Systems

File No. S370-36
Order No. GC28-2008-5

IBM Time Sharing System
System Programmer’s Guide

IBM Time Sharing System (TSS) makes a distinction
between user and system programmers. This publication
is intended for persons responsibie for maintaining,
modifying, or extending the system and discusses:

« Operating environment

« Program structure

« Coding practices and conventions

« Privileged supervisor call instructions

« Serviceability aids

« System macro definitions

+ Changing TSS

» Privilege Class E

— oy -

TNL GN20-4106 (01 July 80) to GC28-2008-5

Sixth Edition (July 1979)

This edition revises and makes obsolete GC28-2008-4.
Among the modifications made to TSS that are reflected in
this edition are the following:

e Macros have been updated to reflect new operands, new
examples of use, etc., and a2ditorial correctiong hLave p
been made.

¢ Complete descriptions of the following macros have been added:
ESBG EXCSEG MAPTDY RTTCTL

s Special operands available only to the systems programmer
have been added for the following macros:

DISCSEG HIB PR RSVSEG

e Complete descriptions of the following system programmer
type commands have been added:

ALDPOOL ELDSVCT CNVTPOOL DISP DIMPRES GTF POOL? TRACL
BLDPOOL CLASSGTF DELPOOL DSCBS FIXCAT MOVEUSER SETRVN TRACEND

e Descriptions have been added for the folilowing: Deadline
Dispatcher; Generalized Trace Facility; Public (Storage)
Pools; and Network Control Program {(RCP) Support. &lso,
the System Enter Code, Virtual & Real Memory SVC, axnd
Extended Program Inverruption Code tables have been
updated, and KiAM Log Entry Definitions have been added.

This edition reflects system changes made by PRPC 5799 AXA
and Release 3.09 of the IBX Time Sharing System/370
{(TSS/370) , and remains in effect for all subsequent versions
or moditications of TSS unless otherwise noted. Significant
changes or additions to this publication will be provided in
new editions or Technical Newsletters.

It is possible that this material may contain reference to, or
information about, IBM products (machines and programs), programming, or
services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce
such IBM products, programming, or services in your country.

kequests for copies of IBM publications should be made to
your IEA representative or to the IBM branch office serving
your locality.

A form is provided at the back of this publication for
reader®s comments. If the form has been removed, comments
may be addressed to: IBM Corporation, Time Sharing System,
Dept 30K, 1133 Westchester Avenue, White Plains, New York
10604,

Copyright Internatiomal Business Machines Corporation
1967, 1968, 1970, 1971, 1977, 1379

PREFACE

This publication will aid you -- as a
systea programmer —— to extend and modify
the IBE Time Sharing System. Available

programming facilities and necessary coding

conventions are described. Examples are
provided to give you an understanding of
what is involved in changing the systea.

Part 1 contains both orientation and
hov-to information and is divided into:

e Section 1: An introduction to systenm
programming and system programmer's
facilities.

e Section 2: The basic concepts and
structure of TSS.

e Section 3: Conventions to use when
coding routines for TSS.

s Section 84: Facilities available to
system programmers; information on how
they can be used and, in some cases,
changed.

® Section 5: How to write macro
definitions for use in the system.

Part 1I provides a reference to macro
instructions (not described in Assembler
User Macro_Instructions) available to
systea programmers (and several options
available only to system programmers), and
is divided into:

+ Section 1: How macro instructions are

described.

» Section 2: Descriptions of the macro
instructions, arranged alphabetically.

Part III discusses commands that are
available only to the systeam programmer, or
that have special options available only to
the systeam prograammer.

READER®S GUIDE

Several other TSS publications contain
information related to system programaing
and monitoring.

e Concepts_and Facilities, 6C28-2003,
presents the basic concepts and
features of TSS.

e System Generation and Maintenance,
GC28-2010, describes the procedure for
creating and maintaining the source and
object forms of TSS; specifically, the
macro instructions and commands you may
use to add, delete, or modify systenm
object modules.

e Time Sharing Support System, GC28-2006,
describes the on-line program error
analysis system designed specifically
for system programmers.

e Multiterminal-Task Progqrakming aand
Operation, GC28-2034, describes
multiterminal task programming
techniques. You should, of course, be
familiar with other IBE Time Sharing
System publications, such as:

Assembler Programmer's Guide,GC28-2032

Assembler User Macro Instructions,
GC28-2004

PART I: SYSTEM PROGRAMMING . . . = v v = o o o « =« &

SECTION 1z INTRODUCTION . ¢ ¢ « o « « o o = « = « «
What a System Programmer Does . . « =« ¢« « + & »
Why TSS Is a Modular System . =« » + o « « o o =«
The System Programmer . . T
Systear Programmer Authorlty codes . . « . . . - .
Privilege Class . ¢ v« & o o o o o = 2 = & + o = =
Responsibilities of a System Programmer
System Generation ¢ . ¢ ¢+ 4 4 ¢ o s - »
System Maintenance . « « ¢ « ¢« v« ¢ ¢ o = « o & o
System programming Facilities
Macro Instructions « « = ¢« ¢ ¢ ¢ ¢ v & ¢ « ¢ o . =
Systemr Programmer Macro Instructioms
Restrictions or Use of System Macro Instructlons
CormMARdS v« =« &« ¢ 2 ¢ o = o o o * o = s o e o o o -
General SeIVices « « ¢ o o o o o o 5 = = « = « «
Serviceability Aids . . - ¢ . ¢ 4 4 s 2 o s . =
System Monitor Facilities . . . ¢ « ¢ « & .+ & «

SECTION 2: SYSTEKE PROGRAMS . . . & ¢ & o =« o « = » =
TSS Orgamization « o ¢ = « o ¢ ¢ & 4 o o s & + & o =
Resident PIOGTalS .« = & « =« o s = = 2 o« =« = = « =« =
Getting Started . <« . . 2 .4 4 4 bt . ¢ o w e = -
Normal Operation . « v ¢ ¢ o ¢ o o = = o « = o « »
Extended Control PSW -« ¢ & ¢ ¢ o o v o o« o o « =

The Prefixed Storage Area . ¢ o o ¢ = =« = « = &
SUBRATY « « o o o = = = = « =« = « = = = « o o o =«
Honresident PrOGraBmsS - =« o « o o o = ¢ = « = = o o« =
Task Structire « - e« o o « = = o a 5 o o & a + & »
Initial Virtual StOTAg@ .« « = o « o o « « « o « =
Virtual Program Status Word . .« « « « = « « « »
Interruption Storade ATea . « « « o « « « « o =
Storage Protection . « ¢ =« ¢ ¢ o « = ¢ o & « o o o
Privileged PTOGTABS .« « - = « = o = « =« =« « « = =
Honprivileged Programs « « « = o o« o o & « & o « =

SECTION 3: SYSTEM PROGRAMMING CONVENTIONS
Resident {(SUpervisor) PrOJTARS « o « « « = = = = » «
Conventions for ¥aming Object Modules
Module Design Considerations .« « ¢« « o o « =« o » «
Module Structure . « v =« ¢ o = v « o = o = « «» =
Getting Resident Working Space « - « « =« <« « « =
Secondary Entry Points -« . - &4 - ¢ ¢ e 4 . o . -
System Control BIOCKS ¢ ¢ o o o o o o o o« =« o =
System Control Block Hames « o« o =« = = = = « = &
Dummy Sections . . . - e m e = e e e . s e
Enabling and Disabling Interruptlons - e e e e e -
Supervisor Linkage Conventions . « « ¢« o = « . . .
Programaing Convention Comments . . .« . « « . .
NHonresident ProgramsS « « =« « o o o o « = = = « = » =
Privileged Program Conventions . « « « =« o « =« o «
Naming Conventions « o o v o = o o o ¢ = = « = =
Writing Privileged Syster Progralms . « « « - - =
Nonprivileged PIOgGTams - o « o o v = o = = = o = =
Program Design Considerations . « .« . o« & o o o «
Linkage Conventions . -« . ¢ ¢ o ¢ o o o o o o &« =
TYpe-T LIinkage « v o o o o o o ¢ o o o = = « « = =
Ose of the Save Area . . . e e e e e e
Contents of the General Registers e e e e s s .
Transfer of Control . .« ¢ ¢ o« ¢ o 2 o @ = = o «
Type-2 Linkage « « ¢« = =« o = o = = = a o = = = = =

CONTENTS

Al
L]
*
-

v
.
.

Vowmwooauoumununuoow EEPWWWWNRONNNN @ - e

The Save Area . « =« « o & & & ® =8 = s @
Content and Use of the General Registers .
Transfer of Control . « o« ¢ o « o = & « =
Type—-10/2 Linkage . « = = o « = = = & = = =
Iype-3 Linkage . . =« ¢ =« + o o« s & » = ® = =
The Save Area . . > = = e e e e e e o= .
Content and Use of General-Purpose Register
Transfer of Control . . « ¢ & & & =« « =« =«
Type—4 (BRestricted) Linkage Conventions . .
Use of the General Registers - « .
Transter of Control . « « ¢ = « = & = « «
Linkage Convention CORBEDELS . » + « = = « =«
Fence-sitters . o« « « ¢« ¢ o o a = « o = = =
Linkage to Fence-Sitters . . « « 2 = = « =
Writing a Fence-Sitter - . = -
Linkage From Fence-Sitters to Dther Routlne
Deterrining Pence-Sitter Privilege«
Virtual Memory Locking . . « « ¢ « « ¢ o o & o
Rationale . o« ¢ o o o o o = = « o = = = &«
OVerview . » o« o ¢ o o = ¢ o o = = o o o =
Using the xXXVLOCK MACIOS . = o« « = = = =«
Supervisor Control LoCks - « » ¢ o & « & « o -
VAM Locking . . . - e« e e e = v e 8 e e o
Dynamic Schedule Table Transition . « . . .
ENQ/DEQ Scheduling .« « « ¢ o =« o« » = o = «

SECTION 4: SYSTEM PROGRAKKER FPACILITIES . . .
Eesource Control Pacilities . ¢ o o « = = « »
Accounting Overviews . . « « « » » o « « =
Installation Accounting Routines . « « « . . =
Important Accounting Considerations
Accounting by User or Task ID . . « . . .
Accounting by Charge NUmRDEr . . « « « « =
Accounting on a Project Basis « « - - - .
Displaying and Altering Accounting Statistics
Retrieving and Modifying System Accounting Da
Creating Your Own Privilege Classes . . . « .
Establishing Privileged Interruption Servicing
Scheduling Time by a System Table
Deadline Dispatcher . . . o« ¢ o & & & o o o &
Active List Ordering « « « =« =« =« o &« « = « =
Schedule Table . . « o &« « o ¢ » w 2 » = & =
CPU/APD Scheduling . o« o « ¢ o o o o « o o o
Real Time Task Flag =« « « o o o « = =« o« « =«
Addressing an I/0 Device . o« o a v =« =« » = o =
Timekeeping Facilities . &+ ¢ ¢ o o = & &+ = » &
Tie CellS « v » o« o o = = = 2 o & « = » = =
Categories of Time v« v« v« o « o = o = = o =
Timekeeping Operation . « « v o a o = « =«
Setting tlke Interval Timer . . «~ « « =« « =«
RealTime Xaintenance « - « o« o o a « « = = »
Task Time Maintenance . . . ¢ o o o « = =
Timekeeping Macro Instructions . + « « =« « «
Generalized Trace Facility . . . ¢ & & &« o o &
Operation of the GTF Facility - . .
GTF Block and BRecord Format . « . « « = « .
Time Conversion Routine . . . - . .
Bvaluating System Statistical Recordlng Flelus
Analysis of System Status Statistics . . .
Adjusting Assembler Constants « o « o +» = « »
Altering Constants « - v = o o o = « « = &«
Estimating %ork Area Storage Requirements .
Releasing Interlocks at ABEND . « « o « « - =
Public Pools —-— Gemeral Description
Converting to a Pool Systel . o « « o « o =«
Adding and Deleting P00ls . v« =« « o« o « = «
Building a New POOLl .+ = « o o o = o « = « =
Adding Volumes to Existing Pools
Partitioming an Existing Pool . . « +« = - .
raintenance . T
Dataset DSCB Recoverv “ e e = e e e e e s e .
Validating DSCB Slots . - . ¢« & ¢ ¢« o = = « =«
Checksum Procedure . « « =« o o = « = » = =

S o o =

ta Sets

® = s @

Routine

.- o e =
s & &
5 s = W
o & o =
o = a =
& 2 & =
s & o e
v e o @
e = s e
a & = =
e & o =
* = = =
- 2 * =
e * & e
e e & =
e o o =
> o e e
» & s e
I
e w B 0w
= e = o
» . s o
“ e e =
x & = =
® e &
- & & =
« . o =

3

GN20-4106

01

July 80) to GC28-2008-5

TNL GN20-4106 (01 July 80) to GC28-2008-5

Virtual Memory Supervisor Call Instructions
Real Memory Supervisor Call Instructions « .
Accessing System Data SetsS . « v« & ¢ ¢« ¢ o o & = = = .
SYSER DUBP « « = = o « o = = o = = o o = « « = o = » =
Reliabiltiy Aids c s e s e e e e w s ke e e e s e
Automatic ISA Replacement . . « « o &« +¢ ¢ o« o = o
Barrier PAgeS o o = « = « » = o 5 o + 2 = + o o =
Read Only Page Overwrite Protection e e e e e e s
Modifying Syster Facilities . . + &« o © o = o o = » =
Program Control System (PCS) . . .
Time Sharing Support System (FSSS}) . « =« o o« o » = =
CoBBANAS v v o o o ¢ & 2 = @ 5 & o » = ® o o @ =
SYODOLIS o & 2 o & @ 2 2 e o 2 8 s 8 o m e e e e o«
LiteTals v« o ¢ o o o = o o o o o © » = » o o » o =
OpPerators . « « « = = o e b e ¥ s e B e . e = =
Terminal Access Method (TAHII) « b e s e s om e s e e -
What is TAMII? . . 2 & ¢ & & c o o o & 2 o »w s =« = = =
Composition of TAMIY . . . o o o o = = = o o « » = =
RTAM ——- Real Terminal Access EKethod . « . « - . .

DCH - Device Control #Modules . « . « o & « « & &
RTAM Control Blocks - - s s e e .
VTSS -~ ¥irtual Terminal Support qutem - e e e e .

PCM - Format Control HNodules . « . « « & « & « « =
VTSS Control Block Defimition and Setup
TAMII Control Block Organization “ s o =
VPSS -~ User Macro to SYSIK/SYSOUT Translatlon .
ViESS — BTAM Interrupt to FCL and ¥TCB Tramslation
RTAB — Virtual Memory Regquest to TCT Translation .

.
®
L]
L
*
®
L
L}
L]

RTAX ~ I/0 Interrupt to Owner®s Task TSI Translation

RTAM I/0 Queue Organization . . ¢« ¢ v o o« » o » =
RTAR I/0 Chaining .« « ¢ = o o o =« o = = = « = & =
NCP Support for TSS . . . - s e s = e e e e s = .
Assigning NCP Capability to TSS e s e e e e e e - o
TSS Restrictions for EAXSUBA and SUBAREA
Defining an KCP for TAMII . « o« &+ o o « o « « = o =
The PCCU BACTO v & = o o « = o = = o »« = » = = = =
Thne BUILD MACTOZI « » o = = o = o s o o o =« a = a =
The HOST macro: . . - e w s e s e e e e aoa .
The GROUP, LINE, PU and Lﬁ BACLOSY o = o = » = & o
Defining the HCP Setwork to TABII .« & o a o o =
Defining the NCP and Remote Terminals
Defining Switched SNA Major Nodes . =« =« « o o =
Organization of TAMII NCP/S¥A Support . . - . -
TAMII Format Control Module Support for tne NCP .
NCP Pathfinding Support Control Blocks and Handler .
RTAR/NCP Support « = o o o 2 o = » = = = o « & o » =
System Support Routine Additions . . .« & . & & « .
Device Control Kodules . . . - . - « m e e .
ADSBA —— Add/Delete Subarea svc (svc212) .- e

LCONN —- Ccnnect TAMII Terminal SVC Request (SVC?OS)

TSS***%x% _ SYSRCS Data Set . . e s nA e e e s e = o
Activation of an NCP/PFP orT FP s e o & e ® s e e s
Deactivation of an BCP/PEP Or EBP v v« = &« o o & o o =
Duap of arn NCP/PEP ©orf EF . = ¢ v & = o o = o o « » =
Rutomatic Dumping and Restarting of an NCP/PEP or EP
Trace of an NCP/PEP or EP Line . . « « v o o « o = =
Special Commard Pacilities for System Momitors
Reserving I/0 Devices for a ¥onconversational Task .
Designating XI/0 Equipment . .« ~ o = = o« o« « o o & =
Symbolic Device Address . . + o+ + o« o = = 2 o o =
VAE Data Set Allocation on DrUBRS ¢ « « = » =« = o =
Printing Data Sets « ¢ ¢ v v & o o o = = » =« = o = =
The Printing Options . . . e e e e~ e .
Extended PRINT Coamand Fac111tles - - s e e s .
Print Pormat for AD, BRE and ED Dpt1ons e & e s e .
Special Macro InstUction Facilities for System Monitors
Bacro Instructions for MSAE . . ¢ & = o @ o « = = =
Interruption Entry Handling .« « « » o = = « = = =
Designating Devices for MSA# . . . &« ¢ = o o o« = o =

SECTIONR 5: DEPIRING SYSTEF MACRO IRSTRUCTIONS e o =
Conventional Types of Macro Definmition

LI B e

R—-Type Macro Definition .
Number . o« « o o o « « =
Absolute Expression . .
Code o« o w « o = = o « =
Character String
Symbol - o o o = o o = .
Linkage « ¢ ¢ o = «» » »

S—-Type Macro Defimition . .

Standard-Form S-Type Macro

Relocatable Expression .

- e & = e
- - e o o
> o & w » =
- - » = =

- o = & = =
- & ® ®» = =

Definition

> w = * = -

Number and Absolute Expression - . .

Code . -~ . e e m o= o= .

Character Strlng and Text

SYyEbol « ¢ o o o « - - .
L-Form S—-Type Macro befinit

s o ® 2 = e
» & w = =

e o & 2 & e

ion

E-Form S-—1Type Macro Defipitions . . .
Nuaber and Absolute Expression . . .

Code and Symbol
Linkage . . - . . .
MNodified g—-Type Hacro Defln
Bodified S-— Type Macro Defin

Technigues Used in Writing Macro Deflnltlons

Register Notation
Packing Parameters « « - .

*« o & = = =

1t10ns - -
itions .

- - = e e =

- = e & = =

befining Inner Macro Iastructions . .

Naming the Pirst Executable
Setting the Sign Bit . . .
Processing a Single Apostro
Referring to the DCB . . .
Size Limitation
Address Constants
Terminal Apostrophe and Siz

Instruction
phe

- = & » 8 =

e Limitation

¢ ¥ & 8 @

-

Keyword Operands and Standard Values . .
Substring Notatiom Processing

B Attribute Usage . . -

N®*SSYSLIST Handling in ﬁlxed node Bacro Instrnctlon

Subscripts and Sublists .
SETC Symbol Length
Logical Terms in Relational

> ® s & = =

Expressions

Converting Decimal to Hexadecimal . .
Setting up Plag Bits in a Byte

Gaining Access to Macro Libra

ries . . .

PART I1: SYSTEM HMACERO INSTRUCTIONS . . .

-

- o e s =
e & s e e
- o & o @
* » = = =
e o o o =
e o & e =
e » o o »
-« & o o =
o & & e =
* o e & =

1]
*
L]
L]
.

- a & o

e a o =

e & v e
= o o e« @
- = e o =
> e o o e
e o o o o

« o o -
- « o s e
- s » & e
> ® & & =
- » ® s o«

« o o o
o &« = o o

L]
L]
.
L]
*

e o & & =
- o & o =
-« = -

.- = s e =
- @& e &« e
~ = e * e
« o = e e
- & ®« o -

SECTION 1: HOW MACRO INSTRUCTIONS ARE DESCRIBED . .

Hame Field . . . & « . .
Operand Field
Operand POTHS « « » « » =
Absoluate Expression . .
Relocatable Expression .
Register Notation . . .
Symbol . . & & ¢ & o o
Character String . . «~ .
TeXt o o o ¢ o « = » o =
Data Set Hame

e o » -
- & & & e »
® o ® ® = =
e o = e o =
- o & ®» s =
- o & = = =
- o s =« » =
o« o » » e e

» e 8 & » =

- ®= 2 8 » =

. ®» & & =
e o e & =
» e s = -
- » & w -
= o o o o
“«- o o o »
e » e o =
= e e &

« » e =
- o ®w = =

SECTION 2: SYSTEM MACRO INSTRUCTION DESCRIPTIONS . .
ADDREV —- Add Device to Task Symbolic Device List
ADDPG —— Add Virtual Storage Pages (R)
ADSPG —— Add Shared Virtual Storage Pages (R) .
ATPOL ——- Poll for Pending Attention Interruption
AUXPG —— Extract Auxiliary Storage Page Counts (0) .
AUXSET —— Create Overload/Overdraw Interruption Control Blocks
AVAUX —- Available Auxiliary Remaining Count (R)
BMS6G — Send BULKIO Message . . «
BPKD -~ Create a Builtin Procedure Key (0) . . -
BTRUBL -— Set Last Called ID into BULKCOMM and S—entry Table

-

* = e o e

e o » s e

' R]
.

[} [] .
* v ¥ % 3 9 []

R®)

©

- =

s

L B I 2

¢ 9 ¥ 0

3

® ¢ 0 92 2 " 3 & "R 4 P

L]

LI T I |

* P ¢ ® v ¢ §F @

| I]

[N I B

-

¢ 3 9

* 9 ¢ 9 & 0

L

LI I I A

* 9 9 ¢ @

LA N I

[2 B T

D P T T

L

L2 I T A]

L

L2 N B .

L]

Aol T T T N I]

¢ 8 8 % 5 % F ¥ 0 s 8 ¢t ¥ 0 Yy

¢« 0 0 v 9 0+ 0

LI R T N I I N I A

* & 8 ¢ s " s 9 W

* & * 9 . & € 0

L I I L [

[I B

v & ¥ !

v

L B N B B B B] ¢ * & ¢ 5§ 8 " 5 ¢ * v &

[N NN BN BN NN I N § *

LI

¢« 9

L 20K BN B B B

s f & 9

LI]

¢ ¢ 5 v

* ¢ 8 v 5 0 L]

[B I

. 00

¢« 8 & 0 ¢

L I D I B B B A

* 8 v 0 L T B]

* s & ¢ 0

. % 0 & 4 0 * 9 F o §F & 3

[N B I N A L I A

[I I Y N T BN AN 2 I B I

LI

¥ 5 ¢ 2 ¢ 9 o+ § ' 0

[B B B B |

« ¢ 03

S ¢ 9 8 8 % &8

[U B DY N N B

[2K BN Y B BN AN A]

L 2 I . & 5 2 % 8

" e
© W
wN

U I B I}
@ o o
neE &

.
«©
(=]

P] *
O <]
o @

¢
0
-

- 104
« 104

-107
-107
- 107
- 109
-110
=110
- 111
<111
-112
-113
-115

vii

TNL GN20-4106 (01 July 80) to GC28-2008-5

CANCL -~ Cancel Realtime Interruption {(0) . . ¢ o ¢ o &+ & o o o o » =« o » =« =« =« » » = <116
CBRANGE —— Change Schedule Table Entry (R) e m = s = e 2 s o 8 e = e v s s e« o = a » « «¥17
CHDINHRA —— Generate Type-1 or Type—-2 Linkage (0) . & =« =« ¢ « = o o » = = « o« =« » » = 118
CHGVLOCK —— Exchange VM Locks ({0) « e o u = e = - . e » s » a2 e = = = = =119
CLOSE (ESAM) — Disconnect Data Set Prom User's Problem Progran (S) e o a s e » o = = «121
CLRVLOCK — Clear a VM Lock (0} .« . - = . e » e o = = s s e s o s & » e s s « = =122
CNSEG ——- Connect Segment to Shared Page Table (R) m e = e s & = s e e s m e e = e » « =122
CRTSI —— Create Task Status Index (B) « o o o o a « =« = = @« o s = « » = o =« » = » = « 128
CSEG — Connect Named Segment (0) . o o o« ¢ 2 o o o o ¢ = » a o = = o » s » « = = « = =124
CVT —— Activate Communications Vector Table . . .« o v ¢ o o o = o » = s » = = = = = = 125
DCB (ESANM) —- Set Up Data Control Block (0) . v v« v o« ¢ &+ o o = 2 = 5 = o » » = = » = =126
DCLASS —— Specify Privilege Class (0) « « = = o o = « 2 = » o o o » s o « o s =« « « » 130
DELET —— Enter Delete Frogram (0) . o« o« ¢ v« o o v« o = o« = =« = = = o s = a « = » « » « =130
DELPG —- Delete Virtual Storage Pages (R) c e & e o 8 = a2 o s e = » 2 s s s o o = = » «131
DEQGUE —— Dequeue GQE from SCAN Table . o« o o ¢ ¢ o 2 o « = o o = = = s » = = = = » = «132
DISABLE ~— Disable System IRterTuptsS - o« o ¢ o o o o o o o = = = =« o « o« = « « = =« = « =133
DISCSBG —— Disconnect Segment Group (0) - . e a2 e a2 m o u s = s = s e e = = = » = « 134
DLINK —— Transfer to Dynamic Loader for External Symbol Resolution (0) « o = +« = » =~ =138
DLTSI -— Delete Task Status Index (0) o = o ¢ o ¢ o o ¢ o o = o o = o« » » 2 « « » = =« =135
DSEG — Disconnect Ramed Segment (0) - =« o« ¢ o« &« « o = = = 2 = = = o s s = « « o « =« » <135
DSSEG -- Disconnect Shared Page Table From Segmrent (R) . « v+ « 2 2o o + » =« = = =« « = « 136
DUPCLOSE — Close a Duplexed Data Set (S) s s e s e =2 & s = s & s o = = o » s & = « » =137
DUOPOPEN —-— Open Duplex Data Set (S} o o« v« v o o 2 o 2 o« = o = o = = o a = » » » o« « = =138
ENABLE -—— Enable System INterrupts .« o« o« o« o o o = o o = « = = =« = = o = » = « = = = » »138
ENQGQE — Enqueue GQE from SCAN Table . o o o o & o 4 ¢ o v o = 2 = o =« « = = »« « « « -138
ENTER —— Enter Privileged Service Routine (R) .+ « v &« ¢ o =« ¢ o e o 2 » = o« o = « « = 2139
ERROR —- Indicate Supervisor Detected Error (0) e o 2 s o 5 » = e o s e » s =« = o » = =139
ESEG — Exchange Named SegEent (0) « o« ¢ o« ¢ o ¢ o o o = = = o 2 o 2 =« 8 = » = = « = « <181
EXCSES — Exchange Segment Group (0) « o = ¢ o o o o o = = ¢ = o o = =« = = « » a o » « =142
EXPED ~— Bxpand Page (0) o o v o = o o o = » o = » = o o = = o = a 2 o = s o o = o« o » 142
FINISHE (MSAM) ——-End of Data Set (R) v v « = o o » = o = o« o = o« o o s o » o« o« o« « « = 162
PREELOCK —-~ Open a Resident Supervisor Service {(0) « o« o = o o =2 « o o o » o « » = = o 144
GET (BSAM) ——-Get @ RACOrd (R) o « o = = =« o s o o = = = » o = = s s » o » » s« = » =« » =145
GETADDR —— Get System Address from CVT & ¢ o o o ¢ = o = o = o o o = o = » s = = =« » = =106
GETCORE -— Allocation Supervisor StOrage SPACE e « o o = o = o o = = = = = = = o « » = 147

GETLOCK — Lock a Resident Supervisor Service (0) . ¢ o« ¢ =« « o =« o o o = =« = = =« = = 148
GETPAG — Get Virtual MemOIy PAge . o ¢ o v o o o o o = = o« = = = o o o o s o« o« o« » = =150

GETIWOEE —— Get Temporary WOTK ATE2 ¢ =« = ¢ o = o = = o o = =« =2 = o » o = o = = = » « « =150
GNC ——- Get Next Character (0) w a o & o s s ®2 s s = = & » 2 e » = & e o o s = = o = » 1951
GPSEG — GET/PUT Ramed Segment {0) . o« o« o« o o o ¢ o o = o = o s = = » » » =« = s« & » « 152
BOOK — Transfer Control from IVE to Private Module (0) « ¢ - o o 2 o » = o = o » » » 152
ID — Define BULKIO HModule ID . ¢ & o ¢ o o« o o o = @« o« = = = o « = 5 o« » s o« =« « « « =152
INVOKE — Transfer Control (0) .« « +¢ o ¢ o = o = 2 e = o = « o o= = » a2 » =« = =« = » « « =153
IOCAL -~ I/0 Call (R) « = o e o e « o o o ® o » o @ » e e = e » s & o o s o = o » +153
ITI —— Inhibit Task Interruptions (O) e o = e e o o o & & = o = o 8 2 s = s = w a« o « =157
LLIST —— Create Load List ENtrY (0) - -« = o o« ¢« o o o o o o = o« o = » » = =« = « = » -~ 158
LOCPAG -— Locate Page (R) - v . e 2 = & » & e & s & s 8 o o & m» = s = = = e o o = «161
LOGVLOCK ~- Defipe ¥4 Lock Anchor (0) e o = o o = e m s s a s e e e s s s s e e s = e =162
LVPSY —— Load Virtual Program Status Word (R) T Y4
MAPTDY —— Connect, Disconnect, or Expand the TDY (0) . « « 2 = = « = = = o =« o« = = « = =163
MOVGQE —— Move GQE to Hew Scan Table EBtry . « ¢« ¢ o ¢ o« o ¢ o = o« « o o = 2 o o » » = =163
MOVXIP —-— Move Page Table Entries (R) =« @ = = % = = o = = s e s o = o o = = 164
MSGWR —— Issue System Message and Get Response (S) @« o = 2 & 8 s s & s s s 2 s = o = = =164
BYB —— Generate 2ode Identification Block (S) e 1Y
OCB8D —— Specify 035 DCB DSECT - « - » « - . e 19
OPEN ({MSAFM) —-- Prepare the Data Control Block tor Processing (S) - - « « + + « = o« - » 168
OPENLOCK —— Reset a Resident Supervisor Lock Byte (0) o « =« o o o o =+ » = 2 = = &« » « =169
OPHNYLOCK —— Open ¥H LoCK {0) « o » = = = = = = = 2 = o = o o 2 = o o o o o = = « o o« = 169
PCSVC —-- Enter Program Control System (O) * o & o o = @ s o & e o s s o s » s = e = = 2170
PGOUT —- Write Virtual Storage Pages to External Storage . . « +« o v ¢« o =« = » = « = = 170
PR — Print a Data Set (S) + o = =2 = = =2 o = o » o o« o o2 o a o = = » = = = = » = =« » = =112
PRESERT -- Present Current Schedule Level (B) .+ o o o o o ¢ o o o « « = = » » =« » = = 172
PTI —— Permit Task Interruptions (0) . . . » » e s e s e m o= os s e s s e a. «- . <172
POLSE — Pulse Schedule Table Entry Level (0) e 2 e e e o s e e = om s ae eomeos e~ 2172
PURGE —= Purge I/0 Operations (R) e« o m & s =2 = » @ @« @ @ » @« o s o o a o o = =« = = = =173
PUT (MSAM) —— Put @ ReCOT2 (R) o « « = o » o o = o o o = o a = = o = o« o o o« » = » = o« =175
QGQE —— Queuwe Interrupt on Task e)
| 0SVC -- Manipulate Resource Queue Entries SVC e e o o ® 8 e = = s e w s 2 = = « = « « 178
RCALL —=- Call Another Supervisor BRoutine o & & o & o &+ ¢ o &« o » & o = = = « 178

viii

RD1 —-- Beget Drux/Disk Interlock (0) « « - = . . e =
K&ZCRDSTE -- Record Schedule Table lLevel Changes (0) . o
RELCORE -- Release Allocated Supervisor Work Space . . .
RESET —- Reset Device Suppression F'ag (R) . - « « « . =
RESETIR —— Reset Immediate Report Flag (0) . . -« . . « «
RESUME —— Return to Calling Prograz (0) . « ¢ « « o « -«
RETR4R -— Load Saved Registers and Returm « . .
EJELC —— Remote Job Entry Line Comtrol (0) « . -« . . . «
RMDEV —— Remove Device From Task Symbolic Device List (R)
KMOVELD —— Remove Page from Page Hold - . .
ROPAGE ~- Read Only Page Protection Flag Update (R) . .
BRPRMPT -~ Send Message to Task + ¢ o« = « ¢ = = o & ¢ + «
RSEG —— Reserve Segment (0) e o e e o & v o w o s o= = =
RSPRY —— Restore Privilege (R) « - o o ¢ & o & o o & o =«
RSSERR -- Indicate BSS Logic BITOr ¢ « = » o « o o« = = =«
RSVSEG —— Reserve Segment Group {({0) « « « o o & o o o =«
RTR¥ —— Return and Cleanup Task (R) « « o« « ¢ ¢ o = » =
REICTL -~ Real Tire Task Control (0) -« a o« =« o o = = =+ =«
SAMPLE —— Sample Statistical Recording Fields (0) - . =
SAYER —-- Supervisor Standard SAVE Function
SCHED - Schedule Table Entry (R) - . - - . . e s s o
SURTSI —— Special Create Task Status Index (R) . e oo
SETAE -~ Set Asynchronous Entry (B} . « o ¢ ¢ ¢ + « o «
SETCTL -- Set Control kegisters {(R) . o o o = « « = = =«
SETIR ~- Set Imsediate Report Flag (0) - o =
SETLOCK —-- Set a Resident Supervisor Lock Byte (0) « o =
SETSYS — Set System Table Pield (R) - =« & o = o = o « =
SETTIXER ——- Set Realtime Interval froa Resident Programs
SETTR —— Set Real Time Interval (0} . « ¢« « o ¢ o« o o =
SBETTU —— Set User Timer (R) - e e = = e s
SETUP -— Set Up Task Status Index P1e1d (B) .- e s e -
SETUR —— Set Up Unit Record Device (B) « « o o - &« +o .« .
SETYLOCK —— Set VM LOCK (0) o = o » = = o o =« = « = « »
SETXP —- Set Pxternal Page Table Entries (R) . . . - .
SETXTsS — Set Up kxtended Task Status Index Field (R) -
SIPEHOOK —- System Performance Evaluatiom (0)
STORE —-— Store Register Contents {0) . v« &« ¢ o o o = = =
STXTR —— SET and XTRCT Table « v o« o o =« 4o o o ¢ « = » =
SYSEE —- Indicate Nonresident-Program-Detected Brror (0)
TSEND —— Force Time Slice Bnd (B) .+ o« o« o = = = = = « =
TSTVLOCK -— Test V# Iock (0) . « +» o o =« - o s e = o
TRAIT —— Wait for Terminal I/0 Interruptlon (R) - - e -
GFLO% —— Oser Flow for TSS and MPTT (R) - =« ¢ = v v« = « =
UPDTUSER —— Update User Tables (0) . ¢ o ¢ o o o o = = =
USAGE ~- Display Pesource Usage (S} « o ¢ o = o« = = & «
USELOCK -- Lock User Table Entry (0) « e s e =
VDEER —- VAK Data Management Error Recovery (S) - .- .
VSENDK —— Send Message to Task and Await Response (0) -
XTRCT -- Extract Task Status Index Field (R) . -
XTRCTL — Extract Control Registers (R) « « =« ¢ o o ¢ o &
XTPSYS -~ Extract System Table Field (F) -
X{RITS — Extract Extended Task Status Index Fielé (R) -
ZEROSST -- Zero Statistical Recording Pields (0)

PART IXII: SYSTEM PROGRAMMER COMMANDS .« + ¢ 2 ¢ ¢ o o o = =
Command {and Special Option) Descriptions

ADDPOOL Command . « &« o v« o = o ¢ = = = = = = = o o «
BLDPOOL ComBANd . . v« =« ¢« o o = o = = « o o o o o« o =
BLDSVCT Command « ©« & o w o ® ® » » @ ®» & o » & = ® @
CC (Check Catalog) Command « « =« « « « = = « « « « o =
CLASSGTF Command

CNVTPOOL Command . +» « o« o =«

DDEFP -— Define a Pata Set .
DELPOOL Command . . & .« . o
DISP Command . « o« o « & & «
DSCBS Command . .+ =« o o« o« «
DUMPRES Command .« - - o « «
FV¥V (Enter VAM Volume) Counand
FIXCAT Command « « = o« « = « »
FIYLSCB Command . ¢ ¢ o o o = «

LI I]
Tt £t ¢ ¢ ¥ €
LI T T S R R T
[N SR I .
L2 B N B B R)
[[} [
. [BT T 'Y
' e . []
D T R T S
o . ..
) . L]
D) []
L L LI]

Pt ¢ & 2
' L]

L
L4

s]
* v
» L]
* L]
L] L]
LI N I B

*
v
.
.
L N Y]

L]
L]
L]
L]
.
)

v
v
¥
1]
v
.

