'!T2
LDETl
LINT
1.8J1.S

The systew resource locks are ~aintained in a table in the supervisor
(instead of virtual memory) with a aeneral purpose vNQ/DEQ function.
This table allows T~8 snDPrvisor to recover any resources held by a task
being deleted ~nd to maintain reliable scheduling information.

If these locks were J.n virtual memory and a task abended or loqaed
off leaving a lOCk set on a system reauired resource, the system would
have to be reIPLed. because users would be unable to access the reauired
resoure"". Also, the system would be \.lnablE~ t() dCetermine which task. ",as
holding the lock.

7he implementation is as follows:

1. A hashei and chained diction9rv of r0source names is maintained
in +:hf'

140

TNL GN204106 10] July 80) to GC2&-2008-5

2. Two macros ENQ and DEQ (refer to the AssRmbler Osgr ~acro
Instruction manual) are provided to interface with the new
mec:hanisiii-:- The "SNQ function is performed asvnchronously with the
task. The completion, succe~~ful or otherwise, is posted back to
the issuer in an ~CB.

3. The important virtual memory locks use this mechanism -- VA~ lock
modules C~COH ani CZCOI; also, FIND, STOW, and ReR.

4. ThQ module CZAHC posts an !CB speci~ied ~y an external interrupt
code aueued on the task by the resource control module.

VAM LOCKIllG

VAMos :Lock modules CZCOH 'tn'! ::::ZCOI usc the ENO/DEQ mechanism. czeOH
issues an ENQ using the lockls V~A as the resource na~e and CZCOI issues
a DEQ to =emove the lock.

The pa=ameter list for ezeOH allows the caller of czeOH to re0uest a
return code and to request that czeOH abort the lock reauest if the user
attempts to attention out of t~e reauest. The lock type code has had
the two high order bits (X'BO· and X'40 1) defined to reauest one of the
above actions. If the bits are zero, eZCOE processes 3S before. If the
Obit (X'30') is a 1, czeOH retu~n5 a code to the caller signifying the
success oE the lock request. ezcop will return one of the following
codes:

o lock successfully set

4 - ~ait time expired: reqister 1 contains
the taskid of the lock holaer

12 - lock request purged before lock was set

If the 1 bit (X'40')is ai, czeOH will test for a pending attention
from th user while waiting for a lock to be successfully set. If an
attention is detected, the loc\ request is purged and an 8 code is
returned to the caller.

Whenever czeOH returns with a non-zero code the lock request has not
been fulfilled and it is up to the caller to recover from the situation.

I To facilitate the wait-time-exceeded case, and to oresent to the user
, a standard message with standard inserts, a second entry point has been
J added to ezeOH -- CZeOH2. If this entry Doint is called with a suitable
I parameter list, eZCOH2 will bui11 and return to the caller a message
, containing the appropria te information to define the unsuccessful lock
I attempt to the user. The parameter list for CZCOH2 is the same as CZeOH
I except that two words have been added to the end of the list. Word 5
, contains the taskid returned by czeOH when a lock recuest has ~xceeded
t its wait time. This is assumed to be the taskid of the task holding the
, recruested lock too long. Word 4 is a pointer to a message insert to be
, used for lOCK type X'14' calls. It is assumed that this insert explains
I the type of control blOCK the caller is attempting to set. The address
, should point to a character strinq preceded by a one-byte length.

The CZCOH1 parameter list is as follows:

Register 1 -- 3 ~ord list

'Word 1 address of lock point
word 2 - address of two or three byte control field
word 3 - address of DCB or 0
word 4 - a ddres s of messc-]e insert for type

X t 11.1 • calls (required)

Section 3: System Programming conventions 40.1

,
I
f ,
I
I ,

TNL GN204106 (01 July 80) to Ge28-2008-S

Format of Control Field

byte 1 - type of access reauested
C'W' - exclusive access (write)
elR' - shared access (read}

byte 2 - control blocx being locked. and flags
codes: X'OO' - SDST entry

X'04' - RFSTBL
X'08' - POD
X'OC' - member header
1'10' - page lock
X'14' - other

bits 0 and 1 of the code byte are used as flags
o (1'80') - return with a return code
1 (X'qO') - test for pending attentions

byte 3 - option flags for a type X'14' call; this
byte is used only on type X'14' calls

bit 0: 0 - system controlled resource
1 - user controlled system resource

bit 1: 0 - normal wait required
1 - lock request is an immediate recruest;

do not wait i! already locked

CZCOH1, if requested, will return one fa the following return codes:

o - successful attempt
4 - wait time exceeded; lock holdpr's

taskid is in register 1
8 attention detected (only if bit 1 is a 1)

12 - lock request purqed

The CZCOH2 parameter list is as follows:

Register 1 -- 5 word list

word 1 - address of lock point
word 2 - address of two byte control field
word 3 - address of DCB or 0
word 4 - address of message insert for code X .14 f
word 5 - taskid of lock holder

Format of Control Field

byte 1 - type of access recuested
CoW· - exclusive access (write)
c·pt - sharel access (read)

byte 2 - control block beinq locked, and flags
codes: X·OO· - SDST entry

X'OU' - RESTBL
X'08' - POD
X·OC· - member header
X'10' - paqe lock
X'14' - other

bit 0 of the code byte is used as a flag
o (X'30') - do not return; C~COH

will call ABEND

CZCOH2 will return to the caller the length of the build message in
register 0 and th8 address 0= the messaqe in reqister 1.

40.2

TNL GN204106 (01 July 80) to GC28-2008-5

DYNAMIC SCHEDULE TABLE TRA3SIT~ON

The EN2/DEQ mechanism provides another scheduling- capability to 'ISS.
This capa~ility allows a task to be given a dynamic schedule table
transition as page stealing does.

A second entry point in CElKZ (CEAKZ2) makes the transition and
updates all reauired system control counts. CEAKZ2 is called with the
new schedule table level in register 0 and the TSI address in reqister
1. CEAKZ2 validates the new level, calculates a seconi new level if the
first new level has the prejudice flag on, and updates the task
dispatchable priority from STEt>RIOR and the number of auanta left by
calculating the number of quanta used from the old level and subtracting
that value from the new auanta count. The task is guaranteed at least
one additional quantum.

If the task is on the inactive list nothing else is done. If the
task is on the eligible list a new scheduled start time is comouted and
the task is reslotted in the eligible list using the new priority and
scheduled start time. If the task is in the dispatchable list, the task
is reslotted using the new priority. SYSECB and SYSBTCNT are updated to
reflect the possible chanqe in STEMAXCR between the old and new sche1ule
table levels.

Currently, CRANB, PULSE SVC, CHANGE SVC and ENQ/DEQ are the only
routines using CEAKZ2.

ENQ/DEQ 5CHEDULING

, The ENQ/DEQ mechanism uses the Holding Lock exit in the schedule
r table as its scheduling exit. When a task acquires its first system
I resource (i.e., holding resource count = 1) the ENQ/DEQ module CEARS
, uses the Holding Lock value in the current schedule table entry as the
I next schedule table level for the task. CEARS saves the task's current
, schedule table index and calls CEAKZ2 to take a dynamic transition to
f the new schedule table level. When the task frees its last system
I resource. CEAPS retrieves the saved schedule table index and calls
, CEAKZ2 to return the task to its previous level.

The ENQ/DEQ module SChedules onli for resource entities called system
resources. A system resource is one that is allocated and released
complete:'y under control of nrivileged system control, without ever
returning to non-privileged code. Examples are RESTBL locks, POD locks
and user table header and entry locks. User controlled resource
entities are resources whose duration of allocation is controlled from
the non-privileged code or by user action. Examples are dataset access
locks, momber access locks and page locks. with these resources, the
duration of the allocation is usually controlled completely by user
action.

The task when waiting for a resource will issue an AWAIT SVC against
an RCB. This allows the current system AWAIT extension code and
schedule table value to be used. The current ENQ/DEQ mechanism does not
use a wa~ting on lock mechanism: it is not required.

with ;!:NQ/DEQ, the system considers it an error if a task issues a
WAIT or TWAIT SVC while holdina a system resource. This error currently
only results in a minor syserror.

Sectio~ 3: System Programming Conventions 40.3

SBCTIOI 4: SYSTBM PROGRAMMER FACILITIBS

RBSOURCE COBTROL FACILITIES

TSS provides facilities to the system program.er for controlling the
allocation of systea resources to users and for keeping records of
resource usage.

The control and accounting functions apply to the following re­
sources: CPU time, terainal time, nnaber of concurrent background
tasks, amount (in pages) of permanent and temporary public storage, num­
ber of direct access devices, magnetic tape drives, high speed printers,
readers and punches, and the nuaber of records read and written by
BULKIO.

Accounting Overview

An overview of the accounting facility·s logic is given below. Re­
sources are allocated and kept track of by means of several tables (the
user liaits table, the system user table, the active user list table,
and the task accounting table) and several aacro instructions and coa­
sands: USAGE, UPDTOSER, JOII, and REJOII. USAGE and OPDTUSER are com­
aands as well as aacro instructions; JOI. and REJOII are comaands only.
The function of each table used by the accounting facility is suamarized
below. The macro instructions are described in Part II or in Asseabler
User Macro Instructions. The JOII and RBJOII coamands are described in
Manager's and ldainistrator's Guide. The USAGE command is described in
Co.mand Systes User's Guide.

User Limits Table (SYSULT) - DSBCT CHIULT

SYSULT is a table containing the aaximum amounts of resources a user
is allowed at one tiae or over a given period. Depending on the
resource (CPU tiae, I/O devices occupied, etc.), the time aay be the
duration of a task or the duration of some installation-established ac­
counting period. Initially, when the systea is supplied, two sets of
limits are defined in the table: one set for system prograamers and one
set for user prograamers. The liaits supplied with the systea for each
of these two sets are summarized in lppendix G.

When a user is joined to a system, the RATIOI operand of the JOI.
command determines which set of limits the user has. The set of liaits
is recorded in the user's entry in the system user table (see below) •

An installation may change the system-supplied values for either set
of limits: it may also define and add to the user limits table up to
seven other sets of limits, which can be identified by additional RATIO.
keys when JOII is issued.

System User Table (SYSUSB) - DSBCT CHIUSE

The primary purpose of SYSUSE is to provide a list of all legal TSS
users, with their attributes or characteristics, for reference by systea
routines. It contains an entry (or record) for each user, referred to
as a user table entry ~TE). In addition to the user's ID, password,
privilege class, authority code, etc., each OTE also contains fields for
recording accounting data about the user's resource usage. This data is
accumulated from the tiae he is joined to the system till he is quit.
It holds accounting statistics for resource amounts being used and
resource products (that is, amounts multiplied by tiae used). At JaIB

Section q: System Programmer Facilities 41

tiae a user's liait rations (froa SYSULT) are also copied into his entry
in SYSUSE.

Active User List Table - DSECT CHAAUL

This table contains an entry (or record) for every task and one for
each user whose data sets are being shared by that task. These entries
are created by a call to the Resource Control Routine (ReB) CZCUA. The
entries are referred to by task identification (task ID) and user iden­
tification (user ID). Several entries aay be associated with one task:
the priaary entry (based on a user's task ID and user ID), an entry for
each shared data set opened by the user (based on the user's task ID and
the owner's user ID), and a systea entry based on task ID and the TSS***
** user ID. Each entry contains a teaporary record of a task's use of
systea resources froa the beginning to the end of that task.

Task Accounting Table - DSECT CHAACT

This table is a work area in which a task's resource statistics (per­
taining to its priaary entry in CHAAUL) are recorded when that task
CORes to an end. This work area is .ade available to user-vritten ac­
counting routines at the end of each task.

Resource Control Operation

To get the systea started, two entries (two sets of liaits) have been
defined in the user liaits table (SYSULT). An installation, however,
aay provide new sets of liaits or change existing ones at any tiae (see
"Retrieving and ftodifying Accountiug Data Sets" also in this section) •
When a user is joined to the systea, he has an entry (the UTE) created
for hia in the systea user table (SYSUSE). At that tiae, the user's
liaits (froa SYSULT) are autoaatically copied into that UTE.

As each user issues LOGO., the UTE for that user is copied froa SYS­
USE into a shared virtual storage table, or in cases where another task
is active for the saae user ID, the task is connected to the UTE already
copied into shared virtual storage. Each task then has several task ID
entries assigned to it in a second virtual storage table, called the ac­
tive user list (CHAAUL). Thus, the two virtual storage tables, defined
by DSECTS CHAUSE and CHAAUL are used to record user ID and task ID ac­
counting data, respectively. During the execution of a task, the task
can refer directly to these virtual storage tables and update user In
and task resource statistics in those tables without interfering with
their use by other tasks belonging to the sase user.

Dynaaic Accounting

During task execution, every tiae a user requires additional re­
sources, the systea checks the amount of needed resource plus his
currently-used aaount against the user's liaits to aake sure he has not
exceeded thea. If they are not exceeded, the resources are allocated to
him and the virtual storage accounting table (defined by CBAUSE and
CHAAUL) is updated to reflect the additional usage. This process occurs
whenever external pages are assigned to, or relinquished froa, a user's
VAft data sets, or when devices (such as disks, tapes, printer, and
reader-punches) are assigned or released. CPU tiae and connect tiae are
not updated dynaaically; they are updated only at the end of each task.

The "time last changed" fields in the user's UTE and in each user
task's active user list entry are used to calculate the product
(resource multiplied by tiae used) fields in those tables when addition­
al resources are allocated.

42

Keeping track of resources is accoaplished (at LOGOFF and ABEBD) by
the systea accounting subroutine and (dynamically) through use of a call
to the Resource Control Routine.

Shared Data Set Accounting

When a ~ask uses a shared data set belonging to another task, ac­
counting statistics are recorded in the appropriate entry in the active
user list based on the user's task ID and the owner's user ID. These
accountiqg statistics remain in this table until an RCR call is made for
the shared data set. At this time, the accounting statistics pertaining
to that task's use of the shared data set are used to update the SYSUSE.
The entry in SYSUSE, associated vith the user ID for the owner of the
shared data set, is updated. Thus, if you share your data sets, you
yill be charged for the use of the resources associated yith those data
sets.

Resource Control Routine (RCR), CZCUA

RCR is used to open the accounting tables, compare requested resource
usage yith the user's limits, dynamically update the product fields in
the virtual accounting tables (described by DSECTS CHAUSE and CHAAUL) ,
and release or vacate resources yhen a task has finished using thea.

When a task goes to LOGOFF or ABEBD, RCR is called to tabulate ac­
counting data for each user ID and each task or subtask (for example, an
express batch subtask), and makes sure all resources used since the last
allocation have been updated. The task accounting data tabulated by
this process is:

1. Temporary page seconds
2. Permanent page seconds
3. Private disk seconds
4. Private tape seconds
5. Private printer seconds
6. Private reader/punch seconds
7. Total number of auxiliary

storage pages
8. Total nuaber of TWAITs
9. Total number of AWAITs

10. Total tiae slice ends

11. Total page-ins from auxiliary
storage

12. Total page-ins from external
storage

13. Total page-outs to auxiliary
storage

14. Total page-outs to external
storage

15. Maximum pages held on auxiliary
disk

16. CPU time
17. Terminal connect (COIlB) tiae

CPU time and connect time are updated for conversational tasks. For
nonconversational tasks, only CPU time is updated; connect tiae is reset
to o.

The shared virtual storage image of the user table entry should nov
reflect the status of the user's system resources. These updated sta­
tistics are then recorded in the permanent SYSUSE data set in external
storage.

For both conversational tasks and nonconversational tasks or sub­
tasks, the accounting subroutine branches to a dummy task accounting
module at CZIGI. Upon entry, this module returns control to the calling
routine. It is provided as a hook for user-Yritten accounting routines.
I user can replace the du •• y module vith his oyn task accounting
routine.

It the time of the call, register 1 contains a pointer to a parameter
list that contains a pointer to the york area containing the task's ac­
counting statistics. Users vho vant to examine this data can establish
addressability to the york area, by using the DSECT CHAICT. Signed
binary values representing each resource are stored in the york area.

section 4: system Programmer Facilities q3

When the accounting routine returns to the caller, a subsequent RCR
call is made to remove the appropriate task-oriented entry from the ac­
tive user list and to close out the user tab1e entry in shared virtual
storage. This is done by disconnecting the task from the shared­
virtual-storage UTE or, if there are no other tasks active for the user,
by writing the shared-virtual-storage UTE to SYSUSE and freeing the vir­
tual storage copy.

IISTALLATIOI ACCOUBTIIG ROUTINES

An installation may establish its own accounting routine by writing a
privileged module, assigning to it the module naae CZAGA, and replacing
the dummy accounting routine at CZAGA with the installation's module.

IftPORTAIT ACCOUNTING COISIDERATIONS

When the installation accounting program receives control from the
system accounting subroutine, it can write to SYSOUT, can define (DDEF),
open, and close its own accounting data sets, and can perform most sys­
tem functions. However, the user should be aware that al1 non-system
data sets have been released; only selected system data sets remain open
(for example, SYSUSE, SYSCAT, SYSOUT, and SYSftLF). In addition, the
user may be restricted in the functions he can perform in an accounting
routine invoked by ABEND, depending on the cause of the abnorma1 end.

System programmers shOUld be aware that product (resource multip1ied
by time) fie1ds (except for CPU and connect time) accumUlated in the
virtual storage copies of SYSUSE (CHAUSE) and CHAAUL are updated as re­
sources are allocated or through use of the USAGE command or macro in­
struction. Although those tables are valid as of the last update, the
work area (defined by DSECT CHAACT), in which task accounting data is
accumUlated, is updated on1y at LOGOFP or ABEID. CPU time, connect
time, and the permanent copy of the product fie1ds, recorded on SYSUSE,
are updated only at LOGOFF or ABEID. A system programmer should a1so be
aware that if the system is taken through an RPS and UPDTUSEB sequence,
resource counts are updated, but the product fields are reset to zero.
Thus, before executing such a sequence, installations should save the
existing accounting data for later processing.

Accounting by User or Task ID

Installation accounting routines can associate accounting information
with a user ID or a task ID. If the user ID is chosen, the already
opened virtual copy of the SYSUSE data set can be examined. The ability
to address the user table entry can be established from the address of
the UTE found in the task common field TCftVLU. The DSECT CHAUSE can
then be used to extract information, and the installation accounting
routine can perform any desired arithmetic (all entries in the table
contain signed binary data). Accounting by task ID can be accomplished
by examining the work area, defined by the DSECT CHAACT, in which task
statistics are recorded at the end of each task's processing.

Accounting by Charge luaber

If an accounting routine desires to accu.ulate billings based on
charge numbers, it should be aware that TSS accepts al1 charge numbers
without validating them. If a charge nuaber is defau1ted at LOGOI, the
charge nu.ber assigned to a user when he is joined to the system is used
for that task's accounting at LOGOFP or ABEID. It is the responsibility
of the installation's accounting routine to verify charge nuabers. If
the accounting routine finds a charge number is invalid, it can use the
user ID.

44

Accounting on a Project Basis

A user who wishes to be charged separately by project may do this by
being joined to the system under separate user IDs. In order for him to
have access to his data under separate user IDs, he must use the PBBftIT
and SHARE co.mands for his various IDs.

DISPLAYIBG ABD ALTEBIBG ACCOURTIRG STATISTICS

If at any time during a task a user wants to know how many resources
are assigned to his user ID, or what his resource limits are, he can
issue a USAGE command or macro instruction to display them on his SYSOUT
device. Remember these are user statistics rather than task statistics,
except for CPU and COBR time current fields. The USAGE command or macro
instruction also updates the product fields in the virtual storage ac­
counting tables (CHAUSE and CHAAOL). A user ID option is available with
USAGE for system programmers, managers, or administrators, which dis­
plays the usage statistics for any user joined to the system. Similar­
ly, a 'RESET' option can be used by managers and administrators to reset
a user's product fields to zero (see the description of the USAGE com­
mand in the Ranager's and Administrator's Guide) •

Kanagers and administrators can use the BEJOIR command to change the
user's limits, increasing his resources (see BEJOI. in the Kanager's and
AdMinistrator's Guide).

Rote: If a user's resource usage were to change When the system ac­
counting facility was not in operation, his accounting statistics vould
not be updated (for example, if an RPS and CYY co •• and sequence vas per­
formed or in the event of systea failure). In such cases, an 0 authori­
ty system programmer should employ the UPDTUSER co.mand or macro in­
struction to update the resource count statistics in the user table for
all users joined to the system (the product fields in the UTB are not
updated at this time) •

RETRIEVIHG AHD KODIFYIHG SYSTBK ACCOUNTING DATA SBTS

To assist users interested in writing accounting routines and estab­
lishing their own resource limits, information on SYSULT and SYSUSE is
summarized below. The DSECTs for the system accounting tables (CHAULT,
CHAUSE, CBAAUL, and CHAACT) can be found in the ASKRAC system library.
Appendix G shows the resource limits supplied by IBK.

SYSULT characteristics:

• VISAK member of TSS*****.SYSLIB.

• Each record in the table, specifying the limits for a specific user
or type of user, is 64 bytes long.

• The hexadecimal key, in the first four bytes, is in the range 1-9,
inclusive.

• DSECT CHAULT.

• All limit fields contain a fullvord of signed binary data.

• USAGE documentation describes the general contents of each field.

• Although the JOIN command indicates that there are only tvo availa­
ble sets of limits in the user limit table (SYSULT), additional sets
may be added to the system (or existing limits changed) by modifying
SYSULT. This can be done by issuing the !ODIFY command using the
hexadecimal option. For example:

Section 4: System Programmer Pacilities 45

User: modify syslib(O} (sysult)"lrecl=64,keyln=0,rkp=O,recfll=f

Syst~: Either prompts user for the hexadecimal input data or
unlocks the terminal keyboard.

~: Enters the new set of limits in the form:
x%00000003000000el0000232b600004e200000100000000c-
800000002000000020000000200000002%e

For additional information on the "ODIFY command, see Command System
~·s Guide.

SYSUSE characteristics:

• Each user ID record (that is, a U~E) is 256 hytes long.

• Has an EBCDIC key.

• DSECT CHAUSE.

• All accumUlation and product fields contain fullword signed binary
data •

CREATING YOUR OWN PRIVILEGE CLASSES

You aay assign one, or a combination of several, predefined privilege
classes (see Appendix H) to a user at the tiae you join the user to the
system. In addition, you can create additional privilege classes, using
any of the remaining (undefined) alphabetic characters. To accoaplish
this, you can use the CLOP aacro instruction during system generation to
introduce a new privi1ege class to the systea; this records the privi­
lege class in task common (DSECT CHATCR) as a valid privilege class.

Any routines you want associated with the newly defined privilege
class must be coded to examine the appropriate privilege class bits in
the four class bytes in task cO.llon.

At JOIN tille, the privilege class you have defined can be assigned to
users of your choice; they may then use the set of routines you have
aade available to them.

ESTABLISHING PRIVILEGED INTERRUPTION SERVIC~G ROUTINES

Por normal returns from a privileged interruption servicing routine,
execution resumes at the next sequential instruction following the point
of interruption, just as it would from a nonprivileged interruption rou­
tine (see "Processing an Interruption" in Assembler Programmer's Guide) •
However, if a privileged interruption servicing routine wants to modify
the return address at which control is to resume, it must use a differ­
ent process than that used by nonprivileged routines. Rather than modi­
fying the old TPSW in the area pointed to by register 0, as done by non­
privileged routines, the privileged interruption servicing routine must
modify the instruction address in the old TPSV at location ISA10P
(X'730') in the interrup storage area (ISA). Control then passes from
the interruption servicing routine to the newly specified address, rath­
er than to the next sequential instruction.

SCHEDULING TIRE BY A SYS~EK TABLE

CPU time in TSS is scheduled by aeans of a system table (the schedule
table, CHAS~E) that peraanently resides in main storage as a systea con­
trol block. The supervisor refers to this table when schedulling tasks,

46

both at task initiation and during execution of the task, to determine
when next to schedule the task and for wh&t amount of CPU time. The
scheduling table may contain as many as 256 scheduling levels, called
schedule table entries (STH).

User priority and task type (that is, conversational or batch) deter­
mine a value that is assigned to the STE field of the task's TSI; that
value then determines the task·s initial scheduling parameters. Once a
task has been initiated, the supervisor may move a task to another lev­
el, as for example, when a task is switched from conversational to batch
mode. Levels are also adjusted for tasks that are to be I/O-bound or
execute- bound.

The system programmer may also change the scheduling of a task. The
PULSE macro instruction permits you to change the STE level of a task to
another pre-set "pulse level" that is associated with the current level.
The CHANGE macro instruction permits you to change the task·s level to a
level that you specify. The PULSE macro instruction is unrestricted;
CHANGE is restricted to privileged routines.

The PRESENT macro instruction permits you to determine the schedule
level of a task; it is unrestricted.

The values in the scheduling table are established as a function of
system generation and maintenance. Full information on the system table
is provided in system Control Blocks. System Logic summary explains how
the supervisor uses this table for scheduling. To alter table values,
consult System Generation and Maintenance.

DEADLINE DISPATCHER

, ACTIVE LIST ORDERING

I The active list is subdivided into tl~e dispatchable list and the eli­
I gible list. The dispatchable list consists of tasks which are in main
I storage competing for CPU time. The eligible list consists of tasks
t which are ready to execute hut have not yet been brought into main
I storage.

I Tasks on the dispatchable list are ordered by the priority schedule
, table field (STEPRIOR) with the smallest priority number first. Tasks
, with the same priority number are ordered so that paging-bound tasks are
I ahead of execute-bound tasks. Paging-bound tasks are those which, in
, one guantum, cause more page relocation exceptions than the amount spec­
I ified in the maximu» page relocation exceptions schedule table field
I (STEMRQ). Tasks are initially placed between paging-bound and execute­
I bound tasks having the same priority number. At the end of each guan­
I tum, a task is reclassified as paging-bound or execute-bound and placed
, after all other tasks of the same priority number and classification.

, Tasks on the eligible list are also ordered by priority (STE2RIOR)
I with the smallest priority nusber first. 'I'ask.s with the same priority
, number are ordered by SST (Scheduled start Time) with tasks furthest
I behind scn£dule (i.e., lowest SST) first.

I Because the dispatchable list is now ordered by priority, greater
, care must now be taken in selecting schedule table priority values. It
I is now possible for a task with a small priority number to completely
, dominate a CPU and effectively lock out other tasks for long periods of
t time. Greater emphasis should now be placed on the delta to run sched­
I ule table field (S'I'EDELTA) for controlling the eligible list order.

The following diagram schematically shows the active list ordering
for a schedule table with three priority numbers.

Section~: System Programmer Facilities 47

SCHEDULE TABLE

I The Schedule Table header has an entry point CHBSTH; the table is 64
t bytes and includes 12 for installation use and 21 that are reserved.
I All priority fields (STEPRIOR) have been set to XISOI. The delta to run
I fields (STEDELTA) have been adjusted to maintain the proper ordering of
, the eligible list.

48

CPU/APU SCHEDULING

, The dispatcher (CEAKD) searches the dispatchable list from the top
I (highest priority task) to find a task that is ready for execution. If
I a ready task is not found, the dispatcher will either exit to the wait
I state or the queue scanner depending on whether or not any supervisor
I work exists. If a ready task is found and more than one processor
, exists, the dispatchable list search continues for another ready task
I that has an expired deadline dispatch time (see the RTTCTL macro iu-
I struction description). If a second ready task is found and the other
f processor is running a lower priority task, the other processor is sig­
I naled to reschedule its executing task and search the dispatchable list.
I The first ready task found is then set in execution.

REAL TIRE TASK FLAG

, The time slice end processor (CEAKT) will keep all of the task's
I pages in real storage if the real time task flag (TSIRTT) is on. This
, flag is turned on and off by the BTTCTL macro instruction. TO prevent
I excessive time slice ends for maximum pages allowed, page stealing
, should be turned on in the schedule table levels for tasks that use the
I RTTCTL macro instruction.

ADDRESSING AN IIO DEVICE

The initiation of a virtual I/O operation does not require the use of
the interruption storage area in the way the initiation of a real I/O
operation requires the use of the prefixed storage area. Virtual chan­
nel proqraas are constructed using I/O request control block (IORCB) and
channel command words that are similar to real CCWs (see the discussion
of IOCAL). All I/O operations in a task need not use IORCB channel com­
mand sequences, though~ Some I/O operations, such as virtual Access
Kethod (YAK) operations, are performed by using two Supervisor Call in­
structions (see the descriptions of the PGOUT and SETXP macro instruc­
tions) that take advantage of the characteristics of the address
translator.

Because most I/O devices attached to the system have more than one
path to storage, these devices have multiple real addresses. The super­
visor's pathfinding program selects the address to be used. To distin­
guish an I/O device from the path (~ardware address) used to gain access
to it, each device attached to the system is given a unique nuaber,
called the syabolic device address. The assignment of symbolic device
numbers is unique at each installation.

In addition to the symbolic device address, some I/O operations re­
quire the use of a relative page nuaber. The relative page number is a
16-bit quantity allowing a device to have 65,536 pages. Por certain I/O
operations (for example, PGOUT), each device is organized into pages.
Since each page is 4096 bytes, the position of a given page on all
devices of the same type can be determined. Thus, page 136 begins at
the sase cylinder, track, and record address for all IBK 3350s. In oth­
er words, given a relative page number and a device type, it is alvays
possible to figure out vhere r on that device, the page can be found.

The system symbolic device address and the relative page nuaber make
up the external page address; they identify the location of a page on
external storage.

Section 4: System Programmer Pacilities 48.1

TIMEKEEPING FACILITIES

The time-sharing system maintains information about several catego­
ries of elapsed time. Timekeeping facilities accum.ulate statistics that
can be used for accounting pur~oses and for monitoring system and pro­
gram performance. User programmers can set a time that measures task
execution time or elapsed calendar time. System programmers can measure
time slices and time intervals during which they may want the CPU, or a
task, to be in the wait state. The TSS timekeeping facilities are com­
posed of time cells and the macro instructions that set and read those
cells.

TIME CELLS

Time cells are used by TSS to store information about elapsed time,
estimated time, and related data. The relationships of the principal
timekeeping cells (or fields) are described briefly below under "Time­
keeping Operation."

Ca teqori es of Time

The information in the time cells provides the system. with the two
basic types of tim.ekeeping statistics maintained by TSS: task time and
realtime. In addition, CPU time is maintained as a part of real-time
maintenance (see "Realtime Maintenance"). Realtime is the actual time
(in microseconds) that has elapsed since March 1, 1900; from that start­
ing date every year divisable by four is a leap year (366 days).

Timekeeping Operation

The time-slice allocated for a task is specified in its current
schedule table entry. Each time-slice is composed of one or more quan­
ta. The number of quanta and the number of microseconds in each quanta
are specified in the current schedule table entry_ When a task is
rescheduled and at the end of each quantum, the length of the next quan­
tum is stored in XTSLTS and XTSCTI.

If a task is interrupted, for any reason, before the end of its
allotted time, the value of the cpu timer at the time of the interrup­
tion is recorded in PSATSA and XTSCTI, to account for the remaining time
before the original task is to be time-sliced.

When the task is redispatched to complete its time slice, the remain­
ing time available to that task (previously recorded in XTSCTI) is moved
back into the cpu timer (resetting the clock). The cpu timer is again
decremented by the hardware until that task's remaining time is used up,
and the task is time-slice-ended by the system~

Whenever an interruption occurs during task execution, the task's
timers, XTSUTI and XTSATI, are updated. Any remaining time (in XTSCTI) ,
allotted to the task's time slice, is subtracted from its original al­
lotment (in XTSLTS) to determine the elapsed time used by the task be­
fore the interruption. This elapsed time is added to the task's accumu­
lated CPU-time cell (XTSATI) and, if a task time interruption has been
established for the task, the elapsed time is subtracted from the XTSUTI
field; see "Setting the Interval Timer."

Setting the Interval Timer

If no task time intervals have been established by programmers to
generate interruptions at specific times, the time indicated in the cpu
timer, when each new dispatch occurs, is the time from a task·s XTSCTI
field (the time remaining in that task's time slice). If, however, task
time intervals have been established, whenever an interruption occurs in

48 .. 2

the system; the cpu timer field is reset with the shortest period of
tiae after which the systea is to generate another interruption. Thus,
the cpu tiaer is reset with the shorter interval contained in ITSCTI
(tiae remaining in the tiae slice of the next task to be dispatched), or
ITSUTI (prograaaed task-time interval after which an interruption is to
be generated).

If the shorter time interval was found in ITSUTI (indicating that a
task tiae interval will expire before noraal tiae-slice-end) , that task
time interval replaces that task's tiae slice in ITSCTI. The task's
accumulated cpu tiae cell (ITSATI) is incremented by the time used this
time-slice (ITSLTS-ITSCTI) and ITSU~I is decreaented by this value. The
new rrSUTI is placed in ITSLTS and ITSCTI. The task is then redis­
patched until the new time in the cpu timer expires. When the task is
rescheduled after the interruption from the task time interval, the
schedule table time-slice allotment is again used to initialize ITSCTI
and ITSLTS; this reestablishes a noraal tiae-slice interval for the
task.

REALTIBE BAIBTEIABCE

Realtime for the entire system is maintained in the TOD (Tiae of Day)
clock. Realtime intervals can be set by programmers. After a
prograaaer-defined interval elapses, a systea-qenerated interruption
occurs to inform the programaer that the tiae has elapsed. Realtime
interrupt values are maintained in the RTITIBB field in the real-time
interruption-pending queue in the resident supervisor (DSBCT CHARTI).

RTITIBB is a doubleword in the realtiae interruption-pending queue
that is aaintained in the resident supervisor. Realtiae intervals can
be established in RTITIBB by issuing the SETTIBBR or SETTR macro in­
struction. Another user aacro instruction, STIBER, will indicate an
interval in one of a task's eight realtiae software clocks; these inter­
vals are eventually transaitted to RTITIBE from these clocks, when the
systea issues SBTTR.

TASK TIBB BAIBTKlABCE

Task time statistics are maintained in each task's extended task sta­
tus index (ITSI), which includes these time cells: ITSCTI, ITSLTS,
ITSATI, and ITSUTI.

ITSC~

ITSLTS

ITSATI

ITSUTI

is a doubleword that indicates the length of time in a task's
time slice when the task is initially dispatched. If the task
is interrupted before time-slice end, this tiae cell contains
an indication of tiae reaaining in the task's tiae slice. The
time is aaintained as microseconds

is a doubleword that contains a value representing a task's
total remaining time-slice allotment whenever it is resche­
duled. The value reaains constant while the task is executing;
it is reset whenever the task is re-scheduled. This time is
maintained as microseconds.

is a doubleword that contains a value representing accuaulated
task CPU tiae, up to the time of the task's last interruption.
It is calculated as the running sua of ITSLTS minus ITSCTI,
then added to what's already in ITSATI. ITSATI is aaintained
in aicroseconds.

is a doubleword that contains a value representing a task-tiae
interval after which a task's execution is to be interrupted.

Section ,: Systea Program.er Pacilities 49

This field is set by prograamers to aonitor execution of their
prograas. The time is maintained in microseconds.

TlftEKEEPIBG ftACRO INSTRUCTIOHS

System-defined macro instructions can be used to set and read time
cells. Some of these macro instructions (discussed below) are available
to the user programmer; others only to the system programmer. STIftER,
TTIMER, EBCDTIME, SIR, and STEC are meant for use by the user programm­
er; they are described in Assembler User ftacro Instructions; the system
programmerls macro instructions are described in Part 2.

Both task time and realtime intervals can be established by using
system-supplied macro instructions. When these programmed time inter­
vals elapse, the system generates interruptions that tell programmers
the time expired.

User programmers can issue the STIftER macro instruction to establish
as many as eight concurrent realtime intervals and eight concurrent task
time intervals, all of which are recorded in a table in the task monitor
(the table has 16 software clocks for each user). As each interval
elapses, control is returned to the userls program. Although STIftER
sets these 16 software clocks, it is the inner system macro instructions
that place these clock values in the appropriate system time cells.
Thus, the system macro instruction SETTU places task intervals into
XTSUTI; SETTR (from virtual storage) and SETTIftER (from resident
storage) place realtime intervals into RTITlftE in the realtiae interval
table (DSECT CHARTI) in the resident supervisor. User programmers can
also use the SIR and STEC macro instructions to establish these task
time or realtime intervals.

The user macro instruction TTI!ER can be used to test
software-timer intervals previously set by a programmer.
to the programmer indicates either the time remaining in
timer he is testing, or that the time has expired.

any of the 16
Data returned

the interval

The TSEHD system macro instruction, which causes a task to be placed
in the delay state, sets a realtime interval, after which the task viII
be redispatched if no other interruption occurs. This realtime interval
is equal to a system-defined value, known as "delay tiae," recorded in
the system table field SYSDLY. The system issues SETTI!ER to place this
interval in RTITI!E; the CABCL system macro instruction can be used to
cancel an interval established by SETTI!ER.

Reading System Time

The realtime setting that indicates the current instant in microsec­
onds can be determined by issuing the REnTI! system macro instruction or
the EBCDTI!E user macro instruction.

REDTI! causes the TOD clock to be converted to microseconds and added
to SYSYftD and SYSTOD; it causes the resulting double-precision fixed­
point number to be returned in registers 0 and 1. This is the number of
elapsed microseconds since ~arch 1, 1900.

EBCDTIKE allows users to specify the format in which they want the
realtime returned to them as: years, months, days, hours, minutes,
seconds, or tenths or hundredths of seconds.

The system macro instruction XTRXTS extracts the values set in the
time cells:

50

XTSUTI (explained above under "Task Time Maintenance.")
XTSATI (explained above under "Task Time Kaintenance.")

XTSETI (a field indicating the estimated run time for a task. It
must be set using the SETXTS system macro instruction~)

Another system macro instruction r XTRTKr extracts a task's accumu­
lated CPU timer in milliseconds.

GENERALIZED TRACE FACILITY

The Generalized Trace Facility (GTF) allows hardware and software
maintenance personnel to dynamically record hardware and software
events.

Using G7F r personnel can record, for later analysis r all interrupts
from a particular device or group of devices r the SVCs and/or program
checks caused by a specific task or all tasks r or entries into RTAKs
device modules for a particular device or group of devices or network
addresses.

If the interrupt rate is too high for ordinary recording, or if only
the interrupts for a particular event are wanted, The user can Gynamic­
ally set up a circular log in the supervisor and after the event has oc­
curred, have the log returned to the task and displayed.

I On a high interrupt rate device like the 2305 drum, or attempting to
, trace all disk I/O with 100 tasks running r no attempt should be made to
, write all the trace records to a data set, because not only will this
I degrade performance considerably, but it may cause a system failure due
, to insufficient storage; although GTP will automatically turn off a
, trace if there is insufficient space for a recording block, it is possi­
I ble to satisfy GTF requests and then have a condition wherein there is
I not enough space to satsify the next system request.

Once a trace is st.arted, it can be ended in one of four ways:

1. the user issues a conutland to end the trace.

2. the task being traced abends.

3. the trace owner's task abends or logs off.

4. not enough storage exists to allocate a trace block.

OPERATION OF THE GTP FACILI1'Y

The system programmer or maintenance person enters the GTF command
specifying the wanted options and a data set name to store the trace
records. There is a limit of 255 concurrent GTP reqeusts tor the system
and only one GTP can be active against a resource at anyone time. Two
or more GTF requests against the same SDA, for I/O r are not allowed.

The GTF module, CZNCA, validates the options, defines and opens the
output data setr if one has been requested, SIRs for the trace external
interrupt, and issues the trace SVC to the supervisor to activate the
trace.

I Tne supervisor GTF module, CEDTRACE, validates the trace request
I input and asssigns a trace ID for the request. CEDTRACE sets the trace
r flags in the control blocks associated with the resource to be traced,
I allocates and builds the trace blocks and returns a positive response to
, the task.

As each trace block is filled, the supervisor will queue the block on
the task as an external interrupt using the interrupt code specified in

Section 4: System Programmer Facilities 51

I
r ,
I
J
I
t

the trace request. The GTF external interrupt routine wi1l receive con­
trol and writes the block into the output data set. Each block from the
supervisor has a trace ID and a sequence number in it. There are also
flags set in the header specifying the trace status and if ended, the
reason for ending. The GTF moduele does not consider the tracae ended
until receipt of the stopped flag from the supervisor.

GTF BLOCK AND RECORD FORMAT

The G~F block built by the supervisor is 2048 bytes in length and
contains a 32 byte header. The first 16 bytes are used as the MCB head­
er when the block is shipped to the task. The next 16 bytes are the
trace tlock header and contain pointers to the first, next and last
entry position within the block. Following the pointers is one byte of
flags, a one byte trace ID and a halfword block sequence number.

Each GTF entry within a block is a fixed length of 48 bytes. The
first 16 bytes of an entry are a header supplied by the supervisor trace
module. The header contains a time stamp, CPU address, record length,
AID and FID bytes, and an event ID. The remaining 32 bytes are trace
dependent.

For a more detailed description of the trace block, see DSECT CHATRAC

The assigned event IDs are as follows:

System .ide Event IDS

X'0018' external interrupt event
X'0020' - SVC interrupt event
X'0028 1 program check interrupt
X'0038' - I/O interrupt event
X '0 19C' - SIO event
X'O 19D 1 - 'l'IO event
X'019B' HIO event

RTA tl event IDs

X1 8001' - PIU read completion
X'8002 1 - PIU write completion
XIB003' - RTAM module entry

Tas k event IDs

- task RTA~ interrupt
task external interrupt

event

X'4000'
X '4 0 18'
X'4028 1

X 14 03a'
- task extended program interrupt
- task I/O interrupt entry

TIME CONVERSION ROUTINE

A number of privileged conversion routines are ?rovided to enable you
to convert time data, in any of several fornats, into a form you can use
with th.e macro instructions SETTR and SETTU. Two types of conversions
are performed: type-T, used for operations with the SETTO macro in­
struction, yields a 32-bit Dinary time interval in microseconds; type-R,
used for operations with the SETTR macro instruction, yields a 64-bit
binary time interval in microseconds elapsed since March 1, 1900 (see
"Timekeeping"). Two J.ifferent forllis of input data may be used for type­
T conversion (0 and 1); six forms (O-S) may be used for type-R. Figure
10 summarizes the different input forms.

52

• i

IInput Data Code I Input Fora I
I
I 0
I
I
I ,
I 1
I ,
I 2
I
I
I
I
, 3

I ,
I
I 4 ,
J
I
, 5
I

I ,
,Time interval in hours (h), minutes (m), seconds (5), I
,tenths (t), and hundredths (h) of seconds; eight BCD ,
I characters: hhmassth I
I I , ,
ITime interval in milliseconds; 32-bit binary number I
I , , ,
ITime of day in hours (h), minutes ~), seconds (s), I
(tenths (t), and hundredths (h) of seconds; eight BCD ,
,characters: hhmmssth ,
I I
, I
IDay of week; four left-justified BCD characters: ,
tMOND, TUES, WEDN, THUR, FRID, SATU, SUND t
I I , ,
IDay of month; two left-justified BCD characters: I
100 through 31 ,
I I
I ,
IDay of year; eight left-justified packed decimal I
I characters: OOyyddd+ ,

•
Figure 10. Input formats accepted by the time conversion routine

To use the ti&e conversion routine, you must put a pointer to a pa­
rameter list in register 1, the return address in register 14, and the
address of the time conversion routine in register 15. It looks like
this:

LA 1,PARAll POINTER TO PARA~ETER LIST IN

* REGISTER 1
L 15,=" (CZCJXA) ADDRESS OF CONVERSION ROUTINE
BASR 14,15 GO THERE
RETURN

PARAM DC C'l' FORM OF INPUT DATA - 0,1,2,3,4,

* OR 5
DC CIT' TYPE OF CONVERSION T OR R
DC R'O • HOrr USED
DC D'DATA' INPUT DATA PLACED HERE - RESULTS

* FOUND HERE

After completing the requested conversion, the time conversion rou­
tine returns control to the address found in register 14. The results
are placed, right-aligned, in the second and third words of the parame­
ter list.

!2!g: The SETTU macro instruction expects a tiae value in milliseconds;
if you Use the time conversion routine to get a time interval (type-T),
you must divide the result by 1000 to convert it to milliseconds.

Figure 11 lists the meaning of the results obtained from the various
conversions.

Section 4: System Programmer Facilities 52.1

iii
,Conversion, Result ,
I , ,

TO ,Time interval in microseconds ,
I ,

T1 ITime interval in microseconds I
, I

RO ICurrent time + input time interYal in microseconds I
Ifrom March " 1900 I
I I

R1 ,Current time + input time interval in microseconds I
,from March 1, 1900 ,
, I

R2 ,Next occurrence of input time in microseconds from ,
,March 1, 1900 I , , ,

I R3 ,Next occurrence of day of week in microseconds from I
I ,Karch 1, 1900 I
I , J
I R4 ,Next occurrence of day of month in microseconds from I
, ,!larch 1, 1900 I
I I I
I R5 ,Next occurrence of day of year in microseconds from ,
, IMarch 1, 1900 I L· __________ ~!~. __ ~

Pigure 1,. Results of time conversion

EVALUATIVG SYSTEB STATISTICAL RECORDING FIELDS

The internal relatibnships that characterize the operation of TSS
system programs and user load are difficult to evaluate~ To help in an
evaluation of these relationships, data pertaining to the system and in­
dividual tasks are dynamically maintained by TSS. These data include,
among others, paging counts, real memory utilization, software queue
processor times, CPU utilization, and scheduling counters. These data
indicate, among other things, the CPU workload, I/O load balancing,
schedule table efficiency, and individual task loads.

Two classes of statistics are collected; gloval system wide informa­
tion and local task oriented data. These statistics are recorded as the
system is running in fields located in various system tables and
modules~ Bany of the statistics are recorded in the system status table
(CHBSST) in main storage. Additional statistics are dynamically main­
tained in the fields indicated in three dsects; CHAPXS, CHASTV, and
CHATSX.

Analysis of System Status Statistics

The statistics, maintained dynamically by the system, are available
to the system programmer through use of the statistics sampling macro
instruction SAMPLE. Execution of this macro instruction causes statist­
ical data to be collected and recorded in the virtual storage page in

52.2

which SAMPLE is issued. Systea prograaaers can then write their own
data ana1ysis prograas to eva1uate the data. Proper ana1ysis a1low sys­
tem managers and programmers to evaluate the workloads being processed
at their insta1lation in re1ation to the ~SS environment.

Once statistics have been analyzed, the system programmer can rein­
itia1ize statistica1 data fields in the system to zero by issuing the
ZEROSST aacro instruotion. Subsequent dynamic recording of statistics
will reflect the system's performance since the time at which ZEROSST
was issued rather than since startup.

ADJUSTING ASSEftBLER CORSTARTS

The TSS Asseabler normally secures working space for internal use and
for producing output information. Occasionally, source programs cause
an overflow of one or more of these work areas. This occurs only when
an exceptionally large program (for example, an application prograa.er's
own language-processing program) is being assembled. The syabols asso­
ciated with six of these work areas have been defined as entry points to
allow 0 and P authority prograa.ers to alter (via use of VSS) the size
of these work areas when such a prograa is assemb1ed. Thus, the fu11-
word constants at these entry points aay be altered prior to an assembly
to increase sizes of the work areas for which the assembler will issue
GET!AIB aacro instructions.

The constants must not be altered once an asseably has started; in
such cases, the assembler's virtual storage allocation routine wi11
issue a comp1etion code 1 ABEBD when it detects an attempt to free more
work area than was assigned by GETftAIB. The fullword constants, the
work areas to which they apply, and several possible causes for their
being overflowed are indicated in Figure 12.

CAUTIOB: Since these constants reside in public, read-only code, they
aust not be altered if any other user is assembling.

ALTERIBG COBSTABTS

When an asseably is terainated because of work area overflows, the
diagnostic aessage issued by the assembler names the work area that
overflowed. The authorized programmer can then use a SET command to al­
ter the constant associated with the named work area. lor exaap1e, if a
diagnostic message indicates the PftD work area overflowed, the programm­
er might issue:

SE~ CEVP£D. (,4)=4

This vou1d increase from two to four the nuaber of pages that would
be added to the number of text pages divided by eight.

ESTI!ATIBG WORK AREA STORAGE REQUIREftEBTS

A knowledge of PKD and ISD control b10ck layouts and the sizes of
entries created for external references ~Els), address constants, etc.,
may be helpful when ana1yzing PftD or ISD york area overflows. System
prograaaers can estiaate the nuaber of additional pages based on the
entry size au1tip1ied by the nuaber of additional entries required. The
DSECTs CHATDY and CHAISD, describe coaponents for the PftD and ISD and
aay aid in deteraining the storage requirements.

section 4: System Programmer laci1ities 53

iii i ,
I constant. Work Area ,Nor.al Size ,Reasons for Overflov/Coaments ,
I' 'I ,
I CEVWl ,Work 1 ,100 pages IToo aany USIBG or DROP stateaents I
" I I I
I I I tInsufficient rooa for 2-word crossl
'I r f reference i teas ,
I I 'I ,
I I I ,Nesting of lIacro calls causes gen-I
f I , feration of aacro level diction- ,
I I , laries that required too auch spacel
I I " f
I CEVW2 ,Work 2 1255 pages IToo aany syabols in naae fields I
r I " ,
'I , ,Too aany source sta teaents ,
" f' , 'I f ,Too aany aaero-generated ,
I I I I stateaents I
'I 'I ,
I I , I Too aany continued lines ,

" I I f I' , ,Insufficient vork space for build-I
" I ling control section dictionary ,

I' " I I CEVW3 ,Work 3 120 pages perlInsufficient virtual storage I
" ,increment, ,available for any request; ,
" 'more avail- I increasing size of 20 viII ,
" I able as ,nor.ally not help. Unload all t
I I ,needed to ,modules possible: reassemble f
" I hold source I ,
I f I statements IAssembler's VftTABLB filled up. ,
I If' Increase size from 20 pages per I
I I t I increment. I
I I I I ,
f CEVXL ,Bxternal Bamel2 pages ,Bumber of control sections and ,
I I (BXT BAft) I ,ENTRY operands more than 1022 I
, IList Area I I ,
I' " ,
, CEVPftD IPftD Work Areal2 pages pluslToo many BBTRY or EXTRI operands I
f ,(residual ,(number of Ivith textless or lov text module f
I ,count) ,text pages ,(TEXT=instructions or constants) I
I I Idivided by I I
'I ,8), ,
I' " , f CBVISD ,ISD Work Area,O pages pluslThe value of CEVW2 too small to I
I I Inumber of lcontain ISD I
" t pages in I ,
" ,Work 2 ,Too much USIBG/DROP inforaation I
I I I land symbolic .ame inforaation for I
" I ,work area , , .
Figure 12. Asseabler constants, changeable for large assemblies

RELEASING IBTERLOCKS AT ABEND

Kany interlocks in shared tables (coded in TSS system programs) are
released automatically by syste. routines (for example, the RESTBL head­
er) if an abnoraal end (ABEND) occurs. Hovever, system progra •• ers .ay
set locks on shared tables that are not auto.atically released when
their task is abnormally terminated. In such cases, other tasks
attempting to use these tables are prevented fro. doing so because of

interlocks left on the shared table by the abnormally ended task. To
eliminate this problem, system programmers aust establish entries in the
ABEND interlock release (AIR) table for all interlocks they set that
have no predefined systea release procedure. These entries contain the
y- and R-type address constants to a routine (that must also be coded by
the system programmer) which is to release the interlock in case of an
ABEND. For interlocks of this type, AIR table entries must be created
before locking the interlock byte. A suggested procedure for creating
an AIR table entry is indicated below:

IRSPSECT PSECT
LOCKSW DC x·oo· INTERLOCK SWITCH BEING OSED BY

SYSTEM PROGRAMMER TO LOCK
SHARED TABLE:

00 - UNLOCKED
FF - LOCKED

LOCKLOG LOGVLOCK

Sil DC x·oo· AIR TABLE ENTRY SWITCH
00 - NO AIR ENTRY EXISTS
FF - AIR ENTRY EXISTS

AIRLST CALL, (IRSPSECT,IRSRTNE,OSEDATA,) ,MF=L
+ DC V (IRSPSECT)
+ DC R (IRSRTNE)
+ DC A (USEDATA)

USEDATA DS D

AIR SET

SKIP

CSECT

CLI
BNE
CALL

MV!

SW,X'OO'
SKIP
CZACS1,MF=(E,AIRLST)

SW,X'FPt

SETVLOCK LOCKSW,LOCKLOG

OPNVLOCK LOCK LOG

CALL CZACS2,MF=(E,AIRLST)

MYI

POINTER TO USER DATA

CZACS SCRATCHPAD

SYSTEM PROGRAMMER's ROUTINE II
WHICH INTERLOCK (for example,
LOCKSW) IS TO BE SET ON

HAS CZCACS1 BEEN CALLED
YES, AlB ENTRY ALREADY EXISTS
NO, CREATE AIR ENTRY (i.e.,
CALL ROUTINE THAT CHAINS ENTRY
FROM AIRSET's PSECT INTO AIR
TABLE)
SET AIR SWITCH TO INDICATE
ENTRY EXISTS

ONCE HAVING SET AIR ENTRY, SET
INTERLOCK OBI
BOW IF YOUR TASK IS ABENDED,
LOCKSW WILL BE AUTO~ATICALLY
RELEASED BY THE ROUTINE YOU
SPECIFIED IN AIRLST

The system programmer would also include the following steps in the
interlock release routine:

IRSRTNE Ell TRY

section 4: System Programmer Facilities 55

CLRVLOCK LOCKLOG

MVI SW,X'OO'

RETURN

CHECK AND RESET LOCKSW BYTE

TURN AIR SWITCH OFF SO CZACSl
WILL BE CALLED AGAIN IF ROU­
TINE IS ENTERED AT SUBSEQUENT
ABEND
RETURN TO CALLER

The AIR entry is automatically released by the system When ABE!D dis­
patches the system programmer's interlock release routine.

PUBLIC POOLS -- GENERAL DESCRIPTION

I The purpose of public pools in TSS is to divide public storage
I Tolumes and uses into logical groups. These logical groups, or pools,
I consist of one or more volumes with consecutive relative volume numbers
I named by an eight-character poolid. One pool, called the system pool,
I is required at system startup time. All other pools are dynamically
r added and deleted from a runniug system.

I Each pool is a self-contained entity. All datasets necessary for a
I pool are containe~ within the pool. Users are joined to a specific
I pool, rather than to a TSS system, and may own datasets only within that
'pool. Datasets may, however, be shared across pools. A special user in
I each pool, called the pre-joined user owns all the pool's system data-
I sets such as: SYSCAT, SYSUSE, and SYS&WQ. The pre-joined user also has
I the responsibility for joining and quitting users to his/her pool and
I for the maintenance of the pool. TSS***** is considered the pre-joined
I user for the system pool.

The structured public storage allows the separation of users and
their data into reasonably-sized, independent groups, divorced from any
particul.ar TSS system. Groups of users lIay be moved from one '1:SS system
to another. New releases of TSS and PTFs affect only the system pool.

I Public storage backup and ~aintenance are performed on a pool rather
I than the entire system. Catastrophic DASD failure is localized to one
I pool. Since each pool contains a SYSCAT, catalog paging bottlGnecks are
,reduced. Special purpose pools for benchmarks and system testing may be
J created.

The volume label of each volume in a pool contains the eight­
character poolid and a flag to indicate that it is part of either a sys­
tem or a public pool. The volume label of the first volume in a pool
also conatins the pre-joined userid and pointers to SYSCAT, SYSSVCT, ana
SYSVOL datasets. SYSCAT is the system catalog for the pool; SYSSVCT is
the index of user catalogs for the pool; and SYSVOL is a list of all
volumes that make up the pool. Each pool also contains SYSUSE, SYSBWQ,
and SYSPLIB datasets. These datasets are owned by the pre-joined user
and are normally contained on the first volume of a pool. SYSPLIB is a
pool oriented VP dataset that is data deffed betweenUSELIB and SYSLIB.
It is used to contain object modules related to a particular pool.

I Several virtual memory tables are used to control the active pools on
f a system. These tables are updated during ADDPOOL and DELPOOL process­
ring. The active pool index (CHBAPI) contains the status and control
I block pointers for all pools currently known to the system. The pool
, volume table (CHBPVT) cobtains a list of volu~es for each pool and is
• used to control space allocation for datasets. The userid table is used
I to determine the poolid for a specific userid. Entries in the virtual
, batch work queue are added from a poolls SYSBWQ dataset during ADDPOOL
, processing and deleted during DELPOOL processing.

56

CONVERTI NG '1'0 A POOL SYSTZa

To convert an existi:1g 'r-S5 system into a bingle pool system, the vol·­
ume labels of all public volUliles must be updated to conatin the new }>ool
related in~ormation. Also, the SYSVOL datase~ ~ust be built on the
first volume. This is a 'one-time' process and is performed by the
CNV'fPOOL colllmand. The modifications to the vo:;'ume labels ano. the SYSVOL
dataset do not affect the operation of pre-pool systems.

ADDING AJ~ DEL~TING POOLS

The startup process automatically ac..ds the sjstem pool; all other
pools must be addej Ly the system operator. ~he shutdown process
a.eletes all active pools including tt.e system pool; pools other than the
system pool !IIay be deleted by the sYf'tf:m operator. The cOlimancs ADDPOOL
and DELPOOL provide this facility.

'the ADDPOOL command provides a means by which a pool can be added to
the systeffi, or put into a maintenance status. ~aintenance status
restricts all users in the pool from logging on exce?t the pre-joined
user. This ~nables the pre-joined user to perform ~ainttinance and bac­
kup procedures without interierence from other users. A pool ~ay be
removed f~om maintenance status by issuing another ~DDPOOL command
(~hich adds the pool to the system) or by issuing a lJELPOOl. co&;mand
(_hicn deletes the pool frOlft the systeJr.) •

I The DELPOOL com~and viII oDtionally ~orce active users oft a pool.
I If users are not forced, the pool is marked in ',lelete status·. This
, dE:lete status prevents neW users in the pool froll. logging on, and pre-
1 vents shared ~~tasets t~om being opened by users in another pool. A
I pool may be removed frollt delete status by issuing an ADDPOOL commanil.
, To delete a pool already in delete statlls, another DELPOOL command must
, be issue d.

bUILDING A :EW POOL

, A ne~ OLe-volume pool is built from an empty private volume by the
I BLDPOOL comilland using the r.ODE=N£W parameter. with userid. TSS***** the
J BLDPOOI. co~mand builds the SYSVOL dataset and empty datasets for SYS-
t PLIB, SY Si31NQ, and SYSCAT. 'fhe datasets SY SUSE and S~SSVCT are built and
I include entries for th ?re-joined user. Also, a USEhCAT for the pre-
I joined user containing catalog entries for the above datasets is con-
I structea. Finally. the volume label is modified to contain the pool in­
I formation. Once built, a new pool may be added to a system with the
I ADDl'OOL command. Users may then be joined to t}-,e pool by logging on th~,
I pre-joined us~r and issuing the JOIN command.

ADDING VOLUMES TO EXISTIJG POOLS

A new volume ~ay be aQded to an existing pool by the BLDPOOL command
using the MODE=ADD parameter with the pre-joined userid. The BLDPOOL
command updates the pool's SYSiOL dataset to include the new volume and
modifies the volume label of the new volume to contain the pool informa­
tion. The new volume viII become available ror storage allocation the
next tim~ the pool is deleted and then added ~o the system. Af~er the
new volume has been deleted-added to the system, storage allocation will
occur on this volume after the next shutdown-startup sequence.

Section 4: System Programmer Facilities 56~1

TNL GN20-4106 (01 Julv 80) to GC28-2008-5

l'ARTITIOliHG Ail EXISTHG ?OOL

The process vf partitioning an existing pool into two separate iUG€:­
pend~nt pools involves several steps. First, the breakpoint (tt8 rela­
tive volume number of the tirht volume of the new pool) must he deter­
ained. Also, it must he determined that the available disk storage of
each of ~he two pools must be large enough to contain all the datasets
owned by the users that will eventually belong to each pool.

Secone, once the ~reakpoint is deter~ined, external storage alloca­
tion for each user of the existing pool is restricted to one of the two
new pools by the SETRV~ command; this establishes the pool to which each
user v1l1 eventually belong. Allocation for new datasets and expansion
of old datasets will only be made within the volume range specified by
the SETRVt; command.

?hird, to ensure that users do not own datasets outside the volume
range speci~ied in the SETRVN command, a ~OVEUSER coamand must be issued
for each user in the existing pool. MOVEUSER will check each dataset
including USERCAT for a user and copy the dataset it any part of it is
outsid~ the volume range. The sharing infor$ation and the time and date
stamp are ~aintained. The volume range and ~OVEOSER status information
are kept in the SYSSVCT dataset.

Fourth, ~he BLDPOOL command with a MODE=PART parameter is issued by
the pre-joined user. This co~mand will test each user in the existing
pool for relative volume numher range consistency a.nd tmVEUSE;R status.
This command is canceled if the relative volume ranqe of any user over­
laps the breakpoint, or if any user has not been checked with a MOVEUS:E~R
cOlililand.

The SYSVOL dataset for the new pool is built, and the SYSVOL dataset
of the existing pool is updated. Empty datasets for SYSPLIB, SYSBWQ,
and SYSCAT dre constructed £or the new pool. The datasets SYSUSE and
SYSSVCT are built and include the new pool's pre-joined user. A OSERCA'l'
tor the new pre-joined user is built to contain catalog entries for the
above da tasets.

~he existing pool's SYSSVCT is read to determine which users are to
be included in the new pool and both the existing and new SYSSVCT and
SISUSE datasets are updated accordingly.

Finally, the volu~e labels of the volumes in the new pool are updat­
ed. ~he new pool may now be added to the system by first deleting the
existing pool and then adding the two 'new pools'.

f!AIN'IENA liCE

Public storage maintenance is nov perfor~ed on a pool basis rather
than on a system basis. SinCe pools, including the system pool, are in­
dependent of eacl other, dump-restore of all volumes in a particular
pool ensures dataset/catalog consistency. Comllands such as I'A'IFIX oper­
ate on a single pool at a time. A new command, DSCBS, replaces the CPS,
LPDS, CVY, and RPS commands, and operates on a pool basis. The command
BLDSVCT is provided to rebuild SYSSVCT for a pool in maintenance status.
BLDSVCT replaces the SYNCCAT command. A USERCAT may be rebuilt by the
new FIXCAT command.

This item will provide for dseb error analysis and recovery.

56.2

TNL GN204106 (01 July SO) to GC2S-200S-5

In order to acco~plish this 2 new types of DSCB's have been defined,
a tyue 2 format "E", :md a new format toG". The type 2 "E" cont"lins the
same dscb type code X'Ol' but is marked as a type 2 by a bit in the
dsefla field of the dseb. The new "G" dscb contains the code X'03' in
the dseb tyoe field.

The EP~s
redefined.

srvxpppp,

(external Da ge entries)
The new format is:

for both new ~scbs have also been

s
rv
x
pppp

slot O-f
relative volume number a-ff
zero
relative page number O-ffff

In addition, the following new fields have been added to the "G" dscb
to aid in dscb integrity and recoverablity:

DSGSEO(I.I) - dseb Eeot!~nee counter 1,2,3",n
DSGF~TE (4) - ~>ointer to the format "E" dscb
DSGC1'EP"S (1) - count of epes in the dscb
DSGMlIX (1) - maximum number of epes this dscb D'.av contain

"'he format "E" pointer cont'3.ined in the format "Gil dscb is used as an
anchor to the forma t "En. The secruence counter is usea to indicate
where in the chain a dscb slot beionas. A new command "FIXDSCE" (see
commands section) has been written to analyze dset slots and their
contents, and attempt recovery if errors are detected. This command can
only analyze dscb chains in the new format.

CZCEW (write dseb) has been rewritten to create only new format
dscbs. However, as released CZCEW will link to CZCEV (the 011 write
dseb routine) and continue to create dsebs in the 010 format.

creation of new or old dscbs is controlled by the followina patcheE:

SET CZCEfoIALL

SET CZCEWNEW

X'4700' allow new dseb creation
1'47fO' create old format dsebs for all datasets

the above patch will cause new format dscbs to be
converted back to old format dsebs.

X·4700· create new dsebs for all datasets
X'4770' create new dscbs for new dat'3.sets only.

VALIDATING DSCB SLOTS

System t>rogrammers occasionally find it necessary to llIodify or Valid­
ate DSCB slots~ The checksum is used to validate DSCB slots.

If a programmer reads in (via a SETXP system macro instruction) a
page of DSCBs and locates the DSCB he wants to examine, he can verify
that the DSCB was read in correctly by executing the checksum procedure
described below. He co~put~s the cheCksum of that DSCil and com?ares it
with the checksum value already recorded in bytes 255 and 256 (U.e chec­
ksum field) of that DseE. When the checksums match, the DSCB is assumed
valid. If they do not match, that DSCE slot is assumed to be erroneous.
~he syste~ programmer shOUld then attempt to recover, as far as possi­
ble, from the cheCksum error. The system service routine, DSCBREr. (see
system Service Routines). can be used to a ttellpt this recovery. The
DSCB page can be written on external storage through use of the PGOOT
sy stem II aero instruction.

Section 4: System Programmer Facilities 56.3

TNL GN20-4106 (01 July 80) to GC28-2008-S

Whenever a system progra.~er modifies a DSCB, he must recompute the
checksum value, record it in the DSCB checksum field, and rewrite the
DSCB page to external storage.

Checksum Procedure

The following standara procedure is used tor computing the checksum
values for DSCB slots. The first 63 word.s of the DSCB are summed and
the su. cOJllpleLlentea. The !1igh-order half (bits 0-15) of the result is
then added to the lov-order half (bits 16-31) and the lov-order half of
the result is placed in the last halfword (bytes 255 and 256) of the
ilSCB.

This sallple code illustrates 'U.e checksum procedure. Upon entry.
register 8 contains the DSCE slot number. and CKAD contains the virtual
storage address of the DScn work page.

SLL RS,a SLOT NO. *25&
AL I(8,CKAD + ADDR. OF DSCB PAGE.
LA R14,244 SE7 COUNT AND
L R15,243 (R8l LOAD LAST liaRD

CKSUM AL R15 .. 0 (R14 ,R3) ADD IN PPEVIOUS WORD AND
S R14,CO.NCK REDUCE WORD COUNTER BY ONE.
BC 11 rCKSU~ IF NOT FINISHED, CONTI!fUE.
LCR R15,.R15 COl".PLEMENT SUM AHD

CONCK
CKS
CKSX
CKAD

'STH
SBL
AL

R15,CKS'X
B15,16
R15,CKS

STORE LOW-ORDER HALF.
SHIFT DOWN HI-ORDER HALF,
ADD IR LOW-oRDER HALF AND
PERFORft STH OR CH.

IP DSCB WAS ftODIFIED, STORE HEW CHECKSUH VALUE
STH R15,254 (B8) STORE RESULT IN DSCB.

IP SIMPLY VERIPYIHG DSCB WAS READ-IN CORRECTLY
CH R15,254(R8) CORPARE WITH EXITING CHECKSUM

DC
DC
DS
DS

P'4'
H'O'
H
P

COUNT DECREMENT CORSTART
SUMftATION WORD

DSCB WORK PAGE ADDRESS

YIRTUAL MEMORY SUPERVISOR CALL INSTRUCTIONS

Virtual. lIemory supervisor call.s are those SVCs whose processing pro­
graas are in virtual storage; these STCs use operand codes 0 through
127. Codes 0 through 99 are reserved for nonprivileged prograa defined
services while codes 100 through 121 are reserved for privileged prograa
defined services.

Hany of these SVCs can be executed only from nonprivileged code; if a
privileged aodule atteapts to execute thea, diagnostic aessages viII be
issued. When a nonprivileged supervisor call is issued, the supervisor
passes it back to the task aonitor as a task-SVC; no task program inter­
ruptions are generated. The task monitor transfers control to the ap­
propriate privileged (or nonprivileged) prograa for processing.

Ronprivileged prograas can neither read, vrite, nor transfer control
to privileged programs directly: soae fora of interruption (for example,
the interruption caused by execution of an SVC instruction) is required.

The Virtual Memory SVCs described in this publication are listed in
Appendix B.

REAL BEIIOR! SUPERVISOR CALL IVSTRUCTIORS

The SVC queue processor controls the execution of SYCs 128 through
255. Codes 128 through 143 are reserved for installation use, codes 144
through 169 are reserved for TSSS, and codes 110 through 255 are resi­
dent supervisor STCs.

system programaers (P or 0) may issue all resident supervisor SiCs
(110-255). Any prograa operating in the privileged-program state (VPSW
p-bit = 0) -- even if being run by a user-prograamer -- may issue all
the Real Hemory SVCs. The Real Memory SVCs described in this publica­
tion are l.isted in Appendix B.

If a nonprivil.eged program being run by a user-progra~mer attempts to
issue a Real. Hemory supervisor cal.l, the resident supervisor may create
an extended program interrupts. When the task monitor receives the in­
terruption, it calls DIAGNO. Generally, supervisor calls that-can dis­
rupt the operation of TSS are privileged. Supervisor call.s that alloy
access to private information are also privileged.

Section 4: System Programmer Facilities 57

usually, the operation requested by a Real Memory SVC is a synch­
ronous one which is coapleted by the resident supervisor before it
returns control to the task that issued the STC. The principal excep­
tion to this is lOCAL, an asynchronous STC, which is processed concur­
rently with the issuing task.

Task program interruptions, which aay result from improper use of
these macro instructions, can be found in Appendix C.

ACCESSIIG SYSTEM DATA SETS

Access to the system catalog and the user table is restricted to sys­
tem prograamers having an authority code of 0 and to certain privileged
routines, such as catalog service routines. Access to all other system
data sets is available to system programaers having either authority
code 0 or P.

SYSER DUMP

To facilitate your monitoring of the system, dumps can be taken to
show real or virtual storage as they existed at the tiae an error was
detected. When the system error processor is called by the BRROR macro
instruction (SVC 254) or the SYSBR macro instruction (SVC 228), a mes­
sage is displayed at the operator's terminal to record the error. The
system then enters the wait state and the operator uses the support sys­
tea to take the duap and, if hard copy is desired, to print it. lfter
the dump has been taken and control returned to the system, processing
continues as described under the ERROR and SYSER macro instructions.

If the call to the system error processor came from main storage
(real core) via the ERROR macro instruction, the following message is
displayed at the operator's terainal:

(ER> RM m.nn{MINIMAJ}userid TID {CIB) {SYSIB}hh ••
cput SP=SVC PSi
ftODULE: module name base address
REGISTERS: 0 - 15

where the elements have the following meanings:

• (ER> identifies the aessage as being issued by the system error
processor.

• Rft identifies the call as having come from aain storage (real core) •

• mmnn is the four-digit ERROR code that identifies the call (see the
description of the ERROR aacro instruction for an analysis of the
code) •

• (ftII) identifies the error as type-l; (MAJ) identifies the error as
type-2.

• UID=userid identifies the user whose task was running when the error
was detected by means of his eight-character nser identification, or
userid, which is contained in the TSI.

• TID=taskid identifies the task that was running when the error was
detected by aeans of its four-hexadeciaal-digit task identification,
or taskid, which is contained in the TSI.

• C indicates that the task that was running when the error vas
detected was conversational; B that it was nonconversational.

58

TNL GN204106 (01 July 80) to (;C'28-2U08-5

• SYSIN=xxxx specifies the four-hexadeciaal-digit symbolic device
address contained in the TSI.

• hha. indicates the tiae in hours (hh) and ainutes (aa) at which the
error vas detected •

.. CPU= indicates the nuaber of the CPU

• SP=SVC PSi at the time of the SYSER call

.. MODULE: identifies the sodule that issued the SYSER: call and its
base address

• REGISTERS: indicates the contents of general registers 0 - 15 at the
time of the SYSER SVC

If the call to the system error processor came from a privileged rou­
tine in virtual storage via the SYSER macro instruction, the message is
modified slightly and takes the form:

<ER>va aabhcccnn(KIBIKAJ} userid TID{CIB} {SYSIB}hhmm
cput SP=SVC PSi
~ODULE: module name base address
REGISTERS: 0 - lS

where those elements in common with the main storage (Be) message have
the same meaning and the remaining elements have the following meanings:

• VK identifies the call as baving come from virtual storage.

• aabbcccnn is the nine-digit SYSER code that identifies the call (see
the description of the SYSER macro instruction for an analysis of the
code) •

The information identifying the task (UID, TID, SYSIB) is always
valid when the call is fro. virtual storage; it is not necessarily valid
when the call comes from main storage. The task identified in the mes­
sage resulting from a main storage call is the last task dispatched by
the supervisor. However, since the supervisor can perform many func­
tions before dispatching another task, the task names in the message may
not be the one causing the problem * Whether or not the task information
is valid must be determined by the system program.er.

Por conventional tasks, the symbolic device address is that of the
terminal froll which the input stream is being entered, while for noncon­
versational tasks, it is the voluae on which the SYSII data set resides.

For all errors detected in bulk I/O and batch monitor tasks as well
as in the main operator-s task, the user ID is SYSOPERO. To distinguish
among these, you must use the four-hexadecillal-digit task
identification.

r RELIABILITY AIDS

AUTOMATIC ISA REPLACE~FNT

STAFTUP saves the critical portion of the ISA in the supervisor and
the pointer and length of the saved lSI in CHBSYS. CEAA2 and CEAJI
compare the saved ?SWs with the tastrs 151 USWs. If they are not the
sam~, the lSI rebuilder, CEIA22, is called. This permits a task whose

section 4: System Programmer Facilities 59

15A hBS b88n overwritten to have the critical nrotioDs of its ISA
restorei. thus allowino the task to be deleted gracefully; otherwise,
the task would go into an uneniina loop and could not easily be forced
fro~ the systere.

When STARTUP loads the virtual memory modules it aenerates a barrier
page for ~ach LLIST macro in CHBV~ with operands 9A~PIER=PFIVAT~/SHAPED,
putting the pages in private or shared memory as recuested. STAPTUP
will also generate a barrier ryaqe immediately following the ISA clus one
at location 'F~?OOO'.

2EAD ONLY ?AGE OVERWRITE ?ROTFCTION

STARTUP identifies all csects with the read only attribute, and sets
a flaa in the External Paqe Table entry for each read only CSFCT. This
can be overruled by a parameter ROPROT=N in the load list.

If a read only paae is founl to ~e chanae1 by the TSS supervisor a
'8988' real core minor SYSER will be issued. Register 0 will contain
the VMA and reaister 1 will contain the P~A of the changed page (for
shared paaes, register 0 is relative to the start of the shared page
table). After issuing the SYSER the chanqed version of the oaae is
thrown away and a fresh CGPY will be used the next time the pace is
Lefer<-:~nced ..

Two switches in CHBSYS may be used to alter the read only cage
protection. The switches are ·~F· bytes into CHBSYS. The first switch
cP90') .. ill stop all read only nacre protection. The second switch
(X'40') will detect changed read only cages, but will turn off the read
only bit in the XPT and continue with the chanaed paaes.

MODIFYING SYS~EM FACILI~IES

To change TSS. you will probably follow a procedure l.ike this:

1. Define the function to be accomplished.

2. Identify the modules to be added, changed, or deleted.

3. Define the interface of these modules with all other TSS modules.
~he control section dictionaries of modules in the system provide
you with a listing of 'ill the module's external references (REFs)
and external definitions (DRFs). This is a start in deteraining,
Lor example, how an existing module fits into the system. Care
must be exercised, as this information lIay be deceptive. For exam­
ple, an external address can be loaded into a register, and the
register (instead of the external address) can subsequently be re­
ferrod to in the progril:m. You might see this:

BOLD

SNEAKY

60

L
USING
L
L

5, =V (CHSSYS)
CHASYS ,5
6 .. SYSLOW
7,60 (5)

SYSTEM TABLE ADDRESS
FOR~AT OF SYSTEE TABLE
EXTERNAL REFERENCE
EXTERNAL REFERENCE

The symbol CHBSYS is an external symbol and would appear in the
control section's dictionary as an external reference (REF) _ The
reference to SYSLOW would not appear as an external reference,
thoughr and the reference 60(5) isnat even a symbolic reference.
The cross-reference dictionary would show you that state~ent BOLD
refers to the externally defined symbol CRBSIS; .Iou have to figure
out that SNEAKY also refers to it.

Unfortunately, there's no convenient way to Getermine what pro­
grams refer to the external symbols defined in a given program.
The instruction:

ENTRY ABCRJG

allows other programs to refer to the symbol ABCRJG. 1'here is no
guarantee, however, that other programs will actually refer to
ABCRJG. Consequently. if you delete a program frolll 'l'SS" yOll. have
no systematic vay to determine which programs refer to the prog:r:am
you're deleting. You can discover the references only by carefully
studying the function of the program being modified or replaced and
by understanding its role in the overall design.

You might be tempted to list all the extern.al sYllhol dic­
tionaries of all the object modules that make up TSS. as a vay of
determining their interdependencies. This sight be helpful .. but it
is nQt foolproof. SOllie programs set up registers with external ad­
dresses for use by other programs that know what the registers are
supposed to contain. 11. program using registers set up by another
prograll might not contain a single explicit external re£erence.
You might see this:

OBVIOUS L
L
51SB.

6. =V {CHBStS}
15,='1 (SHEAKY)
14,15

LOAD EXTERNAL SYMBOL
LOAD ADDR OF SUBROUTINE
TRANSFER

The subroutine might look like this:

USING *,15 DECLARE BASE
SNEAKY L 8,12(6) HIDDEN EXTERNAL REFERENCE

The external reference to CHBSYS would never show up in t.he exter­
nal dictionary of the program lIlodule containing SNE11.KY 4 Note that
the best coding practice would have been to cover register 6 wi.th a
DSECT for CHASIS and address the fiel.d symbolically.

4. Write the assembler statements.

5. Assemble and test the new or amended modules and store ,them in the
same library.

6. Update the TSS systelll data sets using the pr.ocedures described in
System Generation and Maintenance.

Section 4: System Proqrammer Facilitias 60.1

PROGRAft COII'lROL SYSftft (PCS)

The program cont;rol system (PCS) is not, in general, applicable to
system programs. For example, one PCS command, the CALL command, always
transfers control :i.n the nonprivileged state and, therefore, cannot be
used to transfer cc,ntrol to a privileged program. The privileged system
progra_er (authod.ty code 0) who wishes to directly invoke a privileged
program must do so by including a BPED macro instruction in the program
and issuing a BUILTIV command. (See the BPKD macro instruction for a
full explanation.)

Three PCS coaaands can be used with privileged system programs.
Through the SET cORmand, privileged system programaers can aodify privi­
leged, public control sections; this is the only way in which such con­
trol sections can })e changed froa a terainal. In addition, privileged
public control sections may be examined by the use of the DISPLAY and
DOftP coa.ands. The following discussion covers the precautions you must
observe.

Each D-class us(~r is assigned an authority code by JOIV: code P spe­
cifies a systea progra.mer, 0 specifies a privileged systea program.er,
and code 0 specifies an ordinary user. When someone logs on, this au­
thority code is used to govern the operation of the dynamic loader and
the use of PCS.

The dynamic loader ignores or overrides control section attributes
depending on the programmer's authority code and the library fro. which
the module is loaded. If you are a systea programaer with authority
code P, you can test nonprivileged system programs. These programs can
be dynamically loaded from anyone of the three major libraries. If the
program is loaded :from either JOBLIB or USEllLIB, it is assigned to pri­
vate, read/Vrite storage. The attributes of public, read-only, system,
and privileged are overridden. If it is loaded from SYSLIB, only the
public and read-only attributes are overridden. As a result, you get a
private copy of any module dynamically loaded froa SYSLIB. Privileged
modules so loadedrellain privileged and write/fetch protected. This
provides continued protection for the privileged routine.

Because of your authority code D:

• You may use all PCS comaands in testing your nonprivileged prograas.

• You may use symbolic addressing to display or dump any privileged
CSECTs which have been dynamically loaded.

• You aay display or dump the contents of your task's virtual storage.

If you are a privileged system progra •• er (authority code 0), any aodule
you dynamically load is assigned to private read/Vrite storage. Only
the attributes of public and read-only are overridden by the dynamic
loader.

Your PCS capabilities with respect to privileged programs are the
saae as they are for a nonprivileged system prograa (except that the AT
statement cannot be used in a privileged program). In addition, you can
display, duap, or set ITft. You must exercise extreme caution in setting
IT&, particularly in a multiprocessing environment, since other CPOs may
be using the coding you are setting.

You cannot use other shared coding in the system for PCS testing,
since it is not part of your virtual storage.

The PCS co.mands and their functions are discussed in detail in the
Coa.and system User's Guide.

section 4: system Programmer Facilities 61

TIRE SHARIRG SUPPORT SYSTER (TSSS)

Por a complete definition of TSSS, its com.and language, and its
modes of operation, see Timesharing support System, GC28-2006. The
following discussion is intended only to introduce you to its facilities
and use.

TSSS has two parts, a Resident Support System and a Virtual Support
system. The Resident support system ~SS) is very nearly independent of
TSS; when it is invoked, TSS activity is temporarily suspended and RSS
has access to all real storage and to the virtual storage of all current
tasks. The Virtual Support system (VSS) performs the same basic func­
tions as does RSS; however, it is invoked within an active task, relies
on the TSS resident supervisor, and is time-sliced.

TSSS is a maintenance tool which has been developed for the system
progra.mer (authority code 0 or P). It is independent of machine con­
figuration, and, depending on mode of operation, it may be activated by
pressing the CPU external interruption key, either from a remote termi­
nal 10cation or fro. predetermined points within a task during TSS
execution.

When you are using RSS you are referred to as a Raster System Pro­
gra.mer (RSP); when you are using VSS, you are referred to as a Task
System Program.er (TSP). There can be only one SSP at any given time,
whereas there can be more than one TSP, but only one per task.

TSSS has its own command language; it is constructed from the fo11ow­
ing elements:

Co.mands
Symbols
Literals
Operators

Co •• ands

The following is a list of the co •• ands that you can use with TSSS:

62

• AT - Places a linkage to TSSS at a specific point during TSS execu­
tion. The AT com.and must be followed by at least one other TSSS
com. and, the one that viII be executed vhen the specified location
is reached.

• CALL - Provides access to co •• and statements that are on tape or in
the card reader.

• COLLECT Accuaulates data into a selected data field.

• CORRECT - Joins a TSP to a conversational task.

• DEPINE - Create temporary SP symbols.

• DISCORIECT - Removes TSSS capabilities from a terminal that is dedi­
cated to an SSP or TSP.

• DISPLAY - Displays data at your termina1.

• DUSP - Disp1ays data on an output device. (You must establish the
output device prior to issuing a DORP command by placing its address
in the SDOUT data field.)

• EHD - Terminates the reading of coamand statements fro. a device and
returns control to your termina1.

• IP - Designates that the execution of subsequent commands is
conditional.

• PA'l'CH - Temporarily overlays the contents of a data field. Its pre­
vious contents are saved.

• QUALIFY - Defines or changes the implicit meaning of subsequent
operands.

• REBOTE - Deletes patches, and implanted ATs and their associated
statemen ts.

• RUB - Returns control to TSS without disconnecting your terminal.

• SET Inserts data into a specified data field.

• STOP - Returns control to your terminal after statement execution.

Symbols

You may use the following types of symbols with 'rSSS:

• External Symbols - Refers to the actual (real or virtual) storage
address of a da.ta element.

• System Symbols - Refers to and qualifies storage areas. The first
character of ea,ch system symbol is a $.

• SP Symbols - Defines and assigns a symbolic name to a data field.
The data field defined by an SP symbol may exist in the system pro­
grammer-s working storage or it may be a TSS data field.

Literals

You may use the following types of literals in the TSSS command
language:

Decimal Integer
Hexadecimal
Character

Operators

You may use the following types of operators in TSSS command state­
ment operands:

Arithmetic
Relational
Boolean

TERMINAL ACCESS ftr.rHOD ('1'AftII)

The following is a short overview of what TAftII is and how it is
organized.

What is TAIUI?

TABII is a package of modularly designed programs for providing a
user-directed, device-independent, terainal-computer interface. It pro­
vides both device dependent and independent functions for system and ap­
plication programs .•

TAMIl provides il system progra.mer with a concise and well-defined
interface for addillg both new devices and/or new device function.

Section 4: System Programmer Pacilities 63

TA!II was designed and written to do the following for TSS:

(1) Improve human factors by

• providing a user-terminal interface under almost direct con­
trol of the user, through user commands and defaults

• use of buffering on input and output

• better user oriented error recovery; error recovery
interacts with the terminal user to correctly handle recov­
erable errors ..

• increasing communications line reliability due to better
error recovery ..

(2) Increase system performance and throughput (via buffering on
input and output)

(3) Increase maintainability, reliability, and extendability by
separation of function, modularity of code, and table driven
dev ice support ..

TAB!! provides the following basic serYices for the system and appli­
cation prograas, and users:

64

Establish, terminate, and control access between tasks/application
programs and communication lines

!ove data between application programs and co.aunication lines

!aintain a device and data independent interface between task/
application programs and communication lines

Establish and maintain a well-defined interface between device
dependent modules and com.on system provided routines

Permit tasks, application programs and users to share communication
lines, controllers, and terainals

Permit monitoring and altering of the teleco.aunications network

Handle device dependent and independent requests interchangeably

Complete input and output buffering transparent to the application
program but under direct control of the user

Reliability, availability, and serviceability aids to assist in
maintenance and extending device-function support

Place the user's co.munication environ.ent under the user's direct
control

Allow a priority sequence of interrupt processing, by an applica­
tion, for operations to and from a terminal. TAftI! supports the
following types of interrupt processing:

Device 'EXITLIST'
Application program general 'EXITLIST'
SIn & DIR interrupt queuing
PI.DQ work polling capability
'CHECK' capability

ASYRC
ASHC
ASYIC
SYRe
SYIC

APPLICATION
PROGRAM

I COMMAND
TGATWR TGATRDl TGATRD TGATWR SYSTEM

I I I
I I I __ n ______ • __________ .-L-__ --L_--L ___________ _

V
M

R
M

COMMON
SYSTEM
INTERFACE
MODULES

;:;S\ \ / /
r--,
I I
I CZFTA I
I I l __ -.I

/' J \ ~

COMMON TASK
INTERFACE
MODULES

T
A
S
K

r-· ----11
t
I
I
I
I
I
l
I

FORMAT CONTROL MODULES

DEVICE , ACCESS METHOD DEPENDENT

I
I
I
I
J ROUTINES

I I
I I
I I

I
I

I I l __ •. .1.--_____ , _ __--I.-_____ J

-- ---- --- ----- ---- ---- -----

• t •
,

+ t r---" ,.----,
I I I I PUT GET IOREG
ICZFBFP I ICZFTBI QSAM
ICZFATC11 I I VAS
I I I I l ___ J l ___ ~

S~ ,!
. ~ T-------------

r-,
ICEATBl
I I
ISVC I L __ -'

R'rAM

,.-- -.
ICEATA t
I I
I INTERRUPT I L-_____ -'

,.---"
ICEATDI
I I
ISVC I L ____ J

r---,
ICEATC I
I I
ISUBROUI S
I --- I U
ITINES I P
I I E
ICEATE I R L ____ J V

I
S
o
R f--D~~:~ CONrRO=::------l

I t
I (DEVICE AS PERTAINS TO LINE CONTROL) I
I ! I I 1 l Jl. • .L.-____ L-_____ J

---- -------------------------
I I

TERMINALS I LINES I NETWORK
I I

Figure 13,. OVerview of TAMIl Organization

section 4: System Programmer Facilities 65

COftPOSITIOH OF TAMII

TAHII consists of four main components: two residing in the resident
supervisor and two residing in the tasks initial virtual storage. The
resident supervisor components are RTAB (Real Terminal Access ~ethod)
and a set of DCHs (Device Control Bodules). The virtual storage com­
ponents are VTSS (Virtual Terminal Support System) and a set of lCBs
(Format Control Bodules). See Figure 13.

RTAB -- Real Terminal Access ftethod

RTAH contains six common system control modules. RTAM controls all
interaction between the system and the DCBs to provide one common inter­
face between RTAB and the systea, and between RTAH and the DCBs.

66

The following are the RTAft modules and their associated functions:

1. CEAT! - interrupt handler, I/O completion and I/O request queue
initiator for non-shared lines

2. CRATB - ATCS SVC handler; handles all task I/O requests, and
supervisor I/O requests. CEATB validity checks the request,
generates a request element (a buffer) for the request, queues
the request on the pending request queue in its correct priori­
ty position, and calls the DCB to process the request, if
required

3. CEATC - subroutine pool one; contains com.on subroutines used
by both RTAH and the DCBs

4. CRATD - environment SVC handler; handles the SAVBFP, RSTBFP,
and SETTCT requests:

SAVBPP - saves all pending and not active I/O requests

RSTBPP - restores to the pending queue previously saved
buffers

SETTCT - sets, resets and interrogates flags in the TCT for
the task

5. CEATE subroutine pool two; extension of CEATC

6. CBAR4 - BTT related SVC handlers:

CO.. - connect an BTT task to the system and make known a
·BEGI.· application naae to the systea

DCOH - disconnect an BTT task from the system and delete the
application name from the 'BEGIH· table; also used to inhibit
(ILOGOR) and permit (PLOGOR) BEGIH requests for an application
task

CKALOC - performs two functions:

Bark a terminal under task control for IOREQ use (TAHII
gives up control of the terainal), and release a terminal
from task control and return control to TAHII

Porce communication line initialization for network control

ATTACH used to logically attach a separate function to a cur­
rently active terminal

LCONN - connect requested terainal to task under TAftII control

UFLOW - svc is used to interrogate and set the allowed count of
users for the systea and ftTT application prograas.

DCft - Device Control ftodules

DCBs are supposed to be line controllers. It is the DCB'S responsi­
bility to get the data to and froa the ter.inal. Ideally, the DCS has
no knowledge of the actual terainal at the end of the co.aunications
link. DCSs are noraally table driven froa a Device Control Library
Entry called a DCL.

It is the DCB's responsibility to handle the following functions when
required:

Does final validation of all I/O requests

Builds the required channel prograas to perf ora the I/O requests
and initiate the I/O

Baintains line control during non-activity between terainal and
task

Handles the initialization required for connecting a terainal to a
task whether initiated by the user or the task

Sets up device dependent inforaation in the required systea control
blocks

Randles all device dependent interrupt status other than channel
end/device end and systea PCI chaining requests

Provides error recovery for all abnoraal endings

Handles device dependent tiaer routines

Provides siaple output edit capability for supervisor aessages to
the ter.inal user

Deteraines length and type of input and checks user's input for
user and hardware function requests (cancel, attention, etc.)

The following DCSs have been iapleaented:

CEDS01 - contains two functions which are used by CBDft02, CEDB03 and
CEDR04.

CEDS02

CEDR03

CED1R - an input data interrogator. CED1R handles input
length deteraination, special control character function
handling (e.g., ATTENtions, line cancel, device control coa­
mand deteraination and input buffering control function),
and SOLICIT .acro support.

CBD1B - handles all error recovery and other unexpected or
abnoraal status coapletions for I/O requests.

handles 2741 support.

handles ASCII terainal support, specifically TTY33 and
TTY35.

CEDftOq - handles 3215 operator console support.

section 4: Syste. Prograa.er Facilities 67

CEDM07 - handles 3270 support. CEDM07 does not use CEDB01, but does
its own input deteraination and uses CEDB09 for error reco­
very •

CEDM08 - handles the 3066 console support for the B168 operator con­
sole CEDB08 uses CEDB09 for error recovery.

CEDB09 - error recovery for CEDM07 and CEDM08. CEDB09's error reco­
very is much simpler than the error recovery used for CEDB02
and CED!lO 3.

BTAM Control Blocks

68

CBAATCS - virtual memory parameter list for requesting RTAB to per­
form soae I/O request. The parameter list is pointed to by
the executed ATCS SVC (SVC X'DB') •

CBABFP - I/O request control area and data area. Contains informa­
tion in the header area describing the requested operation.
The data area contains the user's data for output
operations.
CBABFPs are chained forward and backward, in a circular
chain. The first entry in the chain is pointed to by the
TCT (TCTBUF).

CHADCLE device control library entry. The CHADCLE is a read-only
control block used to drive the Device Control Modules and
to set up the initial terminal environment at initial con­
nection time. The DCLE's field definitions are dependent
only on those DCBs that are to reference it.

CHIERR - a dsect covering the error recovery error report built to
record permanent and intermittant errors for V!lEREP
handling.

CHA!lTS - system control block used for controlling user access to the
system or to special application tasks. The !ITS contains a
pointer to the segment table which contains the shared
translate tables.

CHIR!lSG - the R!lSG is RTIM's aessage file. ~he R!lSG contains all of
the messages used by RTAB for coamunicating with a user.

CHISCN - the SCN is a SYSGEN built table describing all I/O devices
on the system. The SCN is used by RTAM as a base pointer
for BTI!l control block chains.

CBITCT - terainal control table entry. The TCT is RTA!I's main con­
trol block. Every other chain or control block used by RTIR
is headed in the TCT. The TCT is also used to maintain line
status information for connected lines.
The TCT is pointed to by CHASCN (SCXTCT) and by the owner
task's TSI if there is one (TSITCT}.

CHATII - task interrupt information block. The CHATII is a dsect
covering the CHABPP after the BFP has been reformatted for
task I/O completion posting.

CBITIO - terminal I/O control block. The CHATIO describes the I/O
currently in progress on the line. The TID dseet covers two
separate control blocks.

r

(a) The main TIO block contains the channel program needed
to perform a requested operation. ~he ~IO is pointed to by
the BFP which describes the I/O request being performed.
Por certain line control operations, there lIay not be a BFP.
~he currently active '.fIOeB is pointed to by the TCT (TCTTIO)
for the liue.

(b) The second control block is an error recovery status
save area. It is pointed to by the '.flO which contains the
error interrupt.

CHATBAH shared translate tables. The CHATBAB dsect covers the
translate tables which are shared between virtual lIellory
and BTAft. They contain tables for perforlling line code to
EBCDIC and back translation besides tables for folding and
reverse folding EBCDIC codes.

CHATSI - task status index. The TSI is the .ain resident task con­
trol block. The 'lSI contains a pointer (TSITCT) to the TCT
for the task's SYSIB/SYSOU7. The ~SI also contains a point­
er to a list of connected terminals for BT~ applications.

VTSS - Virtual Ter.inal Support system

VTSS provides the comson virtual storage interface between TAftII and
the application program and/or task. VTSS handles all the user's re­
quests for connecting/sendingjreceiving data, and disconnecting a logic­
al terainal. VTSS attellpts to provide complete logical device support
for the application programmer, and consists of eight .odules:

CZPTA - I/O request macro handler. Using the user's environment, the
macro request code, and information about the PCft from the
PCL, it deteraines what sequence of requests lIust be done to
fulfill the request.

CZPTB - I/O completion interrupt handles; handles synchronous and
asynchronous interrupts from BTAft for the task. Also does
all processing needed for the 'EXITLIST' support and
initiates the virtual storage connection process when a user
connects to a task or an !'l'T application program residing in
the task.

CZPTC - default extractor; gets defaults and sets the appropriate
flags and fields for both TA!II and the user's environ.ent.
Por 0 and P authority users,. also handles the VSS device sup­
port default at logon tiae.

CZPTD - connect and disconnect; called to connect and disconnect a
user and/or the user's SYSIR/SYSOUT co.ponents for 'lAIUI by
building the required control blocks.

CZP'lE - terminal profile handler; handles the .erging Of the user's
requested terminal session environaent with the terminal's
format requirements. Also handles the saving of the user's
environ.ent for profile processing.

CZPTG - device control command processor; handles all processing for
the user's entered device control com.ant\s (screen co •• ands).

CZF'lP - coa.on V'lSS psect.

CZPBFP - subroutine pool; contains buffer allocation routines, ATCS
paralleter list build routine, and other com.0!l routines.

Section 4: System Program.er Facilities 69

rCft - Pormat Control Bodules

Por.at COntrol Bodules are responsible for translating a user's out­
put data stream into a fora and sequence vhich the end device viII ac­
cept and act upon in the way the user expects. on input p the Format
Control Sodule is responsible for removing all device control informa­
tion and setting up the data into an EBCDIC stream for the using pro­
gram. The FCB is set up to handle a class of devices or access methods;
e.g_ p CZPSOO handles all interactions with datasets.

It is the FCSls responsibility to handle the following functions when
required:

1. For output --

• edits output data against user function table

• does any block or record formatting required

• handles any physical line length limits and any required con­
trol character sequences

• translates output data to line code

• invokes correct routine to do I/O

• checks return codes and sets up correct return code for the
calling module

2. For input

• translates input data

• removes any block and-or record format headers p etc.

• deletes any device control characters

• edits input data against user function table

• moves input data to correct input area

• checks return codes and sets up correct return codes for the
calling module

3. Control requests; performs control function by either continuing
the calling sequence or exercising its own code.

4. Saintains correct sequence and buffer links for buffered re­
quests in virtual storage.

S. Handles any associated functions required for support of owned
devices; e.g. p conversational buffer.

6. Performs any special initialization which may be required for
connecting a device.

7. Performs any special processing which .ay be required for dis­
connecting a device.

The Pormat Control Sodules currently supported are:

70

CZPftOO - handles all operations with datasets. CZPSOO supports the
following dataset organizations: QSAB p VSAB and VISAS
(region and non-region).

CZFlIOl

CZFlIOS

handles all supported hard copy terainals.

handles the conversational buffer used for support of dis­
play terminals. CZF!IOS is deTice independent. For actual
device dependent activities CZFlIOS calls a second level of
FCfts to provide the actual device dependent support:

CZ~3270 - local 3270 support
CZF3066 ~ 3066 Console support

VTSS Control Block Definition and setup

CHAlITT - Virtual !Iemory Terminal header control block. CHAK'T'T is
contained in CZFTP and is the head for the task's terainal
and USElr tables. CHA!I'TT contains the following table
headers:

CHAVTCB

(1) List of user's tables - if KTT/ftU'T type of task

(2) List of B'TAlI-owned terminals connected to the task.

(3) List of non-BTA!I-ovned terminals and pseudo terminals
connected to the task.

(4) !ITT work area pointers and saved work area pointers for
exit from the lITT state.

List p) above is organized by user number. The USlI parame­
ter on all the TARII macros is used as an index into this
list to get to the User's Terminal Control Block (CBAYTCB).
See Figure 13.

Lists (2) and (3) above are essentially the same. They are
organized by Relative Line lIumber (RLK). The BLH is assign­
ed at Gonnect time by BTAlI for R'fAK-owned terainals or by
the Connect Rodule (CZP'fD) if the terminal is not supported
by RTAR. The RLH is a halfword number with zero being valid
and a X'SOOO' denoting an unassigned RLlI entry. Bit 1
(X'4000') determines which list the RLB pertains to. RTAK
list --- list (2) -- bit 1 is a 0; non RTAK, bit 1 is a 1.
For further information, see the CHATERK description.

The lITTBFP pointer determines which work area is in use.
For nOl:mal TSS there is only one work area, for !ITT there is
an expanded active work area assigned and the original TSS
work area is pushed down by being saved in ftTT ••• and
KT'TBFP being changed to point to the new area.

Virtuill User Control Block. One CHAVTCB is assigned for
each connected user of a task. The V'TCB contains pointers
to the FCLs (see CHAFCL description below and figure 14)
for tile user's SYSIlIs and SYSOU'Ts. The corresponding
defau:tt SYSIH and SYSOUT P'CL pointers are maintained in the
CHAVTCB.

CHAP'CL - Format COntrol Library entry. The P'CL contains the informa­
tion needed by the Format Control Kodule for handling the
user's SYSIlI/SYSOUTs. This information pertains both to the
user's enTironaent profile and to the actual hardware chara­
cteristics of the SYSIH/SYSOUT mode (terminal or dataset) •
The system contains a set of PCLs for all supported devices
and access aethods. The system PCLs also contain a set of
system defaults for the user's terminal environment which

section 4: system Programmer Facilities 71

are used until the user·s profile can be accessed. At LOGOH
time the user is assigned a copy of the syste.'s PCL. After
LOGON has co.pleted, the user's own environment profile is
merged with the device require.ents and limitations and is
contained in the PCL.

CHATERK - terminal RLN to PCL translation entry. There is one CHA­
TEBK entry for every assigned RLH whether its for an RTAK
or non-RTAB terminal. The CHATERft entry contains pointers
to the PCL(s) used to define the SYSIH/SYSOUT connection
between the RLN and the user. Also maintained in the TERK
entry are the completed work flags for use by PIHDQ when
running an KTT application program.

CHAGBA - GATE macro parameter list. All of the TAft II macros build a
fixed length format parameter list. This macro para.eter
list is described by the dsect CHAGftA.

TAB II CONTROL BLOCK OBGANIZATIOB

YTSS - User Bacro to SYSIBISYSOUT Translation

Each user (see Pigure 14(A» connected to a task is allowed a maximum
of three SISOUTs and three SYSIHs active at anyone time. One SYSOUT
and one SYSIN are considered the default co.ponent. Each of these
SYSOUT/SYSIBs are described by a PCL entry. There is only one PCL for
each device connected to the task. An PCL entry may describe only one
SYSOUT or one SYSIH or it may describe both a SYSOUT and a SISIH for the
same device •

When the application program or the TSS Com.and system issues a TABII
macro, the user and the component for which the request is directed is
specified using the USH, CPO and/or CPI parameters. If the USB and CPO
and/or CPI are not used, a USB of 0 (the task owner) and the default
components for that USH are used. Using the USB nu.ber, CZPTA co.putes
a pointer to the user entry in CHBftTT. Pro. this entry CZPTA picks up
the pointer to the user's YTCB which contains the pointer to the PCLs
for the user. If a CPO or CPI had been given, CZPTA uses it as an index
into the list of SYSIN/SYSOUTs owned by the user. If not given, CZPTA
uses the default pointer fro. the VTCB to get the correct PCL.

YTSS - RTA! Interrupt to PCL and ?TCB Translation

Bach interrupt from RTAB (see Figure 14(B» which is received by the
task's BTA! Interrupt Processor (CZFTB) contains a halfword number
called a BLI - Relative Line lu.ber. rhe RLB is used by CZPTB to index
into a table of 'tera' entries pointed to by CHBR~. The TEBR (CHATERft)
contains the user number (USI) of the user owning the ter.inal and poin­
ters to the PCLs for input and output. If needed, the YTCB address is
loaded fro. the associated PCL.

RTAB - Virtual Bemory Request to Tcr Translation

When YTSS sends an I/O request to BTAB (see Pigure 15(A» by execut­
ing the ATCS SVC, YTSS fills in the field ATCSRLB from PCLRLR. The RLI
is used by RTAB to deter.ine the device to which the request is
directed.

Upon receipt of the request, BTAB picks up the RLB from the parameter
list. If the RLI is zero, BTAB assumes the request is for the task

72

VIRTUAL STORAGE
I I
I USN PARAM I CP PARAM
I I

V (CBBMTT) I USERO I .---,
.--._,.-L .---, ~IFCL I
ICBBMTTI~IVTCB ,../"y-.l I 1-_____ .1 I I I......, I FCLRLN I

I I I I l ____ J

t 1------J~r;~-l
I ~l I
I I I FCLRLNI I I l ____ J

t I
I USER1 I r------' .-------,....t; I FCL I

I VTCB I ~ I FCLRLN I I I I 1-___ .1

I 1-4

FCL FOR
SYSIN
SYSOUT

FCL FOR
SECONDARY
SYSOUT

FCL FOR
SYSOUT

MA¢Ro CALL
FORWARD DIRECTION

l----J~~~l
I I FCLRLNI

FCL FOR
SYSIN I l _____ J

(B)

INTERRUPT ENTRY
BACKWARD DIRECTION

RLN = RELATIVE LINE NUMBER

ISA INTERRUPT
INFORMATION
(CHATII)

.----"
j TIIRLN I
I or I
I TIIQRLNI L-- __ -I

.----"
TERM ENTRY ~ I FCL I

.--,.-----~ , L ___ J VTCB
.--.---, I SOA I INPUT I OUTPUT I r----'

+ I Cl:1BMTT I = I RLN I I I ~I-____ J
l ___ .1 1---__ .1..--____ .1.-____ .1 • ___ ,

(TERlti ENTRIES) "-. ... I FCL I l ___ J

Figure 114. ~AIUI Control Bl.ocks - "SS

owner's terainal aDd l.oads the ~CT pointer fro. the TSI. If the BLV is
non-zero, BTAB uses the BLB as an index into a l.ist of ful.l.words pointed
to by the task's TSI. The first hal.fword is a set of flags and the
second hal.fword is the SDA of the device. 1'he SDA is used to co.pute
the address of the scan tabl.e entry, fro. which the TCT address is
l.oaded.

BTA! - 1/0 Interrupt to Owner's Task TSI Translation

Whenever BTAB receives an I/O interrupt (see Pigure 1S(B», the
interrupt GOB contains the SDA of the l.ine. BTAB uses the SDA of this
interrupt, to co.pute the scan tabl.e entry. In the scan table entry is
a pointer to the TC~ for the l.ine. If there is not a TCT pointer, BTAB
assuaes that the interrupt is an initial interrupt fro. a user who wants
to connect to TSS. In this case, BTAB allocates a TCT and places its
address in the scan entry. If there is a 'leT pointer, RTAK tests the
TC1'LOG flag. If the flag is on, the ter.inal is in the logon process so
there is no task and therefore no 'lSI pointer. If the flag is off, BTAB
loads the 'lSI pointer fro. TCTTSI •

Section 14: Syste. Progra •• er Facilities 73

ATCSRLN SUPERVISOR

IF ATCSRLN=O USE TSITCT
IF ATCSRLN*O USE SDA FROM

TSIMTT LIST
CHATCT

,..---------, J 1TCT I
CHATSI I I

,..-------'" I SDA I I TSI r--- ~ l~ _______ J

I l __ J~ t-rsj

r--------'"
I TMTLST I
~-T--l I l_.L_y-___ J

"--- • I SCNENT=
.SCNENT CHASCN

SVC CALL L-..,.. r SD~-----l
FORWARD DIRECTION

(A)

(B)

INTERRUPT
BACKWARD DIRECTION

I I l ___ ~
l _____ .-J

CHATSI
,----------,

CHASCN r----------,~.I TSI I ,--------J;;' I TCT --t" I I
I SDA SCNTCT I I I I I I ,---- ~ I SDA I l _________ J
I L----4 L _________ J
L ___________ J

Figure 15. TAeII Control Blocks - RTAft

RTAM I/O~ue Organization

When VTSS issues an I/O request (see Figure 16), RTA~ builds a re­
quest block called CHABFP (BFP for short) and moves all the pertinent
information and data out of virtual memory and into the BFP. The BFP is
chained in a pending request chain of other BFP blocks. This chain is
in a priority order. Any request which has the break flag (GHABRK) set
is assumed to be a top priority request and is chained at the top of the
pending queue. Following these requests are the normal I/O regeusts is­
sued by virtual memory_ At the end of the request queue, are the Soli­
cit and Buffer command Read operations.

RTAM builds a channel program for a BFP in a control block called a
Terminal I/O Control Block or TIOCB (CHATIO). The TIOCB is not con­
structed for a BFP until it is time to do the actual I/O. When the
TIOCB is built the BFP is pointed to its associated TIOCB and the TIOCB
is back pointed to the BFP.

When the TIOCB is activated by initiating the I/O, the TCT for the
device is updated to point to the TIOCB. The pointer TCTTIO should
always point to the current active TIOCB if there is one.

RTA3 I/O Chaining

RTAK supports chaining (see Figure 16) of active I/O channel programs
through a TIC and PCI interrupt operation. Any channel prograa which
can be chained from is ended in two IO-oP CCWs and a pointer is set in
the TIOCB to point to the second NO-OP which will become a TIC CCW.

74

When a ~IOCB is added to the active I/O chain and is to be chained
to, the second BO-OP of the previous TIOCB is chanqed to a TIC CCW. The
TIC-to address is the address of the start of the ney channel proqraa
and the second fullvord of the TIC CCW is the address of the TIOCB being
TICed to. When the set up of the ~IC CCW is co.plete, the co.mand
chaining flag is set in the first HO-oP to activate the TIC CCW.

The reason for tll'O BO-OPs is to alloy chaining as late in the active
channel prograa as possible. If the ending I/O transfer CCW were used,
it would lengthen the ·.iss window' by the aaount of ti.e it takes to
transfer the data. In this way the window for .issing is only the a­
mount of ti.e it taltes the channel to process the BO-OP CCW.

IF PCI I/O
CHAINING IS
SUPPORTED

r-------,
r.L--------, I r l ________ -, I I

I a J

I P l ________ J

PCI CHAINING REQUIRES THE CHANNEL
PROGRAM END IN TWO NG--OP CCWs

SECOND NO-OP BECOMES A TIC AS
FOLLOWS:

r-T-------"""!I'------,
I I TIC TO a I 8TIOCB I l-.L _______L ______ J

WHEN SETUP IS COMPLETE COMMAND CHAINING
IS SET IN FIRST NO-OP: TIC-TO TIOCBs
BACK POINTER WILL POINT TO TIC-FROM TIOCB

Figure 16. TAftII Supervisor I/O Queues.

PENDING
REQUEST
CHAIN IS
ORGANIZED
IN I/O
ORDER

Section 4: SJste. Programmer Facilities 15

f NCP SUPPORT FOR TSS

The NCP facility of TSS provides support for a channel attached 3704
or 3705 Communications Controller, executing either the Emulation Con­
trol Program Level 3, or the Network Control Prograa/Vs Level 5.

, The following SMA devices are supported as TSS system SYSIM/SYSOUT
I c01llponen ts:

3767 Display Unit models 1, 2, and 3

3277 Display Unit model 2 using a 3271 Control unit model 12 or
3274 Control unit model 1C using SDLC

, 3278 Display Unit models 1, 2, 3 and 4 attached to a 3274 Control
, Unit model 1C or a 3276 Control Unit model 11, 12, 13, or 14
, using SDLC

The following 3270 class printers using either 3270 data stream or
SMA character string (SCS) data streams are supported:

32d 4 models 1 and 2

3286 models 1 and 2

3287 models 1 and 2

, 328 9 model 2

3289 models 1 and 2

TSS NCP support allows the operator to activate (load and execute a
'bring up' sequence), deactivate, and dump a 3704 or 3705. The operator
or an authorized user can run a line trace against an active SDLC line
or an active 370X Communications Controller running NCP/VS Level 5.

ASSIGNING NCP CAPABILITY TO TSS

To support the NCP on TSS there are two new parameters added to the
CLOP macro instruction -- SUBAREA and MAXSUBA. If they are not speci­
fied, TAHII's NCP function is deactivated and an error message viII be
given whenever an NCP activation is attempted.

MAXSUbA is the maximum number of subarea numbers to be assinged in
the network. It is specified as a decimal number which is a power of
two, minus 1 (e.g., 3,7, 15, etc.) but not 0 or 1; subarea values of 0
and 1 are reserved for TAMIl.

SUBAREA is the number to be assigned to RTAM as its subarea address
value. It lliust be greater than zero and less than MAXSUBA. A value of
1 is recommended for use vith NCP Level 5.

TSS Restrictions for MAXSUBA and SUBAREA

TAMIl considers the SDA to be a network address belonging to subarea
O. Therefore, the number of bits used for a subarea number must leave
enough bits to accommodate the installation-s largest SDA.

TAMII restricts the number of minor nodes belonging to a subarea to
512 or less. This is due to the size of the tables moved to the super­
visor and the nechahism used to move the tables. The recommended value
for MAXSUBA is 127 which allows the full 512 elements per subarea and
128 subareas. It also allows SDA values to X'lPP'.

76

DEFINING AN RCP FOR TAMIl

I Not all of the i:aforllation coded in the RCP raacro
I used by both TAKII and the NCP generation routines.
f macro instructions should be coded with the possible
I and NCP generation in aind.

instructions is
However, all of the
needs of both TAKII

, The following is a description of the macro instructions and their
I parameters; some arl~ NCP and TAftII parameters, and soae ar& for TABII
, only.. (Refer to thl~ SYSGEH for NCP manual, IBK Order Humber

GC30-300 8-5.)

I l!.Q.tg: there aust be no discrepancy between the source used for the
r RCP generation and the source used for the TSS KCP table genera-
I tion; the source can be used for both generations without
I aodi.fication ..

The PCCD aaero

I ADTODMP={YESINO}
I s{lecifies whether, after an unrecoverable failure of the co •• unica-
I tions controllElr or the RCP, a dUllp of the cOllllunications controll­
I er storage is t:o be taken prior to an autoIo.atic reIPL (i.e.,
, AUTOIPL=YES). If AUTODMP=IO and AUTOIPL=YES the HCP is reIPLed; if
I AUTOIPL=RO also, the ,Hep is deactivated and reaoved froll the
, systea.

I AUTOIPL= {YES 'NO}
I specifies whetli,er after an unrecoverable failure of the liCP or coa-
r munications controller and after the duap (if one is taken), a
, fresh copy of t.he liep is to be automatically loaded into the commu-
I nications controller and restarted. If AUTOIPL=NO, the coramunica­
I tions controlle,r is deactivated and reaoved frOil the network. If
I the comllunications controller is successfully reloaded, configura-
I tion restart at,tellpts to return all resources to the state prevail-
, ing at the tiae of the failure. However, all tasks will have been
I disconnected and abended. All dial communications will have to be
I redialed.

, AUroSYH=HO
, TAKII does not support auto-synchronizing.

I1fITEST=BO
TAKII does not support the initial test routine load.

The rest of the PCCD paraaeters are ignored by TAftII.

The BUIL D sacro:

I OL'l'=HO
I TAftII does not support TOLEP.

I !lAXSDBA= n
I discussed previ.;)usly. Code !lAXSUBA=3 or greater. The lfCP default
I wue of zero must not be used. Also, BAXSDBA value should be the
I saae for all HCPs and the 'l'SS SYSGER.

Section 4: System Programmer Facilities 77

I The HOST macro:

, When coding the following parameters, note the restrictions placed on
I their use by TAMIl.

t BFRPAD=O
I TAHII requires zero and does not support leading pad characters.

, MAXBFRU=count
I ,
I

specifies the number of buffers that the host processor allocates
for each data transfer (channel program) received from the local
communications controller.

I UNITSZ=length
I specifies t~e length of a host processor's buffer.
I value of ftAXBFRU multiplied by the value of UNITSZ
I less. Recommendation: MAXBFRU=8 and UNITSZ=256.

For TAMIl, the
must be 4000 or

, ST ATMOD= {yES, NO}
I TAMIl supports either value. Recommendation: STAT~OD=YES.

I The GROUP, LINE~ and LU macros:

I BUFLIM=n
I the number of 6~ byte blocks RTAM will allocate to hold the trans-
, missions to be sent to a specific LO; 'n' is a decimal number from
I 0 to 256.

I ISTATUS= (ACTIVE, INACTIVE}
I specifies whether a node is to be ACTIVE or INACTIVE when the 'own­
I ing- node is made ACTIVE.

I
t
I
I
t , ,
t

Example: for an NCP gen such as the one shown immediately below,
the ISTATUS shown in parenthesis is the assumed value; whenever
ISTATUS is not specified for a node, that node assumes the ISTATUS
value of the 'owning' node:

Ll
Pl
Ul1
U12
P2
021
U22

GROUP ISTATUS=ACTIVE
LINE

PU ISTATUS=INACTIVE
LU ISTATUS=ACTIVE
LU

PU
LU
LU

(ISTATUS=ACTIVE)

(ISTATUS=IHACTITE)
(ISTATUS=ACTIVE)
(ISTATUS=ACTIVE)
(ISTATUS::ACTIVE)

, In the exa~ple above, when the NCP is activated, TAMIl will also activ­
, ate the following resources: LIHE-Ll, PU-P2,LU-U21 and LU-U22, because
I each higher level 'owning' resource has also been activated. PU-Pl, be­
, cause its ISTATUS=INACTIVE, is not automatically activated and therefore
, its LUs are not activated even though LU-Ul1 has ISTATUS=ACTIVE. Now
I when the operator activates the PU-Pl, then TAMIl will also activate the
I LU-Oll, but not LO-U12 because its ISTATUS is INACTIVE.

with TAftII, ISTATOS=INACTIVE means the resource must be activated
by direct operator command.

, MODETAB=device type code
I ftODETAB on an LO is used by TAMIl to specify the type of device the
I LU is; only the following codes are accepted:

78

TNL GN2Q.4106 (01 July 80) to GG8-20(,8-5

3278 3284 3287 3~77 3767 3286 3289 3288

VP ACING= {(Q[,m]) IO}
defines the way TAP!ll and the NCP are to pace the flow of data be­
tween the host processor and the Rep for sessions with the associ­
ated iogical units.

n -- specifies th.e number of messages that TA~II is to send to the
NCF b<afore waiting for a pacing response; In' is a decimal nuabt'!r
Letv~en 1 and 255 and must be egual to or greater than the value of
the ',0.' used with the NCP's corresponding PACING paralllter.

Gi -- .specifies which of the 'n' (the parameter above) requests viii
be fl.:tgged to request a pacin~ response froll tht: NCP. 7A~II sends
at llIost, n-m additional data reauests if a pacing response is not
recei~e~. If IJIlI is not coded, 'n' is assumed. specify 'LI' as a
dec ia,ll nUlllber between 1 and • n " and lIust be equal to or graa ter
than the value of 'm' used with the PAClBG parameter.

o -- :specifies that no pacing is to be performe~ for sessions with
lO9i01l units associated with the macro instruction in which VPA~­
lNG i,s coded.

Defining he HCl? Network. to TAPlII

The tel':!comllunications network is define1 to TAMIl by preparing and
assembling definitions of the two types of major nodes and then filing
the object modules in joblihs owned by the operator.

The two types of major nodes supported by TA~II are:

1. Nep major node
2. S.itched 5NA lIajor node

An NCP iilajor node consists of a 3704 or 3705 Communications Controll­
er (locallJ attached), the network control program (NCIl) being executed
in that coatroller, and the physical configuration defined tor that NCP
during NCP generation.

5witchel SNA major nodes consist of either or both of the following
supported :iNA terminals:

3767 COllmunications Terliinal
3274 or 3276 Display Controllers and Displays

Switched 5NA major nodes do not include the switched SDLC linKS to
which th e t.erllinals are attached (these lines are part of the NCP lr.a jor
node) • orhl! minor nodes of a switched SNA major node are the 51'A con­
trollers and their associ ... ted logical units.

Any n uml;;er of definitions can be prepared, assellibled and filed, to
represen t l:ombinations of major nodes that may be desired in an active
networK unller different circulilstances. Each liajor node definition con­
tains statBments defining all rainor nodes encompassed by the major mode.
Each lIajor node must be assigne~ a unique name and lIust have an entry in
the TS5***'~*.SYSRCS dataset (discussed in detail later) in order for
TAMIl to i>t! able to use the major node.

Defining the NCP and Remote Terminals

One 04 lIore NCPs for each cOllmunications controller lIust be generatec..
and stored in a joblib. The source deck used to create each NCP is then
assembled using the TSS macro libraries. The object modules created by

section 4: System Programmer Facilities 78.1

asselllbl.i (~S are stored in either the sallie joblib or a different one from
the Me? load modules. The inforlliation as to what is stored, and where
i't :is s1- CrBdif .is C'o:r.atined in the SYSRCS dataset in the region whose
nallH~ J_~-; "tells same as the resource Dalle. The name assigneu to the region
that contains these definitions is the name by which TA!II will reco­
gnize tIl(' I>CP.

A sli'i 1:dlC~d 5Mb .. ajor node is defined by a single BUILD m.acro state­
ment for 1:he major no(le and separate PO and LU statements for each minor
llod8. ODe BUILD macro with 1'YP'GEN=S'OlNET must be included in each source
datas('t. before the first PU macro. The BUILD macro assiqns a
subarea Vi'-JIH" t.O 'elle major node f or TA~Jll s use in assigning addresses
to tbe ruino~ nodes.

·.ril,:! F () ard_ r.u macros define physical units i'I.ud logical. units attachea
by svitchea SDLC linas. The PU and LD macros are the same as those used
to defiu0 a ~CP major RodR.

I1.e i ll::::t.<ll.latiou ma.y define multiple sets of slriitched SNA devices.
Thi& aJ~ows the network operator to selectively activate a subset of all
the switched ::;NA devices using the ACTIVATE command. however, all major
ana minor node names known to TAnII at anyone time ~ust be uniqUE.

1 t C"1') n tact
-dial in'
plact~ j, in 1: :l~~

is to be estahlished yitt a pbysical unit by ~eaDS of a
, t.lle unit-s statioll identification nUllihex: lii:J.st be

S'lSRCS n;,gion called Blb:CNAME, followed by th·=- physical
unit. $ s r es'Y,;rce Hame in the forma t :

'l1a JOX: node narr.e .physical unit DalilB ~

ihen the ~hysical unit dials in, TA~II searches the ~Y5RCS region
BIHC~~~L looking for the station id. if found, the pbysical unit's name
is retri '_-''1190 an d iI ner:;ceCl r the maJor node containing the de£ini tion is
activated ,"!utomatically. The information from the physical unit aefini­
tion i,; -U,C:U used_ to GOll;pl,:!te the Gonnection orocess.

'rh~~ u nlt!is sta.tion ident . .itieation nuber is a 48 bit number which is
unique toe 82CJ station ~itriin the network ~ot just within the major
node) _ ?~8 station id is structured as follows:

r··------·----··-,---·------,.-
1);.'0· lPUTYPEI x·oo· IDELt: IDNLH1

______ -L-... ____________ --JJ

16 28 47

PUTY?E - the pbysical unit type as follows:

3767 -- 1

IU~L~ - the 12 bit binary block nu~ber assigned by IBM to the spe­
("::Li:ic device

ID~U~ - the 20 bit binary identification number a~signed to the
station being defined.

ORGANIZATION OF TA~II NCP/S~A SUPPORT

I The TAHII NCP/SRA support consists of three groups of Ilodules. The
t first group consists of the user interfact routines. These routines
I convert the user's requests into control requests for the KCP. The
, second group resid,e in the virtual memory portion of TAHII and consist
I of two routines. ,()ne, CZAFTlf, is the lfCP network path translation rou­
I tine. The other r,outine is the PCM used by the user control modules to
I cOlUlunicate with tile lfCP control routines residing in RTAH and the NCP.
t The third group of modules reside in RTAft in the resident supervisor.
, These modules control all communications with the NCP and any supported
r SNA devices.

When a TSS Nep tJen is perfor.ed r a set of tables is created which
contain the defini'tion and path infor.ation for the KCP. As part of the
RCP activation prO':ess these tables are read into shared virtual memory
and are used to fulfill the function of the SDAT (CHASDA) in virtual
memory and the scau table (CHASeN) in real core. The virtual aemory ta­
ble (CHAHIN) is c~Lled the minor Bode table -- ~IH. It resides in
shared virtual memc)ry and is connected and disconnected as needed. The
real core table is called th Resource Resolution Table -- (CHARRR). It
is read into virtual aemory by the active process and aoved to real core
upon execution of 1:he ADSBA -- Add Subarea SVC (discussed later in this
document). The RRn is used by RTA! to control the activation, deactiva­
tion, and allocation of the NCP network resources.

Section 4: system Program.er Facilities 78.3

USER INTERFACE

• I
ACTIVATE I----r

L i • I , DEACTIVATE f---. CHAIUT
J ,
I DUf!P h-
I I I
I • I , I CHAftIN ,
I I f---. , r I i----t
f J I I

TAIUI TCNTRL PlACRO , BIN r I
I I I I I I

I
, CZFATlf , , ENTRIES I I

r I I r I I ,
I SSCP Feft I I J SUBAREA I I , !!ODULE , I , 2 I I
I

, I , , 3 , , INTERRUPT , , I X
i , I
I I , ,
I I , ,
I I

RTA!! I ,
SVC ,

i

I CiiAMTS
•

i I

I I i I I , CEDSSCP I CEDLUCP DEVICE h I CHARRR f---.
I J DEPEH- , ~r I i----t

I
I

f
I
I

I ,
I
t
I ,
I
I

NCP
CONTROL
ROUTINES

SSCP-SLU
SSCP-PLU

SESSIONS

CED37XX
I/O
INTERFACE
ROUTINES

t LU
I COliTROL , ROUTINES ,
I LU-LU ,
I SESSIOliS

DENT J I I I RRR I
i 'II , ENTRIES I
h ' I I FOR I ,

I SUBAREA ,
I 2 I
I 3 I
• I X

, As an KCP is activated r an entry is made into the Node Active Table
I NAT. The NAT is a dictionary maintained by the NCP user interface
I modules using the dictionary handler CZASD. CHBNAT is an IVE control
I block which contains the RSPI number and other inforaation needed to
t connect and disconnect the BAT dictionary. When an NCP is activated a
I ~ajor ~ode entry -- MJN (CHAMJlI) is built in the NAT dictionary. The
I !!IN and RRR are read into memory and a pointer, in RSPI format, to the
I MIN is p laced in the !!IN entry.

J
I
I
t
I
I
I
I

Using a TAPIII OPNDST the RCP is connected to TAPIIl and the device is
allocated to the task. With the completion of the OPNDST the syste.
control blocks are setup to perform the activation function for the RCP.

78.4

The activation function consists of the loading of the 370X with the
specified RCP load module and the activation of the RCP and its re­
sources using the appropriate SMA commands.

TAMIl Format control Module Support for the RCP

I CZFSSCP is the name of the Format Control Kodule used to support the
,NCP. It validates and handles the special TC~TRL type codes used to
, communicate between the virtual memory user control modules and the RTAft
, SSCP control module. CZFSSCP also contains special entry points for
, handling error records, line trace records, and dial in records returned
I by the NCP.

Normal read and write operations are not used or supported by
CZFSSCP. Any attempt to use these requests results in a nonsupported
(xtiO I) return code.

NCP PATHFINDING SUPPORT CONTROL BLOCKS AND HANDLER

, For NCP Resource Resolution or as referred to in TAMIl, RCP Pathfind­
I ing, there is an int,egrated set of control blocks. These control blocks
I all reside in shared virtual memory and except for the CHERAT, header
I control blocks are disconnected when not in use. There are thr&e con-
I trol blocks used by the Nep modules in virtual memory. Except for
I CHBNAT, the control blocks are built by the NCP/TSS gen process and are
, loaded from datasets as part of the NCP activation process. The three
I control blocks are CHBNAT, MJN, and ~IN.

, CHBNAT is the anc:llor for the NCP control blocks. It is loaded as
r part of IV~ and as such is addressable by all tasks in the system.
, CHBNAT contains syst,~m dependent HCP values such as the maximulll subarea
, value, the subarea mask and the subarea shift value. CHBNAT also con­
I tains the anchor for the rtJN dictionary. This anchor is in the format
I RSPI, RPN and page c,)unt, and is used wheL.ever a task has to connect to
I the dictionary. Included in CHBijAT is the MJN lock word which controls
I access to the MJll dictionary.

I MJN major node entry is a control block which describes the NC!'
f control program to T,HHI. It is built from the contents of the BUILD,
I HOST, an d l'CCU macros used in the gen of the HCP load module. MJN also
J contains information needed by t.he RESTART and DUMP commands. :r'he MJN
I entry re sid&s in a control block called the MJN dictionary. When the
, ACTIVATE command for the NCP is issued, a MJN entry is built and placed
, in the dictionary using the dictionary hanler module CZASD. Afterwards,
f t~e ~JN entry can be retrieved by calling CZhSD3 with the NCP name. The
J MJH for the NCP cont,lins the address of the genned resources owned by
, this NCP -- the MIN i:able. This address is also in RSPI, RP~{ format.
a ~he ~IN lock word is kept in the MJN; this lock controls access to the
f MIN.

, The I'!IU -- minor node table -- i£ a gen created table of all re-
I sources owned by the subarea of the MJN. This table is basically the
I SDAT for the NCP or other subareas. There is one MIN entry in the table
, for each S~A resourCH defined in the NCP gen. A resource is the RCP
t control program (always resource O), a. communications line (LINE), a
t control uni.t on the line (PU macro) or a terminal or end to.ser on the
, control unit (LU macro). l::ach resource has a unique name assigned at
I He? gen time.

r 'rhe path tables, !':lIN and MJN, are never connected to a task except
, under appropriate locks. The dCP Deact Command Processor assumes the
, tables are not in USE! if they can be write-locked and are therefore a-
f vailable to be FREEIUIled. Th'? ftJN and IU,j locks are set up like data-

Section~: system Programmer Facilities 7B.S

set RESTBL locks. The pathfindinq aodule CZFATN uses CZCOH and CZCOI to
lock and unlock the table locks.

RTAM/NCP SUPPORT

I The Resident Terminal Access Method (RTAM) has a set of modules that
I provide the required NCP support. The modules were added in two areas:
I system sup~ort routines had CEATF (connect device) and CEATG (connect
, resource resolution tables) added; the devic& control modules had the
I LU-LU session control and SNA device support added. A description of
I these new modules follows.

System Support Routine Additions

r CEATF (allocate device) is called by SVC from virtual memory to
, allocate a specific device to a task. Its parameter list is described
f by the DSECT CHALCN. The device address is passed to CEATF by an SDA or
I an RID. It locates the resource entry for the device and determines if
I the d~vice is available. If the device is available, CEATF allocates
, and builds the necessary RTAH control blocks, sets up the required
I tables and calls the Device Control ~odule responsible for the device to
I complete the connect request. Opon return from tLe DCM, the allocation
I is complete and CEATF returns to the task with needed device information
I in registers 0 and 1. For device allocation failures, CEATF has a com­
I prehensive set or return codes describing the reason for a failure.

r CEATG (connect/disconnect resource resolution tables) is called by
, SVC from virtual memory to connect or disconnect the R~source Resolution
, Tables (CHARRR) whicL define the resources controlled by a major uode in
I the SNA network. 'rhese tables are also used by RTAM for device alloca­
I tion, control block anchors and status save areas. The RRR fulfills the
, same function for the major node and R'rAM as the scan table (ChASCN)
I does for TSS and RTAM: the two are analogous. For a connect, virtual
I memory (during the activation process) issues the Add Subarea SVC (cris­
, cussed later) with its associated parameter list. The parameter list
I contains the subarea address of the RRR which was previously loaded by
I the task and the count of entries in the RRR. CEATG validates the re-
t quest and the subarea, allocates supervisor memory, and moves the RRR
I tables to the supervisor. For a disconnect, virtual memory issues the
I Add Subarea SVC with disconnect set, and the subarea address. CEATG
I checks the RRR before releasing to make sure it is currently not in use
I and if available, releases the supervisor copy.

Device control Modules

I CEDMOB fulfills two functions. First, it sets between the DCM's ini­
I tiate request entry points and RTA~, to standardize the calling inter-
r face with the entry conditions expected by the oth&r DCM entry points so
I that the RTAM work queue dispatcher is presented with a common interface
f across entry points.

~he second function provided by CRDMOB is a primitive work queueing
and dispatching mechanis& for queueing work between different TCTs.
This avoids the multi-cpu locking problems which would exist if one
attempted to lock more than one TeT at a time.

CEDOBQ is the enqueue entry point. A TCT and buffer address, along
Kith a queue number, is passed to CEDOBQ by the calling routine. The
buffer must not be chained on any TCT at the time of the call. CEDOBQ
enqueues the passed buffer and TCT on the requested queue and returus.
It is the dispatcher; it is called by CEATA, CEATB, and CEATD just be-

7B.6

fore ret urning to tb.eir caller. It searches the queues for work follow­
ing thes e siaple rules:

f The queues are processed in a FIPO order from queue 1 to queue 1.

CED OBD does no·t aove from one queue to the next until all work on
the queue has been processed ..

If the TCT to be dispatched to is locked, CEDOBD leaves the re­
quests queued, and exits.

CBDeo B contains 'the queue headers, hard coded in the back of the
aodnle; there are sl~ven queues:

t Queue 1 is for error recovery; it has the highest priority.

Queue 2 is not in use.

, Queue 3 is usect for posting write completions. Queueing on the
, queue results ln the buffer being sent to the write completion
I entry point of the DCR responsible for the TCT.

I Queue 4 is useel for posting read completions. Lilee quelle 3 the re-
I sponsible Dce'H read coapletion entry point is called.

I Que ue 5 is used for requesting ini tia tion of a function.. Work. for
I this queue is sent to the initiate request entry point of the DC!!.
I This is the salle entry point that processes SVC requests froll a
r task.

t Queue 6 is usec[for requesting I/O initiation. Requests queued
I here are sent t~o the DC! responsible for transllitting a.nd control-
, ling the I/O ililterfa.ce.

I Queue 1 is the lost path and/or resource forced disconnect re-
J quests. These are processed last to ensure that all other requests
I des tined for th.e lost resource have been removed froll the queue.
I Any reuests on queue 1 are sent to the DCM's error recovery entry
, point.

• CBD31 XX handles the I/O channel interface for all 370X type devices.
, It is set up to interface to the I/O side of RTAH and is called by CElT!
, on I/O interrupts from the 310X device. It is queued to by the KCP con­
I trol lIodules CBDSSCP and CBDLUCP whenever they have output to be sent to
I the 370X control program.

CBD31XX contains the routines used to load local 310X control pro-
graas. ~hese routines handle the BCP or the SP program.

, CEDSSCP is R~Aft's system services control point module for control-
I ling the TSS/SKA network. CBDSSCP handles all network control functions
I including the activating and deactivating of all network resources. It
, oversees all connections and disconnections of LUs with TSS and handles
I all network error recovery, recording and restarting, if required.

I CBDLUCP is the RTAM LO-LU session control module; it handles all SNA
I protocol requirements ueeded for the support of the LU-LU session. It
, is device independent and relies on a sublevel of DCMs to handle the
f device dependent data manipulation requirelilents. CEDLUCP only supports
I the following session type: half duplex flip flop data flow within
I brack.ets.

r CBD321R is the de'"ice dependent DC!'; used by CEDLUCP to support remote
I 3210 dev ices; it hand.les all 3270 device functional reguirements imposed
I by the SSA 3210. Th,~ corresponding DCL is CEDL70R.

Section 4: system Programmer Facilities 78.7

ADSBA - AddlDel.ete Subarea SYC (SYC212)

The ADSBA SYC is used by the virtual. memory NCP activate and deactiv­
ate routines to move the required subarea tabl.es to the supervisor.

I The ADSBA SYC parameter list is described by the DSECT CHAADSB.

The fol.lowing codes are returned to the task in the task's general
register 15 after execution of the SYC.

Code Explanation
X'O' successful add or delete
X'q' subarea to be added already exists

subarea to be deleted does not exist
X'S' subarea to be deleted is stil.l in use
X'C' invalid parameter list; SYC not executed; SYC parameter list

not on doubleword boundary, or YftA for parameter list does
not exist

X'10' subarea number is invalid; subarea number is 0, 1, or
greater than the maximum subarea number allowed

X'14' unable to allocate space to hol.d table
X'lS' the BBB header is invalid; the count of entries or the

subarea number does not agree with the ADSBA value or
the subarea mask value is not the same as the sysgened
value

.1 LcmHi - connect TAMIl Terminal SVC Request (SYC205)

I The LCO.N SVC is issued by the TAftII virtual memory module to cause
I BTA! to allocate and bqild the necessary tables to connect a TAMIl
I device to a task.

I The LCONN SYC parameter list is described by the DSECT CBALCB. The
, SYC must be at the head of the parameter list and be executed. The pa­
I rameter list must start on a fullvord boundary.

I The LCORN SVC processor returns the following information to virtual
I memory in registers 0 an d 1:

I Register 0 --
, byte 0 zero
I 1 device type code from TCTDTY
I 2 ~ro
, 3 the Device Control Module index for the device

r Register 1 the relative line number in bytes 2-3 by which
, RTAM knows the device

, The LCORN SYC processor returns the following codes in the task's
t register 15:

Code
X'O'
X''''
X'S'
X'C'
X'10'
X'l"
X'lS'
X'lC'
X'20'
X'24'
X'28'
X'2C'

78.8

Explanation
LCONN request was successful
device is in use by the system
device is in use by RTAB
device is not an RTA! device
resource entry for path is in use
subarea has not been activated
invalid SDA or RID given
RID from LCBBID is invalid
no space available for ~T
unable to allocate relative line number for device
not used
invalid LCN para.eter list

, TSS***** .SYSBCS OAT!. SET

I To activate any resource -- Rep, PEP, EP, etc. - this dataset aust
t exist ..

I Each region in tl;,is dataset vill. have the salle name as the resource,
, and vill contain in1:orllation that pertains to the particu~ar resource.
I Any resource information that is not defined in this SYSRCS dataset must
I be incl.u ded as paraBleters in one or 1Iore of the RCP coa.ands (discussed
t later in this sectie1n), vith one exception; TYPE= Ilust be defined in the
I SYSRCS dataset; it is not a paraaeter of any of the lICP coamands.

I Any parameter entered by the system progra1lllller in any lICP command
I vil.1 override the sa.ae parameter if it is predefined in the SYSRCS data­
I set for this resource. A l.isj: of the paralleters that lIay be predefined
I in the SYSRCS data set is as fol.l.ovs:

'l'YPE=
I identifies the resource to TSS; specified as NCP, PEP, EP, or a 1-8
I character nalle (the first character aust be al.phabetic) suppl.ied by
, the instal.l.ation.

I DSRA!tE=
, specifies the nalle of the dataset from which the resource l.oad
I Ilod u1es wil.l. be taken.

SUBTYPE=
identifies the type of hardware that wil.l be used for this
resource; i.e., 3704, 3705, etc.

2UNNAME=
the name of the load module which contains the tables that will.
describe the resource to TSS. This parameter does not appl.y to an
EP.

LOADNAM=
the nalle of the final. l.oad module that viII run in the resource.

PHASE1=
the name of the initial load module that will 'bootstrap' in the
second phase.

PHASE2=
the name of the second l.oad module, called 'the second phase',
which will read in the final load module.

ROUTING=

PCL=

describes the different routes that can be used to get to the
resource.

the name of a TAMIl control tabl.e that contains detailed informa­
tion concerning the TAMIl interface to this device. This tabl.e
will contain the current status of the device.

, RESTAR'f=
I tells TSS vheth'~r or not to perform an automatic restart if an
I error condition should occur.

I AOTODMP=
f tells TSS wheth,ar or not to perforlrs an automatic dUllp if an error
, condition shoul..1 occur.

section 4: system Programmer Facilities 78.9

DMPPH1=
the name of the initial load module that will be used to 'boots­
trap' in the final dump load module.

r DKPPH2=
I the name of the final dump load module.

DUMPDS=
the name of the TSS dataset that will contain the dump output.

I The SYSRCS dataset may be edited using the TSS Editor. Th~ TSS data­
I sets that must be available in order to activate an RCP are DSNAME= and

TSS*****.SYSRCS.

ACTIVATION OF AN NCP/PEP OR EP

I The activation of an NCP/pEP or EP entails the transfer of particular
, load modules from the TSS system to the RCP/pEP or EP, and the activa-
I tion of those load modules in the resource. In order to perform this
, function certain types of information must be available to the TSS 5YS­
I tem. Each resource that is to be activated has some information that is
,unique. Activation of the resource is initiated by the ACTIVATE
, comlland.

DEACTIVATION OF AN NCP/pEP OR EP

J The deactivation of an NCP/pEP or EP entails the severing of communi-
I cations between TSS and the resource. In addition, all tables read in
I and generated during and after the activation of the resource are
I deleteCi. from the system. The region in the ~SS*****.SYSRCS dataset of
J the same name as the resource, will be scanned to determine the type of
I resource being deactivated as the deactivation processes differ.

DUMP OF A~ RCP/PEP OR EP

The dumping of an NCP/PEP or EP causes two load modules to be sent to
the resource. All activity at the resource ceases, and in order to run
again the resource must be activated again from scratch. The DU~PRES
command causes the entire storage of the resource to be written in the
output dataset.

AUTOMATIC DUMPING AND RESTARTING OF AN RCP/PEP OR EP

If an error condition occurs in the resource, the TSS system will go
to the appropriate region of the TSS*****.SYSRCS dataset an~ check the
AUTODMP parameter. If AUTODMP=Y is specified, the TSS system ~ust find
the DMPPH1, DMPPll2, and DU~PDS parameters in the region. If all are not
present, or if AUTODMP=N or if there is no AUTODMP parameter, the TSS
system will bypass the auto~atic dumping of the resource and process the
automatic restart parameter. If RESTART=Y is presBnt in the region, the
TSS system will attempt to reload the resource hy going through the
entire load process.

TRACE OP AN NCP/PEP OR EP LI!.fE

The tracing of the data transmissions of a particular resource line
will be initiated by the TRACE command. The data will be sent to the
TSS system and then recorded in a dataset for later processing.

78.10

SPECIAL COKMAND FACI:LITIES FOR SYST!l! MONITORS

The system programmer with the privilege class E (system monitor) can
reserve unit record .~quipment for nonconversational tasks (via the SE­
CURE com~and) and sy~bolically refer to specific devices (via the DDEF
command or macro ins"truction). In addition, he can Use extended PRINT
command features, which enable him to have a data set -- previously re­
corded in the American National standard Code for Information Inter­
change, ANSI 13.4-1968, referred to herein as ASCII -- read in froll tape
and prin ted out. This lets the TSS system programmer verify an ASCII
tape that could have been produced nsing some other system.

RESERVING I/O DEVICES FOR A NONCONVliRSATIONAL TASK

When reserving I~) devices for a nonconversational task, a programmer
with privilege class E can designate nnit-record equipment in the
operand field of the SECURE command. In addition to the options:

(TA=number of devices[,type of device)

(DA=number of devices[,type of device])

shown in the descripi:ion of the SECURE coamand in Command systell User's
Guide, you may ask for one or Bore printers, card punches, or card
readers by specifyin9 one or more of the following operands when nsing
l!SAl! or IOREQ:

(PR=nuBber of devices)

(PC=number of devices)

(RD=number of devices)

where the number associated with PR indicates the number of high-speed
printers you require" the number associated with PC ini:icates the number
of card punches, and the number associated with RD indicates the number
of card readers. ThE~ number of devices must be specified as a one- or
two-digi t decimal nUlllber.

If you want to reHerve two printers and a punch, for example, in ad­
dition to three tape units, all for nine-track 800-bpi tape, and one
3330 disk drive for cl nonconversational task, you might write:

SEC URE (PR=2), ('l~A=3, 9D2) , CDA=l, 3330) , (PC=l)

Note that the operancls need not be written in any particular order.

Because SECURE is defined to reserve "any available device of the
specified type", it Blust not be used when the task requires some partic­
ular device (by symbc.lic device address) of that type.

DESIGNAT ING I/O EQUIPMENT

"hen you have beeD. joined with privilege class E, you have several
options in the operiin.d field of the DDEF command (and macro instruc­
tion), and DCB macro instruction, that are not shown in Command System
User's Guide and Asse,mbler User Macro lnstructions. Except for these
options, which are described in detail here, the parameters you aay use
are those shown in an appendix to each of those publications.

Section 4: System Programmer Facilities 78.11

Symbolic Device Address

One of the options available to you, as a system programmer with
privilege class E, is to designate the I/O device you want to use by its
symbolic address. This can be accomplished by entering

,UNIT=sda

in the operand field of the DDEF command or macro instruction, where sda
is a one-to-four-hexadecimal digit symbol (from 1 to 7FFF) assigned at
system generation to the I/O unit as its symbolic device address. By
choosing this option, you can designate a particular terminal, a partic­
ular unit-record device (for MSAM or IOREQ programming), or a particular
tape drive or direct access device (for BSA~, IOREQ, QSAK, or VA~
programming).

DDEF by SDA is executed without regard to device reservation via ei­
ther SECURE or RELEASE ••• ,HOLD~ When a specific device is to be used
(regardless of type) there should be no attempt to SECURE it, and RE­
LEASE should always specify the SCRATCH option.

VA~ Data set Allocation on Drums

I A user with privilege class G (and only such users) can initially
, allocate a data set to a drum by specifying the appropriate volume IDs
, in DDEF. The same restriction and requirement apply to expansion allo­
t cation on a drum after the initial DDEF has been released. Use of the
I SPACE HOLD option of DD~F can allocate drum space for data set extension
I by non-class G users.

, Access to an existing drum data set by a non-calss G user, or by a
t class G user who does not specify the volume ID(s), is controlled by
, normal catalog access and sharing authorization. Expansion allocation,
I in these cases, is forced to disk volumes.

PRINTING DATA SETS

Data sets recorded on tape in EBCDIC or ASCII can be printed in sev­
eral formats by a class-E system programmer using the PRINT command.

~he Printing Options

By specifying the tape printing option (TAPOPT) with the PRINT com­
mand, the class-E system programmer can:

• Print an ASCII tape in character format.

• Print an ASCII tape in dump format.

• Exaaine an ASCII tape for any invalid characters, flag them, and
print all error records in the dump format.

• Print an EBCDIC tape in dump format.

Extended PRINT Command Facilities

The basic format of the PRINT command, when employing the extend&d
ASCII options, appears belove

78.12

• i ,OperationlOperands
f
,PRINT
I
I
•

,DSNA!SE=C'llrrent data set naae[,ERASE=ERASE]
I[,ERROROPT={ACCEPTISKIP,END} [,FORH=paper fora]
I [,TAPOPT:: {ACI AD liE' EDI ~]

Note: To enter posi tional.l.y, see the PRINT coam.and in the Co.mand Sys­
tell User's Guide. Operands for st.andard PRIUT command opt.ions, such as
STARTBO, ENDNO, PRTSP/EDIT, and STATION, are recognized when TAPOPT=EC,
or t.he defaul.t. If included for the ISCII or EBCDIC options, they are
ignored.

I

I ,

The processing a:lld output resul.ting froll the TAPOPT options are indi­
ca te'd be l.ow :

AC - The data set, :I:"ecorded in ASCII, is read from tape without transl.a­
t.ion to EBCDIC and the ent.ire dat.a set is print.ed in character for­
lIat. An unprililtable character is represented as a period (.).
Sampl.e output.: 132 bytes in t.he for.at:

•••••••• TSS*****.DSNAME ••• A •••

AD,AE,ED - The ASCII dump (AD) and edit (AE) options, and EBCDIC dump
opt.ion (ED). ASCII records are read from. tape without transl.ation
to EBCDIC. Th'~ entire data set is then printed. The basic print
record format :Eor these t.hree options is the salle, al.though certain
characters in 'the printed output wil.l have unique meanings depend­
ing on which option is selected. The basic print format for these
options appear:; below, followed by descriptions of the distinguish­
ing print featl1res for each option.

EC - Normal processing. EC is the default if TAPOPT is not specified.

Print Foraat for AD, IE and ED Options

Each output block consists of a header containing tae record number
and the record leng'th in decimal.. The header record is followed by a
data block. Each data record printed consists of the hexadecimal. dis­
pl.acement of that data record from the beginning of the block followed
by the thirty-two b:rtes of data recorded in dump fonat (that is, eight
ful.l Yords, each separated by bl.anks). The character representation of
the data immediately follows.

,
, Header
I
I record
I number

record
length

, Data Block
t
, displacement • word1 vordS Icharacter representation

<-------32 data bytes------>

Distinguishing Features

AD - All unprintablH hexadecimal bytes appear as periods. All ASCII
error characters (X'lA', or X'30' through X'PF') will appear as

Section 4: System Programmer Facilities 78.13

percent signs. Error characters are flagged as such. Since -%" is
a1so a valid print character, each output print record, containing
an error byte, is also flagged with *ERROR* appearing in the space
between the hexadecimal and character representations; this enables
users to distinguish between print records containing valid and
invalid percent signs.

saaple output: 64 bytes in hexadeciaal, 32 in character

DISP HEX CHARACTER

0000 C1C2C3C4 C1C24040 8080C1C2*ERROR* ABCDAB %~AB

0020 6C6BC1Cl C1C1C1C1 •• a,%.AAAAAA

AE - Only error records are printed. rhe character representation of
the hexadecimal data depicts valid ASCII characters as periods (.),
a sUbstitute character (X·'Aa) as an S, and an invalid ASCII
character (X'SO' through lapp') as an I. If no invalid characters

7B.14

are found on 1:he tape, the output consists of an appropriate aes­
sage. Only ASCII records containing error bytes are printed.

Saaple output::

0020 C1C1C1Cl lAC180Cl etc. • ••• 5.1. etc.

ED - This option d(~s not include any special features.

~li.Loutput:

0020 C1C2C3C4 C1C23040 lA80C1C2 ABCDAB ••• AB

SPECIAL BACRO IlfSTllfCTIOlf FACILITIES FOR SYSTEB ftOIlITORS

BACRO IlfSTROCTIOlfS POR 8SAft

There are four .acro instructions that you aay use in your ftSlft pro­
graas. SETOR enab1es you to specify the unit-record configuration you
desire for on-line printers and punches. GE~ and PU~ prOTide access to
logical records and aay be specified in either a aOTe aode or a locate
Bode. PI_ISB inforas the 851ft routines that a break point has been
reached in processi.ng a data set.

Interruption Entry Handling

Por each of the KS18 aacro instructions (SETUR, GET, PUT, and
PI_ISB), a return code of 4 indicates that the operation has not yet
been coaplated. ID each case, the aaero instruction should be reissued,
until a return code other than 4 is receiTed. Before reissuing the
aacro instruction, howeTer, you should test DCBICB and, if it is nonzero
inToke the interruption inquiry routine by issuing the IlfTIIQ aacro in­
struction (described in Asseabler User Bacro Instructions) to deteraine
whether an asynchronous iDterruption is pending. If so, you should give
coDtrol to the appropriate interrupt-handling routiDe and defer reissu­
ing the 8SlB Bacro instruction until control is returned to your
prograa.

DESIG_1TIIlG DEVICES POR 851ft

ID addition to the syabolic device address, three codes Bay be used
with the UIlIT operand of the DDE' coaaaDd aDd aaero instruction when
using 8SA8. You .ay write:

OlfIT={sda,PC,PR,RD)

where sda is the syabolic device address of the desired unit record
device, PC is a card punch, PR is a printer, and RD is a card reader.
If you use the aultiple sequential access aethod, one of these options
~ be specified.

Section 4: Systea Prograaaer Pacilities 79

SECTION 5: DEFINING SYSTEM MACRO INSTRUCTIONS

This section deals with the process of defining macro instructions,
concentrating on precautions you should observe and limitations imposed
by the various types of macro instructions. It assumes familiarity with
the rules for writing macro definitions contained in Assembler Lanquagg.

CONVENTIONAL TYPES OF MACRO DEFINITION

In TSS, there are two preferred conventions for defining macro in­
structions. These conventions define rules for writing the R-type macro
instruction, and the standard-, L-, and E-forllls of the S-type macro in­
struction. In describing macro instructions for the user, each macro
instruction is designated an R-type, an S-type, or, if one of these con­
ventions was not used, as an O-type (other type) •

R-TYPE MACRO DEFINITION

An R-type macro definition can be written when all para.meters can be
contained in the two parameter registers, 0 and 1. The R-type defini­
tion does not generate a parallleter list but may generate constants or
addresses. You are limited in the choice of operand forllls you may allow
the user. These forllls and coding considerations are described below.

The proper use of an R-type macro is to pass: one or two single-word
values (or 4-byte strings); a double word value (or 8-byte string); a
control block address and a flag word; or logically similar information.
A collection of data organized into a block solely for the use of a
given lIlacro, which has no significance beyond the macro or outside the
using and called 1I0dules, is not a good subject for an R-type macro.

RX Address (forlllerly known as "explicit" or "implied" address)

This is an address which the user specifies as if he were specifying
the second operand of an RX-type assembly language instruction such as L
or LA.

This forlll of address gives the user lIlaXilllUIi flexibility in specifying
a storage field. It permits addressing by name, addressing by base plus
displacement, indexing, and by the effective equivalent of register
notation as in: o (,register) • The user lIlust remember to cover with a
base register the symbolic addresses that may be written for this form
of operand. A portion of the coding of a macro definition called STOR
is shown in the box below. &AREA lIlay be written as an RX address. No­
tice the preferred use of the LA instruction to provide an overriding
base register for the STM instruction. You should not write:

STft ®S(1),®S(2) ,&ARE!

The HI: address form per.its the coding of indexed addresses8 But the
STft instruction does not allow for indexing. So, in the example, you
would have used the operand SARE! in the LA instruction, which is
indexable.

80

,
I SIlAl!E STOR SAREA,SREGS
I •
f •
I •
I SBAI!B LA 14,,&AREI. , STI! SREGS(1),SBEGS(2)"O(14)

Buaber

If you designate an operand to be specified as a nuaber (assumed to
be a deciaal integer unless you tell the user otherwise) several possi­
bilities anst be c()nsidered.

If you liait the user to an integer less than 4096" which is not a
preferred aethod, you may write:

LA 1" SIIl'f'

If you allow the user to exceed 4095" which is the preferred method
regardless of appllcation you aust first test the magnitude of the
operand and,. in thEl cases in which it does exceed this value" write:

'f'he F-type literal is chosen,. rather than the A-type, for invariant
data,. to avoid organizing the literaL in the user's first declared
PSEC'f'.

You aay also chc)ose the n1lllber fora for an operand that is not a pa­
r.aaeter but which serves to indicate the proper path through the macro
definition,.or the nnaber of iterations of code or data generation to be
done by the aaero. This type of operand should be treated in condition­
al asseably instructions.

Absolute~ressioJl

If the value of an operand in the form of an absolute expression is
less than 4096,. you may use the LA instruction. If this value is great­
er than 4095, the parameter can be aade a literal, which is preferred
(as a full word) regardless of the range allowed. For exaaple:

L 1, =F'SIIlT'

The absolute expression fora of operand may also be used (in excep­
tional cases) as a path indicator to be used by conditional asseabIy
instructions.

A code value should be enclosed in apostrophes. Some aacro instruc­
tions offer a code or soae other fora of operand as alternate choices
for designating an operand. In these cases, it would not be possible to
distinguish between the alternates without some kind of test. 'f'he
siaplest way to handle this possibility is to require the use of deli­
aiting apostrophes and write your aacro definition to test the operand
for a leading apostrophe.

If the code value is to be passed in a register as a paraaeter,
restrict it to four characters; if two paraaeter registers can be used,
restrict it to eigbt. This is a preferred method only for short options
related to a single data value or control block address.

section 5: Defining Systea I!acro Instructions 81

You may choose a code to indicate the path to be taken through the
macro expansion or to be passed as a parameter in some fora other than a
character string. In the latter case, you must provide a translation
algorithm through the use of conditional asseably instructions.

Character string

You should avoid this operand fora in an R-type macro instruction,
but aight choose to pass a character string paraaeter in one or a pair
of registers. If you choose to do so, be sure to liait the size of the
string to confora with the amount of available register space.

You may use a character self-defining tera as the displaceaent field
of an LA instruction if the string consists of one character. If the
string is longer than one character, your aacro definition must eaploy
an L or L! instruction to load a literal.

Symbol

You aay specify this operand fora if you want to force the writer of
the aacro instruction to specify a character string that conforas to as­
sembler language conventions.

You aay also perait the writer to provide a syabolic name for the
first executable instruction in the expansion. If so, be sure to pro­
vide for the inclusion of the name in each aodel statemeut that may gen­
erate the first executable instruction.

Linkage

Bany routines called by aacro instructions are privileged. If the
aodule issuing the macro instruction is privileged, the macro instruc­
tion must generate a type-l linkage to another privileged module; if the
issuing module is nonprivileged, a type-2 linkage aust be generated. If
a macro instruction may be issued by either type of module, your macro
definition must test for the type of linkage you desire to assemble. It
can do this by checking the global symbol &CHDCLS that is initialized by
the DCLASS aacro instruction.

The DCLASS macro instruction is used to tell the assembler which type
of linkage you want asseabled for aacro instructions. If the DCLASS
aacro instruction specifies USER class or is oaitted, &CHDCLS is given a
value of 0; if PRIVILEGED is specified, SCHDCLS is given a value of 1.

Soae macro instructions generate only type-l linkages regardless of
the issuing module's privilege class. If you write one of these fence­
sitters, be sure its entry point naae begins with Sys. ~ese characters
are used to generate a type-l linkage.

Pinally, some macro definitions generate code without reference to
parameters. That is, the saae code is generated every time the macro
appears in a source program.

EXABPLB: Here is an exaaple of a typical R-type aacro instruction and
its associated aacro definition, illustrating some of the points just
made. Your macro description would be:

, i i
,Bame IOperationlOperand
I I I
l[syabolllRTYPB Ilocation,length . , .

82

where location can be specified as an RI address and length aust be
specified as an absolute expression; your aacro definition aight look
like this:

(1) BACRO

(2) SlAKE RTYPE

(3) AlP

(4) •

(5) SRAlIE LA

(6) AGO

(1) .OP2 AlP

(8) LCLA

(9) SA SETA

(10) L

(11) • LIllI(CHDI1IlIHA

(12) BEIIT

(3) .El AlIOP

(111) .E2 ABOP

(15) BEID

SLOC,SLEJI

('1" SLOC EO ·O·).E 1

1,SLOC

.OP2

(T'SLElI EO ·01).E2

SA

SLElI

O,=P'SA'

" (CZCIYZ) ,1 'P}"'

HEADER STATEBElIT

PROTOTYPE STATElIERT

IF 1ST OPERAlID IS
B:rSSIJlG

GBBERA~ All ERROR
STATE BENT

PIRST GEBERATED
STATE!!EBT

IP 2RD OPERA.D IS
BISSIIG

IBITIALIZE SETA
SY!BOL

SET VALUE OP SETA
SYRIBOL

TERRlIIA'!'E PROCESSIBG

1ST OPERAlID !!ISSIBG

2BD OPERAlID BISSIBG

TRAILER STATE!!ElIT

In this exaaple, line 3 tests for the presence of a first operand
and, if it is aiss:i.ng, branches to an ABOP stateaent in line 13. In
practice you would want to place soae error processing code at this
point. Error processing and the CHDERftAC aacro instruction are dis­
cussed later.

Line 5 is the aodel stateaent which generates the first executable
instruction for RI address notation and would also generate the naae as­
signed to the aacro instruction.

The second operilnd is processed in the preferred way.

Pinally, line 11 generates the linkage by aeans of the CHDIlIBRA inner
.acro instruction. The third operand, (CZCXYZ), represents the type-1
linkage entry point and the fourth operand represents the EITER code for
type-2 linkage. CSDIRRRA deteraines which type linkage to use.

S-TYPE !!ACRO DBPIRITIOR

You should eaploy an S-type aacro definition when you wish to gener­
ate a paraaeter list in storage because the para.eters cannot be con­
tained in two registers. An s-type aacro definition provides the user a
choice of three foras of aacro expansion: standard, L-fora, and E-fora.

section 5: Defining systea !!acro Instructions 83

The standard fora, indicated by the oaission of the ftP=operand,
shou1d generate separate E- and L-foras but aay directly generate the
paraaeter 1ist and the required linkage to the ca11ed routine.

The L-fora, indicated by ftP=L, generates only a paraaeter list; it
does not generate any executab1e code. For this reason, the RX address
operand fora is not allowed in the L-fora.

The E-fora, indicated by BP=(E,1ist) where ftlistft specifies the
address of the paraaeter list as either a relocatable expression or as
in RX address notation, generates the proper linkage and may also alter
an existing paraaeter 1ist.

This convention peraits the program.er using your aacro instruction
to conserve space in storage by generating a paraaeter list by aeans of
the L-fora and then altering the same list, in seyeral subsequent calls,
by means of the E-form. The L-fora is genera11y intended to be modified
by each B-fora that uses it.

The placement of the paraaeter 1ist aay be indirectly controlled by
the user of your maero instruction, and he should be advised about these
precautions:

1. The S-type maero instruction conyentional1y places the paraaeter
list in the first declared PSBCT of the asseabled aodule.

2. If this PSECT is declared by a aaero instruction, then that in­
struction must appear in the user·s program before any macro in­
structions that refer to the list.

3. If rule 1 or 2 is violated, or if no PSBCT exists at all, the
standard fora S-type aaero instruction aust place the paraaeter
list in line with the code it generates and insert a branch around
the list.

II. L-fora macro instructions a1ways generate the paraaeter list in
line. Therefore, if the user is writing reenterable code, he will
want the parameter list generated in the area occupied by his work­
ing storage, presumably his PSECT. This is usually done for him by
the standard fora s-type. The L-fora should only be used in the
PSECT.

STABDARD-PORft S-TYPB BACRO DEPIBITIOB

As in the case of R-type aaero definitions, the operand forms you
alloy the user dictate certain steps in your aacro definition. Here are
standards to observe.

Relocatable Bxpression

This operand form may be used as the arguaent of an A-type address
constant either in a DC statement or in a literal.

Buaber and Absolute Expression

If the operand specified by one of these operand foras is an actual
numeric value, it is only necessary to generate an P- or A-type address
constant, keeping in aind any size constraints that might necessitate
the use of length aodifiers. PUll-word P or A constant is preferred.

~

If a code is to be passed as a parameter or is to be translated to a
value to be passed as a parameter, you must pass it in the parameter

all

list and not, as in the case of the R-type macro instruction, in a
register. Since the code may only be one term, you may use any type of
constant to genera1~e the parameter in the list. If the code is a
character string that includes apostrophes, you aust pass it as a
character constant and adhere to the rules for writing such constants.
Notice also that the TSS asseabler reduces a11 double apostrophes and
double ampersands 1.0 single apostrophes and aapersands.

Again, you may choose to use the code as a path indicator. If you
vish to pass a variable-length parameter list, you aight use a code to
indicate the length. of the list being passed.

Character string an.d Text

These types of c,perand foras aay be used in tvo vays. You can pass
the operands to the ca11ed routines as character strings in the paraae­
ter list; you can generate the character strings and then enter a point­
er to thea in the paraaeter list. The latter method is preferred, vith
the variable length of the string or text generated as a full vord iame­
diately preceding the string (no separate field or pointer for length) •
Since the parameter: list produced by the S-type aacro instruction nor­
aally is a list of pointers, yon viII, vith few exceptions, use this form
of operand in character constants or character literals.

You are responsible for verifying the presence of a leading apos­
trophe in a text operand and for providing error processing if it is
missing. The asseabler program checks for the ter.inal apostrophe.

Tvo aethods for checking the length of a character string are availa­
ble. As you can see in Pigure 17, you aay test for either the K or the
L attributes. The reason for subtracting 2 froa the count of &TEYT be­
fore placing it in the SETA cell is that the assembler includes the
delimiting apostrophes in the count. If you vant to find the length of
the character string, bear in aind that deliaiting apostrophes viII have
been stripped and double apostrophes and ampersands viII have been re­
duced. Thus, had the programaer vritten the operand &TEXT as:

'USE THIS SYMBOL S&I

you vould find its K attribute to be 20 (including terainal apos­
trophes). Statement 3 of the exa.ple vould yield the value 18 in the
SETA cell. statement 5 vould yield a value of 17 in the SETA cell since
state.ent 4 vould have generated &TEXT stripped of it:s terainal apos­
trophes and one of the tvo ampersands.

section 5: Defining System ftacro Instructions 85

I , ,
I
f
r
I
I ,
J
r ,
I , , , , ,

(1)
e2}

(3)

(4)

(5)

SAl

CHDXX

SAl

BACRO
MAC!

SETA

DC

SETA

BEND

STEXT

K'S'lEI'l-2

C'STEX'l'

L'CHDIX

Pigure 17. Deteraining the length of a character string

SYlIIbo1

You lIIay use this operand fora in several ways: in the naae field of
a generated statement, as a character string to be passed as a paraae­
ter, or as an entry point or module name to be used as the arguaent of
an address constant, usually R-type or v-type.

L-pORM S-TYPE MACRO DEpINITION

I

r
I
I
r
r
I
f
I
r ,
I
I
I
I , ,
I ,
I

RX addressing is not allowed in the L-form of the S-type macro in­
struction. The L-fora is used to generate a paraaeter list only. Since
RX addressing requires the generation of executable code, it cannot be
used.

EXA!!PLE A: Coding the L-fora part of an S-type macro definition

e1}
(2) SlfAME

(3) .LFORB
(4)
(5) SlfABE
(6) .SYM
(7)
(8)
(9)

(10)
(11) .PROC
(12)

(13) SB
{14} .OBIT3
(15)
(16) .0MITl

86

MACRO
STYPE SLENLOC,&PROC,SSYM,&SY!!LRlf,

&Bp=I

All' C'&MF' EO 'L') .LFORM

All' ('&NA!!E' EO • ') .El
All' (K'&LENLOC EO O).OMITl
DC A (SLENLOC)
All' ('&SYB' EO ··).E2
DC CLS'SSYB'
All' (K'SSYMLElf EO 0) .EII
DC AL 1 (SS YIILEH)
LCLB &B
All' (K'SPROC EO 0) .OBIT3
All' ('&PROC' lfE 'E' AND

'&PROC' NE 'Pi) .E3
SETB ('SPROC' EO IF')
DC AL 1 (SB)
BEIIT
AliOP

HEADER STA'lEftENT
PROTOTYPE

LpORII OF BACRO?

IS HAME pIELD OK
IS FIRST pIELD OK
ENTER FIRST OPERAND
3RD OPERABD OK
ElfTER 3RD OPERAlfD
4TH OPERAlfD OK
ENTER 4TH OPERABD
ESTABLISH SETB
IS 2HD OPERAIID PRRSElIT

IS 2lfD OPERAWD VALID
SET CODE
DEFAULT 2BD OPERAND

DEFAULT 1ST OPERABD

(17) SHAlIE DC 1(0) RRSU!E PROCESSIRG
(18) AGO .SIft
(19) .El. AHOP
(20) .E2 AHOP
(21) .E3 11iOP
(22) .E' AliOP

(23) lIEliD

Exaapl.e A il.lust:cates this 1iaitation. If you intend to perait the
user of your aacro instruction to use the L-fora, you aay wish to eapha­
size the operand fora liaitation in your aacro description. Al.l other
operand foras allowed in the standard fora are also all.owed in the L­
fora. Al.though operands in L-fora aay be used as path indicators, they
are general1y used as the arguaents of DC stateaents or are translated
to val.ues that are used as arguaents.

since the user controls the placeaent of the para.eter list, do not
include a stateaent to generate a control section; specifical1y, don't
atte.pt to locate the paraaeter list in the PSECT.

Figure 18 shows how the S-type aaero definition in Exaaple A would be
presented to the user. Botice that the naas field in the L-for. is aan­
datory. This is a good general. Tul.e to fol.low because aost users gener­
ate the paraaeter l.ist and l.ater aodify it with an E-fora. The naae as­
signed the L-fora is a good way to identify the para.eter list for later
aodifica tion •

The coding shown in Exaapl.e A woul.d generate the paraaeter list shown
in Figure 19. Stateaents 3, 4, 6, 8, 11, and 12 test for the existence
and the val.idity of each para.eter. state.ents 5, 7, 9, 14, and 17 gen­
erate the paraaeter list. Botice that l.ines 3 and 6 use a null. test to
verify the presence of operands.

standard fora:
• Ii'
'Baae ,Operation ,Operand I
I , , ,
l(syabol.]ISTYPE ,length l.ocation,procedure,sy.bol,syabol length I . . , ,

L-fora:
i
,Baae
I

I ,

,Operation ,Operand , ,
,
I ,

Isyabol.
I

ISTYPE I[length l.ocation),[procedure],syabol,syabol
I ,lIF=L

length"
I , , .

Figure 18. Standard and L-fora S-type aacro description

Defaul.ts have been provided in lines 14 and 16. If the second
operand is oaitted, l.ine 11 branches to line ,. which uses &B as the
arguaent of the address constant. Since &B was initial.ized to zero by
the LCLB instruction, l.ine ,. assuaes zero (indicating Pl.

In your definition, lines 19 through 22 would be foll.owed by error
processing.

,

section 5: Defining syste. lIacro Instructions 87

syabol + 0

+ 4

+12

+13

,
f I

'SYB ,
I length I
I ,
f 0 ,
I 1 I
• •

length

[sYllbol]

Figure 19. Parameter list generated by L-form

E-FORM S-TYPE "ACRO DEFIVITIORS

The E-fora .acro instruction may aodify a parameter list and aay gen­
erate the linkage to the called routine. since this requires the
generation of executable instructions, soae changes Bust be aade in the
operand foras.

RX Address (forBerly knovn as "explicit" or "implied" address)

This fora of operand Bust be substituted vherever relocatable expres­
sion is alloved in the standard fora. The use of these foras viII
difffer froa their use in the standard fora in that you use them to coa­
pute the effective address and then store that address in the paraaeter
list. You should tell the user that he aust prOTide a base register.

By convention, general registers 14 and 15 are used as working regis­
ters in the aacro definition, because the linkage you generate destroys
their original contents anyway.

HUBber and Absolute Expression

Operands specified in these forms are treated auch the saae as in the
R-type. A Load (preferred) or Load Address instruction is used to load
register 14 with the operand value. The choice of instructions again
depends on the Bagnitude of the operand value.

Because RX address notation Bust be allowed in the ftF= operand, you
Bust include a test for it and provide for loading register 1 with the
address specified.

Code and SYllbol

Operands expressed in these foras may be used as path indicators, and
the syabol fora may be used to nalle generated instructions. Although
these operands are peraitted in the E-fora, you viII seldoa find thea
useful.

Linkage

When your macro definition is generating the linkage to the called
routine, you should generate the entry point in a V-type address con­
stant literal. Hot only is this a convenient Bethod, but the asseabler
prograa will place this constant in the proper control section -- a
PSECT, if one exists.

ihen generating a type-1 linkage, your E-form macro definition must
generate both V-constant and R-constant literals. You can use the inner
macro instruction CHDINNRA, vhich is discussed later, for this pu~ose.

88

EXAKPLE B: Coding the E-form part of an S-type macro definition

(1)
(2) &BAKE

(3) • EPOR!!
(4) &lI1A!E
(5)

(6)

(7)
(8)
(9) .PROC

(10)

* (11)
(12) SB
(13)
(14)

* (15) .LHIK
(16)
(17) .El
(18)

t!ACRO
STYPE

AIP

ABOP
DS
CHDIB1IRA

AlP

LA
ST
AlP

AIF

LCLB
SETB
LA
STC

CHDIHliBA
!!EXIT
ABOP
t!EXIT

&LEBLOC,SPROC,&!P=I

(t&!P(1) , EO 'E') .EPOR!

OH
&t!P (2)

(K'&LEBLOC EO 0) .PROC

14,&LEHLOC
14,0 (O, 1)
(K'SPROC EO 0) .LIliK

(,SPROC' HE 'P' AND 'SPROC'

&B
('SPROC' EO 'F')
14,&B
14,13 (0,1)

II (CZCXYZ),X'PP'

HEADER STATEt!EBT
PROTOTYPE

EPORt! OP !ACRO?

EBTRY POI.T
ALIGB!E.T
LIST ADDRESS IB
REGISTER 1
IS TnRB A 1ST
OPERABD

1ST OPERABD TO LIST
IS THERE A 20
OPERAIID

liE 'P').E1
IS IT VALID
ESTABLISH SETS CELL
SET SETB CELL

S'.fOBE CODE III PARA
LIST
GEBBBATE LIBKAGE

Pigure 20 demonstrates the E-fora of the macro instruction described
in Pigure 18 and the parameter list shown in Pigure 19. The coding for
a typical E-form S-type aacro definition is shown in Exaaple B.

E-fora:
Ii'
IHaae ,Operation I Operand
I , ,
l[syabolJISTYPE ,[length 10cation](,procedure],!!F=(E,list)
• , I

Pigure 20. E-form s-type aacro description

Note, in Example B, that the only error test is for an invalid second
operand. All paraaeters aay be oaitted if no change is desired in that
field of the parameter list.

t!ODIPIBD R-TYPE !!ACBO DEPIHITIOBS

You aay choose (in exceptional cases)to pass parameters in registers
other than 0 and 1; this aakes the definition a aodified R-type. If
your macro instruction links to the called routine by aeans of an SYC,
you aay pass parameters in registers 14 and 15.

No change in operand foras occurs between R-type and aodified B-type
macro instructions.

":f'!ction 5: Defining Systea t!acro Instructions 89

BODIPIED S-~YPE KACHO DEFINITIONS

An s-type .aero instruction may have no standard form and an X-for.
that does not generate any 1inkage. These are modified S-type macro in­
structions and they serve on1y to generate and to a1ter a parameter
list ..

Another type of .odified s-type macro instruction is the type that
has on1y a standard form; it does not have an L-form or an X-form.

TECHNIQUES USED IN WRITING KAeRO DEFINITIOIS

REGISTER NOTATION

Specia1 register notation shou1d be specified when you wish to a110w
the user to 10ad parameters (not addresses) into registers before execu­
tion of the macro instruction. By convention, these registers are re­
stricted to 0 and 1 for standard R-type macro instructions. Registers
14 and 15 may a1so be used if the R-type macro instruction is of the
modified type. The required method of linkage may p1ace additiona1
restrictions on the use of registers 14 and 15.

Register notation and registers for RX-Address use are limited
registers 2 through 12 in order to avoid the 10ss of parameters.
that you want to pass parameter P1 in register 0 and parameter P2
register 1. without this restriction on register usage, the user
issue the HAVOC macro instruction like this:

L O,.P2
L 1,.P1

HAVOC (0) ,. (1)

Your macro expansion vould then do this:

LIt 0,1
LR 1,0

THIS IS PARAKETER P1
THIS IS NOT PARAKETER P2

to
Assume
in
might

If you must use registers other than the conventional ones for work­
ing registers, and do not save and restore them, be sure to warn the
user.

PACKING PARAMETERS

If you wish to pass two related short parameters or several flags in
one register, you must pack the parameters. Figure 21 shows the methods
for packing two parameters, each. a half word long, into register 1.

SOPA is register SOPA is an
notation absolute expression

• f • SOPB is I I LCLA &A I
register f LR 1,SOPA(1} ,SA SETA SOPA*65536 f
notation • SLL 1,16 , L 1,=PtSA' I

I OR 1,SOPB (1) r OR 1 ,SOPB (1) I
I , ,

SOPB is I LR 1 ,SOPA (1) I LCLA SA I
an absolute, SLL 1,16 ,SA SETA SOPA*65536 ,
expression I LeLA SA , L 1,=F'SA' f

f SA SETA SOPS ISA SETA SOPB I , 0 1,=1' ISA' , 0 1,=F'SA' I
L-

figure 21. Packing tvo halfword paralleter s into register 1

90

Similar techniques can be used for other cases. Here are two
examples:

EXAl!!PLE A:

Parameter P1 - three bytes left aligned
Parameter P2 - one byte right aligned
Both parameters given in register notation

Procedure
LCLA &.1

&A SETA SP1*256
L 1,=P'&A'

&A SETA SP2
o 1,=F'&A'

EXAl!PLE B:

Parameter P1 - one byte left aligned
Parameter P2 - three bytes right aligned
Both parameters given as absolute expressions.

Procedure
LCLA SA

&A SETA SP1
I. 0,="'&1'

&.1 SETA &P2*256
L 1 ,=l"&A'
SRDL 0,8

DEFIBIBG IBRER l!!ICRO IISTRUCTIOBS

The inuer maero instruction CHDIIIRA has been used in previous
examples. You will find this type of instruction not only convenient
but also economical in teras of lines of code written, lines of code
generated, and time expended in assembly.

You needn·t write as much code in your outer macro definition, since
the inner macro instruction will supply it for you. You may also reduce
the number of generated statements by using conditional calls. You
might, for example, write:

All' ('SOP' I.E 5) .lIOIHR
IlIBERl!!AC

• BOIRR AROP

The inner macro instruction would only be called if SOP were greater
than 5. As you can see, the use of the inner macro instruction is some­
vhat analogous to the use of a subroutine.

Basically, the reasons for using inner macro instructions are the
same as those for using subroutines. If tiae and space vil1 be saved,
define and use an inner macro instruction.

Dontt nest more than three levels of .acro definition. This techni­
que vill keep the definition clean and intelligible.

Section 5: Defining System Baero Instructions 91

Don't define an inner aacro instruction for use with only one outer
aacro instruction; use a conditional asseably subroutine instead. As­
sume that you want to conditionally enter a subroutine froa points A, B,
and C. You must provide a aeans by which the subroutine can return to
the correct point after each of the three calls. You can do this by
establishing a SETC cell and altering its contents prior to each condi­
tional branch. Example C illustrates this technique.

EXAHPLE C: Branching to and returning from a conditional subroutine

HACRO

LCLC

SRTRI SHC
AIF

.RTRJl1 AliOP

SRTRN SETC
AU'

.RTRlT2 A1l0P

SRTaR SETC
AlP

.• RTR.3 ANOP

HEXIT
.SR ANOP

AGO

HElD

SRTRN

, .RTRlIl·
(SOPl GT 10) .SR

'.RTRN2'
(K'SOP2 EQ 0) .SR

• .RTR.3'
(L'SOP2 LT 1) .SR

SRTRI

NAHING THE PIRST EXECUTABLE IISTRUCTIOli

(EID OF SUBROUTINE)

It is possible to put the name field of the aacro prototype statement
on the first executable instruction even when there is more than one
model stateaent that may be generated as the first executable instruc­
tion. It is preferred, however, to use the name in the naae field of a
non-executable assembler statement (for example, SIAHE DS OR or SlAKE
EQU *) •

SETTIJrG THE SIGN BIT

If you define a macro instruction in which the user aay specify the
sign of operand two by the presence (negative) or the absence (positive)
of operand one, you may find it 4ifficult to properly set the sign bit.
Examples D and E illustrate two techniques you aight find helpful.

92

After establishing SETA and SETB cells, line 5 places the proper bit
value in the SETS cell, based on the presence or the absence of OP1.
Line 6 then generates the parameter in storage using the value in the
SETB cell for the sign. Botice that the length aodifiers in line 6 spe­
cify the length in bits. You .ust use one line for the DC state.ent.
If you use two lines, the second line viII be aligned on a byte boundary
and the sign bit vill be lost.

Exaaple B illust.rates another technique; it uses the saae lUeRO, PRO­
TOTYPE, and LCLA st.ateaents froa Exaaple D. In Exa.ple E, line 7 tests
for the absence of OP1. If it is absent, the sign is to be positive and
lines 15 and 16 generate a positive value in register 1.

If the sign is to be negative and OP2 is zero, line 12 generates a
negative zero in register 1.

If OP2 is to be a negative nuaber other than zero, line 9 co.putes
the two's coapleaent of OP2 and places it in the SETA cell. Line 10
loads register 1 with the negative SETA syabol. The assembler viII con­
vert the value in &A to its negative tvo's co.pleaent. Since the value
in SA is already the tvo's co.pleaent of OP2, line 10 will load the
absolute value of ClP2 with the sign bit on.

E'IUIPLE D:

(1)
(2) SB1RE
(3)
(4)
(5) SB

(6)

EXA!lPLB E:

(7)
(8)
(9) SA

(10)
(11)
(12) .ZERO
(13)
(1.) .ORIT
(15) SA
(16)
(17) .DOBE

R1CRa
RACE!
LCLl
LCLB
SBTS

DC

111'
AlP
SET).
L
lGO
L
AGO
ABOP
SETA
L
lBOP

SOP1,SOP2
Sl
SB
(K'SOP1 BE 0)

AL.1(SB),AL.31 (SOP2)

(K'SOP1 BO 0) .OMIT
(SOP2 BO 0) .ZERO
X'71'1'1'1'1'YP'-{SOP2-1)
1,=1"-Sl'
.DOBE
1,=X'80000000'
.DOBB

SOP2
1,=1"Sl'

PROCESSIBG 1 SIBGLE APOSTROPHE

You .ust eXerCifJe caution in the treataent of operands that aay
validly contain single apostrophes. If, for exa.ple, a single apos­
trophe is found in a character relation in an lIP instruction, it will
produce invalid syntax.

There is a vay 1~0 test for single apostrophes without violating syn­
tax rules. You aight write

section 5: Defining Systea Racro Instructions 93

AIF (ISOPND'(1~1) 'SOPND'(1~1) EO III') .~EX~

~his use of substring notation concatenates the operand field you vant
to test with itself~ thereby generating a pair of the tested character.
Thus~ if the character tested is an apostrophe~ paired apostrophes will
be produced and no violation of the rules of syntax viII result.

It's worth noting here that there are three methods available to you
to test for the presence of an operand

1. AIF (K'SOPERAND EO O).OBIT
2. AIF (T'SOPEBAMD EO IO').OBIT
3. AIF ('SOPERAND' EO ") .OMIT

Bethod 1 tests for a count of zero, method 2 tests for a type of
"omitted", a.nd method 3 tests for a null character string. You should
not use method 3 if it is possible for a single apostrophe to appear in
the operand. A test for the K attribute is your best course.

REFERRING TO THE DCB

If the macro instruction you define must refer to the user's DCB, you
should express references to the various fields in terms of symbolic
notation. Reference to fields in terms of byte displacement is bad
practice; if the DCB is ever redefined, your byte displacements may no
longer be correct. The use of symbolic field names requires the user to
have previously issued a DCBD macro instruction or the macro instruction
currently being defined must issue a DCBD inner macro instruction.
Since the DCBD macro instruction uses the global symbol SCHDDCBD to pre­
vent multiple expansions of the DCBD macro instruction in one assembly,
there is no reason why DCBD should not be coded as an inner macro in­
struction to allow symbolic references to the user's DCB. If you want
to avoid the error message normally issued for duplicate DCBDs, you can
test SCHDDCBD within the macro instruction code before issuing DCBD and
branch around it if the value is not equal to O. (Mote, however, that
if the user has copied CHADCB and issues DCBD, duplicate symbols will
result.)

SIZE LIMITATION

If the operand is not a sublist, it must not contain more than 255
characters. If the operand is a sublist and the only references are to
individual members of the sublist, each member may be up to 255 charac­
ters long. You are not restricted in the number of operands or in the
number of sublist elements.

ADDRESS CONSTAITS

If an R-type address constant refers to a symbol defined in a program
that has no PSECT. then the R-value defined is the origin of the control
section containing the ENTRY statement whose operand field contains the
argument of the R-type constant. Thus, given R(X), where X is defined
in an assembly module having no PSECT, the R-value is the origin of the
control section containing the statement:

ENTRY X

If there is a PSECT, all address constant literals are located in it.
If no PSECT exists, the constants are placed in a literal pool.

V-type and R-type constants must have only a single relocatable sym­
bol as an argument. If an operand is to become the argument of such an
address constant, you should show the operand form as "symhol."

94

A symbol X and a V-type constant with an argullent of X lIay both be
defined in one assembly lIodule. Unless X is also defined as an entry
point to the modu].e, the V-type constant is resolved by searching for a
definition of X outside the current module.

Testing the type attribute of a symbol for the value T will only in­
dicate whether it is defined as the operand of an EXTRW ste.teDent in the
assembly. If a symbol is externally defined as the argument of a V-type
or R-type address constant, its attribute will be given as U for unde­
fined. This cannot be considered as a conclusive test, however, since u
is also the attribute assigned to symbols interna1ly defined by an EQU
statement. The test for a type attribute of T can only be used to indi­
cate that a symbol was defined by lIeans of an EXTRH statement.

If your macro instruction generates an implicit adcon group and may
be called from a user-written program, it is not safe to assume that the
user has defined E~ntry points with either EXTRll or ENTRY statellents.
The type of constants you generate should be determined by testing for
the T-value of thEt type attribute. If it is present, you lIay generate a
V-type and R-type constant pair. If it is not present, generate an A­
type constant pair. Adllittedly, the user may have defined the sy.bols
with ENTRY statellants but, since there is no way to test for them, this
is your only safe course.

Conventionally,. the R-value of the A-type constant is assigned froll
&SYSPSCT (that is,. the first PSRCT). If this variable is null, indicat­
ing that no PSECT exists, the R-value is assigned (from &SYSECT) the
origin of the CSReT from which the macro instruction has been issued.

An exception to this convention occurs in the ADCON macro instruc­
tion. since the user controls the placement of the ADCOH macro instruc­
tion and probably wishes the adcon group constructed in the salle PSECT"
the R-value is allrays assigned the value from &SYSECT. You should use
this same technique when you want to let the user declare more than one
PSECT and generatE~ the adcon group in a PSECT other than the first ..

TERIIINAL APOSTROPHE AND SIZE LIftITATIOH

Assume that a user writes a text operand that is 258 characters long~
including ter.inal apostrophes. After you have tested for the initial
apostrophe, you soek to deter.ine the K attribute. since this at.tribute
is expressed in lIodulo 256, you would receive a character count of 2:
the initial apostrophe and the first character. The terainal apostrophe
would be missing and an error message would be generated by the assem­
bler progra ••

KEYWORD OPERANDS 1.BD STANDARD VALUES

If you write a macro definition and include a keyword operand to
which you assign a standard value, the type attribute of the standard
value is assigned to the operand if it is completely omitted by the
user. If he writE~s KEYWORD= and follows the equal sign with a blank or
a comma, the type attribute of the operand is 0 for omitted, and the
standard value is overridden by the explicitly specified null string.

SUBSTRING HOTATIOH PROCESSING

If you use substring notation to refer to a subset of characters in a
character string, you must first ensure that the characters are presente
Assume, for exaaple, that you want to test the first four characters of
an operand to see if they specify so.e specific action to be taken. You
should write soae1:hing like this:

AIF (K'&OP LT 4).ERROR
AIP' ('&OP~ (1,4) EQ 'REG1') .PROC

section 5: Defining Syste. Macro Instructions 95

If you donlt do this and the user codes a character string of less
than four characters, the assembler viII produce error messages.

This technique must be e.ployed vhere register notation is allowed.
Since you viII use substring notation to test for the opening parenthe­
sis, you must first determine that the operand has been coded. The user
may have chosen to omit the operand.

Botice also that you can gain access to a character subset in an ele­
ment of a sublist by writing so.ething like this:

ISOPERABD (2) • (1,1)

This refers to the first character of the second eleaent in the sub­
list SOPERARD.

R ATTRIBUTE USAGE

The B attribute counts the nuaber of operands or the number of ele­
.ents in a sublist by counting the nnaber of com.as and adding one. As
a result, the B attribute cannot be used to count the number of non-null
operands or non-null elements in a sublist.

BISSYSLIST HAHDLIHG IX KIXED KODB KACRO INSTRUCTIOR

Keyword operands are not included in the value of the H attribute of
SSYSLIST in mixed mode operands. If there are no positional operands,
I'SSYSLIST is zero.

SUBSCRIPTS AID SUBLISTS

If a subscripted reference is made to an operand that is not a sub­
list, the whole operand is used. Thus, if you vrite DC A(SOP(15» and
the operand is not a sublist, you generate the operand as the argument
of the A-type constant, just as if you had vritten DC A (SOP) •

SETC SYftBOL LENGTH

The maximum length of a SETC symbol is eight characters. As a re­
sult, you may not be able to use in its entirety the operand of a SETC
statement written as a relocatable expression, absolute expression, or
character string. Instead, it is better practice to use the operand in
groups of eight, being careful to test for the presence of characters
before attempting to use thea.

Por example:

(1)
(2)
(3)
(II)

(5)
(6)
(7)
(8)

(9)

96

SHAKB

SCTl
SCT2
SCT3
.LooP

SS (&CT2)

BACRO
IBSTR
LCLA
LCLC

SETA
SETA
SETA
AI!"

SETC

SPl
SCT1,SCT2,&CT3
SS (6)

(K ISPl (2) -2)
1
2
(SCTl LE 8).OUT

ISPP (SeT3,8)

(10)
(11)
(12)

(13)

(14)
(15)

(16)

(17)

SCT1
SCT2
SCT3

SETA
SETA
SETA

AGO

.OUT UfOP
SS (SCT2) SETC

SBAKE Sl~l(l)

MEBD

SC.Tl-8
SCT2+1
SCT3+8

.LOOP

• SP1' (SeT3,SCT1)

SS(1)SS(2)SS(3)SS(4)SS(5)&S(6)

The IBSTB aacro is given one paraaeter that is a two (2) eleaent sub­
list. The first e~eaent is an instruction and the second eleaent is the
operand field for that instruction expressed as a character string. The
local SETC sy.bol, &S(6), is a six (6) eleaent array into which we can
put the operand field froa SP1. By concatenating this SETC array in
line 16, we can generate the requested instruction. In this exaaple,
SPl (2) is limited 1:0 118 characters.