+r ¢ ¥ 0

*

L

L I I A]

[A A)

'TNL GN20-4106 (01 Juiy 80) to GC28-2008-5

-179
<179
-.180
-180
-.1381
-182
- 182
-.184
-185
- 186

. 187
.187
. 188
.189
. 189
- 190
. 190
-191
.192
-192
.193
- 194
- 194
. 195
-196
-197
. 198
-199
.200
201
.201
.202
.208
.208
.208
-209
-210
-211
.211
.213
-213
<214
.214
-217
.219
-.219
-.219
.221
.223
-224
.224
=225
-226

.228
-228
.228
-229
=230
.230
«233
-234
-237
237
-.238
-238
.238
.238
.239
.239

PIXVIi Command .« « o« « « .

GTF (General Trace PFPacility) Command . ¢« = o« « =« ¢ o o =
MAPGES — Create Task Storage Map « = =« o o« ¢ ¢ o « = «
MOVEUSER Command « ¢ o« o« o ¢ = o o o o« o o« = =« » = » & =
HEWHSG (New Updates for Messages) ComRand e« « « « « « o«
PATCLEAR (Clear Page Assignment Table) Command
PATFIX (Fix Page Assignment Table) Comeand . . « . « » =«
POOL? ComBRaNd .« = + = o« o = =« = =« © o « « « = = = = = =
PRGTF Command . e o » . e o e o = o = 2 o o & o =
PRINF ComBANd « o « ¢ o o ¢ o = © o o« e =2 = o » =« o = =
SBCURE Command « « « « o » = o« =2 o o o« » » @ @« o o = & »
SETRVN Command . o ¢« o o = « « @ o o o« = =« o o o = = o =
TRACE ComBANAd +« ¢« o o« o s ¢ o o o o = o & & «a » o o » =
TRACEND CoBRANd + « = o o = » « » » = =« o « o o o & = =
UPDTUSER (Update User Tables) Command . « « - = « « . =«
USAGE Command . « o o o ¢« o ¢ o = o o o o o o & = » & o
VDHP ComRangd « - =« o« o« ¢ «a a = =« = « o o o & o, » = o » =
VDSP Command . « ¢ =« v o o = « s o e o = = » o o o o =« o
VPAY —— ComRANd = ¢ o o« = o = = o 2 o =« o » o o o o« o =

APPENDIX A: SYSTEM ENTER CODE TABLE . ¢ o v« & o ¢ o o « o =«
APPENDIX B: VIRTUAL AND REAL MEMORY SVCS o ¢ o o o o » » = =«
APPENDIX C: TSS EXTENDED PROGRAM INTERRUPTION CODES
APPENDIX D: DYNAMIC LOADER .« ¢ o o o o a2 o o o o o o o = « =
APPERDIX E: ORGANIZATION OF DIRECT ACCESS STORAGE . . . «
2305 DRUM STORAGE FPORMAT . + o =« o o = o o o = o = =« = » =
Disk Storage FPOTRALS = « » o o o = o = =« o = » ¢ = o = » »
APPENDIX F: RTAM LOG ENTRY DEFINITIONS . =« ¢ ¢ ¢ s o » » = «
APPENDIX G: USER LIMITS TABLE . ¢ o ¢ « o « & = o © = o o =
APPENDIX H: PACILITIES BY PRIVILEGE CLASS AND AUTHORITY CODE

APPEEDIX I: DEBUGGING AIDS FOR COXMON SYSTEM PROBLEMS . . .

INDEX =« o o o ¢ ¢ = =« o o o o = s o = o = o s o« o« o o = o =

L I L B]

» & % 5 % 9 9 0 0

[R DO D N DU T R B R B D B A A e B]

1]

L N D A DL B DR B R D B AR B B B I D B e

LI TN N DA DR DR RN DU DU D AN SN B I I A I N

[2 TN 2N N DA DU BN NUN DN DR BN DN R JENE NN B B RN)

(20N TN TN BN BN JENN B BN BN D I I NN R D R D R]

¢« B 8 8 ¢ 9 9 st 2 5 £ 4 ey

LI B N N N N 2N R D I D B NN N N R RN A

LI R I I DN O D 2 I e I D D D D D

¢ 8 8 9 8 ¥ 8 T ¢ 0 T s e vy

[20 I I R N D A D DY D I D B D I B I A

¢ T P ¥ T 5o 00

* 0 0 9 % 3 s 0

¥ & ¢ ® 8 & % % ¥ e 2 % 0 P % a & 8 0

[2 TN RN DN DUNN 2NN DN DR DU BENN JNEN DN TN BN R B B B

. 23°
- 28

-28,
242
-282
-202
-243
-247
-247
-248
«253
257
25

»25h
- 254
.254
-254
«256
-259

262
-264
-268
.273
27
<27

-276
«279
-280
-281
.283

286

Pigure
FPigure
Figure
Figure
Pigure
rigure
Figure
Figure
Figure
Figure
Pigure
Pigure
Figure
Figure
Pigure
Pigure
Pigare
Figure
Figure
Pigure
Figure
Figure
Pigure
Pigure
Figure
FPigure
Pigure
Pigure
Pigure
Pigure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Pigure
Figure

Pigure
Figure
Figure
Figure
Figure
Pigure
Figure
Pigure
Pigure
Figure

1.
2.
3.
5.
5.

7.

8.

3.
10.
n.
12.
13.
14.
15.
16.
17.
18.
19.
20.
2%,
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
35.
35.
38.
39.
40.
841,
82,
3.

48,
85.
g6.
§87.
48.
51.
52.
53.
54.
55.

Extended control program status word
Relationship between real and absolute
Virtual program status word
Main storage page key assignments .
CPU and data channel key assignments
PSW and storage protection keys . .
Format of the standard save area - .
¥irtual program linkage conventioas

£ € v s 00

Sample Data Structure for xxxVLOCK Macros .
Input formats accepted by the time conversion rou

Results of time conversion

Assembler constants, changeable for large assembl

Overview of TAMII Organization -
TAMIX Control Blocks — ¥PSS .« o «
TAMII Control Blocks — RTAM . . .
TAMII Supervisor I/0 Queues. « -
Determining the length of a character s
Standard and L-form S-type macro descri
Parameter list generated by L—form . .

E-form. S—type macro description . . .

Packing two halfword parameters into re
How to enter macro imstructions . . .
Sources of DCB information for NSAN .
System error codes « « « = = = o » = o
Return codes for MSAM FINISH macro inst

*
L]
L]
’

ddresses

[2K B B B - ']
L]
L}
’

* ¢ 0 v 0
L2 T B B]

tr

pt

'.g\g'il

LEEE I I A

i
i

gister 1

-
-
- o o e =
-

ruction

Return codes for ESAN GET macro instruction . .
Format of fixed area of input/output request control

organization of a page list emtry . .

« g 0 9 v

[IR a2 DL TR I RN B N T

[O N D 2 I O I O D B

i

B o v v v 8 8 0

oS

L I I I D D D D D N R

-

* ¢ 4 P 8 R ¢ 9 @

T'o o o 9 ¢ % ¢ o 0 0 0 0 7 0 9 @

)

CS'.II'...""0"!;!.'!'!]"

Channel command word list entry before IOCAL is issued .

Fixed area of I/0 request coantrol block as set
Channel coammand word list entry after task I/ 0

Ioad list entry . .« ¢« = = » ¢ ¢ « =« »
I/0 paging control block -~ « « « . . .

Return codes for MSAM PUT macro instruction
Return codes for the SETUR macro instruction

System ENTER code table (part 1 of 2)
Virtual and Real Memory SVCs (part 1 of
?SS Extended Prograa Interrupt Codes (1
Dynamic loader three-part hash table .

by IOCAL

Effect of authority code in dynamic loader processxng

Relationship of object modules, CSECT,
storage key assignment
Organization of an IBN 2305 Drum . . .
Oorganization of IBN 2314 volume for VAN
Pormat of IBM 2311 volume for VAR . .
Organization of an IBM 3330 Disk . . .
Organization of an IBN 3350 Disk . . .
Systea-supplied values for user limits
Data areas to examine for common system
Supervisor interruption log
Task monitor interruption log « . . .
Save area format . . . -«

interrupti
9
0of5) .« . . .
CSECT attributes

- - -

o' v oty e

ta
| 4

Ilvb‘s‘"l'll
]

e o Dy e o0t o0
-}

'l'g

Ne v v v o2

v oae

s ¢ & ¥ ¢ ¥ ¥ OV 9

L 2N N R B DR I A A

0 0 ¢ 0 0 8t v YN Oty o

[2 B R O D DN 2 2 I D D R AR DO D DERE N R NN BN DR DR NN B B

¢ 0 9 9 8t o 0t 0 Qe v v g 9ot O o0y Foeos ot o2t 0 g Y Y Yt gy

=
."."""'g.'l."l'.

¢ ® 9 O 0 § B " B T & 9 P E T gt

e F % 2 0 & & % ¥ & 0 & 8§ OB ¥ 8 OF Ry

0 ¢ £ 9 % 0 9 % B O P R O ORE F SN Y LY

- e =

Me o v o v v o v ¥

o

[R T 2R BT S B R N 2 2R I N R B N]

n occurs

[I T S T T T S T B T X T L R R I I I]

[N T TR R JEE B DY DN I BN DN 2NN D B B B D D D B B A A

L]

T R R T R T BT - I S T SN S S S S N)

LN B TN Y SN Y A D I D D DAY R DN DY B B D N B N I L

0 0 9 0 0 ¥ % 0 00

LN B NN I B B D R D R D T I D R R D I A B 2 e B

as set before

l'lll"""g"l'l"""'l
(-7

.l'l‘!."l!"H'.'lllll'tl!l!"'l'.'lﬂ".

* ¢ 8 2 ¥ o 9 9 & ¢

* ¥ ¢ 2 P F & 0 ® 0 0

'..'U""ll"ﬂ"."lil.lll'.l'!I'!I'l"l

e P e 9 8 € ¥ ¢ 2 ¢ 9 Pt 9w vt oYYy

. % 8 0 " 0 ¢ s s by

RN A T R A T T R S A T Y B B BN B I B)
v
N

PART I: SYSTEM PROGRANMING

This part describes a system programmer, his functions, the system
facilities available to him, and the system program structures and con-
ventions that he must observe when coding system modules.

SECTION 1: INTRODUCTION

Time Sharing System (TSS) is a set of programs. Each prograx per-
forms a part of the overall job that the systeam as a whole wvas designed
and developed to do. System programeming with TSS involves adding to,
deleting from, or modifying these prograsms.

Hhat a_Syster Programmer Does

As a system programmer, you are expected to be an experienced pro-
grammer respounsible for modifying, extending, and generally adapting TSS
to suit the needs of your installation. %o do this, you should be know-
ledgeable in two areas: (1) the design and coastruction of TSS, and (2)
the needs and capacity of your installationm.

Rhy TSS Is a Modular System

Any large, general-purpose programaing system is a compromise of the
many conflicting demands of its prospective users. System designers
attempt to construct an efficient programming system that will satisfy
diverse demands. All situations can never be anticipated. Generality
must sometimes be sacrificed for efficiency. Realizing this, the deve-
lopers of TSS have produced a modular system whose parts can be changed.
The rules, suggestions, and operating considerations for changing the
system are described in the following pages.

THE SYSTEM PROGRAMMER

A programmer becomes known to TSS as a system programmer when he is
jJoined to the system by the systea manager or one of the system adminis-
trators with a special authority code (0 or P).

SYSTEM PROGRAMMER AUTHORITY CODES

The JOIN command contains an authority code which may have the values
U (user), P (system programmer), or 0 (privileged systeam programmer).
As a system programmer, you will have been given an O or P. When a user
logs on, information is taken from the user table built by the JOIN com-
mand processor and inserted into the user®s task status index (TSI) and
interrupt storage area (ISA). The S¥C gueue processor controls what
programs are allowed to issue privileged SVCs; it uses the authority
code information the LOGOX processor stores in the task status index at
field (TSIFP4) for this purpose. The dynamic loader and program control
system use information stored by the LOGON processor in the interruption
storage area field (ISAUTH) to determine if the task may perform certain
privileged operations.

Section 1: Introduction 1

PRIVILEGE CLASS

As a system programmer, you may be joined to the system with combined
privilege classes D and B; each class is associated with a particular
set of facilities available for your use. The system programmer with
class D and B privilege is often referred to, in TSS publications, as
the system monitor. Authority O or P is not, however, a prerequisite of
Privilege E.

The assignment of privilege class D (along with your aunthority code
of P or 0) designates you as a system programmer. This privilege class
provides you with the facilities described in Assembler User Macro In-
structions and Command System User's Guide; in conjunction with your au-
thority code, class D also provides you with most of the facilities dis-
cussed under "System Programming Facilities™ in this publication.

The assignment of privilege class E, which designates you as a systesm
monitor, extends the range of facilities available to you. Through cer-
tain options that only the privilege class E programmer can use in the
DDEF comrand and macro instruction, in the DCB macro imstruction, amnd in
the SECURE command, you can reserve specific I/0 devices and directly
utilize unit record equipment. It also provides you with the ability to
use the Multiple Sequential Access Mehtod (MSAM), denied to ordinary
users and to system programmers who have not been assigned privilege
class R.

RESPONSIBILITIES OF A SYSTEM PROGRAMMER

Syster programmers are responsible for generating the specific ver-
sion of TSS used at each installation and for troubleshooting and main-
taining that system once it is generated. Maintenance involves analyz-
ing system problems, designing changes (additioms, deletions, etc.), and
incorporating IBM-issued changes applicable to the installation.

System Generation

Systea generation consists basically of reasseabling and replacing
system modules containing configuration-dependent tables and
installation-option parameters. System generation macro instructions
are used to control this operation. These macro instructions, as well
as the system generation process, are described in System Generation and
Maintenance, GC28-2010.

System Maintenance

You should not attempt to modify TSS unless you have a thorough
knovledge of the system®s logic, in particular of the interfaces involv-
ed in each modification. Detailed information about methods of instal-
ling system modifications can be found in System Generation and
Maintenance.

SYSTEM_PROGRAMMING FACILITIES

A brief summary of the facilities available to system programnmers is
presented below. The facilities available to systea programmers are
usually invoked by issuing system-defined macro instructions and com-
mands. Macro instructions are described in detail in Part II of this
publication. Commands are described in detail in Part III. General use
of these facilities by system programmers is described im Section &4,
®msysten Pacilities,™ in Part I of this publication.

MACRO INSTRUCTIONS

Two groups of macro instructioms are provided im TSS. One group is
made available to the ordinary user to aid him in managing his data and
Programs. A second group is provided for systea programmers to aid them
in the system gemeration process and im coding system modules.

System Proqrammer Kacro Instructions

Many different macro instructions are available to a system programrm-
er. He may use: the macro instructions provided tor generating TSS and
adopting it to an installation®s regquirements, the macro instructions
enployed within system code, and the macro instructions provided to the
ordinary user of TSS, as indicated below under "User Macrc Instruc-
tions."™ If he has been joined to the system with both privilege classes
D and E, he can also employ macro instructions used by the the Kultiple
Sequential Access Method (MSAM).

User Macro Instructions: Macro instructions available to all TSS users
are described in Assembler User Macro Instructions.

Systemr Generation Macro Instructions: System generation macro instruc-
tions perform several basic functions; they inform the software systenm
of the hardware confiquration of am imstallation, they establish the
command system options and defaults, and they assign the task management
parameters that are used for dispatching and controlling tasks within
TSS. These task management parameters are used by TSS to manipulate
virtual storage, control paging operations, and regulate the size and
number of tasks by type. These macro instructions are described in
detail in System_Generation and Maintenance.

System Macro Instructions: The system macro instructions used in systen
programs and those available for the development of complex installation
functions are described in detail in Part II of this publication; macros
usable only in real memory are called supervisor macros.

Restrictions on_Use of System Macro Imstructions

xost system macro instructions generate Supervisor Call instructions
(SVCs) to establish linkage to a system—provided routimne. The dispatch-
ing of these system routines is controlled by SVC queue pProcessors.
System programmers should be aware that use of many of these SVCs is re-
stricted by the gueue processor (and occasionally by the system routine
that is called) to privileged users having a certain authority code.
SVCs issued in nonprivileged code generally pass control to system pro-
grams in privileged virtual storage; those issued in privileged code
pass control to system programs in main storage. These are generally
reterred to, respectively, as nonprivileged and privileged SVCs. Some
S¥Cs can be executed in both nonprivileged and privileged code. A sum-—
mary of the requirements for assembly and execution of particular SVCs
can be found in Appendix B.

COMMANDS

Hany 1SS commands are available only to system programmers. There
are also several commands, available to all TSS users, that have partic-
twlar options that are available only to system programmers. These com-—
mands generally require that a system programmer be joined to the systenm
with authority code 0 or P, privilege class E, or the userid TSS*%**x*,

Section 1: Introduction 3

The commands defined for system programmers fall into three groups:
general services, serviceability aids, and system monitor facilities.

General Services

The general service commands provide system programmers with message
maintenance and storage maintenance facilities. Detailed descriptiomns
of these commands are included under "System Programmer Commands™ in
Part III.

Serviceability Aids

The following commands are for monitoring system performance and for
analyzing sources of system errors.

e Program Control System (PCS): 1A set of commands that enable you to
locate problem sources in nonprivileged, virtual storage programs.
PCS also provides similar, but restricted, facilities for trouble-
shooting privileged virtual storage programs. (No PCS facilities
are available for resident programs.) The use of these facilities
is discussed briefly in Part I, Section 4. A detailed description
of the facilities can be found in Command System User's Guide.

e Time Sharing Support System (TSSS): A support systeam that enables
you to gain access to all storage (real, virtual, and auxiliary) and
all registers from a terminal. This support incorporates a command
language which lets you dynamically modify both system and user
tasks. Like PCS, it is a subsystem within TSS; unlike PCS, it is
available only to the system programmer. The use of these facili-
ties is discussed more fully in Part I, Section 4. 1A detailed de-
scription of the facilities can be found in Time Sharing Support
Systen.

System Monitor_ Facilities

A special set of command options is available for system programmers
that have a privilege class of E (system monitor). These options allov
the programmer to reserve unit record eguipment for nonconversational
tasks, refer to devices symbolically, and to print ASCITI data sets froa
tape devices. The special operand values of the SECURE, DDEF, and PRINT
commands, that provide the class—-E programmer with these capabilities,
are described in Part I, Section 4, under "Extended System Monitor
Pacilities.™

SECTION 2: SYSTEM PROGRAMS

TSS ORGANIZATION

The programs that make up TSS are of two types: resident prograss,
which are brought into main storage and left there until the machine is
turned off; and nonresident or virtual storage programs, which are
brought into main storage as required and are removed from main storage
when the space is needed. During the operation of TSS, both kinds of
programs interact by using a well defined interface. This interface is
described under "Tasks.™

Resident programs schedule the use of the syster's resources. They
monitor multiprogramming and multiprocessing in TSS. Nonresident pro-
grams provide services to the user, making it easier for him to use the
system. An attempt has been made to separate these responsibilities as
much as possible.

RESIDENT PROGRAMS

This section discusses the characteristics of the TSS resident super-
visor. If you are primarily interested in scheduling and resource allo-—
cation, you vill find this section of special interest.

GETTING STARTED

In 7SS, a program called Startup brings into main storage all modules
that make up the resident supervisor. Resident programs have the same
structure as any other TSS object modules; they have a prograama module
dictionary (PMD) and text. Startup reads the various resident object
modules from a disk pack called the IPL volume, resolves the symbolic
references between the modules, assigns them main storage, and resolves
address constants contained in them. Startup also initializes prefixed
storage areas (PSAs) and issues an external start to a second processing
unit, if one is attached.

Resident modules initially contain address constants; however, once
Startup has transferred control to the resident supervisor, these
address constants have been resolved and the relocation of resident pro-
grams is complete.

A number of tables, or system control blocks, are also initialized by
Startup. These tables enable the resident supervisor to keep track of
resources. One of these resources is main storage space, which will be
reserved for the resident supervisor's use. Space not used for resident
programs, or set aside for their use, is available for allocation to
nonresident prograss.

NORMAL OPERATION
Extended Control PSW

When Startup transfers control to the resident supervisor, the IBM
central processing unit is in the extended control mode, the mode that
supports TSS on the System/370 . The format of the extended control
program status vord (XPSW) is shown in Figure 1. Because resident pro-
grams operate unrelocated, bit 5 in the XPSW, the relocation bit, is
always 0. The protection key is also 0, giving resident programs access

Section 2: System Programs 5

to all main storage. The privilege state bit is 0, too, since resident
programs operate in the supervisor state. Any program interruption in
the supervisor state is considered an error; to allow detection of pro-
gram interruptions, the four program mask bits are 1s. The second woré
of the XPSW contains the instruction address in bit positions #0-63.
Resident programs are responsible for controlling dynamic relocation of
non-resident programs; they do not, themselves, run with the address
translator on. Addresses used by resident programs are always real ad-
dresses, limited by physical storage. The maximum allowable amount of
main storage is 16,777,216 bytes (224).

] L] A | L . | LIS L] Bj L] LB L R] L] B J ¥ L) 8
Bit 101112131815163718 1111211311481 15116117118119120 231248 31
——— +——¥+———+ t {
Pirst | 1 3 1 1) 1T}) I N D D R D R R | ! i
Word JOIRJOJOI0|T|OIE} Key | L} M} W} P] O} O] C) C}] PMSK| 00000000
Ir L L 1 L) 4 I B [} 1] | 8 2 L 1 i i i i 1 L :=
Second } 1 |
Word 10 00 0 0 O 0 0} Instruction Address]
1 L [

32 40 63

R Program Event Recording, disallowed {(0) or allowed (1),
subject to Event Mask Bits in Control Register 9

T Relocation, off (0) or omn (1)

I0 I/0 interruption mask, disallowed (0) or allowed (1)
subject to Channel Mask Bits in Control Register 2

E External interruption mask, disallowed (0) or allowed (1)
Key Storage protection key

L Extended Control Mode, BC Mode (0) or EC Mode (1)

.S Machine check mask, disallowed (0) or allowed (1)

W Wait state, running (0) or waiting (1)

P Problem state, supervisor (0) or problem (1)

cc Condition code

PMSK Program mask
Not used Bit positions 0, 2-4, 16-17, 24-31, and 32-39;
a specification exception is recognized when these bit
positions do not contain zeros

Figure 1. Extended control program status vord

The Prefixed Storage Area

When the multiprocessing feature is installed in a CPU most addresses
associated with storage reference by the CPU are processed by a
mechanisa called "prefixing.” All addresses subject to this processing
are referred to as "real"™ addresses. Storage addresses which are not
subject to this processing, and all addresses that have been processed,
whether or not they are changed, are referred to as "absolute™
addresses.

As a result of the processing to form the absolute address, real ad-
dresses 0-4095 are interchanged with the 4,096 addresses of the block
that begins at the address identified in the prefix register. All other
real addresses remain unchanged.

The real addresses 0-8095 include the addresses of the assigned
storage locations that are implicitly generated by the CPU and channels,
and includes the addresses that can be specified by a program without
the use of a base address or an index. Prefixing provides the ability
to reassign this block of real locations for each CPU to a different
block in absolute main storage, thus permitting more than one CPU shar-

ring main storage to operate concurrently with a minimur of inter-
ference, especially in this processing of interruptioms.

Because the prefixing mechanisa interchanges the real addresses, each
CPU can access all of absolute main storage, including the first 4,096
bytes and the assigned locations for another CPU.

The relationship between real and absolute addresses is graphically

depicted in Figure 2.

Prefixing i Prefixing __! X
Fr————— -~~~ 7 - ==
|
l l |
No Ch i |
T o Change T > 1 l I 1
| | T | T
o Change -
|] |
. | l »
~ | | o | | ~
+ l ' 4+ l l L
| g |
&
L | N | 1 l »
3 \ \ |
l < f | %
1 l -+ '?2 l +
L 3 l “L l 2 ad
i o | | T] %_ l T
s No Change ——]-—D4 + I l 4
4 ’] L 1< 1' No Change % +
| | | |
i - |
[i |8 ! 1
Address ! Address il
/ 4 I | Address
1 b 4006 l | } b 2006 | i - 006
D1] 1<
l) — Address L __________ I 1 e Address I_ ________ _J Lo—Address
0 0
Real Addresses Absolute Real Addresses
for CPU A Addresses for CPUB
@ Real addresses in which the high-order 12 bits are equal to the prefix for this CPU (A or B).
@ Absolute addresses of the block that contains, for this CPU (A or B), the assigned locations
in real storage.
Figure 2. Relationship between real and absolute addresses
The prefix is a 12-bit quantity located in the prefix register. The

register has the following format:

!r////////!
0 8

j///////////?j
20

31

Section 2:

System Programs 7

The contents of the register can be set and inspected by the privi-
leged instructions SET PREFIX and STORE PREFIX, respectively. On set-
ting, bits corresponding to bit positions 0-7 and 20-31 of the prefix
register are ignored. On storing, zeros are provided for these bit
positions. The prefix register is initialized to zero.

Prefixing is applied to all referemnces to main storage and to keys in
storage, except for references by a CPU to the permanently assigned
storage locations during performance of the store-status function, and
except for references by a channel to extended-logout locations, to I/0
data, to indirect-data-address words, and to CCWs. VWhen dynamic address
translation is specified, prefixing is applied after the address has
been translated by the dynamic—-address-translation mechanism. When
installed, prefixing is always active and is not subject to any mode
control.

When prefixing is applied, the storage address is translated as
follows:

a. Bits 8-19 of the storage address, if all zeros, are replaced with
bits 8-19 of the prefix.

b. Bits B8-19 of the storage address, if equal to bits 8-19 of the
prefix, are replaced with all zeros.

c. Bits 8-19 of the storage address, if not all zeros and not equal
to bits 8-19 of the prefix, remain unchanged.

In all cases, bits 20-31 of the storage address remain unchanged.

Only the address presented to storage is translated by prefixing.
The contents of the source of the address remain unchanged.

The distinction between real and absolute addresses is made even when
prefixing is not installed or wvhen the prefix register contains all
zeros. In both of these cases, a real address and its corresponding
absolute address are identical.

The format of the prefixed storage area can be seen by copying the
dsect CHAPSA.

SUMMARY

Resident programs make up the part of TSS known as the resident su-
pervisor. The extended control mode of operation is normal for resident
programs. These programs, operating in the supervisor state with the
address translator turned off and with an XPSW protection key of zero,
can execute any System/370 (including all M158 and M168 multiprocessors)
instructions and use all main storage except page zero in a dual systenm.
Fach processing unit also has 16 general-purpose registers, 4 floating-
point registers, 16 extended-control registers, an interval timer, an
address translator, and other components for fetching and executing
instructions.

RONRESIDENT PROGRAMS

Nonresident, or virtual storage, programs are programs that operate
with the address translation unit turned on; they do not permanently
reside in main storage. There are tvo kinds of virtual storage pro-
grams: privileged and nonprivileged. For a conceptual understanding of

virtual storage, see Concepts and Facilities and System logic_Summary.

8

TASK STRUCTURE

The nonresident portion of TSS, as well as a user's application pro-
grams, operate within the context of individual tasks. To the systea
user, the task is an individual work reguirement; to the system itself
(and the resident supervisor in particular), the task is a unit of acti-
vity to be allocated system facilities, including a periodic time-slice
of the CPU.

A task has a virtual storage whose size is essentially independent of
the physical main storage available to the resident supervisor. Virtual
storage is organized into pages of 8096 bytes, which are further
collected into segments of 16 pages. Virtual storage consists of a max-
imum of 256 segments (16,777,216 bytes) with 24-bit addressing.

Just as O0S subdivides its instruction set into two states, supervisor
and problem, a task may run with a privileged or a nonprivileged in-
struction set. The privileged instruction set, somewhat analogous to
the supervisor state, contains all 0S problem state instructions and
those SVC (Supervisor Call) instructions designated as privileged. The
nonprivileged imnstruction set, somewhat analogous to the problem state,
contains all 0S problem state instructions and those SVC imnstructions
designated as nonprivileged.

Each task contains not only any application programs called by the
user (in the form of object modules), parts of data sets referred to by
these programs, and dynamically acquired virtual storage data areas, but
also those portions of the TSS control prograa which are nonresident and
any system facilities specifically requested ({such as language proces-
sors) . But each task does not have to have a separate copy of the non-
resident system modules (the nonresident TSS control program); it shares
with other tasks the a single copy of nonresident system modules in main
storage.

INITIAL VIRTUAL STORAGE

The task monitor and a number of programs (both privileged and non-
privileged) are collected into what is called initial virtual storage or
initial wvirtual memory (IVM). Startup establishes initial virtual
storage by constructing a standard set of segment and page tables to be
used by each newly created task. Imnitial virtual storage programs are
never dynamically loaded; they are permanently resident in virtual
storage. Of course, IVM programs are paged in and out of main storage.
All other privileged programs are brought into virtual storage, as re-
guired, by the dynamic loader (which must be part of IVM). Virtual
storage is never Yempty"™; it always contains at least the programs that
make up the IVM.

Virtual Program Status Word

Bach task has 16 general-purpose registers and 4 floating-point regi-
sters available to it. The status of a task is described by its virtual
proqram status word (VPSW), which is shown im Pigure 3.

Section 2: System Programs 9

.
.

L) hJ L] RJ A L] L] L] 3
Bit 1011 31415161718 9110 11112113114115116 311
— +———— + 1 -
First | | P11 P | | DU U D R | |
Word |P|Not usediIXIAITII|ILC] CC |FO|IDOIEBU|ISP]| Interruption code |
} 1] A L L ;| 1 ; L | 3 i L jl
Second] |
Word |} Instruction address |
L i |
P Privilege. (0) privileged or (1) nomnprivileged

Bits 4-7 are the task mask and are interpreted:

X External interruptions

A Asynchronous interruptions
T Timer interruptions

I Synchronous interruptions
ILC Instruction length code
CcC Condition code

Bits 12-15 are interpreted:

FO Pixed point overflow mask
Do Decimal overflow mask

EU Exponential overflow mask
SF Loss of significance mask

For all of the above masks, one permits an interruption omn the
occurrence of the condition and zero inhibits the interruption.

Pigure 3. Virtual program status word

Interruption Storage Area

A task is interrupted by a virtual, or task, interruption. When this
occurs, the information constituting the current VPSW is stored in a
predetermined area of virtual storage (depending omn the type of inter-
ruption) , becoring the old VPSW. A new VPSW, obtained from another
location in that area, becomes the current VPSW. The area, called the
interruption storage area (ISA) is analogous to the prefixed storage ar-
ea (PSA) in the system's real main storage. The interruption storage
area is bytes 0 through 8190 of virtual storage.

There are eight different virtual, or task, interruptions: progranm,
supervisor call, external, asynchronous I/0, task-timer, synchronous I/0
recoverable data set paging error, and VSS. The occurrence of four of
these interruptions is controlled by the task mask in the VPSW, analo-
gous to the system mask in the PSW. If the mask bit corresponding to a
given interruption type is 0, or if the interruption storage area is
locked (ISALCK set by the ITI macro instruction), interruptions for that
type are saved by the resident supervisor, until the mask bit is set to

Each task has an instruction set comnsisting of all 0S problem state
instructions and a number of supervisor call instructions. The supervi-
sor call instructions are further divided into SVCs that can be issued
only by privileged programs, SVCs that can be issued only by privileged
or nonprivileged programs depending on the authority code of the pro-
graamer. The privileged SVCs are analogous to 0S supervisor state in-
structions. Each of these SVCs is described in detail later.

The current VPSW, contained in field ISACVP, includes the address of
the instruction following the last instruction executed prior to the in-

10

terruption. While the interruption is being serviced or is waiting to
be serviced, this address is significant in that it points to the in-
struction at which execution is to be resumed. Once execution is
resumed, the current VPSW continrues to point to the same instruction;
the address is not incremented as each instruction is executed and,
therefore, loses its significance.

STORAGE PROTECTION

Although the virtual program status word doesn't contain a key,
storage protection is in effect for virtual programs. The resident su-
pervisor assigns storage keys to virtual programs when it creates exter-
nal page table entries for them; it sets keys in the main storage pages
it allocates (see the ADDPG and ADSPG macro imnstruction descriptioas).
BEach main storage page is assigned a storage protection key; Figure &4
jllustrates these assignments.

r Rl v 1
{Type of Page |KeylFPetch Protection Bit {
L 1 1 ']
¥ ¥ v -1
|Nonprivileged read/write I 1) off [
|Sonprivileged read-only I 2} off }
IPrivileged 1 2 on |
}|Engaged in paging operation | 31 off |
jStorage obtained from supervisor| & | of £ 1
1 core allocation) ' 1
JResident supervisor } 51 on |
i A k. —

Figure 4. Main storage page key assignments

The ability of a CPU or a data channel to have access to main storage
is controlled by the protection key contained in storage and the privi-
lege key used by the CPU (PSW) or data chanmel (CAW). The resident su-
pervisor assigmns keys to programs and channel programs before starting
them; these assignments are shown in Figure 5.

Category Key

po w-— o

Processing Umit Prograsas
Nonprivileged
Privileged
Resident supervisor

QO w

Data Channel Programs
Nonprivileged I/O
Privileged I/0
Paging 1,0
IORCB 1/0
Sense data I/O

i —— — — -y gt -t]
EEWNa

PO S g o S - — — - —)
ISR R

Figure 5. CPU and data channel key assignments

Figure 6 shows the significance of various combinations of PSW and
storage keys and the programs to which they may be assigned. Those
within the heavy line designate nonprivileged user key combinatioms.

The other combinations are available only to privileged system prograas.
Storage protect key 2F is the same as key 2 but with fetch protection
added.

Section 2: System Programs 11

Storage Key

A
1 2 2F
r v RJ L
l | } I
! ! Read i Read | Privileged
[V | Read-Write H Write] Write | execution
PSW | | | |
F 4 4 -
Key | | l i
} 1 Read } Not | HNonprivileged
11 Read-Write) Only ! Used | execution
I } | I
] | |
\'4
Fonprivileged
User

Pigure 6. PSW and storage protection keys

PRIVILEGED PROGRARNMS

A privileged program is a virtual program recognized by having its
virtual program status word (VPSW) privilege bit (bit 0) set to 0, ana-
logous to the privileged state bit (bit 15) in the real PSW. A privi-
leged program differs from a nonprivileged user program in two principal
ways: it operates with a PSW protection key of 0 and it may issue most
Supervisor Call instructiomns. 1 privileged program can access all vir-
tual storage im its own task; it cannot access private virtual storage
in other tasks.

Privileged programs exist to provide services to nomprivileged pro-
grams. Privileged service routines that can be called by users are
"connected® to the task monitor through a table, called the ERTER table
(see the ENTER macro instruction); other privileged service routines are
closed subroutines used only by privileged callers.

NONPRIVILEGED PROGRAMS

A nonprivileged program operates in a task. The storage of this task
contains all programs that make up IVM and any other programs that have
been brought into virtual storage by the dynamic loader. A nonprivi-
leged system program may be part of IVM (the assembler is an example of
a nonprivileged initial virtual storage progranm) .

A nonprivileged program may use any OS problem state instruction and
any nonprivileged Supervisor Call instruction. Nonprivileged systenm
programs may not, in general, use the privileged Supervisor Call in-
structions. The resident supervisor uses the task status index to de-
termine whether a program can issue privileged SVCs.

Since a aumber of SVC codes are used by the resident supervisor, a
kind of substitute SVC, called ENTER, is used for most transfers of con-
trol from nonprivileged to privileged programs. A nonprivileged prograa
can't tramnsfer control to a privileged prograr with a branch instruction
since all privileged programs are fetch protected from all nonmprivileged
programs (both system and user). ENTER codes, analogous to SVC codes,
are used by the task monitor to determine where to transfer control.

12

SECTION 3: SYSTEM PROGRAMMING CONVENTIONS

The programming conventions that system programmers must observe when
coding modules that are to be made a part of the resident or nonresident
portion of TSS control programs are discussed below.

RESIDENT_ (SUPERVISOR) PROGRAMS

CONBVENTIORS FOR NAMING OBJECT MODULES

A1l TSS programs have standardized object module names, control sec-
tion names, and entry point names. When an object module becomes part
of the system, any reference to it must use the module name, an entry
point name, or a control section name. TSS object module names consist
of five characters; those TSS modules that are part of the resident su-
pervisor have names with the form:

CEAxx
vhere xx are alphameric characters that identify the module within the
resident supervisor. All TSS object module names begin with C; the
characters BA identify resident supervisor modules.

All entry point and control section names begin with the module name,
like this:

CEAXXn
wvhere n is a character that identifies the entry point or control sec-
tion within the object module. Note that special characters are not
used in TSS names.

As an exawmple, the pathfinder module in the resident supervisor has
the name CEAAS5; its entry points are CEAAS5P, CEAASK, and CEAASS.

There are other sets of modules that are in the resident part of TSS.
These components and their naming conventions are:

Resident RTAM CEDxXx
Resident RSS CEBxx
Machine check recovery CMAXX

MODULE DESIGN CONSIDERATIONS

Assume that you have a change to TSS in mind, and that you clearly
understand the logic of the change you wish to make. dow do you con-
struct the program? Resident programs are different from nonresident
prograss in ome major way: Resident prograws do not contain prototygpe
control sections (PSECTs). The purpose of a prototype control section
is to contain any part of a program that changes during relocation or
execution. As pointed out previously, residemnt programs are never relo-
cated or never change addresses during execution. The address constants
used by resident programs are resolved during startup; they will not be
changed after the system is initialized. The only items in the resident
supervisor that can change are the variables used by resident progranms.
These variables are kept in registers, system control blocks, or working
storage obtained from the supervisor core (main storage) allocation sub-
routine. Your progrank must be designed to use one of these areas for
holding variable information; which one you use depends on what you are

Section 3: System Programming Conventions 13

atteapting to do. The key test of a resident program's correct comn-
struction is that it be simultaneously executable by multiple processing
anits. If the registers are used as working storage, multiple proces-
sors may simultaneously execute the program, since each processor supp-
lies its own registers. If a system control block is used, the lock
byte controls the modification of variable information. If storage ob-
tained from the supervisor core allocation subroutine is used, each
allocation of storage is kept separate from the others to ensure the
protectior of variables.