LOGICAL TEBMS IB RELATIOBAL EXPBESSIOBS

When a relational expression is used in the operand of an AlP or SETB
stateaent, the teras on either side of the relational operator aust both
be arithmetic expressions or character expressions; neither of the teras
can be logical expressions. This is illustrated in the examples below,
only some of which are valid. &B(l), SB(2), and SB(3) are SETB
variables.

valid
invalid
invalid
valid
valid
valid

AJ:P
AIP
AIP
AII'
A]:I'
AU

«SB(1)+SB{2)+SB{3» lfE O}.Oll
«SB(1) OB &B(2) OB SB(3» EO O).OB
(SB (1) EO 0) .OB
C (&B (1) +0) EO 0) .OB
(SB (1» .0lJ
(S8(1) OB SB(2) OR S8(3».Oll

COBVERTIlJG DECIMAL TO HEXADECIMAL

Sometiaes it may be useful to convert an input deciaal nuaber to its
hexadeciaal equivalent. The following exaaple is one way this aay be
done:

SBAME

SD

SSTR

.STRT
• LOOP
SO
SR
SSTR
SD

.DOBE
SSTH

.BlJD
SSTR

MACRO
COllV
LCLC
LCl.A
SETA
AII'
SRTC
AGO
AII'
A]:P
SETA
SE',n
SBTC
SR'l"A
AGO
ANOP
S~TC
AGO
AJ!OP
SETC

&DEC
&STR
SD,SO,SR
SDEC
(SDllE 0) .STRT
10'
.OUT
(SD LT 16) .EBD
(SD LT 16) .. DOllE
SD/16
SD-16*SO
·PEDCBA9876543210-(16-SR,1).ISSTRI
SO
• LOOP

'FBDCBA9876543210 I C16-SD,1).ISSTRI
.OUT

1123I1S6789ABCDEP'C&D,1)

Section 5: Defining Systea Macro Instructions 97

.OUT
SRARE

ABOP
DC
REBD

SETTIRG UP FLAG BITS IR A BYTE

Sometimes it is necessary to generate a byte that contains bit flags
that will be meaningful to a program that is going to be called. Here
is an example of how to do this using local SETB symbols:

SRARE

SB (1)
SB (2)
SB (3)
SB(4)

&FLG

SRARE

RACRO
FLAG
LCLA
LCLB

SETB
SE'l'B
SETB
SETS

SETI.

DC
ItERD

SP1,SP2,&P3,&P4
SFLG
&B (4)

('SP1' EO 'F1')
('SP2' EO 'F2')
(lSP3 1 EO 'F3')
(,SP'" EO 'F4')

SB(l)*l +SB(2)*2 +SB(3)*" +SB(4).8

ALl (SFLG) FLAG BYTE

The four paraaeters on the PLAG macro can be specified as Pl, P2, F3,
and F4 respectiyely_ I. local SETB symbol is set if any flags are speci­
fied. Then, each SETB symbol is multiplied by the decimal equivalent of
the hexadecimal number that represents its flag bit within the flag byte
(that is, the flag bit for F4 is a X'08' or decimal 8). The results of
the four multiplications are added and the result placed in the DC in­
struction that will generate a byte containing the appropriate flag
bits.

GAIRIRG ACCESS TO RACRO LIBRARIES

The macro instructions defined for your use in TSS are divided among
several libraries. The first, rss* •• * •• SYSRI.C, contains those macro
definitions needed to support nonpriYileged user assemblies; the exter­
nal description of each of these macro instructions can be found in this
manual or in Assembler User Racro Instructions. A second, TSS •••• *.
ASRRAC, contains other system macro definitions, such as those for the
on-line test system (OLTS), and the system DSECTs. This division per­
mits each installation to move the less frequently used library, TSS****
*.I.SRRAC, out of public storage (by aeans of the YT command), freeing
the space for other purposes. If this is done, however, the macro li­
brary must be renewed on public storage ~y means of the TY command) be­
fore it can be used. Other macro libraries exist for special system ap­
plications and are documented with those applications.

While the macro instructions contained in TSS*****.SYSRAC are always
available to you without haYing first to define the library, this is not
true of the macro instructions contained in the other library. To gain
access to TSS*****.ASMRAC, you must first issue the following SHARE com­
mand (unless your user identification is TSS, in which case the library
is already in your catalog):

SHARE DSRARE=dsnamel,USERID=TSS,OWRERDS=ASRRAC

where dsnamel is any valid data set name you choose to give to the li­
brary. You must also issue a SHARE command to gain access to the li­
brary index:

98

SHARB DSIAftB=dsnaae2,USBRID=TSS,OWIERDS=ASftHDX

where dsnaae2 is any valid data set naae you choose to give to the
index.

Although both ASftftAC and ASftRDX are generation data sets, only these
two SHARE coaaands need be issued, since they provide access to all
generations. Purtheraore, you need only issue these coa.ands the first
ti.e you want to use the library; your sharer·s status is peraanently
recorded by the systea at that tiae. However, in each session in which
you want to use the library, including the first, you aust also issue
the following DDBF coaaands, even if your user identification is ~SS:

DDEP
~~F

DDRAftE=ddnaael,DSOBG=YI,DSHAftE=dsnaael(x)
DDIAftE=ddnaae2,DSOBG=YS,DSRAftE=dsnaae2(x}

where ddnaael and ddnaae2 are any valid data definition naaes of your
choosing; dsnaael and dsnaae2 are the data set naaes you assigned to the
library and index, respectively, when you entered the SHARE coa.ands;
and (x) denotes the absolute generation nuaber of the library and index
you wish to access. (0) would indicate the latest generation; (-1)
would indicate the next aost recent generation. Rote that the data
definition naaes entered here as ddnaael and ddnaae2 aust be entered as
the ddnaae of the syabolic portion of the suppleaentary aacro library
and the ddnaae of the index portion of the suppleaentary aacro library
in the paraaeter list following the ASK coaaand if you want to asseable
aacro instructions defined in TSS*****.ASftftAC.

Section 5: Defining Systea Kacro Instructions 99

PART II: SYSTEM MACRO INSTRUCTIONS

This part describes macro instructions of special interest to the
syste. programmer. They supple.ent the macro instructions available to
all TSS users, described in Assembler User Macro Instructions.

Some system macro instructions can be issued only by a privilege
class E user (syste. monitor), a privileged syste. prograamer (privilege
class D~ authority code 0), or a nonprivileged system program.er (privi­
lege class D, authority code Pl. Other system macro instructions have
no privilege requirements; they simply make syste. coding easier.

Section 1 explains how the macro instructions in this book are
described.

Section 2 describes the macro instructions, arranged alphabetically_

100

SBCTIOI 1: HOW BACRO IISTRUCTIOIS ARE DESCRIBED

First, to under:stand how aacro instructions in this book are describ­
ed, look at Figure 22. This figure aay also serve as a quick reference
when reading a aacro instruction description. You aay wish to tab it.

The inforaation which follows suppleaents Figure 22. A aore detailed
explanation of operand foras defined by the asseabler language is con­
tained in Asseabler. Language, GC28-2000.

laae Field

In aost aacro instructions, the syabol in this field becoaes the naae
of the first instruction generated.

Ope ran d Fi.eld

The operand field aay contain no operands (in which case this is
noted below the foraat illustration), or one or aore operands separated
by commas.

The user aust supply positional operands in the saae order as that
shown. If a positi.onal operand is oaitted and another positional
operand is written to the right of the omitted operand, the coaaa that
would have preceded. the oaitted operand aust be retained. For exaaple,
assuae positional operands A, B, and C. These aay be written:

,
A,B,C A"C A,B , A ,B , ,C ,

OPERARD FORBS

Absolute Expression

An absolute expression aay be an absolute tera or any arithaetic coa­
bination of absolute teras; an absolute tera aay be a single absolute
symbol or self-defining tera. All arithaetic operations are peraitted
between absolute terms.

In the following examples, ALA. and JAY are relocatable and defined
in the same control section; BARK and ERIC are absolute:

331
BARK
BARK+ERIC-2
ALAR-JAY
BARK*4-ERIC

Relocatable Expression

A relocatable eXl>ression is one whose value would change by n if the
prograa in which it appears is relocated n bytes away froa its original­
ly assigned area of storage. All relocatable expressions aust have a
positive value. A L~locatable expression aay be a single relocatable
tera. A relocatable expression aay contain relocatable teras -- alone
or in combination with absolute teras -- under the following conditions:

section 1: Bow J!facro Instructions are Described 101

1. There aust be an odd nuaber of relocatable teras.

2. All re10catable teras but one aust be paired.

3. The unpaired tera aust not be directly preceded by a ainus sign.

4. A relocatable tera .ust not enter into a aultiply or divide
operation.

A relocatable expression reduces to a single relocatable value. This
value is the value of the odd relocatable tera, adjusted by the values
represented by the abso1ute teras or paired relocatab1e teras, or both,
associated with it. The attribute belongs to the odd relocatable tera.
Coaplex re10catable expressions are also peraitted. Refer to IBftTiae
Sharing syste.: Asseabler Language, GC28-2000.

In the following examples of relocatab1e expressions, SAft, JOE, and
PRABK are in the saae control section and are relocatable; PT is
absolute.

SAft
SAK-JOE+PRABK
JOE-PT*5
SAK+3

Bote that SAK-JOE is not relocatable, because the difference between two
relocatable addresses is constant.

Register Botation

Register notation is an absolute expression enclosed in parentheses.
The absolute expression, when evaluated, aust be soae value 2 through 12
(unless noted otherwise in the description of the aacro instruction),
indicating the corresponding register. In these exaaples of register
notation, PAL is absolute:

(5) indicates register 5
(PAL)
(PAL+3)

RX Adress (formerly ca11ed "explicit" or "i.plied" address)

An address is written in the saae fora as an asse.bler-Ianguage
operand:

a (b,c)

t t t--base register
, • index register
• displaceaent

Examples are:

2 (0,5)
0(2,4)
INITIAL
ALP!!AY (q)

102

ALPKAY is indexed by the value in Register 4.

P.~e of GC28-2004-{i
Revised 9 May 1979
By TNL GN2()'3941

HOW TO ENTER MACRO INSTRUCTIONS

!.'(~~~g..!; .. ~~CRO IN2!!l,!Q!£t:!

For Reqi'I~', G"n..,.rol1!'\ p(JtI)/fl''''''" 1":><00t&l"l i, t~i11 • .., 0, I, ".-.d,
1M! f'<equotqlly, 15. !'be\ no' genl!c.ote pm'Ome'~. 1,,1, U!uo1lr
ge'~rot"i l:rJ.ogf' 10 (]n<)lh~. prry~M)m. r.."'ey11on 1(".,,, 0::0'" bot
roved i~ r'{1~"""'.1"lI loo.rnn,f<\ m .. "IO)ell'd i" ""gi,lel"! 0 and 1 ",rtd
,j.,I!IY or", tPl"c;fied in re9;tlflf "otol:o", ~ F,'""',"",,

iii> ""~'0.:: .. '~':!E::"._""_'::"~'-""""".'o .~(») PAR' '" III'FRANI) mr StO'()9'" Genern"U t) Pftmmotte,..lj,t. iUwed geMroll" re
the Dam...,,,,.,, ",,·,'jll,. regi,,.., Oemd I.)

_.....,floe thown.

''''''001 me-<>ns the ,t~:II.""1"\t flO"'" i. r'llquired.

[,y..,bol] ~<:I~ the "clement no""'" " <)f.'ltiQnal.

t~~"o~= I
.kbnodd~

rot!'!, r)tl<!'ronds elc~;>fd:nq

h;) wh~,h~r Ih~h- "''I!
t.'1)",j'Wlol or ~1!1''''()f(I.

--~--,---

~~':'f;1t<I OJ' I DnvibOl' how;f.,. Of>"",nd mar h •• "".~, .,..~ •••••••••••

Defovll· wtw,1 if Oft\~" 0" optiOfl"r OOJI!rnnd ,. I"QI U'Ilcjfil!d
5;;;H;' 'e tNr. i. ''0 d'i!'fovlt.

,.co....,; ,;op.fun;;l. ,,1<:;

!::.!,~.,.'j_~_?}':'OI':': 'Who:.1 you mUif rio prior ~ ;I1U'''9 H.., mClCm ;rl1trvctji:lr!.