Module Structure

Like any other object module, a resident module consists of a program
module dictionary (PMD) and text. Usually, a resident program contains
a single read-only, nonprototype control section. A resident program
may contain address coanstants to be computed and placed into the text by
Startup. The read-only control sections do not change; they are never
modified during program execution.

In addition to read-only control sections, the resident supervisor
contains tables or system control blocks. A system control block is
data in main storage, organized in some way known to the programs that
use it. The systeam table, CHBSYS, is an example of a system control
block used by a number of resident programs; it contains such informa-
tion as parameters used for task migration, limits of task size and num-
ber, and other values affecting the overall operation of the systea.

If there is any possibility that one processor can change a system
control block at the same time another processor is working on it, the
control block must be protected, or interlocked, with a lock byte. A
lock byte is a single byte used to control access to variable informa-
tion. The test and set instruction is used to find out whether a lock
byte is on or off (and also to turn it on). For example:

TEST TS LOCK
BO WAIT

tests a lock byte called LOCK; if LOCK is all 1's, control is trans-
ferred to WAIT. A lock byte is set (or om) if it is all 1's (actually,
only the high—order bit is tested); it is reset (or off) 4f it is all
0's.

Since the correct locking amd unlocking of TSS lock bytes is critical
to the running of a multi-cpu system, TSS programs ahould use two
macros, GETLOCK and PREELOCK, to perform these functions. These macros
generate code, provide some tracing data for debugging and generate sys-
ter errors in a standard way.

Some programs do not need to test lock bytes, since they are subrou-
tines of programs that do test. Some control blocks are not individual-
ly tested (and do not contain a lock byte) but are gathered into queues;
the entire gqueue is interlocked instead of its members.

3 lock byte is reset when the program that set it has finished using
the protected information. 1In most cases a second processing unit will
only wait a certain length of time for a lock byte to be reset; if the
lock byte is not reset within that time period, a minor system error is
recognized. When control is returned to the point of interruption by
the error routine, the protected data becomes available.

In addition to read-only control sectioms and interlocked system con-
trol blocks, the resident supervisor contains a number of pages (or a
"pool™) of main storage that may be used, as required, by resident pro-
grams. The program controlling the use of this storage pool is the su-
pervisor core allocation module. Since the supervisor core allocation

14

module itself cannot regquire the allocation of storage space to free
working registers, it saves the registers in a special area in the PSA.

Relatively few system control blocks continuously require main
storage space; most have transient storage needs. Resident programs
usually obtain storage space for transient data from the supervisor core
allocation module. ¥When the need for this data no longer exists, the
space is returmned to the supervisor core release subroutine; this dynam-
ic allocation of main storage space ensures that the resident supervisor
doesn't tie up more storage space than it actually needs. PFost tran-
sient data areas camnot be used simultaneously by separate processing
units; these control blocks are not interlocked. A few transient data
areas, however, can be used by separate processing units; these are
interlocked.

Some data areas are known only to one processing unit because one of
its registers points to the data area; other data areas are known to all
processing units because the address of the data area is kept in cormon
main storage.

Getting Resident Working Space

Working space is not assembled into resident programs for two rea-
sons: (1) it is inefficient to assemble space that may not be used into
a program, and (2) the resident program would have to schedule the use
of that space if the program were to be simultaneously executed by
separate processing units.

Resident programs use four modules to obtain working space for their
execution. These routines are supervisor core (main storage) allocation
(CEALO1) , supervisor core release (CEALO2), user core allocation
(CEANB) , and user core release (CEALOAZ). User main storage is allocated
from one pool and supervisor main storage from another, but the supervi-
sor pool may be replenished from the storage released by user core re-
lease. The supervisor core allocation routine satisfies requests for
resident working space such as control blocks like the generalized queue
entry (GQE) and the task status index (TSI). The user core allocation
routine satisfies requests for storage for extended task status indexes
{XTSI) and for nonresident program pages.

The supervisor core allocation smubroutine is a special program, since
it has private space in the prefixed storage area (PSA), which it uses
to store the contents of the general registers. It must use this area
since there is no subroutine that it can call to get working space.
Programs that call the supervisor core allocation subroutine must save
registers 0, 1, 14, and 15 before transferring control. They can't do
this without working space, though, so four words in the prefixed area
(PSASCU) are set aside for programs calling the supervisor core alloca-
tion subroutine. This lets a called program immediately become a call-
ing program without losing the contents of any of the general registers
that were supplied to it. Since a program calling supervisor core allo-
cation must use registers 0, 1, T4, amd 15 to transfer control (and
parameters), it would lose the original contents of these registers if
it had no place to save them. A typical use of the supervisor core
allocation subroutine might look like this:

Section 3: System Programming Conventions 15

SUBR USING *,15 REGISTER 15 CONTAINS BASE

COPY CHAPSA GET THE DSECT
USING CHAPSA,O PSA DSECT NEEDS NO BASE
CSECT REESTABLISH CSECT
STH 14,1,PSASCO SAVE REGS O, 1, 14, and 15 IN PSA
LA 0,128 REQUEST 128 BYTES
SR 1,1 OPTIONS ALL ZERO
L 15,ADCON POINTER TO SUPVR CORE ALLOC
BASR 14,15 TRANSFER CONTROL
RTRN LR 8,1 SAVE ADDRESS
LM 14,1,PSASCD RESTORE REGS 14, 15, O, AND 1
]
°
L]
ADCON DC V(CEALO1) ADDR SUPVR CORE ALLOCATION ROUTINE

In this example, when supervisor core allocation returms control,
register 1 points to a 128-byte area of main storage that can be used
for any further tramsient storage needs this program may have. The su-
pervisor core allocation subroutine will not disturb the register con-
tents saved by this program in PSASCU since supervisor core allocation
has its own save area in the PSA (PSACAS).

To give this space back to the supervisor core release module, the
program might be coded like this:

DONE STH 14,1,PSASCU SAVE REGS
LR 1,8 ADDRESS OF SPACE WE®RE RETURNING
LA 0,128 GIVE BACK 128 BITES
L 15,ADCKN2 POINTER TO SUPVR CORE RETRN
BASR 14,15 TRANSFER CONTROL
RTRN LM 14,1,PSASCO RESTORE REGS
BR 14 RETUORN TO ORIGINAL CALLER
ADCN2 DC V (CEALO2) ADDR SUPVR CORE RELEASE

This will return for reallocation the 128 bytes obtained im the previous
example.

Two macros, GETCORE and RELCORE, are used in PSS to standardize and
simplify these linkages.

For transient work areas that will not be needed after the module
returns to the program that called it, e.g., register save areas, mes-
sage areas, parameters for a subroutine, etc., a macro, GETWORK, is to
be used. This macro allocates space from a preallocated stack. It uses
far less instructions than calling supervisor core allocation and the
space does not have to be released.

Secondary Entry Points

Resident modules with more than one entry point are designed so that
their base register always points to the primary entry point, even if
control of the modules has beem transferred to a secondary entry point.
Sometimes it's done like this:

16

BASE EQU 15

ENTRY 1 USING *,BASE
®
[]
®

ENTRY 2 BASR BASE,0
USING * ,BASE
L BASE,ADCON
USING ENTRY 1,BASE
[]
[]
[]

ADCON DC A (ENTRY1)

System Control Blocks

The resident supervisor consists of three parts: read-only control
sections, system comntrol blocks, and a pool of dynamically allocatable
main storage. The resident supervisor uses the storage pool to create
transient system control blocks such as the generalized queue entry
(GQE) and the page comntrol block (PCB). During their "lifetimes,"™ tran-
sient control blocks are resident in main storage. Transient coantrol
blocks exist only as long as they are needed; this may be a fev millise-
conds or a few minutes. VWhen they are no longer needed, the main
storage space they occupy is returned for reallocation; they are not
paged out to auxiliary storage.

The resident supervisor also creates nonresident system control
blocks. Nonresident system control blocks exist on auxiliary storage
and are brought into main storage only when needed. They exist on some
storage device for a relatively long time, for example, for an entire
terminal session. Their time in main storage may represent only a small
fraction of their lifetime in the system.

System Control Block HNames

A system control block usually requires two names: the name of the
dummy section (DSECT) that describes its format, and the syabolic
address that points to the informatiom described by the dummy section.
All TSS programs, resident and nonresident, use the same rules to name
system control blocks. A dummy section name looks like this:

CHAXX X

The characters xxx identify the dummy section. All fields used with-
in the dummy section look like this:

xxxfff

The characters xxx are the same as the last three characters of the
dumnmny section name. The characters fff are any three characters that
identify the field within the dummy section. For example, these are the
assembler statements for a typical dummy sectionmr:

CHAABC DSECT CONTROL BLOCK NAME
ABCFCA Ds F FIELD NAME
ABCRJG DS 47 FIELD NAME
ABCXYZ DS 3C FIELD NAME
ABCFLG EQU ABCXYZ FLAG NAME
ABCFLGH EQU X*80°* FLAG MASK

Note that the field name, ABCFLG, is the name of a byte containing a
flag bit. The field ABCFLGM can be used as a mask byte im a test under

Section 3: System Programming Conventions 17

mask instruction (TM) to test the condition of the flag. Mask names are
of the foram:

xxxfffu

wvhere xxxfff is the name of the dummy section field to which the mask is
applied. PFor more information on using a dummy section, see "Duamy Sec-
tions"™ below.

The dummy section is, of course, only a description of information;
it does not supply anything more than the format of the information it
describes. Symbolic addresses that point to non-transient areas of
storage described by dummy sections are named like this:

CHBxx x

where the characters xxx are the same as the last three characters of
the dummy section name. For example:

DATA DC V (CHBABCQ)

DATA contains an address constant pointing to an area of storage
organized as described by the dummy section CHAABC.

Remember, CHAxxx says vhat the information looks like; CHBxXx says
where the information is located. The DSECT can be used for both non-
transient system control blocks and for transient areas (which cannot
use CHBxxX). Symbols generated by macro instructions always begin with
CHD. For example:

CHD103 MNOTE 3, "ERROR"

might be found in a macro definition.

Dummy Sections

The dummy section (DSECT) is used extensively throughout TSS so that
parts of the system can refer to commonly used data iteamas by symbolic
names. You can refer to a field in a system control block by the name
assigned to that field in the dummy section; this frees you from having
to use the field's numeric location. (Actually, the dummy section supp-
lies a number of symbolic field names, lengths, and relative positions
which the assembler translates into numeric displacements.) You needn’'t
worry about the specific physical structure of the system control block
to wvhich you are referring if you use a DSECT to describe the control
block. 211 you need be concerned with is the field structure (bit,
byte, halfword, etc.). You don’t care where the field is located within
the system control block. Thus, if the field position changes, but the
field length, boundary alignment, and the meaning of its contents don’t
change, your program will still runm properly after it is reassembled.
Reassembly is necessary since displacement values may have changed as a
result of using the new dummy section.

In TSS, the dumamy section is more than a programmer convenience.
Dummy sections for system control blocks, obtained from the assembler
copy/macro library, ensure that all programs using the same system con-
trol block use the identical format. The set of TSS dummy sectioms can
be viewed as a central, current description of all system control
blocks.

A typical TSS dummy section is illustrated in Figure 8 under "Linkage
Convention,” later in this section. Several conventions apply to dummy
sections. These conventions minimize the need for redesigning programs
if the dummy sections they use are changed. Dummry section fields that
are integral multiples of bytes in length are referred to in a progranm

18

by using the name of the field. Fields that are less than one byte long
are referred to by using a mask; we must do this because the central
processing unit cannot directly address a field shorter than a byte.
The name of the mask associated with a field that is less than one byte
long is obtained by adding the character ¥ to the field name. If we
vanted to determine whether the field VPSAI were a 1, ve might vwrite:

™™ VPSAI,VPSAINM TEST UNDER MASK
BZ FIELDOFF BRANCH IF ZERO

The programmer doesn't have to know where the field VPSAI is located
within the systemr control block or what bit pattern defines the mask
VPSAIM. This information is supplied by the dummy section which he
incorporates into his program from the assembler copy/macro library.
The field he is testing with the Test Under Mask (TM) instruction need
not be restricted to a single bit. It can be any combination of up to
eight bits, as long as all the bits fall within one byte. The condi-
tional branch instruction can be used to determine if the bits he is
testing are all 1's, all 0's, or mixed.

For bit fields, the field name is always the name of the byte in
which the bits appear. Since a single byte can have up to 256 different
conbinations of bits, a single byte could have up to 256 different bit
fields. We frequently find, therefore, that the names of different bit
fields are synonomous; that is, they point to the same byte. The bit
mask corresponding to the field name must be used to extract the proper
bits.

The dummy section itself does not take up program storage space; it
is used exclusively to describe a storage area to which it is applied.
To properly use a dummy section, first load a register with an address
constant pointing to a storage area containing information described by
the dummy section. Then issue a USING statement to tell the assembler
that the corresponding dummy section format is to be applied to the
storage area pointed to by the register given in the USING statement.
It looks like this:

L 5,ADCON
USING CHAVPS,S

assuming that ADCON has been defined as:
ADCON DC V (WORKAREA)

This would apply the format given by CHAVPS to the storage area be-
ginning at the symbolic location WORKAREA.

You can define your own dummy sections and use them as you see fit.
In most cases, though, you will get the dummy section from the assembler
copy/macro library (see Section 4, ™Generating and Maintaining TSS") by
issuing a COPY statement with the name of the dummy section as the
operand. Here is an example:

CoPrY CHAVPS
The dummy section on the assembler copy macro-library is included in
your prograk at the point of the COPY statemert. This emables you to
symbolically refer to the system control block CHAVPS (see System Con-—
trol Blocks) .
ENABLING AND DISABLING INTERRUPTIONS
Because they operate in the supervisor state, residemt programs can

enable and disable interruptions by setting and resetting the system

Section 3: System Programming Conventions 19

mask or by altering the contents of extended-control registers. The
instruction

SsM =x%00°"

sets bits 0 through 7 of the extended program status word to zero. The
processing unit affected interprets these bits as: prograr event reco-
rding off, address tramnslator off, and I/0 and external interruptions
disabled. To restore interruptions,

sSsM =X'03°*

is interpreted by the processor as: program event recording off,
address translator off, and I/0 and external interruptions enabled. If
you wish to modify the extended-control registers, the iastructions:

STCTL 2,2,SAVE

L 6,SAVE

N 6 ,=X*BFFPFFFFF*
ST 6 ,SCRATCH

LCTL 2,2,SCRATCH

save the contents of control register 2 and disable interruptions from
channel 1 (as viewed by the processing unit issuing the LCTL). The
instruction:

LCTL 2,2,SAVE

restores the original contents of control register 2. The work areas
for SAVE and SCRATCH would be obtained using the supervisor core alloca-
tion subroutine.

SUPERVISOR LINKAGE CONVENTIORS

A resident prograam links to subroutines by using (1) a Vv-type address
constant or (2) an A-type address coastant and an EXTRN statement.
Startup resolves all symbolic references among resident programs, and
supplies the correct values for the address constants. Resident pro-
grams never use R-type address constants (they do not contain prototype
control sections). One resident program transfers control to another by
a Branch—-and-Store (BASR) instruction. Any understanding between the
calling and the called programs concerning the contents of the general
registers is arbitrary and depends on the particular prograas involved.
The calling program must know what register the called program is using
as an entry base register. To transfer control, the calling program
loads the address of the called program's entry point into the called
program's entry base register, like this:

L BASE,=V (entry point nanme)
Then the calling program branches to that entry point:

BASR 14 ,BASE
The called program expects its entry base register to contain the
address of its entry point. The called program usually begins like
this:

USING *,BASE
to tell the assembler that register BASE contains the address of the

called program's entry point when control is transferred.

20

To standardize program linkage, TSS resident supervisor uses a Comnmu-
nication Vector Table (CVT). The CVT contains all the entry points for
PSS supervisor modules. A macro, RCALL, will load the entry point
address in register 15 and link to the called program with a BASR 14,15.

To standardize linkages and provide some traceback information, two
macros, SAVER and RETRNR, are used. These are used in the same area as
that used by the GETIWORK macro.

Programming Convention Comments

There is no requirement for resident programs to use particular regi-
sters as base registers, return registers, or parameter registers; how-
ever, almost all resident programs use these registers:

Register 0 —-- parameter register

Register 1 —- parameter register or address of parameter list
Register 18 ~-- return address of calling program

Register 15 —-- entry point of program being called

Because of these register assignments, most programs being called begin
with:

USING *, 15
and end with:

B} 14
or the equivalent.

A number of resident programs, such as SVC processing routines, re-
turn control to a location pointed to by a V-type address constant
instead of branching to the address contained in register 14. For
example:

T HRU L 14 ,ADCN3 GET RETURN BRDDRESS
BR 14 TRANSFER CONTROL
ADCN3 DC ¥ (CEAHND) ADDR SVC ¢ PROC RETURHN

is the way that an SVC processing routine can transfer control back to
the supervisor call queue processor. This is done because most SVC pro-
cessors require two common functions to be performed, and this portion
of the SVC gueue processor provides them with the functions.

NONRESIDENT PROGRAIS
PRIVILEGED PROGRAM CONVEANTIONS
Naming Conventions

As discussed in the section about naming resident supervisor pro-
grams, alli PSS modnle names begin with the letter C. All privileged
module names have the form:

CZx xx

where the characters xxx identify all module names beginnimng with C%Z.
A1l control section names and entry point names of nonresident privi-
leged modules add a character to the end of the module name to form a
unique entry point or control section name. This is analogous to the
way entry point and control section names are formed for resident super-
rvisor modules. For example, an entry point of privileged module CZCJT
might be CZCJTH.

Dummy sections for system contrcl blocks are used by nonresident pri-
vileged programs in the same way that they are used by resident supervi-

Section 3: System Programming Conventions 21

sor programs. All system dummy section names begin with CHA; the loca-
tion of the first byte of data described by a system dummy section is
named by a label beginning with CHB. CHAXYZ is a dummy section describ-
ing data located at a virtual storage address equivalent to CHBXYZ.

The dynamic loader treats all external symbols beginning with the
characters SYS as system names. (A control sectiom without either the
PRVLGD or SYSTEM attribute cannot define system names as external sym-
bols.) (See Figure 41 for the effect of authority codes imn dynamic
loader processing.)

Writing Privileged System Programs

Virtual storage {that is, nonresident) system programs are divided
into two classes: programs that make up initial virtual storage and
programs that are dynamically loaded. Initial virtual storage (IVM) is
composed of all those system programs (both privileged and nonprivi-
leged) needed to dynamically load a program and those system routines
that are frequently used by an installation. Privileged programs that
are not part of IVE are brought into virtual storage, as required, by
the dynamic loader and the miscellanous programs it uses for assistance.

In writing a system program, you must know whether a program to be
called is in IVM or not. Any program in I¥Y¥ should not be explicitly
called since this causes unnecessary system processing.

The use of the E option in the CALL requires action by the dynamic
loader; only programs outside of IVM may use CALL with the E option.

Almost all TSS programs can be shared by several users. ¥%hen a pro-
gram is shareable, or public, it must be put together in a special way.
Each public program is thought of as consisting of two parts.

One part is made up of all the instructions and data in the program
that never change because of relocation in virtual storage by the dynam-
ic loader or because of execution by a processing unit (variables).

This part of a public program is constant; it never changes under any
circumstances.

The second part of a public program consists of those parts that may
change because of relocation or execution: the program®s address con-
stants and variables.

The parts of a public program that may change -- the address con-
stants and variables -- are collected in a prototype control section
(PSECT). All other control sections of a public program should be given
the attribute READONLY, since they can never be modified. Bxceptions
are the tables, such as the syabolic device allocation table (SDAT),
that are protected with lock bytes and are shared, nonread-omly control
sections. The division of a public program into prototype control sec-
tions and read-only control sections allows a number of differemt tasks
to share the same program without destroying one another's results.

This is accomplished by giving each task that is sharing the public pro-
gram its own private copy of the prototype control section, while allow-
ing each task to share a single copy of the read-only control sections.
In this way, each task has a private copy of those parts of the public
program that may change, thus preventing tasks from destroying omne ano-
ther®s variables and allowing each task to have its own address
constants.

You should take care not to confuse intertask reenterability with
intratask reenterability. The use of prototype and read-only control
sections permrits programs to be shared among many different tasks; this
is intertask reenterability. The use of a prototype control section for
storing variables does not automatically guarantee that, within a single

22

task, a program can be reentered. All programs are freely interruptable
by any real (mot virtual) interruption. When such an interruption
occurs, before control is returned to the interrupted program in virtual
storage, the resident supervisor checks whether there are any pending
task-interruptions. 1f there are pending task-interruptions, if the
corresponding task-mask bit in the virtual program status word is set to
1 (enabling task-interruptions) and if the ISA lock byte is zero, con-
trol is returned not to the interrupted program, but to the task moni-
tor. The task monitor, after some housekeeping, transfers control to
the appropriate task-interruption-handling routine. In some instances,
the interruption kandler may have to use the interrupted program as a
subrotitine. When this happens, the interrupted program is being reen-
tered. It is thus task-interruption sensitive-and it must be con-
structed to allow for this sensitivity. The prototype control section
is no help in permitting intratask program reenterability since, within
this single task, there is only one prototype control section for each
public program and only one copy of variables and address constants can
be preserved in it.

Although address comnstants change as a result of program relocation
and are placed in a public program®s prototype control section, and may
assume different values from task to task, they are not considered
variables within a_ task. Once supplied by the dyramic loader (or by
startup for IVM), an address comstant within a given prototype control
section will not change.

Within a single task, we are concerned about those parts of a program
(public or otherwise) that change as a result of that prograa's execu-
tion by a processing unit. If a program that stores variables in fixed
areas of virtual storage can be called by a number of other programs, it
must protect itself against task-interruptions. If a program must be
interruptable (by task-interruptions), it must use GETMAIN (or something
equivalent) to dynamically allocate virtual storage and thus prevent the
accidental destruction of variables. GET and PUT are examples of pro-
grams that can be in use by omne program, interrupted, and reentered for
use by another program within the same task.

If, in a privileged program, you want to disable task-interruptions
during some processing, you can use the macro imnstruction ITI (inhibit
task interruptions); to enable task-interruptions, the macro instruction
PTI (permit task interrupts) may be used (see Appendix A). For example:

LOCK ITI DISABLE TASK INTERRUPTIONS
- MISCELLANEOUS INTERRUPTION-SENSITIVE CODIHNG
PTI ENABLE TASK INTERRUPTIONS

shows how task-interruption might be disabled and restored in a prograsm.

Excluding dumay sections, which are not true control sections (see
"Durmy Sections"™), you may have two kinds of control sections in your
program: prototype (PSECT) and nonprototype (CSECT). From the stand-
point of the dynamic loader, there is very little difference between a
PSECT without gualifying attributes and a CSECT without qualifying
attributes. Throughout TSS, however, PSECTs are used in public prograas
to contain address constants and variables; you should think of proto-
type control sections as the private part of shared program modules.

Be careful not to confuse the attributes PRIVLGD and SYSTEM. PRIVLGD
includes SYSTEM; every privileged program is a system program as far as
the dynamic loader is concerned. SYSTEM does not necessarily include
PRYLGD, however; every systemr program is not privileged.

Sectionr 3: System Programming Conventions 23

You might code a sample privileged programx like this:

TITLE *SAMPLE PRIVILEGED PROGRAM®
DCLASS PRIVILEGED THIS ALLOWS PRIV
MACRO EXPANSIONS
COPY CHAISA GET FORMAT OF
ISA
CZABP PSECT PRVLGD PUT ALL THE
ADCONS AND
VARIABLES HERE
EXTIRN CHBIXYZ LOCATION OF
TABLE XYZ'S DATA
CACABC CSECT READONLY,PUBLIC,PRVLGD PURE PROCEDURE
. SECTION ANYTHING
- HERE BUT ADCONS
- AND VARIABLES
END CZABC

HONPRIVILEGED PROGRAMS

There isn't a great deal of difference between a privileged and a
nonprivileged system program; almost everything written above about pri-
vileged system programs applies to nomprivileged system programs. The
most significant difference between themr is that nonprivileged system
programs operate with an extended program status word protection key of
1; they cannot read or write privileged control sectioms.

PROGRAY DESIGN CONSIDERATIONS

In thinking about nonprivileged programs, don®t confuse the privilege
of a program with the authority of the programmer who directed that the
program be loaded. Despite any assembler language declarations, any
program you write is implicitly a system program as long as you log on
using your user ID with a P or O authority code. Remember that all sec-
tions you load using your P or O authority code are private; the dynamic
loader ignores the PUBLIC attribute. Only a task having a U authority
code can load a control section having the PUBLIC attribute, and then
only if the module containing the control section is in a shared data
set. (A module requiring more than 256 shared pages will not be loaded
as public, however; the module will be loaded with private pages.)

A fence-sitter is a system module that assumes the privilege of the
calling module. Such a module should not be designed to issue privi-
leged SVCs based on the authority code of the user. If this were done,
and a programmer with a user authority code (U) attempted to use the
fence-sitter, he wouldn®t succeed. To be on the safe side, when you
vrite systeam programs, you should always give the control sections the
attributes they need to be able to run; do not rely on your authority
code unless all intended users vwill have an equivalent authority code.

Nonprivileged system programs accessible to user prograas have module
names that begin with SYS. Analogous to the resident supervisor and
privileged prograas, control section and entry point names are formed by
adding a character to the end of the module name. For instance, SYSABC
is an entry point in the nomprivileged system program SYSAB. Names be-
ginning with SYS can be freely referred to by all prograas, privileged
or otherwise; SYS names can only be defined by control sections with the
SYSTEM attribute (see Appendix D for further details).

Nonprivileged system programs not accessible to user programs gener-
ally use symbols beginming with CE.

24

LINKAGE CONVENTIONS

The purpose of a linkage convention is to standardize the method of
transferring information and control from ome program (the calling pro-
gram) to another (the called program). Standardization allows the use
of system macro instructions for the generation of programs. TSS uses a
nuaber of linkage conventions designed to fit a variety of situations
vhile atteapting to keep the comventions as similar as possible.

TSS linkage conventions require the calling program to supply a save
area for use by the called program. A save area is an area of virtual
storage, accessible to the called program, in which it can save the con-
tents of registers, if necessary. Also, a save area contains forward
and backward pointers to other save areas, foraing a chain. If omne pro-
gram calls a second, and the second program calls a third, the pointers
relate the respective save areas. Thus, if you know wvhere one save area
is located, you can find the others. The format of the save area used
in TSs is shown in Pigure 7.

The four basic linkage conventions followed by TSS programs residing
in virtual storage are summarized in Pigure 8. Note that type-1 has a
variation (type 1M), making five ways to link programs. These are the
only linkage conventions in use among virtual storage program in TSS.
All TSS programs are constructed to receive or transfer coantrol, using
one of these linkage types. To add to or modify TSS programs you must
use these linkage conventioms.

In general, TSS system programs use macro instructions for linking
programs. Some macro imnstructions generate more tham one type of pro-
gram linkage; for example, GETMAIN can generate either a type-1 or a
type-2 linkage.

The called prograr frequently does not know which linkage type was
used to transfer control to it; uswmally, it does not need to know.
There are exceptions which are covered later. The linkage type must be
known by the calling programs, since it is the calling program that sup-
plies the linkage instructions, save area, and register contents.

Section 3: System Programaing Conventions 25

L] v
CHASAY |DSECT|

FORMAT OF STANDARD 19-WORD SAVE AREA

1. If a program is called and, in turn, calls another program, it
must, upon receiving control, establish its own save area, save
the address of the calling program's save area in the second word}
of its own save area and save the address of its own save area in|
the third word of the calling program's save area.

r B J
I |
I |
] IDS JOF ALIGN ON WORD BOUNDARY i
|] i |
JSAVLEN |DC |J1FP*76* LENGTH OF SAVE ARERL AND APPENDAGES IN BYTES f
] | | i
|SAVBPT |DS |1P BACKWARD POINTER. ADDRESS OF SAVE AREA, IF ANY, 1
| * i | USED BY CALLING PROGRAN]
| | | |
|SAVFPT }DS | 1P FORWARD POINTER. ADDRESS OF SAVE AREA, 1IF ANY,]
j* i] SUPPLIED BY USER OF THIS AREA TO PROGRAMS IT CALLS |
| | | }
ISAVR18 §DS 11F USED BY CALLED PROGRAM TO SAVE GPR 14 |
I i I 1
]SAVR15 |DS |1F USED BY CALLED PROGRAM TO SAVE GPR 15 |
! 1 1 |
} SAVRO }|DS 1P USED BY CALLED PROGRAM TO SAYE GPR O |
| { | |
JSAVR1 }1DS |11F USED BY CALLED PROGRAM TO SAYE GPR 1]
) | | t
|SAVR2 |DS | 1F USED BY CALLED PROGRAM TO SAVE GPR 2 i
1 i ! |
}SAVR3 }DS | 1F USED BY CALLED PROGRAM TO SAVE GPR 3]
1 | | |
ISAVRU IDs | 1F USED BY CALLED PROGRAM TO SAVE GPR & i
| } I i
|SAVRS {DS | IF USED BY CALLED PROGRAM TO SAVE GPR 5 i
! | ! !
| SAVR6 | DS | 1P USED BY CALLED PROGRAM TO SAVE GPR 6]
i i | |
}SAVR7 |DS 11P USED BY CALLED PROGRAM TO SAVE GPR 7 l
I | 1 |
|SAVRS DS | 1F USED BY CALLED PROGRAM TO SAVE GPR 8 }
{ | | |
}SAVR9 |DS |1F USED BY CALLED PROGRAM TO SAVE GPR 9 |
] | | |
JSAVR10 DS {1F USED BY CALLED PROGRAM TO SAVE GPR 10]
| | | |
|SAVR11 |DS }IF USED BY CALLED PROGRAM TO SAVE GPR 11]
| | | |
JSAVR12 |Ds | 1F USED BY CALLED PROGRAN TO SAVE GPR 12 }
| | | }
JSAVPCT |DS 11F R (ENTRY POIRT) THIS IS SET BY THE CALLING |
| * |] PROGRAM BEFORE TRANSFERRING CONTROL AND]
|* } | POINTS TO THE CONTROL SECTION IN WHICH THE i
1* !] CALLED SYMBOL IS DEFIHED AS AN ENTRY POINT i
i i 1

4

Notes: !

|

|

point.

ing System:

[o T — D — — - —— g ——
N
’

Field SAVPCT contains the BR-con of the called program's entry

This R-con may or may not be an address of a PSECT. If
the called program was asseambled without prototype control sec-
tions (PSECTs), the control section containing the ENTRY state-
ment for the entry point being used by the calling program will
be the control section pointed to by SAVPCT.
Asseabler lLanguage, 6C28-2000, for more details con-
cerning R- and V-type address constants.

See IBM Time Shar-

- - — — I —— c—— -

L—

Figure

26

7.

Pormat of the standard save area

Type Transfer | Save-areg Parameter | Entry-Point Return Save-Area PSECT
Control Formct Registers i Address in Address in Address in Address in
via {maximum) | Register * Register Register Register **

} S

1 (normal) | BASR Standard [GPR 1 GPR 15 GPR 14 GPR 13 N/A

2 svC 121 Standard | GPRO-1 GPR 15 GPR 14 GPR 13 N/A
(ENTER) <

M/2 BASR or Standard
SVC 121
(EMNTER)

GPR 1 GPR 15 | GPR 14 GPR 13 NAA

3 CALL(CZCJL) Standard GPR 1 GPR 15 i GPR 14 GPR 13 N/A

Leave-Privilege

4 BASR None i GPR 0-6 GPR 15 | GPR 14 None GPR 13
(restricted) |

i

i

i { i
| | ! !
{ |

* Also used for return code, if any.

** Very often, but not always, the PSECT and the save-area address are the some.

Pigure 8. Virtual program linkage conventioas

TYPE-1 LINKAGE

Type—1 (in some publications, shown as ™type—I") linkage is used for
transferring control anmd information between two programs of the same
privilege. A nonprivileged program may not use type~1 linkage to call a
privileged program; a privileged program may not use type-1 linkage to
call a nonprivileged program. Type-1 linkage involves these
conventions:

e Using the standard save area
e Using specific registers for designated functions

e Using the Branch-and-Store instructiom for the transferring of
control

® Preserving registers.
Use of the Save Area

You will find it helpful to refer to Figure 7 for the following dis-
cussion. Whenever a program uses type-1 linkage to call another pro-
gram, the calling program must supply a save area for use by the called
prograr. Before transferring control to the called program, the calling
program puts certain information, if applicable, into the save area.

The calling program is required to preset some fields of the save area;
it may preset others. The first word of the save area (SAVLEN) must
contain the length, in bytes, of the save area (minimum 76 bytes) and
any appendages to it. The 19th word of the save area (SAVPCT) must con-
tain the B-type address constant (R-con) of the entry point to which the
calling progam is traasferring control.

The R~value is the address of the control section in which the entry
point is defined. The technique in TSS for associating a modifiable
control section with a nonmodifiable, reenterable control section is to
place the definition of the entry point to the reenterable control sec-
tion (the ERTRY statement) in the control section that is to be modifi-
able (usually a prototype control section). Thus, the R-type address

Section 3: Systeam Programming Conventions 27

constant for a symbol which is an entry point to the reenterable part of
a program provides the address of the modifiable part of that program.
In addition to naming an entry point, an R—-con can be established for a
control section name or am object module name. If a control section
name is used, the R-value points to the beginning of the control sec-
tion. If a module name is used, the R-value points to the first proto-
type control section contained in the module. If the module does not
have any prototype control sections, the R-value points to the first
nonprototype control sectiom.

One other field that must be set by the calling program, prior to
transferring control to the called program, is the second word (SAVBPT)
of the save area. This field is a pointer to a save area used by the
calling program when it called. The calling program may not be using a
save area, though, and this field may contain zero. If this field does
not contain zero, the called program may assume that it points to the
save area being used by the calling program.

All other fields of the save area may containr anything. The called
program should not assume that fields other than the length field, the
R-con field, and the backward-pointer field contain meaningful
information.

After receiving control, the called program must save the contents of
all the general registers, except register 13, in the save area. At the
time the called program receives control, register 13 contains the
address of the save area. The other registers are stored in the save
area by using register 13 as a base address; e.g., STM 14,12,12(13)
saves all the general registers, except 13, in the proper locatiomns of
the save area pointed to by register 13. If the called program wishes
to use register 13 for its own purposes, it must save register 13 imn the
backward pointer of its save area. If the called program is going to
call another program, and is going to provide a save area for that pro-
gram, it must store register 13 in the second word of that save area.

In this instance, register 13 serves as the backward pointer. Optional-
ly, the user can store register 13 someplace else, not in a save area.
If you save register 13 in a save area that you make available to anoth-
er program, you depend on that program not to write over the save area.
If that program is unreliable, you might want to save register 13 in an
area accessible to your program alone. That precaution will enable you
to restore the registers regardless of what the program you call does to
the save area you provide.

The called program does not need to save and restore the floating-
point registers. If the contents of the floating-point registers are to
be preserved, it is the responsibility of the calling program to save
their contents and the contents of its interruption mask.

Contents of the Gemeral Registers

Registers 13, 14, and 15 must be preset by the calling program.
Register 13 must contain the address of the first byte of the save area
that the calling program is providing for the called program. This
address must be on a fullword boundary; that is, the two low-order bits
of the address must be zero. BRegister 14 must contain the address to
wvhich control is to be returned by the called program. Register 15 must
be set to contain the address of the entry point in the called program.

A nuaber of macro instructions can be used to generate type-1 link-
ages to specific programs. Examples of these macro instructions are
CALL, GET, PUT, OPEN, and CLOSE. In using CALL, you specify the name of
the program to which you wvant to transfer control; in using GET, howev-
er, the name of the program to which control is to be tramnsferred is
supplied by the macro instruction.

28

The called program always uses register 15 as a return-code register,
if return codes are applicable. If a parameter list is passed in
register 1, there aust be an understanding between the called and call-
ing programs as to its content. In variable-length lists, the word pre-
ceding the first word of the parameter list contains a count of the num-
ber of parameters im the list. Bach following entry is the address of a
parameter that has been prestored. ¥ote that in command system rou-
tines, a variable-leagth list is almost always assumed.

Transfer of Control

A type-1 linkage always causes control to be transferred froa the
calling program to the called program by using the Branch-and-Store
(BASR) instruction. Specifically, the resident supervisor is never used
to assist in transferring coantrol (no interruption occurs), since the
calling and the called programs have the same privilege.

Register 1 may be preset by the calling prograa with the address of a
parameter list. Register 1, 13, 18, and 15 are the only registers used
by type-1 linkage.

The CALL macro imstruction should be used to generate a normal type-1i
linkage. The use of CALL is discussed in Assembler User MNacro
Instructions.