(~U~,~~~ MldrJ. .. ro ", ... ,,;d

~~~-;Y;;-f~'~~~~~! ~~~~~~: Whol hOOMnf 01 Q !"ttIu'l "f ;lIv,roq 

~~_,~: Q'?.!.?. Whot ,,,fw'oolion i, ,..'"med to YO'" pr¥'>gl'Qm OM "'''!;On! 

~?9.~?.'::"_;.~ .. N".IfH,~ fjlf..., i..,fo l't1l<1,ior>. 

£I<ornpll!'j; How ',\1\.1 migf1t 'Af! the macro ; .... lr.....::I'ol1 and whol ;r'\!,lfv~t;,!r'" 
;:;'~T~ t.f. ge~'nte-d 

"'_"""'_A~""'····""''''''''_o, \.;;._~,:j("~',~""'l\j,l1._.= _ t·,\j,.-Ol,~"ii'-' 

Fiqure 2~ :I(})I to I:?'ntn'r ::1d.CrO inf"trurt i\Jns 

2" 

Po.jlionoIO"erl'lntl 

CHOOSf ONF 
of A I'Ir B 

FNH-R or 
OMlfA 

HfPfA r, 
~r ',1 leI of OPt'!'rQnril 

·;:·C-;·1;.--·C-pper"~;;- r':'''''~r-';:Cl~e-_ Cl",' "IIPr""rl ,,11, .. , Ihil" trot.,.. in !i,,. p'}\;~i..,n 
Wh"lft' il ;1 ,ho","" ;'1 "'pl'ror'd field T,.., ,he-'" r,,,,,\!i"'l IN,,,,,,,1 "p~"""j, ",~I')r1". 

;t~ a.~""jnled comMO 

~f]9r!;;t;;;;l--------=---':'-~!"ni.- ••• '-=-':'-'j ~--.-" •• ,.-_,,-:,,,~,:;,~::;)\. , 1 

;:;;;3>~ _ .,_¥_+~,=~".! rRt,~r J. ~ .. , I""qll, ____ _ 

~ffn;;~"~ti~rr!'lIrA1IH! '!fIll! ';IC~, t» I"", ... ~( .,." '''' ,,,hi,,. ,,,1·',-1; 
1p~cify. ~"t .. , ~";".-'rrl 0r'('r<:J"rj in <;>ny -:>('<iN in "ll"fW.rl li .. l,j P"\II;(,''',1 

np .. rnorh ii! f","V·"I'I. 'Nh .. " ""';";"Q"''' '~r'i"l"fli ·-,p ... ",,,I, "I,{'\ ,,~-;\ ;', 

t11""rfnl",d r(jf"""". 

If~~ I ep.';"o'·f-"O';~ __ ~.duj 
0$.;>;/> ' __ ~_~I,,!~.~.('~~~fy,.l~tl~' _ 

Op.,"","d fomlt ne' ewpt(lined herfJ off! d.scdb.d I", ~. iN:/ividuat "'acro rklJl:"r,fo:mt. 

c:zrATl 

.. Il;'''' '''DU~F{",~· 2(0,51 

wMri!I 2 ir the dltpku·.:eMf"fll, 0 I, th. i!"lde ... 
",gl,t.r. ond S It The tm.. reg-I.ter. 

MAUD 
~r M,AUD (II 

whit" tfot. b.:/,. l'eght.r I, Impfled, 1 (ffl Ih", 
deond elO;amfl"'" 11 0\"1 ;ndrrl( ~I~I,"", _d ,h,. 
Juo;:otit'm Ct'unler ... "I·t. of M.AUD h!f,,,, 
rlltplac,""."t. 

• ~JlIMflFI! _5 

JC !~'~''('ld<!:>dml:l!} 

Tt., •• ''''''11 
lJ!?t)du~] " Gfl"nllmt., btJlh p,,~hJr !ht and lit)~"9.> 

O"II'I""r<d.I m"r b. in ""',' '''I'm; 0 b-Mn(h Ol'£U~ 
Ihft pcl("t)r"lfl'.' Ihl i, g~_f("It.d. No Mf 
(>f)e«>M ~1.11~d. 

[I:1.?~~l - U,f 'GfTfI: P"'''fOl., only CI pOramtttot lill, no 
oII'1I..(a.,labl. CO'd",. u..r 11 fflPC'f'fRlble to, bmn('df'q 
(';IrQ ..... d 1111. U'volly ut.a In <OI*~1<lin ...... ill-. E­
lo:!I~"', Op.ro""'. 1IIoP)' b. obtol\l'. t'r ..-.'occtlobt. 
e~fflSlom. - 09.1 I'IItJ!tt.r I'lOtOilOfl, or It~lid. o. 
impU~ odd~!. 

REQUIRED; ~ Sy,,>bol in nom. n"dd 
--- - I(.yword ~rond MF", l. 

O:for~_J - F:.:l!revtllhf~ fo",,~ ~~ lirW¥ 011 ~!I ," 0 

p"inlO!'r 1<:> '1 po",,,","', lilt Cfe-at.d by l-f"rm Or 

b\J!lt by L1"". May 0\,0 f"V¥lde or ~dolr'r "oJ"," 
in poromet.r Ii,t. ()peron<h lftCIy be 11'1 l'Itly ft!rm. 
REQUIRED. K«-YWOld ~rnnd MF F N MF" 
--- CE, !ht) wh.rlt !hl;, f!itl,,,1 th(. 

'rmbo1i.:: ~~I"'l"'l of I~ pororN!'l"e~ 
jij' (Ul\lOII~ tt>. n"".. ()f "'e l"fnf'm\ 
M, ... itJ, the OOdr~. ploted ,n 
I"Igl,,",-, I, (ll. 

~r Clth~,. ~n,,~ I>h." "'O!> !lei'h", It- nor S-tyro •. 

• r""i-1ARt:.(: fFR qRIN(" %C~'5YthQ'i 

A ~'r1I'1Q ~f ehn-rM.tel1 ~(\I\~iJ;r'lI"9 'Y,l l",,~ddttd r:(">"H'IW~ 
'" ~k,"h ~ ... ,.,1 b~I; .. nl"9 Qr t'Mlr"Q "";I~. on ''"''''~!''_'phl!! 

• "y ',~fll 'l $1 "1<1" 
(lA' JI 
ONE 

A ,1>*(;:(11 form,.,t "'''~ror.ter n,ing tl(;f"O!IJ!Inbte in thilt 

'1<1!"1'1'11 field or "1"1 ttnembliitt Jtot .... "" ... t; 1'0 e o!ol)(l.-.veri( 

':+-or\tde.., (0-9, A-t, "tu, $, ',ond 'I wltf-. n", 
c"":lttlt'llitt alp"''''~<I:Illc . 

'~t; iv\f..·'i' 
.. CZeATI.' 

tj 1M nrIII'Iifi 01 0 li.f4 tllttt "":0" M 
vtrhllll ttol'09f, A ,.JQ.<:tltobl. 
V1 wlt/Mo' ~f,.l b. 

t.Mle,~ stoled o't-t.rwi",. n ~l...,t Int.,;.r i5 implied. 
* thelltl(prlltlnlion i'l htl\'. 

• Tf. ~.l 'lHIS IS A MESSAGE' 

III "'" odd,.... cenih:lnt. A d·tirtg of CMo",(;htf1 ertdot.d bjl .Tn,,'!!! (Ip"~trnpr,I"" 



Syabol 

A symbol may be a symbolic address (that is, a single re10catable 
tera), such as the naae of an instruction in an asseabler-Ianguage pro­
gram, or it may be a character string used for identification, B21 loca­
tion (such as the ddname parameter of a DeB macro instruction). 

In T5S, the alphabetic characters are the upper case letters A-Z, and 
$, &, and t. The alphaaeric characters are the alphabetic characters 
plus the digits 0-9. 

The symbol is written as a string of up to eight alphameric charac­
ters, the first of which is alphabetic. Embedded coamas and blanks are 
not permitted. Symbols beginning with the characters CBD may not be 
used, since symbols beginning with those characters are reserved for 
system use. Examples of symbols are: 

DDIIAl!E1 
LOOP12 
STABT .1 

Character String 

A character string may contain any sequence of characters, with the 
following exceptions: embedded co.mas or blanks are not permitted. Two 
apostrophes or two ampersands must be used to represent one apostrophe 
or one ampersand in the character string. The character string may not 
be enclosed in apostrophes. For example: 

cctSU2GOT&DO&&GO 

A text operand is written as a string of alphameric characters enc­
losed in apostrophes. Embedded blanks and special characters are per­
mitted. TVo apostrophes or two aapersands must be nsed to represent one 
apostrophe or one aapersand in the character string. The text operand 
aay not exceed 255 characters including the enclosing apostrophes. For 
exaaple: 

'AREA,PCB,132, ,1256' 

Data Set lIame 

This is the name of one data set or a group of data sets. The rules 
for writing data set names are presented below; the types of names that 
aay be written for each maero instruction are under each macro instruc­
tion's description. 

lullv qualified name: Uniquely identifies one data set. 

1. 

104 

A stand-alone data set name identifies 
meaber of a partitioned data set nor a 
data group. The name of a stand-alone 
ries of symbols separated by periods. 

DATASET.TRIAL.TEST1 
TEBI.ROGER.LAURIE 
A.B.C 

a data set that is neither a 
generation of a generation 
data set is written as a se­
For example: 

The rightmost syabol is the data set·s simple name (TEST1, LAURIE, 
and C above); the other symbols are qualifiers. In T5S, for cata-



loging purposes, the aaxiaua nuaber of characters in a data set 
naae including periods, is 35. ~he aaxiaua nuabar of characters in 
any single qualifier is 8. The aaxiaua nuaber of one-character 
qualifiers for a one-character naae is 17. 

~: Data set naaes created under the IBB OS Operating Systeas 
can contain a aaxiaua of 44 characters; if data sets with naaes 
greater than 35 characters are to be cataloged in TSS, the user 
should eaploy the renaaing facility of the CATALOG coaaand to 
define a suitable TSS naae. 

2. A partitioned data set and aeaber naae identifies a data set that 
coabines individual data sets, called aeabers, into a single data 
set. The partitioned organization allows the user to refer to ei­
ther the entire data set or to an individual aeaber of the parti­
tioned data set. 

The rules forwritinq the naae of a partitioned data set are the 
saae as for wrlting those of a stand-alone data set. 

The rules for writing a aeaber naae vary with each aaero instruc­
tion that can .anipulate aeabers. Soaetiaes (as in LOAD and 
DELETE) only tile siaple aeabar naae (a syabol) is written. The 
full naae is not required because the user has indirectly defined 
the parti tione.l data set (library) in which the aodule resides by 
assuring that -the library is on the proqraa library list prior to 
issuing those looaaands. The user can write 

LOAD SORTB 

if he has previously entered SOBTB in a library currently on the 
proqraa library list. 

In other aacro instructions (for 
the fully qualified aeaber naae. 
partitioned data set suffixed by 
theses. Por exaaple: 

BQW (OllETBY) 
G.H .. IB (B) 

exaaple, CDS), the user anst give 
This consists of the naae of the 

the siaple aeaber naae in paren-

Bere BQW and G .. B.AB are partitioned data sets with aeabers OBEfty 
and H, respectively. 

The naae of thEl partitioned data set is written with the saae rules 
as for a stand--alone data set. The parentheses and aeaber naae are 
considered as an appendage to that naae. The aaxiaua nuaber of 
characters in a aeaber naae is 8. 

3. Generation naaes identify data sets that are part of a generation 
data group. These data sets can be referred to absolutely or 
relatively: 

a. Absolute qe~eration naaes are written as the naae of the genera­
tion data group followed by a period and the characters 
GxxxXTyy, where xxxx is a four-digit, deciaal, generation nua­
ber, and yy is a two-digit, deciaal, version nuaber. Por 
exaaple: 

BUBST.LIBEB.TT.G0001YOO 
HJ.LA4.iW.G0003YOl 
BABQ.G0147Y03 

section 1: Bow Bacro Instructions are Described 105 



The characters GxxxxVyy are considered a fixed-part of the oVer­
all naae. The name of the generation data group is a partially 
qualified name applicable to all generations in the group. 

If the generation is a partitioned data set, a meaber (for exaa­
pIe, JOE) within that data set is referred to as follows: 

1.B.C.Gxxxxvyy(JOE) 

b. Relative generation naaes are written as the naae of the genera­
tion data group followed by the appropriate relative generation 
nuaber enclosed in parentheses: 

G.D.G CO) 

The relative generation nuaber of the .ost recent generation is 
(0); the generation just prior to that is (-1); the one before 
that is (-2), etc.; and a new generation to be added is (+1). 
Por example: 

GOST.UU.L19P(+1) 
GOST.UU .L19P (-3) 
!RQ.T.L5.SWI! (0) 

If the generation is a partitioned data set, a aeaber within 
that data set is referred to as follows: 

SEAT (-3) (JOE) 

where JOE is the meaber in question. 

Partially qualified names: Refer to all data sets having the partially 
qualified name as their coamon higher-order qualifier. 

1. 1 generation data group naae is the name that is co •• on to each 
generation in the group. Generation data group names are restrict­
ed to a maximua of 26 characters including periods. 

2. Another partially qualified naae can also be used to refer to two 
or more data sets. Por example, the partially qualified name GO. 
AB14 can be used to refer to both of the following data sets: GO. 
AB14.A and GO.AB14.B. If these were the only two of a user's data 
sets with-the saae higher-order qualifier, GO.AB14, and he wished 
to erase thea both, he could do so by specifying GO.AB14 in the 
ERASE aacro instruction. 

106 



SEC~IOH 2: SYSTEK KACBO IJS~BUCTIO. DESCRIPTIONS 

ADDEV -- Add Device to ~ask Symb01ic Device List (B) 

The ADDEV macro instruction adds an I/O device to your task's sy.nol­
ic device list. 

i , , 

,Bame 10perationiOperand 
• I I 
trsy_bol ],ADDEV I[ device J 
« , • 

device 
specifies the symbolic device address of the particular I/O device 
you want added to your task's symbolic device list (TSDL). 

Specified as: A number assigned by your insta11ation as the devi­
ce's symb01ic device address in register notation (2 through 12). 
The number must be loaded into the specified register before issu­
ing the macro instruction. 

Defau1t: It is assumed that the issuer has placed the symbolic 
device address in register o. 

Execution: The resident supervisor adds an entry for the specified sym­
bolic device address to the task's sy.nolic device list. If the device 
is already in the task's symbolic device I ist, the count of the number 
of times the device has been added is increased by 1; if this count 
exceeds 15 an error is indicated. 

Deturn Data: The resident supervisor sets the high-order bit of regist­
er 0 to 1 if the count of the number of times the device has been added 
exceeds 15. 

Example: Suppose you want to add symbolic device 17 to your symbolic 
device list. You might write: 

LB 2,=Y (17) 
ADD ADDEV (2) 

ADDPG -- Add Virtual Storage Pages CD) 

The ADDPG macro :instruction is used by the system to properly main­
tain the status of i1 task's page and segment tables •. It adds contiguous 
pages to a task's virtual storage and creates any necessary page table 
and external page table entries. A GE~IIAIR request for virtual storage 
causes an ADDPG to be issued. 

i 

IHame 
I , 
• 

i b 

IOperation~Operand 
I I 
,ADDPG I' 
, t 

Rote: There are no operands. 

Initialization: Bef.ore the ADDPG macro instruction is executed, the 
issuing program must. set up the following general registers: 

Begister(s) 
DO-Dl 
D15 

Contents 
Deserved segment naae (BBABE), if any 
Plags, protection code, count of pages requested 

, 
t , 

Section 2: System Bacro Instruction Descriptions 107 



The for.at of R15 is: 

flags protection count of pages 

o 

where: 

code 

1 2 

Flags 
X-01-
X-02-
X'04-
X'40' 

Beaning 
variable request 
system prograa request 
return code requested 
RBAftE given 

Protection Code 
o 

Beaning 
non-privileged read/Vrite pages requested 
non-privileged read only pages requested 
privileged pages requested 

1 
2 

Execution: Bew page table entries and, if necessary, seqaent table 
entries are constructed. The nuaber of page table entries to be con­
structed is determined by the page count contained in register 15. The 
second byte of register 15 is used to determine the setting of the 
storage keys for all the pages being added. 

Return Data: If a return code has been requested, register 15 contains 
the following codes: 

Beaning 
allocation done 
request not satisfied 

otherwise an extended program interrupt is enqueued on the task for the 
'request not satisfied' return. The virtual me.ory address of the first 
page allocated is returned in general register 1. 

Programming Bote: Page allocation for privileged progra.s is fro. the 
top of virtual memory down. Page allocation for non-privileged programs 
is from the bottoa of virtual memory or the bottom of the RBAftE area up. 
If PAC~SEG is SYSGEBed, pages are allocated without respect to any boun­
dary alignaent. If PACKSEG is Dot SYSGEIed, Don-privileged program re­
quests are allocated on 16 page boundaries for requests that are mul­
tiples of 16 pages and on 256 page boundaries for 256 page requests. 

The systeas programaer should use the GETftAIB aacro instruction describ­
ed in Asseabler User BaCTO Instruction, GC28-200., to allocate virtual 
meaory to a task. 

Example: Assuae that 100 pages of virtual storage are to be allocated 
with non-privileged, read only protection keys. The following instruc­
tions might be written: 

108 

SR 
SR 
LA 
o 
o 
ADDPG 

0,0 
1,1 
15,100 
15,=1(%'00010000') 
15,=A(X'04000000') 

BO RBAftB 
BO BB1ftE 
PAGB COUBT 
PROTEC'tIOB CODB 
RBTURB CODB REQUESTBD 



lDSPG -- ldd Shared Jirtual Storage Pages (B) 

The lDSPG aacro instruction is used by the systea to add shared pages 
to a task's virtual storage and create any necessary shared page, seg­
aent, and auxiliary segaent table entries. The ADSPG aacro instruction 
is issued by the sTstea to aaintain the status of a task's segaent and 
shared page tables. The systea prograaaer should use the GETS!AI. entry 
point (CZCGA6) in "111 to obtain shared virtual storage. 

• t i J 

,Baae fOperatioll,Operand , 
I I , I 
I[ syabol ]UDSPG I 
• • • 
~: There are no operands. 

Initialization: A DCLASS aacro instruction with the PBIVILBGED option 
aust be coded in a CSECT prior to coding ADSPG. If aore than one DCLASS 
aacro instruction j.s issued in a aodule, the last DCLASS issued prior to 
coding ADSPG aust be issued with the PRIVILEGED option. Be£ore the 
ADSPG .acro instruction is executed, the issuing prograa aust set up the 
following general I'egisters: 

Begister (s) 
RO 

where: 

B1 
R15 

Protection Cod~ 
o 
1 
2 

Contents 
protection code 
count of pages requested 
zero or connected shared page table nuaber 

Beaning 
non-privileged read/yrite pages requested 
non-privileged read only pages requested 
privileged pages requested 

Execution: The nuaber contained in bytes 2 and 3 (the low-order bytes) 
of register 15 is used to deteraine if pages are to be added to an ex­
isting shared page table or if a new shared page table is to be con­
structed. If bytes 2 and 3 of register 15 are zero, or if there are not 
enough pages reaain:lng in the shared page table indicated by bytes 2 and 
3, a new shared page table is constructed. Once the shared page table 
is selected or constructed, a nuaber of page table entries corresponding 
to the nuaber contained in register 0 is added to it. storage protec­
tion keys are assigned as requested by the code in byte 3 of register O. 

Beturn Data: The following data are returned in general registers: 

Register (s) 
RO (bytes 0-1) 
RO (bytes 2-3) 
B1 
B15 

Data 
relative page nuaber within shared page table 
shared page table nuaber 
address of first page allocated 
o - allocation done 
~ - request not satisfied 

Progra.aing Bote: II location of shared pages is controlled by two 
variables: 

1. Connected SFT' given as input 
2. POBSEG specified at SYSGBB 

The following rules govern allocation: 

a. Allocation of shared segaents is froa top of virtual aeaory 
down. 

Section 2: Systea Bacro Instruction Descriptions 109 



b. Allocation of pages vithin shared seg.ents is from the botto. 
up. 

c. Pages are allocated in the SPT' given as input. 

d. If "c" fails or if an SPT' vas not given, pages are allocated 
in any existing SPTI if PUBSEG vas SYSGEIed. 

e. If "d" fails or if PUBSEG was not SYSGEled, pages are allocated 
in a nev SPTI. 

Example: Suppose two shared non-privileged read only pages are to be 
added; assuae the shared page table nuaber is X'FFF3'. The .acro in­
struction .ight be written: 

LA 0,1 
LA 1,2 
L 15,=A{X'OOOOFFF3') 
ADSPG" 

PROTECTIOB CODE 
COUIT OF PAGES 
SRARED PAGE TABLE BUBBER 

ATPOL -- Poll for Pending Attention Interruption (0) 

ATPOL is used to find out if there is a pending attention (task­
asynchronous I/O) interruption (this vould be caused by a conversational 
user hitting the ATTB key); if there is, control is transferred to the 
address specified by the branch address operand. 

iii 
tBaRe ,Operation I Operand 
I I , 
l[symbol)IATPOL ,branch address[,svitch] 
• • • 

branch address 
specifies a point in a prograa to receive control if there is an 
attention pending. 

Specified as: An HX address. 

svitch 
specifies the address of a byte whose contents are to be tested. 
If this byte is set to X'OO', the test for a pending attention viII 
be made; if other than X'OO-, no test vill be .ade for a pending 
attention and control viII pass to the instruction following ITPOL. 

Specified as: An RX address. 

Default: The test for a pending attention is made. The issuer 
.ust have previously defined the sy.bols ISAAT and ISIITft in his 
prograa by copying the DSECT CRAISA (interruption storage area) 
from the system macro/copy library (SYSRIC). 

lUXPG -- Extract Auxiliary storage Page Counts (0) 

AUXPG is used to determine the number of auxiliary drua and disk 
pages currently available in the systea. 

110 



• , j ,Baae ,Operation ,Operand 
I , , 
t[syabolllAUXPG , 
• • • 
~: There are no operands. 

Execution: This aaero instruction generates an STC 230 instruction, 
which extracts the nuaber of auxiliary drua and disk pages froa the 
auxiliary storage allocation table header. These counts are returned to 
the user. 

Return Data: 

Register 0 = count of unused drWl pages. 

Register 1 = count of unused disk pages. 

Exaaple: A systea prograaaer, coding a aodule that services requests 
for storage, wants to find the nuaber of unused pages that are available 
for assignaent; he (:an code: 

STORG 

AUXSET -- Create Overload/Overdraw Interruption Control Blocks (0) 

The AUXSET aacro instruction creates.interruption control blocks to 
handle interruptions issued by the resident supervisor when either the 
task overdraws its auxiliary storage allocation or a systea overload 
condition does not per.it allocation of the aaount requested. 

• i , I»a.e I Operation I Operand 
I I I 
t[ syabol ]1 AOXSET , · . , 
Bote: There are no ,:>perands. 

Execution: Two inte:cruption control blocks are created in the issuing 
prograa's PSECT. These will service interruptions issued by the resi­
dent supervisor either (1) to warn a task that it has overdrawn its 
auxiliary storage al:location, or (2) to cut off a task in an overloaded 
systea in order to relieve a shortage of auxiliary storage. The inter­
ruption control blocks are created in the .acro expansion and enabled at 
task LOGOB. servicing of interruption (1) consists of issuing a warning 
aessage to SYSOUT. Servicing of interruption (2) consists of issuing a 
logoff message and a coapletion code 3 ABE»D. 

Prograaaing Botes: Use of the AUXSE~ aacro instruction is restricted to 
the LOGOB systea aodnle. 

Exaaple: 

BAilE AU1:SET 

AVAUX -- Available AuxiliarY Reaaining count (R) 

The AVAUX aacro instruction is used to coapare the a.ount of auxi­
liary storage required by a user with the a.ount available in the sys­
tea, and to cause a branch to a desired location if enough space is not 
available. If space is available, the current aaount of auxiliary space 
available is updated. 

section 2: 5ystea Bacro Instruction Descriptions 111 



i , i 
,.aae I Operation JOperands 
I I I 
,[syabolJIAVAUX ,[a.ount address,]location 
• • I 

aaount address 
specifies an address containing the nuaber of pages (expressed in 
binary) of auxiliary storage required by the user. 

I , , 

Specified as: An RX address, or register notation. If register 
notation is used, the a.ount address aust be loaded into the speci­
fied register before issuing the aacro instruction. 

Default: The value contained in SCKKAV in systea coaaon is used; 
this value represents the aaxiaua a.ount of auxiliary storage 81-
lowed at your installation. 

location 
specifies the address to which control is passed if sufficient 
auxiliary storage is not available for the task. 

specified as: An RX address. 

Initialization: A DCLASS aacro instruction with the PRIVILEGED option 
aust be coded in a CSRCT prior to coding AVAUX. If aore than one DCLASS 
aacro instraction is issued in a aodo1e, the last DCLASS issued prior to 
coding AVAUX aust be issued with the PRIVILEGED option. 

The CHASTS and CRASCK DSECTs Bust be copied into the issuer's aodule 
and covered with base registers. 

Execution: If the aaount operand is not specified, an installation 
value is obtained froa field SCKftAV in systea coa.on. If the aaoant 
operand is specified, the value at the specified location is coapared 
with the a.ount of auxiliary storage currently available, as recorded in 
the systea table CHBSYS. If the amount required is greater than the a­
aount available, control is passed to the indicated location. If the 
required space is available, the auxiliary space is allocated and the 
aaount currently available updated to r~flect this request. 

Exaaple: The a.ount of auxiliary storage required by a task has been 
prestored in register 5. The aacro instruction: 

CHECK 1 AVAUX (5),ftSG 

will update the aaount available, or transfer to KSG. 

BftSG -- Send BULKIO Kessage 

The BftSG macro instruction is used only by the BULKIO task to send 
aessages froa the BULKIO aessage file to the operator. 

, ii, 

I Baae I Operation ,Operand , 
I , I f 
,[syabol]IBftSG laddress of aessage id,[Vl,V2 ••• Vn],[aessage type] , 
• I • 

address of aessage id 

112 

specifies the aadress of a location which contains the external 
address of a aessage defined within the BULKIO aessage handler 
(CZAiK) aodu1e. 



Specifi~-A§: an absolute address. 

Programming lote: The eight byte message is declared 
within the module CZAiB and has the following foraat: 
is the BULEIO section id (obtained from use of the ID 
two-digit number from 00-99. 

Vl,Y2 ••• Yn 

as an entry point 
CZAi$11 where $ 

macro) and II is a 

specifies inforaation that is to be used to complete or alter the 
message being sent to the operator. The information is substituted 
for variables (~ ••• ~) in the message text. 

Specified as: register notation or an absolute address. 

message type 
specifies where to send the message. 

Specified as: register notation, or an absolute expression as 
follows: 

o 
L 
B 
A 
R 

write to operator (also write to log) 
wrIte to log 

- write to operator and 
- wrIte to operator and 
- write to log and rje 

Default: 0 

Example: 

BJ!SG J!SGID, «R2) , (R3» ,A 

BSGID DC Y(CZAWA01) 

log 
log and rje 

Use of this macro would send the message CZAiAOl as defined 
the operator, systen log, and RJE acknowledgement dataset. 
ing the message the variables pointed to by registers 2 and 
substituted for the ~s within the message. 

in CZAiB to 
Before send-
3 viII be 

BPKD -- Create a Builtin Procedure Key (0) 

!Qte: This aacro has been replaced by BPKDS and must B2! be 
used for new code. This documentation is retained only to aid 
in maintenance of existing programs. 

The BPKD macro instruction is used in conjunction with the BUILTIR 
com. and to identify a user-coded routine that is to process a user­
defined coaaand issued at a terminal. The user-created com.and must be 
assigned a name by the BUILTI. command (see Coamand System User's 
Guide) • 

• ,Iaae 
I 
,symbol , 

j i 
,Operation ,Operand , , 
,BPKD lentry point name[,(keyword address, ••• )] 
• • 

~: A syabol is required in the name field. 

entry point name 
specifies the syabolic name of the entry point to the user-coded 
routine to be executed when a comaand, named by a BUILTI. command, 
is issued at the terminal. 

I 

I , 

section 2: System Bacro Instruction Descriptions 113 



Specifi~-A§: A symbo1 (one to eight a1phameric characters, the 
first of which must be alphabetic). 

keyword address 
specifies the address of a keyword that identifies an operand that 
is to be specified with the user-created co.aand. Each such key­
word aefines both the position and the external keyword of a par­
ticular operand of the coaaand. 

Each user-coded keyword consists of a DC containing the keyword 
word of the operand being defined. Each such DC aust be preceded 
by the length (one byte) of the character string in the DC (see Ex­
asple be10w). Although each DC contains this keyword specifica­
tion, the actual operand, when specified during cos.and issuance at 
the terminal, need not be indicated by keyword; it can be specified 
positiona1ly. The position of each keyword specified within the 
BPKD aacro instruction deteraines the position of the operand when 
positional notation is used. 

Specified as: A relocatable expression. 

Proqraaainq Botes: During asseably, the BPKD aacro instruction 
generates a tab1e containing linkage inforsation and parameter storage 
areas for use by the BUILTIB cossand associated with the aacro instruc­
tion. The table contains pointers to the object module that is to proc­
ess the co .. and. This sodule is referred to as the coamand processing 
routine. The table also contains adcons pointing to each of the keyword 
defining constants coded by the user. The number of parameters that may 
be specified in a cosmand is determined by the nnaber of dum.y parame­
ters defined in the BPKD macro instruction. Space is reserved in the 
table so that pointers to the parameter values specified by the user 
cosaand at the terainal can be recorded. 

An EITBY statement is generated in the table for the syabolic naae of 
the BPKD macro instruction. The recorded entry address is then used to 
establish linkage between the user-coded aodule and the BUILTIB co.sand 
that defines that .odu1e as a coa.and processing aodule and associates 
it with a particular coaaand naae. When the naaed co.aand is issued, 
pointers to the actual va1ues of any positiona1 or keyword parameters 
specified at the terminal are placed in the reserved storage areas with­
in the generated table in the PSECT that contains the BPKD aacro in­
struction; register 1 is then set to point to these pointers so that the 
data can be referred to by the coamand processing module. If any com­
aand operand defined by BPKD is ositted when the co.aand is issued at 
the teraina1, these pointers are set to point to any default va1ues; if 
none exist, they are set to zeros. Control is then passed to the coa­
aand processing aodule which is executed using the necessary paraseter 
values to accoaplish the desired goal. 

If no paraaeter naaes have been defined in the BPKD macro instruction 
(indicating that no paraseters are to be specified when the cos. and is 
issued), the expansion of the sacro instruction does not set up dusmy 
parameter areas or allow specification of parameters within the coamand. 
Exaaples of the table generated by BPKD are shown below. 

The BPED sacro instruction aust be supplied in a PSECT and aust have 
any expected parameters defined therein. If the cosmand processor is 
asseabled in a sodule different froa the one containing the BPKD aacro 
instruction, its entry point and PSECT syabols aust be used as arguaents 
of an EITBB stateaent in the assembly containing the BPKD macro 
instruction. 

When a user wants to provide paraaeters for the coasand he is creat­
ing, he aust provide code in the PSECT (for each such paraaeter) indi­
cating a keyword to be associated with that paraaeter and the length of 

11Q 



that character string. The paraaeter addresses of the BPKD aacro in­
struction must also be the name fields of the user-defined character 
strings (that iS r PARl DC C'KBTWORD', where PIRl is a parameter address 
for BPKD). It is these parameter strings or keywords that will be asso­
ciated with the parameters of a calling co.mand when the co.mand is 
issued. 

Ezample: If a use]: wants to ezecute the object program instructions in 
a particular CSECT when a command cal1ed TROT is issued at the terminal, 
he could indicate this by specifying the following in a PSECT associated 
with the coamand-pI:ocessing module: 

BPKLIBEI. BPKD EPPROC r (DPAR1,DPAR2) 

DPIRl 

DPAR2 

At the terminal: 

DC 
DC 
DC 
DC 

BUILTIB 
l'ROl' 

TROT 

ILl (L'DPIR1) 
C 'KEYWORD 1 , 
IL 1 (L'DPIR2) 
C'KETWORD2' 

CODED BY USER FOR ALL 
DESIRED COftlUJlD 
OPERIBDS 

l'ROT,BPKLABEL 
KETWORD1=70,KEYWORD2=5000 

(or, if positional parameters 
are desired) 

70 r 5000 

When l'ROT is iss'lled r pointers to keyword and positional parameters 
are placed in areas reserved within the BPKD macro ezpansion, making 
them available to the coamand expansion routine located at entry point 
CSECl'ftOD. The routine at CSECTBOD is entered, with register 1 pointing 
to a list, which contains fullword address pointers to the actual param­
eter values entered at the terminal (the length of these actual values 
can be found in the byte preceding the value location); then the routine 
is executed and control is returned to the user terminal. 

B'fRUBL -- set Last (:alled ID into BULKCOft!l and S-entry Table 

The BTRUBL macro instruction aoves an 8 byte external call id into 
the BULKCORB and S-entry tables. This external call id vill be used by 
the BULKIO abend recovery routine (CZAWA) for purposes of recovery vhen 
an error has occurred and IBEBD has been called. 

iii 
IBaae I Operation I Operand 
I I t 
l(symbolllBTRUBL Icontinuation address, aodule last called 
, • I 

con tin ua tion address 
specifies the point at vhich processing will continue when control 
is returned. 

Specified as: an ax address 

aodule last called 
specifies the name of the external routine called by a BULKIO 
aodule before ABEBD was called. 

Section 2: Systea !lacro Instruction Descriptions 115 



Specified as: an 8 character abs01ute expression of which the 
first two characters must be either "1'-" (for a VAB ca11) or "B-" 
(for an BSAII ca11). 

Exaap1e: 

BTRUBL - EODAD,=CL8"V-GET" 

+ BVC SETYCONT~=A(EODA) save continue address 

+ BVC SETCALL,=CL8"V-GET" 

+ BVC BLTCALL,=CL8WV-GET" 

Initia1izatiQA: You must provide the fo11owing DSECTS in order to use 
this .acro instruction: CHABCT & CHASE'!'. 

CANCL -- Cancel Bea1time Interruption (0) 

The CANCL maero instruction permits privileged resident programs to 
specify that a specific realtime interruption request (for exa.ple, one 
requested by the SETTIBER systea macro instruction) be cance1ed. 

• • , j 

INaae I Operation , Operand t 
I , I I 
l[syabo1]ICANCL .[return parameter],interruption routine adcon t 
• • • • 
return parameter 

specifies the return parameter previous1y specified by a SETTX!ER 
.acro. 

specified as: Register notation (0 through 15). The return param­
eter Rust be loaded into the specified register before issuing the 
macro instruction. 

interruption routine adcon 
specifies the entry point of a modu1e, previous1y specified by SET­
TIBER, which would have received contro1 at time of the interrup­
tion if it was not being cance1ed. If this parameter is set to 
X'YPPPPYFY', al1 interrupts for the given return parameter are can­
celed. This type of ca11 is used by DELETE TSI (CEAIID). 

Specified as: A syabol~ or register notation (1 through 15). If 
register notation is used, the entry point aust be loaded into the 
specified register before issuing the macro instruction. 

Initialization: All modules using the CANCL macro instruction .ust 
first have a copy of CHAPSA and a USING CHAPS! statement. 

Execution: CAKCL checks whether the interruption routine's a4con was 
specified; if not, an error is declared. Type-1 1inkage is used to 
branch to the Set Rea1time Interruption routine which de1etes the rea1-
time va1ue associated with that return parameter from the rea1time­
interruption-pending queue in the resident supervisor. 

Return Data: Register 15 is set to X'OC' for normal returns. 
Register 15 is set to X'OB' if there was no entry to 
CUICL. 

Rxamp1e: The rea1time interruption previous1y schedu1ed by a SETTIBER 
macro instruction for the TSI whose address is in TSIREG~ with the in­
terruption servicing routine of CEAIIA~ is cance1ed by issuing: 

116 



OKAYA CABC.L 'fSIBEG,CBA!!A 

CRABGH -- Change Schedule Table Entry (B) 

The CHABGB aacro instruction peraits you t.o alter the schedule table 
entry (STH) level of a task to desired level anif to retrieve the current 
level. If the new level is valid, it is placed in the task's '.lSI. 

iii 

'Baae 'OperationlOperand 
I , , 
I [ syabol 11 CB ABGB J level 
• • I 

level 
specifies the address of a fullword containing the new schedule 
level. 

Specified as: An BX address, or register notation. Execution time 
is saved if register 15 is specified. 

lote: If register notation is used, the new schedule level value 
itself (not its address) aust be loaded into the specified register 
before issuing the aacro instruction. 

Initialization: A DCLASS aacro instruction with the PBIYILEGBD option 
aust be coded in a 'CSECT prior to coding CHAIGE. If aore than one 
DCLASS aacro instru,ction is issued in a aodule, the last DCLASS issued 
prior to coding CHARGE aust be issued with the PBIVILBGBD option. 

Bxecution: The new schedule level is passed to the resident supervisor 
in register 15. This level represents an index position (0-255) within 
the resident supervisor's schedule table. ihen the supervisor receives 
the interruption, a check is aade to deteraine if the new schedule leve­
lis valid (that is, within the schedule table liaits and a nonzero 
entry).. :If valid, the task's schedule level is changed to the value 
specified in register 15. If not valid, an error indicator is set in 
register 15. The ~lrrent schedule level is always returned in register 
15. 

Beturn Data: The fc)raat of the return inforaation in register 1S is: 

r- r "-----------------~--------------.. -~---------- -----, 
I I I I I I 
I I I I Old I New I 
I I I I level I I level I '- _ _--'-.L..L-_______ .L--__ __.L-______ ---' 

o 6 7 8 15 16 23 24 31 ...... _--V---'"".- '-- "" ".", 
validity always 

byte returned 

Validity byte values: 

Setting lIeaning 
1.11 zeros Bew level is valid. 

Bit 6 (on) Outside the liaits of the schedule table. 

Bit 7 (on) Zero entry was specified. 

S~:tion 2: Systea !!acra Instruction Descriptions 117 



Example: Suppose you wish to change the current leTel of a task to 
index position 10. You write: 

LA 
CHGEL CHINGE 

15,10 
(15) 

CHDINNRI -- Generate Type-lor Type-2 Linkage (0) 

The primary function of the CHDI •• RA inner macro instruction is to 
generate a type-1 or a type-2 linkage or to generate a linkage by means 
of an SVC. It may also be used to load registers 0 and 1 with parame­
ters or load the second element of the BP sublist in the B-form of the 
S-type macro instruction. 

i j 

IName 10perationiOperand 
I I 
l[symboll'CHDINNRA ,[parameter l],[parameter 2J, , , I[ ([sublist element l],[sublist 

,[,enter code,macro codeJ 
element 2]) ] 

I , 
• I • 

parameter 1 
specifies a parameter to be loaded into register 1. 

Specified as: An RX address. 

Default: It is assumed that any desired parameter is already 
loaded into register 1. 

parameter 2 
specifies a parameter to be loaded into register o. 
specified as: An RX address. 

Default: It is assumed that any desired parameter is already 
loaded into register o. 

sublist element 1 
is the first element of a two-element sUblist. If specified by 
itself, it designates the entry point for a type-1 linkage. If 
specified together with the second element, it indicates the rela­
tive byte location within the DCB at which OPE. has placed the 
R-value. 

specified as: The name of an entry point (if sub list element 2 is 
omitted), or a number or absolute expression (if sublist element 2 
is incl uded) • 

Default: Sublist element 2 is interpreted as specifying the 
operand of an SVC instruction. If sublist element 2 is also 
omitted, no linkage is generated. 

sub list element 2 

118 

is the second element in the 
itself, it is interpreted as 
field of an SVC instruction. 
element 1, it is interpreted 
V-value within the DCB. 

sUblist. If it is specified by 
the integer specified in the operand 
If specified together with sublist 

as the relative byte location of the 

Specified as: A number or absolute expression. 

i 

I 
t 



Default: Sublist ele.ent 1, if present, is interpreted as an entry 
point for type-1 linkage. If sublist eleaent 1 is also oaitted, no 
linkage is generated. 

enter code 
specifies the enter code (see Appendix A) to be used in generating 
a type-2 linkage. 

Specified as: A nnaber or an absolute expression. 

aacro code 
specifies a code b> be stored in the aacro code field (BACR~) of 
the DCB. 

Specified as: One of the codes explained under the KACR~= operand 
of the DCB aacro instruction (see Asseabler User Kacro 
Instructions). 

CAUTIOI: Since the oaission of both sublist ele.ents results in no 
linkage being generated., you .ust furnish at least one sublist eleaent 
when using CHDIIIRA to generate a type-2 linkage. In addition to pro­
viding the enter code OI)erand, you .ust also provide a dna.y entry point 
in a sub list element. 

~he aacro code aust be specified only when the outer macro instruction 
has a DCB address to be placed in register 1. Also, parameter 1 and pa­
rameter 2 aay be used ortly when the value to be loaded into the appro­
priate register can be used as the second operand of an LA instruction. 

Exaaple A: The aacro in.struction: 

.LIllC CHDIDRA ,,(CZCXYZ) ,X'FF' 

results in the generatie,n of either a type-1 linkage to CZCXYZ or a 
type-2 linkage to that routine with an enter code of 255, depending on 
the privilege class of the issuing aodule. This deteraination is aade 
by testing the value in &CBDCLS. 

Exaaple B: The coding: 

EFORK CBDIIIRA 8F(2) 

results in the second el,ement of the 8P=operand being put in register 1. 

Example C: The aacro instruction: 

ERROR CBDIBIRA ,,(,:254) 

results in the generation of SYC 254. 

CBGYLOCK - Exchange YK I.celts (0) 

The CBGYLOCK aacro instruction is used to exchange VB Locks when 
processing a chain of individually-locked control blocks. 

section 2: systea Bacro Instruction Descriptions 119-120 





• , j ,Iaae ,Operation ,Operand 
I , , 
I[ syabol 11 CHGVLOCKlloq 1, 10g2 · , 

10g1,log2 
identify two va Locks to be exchanged. 

Specified as: the syabols naaing LOGVLOCK aacros. 

Execution: The active areas of the specified VB Lock Anchors will be 
exchanged. 

CAUTIOll: This aacre) aust be protected froa task interrupts by ITI/p',n:. 

Prograaaing lote: Befer to VB Locking in section 3. 

CLOSE U!SlB) -- Dise::onnect Data Set Proa User's Problea Proqraa (5) 

The CLOSE aacro instruction disconnects one or aore data sets froa 
the user's problea l?rograa. 

standard fora: 

• i I flaae ,Operation I Operand 
I I I 
l[syaboll.CLOSE I (dcb address, ••• ) 
• 

L-fora: 
• ,1Iaae 
I 
Isyabol , 

E-fora: 

• 

, i 

,Operation ,Operand , , 
I CLOSE I [ (dcb address, ..... ), )B1'=L 
• I 

A syabol is l:equired in the naae field of the L-fora. 

iii 

11Iaae 1 Operation I Operand 
I I I 
f[ syabol liCLOSE f[ (dcb address, ..... ), ]!IP= (E,list) , , , 

, , ., 

~: If a dcb address is not specified in the L-for., it aust be pro­
vided with the E-fora. If specified in both, the E-fora operand over­
lays the corresponding operand in the L-fora. 10 aore dcb addresses aay 
be specified in the E-fora than were specified in the L-fora. 

dcb address 
specifies the address of the data control block opened for the data 
set whose pro~~ssing is to terainate. 

Specified as: In the standard and L-fora, as a relocatable expres­
sion; in the standard and E-fora, in register notation (2 through 
12); in the E-fora only, also as an BX address.. If register nota­
tion is used, the dcb address aust be loaded into the specified 
register before issuing the aacro instruction. 

CAUTIO.: The following errors cause the results indicated: 

Sl3Ction 2: Systea Bacro Instruction Descriptions 121 



• I Error 
I 
IClosing data control block that is already closed. , 

Result 

1'10 action 
I 
I 

t 
I 
f ,Closing when dcb address operand does not specify 

laddress of data control block. , I Task 
t 

ter.i.nated, , 
r , IClosing data control block containing invalid DSORG 

t specification. I Task terminated I 
I • I 

Programming Botes: You may specify any number of data control block ad­
dresses in the CLOSE macro instruction. This facility makes it possible 
to close data control blocks and their associated data sets in parallel. 

In most instances, the FIBISH macro instruction should precede CLOSE 
(see the explanation of the FI.ISH macro instruction in "Bacro Instruc­
tions for BSAB"), since you cannot be informed from CLOSE of errors that 
may have occurred in processing the last output buffer page. Addition­
ally, the use of CLOSE without a preceding FIBISH that returned a normal 
completion code would cause the task to wait until the I/O operation for 
that DCB is complete. 

The CLOSE macro instruction for !SAB releases all the storage area 
that was used for aSAB. The options of REREAD and LEAVE are ignored. 
If the PIBISH macro instruction does not precede the CLOSE and if the 
DCB I.HBSG=O, a message is written to the operator to remove the data 
set fros the device. If the DCB CORBIBE flag is set and if a Fl. ISH 
does not precede the CLOSE, a card is read from the reader on the same 
2540 as the selected punch and stacked in pocket 3. 

CLRVLOCK -- Clear a VB Lock (O) 

The CLRYLOCK .acro instruction is used to open a VB Lock during 
abnormal termination recovery by a module which uses other xxxYLOCK 
macros. 

• I i 
,'lame I Operation I Operand 
I , , 
l[symbolJICLRVLOCK Ilog , . . 
log 

specifies the VB Lock to be cleared. 

Specified as: the symbol naming a LOGVLOCK macro. 

Execution: The specified VB Lock Anchor is examined, and the equivalent 
of OPBVLOCK is executed if the lock is indicated as "set". 

CAUTIOB: 7his macro must be protected from task interrupts by ITI/PTI 
unless used in a standard ABERD Interlock Release routine, in which case 
the AIR call will be made with task interrupts inhibited and no ITIJPTI 
should be attempted. 

Progra.ming lote: Refer to VB Locking in section 3. 

CBSEG -- Connect segment to S~ared Page Table (R) 

The CBSEG macro instruction is used by the system to connect a seg­
ment table entry to a shared page table. 

122 



iii 
,Baae ,Operation ,Operand . , , 
l[syabol],ClSBG ,[segaent nuaber,shared page table nuaber] 
• • • 

segaent nnaber 
specifies the segaent table entry to be connected to the shared 
page table. 

Specified as: An absolute expression or register notation (1 
through 12). If this operand is specified, the shared page table 
nnabar operand anst also be specified. If register notation is 
used, the segaent nuaber should occupy the high-order ha1fword of 
the reg ister • 

Defau1t: It is assuaed that the issuer has placed the segaent nua­
ber in the hi~Jh-order halfword of register 1. 

shared page table Duaber 
specifies the nuaber of the shared page table to yhich the segaent 
is to be connected. 

Specified as: An absolute expression or register notation. This 
operand aust ])e specified if the segaent nuaber operand was speci­
fied. If register notation is used, only one register say be spec­
ified for both this operand and the segaent nnaber, and the shared 
page table nURber aust be p1aced in the loy-order halfYord of the 
register. 

Defau1t: It is assuaed that the issuer has placed the shared page 
table nuaber in the lov-order halfword of register 1. 

Initializati2A: A DCLASS aacro instruction with the PRIYILEGBD option 
aust be coded in a CSEcr prior to coding CBSBG. If aore than one DCLASS 
sacro instruction is issued in a aodule, the last DCLASS issued prior to 
coding ClSE(; aust be issued with the PRIVILBGBD option. 

Bxecution: The shared page table nuaber in the low-order halfword of 
register 1 is used to search the task's auxiliary segaent table. If an 
auxiliary segaent table entry is already connected to the shared page 
table, its segaent auaber replaces the high-order halfword of register 
1. 

If no auxiliary segaent table entry is connected to the specified 
shared page table, the segaent table entry indicated by the high-order 
halfword of register 1 is set not available; its auxiliary segaent table 
entry is sarked assigned and shared, and the shared page table nuaber in 
register 1 is inserted into the auxiliary segaent table entry. 

Proqraaainq lote: The CISBG aacro instruction is used by the privileged 
systea to keep trac:k of a task's shared page and segaent tables. Por 
exaaple, a COllECT request for virtual storage allocation (YBA) causes a 
CISEG aacro instruction to be issued. The systea progra.aer should use 
the COI.Eer entry point (CZCGA7) in YftA to accoaplish this function. 

Bxaaple: Suppose shared page table nuaber 3 is to be connected to seg­
sent 12. The aacre> instruction aight be written: 

BJG CISEG 12,3 

This vould generattt (showing you how the nuaber in register 1 is 
obtained) : 

BJG 
&A3 

DS 
SETA 

OB 
3+12*65536 

:iection 2: systea Bacro Instruction Descriptions 123 



L 1,=P'&A3' 
SVC 238 

Shared page table 3 is connected to segaent 12 and the high-order ha1f­
word of register 1 is left unchanged (as 12) to indicate the actua1 seg­
aent to which the shared page table was connected. 

CRTSI -- Create Task status Index (R) 

The CRTSI .acro instruction allocates storage for a TSI and initia­
lizes it for a new task if the systea li.it on TSIs has not been 
reached. 

• i i 
,Iaae IOperationlOperand 
I I • 
I[syabol nCRTSI I . , . 
~: There are no operands. 

Initialization: A DCLASS aacro instruction with the PRIVILEGED option 
aust be coded in a CSECT prior to coding CRTSI. If aore than one DCLASS 
aacro instruction is issued in a aodule, the last DCLASS issued prior to 
coding CRTSI aust be issued with the PRIVILEGED option. 

Execution: A new task status index is created if the systea TSI 1iait 
has not been reached. 

Return Data: The task identification of the new task is returned in 
register 0; if the systea TSI liait has been reached, register 0 is set 
to o. 

Exa.ple: If you want to create a TSI, you aight write: 

XYZ CRTSI 

This would generate: 

XYZ SVC 253 

~: This SVC aust be used in conjunction vith VSEID. 

CSEG -- Connect Baaed seq_ent (0) 

The CSEG aacro instruction transfers control to the connect naaed 
segaent progra. in the resident supervisor. An atte.pt vill then be 
.ade to connect the specified disconnected seqaent group. 

• ,Baae 
i i 
10peration,Operand 

I , . 
ICSEG I 
• • 

Note: There are no operands. 

Initialization: Before executing CSEG, the issuing progra. should have 
set up the following paraaeter area: 

124 

CBABSG DSECT, COBBOI BABESEG PAR1BETER LIST 
DS OP 

BSGSVC DS B SVC 

1ISGRNA 
ISGDIA 

DS XL2 RESERVED 

DS 
DS 

XL8 
XL8 

RESERVED SEGftEBT GROUP IABE 
DISCONBBCTED SEGBEIT GROUP BABE 

I 
I 



ISGT!lA DS A TIRTUAL STORIGE IDDRESS OF SEG GROUP 

ISGLIG DS H LEIGTH OF BA!lBD GROUP 

ISGFLI DS XLl IJJPU'f PLAGS 
ISG1'LO DS XLl OftPU'f FLAGS 
ISGDIGII BOU X'SO' DIIRE SPBClfiBD 
ISGRIG!I EOU X'40· RIARE SPECIFIBD 
JJSGIDGR EOU X'20' ADDRESS SPECI1'IBD 
JJSGBBD!I BOU X'10· RODB=BOUlID 
JJSGLIGII EOU X'OS' LXBGTU SPBCIPIBD 

DS l' RESBRVBD 
BSGLTB BOU *-CBABSG LEIG'fH 01' PIRARB'fBll LIST 

CSBG must be the object of an execute instruction and be fullvord 
aligned. 

Bxecution: 'fhis ms.cro instruction passes control to the resident super­
visor module CEIPS via STC 183. In attempt vill then be made to recon­
nect the specified disconnected segment group. 

Programming lote: The system programmer should use the COISEG macro in­
struction described in Issembler User !lacro Instruction, GC2S-200". 

CTT -- ActiYate co.munications Vector Table 

The CVT macro sets a GLOBAL SETB symbol CHDCTT used by system macros 
to determine if the user has furnished a base register for the system 
Cl'T control block. The CT'f macro also does a copy of the CYT dsect 
CUACTT if the user has not provided one. If the user has not provided a 
base register for the Cl'T (CTT 10), then the system aacros use Register 
1S. 

iii 
Ilame IOperationlOperand 
It' 
.[ symbollJeTT , {YBS, IO} 
, I , 

YES ,10 
indicates whether or not the user has provided a 'USIIG CBICVT,Rx' 
statement assj.gning a base register for the CVT control block. 

Default: 10. 

, 
r , 

CAUTIOI: CTT sets the GLOBIL SETB symbol CHDCT'f. If CTT YES, CBDCTT is 
set to a 1. 

Program.ing lotes: The PSI dsect CHAPSI aust be copied by any assembly 
using any supervisor macros. Otherwise, the aacros vill generate error 
statements vhen asseabled. 

The pointer for thE~ CYT control block is in the PSA and is symbolically 
addressed as PSACV'J'. 

Exaaple: 

USIBG CBAPSA, RO 
L R12,PSACY'r 
USING CBACYT.,B12 
CYT YBS 

assign base register to PSI 
load address of CVT 
assign base register to CYT 
tells system base register is assigned 

:iection 2: System !lacro Instruction Descriptions 125 



DCB (8SAB) -- Set Up Data Control Block (0) 

An explanation and the general foraat of the DCB .acro instruction is 
contained in Asseabler User 8acro Instructions. ~he operands available 
only to the ~SS user with privilege class E (systea .onitor) for use 
with 8SAB are described below and supple.ent the operands described in 
Asse.bler User Baero Instructions. 

You can refer to the infor.ation stored in the data control block by 
.eans of the DCBD aacro instruction, which is also described in Assea­
bIer User Bacro Instructions. 

Inforaation regarding a data set aay be provided through the DDEF 
coa.and and .aero instruction and by your progra. itself (by placing in­
foraation in the data area created by your DCB aacro instruction) in ad­
dition to the inforaation furnished at the tiae the DCB aacro instruc­
tion is issued. Figure 23 illustrates possible sources of infor.ation 
for various fields. 

i , , 
IDCB Pield , , 
I DSORG 
,BACRP 
IDDBABE 
IDEYD 
,PRTSP· 
,BODE3 
fS~ACK3 

,RECFS 
fLRECL 
,POCKET 
,RETRY 
ISUR 
I IlIHBSG 
tPIP 
ICOBBIBX 
,FORSTYPE 

. , 
I Al terna te Sources I 
, I I, I 
IYour Prograa IDDEF Coa.and and IDCB 8acro IYour Prograa, 
IPrior to OPEB,Sacro Instruction,Instruction,After OPEB I 
I I I I , 
I X J t, , 
, X , X , X, , 
I X I I X I I 
, X I X txt 
, X t 1: I X , 

X I X , x I 
X , X , X , 
X , X , X I 
X I X I X I 
X J I X , 
X f J X , 

X 

X 
X 

I I I 
f X , X , , " r I X I 
, 'X I 

I , 
I ·Checked on ly if DEYD specifies a printer (PR). , , , 
12 Checked only if a FIBISH aaero instruction has been executed and a I 
, return code other than 4 was provided, and if no G~ or PUT .aero in-I 
I struction has been executed after the FIliiSB. J 
I I 
13Checked on ly if DEYD specifies a card punch (PC) or a card reader , 
t (RD). I 
, I 
,.For foraat-P records, footnote 2 applies. I , , 
,50nly if a SETUR aacro instruction has been executed and a return code I 
I of 4 was provided. I 
r , 
I.only if a PIliISH aaero instruction has been executed and a return , 
I code of 4 was provided. I 

Figure 23. Sources of DCB inforaation for BS1B 

The data control block (DC B) for BSAB includes five fields (RETRY, 
COBBIBE, POCKET, FORBTYP, and IBBftSG) that are not required in the DCBs 
for the other access aethods. These fields, as well as others pertinent 

126 



to the access aethod, aay be fil1ed using the DCB aacro instruction, as 
follows: 

• ,Base 
I 

, , 
lOp era tiOD. I Operand , , 

Isyabol 
I 

,DeB IDSORG=!S[,!ACBF={GIP}][,DDBI!E=naae] 
I f[ ,DEVD=code I ,RBCP!=code)[ ,LIlBCL=record length] , I H ,RETRY= {lIfU} ][ ,COI!BID={yfI} I ,POCKBT= {1I210RG} ] 

I I I[ ,POR!TYP={FISID}][ , IllHI!SG= {Y,I} J 
I I • 

Hote: If the !ICBl, DD.A!E, DEVD, BECP!, LIlECL, RETRY, POCKET, and FOR­
!TYP operands are D.ot specified, the inforsalion aust be furnished by 
another source described in Pigure 23. 

DSOBG= 
specifies the organization of the data set. 

Specified as: Por !SA!, the only acceptable code is as. 

I!ICRP= 
specifies the type of sacro instructions to be used in processing 
the dat a set. 

Specified as: Por !SAI!, only the options G and P (for the GET and 
PUT sacro instructions) are peraitted. 

DDHA!E= 
specifies the syabolic data definition nase associated with the 
data set. 

Specified as: A naae of three to eight alphaaeric characters. 
This naae aust be the saae as the ddnaae of the DDEF coaaand or 
aacro instruct:ion associated with this data control block. Each 
data set to be processed requires one DCB sacro instruction and one 
DDEl coaaand or aacro instruction. 

DEVD= 
specifies the type of device on which the data set resides. 

Specified as: The three options available for !SA! are PC, PR, and 
RD (for the ca,rd punch, printer, and card reader). Iddi tional key­
word operands are available, as shown belov, to provide device­
dependent inforaation to the device-dependent paraaeter bytes in 
the data control block. 

Code 
PC 

PR 

RD 

!ODE= 

!eaning 
Card punch 

Printer 

Card reader 

Idditional Keyword Operands 
[,I!ODE={C,E}] [,STACK={11213}] 

[ ,PIlTSP= {O 11 t 213} ] 

[,I!ODE={CIE} J [,STACK=UI2} ] 

specifies the aode of operation for a card punch or card reader. 

Specified as: Por !SI!, the available options are: C (colusn 
binary sode) or E (EBCDIC sode). The value of the BODE field say 
not be altered after the DCB is opened except between a co.pleted 
PIlfISH and thE! nert GET or PUT aacro instruction. 

Section 2: Systea Bacro Instruction Descriptions 121 



Default: E 

STACK= 
specifies vhich stacker bin is to receive the record. 

Specified~: 1, 2, or 3. stacker bin 3 aay be specified only if 
the punch (PC) is specified. The STACK field is ignored if A or B 
is specified in BECPB at OPER tiae. 

Default: 1 

PBTSP= 
specifies the nuaber of line spaces after printing. The field viII 
be ignored if A or ft is specified in the DCB RBCPB field. 

Specified as: 0, 1, 2, or 3. 

Default: 1 

BECPft= 
specifies the characteristics of the records in the data set. 

Specified as: Any of the folloving order are valid: 
{Pty}[B][A,ft]. B, hovever, vill be ignored. Any other record for­
aat designations vill abnoraally terainate the task. 

Control Characters AI!: As an optional feature, records aay 
include a control character in each logical record. This con­
trol character viII be recognized and processed if a data set is 
being vritten to a printer or punch by 8SAft. This character is 
provided by the user as the first byte of the logical record. 
Two options are available: 

• FORTHAR* Code (A) - The user aay choose to specify this code 
rather than the aachine code. The control byte aust appear 
in each logical record if this option is chosen. 

• 8achine Code (ft) - The user aay specify in the data control 
block that the aachine code control character has been 
placed in each logical record. The byte supplied by the 
user aust contain the bit configuration specifying a write 
and the desired carriage or stacker select operation. (This 
peraits independent carriage and stacker select operations.) 

LHBCL= 
specifies the record length or, for foraat-V, the aaxiaua record 
length. 

Specified as: Por foraat-P records, the length in bytes. This 
length aust include the control character for an output data set if 
(A,B) is specified in RECPB. The length aay not exceed 80 bytes 
for reading in EBCDIC aode and 160 bytes for colnan binary aode. 
For an output data set on a printer, the aaxiaua is 133 bytes; and 
on a card punch, 81 bytes for BBCDIC and 161 bytes for coluan 
binary (the additional byte for output data sets is for the control 
byte only if A or ft is specified in theRBCPB). 

Por foraat-y records, the aaxiaua length in bytes of a logical rec­
ord. LRBCL aay be aodified after the DCB is opened at any tiae. 
The length can not exceed 84 bytes for reading in EBCDIC aode and 

*Poraerly called ASA or extended USASI code, this code contains control 
characters defined by Aaerican Rational Standard PORTRAR, ARSI X3.9-
1966, hereinafter referred to as PORTRAY control characters. 

128 



164 b~es for coluan binary aode for an input data set. Por an 
output data set on a printer r the aaxiaua is 137 bytes; and on a 
card punch, as bytes for EBCDIC and 165 bytes for coluan binary. 
The additional byte for output data sets is for the control byte 
on1y if A or R is specified in the BECP!. The four or five contr01 
bytes of a foraat-Y logical record are not punched or printed. A 
foraat-V logical record will have five control bytes when a POBTRAB 
control character is specified. 

11l~'I'BY= 
specifies the error retry for the 2540 (reader only) • 

Specified as: The available options are B or U, where B indicates 
.no retry and tJ indicates unliaited retry. 

Default: U 

CO!lBIBB= 
specifies that a card is to be read in when PIBISH is issued during 
a PURCH job, effectively separating different punch jobs. Bach 
tiae a PIBISH or CLOSB aacro instruction is issued, a card is read 
froa the reader and stacked in pocket 3. 

Specified as: Y or B 

Default: • 

Bote: The S'I'ACK option chosen for the punch anst be 3 if CO!lBIBE 
rs-i; otherwise r the task will be abnoraally terainated. 

POCKET= 
specifies error card stacker bin (for the card reader on the 2540 
only) .. 

Specified as: 'I'he available options are OBG, 1, and 2, where OBG 
aeans stack a:s if no error occurred, 1 aeans stacker bin 1, and 2 
aeans stacker bin 2. 

Default: 1 

POR!I'lYP= 
specifies how printer error retry is to be perforaed. 

Specified as: D, P, and S. '!'he aeaning of these codes is describ­
ed below. 

D (storage duap type): Atteapt write retry (no skip or space) 
three tiaes before the DECB is set coaplete with error. If one 
of three retries is successful, use the strike-out character (X) 
to strike out all print positions and reprint the line. If 
three lines on one page have been struck out, eject to channel 1 
and continue. 

P (fora-sensitive type): Atteapt write retry (no skip or space) 
three tiaes before the DRCB is set coaplete with error. If one 
of the retries is successful, eject to channel 1, tell the oper­
ator to aark the error pager wait for acknowledgeaent, and then 
rewrite the entire page. The page is rewritten starting froa 
the previous skip to channel 1. ~: POBTBAB (ASA) or aachine 
control characters aust be used with P-type for.s. 

S (sequence-sensitive type): Atteapt write retry (no skip or 
space) three tiaes before the DRCB is set coaplete with error. 
If one of the retries is successful, tell the operator to aark 
error page, wait for acknowledgeaent, and then continue with the 

section 2: Systea !lacro Instruction Descriptions 129 



saae output page. Note: PORTRAI CASAl or aachine control 
characters aust be used with s-type foras. 

Defao1t: D 

INB!!SG= 
specifies whether or not aessages to the operator to reaOTe the 
data group when a CLOSE or FINISH aacro instruction is issued are 
to be suppressed. 

Specified as: Y (yes) or » (no) 

If the N option is chosen and CLOSE or PI.ISH is issued, a aessage 
is sent to the operator to reaOTe the data group froa the deTice. 
When the operation indicated by the iTO is coaplete, the operator 
is soae instances will be requested to generate an asynchronous in­
terruption by changing the status of the deTice froa not ready to 
ready. This bit, DCBIBH!!S, aay be dynaaically aodified by use of 
the DCBD aacro instruction. 

Default: N 

DCLASS -- Specify Privilege Class (0) 

The DCLASS aacro instruction declares the user's intent to asseable 
privileged or nonprivileged code by setting the global SETB syabol, 
&CHDCLS, to 1 (privileged) or 0 (noDpriTileged). Unlike other aaero in­
structions, DCLASS is used only during asseably. It directs aaero 
definitions that check the syabol &CBDCLS to generate priTileged or non­
privileged code. 

iii 
INaae I Operation I Operand 
I I I 
l[syabolllDCLASS l[priTilege class] . . , 

privilege class 
specifies whether the code following this aaero instruction is to 
be asseabled as priTileged or nonpriTileged. 

Specified as: PRITILEGED (privileged code) or USER (nonprivileged 
code). 

Default: USER. If no DCLASS is issued it is assu.ed the code is 
nonpriTileged. 

CAUTIOB: Before issuing a aacro instruction whose corresponding aaero 
definition refers to the &CHDCLS global syabol, a user .ust be sure the 
syabol is set properly. The required settings for the Tarious TSS aacro 
instructions that use this .echanisa are indicated with their descrip­
tions. DCLASS settings required to issue .acro-generated STC instruc­
tions are shown in Appendix B. 

DILET -- Enter Delete Proqraa (0) 

The DELET .acro instruction causes control to pass to the dynaaic 
loader's Delete routine via the task aonitor. 

130 



• I 1 ,Bame ,Operation ,Operand 
I , , 
,(symbol1'DELET , 

, . 
Rote: There are no operands. 

Execution: A task--SVC interruption is created to transfer control to 
the task monitor. control is then transferred to the dynamic loader's 
Delete routine. (see Assembler User ftacro Instructions for a descrip­
tion of the DELETE macro instruction.) 

Example: If you want your program to enter the Delete program within 
the dynamic loader" you would not use the ElITER mechanism; you could 
write: 

lIA!!E 

EX 
B 
DELE~~ 

DC 
DC 

DELET would expand as: 

BAKE SiC 

O,IUKE 
AWAY 

CLS'DESTRY!!Et 
X'OOOO' 

123 

DELPG -- Delete Vir.tual storage Pages (Rl 

The DELPG macro instruction is used by the systea to delete conti­
guous pages from a task's virtual storage and, when possible, to delete 
the associated pagt~ table entries. 

, , I 

,Bame tOperatioll ,Operand 
, , I 
J[symbol]tDELPG ,[page count] [,first page address] 
, I • 

page count 
specifies the number of contiguous virtual atorage pages to be 
deleted. 

Specified as: an absolute expression or register notation. 

Default: If 'the operand is omitted, it is assumed that the page 
count bas been placed in register o. 

first page address 
specifies the address of the first virtual storage page to be 
deleted. 

Specified as: an RX address or register notation. 

Default: If the operand is oaitted, it is assumed that the first 
page address has been placed in register 1. 

, , , 

Initialization: A DCLASS sacro instruction with the PRIVILEGED option 
must be coded in a CSECT prior to coding DELPG. If more than one DCLASS 
macro instruction is issued in a aodule, the last DCLASS issued prior to 
coding DELPG must be issued with the PRIVILEGED option. Before the 
DELPG macro instruction is executed, the issuing program must set up the 
first byte of register 15 with one of the following codes: 

Section 2: System Kacro Instruction Descriptions 131 



Code 
00 
02 

!leaninq 
user requested delete 
syste. requested delete 

Execution: The contiguous pages, beginning at the address contained in 
register 1 and equal to the count in register 0, are deleted fro. the 
issuing task's virtual storage. !lain storage and paging storage space 
in use for the released pages are freed for reallocation. If an entire 
seg.ent is deleted, the auxiliary seg.ent table entry is .arked unas­
signed, the seg.ent table entry is .arked not available, and an indica­
tor is set to represent the deleted seg.ent. The space occupied by the 
page table entries and external page table entries is returned for real­
location. If the auxiliary seg.ent table entry is .arked shared, the 
entry corresponding to the seg.ent in the resident shared page index is 
deleted. 

Proqra •• inq Botes: The DELPG .acro instruction is issued by the privi­
leged syste. to keep track of a task's page, seg.ent, and shared page 
tables. For exaaple, a FREEBAIB request for virtual .e.ory allocation 
(YBA) causes a DELPG .aero instruction to be issued. The syste. pro­
gra •• er should use the FREE!lAIW maero instruction to accomplish this 
function. 

~he DELPG macro instruction can be used for deleting both unshared and 
shared pages. 

Example: Suppose three pages of virtual storage originally allocated by 
a system progra., starting at ABCXYZ, are to be deleted. ~he macro in­
struction might be written: 

LA 0,3 
LA 1,ABCXYZ 
LA 15,X'02' 
SLL 15,24 
DELPG 

PAGE COUNT 
FIRST PAGE ADDRESS 
SYSTEB REQUESTED DELETE 
* 

DEOGOE -- Dequeue GOE from SCIB Table 

DEQGQE sets up the para.eter list and calls CEIJDE to dequeue a GOE 
from the SCAN table. 

• i , 

,Name I Operation I operand 
J I I 
I[symboillDEQGOE IGOE 
I , • 

GOE 
address of the GOE to be dequeued. 

Specified as: the na.e of a symbol defined as a fullvord, or 
Register 2 through 12 or 1. 

CAUTIONS: The PSI dsect CHAPSI must have been copied and assigned a 
base prior to the use of this macro. The expansion of this .acro is 
affected by use of the CYT macro prior to the use of this macro. 

132 



Exaap1es: 

(1) Register notation: CY~ YES is assuaed 

DEQGQE (1) 
• L 15,CT'fJDE 
• BALR 14,15 

(2) Syabo1ic naae; CTr YES is assnaed 

DEQGQE 'fCliGQE 

+ CBDVAL TCVGQE,l 
+ L 1,TCWGQE 
+ L 15, CYTJDE 
+ BALK 14,15 

where 'fCVGQE is defined as a fu11word 

(3) Syabo1ic naan; CYT 110 is assuaed 

DEQGQE TCiGOB 

+ CHDYAL 'fCW(;QE, 1 
+ L 1,TCWGQE 
+ L 15,PSACY'! 

where TCVGQE is defined as a fu11vord 

+ L 15,CYTJDE-CBACTT(,15) 
+ BALB 14,15 

DISABLE -- Disab1e SIstea Interrupts 

DISABLE peraits the user to -disab1e- srstea interrupts and address 
trans1ation. It sets a new systea .ask, and if desired br the user, 
saves the previous srstea .ask in a specified area. 

ii' 
,lIaae I Operation 10perand 
I I I 
,[srabo1]IDISABLE ,[ABEA=] [,IO=] (,EXT=] {,PER=] [,'fRAII=] . . , 

ABEA 
area in which the current systea aask is to be stored 

Specified as: an RX address or register notation 

, 
I , 

Defau1t: Current systea .ask is stored in a fie1d in the PSA-PSAS8 

IO= 
I/O interrupts 

Specifi.ed as: 
Y - disab1e I/O interrupts. 
II - status of I/O interrupts is unchanged. 

Defau1t: Y. 

EXT= 
externa1 interrupts. 

Section 2: Srstea 8acro Instruction Descriptions 133 



Specified as: 
Y disable external interrupts. 
N - status of external interrupts is unchanged. 

Def ault: y. 

PER= 
Program Event Recording Interrupts. 

Specified as: 
Y - disable program event recording interrupts. 
H - status of program event recording interrupts is unchanged. 

Default: Y. 

TRAN= 
add ress translation. 

Specified as: 
Y disable address translation. 
H - status of address translation is unchanged. 

Default: Y. 

Execution: DISABLE uses the S/370 instruction STNSH. 

Return Data: AREA, if defined, contains the previous system mask after 
execution of the DISABLE. 

Examples: To disable only I/O interrupts, you may write: 

DISABLE IO=Y,EXT=N,PER=N,TRAN=N 

To disable all interrupts and later restore the system mask to its pre­
vious configuration, you may write: 

DISABLE AREA=AREA 

SSM SAVE 

SAVE DC X '00' 

disable all interrupts and 
save current system aask 
restore old system mask 

area to save system mask 

DISCSEG -- Disconnect Segment Group (0) 

f This .acro instruction is completely documented in the Assembler User 
I Macro Instruction manual, except for one operand that is ayailable only 
, to a systems programmer. The definition and specification for only that 
lone operand are given below, but for continuity, the metalanguage format 
J that follows shows all the operands. 

L-forlll 

• ,Name 
I 
ISYllbol 

E-fora 

, i 

10perationlOperand 
I I 
IDISCSEG f[DHAME=,LENGTH=,BOUHD=,RBAME=,RELEAS=,] KF=L 
• 

I • • 

IHaLe rOperationlOperand 
I , , 

I ,[symbol]IDISCSEG I[DHASE=,LEHGTH=,BOUHD=,RHAHE=,ADDRESS=,RELEAS=,] 
I I I I MF= (E, LIST) 

• • I 

134 



Standard -Fon 

• • • 1 I Nali:e IOperationlj)perand I 
I I I , 
J[symboll,DISCSEG I[DHAftE=,LEBGTH=,BOUND=,RNAftE=,ADDRESS=,BELEAS=,] I 
I I • , 

~: all. operands 'ire keyword. 

RELEAS= 
specifies whether the reserved segment GETftAIN option is enforced 
while the named segment is disconnected from the task's address 
space (Refer to the GETftAIH and RSVSEG macros). 

Specified as: 

y - the reserveil segment ,GETMAIN option is not enforced. 

H the reserved segment GETftAIN option remains .in force. 

Notg: this option is available to privileged class modules only. 

DLINK -- Transfer to Dynamic Loader for External Symbol Resolution JQl 

The DLINK macro instruction provides external sy~bol resolution 
(explicit loading) and may also provide transfer of control to a program 
(explici t linking) • 

I I 
,Name ,Operation ,Operand 

• I t I[ symbol. ]IDLINK I 
• • 
~: There are no operands. 

Execution: The resid&nt supervisor creates a task-SVC interruption to 
transfer control to the task monitor. Control is transferred to the 
dynamic loader's DLINK (dynamic linkage) routine. DLINK can be used for 
explicit linking (external symbol resolution and transfer of control to 
loaded program) or explicit loading (no transfer of control). DLIl\K 
must be the subject of an execute instruction. (Also see CALL, LOAD, 
ARM, and ADCON in Assembler User P.acro Instructions.) 

Snction 2: System Macro Instruction Descriptions 134.1 





Ixalpl.e: suppose you want to dynalicall, load a prograa called HELP and 
have control. transferred to its entry point, BIGn. You light write: 

LOAD 

ADCBGBP 

IX 
B 
DS 
DY .. I.K 
DC: 
DC: 
DC 

ADC.GBP 
.I..AY 
OJ' 

%'0100' 
CLS'BBGIB' 
2J"0' 

OP~IO.S: LOAD ABD ~BABSJ'EB 

~is causes the dYDaaic loader to receive control fro. the task lonitor 
via the supervisor; it vill then load BILP and transfer to BI6IB. 

DL~SI -- Del.ete ~ast Status Indel (0) 

~he DL'fSI aaero instruction deletes the specified ~SI and reloves its 
associated task froa the systea. 

• I , 1 
,Bale ,operatio:n ,Operand , 
I I , I 
I [sylbol lIDL'fSI I 
• • • 
!2:t!l: ~here are n,o operands. 

InitialiZAtion: .I. DCLASS laero instruction with the PBI.ILBGXD option 
aust be coded in a CSIC~ prior to coding DL'fSI. If lore than one DCLASS 
lacro instruction is issued in a lodule, the l.ast DCLAS5 issued prior to 
coding DL~SI lust be issued with the PRIVILBGID option. 

Elecution: ~he task issuing the STC is eliainated froa the systea. All 
nonshared pages of lain storage and paging storage used by the task are 
returned for reallocation. Al.l. storage required for table entries per­
taining to the task in the resident supervisor is released. 

Ilaapl,: ~o release all. the resources a task is using -- logically el.i­
ainating the task -- this light be written: 

RJG DL'lSI 

~: 'fhis STC is the last step in a sequence required for reaoving a 
task. Other steps include closing data sets and releasing elternal. 
storage and devices. 

DSIG -- Discopnect Baaed Segment (0) 

~he D5EG aaero instruction transfers control to the disconnect naaed 
segaent prograa in the resident supervisor. An atteapt will then be 
aade to nile and disconnect the specified sagaent group. 

• ,Bale 
I 
t , 

i , 

,Operation ,Operand 
I , 
,D5EG , 
• • 

~: 'fhere are no operands. 

Initialization: B>efore executing DSBG, the issuing prograa should have 
set up the following paraaeter area: 

CRABSG DSEC'f, COSSOB BASB516 PARI!E'fBB LIS'f 
DS OJ' 

• I , 

Section 2: 5ystea Sacro Instruction Descriptions 135 



ISGSVC 

ISGRRA 
NSGDRA 

BSGV!!! 

ISGLIG 

BSGFLI 
IISGPLO 
NSGDRGII 
BSGRIGM 
ISGADG!I 
IISGBIDII 
11 SGLIfG!I 

BSGLTB 

DS 
DS 

DS 
DS 

DS 

DS 

DS 
DS 
EOO 
EOlJ 
EQU 
EQU 
EOO 

DS 
EOO 

H 
XL2 

XLS 
XLS 

A 

H 

XLl 
XLl 
X'SO· 
X'40' 
X' 20' 
X'lO· 
X'OS' 

P 
*-CBAISG 

SVC 
RESERVED 

RESERVED SEG!lEIT GROUP RIBE 
DISCORUECTED SEG!lEIT GROUP BillE 

VIRTUAL STORAGE ADDRESS OP SEG GROUP 

LERGTH OP BABED GROUP 

IIlPUT PLAGS 
OUTPUT FLAGS 
DIUBE SPECIPIED 
RIA BE SPECIPIED 
IDDRESS SPECIFIED 
IIODE=BOOID 
LEIGTB SPECIFIED 

RESERVED 
LEBGTB OP PARAB~ER LIST 

DSEG .ust be the object of an execute instruction and be ful1vord 
aligned. 

Execution: This macro instruction passes control to the resident super­
visor aodu1e CEAP" via SVC 1S2. An attempt viII then be made to name 
and disconnect the specified segaent group. 

Progra.aing Rote: The system prograaaer should use the DISCSEG macro 
instruction described in Issembler User !lacro Instruction, GC28-2004. 

DSSEG -- Disconnect Shared Page Table Proa Segaent (R) 

The DSSEG macro instruction disconnects a segment table entry from a 
shared page table. 

• I I 
,Bame tOperationlOperand 
I , I 
l[syabol],DSSEG , 
I • , 

~: There are no operands; see Initialization. 

I 

I , , 
, 

Initialization: The DCLASS macro instruction vith the PRIVILEGED option 
aust be coded in a CSECT prior to coding DSSEG. If aore than one DCLASS 
macro instruction is issued in a module, the last DCLASS issued prior to 
coding DSSEG aust be issued vith the PRIVILEGED option. 
Register 0 must contain a known shared page table nuaber right adjusted 
in the register. Register 1 must contain a relative page number (left 
half) and page count (right half) that describes a range of addresses 
contained in the shared segaent group_ 

Execution: The address space defined by the input parameters is discon­
nected from the requesting task's virtual storage. If this results in 
an entire segaent or group of segments being free, the segments are dis­
connected and the virtual storage is aade unassigned. 

program.ing Bote: The DSSEG macro instruction is used by the privileged 
systea to keep track of a task·s shared page and segment tables. For 
example, a disconnect request for virtual storage (VBA) causes a DSSBG 
macro instruction to be issued. The system programmer should use the 
disconnect entry point (CZCGAS) in VilA to accomplish this function. 

136 



Exa.ple: suppose two pages of shared page table number X'FF10' starting 
at relative page nUBber 3 are to be disconnected froll a task's virtual 
storage. The code night be written 

Lft RO,Rl v SPTPC 
ANY DS5EG 

SPTPC DC A (X'O()OOFF10'),A(X00030002 1 ) 

, DUPCLOSE -- Close a Duplexed Data Set (5) 

, 
f 
I 

Note: this macro Blust not be used for new code. It is docu­
lIented here only to aid in the maintenance of existing 
programs. 

The DUPCLOSE Ila.c:co instruction disconnects the priaary and secondary 
data sets of a duplf~x data set from the user.'s problem program and 
removes the duplexing linkage between such data sets. 

i , 

,Nalle I Operation JOperand 
I I I 

, t[symbol ],DUPCLOSE Idcb address 1,dcb address 2[ ,KF={EI (L,list)}] 
I , , 

I Note: A symbol is required in the nalle field of the L-forll. If the MF 
I operand is omitted, the standard form is assumed. 

t , , 

dcb 

I dcb 
J 
I 
I 

address 1 
specifies tlAe address of the data control block opened for the pri­
mary data set that is to be permanently disconnected (closed) froll 
the system and removed from duplex data set mode. 

S~ecified as: In the standard and L-form, as a relocatable expres­
sion; in the standard and E-form, in register notation (2 through 
12) ; in the E-form only, as an explicit or implied address. 

address 2 
specifies the address of the data control block opened for the 
secondary data set that is to be permanently disconnected (closed) 
from the systell and re~oved from duplex data set roode. 

~cified as: In the standard and L-form, as a relocatable expres­
sion; in the standard and E-form, in register notation (2 through 
12) ; in the E-form only, as an explicit or implied address. 

f Initialization: If this macro instruction is to be executed in a pr~v~­
I leged module, the most recently issued DCLASS macro instruction in the 
, assembly must have specified PRIVILEGED (see Appendix M). Also, the 
I address of a save area Dust be ~laced in register 13 before this macro 
I instruction is executed. 

I CAUTION: ~he following errors cause the results indicated: 

section 2: system Macro Instruction Descriptions 131 



• i i , Error r Action I 
I I f 
f ~ermanent~y closing a duplex data set whose data , NO action I 
I control blocks are already closed J I , I ----. 
I A dcb address operand does not specify the ITask terminated , address of a data control block , 
I I , DSORG specification is invalid ITask terlllinated 
I I 

, Proqrauinq Notes: The DUPCLOSE macro instruction generates code which 
t places a pointer to a parameter list in register 1. 

I • 1 
Register 1 ~.---t'Pointer to DCB 1 'Word 0 

L---______________ ~. I~----------------__ --__ ----------------------~I 
,Pointer to DCB 2 ,Word 1 

The DUPCLOSE macro instruction releases any sharing interlocks set 
for either the primary or secondary data set. 

Examples: See the examples under the description of the DUPOP~N macro 
instruction. 

I DUPOPEN -- Open Duplex Data Set (~ 

f 

• , 
Note: this macro must not be used for new code. It is docu­
mented here only to aid in the maintenance of existing 
programs. 

I The D UPOPEN macro instruction links a prillary and secondary data set 
, together so that all changes to the primary data set are immediately 

J 
I , 
I , 

I reflected in the secondary data set. Thus, at any instant, the two data 
, sets are exact copies of one another. DUPOPEN is used only with VAl'! 
J data sets. 

r.--------~'----------TI----------------------------------------------------____, 
fNaae I Operation ,Operand I 
I I 

I I[ sy.bol ],DUPOPEH 
I I I 

I • 

,dcb address 1,dcb address 2[ ,option] 
I( ,l'1F={E, (L,list)} ] 

,Note: A symbol is required in the name field of the L-fora. 
I operand is omitted, the standard form is assumed. 

, dcb address 1 

If the !!F 

I is the address of the data control block corresponding to the pri-
• mary data set. 

i 

, ~cified as: In the standard and L-form, as a relocatable expres-
t sion; in the standard and E-form, in register notation (2 through 
• 12) ; in the E-form only, as an explicit or implied address. 

dcb addr ess 2 
is the address of the data control block corresponding to the 
secondary data set. 

t ~cified as: In the standard and L-fors, as a relocatable expres-
I sion; in the standard and E-form, in register notation (2 through 
I 12) ; in the E-form only, as an explicit or implied address. 

138 



option 
specifies the intended method of input/output processing of the 
data set being connected to the system. 

~cified as: The various processing options and their meanings 
are: 

• , 
,COde ,Beaning 
I r 
I IIi PUT ,The data set can be used as input only. 
I , 
,OUTPUT ,The data set can be used for output or input. 
~ , 

I 

I , 
I , 
( 

I 
J IROO,? ,Both input and output operations are allowed. The DCB isl 
I ,opened as IRPUT. I 
I , i 
IOOTHi laoth output and input operations are allowed. The DCB is, 
I lopened as OUTPUT. I 
t I , 
I UPDAT IThe data set can be updated. I 
I I ----' 

I .ot~: Opening a VISAB data set for I_OUT or OUTIN is equivalent to 
r opening for UPDAT. When a data set is opened for UPDAT, however, 
I the user must position to the desired record in the data set. 

I Initialization: If this .acro instruction is to be executed in a privi­
, leged module, the most recently issued DCLASS macro instruction in the 
I assembly must have specified PRIVILEGED (see A~pendix H). Also, the 
I address of a save area must be placed in register 13 before this macro 
I instruct ion is executed. 

,ClUTIOR: If either copy of a duplexed data set is changed independently 
, of the other, duplering is invalidated in a manner that is transparent 
I to the duplex-ing mechanism and may cause false recoveries. 

I Programming Notes: DUPOPEN should be used judiciously. The external 
I storage required to contain a duplexed data set is exactly doubled and 
, the time required for data output is approximately doubled. 

I The data set properties or attributes specified in each of the data 
I control blocks and their corresponding DDEF statements must be identic­
I al. Similarly, any sharing properties specified by PERBIT commands for 
I each copy of a duplexed data set must be consistent. 

In event of an i'nput error on a primary data set page, the corre­
sponding page of the s6Condary data set is obtained and vritten back 
into the primary data set. This not only recovers the error but tends 
to keep the primary copy in an error-free state. 

, Each copy of the duplexed data set is placed on a separate physical 
, volume, if possible, thereby further assuring successful error recovery. 

~he DUPOPEIi macro instruction generates the following parameter list: 

• • • ,Register 1 ..... ' Pointer to DCB 1 
I 
I Pointer to DCB 2 
I 
I Pointer to option (using same translation as OPEN) 
• 

Sec·tion 2: System Bacro Instruction Descriptions 138.1 



It then generates code which places a pointer to that parameter list 
in register 1, and links to the DUPOPEN routine via a standard linkage. 

,Examples: In EX1 the data set defined by DCB named ~ASTER is opened as 
, the primary data set of a duplex data set and the data set described by 
I the DCB naaed COpy is opened as the secondary data set. Both data sets 
I are opened for INOUT processing. In EX2, the same two data sets are 
I re-opened, following disconnection caused by DUPCLOSE, for default 
I (INPUT) processing. 

, 
t 
I , 
I 
I 
I 
I , 
r 
I 

DDEPINl DDEF ~ASTDATA,VS,DSNAKE=MASTFILE 

COPYDATA,VS,DSNAME=DUPLICAT 
DDNAME=MASTDATA,DSORG=TS,RECFf!=P,LRECL=80 
DDNAME=COPYDATA,DSORG=VS,RECPM=F,LRECL=80 
MASTER,CO~y,INOUT 

DDEFIN2 DDEP 
f!ASTER DCB 
copy· DCB 
EXl DUPOPElf 

DUPCLOSE 
EX2 DUPOPEN 

DUPCLOSE 
OPEN 

MASTER,COPY 
!ASTER,COPY 
l'![ASTER,COPY 
(MASTER, (INPUT» Subsequent processing after this 

instruction would invalidate 
previous duplexed data set. 

ENABLE -- Enable system Interrupts 

ENABLE permits the user to "enable" system interrupts and address 
translation. It sets a new system mask, and if desired by the user, 
saves the previous system mask in a specified area. 

i I 
,Name ,Operation ,Operand 
I , , 
l[symbolJIENABLE I[AREA=) [,10=) [,EXT=) [,PER=] [,TRAN=] 
• 

AREA 
area in which the current system mask is to be stored 

Specified as: an RX address or register notation 

Qefault: Current system mask is stored in a field in the PSA-PSASM 

10= 
I/O interrupts 

~cified as: 
Y enable I/O interrupts. 
N - status of I/O interrupts is unchanged. 

Default: Y. 

EXT= 
external interrupts. 

Specified as: 
Y - enable external interrupts. 
N - status of external interrupts is unchanged. 

PER= 
Program Event Recording Interrupts. 

138.2 



specified as: 
Y enable pro~Jram event recording interrupts. 
R - status of program event recording interrupts is unchanged. 

TRAN= 
address translation .. 

Spe cified as: 
Y - enable address translation .. 
B - status of address translation is unchanged. 

Execution: ENABLE ases the 5/370 instr~ction STBSft. 

Return Data: AREA, if defined, contains the previous system mask after 
execution of the EBABLE .. 

Examples: To enable only I/O interrupts, you may write: 

DISABLE AREA=AREA 

ENABLE IO=Y,EXT=N 

The DISABLB is done first to insure the rest of the interrupt types are 
disabled and to save the current system mask. The ENABLE is done to en­
able only I/O interrupts. To restore the previous system mask, you 
could write: 

SSM SAVE 

SA VB DC X' 00 • 

ENQGQE -- Enqueue GQE from SCAN Table 

EBQGQE sets up the parameter list and calls CEAJEB to enqueue a GQE 
from the SCAN table. 

, I 

INaae IOperatioD.IOperand 
tit 
J( symbol JJErlQGQE ,GQE 
, I 

GQB 
address of the GQE to be enqueued. 

Specified as: the name of a symbol defined as a fullword, or 
Reg ister 2 through 12 or 1. 

CAUTIONS: The PSA dsect CHAPS! must have been copied and assigned a 
base prior to the use of this macro.. The expansion of this lIaCL"O is 
affected by use of the CVT maCL"O prioL" to the use of this macro. 

Examples: 

(1) Register notation; CVT YES is assumed 
ENQGQE (1) 
,. L 15,CVT~rEN 

* BALR 14, lS 

Se<:tioD 2: System Macro Instruction Descriptions 138.3 



(2) Symbolic name; CVT YES is assumed 

ENQGQE TCWGQE 

• 
+ CHDVAL TCWGQE,l 
.. L 1,TCWGQE 
.. L 15, CVTJEtf 
+ BALi 14,15 

where TCWGQE is defined as a full word 

(3) Symbolic name; CYT NO is assuaed 

ElIQGQE TCWGQE where TCWGQE is defined as a fullvord 

138.4 



r--
i 

CBDYIL TClI'GQB, 1 
L 1,TCIfGQ'B 
L 15,PS1CVT 

+ 
+ 
+ 
+ 
+ 

L 15,CY~JEI-CB1CYT(,15) 
B1LR 14,15i 

EITER Enter Privileged Service Routine (B) 

* , , 
tllaae ,Operatic1n ,Operand 
I , , 
,[syabolllBIITBR I 
• I • 

lote: There are lj,O operands. See Initia1ization. 

Initialization: E(egister 15 aust contain the enter code associated vith 
the privileged aodule being entered by the nonprivileged prograa execut­
ing the EITBR aaCI:O instruction. Bnter codes are su_arized in lppendix 
1. 

Bxecution: 1 tas)~-SYC interruption is created to transfer control to 
the task aonitor. The Bater routine (part of the task aonitor) trans­
fers control to the indicated privileged prograa, using aodified type-1 
linkage. Register 15 contains a code, the enter code, that is used by 
the Bnter routine to deteraine which privileged prograa is to receive 
control. Only thE; contents of registers 0 and 1 are passed to the pri­
vileged prograa; I:egisters 0, 1, and 15 are the ollly registers the pri­
vileged prograa can use to pass results back to the prograa issuing the 
EITBR. Registers 2 through 14 are saved and restored by the enter rou­
tine for the progI:aa that issued D~BR. 

Bxaaple: Suppose you want to get 256 bytes of working storage (without 
using the GBTBlr1 aacro instruction). You aight write: 

1I1ftE 

1,1 
0,256 
15,48 

CLBIR GP Rl ~ SB~ OPTIOBS 
SET BYTB COOIl'!' 
SET BI~BR CODB II GP R15 

BRBOR -- Indicate Supervisor Detected Brror (0) 

The BRROR aaero instruction provides the aeans by which the resident 
supervisor reports the occurrence of a aajor or ainor software error, a 
hardware failure, or an I/O error. 

, i i 

,1Iaae 10peratic.n I Operand 
I , , 
,[syabol]tERROR ,error type,fillin,aessage id,call id . , . 
error type 

specifies the type of error that has occurred. 

Specified as: One of the codes sho •• in Pigure 2'. 

section 2: systea Bacro Instruction Descriptions 139 



,Binor software error 
IBajor software error 
,Hardware failure 
,Issue message 
I 

Type of Error 

Figure 24. System error codes 

fillin 
this operand must be included for compatibility. 

1 , 
I , 
I 
r 
r 
• 

COde 

1 
2 
3 
7 

Specified as: Any two-digit decimal number in the range 00 through 
27. 

aessage id 
specifies a unique identifier for the aessage to be issued as a re­
sult of invoking the ERROR .acro instruction. 

Specified as: A two-digit decimal nuaber in the range 01 through 
99. 

call id 
specifies a specific ERROR call in modules that issue aore than one 
call. 

Specified as: A decimal nuaber in the range 0 through 99. 

Mote: Both LVPSW and ERROR use the same SVC code (254); an SVC 254 oc­
curring in the problem state is considered LVPSW; an SYC 254 occurring 
in the supervisor state is considered ERROR. 

Execution: SVC 254, generated by the ERROR macro instruction, is the 
only SVC that may be issued by the resident supervisor. The processing 
unit receiving the SYC will stop all other processing units in the sys­
tea. A message (for its foraat, see "Syser Dump" in Part I, Section 4) 
is issued at the operator's terainal an4 the systa. enters the wait 
state; a dump may then be taken. 

If the error type is 1 (minor software), or if the recovery nucleus 
returns control to the SYC 254 routine, all other processing units in 
the systea are restarted; control is then returned to the instruction 
following the ERROR parameter list. If the error type is 2 Caajor soft­
ware), the system is suspect, and the IPL process aust be initiated by 
the operator. If the error type is 3 (hardware failure), the error is 
handled as a type-2, but the word SOFTWARE in the message is changed to 
HARDWARE. If the error type is 7, the system is stopped, a message is 
immediately written to the operator console, an4 the systea is re­
started. See the example below to learn how to set up the message. 
This is primarily used for an I/O failure, to inform the operator of 
some action to take concerning the failing device. 

Erample: To send a message to the operator, you might code: 

SERDBESS 

BESSTBXT 

140 

ERROR 
ORG 
DC 

DC 
DC 

7,0,0,0 
*-3 
AL3 (I!ESSTEX'l) 

AL 1 (4) 
C·HELp· 

IfBSSAGB LBBGTH 



t 

Prograuinql!lote: Part of the message issued at the operator's terlll.inal 
is a four-digit error code; this code is formatted from the tvo-digit 
message id and the tvo-digit call id passed to the system error pro­
cessor as parameters of the ERROR macro instruction. This construction 
permits you to ident.ify calls to the system error processor for debug­
ging. You might, for example, assign one module or one group of modules 
in main storage a particular module identifier to permit its recognition 
as the source of the! call. You could then, using the call id operand, 
assign sequential numbers to the ERROR calls issued by that module or 
group of modules to help you recognize particular errors resulting in 
calls vi thin the sec;ruence. For example, you might vri te: 

ERROR 

,r------_eaessage id 
I r, -----<lcall id 

1,ClO,23,10 

and the resulting e~'ror code, 2310, vould identify the error that 
resul ted in the call. to the systelll. error processor. 

To avoid issuing different ERROR calls with the same error code (thus 
duplicating the messages issued at the operator's terminal and creating 
confusion as to the reason for the call), check System ftessages for 
those error codes already in use in the systelll.. 

Example: Suppose yc,u detect a major error -- quantity A was neither 
less than, equal to, nor greater than quantity B. You might vrite: 

BLAST ERROE 

, aSEG -- Exchange Hailed Segment (0) 

, The ESEG macro instruction transfers control to the exchange naaed 
, segment program in the resident supervisor. An attempt will then be 
I made to exchange the specified disconnected segment group with the vir­
f tual storage segment specified. 

• ,lfame 
I 
I 
• 

• I 
,Operation ,Operand 
I , 
I ESEG I 
I • 

, Hote: There are no operands. 

t 

, 
I 

I , 

Initialization: Before executing ESEG , the issuing program should have 
set up the following parameter area: 

CBANSG DSECT , COIIMON BARESEG PARAftETER LIST 
DS OP 

1fSGSYC DS H STC 
ISGFLG DS 1 FLAGS 
HSGGET EOU IIISGFLG 
1fSGGETII EQU 11'80 • GET DISCOlfNECTED SEGftEN'l' PAGE 
HSGPUT EQU lfSGFLG 
IIISGPUTft EQU 1'40 ' PUT DISCONNECTED SEGftEHT PAGE 

DS X RESERVED 

HSGIUU DS IL8 RESERTED SEG8EHT GROUP HAilE 
HSGD1f.l DS XL8 DISCOHlfECTED SEGMENT GROUP lUBE 

NSGYII.l DS A VIRTUAL STORAGE ADDRESS OF SEG GROUP 

1fSGL1fG DS II LENGTH OP HA!! ED GROUP 

NSGPLI DS :n1 IlIPU T P LA GS 

Section 2: System Macro Instruction Descriptions 141 



, 
I 
J 

• • , 
r 
I 

HSGFLO DS XLl OUTPUT FLAGS 
HSGDHGII EOU X'SO' DNAIIE SPECIFIED 
HSGRHG!I EOU X IQO 1 RHAME SPECIFIED 
HSGADGft EQU X'20' ADDRESS SPECIFIED 
11 SGBI1D!l EOU X'10' IIODE=BOUND 
HSGLliGR EOU X'08 ' LENG TH SPECIF lED 
HSGRELft EOU X'OQ' RELEAS=Y SPECIFIED 
HSGRESSR EOO X'02 ' RSTRCT=Y SPECIFIED 

HSGBYA DS F GET/PUT SEGREHT BUFPER ADDRESS 
HSGLTH EQU *-CHANSG LENGTH OF PARA~ETER LIST 

ESEG must be the object of an execute instruction and he fullword 
aligned. 

Rxecution: This macro instruction passes control to the resident super­
visor module CEAP8 via SVC,18S. An attempt will then be made to 
exchange the specified disconnected segment group. 

Prog~ing Hote: ESEG is an inner macro used with the EXCSEG macro 
instruct ion. 

J EXCSEG -- Exchange Segment Group (0) 

I This macro instruction is completely documented in the Asseabler User 
I Macro Instruction manual, except for one operand that is available only 
, to a systems programmer. The definition and specification for only that 
J one operand are giv&n below, but for continuity, the metalanguage format 
, that follows shows all the operands. 

L-form 

• I i INaae t Opera tion I Operand I 
~I------'~Ir-------fl-----------------------------------------~ 
,Symhol ,EXCSEG '[DNAME=,LENGTH=,BOUND=,RNA~E=,RELEAS=,J 8F=L I 

E-fora 
Iii 
tHaae ,OperationlOperand 
t , • 
f[symbolJ,EXCSEG t[DHAHE=,LEiGTff=,BOOND=,RNAME=,ADDRESS=,RELE1S=,] 
I I IMF=(E,LIST) 
• J 

Standard -Form 
Iii 

IN~.e J Opera tion I Operand 

• I I l[symbolllEXCSEG IDHAME=[, LENGTH=,BOUND=,RaAME=,ADDRESS=,RELEAS=,] 
• I I ----I 

Note: all operands are keyword. 

I BELEAS= 
I specifies whether or not the reserved segment GETftAIH restriction 
, is enforced while the named segment group is disconnected. 

Specified as: 

Y the reserved segment GETMAIN restriction is not enforced. 

N - the reserved segment GETMAIN restriction is enforced. 

142 



, This option is available to privileged class programs only. Refer 
I to GETliAIB and RSVSEG lIacros for further explana.tion. 

EXPHD - Expand PagE! (0) 

The EXPND macro instruction transfers control to t.he Expand Page Pro­
gram (Ceapl) in the Resident Supervisor. An attempt will then be made 
to allocate additional virtnal lIellory address space contiguonsly to ex­
isting virtual meaory address space. 

I • I 
IHalle IOperationtoperand 
• t I 
I[ symbol Jr EXPND I' 
, I 

Note: There are no operands. 

Initialization: Before executing EXP1iD, the issuing program should have 
set up the following general registers: 

~ister 

o 

1 

15 

contents 

e~isting number of pages (left half) 
additional number of pages (right half) 

st:arting virtual memory address of existing space 

protection code for additional address space 
(see ADDPG macro description) 

CAUTION: The existing virtual memory address space lIust be currently 
allocated. 

Executio.!!: This macro instruction passes control to the Resident Super­
visor Kodule CRAPl via SVC 239. An atte.pt will then be made to alloc­
ate the specified number of additional virtual memory pages contiguously 
to the existing address space. 

Return Data: 

~ister contents 

1 virttlal memory address 
of first page allocated 

15 o 
4 

Keaninq 

allocation ok 
request not satisfied 

Progran inq Note: '1i he system programmer should use the expand entry 
point (CZCGA4) in V~A to expand virtual memory. 

Example: Suppose two additional pages of privileged virtual memory are 
needed contiguous to the virtual memory address contained in general 
register 4. The following instructions lIlay be written: 

L O,=A(X·00010002') 
LR 1,4 
LA 15,2 
EXP ND 

Section 2: System Macro Instruction Descriptions 142.1 



LTR 15,15 
BNZ NOTALLOC 

FINISH (MSAM) -- End of Data Set (RL 

The FINISH macro instruction is used to inform the MSAM routines that 
processing of the current data group (a subsection of an ESAM data set; 
a complete data set to the user of the unit record device) is at an end. 
A task may process more than one data group (within the same MSAM data 
set) with the same data control block, without closing and reopening the 
DCB (and the assignment and release of the associated I/O device) be­
tween data groups. 

• I I 
IName 10perationrOperand 
ii' 
l[syaboIJ,FINISH Idcb address 

dcb address 
specifies the address of the data control block opened for the data 
set being processed. 

~cified as: An RX address, or as register notation. Execution 
time may be saved if register 1 is specified. If register notation 
is used, the address must first be loaded into the specified 
register. 

CAUTION: The FINISH macro instruction causes the operator to be noti­
fied to remove the data group from the device in use if the INHMSG flag 
of the data ccntrol block is not set to 1. 

Return Data: Upon completion of the FINISH macro instruction, a code 
indicating the manner in which the instruction vas completed is returned 
in register 15. The meanings of the codes are given in Figure 25. 

142.2 



r 
I Return 
I Code 
I 
I 0 
I 
I , 
I 
I 
, 4 
I , , , 
, 8 
I 
I , 
I , 
I , 

i i 

I f 
I Beaning I 
I f 
IOperation coapleted successfully. CLOSB .aero instruction aaYI 
lbe issued, or further processing aay be initiated without I 
Ireopening data control block; the DCB paraaeters LREeL, BODE, , 
,STACK, PRTSP, BECPB, POCKET, POBBTTPE, and BETBY aay be I 
faltered at: this tiae. I 
I I 
IOperation was not coapleted since I/O vas not finished. I 
IPI.ISH aaero instruction should be reissued later, until are-I 
Iturn code other than 4 is received. (See discussion of wIn- , 
Iterruption Entry Handling,- above.) , 
I I 
10peration was coapleted with I/O error. If data control blockl 
Iwas opened for input, description of GET aaero instruction re-I 
1turn code of 8 (Pigure 26) applies; if data control block was , 
topened for output, description of PUT aacro instruction return, 
Icode of 8 (Pigure 34) applies. In order to clear reaaining , 
loutput buffers, if error was not peraanent (DEBRP2 or DECGl , 
Inot on), FIRISH aay be reissued. r , , 

Pigure 25. Beturn codes for BSAB PIRISH aacro instruction 

Prograaaing Rotes: The PI.ISH aacro instruction provides for: 

• Initiating any necessary I/O activity so that an output data set aay 
be closed • 

• Testing the results of all outstanding I/O on an output data set. 

• Awaiting coapletion of outstanding I/O requests on an input data 
set. 

• Rotifying an operator to reaove the data set froa the device (under 
control of the IIHBSG flag of the data control block). 

• Reading a card froa the card reader and stacking it in pocket 3 of 
the saae 2540 as the selected punch, if the COftBIBE flag of the data 
control block i.s set. 

You should prece·de the CLOSE aacro instruction vi th the PIIISH aacro 
instruction, if you want to avoid an autoaatic wait condition, which aay 
result froa the access aethod CLOSE, or to receive notification of any 
I/O error. (Close BSA! is the only BSA! routine to invoke AWAIT.) 

Exaaple: The following exaaple is based upon the coding in the exaaple 
for the PUT macro instruction. It would follow the locate-aode PUT, L, 
BB: 

REPEAT 

HALT 

PIlfTAB 

LA 
PIlUSH 
1. 
BB 
CLOSE 

DC 

DC 

DC 

7,PIITAB 
JHL 
5,0 (15,7) 
5 
JHL 

.l (HALT) 

A (REPEAT) 

A (ERBOR) 

Section 2: Systea 

SET UP BBAICH TABLE 
EID OP DATA SET 
BBABCH OB BC IBDEX ABD 
PIlfTAB AS BASE 

IDDB POB PROCESSIllG APTER 
BC OF 0 
ADDR POR PROCESSIlIG APTEll 
RC OP 4 
ADDR fOR PROCESSIBG APTEB 
BC OP 8 

Bacro Instruction Descriptions 143 



r 
I Return 
J Code 
I 
, 0 
I 
I " t 
f 
I 
, 8 
I 
I 
I , 
I 
I 
I 12 , 
I 
, 16 , 
I 
I , 
I , 
I 
I 
I 
r 
t , 
• 

i • 

I I 
I neanin'1 f , , 
,Operation coap1eted successfu11y. , 
I , 
'I/O not coap1ete; no record has been provided since next t 
Isequentia1 buffer has not yet been fi11ed; GET aacro instruc- , 
Ition shou1d be reissued. I 
I I 
lunrecoverab1e I/O error occurred in connection with record be-I 
lin'1 read; noraa11y, CLOSE aacro instruction shou1d be issued; I 
Ihowever, a record has been provided, content of which is buff-, 
fer iaage. If I/O error was not peraanent (DEBBP2 or DECG1 not, 
ton), you aay accept record and continue processin'1, or you aay, 
Iskip record by issuin'1 another GET aacro instruction. I 
I I 
I End-of-fi1e; no recorclhas been provided. The PIBISH aacro , 
,instruction shou1d be issued. , 
I , 
,contro1 card sensed: atteapt to rea.d an EBCDIC record I 
rresu1ted in validity check; first four c01uans of card contain, 
,saae predeterained contr01 aark, a 12-11-3-4 punch. Record I 
Iprovided is buffer iaa'1e, contr01 bytes of which shou1d be , 
,tested for such instal1ation-defined codes as (1) chan'1e of , 
,aode froa EBCDIC to c01uan binary or (2) chan'1e of data '1roup J 
Iwithout end-of-fi1e indicator. Depending on insta11ation as- I 
,si'1n.ent and contro1 code usa'1e, processin'1 aay continue. , 
IContr01 card wi11 be stacked as if it were va1id data card. I 
,If subsequent GET aacro instruction is issued, it .i11 refer I 
Ito next card in reader f0110win'1 contro1 card. If any fie1ds I 
lin data contr01 b10ck are to be changed, PI.ISH (or CLOSE and I 
10PEB) aacro instructions aust be issued before the next GET. I , 

Pi'1ure 26. Return codes for nSAn GET aacro instruction 

lREELOCK -- open a Resident Supervisor Service (0) 

The PREELOCK aacro instruction opens a specified resident supervisor 
service that is current1y 10cked, thus al1owin'1 the service to be used 
by another processor. 

i i • 
IBaae ,Operation ,Operand 
I I I 
,(syab01],PREELOCK J10ck area,register,aodule id,error nuaber 
, I 

10ck area 
specifies the address of a doub1e word (8 bytes, fu11Yord a1i'1ned) 
that is a current1y 10cked service 10ck area. 

Specified as: a syabol.ic address. 

re'1ister 
specifies a register to be used for 10'1'1in'1 the PREELOCK address. 

Specified as: an abso1ute expression froa 0 to 15. 

aod\;l1e id 

• 
I , 

specifies the aodu1e openin'1 the resident supervisor service (the 
aodu1e in vhich the PREELOCK is issued). This operand vi11 be used 
in '1eneratin'1 a SYSER aessage in the event the 10ck area is cur­
rent1y free or 10cked by soae other cpu. 

144 



Specified as: a two-digit decima1 number. 

error nuaber 
specifies this particu1ar FREELOCK maero instruction within a 
aodu1e in which aore than one SYSER is issued. This operand is 
used in generating a SYSER aessage in the event the 10ck area is 
currently free or 10cked by soae other cpu. 

Specified as: a two-digit deciaa1 nuaber. 

Prograaaing Bote: The doub1e word service 10ck area has the f0110wing 
structure: 

i , i 

10ck I not 
byte I used 

address of 1ast CPU , address of 1ast GETLOCK or J 
to access lock area , FREELOCK to access this lock area, 

• , , 

o 1 2 

GET (ftS1ft) -- Get a Record fR) 

The GET macro instruction aay be specified in either the locate aode 
or the aove mode. When you specify the aaero instruction in the 10cate 
aoder GET locates the next sequentia1 record in the specified input data 
set and places its address in register 1. When you specify the aacro 
instruction in the move aoder GBT 10cates the nert sequential record in 
the specified input data set and aoves it to the york area you have 
specified in virtual storage. 

• i i i 
,Baae I Operation ,Operand , 
I , , , 
l[syabolllGBT 'dcb address[rarea] 
• • • 

dcb address 
specifies the address of the data control block opened for the data 
set being proc(9ssed. 

area 

Specified as: An RX address r or register notation (1 through 12). 
Bxecution tiae is saved if register 1 is specified. If register 
notation is used r the address must first be 10aded into the speci­
fied register. 

specifies the address of the work area into which you want the rec­
ord to be aoved. Use of this operand iap1icitly specifies aove 
mode. 

Specified as: An RX addressr or register notation (0 or 2 through 
12). Execution tiae is saved if register 0 is specified. If 
register nota~ion is used r the address aust first be loaded into 
the specified l::-egister. 

Initialization: The) address of a save area aust be placed in register 
13 before executing the GBT aacro instruction. 

When you are using ftS1ft r the GBT aacro instruction aay only be .a­
ployed to obtain rec:ords fro. a card reader. The RBCPft field of the 
data control block Rust therefore indicate format-P r since foraat-y does 
not apply to the card reader. 1t OPBB r the LRBCL fie1d of the data con­
trol block should be set to a aaximua of 80 bytes for EBCnIC r or 160 

Section 2: systea ftacro Instruction Descriptions 145 



bytes for coluan binary. The aode field in the data control block aust 
be set to a binary 0 for EBCDIC or to binary 1 for coluan binary. 

Return Data: Upon coapletion of the GET aaero instruction, a code indi­
cating the sanner in which the instruction was cospleted is returned in 
register 15._ Beanings of the codes are given in Figure 26. 

Exaaple: In the following exaaple, which illustrates the use of both 
the locate-sode and aove-aode GET sacro instructions, you vant to read 
65 EBCDIC bytes froa the first 65 coluans of the next sequential card, 
in a 2540 reader. Any cards with errors will be stacked in bin 2, with 
no atteapt to reread the record; cards containing no errors viII be 
stacked in bin 1. Since the return codes provided froa the saero in­
struction are multiples of 4, it is possible for you to set up a braach 
table to provide proper control of processing_ 

ADI. DCB DSO~G=BS,HACRF=G, 

DDBABE=BYDD,DEVD=RD, 
HODE=E,POCKET=2, 
STACK=l,BECFB=P, 
LRECL=65 

OPEB (ADL, (IBPUT) ) 
LA 3,RCTABLE 
LA 1,ADL 

BOVE GET (1) ,WORK 
I. 5,0(15,3) 

BR 5 
LOCATE GET ADL 

1. 5,0 (15,3) 
BR 5 

WORK DS CL65 

RCTABLE DC A (BOR8) 

DC A (PAUSE) 

DC A (ERBOB) 

DC A (EliD) 

DC A (COBTROL) 

Both the sove-aode and locate-aode 
type-l linkage to the DOBSAB routine. 

GETADDR -- Get Systea Address froa CYT 

GET 

BUILD DeB 

OPE. DCB 
SET UP BRAVCR TABLE 
LOAD ADDR O~ DCB 
BOTE-BODE GET BACHO 
BHAVCH OW RC IBDEX ABD RCTABLE 
AS BASE 

LOCATE-HODE GET HACHO 
BRABCH OB RC IBDEX AWD 
RC TABLE AS BASE 

IBPUT ABEA ~OR HOYE-HODE 
GET BACRO 
ADDB FOB PBOCESSIBG AFTEB 
BC OF 0 
ADDB FOB PROCESSIVG A~TEB 
BC OF 4 
AD DR FOB PROCESSlliG AFTER 
RC OF 8 
ADDB ~OR PROCESSIBG AFTER 
RC OF 12 
ADDB POR PROCESSIBG AFTER 
RC OF 16 

aaero instructions result in 

GETADDR loads the specified register with the address of the speci­
fied symbol fro a the CVT control block. 

• i i 
,Base ,Operation ,Operand 
I , , 
l[sysbol]IGETADDR I[EPT=] [,R=] 
• • • 

EPT= 
naae of the system syabol whose address is needed. 

146 



:1= 
the register into which the address of the syabol (specified in 
EPT=) is to be placed. 

Specified as: Any register, except Register 0 cannot be used if 
CVT BO was coded. 

Default: :legi.ster 15 

CAUTIOBS: The PSA dsect CHAPSA aust be copied in the asseably using 
GftADDR. The expaD,sion of GETADDR is affected by the use of the CVT 
aacro prior to the use of GETADDR. 

Currently, only thc;se systea syabols starting with the following three 
letters have been placed in the CVT: 

CEA 
CHB 
SCB 
CIP 

Exaaple: 

(1) To get the address of entry point CEATA1 and place it in Register 
5 (assuaing CVT YES), you aight write: 

GE~ADDB EPT=CEATA1,R=R5 
+ L R5,CYTTA1 

(2) To get the address of the core block header in Register 10 (assua­
ing CVT .0) you aight write: 

GBTADDR EPT=CHBCBH,R=R10 
+ L Rl0,PS1CVT-CH1PS1(,0) 
+ L Rl0,CVTCBH-CHACVT(,R10) 

GETCORE -- Allocation Supervisor Storage Space 

GETCORB calls CEAL1A (Supervisor Allocation) to request allocation fo 
a given a.ount of storage. storage is allocated in blocks of 64 bytes 
with a aaxiaua length of 4096 bytes. 

• i , 

,Baae IOperationrOperand 
I , , 
l[syabol),GETCORE I[LGH] [,TYPE=] [,RETURS=] [,BRROR=] , . , 

LGH 
the aaount of storage to be allocated. 

Specified as: any nuaber greater than 0 and less than or equal to 
4096. Say be a register (0 is allowed), halfword, fullword, self­
defining expression or an BQU. 

TYPB= 
a.ount of tiae the storage space is to be in use. 

specified as: S, ft, or L. 

S/SHORT - core is to be in use a short tiae only -- about one or 
two cycles through the supervisor. 
ft/KBDIUS - core is to be in use longer than a supervisor cycle or 
two, but less than the possible life of a task. (ftost I/O falls 
within this tiae length.) 

• 
I , 

Section 2: Systea Sacro Instruction Descriptions 147 



L/LOHG - core is to be in use for a long time, or the life of the 
task. Examples are TSls, TSDL page, TCTs, shared page tables, etc. 

Default: S. 

RETURB= 
indicates to system whether or not to return if sufficient storage 
is not available to fulfill request. 

Specified as: 
Y - return if sufficient storage is not available; ERROR (see 
below) must also be coded. 
B - do not return if sufficient storage is not available. 

Default: B .. 

ERROR= 
label of the 'branch to' if storage space cannot be allocated; 
valid only if RETURB=Y. 

CAUTIONS: 
(1) The PSA dsect CHAPSA must be copied in the assembly containing the 

GETCORE macro. 
(2) The expansion fo this macro is affected by the use of the CYT macro 

prior to the use of this macro. 
(3) If the system is unable to fulfill the storage request and 'RETURN= 

HI, then the system will be terminated with the major syserr 571. 

Return Data: 

Length of the storage area allocated is in Register O. 
Address of the storage area allocated is in Register 1. 

Examples: 

(1) Using self-defining term for length of request 

results in 64 bytes being allocated from the long tera storage 
chain. 

(2) Using a symbol pointing to the length, and return requested 

GETCORE LGH1,TYPE=ft,RETURB=Y,ERROR=HOCORE 

HOCORE DS OH 

* 
* recover; sufficient storage not available 

* LGHl DC P'1024' 

results in 1024 bytes of storage being allocated. If unable to 
allocate, CEAL1A will return to caller and the GETCORE macro will 
automatically branch to the BOCORE label. 

GET LOCK -- Lock a Resident Supervisor Service (a) 

The GETLOCK macro instruction locks a specified resident supervisor 
service, thus serializing the service in a multi-processor environment. 

148 



i 
,Raae 

i I 
I Operation ,Operand 

I f 
I[symbol),GETLOCK 
I I 
• • 

lock area 

,lock area,register,[aodule id],[error nuaber], 
I{IftBEDIArEIWAIT},[action],[exit address] 

specifies the address of a double word (8 bytes, fullword aligned) 
that is the service lock area. 

Specified as: a syabolic address. 

register 
specifies a register to be used for counting time increaents and 
for logging the SETLOCK address. 

Specified as: an absolute expression from 0 to 15. 

aodule id 

i , , 

specifies the 80dule trying to lock the resident supervisor service 
(the aodule in vhich the getlock is issued). This operand viII be 
used in generating a SYSER aessage in the event the atteapt to set 
the lock byte is unsuccessful. This operand is required if the 
WAIT operand is specified; it is ignored it the iaaediate operand 
is specified. 

Specified as: a tvo-digit deciaal number. 

error nuaber 
specifies this particular GETLOCK aacro instruction vithin a aodule 
in vhich aore than one SYSER is issued. This operand is used in 
generating a SYSER aessage in the event the atteapt to set the lock 
byte is unsuccessful. This operand is required if the WAIT operand 
is specified; it viII be ignored if the IBftEDIA~ operand is 
specified. 

Specified as: a tvo-digit deciaal number. 

I!!BEDIATE'iAIT 
specifies hov long to keep trying to set the lock in the event it 
is already locked. 

Specified~: 

action 

IBftEDIATE 
iAIT 

only try to set it once 
keep trying until a length of tiae has elapsed 

specifies vhat to do if the atteapt to set the lock fails. 

Specified as: a syabolic address to which to branch if the IftKEDI­
ATE operand vas specified. 

exit address 
specifies where to branch to if the lock vas set or if a SYSEll 
occurred. 

Specified as: a symbolic address. 

Default: The program continues at the next sequential instruction. 

Prograaaing Rote: The double word service lock area has the following 
structure: 

section 2: Systea Bacro Instruction Descriptions 149 



lock 
byte 

• not I address of last CPU • address of last getlock or , 
used , to access lock area 

I 

PREBLOCK to access this lock areal 
• o 1 2 

GBTPAG -- Get Tirtual Beaor! Page 

GBTPAG sets up a paraaeter list and calls CRA~7 to request all 
pages, defined by a virtual .eaory address and length, be brought into 
storage and placed in page hold. 

ii' 
,Iaae I Operation I Operand 
I r I 
l[syabolllGBTPAG ITSI=,TCW= 
• • • 

TSI= 
address of the locked TSI for the oyner of the pages. 

Specified as: an RX address or register notation 

TCW= 
address of a paraaeter list for CRATC7 containing the starting vir­
tual aeaory address and length of the area needed to be held in 
storage. 

Specified as: an RX address or register notation 

CAUTIOIS: The PSA dsect CHAPSA .ust be copied into the asseably con­
taining the GETPAG aacro. The expansion of this aacro is affected by 
the use of the CTT .acro prior to the use of this aaero. 

prograaaing Iote: The dsect CHATCW describes the TCW paraaeter list 
area. 

Execution: Using the paraaeter list specified by TCW and described by 
the CHATCW dsect, CRATC7 builds a paraaeter list for CBABQ and aates a 
type re' call to CBABQ to read the needed pages and place thea in page 
hold. On return froa CEABQ, CBATC7 fills in the associated real core 
addresses and lengths in the TCW paraaeter list. 

Return Codes: 

COde 0-
negati't'e 

II 

The return codes in Register 15 are: 

Beaning 
successful request 
paging error; exit 
invalid VBA given 

GETWORK -- Get Teaporar! Work Area 

The GBTWORK aacro allocates a teaporary york area of specified length 
froa the supervisor save area stack. 

• i i 
1 

fIaae lOperationiOperand , 
I , , , 
,[syabolJIGETWORK ,LGH [,BASE=] · , , 

LGB 
length of york area to be allocated. 

150 



Specified as: a number that is a multiple of 4, or a syahol that 
is defined on a fullword boundary. If given as a nuaber that is 
not a multiple of four, this macro rounds the nn.ber to the next 
higher multiple of four. If given as a symbol, it is the program­
aer's responsibility to .ake sure the syabol is defined as a full­
yord to maintain a fullvord boundary. 

BASE= 
the register in vhich the work area address is to be returned. 

Specified as: Register 1 through 15; 0 is not allowed. 

Default: Register 1 

CAUTIONS: 
(1) The PSA dsect CHAPSA must have been copied prior to the use of this 
macro. 
(2) The GETWORK macro should not be used in a loop. 

Programming Notes: There is no macro for freeing space allocated by the 
GETWORK macro. When the module exits, the save area stack is "popped" 
vhich automatically frees the work area. 

Examples: 

(1) To allocate a temporary 8-byte vork area, code: 

GETWORK 8 

Register 1 upon exit from the macro viII contain the work area 
address. 

(2) To allocate a temporary vork area and have the address returned in a 
register other than register 1, code: 

GETWORK 64,BASE=12 

Register 12 upon exit from the macro viII contain the address of the 
64-byte work area. 

GNC -- Get Next Character (0) 

The GNC macro gets the next character from the co •• and system's 
source list, tests it for a specific function character, and if not a 
specific function character, makes it available to the macro user. 

i 

IName 
I , 

IOperation,Operand 
I , , 
'label ,GNC I[ exit] [,attn] 

exit 

attn 

the label of the branch-to if the source list is to be refreshed 
because the end of the current level has been reached. 

Specified as: an RX address. 

Default: get the next character. 

the label of the branch-to if the source list handler detects an 
attention from the user while processing the source list. 

• , 
• 

Section 2: system !lacro Instruction Descriptions 151 



Specified as: an RX address. 

Default: ignore, and get the next character. 

programming Note: The GHC aacro uses registers 1, 14 and 15. The macro 
expects the user to have issued a USING and a COpy for the dsect CHASLH. 
Also, the user aust copy the dsects CHANTC and CHAPCT. The GBC macro 
does a USING for CHANTC using register 15 and a drop on register 15. 
The text character is returned to the user in register 1. 

Execution: GNC retrieves the character pointed to by the address in 
SLHCSA. The character is tested for an 'EOB' (X'26'). If it is and the 
following character is not an 'E' CZASC3 is called to process the source 
list aarker. On return froa CZASC3, the return code is tested for pos­
sible exit conditions. If no exit conditions exist or if an exit or 
attn label Were not given, GHC attempts to retrieve the next source list 
character. If the following character is an tEt the macro exits to the 
user with the EOB character in register 1. 

If the retrieved character is not an EOB, a test is made to determine 
if the character is a continuation character by testing against the 
user's appropriately-defined character in the Profile Character Table 
(CHAPCT). If the character is not a continuation character, GNC exits 
to the user after updating SLHCSA to point to the ne~t character. If 
the retrieVed character is a continuation and is followed by an 'EOB,E' 
sequence ~'26C5), the SLHCSA is updated to point to the EOB,E sequence 
and CZASC4 is ca1led to process the E marker (i.e., the IEOB,EI 
sequence).. On return, the return code is tested for a possible exit 
condition, if exit or attn vere specified. If not specified or the exit 
condition is not satisfied, the next character from the source list is 
retrieved. 

GPSEG -- GET/POT Bamed Seg.ent (0) 

I The GPSEG aacro instruction transfers contro1 to the GE~/pOT named 
I segment program in the resident supervisor. An atteapt viII then be 
• made to get a page froa or put a page into the specified disconnected 
I segment group .. 

• ,lIaae 
I 

i , 

,Operation ,Operand 
t , 
,GPSEG , 

Rote: There are no operands. 

, 
I , 

I Initialization: Before executing GPSEG, the issuing program should have 
, set up the following parameter area: 

I 

• 

, , 

152 

CH.lRSG 

BSGSVC 
RSGFLG 
RSGGET 
BSGGETB 
RSGPO'l 
RSGPOTH 

BSGRlI.l 
BSGDlIA 

ISGV!A 

DSECT 
DS 
DS 
DS 
EOU 
EOU 
EOO 
EOU 
DS 

DS 
DS 

DS 

, 
OF 
H 
X 
RSGFLG 
II'BO 1 

RSGFLG 
X1 40' 
X 

XLB 
XLB 

A 

CORHOR NARESEG PARARETER LIS~ 

SVC 
nAGS 

GET DISCONNECTED SEGRENT PAGE 

PUT DISCONNECTED SEGftENT PAGE 
RESERVED 

RESERVED SEGSENT GROUP BASE 
DISCONNECTED SEGBENT GROUP NABE 

VIRTUAL STORAGE ADDRESS OF SBG GROUP 



r 
I , 
t 
I 
I , 
I 
I 

NSGLNG 

NSGFLI 
NSGFLO 
NSGDNGH 
NSGRlfGI! 
NSGADGH 
lISGBNDK 
lISGLNGK 
NSGRELK 
lfSGRESSH 

lISGBVA 
liSGLTli 

DS 

DS 
DS 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

DS 
EQU 

H 

XLl 
XLl 
X'80' 
X'40' 
X'20 • 
X' 10 I 

X'08 ' 
X'04' 
X'02' 

LENGTH OF NAKED GROUP 

IlfPUT FLAGS 
OUTPUT FLAGS 
DNAKE SPECIFIED 
RIIAKE SPECIFIED 
ADDRESS SPECIFIED 
MODE=BOUIiD 
LENGTH SPECIFIED 
RELEAS=Y SPECIFIED 
RSTRCT=Y SPECIFIED 

F GET/PUT SEGMENT BUFFER ADDRESS 
*-CIIANSG LENGTH OF PARAi'!ETER LIST 

, GPSEG must be the object of an execute instruction and be full word 
I aligned. 

Execution: This .ac~o instruction passes control to the resident super­
visor module CEAQS via SVC 186. An attempt will then be made to get a 
page from or put a page into the specified disconnected seg~ent group. 

HOOK -- Transfer Control from riM to Private Kodule COl 

The HOOK macro instruction, when placed at each executable entry 
point of a new IVM mc,dule, sets up the mechanisll to transfer control 
from the system version of the module to a private version of the same 
module. 

rl---------rl----------T'----------------------------------------------------------, 
liiame I Operation JOperand I 
I I I i 
I[symbol ]lflOOK I[NL] I 
, • I I 

NL 
ind icates that 1~he user does not want the symbol specified in the 
name parameter to be generated on the first executable instruction 
of the macro expans ion. 

Specified as: "bIL, or it is left blank. 

Default: The symbol, if specified in the name parameter, is 
generated. 

proqrall.Blinq Note: The most important part of the 'hook' process is the 
existence of the HOOK macro at every executable entry point in the liM 
module. 

In -- Define BULKIO Module ID 

The ID macro instruction defines a variable global ident.ifier (3ULKIO 
section ID). This identifier is used by other macros unique to the BUL­
KIO modu les • 

Section 2: System Macro Instruction Descriptions 152.1 





iii 
Ilaae 10perationiOperand 
I-I----+- I 
, ,ID ,.odule id , , , 

aodule id 
the variable global identifier. 

Specified as: an alphabetic character fro. A to Z, corresponding 
to the last character of a BUL~IO aodule CZAW(A/Z). 

IBYO~E -;-- Transfer Control (0) 

IBYOKE transfers control froa one prograa or routine to another by 
aeans of the BASR instruction. 

iii 
,Baae ,Operation I Operand 
I I I 
f[syabolllDVOKE I address 
• , I 

address 
specifies the address of a word that contains the address of the 
prograa to be invoked. 

I 

I 
t 
I 
I 

Specified as: An RX address, or as register notation. If register 
notation is used, the address .ust first be loaded into the speci­
fied register. 

Execution: The specified address is placed into register 15 and a BASR 
14,15 is generated. 

lOCAL 110 Call (Etl. 

The lOCAL .acro instruction provides for the initiation of an I/O 
operation .. 

• , i Ilaae I Operation rOperand 
I , t 
l[syabolllIOCAL I 
• • I 

lote: There are no operands. 

Initialization: A DCLASS .acro instruction with the PRIVILEGED option 
aust be coded in a .odule prior to coding lOCAL. If .ore than one 
DCLASS .aero instruction is issued in a aodule, the last DCLASS issued 
prior to coding lOCAL .ust be issued with the PRIVILEGED option. 

Execution: An lOCAl •• aero instruction .ust always be the subject of an 
Execute instruction.. The supervisor call instruction (SVC 231) is 
assuaed to occupy the first halfword of a variable-length paraaeter list 
called an ~O request control block (IORCB). The IORCS supplies the in­
for.ation needed by the supervisor to perfora the requested I/O opera­
tion. This control block is described by the DSECT CHAIOR. 

An IORCB consists of four parts: a fixed part of 10 doublevords; an 
optional I/O data buffer which cannot exceed 225 doublewords; an option­
al page list which cannot exceed eight doublewords; and a channel coa­
aand word (CCW) list. The entire IORCS cannot exceed 240 doublewords 
and aust be contained within a single page. 

SElction 2: Systea ftacro Instruction Descriptions 153 



When an rOCAL is executed, the supervisor, after some error checking, 
obtains main storage for the rORCR and copies it into that space. Based 
on the options selected by the user and indicated in the IOBCB, the su­
pervisor obtains a path to the requested r/o device, translates the vir­
tual CCW addresses to real storage addresses, brings any required buffer 
pages into main storage, and starts the I/O operation. After the I/O 
operation is complete, the supervisor releases the device path, allows 
the data buffer pages to be paged out of storage if necessary and queues 
a pending task-I/O interruption for the task associated with the IORCB. 

When the pending interruption is accepted by the task, the supervisor 
copies the rORCB into the task's interruption storage area (ISA). After 
the rORCR has been copied, the main storage it required is released and 
the IOCAL operation is completed. A task may have more than one rOCAL 
in operation at one time and may operate asynchronously with an active 
rOCAL. 

Figure 27 shows the format of the fixed area of the IOBCB as it is 
before an IOCAL. Every IOCAL must have a 20-vord fixed area regardless 
of the fields used. You may use space within the IOBCR itself as a data 
buffer; you can do this if the data does not exceed 225 doublevords (or 
whatever space is left in the rOBCB after the other items you need are 
included). You must include an rOBCB data buffer if you are using a di­
rect access device and if you wish record zero to be read into the IORCB 
by the supervisor if a unit check occurs. rn this case, the IOBCB data 
buffer (the first 56 bytes) is used to hold record zero. You may a1so 
use data buffers outside the rOBCB; if you do this, you must include a 
page list. The page list contains one doubleword entry for each virtual 
storage buffer page; you may not have Bore than eight page-list entries. 
Figure 28 shows the organization of a page-list entry. 

Each page-list entry is associated with a channel command word (CCW) 
list entry; the CCW entry tells what operation is to be performed with 
the data buffer. A CCW entry does not need to point to a page-list 
entry; a page-list pointer of zero is assumed to mean that the IOBCB 
buffer is to be used. You can use any number of CCi entries as long as 
the size limit of the IOBCB is not exceeded. Figure 29 illustrates the 
format of a CCi list entry. You always have at least one CCW entry, 
since the CCW represents the work you want the supervisor to do. 

If the software command chain flag is 1 (see Figure 30), the supervi­
sor continues to reissue sro (Start I/O) instructions at the current 
point in the CCi list when a device-end interruption is received. This 
has the effect of making the CCW list appear chained, even though the 
path to the I/O device may be free for certain periods during the opera­
tion. This command chaining terminates when all CCis in the IOBCR have 
been processed. The most common use of software command chaining is to 
use a standalone seek to position the disk arm followed by a channel 
program to read or write data. This command chaining terminates when 
all CCis in the IOBCB have been processed. 

If the IORCB chain flag is 1 (see Figure 27), the supervisor changes_ 
the last CCW entry to a transfer in channel (TrC) com. and if another 
(second) lOCAL for the same device is received before the final channel­
end/device-end interruption for the first IOBCB is received by the su­
pervisor. This TIC command links the CCW lists of the two rOKCBs. The 
supervisor vi11 also set the program controlled interruption (PCI) bit 
on, in the start CCi of the second rOBCB. The receipt of this PCI sig­
nals the completion of activity for the first rORCB; the supervisor then 
queues a pending task-I/O interruption for that IOBCB. 

The rORCB received by the task monitor as a result of the task-I/O 
interruption has been changed by the supervisor; it is not identical to 
the IORCB originally received by the supervisor. pigure 30 shows the 
fields in the fixed area of the rOBCB that may be set by the supervisor. 
Pigure 31 shows the change~ to the CCW list entry. 

154 



As part of its interrupt-hand1ing logic, the task .onitor transfers 
control to the post:ing routine pointed to by the :IOBCB it receives as a 
by-product of the task-:I/O interruption. ~his posting routine inforas 
the progra. origina11y issuing the :IOCAL that the :I/O operation has been 
co.pleted. 

Word 1 Word 2 

0123456701234567012345670123456701234567012345670123456701234567 

lOCAL (SVC 231) Used by access methods -- not set or interrogated by lOCAL 

length of 10RCB length of page Relative origin Storage "'" 1/0 "" - I""''' .«CW ! '.I."~ .,l,l" Relative origin 
in 64-byte units list in of page list in protection key ure caunt list in I of CCW list in of starting CCW 
(blocks) doublewords dO'Jblewords (lor 2) (Note 1) doublewords I doublewords in doublewords 

_ I 

length of 10RCB Relative origin I/O address to System symbolic device 
data buffer in of 10RCS data be used for th i s Not used address must be given if 
doubf...."ords buffer in operation (Note 2) actual path not supplied 

doubfewords 
Used by access methods -- not set or interrogated by 10CA l 

V-type address con.tant of posting routine to be transferred to I R-type address constant of posting rootine ( see pre cedi ng 
by the task moo i tar when the task- /0 interruption associated I ward) 
with this fORCB occurs 

Used by access methods -- may be .et by lOCAL 

Used by access methods -- not set or interrogated by 10CA L 

May be set b:, lOCAL Used by access methods -- no! set or checked by 10CA l 

Note 1. 

Note 2. 

Note 3, 

Note 4. 

! Users t options 
Not used 

151 I! RIcIE Hu I iF [ (Note 3) I 

Used by lOCAL for performing sense operation 

If flag R (Note 3) is aile, the Start Vo instruction i. reissued the 
number of time. specifi"d by this count, or until the Stort I/O 
instruction is .uccessfuly initioted. 

If flag S (Note 3) i. are, the Vo address contained in this hal!Word 
is used and the symbolic device address is ignored. 

S=specific Vo address; 1= ignore device malfunctiooing indicator in 
pathfinder; R= if Start I/o not accepted" because device is b".y, 
reissue Start VO (see Note 1); C = Software command chain; E = error retry mask; 
H= issue Holt I/o on d'!vice before .tart VO; U= if unit check"occurs, 
read direct aCCe!' dev;';e record zero into 10RCB data buffer; P= treat PCI 
as channel end/device end. 

IORCS choining flag; i;' another lOCAL is received for this device while 
the channel program fa," this 10RCB is running, the lost CCW of this list 
is chained to the first CCW of the other 10RCB. 

Options 
Set by lOCAL 

IIIIIII (Note 4) 
I I I 

Pigure 27. For.at of fixed area of input/output request control block 
as set before lOCAL 

Word 1 Word 2 

012345670123456701 2 3 4 5 6 7101112 3 4 5 6 * 1 234567\0123 45670J 23456701234567 

I ! I 
I 

, 
i i 

High-order 20 bits of virtual storage address; the Flag I Set to moin storage location used for this 
segment and page number of virtual buffer poge 

IA (Note 1) I 
Unused page -- before 10RCB i. retumed to task monitor 

at task-I/O interrupt 

I ! I 

Note 1. A = (paging storage) copy of this page doe. not need to be used; use any main storage page and release paged copy 

Figure 28. Organization of a page list entry 

s.ection 2: syste. Racro :Instruction Descriptions 155 



Word 1 Word 2 

o 1 2 3 4 5 6 710 1 2 3 4 56 7 o 12 3 ~56701234567 01 2 3 4 5 67 10 1 23 4 5 670 123456701234567 

CON operation I Position of page Flogs Displacement within 
code ,li.t entry ~ page buffer or from 

11,2 ... 8 Note 21start of 10RCS buffer 
I (Note 1) lor from s tart of CON 

list if TIC 

Note 1. 

Note 2. 

If this field is 0, the 10RCB data buffer js assumed 

I = do not re locate CON addresses 

CCW flags Zeros Byte count 

I 

Pigure 29. Channel co •• and word 1ist entry before IOCAL is issued 

Word 1 Word 2 

0123456701234567012345670123456701234567012345670123456701234567 

Unchanged 

Unchanged 

I I I Set to actual I/o address ,-,sed 

I 
Unchanged for this- operation, or left Unchanged 

unchanged jf user supplied 

Unchanged 
-------

Unchanged 

Condition Codes 

~lITlTcTc s s 
Main storage address used for 10RCS data buffer. 

Unchanged If no 10RCS buffer used set to end of fixed area 
(Note 1) in 10RCB; buffer must follow fixed area. 
--------~ 

Unchanged 

-s;~--ISense CSW status placed here Sense fa i led fg 
-----,----

Ha It I/O retry i 
condition codes I - ed' d 01 count I Unchanged I ICC S S I'f both request operol1on an 
(Note 2) sense operation foil (Note 3) (Note 4) i 

I 

, Flogs 

Unchanged ~IT HIRINlwIT: xl xl ci 
(Note 5) 

-"------------ ------------- ----
CCW for performing sense operation on requested I/O device 

Note 1. If operation come to abnormal end, these condition codes are stored: I=test I/O 
condition code; _C=test channel condition code; S=start I/o or halt I/O condition 
code. 

Note 2. If sense operation failed, these condition codes are stored for I/o instructions used 
to attempt sense (see Note J) • 

Note 3. O=a device other than the one requested has monopolized the control unit; sense 
data applies to thot device. 

Note 4. If user requested bath a retry of start I/o and halt I/Os before each start I/O, 
this field is set equal to the user-supplied start I/O count. 

Note 5. S =CON specification error; P=no path exis!> to requested device; I=stort I/O 
foiled; H=halt I/O failed; R=read record 0 (on direct occess error) failed; 
N=sense failed; W=CON addresses ore relocated (changed to real addr) 
T= 10RCB aborted because previous (pending) 10RCS for same task hod abnormal 
end; x = internal flag for lOCAL; C = interrupt code applies to device other 
than one requested monopolizing control unit. 

Nat used 

Figure 30. Pi xed area of I/O request contro1 block as set by IOCAL 

Word 1 Word 2 

01234567 012345670123456701234567 01 23 45 670 1 2 34 5 67 0 1 2345 67 0 1 2 34567 

Unchanged 

Figure 31. 

156 

Main storage address Unchanged 
used for operation 

Channe1 co •• and word 1ist entry after task I/O interruption 
occurs 



Bxallple: Whenever you use an IOCAL, you shoul.'} be sure to :cefer to the 
current version of the lORCH. The for. at of the rORCS is descriLed by a 
dUllllllY section in the system copy/macro library. You can get a copy by 
asse.bling a program with this instruction in it: 

COP] CHAIOR 

Suppose YOlL want to read 120 bytes fro. sy.bolie device 85. You might 
write: 

8GN 

TEST 

* 

* 
* 

* 

BNDlIX 
BUF 
CCW 
IORElfD 
READ 

EX 
B 
DS 
lOCAL 
DC 
DC 

DC 
DC 
DC 
DC 
DC 

DC 

DC 
DC 

DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DS 
DC 
CCll 
DS 
EQU 

O,TEST 
AiAY 
OD 

EXECUTE lOCAL SVC 

SVC 231 {LOCAL} 
IL6'0' NOT OSED 
ALl «(TEST-IOREND)/64) LENGTH OF IORCB 

IN 64-BYTB UNITS 
:IL2'O' NO PAGE LIST 
X'02' PROTECTION KEY 
X·O· SIO FAIl.URE COUNT 
X·Ol· CCll LIS']~ LENGTH (DOUBLEWORDS) 
AL 1 «(CCi-TEST) /8) RELAT::VE ORIGIN OF CCW LIST 

IN DOUB1~EWORDS 

RELATIVg ORIGIN OF STARTING 
CCii IN LIST - FIRST ONE 

AL 1 (120/S) IDRCH DItTA BUPFER LENGTH IN DiiORDS 
ALl «BUF-TEST}/8) RELATIVE ORIGIN OF IORCB 

AL2(O) 
lL2'O' 
AL2 (85) 
XLB'O l! 
V (POST) 
R (POST) 
XL2S I 0' 
lL4'0' 
XLS·O· 
OD 
lL120'0' 
READ,O,X'20',120 
OD 
194 

BUFFER IN DOUBLEiORDS 
50 ACTUAL ADDRESS 
NOT USED 
SY~BOLIC DEVICE ADDRESS 
NOT USEU 
V-COM OF POSTING ROUTINE 
R--CO'I' 01' POSTING ROUTINE 
NOT USEII 
NO OPTIONS 
1l0T USED 
END OF IORCS PIXED AREA 
BUFPERII.REA 

END OF IOReS 
2540 BCD READ COMMAND 

Notice "chat the CCi page-list entry and displacement fields are both 
zero; this canses the IOBCS buffer to be used and the information to be 
read into -the first byte of the buffer. After the operation is com­
pleter the supervisor causes a task-I/O interruption which stores the 
IOBCB in t:il.e interruption storage area. The posting program (POST) can 
.ove the data out of IOBCB buffer at. that time. 

ITI -- Inhibit Task Interruptions (0) 

The ITI .acro instruction is used to prevellt the occurrence of all 
.askable t:\sk interruptions (external, asynchronous I/O, synchronous 
I/O, tiBerl; it does this by setting the interruption storage a:r:ea lock 
byte (ISAV:K) to 1s with the Test and Set instruction. 

• , --------r,---------------------------- --------~------:. 

,llalle IOperation ,Operand ! 
I , , ----------------------------~ 
I [sy.bol JllTI I ! 
• I I __ • .1 

Rote: There are no operands. 

Section 2: Systell ~acro Instruction Descriptious 151 



'1 Nt ('~20-4l.U6 (0] July SO) to (;('n-2008-5 

To use 1'1'1, you Rust define the symbol ISALCK by copying the inter­
ruption storage area dumlllY section (CHAISA) froll the system macro/copy 
library. 

LLIST-- Create Load List_Entry (O) 

LLIST generates an entry in a loa.d list. 11 load list is Use!} to de­
termine during systelll startup which CSECl's and objer:t liodules .il1 he 
loaded. and in what order, to form TSS. LLIST can be used when creating 
the load lists (object modules CHBVl!, CHERS, and CHBRC) that <'Ire fur- -
nished as part of the systell on the IPL volullle, or when creating load 
lists to be included in a delta data set. 11 load list in a d,,~lta data 
set wi 11 a.llov addition or deletion of system modules during a E,tartup­
to--shlltdown session_ 

LI.IST can also be used to insert. user-accessibl.e (usually 1>1./1) 
modllies into .IVK (initial. virtual storage) so that they will be access-­
ible for sharing by a ul ti pIe users. 

r---" ~~ .~---- ---..,.....--"-'"--·-T"------~~--- "---.----.---~".--------.- --,"-----~~---~--~-,,- '- -~" -~---.-~-""~-- ---."~.~--~ ., ~--------"'! 
INane fODerationlO~erand I 
r---------+--------+----------------.. ·-------------------_ .. --·---·-----.. ------ -----.. -·---1 
Icsect or f I I 
Imodule namelLLIST f~load flagl ~.spIRctive load class l 
I f I[ ,ROPP.OT=oN] -

,..---- ... ---.-----,------.------,- .. - .. ---.------.-----------.-----------------------------.. ----------.. - .. - .... -----1 

! 'JdlftP I Operation I Operand ! 
~ --- ----... ---+------ --+-------------------.. ------------------.. ---.--- ... _ .. _ .... _--_ .. _ .. _ .. _-_ .. _ .. _ .... _.--1 
I ILLIST IBAPPIER={PRIVATFISHARFD} ! 
L. ... ____ . ___ . __ --L-.. ___ -------L.... _______________ ...... __ .. ___________________ .... ____ ...... _______ .. _ .. ____ .... _____ ..l 

csect or module nalle 
specifies a control section or object lItodule nalile for which an 
entry is to be IIdde in the load list. It iIIay correspond to a con­
trol section already on a system load list (if this is a delta data 
set load list) or be a new control section to be inserted into TSS 
for this startup-to--shutdowIl session. When user-accessible modules 
are being listed~ either the module name or the name of any CSECT 
!Bay be specified; if any CSECT Dallle is specified, the entire Module 
is included during startup. 

Specified as: The Daile of the control section or object module. 

load flag 
represents a load restriction or condition that must be observed 
when loading particular CSReTs. 

158 

!?Et1cified as: One of the sYllbo15 designat.ed helow; th.oy are shown 
with the hexadecimal code which is .~nter:ed in the flag byte dnfl t.he 
code meaning. 

§yabol. 
SRTXP 
USER 

RO 

PGBl} 

Code 
10 
20 

40 

80 

M~aning 
IV~ pages; SETXP is allowed in CSECT. 
Module accessible to both user and systea 
progralllllers. 
R/O control. carll (first module in resident super­
visor that cannot be paged out by TSSS). 
Must be loaded on pa.ge boundary. 

pefault: The load flag byte is set to zero, indicating no special 
restrictions. 



TNL GN20-4 106 (01 July 80) to GC28·1008-5 

selective l,':>ad class 
specifies a code that is used at startup to indicate selective 
loadinq • During startup /I this code is compared to codes entered 
dynalli<:ally by the operator that indicate which modules are not to 
be loaled into the system. If the code in a load list entry 
matches an operator-specified code, the control section or module 
indicated in that entry is not loaded~ 

Specified as: A tvo-diqit hexadecimal number. 
fied as 00 or the operand ~ay be omitted if the 
~odule is always to be loaded, or any code from 
to 3. are reserved for IBB system usage. 

This may be speci­
control section or 
40 to FF. Codes 01 

The foiloviJlg co,les and SystHlli functions have been assigned: 

LOAD LIST ID IU~CTION 
01 RJE 

02 2;;:50 SUPPORT 

08 ASSE~BLER 

09 FORTRAN 

12 2305 SUP20R~ 

15 2860/L870/2daO 
ERROR RECOVEPY 

16 INTEGIU':rED 
CHANHEI. 
ERROR RECOVERY 

99 SIPE 

ROPROT 

CO"ll~Pq1, S~C'1'ION (5) 
CE!BAC CEABSC CEABCC ChBRJE 

CZCVAC 
C:Z.CIlCP 
CZCV PC 

CFV~LL 

CEVP~.2 

CEVPA7 
CE:VPD1 

CEKADR 
CEKKRB 
C"':L<S F 1 

CEAB7C 

CI'lAH 60C 

C!1A1HC 

CIPIOC 

CZCVAP 
CZCVDC 
CZCVFP 

CEVr,LR 
CEVPA 3 
CEVPA 8 
CEVPE 1 

CEKAD2 
Cr:J':KRR 
CE!!:TAR 

CRABBC 

Cl'lAH 70C 

C2'CVBC 
CZCVDP 
CZCVGC 

CEVPAR 
CEVPA4 
Cl'iVPA9 
CE:YPE2 

CRKCSR 
CEKNG1 
C.i:~KTCW 

CEAB9C 

CZCVBP 
CZCYEC 
CZCVGP 

CEVPAS 
CBVPA5 
CEVPBl 
CEVPFl 

CEKJAR 
CEKNXH 
CEKUDR 

C~AH30C 

CZCVCC 
CZCVEP 

CEYPA1 
CEVPA6 
CEVPCl 

CEKJ.31 
CEKSAR 
CEKUKW 

indicc.tes that the CSECT lS no!. to have !:'3ad only pretectien. 

DefauJJ:,: if not specified., page will be read only protected if 
CSECT has read only attribute. 

BARRIER 
generates a paqe that cannot be allocated so. that if any reference 
is made to. this paqe, pruqram interrupt') (addressing) viII occur. 

PRIVA~E - for private paaes 
SEARED - !or s~ared oaqes 

section 'l.: 5yst.eli Macro Instruction Descriptions 159 



TNL GN21J.4106 (01 July SCI) to GC28-2008·5 

CAUTIONS: When changing the load list, the programmer should b<?- careful 
to place entries into the modification CSECT in the proper sequence 
(some load-list entries must appear in the CSECT before other entries) • 
For exam~lev the RTAM buffer pages and control blocks must be loaded be­
fore other RTAM modules. 

LLIST can not be used for control section or mod ule names that con­
tain characters not acceptable to the TSS assembler (for example, ~, _, 
*) _ The load list entries for these (SECT or .odule names ~ust be coded 
using DC instructions. For example: 

DC 
DC 
DC 
DC 
DC 
DC 
DC 

CL 8'%SECTNM t 

XL 1 1 00' 
XL1'20' 
X19'OO' 
XL 1 t 40 t 
Y11'00' 
3XL 1 

MnDUL~/CSECT NAME 
RESERV5:D 
LOAD FLAG 
RESERVED 
SELECTIVE LOAD CLASS 
EXTENDED LOAD FLAG 
SPARE 

l'rogral!illl iug Notes: There are thrf:e system VPlI.M dat a sets that contain 
load lists: TSS*****.SYSIV~, TSS*****.RESSUP r and TSS*****_~sssap. 
SYSIVM contains all of the CSRCTs that are part of initial virtual 
storage (IV~); RESSUP all the CSECTs that are Dart of the resident su­
pervisor; and RSSSU? all the CSECTs that are part of the RSS support. 
Eacn of these data sets has a special lIelllber (the load l~st) tnat con­
tain!; the llames of the CSECTs £or the members wil:.hin the partitioned 
data set that are to be loaded into the syste~ at startup. 

Systea. programilers can Ihodify these 10aJ lists by creating a neli 
.toad-list CSECT (see below) and including it as a delta dat.a set on the 
delta data set voluRE! that is to be processed during startup (see System 
Generation and ~iaintenance). Del td data sets are use1 to dynamically 
modify the system to determine the effect o~ changes being introduced to 
the system without permanently updating the system. These changes 
remain in effect from startup to shutdown. 

!)uring startup, the delta data set volume is searched for IVM, 
RESSUP, and RSS control sections. 1'he 1PL volume is also searched for 
any remaining system CSECTs for which no delta data set exists. Iny 
CSBCT toun ... on the delta data set volume having the saae Ddllit as a CS;::CT 
that is part. o£ one of these system f\ata sets replaces the existing 
CSEC~ me&ber of that data Sf:t; it is laaled with the con~rol sections 
founa on the IfL volum.e to make up tILe CUIT8nt v{~rsion of thE: Eystem 
data set. 

since a new load list actually repiaces tne old one, all the old 
load-list entries U·.at the user IIantsto have includ.ed. in tn<?- neli load 
list must he respecified in the ne .. loa,'!-list CSEC'I'. :1'0 make sure all 
old entries are specified, a programmer should create the new CSEC'I' by 
copying the old load list and editing it to include any new entries or 
delete specific old entries. The source aat.a sets that the progI:ammer 
~ight want to copy and edit are: SOURCE.CRBV~ for the SYSIV~ data set, 
SOORCE.Cudac for the RESSDP data set, and SOCRCE.CHBRS for the BSSSOP 
data set. 

ihen creating a ne ... load-list module, a s5ig11 the same CSI:C'l' and 
module name as that of the load-list module that is to be replaced. 

The LL!ST macro instruction can be usei to qenerate entrlss in a 
loai-list CSECT beinq created by system proqrammers. Each 24-byte load­
list entry contains an 8-byte eSEeT name, a reservei byte, a startup 
flag byte, nine bytes that arE not used until startup, and aselective 
loadina tyte, as shown in Fioure 32. 

160 



An LLiST macro ge~erates this entry~n! load list. __ - - - -- --
-.-- - .~ - -.:.- -;::..--

1-

C:;ECT or 
module name 

...,,-..::--':'-- - - .- -

R 
Load 
Flag R 

fNL GN20-4106 (01 July 80) to GC28-2008-S 

--- -----

t--- 2568 ------1 L-_B __ _ 9 I \ 1 3 
--------~~------------------~/~----~\~\------~j 

24 Bytes / \ 
R : reserved f \ 

I \ 
I \ 

I \ 
Selective load class byte 

Figure 32. Load list entry 

Ex am Q.1.g: A syste:n programmer wants to load two new modules into initial 
virtual storage (IVPI) during startup. Se lIi.odifies SYSIVM.LOA.DLIS7 using 
the LL15 '1' oacro_ 

*** CSECT FOR SYSIV~.LOADLIST DELTA DATA SET *** •• *.*.*.**********. 

CHbV:1L CSEC'I 

CnBNEwl LLIST 

The LLIS~ generates: 

ALL ENTRIES FROM OLD LOAD LIST 
TnAT ARE TO BE I~CLULED I~ 
THE NEW ONE 

Section 2: System Macro Instruction Descriptions 160.1 





CBBIEWl DC 
DC 
DC 
DC 
DC 

CLS'CBBIEW1' 
XL 1'0' 
XL1'SO t 
XL9'0' 
XL1'40' 

CSECT IA8E II lEW 80DULE 
BESEBVED 
LOAD PLAG 
BE SERVED 
SELECTIVE LOAD CLASS 

LOCPAG -- Locate Page (R) 

The LOCPAG macro sets up the paraaeters and calls the Locate Page 
Bodule (CEAKL) to obtain the addresses of the Page Table (PGT) and Ex­
ternal Page Table (XPT) for a specified virtual aemory address and task. 
Optionally, the page hold count for the specified page is either incre­
aented or decreaented • 

• Ilaae 
i • 
IOperationlOperand 

I I 
I [syabol ]1 LOCPAG 
, I 
, I 
I , 

,virtual meaory address, TSI address 
I [ , error address] [, READ= {y III} ] 
I[,HOLD={IGBOREIIICBIDECB} ] 
• 

virtual memo ry address 
specifies the virtual aeaory address to be located 

Specified as: A register containing the virtual meaory address or 
a syabol, defined as fullword aligned, containing the virtual 
meaory address. 

TSI address 
specifies the real .emory address of the TSI of the owner of the 
virtual memory address. 

Specified as: A register containing the TSI address or a sy.bol, 
defined as fullword aligned, containing the TSI address. 

error address 

BEAD= 

specifies where to branch to if an error indication was returned by 
Locate Page (CEA8L). 

Specified as: A symbolic address. 

Default: The program continues at the next sequential instruction. 

indicates whether or not the page table describing this virtual 
.emory address is to be read into .ain storage if it is not cur­
rently in main storage. 

Specifi.ed~: Y or I. 

Default: Y 

BOLD= 
indicates whether the page hold count for this virtual .emory 
address should be ignored, incre.ented, or decre.ented. 

Specified as: IGIOBE, IICB, or DECB 

Default: IGIORE. 

Section 2: System Bacro Instruction Descriptions 161 



Execution: upon execution of this aaero instruction, para.eter regis­
ters are set up and the Locate Page Bodule (CEASL) is called. 

Return Data: 

Register 
o 
1 

15 

Contents 
page table address 
external page table address 

o 
4 
8 

12 

LOGVLOC( -- Define V! Lock Anchor (0) 

Beaning 

no error 
segaent not assigned 
page not assigned 
page table not in aeaory 

LOGYLOCK defines a block of storage where other xxxYLOCK macros can 
record the status of a Y! Lock. 

• ,Baae 
I 

, I 

I Operation ,Operand , , 
Isyabol ILOGVLOCK I 
• • 
.I2!!t: The naae symbol is required; there are no operands • 

Execution: This aaero generates a control block for use by other macros 
of the xxxVLOCK set. 

CAUTIO.: This aacro aust appear in a PSECT. 

Proqraaaing Bote: Refer to VS Locking in section 3. 

LVPSW -- Load virtual Prograa Status Word (R) 

The LYPSi aaero instruction alters the flow of your prograa by chang­
ing its VPSW. 

ii, 
,Baae ,Operation I Operand 
I I , 
I[ syabol llLYPSW I[ VPSW address J 
• • • 

VPSW address 
specifies the virtual storage address at which the new YPSW is 
presently stored. 

Specified as: An RX address, or as register notation. 

Default: It will be assumed that the issuer has placed the address 
of the VPSW in register 1. 

Initialization: A DCLASS aaero instruction with the PRIVILEGED option 
aust be coded in a CSECT prior to coding LYPSi. If aore than one DCLASS 
aaero instruction is issued in a aodule, the last DCLASS issued prior to 
coding LVPSi aust be issued with the PRIVILEGED option. 

Execution: The virtual prograa status word whose address is specified 
becomes the current virtual prograa status word. The previous contents 
of the virtual prograa status word are lost. 

162 



Example: Assuae location liEWVPSW contains a new virtual program status 
word that is to be loaded. You might write: 

MAKE LVPSi liEWVPSif 

!!PTDY -- Connect, Disconnect, or Expand the TDY (0) 

I The! lPTDY macre> instruction transfers control to the aaptdy program 
I in Initial virtual storage. 

• i • Illame I Operation I Operand 
I I t 
I[ symbol ),!APTDY , {TID 'E} 
• 

TIOIE 
specifies the function to be performed by the aaptdy program. 

~cified as: 

T disconnect user space and connect TOY. 

I u disconnect TOY and connect user space. 

E - expand TOY area. 

I Execution: This macro instruction places in register 1 the following 
, values for the requested function: 

~uest 
T 
U 
E 

value in register 1 
1 
2 
3 

Control is then passed yia type 1 linkage to module CZCD!. Upon return 
from CZCDft, the requested function will have been performed. 

There is no return data. 

, Programming Notes: if the TOY is already connected on a ''1'' call or the 
I user space is a1rea,ay connected on a 'UI call, CZCD! just returns to the 
I caller. If the expand TDY request 'E' is specified, the TDY must be 
I connected prior to the 'E' call. 
, The disconnected se'~lIent group name for the TnY area is defined in the 
I ISA by the field ISATDYB. The flag ISATDCK defined in the IS! is used 
I to determine if the TDY or the user space is connected; if the flag is 
J on, the TDY is conn~cted. 

!OYGOE -- Kove GQE to New Scan table Entry 

!!OVGQE sets up the paralleter list and calls CEAJMG to .ove the GPE to 
a new scan table entry, or if finished, to release the GOE and certain 
attached control blocks. 

• i i ,Kaae ,Operation ,Operand 
I , P 
I [ symbol ]1 KOVGQE II GQE 
• , II 

GQE 
generalized queue entry to be moved. 

sE~ction 2: System !!acro Instruction Descriptions 163 



~cified as: the address of the GQB, or the name of a symbol de­
fined as a fullvord containing the address of the GQR. 

CAUT~: The PSA dsect CHAPSA must have been copied and assigned a 
base register prior to the use of this macro. The expansion of this 
macro is affected by the use of the CVT macro prior to the use of this 
macro. ftOVGQE assumes that the GQE being moved is not currently 
enqueued on the scan table. 

Proqramainq Notes: !OVGQR viII move the GQE loc-on-queue values to get 
the next queue entry. If GQELQ is not equal to XWFPXX', the GQE viII be 
enqueued on the corresponding entry. If GQELQ is equal to X'PFXX', 
MOVGQE will release the GQE and any associated PCBs. If there are no 
PCBs, then the caller must make sure that GQECNT is o. 

~ples: 
(1) Register notation; CVT YES is assumed 

. lWVGQE (1) 

* L 15,CVTJlfG 
* BALR 14,15 

(2) Symbolic nalle; CVT YES is assumed 
MOVGQE TCWGQE where TCWGQE is defined as a full word 

+ canVAL TCWGQE,l 
+ L 1,TCWGQE 
+ L 15,CVTJMG 
+ BALR 14,15 

(3) Symbolic name; CVT NO is assumed 
MOYGQE TC'WGQE 

+ CHDV AL TCWGQE 
+ L 1,'lCiGQE 
+ L 15, PSACVT 
+ L 15 ,CVTJMG-CHACVT (,15) 
+ BALH 14,15 

ftOVXP -- Move Page Table Entries (R) 

The MOVXP macro instruction moves page table and external page table 
entries from one table to another or from one part of a table to 
another. 

• I i --------------------------------------, 
IName IOperationlOperand 
I I I 
I[ symbol JIMOVXP I[ old address][ ,new address][ ,page count] 

I 
f 
I 

I I , ---J 

old address 

164 

specifies the virtual storage address associated with the first 
page table en~ry or external page table entry you want moved. 

Specixied as: An RX aadress, or register notation. The address 
must be a multiple of 4096. 



Default; It yill be assuaed that the issuer has placed the new 
address in re9ister O. 

new address 
specifies the new virtual storage address with which you want the 
first entry associated. 

Specified as; An RX address, or register notation.. The address 
must be a multiple of 4096 .. 

Default: It ~ill be assumed that the issuer has placed the old 
add ress in reqister 1. 

page count 
specifies the number of consecutive entries YOll want moved. 

Specified as: An absolute expression or register notation. 

Def aul t: It lIill be assumed that the issuer has placed the page 
count in register 15. 

Initialization: A DCLASS macro instruction with the PRIVILEGED option 
must be coded in a CSECT prior to coding KOVXP. If more than one DCLASS 
raaero instruction is issued in a module, the last DCLASS issued prior to 
coding ~OVXP must be issued with the PRIVILEGED option. 

Execution; The pa~Je table and external page table entries associated 
with the page addrHss specified in the first operand are now associated 
with the page addrHss specified in the second operand. The number of 
entries to be move,! is provided in the third operand. Each old page ta­
ble entry is marked assigned but unavailable; each old external page ta­
ble entry is clearod to zero. 

Example: Suppose you want to move 300 pages located at IIi to an area 
beginning at OUT; hoth IN and OOT must be page boundary addresses. You 
might write: 

MOVE HOVXJ> lIi,OUT,300 

dSGWR -- Issue System ~essage and Get Response (S) 

Note; This macro has been replaced by PRMPT and must not be 
used for new code. This documentation is retained only to aid 
in the maintenance of existing programs. 

Section 2: Systell tJacro Instruction Descriptions 164.1 





~he HSGWB aacro instruction issues a aessage to SYSOUT and, if speci­
fied, fetches the :response and places it in a user-designated area. In 
conversational aod~, SYSOUT is considered to be the terainal and, in 
nonconversational .ode, SYSOUT is considered to be the data set contain­
ing systea aessages that vill be printed at the end of the task. 
Besponses can only be aade in conversational aode; therefore, the 
response option aar only be specified in conversational mode. If the 
response option is specified in nonconversational aode, the task is 
abnormally terainated. 

!!SGWR issues sy.stea aessages only. The text and the message nuabers 
assigned to these messages are described in Systea !!essages. The user 
can aodify a standilrd system aessage by inserting variable information 
into it. Variable fields are filled in by ftSGWR, using information sup­
plied by the user. 

The foraat for the !!SGWR aacro instruction is indicated belove The 
information associated vith each paraaeter aust be placed in storage by 
the programmer bef'ore issuing the aacro instruction .. 

Standard form: 
iii 
IBaae 'Operation I Operand 
I , I 
,[syabol]I!!SGWB ,aessage id,[variable data] 
I I I[,response area,response length] 
• , I 

L- and E-fora: 

• rBaae 
I i 
JOp eration I Operand 

I J 
H syabol )J!IS GWR I[aessage id],[variable data] 
t t ,[,response area,response length],ftP=fLl (E,list)} . , , 
~: A syabol is required in the naae field of the L-fora. If the 
aessage id operand is not specified in the L-fora, it aust be supplied 
in the E-fora. 

aessage id 
specifies the address of a fullvord containing the message number, 
a response flag, and the number of variable fields to be inserted. 
This inforaation aust be inserted by the user in the fullvord in 
the format described belove 

Byte 
0-1 

2 

3 

~~ 
!!essage nuaber - four hexadecimal digits 

Response flag - 1 if response is desired 
o if not 

Rumbers of variable fields to be inserted (see the 
description of the variable data operand) 

Specified as: In the standard and L-fora, as a relocatable expres­
sion; in the E-fora only, also as an RX address. 

variable dat a 
specifies the address of one or more doubleyords that identify the 
text to be inserted in the variable field of the message. There 
must be as many doublevord entries as are specified in byte 3 of 
the location specified by the message id operand. The first of 
these vords gives the number of bytes of text, in binary. The 
second vord points to the actual text. 

Section 2: System !!acro Instruction Descriptions 165 



Specified as: Saae as the first operand. 

response are a 
specifies the address of the area into which the response (if any) 
is to be placed. 

Specified as: Saae as the first operand. 

response length 
is the address of a one-word field into which the length of the 
response (if any) is to be placed. The response area aust be large 
enough to accept the longest expected reply (128 bytes). If the 
response does not fit in the allotted area (because less than 128 
bytes were specified), it vill be truncated, starting with the 
rightaost character. 

If the user has any doubt about the length of the response, he 
should use a 128-byte response area. 

Specified as: Same as the first operand. 

Initialization: If this macro instruction is to be executed in a privi­
leged aodule, the aost recently issued DCLASS aacro instruction in the 
assembly aust have specified PRIYILEGED. Also, the address of a save 
area aust be placed in register 13 before this .acro instruction is 
executed. 

Progra"~Hotes: Registers 2 through 12 and the floating-point regis­
ters are unaffected by expansion of the BSGWR macro instruction. 

Return Data: On return froa BSGWR, a hexadecimal code is loaded into 
the low-order byte of register 15. The significance of these codes is 
as follows: 

Code 
00 

Significance 
Io attention interruption: no error in response leng~h (if 
applicable) • 

04 Response too long for area specified. Truncation occurred. 

08 Attention interruption occurred; status of response (if 
any) is unpredictable. 

Upon return froa BSGWR, if a response was requested, the actual byte 
length of the response is placed in the field specified by the response 
length operand. 

Exaaple: In the following exa.ple, the system .essage D001 is to be 
written on the terminal with a variable field containing XXUSERID; the 
expected response should contain a .aximua of 8 characters, and the 
response is to be placed in an area called READIB. 

EXl BSGWR BSGCD,YARFLD,READIB,RLEHGTH 

In this example, the user has provided infor.ation required by the 
MSGWR macro instruction elsewhere in his progra. through use of DC 
innstructions. The parameters of the ftSGWR macro instruction have been 
specified using the syabolic addresses of the DC instructions. 

HSGCD 
VARPLD 

TEXTYA 

166 

DC 
DC 
DC 
DC 

X'D0010101' 
P'8 • 
A (TEXTVA) 
C'XXUSERID' 



BRADDI 
BLEiGTH 

DC 
DC 

VIa -- Generate Bode Identification Block ~ 

t This macro instruction is completely documented in the Assembler User 
, liacro Instruction manual, except for several operands that are available 
I only to the systems programmer. Only the definitions and specifications 
I for these additional operands are given belov, but for cODtinuity, all 
, the oper ands are sh,ovn in the Iletalanguage that foll(~vs. 

• I I 
,Hame ,OperationiOperand 
I I I 

I I symbol IBIB I(RHAME=resource name] 
I , I ,r,ADDR=({SDA=sdalRID=netvork address})] 
I I , '[,USN=user nu.ber] [,CP=collponent number] 
• I I I[ ,OP'l'ION=(PASS,IN,OUT,DF'T,REPL,DSN,AQ) ] 
I J , '[ ,EX LST=address of exit list] 
I I , f[,LOGON=address of logon parameter list] 
• I t I [ ,LASTED= {y I H} ] [,FCL=address of FCL name J 
, , I I[ ,RTE=address of routing table J 
I I , I[ ,MF::: [L J(E,address of NIB}}) I L' _________ -L· __________ .L' ________________________________________________________ -J 

I ADDR 
I specifies the address and address type assigned to the node. 

SDA 

RID 

specifies the symbolic address by vhich TSS knovs the node. 

~cified as: the address of a character string of 2 to 4 hexadec­
illal characters preceded by one byte containing the length of the 
string. 

Default: none. 

specifies the netvork address by vhich TSS knovs the node. 

I Specified as: the address of a character string of 1 to 17 
r alphanwaeric cbaracters in the form 'major node.minor node l , pre-
t ceded by a one byte field containing the length of the character 
, string. 

FeL 

Default: none .. 

specifies the name of the PCL to be used to control the connected 
node. The OPHIIST macro processor vill issue a explicit LOAD macro 
instruction to load the FCL and its accollpanying Format Control 
flod ule. 

, ~cified as: the address of a 1 to B byte name preceded by one 
, byte containin9 its length; or register notation (2 through 12); or 
, an RX address. 

I RTE 
I , 
I 
I 

Default: none .. 

specifies the address of a routing table to be used by TAMIl for 
connect.ing to t.he node. i'he routing table is described in the 
CHARTE DSEC~. The RTE operand is valid only for OPTION=AQ, and 
viII be ignored: for any other OPTION. 

Section 2: System Macro Instruction Descriptions 167 



Specified as: register notation (2 through 12); or an RX address. 

Daf aul t: none .. 

OCBD -- Specify OS DCB DSECT 

The OCBD macro instruction enables the issuer to gain symbolic access 
to the fields in the OS DCB. 

I , • 

IBaae 10perationfOperand 
I I I 
, 10CBD f L--______ .~.L-________ -L ________________________________________________________ J 

There are no operands. 

Execution: The OCBD macro expands into a copy of the OS DCB dsaet. 

Programming Notes: It is used in the Program Product Language Interface 
(PPLI) to analyze symbolically the OS description of the userS request. 
It should not be used in assembling or executing os programs under PPLI 
since it is a TSS dseet; the OS DCB/DeBD macro should be used instead. 
These OS macros reside in the SYSOS.ftAC library vhich is referenced vhen 
using the ASH H program product. 

OPEN (MSAM) -- prepare the Data Control Block for Processing (S) 

The OPEN macro instruction initializes one or more data control 
blocks for processing of their associated data sets. This description 
is for system programmers processing KSAK data sets. 

Standard fora: 
I I , 

IHame ,Operation ,Operand 
I r t 
I[ symbol JIOPEN I (dcb address,[ ({INPUTI OUTPUT}) J, ••• ) 

L-form: , 
,Name 
I 
ISYBbol 

1 1 
,Operation ,Operand 
f f 
I OPEN f [ (dcb address, [ ( {INPUT I OUTPUT}) J, ..... ) J8F=L 
• 

~: A symbol is required in the name field. Any operands omitted 
must be specified in the E-form. 

E-form: 
• , I 

IMaae fOperationlOperand 
I , , 
I[ symbol JIOPEN I[ (dcb address,[ ({IlfPUT I OUTPUT}) ], .... ) "F= (E,list) 
, I I 

I , 
f 

~: If E-form operands are specified, they viII overlay corresponding 
operands specified in the L-form. The list operand must specify the 
symbol in the name field of the L-form; or the symbol aay be loaded into 
register 1 and the list operand specified as (1). 

dcb addr ess 
specifies the address of the data control block to be initialized. 

168 



~cified as: In the standard and L-fora, a relocatable expres­
sion; in the standard and E-form, register notation (2 through 12); 
in the X-fora only, also as aD RX address. If register notation is 
used, the address aust first be loaded into the specified register. 

III PUT t OU TPUT 
specifies whether the associated data set is for input or output. 

Specified as: IHPUT or OUTPUT (see the programming notes). 

Det ault: INPUT 

CAUTION: The following errors cause the results indicated: 

I 
I Error 
I 
tOpening data control block that is already open. 
I ' 
ISpecifying address of invalid~data control block. 
I 
IOpening data control block when DDH1ME has not been 
tprovided. 
I 
,Opening data control block when corresponding DDEF 
,macro instruction or com.and has not been provided. 
I , 
t 
I 
tOpening data control block containing invalid DSOBG 
,specifi cation. 

Result 

INo action. I , I 
,Task ter.ina ted. I 

I I 
ITask terminated .1 
I 
I 
,Task terminated 
I (prompting vill 
tbe given if 
I task is conver­
Isational) • 
I 

, 
I 
I , 
I 
t 
t 
I 

I Task termina ted. I 
I I L-________________________ ~ ________________________________ ~, _______________ ___J 

Programming Notes: You may specify any number of data control block ad­
dresses and associated options in the OPEN macro instruction. This fa­
cility allovs parallel opening of data sets. 

OPEN initializes all the fields in the MSAM portion of the DCB, as 
well as obtains all the pages necessary for 851M operations. 

If the DCB COMBINE flag is set, the reader is assumed to be on the 
same 2540 frame as the punch, and the symbolic device address of the 
reader must be one greater than that of the punch. 

A violation of any of the following restrictions causes the OPEN 
macro in strllction to abnormally terminate the task. 

• The DCB MACRF field must specify only that GET or PUT macro instruc­
tions vill be issued. 

• The DCB DEVD field must specify (possibly from the DDEF command) a 
card reader, card punch, or printer, and this device must correspond 
to the device specified in the DDEF command. 

• If the device is a card reader, the data set must be opened for 
inpu t. 

• If the device is a card punch or printer, the data set must be 
open ed for outPllt. 

• The DCB RECF~ field must indicate fixed-for.at records or variable­
format records; A/H control characters may also be specified. 

• The DCB DEVD must specify the card punch if the DCB COMBINE flag is 
set. 

Section 2: System Y.acro Instruction Descriptions 168.1 





r 

OPENLOCK -- Reset a Resident supervisor Lock Byte (0) 

The OPEBLOCK .acro instruction resets to X'OO' a byte set on as the 
result of a SETLOCK aacro instruction (see the SETLOCK aacro 
instruction) .. 

iii 
Ilfaae ,Operatif)n ,Operand 
I I , 
l[syabol]IOPEBLOCK llockbytepaodule IDperror nuaber[p{LOG,lfOLOG}] 
• I , 

lockbyte 
specifies thj~ byte that is to be reset .. 

Specified as: A syabolic address. 

aodule ID 
is included for coapatibility with the aacro definition and has no 
function .. 

Specified as: A two-digit deciaa1 nuaber. 

error nu.ber 
is included for coapatibi1ity with the aacro definition and has no 
function. 

Specified as: A two-digit deciaal nuaber .. 

LOGIBOLOG 
specifies whether the address of the OPENLOCK .acro instruction is 
to be entered in the logging field associated with the lock byte. 

Specified as: LOG or lfOLOG 

Default: NOLOG 

OPBVLOCK -- Open 'B Lock (0) 

OPBVLOCK is used to open a VI'! Lock previously set by SBTVLOCK. 

iii 
IBaae IOperati()n,Operand 
I I I 
I[ syabol ]IOPBVLOCK Ilog [pOPEB=open] , , , 

log 

open 

specifies the VB Lock to be opened. 

Specified as: the syabol naaing a LOGVLOCK aacro. 

specifies an address in the current aodule to be branched to if the 
specified lock is already aarked "open". 

Specified as: an RX address. 

Default: The status of the lock vill not be cheched. 

Execution: If th,e branch address is specified and if the VI'! Lock Anchor 
indicates "openftp the branch vil1 be perforaed. OtherYise p the indi-

s~ction 2: systea I'!acro ~nstruction Descriptions 169 



cated VM Lock will be opened and the VM Lock count (ISAVLKCT) in the 
task's Interrupt Storage Area (CHAISA) viII be decremented. 

CAUTION: This macro must be protected from task interrupts by ITI/pTI. 

programming Note: Refer to VM Locking in section 3. 

PCSTC -- Bnter Program Control System (0) 

The PCSVC macro instruction assembles a constant hexadecimal machine 
instruction that is intended to be implanted in a userls nonprivileged 
code. 

r I i 
fNaae I Operation ,Operand 
I I , 
l[symbol]IPCSVC , . , , 

~: There are no operands. 

Initialization: A DCLASS macro instruction with the PRIVILBGBD option 
must be coded in a module prior to coding PCSVC. If more than one 
DCLASS macro instruction is issued in a module, the last DCLASS issued 
prior to coding PCSTC must be issued with the PRIVILBGED option. 

CAUTION: The STC 125 generated by PCSVC can only be executed in non­
privileged code. 

Execution: A task-SVC interruption is created to transfer control to 
the task monitor. The task monitor then transfers control to the pro­
graa control system (PCS). This SVC is used by PCS to replace user in­
structions in response to the AT command (see Command system User's 
Guide) • 

Example: Suppose you want to plant a transfer of control; you sight 
code: 

MOVE 

PLANT 

MVC 
B 
PCSVC 

NAME(2),PLABT 
AWAY 

Programming Notes: Although the PCSVC macro instruction must be 
assembled in a CSECT in which a DCLASS PRIVILBGED macro instruction has 
been previously issued, PCSTC cannot be executed in a privileged CSBCT. 
It must be executed in nonprivileged code; it is usually implanted in 
nonprivileged code by first assembling it in privileged code and then 
aoving its assembled hexadecimal machine instruction into the nonprivi­
leged code. 

PGOUT -- write Virtual Storage Pages to ~xternal Storage 

The PGOUT macro instruction enables you to vrite from one to eight 
virtual storage pages to one or more external storage devices. 

, • I 

,Name ,0perationrOperand 
I , , 
,[symbol]IPGOUT I 
• I • 

Bote: There are no operands. 

170 



Initializai-ion: A nCLAS5 macro instruction vi th the PRIVILEGED option 
lI1ust be coC:ed in a module prior to coding PGOU'f. If 1II0re than one 
DCLASS lilaCI'D instruction is issue.'i in a module r the last DCLASS issued 
prior to coding PGOUT l!IIust be issued .... ith the PRIVILEGED option. 

The PGO{lT macro instruction lItl1st be the subject of an Execute in­
struction "cnd must_ occupy the high--order halfvord of the first vord of a 
param.eter I.ist called an I/O paging control h10ck (IOPCB). 'rhe Iopes 
consists oj a header and. a Dumber of external st.orage list entries (see 
Figure 33}. 

Execution! The resident supervisor reads into storage any pages in the 
list that aren't already in main storage; when all pages are in, the su­
pervisor v1'i tes thell out at. the external stora(fe locations supplied in 
the extern,,_.! storage list. Froll one to eight consecutive virtual 
storage pages Kay he transmitted; the destination external storage loca­
tions need not be consecutive and may be on different devices. 

Return data_: Before returning, the resident sllpervisor puts inforaation 
in register 0 to describe the action with each page in the external 
storage liE:t.. Four hits of register 0 are assigned to each page; bits 
0-3 for the· first page, bits 4-7 for the second, etc. The four bits are 
interpretee as follows: 

1falu~ 
oooe 
0011 
0100 
0101 
011C 
0111 
1 Me 
1001 
101C 
1011 

Keaning 
No error - page transm.itted 
Virtual storage page not assiguo!d to task 
Request for zero pages 
Symbolic device not. assigned to task 
Page in bad device -- volume is movable 
Page in --- bad device -- voluae is fixed 
Pa.ge in -- lIedina. fa.ilure 
Page out bad device -- volume is movable 
Page out bad device -- volulIIH is fixed 
Page out aediua failure 

Example: Suppose you want to write virtual storage page RSLTS on the 
127th page position of sy.bolie device 34. You lIight "rite: 

OUT EX 
B 
PG01JT 
DC 
DC 
DC 
DC 

O,l'!OVE 
SOMEPLACE 

HI'. 
A (RSLI'S) 
h t 34l 
H' 1:0· 

1 PAGE TO BE TRANSMITTED 
VIRTUAL MEMORY ADDRESS 
St~BOLIC Dl~VICE NUl'lBER 
RELATIVE PAGE NUMBER 

t .----.. --.--------~--.-- .. --~ .. - -.-.... ---.• -.----.. ----.. ---.--------- I 

I Format of I/O pagiug Control Block Header I 
, -------.. ----··------~---r-------------------- ~ 

I HalfWo-cd 1 I Half Word 2 I 
1-------_._-------_.- -----+--.. ------------ I 
I PGOUT ~- SVC 242 I rlu.bm:: of ESL entries I 
.-.______ _ ___ .• ____ ._. ______ . __ ..1 _________ .____ , 

I Virtual storage address of first of 1-8 pages to be transmitted I 
'-----

. ___ ~_ .. ___ . __ .. ____ .. ________ . _________ . _______________ -_._---_____ -'1 

,------ ----------_._-
r Pormat of External Storage List Entry (raximum of Eight) .. -------------------------_.,------------
, Tvo Bytes ,Tvo Bytes 
I- .------------.--+----.--
J System symbolic device nUllber I Pelat;i ve page nUllber 
L _-----'---____ . _______________________ --' 

Figure 33. I/O paging control block 

Sect.ion :2: S:ystG~!lJl!acr() lnst:ruction Descriptions 171 



TNL GN20-4106 (01 July SO) to GC28-2008-5 

'.this !lIaCI:O instruction is completely dOCUiDented in th", Asseni)ler Dser 
~acro In~truction manual, except for one operand that is available only 
to a sY5te.£ programmer. ~he definition ani specification for only ~hat 
one operand are given helm" bu.t for cOlltinui ty, the lI:etalanauage format 
that follo~s sbows all the operands. 

standard form (see 'operanG strings' in Part 2, Section 1.) 

r , f 

,Name ,Operation IOperand I 
t r +- , 
H symbol ]lPR '{address of ooerand strinq I 
I I I I 'D SNA~E=Qata set name , 
I I I [,START~o=starting position} I 
I I , [, END'lO=e!lding oosition] I 
I , I {,PPTSP={EDITI11213} I 
I I II(,HEADER=H)[,LnES=line~perpage](,PAGE=P]J I 
fIr [,EFASE={YIN}) [,ERROPT={ACCEPTfSl'IprE'lD}) J 
I I I [,FORi'Y=standard default region name] I 
, I , [,STATION=station id) I 
, f I [,TAPOPT={ACIADIABIED,EC}1 , 
I I I (,CRARS:([GS1 J (,GS2) (,GS3] [,GS4]) ) I 
I t I [,FCB=fct name] [ ,PAPER=paper ty?e) I 
r I I [,COPIES= (nnn[ , (GP, ••• ) J) ) I 
I I I [,FLASH= (overlay name[ ,COUNT J) :' I 
t I I (,SYSUCS=user£ sysucs 1sname) [ , BURST= [1 I~} ] I 
I I , [,COPYMOD~co?y modification data set name] J 
, I , [,TRC= {YIN} n I 
, , , [,NPRIORTy=transmission priori tv] I 
I I I [,NET.~CCT=network account number] I 
I t I [,DELIVER= ([ prgmrnam J[ ,room J[ ,Jept J[ ,bldq J) I 
r I , (,PRTCLASS=printing outDut class] I 
I I I [,INDEX=indexing offset J I 
I , I [,EXTWTR=external writer name] I 
, I , [, MODTRC=table- reference character J'} I 
L. ____ ..L.-. 

_______ ~ __________________________________________________ J 



fNL GN204106 (01 July 81l) to GC28-2008-5 

L-form (seE "Ooerand StrinGs" in Part II, ';'-'!ct.LO:l 1) ~ 

r'--------1'- , 
IName ICperationlOperanJ 
t-----llf-- +--------... --.-----.-----~-.-
I symbol 
I 
f 
I 
I 
I , 
I 
f , 
I 
I , 
r , 
I 
I 
I 
I , , 
I 
I , 
I 

I P R , 
f 
I 
I 
I 
I 
I 
I 
I 
I 
I , 
I 
I 
I 
I 
r 
I , 
I 
I 
I 
I 
I 

,{address o~ Doerand strinq 
t "DSNAME=lata set name 
I [,S'rAR'".::'NOc.ost.artincr po,:itioIl J 
I [,ENDNO=endin~ positio:ll 
I f ,PP'l'SP= f"!DI'T' 11! 213} 
I I[ , P.EA'C)ERo='f 1 r ,LI~lFS"'linp!, per nage] [,PAGF=P)} 
r [,EPASE=fn'{} 1 [,EPPOlOT={ACCEPTISKI?IEUD} 1 
I [.FOP~=stanjard default reaion name] 
I [,STATI()r-I=station id] 
f [,'1'APOPT={AC!I\~;jAE'2DIEC11 
I [, C 11 A R S '" ([ G S 1 1 [, G S 2 1 [, G:; 3] [ I G S 4 ]) ] 
, [,FCB=fcb name] [.PAP?R=p~?er type] 
f r ,COPIES=(nnn[, (GP p •• )])) 

I [,PLASH= (overlay n"l.me[ ,COllNT J) J 
r [,SYSUCS=users sysucs 1sname] [,3URST=(YI~1] 
J [,COPY~OD=CODY modification data set name] 
I [, THe"" fY l'i} ]] 
, [,1PRIORTY=transmission Drioritv~ 
I [.NETACCT=network aCC0unt number] 
! [,DELIVER" (~prgmrnam][ ,room][ ,dept J[ ,bldg}) J 
I (,PRTCLAsS=orintinq out~ut class] 
I [,INDE!=in~exina offset] 
I [,EXTflTR=extE,rnal writer name] 
, [,r'ODTRc-"ta:o'-e ref'?l"'?!'lce character]'} 
I,MP=!. 

I 
I 
I 
I 
I 
I 
I 
I 
I , 
! 
I 
I 
I 
I 
I 
I 
I 
r 
f 
I 
I 
I 
f 
I 

L- .L ______ . _____ ._. __ ._ .... ~_._ ... _____ • __ ._ ._._. __ • ____ . ____ ---' 

Note: A symbol is requi red in the name £L?ld of the L-form. 

E-for1ll. 

• I • ------,-.---.------ ------- --. 
IName IOperationlOperand 
I -+ I .---------. 
I( symbol JI,:,R IMP= (E ,list) 
'--____ .1...... I , ___ , ___ .. _._, ___ ,., __ ._~~ ___ ~ ___ , 

fnOl:'I 

I 
I 

(See 'Extended ?RI1"f Comlf.and Facilities· in Part 1, Section 4 for a 
d-cscription and specificilt:.ion ot t!le TAPOPT operand. ~ 

PRESE1fT -- "<'resent Current Sch~dule Level. _tilL 

Tha PHESENT macro instruction enablefc, a. tasJ<. to find out its current 
scnedule table entry (STE) level. 

, ~ t 

,Name 'O~eration'Operand 
t-I ----+f -----4'--·---------.. - .. -·----·· 
I[ sYiAbol ]IPRE5E:li'1' I 
• -.l.-________ -L ____ _ 

, 
! 

.----------f 
I 

__.-----1 

Note: Thera are no operand~. 

Section~: System Macro Instruction Descriptions 172.1 



TNL GN204106 (01 July 80) to Ge28·2008·S 

Execution: The PRESENT maCLO instruction generates a CHANGE SV= (SiC 
227) specitying a schedule lev21 greater than the schedule tahle limit. 
The svc executed by CHANGE causes an interLuption. When the resident 
supervisor receives the interLuption, it examines the specified change 
level to uetenline it it is gLeater than 255. Ii. it is I no cnallge to 
the current level iF made; iD~tead, the CULrent sctedule level for the 
task is retuLneu in register 1~. 

heturn Data: hits 8-1~ of register 15 contain the curreLt schedule ta­
ble level. All other bits Fhould be ignored. 

Lxaaple: To determine the current schedule level of a ta~k, write: 

N AMf l'RESFNT 

PTI -- Permit Task Interruptions (0) 

The p~rl lIacro inst-ructioIl cancels the eff:ect of an ITI macro in~truc­
tion; it allo"s pending ta::k interrui>tions to occur (if the tc~k-lilas}c; 
bits in the VPSW are ls). . , -----. 
IName IOperationlOperaLfr 
I • I 
H 5y.hol JIl''Il I 
• I 

Note: T here are no operanc5. 

PULSE -- Pulse Schedule Table ~ntry L~vel (0) 

I 
... 

The P LlLSE macro instruction changE'£ a task's !::chedule levt-~J to a pre­
set pulsl::: level that is associated with its current level entry. 

I I 

,Name ,Operation ,Operand 
I , , 
t[ sYII;1:;.ol ]1 PULSE I 

« 
~: There are no operands. 

Executiog: ihen the resident ~upervi50r receives the SVC interruFtion 
generated by this macro instruction, it changes the task t!'; schedule lev­
el to that specifie~ in the current schedule level·s pulse fi~ld. If 
the pulse f:ield contains a schedule level that is invalid (that is, out­
siee the schedule table limits, or zero). it is replaced with the cur­
rent level, and a ainor SYS~R iE issued. Register 15 containF an error 
indicator upon return from SVc 226. 

l1eturn Data: The forlllat of th{> r{>turn in:torl'.lation in register 15 ap­
pears as to1.10,,£: 

112.2 



iii.ill ••••• ,. , 

IlitllI"'1I1I , 

"ltll''''''" I 11111111111111 , 
""1"""'" • 

Old 
level 

."iii"""""!i" '"''''1111111''''' """""11""'" tllllllltlllllllill 
'1""1""""",, 

Bew 
level 

o 6 7 8 15 16 23 24 31 
L ____ I\ ____ ~ L.--------,..-------~ 

validity 
byte 

Always 
returned 

Validity byte value: 

Setting 
All zeros 

Bit 6 (on) 

Bit 7 (on) 

!eaniag 
~he new pulse level is valid. 

The pulse level was outside the li_its of the schedule 
table. 

Zero pulse level was specified; no change of levels 
occurred. 

Exaaple: Suppose your task is about to perfora a function that requires 
longer though less frequent tiae slices, and that the pulse field asso­
ciated with your cllrrent schedule level has been set to acco.aodate your 
special need. You aay issue the following lIacro instruction to change 
to the desired pulse level: 

BUD PUL:5E 

PURGE -- Purge IIO Operations (R) 

The PURGE _acro instruction suppresses I/O devices and/or relloves 
thea froa your task's syabolic device list. 

Iii 
,lfaae ,Opera tiOlill Operand 
I I J 
'[ sYllbol ]' PURGE , (action[ , device nuaber]) , (task[ , taskid J) 
I • • 

action 
specifies the purging action you want. 

Specified as: One of the codes defined below. If SL, SD, SR, or 
SS is specified, the device nuaber lIust be specified. 

AR Purge all devices iaaediately, reaoving the TSDL entries. 

AL Purge all devices ia_ediately, leaving the TSDL alone. 

AD Por all devices, reaove the TSDL only. 

AS - Purge all devices, letting active devices quiesce. 

SL Purge single device i.aediately, leaving TSDL alone. 

SD - R ello VEt TSDL for single device. 

1 , , 

SR Purge device specified in paraaeter 2 iallediately, reaoving 
the TSDL entry. 

SS - purge device specified in paraaeter 2, letting the device 
quiesce if active. 

section 2: Systea !acro Instruction Descriptions 173 



Default: It is assumed that register 0 has been 10aded with the 
action code in bytes 0 and 1, and the symbolic device address in 
bytes 2 and 3. If the pre-loaded action code is 'Ax', the SDA aust 
be O. 

device nuaber 
specifies the symb01ic device address of the device to be purged. 
The device numbar aust be specified for action codes SL, SD, SR, or 
SSe 

Specified as: a number or abs01ute expression specifying the 
register (2 through 12) which contains the SDA. 

Default: see "action". 

task 
specifies whether the purge is for all tasks or a particu1ar task. 

Specified as: 

AT for a11 tasks 

ST only for a particular task 

If ST is specified, the taskid must be specified. 

Default: It is assumed that register 1 has been joaded with the 
task code in bytes 0 and 1, and the taskid in bytes 2 and 3. If 
the pre-loaded action code is lAx', the TASKID must be O. 

taskid 
specifies a task ID for which the purge is to be effective. 

specified as: a number or absolute expression specifying the 
register (2 through 12) which contains the TASKID. 

Default: see "task". 

Execution: The 1/0 devices to be purged are suppressed and/or reaoved 
fro. the task syabo1ic device list (~SDL) of the task or tasks to which 
the purge is to apply. If a device is to be a110wed to quiesce, its 
task syab01ic device list entry is merely suppressed; if a device is to 
be purged i.mediate1y, its task sy.b01ic device 1ist entry is re.oved 
fro. the task syabolic device list. The TSDLs to be used depend on 
whether one or all tasks are to have their I/O devices purged. 

Return Data: Register 0 contains an error flag, if app1icab1e. Depend­
ing on the request, this bit can have these interpretations: 

For one device, one task -- device not assigned to task. 

Por a11 devices, one task -- no task symb01ic device 1ist exists. 

For all tasks, one or all devices -- devices not assigned to any 
task. 

If a task that does not have the system operator privi1ege issues 
PURGE for a11 devices and a11 tasks, a system error code of 6101 is 
generated. 

Example: Suppose you wish to purge the I/O device assigned symbolic 
device number 357 for any tasks that might be using it, but you are 
willing to wait for the device to quiesce. You aight write: 

174 



LH 2 ,=Y (357) 
PUB PUBGB SS,(2),AT 

PUT (aSAR) -- Put a Becord CB) 

The PUT aacro instruction .ay be specified in either the locate aode 
or the aove .ode. When you specify the aacro instruction in the locate 
aode, PDT returns r in register 1, the address within an output buffer of 
an area large eno'llqh to contain an output record;. you should then con­
struct, at that a,idress, the next sequential logical record of the out­
put data set. When you specify the .acro instruction in the aove aode, 
PUT aoves the nex't sequential logical record of the output data set froa 
the location you :have specified into an output buffer. 

• i I 
,Baae ,Operation ,Operand 
I , I 
l[syabolJIPUT tdcb address[,area) 
• • • 

dcb address 

area 

specifies the address of the data control block opened for the data 
set being processed. 

Specified as: An BI address, or register notation (1 through 12). 
Execution tiDe is saved if register 1 is specified. If register 
notation is used, the address aust first be loaded into the speci­
fied reqister. 

specifies tho address of the next loqical record to be aoved into 
the output buffer. This operand is used only when the aacro in­
struction is specified in the ~ aode. 

Specified as:: An RX address, or reqister notation (0 or 2 through 
12). Execution tiae is saved if reqister 0 is specified. If 
register notation is used, the address aust first be loaded into 
the specified reqister. 

CAUTIO.: If any 1:ield of the DCB is altered by an iaproper source, the 
task aay be abnormally terainated when a PUT aaero instruction is 
executed. 

Execution: Upon c:oapletion of the PM aaero instruction r a code indi­
eating the aanner in which the instruction vas coapleted is returned in 
register 15. The codes and their aeanings are given in Figure 34. 

section 2: Systea Bacro Instruction Descriptions 175 



• I Return 
rCode 
I 
I 0 
I 
I Q 
I , 
I , , 
r 8 , 
I 
t , 
I , 
t 
I 
• 

i 1 

I I 
,Heaning , 
r , 
,Operation completed successfully_ , 
, t 
11/0 not complete; the record has not been accepted, since , 
Ithere is no room remaining in the present buffer and the next I 
,sequential buffer has not yet been released from the previous 1 
11/0 request. The PUT macro instruction should be reissued. I 
I (See the discussion of "Interruption Entry Handling.") I 
I , 
Iunrecoverable I/O error occurred, and the record vas not I 
laccepted. Register 1 points to the record on vhich the I/O I 
terror occurred -- in the case of an equipment check on the 1 
,card punch, register 1 points to the record i.mediately fol- I 
,loving that on which the error occurred -- and register 0 , 
,points to associated DECB. FINISH and/or CLOSE macro instruc-I 
,tions may be issued. Hovever, if the I/O error is ,not perma- , 
Inent (DEBIF2 or DECG1 not on), you may continue processing , 
,records beyond the one that failed by reissuing the PUT. , 

I 

Figure 34. Return codes for HSAH PUT macro instruction 

Programming Botes: The length of the logical record is determined by 
the value of the LRECL field of the data control block for fixed-length 
(format-F) records and by the value of the control bytes for variable­
length (format-V) records. If you write format-V records, the value of 
the LRECL field must be set equal to the maximum length of the logical 
record prior to the locate-mode PUT macro instructioh. The value may be 
cha'nged betll'een executions of the PUT macro instruction and lI'ill be used 
to determine when to truncate the present buffer.. T'he control program 
uses the current value of the LRECL field to determine the amount of 
buffer space needed for the record, even though the actual 'length is de­
termined by the control byte built by the user in the buffer. area after 
the completion of the locate-mode POT macro instruction .. 

If you do not specify FORTRAB (ASA) or machine code in the RECFft 
field of the data control block, the PRTSP and STACK fieldi of the DCB 
are used to control line spacing and stacker selection, respectively. 

Printer: The HODE field of the data control block is not referred to 
for the printer. The LRECL field of the data control block must be set 
to a value not exceeding 133 bytes for format-F records, and 137 bytes 
for format-T records. These values are 132 bytes and 136 bytes, respec­
tively, if the FORTRAI or machine code lI'as not specified in the RECFH 
field of the data control block. If you use control characters (A or H) 
for carriage control, channel 12 is ignored (greater efficiency is 
achieved by not having a channel 12 punched on the carriage control 
tape). However, if you do not use control characters and channel 12 is 
sensed, an immediate eject to channell is performed. 

Card Punch: For format-F records, you must set the LRECL field of the 
data control block to a value not exceeding 81 bytes for EBCDIC, and 161 
bytes for column binary. These values are SO bytes and 160 bytes, 
respectively, if the FORTRAN or machine code was not specified in the 
BECFH field of the data control block. For format-V records, you must 
set (for locate mode only) the LBECL field to a value not exceeding 85 
bytes for EBCDIC or 165 bytes for coluan binary; these values are 84 and 
164 bytes, respectively, if the FORTRAI or machine code was not speci­
fied in the RECFH field. The HODE field of the data control block must 
contain a binary 0 for EBCDIC or a binary 1 for coluan binary. 

176 



Exa.ple: In the following exaRple, which illustrates the use of both 
the locate-.ode and aove-Rode PUT Racro instructions, you want to print 
a file of 132-byte EBCDIC records. After each line is printed, one line 
is spaced. Since the return codes provided by the .acro instruction are 
aultiples of ,., it is possible for YOll to set up a branch table to pro­
vide proper control of processing. 

JBL OCB DSORG=l'IS, I'IACRF=P, BUILD DCB 
DDBI~E=TODD,DEVD=PR, 

PRTSP=1,RECFlIt=F,LRECL=132 
)PEN (JHL, (OOTPUT}) OPEN DCB 

LA 3,RCTABLE SET UP BRIBCH TABLE 
LA 1,JHL LOAD ADDR OF DCB 

ftOVE PUT <1> ,WORK ~OVE-RODE PUT RACRO 
I. 5,0 (15,3) BRABCH ON BC IIDEX AID 
:9B 5 RCTABLE AS BASE 
LA 1,JHL 

LOCATE PUT (1) LOCITE-lItODE PUT BACRO 
L 5,0 (15,3) BRANCH ON RC IlIDEX AID 
," aCTABLE AS BASE 
SR 5 

NOR!! ~VC o {132, 1} • iORK 

WORK )S CL132 OUTPUT AREA POR l'IOVE-
lItODE PUT "ACRO 

RCTABLE ;)C A (lIORl'I) ADDR FOR PROCESSIIG ,. AFTER RC OF 0 
()C A (PAUSE) ADDR FOR PROCESSING 
'J< APTER Re OF q 
DC A (ERROR) ADDR FOR PROCESSIRG 

A1"TEll RC OF 8 

Both the move-aode and locate-Rode PUT .acro instructions result in a 
type-1 linkilge to the DOnSAll: routine. 

QGOE -- OUe'J.e Interrupt on Task 

OGOE set;'> up a para.eter list and calls CEAll' to queue the qiven GOE 
(containing the task interrupt inforaation) on a task in interrupt 
priori ty se.Juenee. 

r- , • 
IHaae I Operation I Operand 
, I • 
I[ sYRbol 11017QE IGQB [,.INTRPT= ] 
I I 

GQE 
genera:lized gueue eutry to be queued on the task. 

Specif~ed as: a systea address, or a syabol defined on a ful1word 
boundary that contains the address, of the GQE to be queued OD the 
task. 

IRTRPT= 
type 01: interrupt to be queued. 

Section 2: systea "aero Instruction Descriptions 177 



TNL GN20-4106 (01 July 80) to GC28-2008-5 

Speciiied. as: a keyword, or regi:,ter not.at.ion where the register 
con tains the code :Eor the deEirpd intcr:I:llpt ty peo. Acc(.-ptable codes 
and Keyvoras are as to 110.rs: 

CAU'I'lOl<S: 

Keyyord Interrupt Ty£~ 
PltOG program check 
PAGING 
1~1 'I 
ASYNC/AT'l'N 
TIrcZE 
SYNC/SYNICO 
VSS 

paginQ error 
external 
asynchronous 
timer 
synchronous 
'ISS 

(0) 
en 
<2-, 
(.3) 
(4 ) 
(S) 
( &) 

(l) 'l:he P~1!. dsect CHAPS! must llaVt' b,,~e-n copiee by the module uFing this 
macro. 
(2) The expansion of this macro is attc<::teJ by the u~e 01 the CVT ilIacro 
prior to the use ot this macro. 

Programainy Note~: 
(1) QGQE assumes that the GQE contains l:h(~ add!:ess of tilt ta~k 'Which is 
the recepient of the interrupt (GC>1:TSI). 
(2) QGQE also assumes that the rEceivir19 ta;:,'l\. ha;;; Leen lockea !Jy the 
calling module. 
{3} QGQE does no validity checking t;o l!1ak.e sur:(~ the GC;E contains all the 
necessary inteL'rupt inforlll.ation required for the speci.tied interrupt 
type. 

Example: 'I'D queue a synchronoll:; 1/0 interruot_ on a task, code: 

L R3,I.>QETSI 
SETLOCK TSILOCK,12.01,LONG •• LOG .. 
QGQB {Rl}.INTRPT=SY~CIO .. 
OPEiLOCK TSILOCK",LOG 

lock the task 

gUdue the interrupt 

tleD, unlock the task 

The QSVC macro instruction, with its oarameters set in registers 0, 
1. 14, and 15, adds and deletes resource access entries from the 
supervisor resource access table. 

r--~----~'----~I~--- ---------------, 
!Name IOperation!Operand 
I- +------+----------------»-.. -----------
r symbol IQSVC , 

L-_____ ._~ _______ _ 

This macro instruction expects reaisters O. 1, 14. and 15 to be set 
up as follows: 

178 

, 
t 



re~ister 0: byte Q 

bit 0 

bit 

bit? 

bit .3 

bit Il 

bit S 

byte 1 

lock type flag 
o - 'Ct~,a'1 locK 

- wri te lock 

resource controller 
o - Sy5t~M control 
1 - lJS'2r control 

!\L RfJ) fil (X28-20n8-5 

~ .. , ... (> typf:-? ::laa 
C Eel: 
1 - ALI. 

V~AD~R snecifie1 flaq for FlO and DEO 
o - reqisters 14 and 15 contain NArE 
1 -- reaister 14 cont':lins a V"l address; 15=0 

IMMED/ISFI~ITE flaa 
o - infinite wait 
1 - i:n;n'2<1 

task to be puraed 
o - issuina task 
1 - taskid in reg 1 

resource owner flao for ENC and DEC 
U - EIYS't't.5ffi 

1 - us>?r 

:. oc k wa i t rl -3. 1 u e 
00 - I'MSD/INFINI~~ 
01 - St!")RT 
Cl2 - !"EDIUI' 
03 - T.OW= 

register 1 ECB address or taskid 

registers 14-15 resource ~AME or address 

Return codes: the following codes are returned in register 15 by the 
QSVC processor module: 

o resource successfully accessed 
4 resource in use; rsauest 

aueued except for I~~ED 
8 error in Darameters 

DFQ ~;uccess.:ully com'Jleted 
not us,~d 

error in parameters 

!'iQi~: for code 9 for both ENQ and DE(i an error PLOr.1ot rnessaae 
is in register 1. 

Programming note: a OS1TC fo:: an :'''1'0 It11':ElJ rec:uest that cannot be 
satisfied will return the taskid of the task holding the resource in 
register 1. 

f(CALL s.~ts up the linka.ges for caIlin:; anoU.sr sUl)ervisor routine. 
RCALL load:> Register 15 ..,ith tile address of th:! entry pOl.fit and 'ioeE~ a 
bALR 14,15,. Tne ad.dress is obtained from the CVT entry for th~ ~ntry 
point. 

Section 2: Sy~tem Macro Instruction Descrintions176.1 



TNL GN204106 (01 July 80) to GC28-2008-5 

iii ---., 
IN~me IOperationlOperand 
I I I 
I[sYlIibol jli1CALL rEP'!'= 
I « • 

E.Ph= 

I 
I 

naiie or the entry point o~ the routine to be called. The nallle must 
De in the CiT; otherwise, an assembly error will occur. 

CAUTIONS: 
(1) The f-SA Jsect CHAPS A must be copied in the assembly of the module 
using this macro. 
(2) Th~ expansion of this macro is atfected by the use OL the CiT ~acro 
prior to the use of this macro. 

Example: To call CEAT!l, code: 

RCA1L EPT=CEAIAl 

118.2 



RDI -- Reset Drua/pisk Interlock (0) 

Two lockbytes exist in the SYSTEB table to prevent interference be­
tween the supervisor and tasks when EREP records are read. One prevents 
supervisor to task interference, the second prevents task to task inter­
ference. The RDI macro resets the task to task lockbyte. 

iii 
,Baae I Operation ,Operand 
I I , 
l[syabolllRDI I 
• I 

~: There are nc. operands. 

Execution: The task ID of the caller is aatched against that of the 
interlock and the PSV condition code (contained in the ITSI) is set to 
one of the following: 

o The interlock is cleared. 

1 The interlock was not cleared because the task ID of the issu­
ing prograa did not aatch that of the TT interlock. 

2 The interlock was not found set. 

RECRDSTE -- Record Schedule Table Level Changes (0) 

The RECRDSTE aaero instruction records in a table (increaents a coun­
ter), the aoveaent of tasks froa one schedule table level to another. 
This aacro also aaintains a list of the last 16 schedule table levels a 
task has been using in the task status index ~SI). 

I , i 

I Raae I Operation I Operand 
f I I 
I[syaboll,RECRDSTE ,base register,level register,work register, code , . , 

base register 
specifies a register to be used as the base for the schedule table 
level change table. 

Specified as: an absolute expression froa 1 to 15. 

level register 
specifies the register that contains the new schedule table level. 

specified as: an absolute expression froa 0 to 15. 

work register 

code 

specifies a register to be used as a work register. 

specified as: an absolute expression froa 1 to 15. 

specifies the type of schedule table level change to be recorded. 

Specified as: Code 
STIKZl 
STIKZ2 
STIKZ3 
STIRS 
STIR2 
STII3 

Beaning 
TASK IX DELAY (TSEBD) 
TASK ROT IR DELAY (TSERD) 
FREE VB LOCK (TSEBD) 
PAGE S'rEALIRG 
PULSE SVC 
CHARGE SVC 

Bodule 
CEAKZ 
CEAKZ 
CEAKZ 
CEABS 
CEAB2 
CEAI3 

Section 2: Systea Kacro Instruction Descriptions 119 



Proqra •• inq Hote: The dsect CHASTX describes the schedu1e tab1e 1evel 
change tab1e. 

BELCOBE -- Be1ease Allocated Supervisor Work Space 

BELCOBE releases supervisor work space allocated by the GETCOBB 
.acro. 

iii 
IBaae IOperation,Operand 
I I I 
,[syabolliRELCOBB IADDR,LGH,TYPB= 
• • 

ADDR 
address of the start of the area to be released. 

Specified as: a systea address that is on a 64-byte boundary. It 

, 
I 
f 

aay be given as register notation -- 1 is allowed or as a syabol 

LGH 

defining a fu1lword which contains the address of the area to be 
released. 

length of the area to be released. 

Specified as: a register notation -- 0 is allowed -- or syabolic 
representation. 

TYPE= 
saae as that specified in the GETCORE aacro. 

CADTIOllS: 
(1) The PSA dsect CHAPSA aust be copied by any aodule asse.bly using 
this aacro. 
(2) The expansion of this aacro is affected by the prior use of the CVT 
aacro in the asseab1y. 

Exaaples: To release an area of storage, code: 

BELCOBE WRKADD,WRKLGH 

WBKADD DC A (0) 
WRKLGB DC B'128' 

area for saving address of work space 
length of work space 

BESET -- Reset Device Suppression Flag (B) 

The RESET aacro instruction cancels the effects of a previous PUBGE 
.acro instruction by resetting a device's suppression flag in the TSDL. 

Ii' 
,Baae ,Operation JOperands 
f I I 
l[syabolJIRESET ,[device nuaber] 
• • 

device no.ber 

180 

specifies the sy.bolic device address of the device whose f1ag you 
wish reset. 

Specified as: A one-to-four digit deciaal nuaber, either as an 
absolute expression or in register notation (2 through 12); or as: 
ALL if suppression flags of all devices are to be reset. 



Default: It viII be assumed that the issuer has placed the syabol­
ic device address in register o. 

Execution: The resident supervisor clears the device suppression flag 
in the task symbolic device list for the specified device address. 

Beturn Data: If the device is not contained in the task's symbolic 
device list (an error), the high-order bit of register 0 is set to one. 

Example: Suppose you yant to allow I/O operations to continue on sym­
bolic device 25. lou aight write: 

1..8 2 ,=Y (25) 
GO RESET (2) 

BESETIB -- Reset I •• ediate Report Flag (0) 

The BESBTIR system macro instruction is used to specify that the im­
mediate report error statistics for call type 25 (see Test and Mainte­
nance User's Guide) channel inboard and outboard failures on direct 
access paging devices are to be ignored for a specified device; they are 
not to be recorded in the system's error recording areas on the paging 
drum and no message is to be written to the system operator. 

i I 
IBame I Operation I Operand 
I I I 
,[symboIJIRESETIR Isymbolic device address 

symbolic device address 
specifies the particular direct access device whose entry in the 
direct access statistical data record (CHBPSD) is to be marked so 
that no immediate-report statistical data viII be written on the 
paging drum. 

Specified as: A one-to-three digit hexadeciaal nuaber, as an abso­
lute expression, or, if the symbolic device address is first loaded 
into register 0, as: (0) • 

Execution: When BESETIR (SYC 223) is executed, the iaaediate report 
flag (PSDIR) in the syste.'s direct access paging statistical data rec­
ord (DSECT CHAPSD) is set off. This flag indicates to the system's 
error recording rout.ines (see system Service Boutines) that any errors 
of call type 25 that: occur on a specified device should not be recorded 
in the error recording areas on the syste.'s paging drum. 

Program.ing Botes: RESETIB is issued in system code as part of the 
RESET IR job option of the VMEREP co.mand (see Test and Kaintenance 
User's Guide). That is, vhen a privilege class E system programmer, 
using YKEBEP, elects the job option of RESET IB, the RESErIB system 
.acro instruction is executed as part of the resultant processing. The 
result is to reset the Immediate Report flag (PSDIB) in CHBPSD, which 
inhibits all IRs for paging devices from being stored on the paging 
drum. 

~he YMEREP job options for printing out error reports scan type codes 
that have been recor,aed on the paging drum along with the error records. 
If the PSDIR flag had been off during all error incidents and the system 
progra.mer issues the YSEBEP job option SEARCH XX25 at his ter.inal, 
there vould be no error statistics on the drum fro. yhich a report could 
be generated. If the flag had previously been on, and so.e call type 25 
errors did occur on i1 paging device, those statistics vould be vritten 
out in an i •• ediate report. The immediate report flag PSDra can be set 

Section 2: System Sacro Instruction Descriptions 181 



on via the Y!EREP job option of SETIR (see Test and Maintenance User's 
Guide) • 

Example: To turn the immediate report flag (PSDIR) off for a device 
whose symbolic device address is 2C, a system progra •• er might code: 

NAME RESETIR 2C 

RESUME -- Return to Calling Program (0) 

The RESUME macro instruction restores registers and returns control 
to the calling program. 

, 
IBame 

• • , 
IOperationlOperand 

I I 
l[syabol]IRESU!E ,area, (first register[,last register) 

I[ ,RC=return code] I I 

area 

• 

specifies the address at which the data to be restored is located. 

Specified as: An RX address, or register notation. If register 
notation is used, the address must first be loaded into the speci­
fied register. 

first register 
specifies the first register to be restored froa the specified 
area. 

Specified as: A deciaal nuaber or an absolute expression. This 
nuaber must be greater than 7 and less than 16. 

last register 

I , 

specifies the last register to be restored froa the specified area. 
The restoration has the same wrap-around feature as the STB or LB 
instructions. 

RC= 

Specified as: A decimal number or an absolute expression. 

Default: If this operand is omitted, only the first register is 
restored. 

specifies a return code to be sent back to the calling routine. 

Specified as: A deciaal number or an absolute expression. This 
nuaber must be less than 4092 and .ust be a multiple of four. 

Default: No return code is sent. 

RETRNR -- Load Saved Registers and Return 

RETRNR standardizes supervisor linkages. RETRNR reloads the saved 
contents of a calling program's registers froa the supervisor save area 
stack, sets up returning parameter registers and a return coder and 
returns to the calling program. 

182 



iii 
,Raae ,Operation ,Operand 
I , , 
l[syabo~)IRETRRR IBC=,PREG=,PSWBS&= 
• • • 

RC= 
indicates the return code. 

Specified as: a deciaa~ n.-ber to be p~aced in Register 15, or 
specified as R'agister 15 which aeans that it contains the return 
code and is not to be restored. 

PREG= 
identifies the register(s) containing paraaeters/va1ues which are 
to be returned to the ca~~er in Register 0 and/or 1. 

Specified as: one or two registers. If two registers are given, 
then the contents of the first wi~~ be p~aced in Register 0, and 
the contents of the second in Register 1. If on~y one register is 
given, its contents .i~~ be returned in Register 1. see exaap~es 2 
S 3. 

PS'lfI!lS&= 
specifies whether the syste •• ask was saved and is to be restored 
froa the saved area. 

Specified as: 
Y - the lIlask i.E; assuaed to haTe been saved in the 68th byte of the 

save area. 
II - the .ask va,s not saved. 

Defaut: I. 

CAUTIOBS: 
(1) The PSA dsect CBAPSA aust be copied by any asse.bly using the RETRRR 
aacro. 
(2) RETRRR assuaes that a standard systea save was done. If not, 
resu~ts are unpredictab~e. 

Proqra.ainq Rotes: The standard systea save area is 72 bytes in length. 
The fora at of the save area is as fo11ows: 

Word 1 - pointer to the previous save area. 
Words 2 to 17 - register save in the sequence "-13. 
Word 18 - before return, it contains previous syste •• ask if saved; 

after return, it contains return code for debugging. 

Exaap~es: 

(1) Boraa1 return with a return code of 0, 

RETRBR RC=O 

(2) .oraa~ return with a returning para.eter and a code in Register 15, 

RETRIIR PRE(;= (5) ,RC= (15) 

the returning value froa Register 5 will be placed in Register 1 for 
return to the cal~ing routine and register 15 .il1 be unchanged. 

(3) Returning with return values in Registers 7 S 3, and a return code 
of 8, 

Se(:tion 2: Syste. Bacro Instruction Descriptions 183 



RETRNR PREG=(7,3) ,RC=8 

Register 7's value wi11 be returned in caller's Register 0, and 
Register 3's value will be returned in caller's Register 1. Regist­
er 15, on return, will contain a return code of 8. 

RJELC -- Remote Job Entry Line Control (0) 

The RJELC macro instruction causes the resident supervisor to execute 
channel programs that enable or disable the line associated with a par­
ticular re.ote device. It either enables the 2701 or 2703 channel con­
trol unit to receive input from a re.ote 2780 card reader or disables 
any transmission between them. 

i i 
IName I Operation I Operand 
I I I 
l[symbol]IRJELC I 
, I 

~: There are no operands. (See Initialization.) 

Initialization: Before issuing RJELC, reqister 0 .ust be loaded with 
the syabolic device address of the remote device that is to be initial­
ized, and register 1 must be loaded with an action code indicating 
whether the line to the device is to be enabled, disabled, or primed 
(i.e., reinitialized). The requirements for writing these parameters 
are indicated below: 

Reg 0 - sda Register 0 must contain the symbolic device address as­
signed during the system generation process. You .ay 
write: LA O,X where X is the decimal number assigned to 
the particular device. 

Reg 1 - codes 

o Prime the line; reinitialize the specified line for data 
transfer (e.g., to regain line control after a 2780 time 
out condition). 

1 Enable the line. activate the specified line and initia­
lize it for data transfer. This operation is invoked as 
a result of the operator issuing the ASBBD command. 

2 Disable the line; deactivate the specified line after 
either normal or abnormal job teraination. 

Execution: When the SVC 232 generated by RJELC is executed, the resi­
dent supervisor attempts to execute channel programs which perfora the 
operation requested (enable, disable, or prime) on the line to the re­
mote device specified. The line can be a dedicated or dial-up line. If 
a dedicated line is enabled, the line is prepared to receive input from 
the remote device immediately. If a dial-up line is enabled, the line 
is prepared for receiving the dial-in and then, once the user dials in, 
the dial-up line is prepared to receive input from the re.ote device. 

Return Data: Registers 1 and 0 contain the following parameters: 

Register 1 = Code Beaning 

o SIO successful 
4 SIO failed; also examine register 0 
8 Path unavailable or invalid input 

12 Path busy 

184 



When the return code in register 1 is 4: 

Register 0 = 
i , I , 

SIO I TIO , TCB I SIO 'CSW status byte 
I failure Icondition,condition,condition, if SIO cc=1 
I indication, code , code I code I 

flaqs 
X' 40' 

L-__________ L-________ -L' __________ 4' __________ L' __________________ -L _______ --J 

o 1 2 3 4 5 6 7 8 23 24 31 

Where bits 0-1 If on, SIO failed (these bits not meaninqful to macro 

2-3 
4-5 
6-7 
8-23 
25 
26 

execution). 
See TIO assembler instruction. 
See TCB asse.bler instruction. 
See SIO asse.bler instruction. 
Slee CSW status byte. 
If on, control unit busy. 
I:f on, expected interruption taken by other cpu. 

Programming notes: In TSS, RJBLC is issued in the BULKIO Initialization 
routine in response to the ASWBD co •• and. Prior to executinq the SYC, 
the Initialization :coutine defines (via a SIB macro instruction) an in­
terruption processinq routine to service any asynchronous interruptions 
from specified lines that occur during the STC processing. The BULKIO 
Input Start routine is defined as the processor. 

Exaaple: The line to the remote device with the symbolic device address 
of 123 is to be enahled for receivinq input. 

LA 
LA 
RJELC 
STC 

0,123 
1,1 

232 

LOAD SyftBOLIC DETICE ADDRESS 
SET BEQUEST FOR ENABLING OPERATIO. 

RBDET -- Remove Device prom Task Sy.bolic Device List (B) 

The RftDEV macro instruction removes an I/O device from your task's 
symbolic device list. 

i I f, 

IName t Operation. Operand 
Itt 
I( symbol ],RBDET f( device] 
, • t 

device 
specifies the symbolic device address of the device that you want 
removed from your task's symbolic device list (TSDL), and whether 
the DETT flag i.5 to be set off. Settinq the flag off indicates 
that the issuer does not wish to control I/O when that device is 
again assigned by ADDEY. (See the CKALOC .acro instruction for a 
further discussion of the DETT flaq.) 

specified as: Register notation (2 through 12). If the two's com­
plement of the syabolic device address is used, the DETT flag will 
also be set off. 

Default: It will be assumed that the syabolic device address (or 
its two's complement) has been placed into register o. 

Execution: The resident supervisor reduces the ADDEY count in the 
task's symbolic device list by 1. If the count is reduced to 0, the 
device entry is removed fro. the task's symbolic device list. 

Section 2: System Bacro Instruction Descriptions 185 



Return Data: If the symbolic device address is not found in the task's 
symbolic device list, the supervisor sets the high-order bit of register 
o to 1. 

Exaaple: SUppose you want to reaove symbolic device 46 from your sya­
bolic device list; assuaing no other part of your task had also added 
device .6, the IDDEY count for device .6 would be 1. You aight write: 

LH 2,=Y (46) 
GOli RIIDEV (2) 

RIIOVHLD -- Remove Page froa Page Hold 

RIIOVHLD takes a vaA or a list of VilAs and decrements the page hold 
count of each page by 1. 

r i I 
,1Iaae 'Operation I Operand 
I I , 
t[syabo111BBOVHLD ,{VIIA=,TCW=},TSI . , , 

VilA = 

TCW= 

TSI= 

virtual aemory address of a single page whose page hold count is to 
be decremented by 1. 

Specified as: register notation (2 through 12 or 0), or a symbol 
defining a fullword containing the VIII. 

the address of a page list (for for.at, see dsect CHATCV) • 

Specified as: register notation (2 to 12), or a symbol defining a 
fullward containing the TCV address. 

address of the TSI for the task owning the page or pages. The task 
must have been locked by the calling routine. 

Specified as: register notation (2 to 12 or 1), or a symbol defin­
ing a fullvard containing the TSI address. 

C.lUTIOJJS: 
(1) The PS.l dsect CHAPS I must be copied by any assembly using the 

RIIOVHLD macr o. 
(2) The use of the CiT macro prior to the use of the RIIOVBLD macro 
affects the expansion of this aacro. 

Programminq Notes: The macros GETPAG and RIIOVBLD operate as a pair. 
The GETPAG aacro is used to bring the virtual aeaory page into storage 
and to place the page in page hold, while the RIIOVBLD macro is used to 
reaove the virtual meaory page from page hold when the routines are 
finished with the virtual memory page. 

Examples: 

(1) To remove a single page from page hold, code: 

RIIOVHLD 1"IIA= (5) ,TSI= (2) 

(2) To remove a list of pages from hold when the list is in TCV format, 
code: 

186 



TNL GN204106 (Ol July 80) to GC28-2008-5 

BKOVHLD Tev= (5) .TSI= (2) 

ROPAGE -- Read Only~ Protection Flag Update (R) 

The ~OPAGE macro instruction is used to test, set, or reset the READ 
ONLY page bits in the external page tables. 

I t -----.,--------------

,Name IOoeration,Operanc 
I ~-------+---
l[symbol]IFOPAGE IVMA=,COUNT=,OPTION=~EST'SET'RES~TJ 

VMA= 
address of first page to be ooeratpd on. 

Soecified as: an RX address, or as register notation. ~xecution 
time is saved if register 1 iB specified. If register notation is 
used. the address must first be loaded into the specified register. 

COUN'!'= 
number of pa~es to be operated on. 

2.2.gcJ_fied as: an RX address, or as register notation (except 1). 
Execution time is saved if register 0 is specified. If register 
notation is used, the count must first be loaded into the specified 
register. 

Def~lli: none. 

OPTION::: 
indicates whether the REA;) ONLY bits in the xp", (External Paqe 
Table) are to be tested, set, or reset. 

Speclfied as: TEST, SET, or RESET. 

Deirull t : none. 

Retu~ode~: if OPTION=TEST, the following codes will be returned in 
register '15: 

o 
4 
B 

12 
16 
20 

pages are not read only protected. 
pages are read only protected. 
pages are mixed; SFT or RESET cannot be performed on this 
range of pages with only one issuance of the ROPAGE macro. 
indicates an erroneous count parameter. 
indicates an unassigned page. 
indicates mixed shared a~d private pages. 

Note: f.or return codes 1F and 20, the first erroneous address is 
returned in register 1. 

If OPTION=RESET, a return code is set as above. If the return code 
equals 4, the READ ONLY protection bits were t~rned off. 

If OPTION'=SET, a return code i!'! set as above. If the return code eouals 
0, the READ ONLY protection bits are now turned on. 

section 2: Systea Sacro Instruction Descriptions 187 



TNL GN20-41O(' 1'01 July IW) to Gel 8-2008·5 

RPRMPT -- Send ~essage to Task 

RPIU!PT a]_lolfs a supervisor module t.o send a lIessage to a task using 
the Yirtual. Memory Prollpt facility. The RPRMPT mechanislI allows up to 
five variable message inserts. 

r- i --. .......,.---.----

I Halle fOperationlOperand 
f---- I 1----·----· 
l(symbol]IRPR~PT ,P1,P2,P3,P4,P5,8SGID=,TSI=,TSKID= 
, • I 

P1,P2,P3,P4,P5 
t.he variable message insert.s; the format for Px is: 
(TYPE[ , LGH], NAB-E) 

TYPE 

LGH 

NAME 

the converted display characteristic of the paralleter. 

~£ecified as: H printable hexadecillal 
D - printable decimal number 

Inllll' - printable character string 

designat.es the length of the field defined by NAME. 

§Qecified as: a number, 1 to 15. 

Default: the length attribute (L9NAME) of the field defined 
by HAl'IE. 

the Daile of 11 variable insert field to be converted, foraated, 
and printed. 

2£ecified as: any term, or register notation. 

Rote: only BABE above may be given as other than a self­
defining term. 

I!SGID: 

TSI= 

address of an a-byte character field containing the message ID of 
the aessage to be prompted. 

Specified as: a system address, or a character string. 

the address of a TSI which aay have been locked by the caller. 
(This parameter is used by RPR~PT to prevent an attempt to lock a 
task already locked by the caller.) 

Specified as: an RX address or register notation 

TSKID= 
the ID of the task to receive the aassage. 

S~cified~: an RX address or register notation or task id number 

Def au.It : tas.1t 1 -- SYSOPERO 

CAUTIONS: 
<,> The PSA dsect CHAPS! must be copied and assigned a base register by 

188 



TNt GN20-4106 (01 July RO) to GC'28-2008-5 

any assembly using this aacro~ 
(2) The expansion of the RP:altPT macro :i.s affect.ed by the use of t.he efT 
aacro prior to the use of the RPRKPT aacro_ 

Proqraa.in<LNote: For all variabll~ insert paralleters of type ID' a left 
zero suppress is done. 

Bxample: To send the folloving Ilessage to tha operator 

tn'EXPECTED IIiTERRUPT: SDA~$"CSi=-$2; 

the RPR!PT macro vould be coded like: 

RPRHPT (H"TCTSDA),(B,8,GQECSW) ,MSGID:ICEATA001',TSI=(REG2) ,TSKID=1 

WHERE TCTSDA is a halfvord field which contains the SDA of the device 
and GQECSii is an a-byte field containing t.he CSW fro. the interrupt 
being recorded. The macro assumes that the specified MSGID exists in 
either TSS STSLIB STSel.F or in the user&s USRRl.IB SYSKLF. 

RSEG -- Res~rve Segment (0) 

The BSEG aaero instruction transfers control to the reserve segment 
prograa int he resident supervisor + An attempi: viII then be lIade to 
reserve the specified seg.ent group. 

rl--------~I- '---'.---------- 1 
Ilaae IOperationlOperand I 
~'------~I- I -------------"----------If 
r IRSEG, I • • 

______________________ -J 

lote: There are no operands. 

Initialization: Before executing RSEG, the issuing progralil should have 
set up the folloving parameter area: 

CHARSG DSECT. COKKON NAKESEG PARA~TER LIST 
DS OF 

ISGSVC DS H SVC 
DS 11.2 RESERVED 

ISGRlil DS IL8 RESERVED SEGHENT GROUP HAHE 
IIfSGDlU DS lL8 DISCONNECTED SEGKEBT GROUP lUME 

liSGYKA DS A VIRTUAL STORAGE AnDRESS OF SEG GROIlP 

ISGLJiG DS H LENGTH OPUHED GROUP 

ISG!'LI DS ILl INPUT FLAGS 
JiSGFLO DS IL1 OUTPUT FLAGS 
ISGDBGH EQU X'80' DlU~E SPECIFIED 
ISGRIGI!I, EQIl X1 40· IflUKE SPECIFIED 
IISGADGH EQU X1 20' ADDRESS SPECIFIED 
BSGBIJDIl EQIl X'10 1 r!ODE"""BOUND 
BSGLBGH EQU 1'0&- L'ElfGTH SPECIFIED 

DS F RESERVED 
liSGLTH EQU *-CBABSG l.ENGTH OF PAR!!E'l'ER LIST 

RSBG aust be the object of an execute instruct.ion and be fullvord 
aligned. 

Bxecution: This macro instruction passes cont-=ol to the resident super­
visor aodule CEAP2 via SVC 180. An attellpt will then be aade to reserve 
the specified seg.ent 9rouP. 

Section 2: System Macro Instruction Descriptions 188.1 





Prograaaing Bote: The systea prograaaer should use the RSVSEG aaero in­
struction described in Asseabler User ftaero Instruction, GC28-2004. 

IlSPRV -- Ilestore P:t'ivilege (Il) 

The RSPRV aaero instruction returns control to a caller who used 
type-3 linkage or t,o any non-privileged interruption routine dispatched 
by the task aonitox". 

• i • 
,Baae f Operation. I Operand 
I , I 
J[ syabol JIHSPRV , , . . 
!2!!!.: There are no operands. 

, , , 

Initialization: A DCLASS .acro instruction with the USER option auat be 
coded in a aodule prior to coding RSPRV. If aore than one DCLASS aacro 
instruction is issued in a aodule, the last DCLASS issued prior to cod­
ing RSPRV aust be issued with the USER option. 

Execution: A task-SVC interruption is created to transfer control to 
the task aonitor. After return froa a non-privileged interruption rou­
tine, the task aonitor restores all registers to their values at the 
tiae of the interruption and then scans for aore interruption routines 
to dispatch. To co.plete type-3 linkage, the task aonitor restores 
registers 2 through 14 to the values tney contained when received froa 
the privileged calling proqraa. Reqisters 0, 1, and 15 are left 
unchanged (see ftLinkage Conventionsft ). Control is then returned to the 
privileged prograa which invoked the type-3 linkage. 

Exaaple: Suppose you have written a type-3 proqraa which has received 
control froa the Leave-Privilege routine and is now ready to return con­
trol to the privile'9"ed calling prograa. You aight write: 

DEPART RSPRT 

You could also write: 

BR 14 

since register 14 is set to point to an STC 120 by the Leave-Privilege 
routine. Return fr(:)a a non-privileged interruption routine dispatched 
by the task aonitor can also be coded either way. 

RSSERR -- Indicate ass Logic Error 

RSSERR inforas the RSS user of the occurrence of an RSS logic failure 
and saves error conditions at the tiae of the logic failure for easier 
debugging and recovery. 

• • oj , 

._aae I Operation I Operand I 
I I I , 
I[ syabol J,RSSERR 'I SET ,CODE.ID I L· ________ ~, __________ &\, ____________________________________________________ __J 

SET 
indicates the f~verity of the error. 

Specified as: 1 - ainor, restart should be successful 
2 - aajor, results of any restart are unpredictable 

section 2: Systea ftacro Instruction Descriptions 189 



CODE 
represents a four-byte identification number 

ID 
represents the ID of the module discovering the logic failure 

CAUTIONS: 
RSSERR can only be used wihtin the RSS environment. The RSSERR issues 
an RSS SVC which may cause unpredictable results if RSS is not active. 
(2) Currently RSS error module CEHER stops execution on both minor and 
.ajor RSS errors.. To attempt RSS restart, press the cpu restart key 
twice. 

Proqramainq Notes: RSS will print/display the following message when an 
RSSESR is encountered: 

••• *****(MINORIKAJOR)1 RSS ERROR 0000 2 FROM MODULE:module name 3 

.... ERROR PSW: .... TYPE-( PROGRAM, SVC]4 ...... error psw 5 ••• error code 6 

REGISTER S:7 BEGISTERO 
REGISTER4 
REGISTER3 
REGISTER12 

REGISTERl 
REGISTERS 
REGISTER9 
REGISTER13 

REGISTER2 
REGISTER6 
REGISTER10 
REGISTER14 

REGISTER3 
REGISTER7 
REGISTERll 
REGISTER 15 

1MINOR,MAJOR - severity of detected error. Currently, recovery is 
the same; the RSS user must press the RESTART key on the CPU twice 
to reinitialize RSS. 

2this field contains the error code from the RSSERR macro to help 
the programmer to determine the errror encountered. 

3Module ID of the module issuing the error macro, or receiving the 
program check. 

"PROGRAaISVC is the type of error indication: 
PROGRAM - error was an unexpected program check 

SVC - error was a RSSERR macro call 

5error psw - the PSW at the time of the error 

6interrupt code - the interrupt code irom the error. 

7registers - the contents of the registers at the time of the error 
indicator. 

aSVSEG -- Reserve Segment Group (CO) 

This macro instruction is completely documented in the Assembler User 
Macro Instruction manual, except for one operand that is available only 
to a systems programmer. The definition and specification for only that 
one operand are given below, but for continuity, the metalanguage format 
that follows shows all the operands. 

L-form 

, 
,Name 
I 
I Symbol 

190 

1 I 
,Operation ,Operand 
I f 
IRSVSEG I[RNAME=,LENGTH=,RSTRCT=,] ~F=L 



E-form 

• i i 1 ,Baae tOperation t Operand r 
I I , I 
I[ syabol ]1 RSTSEG I[ IUllflE=,LEBGTH=,ADDRESS=,RSTRCT=,,) I!IF= (E,list) I 
• • , I 

Standard -fora 

• I ~Ir------------------------------------------------------'. 
,Raae I Opera tion I Operand I 
, I I of 
I[ syabol ],RSTSEG I[ RIUflE=.LEBGTB= ,ADDRESS=,RS'lRCT=] I • • ~'L-____________________________________________________ ~I 

~: All operands are keyword. 

RSTRCT= 
I specifies vhe1:her system GETI!IAIB requests viII be allowed in the 
f reserved segment area vhen the area has been disconnected with the 
f RELEAS=Y option specified in a DISCSEG or EXCSBG macro. 

~cified as: 

Y - system GE~~!lAI1I requests viII not be allowed even though RELEAS= 
Y vas specified in a DISCSEG or EXCSBG macro .. 

, If - system GB~~!UI. requests viII be allowed if RBLEA.S=Y was speci-
I fied in a DISCSBG or EXCSEG macro. 

Tbi s option is available to privileged class prograllS only. Befer 
to GE'l'I!A.Di, Dl:SCSBG, and EXCSEG aacros for further information .. 

RTRII -- Return and Clean up Task (B) 

The BTltH macro instruction causes the syste.·s cOIl.and analyzer to 
cleanup a task pric.r to task termination. (Also see the BTBB command in 
Command System User's Guide .. ) 

Iii 
Illaae I Opera tioD, I Operand 
I 1 I 
I[ symbol ]IRTRII , 
• I , 

~: There are no operands. 

Bxecution: A task--SVC interruption is created to transfer control to 
the task monitor. The task monitor in turn calls the COIl.and System 
RTRR routine which resets the task as follows: all user SIRs are for­
gotten as are all user interruption routines and active user programs; 
the source list is reset to its initial state and all pending attentions 

Section 2: System Macro Instruction Descriptions 190.1 





froll the terllinal arE~ discarded; if a USATT had been given, the Command 
System regains control of attentions (just as if a CLATT had been is­
sued); all AETD·s arE! forgotten. 

Example: If the program you caused to run is finished and you want to 
return control to thH command analyzer for end-of-run processing, you 
aight write: 

tUPlE RTRN 

, RTTCTL -- Real Time ~eask Control (0) 

The RT:tCTL macro instruction provides four functions, "hich are de­
tined beloY, for controlling real time tasks. 

• i i 
"Name ,Operation,Operand 

I f I 
I H symbol ],RTTCTL Idesired function t ·L ________ -L __________ A-_______________________________________________________ ~ 

desired function 
identifies the real time task control function. 

Specified as: 

I INITIAL - initialize the task for subsequent delta time waits and 
, turn on the real time flag. 

I FWAIT - setup for a future timer interrupt, turn on the real time 
J flag, and place the task in AWAIT until the interrupt 
, occurH. 

I DWAIT - setup for a timer interrupt, according to the base and 
, delta times previously specified, and place the task in 
I AWAIT until the interrupt occurs. 

CLEAR - clear all time values and turn off the real time flag. 

~efault: none .. 

,Initialization: for certain functions, registers 0, 1, and 15 must be 
I loaded with tille values in microseconds. The following table indicates 
I the time values required: , 
I 
I , , 

INITIAL 
FWAIT 
DWAIT 
CLEAR 

reqistors 0:1 

base ti~me 
future tille 

register 15 

delta time 

I A DCLASS macro inHtruction with the PRIVILEGED option must be coded 
I in a CSECT prior to (~ing RTTCTL. If aore than one DCLASS macro in-
, struction is issued in a module, the last DCLASS issued prior to coding 
I RTTCTL aust be issued with a PRIVILEGED option. 

I CAUTION: the tille specified in registers 0:1 must correspond to a point 
, in tille greater than the current tille of day clock. The delta time 
,specified in register 15 must not be zero. Registers 0,'1, and 15 may 
I be .odllied during execution of this lIacro instruction. The real time 
, flag turned on by thj.s macro instruction assumes that page stealing is 
f specified in the schodule table levels used by this task. 

Se<.:tion 2: system Macro Instruction Descriptions 191 



Execution: the FiAIT and DWAIT codes cause an entry to be created in 
the real time interrupt quene for this task. For the FiAIT code, the 
interrupt time is taken directly froll registers 0:1. For the DWAIT 
code, the interrupt time is 

(SA SE TIME) + N* (DELTA TI!!E) 

, where N is the number of times the DVAIT code has been issued since the 
, last INITIAL code. 

, When the time interrupt occurs the task is moved to the active list if 
, necessar y. The deadline dispatch time is computed and stored in the 
• task's TSI for processing by the dispatcher. This deadline dispatch 
t time is formed by adding the timer interrupt time to a dispatch delay 
I time speacified in the real time task control SVC processor. The dis­
I patcher vi11 (in a aulti-CPO configuration) stop the other CPO from 
t executing in a lover priority task so that a higher priority task with a 
I deadline dispatch time may be placed in execution. 

I The real tiae flag turned on by this macro instruction disables the time 
I slice end function of purging pages. This tends to keep the task's 
f pages in real storage for extended periods of time. 

J , 
I 
I 

Return data: one of the following return codes is placed in register 15 
upon completion of execution for this macro instruction: 

o 
4 
8 

12 

meaning 

no error 
invalid delta time 
invalid base of future time 
not used 

I Programming notes: all times specified in this macro instruction must 
I be in microseconds. The current time in microseconds may be obtained by 
I using the STCK instruction and shifting the result to the right 12 bits. 

t Exaaple: assume you wish your task to be placed in execution exactly 
, every tenth of a second beginning about 10 seconds in the future. You 
r might code: 

I 
I , 
I 
I , 
I RTMl , 
I 
I 
f 
f 
I CLOCK 

STCK 
LM 
AL 
SRDL 
L 
RTTCTL 
DS 
RTTCTL 

B 
DS 

CLOCK 
0,1,CLOCK 
O,=F'10' 
0,12 
15 ,=P'100000' 
I.ITIlL 
OH 
DWAIT 

RT!l 
D 

GET TIME + ABOUT 10 SEeOIDS 

* 
* 
* GET .1 SECONDS IN BICROSECOBDS 
IIITIALIZE REAL TIME TASK 

WAIT POR TIBER , 
>PROCBSS , 

BRANCH TO WAIT 

~AMPLE -- Sample statistical Recording Fields (0) 

The SABPLE macro instruction moves system status information, main­
tained in main storage, into virtual storage. 

192 



· , , 
,Hame IOperationfOperand 
I I I 
I[ symbol JlSAMPLE I L-________ L-________ ~I _____________________________________________________ ____J 

Hote: There are no operands. 

Initialization: Before executing the SAMPLE macro instruction, one of 
the fol1owing codes must be set up in general register 0: 

Meaning 
SAMPLE task paging activity 
SAMPLE system statistics 
SAMPLE task schedule table history 

When using codes 4 or 8, the SAMPLE macro instruction may be executed in 
line with other program instructions. All data are required in the 
floating point registers. 

When using code 6, SAMPLE must be the object of an EXECUTE instruction. 
SVC 193, which SAMPLE produces, must occupy the first half word within 
the virtual storage page where the statistical data is to be recorded. 
Also, the second double word, bytes 8 through 15, of the virtual storage 
page must contain one of the following 8 byte character strings: 

Cha racter String: 
• SYSTEM • 
'GLOBAL ' 

~eaning 
SAMPLE system parameters 
SAMPLE global system statistics 
SAMPLE memory and task statistics 'LOCAL • 

CAUTION: Use of the SAMPLE macro instruction (SVC 193) is restricted to 
tasks having system programmer authority (0 or P) • 

Executio n: On execu'tion of the S AMPLE macro instruction. statistics 
maintained in main storage system status table (CHBSST) and several oth­
er system tables, are moved, depending upon the code in register 0, into 
either the virtual storage page containing the SAMPLE SVC or the float­
ing point registers. 

The SVC routine cnecks whether the data area in the rece~v~ng page is 
equal to or greater than the data bytes to be transferred. If it is 
not, data transfer i;;; halted when the area becomes full. 

Return Data: After laxecution of the SAKPLE macro instruction, one of 
the fol1owing return codes is placed in gen~ral register 15: 

Return Code 
o 
4 
8 

Meaning 
no error 
invalid code in register 0 
SAMPLE SVC not in first 
halfword of virtual storage page 

Code 4 in general reqister 0 provides the following task related coun­
ters in the floating point registers: 

~P. h:eqister 
o 
1 
2 
3 
4 
5 
6 
7 

Contents 
private drum reads 
shared drum reads 
private disk reads 
shared disk reads 
reclaimed pages 
SVCs issued 
relocation exceptions 
auxiliary pages 

Section 2: System ~acro Instruction Descriptions 192.1 



Code 6 in genera1 register 0 transfers data to a virtual storage page. 
DSECTs are provided to cover the three types of data transfers: 

~ 
system paraaeters 
GLOBAL SYSTEM STATISTICS 
l!E!fORY AND TASK STATISTICS 

DSECT 
CHAPXS 
CHAS'l'T 
CfiATSX 

Code 8 in general register 0 produces the following task related data in 
the floating point registers: 

P. P. Register 
o 
1 
2-5 

Contents 
task tiae in milliseconds 
count of time slice ends 
last 16 schedule table levels used 

Bote: All data returned in floating point registers are in fixed point 
format. 

Proqramsinq Note: Additional inforaation pertaining to the use of 
SAl!PLE can be found ander "Evaluation of System Status Statistics." 

Exaap1e: A system programmer wants to extract the current system para­
aeters (described by CH1PXS). He might write the following: 

GET!UIN 
LR 
USING 
MTC 
MYC 
LA 
EX 

SAMP SAMPLE 

PAGE.LV=l 
3.1 
CH1PXS.3 
PXSSVC.SABP 
PXSHA~E.=CL6ISYSTEft' 
0,.6 
O.PXSSVC 

GET PAGE FOR DATA 

COYER "AGE 
INITIALIZE PAGE 
INITIALIZE PAGE 
SAMPLE CODE 
EXECUTE SVC 

SAVER -- Supervisor standard SAVE Function 

SAVER standardizes the supervisor function of saving the calling 
modules's environment and registers. Upon exit. Register 13 points to 
the save area containing the calling module's saved registers. 

192.2 



i , i 

I Haae ,Operation I operand 
I I I 
I[ syabol ],SUER , ,LGH 
I I • 

Rote: ~he first operand is ignored; it is only included to saintain the 
correct paraaetar displacesent. 

LGR 
the length of a work area to be allocated fro. the save area stack. 
'-'he address of the beginning of the work area will be returned in 
Reg ister 1LI. 

~cified as: an integer nusber 1 - 256, or register notation 

CAUTION: The PSA dseet CHAPSA sust be copied by any assesbly using the 
SAVER sacro. 

Proqraaainq .ot~~: The standard TSS supervisor SAVE area is 72 bytes in 
length. The registers are saved in the sequence 14-13. The forsat of 
the SAVE area is as follows: 

Word t - pointer t.o previous save area used by the calling sodule. 
Words 2-17 - contents of t.he calling aodule's registers in the 

sequence 14-13. 
Word 18 - used as a work area .. 

Each CPO in n TSS configuration is assigned its own save area stack 
which is pointed to by the CPUs PSI. Within the PSA is another pointer 
to the next available word in the save area stack. As a prograa is 
called and does a SAYER, GETiORK, and RETRNR, this PSA pointer is updat­
ed to reflect the next available area. When a SAVER is done the current 
value of the PSli. pointer is saved in the first word of the save area .. 
Then as the GET WORKs are issued the pointer is updated to reflect the 
allocated areas.. pinally when the aodule issues a RftRIIR to exit, the 
saved PSA pointer is restored to the PSA and any allocat.ed work areas 
are aade available for reuse. 

~he PSA save area pointer is reinitialized to the top of the stack on 
each pass through CEAJQS. It is the responsibility of any aodule exit­
ing out of line u expecting to be ret.urned to later to resuse execution, 
to save the save area stack, allocat.e a new st.ack, and when resuaing 
execution, to release t.he current stack, and restore the saved stack. 

Exaaple: To sa,'e registers and allocate a 611-byte work area, code: 

SAVER ,64 

After execution" Regist.er 13 will point to the start of the save area 
and Register 14 to the start of the work area. 

SCHED - Scheduln Table Entry (R) 

The SCHED aacro instruction is used to cosaunicate a schedule table 
entry ~TE) to the supervisor for use in scheduling a task. The infor­
aation is placed in the task's '-'SI. 

i 
,Baae 

i I 
I Opera t:ion I Operand 

• I 
I [ syabol ]' SCHED 
L--. i 

~: There are no operands. 

Executioa: The SCHED aacro instruction foras a value aade up of the 
user's schedule table index (which identifies th~user's priority) and 
the type of task (conversational or batch). This value is placed in 
register 15 and is passed to the resident supervisor by seans of the 

Section 2: System "acro Instruction Descriptions 193 



CHAIGE .acro instruction, using the STE code in that macro instruction's 
operand .. 

Return Data: See the CHARGE macro instruction .. 

Example: Suppose that a conversational task is switched to the back­
ground and you want to establish a ney schedule table entry for it.. To 
communicate a new STE to the supervisor, you write: 

SCHED 

SCRTSI -- Special Create Task Status Index @) 

~he SCRTSI macro instruction allocates storage for 
TSI regardless of the number of TSIs already defined .. 
the same service, but places a limit on the nuaber of 
exist at one time.) 

• I I ,Raae I Operation ,Operand 
I I , 
I( symbol JISCRTSI I[ taskid ) 
• I • 

f taskid 

and initializes a 
(CRTSI provides 

TS Is that can 

, specifies the taskid to be assigned to the TSI that is to be 
I created. 

, Specified as: an RX address. 

Det aul t: none .. 

Initialization: A DCLASS macro instruction with the PRIVILEGED option 
must be coded in a CSECT prior to coding SCRTSI. If aore than one 
DCLASS maero instruction is issued in a module, the last DCLASS issued 
prior to coding SCRTSI aust be issued with the PRIVILEGED option .. 

ExecutioA: A neytask status index is created regardless of the number 
of TSIs in existence. If the systea TSI limit has been reached, it is 
incremented.. After the TSI has been created, the limit is restored. 
Por an explanation of how the TSI is initialized, see the CRTSI macro 
instruct ion .. 

Return Data: The id of the new task is returned in register o. 
Example: If you want to create a TSI, you might write: 

ABC SCRTSI 

SETAE -- Set Asynchronous Entry (R) 

The SETAE macro instruction indicates which task is to receive asyn­
chronous interruptions from a specified device. 

• I , ,Bame ,Operation I Operand 
I , I 
l[sYllbol ]ISETAB ,[device nuaber][ ,task] 
• I 

device number 
specifies the syabolic device address of a the device to be set. 

~cified as: Register notation (2 through 12) .. 

194 



task 

Default: It is assuaed that the issuer has loaded the syabolic 
device address in register 1. 

specifies the identification of the task to which the device is to 
be assigned, whether the device is to be aade unassigned (restored 
to a neutral state), and whether the DEVT flag is to be cleared. 

Specified as: Register notation (2 through 12), expressing the 
task identification (taskid), if the device is to be assigned. The 
value aust be :tero if the device is to be aade unassigned. If 
XIFFFFPPFF' is specified in register notation, the device is aade 
unassigned and the DEVT flag is cleared (see the description of the 
CKALOC aaero il!lstruction for a discussion of the DEY'r flag) • 

Default: 'the clevice is aade unassigned. 

Execution: 'rhe entlcy in the asynchronous device group table (CIIBADT') 
for the specified s:rabolic device address is set to point to the task 
status index of the task referred to by the task ID. If no task operand 
is specified, the syabolic device is aarked unassigned.. In entry is 
also placed in the TSDL of the new task. 

Exa.ple: Suppose Y')U want attention interruptions received froa device 
124 to be processed by the task, having task identification 233. You 
.ight write: 

LH 2,=~r(12") 
LB 3,=Y(233) 

ES'r SE'rIE (2) , (3) 

SETC'fL -- set Contr.)l Registers nn 

The SETCTL aacro instruction allows you to set selected task control 
registers. 

i I I 
• Ia.e I operation I Operand 
I I I 
I [syabol l' SRTC'rL t[ field- {llCII1SK IPEIUIlSK fPERGR I PERADDR I (15)} ] 
• I • 

field 
designates the control register function you wish to set and aay be 
written: 

BCB1SK - set .onitor call .ask CR 8 bits 16-31 
PEBKASK - S4!t prograa event recording .ask Cll 9 bits 0-3. 
PERGR - set PER general register .ask CR 9 bits 16-31. 
PERIDDR - sat PER address range eR 10-11. 

If you choose to write register notation, you .ust select the prop­
er value froa t.he list below and place it in register 15 before 
issuing the aa4::ro instruction. 

Code 
BCBASB: 
PERBASK 
PERGR 
PERADDR 

Value 
1 
2 
3 
II 

Initialization: A I>CLASS .acro instruction with the PRIVILEGED option 
aust be coded in a C:SEC'f prior to coding SETCTL. If aore than one 

Section 2: systea Bacro Instruction Descriptions 195 



DCLASS macro instruction is issued in a module, the last DCLASS issued 
prior to coding SETCTL must have been issued with the PRIVILEGED option. 

Execution: The contents of registers 0 and 1 are placed in the control 
register save area of the XTSI corresponding to the code contained in' 
register 15. The control registers are subsequently loaded fro. this 
save area before the task is placed in execution. The number of bytes 
to be inserted into the control register save area depends on the code: 

Code 
1 
2 
3 
q 

Implied Length (bytes) 
2 
1 
2 
8 

Regardless of the length, the bytes are always to be right-justified in 
registers 0 and 1. 

Example: Suppose you wish to enable monitor call class 2. This is con­
trolled by turning on bit 18 in control register 8. SETC~L replaces bit 
positions 16-31 in control register 8, so an XTRCTL macro should be used 
to inspect the current bit settings in control register 8. Then you 
might write: 

EliAB2 
LA 
SETCTL 

1,288 
KCKASK 

SETIR -- Set Immediate Report Flag CO} 

The SETIR system aacro instruction issued to specify that the immedi­
ate report error statistics (call type 25 channel inboard and outboard 
failures on direct access paging devices) for a specified device are to 
be recorded in the system's error recording areas on the paging dma. 
(Also see Test and Kaintenance User's Guide) • 

iii 
IHame IOperationlOperand 
, I , 
I[symbol]ISETIR Isymbolic device address 
I I • 

symbolic device address 
specifies the direct access device whose entry in the paging sta­
tistical data table (CHBPSD) is to be marked for i.mediate-report 
statistical output to the paging draa. 

I 
I 

Specified as: The hexadecimal equivalent of the symbolic device 
address (usually expressed in decimal) or, if the symbolic device 
address is first loaded into register 0, as (0). (This may be done 
by a Load Address instruction, expressing the symbolic device 
address in decnal.) 

Execution: When SVC 223, generated by SETIR, is executed, the immediate 
report flag (PSDIR) in the system's direct access paging statistical 
data record (DSECT CHAPSD) is set on. This flag subsequently informs 
the system's error recording routines {see System Service Routines} that 
call type 25 errors that occur on a specified device should be recorded 
in the error recording areas on the system's paging drum. 

Programming Hotes: SETIR is issued in system code as part of the SETIR 
job option processing of the TftEREP com.and (see Test and ftaintenance 
User's Guide). Thus, when a privilege class E user {system monitor}, 
using VftEREP, elects the job option of SE~ IR, the SETIR macro instruc­
tion is executed as part of the processing that results. 

196 



~he V!EREP job options for printing error reports use statistics that 
have been recorded ()n the paging drum. If the PSDIR flag is on, and the 
user issues the V!EREP job option SEARCH XX25 at his terminal, then a 
report based on any statistics that may have been recorded in the drum 
(the ia.ediate report) would be printed at his SYSOOT device, listing 
all devices that had errors of call type 25 (and each such error on the 
device). The formai: for these immediate reports is described in the 
Test and ftaintenancf) User's Guide. 

When the PSDIR flag is off, call type 25 errors on the associated device 
are not recorded on the drua; in this case no imaediate report statis­
tics are available (unless the PSDIR flag had previously been on) when 
the privilege class E user elected the job option SEARCH X125. The 
V!EREP job option RESET IR can be used to set the PSDIR flag off (see 
also the description of the RESETIB maero instruction). 

Exaaple: To turn the immediate report flag (PSDIR) on for a device 
whose symbolic devic~ address is hexadecimal 19, a syste. progra.aer 
might code: 

BAllE SETIR 19 

SE'l'LOCK -- Set a Resident supervisor Lock Byte (0) 

The SETLOCK aacro instruction locks a designated table or function in 
the resident supervisor, protecting the table or function in an liP or AP 
(two processor) environment. 

r 
Illame 

j K 

fOperationlOperand 
I I 
I[symbol]fSETLOCK 
I I 
I , . , 

count register 

,[count register],lockbyte,[module id], 
i[error number],{I!!EDIATEISHORT,LOIlG},action, 
I[ exit address ],[ {LOG IIIOLOG) J 
II 

, , , 

specifies a register to be used for counting time increaents. This 
operand is required if SHOIiT or LOBG operands are specified; it 
will be disregarded if the IftftEDIATE operand is specified. 

Specified as: An absolute expression from 0 to 15. 

lockbyte 
specifies the address of a location that is to be set to X'FF' 
using the TS illstruction. 

Specifi ed as: A syabelic address. 

module id 
specifies the Bodule trying to set the lock byte (the .odule in 
which the SETLOCK is issued). This operand will be used in 
generating a SYSER aessage in the event the atteapt to set the lock 
byte is unsuccE!ssful. This operand is required if the SHORT or 
LOBG operand is specified; it is ignored if the I!!!EDIATE operand 
is specified. 

Specified as: A two-digit decimal number. 

error nuaber 
specifies this particular SETLOCK aacro instruction within a module 
in which more than one SYSER is issued. This operand is used in 
generating a SYSER aessage in the event the attempt to set the lock 
byte is unsuccessful. This operand is required if the SHORT or 