EXAMPLE: A program transferring control to another program via a type-1
linkage might use these instructions:

L 13,=A (SAVEREA) LOCATION OF SPACE FOR STANDARD
* SAVE AREA

USING CHASAV,13 INDICATE FORNAT

L 6,=R (SUBR) GET R-CON OF CALLED PROGRAR

ST 6 ,SAVPCT STORE R-CON IN SAVE ARER

L 15,=V (SUBR) GET ADDRESS OF ENTRY POINT

L 1,=A (PARLIST) SET POINTER TO PARAMETER LIST

BASR 14,15 PUT RETURN ADDRESS IE GPR 14
* AND BRANCH

The program receiving control might use these instructions:

XYZ PSECT

ENTRY SUBR MAKR HAME SUBR EXTERNAL
ABC CSECT READONLY
SUBR STH 183,12,12(13) SAVE ALL REGISTERS

LR 14,13

L 13,72 (13)
ST 13,8 (13)
ST 18,8 (13)

to save the general registers and establish definitions for the V-cons
and R~-cons of the name SUBR. ¥When its processing is finished, the pro-
gram SUBR might do this:

EXIT LE 14,12,12(13) RESTORE REGISTERS
LR 15,8 SET RETURN CODE 4
BR 14 RETURN TO CALLING PROGRAM

TYPE-2 LINKAGE

Type—2 linkage is used when the calling program is ponprivileged anad
the called program is privileged. 11l programs designed to be called
via type-2 linkage run in the privileged problem state. Type-2 linkage
involves these conventions:

Section 3: System Programming Conventions 29

e Using the standard save area
e Standardizing the content and use of the general-purpose registers
¢ Standardizing the method of tramsferring control
e Preserving registers.
The_ Save Area

The standard 19-word save area is used in type-2 linkage (see Figure
7). Unlike type—~1 linkage, the calling program does not provide this
save area. Instead, it is provided by the task monitor, which trans-
lates the type-2 linkage into what appears to the called program to be a
modified type—1 linkage. The transfer of control from the calling to
the called program is through the supervisor when type-2 linkage is
used. Coding contaiped in the task monitor is, therefore, an integral
part of the linkage.

Before passing control to the called program, the task monitor
initializes a save area for the called program’s use. The length field
(SAVLEN) contains a byte count of 76 (decimal); the backward pointer
(SAVBPT) is zero. The last word of the save area (SAVPCT) contains the
R—con of the entry point of the called program. All other bytes of the
save area are unpredictable. All programs designed to be called via
type-2 linkage can assume that the save area pointed to by register 13
is arranged in this way.

Content and Use of the General Registers

Type—-2 linkage conventions assign special functions to registers 0,
1, 13, 14, and 15. The calling program is responsible for presetting
registers 0, 1, and 15. The calling program loads register 0 with a
parameter that is not an address or, occasionally, the address of a sys-
tem control block; it loads register 1 with a non-address parameter, or
a parameter list address, or the address of a system control block; it
loads register 15 with a code, called an ENTER code. The ENTER code
identifies the program to be called as would an SVC code in other sys-
tems. When control is returned to the calling program, the contents of
registers 2 through 14 will be unnchanged. Registers 0 and 1 may be used
by the called program for returning results. If the called program sup-
plies a return code, it must use register 15.

The task monitor saves all the gemneral-purpose and floating-point
registers in its own save area; the task monitor builds a save area for
the called program's use, as described in the previous section. The
task monitor sets a pointer to this save area im register 13. The con-
tents of registers 0 and 1 are set as received from the calling program.
Register 15 is set to the address in the called program to which the
task monitor will transfer control. This address is determined by the
task monitor, using the ENTER code that was in register 15 when control
was received by the task monitor. Register 14 is set to the address in
the task aonitor to which control is to be transferred by the called
program when it has executed. The contents of registers 2 through 12
are unpredictable; they should not be assumed, by the called program, to
be significant.

The called program must save the contents of the general registers,
since the task monitor requires the contents of the registers passed to
the called program to remain unchanged. The called program must return
control to the address in register 14. The called program may put a re-
turn code in register 15; it may put results in registers 0 and 1.
Registers 0, 1, and 15 will be passed back to the calling program as
they are received from the called program when it returns control to the
task monitor.

30

Transfer of Control

The calling program transfers control to the called program by issu-
ing SVC 121.

An SYC 121 can be generated by issuing the ENTER macro instruction.
SYC 121 passes control through the task monitor to the called program.
Most of the time ENTER is used as an inner macro instruction. Por exam-
ple, the macro instruction GETMAIN generates an ENTER if the program in
which GETMAIN is issued has been declared by the programmer to be non-
privileged (DCLASS USER). All programs that transfer control via S¥C
121 must adhere to type—-2 linkage conventions.

EXAMPLE: Assume that you want to get 76 bytes of virtual storage, pos-—
sibly for use as a save area; you might code it 1like this:

SR 1,1 SET OPTIONS: BONPRIVILEGED, VARIABLE, BYTE
LA 0,76 BYTE COUNT 76

LA 15,48 ENTER CODE 88 —— GETMAIN (BYTE)

svC 121 TRANSFER CONTROL

Control will be returned to the instruction following the SVC after GET-
MAIN has been executed. If you had wanted to use the macro instruction
GETEAIR, you could have written, GETMAIN R,LV=76 which would have
generated equivalent (prefered) instructioms.

TYPE-1M/2 LINKAGE

Type—-1M/2* linkage applies only to called programs that can be called
via both type-1 and type-2 linkages. Programs called by type-2 linkage
are alwvays privileged programs. The calling program, however, may be
privileged, in which case a modified type—-1 (type—-1M) linkage is used
(vith both registers 0 and 1 usable as in type-2 linkages); or the call-
ing program may be nonprivileged, in which case type-2 is used. Since
the task monitor mzkes all type-2 linkages appear, to the called pro-
gram, as type-1, the called program ordinarily is not affected by the
privilege of the calling prograa.

If a privileged prograrm is being called via type-1M/2, it may need to
determine the privilege of the caller. It can do this by comparing the
return address in register 14 to the address of the point in the task
monitor to which control is returned when a type-2 linkage has been
used. For example:

CL 14 ,=V (CZCJ3ER) COMPARE GPR 14 TO TYPE-2 RETDRE

BE NPCLLR IF EQUAL, CALLER IS EONPRIVILEGED
. IF UNEQUAL, CALLER IS PRIVILEGED AND
- TYPE-1 LINKAGE IS USED

If the calling program is nonprivileged, the privileged called pro-
gram must issue a CKCLS or a PIREC macro instruction on all addresses
passed to it from the nonprivileged routine to insure that it won't
change a privileged address for the nonprivileged program. The calling
program uses either a type—-1M or a type-2 linkage as described previous-
ly; if the called program can be called by either of these linkage
types, it is using type-18/2. The calling program treats this linkage
as described under type-2.

. . i — —— o ———— — ——— ——

*The use of X with type-1 linkage indicates that register 0 may also be
used as a parameter register - in addition to register 1. Register 0
may contain a parameter or a pointer to a system comntrol block.

Section 3: System Programming Conventions 31

TYPE-3 LINKAGE

Type-3 linkage is used when the calling program is privileged and the
called program is nonprivileged. All programs designed to receive con-
trol by a type—-3 linkage are designed to rum in the nonprivileged state.
Type-3 linkage involves standardizing:

e The save area
¢ The content and use of the general-purpose registers
e The method of transferring control

e Preserving registers.

The Save_ Area

Type-3 linkage requires the standard 19-word save area; however, the
save area is not supplied by the calling program. It is supplied by the
Leave Privilege subroutine of the task momnitor. The calling program
calls the Leave Privilege subroutine, which supplies and initializes a
save area for use by the called program (see Figure 7). The Leave Pri-
vilege subroutine establishes a 19-word save area which is not read- or
vrite-protected; the nonprivileged called program can gain access to it.
The leave Privilege subroutine sets the first word (SAVLEN) equal to 76.
The last word of the save area (SAVPCT) is loaded with the R-con of the
called program's entry point. The calling program supplies this R—con
to the Leave Privilege subroutine which inserts it into the save area.
The remaining 17 words are unchanged.

Content and Use of General-Purpose Registers

Type—-3 linkage standardizes the use of registers 0, 1, 13, 14, and
15; the contents of the other registers are as they were at the time the
privileged program was entered. The contents of the other registers
will be returned, intact, to the calling program. Registers 0 and 1 are
used as in type-2 linkages. These registers are passed to the called
program as received by the Leave Privilege subroutine from the calling
program. The Leave Privilege subroutine loads register 13 with a point-
er to the save area it is supplying for the called program. It loads
register 15 with the address of the entry point in the called program to
which it will transfer control. Then it loads register 18 with the
address of an SVC 120 (BRSPRV) instruction, which is in the part of the
interruption storage area (ISA) that nonprivileged programs can read and
vwrite.

Transfer of Control

Control is transferred from the calling program to the Leave-
Privilege subroutine with the standard type-71 linkage. Control is
transferred from the Leave Privilege subroutine to the called program by
an SVC 254 (LVPSW). The use of type-3 linkage alwvays results in an SVC
interruption.

EXAMPLE: Within a privileged program, if you want to call a nonprivi-
leged subroutine, you might write:

32

L 13,=A (SAVEAREA) GET ADDRESS OF SAVE AREA FOR LVPRYV

L 14 ,=R {(CZCJLE) R-CON OF LEAVE-PRIVILEGE SUBROUTINE
ST 1h,72(13) POT R-CON IN 19TH WORD OF SAVE AREA
LA 1,PARANTRS PARAMETER LIST INTO GPR 1
L 15,=Y(CZCJLE) ENTRY POINT OF LEAVE-PRIVILEGE
* SUBROUTINE
BASR 18,15 TRANSFER TO LEAVE-PRIVILEGE SUBR
PARAMTRS DC A (ADCONS) POINTER TO V- AND R-CONS
DC A (PARANKT) POINTER TO PARAMETER 1
DC A (PARAN2) POINTER TO PARAMETER 2
ADCONS DC V (CALLED) ENTRY POINT OF CALLED ROUTIKE
bDC R (CALLED) R~-CON OF ENTRY POINT
PARAM1 DC Fs0¢ PARAMETER 1
PARAM2 DC Fo54¢ PARAMBTER 2

The Leave Privilege subroutine will get space to set up a save area
for use by the called program. It will load parameters cne and two iato
general registers 0 and 1. It will set up registers 13, 14, and 15, as
described previously, and transfer control to the called program via an
SVC 254 (LVPSW).

When the called program has been executed, it might return control
like this:

LA 0,RESULT1 RETURN OF RESULTS
LA 1,RESULT2 TO CALLING PROGRAM
BR LL] RETURN TO CALLER

General registerr 14 points to an SVC 120 (BRSPRV) which will cause the
Restore Privilege routine to be entered. The Restore Privilege routine
will restore the calling routine®s original register contents, without
disturbing registers 15 (the return code register), 0, and 1 (the result
registers).

TYPE-4 (RESTRICTED) LINKAGE CONVENTIONS
Type-4 linkage is used by TSS programs under restricted circumstances
for the sake of linkage efficiency. It is found principally in the cod-

ing of the language pProcessors.

Type-4 linkage may be used between twvo programs if all these condi-
tions are met:

e Both the called and the calling programs use the same prototype con-
trol section (PSECT).

s The values of address constants required for the linkage have al-
ready been supplied by the dynamic loader.

e The called program is not designed to accept type-1, -2, or -3 1lin-
kage at the same entry point to be used for type-&.

s Both the called and the calling programs have the same privileges.

Type-4 linkage conventions standardize the use of the gemeral regis-
ters and the method of transferring control. There is no standard save
area for type-4 linkage.
Bse of the General Registers

Registers 0 through 5 are used by type-4 linkage as parameter regis-
ters or as pointers to parameter lists. These registers may be used by

the calling program to supply information to the called program, or by
the called program to return information to the calling program. In

Section 3: System Programming Conventions 33

general, the calling program must not assume that the contents of any of
these registers will be returned intact by the called program. It is
the respomnsibility of the calling program to load the address of the
comrmon PSECT into register 13 before transferring control to the called
prograk. The calling program must set, in register 15, the address of
the entry point to which it will transfer control; the address to which
control is to be returned is set in register 8. The called program
uses register 15 as a return code register, if applicable. The contents
of registers 6 and 7 are immaterial; neither program should make assump-—
tions about the contents of these registers. Registers 6 and 7 need not
be saved by the called prograz.

The contents of registers 8 through 12 must be saved by the called
progras if the called program changes ther. The calling program may es-
tablish any of registers 8 through 12 as common registers; the calling
progras may do this only if it has not been called by a type-4 linkage.
A common register is a register whose function is understood similarly
by the calling and the called programs. If the function perforemed by a
cormon register, such as pointing to a comntrol block, is required by the
called program, the called program may assume that the contents of the
corBOn register can be used, as muntually understood between the calling
and the called programs. The function of common registers must remain
constant in all programs called, in turn, by the called program; their
functions must be returned intact to the calling program. The designa-—
tion of common registers and the nature of their contents are not part
of this convention; the use of common registers are an understanding be-
tween the calling and the called programs.

Pransfer of Control

Control is transferred to the called program by using the
instruction:

BASR 14,15

When using type-# linkage, interruptions must be masked off; if amn
interruption occurs, an unrecoverable systea error will result.

LINKAGE CONVENTION COMMERTS

This discussion omrits type-#4 linkage, which is found principally in
the TSS assembler, FORTRAN and PL/I compilers, and the linkage editor.
Type—4 linkage is used to minimize the overhead assocliated with prograsm
linkage by capitalizing on certain situations that occur in those
Programs.

We can look at program linkages in two ways: the calling program is
the activator; it organizes the linkage information and transfers con-
trol. The called program has a more passive role; it receives control
and assumes that the linkage information has been orgamized according to
the rules. For some linkage types, a program is inserted between the
calling and the called programs; this program performs some of the du-
ties normally associated with the caller. 1Im type—-2 linkage, the task
monitor®'s EBnter routine is interposed between the calling and the called
programs; in type-3, the Leave Privilege subroutine is between the call-
ing and called programs.

Froe the viewpoint of the called program, most callers look the same.
Type—1 linkage doesn*t use register 0; the other linkage types may.
This is the principal difference from the called prograa®s viewpoint.
The called program may return the contents of register 0 to the caller
wvhen type-1 is used; for the others, the contents of register 0, if not
meaningful, can be ignored. Because of this similarity of appearance to
the called program, many called programs can be written in much the same

34

way. For instance, the SAVE macro instruction can be used to save the
contents of the registers in the standard save area supplied by the
calling program, and the RETURN macro instruction can be used to restore
the registers, load a return code, and return control to the caller.

The macro instructions SAVE and RETURN apply to types-1, 1M, 2, and 3
linkage.

FENCE-SITTERS
There are a number of programs in TSS that have no built-in privi-

lege; these programs assume the privilege of the calling program. They
are called "fence-sitters."

Linkage to Fence-Sitters

Fence-sitters can be called through a type-1 linkage by either a pri-
vileged or a nonprivileged routine. These routines are assigned a hard-
vare storage protection key that makes them read-only to norprivileged
routines. Whenever a type-1 linkage is performed, the PSW protection
key is unchanged. Therefore, when called from a nonprivileged progranm,
a fence-sitter routine is a nonprivileged routine. Whenever a fence-
sitter service routine is called from a privileged routine, the PSW pro-
tection key is zero, and the fence-sitter becomes a privileged routine.
This convention is established to efficiently transfer control to those
system service routines that link to other (privileged) service routines
infrequently.

Some fence-sitter routines have initial entry point names beginning
with the letters SYS$. This distinguishes them from service routines
that must be linked to froam a nomnprivileged routine through the ENTER
mechanism. Other fence-sitter routines are linked to from macro in-
struction expansions which use address constants which vere filled into
a data control block by a privileged access method routine.

Writing a Fence-Sitter

FPence-sitters must be constructed carefully. If a nonprivileged pro-
gram is using a fence-sitter and the fence-sitter is interrupted, it is
guite possible that a privileged program will use the fence-sitter dur-
ing the period of interruption. The fence-sitter must, therefore, be
reenterable within the task. Programs may be reentered between tasks or
within a task. The use of a prototype control section (PSECT) enables
different tasks to use the same read-only control section. Within a
task, however, a prograr is generally made up of one nonprototype con-
trol section (which may be shared with other tasks), and one prototype
control section (which is never shared with other tasks).

Interruptable service routines, to be reenterable within a task, use
nultiple save areas and dynamically allocated virtual storage (via
GETMAIN) .

Fence-sitters can use a number of techaiques to prevent the destruc-
tion of data if they are interrupted and reentered. Some fence-sitters
do not have a PSECT; if they have one, they never modify it. Other
fence-sitters require the calling program to supply vorking storage;
still others use GETMAIN to obtain working storage.

Linkage From Fence-Sitters to Other Eoutines

If a fence-sitter routine needs to link to a privileged service rou-
tine, the fence-sitter uses either a type—1 or a type-2 linkage, depend~
ing upon the privilege class of the routine that invoked the
fence-sitter.

Section 3: System Programming Conventions 35

Determining Fence-Sitter Privilege

The fence-sitter can deteraine the privilege of the calling routine
by checking the privilege bit in the VPSW contained in field ISACVP.
Parameters can also be supplied by the calling program to tell the
fence-sitter what privilege it has. The fence-sitter can also determine
the privilege of the calling prograam by using other information supplied
by the calling program, such as the data comtrol block (DCB).

For example, TSS QSAM is designed as a fence-sitter, and will rum in
the same privilege status as the routine that invokes it. Since it is
most often invoked by the problem prograam, it usually rumns in the privi-~-
lege of the user and may or may not be of the same privilege as the BSAHN
modules that it invokes. All the BSAM modules invoked, except NOTE, are
privileged routines. As NOTE is also constructed as a fence-sitter, and
will take on the privilege status of QSAN vhenever it is invoked, type-1
linkage is always established to invoke ROTE.

Before establishing linkage to any of the other BSAN modules, it is
necessary to determine the status of QSAM subsections. QSAM routines
perform this function with respect to their BSkKM counterparts by testing
the first bit of the VPSW in the ISA. If QSAM is privileged, type-1
linkage is established, using the address constants defined within the
data control block. If it is not privileged, type—-2 linkage is estab-
lished via the ENTEEK SVC.

VIRTUAL MEMORY LOCKING

Rationale

To provide inter-task serialization (that is, the assurance that only
one task at—a-time can alter a control block), most shared virtual
memory control blocks include space for a Lock Byte, commonly known as a
"yM Lock™. Any task which has need to alter the block or to read the
block without interference can "set the lock®™, perform its function, and
"open the lock®™; no other task which observes the lock protocol can
interfere.

The "Test and Set"™ (TS) instruction is used to set the lock -- bit O
(X*80*) on indicates "set"™. The TS instruction provides inter-processor
and inter—task serialization and sets the byte to X'FF'. The lock may
be opened by doing: MVI lock,X"00°.

The TS instruction sets the condition code so that the status of the
lock, at the instant of the set attempt, may be determined. If the lock
is found to be set (by another task), the task wanting to lock must wait
until the lock is opened. The waiting process must include retry of the
TS instruction.

To provide the resident supervisor with informatiom about tasks which
are waiting for VE Locks, a special use of the "Time Slice End™ (TSEND)
supervisor call macro has been defined. This permits adjustment of task
scheduling as well as detection of excessive waiting time. If a lock
appears to be "frozen®™, the task(s) waiting on it will be given a task
program interrupt.

To provide the task monitor program with information about lock acti-

vity in a task, a one-byte counter ISAVLKCT and a one-bit flag ISAVLK/
ISAVLKM have been defined in the Interrupt Storage Area (CHAISA) control

36

block. These also provide information useful to debugging of lock-
related problenms.

A system routine, CZACS, is available and should be used to provide
release of ¥M locks in the event of abnormal termination of a task.
Refer to ™Releasing Interlocks at Abend"™ in Section 4.

The xXXVLOCK macros provide a consistent means of observing proper WM
ZLock protocol and simplify program coding, especially in the case of
multi-level and/or chained control blocks. All VM Lock processing must
use these macros to ensure proper protocol. The only exception is a
small set of Virtual Access Method locks which are handled omnly via
modules CZCOH and CZCOI.

Overview

There are six macros in the xxXVLOCK set: CHGVLOCK, CLRVLOCK, LOGV-—
LOCK, OPNVLOCK, SETYLOCK, and TSTVLOCK. A brief description of each is
as follows:

"LOG™ generates a control block in which the other five macros record
lock status.

"SRT® sets a specified VM Lock and records it in a specified LOG.
"OPN" opens the VM Lock recorded in a specified 10OG.

"CHG" exchanges two LOGs, to facilitate processing of chained control
blocks withk individual locks.

®PST" interrogates a LOG to determine the status of the recorded VM
Lock.

"CLR" opens the VM Lock recorded in a specified LOG, in a special
manner related to ABEND Interlock Release.

The following definitions apply to this discussion of VM locks:

Tree: a set of two related but different control blocks organized
in two logically-distinct %"levels®™. The first level is one control
block. The second level is generally a detail expansion of the
first and may be a single control block but is usually a list or
chain. The specific address of at least the first member of the
second level is usually recorded in the first level block and pro-
bably varies over some short perliod of time. The address of the
first level is often fixed at system startup or task logon

List: a set of two or more copies (same layout, different content)
of a control block which occupy consecutive locations in virtual'’
meaory. 2Any one can be referenced given the address of the firsg,
the length of each {usually fixed), and the number of members.
Chain: a set of two or more copies of a control block which occupy
arbitrary locations in virtual amemory, where each member contains
the address of the next member in the logical order. Any one can
be referenced given the address of the first. The first level of a
tree may be a meamaber of a chain or a list. The second level of a
tree usually is a chain or a list.

Section 3: System Programming Conventions 37

Using the xxxVLOCK MKacros

Consider the following data structure for illustrating the use of the
xxxVLOCK macros.

BXBAS EXINT
T r ¥ Ty L] Ty ¥ J1 ®e°
lock-—-———)BASLK| L] |INTLK)} | IINTLX} | 1INTLK| 1
byte 1 F — 1t S N S N
| ! ! 11] | ispace
— b 4 |- 4+ 4 | for
number---—|BASCHT | first<{—|INTFDT W} |INTFDT B| |INTFDT O} jother
of EXINT |}——m—+ EXDET k 4 I 4 -4 I block (s)
| | | I I 1
e |) 11 1 H
first{-—--{BASINT | I 11 i1 1
BXINT ———— L 11 — 33 L.
EXDRT™§"™ EXDET ®aA%™ EXDRT ®"B"® EXDET ®C"©
| I S | T | EEEEEE— | YTy s e
}DETLK} | IDETLK] | |DETLK} | IDETLE} |}
— — — — 1
| I I 1 I | I l
e —— —— F—— o
jDETPRE —4—>0 |DETPRE ——>"C" |DETPRE —}—>0 | DETPRE ——>"B"™
A A A A
{DETNXT —4—>0 |DETNXT ———>0 [|DETNXT —4—>"C" |DETNIT —}—>"A"®
 Em—— A | e | e |
i | | ! | I |]
——e) — el | I |

e se

Pigure 9. Sample Data Structure for xxXVLOCK Macros

The only constant available to the sample program is the address of
EXBAS. System DSECTs are assumed to be available for EXBAS, EXINT, and
EXDET.

The objective of the sample program is: to find a particular "class®
of EXINT (the second in the example layout); to find the last EXDET; and
to add a new EXDET before the last (due to some priority scheme). The
number, but not the order, of EXINT may be changed by any task. The
number and order of EXDET may be changed by any task.

In the PSECT of a module you may code the following VM Lock Anchor:

LBAS LOGVLOCK
LINT LOGVLOCK
LDET1 LOGVLOCK
LDET2 LOGVLOCK
LDETA LOGVLOCK

RECORD EXBAS.BASLK
RECORD EXINT.INTLK
RECORD EXDET.DETLK "1"
RECORD EXDET.DETLK "2"
RECORD EXDET.DETLK "NEW"

L T I I)

sess sessvsansaner

38

Pick up the address of EXBAS, providing addressability by the DSECT,
and then:

SBAS SETVLOCK BASLK,LBAS LOCK EXBAS
Next, pick up the address of the first EXINT from BASINT.

After providing addressability for EXINT, you canm DROP the addressabili-
ty for EXBAS (not required for the OPEVLOCK later).

QINT EQU *
Test EXINT to find out if it is the one you want. If it is, go to OBAS.
If it is not, check BASCHT to see if there are any more EXINTs. If
there are no more EXYINTs, go to KIRT.

To check the next EXINT, increment your EXINT base register by the
length of EXINT, and go to QINT.

RINT OPRYLOCK LBAS

Here, you Lave run out of FXINT, =0 vyou can log a SYSER, or whatever,
and end the progran.

Assuming you have found the EXINT vou want, vou can:

OBAS SETVLOCK INTLK,LIWT LOCK DESIRED RIINT
OPNVLOCK LBAS GNLOCK EXBAS

Then pick up the address of the first EXDET from INTFDT and DROP addres-—
sability for EXIKRT. Now you must setup addressability for EXIDET, and

SDET SETVLOCK DETLK,LDETH FIRST (™B™)

OPNVLOCK LINT UNLOCK EXIWNT
ODET EQU *

You are now sitting on an ("B¥™, WwCw®, #a"} EXDET, looking for the last
EXDET. Check DETNXIT and, if it is zero, vyou are on the last ("A"), so
you go to HADET.

Otherwise ("B®™,"C%}, needing to go to the next RXDET, you load {"C™,"An)
DETNXT into your RXDET base register, and

CLRVLOCK LDET2 PRIOR (0,%"B™)
CHGVLOCK LDET1,LDETZ2 EXCHANGE ("B"/0,"C"™/B)
SETVLOCK DETLK,LDET1 HEXT (WC% , %"3")

Then go to QDET
ADET EQU *
You are now sitting on the last ("A%®) FIDET, needing to add a new EXDET

before this one. Find a slot to build a nev EXDET and initialize it to
0.

Section 3: System Programming Conventions 39

o oy —

RS ——

TNL GN20<4106 (21 July 80) to GCI8-2008-3

Now is the time to change the current ("A"™) DETPRE,

L PREREG,DETPRE @ ™C™ FROE WAY®
ST NEWBAS,DETPRE @ NEW INTO "aw

Then load ycur EXDET base from PREREG to cover the previous ("C™) EXDET
and

L NXTREG,DETNXT @ AW FPROM wCw
ST NEWBAS,DETNXT @ NEW INTO wCw™

Now you are ready to f£ill im the new EXDET; load your EXDET base from
HEWBAS, and

SETVLOCK DETLK,LDETA NEW
OPNVLOCK LDET1 NEXT® ("A™)
OPNVLOCK LDET2 PRIOR ("C™)
ST PREREG,DETPRE @ "C"™ to new
ST NXTREG,DETNXT @ “A"™ to new

Pill in the pew EXDET you are on, and
OPNVLOCX LDETA NEH

¥Now end the program, which should include:

TSTYLOCK LDETA,errocDA LOCK
TSTVLOCK LDET2,errorDil * WAS
TSTYLOCK LDET%,ervordD2 ** LEPT
TSTVLOCK LINT,errorlk *&¥ SET,
TSTVLOCK LBAS,errorB *E%x% RBEND

Your ABERKD Iunterlock Release Routine should include:

CLRVLOCK LDETA
CLRYLOCK LDET2
CLRYLOCK LDETH
CLRVLOGCE LINT
CLRVLOCK LBAS

SUPEEVISOR CONTROL LCOCKS

source locks are maintained in a table in the supervisor

The systen re
rtual memory) with a general purpose FNQ/DEQ function.

{instead of wvir

This table allows the suvervisor to recover anv resources held by a task
being deleted and to maintain reliable scheduling information.

If these locks were in virtual memory and a task abended or logaed
off leaving a lock set on a system reguired resource, the system would
have to he reIPled, because users would be unable to access the required
resourca. Alsc, the system would be unable to determine which task was

bolding the lock.
The implewmentation is as follows:

1. A& hashed and chained dictionary of resource names is maintained
in the supervisor.

40

—— v aw

———

[——

—

o

— o ——

TNL GN20-4106 (01 July 80) to GC28-2008-5

2. Two macros ENOQ and DEQ (refer to the Assembler User Macro
Ingtruction manual) are provided to interface with the new
mechanism. The ZTNQ function is verformed asvnchronously with the
task. The completion, successful or otherwise, is posted back to

the issuer in an FCR.

3. The important virtual memory locks use this mechanism -- VAM lock
modules CZCOH ani C2C0I; also, FIND, STO%, and RCR.

#. The module CZAHC posts an ECB specified by an external interruot
code cueued on the task by the resource control module.

VAM LOCKING

VAM's lock modules CzZC0R and CZCOI use the ENQ/DPQ mechanism. CZCOH
issues an ENQ usinag the lock!s VMA as the resource name and CZCOI issues
a DEQ to remove the lock.

The parameter list for CZCOH allows the caller of CZCOH to recuest a
return code and to request that CZCOH abort the lock recuest if the user
attempts to attention out of the reocuest. The lock type code has had
the two high order bits ({X*B0' and X*u40') defined to reguest one of the
above actions. If the bits are zero, CZCOF processes as before. If the
0 bit (¥'30') is a 1, CZCOH returne a code to the caller signifying the
success of the lock request. CZCOH will return one of the followinag
codes:

0 - lock successfully set

4 - wait time expired:; register 1 contains
the taskid of the lock holder

12 - lock request purged before lock was set

If the 1 bit (X*'40')is a 1, CZCOH will test for a pending attention
from th user while waiting for a lock to be successfully set. If an
attention is detected, the lock regquest is purged and an 8 code is
returned to the caller.

Whenever CZCOH returns with a non-zeroc code the lock request has not
been fulfilled and it is up to the caller to recover from the situation.

To facilitate the wait-time-exceeded case, and to present to the user
a standard message with standard inserts, a second entry point has been
added to CZCOH -- CZCOH2. If this entry voint is called with a suitable
parameter list, CZCOH2 will build and return to the caller a message
containing the apvropriate information to define the unsuccessful lock
attenpt to the user. The parameter list for CZCOH2 is the same as CZCOH
except that two words have been added to the end of the list. VWord S
contains the taskid returned by CZCOB when a lock recuest has exceeded
its wait time. This is assumed to be the taskid of the task holding the
reguested lock too long. Word 4 is a pointer to a message insert to be
used for lock type X'14' calls. It is assumed that this insert explains
the type of control block the caller is attempting to set. The address
should pcint to a character string preceded by a one-byte length.

The CZCOH1 parameter list is as follows:

Register 1 -- 3 word list
word 1 - address of lock point
word 2 - address of two or three byte control field
word 3 - address of DCB or 0
word 4 - address of mess: Je insert for type

X*iu4? calls (required)

Section 3: S3ystem Programming Conventions 40.1

TNL GN20-4106 (01 July 80) to GC28-2008-5

I Format of Control Field

I byte 1 - type of access reaquested
1] C'W*' - exclusive access (write)
] C*R' - shared access (read)

' byte 2 - control block being locked, and flags
| codes: X'00' - SDST entry

i X*04¢* - RESTBL

f X*08*% - POD

i X*0C* - menmber header

| X*10* - page lock

L X*14* - other

| bits 0 and 1 of the code byte are used as flags
] 0 (X*80') - return with a return code
} 1 (X*40') - test for pending attentions

{ byte 3 - option flags for a tvype X'"14' call; this
] byte is used only on type X*'14°' calls

I bit 0: 0 - system controlled resource

) 1 - user controlled system resource

i bit 1: 0 - normal wait required

[1 - lock request is an immediate recuest;

I do not wait if already locked

1} CZCOH1, if requested, will return one fo the following return codes:

0 - successful attenmpt
4 - wait time exceeded; lock holder's
taskid is in register 1
8 - attention detected f{only if bit 1 is a 1)
12 - lock request purged

] The CZCOHZ2 parameter list is as follows:

} Register 1 -- 5 word list

H word 1 - address of lock point

} word 2 - address of two byte control field

I word 3 - address of DCB or O

{ word 4 - address of message insert for code X'1i4°?
| word 5 - taskid of lock holder

¥ Format of Control Pield

i byte 1 - type of access recuested

f C'W*' - exclusive access (write)

} C'P! -~ shared access (read)

| byte 2 - control block being locked, and flags
I codes: X*00' - SDST entry

' : X'0ur* -~ RFSTEL

1 ¥'08' - POD

i ¥*0C* - member header

{ X*10*' - page lock

{ ¥*14% ~ other

] bit 0 of the code byte is used as a flag
4 0 (X'80') - do not return; CZCOH
| will call ABEND

§ CZCOH2 will return to the caller the length of the build message in
! register 0 and the address of the message in reaister 1.

0.2

—— i, oy

e e e e]

—— —— o—

TNL GN20-4106 (01 July 80) to GC28-2008-5

DYNAMIC SCHEDULE TABLE TRANSITTON

The ENQ/DEQ mechanism provides another scheduling capability to TSS.
This capapnility allows a task to be given a dyramic schedule table
transition as page stealing does.

A second entry point in CEAXZ (CEAKZ2) makes the transition and
updates all recuired system control counts. CEAKZ2 is called with the
new schedule table level in register 0 and the TSI address in register
1. CEAKZ2 validates the new level, calculates a seconi new level if the
first new level has the prejudice flag on, and updates the task
dispatchable priority from STEPRIOR and the number of cuanta left by
calculating the number of guanta used from the o0ld level and subtracting
that value from the new guanta count. The task is guaranteed at least
one additional guantunm.

If the task is on the inactive list nothing else is done. If the
task is on the eligible list a new scheduled start time is computed and
the task is reslotted in the eligible list using the new priority and
scheduled start time. If the task is in the dispatchable list, the task
is reslotted using the new priority. SYSECB and SYSBTCNT are uvpdated to
reflect the possible change in STEMAXCR between the 0ld and new schedule
table levels.

Currently, CEANB, PULSE SVC, CHANGE SVC and ENQ/DEQ are the only
routines using CEAKZ2.

ENQ/DEQ SCHEDULING

The ENQ/DEQ mechanism uses the Holding Lock exit in the schedule
table as its scheduling exit. When a task acguires its first systenm
resource (i.e., holding resource count = 1) the ENQ/DEQ module CEARS
uses the Holding Lock value in the current schedule table entry as the
next schedule table level for the task. CEARS saves the task's current
schedule table index and calls CEAKZ2 to take a dynamic tramnsition to
the new sichedule table level. When the task frees its last systenm
resource, CEARS retrieves the saved schedule table index and calls
CEAKZ2 to return the task to its previous level.

The ENQ/DEQ module schedules only for resource entities called systenm
resources. A system resource is one that is allocated and released
completely under control of privileged system control, without ever
returning to non-privileged code. Examples are RESTBL locks, POD locks
and user table header and entrvy locks. User controlled resource
entities are resources whose dQuration of allocation is controlled from
the non-privileged code or by user action. Examples are dataset access
locks, member access locks and page locks. With these resources, the
duration of the allocation is usually controlled completely by user
action.

The task when waiting for a resource will issue an AWAIT SVC against
an ECB. This allows the current system AWAIT extension code ani
schedule table value to be used. The current ENQ/DEQ mechanism does not
use a wailting on lock mechanism; it is not reguired.

With 3ZINQ/DEQ, the system considers it an error if a task issues a
WAIT or "WAIT SVC while holdinag a system resource. This error currently
only results in a minor syserror.

Section 3: System Programming Conventions 40.3

SECTION &4: SYSTEM PROGRAMMER FACILITIES

RESOURCE_CONTROL FPACILITIES

TSS provides facilities to the system programmer for controlling the
allocation of system resources to users and for keeping records of
resource usage.

The control and accounting functions apply to the following re-
sources: CPU time, terminal time, number of comcurrent background
tasks, amount (in pages) of permanent and temporary public storage, nua-
ber of direct access devices, magnetic tape drives, high speed printers,
readers and punches, and the number of records read and written by
BULKIO.

Accounting Overview

An overview of the accounting facility's logic is given below. BRe-
sources are allocated and kept track of by means of several tables (the
user limits table, the system user table, the active user list table,
and the task accounting table) and several macro instructions and com-—
mands: USAGE, UPDTUSER, JOIN, and REJOIN. USAGE and UPDTUSER are com-~-
mands as well as macro instructions; JOIN and REJOIN are commands only.
The function of each table used by the accounting facility is summarized
below. The macro instructions are described in Part II or in Assembler
User Macro Instructions. The JOIN and REJOIN commands are described in

Manager's and Administrator's 6ujde. The USAGE command is described inmn
Command System User's Guide.

User Limits Table (SYSULT) - DSECT CHAULT

SYSULT is a table containing the maximum amounts of resources a user
is alloved at one time or over a givem period. Depending on the
resource (CPU time, I/0 devices occupied, etc.), the time may be the
duration of a task or the duration of some installation-established ac-
counting period. Initially, when the system is supplied, two sets of
limits are defined in the table: one set for system programmers and one
set for user programmers. The limits supplied with the system for each
of these two sets are summarized in Appendix G.

When a user is joined to a system, the RATION operand of the JOIN
comnand determines which set of limits the user has. The set of limits
is recorded in the user®s entry in the system user table {see below).

An installation may change the system—-supplied values for either set
of limits; it may also define and add to the user limits table up to
seven other sets of limits, which can be identified by additional RATION
keys when JOIN is issued.

System User Table (SYSUSE) - DSECT CHRAUSE

The primary purpose of SYSUSE is to provide a list of all legal TSS
users, with their attributes or characteristics, for reference by systea
routines. It contains an entry (or record) for each user, referred to
as a user table entry (UTE). In addition to the user®s ID, password,
privilege class, authority code, etc., each UTE also contains fields for
recording accounting data about the user's resource usage. This data is
accumulated from the time he is joined to the system till he is quit.