Section 2: System ftacro Instruction Descriptions 191 



LOIG operands are specified; it will be ignored if the IftftEDIATE 
operand is specified. 

Specified as: A two-digit decimal number. 

IftftEDIATEISHORTILOBG 
specifies how long to keep trying to set the lock in the event it 
is already locked. 

Specified 
I!!EDIATE 
SHORT 
LOBG 

as: 
(only try to set it once) 
(keep trying until a length of time has elapsed) 
(means the same as SHORT) 

action 
specifies what to do if the attempt to set the lock fails. 

Specified as: A symbolic address to which to branch if the I!!EDI­
ATE operand was specified. 

exit address 
specifies where to branch to if the lock was set or if a SYSER 
occurred. 

Specified as: A symbolic address. 

Default: The program continues at the next sequential instruction. 

LOG I BOLOG 
specifies whether the address of this SETLOCK macro instruction is 
to be logged in the logging field associated with the lock byte. 

Specified as: LOG or BOLOG 

Default: BOLOG 

CAUTION: This macro instruction can only be issued within modules com­
posing the resident supervisor. 

SETSYS -- set system Table Field (R) 

The SETSYS macro instruction sets or alters one of a selected set of 
system table fields. . , , 
IHame ,Operation I Operand 
I I I 
I [symbol]1 SETSYS I( field] , , , 

field 

198 

designates the system table field you want to set or alter. 

Specified as: TASKIHIT 

You may also use register notation by selecting the proper value 
from the list below and placing it in register 15 before you issue 
the macro instruction. 

Code 
TASKIHIT 

Value 
3 

Default: It is assumed that the issuer has placed a value in 
register 15. 



Initialization: A DCLASS aacro instruction with the PRIVILEGED option 
aust be coded in a CSEC~ prior to coding SE~SIS. If aore than one 
DCLASS .aero instruction is issued in a .odule, the last DCLASS issued 
prior to coding SE~SIS must be issued with the PRIVILEGED option. 

Execution: The contents of registers 0 and 1 are placed in the syste. 
table field corresponding to the code contained in register 15. The 
nuaber of bytes to be inserted into the system table depends on the 
code: 

Iaplied Length (bytes) 

3 1 

Exaaple: suppose you want to inhibit the initiation of any .ore tasks. 
This ,is controlled by a flag byte in the systea table called SISTI; the 
appropriate bit .ask is called ~ISTIft. The task initiation bit is bit 2 
of the SISTI byte. SETSIS replaces the entire flag byte, so an XTRSlS 
should be used to e1tract the flag byte. Then you aight write: 

DOUG TASKIlIIIT 

SETTIftEB -- Set Realtiae Interval Prom Resident Proqraas (S) 

~he SEftIftER .acro instruction sets a realti.e interval after which 
the systea generates a ti.er interruption and passes control to a speci­
fied routine. , 
IlIa.e 

f , 

IOperationtOperand 
I t 
I[ symbol]1 SETTIftER Iti.e ,return para.eter 
I I ,interrupt routine entry point ,option , , , 

tille 
specifies the length of tiae in aicroseconds after which a realti.e 
interruption vill be generated. 

Specified as: A decimal nuaber, or, if the decimal number is first 
placed in one ()r two registers, in register notation. In register 
notation, if tile number is too large for one register, it may be 
loaded into tW() contiguous registers and they aay be specified as, 
for instance: (3,4) • 

return paraaeter 
a value to be returned when the realtime interval has elapsed 

Specified as: Register notation (2 through 15). 

interrupt routine eutry point 
specifies the routine that is to receive control vhen the specified 
ti.er interruption occurs. 

Specified as: An entry point nalle, or, if the address of the rou­
tine is first loaded into a register, in register notation (2 
through 15). 

option 
specifies the type of value given by the first operand (tille) 

Specified as: ASS. If this operand is omitted or not ABS, the 
tille value in the first operand is an interval. If ABS is coded 

section 2: Systea Macro Instruction Descriptions 199 



tiae is an absolute tiae when the interrupt is wanted. For exaa­
pIe, a tiae may be calculated for the next hour, shift,day, etc. 

Initialization: 1.11 modules using the SETTI!ER macro instruction aust 
have a copy of the DSECT CHAPSA and a USIBG CHAPSA stateaent. 

CAUTION: If the second operand is missing, a co •• a must be included to 
indicate its absence. 

Execution: If either the time or routine operand is not present, an 
error is indicated. Control is passed to the set Realtime Interruption 
routine. The realtiae interruption is eventually placed on the realtime 
interval queue (CHARTI) in the field RTITI!E. Control is returned to 
the user with a return code set in register 15. 

Return Data: Register 15 is set to 08 normal return. 

If the prograa using SETTI!ER wants to replace an existing interruption 
with a new one (new tiae value), the programmer must use the same rou­
tine and TSI addresses as were used by SETTI!ER when it first placed the 
interruption on the queue. 

The CANCL Jlacro instruction can be used to cancel a programmed realtiae 
interval previously established by a SETTI!ER macro instruction. 

Example: In EX1, below, a realtiae interruption is desired 100 aicro­
seconds from the present tiae. In EX2, a realtime interruption is de­
sired three minutes froa the present time (that is, 180000000 microsec­
onds). In EX3, an absolute tiae has been calculated in Registers " and 
5. 

EXl 

EX2 

EX3 

L 
SETTIftBR 

SETTI!ER 

LR 
SETTII!ER 

SETTI!ER 

8,TSIADD 
100, (8) ,CEA!A 
or 
100"CEA!A 

2,TSIADDR 
180000000, (2),CEA!A 

(4,5) , (2) ,CEA!A 

SETTR -- set Real Time Interval (0) 

SETTR sets a time limit, in teras of a real tiae, on the execution of 
your task. 

Iii 
INaae I Operation I Operand 
I I I 
I [symbol ]ISETTR I , . . 
~: There are no operands. 

Initialization: You must preload registers 0 and 1 with the time limit 
in microseconds. 

A DCLASS aacro instruction with the PRIVILEGED option must be coded 
in a CSECT prior to coding SETTR. If aore than one DCLASS aacro in­
struction is issued in a aodule, the last DCLASS issued prior to coding 
SETTR Ilust be issued with the PRIVILEGED option. 

Execution: An entry is created in CHBRTI. If there was a previous 
entry for this task, it will be reaoved. 

200 



Return Data: Register 15 is set to 08, aeaning noraal return 

SEftU - Set User Tiaer (R) 

The SETTU aacro instruction sets the user tiaer field in the XTSI, 
thereby liaiting yc)ur task's execution tiae. 

, i i 
11Iaae 1 Operation ,Operand 
I 1 , 
'[ s yabol 11 SE TTtJ r [ tiae ] . . , 

tiae 
specifies the ti.e duration in ailliseconds that you want placed in 
the user tiaer field. 

Specified as: A deciaal nuaber fro. 0 to 55364812 or, if the nua­
ber is first placed in a register, in register notation (1 through 
12) • 

Default: It is assu.ed that the issuer has placed the tiae dura­
tion in register 1. 

Initialization: A »CLASS aaero instruction with the PRIVILEGED option 
aust be coded in a eSECT prior to coding SE~U. If aore than one DCLASS 
aaero instruction is issued in a aodul~, the last DCLASS issued prior to 
coding SETTU aust be issued with the PRIVILEGED option. 

Execution: The quantity contained in register 1 is converted to aicro­
seconds and stored in the extended task status index field called user 
ti'aer value (XTSUTI). 

Exaaple: lssuae that register 5 contains the nuaber of ailliseconds to 
which you'd like to set the user tiaer. You aight write: 

lIAIIE SETTU (5) 

SETUP - Set tJp Task status Index Field (R) 

The SETUP aaero instruction peraits you to alter or set the contents 
of a selected field in the 'fSI. 

, i i 
r1laae 1 Operation ,Operand 
l , , 
l(syabol]ISETUP I(field][,register] 
I • • 

field 
specifies the field you want to set or alter. 

Specified as: One of the codes deseribed below, or, if a value 
corresponding to one of the codes (also shown below) is first 
placed in register 15, as (15). 

tJSERID - set the user identification field 
SYSIli - set the input data set location field 
SYSOU'f - set the output data set location field 
SOPRIY - operator/Ccoabined with privilege class-E) 

systea prograaaer privilege 
SPPRIY - systea prograaaer, nonprivileged 
UPRIV - user 

section 2: Systea Bacro Instruction Descriptions 201 



CONY - set the conversationa1 task f1ag 
ITnFLG - set the intertask message f1ag 
XPR - set the externa1 priority f1ag 
AUTH - set the privilege field 
nAV - set the maximum auxiliary storage field 

Field Value 

USERID 1 
sysn 3 
SYSOUT " SOPRIV 6 
SPPRIV 7 
OPRIV 9 
CORV 10 
ITnFLG 12 
XPR 13 
AUTH 14 
nAV 16 

register 
designates the even-odd register pair in which you have placed the 
inforaation you want put into the specified TSI field. 

Specified as: The odd register, expressed as an absolute expres­
sion or register notation. 

Initialization: A DCLASS macro instruction with the PRIVILEGED option 
must be coded in a CSECT prior to coding SETUP. If more than one DCLASS 
macro instruction is issued in a module, the last DCLASS issued prior to 
coding SETUP must be issued with the PRIVILEGED option. 

Execution: Fro. one to eight bytes of registers 0 and 1 are inserted 
into the task status index field specified by the loy-order byte of 
register 15. The number of bytes to be inserted depends on the field 
specified. 

Field Code Implied length (bItes) 

USERID 1 8 
SYsn 3 2 
SISOUT 4 2 
SOPRIV 6 1 
SPPRIV 7 1 
UPRIV 9 1 
CORY 10 1 
ITMFLG 12 1 
XPR 13 2 
AU'l'H 14 1 
nAV 16 2 

Example: Assume that registers 12 and 13 contain an eight-character 
user identification. You might write: 

TEST SETUP USERID, (13) 

SETUR -- Set Up Unit Record Device (R) 

The SETUR macro instruction specifies the configuration for on1ine 
printers and card punches. 

202 



I 
I 
I , 
I 
t , 
I , , 
I 
I , 
• , , 
• , 
t 
I , 
t 
I 
I 
r 
I 
I , 
I 

i i 
,Name I Operation ,Operand 
I I f 
I[ symbol JISETUR '{dcb address[ ,setup]lparalleter 
I , • 

deb address 
specifies the address of the data control block opened for process­
ing a data set on a printer or card punch. 

~ci~ied as: A relocatable expression or register notation. 

Default: None 

setup 
specifies the ~ddress of the desired form number for the punch • 
. For printers, it specifies the name of the default region in the 
SYSUCS data set from which all printer defaults (FCB, CHAIN/TRAIN, 
etc.) lIlay be found • 

~cified as: one to six alphameric characters 

Def aul t: PAPE3_ 

parameter pointer 
specifies the a.ddress of a parameter list (which is defined by the 
CHASUR DSECT) 'which contains the exact specifications for a printer 
set up_ This parame ter list. is in the folloving forma t.: 

SORORG 
SURDCB 
S[JRCHARS 
SUR CHARl 
SURCHAR2 
SURCIlAR3 
SUR CHAR4 
SURFCb 
SUB DSN 
SURCPDSN 
SURBURST 
SIJRb\l'ER 
SURCOPYG 
SIJRCOPY 
SORFLASH 
SORP~T 

SOR FORl! 
SURVID 
SURFLG 
SURFLSH 
SOR FLSIDl 
SURDFLT 
SUR Di'LTK 
SURVID2 
SURLEtiD 
SURL 

SURLEl:i 

DS 
DS 
OS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
EQU 
EQO 
EQU 
EQU 
DS 
EQU 
EQU 
DS 
DS 
EQO 

OF 
A 
OC 
CL6 
CL6 
CL6 
CL6 
CL6 
CL4lJ 
CL44 
CLl 
CL10 
X 
XLS 
CL8 
X 
CL6 
CL6 
X 
SURFLG 
X '80' 
SORFLG 
X'40 • 
CL6 

* 
*-CHASUR 
2X 
21F 
*-CHASUR 

IDDK OF aSA~ DCB 
START OF CHARS TO LOAD 
REG NAHE OF 1ST CAT ENTRY 
REG NAKE OF 2ND CAT ENTRY 
REG NAKE OF 3RD CAT ENTRY 
REG NA~E OF 4TH CAT ENTRY 
FCB REG NAME TO LOAD BY 
FQN OF SYSOCS DS TO USE FOR LOAD 
FQN OF COPY ftOD DS 
YI FOR BTS 
PAPER TO USE ** NET ** 
tlO COPIES OF DS 
NO COPIES OF PAGE (ONLY 1ST BYTE USED) 
NAME OF FLASH IMAGE 
COUNT OF COPIES TO FLASH 
NAME OF DEFAULT REGION IN nes 
VID THIS JOB 
FLAG BYTE 
O=FLASH MAY OR aAY NOT BE RBQD 
l=DO NOT FLASH 
O=CHARS PAR~ FILLED IN BY PRINT C~ND 
l=CHARS FILLED IN VIA DEFAULT 
VERSION ID OF COpy MOD DS 

CURRENTLY USED LENGTH 
USED FOR ALIGNMENT (SPARE) 
USED FOR ALIGN~ENT (SPARE) 
LEN 01" TABLE 

Programming Notes: To ensure a valid setup. the SETOR macro instruction 
should be issued before any I/O operations are directed to a printer or 
punch. This is done by issuing SETUR immediately after opening a data 
set or aft.er the FINISH Laero instruction is executed and the 1/0 opera­
t.ion com plet.ed. 

section 2: system Macro Instruction Descriptions 203 



Card Punch: The setup for a card punch is described by the fora number 
of the card that the operator is to load into the punch-feed hopper of 
the punch. This form number is an instal1ation-defined constant. When 
the macro instruction is executed, the SETUR routine determines which 
fora is aounted in the punch (the currently mounted form number -- or 
zeros if the DCB vas just opened -- is stored for each device in the 
SDAT). If the desired form is already mounted, control is returned to 
the invoking routine with a return code of O. If the form is not 
mounted, a message is written to the operator ("TO) to llount the desired 
fora number (6-byte paralleter), and to ready the punch. A return code 
of 4 is provided to the calling task. When the operator indicates that 
the punch is properly loaded, by causing a not-ready to ready interrup­
tion, the SDAT is changed to reflect the new form nwaber. On the next 
call to SETOR, control is returned to the invoking routine with a return 
code of O. 

I Printer: if the 'dcb address,setup' form of this macro is used, the 
, value specified for the setup parameter is used as the index into the 
I SYSUCS dataset from which printer setup defaults are obtained. The 
I default region of the SYSOCS dataset must specify FCB, PAPER, and print 
I train requirements. 

I When the 'parameter pointer' form of the aacro is used, SETOR viII fill 
, in any missing defaults based upon the value specified in the SURFORM 
I value in the parameter list. In either case, should a required parame­
I ter not be filled in, SETun will issue an appropriate return code. 

Execution: The SETUR macro instruction returns a code in register 15 
indicating the manner in which the SETOR call vas completed. All return 
codes are defined in Figure 35. . ,----------------------------------------------------------------------, 
I Returnl 
,Code I 
I , 

Meaning 

r 0 Operation completed successfully. 
I 4 Operation not complete; SETUR macro instruction should be 
I reissued •. 

" 8 Unrecoverable I/O error occurred while attempting to load the 
I I device. 
I' 12 User software error. 
'I 16 System software error. 
I I 20 RJE disconnect error. 
r I 24 Job cancelled_ 
, , 28 Page backup requested. 

I 
I , 
• 

Bote: for return codes 12 and 16, register 1 viII point to a 
,prompt parameter list indicating the exact cause of the error. 
I 

Figure 35. Return codes for the SETOR macro instruction 

When the SErua macro instruction is executed, the routine determines 
I if the present configuration of the printer, specified in the SUR TABLE, 
I pointed to by the SDAT, is the configuration requested for this SETOR 
I call. If the form, carriage tape (FCB) chain/train, etc., are present, 
, control is returned to the invoking routine. If the desired configura­
, tion is not present, the system acts to achieve the desired 
I configuration_ 

I SETUR uses the SYSOCS data set to build the necessary blocks to load a 
, printer configuration. The SYSUCS data set used mayor may not be user 
I specified. If defaulted, SETUR uses the system owned SYSUCS data set 
r TSS*****.SYSUCS(O); this data set contains all the inforaation needed to 
, load the 1403, 3211, and 3800 printers. 

2()4 



SYSUCS: this data set is a region data set consisting of 4 basic 
regions. Each region name is 8 bytes long, the first two bytes of which 
are predefined by the system. They are as follows: 

I 1. CTXXXXX -- character arrangement table region. This region contains 
1 the information nee.ied to load the USCB in the 3211 and 1403 printers, 
1 and the translate tables and WCGMs in the 3800 printer. For the 3800 
I printer, it may also contain the name(s) of graphic modification 
I regions* A maximum of 12 naaes may be specified. 

I 2. FBXXXXlX -- for.at control buffer region. This region contains the 
I inforaation needed to indicate which density and carriage control tape 
, are needed for the 1403 printer, and the FCB specification and density 
t settings for the 3211 and 3800 printers. 

t 3. GFXXXXXX - gra:phic modification region. This region the picture 
t iaages needed to built graphic modifications for the 3800 printer. All 
I the standard IBft graphic modifications are in TSS*****.SYSGRAPH(O). 

4. standard setup region. This region contains the default inforaation 
needed for a standard printer setup_ It is also used to backfill any 
setup information required but not specified. 

I Example 1: the exaaple that follows contains the information needed to 
I l.oad the 3211 and 3280 printers with the Pl1 chain/train configuration. 
, This is indicated by the DEVICE=3211/3800,HAKE=P11 statements. The load 
• information iaaediately folloys this statementes). In the case of the 
• 3211 it is the chai:ll/train iaage. For the 3800 it is the translate ta­
I ble foll.oved by the iCGK ID. This exaaple does not define the P11 train 
I iaage for the 1403. Hoyever, it does indicate where this information 
I aay be found. The statement DEYICE=1403,SEE=(PH,1403) indicates the pl1 
, compatible 1403 chainjtrain image may be found in the region CTPH of the 
I SYSUCS data set. 

section 2: System Kacro Instruction Descriptions 205 



I CTPll 
f CTP11 
, CTP11 
I CTP11 
I C'l'P11 
, CTP11 
I CTP11 
t CTP11 
, CTP11 
I CTP11 
, CTP11 

CTP11 
CTP11 
CTP11 
CTP11 
CTP11 
CTP11 
C'l'Pll 
CTP11 
CTP11 
CTPll 
CTP11 
CTP11 
CTP11 

, CTPll 
, CTPll 
I CTP11 
I CTP11 
, CTP11 
I CTPll 
I CTP11 
f CTP11 
I C'l'P11 
I CTP11 
, CTP11 
I CTP11 
r CTP11 
J CTP11 
I CTP11 

0000100 DBYICE=1403,SBE=(PN,1403) 
0000200 DBYICB=3211,NAKE=Pll 
0000300 l'BDJL-5K*C(HA~=EO?)S,tR>V92·68<XYT'GF~H._U07/P3W"IQ,4 
0000350 l'BDJL-5K*C(NO$=E:t)SA&RZY9+G682;YT<XF~H __ U07/P3WHIQ,4 
0000400 1·BDJL-5K*C(NA~=EO?)S,tR>Y92"68<XYTrGF~H._U07/P3WHIQ,4 
0000450 1·BDJL-5K*C(.0$=B:t)SA&RZV9+G682;YT<XF~H._U07/P3WP-IQ,4 
0000500 l'BDJL-5K*C (lUi=EO?) S ..... 'R>V 92"68 <XY'l' IGF~H __ U07/P3WfHQ,4 
0000550 1·BDJL-5K*C(NO$=E:t)SA&RZV9+G682;YT<XF~H._D07/P3WHIQ,4 
0000600 1·BDJL-5K*C(NA.=EO?)S ..... iR>Y92"68<XYTIGF"H._D07/P3WMIQ,4 
0000650 l'BDJL-5K*C(NO$=E:')SA&RZY9+G682;YT<XF%H __ U07/P3WMIQr 4 
0000700 END 
0001000 DEVICE=3800,NAftE=P11 
0001100 
0001200 TRA~SLATE TABLE 
0001300 
0001400 FFFFPFFFFFFFFFFPPFPFFFFFFFFFFFFF 
0001500 FFFFPFFFFFFPIFFFFPFFFFFFFFFFFFFF 
0001600 PFFPFPFFFFFFFFPFFFFFFFFFFFFFFFFF 
0001700 FFPFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 
0001800 OOFFFFFFFFFFFFFFFFFFFFOBOCODOEOF 
0001900 10FFFFFFFFFFFFFFFFFFFF1B1C1D1E1Y 
0002000 2021FFFFFFFFFFFFFFFFFF2B2C2D2E2F 
0002100 FFFFFFFFFFFFYFFFFFFF3A3B3C3D3E3F 
0002200 FFFFFFFPFFFFFFFFFFFFFFFFFFFFFFFF 
0002300 FFFFFfFFFFFFFFFFFFFFFFFFFFFFFFFF 
0002400 FFFFFFFFFFFFFFFFFFFFFFYFFFFFFFFF 
0002500 FFFFFFFFFFFF?FPFFFFFFFFFFFFFFFFF 
0002600 ~F010203040506070809FFPFFFFFFFPP 
0002100 PF111213141516171B19FFFFFFFFFFFF 
0002800 FFFF2223242526272829FFFFFFFFFFFF 
0002900 30313233343536373839FFFFFFFFFFPF 
0003000 
0003100 WCG.'! PAIRS 
0003200 
0003300 (82,00) 
0003400 
0003500 GRAPHIC NAMES MAX 12 
0003600 
0003700 END 

Exaaple 2: 

I FBSTD6 
I iBSTD6 
I FBSTD6 
I PBSTD6 
f iBSTD6 
, FBSTD6 
• FbSTD6 
f PBSTD6 
t FBSTD6 

0000100 DEVICE=1403 
0000200 FOR'UT=STANDARD,6 
0000300 END 
0000400 DEVICE=3211 
0000500 FORMAT=l (6,1),62(6,12},66(6 r 9) 
0000600 END 
0001300 DEVICE=3800 
0001400 FORMAT=l (6,1) ,62(6,12) ,66(6,9) 
0001500 END 

I ~he "DEVICE=' keyword signals the start of the device dependent informa­
I tion. For the 1403 the operator will he rsguested to mount the carriage 
, tape 'STANDARD' and set the printer density to 6 lines per inch (LPI). 
i For the 3211 and 3800 an FCB image setting the density to 6 with channel 
I code 1 at line 1, channel code 12 at line 62, and channel code 9 at line 
, 66 will be huilt. 

Example 3: 

STPAPER 0000200 PAPEP=lPLY 
STFAPER 0000300 FORMAT=STD6 
Sl'PAPER 0000400 C8ARS=P1',H11 

206 



I The default region of the SYSUCS data set is used by both the SETUR 
, process and the print command. SETUR uses this region to backfill 
I defaulted values in the SETUP request. The print cOlllmand uses it to 
J fill in defaulted values in the batch vork queue. This inforaation is 
, used by the batch monitor to schedule print jobs on the correct printer. 
; At print request tiae the ·CHARS:' keyvord indicates that either a Pll 
r or H11 train image can satisfy the print request. At SETOR time the 
, 'CHARS=' keyvord indicates that the Pl1 train image should be loaded in 
1 the printer. PAPER type is lPLY regardless of printer type. The region 
, FBSTD6 will be used to fulfill the FCB requirements based upon device 
I type. 

Example 4: 

In the exaaple that follows tvo picture images have been defined. Both 
pictures will have a pitch value of 10 as indicated by the 'PITCH=' key­
vord. T he keyword 'CODE;;::' 'iefines the displacement in to the translate 
table vhere the graphic modification is to be placed. A maximum of 24 
picture images may be specified in a graphic modific~tion region. The 
first line of each ?ictllre image must specify the cod.e and :;:>itch value. 
The second line, in the above example, is optional and is used Lor ref­
erence purposes only. Each picture image lmust have 24 lines. The S]S­
tell viII accept a lIuximuli of 18 chacacters per line. Short lines viII 
be padde d to the ri;Jht vi th blanks, long lines will ))e truncated_ 

Section 2: Systew Baero Instruction Descr1ptions 201 



I GFGRFl 0000100 CODE=5B PITCH 10 
I G11GRF1 0000200 123456789012345678 
I GFGRFl 0000300 
I GFGBF1 0000400 , GFGBF1 0000500 , GFGBFl 0000600 
I GFGRF1 0000100 *** *** 
I GFGRF1 0000800 ***** ***** , GFGRF1 0000900 *** *** 
I GFGBF1 0001000 , GFGBFl 0001100 *** *** 
r GFGRF1 0001200 *** *** 
I G7GRF1 0001300 *** *** , GFGBF1 0001400 *** *** , GFGRF1 0001500 *** *** 
I GFGRF1 0001600 *** *** , GFGRF1 000 1700 *** *** , GFGBF1 0001800 *** *** 
I GFGRFl 0001900 **** **** 
I GIGBFl 0002000 *********** , GFGBFl 0002100 ********* 
I GFGRFl 0002200 , GFGBF1 0002300 
J GFGRFl 0002400 
I GYGBF1 0002500 
I GFGBFl 0002600 , GFGBF1 0002100 CODE=7B PITCH 10 
I GFGl1F1 0002800 1234561890123Q5618 
I GFGBF1 0002900 
I GFGRF1 0003000 
I GYGRF1 0003100 
J GFGRFl 0003200 , GFGBF1 0003300 *** *** 
I GFGRF1 0003400 ***** ***** 
I GFGBFl 0003500 *** *** 
t GFGRF1 0003600 *** 
I GFGBF1 0003100 *** 
I G1"GB1"1 0003800 ***** , 6FGRF1 0003900 *** *** 
I GFGBFl 00011000 *** *** 
r GFGBF1 00011100 *** *** , GFGRFl 0004200 *** *** 
I GFGRFl 0004300 *** *** 
t GFGRF1 0004400 *********** , GFGRFl 0004500 *********** 
I GFGRYl 0004600 *** *** , GFGB1"1 0004700 *** *** 
I GFGRYl 0004800 
r GFGRFl 0004900 
t GFGR1"1 0005000 

SETVLOCK -- set VK Lock (0) 

SETVLOCK is used to set a VK Lock_ 

• • I 
IName IOperationlOperand 
, I I --------------------------------------~ 
I[ symbol ]1 SETVLOCK Il.ock ,l.og [,SET=set] 
~, ________ ~, ________ ~, ________________________________________________ ____J 

l.ock 
specifies the VK Lock to be set. 

208 



~cified as: an ax address. 

log 
specifies the VM Lock Anchor to be used to record the status of the 
spe cified lock. 

~cified as: the symbol naming a LOGVLOCK macro. 

set 
specifies an address in the current aodule to be branched to if the 
specified lock is already marked "set". 

~cified as: an RX address. 

Default: The status of the lock vil1 not be checked. 

Execution: If the branch address is specified and if the VM Lock Anchor 
indicates "set" the branch will be perfor.ed. otherwise, the specified 
VK Lock v11l be set and the VM Lock Count (ISAVLKCT) in the task's 
Interrupt Storage Area (CHAISA) WILL BE IBCREMENTED. The address of the 
lock v111 be saved in the V~ Lock Anchor for use by OPlIVLOCK, etc. 

CAUTION: This aacr,D aust be protected from task interrupts by ITI/PTI. 

Prograll. ing Bote: :aefer to V! Locking in section 3 .. 

SETXP -- set External Page Table Entries (lit 

The SETXP macro instruction alloys a range of virtual storage to be 
associated with a set of' external storage addresses. It also flags 
pages as "unprocess,~d by dynaaic loader." The first reference to the 
page or pages vill then cause control to be given to the dynamic loader. 

• • !i 
,Balle ,OperationfOperand · , ~ I [symbol ]1 SETXP ~ r 
• • u I 

Bote: There are no operands. 

Initialization: A l)CLASS macro instruction with the PRIVILEGED option 
aust be coded in a eSEeT prior to coding SETXP. If aore than one DCLASS 
macro instruction is issued in a aodule, the last DCLASSissued prior to 
coding SETXP must bE! issued with the PRIVILEGED option. 

Execution: The first bit of the halfvord immediately fol1oving the SVC 
is interpreted as a flag- If this hit is 1, the high-order bit of the 
SDA indicates which entry has been processed by the loader. The aaximum 
page count is 1022. The low-order 10 bits of the halfword following the 
SYC are interpreted as a page count. The first fullword following the 
svc contains the virtual storage address at which the external page ta­
ble entr ies are to tie set.. After this vord -- and depending on the page 
count -- are a nuaber of words: each vord contains an external storage 
address that is to be associated with a page in the virtual storage 
range. If the unprocessed-by-loader flag is set for a page, the first 
reference to that pa.ge by a program causes control to be given to the 
dynamic loader via a task-prograa interruption type 16. 

The external page table entries supplied in the paraaeter list are 
set as indicated. The unprocessed-by-loader bit is set for each page 
whose bit string flag is a 1 and the high-order bit of the SDA is zero. 
This al1 Olrs a aixed list to be processed .. 

Section 2: System Macro Instruction Descriptions 208.1 



ieturn Data: Hone. 

Example: Suppose that you want to set external page table entries for 
three pages beginning at location NEW. You might write: 

SA!PL EI O,SET 
B SOMEPLACE 

SET DS OF SVC MUST BE ON FULL WORD BOUNDARY 
SETXP 
DC lil3' NO BIT STRING r THREE PAGES 
DC A (NEW) ADD EXTERNAL PAGE TABLE EMT AT NEW 
DC H '12' SYMBOLIC DEVICE NUMBER 
DC H'11S' RELATIVE PAGE ON DEVICE 
DC H'3S' SYMBOLIC DEVICE NUMBER 
DC H'Sl' RELATIVE PAGE ON DEVICE 
DC H'l2' SYMBOLIC DEVICE NUMBER 
DC H' 314'" RELATIVE PAGE ON DEYICE 

SETITS -- set Up Extended Task status Index Field CR) 

The SETXTS macro instruction enables you to set the estimated run 
tiae of your task in the ITSI. 

208.2 



r 

i , i 

IBaae ,Operation ,Operand 
I I , 
l[syab01]ISBTXTS l[fie1d] . , . 
fie1d 

specifies th.~ XTSI fie1d to be set. 

Specified as: BSTIB, which indicates that the estiaated run-tiae 
fie1d of the ITSI is to be set; SBT24, which indicates 24-bit aa­
chine addressinq is to be used; or, if the deciaa1 va1ue of 3 (for 
BSTIB) or 12 (SBT24) is first 10aded into reqister 15, as: (15). 

Defau1t: It is assuaed that the issued has p1aced a va1ue in 
reqister 15. 

Initia1ization: A DCLASS macro instruction with the PRIVILBGED option 
aust be coded in It CSECT prior to codinq SETXTS. If aore than one 
DCLASS aacro instruction is issued in a aodu1e, the last DCLASS issued 
prior to codinq SETXTS aust be issued with the PRIVILBGBD option. 

Execution: The va1ue in reqisters 0 and 1 when SETXTS is issued is 
stored in the extended task status index fie1d indicated by the code in 
reqister 15. 

Exaap1e: suppose you want to set the estiaated run-tiae field of the 
extended task status index. You cou1d write: 

BA!B 

SR 
L 
SBTXTS 

0,0 
1,=F'runtiae' 
ESTIB 

SIPBHOOK -- Systen Perforaance Eva1uation (0) 

The SIPEHOOK aacro instruction is asseab1ed into various resident su­
pervisor aodu1es so that systea data aay be co1lected by the Systea 
Interna1 Perforaance Bva1uation Bodule (SIPE) 

, 
11Iaae 
I 

, i 

I OperaticJn I Opera nd 
I I 

I[ symb01 ISIPEHOOK tnuaber-va1ue,hookcode-va1ue 
• I • 

nuaber 
specifies a unique nuaber for this SIPBHOOK within this asseab1y 
aodu1e. 

Specified as: a two diqit deciaa1 nuaber. 

hookcode 
specifies which SIPB collector is to be activated because of this 
hook. 

Specified as: a three diqit deciaa1 nuaber. 

Execution: The action that occurs when a hook is reached is actua11y 
deterained by the settinq of an instruction switch 10cated in the pre­
fixed storaqe area (PSA) of aain storaqe. (PSA is the tera used to 
describe aain storaqe 1ocations 0-4095, which can be addressed without a 
base reqister.). When TSS startup is coap1eted, this instruction switch 
contains a .OPR instruction (actually, a two-byte DCR iSfitruction, with 
condition code 0). 

~F~tion 2: System !acro Instruction Descriptions 209 



When control arrives at a hook~ this central switch is the subject of 
an EXECUTE instruction. If SIPE is not being nsed~ the .OPR instruction 
is executed, and control flows through the hook. However, if SIPE is 
active, the initialization phase of SIPE has reset this central switch 
to an SVC. This SVC is executed by the hook and results in a transfer 
of control to SIPE, which recognizes the SVC code as denoting hook 
execution. Basically, the following events occur for a selected hook: 

1. The hook is entered, executing the switch in the PSA region 
(SVC) • 

2. The hardware-stored SVC old PSW contains the current aachine sta­
tus and the instruction counter. 

3. The SVC new PSW becoaes active. 

(a) SIPE saves all machine registers. 

(b) SIPE locates the hook via the SVC old PSW (instruction count­
er) and inspects the hook identity code (a constant included 
in the hook). 

(c) A collector is given control to abstract the appropriate data 
for this hook and file it in the output buffer. 

(d) The I/O buffer is output if necessary. 

5. The machine registers are restored. 

6. The SVC old PSW is loaded, returning control to the host aodule 
at a point just past the hook. 

Example: Suppose SIPE collector 145 is to be activated in a supervisor 
module. The macro instruction aight be written: 

SIPEHOO~ 01,145 

This would generate: 

EX O,PSASIP 
!fOP *-* 
ORG *-2 
DC AL1(145) 
DC 11.1 (255) 

STORE -- Store Register Contents (0) 

The STORE macro instruction stores the contents of one or more 
registers. 

• • • ,!fame ,Operation ,Operand 
I , , 
l(sy.boll,STORE ,area, (first register[,last register]) 
• I 

area 

210 

specifies the address of the storage area in which the register or 
registers are to be saved. 

Specified as: An RX address, or register notation. If register 
notation is used, the address must first be loaded into the speci­
fied register. 



f'irst register 
specifies the f'irst in a range of registers whose contents are to 
be saved, or the only register whose contents are to be saved. 

Specified as: A deciaal nuaber from 8 through 15. 

last register 
specifies the last register in a range of registers. 

Specified as: A decimal nuaber not greater than 15. 

Default: Only the register specified in the first register operand 
is saved. 

Programming Notes: The area must be large enough to contain the speci­
f'ied range of registers. 

STXTB -- SET and XTBCT Table 

The STITB is a macro used for generating internal tables for use by 
the three SET/XTBCT routines -- CEAH2, CEAS2, and CEAS4. 

• i i 
I Bame I Operatie'n ,Operand 
I , , 
l[syaboIJ,STXTR ,table,field,type 
I , • 

table 

field 

type 

specifies the' name of the dsect which is used in each particular 
routine. 

Specified as: CHATSI for CEAH2 
CHASYS for CEAS2 
CHAXTS for CEAS4 

specif'ies thE' field within the dsect which is to be SETup or 
XTRCTed. 

Specified as: any field within the particular dsect used. 

specifies whether the field can only be XTRCTed or also SETup. 

Specified as: SETUP - setup or extracted 
XTBCT - extracted only 

Progra_ing Notes: The table generated is in a standard form that the 
SET/XTRCT modules interpret to perfora the correct movement of data from 
virtual memory to the corresponding supervisor tables. 

SYSEB -- Indicate Nonresident-Program-Detected Error (0) 

The SYSEB macro instruction is the means by which a nonresident pro­
gram reports errors it has detected. 

iii 
,Bame I Operation ,Operand 
I , , 
,[symbolJ,SYSER ,error type,fillin,idl,id2,id3,call , , 

Section 2: System ftacro Instruction Descriptions 211 



error type 
specifies the type of error detected. 

Specified as: One of the codes shown in Figure 23 under the ERROR 
macro instruction. 

fillin 

idl 

id2 

idl 

call 

must be included for compatibility. 

Specified as: Any two-digit decimal number in the range 00 through 
27. 

is the first of three unique identifiers for the message to be is­
sued when SYSER is invoked. 

Specified as: 1 decimal number in the range 1 through 83. 

the second of three unique identifiers for the message to be issued 
when SYSER is invoked. 

specified as: 1 decimal number in the range 1 through 99. 

the third of three unique identifiers for the message to be issued 
when SYSER is invoked. 

specified as: A decimal nu.berin the range 1 through 999. 

is used to identify one of several calls in a aodule. 

Specified as: A decimal number from 1 through 99. 

Initialization: A DCLASS macro instruction with the PRIVILEGED option 
must be coded in a CSECT prior to coding SYSER. If aore than one DCLASS 
sacro instruction is issued in a module, the last DCLASS issued prior to 
coding SYSER must be issued with the PRIVILEGED option. 

Execution: The processing unit receiving the SYSER SVC stops all other 
processing units in the system. A message (see "SYSER DOKp· in Section 
5) is issued at the operator's terminal, the system enters the wait 
state, and, at the installation'S discretion, a dump is taken. 

If the error type is 2 (major software), a program interruption 202 
is queued on the calling task; this ultimately results in its abnormal 
teraination. If the error type is 3 (hardware failure), the SVC 228 
routine transfers control to the recovery nucleus. If the error type is 
1 (minor software), or if the recovery nucleus returns control to the 
SVC 228 routine, all other processing units in the system are restarted; 
control is then returned to the instruction following the SYSER parame­
ter list. 

Programming Bote: Part of the message issued at the operator's terminal 
is a nine-digit SYSER code; this code is formatted frOB the idl (aa), 
id2 (bb), id3 (ccc), and call (nn) operands of the SYSER macro instruc­
tion and has the form aabbcccnn. This construction permits you to iden­
tify calls to the system error processor from privileged virtual storage 
modules to facilitate debugging. You might, for example, assign a par­
ticular idl code to a group of related modules, assign a particular id2 
code to a subset of this group, and a particular id3 code to a module or 
group of modules within this subset; such an arrangement would identify 
the source of the call to the syste. error processor. You could then, 
using the call operand, assign sequential numbers to the SYSER calls is-

212 



r 

sued by tha~ aodule or group of .olules to aid recognition of particular 
errors resulting in calls within the sequence. Por exaaple, you aight 
write: 

r, -----...,id 1 
I r------,id2 
I .-, ---...,id3 
I' I r call 

SYSER 1,00,13,6,99,1 

and the resulting SYSER code, 130609901, would identify the error which 
resulted in the call to the systea error processor. 

To avoid the possibili~J of issuing different SYSER calls wi~h the 
saae SYSER code (thus duplica~ing the aessages issued at the operator's 
ter.inal and creating confusion as to the reason for ~he call), see sys­
te_ Bessages for those SYSER codes already in use in the sJstea. 

Example: Suppose your task detects a ainor software error and JOu want 
to get just the basic SYSER output. You aight write: 

BUG SYSER 

TSEBD -- Porce Ti.e Slice End CR) 

The TSEBD _aero instruction forces on your task an early ti.e slice 
end. 

Iii 
IBa.e IOperationlOperand 
I I r 
l[syabol]ITSEBD I , , . 
Bote: There are no operands. 

initialization: A DCLASS macro instruction with the PRiViLEGED option 
_ust be coded in a CSEC~ prior to coding ~SEBD. if aore than one DCLASS 
aacro instruction is issued in a aodule, the last DCLASS issued prior to 
coding TSEBD .ust be issued with the PRiViLEGED option. 

Bxecution: The current tiae slice of the task issuing the SVC is 
terainated. 

Exa.ple: if you want to cause your current tiae slice to come to an 
end, you .ight write: 

IYZ TSEBD 

TSTVLOCK -- Test VB Lock (0) 

The TSTTLOCK .aero is used to test the recorded status of a VB lock. 

, i i 

,Baae ,Operatioll,Operand 
I I I 
I[syabol]ITSTVLOCK Ilog,[set],[open] . , . 
log 

specifies the VB Lock to be tested. 

1 

J , 

Section 2: System Bacro instruction Descriptions 213 



specified as: the symbol naaing a LOGVLOCK macro. 

set,open 
specify addresses in the current module to be branched to if the 
lock is aarked "setR or Ropen", respectively. 

Specified as: RX addresses. 

Execution: The specified VB Lock Anchor is tested, and the appropriate 
branch is executed. 

Program.ing: Refer to VB Locking in section 3. 

TWAIT -- wait for Terminal 1/0 Interruption Cft} 

The TWAIT macro instruction checks for a response to a message you 
have sent and, pending its arrival, puts your task in the delay state, 
which causes your task's pages to be moved to auxiliary storage. 

, i i 

IBame I Operation I Operand 
I I I 
I[symbolJITiAIT I 
I I • 

Bote: There are no operands. 

Execution: The SVC must be the subject of an Execute instruction and 
Bust occupy the second halfword of a fullvord control block called an 
event control block (ECB). The resident supervisor checks the second 
bit of the halfword preceding the supervisor call and interprets this 
bit as the event complete bit. If this bit is 1, the supervisor returns 
control and the SVC is in effect a BOP (no operation). If the bit is 0, 
and there are any unaasked interruptions queued on the task, a BOP is 
also affected. Otherwise, the supervisor sets the TWAIT flag in the 
task's TSI to 1 and puts the task in the delay state; this causes time 
slice end to occur for the task. The task is reaoved froa the delay 
state when any task-interruption -- if the task is enabled occurs. 

Example: Suppose you send a' message to soae terainal and are vaiting 
for a response. The posting routine associated with the lOCAL (see the 
lOCAL macro instruction) used to transmit the message to the terminal is 
responsible for setting the event-complete bit of an event control block 
to 1. You have reached a point in your program beyond which you do not 
wish to continue until the lOCAL posting routine has been entered. You 
might write: 

TEST 

EX 
B 
DS 
DC 
TWAIT 

O,TEST+2 
IOCOBPLETE 
OP 
H'O' 

ALIGI 
POSTIBG FLAGS 

UFLOW -- User Flow for TSS and ftTT (R) 

The UYLOW macro instruction is used (for exaaple, by the FLOW co .. and 
processor) to modify or obtain either the conversational task limit and 
the number of current TSS users, or the anltiterainal task (BTT) appli­
cation user liaits and the nuaber of current users for each application. 

214 



• i i ,Baae ,Operation ,Operand 
I I I 
l[syabol],UPLOW I ·L ________ ~' __________ L· ____________________________________________________ __J 

Bote: There are no operands (see Initialization)~ 

Initialization: Before executing this aacro instruction, registers 1 
and 0 aust be loaded with the follo.ing parameters: 

Register 1 
An action code, specifying the action to be taken. 

2 

3 

fteanin~ 
Set the conversational task liait to the value specified in 
the lotf-order two bytes of recJister O. 

Obtain the number of conversational tasks currently in 
execution and the conversational task liait (see Return Data 
below). 

Set liT! user liaits for each of the application naaes speci­
fied i'n the input buffer that is pointed to by register 0 .. 
The input buffer aust contain: 

0 7 8 9 10 11 12 13 14 15 
i I 1 1 i I 

,Application naae (1) r fllTT , I , , , ,user , I , 
I I I limit , t I , I r (1) , t , 
I , , , I , 
,Application naae (2) , rllTT J , , 
r r luser r , , , I Ilimitl I I 
t t 1(2) I r J 
I I , I I , 
r etc. , , , , , 
I I 

The application naae aust be left-aligned and consist of up 
to eight alphaaeric characters; the first of which must be 
alphabetic. Setting the application naae to X'PP' indicates 
the end of the buffer list, for both action codes 3 and 4. 
The IIT~r user liai t must be specified in binary. The 10'­
order bytes that are not used must contain blanks. 

4 Obtain the number of ftTT users in execution for each appli­
cation naae that is currently active in the syste.~ Regist­
er 0 aust contain the address of a virtual storage buffer 
into which the application naaes and the statistics pertain­
ing to each can be recorded when the requested processing is 
perforJled~ 

Register 0 
Either the cOllversational task luit, representing the total nUllber 
of TSS users that aay be logged on concurrently, if action code 1 
is specified, or a virtual storage buffer address, if action code 3 
or 4 is specified. 

The task liai1: that is specified in the two low-order bytes does 
not affect USE~rs that are already logged on~ If set to zero, no 
additional users aay logon to TSSj the maximum must always be less 
than or equal to the system aaximua. Any virtual storage address 
that is specified should point to a buffer that starts on a page 

section 2: System Sacro Instruction Descriptions 215 



boundary and does not exceed a page length. This address can point 
to either an input buffer (see action code 3) or to an output buff­
er (see action code q). Two systea DSECTs, CBAOFL and CBAUPB, 
respectively, are avai1.able within TSS for use in referring to 
fields in those buffers. 

A DCLASS aacro instruction with the PRIVILEGED option aust be coaed 
in a CSECT prior to coding UPLOW. If more than one DCLASS aaero in­
struction is issued in a aodule, the last DCLASS issued, prior to coding 
OPLOW, aust be issued with the PRIVILEGED option. To ensure (for action 
codes 3 and 4) that the buffer will be in main storage when UPLOW is 
executed, an RVC instruction aust iamediately precede the UFLOW macro 
instruction. 

CAUTIOBS: Use of UFLOW (which produces an SVC 187) is restricted to 
tasks having system prograamer authority (0 or Pl. Any virtual storage 
buffer that is provided aust not go oyer a page boundary. 

Execution: The privilege specified by the DCLASS macro instruction is 
verified. If acceptable, the action code is validated. Por action 
codes 1 and 2, the appropriate limit fie1.d, conversational TSS task 
liait (action code 1), or the RTT application user liait (action code 3) 
is set in the multiterminal status control block (RTSCB). For action 
codes 3 and 4, the requested statistics (current number of conversation­
al TSS tasks or current nuaber of RTT users on a specified RTT applica­
tion) and the system maximuas for such limits (see Programming Votes) 
are recorded. in the buffer. All error conditions are identified by re­
turn codes or, for action code 3, in the original input buffer (see Re­
turn Data below). 

Return Data: 

Begister 0 

216 

Por successful execution of action codes 2 and 4, contains the re­
quested TSS or RTT statistics in the fora: 

Por action code 2: 

o 
i 
ICurrent nuaber of 
Iconversational tasks 

For action code 4: 

0 7 8 
j , 
I Application naae el) I Current , I users 
I I 
I Application naae (2) I Current 
I I users 
I , 
I etc. , 

15 16 
i 
,Conversational task limit , 
• 

9 10 11 12 13 
j I i 

RTTIUser limitlRaxiaum nuaberl , lof users 
I I I 

!lTT,User limit,!laxiaum nuaberf , ,of users I , , , , , , 

31 

11$ 15 
I 

I 
I , 
I , 
I , 

The application naae must be left-aligned and must consist of up to 
eight alphaaeric characters, the first of which must be alphabetic. 
When the application name field contains hexadeciaal Ps, it indi­
cates the end of the output buffer list. The low-order bytes that 
are not used contain blanks. The current !lTT user value, the RTT 
user limit, and the aaximum nuaber of RTT users are all binary 
values. 



r 

For action cede 3: register 0 points to the input buffer and aay 
contain error indications: 

1. If an app1ication naBe is nonexistent, the two halIwords start­
ing at byte 10 in the input buffer are set to X'iFFF'. 

2. If the aaximua allowable user liait (recorded in ftTSftAX in the 
ftTSCB) is exceeded, the two halfwords starting at byte 10 in 
the input buffer are set to C'**', and the maxiaua value is 
placed in the next halfword (at byte 14). 

Register 15 
Contains a return code: 

Code 
-0-

4 

a 

12 

fteaning: 
Horaal completion 

Conversational task liait is larger than maxiaum value 
(!TS!AX) for action code 1 

Action code specification error 

Buffer exceeded page boundary 

Proqraaminq Hotes: The initial TSS conversational task liait is estab­
lished during system generation with the TSKLftT macro instruction (see 
Systea Generation and ftaintenance); the number of !TT administrators (or 
!TT tasks) is included in the count of conversational tasks. 

The user limit .specified for each !TT application program with UFLOW 
can never exceed tbe aaxiaua value originally established by the !ITT 
adainistrator when he issued an !ITT comaand. 

Before UFLOW is first issued, a GET!AI. maero instruction can be is­
sued to get the buffer, which can be retained for the duration of the 
task. 

If a conversath>Dal 'rss task ends abnoraally (coapletion code 2), a 
new task is created regardless of the conversational liait. 

A co.mand, FLOW, available only to systea aanagers, administrators 
(see ftanaqers and Administrator's Guide), and operators (see Operator's 
Guide), can be used dynaaically to aodify the number of conversational 
or batch tasks. 

UPDTUSER -- Update User Tables (0) 

The UPDTUSEB ma«::ro instruction causes the data pertaining to external 
storage that is cUlc-rently in each user table in the SYSUSE data set to 
be updated with inforaation froa the various user catalogs and DSCBs. 

i i • 1 
IHaae I Operation I Operand I 
I I ~I-------------------------------------------~' 
I[syabol]IOPDTUSER ,[aode] I 
I I • • 

aode 
specifies whether all or select user entries in the SYSUSE data set 
are to be updated. Select users are those users with currently ac­
ti'Te tasks anel those users owning shared data sets that are cur­
rently being accessed. 

Section 2: Systea ftacro Instruction Descriptions 217 



Specified as: A all 
S - select 

Initialization: A DCLASS macro instruction with the PRIVILEGED option 
aust be coded in a CSECT prior to issuing UPDTDSER. If more than one 
DCLASS sacro instruction is issued in a module, the last DCLASS issued 
prior to coding UPDTUSER must be issued with the PRIVILEGED option. 

Execution: UPDTUSER updates the cumulative page count fields in the 
user table data set (SYSUSE) by extracting the information from each 
user's catalog and each referenced data set's foraat-E DSCB. Temporary 
public data sets are erased, the total number of pages assigned to each 
user table is changed to reflect the values indicated by their DSCBs, 
and the temporary and external storage allocation fields are updated. 

If mode S is specified, only those entries whose users were active at 
the tiae of issuing UPDTUSER (or, if the system failed and vas 
restarted, users vho vere active at the time of system failure) are up­
dated. (RActive" here means active task or with a shared data set that 
vas being read. The flag DSEADC in the user entry indicates an active 
user.) 

Return Data: A aessage signifying the completion of the update is writ­
ten to SYSODT, a return code is placed in register 15, and control is 
returned to the issuing program. 

Return Codes 
00 
Oq 

!leaning 
Hormal return 
DSCB error or improper authority code 

Example: A privileged system program.er has previously issued an RPS or 
CYV co •• and, or has decided that aany user tables have becoae obsolete. 

~: DPDTDSER 

Systea: Returns the folloving message to SYSODT: "nnnn USER TABLE 
STORAGE ALLOCATIONS DPDATED AGAINST DSCBS." 

Programming Notes: Polloving an RPS or CYV cos.and, an DPDTDSER cos.and 
or macro instruction should alvays be issued. DPDTUSER say be issued 
vithout a preceding RPS or CVV. 

UPDTUSER facilitates the conversion from an old user table entry 
DSECT to a nev one. 

If the user table is suspected or knovn to be in error, issuing UPD­
TUSER causes the current catalog and DSCB information to be placed in 
the user table. 

If the user table is up to date except for active users, vhich may be 
true following a system failure and restart, the use of Bode S speeds 
the updating. 

Any temporary public data sets are deleted by issuing UPDTUSER. 

When the user table of the task issuing DPDTDSER is itself updated, 
the shared virtual storage of that user table is updated to correspond 
to the updated SYSUSE record. 

218 



USAGE -- Display Resource Usage (5) 

This aacro instruction obtains accounting data that has been accU8U­
lated for a user. 

OSAGE is described in Asseabler Oser Bacro Instructions, except for 
the following inforaation that is applicable only to systea programmers 
(authority codes ° or P). 

userid 
specifies the address of a location containing the userid of the 
user for who. the accounting data is requested. (1 nonprivileged 
user aay obtain only his own accounting data; a syste. prograamer 
aay obtain the accounting data of any user.) The userid at the 
specified location aust contain one to eight alphaaeric characters, 
the first character aust be alphabetic, and the userid aust be 
deliaited bytl27·. 

Specified as: 1 relocatable expression, or, if the address is 
first loaded into the specified reqister, in reqister notation. 

Default: The issuer's userid will be used. 

USELOCK -- Lock Oser Table Entry (0) 

The USELOCK aac:co instruction is used to lock the virtual ae.ory copy 
of a user table entry. 

• i i ,Baae ,Operation ,Operand 
I I I 
l[syabol]IUSELOCK I 
• • • 
Bote: There are no operands. 

rnitialization: The prograa issuing the DSELOCK aacro aust have previ­
ously set up base registers for task coamon (CHATCB) and the user table 
entry (CHADSE). 

Execution: The OSELKCBT is loaded into general register 15 to control 
the nuaber of tiae slice ends that will be issued. The lock byte is 
then tested with a TS instruction. If successful the task id is aoved 
fro a task coa.on to the user table entry and processing continues. If 
the TS instruction was unsuccessful, a tiae slice end is issued, the 
count in general rf~gister 15 is decreaented, and the lock byte is tested 
again. When the Q}unt goes to zero, processing continues as if the TS 
instruction had been successful. 

YDBER -- YAB Data Manage.ent Error Recovery (S) 

The TDBER .acro instruction provides an error exit for attempting 
recovery or issuing diagnostic .essages when error conditions arise 
while processing VAB data sets. rf used conversationally, VDBER issues 
diagnostic aessages and returns to the user's terainal without ter.i­
nating his task. If executed nonconversationally, diagnostic aessages 
are written to the SYSOUT device, and the task is terminated. 

Standard fora: 
, • i 
,Baae ,Operation ,Operand 

• , I ,[sy.bolJ,TDBER 'deb address,.essage id,flags · , . 

I 

I , 

Section 2: Syste. Bacro Instruction Descriptions 219 



L- and E-forms: 
iii 
,Hame ,Operation ,Operand 
I , , 
l[symbol)IYDMER Idcb address,message id,flags,MP={L,(E,list)} 
• I , 

~: A symbol is required in the name field of the L-form. An operand 
omitted from the L-form must be specified in the B-fora; an operand 
specified in the L-form is overlaid by the same operand in the E-fora. 

dcb address 
specifies the address of the data control block (DCB) for the data 
set in error. 

Specified as: A relocatable expression or register notation (2 
through 12). If register notation is used, the address must first 
be loaded into the specified register. 

message id 
specifies the address of the second word of a parameter list that 
contains the identification number of the diagnostic message for 
the error condition. If there is variable data to be supplied for 
the message, pointers to the variable inserts follow the message 
ID, and a one-byte count of these pointers will precede the message 
ID (see below). 

• i j i i •• 
ICIAAAAIAAAAIP1P1P1P1 IpzpzpzP2 IPo ••• , 
• • 

C = One-byte count of pointers (may be zero). 

A = Eight-character message ID. This doubleword is 
addressed by word 2 of the parameter list. 

Pl,PZ, ••• po = Pour-byte pointers to variable data, 
if any. 

Specified as: A relocatable expression or register notation (2 
through 12). If register notation is used, the address must first 
be loaded into the specified register. 

flags 
specifies the address of a two-byte field where: byte 1 indicates 
the type of error that occurred, and byte 2 indicates additional 
information about the error. ~he flags and their meanings are: 

Byte 1 
'10 ' 

'OC' 

Heaning 
EODAD or SYHAD condition 

Clear last operation flag 

Meaning 
Called by one of the OPBN modules CZCOA, CZCPZ, CZCOP 

SDST error in CZCOA 

Non-VAK data set in CZCOZ 

Specified as: A relocatable expression or register notation (2 
through 12). If register notation is used, the address must first 
be loaded into the specified register. 

Bxecution: VDBER closes the data set that is causing the error. If it 
was open, a temporary close (CLOSE, type T) is issued on all the data 
sets associated with that task. Diagnostic messages are written to the 

220 



user IS SYSOUT devi,ee. If conversational, control is returned to the 
user's task. If nonconversational, the task is terainated. 

Exaaple: A systea proqraaaer, processinq a VAft data set, discovers an 
error condition. He issues TDftER in an atteapt to recover froa that 
condition without terainatinq the task associated with the data set he 
is processinq. The three variable-data inserts to the aessaqe (that 
resides in SYSftLF) are automatically included in the aessaqe when it is 
written to the SYSOUT device. 

82 
R5 
DCBREG 

EOU 2 
EOU 5 
EOU 3 

••••••• 
CBT 

PABAftETER LIST FOR YDftER •••••••••••••• 
ERRftSGID 
VARl 
VAR2 
VAR3 

YARBLl 

VARBL2 

DC X1t 03' 
DC CgBSG00232' 
DC FVO' 
DC FUO' 
DC FIIO' 
DC Al.l(L'YARBL1) 
DC CIITEXTI 
DC AJ.1 (I. IYARBL2) 
DC C~TEXT' 

DC ALl (LIVARBL3) 
VARBL3 DC C~TE1T' 

BUBBER OF YARIABLES 
ID OF ERROR BESSAGE 
POI.TER TO VARIABLE 
POIBTER TO VARIABLE 
POlITER TO YARIABLE 

TEXT POR VARIABLE 1 

TEXT FOR VARIABLE 2 

TEXT FOR VARIABLE 3 

FOR RESSAGE 
IR SYSBLF 
DATA TEXT 
DATA TEXT 
DATA nXT 

••••••• EBD OF PARlftETER LIST ••••••••••••••••• 
YDRERFLG DC Xt 20' 

DC X"OEI 

LA 
ST 
LA 
ST 
LA 
ST 

LH 
I. 
I. 
VDRER 

6,VARBLl 
6,YARl 
6,VARBL2 
6,YAR2 
6,VARBL3 
6,VAR3 

R5,VDftERFLG 
R2,ERRftSGID 
DCBREG,DCBADR 
(DCBREG) , (R2) , (R5) 

CLEAR LAST OPERATIOB FLAG 
BOB-VAft DATA SET IB CZCOA 

SET UP POlITER TO 1ST VARIABLE 

SET UP POIBTER TO 21D VARIABLE 

Sft UP POI.TER TO 3RD VARIABLE 

SET ERROR FLAG FOR REG. HOTATIOH 
SET UP RESSAGE ID FOR DIAGBOSTIC 
GET DCB ADDRESS 
ATTERPT ERROR RECOVERY 

VSEBDR -- Send Bessaqe to Task and Await Response (O) 

The VSEBD8 aacro instruction is used to send a aessaqe to another 
task and wait for a response froa the receivinq task. 

Standard fora: 

• ,Baae 
i I 
,Operation ,Operand 

I I 
I [ syabol ]' VS EHDR 
I , . , 

, 
.aessaqe text,reply address, reply lenqth, 
,aessaqe code,sender 
• 

, 
I , 

Sf!Ction 2: Syste. ftacroInstruction Descriptions 221 



L-fora: 

• ,Baae 
i , 

,Operation ,Operand 
I , , 
I symbol 
I 

IYSEBDR ,aessage text,[reply address],[reply length], 
I ,[aessage code],[sender],KF=L 

I , . 
Bote: A syabol is required in the naae field. 

E-fora: , 
,Baae 

, , 
I Operation ,Operand 

I f 
J[syaboll1YSEBDR ,,[reply address],[reply length],[aessage code], 

l[sender],KF=(E, list) I I . .- I 

~: An operand oaitted in the L-fora (except the aessage text) must 
be specified in the E-fora; an operand specified in the E-fora overlays 
the saae operand that was specified in the L-fora. The message text 
aust be specified in the L-fora and oaitted in the E-fora. 

aessage text 
specifies the text of the message to be sent. 

Specified as: Text (a character string enclosed in apostrophes) • 

reply address 
specifies the location where the aessage reply is to be placed. 

Specified as: In the standard and L-fora, a relocatable expres­
sion; in the standard and E-fora, register notation; also, in the 
E-fora only, an RX address. 

reply length 
specifies the length in bytes of the reply. 

Specified as: In the standard and E-fora, an absolute expression 
or register notation; in the L-fora, only in register notation. 

aessage code 
specifies the aessage code. 

Specified as: Saae as for the reply length operand. 

sender 
specifies the ID of the task the issued YSEBDR. 

Specified as: Saae as for the reply address operand. 

Initialization: A DCLASS aacro instruction with the PRITILEGED option 
aust be coded in a aodule prior to coding VSEBDR. If more than one 
DCLASS macro instruction is issued in a module, the last DCLASS issued 
prior to coding YSEBDR must be issued with the PRIYILEGED option. 

Execution: YSEBDR sets up control bloCks described by DSECTs CHAKEB and 
CHAKCB, sets up a message flag in CHAKCB indicating the YSEIJDR issuer, 
issues the YSEBD to the receiving task, and then issues an AWAIT aaero 
instruction. The receiving task sets up a reply in the message control 
block and issues VSEBDR. 

222 



X~RC~ -- Extract Task Status Index Pield (B) 

The XTRCT aacro instruction peraits you to extract and exaaine one of 
a selected number of fields from your TSI. 

Iii I 
,Baae ,Operation ,Operand 
I I I, 

I 
-f 

'[ symbol), XTRCT f[ tsi field) 
• I , 

tsi field 
designates the ~SI fie1d you want to extract and examine. 

Specified as: One of the codes described below, or, if a value 
corresponding to a desired code is first p1aced in register ~5, as 
(15) • 

Code 
USERID 
SYSIJI 
SYSOUT 
SOPRIV 

SPPRI'f 
SRPRIV 
UPRIV 
COB., 
TASKID 
ITBPLG 
XPR 
AUTH 
BAV 
DISK 

Value 
1 
3 
4 
6 

1 
8 
9 

10 
11 
12 
13 
14 
16 
11 

!leaning 
the user ID field 
syabolic device address for the input data set 
symbolic device address for the output data set 
operator/(coabined with privilege c1ass-E) sys­
tea prograamer privi1ege 
syste. programmer, nonprivileged 
virtual systea service routines 
user 
the conversational task flag 
the task ID fie1d 
the intertask aessage flag 
the external priority flag 
the privi1ege fie1d 
the auxi1iary storage requirement field 
the auxi1iary storage count field 

Default: It i8 assulled the issuer has p1aced a code va1ue in 
register 15. 

Execution: The tas); status index field indicated by the code is 
extracted and returned to the program issuing the XTRCT. 

Return Data: The extracted field is returned right-a1igned in registers 
o and 1. The nnaber of bytes returned is: 

Register 15 ~SI Pield Implied Length (bItes) 
1 TSIUID 8 
3 TSISIJI 2 
4 TSISO'l' 2 
6 TSIOP {TSIF4} 1 
7 TSIPP (TSIF4) 1 
8 TSISP (TSIF4) 1 
9 TSIUP (TSIF4) 1 

10 TSICV (TSIF2) 1 
11 TSITID 2 
12 TSI!lB (TSIP4) 1 
13 TSIXPR 2 
1ft TSIF" 1 
16 TSIARF 2 
17 TSI!lF 2 

CAUTIOB: The saallest field extracted is one byte. If you are 
interested in a particular bit within a byte, you aust Blask out the 
reaaining bits. 

Section 2: Systea Bacro Instruction Descriptions 223 



Example: Suppose you want to find out if your task is being run in the 
conversational Rode; you might write: 

EXAMP XTRCT CONY 

XTRCTL - Extract Control Registers @l 

The XTRCTL macro instruction allows you to extract and examine 
selected task control registers. 

• I • 

IName I Operation 1 Operand 
I I I 
f[symbol]IXTRCTL I[field-(BCBASKIPERBASKIPERGRIPERADDRI(15}}] 
• I I; 

field 
desi.gnates the control register function you wish to extract and 
examine and lIIlay be written: 

BCBASK - extract Ronitor call mask CR 8 bits 16-31 
PERBASK - extract program event recording mask CR 9 bits 0-3. 
PRRGR - extract PER general register mask CR 9 bits 16-31. 
PERADDR - extract PER address range CR 10-1'. 

1 

i 

• 

If you choose to write register notation, you Rust select,the prop~ 
er value from the list below and place it in register 15 before 
issuing the macro instruction. 

Code 
BCBASK 
PER l!AS K 
PHRGE 
PERADDR 

ValUe 
1 
2 
3 
4 

Initialization: None. XTRCTL CAR BE ISSUED FROB PRIYILEGED or RORPRIV­
ILEGED code. 

Execution: The contents of selected control register save areas in the 
XTSI are extracted and placed in register 0 and 1. The nURber of bytes 
and the specific control register funtction to be extracted is determin­
ed by the code contained in register 15. 

Code 
1 
2 
3 
4 

I.plied Length (bytes) 
2 
1 
2 
8 

Regardless of the length, the bytes are always to be right-justified in 
registers 0 and 1. 

Example: Suppose you wish to examine the monitor call mask in control 
register B. You Right write: 

EXABBC XTRCTL BCBASK 

XTRSYS -- Extract system Table Pield (R) 

The XTRSYS .acro instruction enab1es you to extract and exaaine one 
of a selected set of syste. table fields. 

224 



• i i 
Ilaae ,Operation rOperand 
I I I 
,[syabol]'X~RSYS ,[systea tab1e field] 
• • • 

systea table field 
designates the systea table fie1d you want to extract and exaaine. 

Specified as: One of the following codes. or. if the value corre­
sponding to the code is first 10aded into register 15. as (15). 

Code Talue 

TASKIBIT 3 
ATAUX 5 

lIeaning 

the task initiation status field 
the available auxiliary count field 

Default: It is assumed that the issuer has placed a value in 
registe r 15. 

• I , 

Execution: 'the SiZEt of the fie1d extracted is determined by the code in 
register 15. corresponding lengths are shown below. 

Implied Length (bytes) 

3 
5 

1 ,. 
Return Data: The bytes in the requested fie1d are returned right­
aligned in registers 0 and 1. 

Exaaple: Suppose you want to 1earn the time of day that the systea was 
IPLed. You might wx·ite: 

BAllE ITRSYS 'tOD 

XTRXTS -- EXtract Extended 'task Status Index Pield CBl 

The ITBX~S aacro instruction enables you to extract and exaaine one 
of a selected set of ITSI fields. 

iii 
,Baae 'OperationfOperand 
I I I 
f[syabol]IXTRITS I[XTSI field] , . . 
ITSI field 

designates the XTSI field you want to extract and exaaine. 

Specifi ed as : One of the following codes • or. if the value corre­
sponding to the code is fiest placed in register 15, as (15). 

Code 
OTI!!IE 
ATI!lE 
ESTI!!I 
TWAIT 
AWAIT 
TSLICE 
AUX-IB 

Talue 
1 
2 
3 ,. 
5 
6 
1 

Pleaning 
the user time field 
the accuaulated tiae field 
the estimated run tiae field 
the nuaber of TWA.ITs field 
the number of AWAITs field 
the nuaber of time slices field 
the number of page-ins fro. auxiliary storage 
fie1d 

• , 
4 

EXT-IB 
AOX-oUT 

8 
9 

the nuaber of page-ins from external storage field 
the nuaber of page-outs to auxiliary storage field 

section 2: System Placro Instruction Descriptions 225 



EXT-QUT 
!!lDISK 
SET24 

10 
11 
12 

the nUBber of page-outs to erterna1 storage fie1d 
the Baxiaua pages used on auxi1iary disk fie1d 
24-bit addressing f1ag 

Defau1t: If is assuBed that the issuer hasp1aced a va1ue in 
register 15. 

Execution: Registers 0 and 1 are loaded with a doubleword extracted 
frOB the issuing task's extended task status index (XTSI). The nuaber 
of bytes extracted depends on the field. The fie1d lengths for each 
code that can be specified are: 

Code 
-1-

Iap1ied Length (bytes) 
8 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

8 
8 
2 
4 
4 

" 4 
4 
4 
2 

Return Data: The data returned wi11 be right-aligned in register 1 with 
a 1eft-fi11 (padding) of zeros. 

Examp1e: Suppose you want to find out hoy much tiae your task has used 
since LOGOB; you Bight write: 

BABE XTRXTS A'rIKE 

ZEROSST -- Zero Statistica1 Recording Fie1ds (0) 

The ZEROSST aacro instruction sets the statistical entries in the 
system to zero, thereby reinitializing the table for recording of up-to­
date statistics. 

iii 

INaae I Operation I Operand 
I I I 
,[syabol JIZEROSST I IL-______ ~'L-________ ~,L-_______________________________________________________J 

Bote: There are no operands. 

CAUTION: Use of SVC 194, generated by ZEROSST, is restricted to tasks 
having system prograamer authority (0 or Pl. 

Execution: SVC 194, which ZEROSST produces, sets the statistical reco­
rding fie1ds in the resident supervisor to zero. These fields are: the 
system status tab1e (CHASST); the schedu1e tab1e counters; the page ste­
aling counters; the scheduling counters; the drua to disk aigration 
counters; the queue processor time and use counters. 

In addition, the current time of day c10ck is recorded in SSTZET. This 
indicates to any data reduction or ana1ysis prograB the zero tiae for 
the statistica1 recording fields. 

226 



Exaaple: I systea prograaaer has saapled systea statistics and process­
ed that data to evaluate the interactive user-syste. perforaance. After 
evaluating the data, he wants to reinitialize the statistical entries in 
.ain storage. 1 later saapling of statistics would show the systea's 
perforaance froa the tiae ZEBOSS~ is executed to the next tiae SIRPLE is 
executed: 

EX O,RBCORD BXECU~ES SIRPLE RICRO I.STRUC~IO. 

Dl~l REDUCTIO. 

ZEROSST ZEROS STITIS~IC1L iBCORDIIG FIELDS 

Section 2: Systea Racro Instruction Descriptions 227 



PART III: SYSTEM PROGRAMMER COMMANDS 

t This section describes the commands and special options available 
I only to system progra •• ers. These commands and options supplement those 

available to all TSS users, described in Coaaand System User's Guide. 

In general, the commands described in this section enable system pro­
grammers to update message lists, to better control data on auxiliary 
storage, and perform other types of system programmer functions. 

COft!AKD (AID SPECIAL OPTIOI) DESCRIPTIONS 

The general explanation of co.mands, the rules for entering thea 
positionally, and the types of messages issued by each are contained in 
Com.and System User's Guide, GC28-2001. 

ADDPOOL Co.mand 

This command adds a public storage pool to the system. 
• i 

, loperation,Operands 

IADDPOOL 
I 

f I 
I I 

I 

, POOLID 

,POOLID=pool identification 
1[,DETICB={2305f3330,333B,3350} ] 
I[,VOLU!E=volume serial number] 
t [ ,!UINT= {I I Y} ] 
I 

, specifies the pool identification of the public storage pool to be 
r added to the system. 

I Specified as: from one to eight alphameric characters. 

DEVICE 
f specifies the device type that the first volume in the pool is to 
t be mounted on. 

~cified as: 2305, 3330, 333B, or 3350. 

VOLUME 

I 

I 
i 
f 
I 
I 
I 

specifies the voluae serial number of the first volume in the pool. 

I ~cified as: from one to six alphameric characters. 

I JUIaT 
I specifies vhether or not the pool is to be placed in maintenance 
, status upon completion of the ADDPOOL function. 

~cified as: H or Y 

I fUnctional Description: the ADDPOOL command requires that all volumes, 
I that make up the public storage pool, have been previously mounted and 
r VARYed online. ADDPOOL viII read the pool descriptor dataset SYSVOL, 
r determine that all volumes are online and update the necessary tables to 
, activate the pool. If KAINT=Y has been specified, the pool is placed in 
I maintenance status to allov only the pre-joined user to LOGON. A pool 

228 



I that is in maintenance status aay only be used by the pre-joined user. 
t To all other users, including those who share datasets in the pool, the 
I pool looks offline. To remove a pool from maintenance status, the ADD­
e POOL comaand may be issued with just the POOLID and ~AIHT operands. A 
I pool that is in maintenance status may be deleted. 

Programming »otes: this com.and is available only to SYSOPERO, 
'lASKID:::X '0001 • • 

BLDPOOL COilllland 

This cOlll'lland pro'rides four functions for pool management: 

I 1.. build a new (;)ne volu.e pool fro. an empty private volume, 
I 2. prepare an e.pty private volume for addition to an existing pool, 
, 3.. partition an exis"ting pool into two pools, 
I 4. aodify a pool's descriptor dataset. 

, i 

IOperationtOperands 

I ,BLDPOOL 
f I 

I !rODE= {BEll' ADD, PART, I!!OD} 
"POOLID=pool identification 

I , 
, I 

r 
I , 
J 
• 

I BODE , 
I , 
f 

t[ ,CATYOL:=preferred SYSCAT volume serial nlllllber) 
I[,I!ULTIVOL=OIJY} ] 
1[,DEVICE;{2305133301333BI3350} ] 
I [ , YOLUI!E:=volullle serial nuaber] 
f[ , USERID::::pre-joined user identification J 
1[,RVH=first relative volume nuaber of partitioned pool] 
• 

specifies the type of processing to be performed. HEW builds a nev 
one volume pool, ADD viII prepare a volUBle for addition to an ex­
isting pool, PART will partition a pool into tvo pools, and BOD 
vill modify thl~ pool's descriptor dataset, SYSVOL. 

~cified as: HEW, ADDw PART or BOD. 

I POOLID 
I specifies the pool identification to be assigned to the new pool. 
I This operand is required for KODE=HEW or PART. 

, ~cified as: froa one to eight alphameric characters. 

I CA'fYOL 
, specifies the 1'oloe serial nUllber that viII contain the SYSCAT 
f dataset. This operand may only be specified for I!!ODE=KOD. 

~cified as: from one to six alphameric characters or one to six 
blanks to indic::ate that no volume is preferred for SYSCAT. 

J lIfULTIVOL 
t specifies whether or not multi-volume datasets are to be alloyed 
I vit hin this pool. This operand aay only be specified for MODE=ftOD .. 

, ~cified ~§: • or Y 

I ~aa1t:. 

DEVICE 
t specifies the device type that the nev voluae is to be aounted on. 
I This operand is required for I!!ODE=.EW or ADD. 

Part III: systea Prograamer Co.aands 229 



, ~cified as: 2305, 3330, 333B, or 3350. 

VOLUftE 
specifies the volume serial nu.ber of the new volume. This operand 
is requiredd for ftODE=NEW or ADD. 

~cified as: from one to six alphameric characters. 

USERID 

RYN 

identifies a pool's pre-joined user. This operand is required for 
MOD E=NEi or PART. 

~cified as: from one to eight alphameric characters. 

I specifies the relative volume number within the existing pool that 
I is to become the first volume of the partitioned pool. This 
r operand is required for KODE=PART. 

~cified as: from one to three decimal digits. 

, Functional description: 
r MODE=NEW , 
, The specified volume is mounted, the label is read and checked for con­
I sistency, and the descriptor dataset, SYSVOL, is built. Empty datasets 
I for SYSUSE and SYSSYCT are built and include the identity of the pre-
I joined user. A USERCAT that contains entries for the constructed data­
I sets is built. Finally, the volume label is modified to include the 
t pool and DSCB information required by an ADDPOOL command. 

I MODE=ADD 
, The specified volume is mounted, the label is read and checked for con­
I sistency, and the pool's descriptor dataset, SYSYOL, is updated to in­
I clude the new volume. Finally, the volume label of the new volume is 
I modified to include the pool information (e.g., POOLID). The new volume 
f viII become available for storage assignment the next time this ?ool is 
I 'added' to the system. 

, l'fODE=aOD 
, The pool descriptor dataset, SYSVOL, is updated to include the specified 
f parameters. The new parameters will take effect the next time this pool 
, is • adde d' to the system. 

I P!ODE=PART 
t The specified pool is checked for maintenance status; if it is not in 
I maintenance the command is cancelled. Each user in the existing SYSSVCT 
t is tested for RVN limit consistency and MOVEUSER status; if any user is 
r not in ftOVEUSER status, or is found to overlap the tvo pools, the com-
I mand is cancelled. The specified relative volume number is checked for 
, consistency and the volume label of its volume is read and checked for 
I consistency. The descriptor dataset SYSVOL of the new poolid is built 
I from info~ation in the SDAT, and SYSVOL of the existing poolid is up-
t dated. Empty datasets for SYSPLIB, SYSBWQ, and SYSCAT are constructed. 
I The data sets SYSUSE and SYSSVCT are built and include the pre-joined 
I user. A USERCAT that contains entries for the constructed data sets is 
I built. The existing SYSSVCT is read to determine which USERIDs are to 
, be included in the new poolid and both the existing and ne¥ SYSSVCT and 
I SYSUSE datasets are updated accordingly. Finally, the volume labels of 
, the volumes in the new poolid are modified to include the pool and DSCB 
I iniormat ion required by ADDPOOL. Beiore partitioning a pool, all 
I userids in the pool must be 'compressed'; i.e., a SZTRVN and a MOVEUSER 
I with POOLID=*POOL must be issued for all userids. 

Programming notes: this command with f!ODE=liEW is available only to TSS* 
****. For all other MODEs the command is available only to the pool's 

230 



I pre-joined user. The initial password for the pre-joined user is IBM. 
, ihen MODE=PART, an ADDPOOL IIUSt subsequently be issued against the orig­
I inal poolid to rellove it froll aaintenance status (thereby adding it to 
, the system) _ Sillilarly, an ADDPOOL IIUSt be issued against the new poo­
I lid to add it to the syste •• 
I When MODE=ADD, the new volume viII not be available until first a 
I DELPOOL and then an ADDPOOL are issued against the poolid. 

r Exallples: 

BLDPOOL ftODE=REW,POOLID=TSS002,DEYICE=3350, 
VOLUftE=VOL250,USERID=SYS002 

BLDPOOL MODE=ADD,DEVICE=333B,VOLUME=VOL360 

BLDPOOL ftODE=PART,POOLID=TSSSYS05,USERID=TSS05, 
RVN=5 

, BLDPOOL ftODE=:!!OD,CATVOL=VOL830,ftULTIVOL=Y 

BLDSVCT COIlBland 

This collmand will reconstruct the SYSSVCT dataset by searching a pub­
lic storage pool for USERCAT DSCBs. 

iii 
,OperationtOperands , 
I --Ir--------------------------------------------------~ 
IBLDSVCT IPOOLID=pool identification I 
• • 

POOLID 
identifies the public storage pool on which SYSSVCT is to be 
rebuilt. 

~cified as: fro. one to eight alphalleric characters • 

• Functional descript2on: the volumes that make up the public storage 
, pool are searched for the '~ost recent' USERCAT datasets. SYSSVCT is 
I rebuilt troll them by building a record for each USERCAT JJSCB found. All 
I RTN limit information is lost. The volume label of the first volulle in 
I the pool is updated to point to the nev SYSSVCT. 

Prograu ing note: 1:his command is available only to TSS***** and aay 
only be issued for pools in maintenance status. 

CC (Check Catalog) Command 

This cOllmand all(Jvs a privileged user to run an integrity check on 
the catalog and cOllpare inforllation in the data set descriptor for VAM 
data sets to corresponding information in the foraat E DSCB~ 

The catalog may be inspected for one specific user, or if desired, for 
all users Joined to the systea. 

Diagnostics are prod.ueed on SYSOUT describing the location and type of 
any irregularities u.nless the command was issued conversationally and 
the *ALL option was requested in which case any messages are written 
into a data set and printed on a high-speed sprinter. Also, included in 
this co.mand is the ability to display and/or patch the catalog of any 
user. 

Part III: Systell Programmer COlillands 230.1 



I i 
IOperationlOperand 
I I 
ICC IUSERID={user identificationl*ALL},[DISPLAY=relative page,] 
, I[WRITE=relative page],[PRIYATE=volserno] 
, I 

USERID 

*ALL 

specifies the user identification of the user whose catalog is to 
be examined, displayed or written. 

will check integrity of catalog for all users joined to the system. 

DISPLAY 

WRITE 

specifies the number of tge relative page 
the user wishes to examine and/or patch. 
*ALL option. 

within the catalog which 
Cannot be used with the 

specifies the number or the relative page within the catalog which 
the user has patched and now wishes to be written out. Cannot be 
used with the *ALL option. 

PRIVATE 
speciIies the volume serial number of the pack which the user 
wishes to have mounted to compare catalog and DSCB information for 
private data sets. Cannot be used with the *ALL option. 

Proqraaminq Hote: The CC co •• and will be honored only for users with 
authority ·0·. The CC command may be used in conversational and non­
conversational tasks. The DISPLAY, WRITE and PRIVATE options must be 
used on an individual basis. 

Check Catalog Processing. The authority of the user is first validated. 
The DISPLAY and WRITE parameters are checked and if both appear a diag­
nostic is issued. Next a DCB is opened for TSS*****.SYSCAT and a PIHD 
is issued against the userid supplied. If the *ALL option was speci-

230.2 



fied, a check is aade to be sure the DISPLAY, WRITE or PRIVA~E paraae­
ters paraaeters were not entered. If not, the user identifications are 
selected froa the POD for SYSCA'r. The userid is then passed to the PIBD 
aacro and processing continues the saae as if the userid were passed in 
the coaaand. 

If the userid does not exist, PI.D viII return an error code and a diag­
nostic is issued. 

CHECK CATALOG processing is accoaplished with two passes through the 
catalog. The first pass checks SBLOCK structure, and if no errors are 
found, a second pass is aade which checks inforaation in the catalog a­
gainst inforaation in the foraat E DSCB. 

SBLOCK Checking. A GETSAI. of three pages is done for buffers. The 
three buffers viII noy be denoted priaary, alternate and extra in this 
discussion. A call is aa&e to the GET page subroutine for page 0 for 
the pri.ary buffer. The nuaber of pages in the userws catalog is saved 
and every relative page processed is checked against this nuaher to de­
ter.ine if it falls within the range of pages allocated for this user·s 
catalog. Then a SE~L and GET are done to read in the relative page into 
the specified buffer. ~he fact that this relative page now resides in 
this buffer is noted. 

The first (next) sblock is checked for "bytes in use" being equal to 
zero. If Rbytes in use" is equal to zero, the sblock is ignored. If a 
backward pointer exists and the address is on a 64 byte boundary, the 
sblock is also skipped because in this case the sblock is either an ex­
tended sblock or a sharing list and these are checked via a different 
route; i.e., through the index levels pointing to thea. If a backward 
pointer is zero, a check is aade to deteraine if its a backyard pointer 
to relative page 0 sblock 00. If it is, the sblock is ignored as above. 
The sblock identifier is noy checked 03, 04, 05, and 06 and these are 
skipped since data set descriptors are all checked via a different 
aechanisa. The sblock identifier can noy only be an rRDEX(01) or 
GEBERATIOB IBDEX(02). If not, a diagnostic is issued. 

The count of pointers within this index level is noted. If greater than 
three an extended sblock(s) yill later be needed. The pointer fields 
are now exaained individually by passing thes to the POI.TER subroutine. 
The POI.TER subroutine checks that the pointer address is a valid point­
er. If not, a diagnostic is issued. A check is aade to see if this 
relative page is already present in the extra buffer; if not, a call is 
.ade to GETPAGE vith the extra buffer specified. Boy the backyard 
pointer of the sblock pointed to is checked to see that it points to the 
proper pointer field. The qualifier of the original pointer field is 
checked against the qualifier in the sblock. The pointer nases are 
aatched to see if they are equal. Any discrepancy is noted with a diag­
nostic vhich indicates the locations of the probleas found. All pointer 
fields are exaained in this way. The absence of a pointer field1.ndi­
cates that the level has been exhausted, and this is checked with the 
count of pointers that vere indicated. If there is a discrepancy, a 
diagnostic is issued. At this point, the next sequential sblock is pro­
cessed. When all sblocks on the first catalog page have been processed, 
a GETPAGE is done on the next relative page of the catalog. When all 
pages have been exhausted and no errors yere encountered a switch is set 
which indicates sblock checking has been co.pleter. If an error was 
found, SYSCAT is closed and the next user·s catalog is exa.ined. If 
processing vas for a specific userid, a return is aade to the coaaand 
systes. 

Catalog/DSCB Checkin~. If no errors yere encountered on the first pass, 
check catalog nov does a data check on the data set descriptors and coa­
pares catalog inforaation to DSCB infor.ation. 

Coasand (and Special Option) Descriptions 231 



The first (next) sblock is checked to see if a backward pointer exists. 
rf a backward pointer does exist, a check is made to see if it points to 
a sblock boundary. rf so, the next sblock is obtained. rf a backward 
pointer does exist, and the address is not on an sblock boundary, the 
identifier is now checked for a 06. When a 06 identifier is present, a 
check is made to see if the PRrVATE option was specified. rf it was, 
the next sblock is obtained. When the identifier is an 06 and PRrVATE 
was not specified, a call is made to a subroutine which will do a data 
check for valid flags on the 06 data set descriptor. Fields which are 
checked within the data set descriptors are: sharing flag; sharing 
privileges; data set retention and and access privileges; and data set 
organization. rf any fields are determined invalid, a diagnostic is is­
sued and processing continues. Next, a call is made to a subroutine 
which will build a fully qualified name. While building an PQN, this 
routine checks if the FQN exceeds qq characters, and if so, a diagnostic 
is issued and processing continues. 

After the FON is built the PORBAT E DSCB is obtained by issuing a SETX. 
Next the FON and the data organization information in the catalog is 
compared to corresponding information in the DSCB; any discrepancy is 
noted by a diagnostic, and the next sblock is obtained. 

When the identifier is a 03, a call is made to the data check subroutine 
and fields are checked for valid flags as above. Next a check is made 
to determine if this private data set resides on a disk; if not, the 
next sblock is obtained. However, if the private data set is of VAM 
format, a call is made to the subroutine which will build the FOB. If 
the PRrVATE option was not specified, a message is issued stating on 
which pack this FON resides. 

rf the PRrVATE option was specified, the volume serial entered in the 
command parameters is coapared to the volume serial nuaber in the data 
set descriptor associated with this PQB. If they are equal, a call is 
aade to Bount Request; otherwise, the next sblock is obtained. 

rf the identifier is other that an 06 or 03, the sblock is ignored, and 
the next sblock is checked. 

When all sblocks on the first catalog page have been processed, a GET 
page is done on the next relative page of the catalog. When all pages 
have been exhausted, a FREEKArB is done on the buffer pages. The DCB 
for TSS*****.SYSCAT is closed and a completion message is given. Exit 
is to the com.and system, unless *ALL option was specified in which 
case, the above steps are repeated until all users' catalogs have been 
searched. 

When the Dr5PLAY keyword is present, after parameter validation and a 
FrBD has been issued against the user's catalog, the relative page is 
checked against the allowable relative pages for the user·s catalog. rf 
the page is legitimate a GET page is done into the display buffer. a 
aessage is now written out giving the virtual meaory location of the 
display buffer. The userid for this operation is saved in the event the 
user wants to write this page with the WRrTH option. The DSCB for TSS** 
***.SYSCAT is closed and a return is aade to the coamand system. 

The user is now free to use PCS and/or VSS to review and/or aodify the 
catalog page. The user may now use the write option of the com.and to 
write out any changes externally. 

When the warTE keyword is present, after parameter processing is com­
plete and a FrHD has been issued against the catalog, the inpnt relative 
page nuaber if checked for validity. since the user is indicating that 
this is a page to be written out, this relative page must reside in the 
display buffer. A check must be made to insure that the relative page 
is for the proper catalog. For this purpose, the userid aust match the 

232 



userid that was saved when the DISPLAY keyword was entered. A PUTX is 
now done from the display buffer for that relative page. The DCB for 
TSS***** .SYSCAT is closed and a FREEIUII is done on the display buffer. 
A completion aessage j$ given and a return made to the co •• and system. 

Exallple: 
User: 
system : 

Systea : 

~: 

system: 

~: 

System: 

~: 

System : 

User: 

System: 

CC TSS 
PROCESSING COMPLETE 
SYSTEK HAS CHECKED THE VALIDITY OF TSS's catalog 

CC BOYD 
IiCORRECT BACKWARD POINTER. REL PAGE - SBLOCK 
LOCATIOH OP FORWARD POINTER 00 0798. REL PAGE 
SBLOCK LOCATION OF BACKWARD POINTER 0 10FCO 
system has discovered an incorrect backward pointer in an 
SBLOCK with address relative page 1, SBLOCK location FCO 
system has discovered an incorrect backward pointer in an 
SBLOCK with address relative page 1, SBLOCK location FCO 
the forwarll pointer resides at relative page 0, location 798 

CC BOYD,DISPLAY=l 
user wishes to display page 1 
RELATIVE PAGE 0001 IS AT VIRTUAL MEMORY LOCATION 711'000 

DISPLAY L'7FP'CO'.L'7FFP'F' 
user displays SBLOCK in question 
(PCS or VSS displays SBLOCK) 

SET L'1FFCo'=X'9S' 
user modifies pointer to point to correct place 
(pCS sets byte) 

CC BOYD,WRITE=l 
user wishes to write corrected page into catalog 
PROCESSING COMPLETE 
page has been written 

CC BOYD 
user wishes to check modification 
PROCESSING COMPLETE 
catalog for userid BOYD is now correct 

CC *ALL 
user wants to check catalog of all users joined to the system 
System: B033 PRIliT ACCEPTED 
messages are printed on high-speed printer if *ALL option 
is entered conversationally 
CC found a total of 0000 errors; messages printed under 
DSNAftE $$$00015 
no errors were found in catalog 

~: CC TSS,PRIVATE=RELPAK 
user wishes to check DSCBs on private pack RELPAK 

system: PROCESSING COftPLETE 
, catalog and corresponding DSCBs on RELPAK have been checked 

CLASSGTF CO.llulland 

This cOllmand translates the captured trace data into formatted print­
able hexadeciaal characters with labels. 

Part III: System Programmer Commands 233 



• 

i , 

, ,Operation,Operand 
I , 
ICLASSGTF IrlDSK=dsnamel [,OUTDSB=dsname2] [,CLASS=class[, ••• )) [,*B] 
I • 

IHDSJiI 
the name of the trace data set to be transl.ated. 

, ~cified as: a 1 to 35 character nalle; the first character must 
, be al.phabetic. 

OUTDSH 
the nalle of the output d~a set that viII contain the translated 
trace data. 

, Specified as: a 1 to 35 character nalle; the first character must 
, be alphabetic. 

, Default: if defaulted, the translated data vill go to the terminal 
f only. 

CLASS 
identifies the data classes to he translated. 

~cified as: BACHINE 

Default: none. 

I *B 
, specifies that translated data is to go to the terminal as veIl as 
, dsname2. 

, 
f 
I 

~ci£ied as: B 

Default: translated data will not go to the terminal. 

CNVTPOOL COmmand 

This command is used to convert an existing TSS system (pre-public 
storage pools) to a one pool system. The CNVTPOOL command is issued 
only once for each TSS syste •• 

I I 
I Operation I Operands , 
ICNVTPOOL , 
I 

IPOOLID=pool identification 
'[,CATVOL=SYSCAT volume serial number] 
I [ , MULTIVOL= {N I Y} ] 

• • 

PaOLID 
specifies the pool identification to be a~signed to the system 
pool. 

Specified as: from one to eight al.phalleric characters. 

CATVOL 
specifies the volume serial number of the volume to be used to con­
tain the SYSCAT dataset. 

234 



~cified as: :f'roll one to six al.pha.eric characters .. 

BULTIVOL 
specifies whether or not sulti-volume datasets are to be all.owed 
within this pool. 

r ~cified as: til or Y 

De£ault: H 

I Functiona1 description: CVVTPOOL is a one-time cOllmand used to build 
, the necessary datasets and modify the voluae lablels of an existing TSS 
a system for public storage pools. The pool descriptor dataset, SYSVOL, 
r is built froll information in the public volume table (CHBPVT). The SYS­
r VOL, SYSCAT, and SYSSVCT DSCB pointers are located and lIoved to the vol­
a ume label of relatiVE! volume zero. All voluae labels are modified to 
, contain the pool identification. 

I PrograDing note: this command is available only to TSS*****. The 
, userid TSS***** becomes the pool's pre-joined userid. 

Part III: System Programmer Commands 234.1 





DDBl -- Define a Data set 

An explanation and the general foraat of the DDBF co •• and is contain­
ed in COa.and System User's Guide. The operand choices available to the 
~SS user with privilege class B (systea .onitor) are described below and 
are in addition to the operand choices described in Coaaand systea 
User's Guide. 

data set organization 
specifies a tvo-character code that indicates the organization of 
the data set. 

~cified as: as - 8SAft (aultiple sequential access aethod) 

URIT= 
specifies the type of device needed for the data set. 

Specified as: PR (printer)r PC (punch)r BD (card reader)r or a 
four-digit hexadecimal nuaber (0001 to 71FF) assigned at system 
generation to the desired I/O device as its syabolic device 
address. (See in Part Ir -Reserving I/O Devices for a Bonconversa­
tional 'fask. A ) 

Hot~: The DISP keyword operand must be OLD when using the card 
reader and HBW when using the card punch or the printer. 

DELPOOL Coa.and 

This com.and deletes an active public storage pool froa the systea. 

• • r ,OperationiOperands 

I ,DBLPOOL 
I I 
I , 

• 

POOLID 

IPOOLID=pool identification 
I[ r FORCE= {Y Ill} ] 
I[ rCAT1LUSB={y,H} J 
• 

identifies the public storage pool to be deleted fro. the system. 

I ~ci£ied as: fro. one to eight alphameric characters. 

I FORCE 
I specifies whether or not active users of the pool are to be forced 
I off the system so that the pool .ay be deleted. 

~cified as: • or I 

I CATPLUSH 
I specifies whether or not the catalogs are to be flushed fro. the 
t SIS CAT dataset. 

I ~cified as: Y or 11 

I Functional description: DELPOOL viII delete inforaation in systea con­
I trol blocks and logically remOTe the public storage pool. If FORCB=Y, 
, all users logged on in the pool viII be 'forced', all open shared data­
I sets in the pool will be closed and their users will ABEND with co.ple­
I tion code 1; all JPCBs for all datasets in the pool will be released, 

Part III: Systea Prograamer Comllands 235-237 



I and the pool is deleted. If FORCE=. the pool will not be deleted if any 
• user is logged on to the pool or if there are open shared datasets in 
I the pool; instead, a list of USERIDs, along vith their POOLID, that are 
I logged on or that have open datasets is displayed, and the pool is 
I aarked in 'delete status' to prevent nev users from logging on, and pre­
I vent additional shared datasets from being opened. After all users have 
I logged off and all shared datases have been closed, DELPOOL must be 
, reissued to delete the pool. 

Programainq note: this command is available only to SYSOPERO, 
'rASKID=X '0001'. 

DISP Command 

I This co..and viII display the contents of all or a specified part of 
t the storage of an HCP/pEP or EP. 

i i 
,Operati on, Operands 
I I 
IDISP ,resource [,IBITLOC=1 [,FIBLOC=] [,DSBABE=] [,BCPDES=] 
• • 

, resource 
I The naae of the resource that is to be displayed. 

I ~cified as: a 1-8 character name, the first character must be 
r alphabetic. This name must also be the naae of a region in the 
t TSS*****.SYSRCS dataset. 

IJlITLOC 
the initial location of storage that is to be displayed. 

I ~cified as: a 1-8 hexadeciaal nuaber. 

t Default: zero. 

I PlliLOC 
, the final location of storage that is to be displayed. 

~cified as: a 1-8 hexadecimal number. 

I Default: last storage location. 

f DSJlABE 
, the name of the output dataset that vill contain the storage dump 
I as specified above. 

r specified as: a one to thirty-five character name. The first 
I character aust be alphabetic. Bote: If this parameter is omitted, 
f the output viII go only to the terminal • 

• CPDES 
I directs the output to the dataset only or to the dataset and the 
, terminal. 

I ~cified as: LD for output to the dataset only or LDT for output 
t to both the dataset and the terminal. 
I Bot~: if the DS.ABE has been defaulted the display viII be direct-
, ed to the terminal only regardless of this parameter. 

Default: There is no default for this parameter. 

238 



TNL GN20-4106 (01 July 80) to GC28-2008-5 

Exailiple 1: tte u::.er wants to dl..splay tlle storage of tile ~P06 resource 
from location X'SOOO' to X'10000', and he ~ants the data to go to both 
his terml.r:.al and the 'DISPOUT' dataset: 

disp e?06,~OOO,10000,dispout,ldt 

or 

dis l' resource=ep06 ,ini tloc=5000 ,finloc=1ll000 ,dsna;ae=dispout, 
ncpdes=ldt 

Example 2~ the user wants to display the storage ox the EPDb resource 
from loca1:ion X'500u' to X'10000' ,and he ..,ants the data to go to his 
ter:llinal only: 

disp ep06,SOOO,10000 

or 

iil.s p resource=ep06, ini tloc=500(} ,finloc==NOOO 

I This command searches a public storage pool for DSCBs (DSCB tv pes are 
I specified by the user), makes an output list of DSCR data, and optional­
r ly, catalogs uncataloged datasets. 

• .-.r--------------------------------------------------------------------, 
,OperatiolllOperands 

IDSCdS 
J 

!(LIST= (ALL ,ERROR PlOTCAT 'ALLERR} J 
H ,CATALOG= {S, Y} ] 

t 
I , 
I 
I 
I 

LIS'.!: 

H • CLEA!(= [i I I} ] 
1[,VOLUME:volume serial number] 
1(,STARTDs=start data set na~e] 
,[,REPORTDS=listinq data Eet namel 
1[,OSBRID=user identification] 
I [,CHKCAT= {N ,Y} J -LI _______________________________________________________________ ~ 

speci.fies the type (s) of DSCBs to be searched for (and listed) • 

ALL - specifies that all DSCBs (including the DSCBs for 
noncataloged datasets and DSCBs that have errors) are to be 
searched and 'listed'. 

ERROR - means that only DSCBs having errors are to be listed in 
REPORTDS; amona the errors checked are checksum and T)SORG. 

NOTCAT - means the search and listing involves only those DSCBs 
that are not cataloged. 

ALLERR - means the search and listing involves only those DSCBs 
that have some error, or are not cataloged. 

Part III: System Programmer Commands 238.1 



TNL GN20-4106 (01 July 80) to GC28·2008·" 

C'1\ rALOG 
spec:L(ies whether or not uncataloqe,:l l1atasets are to be cataloged 
(see C1HCA'l') ~ 

CLJ!;AN 
specifies whether or: not jatasets which cannot be cataloged because 
of nalha or generation conflicts are to be erased. 

VOL\J~m 

specifies a sinola volume serial number within the pool that is to 
be usej tor the search. 

S1-1:: c1i:l.'2d. iHi: from ono to six a.lphameric characters. 

51ARTDS 
spGoci.fies the dataset name 'it whiCh the search is to begin. This 
0Fe raud is used to rest.art a previously aborteu search. 

speci±led~: from 10 to 44 character dataset name including the 
USF. B. ID. 

Det ault; th.e search s1:a.rts at the first. volume of the pool. 

RFPORTDS 
specifies the dataset name of the listing dataset. Tne dataset or­
ganizzltion d.epends upon the installation's sysgen value~ or the 
userOs ded:au.lt value: if the dataset is VI, entries ~ill be made 
in alphabetic order; ii the dataset is VS r entries will be lIlade in 
the o£der iound on the pool volume (s) • 

S'!)ecified as: a one to 3~ character: dataset name. If not speci­
fied. the user must DDE? a dataset with a DDNA"E of DSCBSOUT before 
executing this command. 

USF:lU .. D 
specifie:6 the user identification of the DSCBs to be searched for. 

§~cified £e: from one to eight alphameric characters; the first 
must be alphabet:ic~ 

Default: all USERIDs. 

CHKCAT 
Sp8c1fies Ifhether or net the catalog is to be cheCked :tor UDcata­
log ed Jatasets. 

~cilied as: Y or N. If Y. all uncataloged datasets will be so 
marked. in the fLPPORTrJS dataset. 

Functior, al lesc.r:.i1?:.!ion: the DSCE S command reads all DSCBs on the public 
volume (5) specified and IIrites a. record into tlle HEPORTDS for all DSCBs 
that match the input parameters. If the CATALOG option is specified, an 
attempt vill be made to cataloq all uncataloged DSCBs that dre found. 
The REPOPTDS will I:'etlect the current status of each DSCB read. This com­
!land can be us",d to print the status of all DSCBs on a pool. 

238.2 



TNL GN204106 (01 July SO) to GC2S-2008-5 

~roqramminq note: this command is available only to a pool's pre-joined 
user, an aJ.lllinistra':or, or a llanager. 

DUMP RES Comilland 

This command will cause the storage of the resource to te recorded. 

• TI-------------------------------------------------------------------, 
I Opera ti on, Oper ands 
I ~,------------------------------------------------------4 
I DU!'1PRJ:;S Iresource [.DSNAME=] [,DMPPH1=] (,D~PPli2=] [,DUPlPDS=) 
• 

resource 
ide nt~fies the resource to be dumped. 

Specii:ied as: a 1-8 character nalle .. the first characte.r must be 
alphabetic. This name must also be the nalle of a region in the 
TSS*****.SYSRCS dataset. 

~~lt: There is no default for this parameter. 

DSNA!1E 
the Lame of the dataset that contains the load modules that viII be 
used to transmit the data froa the resource. These modules viII be 
refeI"red to as the duap routines. 

~cifiea as: a one to thirty-five character name. The first 
charcccter Blust be alphabetic. This is the name of the dataset that 
con teeins dltpph 1 and dmpph2. 

D~PP31 

the :t.dllle of the load module "hich is the first phase of the NCP 
dUilp routine. 

~ci±ied as: a one to eiqht character name. The first character 
must be alphabetic. 

DefgJllt: user specified in the TSS*****.SYSRCS dataset. 

Dli!!PHl 
the Ilalle of the load module which is the second phase of the NCP 
dUllp routine. 

~cified as: a one to eight character name. ~he first character 
aus t be alphabetic. 

Dei~ut: user specified in the TSS*****.SYSRCS dataset. 

DUMPDS 
the llame of the dataset that viII contain the record of the 
resource storage. 

Specified as: a one to thirty-five character name. ~he first 
charclcter aust be alphabetic. This is the name of the dataset that 
will contain the dump output. 

Part III: Systell Progra~.er Commands 238.3 



TNL GN20-4106 (01 July 80) to GC28-2008<: 

I ,-- ---------------------------.--.-.--------- , 

IOperationlOperand I 
f t------------------------·-·---·----··--·-·---~--------------f 
rEVV IDEVICE=device type,1fOLU~E"'(volulll.a serial number[ ..... J) I 
I I[ ,USERID=user identificat.ion) I 

L ________________ _ 

DEVICE::: 
specifles the type of direct access device that the VAM volume is 
on. 

~ci.fled as: 2311, 2314, 3330, 3338, or 3350. 

VOLUPiE'" 
ideLtifies the volume or volumes to h.~ iH:"ocessed. 

5eecllied df!: One to six-alphameric characters composing t.ile vol­
ume serial number for each volume; tne volume serial numbers are 
enc losed in one .3'3t of parentheses. 

USERID 
specifies user iden1:i£ication, which is used to maintain compatibi­
lity between systems; t_his operand is available only t.o tL.<! system 
adlll inistra tor: or th(~ systeJh manager. 

Specii-ied as: One to eight charactt~rS, tu.-; tirst of WhlCh is 
alphabetic. (It less than 8 chara.cters, the system wiLL pad to the 
right with asterisks.) 

Functional Description: &VlI catalogs all !lata sets on the volumes 
speci:tied. 

Programming N.Q.1.§Z§! EV7 allow3 the user to i.ntroducE: VAM data sets 
created uuder other TSS syst~ms to his current installation, or to reca­
talog px:-eviously deleted VAt'1 data sets. Privi\te V1\~ data seLS created 
under 1'S:::; are automatically cataloged. 

Exam.2l.g: User lIf/lYBl has three private volullIe::-; vllieh are necessiiry for 
the execution ot his prograll:; he llIants to entsr them into the syst<::m. 

23B.4 



Use!:: 
Sys tem: 

TNL GN204 106 (Ol.luly HO) t(l CC28·2UU1)<:) 

aV'1 :<:.311. (1115UO,11-15ll1,1115uL:) ,amyb1 
(hakes catalog entries ~or all 1ata sets residing on th~ 
specified volumes.) 

FIXCAT Command 

This command will correct or rebuild a cataloo by ch8ckina the use~'s la~a-
1 log datasets against Du~lic storaGe a~d ~ataloqina any uncataloqed Q~tasets. or 
lootionally. will completely rebuild the catalog 1atasets from 15cb informatio~. 

I --r'-----
I operation I Operan;ls 
f-- I -------.. -.----.-.. -- ... -.-~ .. ------.---------.--.. ---·---··4 
IFIXCAf IDSERID=user identification 
I ![ ,SYSc'\1'2=(NIY}] [,SYSC?,;::''''{~iY} J [.NOFI1.={~Iy}) L-- _________________________________________ J 

USERID 
identifies the user whose cataloiJ datas,?ts are to be fixe,j. 

2.~cif.ied2§': 
alphabetic. 

from one to eight alphameric characters: the fiest ~~st b n 

SYSCAT2 
s?ecifies wh,~ther or not t~9 SYSCA'I'2 dataset is to be 9rased. and r>-?pl"c(',_' 
by the SYSCA~ dataset. If this option is sDecifie1, the new S!SC\T2 data­
set will then be checked for errors. 

2.~cified as: Y or N 

Default: N 

SYSCAT 
specifies wh,~ther or not the SYSCA1' dataset is to be erased and. r­
by the SYSCAT2 dataset. If this 0ptio~ is specified, the SYSCAT2 
will be checked for ereors. 

2.Eecified as; Y or N 

No!:g: If both SY:5CAT2='Y dnd SY::;C~T-'-'Y bot±: ,'iatasets wi1.1 De erased and rebuilt 
by cataloging all of this user'!:-: jatas(~ts found on public sto::age. Not.ei:h..3.t 
this will result :Ln thE" loss of all sharing J.oformation and also the Ic)s:,,: of 
all entries of private datasets. 

NOPIX 
specifies whether or not any chanqes arq to be made to the cataloo iatd­
sets. If NOFIX=Y is specifiedlnd an error is found in the cataloq, a 
dio"gnostic w:Lll be issued statinq that an erro;:: was found, but no chan"es 
will be made to the cataloG datasets. 

Y or N 

Functional descriJ>tion: The SYSCAT dataset is the backup copy ot the cat_a.l.oa 
and the SYSCAT2 dataset is the wOLkin'.:! copy of th'" catalog. The FIXCAT commanCi 
will cause the SYSCAT2 dataset to be verified first. All pointers within t~e 
SYSCAT2 dataset w:cll be checked and if an error is found, the bad entry will bf:' 

deleted. When the internal checkinq is completed, public storage will ~e 
searched and any additional datasets will be cataloaed. 

~art III: System Programmer Commauds 239 



TNL GN204106 (01 July 80) to GCZ8-Z008-5 

If the SYSCAT2 dataset cannot be used, the 5YSCAT dat.aset will re?lace the 
SYSCAT2 dataset and cataloo verification viII continue a~ stated above. 

only if both the SYSCAT and SYSCAT2 datasets cannot be used, will the cata­
log be completely rebuilt by ~can~inq putlic ~toraqe. 

PrQ~~ing note: This command is availabl~ only to the 0001 owner. 

This command allows a privileged user to analyze and optionally 
rebuild a DseE chain. 

,.-----~ 

IOperationlOperands 
I -+ 
fFIXDSCB IDSYA~~=~ataset name r ,USFRID=user identi~icationJ 
I J[ ,l?ATSCH=(YIN} J (,FIX={YIN} J 

DSNAMF= 
identifies the dataset name of the DSCE chain to analyze. 

~£ified a£: a fully qualified dataset name 

Def auli: none. 

USERID= 
specifies the dataset owner identification. 

Specified a~: three to eiqht characters, the first of which is 
alphabetic. (:f less than eicrht characters, the system will pad to 
the ricrht with asterisks.) 

Default: the command issuer's userid. 

PATSCAN= 

FIX= 

specifies whether or not to scan the PAT for DSC3 pages and add 
back into the DSC3 chain any format "G" slots which are not in the 
chain. 

Specified ~2: Y - scan PATs for lost slots 
~ - no PAT scan 

Defaul t: 1'1 

specifies whether or not to correct any slot errors encountered 
while scanning the D~CB chain~ 

Specified a2: Y - correct errors 
N - no error correction 

Defaul t: N 

r.l!!!£~ion..a;LDesc!'iption: FIXDSCB will obtain the format "En DSCB pointer 
by calling LOCFQN. After readina the format "E" it compares the name in 
the DSCB to that in the returned catalog sblock. If the names do not 
match an error messaqe is issued and processing is terminated. 

FIXDSCB can only be used with type 2 format "E" DSCBs connected to 
FORMAT JIG" DSCBS. If the format "E" is not the correct type processing 
is terminated. 

:<';40 



TNL GN20-4106 (01 July 80) to (;C28-200~'·5 

I All DSCBs in tuB chain are reai in and error checked, and an aporopriate 
I error messacre is issued for any errors encQuntnred. A tabl~ (CPATBL) is 
f built in virtual memory descri~ina th~ DSC3 chain. This table contains 
I such things as the ~SC~ seauence counter. address and error indicators 
, and is used in conjunction with the ?AT5CA~ and FIX ootions o~ the 
, command. 

If the PAT5CAN option was selected, FIXDSCB, uoon completion of the 
error analysis phase, will scan the PATs for lost DSCBS. Any format "CH 

DSCBS whose format ":::,, ?ointer matches t_hat of the format "E" DSC13, and 
are not in the Dsee table (CHATEL] will be added to the end of the 
tabla. After the PATs are scanned lost DSCBs will be added to the end 
of the DSCB chain based upon the sequence counter in the DSCB slot, 
lowest slots added in first. 

After error analysis and DATSCA1, FIXDses will correct slot errors and 
update 05C3 page counts if the WIX ontion was selected. Slots with 
invalid format "E" pointers are removed from the chain, external parre 
entry counts are corrected, seauence counters dre corcected, and 
CHECKSUMs are computed, Finally the format "",,' is rewritten wit!"! the 
correct page counts. 

This command alloys a privileged user to rebuild tIW directory for a 
nr0ken VISAH data set or VI5AM member of a partitioned data set. 

I r------
_______________ "0" ________ , 

IOpera~onlOperand I 
I- .-.-. --_.-1 
Il'il'1I IDSNA.:'l};=:idta set mtme[ (lIIeillher name) 1 
I I[ , os ERID=user id~n tification] [ .1'A'rSCAII=Y, N] 

DS:U.1E= 
itientifies the dataset, resiiinq on cir<:!ct access storage w that i.E 
to be reb~~lt. The data £et must he in VISAM II format. 

! 

Specihied db: a fullz' qualU:ied data set name and (optionally) a 
member name of a 'PAM data set. When s~ecifie~* the member name is 
enc lo."ed in parentheses and immediately follolls the Vl'AM data set 
name. 

USEIlID= 
specifies the ~ser's i~entificatio~ o£ the data set ovner. 

S2ecij~ied as: ()nB to el.ght characters. the first of which is 
al~habatic_ (If less tnan B characters, the system viII pad to the 
right with asteriSKS.) 

Defau2~t: the user's identification. 

PAT5CAN 
speci~ies whether or not to scan the PAT pages for X'41' pages and 
add t'I\;]<; into the dataset any pages w~lose format IE' J)S:::B pointer 
matches the format t~. pointer tor the dataset. 

~cifiea a.§: Y - scan PA'l's tor 'ldditiona.l pages. 
Ii - no PA'r scan. 

FUGctional Description:FIXVI IIill reconstruct the directory for a 
VISA~ data set or a VISAM membar of a nartitioned data set. PIXVI 
should be used when a VISAS Jata set becomes uDuseabla. This is usually 
l.ndicated by error lIlessaqes out of the 1fISAM access method routines. 

Part III: system Programmer Commands 240.1 



fNt GN2!J4106 (01 July 80) to GC28-2008-5 

.. hen invoked, FIXIII viII first delet~ the existing directory. jext, 
it wi11 save tAe count of data pages in the data set and set tte R£STBL/ 
member header page count to zero. Pages are then input (via SETXP) and 
aided back into the data set one at a time. As each page is iuput, it 
w11l be validity checked b8fore being added nack into the data Eet. Tae 
format lE' pointer on the page is compared to the format IE' pointer of 
t_1H~ data set tor VI data set.s, and the unique member pointer!:' on the 
?age are compared to each other for VI members of partitioned data sets. 
Pages with bad format 'E' or member pointers will be deleted. 

fIXVI uses SETL and ADE (ad;;' directory entry) to perform d.ata set 
positioning and directory rebuilding. As each data oaqe is input, FIXYI 
viII locat~ the record with the lowest key and use this as input to the 
VISAM SETL routine. If the key is not a duplicate, the page is added to 
the data set and ADE is called to update the directory. 

rha PATSCA» option, .,hen selected, viII be performe~ after existing 
data pages have beeD processed. only pages whose format 'E' pointers 
match ~nat of the dataset are called back. 

Empty pages, pages with invalid format IE' pointers or &eI.her point­
ers, and pages with duplicate keys viII be deleted froll! th.e data set. 
An appropriate message "ill also oe sent to SYSOUT stating the reason 
for the deletion and the RPN of the page del~ted. After all pages have 
been processed aad the directory rebuilt, the user is prompted as to 
whether or not to output the new directory. 

2!JO.2 



GTF (General Trace Facility) Command 

The GTF co •• and viII cause the data specified (interrupts, events, 
etc.) to be recorcled in the lIanner specified. 

i • 

I ,OperationlOperand 
I 

I IGTF , , 
I I 

I , J 
I I , 
t I 
f • I • 

Bote: 

I 10 
f 

I 
, {[ 10 = (Y !I II} I , XPI= (Y 1)1] J[ , SDA=sda[ -sda J)[ ,RID=ri d[ -r id ]] 
, [,SVC=nvc[ -svc] I ,PI=pi[ -pi JI , EI'f=ext )-ext] I ,flC=ac( -mc]] 
I [,RTAB:z[ *E)I'l' ][ , *PIU]] , 
I ,TASK=([ TASKID=taskidJ [,SYC==Syc[-svcl1 [,PI=pi[-pi)) 
I (,EIT=E~xt[ -ert]] [,RTAK== {YIN} ]) J , 
I , {DS IA Im=dsnalle, lfOREPROT=Y} [,REPORT=Y] [, TRA CI D=nullber] 
I [ ,BlfD=Y ) 
• 

a 11 operands are keyword. 

speci:ties whe1:her or not I/O recording is to be done. 

~cified as: Y or If 

t Default: If 

IPI 

, SDA 

specifies whei:her or lnot external progral!l interrupts are to be in­
clu ded in the trace. 

Specified as: Y or I 

I the symbolic device address or a range of symbolic device addresses 
, froll which da1:a is to be recorded. 

, ~cified as: a decimal integer(s) or as a hexadecimal integer(s). 
I A hexadecimal integer is preceded by the letter X ana the integer 
, is enclosed in single quotes; for example, SDA=X t 10 1 -20 means that 
I recording is 1:0 be done on the range of devices with syabolic ad-
a dre sses of decimal 16 (X 110 ') through decimal 20. 

, BID 
I identifies th~~ resource (s) to be traced. 

I Specified as: a 1 to 17 character name, the first character of 
I which must be alpahbetic. This is the nalle of the resource or 
t resource rango that is to be traced. If two resource nalles are 
, entered, separated by a hyphen, all the resources having network 
I addresses in between the two nailed (and including the tvo nailed) 
, resources vill be traced, provided the tvo are in the same SUBAREA. 

Dei aul t: nono_ 

I SVC 
I identifies thE:! SVC number (or range of SVC numbers) to be traced. 

~cified as: a decimal integer(s) or as a hexadecimal integer(s) • 

?art III: Syste~ Programmer Commands 241 



PI 

EXT 

I MC 
t , 
t , 
I 

RTAM 

t , 
t 

I TASK 
I , 
f 

identifies the program interrupt(s) that are to be traced. 

~cified as: a decimal integer{s) or as a hexadecimal integer(s). 

Default: none. 

identifies Ithe external interrupts that are to be traced. 

~cified as: a decimal integer(s) or as a hexadecimal integer(s) .. 

Default: none. 

specifies that monitor call recording is to be included in the 
trace. 

~cified ~s: a decimal integer(s) or as a hexadecimal integer(s). 
The maximum number of calls that can be traced at anyone time is 
deciillal ten .. 

Default: none. 

specifies that RTA]!! tracing is to be done. 

~cified as: 

*EHT - all RTAM entry points that are called will be included in 
the trace. 

*P1U - all Kep SMA headers (ex: TH + RH ••• ) are included in the 
trace. 

Default: none. 

specifies that tracing is to be done at the task level; if this 
operand is specified, all operands that precede it in the metalan­
guage format shown above cannot be specified. 

• TASKID 
, identifies the task for which tracing is to be done. 

, ~cified as: a tvo digit hexadecimal nuaber. 

f Default: none. 

, RTAM , 
I 

1212: SYC, PI, and EXT at the task level have the same definitions 
and specifications as those given earlier for the 10 level .. 

specifies, at the task level, that all interrupts that the task re­
ceives from TAMIl are to be recorded. 

specified as: Y or 11 

Default: 11 

, DSHAeE 
r specifies the name of the data set that viII contain the trace 
, data .. 

242 



I ~cified as: a 1 to 34 alphanumeric name; the first character 
, must be alphabetic. 

Qgiault: see BOREPORT below. 

I NOREPORT 
I specifies that all trace data will not be accumulated; instead a 
, circu1ar log viII contain the trace data. 

~cified as: Y 

J Default: all trace data viII be accumulated in the data set speci-
f fied by DSNAHl!: above. 

REPORT 
when issued, whatever is in the circular log will be sent to the 
ter.ina!; this operand has no lIeaning if DSNAKE is specified. 

, TRACID 
I a system supplied identity that permits the programmer to communic-
I ate with the s-ystea regarding a trace that the prograamer had pre-
I viously initia.ted. 

END 

~cified as: a decimal integer (sent froll the system to the pro­
grammer after the trace has been started). 

Defaul.t: nonE,. 

specifies to t.he system that a trace is to be ended. 

I ~cified as: Y 

Default: none,_ 

Exaaples 1: to tra.ce all I/O interrupts and I/O instructions issued to 
a bank of tape dri ll'eS whose SDAs are X' 40' through X' "6 ., enter: 

gtf sda=x'40-1: 146' ,io=y ,dsname=tapegtf 

This GTFcOllmanCL will cause the following display: 

G~F TRACE HAS STARTED AND TRlCE OD IS - number 

I The n umber displayed is It he TRACEID numbar to be used vhen the trace 
, is to be ended, as follows: 

gtf end=y,trac:id=number 

I The above commaud informs the supervisor that the GTF request identi­
I fied lby 'nu.her· j.s to be stopped. The supervisor will stop the trace 
, and send back to the issuing task the last filled or partially filled 
I record v rit ten to 1~he trace data set. After the record is vri tten, GTF 
I closes the output data set and prompts the user that the specified GTP 
, request has ended. 

I Examples 2: this €!xample illustrates how to maintain a short log of 
I previous events using the NOREPORT and REPORT operands. Assume a group 
I of 2250s on a single control unit which bangs under certain conditions, 
I and the maintenancH person wants a log of the I/O events preceding the 
I hang. A 32000 pagE! data set of t.race records is neither needed. nor 
I wanted -- the hang may.not occur for several hours or even days. To ob­
, tain such a log, issue the GTP command with the NOREPORT operand and an 

Part III: System Programmer Commands 242.1 



I SDA range vhich included all 2250 SDls on the particular control unit. 
I lssuming the SDls vere X'30' through X' 33 1 , enter: 

, gtf io=y,sda=x I 30 ' -x I 33 1 ,noreport=y 

I This vould cause the supervisor to allocate a 2048 byte block for 
I maintaining a circular log of all I/O events concerning the given SDAs. 
I The size of the entries in the log are 48 bytes in length vhich means 
, that the log vould have a aaxiaum history of 42 entries. 

I When the 2250 control unit hangs, enter the following cOllmand to 
I cause the log to be displayed on the terminal and a fresh log block to 
I be started: 

gtf report=y,tracid=nullber 

I Note that nuaber is the trace number displayed as a result of a pre­
I ?iously issued GTP cOlllland. This causes a display of the circular trace 
, log but does not stop or end the trace. To discontinue the trace, 
I enter: 

gtf end=y,tracid=nuaber 

I This last co.mand viII stop the trace and viII also cause the con­
I tents of the last trace block to be displayed at the terminal. 

~APGEN -- create Task storage ~ap 

The I!IPGElt cOllmand creates a dataset consisting of a cOllplete storage 
map for your task. You Bay obtain V!, RC or both, vith or vithout entry 
points. 

i • 
10perationiOperand 
I , 
IftAPGER I[TIPE=][,LEYEL=][,PRIHT=][,EP=][,RUNftODE=) , , 

TYPE 
identifies the type of maps desired. 

Specified as: RC, VK or ALL 

Default: ALL 

LEVEL 
may be specified as a character string vhich viII be the title of 
the map dataset developed. 

Specified as: a character string 

Def~!: 11111111111111111111 

Execution: 

PRINT 
speci:fies vhether or not the dataset is printed 

Specified as: Y or N. 

Def ault: I. 

242 .. 2 



TNL GN204106 (01 July EO) to Ge28-2008-5 

BE' 
specifies whether or not entry points are to be included. in tn.e 
dataset. 

Specified as: Y or N. 

RUNMODE 
s,?ecifies lIhether or nc.t a non-(.."Onversational tasil. is t.o b,C! created 
to Duild the map ~ataset_ 

specified as: FORE or BACK. 

Function a1 Description: I'lAPGF1 reads tn.e Ttl for its task and ruil ds a 
dataset from the entries. It sorts the nameb alphabetically and lists 
Vl'l and RC names seDarately in tne dataset. 

ro;OVEJSER command 

This cc~mand moves the data owned by a user and the associated SYS-
113t;" SYSSI;CT, and USERCA~' r"!Gords tv a nell pool. AlsoI' it will move the 
user data:.,el:s on a pool onto a oreviously specified subset of Pili !lum­
bers vithin the same ~ool (the 'compress' option). 

Note: all users on a pool raust be tcolllpressed l prior to any partition­
ing of til", pool (see trw bLDPOOL cOlilmand). 

r ,,-----------------
IOparatior; IOperands 
I--
1~~OVEUSEi 

I 
I , 
I 
I 
I 
I 

I~SERID=user to be maveJ/co.pressed 
I [ ,l?OOLILJ"" {na:lte of dest ination pool! *J:'OOL} ) 
1(,CONF=confirruation ~essaoes] 
![,EE;ASEOLD=eras~ dataseton old pool after move] 
I [,f'AGECHK=-check rvns of all Qat .. :} SE'~t pages 1 
f[,TOUID=1aEtindtion userid] 
I[ ,QJITUID=auit user on old 0001 after move) 
![ ,DUPAC'I'Obl=activTI it touid catalog already has data ,c;et) 

! 
I 
I 
I 
I 
I 
I 
I 

.. __ ._-_._---,----------,---, _--1 

Nota: :'l,HJi;USclR has b'~en written ,,0 tnat t!H'~ cOlll?lete status ot tIl"~ move 
is catd,loc.~J b~for2 and art'?r any.'!xternal data. operatlon .is taken. 
MOYEUSSR }~S complete recoverauility; it can be restarted trom any 
point, at1er the initial ch~cking anJ locking routines have com~leted 
initiaLiution. AIJ_ dataset stattlS iuformatioI'. is kept in the catalog. 

USERID 
l.dentifieb the user _\lOSE; jat.a satE a r~ to be moved; this para!!ieter: 
must be specLtied. 

Specjd"ied as: one to (~ight alphallltn:::ic characters; the fir~,t r:Just 
be aJi-l:1dbetic. 

POOLID 
iden1~£ies the pool to which the user's datasets are to be hloved; 
this ?arailieter mUEt ~e s?€citied. 

Specified as: ona to eight alphalieric crlaracters, or *POOL. If 
*POOI. is speciiied, a S~'i'RV'l' :Dust have beell previously issued for: 
the Hser, and tae tIser's uatasets .ill b~ ·coJlpress~d· within the 

~art IiI: system Programmer Co~mands 242.3 



CO:'F 

RY~ ll~itG of this SBTRVN command. within the sama pool. 
ROt0~ under the S3TRVI co~mand description.) 

(Refer to 

indicat~s wh0ther ur Lot confirmation messages ar~ to be issued as 
1atd!.;f-~t:;; (jri~ Dov{~d ... 

iIJC! ~_c,ltl:.:~_; ~L~?ther or not da'ta sets are to h~- erased £.com their 0-

iaal location a~ter being moved. 

Y or: N 

y 

" l'OOL H>"'*l:' OO!' , ERASEOLD=Y is in force ~ if TOUID=USEHID and 
POOUD ao'; to *.£'OOL, ERASEOLD cannot be specified. 

ide Dt.":"1.ies tbe userid in the new pool who will own the datasets be­
ing moved. 

c~£~ed a~: one to eight alph~eric characters; the first mU5t 
d.l..prd.het:u:; • 

auJo.l= USBRID; i.e., the user vill have the sallie ia.entity in the 
rh?¥ pool that he/she had in the olJ pool. 

Note: '.rOllIn can be pre-joined or not, but cannot be Joined to any 
~:ooI except the one specified in ?OOLID. 

~ovirl':j to a new pool loses all sharing information, hut Duilds a 
rEi!, compressed catalog. 

If EOOLIu""*POOL the TOUID paralketer i.s ignored. 

f>A (~ECH it 
l.ud :L.cates whether or not all dataset pages (ra thex: than the DSCBs) 
are clH~ked to determine if any lie outside the R'IM lill,its in force 
,:or tnis USEHID~ This parameter is meaningful only if 
P~Q L ID=* POOl, • 

Deraul t: Y if MULTIVOL=Y; Ii if MULTIVi)L=N. 

'£.!1UTIC;N~ if l'W(..TIVOl vas Y an;! is now !i, PAGECfiK""Y t~ust he specified; 
otheryise. auy data pagas outside the Bfa lim1ts now in forc~ for this 
USERID wlll be lost. 

Q U 1':U:r D 
incicdtGS vhetner or not the USERID (in the old pool) is to be QUIT 
after the datasets have been moved to the new pool. 

Y or N 

f POOLID=*POOL, the QUIT1ID oararueter is ignored. If 
D=USERID. N cannot be specified. If QUITUID=N (and is valid), 

all tue tlSer datasets will be duplica t.ed under the neif userLl. 



, r..UPACT0a 
1 identifies the action ~o be oerformed i1 a dataset name to be illcve~ 
I alre,dy e:::.ists ~n the 'rOilID '5 catalog. 

SKlP - ao not copy tue 'frow- dataset. 

COpy - the TOUID's d~~aset is erase~. then tae DS!HID dataset is 
copied. 

~SCBCHK - a check is made to see if the datasets are similar; il 
not, then COpy is assumed. when teey are similar the 
change date5 ar~ check(~d: it tne ':from' data~;;et is 
never, COpy is assumed; if t~e TOUID's latasat is newer, 
SKIP is assumed. 

Function al description: the prograili mak.es cheCKS on the privilege of 
the issuer, then checks the input parameters for validity. T~en the 
tollowing checkl';/lo(':Ks are !o'et: 

r A. 
I 

USi::.RID has no currently active tasks, dnd tnere is enough spac-;, on 
the ~bs~inatioD pool to hold all the USEBID datasets. Tais ChdCk is 
done va a dataset basis tor a compress ~ove; i.e., when I , POOL lU=*POOL. 

B. the IJS1':RID/TOUln is placed in MOVEUSER status. 

c. the USt.:RID/'rOt;lD datasets are loc1t;:d~ and are not ,~ccessible to any 
user except the one executinq the move. 

D. a un~que generation data grou~ is cataloged. 

E. the USl:;RID/TOUID SYSS vc~' records are updated to reflect ~()\I .;:'USEF 
stat u.s. 

F. those aatasets to be moved (those outside the B~ li~its) are Karke1 
in tae JS~RID's catalog. 

The initial phase of MOVEUSBh is now complete dni{ liOVJ:;USER enters the 
'Illovedata l phase where the marked datasets are ltoved. In ca:;,.e t.he job 
aLends for any reason, it can be restarted by re-issuing the COllimanu. 

The folloltl.Dg is the seguence 01: events in moving one data!:et: 

I A. 
t 

a space chedt is made to see if there is enough space within the 
dest1nation pool. If tllere is not enouq space, an information J1es­
sage is issued and the next dataset will be moved. After all data­
sets are moved a check is naJe to datermine if any were skipped: if 
all were ilIoved, the proqraa goes to the next phaE'?; it any ws.re 
skipped, there will again be a space caeck and it there is still not 
enough space for any dataset, ~ov.elJs.c;R will exit wi til aT, error :aes­
sage laaving the USERID in a aov~OSE~ status. 

, 
• , , 
I 
I 

B. 

c. 

The USERID/TOUID datasets ~ill be DD~Fed and VV (VAM-TO-VA~) is 
called to copy the dataset. If there is an abnor!!l3l termination 
during the VV, when :10V~:;US~R ~s restarted. the partially copied 
dataset is erased and tne VV is attempted again. If there is a 
second abnormal ter*ination, the dataset will then b~ recataloged 
under the u~erid pertor~in~ the move. 

For 'l'OUID=USERID, the following six steps are periorme~: 

Part III: System Programmer Commands 242.S 



TN L C:,,; 20-4 J Ot f[ll July 80) to GC28-2008--5 

1. the new E DSCH is updatea with the original DSNAHE~. 

2. l.':H" original. sblock DseB oointer is changed to point to the new 
Qatdset • 

.;). '1h,~ old DSCB is updated to the unique DSifAl"!R. The catalog 
.sl,loc)( DseE f'ointer is changed to t;.he new d.ataset. 

4. iLa old uatazet is erased. 

s. '1'h8 catalog is updated. to refl ..... 'Ct the ~ove is complete. 

6. Confirll!ation Ilessages are outputteJ. (if CONl'=Y) • 

Af ter a1.1 lldl:asets are ~lOveG., the 'Il.ovedata I phase is completed by 
upJatinq ite catalog to rellect MOVEUSER is now in the JOI~ phase. 

The ,HHl;phase performs those items nece:.:;sary so that the aser vill be 
able LO logon the new pool after the move is cOliiplete. 'I'he USEli.CAT is 
mov?a to l:ne lilH' pool, the SYSUSE, Sr~SVCT, ani! CHBOID for the nell pool 
dr-e ilf·da ted _ After thE: JOIN phase is complete, thi~ information is kept 
in tile SYSSVCI' entry of the uSZl'lI!)/l'OUID. 

~hen 0UITUID=Y, the USERID is quit from the old pool. This consists of 
Jeletinq tne SYSCAl memoer, erasing US~BCAf. deleting SYSSVCT and SYSUSE 
entries. aud d,~leting the user trom the CH£UIlJ of the old pool. 

rinally .. ,mVEUSEE goes through a cl~~anup phase to reset any locks that 
Irh,r-e set, so that the aSERID/TOOID \lill be able to logon and his/her 
datasets can be re:ferenced DY other us",rs. 

~~VMSG (New UpQates for Messages) Command 

This COilll:iand. nrings the 1Il0st active messages up to date. 

r--- --,,-----------------------------------------------------------------------, 
IOpera~onlOperand 

r --+------------------------------------------------------~ 
IN):;Wl'ISG I 
L.. 

Note: There are no operands • 

. FuIlctional Description: NEwl':SG reinitializes a table (CHBlISG) in which 
the User l--roltpter routine maintains the most active messages iL the sys­
tf-~m_ .1\1l messages in the most-active list are cleared, and any subse­
quent re:LereJlCe is read into the table i:rom SYSLIB (SYSMLF) and vritten 
to the us(~r. The rr.ost-active llI.essages in the system are moved into the 
most-active-messa.ge table in the User Pro.pter's PSECT. 

l:'ro5!~inq Notes: For sta.ndard message processing, the systeill searches 
the User Prompter's table Lor the message before searching SYS~LF. If 
tl,e lIless age ID ~s located in the table, the message is issned; the User 
Prompter does not search through SYSf'!LF for any message it finds in the 
buifE:r. l£ SYSMLF is edited to change the text of sOlie lIessages when a 
copy of the message already exists in the table, the message in the ta­
bl,,~. exi sti at} orior to t he update, might be issued. 

l'h(~ 1\ EW'!SG command shoull'! be issued following any edit of SYS!!LF to 
ensure that current messages are used by the systea. 

I~~l~: The operator nas edited tne system message file (SYS~LF). He 
aUded several nell messages and modified several existing ones. To en­
sure tnat aLl tasks now active in the system will receive current mes­
sages, be issues the NEW~SG command. 



TNL GN204106 (01 July 80) fo GC28-20()8-5 

Ol:>e:£: ~ewmsg 

Systel~: Clears out the lllost-acti.ve-message tabla; suLseauont ro":­
erences to those messages cause them to be replaceJ in th€' 
buffer table vit~ the current version or the message and 
written to the user. 

~AXCLEAR~:lear~e Assignment Table) Command 

The PATCLEAR command initializes YAM-formatted disks llIounte(! on pri­
vate dev io~s. This frees Ute jata pages (including DseB pages) tor 
reuse. 

i j "I 

,OperationlOperand I 
• J-, -----------------------------f 
I?ATCLEAF. IDEVICE=device type,VOLl.D={volume serial numberIPRIV.1'iTEl. , 
I IR~Nl!ODE={l"ORE'BACK} [,PAGH<G=fY!NJJ I 

-------S 

DEVICE= 
specifies the type of direct access d.evi.ce on which trie pack to be 
ini tiillized is mounted. 

Specified~: 2311, 2314, 3330, 333B, or 3350. 

VOLID= 
identifies the voluae to be initialized. 

Specified as: one to six alpha.eric characters indicating the 
serial nuBber of the voluae to be initialized; or PRIYATE if a sys­
tea scratch pack is to be aonnted. 

RUHI!ODE= 
indicates that the tiae-shared PATCLEAR is to be run conversation­
ally or nonconversationally. 

Part III: System Programmer Commands 242.7 





Specti:ied as: PORE o.r BACK. 

FORE The PATCLEAR is perforlled in the user's task. while I:llnning 
cenversatio.nally~ 

BACK When specified in a conversatienal task, a separate back­
greund task is created to. perferm the PATCLEAR. 

Nete: RUNRODE is ignered if issued in a nonceD;rersatienal mede; 
the Pl,TCLEAR is perferlled within the backgreund task in which it is 
issue([. 

PAGING 
indicates whether a pack is to be initia~ized for data set stora02 
or for paging. 

Specified as: 

Y - clears the P~T (Page Assianment Table) and indicates that all 
pages 011 the pack (except error page;; ar.(~ PAT pages) 'in, to ;;p 

used for paging. 

f N - indicates all pages on the Dack are ~c be used for data set 
I storage. 

I Defaul!:.: N 

CAUTION: 'f'he velUille to. be init.ialized must ba en a private device and 
Ilay net be in use at the time PATCLEAR is executed. 1:he VOLID opex:and 
lIay not lIatch any VOLID in the public volume table (that. is, VOJ.ID Cd n 
simply be patched/! using TSSS). This celilland can o.nly be executed by 
tasks having 0 er P autheri ty, er by the 5YSt:!. eperator: {in the back-­
gro.und RUN~ODE enly). 

Functienal Description: PATCLEAR zeros the ene-byte entries and tl1<3: re·· 
lecatio.n entries in the page assignment table (PAT) on VAM-forllatteG 
disk packs. The ene-byte entries in tbe PAT for the follewing pages are 
net zereed: 

The PlIT page (s) 
Any error pages 
The pages en the error retry cylinder 

Pregrall.inq Nete§.: The user is resPo.nsible fer interfacing with system 
services sll.ch as the cataleg or external sto.rage allocatio.n; that is .. he 
lIust use tbe salle precautiens he weuld use in reinitiallzing the pack 
with stand-alene D1SDI (this is especially impo.rtant for lIIIultivolume 
data sets). 

PATFII (Fix Pa~ Assign.ent Table) CellJland 

This cellmand validates entries in the page assignllent tables (PII'fs) 
by constructing a new PAT frem DSCBs that reside en the specified vol­
ulle, and cCllparing the reconstructed PAT to the eriginal. A diagnostic 
repo.rt shoving any PAT erro.rs or incensistencies is then printed on the 
system printer er recerded in a specified data set. 

Cemmand (and Special Option) Descriptions 243 



,.---- I --------------'-'-------------------------, 

,OperationlOperand 
I 
I , 
I 

, r 
I I (2311,volume 
, f (231~,voluae 

I P!TFIX , • VOLDEP=«3330,voluae 
I I (333B,voluae 

"1 

ID, ••• ) I 
ID, ••• ) I 
ID ..... } > 
ID.,. •• ) ! 
ID,. •• } I 

[,DEVCOUNT=number] 

I 
I 
J 
I 
I 
I 

f f (3350,volume 
I I PUBLIC i 
I 
I 
I , 

J 

[ ,PIX= {Y I NJ ]( ,REPORTDS=da ta set nallle] 
[,DIAGREF=YIN] [,DAYS=nnaberJ 

VOLDEF"" 
specifies the voluaes for which the PAT entries and DSCBs are t.o he 
validated. 

Specified as: PUBLIC to validate the PATs in all public storage; 
2311,2314 .. 3330, 333B .. or 3350, follo"ad by a list of private vol.­
ume serial numbers. Device types cannot be mixed. Public volu&es 
aay not be specified by volulle serial nUllber. 

DEVCOUNT= 

FIX= 

specif:ies the nuaber of direct access devices that are to be used 
for aount:ing private voluaes; th:is operand is ignored for public 
volumes. If the specified number exceeds the number of volumes a­
vailable, as indicated in t.he user table, the connt frolll the user 
table replaces the DEVCOUNT specification. If a spec:ified private 
volume is found already aounted for the current task, the device on 
which :it :is lIIoanted becolles available (if necessary) to PATFIX for 
mounting other private volumes: in such cases DEVCOUlfT is autollati­
cally increased by 1. 

Specified as: A deci.al number. 

Default: The number ot devices available indicated in the user 
table. 

spl~cifies whether or not error cond:itions in the PAT are to be 
fixed. If spec:ified as Y. :in a conversational task I t.he system 
viII prollPt the user to determine if: 

• Erroneous DSCB checksums are to be recompnted. 

• Unused DSCB slots having nonzero data are to be zeroed. 

• Unused for.at~F DSCBs are to be zeroed. 

• Erroneons forllat-E DSCBs are to be zeroed. 

• The rebuilt PAT page is t,o replace the 'Original one~ 

In nonconversational tasks, Y cannot be specified. 

SQecif:ied as: Y or N 

Default: 11 

REPORTDS""" 

244 

specifies the naae of a previously defined data set into wh:ich the 
PAT diagnostic report :is to be Yr:itten~ 



r 

Specified as: A fully qualified data set naae of a YSAR, YISAR 
(line data s,et), or QSAR (without keys) new or old data set. 

Default: Th'e report is written, using (Il[SAIl, on the systea printer. 

Bote: Only an issuer having privilege class E aay take the 
default. 

DIAGRE!'= 
specifies vh'ether or not the 'DATASET UJfREFEREBCED IJf 111 DAYS' aes­
sage is to b,e vri tten into the report data set. If the user is 
only interested in looking at the PAT!'IX output for errors, many 
'DATASET UBR:!FERElICED' aessages vill. aake it harder to spot any 
error aessag,es in the output; this paraaeter will eliainate thea. 

Specified as: Y or B. 

Default: Y 

DAYS= 
specifies the nuaber of days the unreferenced aessages should be 
issued for ea.ch dataset. 

Specified as: a deciaal nuber froa 1 to 999. 

Default: 30 

Functional Description: PATFIX ~earches the DSCB chains of all the data 
sets on the specified voluaes, and rebuilds the PAT froa the DSCB page 
pointers on those voluaes. This search identifies the following error 
conditions: 

• Invalid DSCB 'entries (for exaaple,. DSEElIT, DSECBB, DSEJlIlE, DSETYP, 
DSECKS) 

• Relocation entry errors 

• Unused foraat-F DSCBs 

• Data page ent:cies not accounted for in a DSCB 

• Invalid PAT c,ontrol entries 

• Erroneous DSCJ8 entries in PAT 

The search also v~rifies the DSCB page slot count. A coaparison between 
the rebuilt PAT a:lld the original PAT is made to discover any discrepan­
cies between thea. If any errors are found and FIX=Y vas specified, the 
user is proaptedfor the option to recoapute (or reset) checksuas, zero 
out unused foraat-F DSCBs, zero out unused DSCB slots, or to replace the 
old PAT vith the :rebuilt PAT. Then, depending on the user's specifica­
tions, diagnostic inforaation indicating all errors found in the PATs 
are written out 0:1:' the rebuilt PAT replaces the original PAT, or both. 
'l'he diagnostic in:foraation written to the output data set aake up five 
distinct reports. 

1. PAT Error Report: Indicates PAT control entries (that is, X'7F', 
X'CO', or X':PF') are either aissing, iaproperly located, or iaprop­
erly specifil~d. 

2. Data set Sta"tus Report: Lists status inforaation describing every 
data set on lill of the voluaes specified by the YOLDEF operand and 
flags data sats containing diagnostic or error conditions. status 
inforaation includes: data set naae, date last referred to, change 
date, total iBuaber of pages, volue ID, relative page nuaber of 

Coa.and (and Special Option) Descriptions 245 



DSCB slot, and the slot number. Diagnostic and error conditions 
include: invalid checksums, invalid foraat-E DSCB, data set not 
referred to within a specified period, and pages allocated but not 
used. 

3. Shared Data Page Report: Lists the data set naae and location of 
any data sets claiming the same data page (that is, having the saae 
page pointer in their DSCBs) • 

4. PAT eoaparison Data: Lists, for all volumes specified by the VOL­
DEF operand, any unused format-F DSCBs or data pages. 

5. Data Set Profile Report: Lists by user ID and voluae ID all data 
sets and data pages associated with each user ID; they are listed 
first alphabetically by user ID and then numerically by total num­
ber of data pages. 

programming Botes: This command can be used only by systea programmers 
with authority O~ 

The normal procedure for using PATFIX is to issue it once, with 
FIX=S, to produce a diagnostic report, and then to reissue it a with 
FIX=Y, to fix the error conditions that were indicated in the diagnostic 
report. If a diagnostic report is requested with the second PATFIX, 
although some of the reports would have been updated to reflect changes 
made via FIX=Y (for example, the data set status report would reflect 
recomputed checksums if the user had requested thea), all of the updated 
PAT changes would not be present in the diagnostic messages (for exam­
ple, in the PAT comparison report, any data pages that were reclaimed, 
or unused DSCBs are still listed as error conditions). To get a com­
pletely updated diagnostic report, a third PATFIX, with FIX=., should be 
issued. 

When executing conversationally, the user is proapted, prior to writing 
out any DSCBs or PATs, to determine if he wants to make any fixes. 

Whether public or private volumes are being processed, with FIX=Y, and 
REPORTDS is also specified, the report data set must reside on a volume 
type other than one specified by the VOLDEF operand. Thus, if public 
storage is being processed (with FIX=Y), the report data set must be 
mounted on a private volume. 

When processing public storage, with FIX=Y, this command should not be 
used while active users are on the systea, because all of the PAT 
entries, for all of the public volumes specified, are locked while PAT­
FIX processing takes place. 

If a user asks to write the PAT while in background mode, the writing 
does take place. 

Por the report data set, format-U records, and logical record lengths 
other than 132, will not be processed. 

If a data set spans to a volume that was not specified by YOLDEF, the 
user will be prompted for continuance; if he responds with Y, the volume 
is added to the volume list specified by VOLDEP, and processing 
continues. 

Examples: 

1. For public storage, when FIX is specified as Y and the report data 
set has a TSAR organization, you might issue: 

ddef report,vs,report,volume=(,private),unit=(da,2311) 

246 



patfix ptwlic"y,report 

If the report. data set is defaulted, the operator must delete a 
printer and e,nter: 

patfix plililic"y 

2. For a private. volame, vhen FIX is specified as Y and the report 
data set has a TISA" organization, you aight issue: 

ddef re:port,vi,report 

patfix vc.l.def= (2311 ,dp0575) ,devcount=l ,fix=y ,reportds=report 

POOL? Command 

, This cOllmand displays the status and other information concerning all 
I public storage pools known to the system. 

• --~.-------------------------------------------------------------------~·~I 
I Operation I Operands , 
, I 1 
,POOL? f , 
• • I 

~: there are no operands. 

t Fanctional descrip~: this command causes a display of the pool's 
I status (maintenance, marked for deletion, etc.), volume state, and the 
, preferred SYSCAT volume serial number (if any) for each public storage 

pool. 

PBG1"P COmmand 

I This com.and translates the captured trace data into unformatted but 
, printabl.e hexadecimal characters. 

• i , ,Operation'Operand 
I I 
IPBGTF IIBDSI=dsnaael [,OUTDSB=dsnaae2] [,*B] 
• • 

IBDSlf 
the name of tile trace data set to be translated .. 

, Specified as: a 1 to 35 character naae; the first characteraust 
f be alphabetic. 

Default: non(~. 

t OOTDSJI 
I the naae of the output data set that vi11 contain the translated 
J trace da.ta .. 

, ~cified as: a 1 to 35 character name; the first character aust 
f be alphabetic. 

I 

I 
f 

I Default: if (iefaulted, the translated data vill go to the terminal 
, only .. 

t *B 
t specifies thai~ translated data. is to go to the ter.inal as ve1.l as 
, dsnalle2. 

Part III: System Progra.aer Commands 247 



Spe cified as: B 

Default: translated data viII not go to the terminal. 

PRINT Co.mand 

In addition to the PBIIT cOIl.and operands available to all users (de­
scribed in Command Syste. User's Guide), the privilege class E user Ilay 
choose fro. several tape printing options (the TAPOPT= operand). These 
options are described in detail under "Printing ASCII Data Sets" in Part 
1:. 

24~-252 



SECURE Conand 

An explanation and the general foraat of the SECURE com.and is con­
tained in Co.mand System User's Guide. ~he operand choices available to 
the privilege class B (system aonitor) user are described below and are 
in addition to the operands available to all users. All operands must 
be entered as keywords; they aay not be entered positionally. 

PR= 

PC= 

liD= 

designates the nnaber of printers requested. 

~cified as: A one or tvo digit nuaber. 

~AHl!: .0 printers are reserved. 

designates the nnaber of punches requested. 

~cified as: A one or tvo digit nuaber. 

Default: 50 punches are reserved. 

designates the nuaber of card readers requested. 

~cified as: A one or tvo digit number. 

~~: 50 card readers are reserved. 

Prograu inq Rote: When reserving devices, all devices aust be requested 
in a single SECURE conand stateaent. 70r exa.ple: 

secure (ta=2), Cpr=l) , (rd=2) 

, SE~RYI COJ!Iland 

, This co •• and alloys the pre-joined user and system administrators to 
I set voluae limits for the allocation of new datasets, or extensions to 
, existing datasets. 

• I , 
, IOperation,Operands I 
~f-------;I--------------------------------------------------~ 

'ISE~RV5 t[USERID=,LOWRVII=,HIGBRVII=] I 
• • I 

USHiID 
r identifies the user for yho. RYls are to be set. 

I ~cified IS: a userid, or *ALL, or *CC. *ALL refers to all 
I userids joined to the issuer's pool. *CC allo.s a systea adainis­
I tra tor to chan,ge/display all userids that match the first two 
, characters of his/her userid. 

I ~ault: the ,current RTls for the issuer's pool are displayed. 

I LOWRYI 
I identifies the lowest relative voluae nuber within the pool on 
r which new data:sets or extensions to existing datasets .ill be allo-
t cated for the ,specified USHRID (s). 

Specified as: a one to three digit nuaber. 

Part III: System Program.er Co.~ands 253 



BIGHRVli 
t identifies the highest relative vo1uae nuaber within the poo1 on 
t which new datasets or extensions to existing datasets wi11 be a11o-
, cated for the specified USHRID(s). 

~cified as: a one to three digit number. 

I Defau1t: if both LOWRVli and HIGHRVW are defau1ted, the current 
I RYlis for the specified USERID(s) are disp1ayed. 

I Kotes: the RVli 1iaits aay be expanded but not reduced for any USERID 
, who is a1ready in MOVEUSER status. 

I F0110wing execution of this command any USERID datasets which may be 
, outside the RVli 1imits are unaffected; the RYN 1imits app1y on11 to the 
I extensions of existing datasets or new datasets. 

" 
I However, if a MOYEUSER command with POOLID=*POOL is executed f0110w-
I ing a SETRVN, any user dataset with at 1east a part outside the RV~ 
, 1i.its wil1 be copied within the RVB limits (within the same po01) if 
, sufficient space exists; otherwise, a diagnostic is issued. This is the 
I ·compress· option. If a diagnostic is issued indicating insufficient 
J space, severa1 SETRYNs lIay be issued, each expanding the RVN limits, un­
I ti1 sufficient space exists. 

TRACE COllmand 

This cOBmand wi11 trace the instructions of an NCP/pEP or EP. The 
trace is simply a record of the instructions in the order in which they 
vere executed. 

f I 
IOperationlOperands 
I I 
ITRACE lresource [,DSNAME=] [,NCPOES=] L--______ ~~ ________________________________________________________________ _J 

resollrce 
ide ntifies the resource to be traced. 

I Specified as: a 1-8 character name, the first character must be 
I alphabetic. This name must also be the name of a region in the 
, TSS*****.SYSRCS dataset. 

• Default: There is no defau1t for this parameter. 

DSliAftE 
the name of the dataset that vi11 contain the trace output. 

Specified as: a one to thirty-five character name. The first 
character must be a1phabetic. liote: If this parameter is omitted, 
the output viII go on1y to the terminal. 

liCPOES 
, directs the output to the dataset only or to the dataset and the 
• termina1. 

I Specified as: LO for output to the dataset on1y or LDT for output 
I to both the dataset and the terminal. 

TRACEND Com.and 

This command vill terminate a trace that is active. 

254 



r 

I i 
I Opera ti on J Operands 
I, r 
,TRACElIID ITRACID=trace identification 
I I 

l'RACID identifies -the trace that is to be terminated. 

~cified as: a 4 digit nn.ber. 

Def all t: The::e is no default for this parameter. 

UPDTUSER (Update User Tables) COllmand 

The U PDTUSER cOII.and causes the data about the use of external 
storage, currently in each user table, to be updated vith the informa­
tion frolll each nsel:1s catal.og and DSCB entries. 

• I 
I Operati on, Operand 
I , 
,UPDTUSER I[KODE=UIS)) L---______ -L ______________ . ____________________________________________________ ~ 

.,ODE 
specifies vhe1:her all or selected user entries in the SYSUSE data 
set are to be updated. 

~cified as: A - all 
S - selected (only entries for users with active 

tasks or owning shared data sets that are being 
used) 

Punction al Descrip1:ion: This command enables privileged system progralll­
Ilers having an 0 dttthori ty code to update all user tables in SYSUSE, 
with usage statistics froll various user catalog entries. 

If mode S is spe,cified, only those entries for active users or for 
those vi th shared c~ata sets in use at the time of issuing UPDTOSER (or, 
if the system failE,d and va5 restarted, users active at the time of sys­
tell failure) are updated. A flag (USEADC) is set on in the user entry 
for active users; if S is specified, only those entries vi th this flag 
on are updated. 

Programming Notes: UPDTOSER erases temporary public data sets and 
updates the total DUllber of pages associated with each user table in 
SYSUSE. 

UPDTUSER should be issued after each re-creation of public storage 
caused by issuing HPS or CVV commands and at any time the user tables 
are susp ected of being incorrect. 

If the user table is suspected of errors for active users only, such 
as might be the case following a system failure and restart, the use of 
mode S mignt reduce the updating time. 

When the user table of the task issuing the UPDTUSER commana 15 up­
dated, the shared virtual storage record of that user table is updated 
to correspond to the updated SYSUSE record resulting from execution of 
uPD'rUSER • 

Part III: System Programmer Commands 254.1 



EXAMPLE: 

~: updtuser 

System: Returns the following message to SYSOOT: Bnnnn USER TABLE 
STORAGE ALLOCATIONS UPDATED AGAINST DSCBSB. 

USAGE CO Illlland 

See the Co •• and System User's Guide and, for determining usage of the 
system by users other than the USAGE issuer, the ~anaqer's and Adminis­
trator's Guide. 

YD!!P Com mand 

This co.mand viII print on the system SYSOUT device one to all pages 
of a YAft data set, object text, all the DSCBs for a data set or all the 
DSCBs on the given TolulIle(s). 

• • 
IOperationlOperand , 
IYD!!P 
I 
I 
I , 
• I 

IDSIA!!E=data set name 
'r,CEBAME=control section name] 
I[,DSTYPE={DSIOBJIDSCB} J [,OFFSET=page offset] 
'[,COUNT=nuaber of pages] 
1[,VOLDEF={PUBLICI(device type,Tolume identification 
I [,volume identification]}}] 
I 

DSBA!!E 

254.2 

identifies the data set to be dumped or the data set of the DSCB to 
be dumped. The data set must reside on direct-access storage. 



VAft data sets must be cataloged unless ~he VOLDEF parameter is 
specified. 

S~ecified as: a fully qualified data set name with (optionally) a 
generation nusber and/or member name of a VPAM data set. When 
specified, th'9 member nalle is enclosed in parenthesis and imme­
diatlely follows the VPAM data set nalle. When VOLDEF is specified, 
the DSNAftE must be prefixed by the USERID. Otherwise, the USERID 
is not used. *ALL is used in combination with DSCB and VOLDEF 
parameters fO:1: the given volume (s) • 

CENAftE 
identifies th,~ control section or entry point of object text to be 
dumped. CEBA3E is to be specified only for DSTYPE=OBJ. When spec­
ified, lIember name is ignored. 

specified as: a control section name. 

DSTYPE 
specifies the data type to be processed. 

Specified as: 
DS data SE~t 
OBJ - object text 
DSCB - data sot control block 

Default: OBJ is assuaed. 

OFFSET 
specifies the page offset froll the beginning of the data to be 
du.ped. For IiSTYPE=DSCB, the OFFSET parameter is ignored. 

Specified as: 0 to (219-1)in decimal digits or the equivalent 
quoted hexadecimal value with preceding ·X'. Arith.etic expre­
ssions may be used (maximum of 20 characters). They should be of 
the same formatt as TSSS and PCS and should be expressed in pages. 
See Example 4. 

Default: 0 is assumed. 

COURT 
identifies the number of pages to be dumped. For DSTYPE=DSCB, the 
COUNT parameter is ignored. 

Specified as: 1 to 20,000 in decimal digits or the equivalent 
quoted hexadecimal value,with preceding 'X'. Arithmetic expre­
ssions may be used (maximum of 20 characters) and should be of the 
same format as TSSS and PCS and should be expressed in pages. 

Default: all of the control section, data set or associated DSCBs 
are assumed. 

YOLDEF 
identifies specifically the volume(s) to be searched for the data 
set with a maximum use of two volids. The use of the VOLDEF paraa­
eter will cause the catalog entries for the DSHAftE to be bypassed. 

Specified as: 
PUBLIC - :for searching all public volumes. 
(device t:rpe,volume identification [,volume identification]) -
for partif::ular volumes or a volume to be searched. 
device type - 2311, 2314, 3330, 333B, 3350. 
Yoluae id{!ntification - a Yalid volu.e ID consisting of 1 to 6 
characters. 

Co.mand (and Special Option) Descriptions 255 



Functional Description: The VDftP comsand dusps the referenced object 
text, data set or all DSCBs. The user say specify the dump data set be 
created on his own private voluse (disk or tape) by entering DEFAULTS 
cossands for UNIT, VOLURE and LABEL parameters to be used in the VAR1CC 
DDEF. For a non-conversational task a SECURE command must be issued by 
the user immediately following the LOGON command. The duap viII begin 
vith an appropriate heading. Each line of the dump viII contain 32 
bytes in hexadecisal character formats. At the beginning of each line 
viII be the displacement. For data sets, displacesent indicates the 
byte offset from the beginning of the page. Displacement indicates the 
offset from the beginning of the control section for object test and 
from the beginning of the DSCB for a DSCB dump. When dusping object 
text, if a null page is encountered, the displacement is incremented by 
4096. 

CAUTION: The use of the VOLDEP paraaeter viII significantly slov dovn 
the search for the data set. When the VOLDEF parameter is specified, 
the absolute generation name must be used. 

Programming Note: Only authority '0' users may use the VOLDEF parase­
ter. In addition, use of the VOLDEP parameter is to be used only vhen 
the data set cannot be accessed in any other way. 

Por privileged system programmers, *ALL as a DSNARE requests all DSCBs 
for a given voluae. If DSKARE=*ALL, the VOLDEF parameter must be 
specified. 

Authority ·U· will only be able to dump OBJ (object text) vhile '0' and 
'P' authorities may also dump DS and DSCB. 

Example: Example 1 dusps on the systes SYSOUT the first 23 pages of the 
first generation of NEB1 of A.B.C.D. Instead of the catalog, all public 
volumes viII be searched. 

VD!P TSS*****.A.B.C.D.G0001VOO(NEB1)"DS,,23,PUBLIC 

Example 2 dumps on the system SYSOUT the first page of the CSECT, TEST 
of joblib. Instead of the catalog, volumes A and B on a 2314 are 
searched for the object text. 

VD!P VOLDEl=(2314,A,B)COUBT=1,DSBA!E= 
TSS*****.JOBLIB,CEBABE=TEST 

Example 3 dumps on the system SYSOUT all associated DSCBs of ABC.DEl. 

VDRP ABC.DEF"DSCB 

Example 4 dumps on the system SYSOUT the fifth page of the data set 
USER. 

VDRP USER"DS,5,1 

This comsand viII display on the user's SYSOUT device up to 2 29 bytes 
of data from a VAB data set or up to 10,000 DSCBs from a DSCB chain. 

256 



i j 

I Operation I Operand 

IVDSP 
I 
I , 
I 
I , 

IDS.ABE=data set naae 
t[,CBBABE={control section naaelentry point naae}] 
I [ , DSTYPJ!= {DS, OBJ, DSCB} ] [,OFFSBT=byte offset] 
I [ , COUBT::nuaber of bytes] 
1[,VOLDBF={PUBLrCI(device type,voluae identification 
, [,voluae identification 1)} ] , 

I , 
I , , , 
• 

DSIU!lB 
identifies thEt data set to be patched or the data set naae of the 
DSCB to be pa1:ched. The data set aust reside on direct-access 
storage. TAft data sets aust be cataloged unless the VOLDBF paraae­
ter is specified. 

Specified as: a fully qualified data set naae with (optionally) a 
generation number and/or aeaber naae of a TPAB data set. When 
specified, thEI aeaher naae is enclosed in parenthesis and iaae­
diatlely follows the TPAB data set naae. When VOLDBP is specified, 
the DS.AftB aUE:t be prefixed by the USERrD. Otherwise, the USBRrD 
is not used. 

CB.ABB 
identifies thE, control section or entry point of object text to be 
patched. CB.ABB is to be specified only for DS~YPB=OBJ. When 
specified, ae.ber naae is ignored. 

Specified as: a control section naae, or an entry point naae. 

DSTYPB 
specifies the data type to be displayed. 

Specifie4 as: 
DS - data set 
OBJ - ob ject text 
DSCB - data set control block 

Defaul.t: OBJ is assuaed. 

OPPSET 
specifies the byte offset froa the beginning of the data to be 
displayed. 

Specified as: 0 to (229-1) in deciaal digits or the equivalent 
hexadeciaal value with preceding 'X' if DSTYPB=OBJ or DS. For 
DSTIPB=DSCB, OFFSB~ is specified as 0 to (4096 x 633)-1 in deciaal 
digits or the iaquivalent quoted hexadeciaal value with preceding 
'X' • .lrithaetic expressions aay be used for all. types (aaxiaua of 
20 characters) and they should be of the saae foraat as TSSS and 
PCS and aay be expressed in pages plus the nuaber of bytes into 
that page. (See Bxaaple 4.) 

Defaul.t: 0 is assuaed. 

COU.~ 
identifies the nuaber of bytes to be displayed. 

Specified as: 1 to (20,000 x 4096) in deciaal digits or the equiv­
alent quoted hoxadeciaal value with preceding 'X', if DSTYPB=DS or 
OBJ. For DSn]~B DSCB, con~ is specified as 1 to (633 x 4096) in 
deciaal digits or the equivalent quoted hexadeciaal value with pre­
ceding ·X·. Al:ithaetic expressions aay be used for all types (aax-

Coaaand (and Special Option) Descriptions 257 



iaua of 20 characters) bu~ shou1d be of the same foraat as ~SSS and 
PCS. 

Defau1~: 16 is assuaed. 

YOLDEF 
identifies specifica11y the v01ume(s) to be searched for the DSCB 
with a aaxiau. use of two v01ids. ~he use of the VOLDEF parameter 
wi11 cause the cata10g entries for the DSBARE to be bypassed. 

Specified as: 
PUBLIC - for searching a11 pub1ic v01umes. 
(device type,v01uae identification [,v01u.e iden~ification]) -
for particu1ar v01uaes or a v01uae to be searched. 
device type - 2311, 231~, 3330, 333B, 3350. 
v01uae ide~tification - a va1id v01uae ID consisting of 1 to 6 
characters. 

Punctiona1 Description: ~he VDSP co •• and disp1ays the referenced object 
text, data set or DSCBs on the user's SYSOU~. Each 1ine disp1ays first 
the disp1aceaent and then 16 bytes in both hexadeciaa1 and character. 
A11 unprintab1e characters vi11 be represented as periods. 

Por data sets, the disp1acement fie1d (from the beginning of the page) 
is disp1ayed as 8 bytes and as ~ bytes for object text. If a nu11 page 
is encountered within object text, the disp1acement vi11 be incremented 
by ~096. For DSCBs, the disp1acement wi11 be shown in 2 bytes indicat­
ing the byte offset from the beginning of the DSCB. 

CAUTION: The use of the VOLDEF paraaeter wi11 significant1y s10v down 
the search for the data set. When the VOLDEP parameter is specified, 
the abs01ute generation name must be used. 

Pr0graa.ing Bote: System defau1t for RELEASE wi11 be app1ied for 
interna1 DDEPs. On1y authority '0' users aay use the VOLDEP paraaeter. 
In addition, use of the YOLDEP parameter is to be used on1y vhen the 
data set cannot be accessed in any other vay. 

Authority 'U' may disp1ay on1y object text whi1e authorities '0' and 'P' 
may a1so disp1ay data sets and DSCBs. 

Examp1e: Exaap1e 1 disp1ays on the user's SYSOUT 50 bytes of data set 
ABC starting at the 101st byte. 

VDSP lBC"DS,100,50 

Exaap1e 2 disp1ays on the user's SYSOUT 6~ bytes of the type E-DSCB of 
SOURCE.XYZ starting at the 37th byte. Instead of using the cata10g v01-
uae DB584 on a 2311 is searched for SOURCE.XYZ. 

VDSP ~SS*****.SOURCE.XYZ,YOLDEP=(2311,DB584), 
DSTYPE=DSCB,OPPSET=X'24',COUHT=X'40' 

Bxaap1e 3 disp1ays on the user's SYSOUT the 1st page of object text 
TEST1 of USERLIB. 

VDSP USERLIB,~ES~1,COUBT=X'1000' 

Exaap1e 4 disp1ays on the user's SYSOUT the 6th page of object text CORR 
of USBRLIB at a byte offset of 50 into that page. 

YDSP USERLIB,COBft,,5 x 4096 + 50VftBREP 

258 



'fPAT -- Co.llland 

This command will cause the referenced data set, DSCB or object text, 
to be up dated with up to 50 bytes of data froll the user' s SYSIN. 

• i 
,Operation,Operand 

,VPAT 
I , 
I , , 
• 

IDSBA!!E=data set nalle 
I [ , CEBA!!:!:: {con trol section naae I entry point name} ] 
'[ , DS TYPE=: {DS J OBJ ,DSCB} ] [ ,OFFSE T=byte offset] 
I (,COUBT=llulilber of bytes ],DATA=replacellent string 
I [ , VOLDEP== {pUBLIC I (device type,volul&e identification 
, [,volume identification])} ] 
• 

DSNAP.lE 
identifies the data set to be patched or the data set name of the 
DSCB to be patched. The data set must reside on direct-access 
storage. VAM clata sets lIust be cataloged unless the VOLDEF parame­
ter is specifie,d. 

Specified as: a fully qualified data set name with (optionally) a 
generation nUlitber and/or member name of a '"PAM data set. When 
speciiied, the melllDer name is enclosed in parenth<~sis and imme-
dia tlely follows the VPAM data set name. When VOLDEF is specified, 
the DS&AME must be pre±ixed by the US:!RID. Otherwise, the USERID 
is not used. 

CENA!!E 
identifies the control section or entry point of object text to be 
patched. CEBAP!E i's to be specified only for DSTYPE=OBJ. When 
spectii~d, menlber nalle is ignored. 

Specified a5: a control section nalle, or an entrv point name. 

DSTYPE 
specifies the data type to be processed. 

Specified as: 
DS data set 
OBJ - object text 
DSCB - data set control block 

Default: OBJ is assumed. 

OFPSET 
specifies the byte offset from the beginning of the data to be 
patched. 

~cified as: 0 to (2 29 -1) in decimal digits or the equivalent 
hexadeciaal value with preceding 'X' if DSTYPE=OBJ or DS. Por 
DS'lYPE=DSCB, OFFSET is specified as 0 to (4096 x 633) -1 in deciaal 
digits or the equivalent quoted hexadeciaal value with preceding ·X·. Arithaeti,e expressions aay be used for all types (Ilaximua of 
20 characters) ,).nd they should be of the salle format as TSSS and 
PCS and may be 'axpressed in pages plus the nuaber of bytes into 
that page. (Sea Example 4.) 

Default: 0 is 'issumed. 

COUNT 
identifies the llumber of bytes to be patchedw 

Part III: system Programmer COllmands 259 



DATA 

Specified as: 1 to 50 in decimal or the equivalent quoted hexadec­
imal value with preceding ·X'. Arithmetic expressions aay be used 
(aaxiaua of 20 characters) and be of the same fora at as TSSS and 
pa. 

Default: the length of the data field is assuaed. 

designates the data string that is to be the replaceaent. 

Specified as: a quoted hexadecimal or character string with a pre­
ceding 'X' or 'C'. 

VOLDEF 
identifies specifically the voluae(s) to be searched for the DSCB 
with a aaxiaum use of two volids. The use of the VOLDEF parameter 
will cause the catalog entries for the DSKAftE to be bypassed. 

Specified as: 
PUBLIC - for searching all public volumes. 
(device type,volume identification (,Toluae identification]) -
for particular volumes or a voluse to be searched. 
device type - 2311, 2314, 3330, 333B, 3350. 
volume identification - a valid volume ID consisting of 1 to 6 
characters. 

Functional Description: The VPAT command replaces on the disk up to 50 
bytes with the data entered on the user's SYSIK device. If the length 
of the entered data string is different from the length specified in the 
COUNT paraaeter, it will be padded or trunctaed. Character data will be 
padded with blanks or truncated on the right; hexadecimal data will be 
padded with zeros or truncated on the left. If DSTYPE=DSCB, the CHECK­
SUB will be automatically recomputed. 

CAUTIOK: The use of the VOLDEF parameter for DSTYPE=DSCB will signifi­
cantly slow down the search for the DSCB. 

Since no check will be performed for the validity of the patch, the user 
should exercise extreme caution. Patching across DSCB boundaries is not 
allowed. 

Programming vote: Only authority '0' may patch DSCBs, DS and OBJ while 
'U' authorities may patch OBJ and .pt authority may patch DS and OBJ. 
Only authority '0' users may patch system data sets. 

Only authority '0' users may use the VOLDEF parameter with DSTYPE=DSCB. 
In addition, use of the VOLDEY parameter is recommended only when the 
DSCB cannot be accessed in any other way. The patching of shared TPAB 
POD is not allowed. 

The syste. default for REVIEW is applied for the display of the string 
prior to the patch. If REVIEW=Y, the user is proapted for continuation. 
system default for RELEASE viII be applied for internal DDEPs. 

Example: Example 1 replaces the first 3 bytes of the 533rd page of the 
data set XYZ vith the character string 'DEF': 

VPAT 

Example 2 replaces the first 4 bytes of the 3rd DSCB associated to ATTB1 
with X'00040301': 

260 



E%aaple 3 patches the object text at entry point EP1 of the aeaber 7ES~ 
in USEBLIB. It replaces 3 bytes starting 4098 bytes past entry point 
EPl with ABC: 

VPAT USEBLIB,EP1,,4098,3,X'C1C2C3' 

E%aaple 4 patches the 5th page of a data set lEi at 100 bytes into that 
page: 

VPAT IEi"DS,4 % 4096+100,3,C'BIO' 

Coaaand (and Special Option) Descriptions 261 



APPEHDIX A: SYSTEM ENTER CODE TABLE 

I I i , , , 
I Deciaal , Rex I Haae , ENTRY POINT J PSECT I 
I , I I I of , f , TAftII,aTTaPLI I I I 
I 0 I 00 , READ/lHcITE I CZCYI!t 1 I CZCYMPI 
t 1 I 01 I BATCH I'!ONITOR I CZABAE , CZABARI 
I 2 I 02 I GATE MACROS I CZFTAU I CZFTPPI 
I 3 I 03 I READQ I CZCTC3A I CZFTPPI 
I 4 I 04 I WRITEQ , CZCTC'U , CZFTPPI 
I 5 I 05 I FINDQ I CZCTC2A I CZFTPPI 
I 6 , 06 , FREEQ , CZCTC6A , CZFTPPI 
f 7 I 07 I ATTEHTION f CZFAA1 I CZFAAPI 
I 8 I 08 I TERHPRO I CZFTE15 I CZFTPPI 
I 9 I 09 I PPLI ROUTINES I CZPPL1 I CZPPLPI , I 10 , OA , ftTT/lfTTDCIi r CZFAH3 I CZFAHPI 

I I 12 I OC I OPNDST/CLSDS'l' I CZFTF2 I CZFTFPI 
I , , , , t , I 14 , OE I GE'l'DV I CZATH2 I CZATHPI 

t I 15 , OF I SETDV I CZAT!l1 I CZA'l'MP I , J-- I I , I , , I I INTERRUPT HANDLING I I I 
I 16 I 10 I SIR , CZCJSA I CZCJSPI 
I 17 I 11 I DIR r CZCJDA I CZCJDPI 
I 18 I 12 I IIITINQ I CZCJIA , CZCJIPI 
I 19 I 13 I STI HEIVTTIHER I CZCJA 1 I CZCJARI 
I , , f , , 
I t I .2n I , I 
I 32 , 20 , READ/WBI'rE , CZCRAS I CZCRAPI 
I 33 I 21 I CHECI: , CZCRCS I CZCRCPI , 31l , 22 I CNTRL , CZCRBS I CZCRBP I 
t 36 I 21l I POI liT I CZCRftA I CZCRMPI , 37 I 25 I BSP I CZCRGA , CZCRGPI 
I , , I I , 
I I I VH ALLOCATION I I I , 48 , 30 , GETHAIII (R) I CZCH2 I CZCG5 I 
I 49 I 31 I GE'l'!UIN (PAGE) I CZCG2 , CZCG5 I 
I 50 I 32 I FREEMAlN (R) I CZCH3 I CZCG5 I 
J 51 , 33 t FREE!lAIN (pAGE) I CZCG3 , CZCG5 I 

• I I , , , , !!1L r , , 
56 38 , VDBEP I CZCQK1 I CZCQKPI 
57 39 , DUPOPElf , CZCEYl I CZCEYPI 
58 3A I DUPCLOSE I CZCEZl I CZCEZPI 
61 3D r VISAH SETL , CZCPC3 , CZCPC3, 
62 3E f VSA!I PUT , CZCOS3 , CZCOS31 
63 3F I LIBESRCH I CZCDL3 CZCDLPI 
64 40 I READ/liRITE I CZCPE1 CZCPEPI 
65 41 , ESETL , CZCPD1 CZCPIP, 
66 42 RELEX I CZCPG1 CZCPIPI 
67 43 DELREC , CZCPHl CZCPHPI 
68 44 FllID I CZCOJ1 CZCOJPI 
69 45 S'.rOW I CZCOK1 CZCOKPI 
70 46 ADD DIRECTORY ENTRY r CZCPLl CZCl'LPI 
71 47 GETPAGE f CZCPll CZCPIPI 
72 48 ItfSERT PAGE I CZCOD1 CECODPI 
73 119 DELETE PAGE f CZCOD2 CZCODP, , 74 4.1 VSAP. PUT EXTERNAL USER , CZCOS1 CZCOS 1, 

I 75 4B VSAH PU'.r IBTERNAL I CZCOS2 CZCOS21 
r 76 IlC BOVEPAGE , CZCQ!: 1 CZCOCPI , 77 4D PLUSHBUF , CZCOV1 , czcovPt 
I 78 4E VISAM GET PAGE INPUT I CZCPI2 I CZCPlPI 
r 79 41' TISA!! GET PAGE OUTPUT , CZCPI3 I CZCPIPI 

Figure 38. System ENTER code table (part 1 of 2) 

262 



• , , I • • 
I Deciaa1 , Hex r Ia.e I EliTRY POIR r PSECT I 
I I , I , I 
I I I !lICRO CO!!!llID I.IIlGUIG! f , r 
f 80 , 50 I GITRD/GATlfR , CZATC2 , CZA'.rCP, 
I 81 I 51 I If TO I CZIBQl , CZ1BQB, , 82 r 52 , VTOB I CZIBQ1 I CZABQR, , 83 r 53 I BRASB , CZAEJ7 , CZAEJR, 
I 84 I 54 I DDEF I CZIlU3 I CZAEABt , 85 I 55 , CDD I CZIFS2 , CZAPSBI , 86 I 56 , ABE liD f CZACP1 , CZICPR I 
I 87 I 57 I CPU , CZABD7 , CZIBDR, , 88 , 58 , 1fT I CZIBD9 , CZABDR, 
I 89 , 59 , PR , CZABD3 t CZABDRf 
I 90 I SA , CAT I CZIBI2 I CZIEIRI 
I 91 I 5B , DEL , CZAEJ5 , CZAEJR, 
I 92 • 5C I COPYDS , CZAl'V2 I CZIPva, 
I 94 , 5E I IfTL , CZIBQl I CZIBQRI 
I 95 I SF I USITT , CZ1SA6 I CZ1SI~1 , 96 , 60 , PIIIDJPCB , CZIRSl f CZAEBR, 
I 97 I 61 I CLATT , CZASA7 I CZASIPI , 98 , 62 r REI. I CZIPJ2 I CZAPJBI 
t 99 I 63 , USAGE I CZAGBl t CZIGBPI 
I 100 I 64 I PIli DDS I CZAEC1 I CZIECRI 
I 101 I 65 I !lSGlfR , CZAAD3 I CZIADRI 
J 102 I 66 I UPDTUSER , CZAGC2 I CZAGCRI 

I I I , , I I 
I f HO I 6E , GRIPHIC BUPPBRS I CZCYB1 f CZCTBPI 
I t 111 I 61" I GRIPHIC I/O I CZCVE1 I CZCYEPI 

I t , , I , 
I I I GEIIERII. SEBYlCE~ I I t , 112 I 70 I IOREQ , CZCSBl I CZCSBRI 
I 113 I 71 t !lSI'! READ/WRITB I CZC!l1" 1 , CZCftPPI 
I 114 , 72 t !SlB - SE'l UIIIT RECORD , CZCBD1 I CZC!lDPI 
I 115 , 73 I BS1! PIIISH , CZCBHl J CZCftHP, 

I I 116 I 74 I TSIB READ/WRITEj7I1ISH I CZCYC3 I CZCYC31 
I 128 I 80 , OLTIB - DEY. ALLOC. I CZATG1 I CZITGPJ , 129 , 81 , OLT1! - EX. I/O J CZAT11 , CZATIPI 
I 130 I 82 I OLT1!! - POSTI.G I CZITB1 I CZITBPI 
I 131 I 83 , OLTA! - TEST CO!ftlID I CZATS1 , CZITSPI 
t 144 , 90 I OPBS f CZCLIO I CZCLIBI 
I 145 I 91 I CLOSB I CZCLBC I CZCLBPI 
I 146 I 92 , noY , CZCLDP I CZCLDB, , 147 f 93 I RFB , CZASD3 J CZ1SDPI 
I 148 I 94 I GDY I CZASDX I CZ1SDPI 
t 149 I 95 I lETD I CZ1SB5 , CZ1SBPf , 150 , 96 I OBBY , CZ1S14 , CZ1SIPI 
I 151 • 97 I !CIST J CZITU1 I CZ1TUPI 
I 152 I 98 I SYSIII t CZASc7 , CZ1SCPI , 153 , 99 I LPeIIIT , CZ1SWl , CZ1!!ZPI 
I 154 I 91 t LPCBDI'.r I CZ1Slf4 , CZlftZPI 
f 155 , 9B , PR!PT r CZA'l"Sl I CZITJPI 
I 156 , 9C , ITT II I CZ1SB2 , CZ1SBPI 
I 157 I 9D I GITE I CZATC2 I CZITCPI 
I 158 , 9B I DI'RPR , CZ1SD5 I CZ1SDPI , 159 I 91" I DEL BIT , CZASD6 I CZ1SDPI 
I 160 I 10 I CSTORE I CZCKZ1 I CZCKZPI 
I 161 J 11 J IX'l"RPR I CZ1SD4 , CZ1SDPI 
I 162 , 12 , DIC'l"IOHIRY HAHDLEB , CZ1SD2 I CZ1SDPI 
I , I , I I , , I l'ORTRAH J , f 
I 16' , 14 I FT11 TRICHBAC K I CZCMl I CZCMPI , 191 I t Beserved for TSS users. t I , 
I 254 I I I , r 
• I I • • • 
Pigllre 38. Syste. :&HTEB code tab1e (part 2 of 2) 

Appendix 1: srste. Hnter Code i'ab1e 263 



lPPEBDII B: VIRTUAL ABD REAL REBORY SVCS 

In this appendix, the DCLASS setting shows what DCLASS operand is re-
quired when assembling the macro instruction. Where no DCLASS setting 
is shown, there is lJ.o requirement; that is, the macro definition does 
not test for a DCLASS setting_ 

BOI-PRIVILEGED PROGRA! SERVICE STCS 

• i • I SVC CODE I I CODE , DEC HEI IUCRO , lUIICTIOIl 1 DCLASS RQ!T 
I I I , , , 
I 0-99 00-63 I RESERVED FOR PROBLEB , 
r , PROGRARS t , , , 
• , • 

PRIVILEGED PROGRAR SERVICE SVCS 

• i i I i , SVC CODE I I , , CODE 
I DEC HEX , BACRO , FUliCTIOB , DCLASS , RQBT 

• r I , I 
I I I , , 
r 100-115 64-13 I , 10'1' DElIBED f , , , , , I 
I 116 14 f EXIT I BORIUL PROGRA! ERD , USER , BP , I I I I 
I 111 15 , RAESVC , RESTORE AIID ERABLE , USER/ , RP,P , I I IRTERRUPTS I PRIV t 
I I r , , , 118 16 I CLIP , READ COBRABD lROB SYSIB I USER r liP 
I I I (UBCORD nIOBAL) I I 
I , I I , 
t 119 17 I CLIC , READ COBBABD FROB SYSIR , USER , RP , I I (COBDITIOBAL) I I , I , , I , 120 18 , RSPRV , RESTORE PRIVILEGE I USER , IP 
I I I I I 
I 121 19 , ElITER , EBTER PRIVILEGED ROUTIRE I .... , RP , , , I , t , 
I 122 1A I RTRB I ERTER COB!!ABD LABGUAGE I I BP I 
I , , TO ERD RUB , I I , I , , I , 
I 123 1B , DELET I EBTER DELETE PROGBAB , I IIP,P I , , , I J I , 124 7C I , lIOT DEFIIED , , r 
I I I I I I 
I 125 1D , PCSTC I EBTER PCS , PRIV I lfP , , , , , , , 
I 126 1E I I BOT DEPnED I I I 
I I I , , I , 121 7F , DLIRK , ElfTHR DYlfAftIC LOADER TO I , »P,P I 
I I I RESOLVE HXTEBlfAL SYBBOL I I I , , , , , , 
• • • I • I 

ligure 39. virtual and Real !emory STCs (part 1 of 4) 

264 



BEAL !!EP! ORY PROGR!!'! SERVICE SVCS 

• , • I i I 

I SVC CODE I I I I CODE I 
I DEC HEX I !'ACRO I FUNCTION r DCLASS I RQHT , 
I I I I I , 
I I I , I I 
I 128-143 fiO-SF I I RBSERVED fOR I I I 
t I I I~STALLATIOli USE I I , 
I I I I I I 
I 144-156 90-9E I I RESERVED FOR TSSS I I I , , I I I I 
I 159 91" I I V5S -AT- IN NON-SHARED Vi'll I !iP,P I 
I , I I I , , 160 .\0 , f LOGOIi ~SP r I P I 
I I I I I I 
I 161 11 I ! DISCONNECT MSP I I P I , , I I I I 

162 A2 I I AC'l'IVATR I1SS I I ? I 
I I , I , 

163 13 , I iSS "AT- COfPLETB I I IfP,P , 
I I I I I 

164 A4 I I VSS 'AT • IN Sl!ARFD V!'1 , I NF,I' I 
I I I I I 

165 AS I J GET REAL PAGE I I p I 
I I r I I 

166 16 I I SHARED PAGE D~TER"IjATIO" I P I 
I I I I I 

167-169 A7-A9 I I RESERVED FOE: TSSS I I I 
I I I I I 

170-179 AA-I:l3 I I NOT DEFINED I I I 
I , I I I 

180 B4 I RSEG I R.5:SERVE SEG~.l'ijT I I NP,P , 
I t I I I 

181 55 I RELSEG I RELEASE SEGMENT I , NP,P , 
I I I I I 

182 D6 I DSEG I DISCONNECT BA~ED SEG!!ENT I I liP.P I 
I I I , I 

183 B7 I CSEG , CON~ECT BA~ED SEG~ENT I , NP,P I 
I I , I I 

184 BB I DELSEG I DELETE NAt1ED SEGMENT , , IP,P I , t I I I 
185 59 I ESEG I ElCHANGE SEG!!EHT I I liP,P I 

I , , I I 
186 BA I GPSEG I GET/PUT lUffF:D SEC!!'ENT , I liP,P I 

I I I I I 
187 BB , IJFLOV , EXTRACT FLOW nUORrlATION , I p I 

I , t I I 
188 BC I SETCTL f SET CONTROL REGISTERS I PRIl I liP I 

I I I I I 
I I , I I 

189 BD I XTRCTL I EXTRACT COSTROL PEGISTERSI I NP I 
I I I I I 

190 BE , RTTCTL , REAL TIME C01f'l'ROl, , PRI' I P I 
I I I I I 

191 SF I I NOL' DEFINED , I I 
I I , I 

192 CO f GTF TRACE REQUES'l' I I P I 
I f I I 

193 Cl SAflPl,f': , SAMPLE SST I I P , 
I I I I 

194 C2 ZEROSST I ZERO SST I I p I 
I I , I 

195 C3 ATTACH I ATTACH TASK '1'0 SYSTEM I I NP,P I , I I I 
196-199 C4-C7 I RESERVED FOR PERPORftAICE t I I 

t KBASUREPlE'N'l' I , I 
I I I I 

200 CS , UPDATE SYS OPERATOR TABLE, , P I 
I I I I 
I I I , 

Figure 3,. Virtua1 and Rea1 l'!e1llory SiCs (part 2 of 4) 

Appendix B: SYCs Issued by 8acro Instructions 265 



i"NL CI'2()-4 JI'6 !CJl July flO} to (;<:28-2008-5 

i~E A'L fi, :~~ CdiY PRDGHA!': SERVI...:r: SVCS 
,-----------,------- ----,----~--

S'IC CODE CODE 
Dt;C ~,~x l'lACRO r-Ut;CTIu:i DCLASS }c,2l" 'I 

t----------- ._-_. __ .,_._-----_._-

20 i --{) 
,"OJ ~O'l' DI"I!'nn':D 

iO ;, ~A '.rAM.sVC MULTI l"UNCTIO,: 'rAMII SiC P 

203 C13 CKJUOC CIiFCK ~TT 'II'Ri'!lclA1 5 'l';' TUS I PLIV P 

I 
20,. CC WhIT WAIT POR EXTEl~jAL STHlULI I F 

I 
20') CD LeOdN j',HII 'l'Ek"ln'Al. CO:{ ~~ .EC'I' I i! 

I 
20b Ct. SCR'r:>l SPE2 IA 1. ChElI.TE TSI f PRIll P 

I 
207 ~r CONN COCiJECr A~ MTT fASK I ~ 

I 
.t 0 is DO DeON DISCONNFC1: A!t ~l'rT 'l'l! Sh I P 

I 
20 " D1 X'rRTM EXTR AC'l' TASK TIl'!.r; f lP,P 

I 
210 :J2 SBTAE Sl;!T 1I.SYNCHROtiOUS :F_liTRY I P 

I 
211 1)3 S2ATH S!::'l' I/0 DEVIC~ PA'f'B I 2hlV 1:' 

! 
2 L: £14 ADSBA 'lAMII L1CP SU13AI,£A CONTRL I P 

I 
213 DS X TRx'rs l:.XTRACT E JiOlj X1SI I liIP,P 

I 
Lltt D6 SETX'l'S Sl':'J:UP 1::'1'51 I PRIV P 

I 
21S ;;7 X'rRSYS EXTRAC1' FRO~: SYS1E~ TAdLEf SP,P 

I 
216 De .3E'I''sYS SE'fUP SYS7S:-S TAbLE I ERIV I: 

I 
217 D':i SE'l'TR S1':'1' REAL-'rIt1E nn::::RVAL I Plxl V E' , 
Lla DA REDTH P.BAD TIte: 0.1" DAY I aP,P 

I 
219 DB A'rcs :rAMI I I/O REO [Jr.ST 1 p 

I 
220 DC 1..'1S I'!ODE S~'I I I:-

I 
22 " liD RESET RESET SUPRgSS D.t-:IlICE FLAbl P 

I 
'''''''l'' £,.t.., Dt: PURGY:: I'URGE I/O OPERATIONS I P , 
223 Dr seT/RESET LiMEDlllTE I f' 

RECOHDIN(j l'LAG I 
! 

224 EO ROPAGE READ O!fLY PAGI: UPDATE f P 
225 ~1 NOT DSPINED , 
226 1'2 PULSE paLSE S Cl1f;DUL}; L.c:v.r;L !'IP,P 

.1.27 tel CHANGE C:iAl GE SCF!EDULE LEV:F;L NP,i:' 

220 1::4 SYSER V:'I SYSTEM EI(ROB PLIV 1" 

L___________ I 

Pigure 33. 'irtual ~nd Real Memory SiCs (part 1 of 4) 

266 



TNL GN204106 (01 July SO) to GC2S-2008-5 

REAL !ERORt PROGHl! SERVICE SYCS 

• i , 
SYC CODE , , I CODE 

DEC HEX I !lCRO , FU1ICTI01l , DCLASS ROK'r , , , 
I I f 

229 E5 I TUIT , ilIT I'OB TERKIlfAL I/O I lIP,P , , , 
230 E6 I lUXPG I EXTRACT AUI PAGE COUlfTS I lIP,P 

I I I 
231 E7 I lOCAL , I/O CALL , PRIV P , I I 
232 E8 I I RJE LI1IE C01lTROL I P , , , 
233 E9 I BltDEV I RE!OVE DEVICE FROl'! TASK I P 

I I I 
234 8A I ADDEV , ADD DEVICE TO TASK' , P 

i I I 
235 EB I SETUP I SETUP 'lSI I PRIV P 

1 , t 
236 BC I ADSPG I ADD SHARED PAGES PRn I P 

I I I 
237 ED , DSSEG , DISC01l.ECT SHARED SEGI!E1IT PRIV I P 

I I I 
238 EE , C1ISEG I COliliECT SHARED SEG!ElIT PRIV , P 

I r , 
239 EF I EXPlfD I EXPA»D PAGE I P 

I , , 
240 {PO f VSEliD , I.TER-TASK CO!I!U1IICATIOI , lIP,P 

I I I 
241 '1 I CKCLS t CHECK PROTECTI01l CLASS , RP,P 

I , , 
242 1'2 I PGOUT I PAGE OUT PRI'f I P , , I 
243 P3 , TSEID I FORCE TUIE SLICE EID , PRIV I P 

I I I , 
244 1'4 I SETXP , SET EXTERVAL PAGE TABLE I PRIV I P , , , I 
245 1'5 I !lOVIP I I!OVE PAGE TABLE E1ITRIES I PRI'f I P , , I , 
246 1'6 , ITRCT , EXTRACT TSI , I 1IP,P 

1 \ , I 
247 F7 I QSVC I ENQ/D":Q I I 

f I I I 
248 1'8 I AUIT I liUT FOR Ilf'l'ERRUPT I I BP,P 

I , , I 
249 1'9 , DELPS , DELETE PAGE , PRIV , P 

t t I 
250 FA I ADDPG I ADD PAGE , IIP,P , , , 
251 FB I SETTU I SET USER 'lIftER , PRn p , I I 
252 PC I DLTSI , DELETE 'lSI , PRIV P 

I I I 
253 PD I CRTSI I CREATE 'lSI , PBIV 2 , f , 
254 PE I ERROR I B!! SYSTE!! ERROR I 

I I , 
254 1'.1 , LVPSi , LOAD VIRTUAL PSi , PBIV P 

I , I 
255 PI' , t BOT DElI1IED , 

I I , 
I I I 

Figure 39. Virtual and Real !le.ory SVCs (part .. of 4) 

Appendix B: SYCs Issued by I!acro Instructions 267 



'£'11", resident supervisor lIIust pass back to the virtual storage error 
processors a code identifying the type of software error detected by the 
.'1U}H<rvisor. To accomplish this, the Supervisor Processor lIIust put a GQB 
Gu the appropriat.e task's 'l'SI program interruption queue of the task in 
(c!I:TfH:. The interruption code in the GQE contains a valne that identi­
J:i,!s the cause of the program interruption. 

Hexadecimal codes 01 through 13, 40, and 80 are use'} by the hardware. 
Cod.es 14 through 1F are reserved for hardware. The remaining codes 

FFFF (including 00) are used for specifying software progralll in­
t~,(;;I, S>'lP tion errors .. 

'1'h"" Q.>?fine.d codes are shown in Figure 40. 
,.-'_ ... _ .... ---,----

PI I SVTY 
; CODE I CODE 
j--_ .. - .,_. __ .-.• __ • +.-.. 

I 
00 3 

22 3 

23 >3 

26 3 

28 1 

213 1 

'lC 1 

2.D 1 

2£ 3 

3D 3 

], 3 

--,-'---' 
f 

!ODDLE f ERROR DESCRIPTION 
-+-----11------------,_· __ · 

I 
I NOT DEFINED 
I 
I SPECIFIED IN 'PRINCIPLES OF OPERATION' 
I 
, NOT DIU'INED 
t 

CEllO I PAGE LIST LENGTH TOO LONG 
CEAAl ,PAGE LIST LENGTH TOO l.OllG 

I 
CEUO I NON-EXISTENT BUFFER PAGE 
CEll 1 ,NOY-EXISTENT BUFFER l'AGE 

I 
CEllO I TASK HAS '0 DEVICES ASSIGNED 
CElt! 1 ,TASK HAS NO DEVICES ASSIG'JED 

! 
CEllO I IORCS LENGTH EQUALS ZERO 

I 
I BOT DEPINED 
I 

CEAlP ,COlJlfTER OVERFLOW POR PROGR!!'! IlllTERRUPTS 
I 

CEIAI" I COUNTER OVERFLOW FOR SVC INTERRUPTS 
I 

CEAAP I COUNTER OVERPLOW FOR EXTERNAL INTERPUPTS 
I 

CEAAF ,COUNTER OVERFLOW FOn ATTENTION INTERRUPTS 
I 

eRAH' I COUNTER OVERFLOW POR TIMER DiTERRUPTS 
I 

CRAAF I COUNTER OVERF'JMOW FOR I/O INTERRUPTS 
I 

CEAIP I UNCLASSIFIED TASK INTERRUPT 
I 

CEliO I IORCB LRNGTH GREATER THAN 4096 BYTES 
f 

CEll' I IORCB CIOSSES PAGE BODNDIBY 
I 

CEllO I DRVICE NOT ASSIGNED TO TASK 
CRAll ,DEVICE lOT ASSIGNED TO TASK 

I 
CRAN-' I DELETE PAGE OF WRONG CLASS 

I 
CEUO I NON-EXISTEHT S'lfC PAGE 
CRAAl tHOR-EXISTENT BVe PAGE 

l'i(j'l.n::£ 40. TSS Extended PrograJl Interrupt Ccd.es (1 of 5) 



rl------~'~-___,--------"~--------------------------'------------------,, 

I PI I SVTY I I I 
I CODE, CODE I MODULE , ERROR DESCRIPTION I 
I , I , I 
I I I , , 
I 33 I 3 I CEAAl 'SVC PAGE NOT IN MAIN STORAGE I 
, I I , , 
I 34 I 3 I CEAAO I CCW LIST OUTSIDE OF SVC PAGE I 
J I I CEAAl ,PGOUT REQUEST MIXES SHARED AND PRIVATE I 
, I I , , 
I 35 I 3 I CEAND I DELETE PAGE IN UN-ASSIGNED SEGMEHT I 
I I ! I I 
I 36 I 3 ! CEIND ,DELETE UN-ASSIGNED PAGE I 
I I I I I 
I 37 I 3 I CRAND I INVALID INPUT PARAMETERS TO DELETE PAGE I 
, I I , , 
I 38 I 3 I CEAND I INVALID RANGE FOR SHARED DELETE I 
, I I I , 
, 39 ,3 I CEIH7 I ATTEMPT TO RE-ASSIGN AN IV! PAGE I 
I I I I I 
, 3A ,3 ! CEAB1 ,PAGE NOT IN CALLER'S PAGE TABLE I 
, I I , I 
I 3B-3C I 3 I I NOT DEFINED , 
I I I I I 
r 3D ,3 I CE1Q6 ,THE SHARED SEGMENT TABLE OVERFLOWED I 
I I I I I 
, 3E-3F I 3 I f NOT DEFINED I 
I , I , I 
I 40 I I I MONITOR CALL HARDWARE INTERRUPT I 
I , I , ! 
I 41-47, 3 I , NOT DEFINED I 
, I I I I 
I 48 I 3 I CEAB2 ,INVALID INPUT PARAMETER TO SETOP/XTRCT I 
, I f I , 
I 49 ,3 ,CEAP7 I AWAIT SVC NOT EXECUTED REMOTELY OR ELSE NOT I 
I , I , ON THE LAST HALFWORD OF AN ECB I 
I I I , I 
I 4A I 3 I CEAQ1 I INVALID INPUT PARAMETERS TO CONNECT I 
, I I , I 
, 4B I 1 I CEAQ5 I VSEND SVC NOT EXECUTED REftOTELY I 
I I I I I 
I 4C I 3 I CEAQ5 I VSEND MCB EXCEEDS 1912 BYTES OR CROSSES f 
, I I , PAGE BOUNDARY I 
I I I I I 
, 4D-4F, 3 I I NOT DEFINED I 
I , I , I 
I I I I I 
I 50 I 3 I CEABQ ,TASK NOT OF SUFFICIENT PRIVILEGE TO ISSUE I 
, I I , S VC J 
I , I CEAR3 I TASK NOT OF SUFFICIENT PRIVILEGE TO ISSUE I 
I I I I SVC , 
, I , f I 
, 51 I 3 I CEAB7 I SETXP SVC NOT ON FULLWORD BOUNDARY I 
, I I I , 
I 52 I 3 I CEAB7 ,COUNT OF EXTERNAL ADDRESSES IS ZERO I 
, I I CEHDB I INVALID VKA PASSED TO VSS GET REAL PAGE I 
I , r CEBDE I INVALID TYPE REQUESTED FOR VSS EXIT I 
I I I I , 
I 53 I 3 I CEAB1 I PARAMETER LIST CROSSES PAGE BOUNDARY OR I 
I I f r PAGE NOT IN CALLER'S PAGE TABLE I 
, , , I I 
I 54 I 3 I CEAH7 ,COUNT OF EXTERNAL ADDRESSES EXCEEDS 1022 I 
J I I I I 
I 55 ,3 I CEAB7 J 1 SPECIFIED PAGE IS UN-ASSIGNED , 
, I I I I 
, 56 I 3 I CEAB7 I EXTERNAL DEVICE ERROR I 

I 

Figure 40. TSS Extended Prograa Interrupt Codes (2 of 5) 

Appendix C: TSS Extended Progra. Interruption Codes 269 



j 

I PI 
I CODE 
I 
t 
I 57 , 
I 58 
I 
, 59 
I 
, 5.1 

I 
I 5B 
I , 
I 5C 
I 
, 5D 
I 
, 5E 
I 
I SF 
I 
I 60 
I 
I 
I 
I 61 
I 
I 62 
I 
I 
, 63 
I 
I 
, 64 
I 
I 
I 65 
I 
I 66 , 
I 
, 67 
J 
I 
I 68 
I 
I 
I 69 
I 
I 6.1 
I 
I 
I 6B 
I 
I 6C , 
I 6D , 
I 6E-6F 
I 
I 70 
I 
I 
I 71 
I 

i I 
, SVTY I 
, CODE I l!ODULE 
I I 
I I 
I 3 I 
I I 
I 3 I CBAQS 
I I 
I 3 ,CEANE 
I I 
,3 ,CEAQ7 , , 
I 3 CEAKR 
I CHAPO 
I 
I 3 CB!PO 
I ,3 CEAS2 
I 
I 3 CEAS4 , 
I 3 CRAPO 
r ,3 CEAlJE 
I CZCJT 
I 
I 
I 3 CZCJT 
I 
I 3 CZCJT , 
I ,3 CZCJT 
I , ,3 CZCJT 
I 
I 
I 3 CZCJT 
I 
I 3 CZCJT 
I 
I 
I 3 CZCJT 
I 
I 
I 3 CEAQ2 
I 
I 
I 3 CEAAC , 
I 3 CEAAK 
I CRAPO , 
I 3 CEAQ4 
I 
t 3 CEAA 1 
I 
I 3 CEAQ6 
I 
I 3 , 
I 3 CEAAK 
I 
I 
,3 CEAAK 
I 

I , 
ERROR DESCRIPTION I 

I 
I 

NOT DEFINED , 
I 

INVALID INPUT PARAl!ETER TO DISCONNECT , 
I 

INVALID INPUT PARA!ETER TO ADD PAGE I 
I 

ATTEMPT TO COINECT TO UN-ASSIGNED PAGE I 
I 

ATTEMPT TO CABCEL NOB-EXISTENT TI~ER , 
ATTEMPT TO MOVE FROB UN-ASSIGNED PAGE I 

I 
ATTEMPT TO MOVE TO UI-ASSIGNED PAGE , 

I 
INVALID INPUT PARAftETER TO SETSYS/XTRSYS , , 
INVALID I~PUT PARAMETER TO SETXTS/XTRXTS I 

I 
MOVE PROM OR TO SHARED PAGE , 

I 
ADD PAGE REQUEST BOT SATISIPIED , 
ENTER SVC ISSUED WHILE IN TYPE III LINKAGE , , , 
ENTER SVC ISSUED WITH INVALID ENTER CODE I , 
SVC ISSOED IN BON-PRIVILEGED STATE AND 10 , 
INTERRUPTION ROUTIHE SPECIFIED , 

I 
80 ERROR ROUTIBE DEFIlED FOR DEVICE WITH , 
ERROR I 

I 
ASYICHRONOUS INTERRUP7 RECEIVED BUT 10 DE , 
AVAILABLE FOR DEVICE I , 
SETTR lOT ACCEPTED BECAUSE SYSTEM LIftIT , 

I 
SVC IITERROPT RECEIVED WHILE IN TYPE III I 
LINKAGE , 

I 
PROGRA! INTERRUPT RECEIVED WHILE IN TYPE 1111 
LINKAGE , 

I 
ATTEKPT TO SET TIKER BEYOND 55,36~,B12 I 
KILLI-SECONDS , 

INVALID SDA DETECTED IN ADD DEVICE 

INPUT SDA OUT OP RANGE 
INVALID INPUT PARAMETERS TO MOVE PAGE 

IRVALID I. PUT PARAKETERS TO CHECK CLASS 

PAGE OUT REQUEST POR ZERO PAGES 

INVALID INPUT PARAKETERS TO ADD SHARED PAGE 

NOT DEFINED 

A SETAE WAS ISSUED TO DEVICE B07 ASSIGIED 
TO TASK 

A SETAE WAS ISSOED SPECIFYIBG A NON-EXISTENT I 
TASK I 

Figure 40. TSS Extended Program Interrupt Codes (3 of 5) 

270 



I , , i -------, 
I PI I SVTY I I r 
I CODE I CODE I MODULE I ERROR DESCRIPTION I 
I . , , I -------f 
I I I I I 
I 72 I 3 I CEAPl I INVALID INPUT PARAMETERS TO EXPAND PAGh I 
I , I r I 
I I , I I 
f 73 f 3 I CEAPl I TASK EXCEEDED MAXIMOM PAGE TABLB PAGES i , I f , I 
I 74-78 I 3 I I NOT DEFINED I , I I I I 
I 19 I 3 I CEAHQ , IilVALID SVC CODE I 
l I I I I , 7A-7B I 3 , I NOT DEFINED I 
r I , I I 
I 7C I 3 I CEAAO I lOCAL SVC CCil LIST CANNOT BE RELuCATED I 
I I , I I 
r 1D I 1 I CHUO I DRAI' CCIi LIST CAJNOT BE RELOCATED I 
I I I , I 
I 7E-1F I 3 , I MOT DEPINED I 
I , , , I 
I SO l I I PROGRU. EVENT RECORDr~G HAFDWAFE INTERRUPT I 
I I I I I , 81-81' I 3 , J fWT DEFINED I 
I I I I I , 90 I 2 I CEAIQ I RELOCATION READ: NO PATH AVAILABLE I , I , I I 
I 'l1 I 2 I CEAAO I RELOCATION READ: I/O 'ERROR ON PERIHNENT I 
I I I I YOLU!!E I 
I I I I I 
I 92 I 2 I CEUO I RELOCATION h1U~: I/O ERROR Oil MOVEABLE I 
I I I I 'fOLDliF. I , I I I I 
I 'l3 I 3 I CHAAO t RELOCATION READ: SUPFACE EFROR I 
I I I , I 
I 94 I L. I CEAAQ , RELOCATION READ: START I/O FAILURE I 
I I I I I 
I 95 I 2 I CEAAQ I SUPERVISOR PAGING lir:QUEST: NO PATH AVAIl,ABLEI 
I , I I , 96 2 I CEAAQ I SUPERVISOR PAGING FRQORST: I/O ER~OR ON I 
I I I PER!'lAlfENT VOLU3E I , I , I 
t 97 2 f CEIAQ I SUPERVISOR PAGING l' 1::Q1) EST : I/O ERROR Od I 
f I I MOVEABLE VOLUME , , , I , 
I 98 3 I CEAAQ J SUPER'flSOR PAGING REQUES't: SURFACE ERROR I , I I I , 99 3 I CEllQ , SUPERVISOR PAGIlfG RE;QUEST: START 1/0 FAILURE I , I I I , I I I 
I 9A-9E 3 r I NOT DEPINED I 
I I I I 
I 9P 2 I CEllQ I TWArT READ: NO PAT3 AVAILABLE I 
I I I I 
I AO 2 I CEAAQ f TiAlT READ: I/O ERROR ON PERIUNENT VOLUME , 
I I I I , A1 2 I CHIAQ I TWA I'! READ: I/O ERROR ON "OVEABLE YOL,Hn~ , 
J l I I 
I A2 2 I CEAAQ I TUIT READ: SURFACE ERROR I , , J I 
I 13 2 I CEUQ I TiAIT READ: START I/O FAILURE I 
r I I I 
I 14-1P 3 I J HOT DEFINED , 
I I I I 
I BO 3 I CEAP2 , SVC KOT EXECUTED RE1WTELY I 
I I CEAP4 I SVC /lOT EXECUTED RE~OTELY I 

• I CEAPS I SVC BOT EXECUTED REMOTELY I 
I I CEAPS J SVC lfOT EXECUTED REMOTELY i , I CE1QO I SVC NOT EXECUTED RE!!OTELY i 

I 

Pi9ure 40. TSS Extended Prograa Interrupt Codes (4 of 5) 

Appendix c: TSS Extended Program Interruption Codes 271 



,..---,---rr--,-,---7,-.------,-,------------·------------ --------, 
¥ PI I S lITY ! I I 
I COD:!::! CODE I MODULl! I ERROR DESCRIPTION I 
~-.,-,--,-.,-,_t.--.. --+------+-,----,-----.----.--------,-----------------41 

133 
B!l-5F 

CO 
C 1-~C6 

Cl 

C8 

C9 
C1 

CB--U" 

DO 

D1 

IJ2 

[,·3 

n!> 

LiS 

DIS 

D7 

DS 

])9 

DA 

DB 

DC 

DD 

DE 

11" 

£.0 

.t: "1 

1$2 

F? 

E4-::i:P 

FO-F F 

3 

3 -, 
,~ 

.3 
J 
.3 

::I 

3 
3 
3 

3 

:I-

3 

-, 
J 

3 

3 

3 

J 

3 

:3 

3 

3 

3 

" 

"' .::> 

"-' 

3 

OJ 

3 

3-

j 

3 

CEA"P2 
CBAP4 
CEAPS 
CEAPB 
CEAQO 

CEAl?2 
CEAP4 
Cl':AP5 
CEAPS 
C.BAOO 

CHQO 

C'ZCJT 

CMABA 

CEAHQ 

CERER 

CEATB 

CRATE 

CEATS 

eEATE 

CEATB 

eRA'IB 

ClUTB 

CF.AT13 

CEA'l'D 

ChlTD 

CEATD 

eRATD 

CEA-TD 

CEATD 

CEATD 

CEAID 

CEAID 

CEA'l'D 

CEDflOX 

C:RATB 

SfC :.iOT 08 FULLliiORD BOIJIfnARY 
SVC NOT ON" FOLLiORD BOUNDARY 
SYC NOT ON FijI-LII ORD BOUNDARY 
S'IC NOT ON FULL7iOBD BOIJlfDARY 
SVC NOT Oll FULLI?OFD HOlHlDAR! 

PlIRA!!'ETER LIST CROSSES PA.GE BOUNDARY 
PARA1!ETFR LIST CROSSES PAGE BOUJiDARY 
PARAl5:ETER LIST CROSSES PAGE BOUNDARY 
P.~R1UtETER LIST CROSSES PAGE BOUNDARY 
PARA~ETEP. LIST C F:OSSES PAGE BOUlIIDAEY 

INULID GET/PUi' N1IJ'IED SEGf'ENT INDICATOR 
NOT DEFINED 
IS1I. DESTPOYED 
NOT rn:FINED 
UNCORRECTED i1ACHINE. CHECK DURING TASK 

TISK HAS EICKB~ED ~T'S TSEJD SIC MAXI~Ul 

NOT flEFIl'IfD 
rAJOH VIRTUAL ~ErOBY SYSER 
NOT DEFINED 

SiC ,WT REP'OT£LY EXECrJ'I'ED 

I , 
I 
I 
I 
I 
I 
I 
t 
I 
I 
I 
I 
I 
I 
I , 
I 
I 
I 
! 
I 
I 
I 
I 
I 
I 

INVJH.lJ) InN OR NO TERIHliAL CONNEC~ED TO TASK I 

INVALID PEQUES'l~ CODE 

VALID BLi BOT NO Tel A~D REQUEST NOT FREE 

INIIALID PI.leGS IN TCI.E1U~ REQUEST 

INVALID hEAD LEHG~H 

IlVALID WBITE LENGTH 

INVALID DATA ADDRESS rOR iBITE 

SIC HOT REMOTeLY EXECUTED 

I1V1LID RLN II TlrSYC REQURST 

1 •• 1LID REOD~Sl CODE II T1RSVC RFQUFST 

ZERO PAGE COUl\"l" Hi S.Il.VLF·P REQUES'l' 

11'IL1D VEl I. SllB?? REQOES~ 

ZERO PAGE COUNT I~ RSTBFP REQUEST 

INVALID Ira IW R~;'l'!n>P REQUEST 

ESTBPP BUPFER PAGES IMCORREC~Ll FOR~ATTED 

BSTBFP COFFER CONTAIRS ISV1LID DATA 

INVALID ,ft! II SETTCT EEQUES~ 

li1l11U.IO I/O REQUEST ISSUED BY TA"'l! 

!-lORE TRAN .248 REQUESTS QUEllED Oli TER'MlNAL 

RES~~VED FOR TAMII 

NOT DEFl!iED 

I 
I 
I , 
I 
f 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I , 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I , 
I , 
I , 
I 
f '-____ ... __ ._L __ ",, __ .-L-. I ____ . __________ . __________________ ..J 

liqur~ 40. TSS Extended Progra. Interrupt Codes (5 of 5, 

272 



APPEBDIX D: DYBABIC LOA DE. 

Every task has a task dictionary (TDY), which contains, in addition 
to the progra •• odule dictionaries (PftDs), the hash tables used by the 
dyna.ic loader to process external definitions (DEPs) and external ref­
erences (BEFs). 'lhe hash table is split into three parts: privileged 
syste., nonprivileged syste., and user sy.bols (see Figure 41). When 
the loader encounters a REP in a control section with the attribute of 
PRYLGD. it searches the privileged syste. hash table; if the attribute 
of the control section is nonprivileged SYS'lEB. the nonpriYileged syste. 
hash table is searched; if the attribute of the control section indi­
cates that it is a user's. then the user hash table is searched. One 
exception to this rule occurs when a user's authority code is P or o. 
In this case, the loader ignores the user hash table and searches the 
two syste. tables. Figure 42 su •• arizes the actions of the loader in 
processing the REFs and DEFs. 

Rotice that the loader erases the attributes of PUBLIC and READOBLY 
fro. any .odule loaded fro. any library for a progra •• er with authority 
code o. The attributes PUBLIC, REIDOBLY, SYSTEft, and PRYLGD are erased 
froa any aodule loaded fro. JOBLIB ~ USBRLIB for a progra •• er with au­
thority code P. If a progra •• er with authority code P loads a aodule 
fro. SYSLIB, only the PUBLIC and REIDOBLY attributes are erased. 

Reaeaber, though, that the loader does not load initial virtual 
storage (IYB): you will always get a public, read/write protected copy 
of IYR. The loader's action in assigning storage keys to control sec­
tions is governed by the attributes of those sections. (See Figure 42 
and Figure "3.) 

, , LIBK TO FIRST PftD GROUP 
I 
I HASH TIBLE LEVGTH/DIVISOR (L) 
I 

...---i IDDRESS OF SYSTEft HASH TABLE , I , , .. IDDRESS OF USER HISH 'lIBLE 
I '-->, 
t SYS'.fEft I PRIVILEGED SYS'.fEft HISH '.fIBLE 
I HASH , (PREFIXES ez IVD eHB) 
f TIBLE , 
r • I , BOBPRIYILEGED SYS'.fBB BASH TABLE 
I , (PREFIXES OTHER THAR ez OR eHB) 

>f 
USER I ALL USER SYftBOLS 
HASH I 
TABLE I , 

Figure 41. Dynaaic loader three-part hash table 

I 

I 
I 
I , 
I , , 
I , 
I 
I 
I 
I 
I 
I , , 
I 
I 

Appendix D: Dynaaic Loader 273 



, . 
IDynaaic Loader Syabol Lookup Rules t 
I Ii' 
11 2 I 3 "15 6 I 
I I " 
'if and, and and I then or I 
, I I I I 
I authority I loader is 'high-order bit of , control section con-I lookup IIf symbol isl 
Iclass is: I resolving ,C1 or e3 byte of Itaining adcon group Isymbols in ,not in hash I 
I Isyabol from: ladcon group is: lor REP is: 'hash table: I table search, 
fIr , I ,library: I 
I I , I I I , 
, 'Explicit I ISYSTEft ,SYSHASHP orlSYSLIB , 

ILOAD/CALL or , I ISYSHASHBP I I 
IDELETE adcon , 0, I I I 
I group , ,BOMSYSTEft ,USBRHASH***IALL** I 
I • I I I , 
I r IIfOIfSYSTEI!' SYSHASHP or ,SYSLIB , 

u I , I I SYSHASHIfP I I 
I r 1 I 'I I 
I I I SYSTE!! I USERHASH***IALL** I 
I I , I I I 
IExternal REP I ISYSTEft ISYSHASHP orlSYSLIB I 
I I I I SYSHASHlIP I I 
I I !fA * I I I , 

I , , ,IfOllSYSTEft IUSERHASU***IALL**, 
I I I I 'I , 
I P or 0 I lilA* I IU* I 111* I SYSHASHP or ,ALL** , 
, I I I ,SYSHASHlfP I , 
I I I I 
ISlmbol Posting Rules , 
I I I I 
11 2 I 3 '" 5 6 I 
• I I I 
I if and I then , and if then and, 
I I I' , 
laathoritllcontrol sec- ,control section ,control section that,DEPs mal ,all legal I 
Iclass is:,tion that lattributes mal ,contains DEF has Ibegin vith Isymbols fro., 
, Icontains DEY ,be altered: ,attributes: lonly the Icontrol sec-I 
I I calle froa: I I , symbols: I tion are I 
I I I I I Iposted in: , 
I I I I I I I , 
t I IIf control sec- I IPRTLGD ICZ, eHS ISYSHASHP , 
I I Ition is PRVLGD, I I I I , 
I I ILOADER SETS ISYSTB!! I IAny but eZ,ISYSHASUMP I 
I I ,SYSTEI! attribute; I ,1I0lfPRVLGD I CBB I I 
I I SYSLIB I hence, lfOBSYSTEI! I , • , I 
I U I land PRYLGD is I I ICZ, CBB ISYSHASHP I 
I , , iapossible, I I I 
I I I I BOHSYSTEl'I I I I 
, ~I------------+I----------------+'------------------~'Any but SYSIUSERBASB I 
I I SYSULIB or I PRYLGD and I lilA* , I , 
I , JOB LIB I SYSTEI! erased. I 'I I 
I I I I " I 
, ISYSLIB IPUBLIC, READ-oHLY, I ISYSH1SHHP or, 
I I 'erased. I I Anl ,SYSHASBP I 
I , I ,n* I I I 
I P I I PUBLIC, READ-ollLY, 'ISYSnSHIfP I 
I ISYSULIB or IPRYLGD, I IAny but, I 
, ,JOBLIB ISYSTE8 erased. I ICZ, CBB I I 

I I I I '" I , ,PUBLIC, RBAD-ollLY, "SYSH1SHP or I 
, 0 I IfA* I erased. I 111* IAny ISYSHASBHP I 
I I , 

I *»A - not applicable, in the sense that ~he condition is no~ tested bl the loader. r 
I **ALL - the entire hierarchy of open libraries beginning at the last defined JOBLIB I 
I and ending with SYSLIB (or with that library yielding a valid definition) • I 
1***If the symbol to be resolTed begins with SYS, the loader viII look in SYSHASHP or I 
, SySHASBNP, and then in SYSLIB. , . , 

Figure 42. Bffect of authority code in dyna.ic loader Droce~~inn 

274 



I 

f , 
f 
,Class of TSS 
,Object !!odule 
I 
ISYSTE!! 
I PRIVILEGED , 
I 
le_g-, VAl! OPE. 
I , , 
I SYSTE!! PEBCE 
,SITTER 
I , 
le_g-, VA! GET , 
I 
,SYSTE!! 
t IOBPRIVILEGED 
I 
I 
le.g-, ASSE!lBLER 
ILPC 
I 

i if' 
, , , Resultant Seg.ent , 
I , f Assign.ent I 
, I I And storage Key I 
, CSEC~ Types , .~--------------------~, 
, For !odules, Attributes I Public PriYate, , " , 
, REEITERABLB I CSEC~ ,C I 
,EXECUTABLE ,SYSTD, PRVLGD I I 
I CODE ,FIL,PUB,RDO , I 
I It' 
,DATA, ADCOBS,IPSECT, C, 
, et.c • I SYS , PRVLGD , I I 
I ,PIL I I 
I I I , 
IREEBTERABLB ,CSECT ,B(USER RBAD I 
,EXECUTABLE ,SYS,PUB ,OBLY) , 
ICODB IRDO,FIL I I 
, I I f 
I BOB!ODIFIABLB, PSBCT t B (USER BnD I 
IDI.TA, etc. ,SYS, RDO,PIL t OBLY) , 
I I I , 
IREEBTEBABLE ,CSBCT 'B(USBB BBAD I 
,EXBCUTABLE ,SYS,PUB ,OBLY) I 
I CODE I BDO .FIL I , , " , 
IDATA, ADCOBS.IPSBcr I A (USBB BEAD I 
I etc. , SYS , PIL, i RITE) , , 

IA=Key 1 B=Key 2 C=Key 2 with fetch protection 
• 
Figure 43. Relationship of object aodules. CSECT. CSBcr attributes, 

sharability, and storage key assign.ent 

Appendix D: Dyna.ic Loader 275 



--
APPENDIX E: ORGANIZATION OF DIRECT ACCESS STORAGE 

2305 DRUM STORAGE FORMAT 

f Each IBM 2305 drum contains 2304 pages of 4096 bytes each. Tracks 0 
rand 1 contain three IPL records (record#l and 2 of track 0, and record 
lone of track 1) and the IBM standard volume label (track 0, record 3). 
t Pages 0 through 5 are not available for YAM allocation. 

Dum.y records of 548 bytes separate each data page to allow data 
channels to fetch and execute channel co •• and words between pages. The 
2305 is logically divided into 96 cylinders of a tracks each. Each 
track contains three pages and two dummy records. Figure 44 shows the 
organization of a typical 2305 track. 

• i I I 
,Address I Record Size, Page Humber , 
Icchhr* I I (slot) I 
I " , 
,cchh1 I 4096 I 1 I 
'cchh2 I 548 I dummy record I 
Icchh3 ,4096 t 2 f 
Icchh4 I 548 I du •• y record I 
IcchhS f 4096 ,3 , 
f" , 
1* Each track begins with IBM standard , 
f record zero. 'cc' is an integer between I 
r 00 and 95 inclusive. 'hh' is an I 
J integer between 00 and 07 inclusive. , 
• I 

Figure 4 II. Organization of an IBM 2305 Drum 

DISK S~RAGE FOR~ATS 

These restrictions apply to the use of the IB! 2314 or 2311, when 
:foraatte d in pages: 

1. Cylinder 199 is reserved for standard error-recovery retry. 

2. Page 895 (2311) is not used because of overflow restriction. 

Each IBM 2314 volume contains 6496 pages of 4096 bytes. 
1 contain three IPL records (records one and two of track 0 
one of track 1) and the IBM standard volume label (track 0, 
three). Pages 0 to 3 are not available for YAK allocation. 

Tracks 0 and 
and record 
record 

Each 2314 disk pack has 203 cylinders with 20 tracks per cylinder; 
each cylinder contains 32 pages. Figure 45 shows a typical 
organization. 

276 



, , , , , 
I Record t r I Record J 
I lddress Record I Page I I lddress Record 1 Page 
I cc aa R Size 1 lTumber I I CC HH R Size 1 lIuaber 
I 1 I , I 
t * I I 1 nn 10 1 4096 1 16 
I nn 00 1 4096 1 0 1 1 nn 10 2 2920 1 17 , nn 00 2 2920 1 1 , , nn 11 1 1176 I 17 
I nn 01 1 1176 I 1 I I nn 11 2 4096 , 18 
t nn 01 2 4096 I 2 I I nn 11 3 1592 I 19 
I nn 01 3 1592 f 3 f I nn 12 2 2504 , 19 
I nn 02 1 2504 I 3 I , nn 12 2 4096 , 20 
1 nn 02 2 4096 1 4 I I nn 12 3 207 I 21 
I nn 02 3 207 I 5 , I nn 13 1 3889 , 21 
I nn 03 1 3889 r 5 , I nn 13 2 3136 I 22 
I nn 03 2 3136 I 6 I I nn 14 1 960 I 22 
I nn 04 1 960 , 6 , I nn 14 2 , 4096 I 23 
I nn 04 2 4096 , 7 , t nn 14 1(1187 unused bytes) 
I nn 04 (1187 unused bytes) 1 1 nn 15 1 1 4096 I 24 
I nn 05 1 4096 8 I I nn 15 2 1 2920 I 25 
1 nn 05 2 2920 9 , r nn 16 1 I 1176 r 25 
1 nn 06 1 1176 9 I I nn 16 2 I 4096 1 26 
I nn 06 2 4096 10 I I nn 16 3 1 1592 I 27 
I nn 06 3 1592 11 , I nn 17 1 I 2504 , 27 
I nn 07 1 2504 11 I I nn 17 2 I 4096 I 28 
1 nn 07 2 4096 12 I I nn 17 3 , 207 I 29 , nn 07 3 207 13 , I nn 18 1 , 3889 , 29 
t nn 08 1 I 3889 13 1 I nn 18 2 I 3136 I 30 
I nn 08 2 I 3136 14 I I nn 19 1 , 960 I 30 , nn 09 1 I 960 14 I , nn 19 2 I 4096 I 31 
I nn 09 2 I 4096 15 I I nn 19 I (1187 unused bytes) 
t nn 09 I (1187 unused bytes) , I 1 , 
I 
t*Each track begins with the rBft standard record zero. 

Figure 45. Organization of IBft 2314 vo1uae for VAl! 

Each IBft 2311 vo1uae contains 1624 pages of 4096 bytes. Tracks 0 and 
1 contain three IPL records (records one and two of track 0 and record 
one of track 1) and the IBft standard v01uae label (track 0, record 
three) • PagEls 0 to 3 are not available for VA!! a1loca tion. A 2311 disk 
pack contains 203 cylinders of 10 tracks each; the cy1inders are 
organized to contain 8 pages each. Figure 46 shows a typical cy1inder 
organization • 

• I 
1 Record lddrE,SS , Record Size Page Huaber I 

CC HH R 1 I. 
I ~ 

nn 00 1 I 3625 0 I 
nn 01 1 I 411 0 , 
nn 01 2 , 3069 1 , 
nn 02 1 I 1027 1 I 
nn 02 2 , 21+86 2 , 
nn 03 1 I 1610 2 , 
nn 03 2 I 1875 3 I 
nn 0'+ 1 , 2221 3 I 

I 1234 unused bytes, track 4 , 
nn 05 1 I 3625 4 I 
nn 06 1 I 411 4 I 
nn 06 2 I 3069 5 , 
nn 07 1 I 1027 5 I 
nn 07 2 , 2486 6 , 
nn oa 1 I 1610 6 , 
nn 08 2 , 1815 7 I 
nn 09 1 I 2221 1 , 

I 1234 unused bytes, track 9 f 
I 

Figure 46. Format of IBP! 2311 voluae for VAl! 

Each IBS 3330 aodel 1 contains 23,427 pages of 4096 bytes. DumllY 
records of 102 bytes separate each page on a track. 'fracks 0 and 1 con-

Append:ix E: organization of Direct Access Storage 277 



tain three rPL records and the rBB standard volnae label. Pages 0 to 6 
and 23,423 to 23,426 are not available for TAft allocation. 

Each 3330 aodel 1 disk pack has 411 cylinders with 19 tracks per 
cylinder. Each track contains 3 pages. Figure 47 shows a typical track 
layout. 

ii' i 
,Address ,Record Sizel Page auaber r 
I cchhr* I I (slot) I 
I " I 
Icchh1 t 4096 " I 
,cchh2 , 548 , duaay record I 
Icchh3 t 4096 I 2 I 
Icchh4 I 548 I dna.y record I 
Icchh5 ,4096 I 3 , 
I •• , 
f* Each track begins with rBft standard , 
f record zero. ICC' is an integer between , 
I 00 and 410 inclusive. 'hh' is an , 
, integer between 00 and 18 inc1usive. , , 
Figure 47. Organization of an rBft 3330 Disk 

Each rBB 3330 aodel 11 contains 46,455 pages of 4096 bytes. Pages 0 
to 6 and 46,451 to 46,454 are not available for TAB allocation. 

The 3330 aodel 11 is identical to the 3330 aode1 1 in track capacity 
and tracks per cylinder. However, the 3330 aodel 11 has 815 cylinders 
coapared to 411 for the 3330 aodel 1. 

Each raB 3350 contains 65,400 pages of 4096 bytes. Dnaay records of 
525 bytes separate each page on a track. Tracks 0 and 1 contain three 
rPL records and the rBft standard voluae label. Pages 0 to 7 and 65,395 
to 65,399 are not available for VAft allocation. Each rBft 3350 has 560 
cylinders with 30 tracks per cylinder. Each track contains 4 pages. 
Because of internal systea restrictions only 529 cylinders are foraatted 
and used by TSS. Pigure 48 shows a typical track layout. 

Iii i 
IAddress t Record Sizel Page 5uaber I 
,cchhr* , r (slot) , 
I I I , 
,cchhl I 4096 r 1 I 
,cchh2 , 525 I dua.y record , 
Icchh3 I 4096 I 2 I 
Icchh4 I 525 , duaay record I 
fcchh5 ,4096 ,3 , 
Icchh6 I 525 I duaay record • 
,cchh7 ,4096 ,4 , 
I •• of 
1* Each track begins with rBft standard , 
I record zero. ICC' is an integer between I 
I 00 and 528 inclusive. 'hh' is an • 
I integer between 00 and 29 inclusive. , 
• I 

Pigure 48. Organization of an rBft 3350 Disk 

278 



APPEIDIX F: RT1! LOG EITHY DEFINITIOBS 

r 111 R~l!LOG entries are 32 bytes in length. The first 16 bytes are a 
I cosson header which contains the sodule and entry IDs, the SDl or RID of 
, the device, and 8 bytes of cosson infor.ation. The second 16 bytes are 
I entry dependent. 

I , 
I 
I , 
I , , 
I 
I , 
I 
I 
I 

Kodule IDs are set up as follows: 

X'OO' - !tTl! services entry 
X'O l' - CEDIIOl 
X'02 1 - CEDft02 
X'03' - CEDII03 
X'04' - CED!04 
X'07' - CED!07 
X'08' - CEDft08 
X'09' - CEDII09 
X'Oll - CEDSSCP 
X'OB' - CBDftOB 
X'OC' - CED37XX 
X'OD' - CEDLUCP 

X'ODll' to X'OD16' - CED327R 
X'37' - CEDEII 

The S bytes of co ••. on inforaation are arranged as follows: 

I the first 4 bytes are co.son to all entries; 

I the second 4 bytes are dependent on the control type which is de­
I ter.iDed by the ~LO bit in the TCT; if this bit is a zero the 
, contDOl type is called an 'I/O control type', and if the bit is a 1 
I the control type is called a 'logical unit type l • 

The forsat of the RTl!LOG entries are as shown below: 

-, , , EITRY , 
I CmlllOI HEADER (16 BYTES) I DBPEIDEJIT I 

• , , 
-t 

1 I 1 2 'l 4 16 BYTES , 
-' 

I • SDl TCT PI.lG ZEROES 
I I or COI'rEJlTS: COITROL fiPE 
I I RID TCTSTSl I/O COllTROL: ~TIOP1 'fCTIOF2 SCIFB2 SCISTAT , I TCTSTS2 (TCTLtJ=O) 
I I TCTSTS3 

I I EITRY ID 'rCTBCT LOGICAL UIIT: TCTST11 TCTSTl2 TCTIOS1 TCTIOS2 
r BODULB ID (TCTLtJ=l) 

Apendix 1': BTl! Log Bntry Definitions 279 



APPENDIX G: USER LIBITS TABLE 

When a user is joined to the system, he is assigned a set of limits 
which determine maximum amounts of system resources he may use. Which set 
he is assigned is specified in the RATIOW operand of the JOII command. 
Two sets o£ limits (whose values are listed in the figur~below) are supp­
lied with the system; the first set (key 1) represents limits for the sys­
tem program.er, the second set (key 2) represents limits for the privilege 
class D user. The installation may modify these values or add additional 
sets. The table containing these sets is called the user limits table; 
each set of limits is an entry in the table. An entry represents a record 
in SYSULT, a VISA!! meaber of the VPAK data set SYSLIB. The layout of an 
entry in the user limits table is defined in the DSECT CBAULT. 

The pre-joined users named TSS, SYS!lAWGR, and SYSOPEBO, are given a set 
of limits independent of the user limits table. These values are also 
shown in Pigure 51. 

., i , 'J , TSS, :J 1 
" , SYSftAJlGR, , 
I Ite. I Set 1 Set 2 Set... I SYSOPEBO I 
" I , 
ILimits Category (Key) I 1 2 I - I 
I CPU Time , , I , I 
, (milliseconds) 12,000,000It2,000,0001lInstallationrX'7PPPPPppl.I 
IConnect Time (seconds) 12,000,000212,000,0002,may modify ,X'7PPPPFFP'51 
tTask Count ,200 , 20 ,Sets 1 and 21 200 6 , 

,Aux. Storage Pages , 2,000, 500 ,or add up to, 400 , 
ITemporary Public Pages I 20,000 I 2,000 t7 more sets I 20,000 I 
,Permanent Public Pages, 20,000, 1,000 ,(7 more I 20,000, 
,Direct Access Devices I 20 , 1 lentries in I 20 , 
IBagnetic Tape Drives I 20 I 1 IUser Limits, 20 I 
,High-Speed Printers t 20 , 0 ,Table)., 20 I 
I High-Speed r , r , , 
I ReadersjPunches I 20 t 0 I I 20 I 
I I. I • , 

112,000,000ms = 0 hrs:33min:20sec. 1 
12 2,000,000 secs = 555 hrs:33min:20sec. I 
13 Independent of User Limits Table; shown for comparison. , 
I·X'7PPPPPPP' ms = 1,11B hrs:2Bmin:51secs. 1 
15 XI 7PPPFPFpI sees = 1,11B,481 hrs:03mins:59secs. I 
,6400 POR USER BAftED TSS. , 
• I 

Pigure 51. System-supplied values for user limits table 

280 



~PPEHDII B: F1CILI~IES BY PRIVILEGE CLASS AID AUTHORITY CODE 

Individuals assigned particular privilege classes and authority codes 
may eaploy facilities available only to their class or code. A suamary 
of the facilities associated with each class or code follows. 

Privileq e Class 1 - System Operator 
AS]fBD, BCST, CAIiCEL, DROP, PORCE, HOLD, !t SG, PRl:IJT, REPLY, iT, SHUT­

DOWN, and USAGE co •• and options indicated in Operator's Guide; all 
com.ands in Command System User·s Guide (not requiring additional 
privilege) _ 

Privileg e Class B - System Administrator 
Same as class F except that the privilege class B user can join user 

IDs of only one-to-six characters, prefixed by the system with first 
tvo characters of adainistrator·s ID, and he can only assign D privi­
lege c las:,es • 

Privilege C:lass D - User 
All co.mancis in Con.and System User's Guide requl.rl.ng no further privi­
lege or al1thority (for example, UPDTUSER requires an 0 authority 
code) _ 

Privilege Class E - System !tonitor 
Use of !SAK and TAftII macro instructions; additional BS1S and QSAft 
options; On Line Test Systea COLTS) facilities; Virtual !temory Error 
Recording Procedures (YftEREP); and ability to refer to devices 
symbolica.Uy. 

Privilege Class P - System ~anager 
C1ICEL. JOII (full eight-character user IDs and all privilege 
classes except A and F), LOGOI, LOGOFF, DSS?, LIIX?, and QUIT com­
mand options indicated in !tanager's and Administrator·s Guide: all 
comaan.is in Command System User's Guide (not requiring specific au­
thorit:r or privilege codes); all co •• and facility options available 
to B class user. 

Privilege Class G - Special 
Can DDEF restricted D1SD UIITS. 

Privilege Class T - !ITT Ad.inistrator 
Can create an !ITT task. 

luthorit~>de U - User 

1. Cannot invoke Time Sharing Support System (1'SSS), but can use it if 
connected by a .aster system progra.mer. 

2. PCS Us.lge 

• Can use PCS to display (using absolute virtual addresses) non­
privileged system routines residing in virtual storage. 

• Can l1se the PCS DISPLAY aAd SET (using symbolic labe1s) co •• ands 
in his ovn public or private nonprivileged virtual CSECTs and can 
use liT in private nonprivileged virtual CSECTS. 

• CaDDi)t use PCS to display privileged CSEC'rs, public system 
cSEC~rs, or to display (symbolically) areas of nonprivileged sys­
tea CSEC'rs, because system symbols vill not be resolved. 

3. Can co(le and assemble or compile nonprivileged or privileged code 
(obtaining privileged .acro expansions by use of the DCLASS macro 
ins'truct.ion), but cannot load or execute any privileged code (as 
pri vil.Jged) from his OSERLIB or job libraries because of dynaaic 
loader protection. U authorization progra •• ers vho asseable privi­
leg ed CSEC'rs mllst have 0 authorization program.ers load and execute 
that ~)de as privileged. 

1ppenilix H: Facilities by Privilege Class aAd Authority COdes 281 



Not~: The dynaaic loader erases the PRVLGD and SYSTEM attributes 
to prevent U authorization programmers from changing privileged 
system code. U authorization prograaaers can run privileged system 
code as nonprivileged by creating their own IY~ symbols and over­
laying special SVC instructions. 

4. Could have 0 authorization programaer put a privileged CSECT he had 
created into SYSLIB and could then execute that code (depending on 
Whether that code refers to system data sets) • 

5. Can execute any privileged code in SYSLIB from nonprivileged code 
only indirectly by establishing the proper linkage. 

Authorit1-fode P - Nonprivilege4 System programmer 

1. Can use TSSS as a master system prograamer (ftSP) or as a task sys­
tem programmer (TSP) if residing at the terainal. 

2. PCS Usage 

• Can use pes to DISPLAY from public or privileged CSECTs; cannot 
SET or AT in public or privileged code. 

• Can use PCS to DISPLAY (symbolically), SRT, or AT into private 
nonprivileged system code as well as into his own nonprivileged 
routines (loaded from his USBRLIB and JOBLIBs) that reside in 
virtual storage. 

• Because the dynamic loader strips the PRIVILEGED attribute from 
privileged system modules when they are loaded for a P authoriza­
tion programmer (from USRRLIB or JOBLIB), the private copy he re­
ceives is nonprivileged, and he can debug and alter that copy. 

3. Can assemble or compile nonprivileged or privileged code (obtaining 
privileged macro expansions by use of the DCLASS macro instruction) 
but cannot load this privileged code (as privileged) from his OSER­
LIB or JOBLIB because of dynaaic loader protection.Therefore he 
will not be able to execute privileged code (as privileged) from 
those libraries. 

4. Be can execute any privileged code in SYSLIB from nonprivileged 
code by dynamically loading the code and establishing appropriate 
linkage. 

Authority Code 0 - Privileged System Programmer 

1. Can use TSSS as an nsp or TSP if using the proper terminal. 

2. PCS Usage 

• Can use PCS to DISPLAY or SBT in public or privileged system 
code. 

• Can use PCS to DISPLAY, AT, or SBT in nonprivileged virtual 
storage. 

3. Can code nonprivileged or privileged code (in conjunction with 
DCLASS) to go into USERLIB, SYSLIB, or a job library and can 
execute privileged code from any of these libraries. He can also 
execute any privileged code or write into any privileged code. 

4. Bas exclusive right to the LVPSW macro instruction (SVC). 

5. He alone can execute privileged code. 

6. Can DISPLAY, SBT, or DUftP from IV!. 

1. Use of CVV, UPDTUSBR facilities. 

8.. Can open privileged ,systea data sets. 

282 



APPE)JDII I: DEBUGGIIG AIDS FOR CORROI SYSTER PBOBLEftS 

I , 

, SYSERIl1 1 I 
r--, ,PAGUG I WAIT , I , 
,SOE'BB.,ISOB USBB T1SK ,P1ILlJBEz ,STATElt ,LOOPS", COI!I!l!!VTS I 

I I I I 
,CE1JIL I X, X 'X X X ,Starts at entry point CEAJrL., 
,Supervisor , " ,(See Pig. 53) , 
I Interruption Log I 'I , , 

I '" I , ,CZCJTL I , X , X ,Starts at entry point CZCJTL., 
,Task ! oDit or , " , (See Pig. 54) I 
,Interruption Log If' , I 

I '" , , ,CHBDlI* I I 'X ,Points to Page Error Control , 
I Direct lccess I " ,Con trol Block. I 
,Interface Block, " , I 
, '" , I ,CRBIS1* , , X , I Seg.ent 0, Page O. , 
,Interrupt , " ,X'6CO'=TPSWs and regs 13-4. , 
,storage lrea, 'I IX'688'=01d VPSW for last , 
1 '" ,task interruption. I 
, I 1 I ,X"7Doo=01d progra. 'IPS.. , 
I I I I IX'S80"=start of last IOBCB , 
, '" I passed back fro. , 
f '" I Supervisor , 
I I I I I I 
,CHBSC»* , , 'X X ,Entries for syste. device , 
,scan Table I " land interruption queues. , 

I '" , , ,CHBSIIC* I , 'x X ,prc.vides data to Queue Scan- I 
IScan Raster , I I Iner for search of Scan Table.1 
, " I , , 
ICHBSYS* I , 'X X ,Contains TSI chain pointers I 
ISysta. Table I I I ,and syste. para.eters. , 

I '" , , ,CBBTSI* I , I X X ,Contains infor.ation used by I 
,Task Status Index, " ,supervisor for task execution, 

I '" , I ,CE1IS1 I x, X , ,contain forward and back- , 
,SYSBRB Save lrea , " ,ward links. Contain general , 
, " I ,registers at the tiae the I 
,CEl!!lQB , I 'X X ,.odule aade a call. , 
,Paging Failure, I' ,(See Pig. 55) , 
,Save Area I " , , 
I " , I 

I*See Syste. Contro1 B10cks for DSECT description, sap, and listing. I 
, I 
11111 SYSBRRs use the save area in CElIS. 1 Supervisor-issued SYSEBR aay be the result of a, 
I '15 proble., so the SYSERB .eaning will deter.ine which type of duap aust be taken. If thel 
I SYSBBB is not listed in current docuaentation, check the interruption log. If last S.,C , 
I 25~ found with relocate bit in PSW (bit 5) off, supervisor issued SYSEBB. If last S.,C 229, 
, found with relocate bit on, SYSEBR was issued fro. task. lddress in PSI' indicates where 
I SYSERR was issued. I 

ZThe Paging Pailure Becovery save area is filled after a solid paging fai1ure has occurred.\ 
On inter.ittent pagi.ng errors that cause SYSERRs, YREBEPs are useful. Check the Direct , 
Access Interface Block (CHBD1I) for a pointer to the Paging Error Control B10ck (CBBPEC) , 
for the failing I/O operation. I 

3Check status of tasks and work known to be in the syste.: I 
Check TSI of current task for "delay' or "ready' status. GQEs say be queued on task. , 
Check Scan Table for active work and suppress conditions. Bxaaine pointers to GQEs queued I 
on Scan Table. (GQEs aay also be queued on shared External Page Tab1e entries.) I 
Check Supervisor Interruption Log for I/O interruptions indicating error conditions. I 
(Possiblilities: lW1IT SYC issued without preceding IOC1L SYC; relocation interruption r 
which .ay have led to page wait condition.) , 

·Check register D, using roller 1 in position 2. Current PSW is on roller 4, position 1. I 
Instruction step CPU to verify loop. If relocate bit (bit 5, current PSW) is on, loop is I 
in task. If relocate bit is off, loop is in supervisor. If loop encoapasses both , 
supervisor and task, instruction stepping aay take too long. Pind point of transfer , 
between supervisor and task by running in noraal .ode, but stopping on the address of the , 
XTSI. I 

I 

Fiqure 52. Data areas to exaaine for coaaon sJstea probleas 

Appendix It Debuqqinq Aids for Coaaon sJstea Probleas 283 



r 
I 
I 
I 
f 
I 
f 

Beader < 
r 
I , 
I 
I 
I , 
t 
L 

r , 
I 
I 
I , 

Blltries < 
I , , , 
I , 
I 
I 
J 
L 

CEAJIL 
r- i 

I Address of Bext ATailable Entry (TSS) I Word 1 
I , 
I Address of start of TSS Log I Word 2 
I , 
I Address of End of TSS Log I Word 3 
I • , 
I Lock Byte I Unusect I Word " I I , 
I Address of Bext ATai.lable Entry ('1'SS) I Word 5 
I , 
I Address of start of ass Log I Word 6 
I , 
I Address of End of BSS Log J Word 7 
I , 
I Lock Byte Unusect I Word 8 
I , 
I , , I 
,CPO ID lInt Type , Interrupt Code or SDA , Word 1 
,see Bote 1 ,see Bote 2 , I 
I I • , , Address of '1'SI at Tbe of Interrupt I Word 2 , See Bote 3 I 
I , 
I CSW for I/O Interrupts or , 
I ---f Words 3 & .. , Old PSlf for other i.nterrupt types I , , 
I I 

--L- -L-

Bext ATailable and Subsequent Entries 
~ -,-, , 

• • 

Bote 1: CPU 1 = 80 Bote 2: External = 18 
CPU 2 = 40 SYC = 20 

Proqru = 28 
I/O = 38 

Bote 3: Por an I/O Interrupt in Supervisor state 

Word 2 = Byte 1 of Ext PSW 
Bytes 2-4: Instruction Address 

Por BSS Prograa and I/O interrupts: 

Word 2 = A pointer to '1'SS LOG where the 
interrupt vould haTe been recorded. 

Pigure 53. S uperTisor interruption 10q 



CZCJTl 

JlOCAD = Next available entry address 

.----~ 
interrupt Type 

.,,-,-------~---- .. ,,-.--

JLOFAD = Firs! entry ,ddress 

JlOLAD = Last entry ddress 

--- OLD VPS\! ---..j L ! ._---._---._--..... ' -_____ ,_-1 

--------------.. ------~ 

Figure~. Task .onitar interruption log 

. ------------, 

0000000l-Prograrn 
00000002 - SVC 
OOOOOOO'!- Externc I 
00000004·-Asynchronous I/O 
00000005-Timer 
00OO0006-Synchronou; I/O 

I-contains tne length of this save area ! ~ORD 1* 
I ~ 
I-Contains a pointer to the sawe area of the CALLING! WOND 2 
J program (chain backward) ! , .. ~ 

,-Contains a pointer to the save area ot the CALLED I WOtlU j 

t program (chain forward) I 
I ---------------- t 
I-Contai 1:3 the r-~turn Ii nkage I ~ORD 4 
.- ------------1 
I-Contai ns the entry point address I IWHD 5 
l ~ 
I-Contain tne contents of registers 0 - 12 i WORDS 6 - 18 
I -----.,--------f 
I-Contai ns the d,ldress of the CALLING program· s ! WOPD 19* 
I copy of the PSEC~ for the CALLED progra. i 

I ->--------,--------~ 

I*CALLING progra~·s responsibility 
1-. ____________________________ . __________ J 

Figure 5~. Save area format 

APpendix I: Debugging Aids tor Common Systen. Prc)J)lems 285-285 





TNL GN204106 (01 July 80) to GC28-200B-5 

!PPENDIX J: LOGON PROCESSING OVERVIEW 

, The changes to LOGON for PRPQ2 are basically in the handlina of 
I required datasets, especially for SYSOPERO and pod owners. 
, Every attempt is made to complete startup even with back level 
I datasets or without certain datasets. This was not designed 
f to recover from all system problems but to give the system 
r orogrammer a chance to fix datasets and then to re-ipl or 
I continue. Note that most cases will require ,;! re-ipl. 
, Below is &n overview of the loaic flow at logon time both for 
, initial logon and as a result of abend. This remains the same. 
I After the diagrams is a detailed logic flow of the key modules 
, in the LOGON process, updated for the new catalog structure, 
t for this new LOGO~ code and for all other PRPQ2 and pre-PRPQ2 
I functions. In addition, attached is a module-by-module 
, description of what happens at each particular dataset 
r failure aLd the attempted recovery procedures. 

overview of the LOGON Process 

CZPTB (Interrupt Handler) 

QLEs to 

CZAHE (Initial Attention Interrupt Handler) 

CZAAF (virtual Memory Task Initiation) 

CZATD (Virtual Memory Task Initiation II) 

CZAF~ CZBTB 

(Logon) (Logon2) 

AFTER AN ABEND 

Appendix J: LOGOY Processing 0verview 2S6.1 



TNL GN2(}4106 (()I July 80) to GC28-2008-5 

C ZAC:1 (ABEND) 

CZ.\HB 1 CZA'fD2 CZCJQS 

CZAAF 1 

CZATDl CZAPr2 CZAF~4 

CZII.HB1 

Mark task conversational (ISACOV,TC~COV) 

XTRCT userid and move to TCMUID 

XTRCT taskid 

If not taskid 1 turn off operator flag (TCMOP) 

U~e taskid to search Qool table (Call CZeBA1) 

If userid not usable (UIDRSV,UIDMOVA,UIDMOVS) or delete 

pool in progres~ ~APIDEL), do TFREE and DLTSI 

If the pool is in maintenance, allow only pre joined 

user on (APIUSR) and set un as maintenance taskid (~?IrTI~ 

Setup poolid (TCMPID) 

Set up PVT pointer in TCMPVT (from API?VT) 

Call CZA H1 

Return 

CZAAFl 

Move ftn interrupt recovery flq (TC~FIR from SCMFIR) 

Reserve TDY space (RSVSEG) 

Disconnect TDY (DISCSEG) and turn off TOY connected flag (ISATDC) 

For taskid 1 only. add system pool devices to TSDL 

using the public volume tahle (from APIPVT) 

Search the API for users poolii (usina TC~PID for compare) 

Move fields from API to SYSSVCT JFCB (TDT028,prebuilt) 

286.2 



TNL G}'ll. -l J06 (OJ hlv 8U) to GC28-2DOR-S 

OPEN SYSSVCT (CZCPX5) 

For taskid 1 only, ao throuah SIssveT and build useri1 tabl~ 

If jO:_TI is in progress, :10 entry is const:::-ucte'l (UC'l'LII?) 

Fields referenced or changed include (UCTCON*,UIDNCAT, 

UIJCOPY, and ~he seauence nUMber UIDNSEO) 

Fields moved include 'reserved for maintenanc~· bit, 

'move user started' bit, PVN limits 

(GETMl\IN, SETL B, GET, construct entry) 

Disconnect use rid table (call CZCB~2) and then 

PREEMAIN the temporary table space. 

For tastid 1 only, call CZ~FW4 to create the dataset 

'system pool ovner.S~SCAT2· 

Call CZCFL2 to locate all TBLOCKS with that dsname beginninq 

If nor: zero retnrn co·:1e, FREF:iAIN 'lll TBL)CKS and continue 

If zero, 1000 through each TBLOCK and call czeBA3 to take 

the DSCB and put it into the uid table (CHBUID) 

When done, call CZCFPl to flush the old SYSCAT, call CZCFWl 

to build a SYSCAT2 for the poolowner, FPEEMAIN the TBlOCKS 

and continue. 

Load address of USER CAT LiF-::B (,rDTCAT, prebuilt) and mark 

orivileged access ('!'DTVPY) and catalog sensitive (TDTRCT) 

DDEF SY~;USE 

DDEF SY~; LIS 

DDEF SYSPLIB 

DDEF SYS~CS 

DDEF SY~; USE 

DDEF SYSMAC 

DDEF MACNDX 

Call CZCFWl to build the ·ooolowner.~YSCAT2.Lserid dataset' 

If not the oper./BIO task(TID=1/2) call timer routine (CZAVa1) 

Call CZtTDl 

Return 

Appendix J: LOGON P~ocessing Overview 28~.3 



TNL GN204106 (01 July 80) to GCL-2008-5 

CZATDl 

open SYSLIB (C'lCTJ8) 

FIND SYSr.LF member 

If not a bio task (NTCBID=O) and not a conversational task (TCMOV) 

RELEASE the SYSI~ JFCB 

DDEF sysin dataset (DCB is CZAHC6) 

turn off conversational flag in ~TC (~TCSW4) 

call CZBT131l 

If a bio task, skin rest and return 

If a conversational task,set flag in NTC (NTCSW4) and in PSECT 

XTRCT TASKID and put in TC~ and NTC 

If operator task 

OPEN SYSUSE (DCB in task common) 

(GET, reset fields, W~ITE record back) 

CLOSE SYSUSE 

If abend is creating this task, return (1SAABN) 

TGATRD (Read first sysin record) 

Look for LOGON 

Check userid for valid characters 

If taskid is 1 call CZAP~2; if not, call eZAFr.l 

Set conversational flag in NTC 

Basr to eZBTE1 (LOGON2) 

If express batch task, call ezeUA to do RCR OPEN for SYSOPEP.O 

Then if task is 1 

Call CZACB2 

Turn on task initiated flag (ISA'1'1) 

Turn off logon in progress (ISALP) 

Return 

Or if task is a bio task (NTCB10) (ex. RT,WT) 

Turn on task initiated (ISATI) 

Turn off logon in progress (ISALP) 

Return 

286.4 



TNL GN2G4106 (01 July 80) to GC28-2008-5 

If bio type task (BID or NBT~OPK) 

Turn on task initiated flag (ISATI) 

Turn off logon in progress (ISALP) 

OBEY 'ZLOGON' 

If abena is creating the task, just return (ISAABN) 

If not, call CZCJQS (QLE to C.A. ~ E.) 

If none of the above (simple conv. task) 

If not a pristine logon (~TCTSK) and not created tv abend{ISAABN) 

FINDDS for SYSMAIL dataset 

If one exists RSLEASE the DDFF and inform user he has mail 

Turn on the task initiated flag (ISATI) 

Turn off the logon in nrocrress flag (ISALP) 

OBEY 'ZLOGON' 

If the task is being created by abend (ISAABN), just return 

If not, call CZCJQS (QLP to C.A. & E.) 

CZATD2 

If batch monitor or network task or abend creating 

a new task, call CZAFM2 

In other cases, call CZAPr.4 

If not abend creating a new task, return 

If abend is creatinq a new task (ISAAB~) then 

branch into CZATDl code at EASR to CZBTS1 

I CZAF~2 CZAF1'!1 

Note: the flow for CZAn12 consists of only those items listed directly 
below CZAFM2. The flow through CZAFMl consists of ~ll the items in 
CZAFr.2 plus those items list~d directly under CZlIFM1 (all lines with an 
asterisk) • 

If shutdown in DIoqress(SCMITI} ,abend 

Call CZUFMl to PIocess keywords 

*I~ not abended task(ISAABN) or bulkio tyoe 

* (TC!BIO) or SYSOUT OPEN, PRMPT CZAF~OOO 

Search JPCB chair. for SYSUSE JPCB 

Appendix J: LOGON Processing Overview 286.5 



TNL C~;2041 ,;6 1m ;tdy "O} to GC28·2008.5 

~ark as catalog sensitive, privileged in TDT 

Set super privileged bit in IS! 

PEDTIM and save in TCMTOS 

Search th8 APE to find the pool owner's userid 

OPEN SYSUSE 

For express batch job, oet the userid from the logon card 

and SBTUP in TS1 

XTRCT and SETUP cony flaa in TSI 

Call ezrul (RCR OPEY) if SYSnSE is open (~CMPP3) 

Call CZCUA tHCR OPEN) for TSS and poolovner userid if 

not already done 

IF conversational (TCMCOV) 

Ca.ll czeu)!. Ii' (CPU time) 

Call CZCUA (CONN time) 

If non-conversational 

Call eZBTBA to DDEF and OPEN SYSOUT 

GATWR-vrite out LOGON card 

If DOt oper/bulkio type task (TC~OP.TCMBIOJ 

PR~PT CZAF!'!OOO 

Call CZCUA R 

Call ezeul type=TASK 

Set non-conv. print flag on (TCMPNT) 

User privilege to TCM 

Set user table updated (TeMASS) 

Update user table entry (WRITE) 

If shutdown in progress (SCMITI), abend 

*Process password 

Set logon ok (TCMLOK) 

Process addressing and charge number parameters 

Set up ilege class of user (TCMPRV) 

Turn off confirmation flag (TCMCOF) 

Set full message indicator (TCMOPT) 

286 .6 



TNL GN204106 (01 July 80) to GC28-2008-5 

Process CSEC~ oacking, aux., oristine ~nd xivrn parameters 

If non/conversational task and not a sP8cial 

task or call to CZAFMq, SIP for timer interrupts (TCMT!ME) 

SETUP u~er priority 

SCHED 

SETUP authorization 

~ove authorization to IS! 

If USEArH=O or P 

~APTDY T (connect TDY) 

Set up for system hash 

r1APTDY U (connect user) 

If pristine o?tion is not X, DDEF USEl'lLIB 

Get time and date of logon (EBCDTIME) 

Logon time to T',TO~ 

If non/conversa t,ional, BS~ to TATMID and 

8SH to AULTMIV , 

set up salutation messages 

*1f not abended task, PP.~PT salutation message 

*WTL message 

*AUXSET 

If abended task. WTL and AUXS~T 

Return 

CZBTB1 

XTECT ta~;kid 

Set 0 default number in NTC (ITeDNO) 

Set attention indie. character ('.CAIC='Sa') 

Call CZ9"'B2 

Call CZB'J~B3 

If a conversational task 

~ark dummy SYSIN DCB (SYSINDC~) as open [DCB03) 

Put SDAT entry addr for SYSI! term. in TCM (TCMSIN) 

Appendix J! LOGON Processing Overview 286.7 



TNL GN204106 (01 July 80) to Ge2S-2008-S 

SIP (Set attentions to go to CZASB1) 

If RTAM-10 SETTcr 

?eturn 

CZBT32 

If not a pristine loaon-OPEN USERLIB(SYSPRD) 

OPEN USEFLIB (SYSPRO) (DCi3=CZ ATES) 

0PEN USERLIB (SYSML.F) (DCB=CZATJ9) 

FIND USERLIB(SYSPRO} 

If not found, CLOSE (CZATE8) 

Reset DCBL~E fields to 256 

FIND OSERLIB(SYSMLF) 

If not an express logon-OPEN SYSLIB(SYSPRO) 

FIND SYSLIB{SYSPPO) 

OPEN SYSLIB(SYSPRD) 

Return 

CZBTS3 

GET~AIN 1 page for input buffer 

Call CZASD2 (STARTVAR) 

If not a pristine logon and USF.RLIB(SYSPRO) exists 

FIND USERLIB(SYSPRD) 

286.8 

If not found (rc=20) 

Get addr of DCB for SYSULIB(CZBTB3) 

SETl B 

If not found (rc=4) 

SETL B (DCB=CZATE8) 

GET next record 

Call CZBTB9 (proclib scan) 

Validate and process record 

HASH 

Call CZASD3 

Call CZASD4/CZASD5 to search chain again or 

to insert current antry 



On EODAD, go to CZBTBS 

If found (re=O) 

Read the dictionary 

Call CZETBY. 

If SYSLIB(SYSPPO) exists 

FIND SYSLIB(SYSPRD) 

SETL B 

Call CZBTBX 

If not a pristine task 

FIND ~SERLIB(SY5?RX) 

If found 

Get address USER LIB deb (CZBTB8) 

GETMUN 

Call CZBTBX 

If not pristine logon 

FIND userlib(5YS?CL) 

If found, TERMPRO ACTION=R ••• 

If not found, MCAST,TERM?PO ACTION=W 

Clese 5Y5LIB dcb (CZBTB?) 

Close deb (CZBTB8) 

Return 

TNL GN20-4106 (01 July 80) 10 GC28-2008-5 

If a pristine task or USERLIB(SYSPP~ not found 

FIND SYSLIB(SYSPP~) 

If not found, issue msg. close debs and exit 

Get addr of syslib deb (CZBTB7) 

Go to GETMAIN,cal1 CZBTBX and then close (CZBTB7,CZBTB8) 

Return 

CZBTB4 

PINDJFCB for SYSIN ddname 

Set sysin sda in TCM (TCMSI~ from TDTID1) 

SETUP !;ysin 

Flag as TSS SYIH/SYSOUT (NIBTSS 

Appendix J: LOGON Processing Overview 286.9 



TNL GN204106 (01 July SCI) to GC28-2008-5 

OPNDST (call TA!'!II to connect) (C'lFTF1) 

Set format of record (,TCMGRD to 0 for variable 

and 1 for fixed) 

Return 

CZBTBA 

RELEASF: SYSOUT 

DDEF SYSOUT 

FINDJFC3 for SISOUT a~name 

Set SISOUT sda in TeM (TCMSOr from TDTrD1) 

SETUP sysout 

Flag as TSS SYSIN/SYSOUT (NIBTSS) 

OPNDST (TAM II connect) (C:ZF'I'F1) 

set record length in TCM'rTC~LNG to 132) 

Return 

During LOGON process several datasets are ddeffed 

and 0001"e1. If any of these ddefs or opens fails, the task 

SYSERFS and-or ABENDS. If the user haopens to be SYSOP~PO, 

the system will not startuD. 

Design Solution 

For users and SYSOPERO, a 1SERLIB DDfF or ODE~ failure will 

result in a message and a oristina LOGON. In addition, fo~ 

SYSOPERO or a conversational u~er, t~e LOGO! processors 

will attempt to open old~r creneration datasets v~ere applicable 

and to temporarily bypass cthqr failures for SYSOPERO. 

In the SYSOPERO case, since ~OV. has not been entered, the 

systere onerator or system proarammers can correct and/or 

re-ipl. To aid in problem jetermination, the messages will 

contain the dataset name, what problem was foun~ and how 

it was temporarily hyoassed. ~very effort will be made to 

complete startup. 

286.10 



fl\L GN204106 (()I July 80) to GC28·2008·5 

eZIAF ;VMTI) 

Set up special abend recov~ry fiel1s in task common for 1IJ 1 

and the pool owners only 

On AREND on OPE! of SYSSVCT 

TGATWB message, set UD abend recovery again but skip th0 

~he build of the userid table 

DO NOT BUN APTER FIXI~G PROBLE~, RE-IPL. 

On ABEND on SETL B or GET OF SYSSVCT dataset 

TGATWR message, setup ABE.O recovery again and branch to the 

BODAD routine. 

DO NOT RUN AFTER FIXING PROBLEM, RF-IPL. 

On AgEID during ·copYcat' processing (fo~ system pool) 

TGATWR message, setup ABEND recovery again anl 

skip to USEPCAT processing. 

DO NOT RUN AFTER FIXING PEOBLEM, FE-IPL. 

Generally, where a major SYSER would have heen issued, if 

the rrD is 1, or the userid is the pool owner, these 

have been converted to minors and cole added to 

continue the LOGON process 

added to continue the LOGOJ process. 

In addition, nOD-zero return codes from DDEF are processed as 

For SYSLIB(O) - Issue messaae via TGATWR 

Try to DDEF SYSLIB(-1), if successful, 

continue 

If not. ABE!D 2 i~ the TID is 

not 1 or the pool owner; i~ TID is 

1 or the pool owner issue minor 

SYSER 1.2,5,1,61,02 and continue 

Fer SYSUSE - Issue lIIessage via TGATWR 

Abend unless TID is 1 or pool owner, ~hen 

Appendix J: LOGON Processing Overview 286.11 



TNL GN20-4106 (Ill July 80) to G08-2008-5 

issue SYSER 1,2,S,1,61,9 and continue 

For SYS~AC/rACNDX - Issue Message and attempt to DDEF at the 

(-1) level; If unsuccessful, issue 

SYSE1 1,2,51,61,10 and continue 

For SYSPLIB - try to DO~F SY5PLIB (-1) 

If successful put out message 

If u~successful continue 

For SYSRCS - continue with no message 

NOTE: As the datasets are DDEFFed and/or OPENed, flags 

indicating the status are set in the logon footprint fields 

in task common. They are checked by later modules that 

wish to access or further process those dataset. 

CZATD 

Set UD abend recovery tields in task common for TID 1 

and pool owners only 

If the task common footprint indicates that SYSLIB is D~FFed 

On ABEMD on OPEN of SYSLIB(SYS~LF) 

Issue a message via TGATWR, reset ABEND field in task common 

and skip the FIND of SYSLIB (SYS~LF) and continue 

On ABEND on FIND of SYSLIB(SYSMLF) 

Issue a message via TGATW?, reset ABEND field in task common 

'CLOSE' the DCB 

Reset the SYSLIB (SYSt'lLF) 'ooen t flaq in footprints 

Set up ABEND fields in task COMmon and continue 

CZAP!'. (LOGON) 

Search for the JlCB for SYSUSE 

286.12 

If not found and it is supposed to be DDEFed (footprint, 

Issue a minor S'lSFR (1,20,55,62,,11) and "_BEND 

If not DDEFed and ~OT the ooerator task or pool owner 

a minor SYSER is issued (as above) and the task is abended. 



TNL GN204106 (01 July 80) to GC28-2008-5 

!f no't DDEFed and the task is the ooerator task, continue 

For taskid 1 or pool owners only, set up s?ecial abend flaas in 

task !~Ollllfton 

If SYSOSE is supposed to be DDEFed 

On OP!N of SYSUS~ failure (for SYSOPEFO or pool owners only) 

Set up a duamy SYSUSE entry in CZAF~s PSECT and continue 

If SYSUSE is not open, skip all BCR processing 

Appendix J: LOGON processing Overview 286.13 



TNL GN20·4106 (01 July 80) to GC28-2008-5 

Wh.l~re more than one page reference is 
giv<~n, th~ major re:terence is first. 111 
references are within plus or .inus one of 
the indicated page number. 

n braces 10:;: 
( J brackets 102 

ellipsis 102 

lUlE:tD interlock.s, releasing 55 
absoi.ll.te expression (in operand) 102 
access method, ter&inal 63 
access to system data sets 58 
accessing storage 

PSWjprotection key relationships 12 
accounting 

by charge number 41 
on a project basis 41 
for shared data sets 39 
by taskid 40 
by userid 40 

accounting facilities 
(see resource control facilities) 

accoun t:ing routi nes 
installation-provided 40 

accounting statistics 41 
active list 47 
active user list table 42 
aid device to task syaholic device 
list 105 

add resource access entr~es 178 
add shared virtual storage pages 108 
add virtual storage pages 106 
AI>DEV macro instruction (SVC 234) 105 
ADDPG macro instruction (SVC 250) 106 
ADDPOOL co_mand 228 
address constant 5 

V-type (V-con) 21,29 
R-type (R-con) 21,29,32 
A-type (adcon) 21 

address translation 7 
a.ddress~ng 1 ist, defining 133 
ADSEI (SiC 212) 7B.8, 79 .. 3 
AuSPG aacro instruction (SVC 286) 103 
allocation of data sets on dru.s 18.12 
alternate prefix 7 
apostrophe, in macro instructions ~.r96 
ASCII data sets, printing 77 
asseaDler constants, adjusting 53,54 
asynchronous entry, setting 193 
A TEOL ltacro inst ruction 109 
attention interruption, poll for 109 
authority codes 1,3,281,282 

racil~ties by 281 
auxiliary storage page 110 
AUXkG macro instruction 110 
AOISET macro instruction 110 
available auxiliary remaining count 111 
AVAUX macro instruction 111 

286.14 

BLDPOOL command 229 
BLDSVCT command 230.1 
BY.SG macro instruction 111 
BPKD macro instruction 112 
BTRUbL macro instruction 114 
BUILD macro (~CP) 77 

CALL macro instruction, in type-1 linkage 
29 

calling program, return to 191 
cancel real time interruption 115 
CANCL macro instruction 115 
CC command 230.1 
CCW (Channel command vord) 67,6b 

list entry before IDCAL 155 
CHUCT 42 
CalAUL 42-45 
CHANGF. ~acro instruction (SVC 227) 116,47 
change schedule table entry 116 
character arrangement table 205,206 
charaeter strings· (in operand) 102 
ChlULT 41 
CHAUSE 41 
CRDINNBl macro instruction 117 
CbGVLOCK macro instruction 119 
Checksum procedure 57 
CLASSGTF cOID.lland 233 
clear page assignment table 243 
CLOSE macro instruction 

for PlSA!'! 121 
CLRVLOCK macro instruction 119 
CBSEG macro instruction (SVC 238) 122 
CBV'fPOOL co •• and 234 
comma, as delimiter 100 
co •• ands, syste. • 

IDDPOOL 22a 
BLDPOOL 229 
BLDSVCT 230.1 
CC 230.1 
CLASSGTF 233 
CnTPOOL 234 
DDEF 237 
DELPOOL 237 
DIS? 238 
DSCBS 238.1 
DUftPRES 238.2 
ETV 238.3 
P'IXCAT 239 
FIXDSCB 239 
FIXVI 240 
GTF 241 
I'LlPGElt 242.2 
IIOVEUSER 242.3 
lIIEwftSG 242.6 
PATCLEAR 242.7 
Pl'1'P'IX 243 
POOL? 247 
PBGTF 247 
PR:tRT 248 



SEClHxE 253 
SETH 'iN 253 
'lRACE ;CSt> 
~E..ACEND 2:>4 
OPDTUS:C:R 2->!~"1 
USAGE 254.2 
VDI'll? 254.2 
VDSP 256 
'PA~ L59 

cOBillunication li :G'~. closing 122 
connect segment to suar\C!J pilge tahle 122 
control. section (CSBCT) llaID'~£ 

for nonresident programs 22 
for resident pro'1I:alllS 13 

control. transfer- {.see linkaqe} 
COPY instruct.ion. i,skcndo-op.:::ration 2G 
core allocation 1~, 
core release 11 
create load list~ ent.ry 157 
create task status index 123,193 
CRSTI Wdero instruction (Sv: 253) 123 
CSEG macro iostrueLion 123 
CVT ILdcro instruction 124 
CZAbA (accoullt.in q module id) 44 

DAT 7 
dat.a channel key 11 
data control blod. 

prepacd t~on f or processing 166. 161 
r~fecring to tisar·s 93 
(see also MSA~ DeB fiEdt'ls and DC 1.1) 

data set 
allocation on dT"UlllS 78.12 
deEining 129 
end processing of 1~1 

recovery ";:'.3 
DCB lIlacro illstrn ction 

for ~Slia 124 
DC!'l 6"' 
DCLASS macro instruction '29 
DD~F co&~and ~37 

DDEF (I'lSAM) macro iDstruct.i.or. 129 
deadline dispatcher 47-46 
debugging aids Zaq 
defiufc! a data set 

DDZY command 237 
de.fine a p011in<:1 1.is*. lj3 
DBLET macro instruction (SfC 123) 130 
delete resource cu;ceS3 e'1trips 17~ 

delete task status index 134 
delete virtual s\:( .. rage pagE:s 130 
DEl.PG adero in;-,'t ru.::;t.ioll (SVC 249) 130 
DEL~OOL commauG 237 
DEC!GQE macro ins t;rnct iou '1.1 1 
device, r-eiilo'iial :trOill uevice list 1Si. 
device snppre;-,sion :tlaq r r~;set 179 
dial ill operation P;:P} 7,1.2 
di..i:'''c't access ;,tuL'I.ge .276--2TI 
DISI ~L macro ~Dstruct1on 132 
dj .. >.' "ling inten: uptions 2(1 
disc~DneC't a lIIul1:.it.ermiudl ta.sk 12'1 
ciisconnect snarct< pogo tab:.e from 
segment: 134 

DI5CSzi; lIi"cro instruct.ion 134 
disk storage foraat 27&-~77 
Drsp command 238 

TNL G1\20410& (01 July 80) to GC2g.-10CsB"~ 

dispdtchable list 47,4.3 
dispCltcher. deadl.i.ne '<.7-"48 
display resource Qsage 213 
DLIN~ ~acro in5~ruction (5VC 127) 
D1.TSI macro instru<..-tion (SVC 2::'2) 
drum data set allocatioo 78.12 
drum interlock .. resetting ria 
drum storage for~at 216 
DseB recovery 56.3 
DSCB slots, validating 56 
DSCBS co~mdnd 23&.1 
DSSCT 13-19 
DSEG macro instructioll 1}4 
DSSEG macro instruction ISVC 237) 
ju~mf section 1&-19 
dump G SYSER sa 
DUMPKES command 238.2 
~OPCI.OSI. macro instruction 137 
DOPOPE3 macro instruction 138 
dynamic accounting 42 
dynamic address translatloD ? 
jynamic loader 271-272 

Y;BCD:dME mdcro instruction 50 
elapsed real time, readlDg 179 
eligible ~ist 47,40.3 
r~N t.B U~ macro iHstruction 13& 
enabling interru~tions 20 
eni ~rocaEsina data set 111 
EW)/D::Q mec;-,ani.sD 4).l?::;0.3 
e!QGQ~ macro instruction 137 
enter codes 267.'38 

133 
134 

ente): cO:!!lllanJ lar:guag~ ,iirect.or t.o end 
HU~i 139 

~nter: ih:;l'~te pro':fram 130 
firER zacro instruct~oD (~VC 121) 
enter privileged service routine 
enter program control suhsystem 
entry point Da~es 13.17 

1:01: non.resiJeI,t programs 21 
TmROf( macro instruction {SVC 254) 

s y St.'';'lL e :eror (:0 de s 139 
8rror rdcove:r'Y -, 

VAl'i 218 
ESEG macro instruction 141 
ellm, t recordin9 

hard\laL'(~ 51 
softwire Sl 

EVV command 23M.3,22S 
EXCS~~ macro ins~ructioD 141 

138 
133 

1':'9 

expl icl.t. alldres::, (see P X :1.dd r"ss} 
explicit linkin~ 133 
explicit loaiin~ 133 
~XPNIJ macro inst.l:uct.ioD 142 
extended control Thude 5 
extende~ control progr~m status word 

(XPS OJ) ;:, 

ext8nd~d proqram interrup~ion codes 266 
extended lSI field, ~etting 207 
external ~agQ table entries, setting ?J7.~Q 
external s~~Dol ~esolutio~ 133 
extra.( . .'-t, a,lxiliarv paq", content.s 110 
,~xtract e';(ten(''j.:,(i t.dsk status index 
field 221+ 

Index 2tn 



:: r;' }(J 

t':t: ;:~i tt.{;?-rs 3S 
'r,j .l.l(~q(~ of 
>ii'lm;~ 19 

bit fLdd,:; 
,}, '::;',! !l:dCT:O :ins tI:\l.(;tion 14 i 

~" dcruptioD ~ntry hdndling 
'" .un code,,; 14.'> 

,ts.;f;.iJrHll ~,r,t t.ablc 21.13 

f."or'c(~ t'"im~ :01i.Ct:-!- O'uJ 212 
1<"~E1 .• f)CK lIldcro in~'>truction 143 

19 

zed trace L:lcility 51-52 
.-1 ",,('1'" t.i orllHU'WS l(J4-105 
G~? (~SA") macro ~lstru(;tion 

eutry handling 
(8~qrn GOees 14~ 

:~~~, ;:.!i r:{~r:.'ord Hi oJ 
F,(';'t'liDil!:c '111'(:1"0 instruction 145 
'.Jj.;'i"CfJR F1(\C:LO ttl stcuction llt6 
,iI/it.G'.:"!\. ,hhTO instruction 11.18 
('l~'I'f:P,'; '\FH.~r: (1 ins tJ.:uct ion 149 
ETiJ~h .ac~o instruction 11.19 

.;,~,~\~~ I~',6.c:t~~) in,~;.truGt.i(}n 150 
GPSEG .aero instruction 1~? 

i~~,aCttiP ~~d;:=!"O (;.~CJ?) 18 
-GTI> c"OIX,"~ dud 2!.t 1 

;'.~ ·ll:'"lf.'tld.re (:!"Ij~:..'l;l~~: r eco:r:d..in q 51 
~t{~ ,";i:b t.~t"l'p 26.5 
.!·)~H; l\.".GCC' im:;t'!:->J.::1:.iuD ·151 
;;o~c;' ;"a<:1'" {Me!'} 7il 

(1) vice3.ddJ:'essing in 
.1/0 (~,~yiGE __ S¥ r!dseLving 16 

{~,·_-,c' ."Iso SE:cmrE GOlllmand} 
/0 equipment, designating 76 

.1_' O;)el.>ltSollS, pl(u.-ginq 172 
flag 

141 
79 

inh:'i_bi \ task 1flb:;'tJ:1Jpt.ioas 156 
'~niLirtl_ virrUd: storage {IV!'!} 9,22 
::,"1I0:C j,$.:jcr(' il1st rllctions 112-116,91-92 

.tor nia,! 91 

tDst~octicn address in XPSW 6 
!.ntex:loclts 'g. 

f..fC! ! Hi'! :c;: ng a. t Ah:':ND S5 
~&ter~upt recoLd1n9 51 
1 !It control blocks for 

'.n·'pr.\ oad/overax aw 1·10 
ln~Grruption entry handling 79 

nt'c'Lruptio:n 1.o(j 

suporv:isor 285 
task monitor 285 

inte~rup~ion routines, estanlishinq 46 
interru:)tion storage area (ISA) 10 
interruptions 10 

,iisablin(] 20 
~na.nlin9· 20 
real 'lillie 151 
liiLiting for 114 

nnOKE macx:o instruction 152 
lOCAL macro instruction (SVC 231) 153,47 
rORCB, format of 155,156 
lSI. 10,:SY 
I'l'I lUdcro instruction 156 
lYM 9,22 

keyvorrl operand 102 

LeON ~ (SVC 205) 78.8 
leav~ privilege subroutine 32 
line control. RJP. 183 
.LI:i!': macro (~CP) 78 
line number restrictions 97,20 
line, removal ~ro. use 122 
linkage 

for fence sitters 35-36 
nonpri'lileged t.o nonprivileged 27 
nonprivileged to privileged 29 
privileged from nonprivileged and 
privilegea 31 

privileged to non privileged 32 
privileged to privileged 27 

linkage cODventions 
fence sitters 35-36 
nonr~sident programs 25 
resident programs 21 
type-l linkage 27 
type-1M/2 linkage 27 
type-2 linkage 29 

(see also ENTER macro instruction) 
type-3 linkage 32 

(see also RSI-R'f macro instruction) 
type-4 (restricted) linkage 33 

(see also INVOKE~ STORE, and RESU"E) 
LLIST macro instru~~ion 157 
load list ent.ry 

forBat of 161 
locating 157 

load virtual program status vord 161 
lock byte 15 

control 40.1 
,,·et ting 196 
requests 40.1 
r.-,s.~tting 196 
system resource 40.1 

LOCI' AG macro instruction 160 
lOGVLOCK m3cro instruction 161 
LPDS command 239,228 
LO macro (yep) 78 
LVPSil macro instruction (SYC 254) 16,~32 

.acro definitions, restriction 97 
macro instructions 

detillin'1 80 
defining R-type 80-84 



defining S-ty pe 811-b8 
operand size 93 
pacKing paraaeters 
register notation 
setting sig:l bit 
sublists 96 

90 
90 

92 

subscripts 96 
macro instructions. system 

ADDEV 107 
ADDl-G 107 
ADSPG 109 
UPOL 110 
AUXf'G 110 
AUXSET 111 
AVAUX 111 
BMSG 11~ 
BPKD 113 
STRUBL 115 
CANCL 116 
CHAltGt: 117 
CHD1tlNRA 118 
ClfGVLOC1'. 119 
CLOSE (f':SAr~) 

C:r.r. VLOCK 122 
CHSEG 122 
CRTSI 124 
CSEG 1211 
CVT 125 

121 

DCB (PlSAM) 126 
DeLASS 130 
DELET 130 
DELPG 131 
DEQGQE 132 
DISABLE 133 
D1SCSEG 134 
DLHK 134.1 
DLTSI 135 
DSEG 135 
DSSEG 136 
DlJPCLOSB 137 
DUPOP.r;~ 138 
ENAbLE 138.2 
ENQGQE 138.3 
EffTl:;R 139 
ERROR 139 
ESEG 1111 
.r:XCSEG 141 
EXPND 142 
FIi:HSH (MSA!!) 142.1 
FREELOCI{ 144 
GET (~SAK) 145 
GETADDR 146 
GETCORE 141 
GETLOCK 14B 
GET.l!AG 150 
bETWORK 150 
GNC 151 
GPSEG 152 
HOOK 152 
ID 152 
INVOKE 153 
lOCAL 153 
IT!. 1!l 1 
LLIST 158 
LOCPAG 161 

LOGVLOCK 162 
LVPSW 162 
IOU P'rDY 163 
11 OVGQR 163 
f.OVX}? 164 
MSGWR 164.1 
NIB 167 
oeaD 168 
OPEN (11:5AM) 16a 
Ol'El-ILOCK 169 
o Pi'tV LOCK 169 
PCSVC 110 
PGOU'l 170 
PR 172 
FRESEN'! 172.1 
PTl 172.1 
PULSE 112.1 
PUrGE 173 
PUT (liSAM) 175 

QSVC 17 3 
QbQE 177 
RCALL 17& 
RDI 179 
R ECRDS TB 179 
hELCOFE 180 
RESET 180 
Rf;SE'X:i:i{ 181 
RESU!'iE 182 
RF.:TRNR 18:t 
RJE.J..C184 
P:iDFV 185 
RMO'HiLD 196 
ROPAGE 187 
RPRMPT 181 
ffSEG ld8 
RSl'RV 189 
RSSERR lB9 
RSVSEG 190 
R'IRN 190.1 
RTTCTL 19 f 
SAi1PLE 192 
SAYER 192.2 
SCHED 193 
~CRTSI 194 
SETAE 194 
SETCTL 195 
SE'l'IF 196 
SETLOCK 197 
SETSYS 198 
SE'l"rII'1ER 199 
S}:TTR 200 
SE'lTU 201 
SETUt! 201 
ShTIJR 202 
SBTvLOCK 20a 
SE'l'XP 20B.1 
SETXTS 208.2 
SIPEHOOK 209 
STOPE 210 
STXTR 211 
SYSER 211 
'l'SElfD 213 
T STVLOCK 213 
TWAIT 214 
UFLOW 214 
UPD'rUSER 217 
OSAGE 219 

TNL GN204106 (01 July 80) to GC28.2008-S 

Index 289 



u:~ .":LOCf, ;. 19 
v l.l!1M. 219 
VS1;9DJi 221 
X'rRCl 223 
;C'fhCrL 224 
1\ 'fH~,Y;) 224 
TIRX'fS 225 
:;~r:;.r?O~;::'::i 226 

macro libraries 98 
major aodes (aCP) 78.2,78.5 
dAPGE~ cOlliman~ 242.2 
l'lillTDt It,dCrO in::;truction 163 
~l,X~;UbA c..perana 75 
Mel, 2 'b' 
mes5ay<;> control block 219 

send to task (VSE~DR) 219,220 
f.ystielR error processor 138 
upJates for (command) 242.6 

ninur nodes (Nep) 78.2,78.5 
llilove !-,ag(~ table entries 163 

~OV~QE macro instruction 162 
~OV3USEP command 242.3 
t'1')'\I}j macro inst ruction (SVC 245) 163 
~s .l\tl 

(sP<C! fllul tip Le seqiJential access aethod) 
H3AS DCB fields 125-128 

alternate sources 125 
~S~WR macro instruction 163 

Jill 1 tiple s,",C!uent ial acce£s .ethod (MSAt'I) 
7'1 

DCB options 125-128 
DDl':!' iJoacro instruction 130 
designating devices 80 
interruption entry handling 79 
symbolic d~vice address 80 
(Se~ also CLOS£, FINISH, GB~, OPEj, PUT, 
dn..i SETUll) 

Illtll tijYle pLocessor system 7 
m~l~iprocessing 7 
mulliterminal task 

connect:l.ng 122 
disconnecting 129 

naming cODventions 
QUrrdllY sections 18,22 
helds 18 
}~ii:st executaJJle instruction 91 
r9Sldent prograa ~odules 12 
secondary ent~y points 17 
system contro 1 blocks 17 

NCP 76-78.10 
riCl> macros 77-78 
network control program 76-78.10 
!E~~SG co~maDd 242.6 
new !lpdates for mel::>sages 242.6 
Ulu ~acro instruction 167 
nonconversational task, reserving I/O 

a'i;:vices tor 76 
nonpr:ivileged programs 12,24 
non.ce~~i.dent prog rails 7,22 

dati_ui tioD 7 
linkage conventions 25-35 

system control blocks 17 
nUlliber 102 

oDject program module 
hexadecimal text portion 5 
program module dictionary (P~D) 5 
OCBD lIIacro instruction 166 

OFER macro instruction 
for KSA~ 166 
OPENLOCK macro instruction 168 

operand field 100,102 
keyword operands 102,94 
positional operands 102 
size lilllitation 93 
use of comma 100 
use of parentheses 102 
writing positional operands 102 

OPNVLOCK macro instruction 16~ 

packing parameters as 
page assignment table 

clearing 132 
fixing 133 

oage, barrier 59 
page list entry 155 
page table entries, removing 163 
parentheses, in operand field 102 
PATCLEAR coamand 242.7,228 
PAT1IX coamand 243 
PCCU macro (HCF) 17 
PCS 61,4 

entry to 170 
PCSVC macro instruction (SVC 125) 169 
permit task interruptions 171 
PGOUT macro instruction (SVC 242) 169 
Pr.D 5 
poll tor pending attention 
interruption 109 

polling list, defining 133 
pools (storage) 56 
POOL? coa.and 247 
positional operand 102 
PR aacro instruction 172 
prefix quantities 

primary prefix 1 
alternate ~refix 7 

prefixed storage area (PSA) 6,1 
addressing 7 
definition 7 

prefixing 7 
prejoined user 56 
prepare DCB 166,167 
present current schedule level 171 
PRESENT macro instruction 171,47 
PRG'l'F cOlIlland 247 
primary prefix 7 
PRIIiT coamand 248 

extended 78.12 
printing ASCII data sets 18.12 
printing options 78.12,202 

format for 78.t2 
privilege bit 

for VPSW 6,12 
for real PSW 12 

I 

I 



privilege classes 
creation of new 0nes 46 
facilities by 231 
predefinea classes 46 
Lor privilegea system programmer 2 
tor system monitor 2 
for 5yst.era programmer 2 

priv11e9'=' class 1:: 76 
how to specify 129 

privilege, restoration of 188 
privileged progra~s 12 

wrJ.tinq 22 
privileged service routine, i'utry to 
privilaged SVC 252 
proble& hit in real PSi 12 
processing uuit 7 
p£ogram control subsystem (peS) 61.4 

entry to 11:;9 
progralli in-ter:ruption codes. Extend.?d 
prograli! interrllp tion, supervisor s·tate 
progralll lhask 6 
progran module dictionary (P~D) 5 
program ~odule names 

for resident proqrams 13 
tor vi.rtual programs 21 

progralli status wor", 
ext.ended 6 
virtual 10 

prot.action Key 11 
prototype contL"O 1 section (PSECT) 24 

address constants 24 
attributes 24 
purpose 13 
provision of hash value 152 

PSA 
(see prefixed storage area) 

PSECT 24 
PS~ protection key 6,12 
PTI macro instruction 171 
PU macro (NCP) 78 
public pools (stora.ge) 56 
public program 

cleanup 232 
construction ot 23 
recreation of 246 

PULSe .. aero inst ruction 17 ': ,47 
pul~ schedule tahle entry level 171 
purge £/0 operat20ns 172 
POl'lGE IiIdCI:O inst ruction (SVC 222) 172 
PUT (~SA~) macro instruction 174 

card punch 176 
eXdlliple 176 
interruption entry handlir,g 79 
printer 17:> 
return codes 175 

QGQ}; lIacro instruction 176 
QSVC macro instruction 178 

Ii-type llHtGrO ins tructions 
definition SO-811 
example 82 
l.inkage 82 
lllodi1.ied. R-ty pe 38 
operand forms 80,81 
ReALL macro instraction 171 

RDI macro instruction (SVC 2e'1) 17B 

133 

266 
6 

re~dinq Sf eB tim 50 
[:0:1.1 d(idre;:;::~ D 

rC31 ~0Q0ry SV($ ~7.~6j 

l:F>::il ti;;;UF j:.-ntc~t:,'r-',lpt ~ 19"t 
r>:'?'.3.1 t'>i.[ja~ j t}, t(~ l"V ~ll J< ;::~,+:;t- t. i 1:'t G 

r231ti~0 ~~intenanle SO 
~~~c,J~l_t_iL_t~ t..'~~').K {.-',)Itt~lol 1-.;1 