It holds accounting statistics for resource amounts being used and
resource products (that is, amounts multiplied by time used). At JOIN

Section 4: System Programmer Facilities 81

time a user®s limit rations (from SYSULT) are also copied into his entry
in SYSUSE.

Active User lList Table - DSECT CHAAUL

This table contains an entry (or record) for every task and one for
each user wvhose data sets are being shared by that task. These entries
are created by a call to the Resource Control Routine (RCR) CZCUA. The
entries are referred to by task identification (task ID) and user iden-
tification (user ID). Several entries may be associated with one task:
the primary entry (based on a user's task ID and user ID), an entry for
each shared data set opened by the user (based on the user's task ID and
the owner's user ID), and a system entry based on task ID and the TSS***
*% user ID. Each entry contains a temporary record of a task's use of
system resources from the beginning to the end of that task.

Task Accounting Table — DSECT CHAACT

This table is a work area in which a task's resource statistics (per-
taining to its primary entry in CHAAUL) are recorded when that task
comes to an end. This work area is made available to user—writtem ac-
counting routines at the end of each task.

Resource Control Operation

To get the system started, two entries (twvo sets of limits) have been
defined in the user limits table (SYSULT). An installation, however,
may provide new sets of 1limits or change existing ones at any time (see
®Retrieving and Modifying Accounting Data Sets®™ also in this section).
When a user is joined to the system, he has an entry (the UTE) created
for him in the system user table (SYSUSE). At that time, the user’s
limits (from SYSULT) are automatically copied into that UTE.

As each user issues LOGON, the UTE for that user is copied from SYS-
USE into a shared virtual storage table, or in cases wvhere another task
is active for the same user ID, the task is connected to the UTE already
coplied into shared virtual storage. ERach task then has several task ID
entries assigned to it in a second virtual storage table, called the ac-
tive user list {(CHAAUL). Thus, the two virtual storage tables, defined
by DSECTS CHAUSE and CHAAUL are used to record user ID and task ID ac-
counting data, respectively. During the execution of a task, the task
can refer directly to these virtual storage tables and update user ID
and task resource statistics in those tables without interfering with
their use by other tasks belonging to the same user.

Dynamic Accounting

During task execution, every time a user requires additiomal re-
sources, the system checks the amount of needed resource plus his
currently-used amount against the user's limits to make sure he has not
exceeded them. If they are not exceeded, the resources are allocated to
him and the virtual storage accounting table (defined by CHAUSE and
CHAAUL) is updated to reflect the additional usage. This process occurs
wvhenever external pages are assigned to, or relinquished from, a user’'s
VAN data sets, or vhen devices (such as disks, tapes, printer, and
reader-punches) are assigned or released. CPU time and connect time are
not updated dynamically; they are updated only at the end of each task.

The "time last changed" fields in the user®s UTE and in each user
task®s active user list entry are used to calculate the product
{resource multiplied by time used) fields in those tables when addition-
al resources are allocated.

82

Keeping track of resources is accomplished (at LOGOFF and ABEND) by
the system accounting subroutine and (dynamically) through use of a call
to the Resource Control Routine.

Shared Data Set Accounting

When a task uses a shared data set belonging to another task, ac-
counting statistics are recorded in the appropriate entry im the active
user list based om the user®'s task ID and the owner's user ID. These
accounting statistics remain in this table until an RCR call is made for
the shared data set. At this time, the accounting statistics pertaining
to that task®s use of the shared data set are used to update the SYSUSE.
The entry in SYSODSE, associated with the user ID for the owner of the
shared data set, is updated. Thus, if you share your data sets, you
will be charged for the use of the resources associated with those data
sets.

Resource Control Routine {(RCR), CZCUA

RCR is used to open the accounting tables, compare reguested resource
usage with the user®'s limits, dynamically update the product fields in
the virtual accounting tables (described by DSECTS CHAUSE and CHAAUL),
and release or vacate resources wvhen a task has finished using them.

When a task goes to LOGOFF or ABEND, RCR is called to tabulate ac-
counting data for each user ID and each task or subtask (for example, an
express batch subtask), and makes sure all resources used since the last
allocation have been updated. The task accounting data tabulated by
this process is:

1. Temporary page seconds 11. Total page—-ins from auxiliary

2. Permanent page seconds storage

3. Private disk seconds 12. Total page-ins from external

4. Private tape seconds storage

5. Private printer seconds 13. Total page-outs to auxiliary

6. Private reader/punch seconds storage

7. Total number of auxiliary 14. Total page-outs to external
storage pages storage

8. Total number of TWAITs 15. Maximum pages held on auxiliary

9. Total number of AWAITs disk

10. Total time slice ends i16. CPU tinme

17. Terminal connect (CONN) time

CPU time and connect time are updated for conversational tasks. For
nonconversational tasks, only CPU time is updated; connect time is reset
to 0.

The shared virtual storage image of the user table entry should now
reflect the status of the user's system resources. These updated sta-
tistics are then recorded in the permanent SYSUSE data set in external
storage.

For both conversational tasks and nonconversational tasks or sub-
tasks, the accounting subroutine branches to a dummy task accounting
module at CZAGA. Upon entry, this module returns control to the calling
routine. It is provided as a hook for user-written accounting routines.
A user can replace the dumry module with his own task accounting
routine.

At the time of the call, register 1 contains a pointer to a parameter
list that contains a pointer to the work area containing the task's ac~
counting statistics. Users who want to examine this data can establish
addressability to the work area, by using the DSRCT CHAACT. Signed
binary values representing each resource are stored in the work area.

Section 4: System Programmer Facilities 43

When the accounting routine returns to the caller, a subsequent RCR
call is made to remove the appropriate task-oriented entry froam the ac-
tive user list and to close out the user table entry imn shared virtual
storage. This is done by disconnecting the task from the shared-
virtual-storage OTE or, if there are no other tasks active for the user,
by writing the shared-virtual-storage UTE to SYSUSE and freeing the vir-
tual storage copy-.

INSTALLATION ACCOUNTING ROUTINES

An installation may establish its own accounting routine by writing a
privileged module, assigning to it the module name CZAGA, and replacing
the dummy accounting routine at CZAGA with the installation’s module.

IMPORTANT ACCOUNTING CONSIDERATIORS

When the installation accounting program receives control from the
system accounting subroutine, it can write to SYSOUT, can define (DDEF),
open, and close its own accounting data sets, and can perform most sys-
tem functions. However, the user should be aware that all non-system
data sets have been released; only selected system data sets remain open
(for example, SYSUSE, SYSCAT, SYSOUT, and SYSMLF). In addition, the
user may be restricted in the functions he can perform in an accounting
routine invoked by ABEND, depending on the cause of the abnormal end.

Syster programmers should be awvare that product (resource multiplied
by time) fields (except for CPU and connect time) accumulated in the
virtual storage copies of SYSUSE (CHAUSE) and CHAAUL are updated as re-
sources are allocated or through use of the USAGE command or macro in-—
struction. Although those tables are valid as of the last update, the
work area (defined by DSECT CHAACT), in wvhich task accounting data is
accunulated, is updated only at LOGOFF or ABEND. CPU time, connect
time, and the permanent copy of the product fields, recorded om SYSUSE,
are updated only at LOGOFF or ABEND. A system programmer should also be
awvare that if the system is taken through an RPS and UPDTUSER sequence,
resource counts are updated, but the product fields are reset to zero.
Thus, before executing such a sequence, installations should save the
existing accounting data for later processing.

Accounting by User or_Task ID

Installation accounting routines can associate accounting information
with a user ID or a task ID. If the user ID is chosen, the already
opened virtual copy of the SYSUSE data set can be examined. The ability
to address the user table entry can be established from the address of
the UTE found in the task common field TCMVLU. The DSECT CHAUSE can
then be used to extract information, and the installation accounting
routine can perform any desired arithmetic (all entries in the table
contain signed binary data). Accounting by task ID can be accomplished
by examining the vork area, defined by the DSECT CHAACT, in which task
statistics are recorded at the end of each task's processing.

Accounting by Charge Number

If an accounting routine desires to accumulate billings based on
charge numbers, it should be awvare that TSS accepts all charge numbers
without validating them. If a charge number is defaulted at LOGON, the
charge number assigned to a user when he is joined to the system is used
for that task's accounting at LOGOFF or ABEND. It is the responsibility
of the installation's accounting routine to verify charge nuabers. If
the accounting routine finds a charge number is invalid, it can use the
user ID.

4y

Accounting on _a Project Basis

A user who wishes to be charged separately by project may do this by
being joined to the system under separate user IDs. In order for him to
have access to his data under separate user IDs, he must use the PERMIT
and SHARE commands for his various IDs.

DISPLAYING AND ALTERING ACCOUNTING STATISTICS

If at any time during a task a user wants to knov how many resources
are assigned to his user ID, or what his resource limits are, he can
issue a USAGE command or macro instruction to display them on his SYSOUT
device. Remember these are user statistics rather thamn task statistics,
except for CPU and CONN time current fields. The USAGE command or macro
instruction also updates the product fields in the virtual storage ac-
counting tables (CHAUSE and CHAAUL). 2 user ID option is available with
DUSAGE for system programmers, managers, or administrators, which dis-
plays the usage statistics for any user joined to the system. Similar-
ly, a 'RESET' option can be used by managers and administrators to reset
a user’s product fields to zero (see the description of the USAGE com-
mand in the Manager's and Administrator®s Guide).

Managers and administrators can use the REJOIN command to change the
user®s limits, increasing his resources (see REJOIN in the Mamager's and
Administrator®s Guide).

Note: If a user's resource usage were to change when the system ac-
counting facility was not in operation, his accounting statistics wounld
not be updated (for example, if an RPS and CVV command sequence was per-
formed or in the event of system failure). In such cases, an O authori-
ty system programmer should eamploy the UPDTUSER command or macro in-
struction to update the resource count statistics in the user table for
all users joined to the system (the product fields in the UTE are not
updated at this time).

RETRIEVING AND MODIFPYING SYSTEM ACCOUNTING DATA SETS

To assist users interested im writing accounting routines and estab-
lishing their own resource limits, information on SYSULT and SYSUSE is
summarized below. The DSECTs for the system accounting tables (CHADLT,
CHAUSE, CHAAUL, and CHAACT) can be found in the ASMMAC system library.
Appendix G shows the resource limits supplied by IBM.
SYSULT characteristics:

e VISAM member of TSS**%%#_,SYSLIB.

e Bach record in the table, specifying the limits for a specific user
or type of user, is 64 bytes long.

e The hexadecimal key, in the first four bytes, is in the range 1-9,
inclusive.

e DSECT CHAULT.

e All limit fields contain a fullword of signed binary data.

e USAGE documentation describes the gemeral contents of each field.

e Although the JOIN command indicates that there are only two availa-
ble sets of limits in the user limit table (SYSULT), additional sets
may be added to the system (or existing limits changed) by modifying

SYSULT. This can be done by issuing the MODIFY command using the
hexadecimal option. For example:

Section 4: System Programmer Facilities 45

User: modify syslib (0) {sysult),,lrecl=68,keyln=0,rkp=0,recfa=£f

System: ERither prompts user for the hexadecimal input data or
unlocks the terminal keyboard.

User: Enters the new set of limits in the form:
x%00000003000000e100002325600004e200000100000000c~
800000802000000020000000200000002%e

For additional information on the MODIFY command, see Command System
User *s Guide.

SYSDSE characteristics:
e Fach user IDP record (that is, a UTE) is 256 bytes long.
e Has an EBCDIC key.
e DSECT CHAUSE.

¢ All accumulation and product fields contain fullword signed binary
data .

CREATING_YOUR ORN PRIVILEGE CLASSES

You may assign one, or a combination of several, predefined privilege
classes (see Appendix H) to a user at the time you join the user to the
system. 1In addition, you can create additional privilege classes, using
any of the remaining (undefined) alphabetic characters. To accomplish
this, you can use the CLOP macro instruction during system gemeration to
introduce a newvw privilege class to the system; this records the privi-
lege class in task common (DSECT CHATCE) as a valid privilege class.

Any routines you want associated with the newly defined privilege
class Bust be coded to examine the appropriate privilege class bits inmn
the four class bytes in task common.

At JOIN time, the privilege class you have defined can be assigned to

users of your choice; they may then use the set of routines you have
made available to thenm.

ESTABLISHING PRIVILEGED INTERRUPTION SERVICING ROUTINES

For normal returns from a privileged imterruption servicing routine,
execution resumes at the next sequential instruction following the point
of interruption, just as it would fror a mnonprivileged interrugption rou-
tine (see “Processing an Interruption®” in Assembler Programmer®s Guide) .
However, if a privileged interruption servicing routine wants to modify
the return address at which control is to resume, it must use a differ-
ent process than that used by nonprivileged routines. Rather than modi-
fying the 0ld VPSW in the area pointed to by register 0, as domne by non-
privileged routines, the privileged interruption servicing routine must
modify the imnstruction address in the old VPS¥ at location ISA1ICP
(X*730*) in the interrup storage area {ISA). Control then passes from
the interruption servicing routine to the newly specified address, rath-
er than to the next sequential instruction.

SCHEDULING TIME BY A SYSTEM TABLE
CPU time in TSS is scheduled by means of a systeam table (the schedule

table, CHASTR) that permanently resides in main storage as a system con-
trol block. The supervisor refers to this table when schedulling tasks,

46

— G — v . W - - — -

both at task initiationm and during execution of the task, to determine
when next to schedule the task and for what amount of CPU time. The
scheduling table may contain as many as 256 scheduling levels, called
schedule table entries (STE).

User priority and task type (that is, conversational or batch) deter-
mine a value that is assigned to the STE field of the task®s TSI; that
value then determines the task®s initial scheduling parameters. Once a
task has been initiated, the supervisor may move a task to another lev-
el, as for example, when a task is swvitched from conversational to batch
mode. Levels are also adjusted for tasks that are to be I/O-bound or
execute-bound.

The system programmer may also change the scheduling of a task. The
PULSE macro instruction permits you to change the STE level of a task to
another pre-set "pulse level"™ that is associated with the current level.
The CHANGE racro instruction permits you to change the task's level to a
level that you specify. The PULSE macro instruction is unrestricted;
CHANGE is restricted to privileged routines.

The PRESENT macro instruction permits you to determine the schedule
level of a task; it is unrestricted.

The values in the scheduling table are established as a function of
system generation and maintenance. Pull information on the system table
is provided in System Control Blocks. Systerm Logic_ Suppary explains how
the supervisor uses this table for schedulirg. To alter table values,
consult System Generation and Maintenance.

DEADLINE_ DISPATCHER

ACTIVE LIST ORDERING

The active list is subdivided into the dispatchable list and the eli-
gible list. The dispatchable list consists of tasks which are in main
storage competing for CPU time. The eligible list consists of tasks
which are ready to execute but have not yet been brought into main
storage.

Tasks on the dispatchable list are ordered by the priority schedule
table field (STEPRIOR) with the smallest priority number first. Tasks
with the same priority number are ordered so that paging-bound tasks are
ahead of execute-bound tasks. Paging-bound tasks are those which, in
one guantum, cause more page relocation exceptions than the amount spec-
ified in the maximum page relocation exceptions schedule table field
(STEMRQ) . Tasks are initially placed between paging-bound and execute-
bound tasks having the same priority number. At the end of each guan-
tum, a task is reclassified as paging-bound or execute-bound and placed
after all other tasks of the same priority number and classification.

Tasks on the eligible list are also ordered by priority (STEPRIOR)
with the smallest priority number first. Tasks with the same priority
number are ordered by SST (Scheduled Start Time) with tasks furthest
behind schedule (i.e., lowest SST) first.

Because the dispatchable list is now ordered by priority, greater
care must now be taken in selecting schedule table priority values. It
is now possible for a task with a small priority number to completely
dominate a CPU and effectively lock out other tasks for long periods of
time. Greater emphasis should now be placed on the delta to run sched-
ule table field (STEDELTA) for controlling the eligible list order.

The following diagram schematically shows the active list ordering
for a schedule table with three priority numbers.

Section #4: System Programmer Pacilities 47

— - —

D G vy G S e W W SRR TR ape RS SEN gy o S Gu S WM e M W RN S SR WSS UR W] AN GER W W WD WS S R <l e N Gl et S GINY Teup WIS Ny St S SR e W WD e

DISPATCHABLE ELIGIBLE

—— PRIORITY=10

- PRIOKITY=10

I I I !
I | I |
{ | PAGING BOUND | I | LOW SST] |
) —————— ! I |
I I I | | I
) 1 I | l |
! I - I
) | PAGING BOUND | o - - | I
I - | | == 1
I | I I ! I
| i I | I I
| —————— I | - |
| | EXECUTE BOUND | I 1| HIGH SST]]
| - | I |
I | | I | 1
I I !
I - - I | I l
| | EXECUTE BOUND | 1o PRIOKRITY=30 |
) —————————— - oo LOW SST !]
i I i | —— I
- | I i
I ! ! I ! I
I — —-—— PRIORITY=30 | | --]
] | PAGING BOUND | I — -] I
I — ! I i !
1 I | I I i
| 1 I | ! I
| -~ — T |
| | PAGING BOUND | 01 -— - | i
| —————————— oo --—- |
i ! ! ! ! I
| | 1 I l |
| - | e |
| | EXECUTE BOUND |] 1] HIGH SST I]
I I | |
| ! 1 | ! |
i ! ! |
~—-————————————— PRIORITY=60] PRIOKITY=60 |
| EXECUTE BOUND | I LOW SST | !
—mmm e | ——-- —mm—m- '
| | I |
I 1 1 I
- - I R I
| EXECUTE BOUND | | | 4IGH SST i I
! |
I |

— —

} EXECUTE BOUND |

———————— ——————— - ——

N . S g VR GG TER WS eme) e WD - w—
W e S e T N NN GE NN W vo— —

|
!
|
I
1
l
I
|

SCHEDULE TABLE

The Schedule Table header has an entry point CHBSTH; the table is 64

bytes and includes 12 for installation use and 21 that are reserved.
All priority fields (STEPRIOR) have been set to X'80!. The delta to
fields (STEDELTA) have been adjusted to maintain the proper ordering
the eligible list.

48

run
of

CPU/APU SCHEDULING

The dispatcher (CEAKD) searches the dispatchable list from the top
{highest priority task) to find a task that is ready for execution. If
a ready task is not found, the dispatcher will either exit to the wait
state or the gueue scanner depending on vhether or not any supervisor
work exists. If a ready task is found and more than one processor
exists, the dispatchable list search continues for another ready task
that has an expired deadline dispatch time (see the RTTCTL macro in-
struction description). If a second ready task is found and the other
processor is running a lower priority task, the other processor is sig-
naled to reschedule its executing task and search the dispatchable list.
The first ready task found is then set in execution.

REAL TIME TASK FLAG

The time slice end processor (CEAKT) will keep all of the task's
pages in real storage if the real time task flag (TSIRTT) is om. This
flag is turned on and off by the RTTCTL macro instructiomn. To prevent
excessive time slice ends for maximum pages allowed, page stealing
should be turned on in the schedule table levels for tasks that use the
RTTCPL macro instruction.

ADDRESSING AN I/0 DEVICE

The initiation of a virtual I/0 operation does not require the use of
the interruption storage area in the way the initiation of a real 1I/0
operation reguirés the use of the prefixed storage area. Virtual chan-
nel programs are comstructed using I/0 request control block (IORCB) and
channel coamand words that are similar to real CCWs (see the discussion
of IOCAL). All I/0O operations in a task need not use IORCB channel com-
mand sequences, though. Some I/0 operations, such as Virtual Access
Method (VAM) operations, are performed by using two Supervisor Call in-
structions (see the descriptions of the PGOUT and SETXP macro instruc-
tions) that take advantage of the characteristics of the address
translator.

Because most I/0 devices attached to the system have more than one
path to storage, these devices have multiple real addresses. The super-
visor's pathfinding program selects the address to be used. To distin~
guish an I/0 device from the path (Lardware address) used to gain access
to it, each device attached to the system is given a unigue number,
called the symbolic device address. The assignment of symbolic device
nukbers is unique at each installation.

In addition to the symbolic device address, some I/0 operations re-
geire the use of a relative page number. The relative page number is a
16-bit guantity allowing a device to have 65,536 pages. Por certain I/0
operations (for example, PGOUT), each device is organized into pages.
Since each page is 4096 bytes, the position of a given page on all
devices of the same type can be determined. Thus, page 136 begins at
the same cylimder, track, and record address for all IBM 3350s. Im oth-
or words, given a relative page number and a device type, it is always
possible to figure out where, on that device, the page can be found.

The system symbolic device address and the relative page number make

up the external page address; they identify the location of a page on
external storage.

Section 4: System Programmer Facilities 48.1

TIMEKEEPING FACILITIES

The time-sharing system maintains information about several catego-
ries of elapsed time. Timekeeping facilities accumulate statistics that
can be used for accounting purposes and for monitoring system and pro-
gram performance. UOUser programmers can set a time that measures task
execution time or elapsed calendar time. System programmers cah measure
time slices and time intervals during which they may want the CPG, or a
task, to be in the wait state. The TSS timekeeping facilities are com-—
posed of time cells and the macro instructions that set and read those
cells.

TIME CELLS

Time cells are used by TSS to store information about elapsed time,
estimated time, and related Jdata. The relationships of the primcipal
timekeeping cells (or fields) are described briefly below under "Time-

keeping Operation.®

Categories of Time

The information in the time cells provides the systemr with the two
basic types of timekeeping statistics maintained by TSS: task time and
realtime. In addition, CPU time is maintained as a part of real-time
maintenance (see "Realtime Maintenance®). Realtime is the actual time
{in microseconds) that has elapsed since March 1, 1900; from that start-
ing date every year divisable by four is a leap year (366 days).

Timekeeping Operation

The time-slice allocated for a task is specified in its current
schedule table entry. Each time-slice is composed of one or more quan-
ta. The number of guanta and the number of microseconds in each gquanta
are specified in the current schedule table entry. When a task is
rescheduled and at the end of each quantuwr, the length of the next quan-
tum is stored in XTSLTS and XTSCTI.

If a task is interrupted, for amny reason, before the end of its
allotted time, the value of the cpu timer at the time of the interrup-
tion is recorded in PSATSA and XTSCTI, to account for the remaining time
before the original task is to be time-sliced.

When the task is redispatched to complete its time slice, the remain-
ing time available to that task (previously recorded in XTSCTII) is moved
back into the cpu timer (resetting the clock). The cpu timer is again
decremented by the hardware until that task's remaining time is used up,
and the task is time-slice—ended by the systen.

Whenever an interruption occurs during task execution, the task's
timers, XTSUTI and XTSATI, are updated. Any remaining time (in XTSCTI),
allotted to the task®s time slice, is subtracted from its original al-
lotment (imn XTSLTS) to determine the elapsed time used by the task be-
fore the interruption. This elapsed time is added to the task®s accumu-
lated CPU-time cell (XTSATI) and, if a task time interruption has been
established for the task, the elapsed time is subtracted from the XTSUTI
field; see "Setting the Interval Timer."

Setting the Interval Timer

If no task time intervals have been established by programmers to
generate interruptions at specific times, the time indicated imn the cpu
timer, when each new dispatch occurs, is the time from a task"s XTSCTI
field (the time remaining in that task's time slice). If, however, task
time intervals have been established, whenever an interruption occurs in

48.2

the system; the cpu timer field is reset with the shortest period of
time after which the system is to generate another interruption. Thus,
the cpu timer is reset with the shorter interval contained in XTSCTI
{time remaining in the time slice of the next task to be dispatched), or
XTSUTI (programmed task-time interval after which am interruption is to
be generated}.

If the shorter time interval was found in XTSUTI (indicating that a
task time interval will expire before normal time-slice-end), that task
time interval replaces that task's time slice in XTSCTI. The task's
accumulated cpu time cell (XTSATI) is incremented by the time used this
time-slice (XTSLTS-XTSCTI) and XTSUTI is decremented by this value. The
new XTSUTI is placed im XTSLTS and XTSCTI. The task is then redis-
patched until the new time in the cpu timer expires. When the task is
rescheduled after the interruption from the task time interval, the
schedule table time-slice allotment is again used to initialize XTSCTI
and XTSLTS; this reestablishes a normal time-slice interval for the
task.

REALTIME MAINTENANCE

Realtime for the entire system is maintained in the TOD (Time of Day)
clock. Realtime intervals can be set by programmers. After a
programmer-defined interval elapses, a system-generated interruption
occurs to inforam the programmer that the time has elapsed. Realtime
interrupt values are maintained in the RTITIME field in the real-time
interruption-pending queue in the resident supervisor (DSECT CHARTI).

RTITIME is a doublevord in the realtime interruption-pending gqueue
that is maintained in the resident supervisor. Realtime intervals can
be established in RTITIME by issuing the SETTIMER or SETTR macro in-
struction. Another user macro instruction, STINER, will indicate an
interval in one of a task's eight realtime software clocks; these inter-
vals are eventually transmitted to RTITIME from these clocks, when the
system issues SETTR.

TASK TINE MAINTENANCE

Task time statistics are maintained in each task's extended task sta-
tus index (XTSI), which includes these time cells: XTSCTI, XTSLTS,
XTSATI, and XTSUTI.

XTSCTI is a doubleword that indicates the length of time in a task's
time slice when the task is initially dispatched. If the task
is interrupted before time-slice end, this time cell contains
an indication of time remaining in the task®s time slice. The
time is maintained as microseconds

XTSLTS is a doubleword that contains a value representing a task’'s
total remaining time-slice allotment whenever it is resche-
duled. The value remains constant while the task is executing;
it is reset whenever the task is re-scheduled. This time is
maintained as microseconds.

XITSATI is a doubleword that contains a value representing accumulated
task CPU time, up to the time of the task's last interruption.
It is calculated as the running sum of XPSLTS minus XTSCTI,
then added to what®s already in XTSATI. XTSATI is maintained
in microseconds.

XTSUTI is a doubleword that contains a value representing a task-time
interval after which a task'’s execution is to be interrupted.

Section #: System Programmer Pacilities 49

This field is set by programmers to monitor execution of their
programs. The time is maintained in microseconds.

TIMEKEEPING MACRO INSTRUCTIORS

System—defined macro instructions can be used to set and read time
cells. Some of these macro instructions (discussed below) are available
to the user programmer; others only to the system programmer. STINER,
TTIMER, EBCDTIME, SIR, and STEC are meant for use by the user programm-

er; they are described in Assembler User Macro Imstructions; the system
prograrmer®s macro instructions are described in Part 2.

Both task time and realtime intervals can be established by using
system-supplied macro instructions. When these programmed time inter-
vals elapse, the system generates interruptions that tell programmers
the time expired.

User programmers can issue the STIMER macro instruction to establish
as many as eight concurrent realtime intervals and eight concurrent task
time intervals, all of which are recorded in a table in the task monitor
{the table has 16 software clocks for each user). As each interval
elapses, control is returned to the user's program. Although STINER
sets these 16 software clocks, it is the inner system macro instructions
that place these clock values in the appropriate systea time cells.
Thus, the system macro instruction SETTU places task intervals into
XTSUTI; SETTR (from virtual storage) and SETTIMER ({from resident
storage) place realtime intervals into RTITIME in the realtime interval
table (DSECT CHARTI) in the resident supervisor. User programmers can
also use the SIR and STEC macro instructions to establish these task
time or realtime intervals.

The user macro instruction TTIMER car be used to test any of the 16
software-timer intervals previously set by a programmer. Data returned
to the programmer indicates either the time remaining in the interval
timer he is testing, or that the time has expired.

The TSEND system macro instruction, which causes a task to be placed
in the delay state, sets a realtime interval, after which the task will
be redispatched if no other interruptiom occurs. This realtime interval
is equal to a system-defined value, known as "delay time,"™ recorded in
the system table field SYSDLY. The system issues SETTIMER to place this
interval in RTITINME; the CANCL system macro instruction can be used to
cancel an interval established by SETTIMER.

Reading System Time

The realtime setting that indicates the current instant in microsec-
onds can be determined by issuing the REDTIM syster macro instruction or
the EBCDTIME user macro instruction.

REDTIM causes the TOD clock to be converted to microseconds and added
to SYSYMD and SYSTOD; it causes the resulting double-precision fixed-
point number to be returned in registers 0 and 1. This is the number of
elapsed microseconds since March 1, 1900.

EBCDTIME allows users to specify the format in which they want the
realtime returned to them as: years, months, days, hours, minutes,
seconds, or tenths or hundredths of seconds.

The system macro instruction XTRXTS extracts the values set in the
time cells:

XTSUTI (explained above under "Task Time Maintenance.")
XTSATI (explained above under "Task Time Maintenance.%)

50

- iy — WD e N —

- - o — — ——

XTSETI (a field indicating the estimated run time for a task. It
must be set using the SETXTS system macro instruction.)

Another system macro instruction, XTRTM, extracts a task's accumu-
lated CPU time, in milliseconds.

GENERALIZED TRACE FACILITY

The Generalized Trace Facility (GTF) allows hardware and software
maintenance personnel to dynamically record hardware and software
events.

Using G7F, personnel can record, for later amalysis, all interrupts
from a particular device or group of devices, the SVCs and/or program
checks caused by a specific task or all tasks, or entries into RTAMs
device modules for a particular device or group of devices or network
addresses.

If the interrupt rate is too high for ordinary recording, or if only
the interrupts for a particular event are vanted, The user can dynamic-
ally set up a circular log in the supervisor and after the event has oc-
curred, have the log returned to the task and displayed.

On a high interrupt rate device like the 2305 drum, or attempting to
trace all disk I/0 with 100 tasks running, no atteapt should be made to
write all the trace records to a data set, because not only will this
degrade performance considerably, but it may cause a system failure due
to insufficient storage; although GTF will automatically turn off a
trace if there is insufficient space for a recording block, it is possi-
ble to satisfy GTF requests and then have a condition wherein there is
not enough space to satsify the next system request.

Once a trace is started, it can be ended in ome of four ways:
1. the user issues a comrand to end the trace.

2. the task being traced abends.

3. the trace owner's task abends or logs off.

4. not encugh storage exists to allocate a trace block.

OPERATION OF THE GTF FACILITY

The system programmer or maintenance person enters the GTF command
specifying the wanted options and a data set name to store the trace
records. There is a limit of 255 concurrent GTF regeusts for the system
and only one GTF can be active against a resource at any one time. Two
or more GTF requests against the same SDA, for I/O, are not allowed.

The GIF module, CZNCA, validates the options, defines and opemns the
output data set, if one has been requested, SIRs for the trace external
interrupt, and issues the trace SVC to the supervisor to activate the
trace.

The supervisor GTF module, CEDTRACE, validates the trace request
input and asssigns a trace ID for the request. CEDTRACE sets the trace
flags in the control blocks associated with the resource to be traced,
allocates and builds the trace blocks and returns a positive response to
the task.

As each trace block is filled, the supervisor will queue the block on
the task as an external interrupt using the interrupt code specified in

Section #: System Programmer Facilities 51

S — o

ey .-

the trace request. The GTF external interrupt routine will receive con-
trol and writes the block into the output data set. Each block from the
supervisor has a trace ID and a sequence number in it. There are also
flags set in the header specifying the trace status and if ended, the
reason for ending. The GTF moduele does not consider the tracae ended
until receipt of the stopped flag from the supervisor.

GTF BLOCK AND RECORD FORMAT

The G{P block built by the supervisor is 2048 bytes in length and
contains a 32 byte header. The first 16 bytes are used as the MCB head-
er when the block is shipped to the task. The next 16 bytes are the
trace Llock header and contain pointers to the first, next and last
entry position within the block. Following the pointers is one byte of
flags, a one byte trace ID and a halfword block sequence number.

Each GTF entry within a block is a fixed length of 48 bytes. The
first 16 bytes of an entry are a header supplied by the supervisor trace
Bodule. The header contains a time stamp, CPU address, record length,
AID and FID bytes, and an event ID. The remaining 32 bytes are trace
dependent.

For a more detailed description of the trace block, see DSECT CHEATRAC

The assigned event IDs are as follows:

Syster ®ide Event IDS

X*0018* - external interrupt event
X*0020" - SVC interrupt event

X*00238* — program check iaterrupt event
X'0038* - I/0 interrupt event

X*'013C* - SIO event

X*019D* - TIO event

X*019E®* - HIO event

RTA M event IDs

X*8001* - PIU read completion
X*8002" - PIU write coapletion
X*3003* - RTAM module entry

Task event IDs
X*4000* - task RTAM interrupt
X'4018" - task external interrupt

X*4 028" - task extended program interrupt
X*4033* - task I/O interrupt entry

IIME CONVERSION ROUTINE

A number of privileged conversion routines are provided to enable you
to convert time data, in any of several formats, into a form you cam use
with the macro instructions SETTR and SETTU. Two types of coanversions
are performed: type-T, used for operations with the SETTU macro in-
struction, yields a 32-bit binary time interval in microseconds; type-R,
used for operations with the SETTR macro instruction, yields a 64-bit
binary time interval in microseconds elapsed since M¥arch 1, 1900 (see
"Timekeeping®). Two different forms of imput data may be used for type-
T conversion (0 and 1); six forms (0-5) may be used for type-R. Figure
10 summarizes the different input forms.

52

L
nput Data Code| Input Fora
4

L]

0 {Tige interval in hours (h), minutes (®), seconds (s),
ftenths (t), and hundredths (h) of seconds; eight BCD
jcharacters: hhmmssth
|
!

1 |Time interval in milliseconds; 32-bit binary number
I
!

2 jTime of day in bours (h), minutes (), seconds (s),
|tenths (t), and hundredths (h) of seconds; eight BCD
fcharacters: hhamssth
|
|

3 {Day of week; four left-justified BCD characters:
| MOND, TUES, WEDN, THUR, FRID, SATU, SOUND
|
!

4 jDay of month; two left-justified BCD characters:
100 through 31
|
|

5 |Day of year; eight left-justified packed decimal
Jcharacters: 00yyddd+

Figure 10. Input formats accepted by the time conversion routine

—.-—-—————-~—~“——-———‘l-~1-—7
e s — - o — — — —— — " — " o g e by - o]

[

To use the time conversion routine, you must put a pointer to a pa-
rameter list in register 1, the return address im register 14, and the
address of the time conversion routine in register 15. It looks like
this:

LA 1,PARAE POIRTER TO PARAEKETER LIST IN
* REGISTER 1

L 15,=V (CZCJXA) ADDRESS OF CONVERSION ROUTINE

BASR 14,15 GO THERE

RETURN
PARANM DC cr1e FORM OF INPUT DATA - 0,1,2,3,4,
* OR 5

DC csT? TYPE OF CONVERSION — T OR R

DC H*O?" NOT OUSED

DC D*DATA® INPUT DATA PLACED HERE - RESULTS
* FOUND HERE

After completing the requested conversion, the time conversion rou-
tine returns control to the address found in register 1. The results
are placed, right-aligned, in the second and third words of the parame-
ter list.

Note: The SETTU macro instruction expects a time value in milliseconds;
if you use the time conversion routine to get a time interval (type-T),
you must divide the result by 1000 to convert it to milliseconds.

Figure 11 lists the meaning of the results obtained from the various
conversions.

Section 4: System Programmer Facilities 52.1

R

Conversion| Result
L

-
TO ITime interval in microseconds
I
T1 {Time interval in microseconds
)
RO jJCurrent time + input time interval in microseconds

jfrox March 1, 1900
!

R1 jCurrent time + input time interval in microseconds
jfrom March 1, 13900
I

R2 jNext occurrence of input time in microseconds from
|March 3, 1900
1

R3 jNext occurrence of day of week imn microseconds from
{March 1, 1900
|

RY |Next occurrence of day of month in microseconds from
jMarch 1, 1900
!

K5 |Next occurrence of day of year imn microseconds fromn
jMarch 1, 1900
1

[-y — - —-——— — — - — —— U — — - gy =
e o — . —— . —— T —— — W — — I — " s i o

Figure 11. Results of time conversion

EVALUATING SYSTEM STATISTICAL RECORDING FIELDS

The internal relationships that characterize the operation of TSS
system programs and user load are difficult to evaluate. To help in an
evaluation of these relationships, data pertaining to the system and in-
dividual tasks are dynamically maintained by TSS. These data include,
among others, paging counts, real memory utilization, software queue
processor times, CPU utilization, and scheduling counters. These data
indicate, among other things, the CPU workload, I/0 load balancing,
schedule table efficiency, and individual task loads.

Two classes of statistics are collected; gloval system wide informa-
tion and local task oriented data. These statistics are recorded as the
system is running in fields located in various system tables and
modules. Many of the statistics are recorded in the system status table
(CHBSST)} in main storage. Additional statistics are dynamically main-
tained in the fields indicated im three dsects; CHAPXS, CHASTY, and
CHATSX.

Analysis_of System Status Statistics

The statistics, maintained dynamically by the system, are available
to the system programmer through use of the statistics sampling macro
instruction SAMPLE. Bxecution of this macro instruction causes statist-
ical data to be collected and recorded in the virtual storage page in

52.2

which SAMPLE is issued. System programmers can then write their own
data analysis programs to evaluate the data. Proper analysis allow sys-
tea managers and programmers to evaluate the workloads being processed
at their installation im relation to the TSS environment.

Once statistics have been analyzed, the system programmer can rein-
itialize statistical data fields in the systea to zero by issuing the
ZEROSST macro instruction. Subsequent dynamic recording of statistics
wvill reflect the system's performance since the time at which ZEROSST
was issued rather than since Startup.

ADJUSTING ASSEMBLER CONSTANTS

The TSS Assembler normally secures working space for internal use and
for producing output information. Occasionally, source programs cause
an overflow of one or more of these work areas. This occurs only when
an exceptionally large program (for example, an application programmer’'s
own language-processing program) is being assembled. The symbols asso-
ciated with six of these work areas have been defined as entry points to
allow O and P authority programmers to alter (via use of ¥SS) the size
of these work areas when such a program is assembled. Thus, the full-
word constants at these entry points may be altered prior to an assembly
to increase sizes of the work areas for which the assembler will issue
GETMAIN macro instructioms.

The constants must not be altered once an assembly has started; in
such cases, the assembler's virtual storage allocation routine will
issue a completion code 1 ABEND vhen it detects an attempt to free more
work area than was assigned by GETMAIK. The fullword comstants, the
work areas to which they apply, and several possible causes for their
being overflowed are indicated in Figure 12.

CAUTION: Since these constants reside in public, read-only code, they
nust not be altered if any other user is assembling.

ALTERING CONSTANTS

When an asseamably is terminated because of work area overflows, the
diagnostic message issued by the assembler names the work area that
overflowed. The authorized programmer cam then use a SET command to al-
ter the constant associated with the named work area. For example, if a
diagnostic message indicates the PMD work area overflowed, the programm-
er might issue:

SET CEVPED. (,4) =4

This would increase from two to four the number of pages that would
be added to the number of text pages divided by eight.

ESTIMATING WORK AREA STORAGE REQUIREHMENTS

A knowledge of PHMD and ISD control block layouts and the sizes of
entries created for external references (REFs), address coanstants, etc.,
may be helpful when analyzing PEMD or ISD work area overflows. System
programmers can estimate the number of additional pages based on the
entry size multiplied by the number of additional entries required. The
DSECTs CHATDY and CHAISD, describe components for the PMD and ISD and
may aid in determining the storage reguirements.

Section 4: System Programmer Pacilities 53

L
Constant}

L Ll
Work Area |Normal Size jReasons for Overflow/Comments
1

L
L L L
CEVWE1 J¥Work 1 17100 pages |Too many USIKG or DROP statements
1.

. p—

1

{Insufficient room for 2-word cross
jreference items

L
L]

jNesting of macro calls causes gen-—|
jeration of macro level diction- !
jaries that required too much space}

L E)

|

|
1o !

Li L] LA
CREVISD 1ISD Work Areal0 pages plus|The value of CEVW2 too saall to

|

! Ipages in (2

] jWork 2 {Too much USING/DROP information

| J jand symbolic name information for
1 | lJvork area

i L L

]number of jcontain ISD

1

i

L

¥

|

! | i

I | i

!] 1

i I I

} | 1

1 1 !

I i !

t + } } 4
| CEVYN2 |Work 2 | 255 pages |Too many symbols in name fields
! 1 | ¢ -4
! | I |Too many source statements !
I ! I L -4
] ' 1 {Too many macro-generated |
| i] jstatements]
I) | } - -4
1 I { }Too many continued lines {
1 1 | I 4
i ! ! IInsufficient work space for build-}
) i | jing control section dictionary i
L. L] L 1
1 L ¥ ¥ ’
] CEVW3 |jWork 3 120 pages per|Insufficient virtual storage i
] i jincrement, favailable for any reguest;]
| 1 jmrore avail- jincreasing size of 20 will {
) { jable as jnormally not help. Unload all }
] [Ineeded to jmodules possible; reassemble !
} i jhold source |- 4
I f Istatements |(Assembler®s VHTABLE filled up. !
I } § |Increase size from 20 pages per L
I J { Jincrement. i
F + + + 3
| CEVIL |External Name|2 pages |Number of control sections and i
}] (BXT NAN) | |ENTRY operands more thamn 1022 J
i jList Area ! | i
F } + { {
{ CEVEMD |PMD VWork Area|2 pages plus|Too many ERTRY or EXTRN operands |
] { (residual | (number of |with textless or low text module |
1 jcount) jtext pages | (TEXT=instructions or coastants) }
} { jdivided by J
I I
L]
3 1
! |
I 1
! -
I 1
| I
| |
L 3

Pigure 12.

Assembler constants, changeable for large assemblies

RELEASING INTERLOCKS AT ABEND

Many interlocks in shared tables (coded in TSS system programs) are
released automatically by system routines (for example, the RESTBL head-
er) if an abnormal end (ABEND) occurs. Howvever, systemR prograrRers may
set locks on shared tables that are not automatically released when
their task is abnormally terminated. In such cases, other tasks
attempting to use these tables are prevented from doing so because of

548

interlocks left on the shared table by the abrormally ended task. To
eliminate this problem, system programmers must establish entries in the
ABEND interlock release (AIR) table for all interlocks they set that
have no predefined system release procedure. These entries contain the
V- and R-type address constants to a routine (that must also be coded by
the system programmer) which is to release the interlock in case of an
ABEND. For interlocks of this type, AIR table entries must be created
before locking the interlock byte. 1 suggested procedure for creating
an AIR table entry is indicated below:

IRSPSECT PSECT
LOCKSW DC Xt00°* INTERLOCK SWITCE BEING USED BY
SYSTEM PROGRAMMER TO LOCK
SHARED TABLE:
00 - UNLOCKED
FF - LOCKED

LOCKLOG LOGVLOCK

SW DC Xroo"* ATR TABLE ENTRY SWITCH
00 - NO AIR ENTRY EXISTS
FF — AIR ENTRY EXISTS

AIRIST CALL, (IRSPSECT,IRSRTNE,USEDATA,) ,MF=L

+ DC V (IRSPSECT)
+ DC R (IRSRTKE)
+ DC A (USEDATA) POINTER TO USER DATA
USEDATA DS D CZACS SCRATCHPAD
AIRSET CSECT SYSTEM PROGRAMMER's ROUTINE IEK
WHICH INTERLOCK (for example,
LOCKSW) IS TO BE SET ON
CLI SW,X'00°* HAS CZCACS1 BEEN CALLED
BNE SKIP YES, AIR ENTRY ALREADY EBXISTS
CALL CZACS1,8F=(E,AIRLST) NO, CREATE AIR ENTRY (i.e.,
CALL ROUTINE THAT CHAINS ENTRY
FROM AIRSET's PSECT INTOC AIR
TABLE)
NVI SW,X'Fr? SET AIR SWITCHE TO INDICATE
ENTRY EXISTS
SKIP SETVLOCK LOCKSW,LOCKLOG ONCE HAVING SET AIR ENTRY, SET
INTERLOCK ON!
. NOW IF YOUR TASK IS ABENDED,
- LOCKSW WILL BE AUTOMATICALLY
- RELEASED BY THE ROUTINE YOU

. SPECIFIED IN AIRLST
OPNVYLOCK LOCKLOG

CALL CZACS2,MF= (E,AIRLST)
MVI SW,X*00°"

The systea programmer would also include the following steps in the
interlock release routine:

IRSRTNE ENTRY

Section #4: System Programmer Pacilities 55

T Y VY —— Y - — - -

- . VD gy . -

CLRVLOCK LOCKLOG CHECK AND RESET LOCKSW BYTE

MVI SW,X00°* TURN AIR SWITCH OFF SO CZACS1
- WILL BE CALLED AGAIN I1IF ROU-
. TINE IS ENTERED AT SUBSEQUENT
- ABEND

RETURN RETURN TO CALLER

The AIR entry is automatically released by the system when ABEND dis-
patches the system programmer®s interlock release routine.

PUBLIC POOLS —— GENEEAL DESCRIPTION

The purpose of public pools in TSS is to divide public storage
volumes and uses into logical groups. These logical groups, or pools,
consist of one or more volumes with consecutive relative volume numbers
named by am eight-character poclid. One pool, called the system pool,
is required at system startup time. All other pools are dynamically
added and deleted from a running systemn.

Bach pool is a self-contained entity. All datasets necessary for a
pool are contained within the pool. Users are joined to a specific
pool, rather tham to a TSS system, and may own datasets only within that
pool. Datasets may, however, be shared across pools. A special user in
each pool, called the pre-joined user owns all the pool's system data-
sets such as: SYSCAT, SYSUSE, and SYSBWQ. The pre-joined user also has
the responsibility for joining and gquitting users to his/her pool and
for the maintenance of the pool. TSS***x** is considered the pre—joined
user for the syster pool.

The structured public storage allows the separation of users and
their data into reasonably-zized, independent groups, divorced from any
particular TSS system. Groups of users may be moved from one TSS system
to another. New releases of TSS and PTFs affect only the system pool.

Public storage backup and kaintenance are performed on a pool rather
than the entire system. Catastrophic DASD failure is localized to ome
pool. Since each pool contains a SYSCAT, catalog paging bottlenecks are
reduced. Special purpose pools for benchmarks and system testing may be
created.

The volume label of each volume in a pool contains the eight-
character poolid and a flag to indicate that it 1s part of either a sys-
tem or a public pool. The volume label of the first volume in a2 pool
also conatins the pre-joined userid and pointers to SYSCAT, SYSSVCT, and
SYSVOL datasets. SYSCAT is the system catalog for the pool; SYSSVCT is
the index of user catalogs for the pool; and SYSVOL is a list of all
volumes that make up the pool. Zach pool also contains SYSUSE, SYSBWQ,
and SYSPLIB datasets. These datasets are owned by the pre—-joined user
and are normally contained on the first volume of a pool. CSYSPLIB is a
pool oriented VF dataset that is data deffed between USELIB and SYSLIB.
It is used to contain object modules related to a particular pool.

Several virtual memory tables are used to control the active pocls on
a system. These tables are updated during ADDPOOL and DELPOOL process-—
ing. The active pool index (CHBAPI) contains the status and control
block poirters for all pools currently known to the system. The pool
volume table (CHBPVT) contains a list of volumes for each pool and is
used to control space allocation for datasets. The userid table is used
to determine the poolid for a specific userid. Eatries in the virtual
batch work gueue are added from a pool's SYSBWQ dataset during ADDPOOL
processing and deleted during DELPOOL processing.

56

— ——— . W w— ——— o aay wust Sy - - - — —

A T —— - . —-— -

- W - v—— - -

COJVERTING TO A POOL SYSTEH

To convert an existiag TSS system intc a single pool system, the vol-
ume labels of all public volumes must be updated to conatin the new vool
related information. Alsc, the SYSVOL dataset must be built on the
first volume. This i1s a 'one—time' process and is performed by the
CNVTPOOL coxmand. The modifications to the voiume labels and the SYSVOL
dataset do not affect the overation of pre-pool systenmns.

ADDING AH{D DELETING POOLS

The startup process automatically adds the system pocl; all other
pools must be addel by the system operator. <he shutdown process
deletes all active pools including the systen pool; pools other than the
system pool may be deleted by the system operator. The commandés ADDPOOL
and DELPOOCL provide this facility.

The ADDPOOL command provides a means by which a pool can be added to
the system, or put into a maintenance status. Maintenance status
restricts ail users in the pool from logging on except the pre-joined
user. This enables the pre—-joined user to perform maintenance and bac—
kup procedures without interierence fror other users. & pool xay be
removed from maintenance status by issuing another ADDPOOL command
(¢hicn adds the pool to the system) or by issuing a DELPOOL cormand
(which deletes the pool from the systen).

The DELPOOL command will optionally force active users oif a pool.
If users are not forced, the pool is marked in "delete status*. This
delete status prevents new users in the pool frow logging on, and pre-—
vents shared datasets from being opened by users in another pocl. 3
pool may be removed from delete status by issuing an ALDPOOL command.
To delete a pool already in delete status, another DELPOOL command must
bhe issued.

BUILDING A NEW POOL

A new one-volume pool is built frow an empiy private volume Ly the
BLDPOOL comazand using the FRODE=NEW parameter. With userid TSS**¥*¥% the
BLBOPOOL coxmand builds tle SYSVOL dataset and empty datasets for SYS-
PLIB, SYSSwyg, and SYSCAT. 7The datasets SYSUSE and SYSSVCT are buiit and
include entries for th pre-joined user. Also, a USELKCAT for the pre-
joined user containing catalog entries for the above datasets is con-
structed. Finally, the volume label is modified to contain the pool in-
formation. Once built, a new pool may be added to a system with the
ADDPOOL command. Users may then be joined to the pool by logging on the
pre—joined user and issuing the JOIN command.

ADDING VOLUMES TO EXISTIWHG POOLS

A& new volume way be added to an existing pool by the BLDPOOL command
using the HODE=ADD parameter with the pre—joined userid. The BLDPOOL
command updates the pool's SYSV¥OL dataset to include the new volume and
modifies the volume label of the new volume to contain the pool iniorma-
tion. The new volume will become available for storage allocation the
next time the pool is deleted and then added to the system. After the
nev volume has been deleted-added to the system, storage allocation will
occur on this volume after the next shutdown-startup segquence.

Section 4: System Programmer Facilities 56.1

TNL GN204106 (01 July 80) to GC28-2008-5

PARTITIORING Ad EXISTING 200L

The process c¢f partitioning am existing pool into two separate inde-—
pendent pools involves several steps. First, the breakpoint (tke rela-
tive volume number of the tirst volume of the new pocl) nust be deter-
mined. Also, it must he determined that the available disk storage of
each of the two pools must be large enough to contain all the datasets
ovned by the users that will eventually belong to each pool.

Seconé, once the breakpoint is determined, external storage alloca-
tion for each user of the existing pool is restricted to one ot the two
new pools by the SETRVY command; this establishes the pool to which each
user will eventually belong. Allocation for new datasets and expansion
oi o0l1ld datasets will only be made within the volume range specified by
the SETRVY comnmand.

Third, to emnsure that users do not own datasets outside the volume
range specified in the SETEVN command, a KOVEUSER coamand must be issued
for each user in the existing pool. MOVEUSEK will check each dataset
including USERCAT for a user and copy the dataset if amy part of it is
outside the volume range. The sharing information and the time and date
stamp are xaintained. The volume range and MOVEOSER status information
are kept in the SYSSVCT datasete.

Pourth, the BLDPOOL command with a MODE=PART parameter is issued by
the pre-joinmed user. This command will test each user in the existing
pool for reiative volume number range consistency and tIOVEUSER status.
This command 1s canceled if the relative volume range of any user over-
laps the breakpoint, or if any user has not been checked with a MOVEUSER
command.

The SYSVOL dataset for the new pool is built, and the SY¥SVOL dataset
0f the existing pool is updated. Empty datasets for SYSPLIB, SYSEW(Q,
and SYSCAT are constructed for the new pool. The datasets SYSUSE and
SYSSVCT are built and include the new pool's pre-joined user. A OSERCAT
for the new pre—-joined user is built to contain catalog entries for the
above datasets.

The existing pool®s SYSSVCT is read to determine which users are to
be included in the new pool and both the existing and new S¥SSVCT and
SYSUSE datasets are updated accordingly.

Pinally, the volume labels ot the volumes in the new pool are updat-~
ed. The new pool may now be added to the system by first deleting the
existing pool and then adding the two *new pools'.

MAINTENA KCE

Public storage maintenance is now performed on a pool basis rather
than on a system basis. Since pools, includiug the system pool, are in-
dependent of eaclk other, dump-restore of all volumes in a particuiar
pool ensures dataset/catalog consistency. Commands such as PATFIX oper-—
ate on a single pool at a time. A mpew command, DSCBS, replaces the CPS,
LPDS, CV¥, and RPS commands, and operates on a pool basis. The command
ELDSVCT is provided to rebuild SYSSVCT for a pool in maintenance status.
BLDSVCT replaces the SYNCCAT command. A USEKCAT may be rebuilt by the
new FIXCAT command.

DATASET DSCB_RECOVERY

This item will provide for dscb error analysis and recovervy.

56 .2

— [—— — . — -y oo—

———— ——

o —— ——

TNL GN204106 (01 July 80) to GC28-2008-5

In order to acconmplish this 2 new types of DSCB's have been defined,
a tyve 2 format "E", and a new format "G". The type 2 "E" contains the
same dscb type code X*01*' but is marked as a type 2 by a bit in the
dsefla field of the dsch. The new "G" dscb contains the code ¥'03%' in
the dscb type field.

The E£PEs (external vpage entries) for both new dscbs have also been
redefined. The new format is:

STVXPPPP, s = slot O-f
TV = relative volume number O0-ff
X = zero
pppp = relative page number O0~ffff

In addition, the following new fields have been added to the "G" d=scb
to aid in dscb integrity and recoverablity:

DSGSEQ () - dscb secd=2nce counter 1,2,3,,.,0

DSGFM¥TE (4) -~ vpointer to the format "E" dschb

DSGCTEP® (1) - count of epes in the dschb

DSGMAX (1) - maximum number of epes this dscb ray contain

The format "E" pointer contained in the format "G" dscb is used as an
anchor to the format "F". The seaguence counter is used to indicate
wvhere in the chain a dscb slot belonos. A new command “FIXDSCR" (see
commands section) has been written to analyze dscb slots and their
contents, and attempt recovery if errors are detected. This command can
only analyze dscb chains in the new format.

CZCEW (write dscbd) has been rewritten to create only new format
dscbs. However, as released CZCEW will link to CZCEV ({the o014 write
dscb routine) and continue to create dscbs in the old format.

Creation of new or old dscbs is controlled by the followina patches:

SET CZCEWALL X*4700 allow new dschb creation

X'47f0' create 0ld format dscbs for all datasets

o

the above patch will cause new format dscbs to be
converted back to old format dscbs.

SET CZCEWNEW = X®'4700' create new dscbhs for all datasets
= Xt4770" create new dscbs for new datasets only.

VALIDATING DSCB SLOTS

System programmers occasionally find it nacessary to modify or valid-~-
ate D5CB slots. The checksum is used to validate DSCB slots.

If a programmer reads in {(via a SETXP system macro instruction) a
page of D5CBs and locates the DSCB he wants to examine, he can verify
that the DSCB wvas read in correctly by executing the checksum procedure
described below. He computes the checksum of that DSC3 and compares it
with the checksum value already recorded in bytes 255 and 256 (the chec-
ksum field) of that DSCB. When the checksums match, the DSCB is assumed
valid. If they do not match, that DSCh slot is assumed to be erroneous.
The syster programmer should then attempt to recover, as far as possi-
ble, from the checksum error. The system service routine, DSCBREC {see
System Service Routines), can be used to attempt this recovery. The

DSCB page can be written on external storage through use of the PGOUT
system macro instruction.

Section 4: System Programmer Facilities 56.3

TNL GN20-4106 (01 July 80) to GC28-2008-5

Whenever a system programmer modifies a DSCB, he must recoumpute the
checksum value, record it in the DSCB checksum field, and rewrite the
DSCB page to external storage.

Checksum_Procedure

The following standard procedure is used for computing the checksum
values for DUSCB slots. The first 63 words of the DSCB are summed and
the sum complemented. The high-order half (bLits 0-15) of the result is
then added to the low-order haif (bits 16-31 and the low-order half of
the result is placed in the last halfword (bytes 255 and 256) of the
USCBe.

This sample code illustrates the checksum procedure. Upon entry,
register 8 contains the DSCB slot number, and CKAD contains the virtual
storage address of the DSCB work page.

SLL RE,8 SLOT NO. %256
AL E8,CKAD + ADODR. OF DSCB PAGE.
LA R14,244 SET COUNT AND
L R15, 248 (#8) LOARD LAST WORD
CKSUM AL R15,0 (k14 ,m8) ADD IS PPREVIOUS WORD ARD
S R14,CORCK REDGCE WORD COUNRTER BY ONE.
BC 11,CRSUM IFP ROT PINISHED, CONTINUE.
LCR R15,R15 COMPLEMENT SUNM AND

56 .4

STH R15,CKSX STORE LOW-ORDER HALF.

SRL R15,16 SHIFT DORKN HI-ORDER HALF,

AL R15,CKsS ADD IN LOW-ORDER HALF AND
PERFORM STH OR CH.

-

*:*TF DSCB WAS MODIFIED, STORE NEW CHECKSUM VALUE**¥
STH R15,254 (R8) STORE RESULT IN DSCB.

*%%xTF SIMPLY VERIFYING DSCB WAS READ-IN CORRECTLY***

CH R15,254 (R8) COMPARE WITH EXITING CHECKSUM
CONCK bC Fs4r COUNT DECREMENT CONSTANT
CKs DC H*'O®* SUMMATION WORD
CK3X DS H
CKaD DS F DSCB WORK PAGE ADDRESS

YIRTUAL MEMORY SUPERVISOR CALL INSTRUCTIONS

Virtual Memory supervisor calls are those SVCs whose processing pro-
graams are in virtual storage; these SVCs use operand codes 0 through
127. Codes 0 through 99 are reserved for nonprivileged program defined
services while codes 100 through 127 are reserved for privileged program
defined services.

Many of these SVCs can be executed only from nonprivileged code; if a
privileged module atteapts to execute thea, diagnostic messages will be
issued. When a nonprivileged supervisor call is issued, the supervisor
passes it back to the task monitor as a task-SVC; no task program inter-
ruptions are generated. The task monitor transfers control to the ap-
propriate privileged (or nonprivileged) program for processing.

Nonprivileged programs can neither read, write, nor tramnsfer control
to privileged programs directly; some form of interruption (for exasple,
the interruption caused by execution of am SVC instruction) is required.

The Virtual Memory SVCs described in this publication are listed in
Appendix B.

REAL MEMORY SUPERVISOR CALL INSTRUCTIONS

The SVC queue processor controls the execution of SVCs 128 through
255. Codes 128 through 143 are reserved for installation use, codes 144
through 169 are reserved for TSSS, and codes 170 through 255 are resi-
dent supervisor SVCs.

System programmers (P or 0) may issue all resident supervisor SVCs
{170-255) . Any prograa operating in the privileged-program state (VPSW
p—-bit = 0) —— even if being run by a user-programmer -- may issue all
the Real Memory SVCs. The Real Memory SVCs described in this publica-
tion are listed in Appendix B.

If a nonprivileged program being run by a user-prograzmer attempts to
issue a Real Memory supervisor call, the resideant supervisor may create
an extended program interrupts. When the task monitor receives the in-
terruption, it calls DIAGNO. Generally, supervisor calls that.can dis-
rupt the operation of TSS are privileged. Supervisor calls that allow
access to private information are also privileged.

Section 3: System Programmer Facilities 57

Usually, the operation requested by a Real Memory SVC is a synch-
ronous one which is completed by the resident supervisor before it
returns control to the task that issued the SVC. The prirncipal excep-
tion to this is IOCAL, an asynchronous SVC, which is processed concur-
rently with the issuing task.

Task program interruptions, which may result from improper use of
these macro instructions, can be found in Appendix C.

ACCESSING SYSTEM DATA SETS

Access to the system catalog and the user table is restricted to sys-
tem programmers having an authority code of 0 and to certain privileged
routines, such as catalog service routines. Access to all other systenm
data sets is available to system programmers h&ving either authority
code O or P.

SYSER DUMP

To facilitate your monitoring of the system, dumps can be taken to
show real or virtual storage as they existed at the time an error was
detected. When the system error processor is called by the ERROR macro
instruction (SVC 254) or the SYSER macro instruction (SVC 228), a mes-
sage is displayed at the operator®s termimal to record the error. The
system then enters the wait state and the operator uses the support sys-
tem to take the dump and, if hard copy is desired, to print it. After
the dump has been taken and control returned to the system, processing
continues as described under the ERROR and SYSER macro instructioss.

If the call to the system error processor came from main storage
(real core) via the ERROR macro instruction, the followving message is
displayed at the operator'®s terminal:

<ER> RM mnnn{MIN|MAJ}userid TID{C|N} {SYSIN}hhmnm
CPU# SP=SVYC PSW

MODULE: module name base address

REGISTERS: 0 — 15

vhere the elements have the following meanings:

e <ER> identifies the message as being issued by the system error
pProcessor.

o RM identifies the call as having come from main storage (real core).

e mmnn is the four—-digit ERROR code that identifies the call (see the
description of the ERROR macro instruction for an anmalysis of the
code) .

e (MIN) identifies the error as type-1; (MAJ) identifies the error as
type-2.

e UID=userid identifies the user whose task was running vhen the error
was detected by means of his eight-character user identificatiom, or
userid, which is contained in the TSI.

¢ TID=taskid identifies the task that was running when the error was
detected by means of its four-hexadecimal-digit task identification,
or taskid, which is contained in the TSI.

e C indicates that the task that was running when the error wvas
detected was conversational; N that it was nonconversational.

58

— g —

TNL GN204106 (01 July 80) to GC28-2008-5

» SYSIN=xxxX specifies the four-hexadecimal-digit symbolic device
address contained in the TSI.

» hham indicates the time in hours (hh) and minutes (mm) at which the
error vwas detected.

#» CPO= indicates the number of the CPU
e SP=SYC PSW at the time of the SYSER call

e MODULE: identifies the module that issued the SYSER: call and its
base address

© REGISTERS: indicates the contents of general registers 0 - 15 at the
time of the SYSER SVC

1f the call to the system error processor came from a privileged rou-
tine in virtual storage via the SYSER macro imstruction, the message is
modified slightly and takes the form:

<ER>YM aabbcccnn (MIN|MAJ} userid TID{C}N} {SYSIN}hhmnm
CPU4& SP=SVC PSH

HODULE: module name base address

REGISTERS: 0 - 15

vhere those elements in common with the main storage (RC) message have
the same meaning and the remaining elements have the following meanings:

» ¥4 identifies the call as having come from virtual storage.

e aabbccenn is the nine-digit SYSER code that identifies the call (see
the description of the SYSER macro instruction for an analysis of the
code) .

The information identifying the task (UID, TID, SYSIN) is always
valid when the call is fror virtual storage; it is not necessarily valid
vhen the call comes from main storage. The task identified in the mes-
sage resulting from a main storage call is the last task dispatched by
the supervisor. However, since the supervisor can perform many func-
tions before dispatching another task, the task names in the message may
not be the one causing the problem. -Whether or not the task information
is valid must be determined by the system programmer.

For conventional tasks, the symbolic device address is that of the
terminal from which the input stream is being entered, while for moncon-
versational tasks, it is the volume on which the SYSIN data set resides.

Por all errors detected in bulk I/0 and batch monitor tasks as well
as in the main operator®s task, the user ID is SYSOPERO. To distinguish
among these, you must use the four—hexadecimal-digit task
jdentification.

RELIABILITY AIDS

AUTOMATIC ISA REPLACEFMFNT

STARTUP saves the critical vortion of the ISA in the supervisor and
the pointer and length of the saved ISA in CHBSYS. CEAR2 and CEAJI
compare the saved PSWs with the task®s ISA PSWs. If they are not the
same, the ISA rebuilder, CERA22, is called. This permits a task whose

Section 4: System Programmer Pacilities 59

TNL GN204106 (31 Jhudy 80) te GC282008-5

— oy

ey gy e = gy i

ISA has been overwritten to have the critical nrotions of its ISA
restored, thus allowing the task to he deleted gracefully; otherwise,
the task would go into an uneniinag loop and could not easily be forcea
from the system.

3arrier Pages

When STARTUP loads the virtual memory modules it generates a barrier
page for =2ach LLIST macro in CHBVY with operands BARPITE=PRIVATE/SHARED,
putting the padges in private or shared memory as recuested. STARTUP
will also generate a barrier »age immediately following the ISA plus one
at location 'FFFOO0 .

READ ONLY PAGE OVIRWRITE PROTECTION

STARTUP identifies all csects with the read only attribute, and sets
a flag in the External Page Table entry for each read only CSECT. This
can be overruled by a parameter ROPEOT=N in the load list.

If a read only page is founl to te changed by the TSS supervisor a
'3388% real core minor SYSER will be issued. Register 0 will contain
the VMA and reagister 1 will contain the BMA cof the changed page (for
shared pages, register 0 is relative to the start of the shared page
table). After issuing the SYSER the changed version of the vage is
thrown away and a fresh copy will be used the next time the pacge is
referenced.

Two switches in CHBSYS may be used to alter the read only page
protection. The switches are 'RF' bytes into CHBSYS. The first switch
(X*80') will stop all read only nage protection. The second switch
(¥*'4G*) will detect changed read only vages, but will turn off the read
only bit in the XPT and continue with the changed pages.

MODIFPYING SYSTEM FACILITIES

To

change T5S, you will probably follow a procedure like this:

1. Defipe the functior to be accomplished.

2. Identify the modules to be added, changed, or deleted.

3. Define the interface of these modules with all other TS5 modules.

60

The control section dictionaries of modules in the system provide
you with a listing of all the module®s external references (REFs)
and external definitions (DEFs). This is a start in determining,
for example, how an existing module fits imnto the system. Care
must be exercised, as this information may be deceptive. For exam-
ple, an external address can be loaded into a register, and the
register (instead of the extermal address) can subsequently be re-
ferred to in the program. You might see this:

BOLD L 5,=¥ {CHBSYS) SYSTEM TABLE ADDRESS
USING CHASYS,5 FORMAT OF SYSTEK TABLE
SNEAKY L 6,SYSLOW EXTERNAL BREFERENCE
L 7,60 (5) EXTERNAL REFERENCE

TNL GN20-4106 (01 July 80) to ©3C28-2008-5

The symbol CHBSYS is an extermal symbol apd would appear in the
control section'®s dictionary as an external reference (RE¥). The
reference to SYSLOW would not appear as an external reference,
though, and the reference 60(5) isn®t even a symbolic reference.
The cross-reference dictionary would show you that statemeant BOLD
refers to the externally defined symbol CHBSYS; yeu have to figure
out that SNEAKY also refers to it.

Unfortunately, there®s no convenient way to determine what pro-
grams refer to the external symbols defined in a given program.
The instruction:

ENTRY ABCRJG

allows other programs to refer to the symbol ABCRJIG. There is no
guarantee, however, that other programs will actually refer to
ABCRJG. Consequently, if you delete a programx from TSS, you have
no systematic way to determime which pregrams refer to the program
you're deleting. You can discover the references only by carefully
studying the function of the program being modified or replaced and
by understanding its role in the overall design.

You might be tempted to list all the external syabol Aic-
tionaries of all the object modules that make up TSS, as a way of
determining their interdependencies. This might be helpful, but it
is not foolproof. Some programs set up registers with external ad-
dresses for use by other programs that know what the registers are
supposed to contain. A prograr using registers set up by another
program might not contain a single explicit extermal reference.

You might see this:

OBVIOUS L 6,=¥ (CHBSYS) LOAD EXTERNAL SYMBOL
L 15,=V (SNEAKY) LOAD ADDR OF SUBROUTINE
BASR 14,15 TRANSFER

The subroutine might lock like this:

USING *,15 DECLARE BASE
SNEAKY L 8,12 (6) HIDDEN EXTERWAL REPERERCE

The extermnal reference to CHBSYS would never show up in the exter-—

nal dictionary of the program module containing SNEAKY. Note that

the best coding practice would have been to cover register 6 with a
DSECT for CHASYS and address the field symbolically.

Write the assembler statements.

Assemble and test the new or amended modules and stcore them in the
same library.

Update the TSS system data sets using the procedures described in
System Generation and Maintenance.

Section 4: System Programmer Facilitias A0.1

PROGRAN CONTROL SYSTEM (PCS)

The program control system (PCS) is not, in general, applicable to
system programs. For example, one PCS command, the CALL command, always
transfers control in the nonprivileged state and, therefore, cannot be
used to tramsfer control to a privileged program. The privileged system
programaer (aunthority code 0) who wishes to directly invoke a privileged
program must do so by including a BPKD macro instruction in the program
and issuing a BUILTIN command. (See the BPKD macro instruction for a
full explanation.)

Three PCS commands can be used with privileged system prograas.
Through the SET conmand, privileged system programmers can modify privi-
leged, public control sections; this is the only wvay imn which such con-
trol sections can be changed from a terminal. 1In addition, privileged
public control sections may be exanined by the use of the DISPLAY and
DUMP compands. The following discussion covers the precautions you must
observe.

Each D-class user is assigned an authority code by JOIN: code P spe-
cifies a systea programmer, O specifies a privileged system prograamer,
and code U specifies an ordinary user. When someone logs on, this au-
thority code is used to govern the operation of the dynamic loader and
the use of PCS.

The dynamic loader ignores or overrides control section attributes
depending on the programmer's authority code and the library froam which
the module is loaded. If you are a system programmer with authority
code P, you can test nonprivileged system programs. These programs can
be dynamically loaded from any one of the three major libraries. If the
program is loaded from either JOBLIB or USERLIB, it is assigned to pri-
vate, read/write storage. The attributes of public, read-only, systenm,
and privileged are overridden. If it is loaded from SYSLIB, only the
public and read-only attributes are overridden. As a result, you get a
private copy of any aodule dynamically loaded from SYSLIB. Privileged
modules so loaded remain privileged and write/fetch protected. This
provides continued protection for the privileged routine.

Because of your authority code D:
e You may use all PCS commands in testing your nonprivileged prograss.

e You may use symbolic addressing to display or dump any privileged
CSECTs which have been dynamically loaded. '

s You may display or dump the contents of your task's virtual storage.

If you are a privileged system programmer (authority code 0), any module
you dynamically load is assigned to private read/write storage. Only
the attributes of public and read-only are overridden by the dynamic
loader.

Your PCS capabilities with respect to privileged programs are the
same as they are for a nonprivileged system program (except that the AT
statement cannot be used in a privileged program). In additiom, you can
display, dump, or set IV#M. You must exercise extreme caution in setting
IVH, particularly in a multiprocessing environment, since other CPUs may
be using the coding you are setting.

You cannot use other shared coding in the system for PCS testing,
since it is not part of your virtual storage.

The PCS commands and their functions are discussed in detail in the
Command System User's Guide.

Section #: System Programmer Facilities 6%

TIME SHARING SUPPORT SYSTEM (TSSS)

For a complete definition of T5SS, its command language, and its
modes of operation, see Time Sharing Support System, GC28-2006. The
following discussion is intended only to introduce you to its facilities
and use.

TSSS has two parts, a Resident Support System and a Virtual Support
System. The Resident Support System (RSS) is very nearly independent of
TSS; when it is invoked, TSS activity is temporarily suspended and RSS
has access to all real storage and to the virtenal storage of all current
tasks. The Vvirtual Support System (VSS) performs the same basic func-
tions as does RSS; hovever, it is invoked within an active task, relies
on the TSS resident supervisor, and is time-sliced.

TSSS is a maintemarce tool which has been developed for the systea
programmer (authority code 0 or P) . It is independent of machine con-
figuration, and, depending on mode of operatiomn, it amay be activated by
pressing the CPU external interruption key, either from a remote termi-
nal location or from predetermined points within a task during TSS
execution.

When you are using RSS you are referred to as a Master System Pro-
grammer (MSP); when you are using ¥SS, you are referred to as a Task
System Programmer (TSP)}. There can be only ome MSP at any given time,
vhereas there can be more than one TSP, but only one per task.

TSSS has its own command language; it is constructed from the follow-
ing elements:

Commands
Symbols

Literals
Operators

Commands
The following is a list of the commands that you can use with TSSS:

e AT -~ Places a linkage to TSSS at a specific point during TSS execu-
tion. The AT command must be followed by at least one other TSSS
command, the one that will be executed when the specified location
is reached.

e CALL - Provides access to command statements that are on tape or in
the card reader.

e COLLECT - Accumulates data into a selected data field.
e CONNECT - Joins a TSP to a conversational task.
e DEFPINE - Create temporary SP symbols.

® DISCONNECT - Removes TSSS capabilities from a terminal that is dedi-
cated to an MSP or TSP.

e DISPLAY — Displays data at your terminal.

o DUMP — Displays data omn an output device. (You must establish the
output device prior to issuing a DUMP command by placing its address
in the $DOUT data field.)

¢ END - Terminates the reading of command statements from a device and
returns control to your terminal.

62

s IF - Designates that the execution of subsequent commands is
conditional.

e PATCH - Temporarily overlays the contents of a data field. Its pre-
vious contents are saved.

® QUALIFY - Defines or changes the implicit meaning of subsequent
operands.

¢ REMOVE — Deletes patches, and implanted ATs and their associated
statements.

s RUN - Returns control to TSS without discoannecting your terminal.
s SET — Inserts data into a specified data field.
e STOP — Returms control to your terminal after statement execution.
Symbols
You may use the following types of symbols with TSSS:

e External Symbols - Refers to the actual (real or virtual) storage
address of a data element.

* System Symbols - Refers to and gualifies storage areas. The first
character of each system symbol is a $.

e SP Symbols — Defines and assigns a symbolic name to a data field.
The data field defimed by an SP symbol may exist in the system pro-
grammer's working storage or it may be a TSS data field.

Literals

You may use the following types of literals in the TSSS command
language:

Decimal Integer
Hexadecimal
Character

Operators

You may use the following types of operators in TSSS command state-
ment operands:

Arithmetic

Relational
Boolean

TERMINAL ACCESS METHOD (TAMIIT)

The following is a short overview of what TARII is and howvw it is
organized.

What is TAMII?

TAMII is a package of modularly designed programs for providing a
user—directed, device-independent, terminal-computer interface. It pro-
vides both device dependent and independent functions for system and ap-
plication progranms.

TAMII provides a system programmer with a concise and well-defined
interface for adding both new devices and/or new device function.

Section 4: System Programmer Pacilities 63

TAMII was designed and written to do the following for TSS:

{1) Improve human factors by

¢ providing a user-terminal interface under almost direct comn-
trol of the user, through user commands and defaults

e use of buffering on input and output

e better user oriented error recovery; error recovery
interacts with the terminal user to correctly handle recov-
erable errors.

e increasing communications line reliability due to better
erTor recovery.