ce0nterah~lity 2J
f;i~{-:I-- n-()1:Gtti{)n 90" 10'~, ~l\;-,~

P 'of; J-,~(~' ;')1~ 1:., U d (;1:' 0 i :~~~;' t. 1. tIC t:i f') Y; ~3 79
r'(::I(Jcdt~lbl\~; 8Xrr-0S::.<tOn 1 2

hi-i- .in rii:::~w (,
oJ- ~)x.-oqJ:;].:~ ud.<J.<;.~':'.',

report tl~q. 18medlatn
resi:..'tt. i n.q "1 dO
;; ~.:: 't- t, .~,. n {J 19 i::r

r"~~;;s<.= ... t. d(:';,;i (:Ef ;3,~lPprl;"~;~:iG'fi.

r'3'scn '~1:'HI: :LIH.<ccrlock \;
rf:l!~:;:~~t l.m~~;j.icl,t-p reI.'ort tla,i..} 1dG
'r(~!:'et lock t(: l~}h

~t};SEI' macro nst.:LUGt_l.{»):! (S-~i~ 2::::: 1} 17')
reset system trme lH9

BESETIR macro ia2truction lHG
resident programs 1}-Ll

detinitioH 5
dumay sections 18
1 i n_ a q~) ,,;"0 rrv ·t~ n t:<', \.)'u S L. '1
~ od.~J l~~ n ct)n::~ i d.~:~'!::- ::l't ic flS 1 :1

~odule sLructQr~ 14
naming cunventions 13,lG
system control blocks 11
US" of l.l

resideut ~u?ervisor
resource allocatl&D
"CeSOQ:L~{:+~~ co:nt.r·.:>l f.{-lcll:;~ t.1f.:'S 4 'i-'-{~

dtl~B1Y sectif)nS .:~(!r- d.ccoun-tlDH ~>;d'.i ~-;-,;;';

key control block t.abl;:e"~ !f1-4l
types of resot1J::Ck'!:' :n~c':)!:d(c~d ill,;Li

resource usage. d 212

rat.ion
nS';;1t:'s

re~[orp privi lab
RESO!~ aaero iDstr~Ctjun 16i
RETR~B ~acro iastrQction 1B1
return to calling 0Logram 181
return dod cle~nup ta~k 189
HJBLe macro instruction 133
RJE l~De control 183
Hl'lD?V ifiacro inEtnlGtLOl1 {3vC: L ~n}
R~OVhLD macro insttUctlon 18S
ROPAGE macro i~str~ction 1 7
BPRftPT macro ~~struction 186
RSF:G macro instructj on 1,'5'1
EtSPHV macro instruction (5liC LW;

\

H~:::';i"t;ii t.,acre instruction 188
:'SVSEG .ilI<1cro instruction 19&
H;r~:1.ri 66
fiT .• Hl entry 2'19
£i'l'HN l!lac:co instruction (SVC 122) 189
RTl'Cl'L l'la.cro instruction 191
IiI address 80

s-typ,:, lil8cro instructions
(.;(,·t:I.ni tien a 4·.(;)0
};-:;orm 87
(,;,ul?llole a3
t--for:11! 86

B7
mO'ii s--type 39
st.iHlo'J.r;'1 fOI:l'l 84

Sl\I:PLi:; l!t,:icro instruction
;;a::;pl(,= status information

format of 235
prepa'Lation by

190
190

·i.",av,c! pr~.vilege routine 32
tabK mou.it or 29
USf;!: 2.7

reQU irt~m:ents
tYPf± 1 l.inkage 27
type-2 linKage 29
type·-3 linkage 32
(50'" also S'l'OR.!';)
standard 26

SAVLR iliilcro iust ruct. ion 1<:11
;:,J'~CUR P commaud 2SJ
SE~E'~ command 2~3
SC1:Lt:D iKacro iu£:i:: rU.ction 192
scheriule level 171,40.2
ctedule table 48.40.2

scheJule table entry 192
Chdf)Ginc! 116

E' cr, e d ;11 i 1"; (l, EN r; / l' EO 40 • .3
sc~elulinc resourc~s 15,40.3

{see a.l.so resource control tacilities)
SCi{'lSI macro instruction (SVC .206) 193
SiiA

(~:,~e symbolic device addre:ss)
secon:Lu:y ""nt!:,} point 11
seament, connection to Sfr 122
s(~~d llieEsage t_o another task 219,220
£.et asynchronous entry 193
SE't entr:y in TDT 197
:c<et axternal page t,'lble entries 207
Eet immediate report flag 195
set lock ~lte 196
SBt tectl:lillle interval 199,197
501.. sv stem tab~~ Ii,~ld 197
set time o~ day 19~
set tIp ext,~nd'-Hl task status index

t i t.::1.d 201
set_ uDlasK S1:at us index field 200
set liP 1:£11i t re<..'O rd device 201
.st:t u,,:;er timer 200
SN'I'kE macro instruction (SVC 210)
SE:'I'CIL lJId.cro instruction 194

193

SF;'n:h Elacro inst ruction 195
5B'I'1.O:::" maceo in struction 196
s,t'rsYs macro instruction (SVC 216)

292

197

SF'TTHIER .acro instruction 197.45
SETTR m.acro instruction (5 VC 217)

time conversion 51
199

SFTTU macro instruction (SVC 251)
ti.e conversion 51

200,51

SETUP macro instruction (SVC 2JS)
SE~UR macro instruction 201

200

canl punch 201
interruption entry handling 19
printer 202
return codes 203
SYSOCS 207
S YStJRS 207.202

SETVLOCK macro instruction 206
SETXP macro inFtruction (SVC ~44)
SETXTS macro instruction (SVC 214)
shared data set accounting !fJ
shared virtual storage page, adding
sign hit, setting 92

207,ln
207

SI?I':liOOK 208
SMA devices for SCP 76.1ti.1,13.2
software event recording 51
special create task status index 193
startup 5
station iii (Ncr) '18~2
statist.ics

displaying 45
system status 52-53

status information, sa~pling 190
STE level. current 171
storage allocation 15
storage pag9 key 11
storage protection 11

(see also ADilPG and ADSPG)
storage release 17
STORE macro instruction 209,34
store registe:::- contents 209
structure. task 8
STXTR macro instruction 210
SUBAREA operan~ 76
substrina notation 94
supervisor calls (see SVCs)
Eupervisor control locks UO~l

supervisor-detected erro~ 139
supervisor interruption log 285
supervisor state hit in XPSW 6
SVCs

108

issued by system macro instructions 262
nonprivileged 57,262,3
privileged 5&,3

~vitched S~A jevice~ 76.2
symbol (in operand) 102
SYllwolic device address (SDA) 76,47

- in DDEP command 237
symbolic device list

removal of task from 184
(see also ADDEV, RMDEV, PURGE, and

RESET)
SYSFR dump 58-64

(see also ERROR and S~:.SER)
SYSEP macro instruction (SVC 228) 209,58
SYSGEN for NCP 77-78.3
SlSRCS data set 76.9,78.1,78.2
SYSGPAPH data set 205,208 .
system accounting

(see resource control iacilities)

system account~g data sets 45
system accounting subroutine 43,105
system active user list (DSECT CHAAOL)

42-45
systew control block 17

deEinition 17
naminy conven tions 18

system data sets, accessing 58
system enter codes 260
system facilities,. modifying 60
systell generation 2
syste~ macro instructions 3

de::ining 80-90
restrictions in usage 3
(see also macro instructions,. syste.)

system maintenance 2
syste~ mask (in PSW) 9
system llI.onitor facilities ~, 76
systelll llallles (SY Sxxx) 22
system prograllilller

aQthority code 1
conventions for 13
facilities l

cOlluaands 3
macro inst rnctions 3
privilege class 2
responsibilities 2

system resource 40.1
systea table rield

ext.ract.ing a field 223
setting 197

system time
reading SO
reset 189

system user limi t table (DS1~CT CfUULT) 41
system user table (DSECT CH1\USE) 41
SYSTOD 49
SYSUCS 205-208
SYSULT 41
SYSORS, for MSA8 207,202

initial settings 279
SYSIJSE 41
SYSY~.I) 49

TAMII 63
taE.K. accounting 44
task accounting table 42
task dictionary (TDY) 271
task interruption mask 9
task interruptions 9

inhibiting 156
permitting 111

task liIabk 9
task lIIonitor interruption 1')9 285
task status index (,lSI)

altering 200
creation of 123,193
deletion of 134
extract a field from 222
setting estimated task time 207
ZWArT flag I. 12

task structure 8
task. sYilbolic de vice list (rSDL)

(see ADDEl, Ri'lDEV, PURGE, RESET)
task time maintenance 49

TNL GN204l!l6 (01 July SD.l (0 ';C;81(,08·5

TCS 110
TuT 197
TDY 271
terllliual access lIIf!tllod 63
terminal communication subprocessor 108
terminal device table, set entry in 197
terminal I/O interruption, vait
for 212,221

text (in operand) 102
time cells 48-51

RTITI~E 49
SYSTOD 49
XTSATI 49
XTSCTI 49
X TSETI Ll,9

(see also SE'I'XTS)
XTSLTS 49
XTSU~I 49

tillie conversion S 1
hIRe of day, setting 199
time £haring support system (TS~S) 61,4
time slice end, forcing 212
time slice end processor 48
tiaekeeping facilities 48-49

operation o£ 48
setting an interval timer 48
time cells 48-49
ti~e conversion routine 51
types of time maintained 48
use of macro instructions 49-50

timer interrupts 191
trace facility 51-52
TRACE command 254
TRACEND command 254
transfer of control (see also linkage) '152
transfer to dynamic loader for external
symbol resolution 133

'l'SDL
(see ADDEV, Rl'lDEV, PURGE. an<1 RESET)

TSESD macro instruction (SVC 243) 212,50
TSI

(see task status index)
TSS***** 3
TSSS 61, II
1STVLOCK macro instruction 212
TiAlT macro instruction (SVC 229) 212
type-l linkage 27
type-1M/2 linkage 31
type-2 linkage 29
type-3 linkage 32
type-4 (restricted) linkage 33

UPLO~ ~acro instruction 213
unit record device set. up 202
update user table

command 254 ~ 1
macro instruction 216

updates for messages (command) 242.6
UPDTUSER command 254.1
OPDTUSER macro instruction 215
USAGE command 254.2
USAGE macro instruction 218,41
OSELOCK macro instruction 218
user, prejoined 56

Index 293

~': l~_n! :13"; ~r5 S fi U/:t ~ T?
i,i'f;~j L~::t -·t/tl~] f" i~7 v280
t. 3~.h 1 {:~ .p 'oj ':-. :r 7 ~ U. '~~~ J-!: t tt .~

l~01es. Ufd tin1 21G.15~.1
ti~er, settinq 100

t\'4,I~

):. f~':. :.:::; -t x u \~' t j ,(~ 'f1 -;: "~

'::":; <t ::l ~} s- If' 0, r: a.
t '12

{~ln \

10G
d.r:)},I"'t)~or~ (),f '130

.,::,1:,()::"{5.g::~ pro9:r:a~

9,11 ~ 24
.. ~ .12

'!H':-;W
{Bee virtual prIJgram status verd;

VSENDR sacra instruction 22D
V'fSS 69

Yrlit for an inb)rruptiont12
WAIT macro instruction (SVC 204}
,*'3.it for te.t'l'ftinal I/O inh~"n:uption

Xf"S" [,
XTRCT macro instruction (SIC 246)
XTRC'rl llc,cro ir..struction 223
Xl'H~as macro instruction (SVC 2'15)
ZTRITS gaceo instruction (wvc 213)
XTSld'I 118·-50
x~.rSC'l'I 48~I+g

X'l'SE'I'I 51
~TSLTS 4e-I~9

'!:TSU'!'I 48-·S0

221
212

222

223
22[1,50

(see also S!TXTS and task status index)

ZR!tOSST macro inst!:uction (SVC 194) 225

IBM Time Sharing System
System Programmer's Guide

This Newsletter No. GN20-4106
Date: July 1~ 1980

Base Publication No. GC28-2008-5
File No. S370-36

Previous Newsletters None

© IBM Corp .. , 19 67, 1 96 8, 19 70 , 197 1, 1977, 1979

This Technical Newsletter, a part of PBPQ 5799-AYX and PTF 3.12 for the IBM
Time sharing System, provides replacement pages for the above-mentioned publi­
cation. Pages to be replaced (or added) are:

Ti tIe-Abstract
v - x

39 - 40
40.1 - 40.3 (add)
56.1 - 56.4
59 - 60
60.1 - blank (add)
73.1 - 78.2

157 - 160

160.1 - blank
171 - 172
172.1 - 172.2
177 - 178
178.1 - 178.2
187 - 188
188.1 - blank
238.1 - 238.4

(add)

(add)

(add)

(add)

239
240 .. 1
242.3
243
265
271
285
286.1
287

- 240
- 240 .. 2 (add)
_. 242.7
- 244
_. 268
- 272
- 286
- 286.14 (add)
- 294

• Macros and commands ha 1Te been updated to reflect new operands, new examples
or use, etc. Also, ed:Ltorial corrections have been made ..

• Complete descri ptions of the following commands/macros have been added:

FIXDSCB OSVC ROPAGE

Changed areas in text and figures are indicated by a vertical bar in the
left and/or right margins.

Please file this cover letter at the back of the manual to maintain a com­
plete record of the change:,.

IE'!'! Corporation, Time Sharing System, Dept 80M r 1133 Westchester Avenue,
White Plains, New York 10604

Printed in U. S. A.