(2) Increase system performance and throughput (via buffering on
input and output)

{3) Increase maintainability, reliability, and extendability by
separation of function, modularity of code, and table driven
device support.

TAMII provides the following basic services for the system and appli-

cation programs, and users:

64

Establish, terminate, and control access between tasks/application
programas and communication lines

Move data between application programs and coamunication lines

Maintain a device and data independent interface between task/
application programs and communication lines

Establish and maintain a well-defined interface between device
dependent modules and common system provided routines

Permit tasks, application programs and users to share communication
lines, controllers, and terminals

Permit monitoring and altering of the telecommunications network
Handle device dependent and independent requests interchangeably

Complete input and output buffering transparent to the application
progra® but under direct control of the user

Reliability, availability, and serviceability aids to assist in
maintenance and extending device-function support

Place the user's communication environment under the user’s direct
control

Allow a priority sequence of interrupt processing, by an applica-
tion, for operations to and from a terminal. TAMII supports the
following types of interrupt processing:

Device 'EXITLIST® ASYNC
Application program general *EXITLIST® ASYNC
SIR & DIR interrupt gueuing ASYINC
FINDQ work polling capability SYNC
YCHECK' capability SYNC

APPLICATION | COMMAND
PROGRAM TGATWR TGATRD| TGATRD TGATWR SYSTEM

| | |
| | |

v;;s\\l / /

r
| | COMMON TASK T
v | CZFTA | INTERFACE A
M | | MODULES s
e N)
|
FORMAT CONTROL MODULES |
|
DEVICE & ACCESS METHOD DEPENDENT 1
ROUTINES |
	i		
L 1	. 4		
r ki))] ‘ ? ‘ f		
	1	PUT GET IOREG	
CZFBFP		CZFTB	QSAM
JCZFATC1		i VAM	
o			
i 4 L. ¥			
svc ,f			
R RTAM			
M p————q			
cEATC			
1 L	1 3	B L] l l	
COMMON	CEATB		CEATA
SYSTEM		I	
INTERFACE	SVC		INTERRUPT
MODULES - L 1		E	
CEATE	R		
PRI S ¢ J			
I			
s			
r v O			
	R		
DEVICE CONTROL MODULES 1			
(DEVICE AS PERTAINS TO LINE CONTROL)			
L | ! i

| i
TERMINALS | LI NES | NETWORK
| i

Figure 13. Overview of TAMII Organization

Section 4: System Programmex Facilities 65

COMPOSITION OF TAMII

TAMII consists of four main components: two residing in the resident
supervisor and two residing in the tasks initial virtual storage. The
resident supervisor components are RTAM (Real Terminal Access FKethod)
and a set of DCMs (Device Control Modules). The virtual storage com-—
ponents are VISS (Virtual Terminal Support System) and a set of FCHs
(Format Control MEodules). See Figure 13.

BTAM —-—- Real Terminal Access Method

RTAM contains six common system control modules. RTAM controls all
interaction between the system and the DCMs to provide one common inter-
face between RTAM and the system, and between RTAM and the DCHMs.

The following are the RTAM modules and their associated functions:

1. CEATA - interrupt handler, I/O completion and I/0 request queue
initiator for non-shared limes

2. CEATB — ATCS SVC handler; handles all task I/0 requests, and
supervisor I/0 requests. CEATB validity checks the request,
generates a request element (a buffer) for the request, gueues
the request on the pending request queue in its correct priori-
ty position, and calls the DCH to process the request, if
required

3. CEATC - subroutine pool one; contains common subroutines used
by both RTAM and the DCHs

4. CEATD - environment SVC handler; handles the SAVBFP, RSTBFP,
and SETTCT requests:

SAVBFP - saves all pending and not active I/0 requests

RSTBFP - restores to the pending gueue previously saved
buffers

SETTCT - sets, resets and interrogates flags in the TCT for
the task

5. CEATE - subroutine pool two; extension of CEATC
6. CEAR4 - MTT related SVC handlers:

CONN - connect an MTT task to the system and make known a
BEGIN application name to the system

DCON - disconnect an MTT task from the system and delete the
application name from the 'BEGIN' table; also used to inhibit
{(ILOGON) and permit (PLOGON) BEGIN requests for am application
task
CKALOC - performs two functions:
Mark a terminal under task control for IOREQ use (TANII
gives up control of the terminal), and release a terminal
from task control and return control to TAMII
Porce communication line initialization for network control
ATTACH - used to logically attach a separate function to a cur-
rently active terainal

66

LCONN - connect requested terminal to task under TAMII control

OPLOW - svc is used to interrogate and set the allowved count of
users for the system and MTT application programs.

DCM_ - Device Control Modules

DCEs are supposed to be line controllers. It is the DCH's responsi-
bility to get the data to and from the terminal. Ideally, the DCM has
no knowledge of the actual terminal at the end of the communications
link. DCHMs are normally table drivem from a Device Control Library
Entry called a DCL.

It is the DCM's responsibility to handle the following functions when
required:

Does final validation of all I/0 requests

Builds the reguired chamnel programs to perform the I/0 requests
and initiate the I, 0

Maintains line control during nom-activity between terminal and
task

Handles the initialization required for connecting a terminal to a
task whether initiated by the user or the task

Sets up device dependent information in the required system control
blocks

Handles all device dependent interrupt status other than channel
end/device end and system PCI chaining reguests

Provides error recovery for all abnormal endings
Handles device dependent timer routines

Provides simple output edit capability for supervisor messages to
the terminal user

Detereines length and type of input amd checks user®s imnput for
user and hardware function requests (cancel, attention, etc.)

The following DCMs have been implemented:

CEDMO1 ~ contains two functions which are used by CEDM0O2, CEDMO3 and
CEDHNOU4.

CEDIR - an input data interrogator. CED1R handles input
length determination, special control character function
handling (e.g., ATTENtions, line camncel, device control coa-
mand determination and input buffering control function),
and SOLICIT macro support.

CED1E - handles all error recovery and other unexpected or
abnormal status completions for I/0 requests.

CEDNO2 ~ handles 27417 support.

CEDMO3 — handles ASCII teraminal support, specifically TTY33 and
TTY3S.

CEDMO#4 - handles 3215 operator comnsole support.

Section 8: System Programmer Facilities 67

CEDM0O7 - handles 3270 support. CEDMO7 does not use CEDMO1, but does
its own input determination and uses CEDM09 for error reco-
very -

CEDM0O8 - handles the 3066 console support for the M168 operator con-
sole CEDM0OB8 uses CEDN0O9 for error recovery.

CEDMO9 - error recovery for CEDMO7 and CEDMO8. CEDM09's error reco-
very is much simpler than the error recovery used for CEDNO2
and CEDNO3.

RTAM Control Blocks

68

CHAATCS - virtual memory parameter list for requesting RTAN to per-—
form some I/0 request. The parameter list is pointed to by
the execunted ATCS SVC (SVC X*'DB') .

CHABFP - I/0 request control area and data area. Contains informa-
tion in the header area describing the requested operation.
The data area contains the user®s data for output
operations.
CHABFPs are chained forward and backwvard, in a circular
chain. The first entry in the chain is pointed to by the
TCT (TCTBUPF) .

CHADCLE - device control library entry. The CHADCLE is a read-only
control block used to drive the Device Control Modules and
to set up the initial terminal environment at initial con-
nection time. The DCLE®*s field definitions are dependent
only on those DCMs that are to reference it.

CHAERR - a dsect covering the error recovery error report built to
record permanent and intermittant errors for VMEREP
handling.

CHAMTS - system control block used for controlling user access to the
systea or to special application tasks. The MTS contains a
pointer to the segment table which contains the shared
translate tables.

CHARMSG — the RESG is RTAM's message file. The RMSG contains all of
the messages used by RTAR for communicating with a user.

CHASCN - the SCN is a SYSGEN built table describing all I/0 devices
on the system. The SCN is used by RTAE as a base pointer
for RTAM control block chainms.

CHATCT — terminal control table entry. The TCT is RTANM's main con-

trol block. Every other chain or control block used by RTANM
is headed in the TCT. The TCT is also used to maintain line
status information for connected lines.

The TCT is pointed to by CHASCN (SCNTCT) and by the owner
task's TSI if there is one (TSITCT) -

CHATII —~ task interrupt information block. The CHATII is a dsect
covering the CHABFP after the BFP has been reformatted for
task I/0 completion posting.

CHATIO terminal I/0 control block. The CHATIO describes the I/0
currently in progress on the line. The TIO dsect covers two

separate control blocks.

{a) The main TIO block contains the channel program needed
to perform a requested operation. The TIO is pointed to by
the BFP which describes the I/0 request being perforrmed.
For certain line control operations, there may not be a BFP.
The currently active TIOCB is pointed to by the TCT (TCTTIO)
for the line.

{b) The second control block is an error recovery status
save area. It is pointed to by the TIO which contains the
error interrupt.

CHATRAN - shared translate tables. The CHATRAN dsect covers the
translate tables which are shared between virtual memory
and RTAM. They contain tables for performing line code to
EBCDIC and back tramslation besides tables for folding and
reverse folding EBCDIC codes.

CHATSI - task status index. The TSI is the main resident task con-
trol block. The TSI contains a pointer (TSITCT) to the TCT
for the task's SYSIN/SYSOUT. The TSI also contains a point-
er to a list of connected terminals for MTT applications.

YISS - ¥Virtual Terminal Support Systes

VTSS provides the common virtual storage interface between TANII and
the application program and/or task. VTSS handles all the user®s re-
gquests for connecting/sending/receiving data, and disconnecting a logic-
al terminal. VTSS attempts to provide complete logical device support
for the application programmer, and comnsists of eight modules:

CZPTA - I/0 request macro handler. Using the user's environment, the
macro request code, and information about the PCH from the
PCL, it determines what sequence of requests must be done to
fulfill the reguest.

CZFTB - I/0 completion interrupt handles; handles synchronous and
asynchronous interrupts from RTAM for the task. 1Also does
all processing needed for the PEXITLIST' support and
initiates the virtual storage connection process wvhen a user
connects to a task or an MTT application program residing in
the task.

CZFTC - default extractor; gets defaults and sets the appropriate
flags and fields for both TANII and the user®s environment.
Por O and P authority users, also handles the V55 device sup-
port default at logon tinme.

CZFTD - connect and disconnect; called to connect and disconnect a
user and/or the user's SYSIN/SYSOUT components for TAKII by
building the required control blocks.

CZFTE - terminal profile handler; handles the merging of the user's
requested terminal session environment with the terminal®s
format requirements. Also handles the saving of the user's
environment for profile processing.

CZFTG - device control command processor; handles all processing for
the user?®s entered device control commands (screen commands).

CZFTP -~ common VTSS psect.

CZFBFP - subroutine pool; contains buffer allocation routines, ATCS
parameter list build routine, and other common routines.

Section 4: Systea Programmer Facilities 69

FPCM - Format Control Modules

Format Control Modules are responsible for translating a user's out-
put data stream into a form and sequence which the end device will ac-
cept and act upon in the way the user expects. On input, the Format
Control Module is responsible for removing all device control inforama-
tion and setting up the data into an EBCDIC stream for the using pro-

granm.

The FCH is set up to handle a class of devices or access methods;

e.g., CZFM00 handles all interactions with datasets.

It is the PCH's responsibility to handle the following functions when
required:

1-

3.

7.

For output —

edits output data against user function table
does any block or record formatting required

handles any physical line length limits and any regquired con-
trol character segquences

translates output data to line code
invokes correct routine to do I/0

checks return codes and sets up correct return code for the
calling module

For input -—-

translates input data

removes any block and-or record format headers, etc.
deletes any device control characters

edits input data against user function table

moves input data to correct input area

checks return codes and sets up correct return codes for the
calling module

Control requests; performs control function by either continuing
the calling sequence or exercising its own code.

Naintains correct sequence and buffer links for buffered re-
quests in virtual storage.

Handles any associated functioms required for support of owned
devices; e.g., conversational buffer.

Performs any special initialization which may be required for
connecting a device.

Performs any special processing which may be required for dis-
connecting a device.

The Format Control Modules currently supported are:

CZFM00 - handles all operations with datasets. CZFM00 supports the

70

following dataset organizations: QSAM, VSAM and VISAHN
{region and non-region).

CZFM01 - handles all supported hard copy terminals.

CZFM05 - handles the conversational buffer used for support of dis-
play terminals. CZFM05 is device independent. PFor actual
device dependent activities CZFM05 calls a second level of
PCMs to provide the actual device dependent support:

CZ¥3270 - local 3270 support
CZF306& -~ 3066 Comsole support

YISS Control Block Definition and Setup

CHAMTT - Virtual Memory Terminal header control block. CHAMTT is
contained in CZFTP and is the head for the task®s terminal
and user tables. CHARTT contains the following table
headers:

(1) List of user's tables - if MTT/MUT type of task
{2) List of RTAM-owned terminals connected to the task.

{3) List of non-RTAM-owned terminals and pseudo terminals
connected to the task.

(4) MTT work area pointers and saved work area pointers for
exit from the MTT state.

List (1) above is organized by user number. The USN parame-—
ter on all the TANII macros is used as an index into this
list to get to the User's Terminal Control Block (CHAVTCB) .
See Pigure 13.

Lists (2) and (3) above are essentially the same. They are
organized by Relative Line Number (RLN). The RLY is assign-
ed at connect time by RTAM for RTAM-owned terminals or by
the Connect Module (CZFTD) if the terminal is not supported
by RTAH. The RLN is a halfwvord number with zero being valid
and a X"8000* denoting an unassigned RLN entry. Bit 1
{X*4000°") determines which list the RLN pertains to. RTAH
list —- list (2) - bit 1 is a 0; non RTAM, bit 1 is a 1.
For further inforemation, see the CHATERM description.

The MTTBFP pointer determines which work area is in use.

For normal TSS there is only one work area, for HTT there is
an expanded active work area assigned ard the original TSS
work area is pushed down by being saved in MTT... and
MTTBFPP being changed to point to the new area.

CHAVTCB - Virtual User Control Block. One CHAVTCB is assigned for
each connected user of a task. The VICB contains pointers
to the FCLs (see CHAPCL description below and figure 14)
for the user's SYSINs and SYSOUTs. The corresponding
default SYSIN and SYSOUT FPCL pointers are maintained in the
CHAVTCB.

CHAFCL - Format Control Library entry. The FCL contains the informa-
tion needed by the Pormat Control Module for handling the
user's SYSI¥/SYSOUTs. This information pertains both to the
user's environment profile and to the actual hardware chara-
cteristics of the SYSIN/SYSOUT mode {terminal or dataset).
The system contains a set of FCLs for all supported devices
and access methods. The system PFCLs also contain a set of
systea defaults for the user's terminal enviromment which

Section 4: System Programmer Facilities 71

are used until the user®s profile can be accessed. At LOGON
time the user is assigned a copy of the system®s FCL. After
LOGON has completed, the user®s own enviromnment profile is
merged with the device requirements and limitations and is
contained in the FCL.

CHATERM -~ terminal RLN to FCL tramnslation entry. There is one CHA-
TERM entry for every assigned RLN whether its for an RTAM
or non—-RTAM terminal. The CHATERH entry contains pointers
to the PCL(s) used to define the SYSIK/SYSOUT connection
betveen the RLN and the user. Also maintained in the TERM
entry are the completed work flags for use by FINDQ when
running an MTT application program.

CHAGMA — GATE macro parameter list. All of the TAMII macros build a
fixed length format parameter list. This macro parameter
list is described by the dsect CHAGHA.

TAMII CONTROL BLOCK ORGANIZATION

VISS -~ User Macro to SYSIN/SYSOUT Translation

BRach user (see Figure 14(A)) connected to a task is allowed a maximum
of three SYSOUTs and three SYSINs active at any one time. One SYSOUT
and one SYSIN are considered the default component. Each of these
SYSOUT/SYSINs are described by a FCL entry. There is only one FCL for
each device connected to the task. An PCL entry may describe only one
SYSOUT or one SYSIN or it may describe both a SYSOUT and a SYSIN for the
same device . :

When the application program or the TSS Command System issues a TAMII
macro, the user and the component for which the request is directed is
specified using the USN, CPO and/or CPI parameters. If the USN and CPO
and/or CPI are not used, a USN of 0 (the task owner) and the default
components for that DSN are used. Using the USN¥ number, CZFTA computes
a pointer to the user entry in CHBMTT. From this entry CZPTA picks up
the pointer to the user®s VTCB which contains the pointer to the FCLs
for the user. If a CPO or CPI had been given, CZFTA uses it as an index
into the list of SYSIN/SYSOUTs owned by the user. If not given, CZIFTA
uses the default pointer from the VICB to get the correct FCL.

VISS ~ RTAM Interrupt to PCL and VTCB Translation

Each interrupt from RTAM (see Figure 18(B)) which is received by the
task®s RTAM Interrupt Processor (CZFTB) contains a halfword number
called a RLN — Relative Line Number. The RLN is used by CZFTB to index
into a table of "term' entries pointed to by CHBMTT. The TERE (CHATERH)
contains the user number (USN) of the user owning the terminal and poin-
ters to the FCLs for input and output. If needed, the VICB address is
loaded from the associated PCL.

RTAM ~ Virtual Memory Request to TCT Translation

When VTSS sends an I/0 request to RTAM (see Figure 15(A)) by execut-
ing the ATCS SVC, VTSS fills in the field ATCSRLN from FCLRLN. The RLYN
is used by RTAM to determine the device to which the request is
directed.

Upon receipt of the request, RTAM picks up the RLN from the parameter
list. If the RLN is zero, RTAM assumes the request is for the task

72

VIRTUAL STORAGE
|
USN PARAM | CP PARAM
i
V (CHBMTT) USERO 1

| -

I

{FCL | FCL FOR
] | SYSIN

| FCLRLN| SYSOUT
L

r
|[FCLL. | FCL FOR

| SECONDARY
|FCLRLN| SYSOUT

|
}
\L."SE‘“ rofra 1 row ror
| SeReESEEtEaEaaaEE P
|VTCB j:£:;1FCLRLN; SYSOUT

| |
| |
|1 |
| ¢ - d r~— -1
MACRO CALL i ‘k}\’IFCL | FCL FOR
| |
| |

FORWARD DIRECTION | FCLRLN| SYSIN

3 | —
(A)
(B)
INTERRUPT ENTRY RLN = RELATIVE LINE NUMBER
BACKWARD DIRECTION
ISA INTERRUPT P——
INFORMATION TERM ENTRY _~—*| FCL |
(CHATII) . T -) L 4 VICB
r n f 1 | SDA | INPUT | OUTPUT | fm——————
| TIIRLN | + | CHBMIT | = | RLN | | | e
| or | L 4 L i L I :
| TIIQRLN| (TERM ENTRIES) ____,_—-¢>I FCL |
| S | L~ 4

Figure 14. TANII Control Blocks - VISS

owner's terminal and loads the TCT pointer from the TSI. If the RLN is
non-zero, RTAM uses the RLN as an index into a list of fullwords pointed
to by the task'®s TSI. The first halfword is a set of flags and the
second halfword is the SDA of the device. The SDA is used to compute
the address of the scan table entry, from which the TCT address is
loaded.

RTAM - T/0 Interrupt to Owner's Task TSI Translation

Whenever RTAN receives an I/0 interrupt (see Figure 15(B)), the
interrupt GQE contains the SDA of the line. RTAK uses the SDA of this
interrupt, to compute the scan table entry. 1In the scan table entry is
a pointer to the TCT for the line. If there is not a TCT pointer, RTAN
assumes that the interrupt is ar initial interrupt from a user who wants
to connect to TSS. In this case, RTAN allocates a TCT and places its
address in the scan entry. If there is a TCT pointer, RTAM tests the
TCTLOG flag. If the flag is on, the terminal is in the logon process so
there is no task and therefore no TSI pointer. If the flag is off, RTANM
loads the TSI pointer from TCTTSI .

Section 4#: System Programmer Facilities 73

ATCSRLN SUPERVISOR

IF ATCSRLN=0 USE TSITCT

IF ATCSRLN#(0 USE SDA FROM CHATCT
TSIMTT LIST P — .
| Tcr |
CHATSI |
[y i SDA |
| TSI p-— [A 3
l b d
| —r——1
| I S 4
| St
TMTLST |
—
Ll = ——d
** SCNENT=

ASCNENT CHASCN

L e r
SVC CALL | Sba
FORWARD DIRECTION

(a) ———————d
(B)
INTERRUPT
BACKWARD DIRECTION CHATSI
| S -1
CHASCN e 1 »| TSI i
1 1 | TCT | |
| SDA SCNTCT] | | i
i ——— SDA | e d
| L-_...i. d/ IL _________ 1
L J

Figure 15. TAPMII Control Blocks - RTAK

RTAM I/0 Queue Organization

When VTSS issues an I/0 request (see Figure 16), RTAM builds a re-
quest block called CHABFP (BFP for short) and moves all the pertinent
information and data out of virtual memory and into the BFP. The BFP is
chained in a pending request chain of other BFP blocks. This chain is
in a priority order. 2Any reguest which has the break flag (GMABRK) set
is assumed to be a top priority regquest and is chained at the top of the
pending gqueue. Following these requests are the normal I/0 regeusts is-
sued by virtual memory. At the end of the request qgueue, are the Soli-
cit and Buffer Command Read operations.

RTAM builds a channel program for a BFP in a control block called a
Terminal I/0 Control Block or TIOCB (CHATIO). The TIOCB is not con-
structed for a BFP antil it is time to do the actual I/0. When the
TIOCB is built the BFP is pointed to its associated TIOCB and the TIOCB
is back pointed to the BFP.

When the TIOCB is activated by initiating the I/0, the TCT for the
device is updated to point to the TIOCB. The pointer TCTTIO should
always point to the current active TIOCB if there is one.

RTAM I,/0 Chaining

RTAM supports chaining (see Figure 16) of active I/0O chamnel prograss
through a TIC and PCI interrupt operation. Any channel program which
can be chained from is ended in two NO-OP CCWs and a pointer is set in
the TIOCB to poimt to the second RO-OP which will become a TIC CCW.

T4

When a PIOCB is added to the active I/0 chain and is to be chained
to, the second NO-OP of the previous TIOCB is changed to a TIC CCW. The
TIC-to address is the address of the start of the new channel program
and the second fullword of the TIC CCW is the address of the TIOCB being
TICed to. When the set up of the TIC CCW is complete, the command
chaining flag is set in the first NO-OP to activate the TIC CCW.

The reason for two KEO-0OPs is to allovw chaining as late in the active
channel program as possible. If the ending I/0 transfer CCW were used,
it would lengthen the 'miss window' by the amount of time it takes to
transfer the data. In this way the window for missing is only the a-
mount of time it takes the channel to process the NO-OP CCW.

CHATCT

B Suren Suteand

I y—vq

|

4

TIOCB CHAIN BUFFER CHAIN OR PENDING REQUEST

L g ki] LR r k A i CHAIN
|t | ~—p|REQL 41§
| |

ia 3 —d |

|
IF PCI 1/0 L 3
CHAINING IS
SUPPORTED '
|
{
¥}

{TIOCB r 1 PENDING
| “-§\\‘-~_"IREQ2 | REQUEST
L <‘~\\‘~____ | r——1——1 CHAIN IS
| L ORGANIZED
L 4 IN I/0
r 1 ORDER
rt 1
rL’-"-""_“ﬂ|‘ r 1
| I | REQ3 |
| H | 1]
L 4 '
| 8 J
PCI CHAINING REQUIRES THE CHANNEL
PROGRAM END IN TWO NO-OP CCWs
SECOND NO-OP BECOMES A TIC AS r 751
FOLLOWS: rt 7 11
rt wl!)
£ 7 k] 1 ‘REQN |i"
| | TIC TO @ | 9TIOCB | | r~Fv—13>
Lt_L 1 - | l L___L___{
L 3

WHEN SETUP IS COMPLETE COMMAND CHAINING
IS SET IN FIRST NO-OP; TIC-TO TIOCBs
BACK POINTER WILL POINT TO TIC-FROM TIOCB

Figure 16. TAMII Supervisor I/0 Queues.

Section #: System Programmer Facilities 75

v — —

VS o - —

-— e . —— ——

NCP SUPPORT FOR_TSS

The NCP facility of TSS provides support for a channel attacked 3704
or 3705 Communications Controller, executing either the Emulation Con-
trol Program Level 3, or the Network Control Program/VS Level 5.

The following SNA devices are supported as TSS system SYSIN/SYSOUT
components:

3767 Display Unit models 1, 2, and 3

3277 Display Unit model 2 using a 3271 Control Unit model 12 or
3274 Control Unit model 11C using SDILC

3278 Display Unit models 1, 2, 3 and 4 attached to a 3274 Control
Onit model 1C or a 3276 Control Unit model 11, 12, 13, or 14
using SDLC

The following 3270 class printers using either 3270 data stream or
SNA character string (SCS) data streams are supported:

3284 models 1 and 2
3286 models 1 and 2
3287 models 1 and 2
32838 model 2
3289 models 1 and 2
TSS NCP support allows the operator to activate (load and execute a
*bring up' sequence), deactivate, and dump a 3704 or 3705. The operator

or an authorized user can run a line trace against an active SDLC line
or an active 370X Comnunications Controller running RCP/VS level 5.

ASSIGNING NCP CAPABILITY TO TSS

To support the NCP on TSS there are two new paranmeters added to the
CLOP macro instruction —— SUBAREBA and MAXSUBA. If they are not speci-
fied, TAMII®s NCP function is deactivated and am error message will be
given whenever an NCP activation is attempted.

MAXSUBA is the maximue pumber of subarea numbers to be assinged in
the network. It is specified as a decimal number which is a power of
two, minus 1 (e.g., 3, 7, 15, etc.) but not 0 or 1; subarea values of 0
and 1 are reserved for TAMII.

SUBAREA is the number to be assigned to RTAM as its subarea address
value. It must be greater than zero and less than MAXSUBA. A value of
1 is recommended for use with NCP Level 5.

TS5 Restrictions for MAXSUBA and SUBAREA

TAMII considers the SDA to be a network address belonging to subarea
0. Therefore, the number of bits used for a subarea number rust leave
enocugh bits to accommodate the installation®s largest SDA.

TAMII restricts the number of minor nodes belonging to a subarea to
512 or less. This is due to the size of the tables moved to the super-
visor and the nechanism used to move the tables. The reccommended value
for MAXSUBA is 127 which allows the full 512 elements per subarea and
128 subareas. It also allows SDA values to X®*1FF'.

76

—— e Y e EPE SNy

DEPINING AN NCP FOR TAMII

Not all of the ianformation coded in the NCP macro instructions is
used by both TAMII and the NCP generation routines. However, all of the
macro instructions should be coded with the possible needs of both TARII
and NCP gemeration in mind.

The following is a description of the macro instructions and their
parameters; some are NCP and TAMII parameters, and some are for TAMII
only. (Refer to the SYSGEN for NCP manual, IBM Order Nuaber
GC30-3008-5.)

Note: there must be no discrepancy between the source used for the
NCP generation and the source used for the TSS KCP table genera-
tion; the source can be used for both generations without
modification.

The PCCU_macro

——

AUTODMP= {YES | NO}
specifies whether, after an unrecoverable failure of the communica-
tions controller or the NCP, a dump of the communications controll-
er storage is to be taken prior to an automatic reIPL (i.e.,
AUTOIPL=YES). If AUTODMP=NO and AUTOIPL=YES the NCP is reIPled; if
AUTOIPL=NO also, the NCP is deactivated and removed froa the
system.

AUTOIPL= {YES|NO}
specifies whetler after am unrecoverable failure of the KCP or com-
munications controller and after the dump (if one is taken), a
fresh copy of the NCP is to be automatically loaded into the comnmu-
nications controller and restarted. If AUTOIPL=NO, the commrunica-
tions controller is deactivated and removed frozx the network. If
the communications controller is successfully reloaded, configura-
tion restart attempts to return all resources to the state prevail-
ing at the time of the failure. However, all tasks will have been
disconnected and abended. All dial communications will have to be
redialed.

AUTOSYN=NO
TAMIY does not support auto—synchronizing.

IBITEST=RO
TAMII does not support the initial test routine loagd.

The rest of the PCCU parameters are ignored by TAMII.

The BUILD macro:

OLT=NO
TAMII does not support TOLEP.

HAXSUBA=n
discussed previously. Code MAXSUBA=3 or greater. The NCP default
vyalue of zero must not be used. Also, MAXSUBA value should be the
same for all NCPs and the TSS SYSGEN.

Section 4: System Programmer Pacilities 77

ey . e

LR R Y

- W ety e W wne e

- -

The HOST macro:

When coding the following parameters, note the restrictions placed on
their use by TAMII.

BFRPAD=0
TAMII requires zero and does not support leading pad characters.

MAXBFRU=count
specifies the number of buffers that the host processor allocates
for each data transfer (channel program) received from the local
communications controller.

UNITSZ=length
specifies the length of a host processor’s buffer. For TAMII, the
value of MAXBFRU multiplied by the value of UNITSZ must be 4000 or
less. Recommendation: MAXBFRU=8 and UNITSZ=256.

STATHKOD= {YES|NO}
TAMII supports either value. Reconmendation: STATEOD=YES.

The GROUP, LINE, PU and LU macros:

BUFLIM=n
the number of 64 byte blocks RTAM will allocate to hold the trans-
missions to be sent to a specific LU; 'n® is a decimal number from
0 to 256.

ISTATUS= {ACTIVE | INACTIVE}
specifies whether a node is to be ACTIVE or INACTIVE when the Yown—
ing* node is made ACTIVE.

Examnple: for an NCP gen such as the one shown immediately below,
the ISTATUS shown in parenthesis is the assumed value; whenever
ISTATUS is not specified for a node, that node assumes the ISTATUS
value of the towning' node:

GROUP ISTATUS=ACTIVE

L1 LINE {ISTATUS=ACTIVE)
P1 PU ISTATUS=INACTIVE

o1 LU ISTATUS=ACTIVE

oi2 LU {ISTATUS=INACTIVE)
P2 PU {ISTATUS=ACTIVE)
021 LU {ISTATUS=ACTIVE)
u22 LU (ISTATUS=ACTIVE)

In the example above, when the NCP is activated, TAMII will alsoc activ-
ate the following resources: LINE-L1, PU~-P2,L0-021 and LOU-U22, because
each higher level ‘*owning®! resource has alsoc been activated. PU-P1, be-
cause its ISTATUS=INACTIVE, is not automatically activated and therefore
its LUs are not activated even though LU-U11 has ISTATUS=ACTIVE. Now
when the operator activates the PU-P1, then TAMII will also activate the
LU-U11, but not LU-012 because its ISTATUS is INACTIVE.

With TAMIY, ISTATUS=INACTIVE means the resource must be activated
by direct operator command.

MODETAB=device type code

MODETAB on an LU is used by TAMII to specify the type of device the
LU is; only the following codes are accepted:

78

TNL GN20-4106 (01 July 80) to GC28-2008-5

3278 3284 3287 3277 3767 3286 3289 3288

VPACING= {(a[,m]) 10}
defines the way TARII and the NCP are to pace the flow of data be-
tween the host processor and the RCP for sessions with the associ-
ated logical units.

n -- specifies the number of messages that TAMII is to send to the
NCF before waiting for a pacing response; 'n' is a decimal number
Letwean 1 and 255 and must be egual to or greater than the value of
the *au' used vwith the NCP's corresponding PACIHG paramter.

& -— specifies which of the "n* (the parameter above) reguests will
be flagged to reguest a pacing response from the NCP. TAMII sends
at most, n-m additional data recguests if a pacing response is not
received. If *a* is not coded, 'n* is assumed. Specify 'm* as a
decimal number between 1 and 'n', and must be egual to or greater
than the value of *m" used with the PACING parameter.

0 -- specifies that no pacing is to be performed for sessions with
logical units associated with the macro instruction in which VPAC-
ING is coded.

Defining tae BCP Network to TAMII

The teleacommunications network is defimned to TANII by preparing and
assembling definitions of the two types of major nodes and then filing
the object modules in joblibs owned by the operator.

The two types of major nodes supported by TAKII are:

1. NCP major node
2. Sa#itched SNA ma jor node

An KCP major node comnsists of a 3704 or 3705 Communications Controll-
er {locally attached), the network control program (KCP) being executed
in that controller, and the physical configuration defined tor that NCP
during NCP generation.

Switched SNA major nodes consist of either or both of the following
supported SNA terminals:

3767 Communications Terminal
3274 or 3276 bisplay Controllers and Displays

Switchel SNA major nodes do not include the switched SDLC links to
which the terminals are attached (these lines are part of the NCP major
node). The minor nodes of a switched SNA major node are the SNA con-
trollers and their associated logical units.

Any numpber of definitions can be prepared, assembled and tiled, to
represent combinations of major nodes that may be desired in an active
network under different circumstances. Each major node definition con-
tains statements defining all minor nodes encompassed by the major mode.
Each major node must be assigned a unique name and must have an entry in
the TSS**%k%_ SYSRCS dataset (discussed in detail later) in order for
TAMII to be able to use the major node.

Defining_ the NCP and Remote Terminals
One or nore NCPs for each communications controller rust be generated

and stored in a joblib. The source deck used to create each NCP is then
assembled using the TSS macro libraries. The object modules created by

Section 4: System Programmer Facilities 78.1

v wsy s oy - -

— D e o W

R

asserblies are stored is either the same joblib or a different one from
the NCP load modules. The information as to what is stored, and where
it is stored, is conatined in the SYSRCS dataset in the region whose
naze 15 the same as the resource nage. The name assigned to the region
that contains these definitions is the name by which TAMII will reco-
gnize the RIP.

Derining Switched SHNA Major Nodes

A switched SNA major node is defined by a single BUILD macro state-—
ment for the major node and separate PU and LU statements for each minor
node. Oue BUILD macro with TYPGEN=SWEYET must be included in each source
dataset, piaced betore the first PU macro. The BUILD macro assigns a
subarea value to the major node for TAMII®*s use in assigning addresses
to the minor nodes.

The ¥U an
by switche

Lo define

LU macros define physical units and logical units attached
! lines. The PU and LU macros are the same as those used
major ncde.

Ihe installation may define multiplie sets of switched SNA devices.
This allows the network operator to selectively activate a subset of all
the switched SN¥N3A devices using the ACTIVATE command. However, all major
and ainer node names known to TAMII at any one time must be unigue.

1f conta is to be established with a physical unit by means of a
"d3ial in* eration, the unit*s station identification nusber mast be
placed SYSRCS raegion callied BIKCNAME, followed by the physical
anit®s cuvee name in the format: .

*ra jor node name.physical unit name®

kWhen the phvsical unit dials in, TAMII searches the SYSRCS region
BIRCNANE looking for the station id. If found, the physical unit®s nanme
is retrieved and if needed, the major node containing the definition is

activated automatically. The information from the physical unit defini-
tion is then used to complete the coannection orocess.

The unit®s station jdentification nuber is a 48 bit number which is
unigue & station witain the network (not just within the major

node) . The station 1d is structured as folilows:
R v . Ll ¥ L
{ X%0® $PUTYPE] X*00"] IDELE I IDNBN |
i i i A £ - |
bit © 4 3 16 28 47

PUTYPE - the physical unit type as follows:

3757 - 1%
3274 - 2
376 - 2
IDBLE - 12 bit binary block number assigned by IBM to the spe-

fic Gcevics

1D3U¥ — the 20 bit binary identification number assiguned to the
station being defined.

v
W
?

w

ORGANIZATION OF TAMII NCP/SHA SUPPORT

The TAMII NCP/SNA support consists of three groups of modules. The
first group consists of the user interfact routines. These routines
convert the user's requests into control requests for the NCP. The
second group reside in the virtual memory portion of TAMII and comnsist
of two routines. One, CZAFTN, is the NCP network path translation rou-
tine. The other routine is the FPCM used by the user control modules to
communicate with the NCP control routines residing in RTAM and the NCP.
The third group of modules reside in RTAM in the resident supervisor.
These modules control all communications with the NCP and any supported
SNA devices.

When a TSS NCP gen is performed, a set of tables is created which
contain the definition and path information for the NCP. As part of the
HCP activation process these tables are read into shared virtual memory
and are used to fulfill the function of the SDAT (CHASDA) im virtual
memory and the scan table (CHASCN) in real core. The virtual memory ta-
ble (CHAMIRN) is called the minor pode table —— MIN. It resides in
shared virtual memory and is connected and disconnected as needed. The
real core table is called th Resource Resolution Table -- (CHARRR). It
is read into virtual memory by the active process and moved to real core
upon execution of the ADSBA —— Add Subarea SVC (discussed later in this
docurent). The RRR is used by RTAM to control the activation, deactiva-
tion, and allocation of the NCP network resources.

Section 4: System Programmer Pacilities 78.3

T W S W —— W =

- —

USER INTERFACE

-

-
I |
| ACTIVATE }——y
| 2

| B | | S 1
{ | DEACTIVATE }—— { CHANAT |
| J } 1 I
I | DUnP e et
| b’ 1]
| L , ey
' } CHARIN |
I | 2 1
| ! } —
§ - | i
TAMII TCNTRL MACRO ! MIN ! I |
| r - | | | i
—] CZFATH | | ENTRIES | 1 |
rt Y] Pt — 1 ! |
] SsScCp ¥CH i I | | SUBAREA | | I
)} MODULE | ! P 2 I 1 |
i } L S ! 31 !
1 INTERRUPT | | ——— 1} 1 X1
L : ey J |
v
! ! — |
' ’ L 3
| §
!)
+ -+
RTANM i !
SvVC 1 —
| CHAHTS |
—_J
| B] | S |
f] | — ey
| CEDSSCP | | CEDLUCP | DEVICE }r | CHARRR |}——
) | i | DEPER— j{}r 1 | —
| NCP i | LG § DENT |1 I RBRR i 1 1
} CONTEOL | | CONTROL |j—y—-——T1]]} 1 ENTRIES | I |
} ROUTIKNES | | ROUTINES | ppr—m—m| { FOR | i |
I } i y — } SUBARER | 1 }
j SSCP-SLU | { Lo~-LU] ! 2 | | |
] SSCP-PLU | ! i $ 1 3 i
i | | SESSIONS | —— | X
{ SESSIORS | L 3 L d 1
L i] [. J
| L}
| CED37XX 1
i I/0 1
} INTERFACE |}
! ROUTINES |
L N]

As an NCP is activated, an entry is made into the Node Active Table
—— NAT. The NAT is a dictionary maintained by the NCP user interface
modules using the dictionary handler CZASD. CHBNAT is an IVE comntrol
block which contains the RSPI number and other information needed to
connect and disconnect the H¥AT dictionary. When an NCP is activated a
major pode entry —— MJN (CHAMJN) is built in the NAT dictiomary. The
MIN and RER are read into memory and a pointer, in RSPI format, to the
MIN is placed in the MJN entry.

Using a TAMII OPNDST the NCP is connected to TAKII and the device is

allocated to the task. With the completion of the OPNDST the system
control blocks are setup to perforr the activation function for the NCP.

78 .4

— A D g T U YW W NN N oo W wNg e GES

T o — . D W

— — -

The activation function consists of the loading of the 370X with the
specified NCP load module and the activation of the NCP and its re-
sources using the appropriate SNA commands.

TAMII Format Control Module Support for the NCP

CZESSCP is the name of the Format Control Module used to support the
NCP. It validates and handles the special TCNTRL type codes used to
communicate between the virtual memory user control modules and the RTAM
SSCP control module. CZPSSCP also contains special entry points for
handling error records, line trace records, and dial in records returned
by the NCP.

Normal read and write operations are not used or supported by
CZFSSCP. Any attempt to use these requests results in a nonsupported
(X*20') return code.

HCP PATHFINDING SUPPORT CONTROL BLOCXS AND HARDLER

For NCP Resource Resolution or as rerferred to in TAKII, NCP Pathfind-
ing, there is an integrated set of control blocks. These control blocks
all reside in shared virtual memory and except for the CHENAT, Leader
control blocks are disconnected when not in use. There are three con-
trol blocks used by the NCP modules im virtual memory. Except for
CHBNAT, the control blocks are built by the RCP/TSS gen process and are
loaded from datasets as part of the NCP activation process. The three
control blocks are CHBNAT, MJN, and MIN.

CHBNAT is the ancaor for the NCP control blocks. It is loaded as
part of IV and as such is addressable by all tasks in the syster.
CHBNAT contains syster dependent NCP values such as the maximum subarea
value, the subarea mask and the subarea shift value. CHBNAT also con-—
tains the anchor for the MJIN dictionary. This anchor is in the format
RSPI, RPN and page count, and is used whernever a task has to connect to
the dictionary. Included in CHBN¥AT is the MJN lock word which controls
access to the MJN dictionary.

MJIN —- major node entry —- is a control block which describes the NCP
control program to TAMIYI. It is built from the contents of the BUILD,
HOST, and PCCUO macros used in the gen of the NCP load module. MJIN also
contains information needed by the RESTART and DUMP commands. The MJIN
entry resides in a control block called the MJIN dictionary. When the
ACTIVATE command for the NCP is issued, a MJIN entry is built and placed
in the dictionary using the dictionary hanler module CZASD. Afterwards,
the MJIN entry can be retrieved by calling CZiSD3 with the NCP name. The
MJN¥ for the NCP contains the address of the genned resources owned by
this NCP —— the MIN +table. This address is also in RSPI, RPJi format.
The MIN lock word is kept in the MJIN; this lock controls access to the
MIN.

The MI¥ - minor node table -- is a gen created table of all re-
sources owned by the subarea of the MJIN. This table is basically the
SDAT for the NCP or other subareas. There is one MIN entry in the table
for each SHdA resource defined in the NCP gen. A resource is the HCP
control program (always resource 0), a communications line (LINE), a
control unit on the line (PU macro) or a terminal or end user on the
control unit (LU macro). Each resource has a unicgue name assigned at
HCP gen time.

The path tables, MIN and MJIN, are never connected to a task except
under appropriate locks. The HCP Deact Command Processor assumes the
tables are not in use if they can be write-locked and are therefore a-
vailable to be FREEMAINed. The MJIN and MIS locks are set up like data-

Section 4: System Programmer Facilities 78.5

P TED OO gy w—— N) e WY N wees WIS W s w— — O - — VA N WD T YNS em

- — —— — [——

set RESTBL locks. The pathfinding module CZFATN uses CZCOH and CZCOI to
lock and unlock the table locks.

RTAM/NCP SUPPORT

The Resident Terminal Access Method (RTAM) has a set of modules that
provide the reguired NCP support. The modules were added in two areas:
system support routines had CEATF (connect device) ard CEATG (connect
resource resolution tables) added; the device control modules had the
LO-LU session control and SNA device support added. A description of
these new modules follows.

Syster_Support Routine Additions

CEATF (allocate device) is called by SVC from virtual memory to
allocate a specific device to a task. Its parameter list is described
by the DSECT CHALCN. The device address is passed to CEATF by an SDA or
an RID. It locates the resource entry for the device and determines if
the device is available. If the device is available, CEATF allocates
and builds the necessary RTAM control blocks, sets up the required
tables and calls the Device Control Kodule responsible for the device to
complete the connect reguest. Upon return from the DCM, the allocation
is complete and CEATP returns to the task with needed device information
in registers 0 and 1. Por device allocation failures, CEATF has a com-
prehensive set or return codes describing the reason for a failure.

CEATG (connect/disconnect resource resolution tables) is called by
SVC from virtual memory to connect or disconnect the Resource Resolution
Tables (CHARRR) which define the resources controlled by a major node in
the SNA network. These tables are also used by RTAM for device alloca-
tion, cortrol block anchors and status save areas. The KRR fulfills the
same function for the major node and RTAM as the scan table (ChHASCH)
does for TSS and RTAM: the two are analogous. For a connect, virtual
memory (during the activation process) issues the Add Subarea SVC (dis-
cussed later) with its associated parameter list. The parameter list
contains the subarea address of the RREK which was previously loaded by
the task and the count of entries in the RRR. CEATG validates the re-
gquest and the subarea, allocates supervisor memory, and moves the RRR
tables to the supervisor. For a disconnect, virtual memory issues the
Add subarea SVC with disconnect set, and the subarea address. CEATG
checks the RRR before releasing to make sure it is currently not in use
and if available, releases the supervisor copy.

Device Control Modules

CEDMOB fulfills two functions. First, it sets between the DCM's ini-
tiate regquest entry points and RTAF, to standardize the calling inter-
face with the entry conditions expected by the other DCM entry points so
that the RTAM work queue dispatcher is presented with a common interface
across entry points.

The second function provided by CEDMOB is a primitive work queueing
and dispatching mechaniss for cueueing work Lbetween different TCTs.
This avoids the multi-cpu locking problems which would exist if one
attempted to lock more than one TCT at a time.

CEDOBC is the enqueue entry point. A TCT and buffer adldress, along
with a gqueue number, is passed to CEDOBQ by the calling routine. The
buffer must not be chained on any TCT at the time of the call. CEDOBg
enqueues the passed buffer and TCT on the reguested gueue and returns.
It is the dispatcher; it is called by CEATA, CEATB, and CEATD just be-—

78.6

|
I

!

!
|
!

fore returning to their caller. It searches the gqueues for work follow-
ing these simple rules:

The gqueues are processed in a PIFO order from queue 1 to queue 7.

CEDOBD does not move from one queue to the next until all work on
the queue has been processed.

If the TCT to hbe dispatched to is locked, CEDOBD leaves the re-
gquests queued, and exits.

CEDMOB contains the queue headers, hard coded in the back of the
module; there are seven gueues:

Queue 1 is for error recovery; it has the highest priority.
Queue 2 is not in use.

Queue 3 is used for posting write completions. Queueing on the
gueue results in the buffer being sent to the write completion
entry point of the DCM respomnsible for the TCT.

Queue 4 is used for posting read completions. Like gquene 3 the re-
sponsible DCM's read completion entry point is called.

Queue 5 is used for requesting initiation of a fumctiom. Work for
this queue is sent to the initiate request entry point of the DCH.
This is the same entry point that processes SVC requests from a
task.

Queue 6 is used for requesting I/0 initiation. Regquests queued
here are sent to the DCM responsible for transmitting and control-
ling the I/0 interface.

Queue 7 is the lost path and/or resource forced disconnect re-
quests. These are processed last to ensure that all other requests
destined for the lost resource have been removed from the queue.
Any reuests on gqueue 7 are sent to the DCM's error recovery entry
point.

CED37XX handles the I/0 channel interface for all 370X type devices.
It is set up to interface to the I/0 side of RTAM and is called by CEALTA
on I/0 interrupts from the 370X device. It is queued to by the NCP con-
trol modules CEDSSCP and CEDLUCP whenever they have output to be sent to
the 370X control prograam.

CED37XX contains the routines used to load local 370X control pro-
grams. These routines handle the NCP or the EP program.

CEDSSCP is RTAM's system services control point module for control-
ling the TSS/SNA metwork. CEDSSCP handles all network control functions
including the activating and deactivating of all network resources. It
oversees all connections and disconnections of LUs with TSS and handles
all network error recovery, recording and restarting, if regquired.

CEDLUCP is the RTAM LOU-LU session control module; it handles all SNA
protocol requirements needed for the support of the LU-LU session. It
is device independent and relies on a sublevel of DCMs to handle the
device dependent data manipulation requirements. CEDLUCP only supports
the following session type: half duplex f£lip flop data flow within
brackets.

CED327R is the device dependent DCE used by CEDLUCP to support remote

3270 devices; it handles all 3270 device functional reguirements imposed
by the SNA 3270. The corresponding DCL is CEDL70R.

Section 4: System Programmer Facilities 78.7

| ADSBA — Add/Delete Subarea SVC (SVC212)

1 The ADSBA SVC is used by the virtual memory NCP activate and deactiv-
| ate routines to move the required subarea tables to the supervisor.

The ADSBA SVC parameter list is described by the DSECT CHAADSB.

The following codes are returned to the task in the task's general
register 15 after execution of the SVC.

-

Code Explanation
Xe(Q successful add or delete

X4 subarea to be added already exists
subarea to be deleted does not exist

X*g8* subarea to be deleted is still in use

Xece* invalid parameter list; SVC not executed; SVC parameter list
not on doubleword boundary, or VMA for parameter list does
not exist

X*10* subarea number is invalid; subarea number is 0, 1, or
greater than the maximum subarea number allowved

X*14* unable to allocate space to hold table

X*18* the RRR header is invalid; the count of entries or the
subarea number does not agree with the ADSBA value or
the subarea mask value is not the same as the sysgened
value

| LCONN -— cConnect TAMITI Terminal SVC Request (SVC205)

) The LCONN SVC is issued by the TAMII virtual memory module to cause
{ RTAM to allocate and buyild the necessary tables to connect a TAMII
} device to a task.

1 The LCONN SVC parameter list is described by the DSECT CHALCE. The
) SYC must be at the head of the parameter list and be executed. The pa-
] rameter list must start on a fullword boundary.

i The LCONN SVC processor returns the following information to virtual
] memory in registers 0 and 1:

| Register 0 --

] byte 0 -- zero

] 1 -- device type code from TCTDTY

1 2 -— zero

1 3 —- the Device Control Module index for the device

! Register 1 -—- the relative line number in bytes 2~-3 by which
H RTAM knows the device

) The LCONN SVC processor returns the following codes in the task's
} register 15:

Code Explanation

X*0* LCONN request was successful

X0y device is in use by the system
xeg? device is in use by RTANM

X'ce device is not an RTAM device
X*10* resource entry for path is in use
X*14* subarea has not been activated
X*18* invalid SDA or RID given

X*1C* RID from LCERID is invaliad

X*20* no space available for TC?T

X*24* unable to allocate relative line number for device
X*28* not used

X*2C* invalid LCN parameter list

78.8

TSS***%k ,SYSRCS DATA SET

To activate any resource -- NCP, PEP, EP, etc. - this dataset must
exist.

Each region imn this dataset will have the same name as the resource,
and will contain information that pertains to the particular resource.
Any resource information that is not defined in this SYSRCS dataset must
be included as parameters in one or more of the NCP commands (discussed
later in this section), with one exception; TYPE= must be defined in the
SYSRCS dataset; it is not a parameter of any of the NCP commands.

Any parameter entered by the system programmer in any NCP command
will override the same parameter if it is predefined in the SYSRCS data-
set for this resource. A list of the parameters that may be predefined
in the SYSRCS data set is as follows:

TYPE=
identifies the resource to TSS; specified as KCP, PEP, EP, or a 1-8
character name (the first character must be alphabetic) supplied by
the installation.

DSNAME=
specifies the name of the dataset from which the resource load
modules will be taken.

SUBTYPE=
identifies the type of hardware that will be used for this
resource; i.e., 3704, 3705, etc.

MIRNAME=
the name of the load module which contains the tables that will
describe the resource to TSS. This parameter does not apply to an
EP.

LOADNAM=
the name of the final load module that will run in the resource.

PHASE1=
the name of the initial load module that will 'bootstrap' in the
second phase.

PHASE2=
the name of the second load module, called *'the second phase!?,
which will read in the final load module.

ROUTING=
describes the different routes that can be used to get to the
resource.

PCL=
the name of a TAMII control table that contains detailed informa-
tion concerning the TAMII interface to this device. This table
will contain the current status of the device.

KESTART=
tells TSS whether or not to perform an automatic restart if an
error condition should occaur.

AUTODMP=

tells TSS whether or not to perfors an automatic dump if an error
condition should occur.

Section 4: System Programmer Facilities 78.9

oy WD N w—

A - D A -

DMPPH1=
the name of the initial load module that will be used to 'hoots-
trap® in the final dump load module.

DMPPH2=
the name of the finmal dump load module.

DUMPDS=
the name of the TSS dataset that will contain the dump output.

The SYSRCS dataset may be edited using the TSS Editor. The TSS data-
sets that must be available imr order to activate an NCP are DSNAME= and
TSS**%%% ,SYSRCS .

ACTIVATION OFP AN NCP/PEP OR BP

The activation of an NCP/PEP or EP entails the transfer of particular
load modules from the TSS system to the NCP/PEP or EP, and the activa-
tion of those load modules in the resource. In order to perform tikis
function certain types of information must be available to the TSS sys-—
tem. EBach resource that is to be activated has some information that is
unique. Activation of the resource is initiated by the ACTIVATE
connand.

DEACTIVATION OF AN NCP/PEP OR EP

The deactivation of an NCP/PEP or EP entails the severing of communi-
cations between TSS and the resource. In addition, all tables read in
and generated during and after the activation of the resource are
deleted from the system. The regionm in the TSS**¥*¥%_,SYSRCS dataset of
the same name as the resource, will be scanned to determine the type of
resource being deactivated as the deactivation processes differ.

DUMP OF Ag NCP/PEP OR EP

The dumping of an NCP/PEP or EP causes two load modules to be sent to
the resource. All activity at the resource ceases, and in order to run
again the resource must be activated again from scratch. The DUKPRES
command causes the entire storage of the resource to be written in the
output dataset.

AUTOMATIC DUMPING AKD RESTARTING OF AN NCP/PEP OR EP

If an error condition occurs in the resource, the TSS system will go
to the appropriate region of the TSS****¥*¥_SYSRCS dataset and check the
AUTODMP parameter. If AOUTODMP=Y is specified, the TSS system must find
the DMPPH1, DMPPH2, and DUFEPDS parameters in the region. If all are not
present, or if AUTODMP=N or if there is no AUTODMP parameter, the TSS
system will bypass the automatic dumping of the resource and process the
automatic restart parameter. If RESTART=Y is present in the regiomn, the
TSS system will attempt to reload the resource by going through the
entire load process.

TRACE OF AN NCP/PEP OR EP LINE
The tracing of the data transmissions of a particular resource line

will be initiated by the TRACE command. The data will be sent to the
TSS system and then recorded in a dataset for later processing.

78.10

SPECIAL COMMAND FACILITIES FOR SYSTEM MONITORS

The system programmer with the privilege class E (system monitor) can
reserve unit record equipment for nonconversational tasks (via the SEB-
CORE comwmand) and symbolically refer to specific devices (via the DDEF
command or macro instruction). In addition, he can use extended PRIRT
command features, which enable him to have a data set —-- previously re-
corded in the American National Standard Code for Information Inter-
change, ANSI X3.4-19568, referred to herein as ASCII -- read in from tape
and printed out. This lets the TSS system programmer verify anm ASCII
tape that could have been produced using some other systea.

RESERVING I/0 DEVICES FOR A NONCONVERSATIONAL TASK

When reserving I/0 devices for a nonconversational task, a programmer
with privilege class E can designate unit-record eguipment in the
operand field of the SECURE command. In addition to the options:

(TA=nueber of devices[,type of device})
{b2=pumber of devices[,type of device})

shown in the description of the SECBRE command in Comrmangd System User's
Guide, you may ask for one or more printers, card punches, or card
readers by specifying one or more of the following operands when using
MSAK or IOREQ:

(PR=number of devices)
(PC=number of devices)
{kD=number of devices)

vhere the number associated with PR indicates the nurber of high-speed
printers you regquire, the number associated with PC indicates the number
of card punches, and the number associated with RD indicates the number
of card readers. The number of devices must be specified as a one- or
twvo—-digit decimal number.

If you want to reserve two printers and a punch, for example, in ad-
dition to three tape units, all for nine-track 800-bpi tape, and one
3330 disk drive for a nonconversational task, you might write:

SECBRE (PR=2), (T'A=3,9D2),(DA=1,3330), (PC=1)
Note that the operands need not be written in any particular order.

Because SECURE is defined to reserve "any available device of the
specified type™, it must not be used when the task requires some partic-
ular device (by symbolic device address) of that type.

DESIGNATING I/OC EQUIFMENT

When you have beern joined with privilege class E, you have several
options in the operand field of the DDEF command (and macro instruc-
tion), and DCB macro instruction, that are not shown imn Command System
User's Guide and Assembler User Kacro Instructions. Except for these
options, which are described in detail here, the parameters you may use
are those shown in an appendix to each of those publications.

Section #4: System Programmer Facilities 78.11%

1
!
1
!
I
I

Symbolic_ Device Address

One of the optioms available to you, as a syster programmer with
privilege class E, is to designate the I/0 device you want to use by its
symbolic address. This can be accomplished by entering

¢« ONIT=sda

in the operand field of the DDEF command or macro instruction, where sda
is a one-to—four-hexadecimal digit symbol (from 1 to 7FFF) assigned at
systemn generation to the I/0 unit as its symbolic device address. By
choosing this option, you can designate a particular terminal, a partic-
ular unit-record device (for MSAM or IOREQ programming), or a particular
tape drive or direct access device (for BSAM, IOREQ, QSAM, or VAN
programming) .

DDEF by SDA is executed without regard to device reservation via ei-
ther SECURE or RELEASE ...,HOLD. When a specific device is to be used
(regardless of type) there should be no attempt to SECURE it, and RE-
LEASE should always specify the SCRATCH option.

VAE Data Set Allocation on Drums

A user with privilege class G (and only such users) can initially
allocate a data set to a drum by specifying the appropriate volume IDs
in DDEF. The same restriction and requirement apply to expansion allo-
cation on a drum after the initial DDEF has been released. Use of the
SPACE HOLD option of DDEF can allocate drum space for data set extension
by non-class G users.

BAccess to an existing drum data set by a non—calss G user, or by a
class G user who does not specify the volume ID({s), is controlled by

normal catalog access and sharing authorization. Expansion allocation,
in these cases, is forced to disk volumes.

PRINTING DATR SETS

Data sets recorded on tape in EBCDIC or ASCII can be printed in sev-
eral formats by a class—E system programmer using the PRINT command.

The Printing Optilons

By specifying the tape printing option (TAPOPT) with the PRINT com-
mand, the class-E syster programmer can:

e Print an ASCII tape in character format.
e Print an ASCII tape in dump format.

s Examine an ASCII tape for any invalid characters, flag them, and
print all error records in the dump format.

e Print an EBCDIC tape in dump format.

Bxtended PRINT Command FPacilities

The basic format of the PRINT command, when employing the extended
ASCII options, appears below.

78.12

L 3 R J 3
jOperation]Operands |
L — .}
| R] !
|PRINT jDSNAME=current data set name[,ERASE=ERASE] 1
} i{ ,ERROROPT={ACCEPT |SKIP|ENDL} [,FORE=paper fora]]
] {[,TAPOPT={AC|AD|RAE}ED}EC] |
[3 A - 1

Rote: To enter positionally, see the PRINT command in the Command Sys-—
tem User's Guide. Operands for standard PRINT command options, such as
STARTNO, ENDNO, PKTSP/EDIT, and STATION, are recognized when TAPOPT=EC,
or the default. If included for the ASCII or EBCDIC options, they are

ignoread.

The processing and output resulting from the TAPOPT options are indi-
cated below:

AC - The data set, recorded in ASCII, is read from tape without traansla-
tion to BESCDIC and the entire data set is printed in character for-
mat. An unprintable character is represented as a period (.).
Sample output: 132 bytes in the format:

cowovsesa TSSk*k%kE¥ DSNANE.. B oo

AD,AE,ED - The ASCII dump (AD) and edit (AE) options, and EBCDIC dunmp
option (EP)}. ASCII records are read from tape without tramslation
to EBCDIC. The entire data set is then printed. The basic print
record format for these three options is the same, although certain
characters in the printed output will have unique meanings depend-
ing on which option is selected. The basic print format for these
options appears below, followed by descriptions of the distinguish-
ing print features for each option.

EC - Normal processing. EC is the default if TAPOPT is not specified.

Print Format for AD, AE and ED Options

Bach output block consists of a header containing the record number
and the record length in decimal. The header record is followed by a
data block. Each data record printed consists of the hexadecimal dis-
placement of that data record from the beginning of the block followed
by the thirty-two bytes of data recorded in dump format (that is, eight
full words, each separated by blanks). The character representation of
the data immediately follows.

Aeader

[Sp—

B
record | record |
namber | length |
i i

- - - "

Data Block ces “om e

r L Ll

1 L) r
displacement |] wordl | | words8 | Jcharacter representation
| 1

[- -
SR S

e 32 data bytes-——--->

Distinquishing Features

RD - A1l unprintable hexadecimal bytes appear as periods. All ASCII
error characters (X"1A*, or X*30' through X'PF') will appear as

Section 4: System Programmer Pacilities 78.13

AE

percent signs. Error characters are flagged as such. Since "%" is
also a valid print character, each output primt record, containing
an error byte, is also flagged with *ERROR* appearing in the space
between the hexadecimal and character representations; this enables
users to distinguish between print records containing valid and
invalid percent sigans.

Sample output: 684 bytes in hexadecimal, 32 in character

DISP HEX CHARACTER

0000 C1C2C3CH CIC24040 B80B0C1C2*ERROR* ALBCDAB %%AB

0020 6C68C1C1 c1cicict eecer,k-AARARR

Only error records are printed. The character representation of
the hexadecimal data depicts valid ASCII characters as periods (.),

a substitute character (X*1A*) as an S, and an invalid ASCII
character (X'80' through X°PF?) as an XI. If no invalid characters

73.14

are found on the tape, the output consists of an appropriate mes-
sage. Only ASCII records containing error bytes are printed.

Sample output:
0020 CICICICT IACIB80C1 etc. evesS.I. etc.

ED - This option does not include any special features.

Sample output:
0020 CIC2C3C4 C1C23040 1A80C1IC2 ABCDAB...AB

SPECTIAL MACRO INSTUCTION FACILITIES FOR SYSTEM MONITORS

BMACRO INSTRUCTIONS FOR MSAM

There are four macro instructions that you may use in your MSAM pro-
grams. SETUR enables you to specify the unit-record configuration you
desire for on-line printers and punches. GET and PUT provide access to
logical records and may be specified in either a move mode or a locate
mode. PFINISH informs the ESAN routines that a break point has been
reached in processing a data set.

Interruption Entry Handling

For each of the MSAM macro instructions (SETUR, GET, PUT, and
FPINISH), a return code of 4 indicates that the operation has not yet
been completed. In each case, the macro instruction should be reissued,
until a return code other than 8 is received. Before reissuing the
macro instruction, however, you should test DCBICB and, if it is nonzero
invoke the interruption inquiry routine by issuing the INTINQ macro in-
struction (described in Assembler User Macro_Instructions) to determine
vhether ar asynchronous interruption is pending. If so, you should give
control to the appropriate interrupt-handling routine and defer reissn-
ing the MSAM macro instruction until control is returned to your
progranm.

DESIGNATING DEVICES FOR HMSAR
In addition to the symbolic device address, three codes may be used
with the UNIT operand of the DDEF command and macro imnstruction when
using MSAM. You may vrite:
UNIT= {sda|PC|PR|RD}
vhere sda is the symbolic device address of the desired unit record
device, PC is a card punch, PR is a printer, and RD is a card reader.

If you use the multiple sequential access method, one of these options
must be specified.

Section #: System Programmer Facilities 79

SECTION 5: DEFINING SYSTEM MACRO INSTRUCTIONS

This section deals with the process of defining macro imnstructions,
concentrating on precautions you should observe and limitations imposed
by the various types of macro instructions. It assumes familiarity with
the rules for writing macro definitions contained in Assembler lLanguage.

CONVENTIONAL TYPES OF MACRO DEFINITION

In TSS, there are two preferred conventions for defining macro in-
structions. These conventions define rules for writing the R-type macro
instruction, and the standard-, L-, and E—forms of the S-type macro in-
struction. In describing macro instructions for the user, each macro
instruction is designated ar R-type, an S—type, or, if one of these con-
ventions was not used, as an O-type (other type) .

R-TYPE MACRO DEFINITION

An B—-type macro definition can be written when all parameters can be
contained in the two parameter registers, 0 and 1. The R-type defini-
tion does not generate a parameter list but may generate constants or
addresses. You are limited in the choice of operand forms you may allow
the user. These fores and coding considerations are described below.

The proper use of an R-type macro is to pass: omne or two single-word
values (or 4-byte strings); a double word value (or 8-byte string); a
control block address and a flag word; or logically similar information.
A collection of data organized into a block solely for the use of a
given macro, which has no significance beyond the macro or outside the
using and called modules, is not a good subject for an R-type macro.

RX Address (formerly known as ™explicit®” or "implied” address)

This is an address which the user specifies as if he were specifying
the second operand of an RX—-type assembly language instruction such as L
or LA.

This form of address gives the user maximum flexibility im specifying
a storage field. It permits addressing by name, addressing by base plus
displacement, indexing, and by the effective equivalent of register
notation as in: O0{,register). The user must remember to cover with a
base register the symbolic addresses that may be written for this form
of operand. A portion of the coding of a macro definitionm called STOR
is shown in the box below. G&AREA may be written as an RX address. No-
tice the preferred use of the LR instruction to provide an overriding
base register for the STK instruction. You should not write:

STH ®S (1) ,SREGS (2} ,CAREA
The RY address form permits the coding of indexed addresses. But the
STH instruction does not allow for indexing. So, in the example, you

would have used the operand SAREA in the LA imstruction, which is
indexable.

80

SHAME STOR SAREA,BREGS
®
®
[]
EHNAME LA 14 ,6ARER
STH SREGS (1) ,8REGS (2) ,0 (18)

o — o W —
o S e e —— ——

Number

If you designate an operand to be specified as a number (assumed to
be a decimal integer unless you tell the user otherwise) several possi-
bilities must be considered.

If you limit the user to an integer less than 4096, which is not a
preferred method, you amay write:

LA 1, SINT

If you allov the user to exceed 4095, which is the preferred method
regardless of application you must first test the magnitude of the
operand and, im the cases in which it does exceed this value, write:

L 1,=P*BINT?®

The F-type literal is chosen, rather than the A-type, for invariant
data, to avoid organizing the literal in the user®s first declared
PSECT.

You may also choose the number form for an operand that is not a pa-
rameter but which serves to indicate the proper path through the macro
definition,or the number of iterations of code or data generation to be
done by the macro. This type of operamnd should be treated in condition-
al assembly instructions.

Absolute Expression

If the value of an operand in the form of an absolute expression is
less than 4096, you may use the LA instruction. If this value is great-
er than 4095, the parameter can be made a literal, which is preferred
(as a full word) regardless of the range allowed. For example:

L 1,=P'SINT®

The absolute expression form of operand may also be used (in excep-—-
tional cases) as a path indicator to be used by conditional assembly
instructions.

Code

A code value should be enclosed in apostrophes. Some macro instruc-
tions offer a code or some other form of operand as alternate choices
for designating an operand. In these cases, it would not be possible to
distinguish between the alternates without some kind of test. The
simplest way to handle this possibility is to require the use of deli-
niting apostrophes and write your macro definition to test the operand
for a leading apostrophe.

If the code value is to be passed in a register as a parameter,
restrict it to four characters; if two parameter registers can be used,
restrict it to eight. This is a preferred method only for short options
related to a single data value or control block address.

Section 5: Defining System Macro Instructions 81

You may choose a code to indicate the path to be taken through the
macro expansion or to be passed as a parameter in some fora other than a
character string. In the latter case, you must provide a tramnslation
algoritha through the use of conditional assembly instructions.

Character String

You should avoid this operand form in an R-type macro imstruction,
but might choose to pass a character string parameter in one or a pair
of registers. If you choose to do so, be sure to limit the size of the
string to conform with the amount of available register space.

You may use a character self-defining term as the displacement field
of an LA instruction if the string consists of one character. If the
string is longer than one character, your macro definition must employ
an L or LM instruction to load a literal.

Syabol

You may specify this operand form if you want to force the writer of
the macro instruction to specify a character string that conforms to as-
sembler language conventioans.

You may also peramit the writer to provide a symbolic name for the
first executable instruction in the expansion. If so, be sure to pro-
vide for the inclusion of the name in each model statement that may gen-
erate the first executable instruction.

Linkage

Many routines called by macro instructions are privileged. If the
module issuing the macro instruction is privileged, the macro instruc-
tion must generate a type-1 linkage to another privileged module; if the
issuing module is nonprivileged, a type—-2 linkage must be generated. If
a macro instruction may be issued by either type of module, your macro
definition must test for the type of linkage you desire to assemble. It
can do this by checking the global symnbol SCHDCLS that is initialized by
the DCLASS macro instruction.

The DCLASS macro instruction is used to tell the assembler which type
of linkage you want assembled for macro instructions. If the DCLASS
macro instruction specifies USER class or is omitted, SCHDCLS is given a
value of 0; if PRIVILEGED is specified, SCHDCLS is given a value of 1.

Some macro instructions generate only type-1 linkages regardless of
the issuing module's privilege class. If you write one of these fence-
sitters, be sure its entry point name begins with SYS. These characters
are used to generate a type-1 linkage.

Pinally, some macro definitions generate code without reference to
parameters. That is, the same code is generated every time the macro
appears in a source progranm.

BXAMPLE: BHere is an example of a typical R-type macro imnstruction and
its associated macro definition, illustrating some of the points Jjust
made. Your macro description would be:

1 v])
|Hane joperationjOperand |
L 1 3 'y
4 L L 8
j[symbol JIRTYPE flocation,length |
[& § T) | ']

82

vhere location can be specified as an RX address and length must be
specified as an absolute expression; your macro definition might look
like this:

(1) MACRO HEADER STATEMENT

(2) SNAME RTYPE §LOC,SLEN PROTOTYPE STATEMENT

(3) AIF (T*6LOC EQ '0°) .E1 IF 1ST OPERAND IS
MISSING

(4) * GENERATE AN ERROR
STATEMENT

(5) SNANE LA 1,86L0OC PIRST GENERATED
STATENENT

(6) AGO .0P2

(7) .op2 AIF (T*SLEN EQ 'O') .E2 IF 28D OPERAND IS
MISSING

(8) LCIA 8 INITIALIZE SETA
SYSBOL

(9) 8a SETA ELEN SET VALUE OF SETA
SYMBOL

(10) i 0,=F'EA"

{11) .LINK CHDIRNRA ,,(CZCXYZ) ,X'FF"*

{12) MEXIT TERMINATE PROCESSING
(13) .E1l ANOP 1ST OPERAND MISSING

(13) .E2 ANOP 2ND OPERARD MISSING

(15) MEWRD TRAILER STATENENT

In this example, line 3 tests for the presence of a first operand
and, if it is missing, branches to an ANOP statement in line 13. 1In
practice you would want to place some error processing code at this
point. Error processing and the CHDERMAC macro instruction are dis-
cussed later.

Line 5 is the model statement which generates the first executable
instruction for RX address notation and would also generate the name as-
signed to the macro instruction.

The second operand is processed in the preferred way.

Finally, line 11 generates the linkage by means of the CHDINNRA inner
macro instruction. The third operand, (CZCXYZ), represents the type-1
linkage entry point and the fourth operand represents the ENTER code for
type-2 linkage. CHDINNRA determines which type linkage to use.

S-TYPE MACRO_DEFINITION

You should employ an S—-type macro definition when you wish to gener-
ate a parameter list in storage because the parameters cannot be con-
tained in two registers. An S—-type macro @efinition provides the user a
choice of three foras of macro expansion: standard, L-form, and E-fora.

Section 5: Defining System Macro Instructions 83

The standard form, indicated by the omission of the MP=operand,
should generate separate E— and L-foras but may directly generate the
parameter list and the required linkage to the called routine.

The L-form, indicated by ¥F=L, generates only a parameter 1list; it
does not generate any executable code. Por this reason, the RX address
operand form is not allowed in the L-form.

The E-form, indicated by MF=(E,list) where "list™ specifies the
address of the parameter list as either a relocatable expression or as
in RY address notation, gemerates the proper linkage and may also alter
an existing parameter list.

This convention permits the programmer using your macro instruction
to conserve space in storage by generating a parameter list by means of
the L-form and then altering the same list, in several subsequent calls,
by means of the E-form. The L-form is gemerally intended to be modified
by each E-form that uses it.

The placement of the parameter list may be indirectly controlled by
the user of your macro instruction, and he should be advised about these
precautions:

1. The S-type macro imstruction conventionally places the parameter
list in the first declared PSECT of the assembled module.

2. If this PSECT is declared by a macro instruction, them that in-
struction must appear in the user's program before any macro in-
structions that refer to the list.

3. If rule 1 or 2 is violated, or if no PSECT exists at all, the
standard form S-type macro instruction must place the parameter
list in line with the code it generates and insert a branch around
the list.

4. L-form macro instructions always generate the parameter list in
line. Therefore, if the user is writing reenterable code, he will
vant the parameter list generated in the area occupied by his work-
ing storage, presumably his PSECT. This is usually done for him by
the standard form S-type. The L-form should only be used in the
PSECT.

STANDARD-FORM S-TYPE MACRO DEFINITION

As in the case of R-type macro definitiomns, the operand forms you
allov the user dictate certain steps in your macro definition. Here are
standards to observe.

Relocatable Bxpression

This operand form may be used as the argument of an A-type address
constant either in a DC statement or in a literal.

Number and Absolute Expression

If the operand specified by one of these operand forms is an actual
numeric value, it is only necessary to generate an F- or A-type address
constant, keeping in mind any size constraints that might necessitate
the use of length modifiers. Pall-~word F or A constant is preferred.
Code

If a code is to be passed as a parameter or is to be translated to a
value to be passed as a parameter, you must pass it in the parameter

84

list and not, as in the case of the R-type macro instruction, in a
register. Since the code may only be one term, you may use any type of
constant to generate the parameter in the list. If the code is a
character string that includes apostrophes, you must pass it as a
character constant and adhere to the rules for writing such constants.
Notice also that the TSS assembler reduces all double apostrophes and
double ampersands to single apostrophes and ampersands.

Again, you may choose to use the code as a path indicator. If you
wish to pass a variable-length parameter list, you might use a code to
indicate the length of the list being passed.

Character String and Text

These types of cperand formas may be used in two ways. You can pass
the operands to the called routines as character strings in the parame-
ter list; you can generate the character strings and then enter a point-
er to them in the parameter list. The latter method is preferred, with
the variable length of the string or text gemerated as a full word imme-
diately preceding the string (no separate field or pointer for length).
Since the parameter list produced by the S—-type macro instruction nor-
mally is a list of pointers,you will, with few exceptions, use this form
of operand in character constants or character literals.

You are responsible for verifying the presence of a leading apos-—
trophe in a text operand and for providing error processing if it is
missing. The assembler program checks for the terminal apostrophe.

Two methods for checking the length of a character string are availa-
ble. As you can see in Figure 17, youn may test for eithexr the K or the
L attributes. The reason for subtracting 2 from the count of STEXT be-
fore placing it in the SETA cell is that the assembler includes the
delimiting apostrophes in the count. If you want to find the length of
the character string, bear in mind that delimiting apostrophes will have
been stripped and double apostrophes and ampersands will have been re-
duced. Thus, had the programmer written the operand STEXT as:

YUSE THIS SYMBOL &&°®

you would find its K attribute to be 20 {including terminal apos-
trophes) . Statement 3 of the example would yield the value 18 in the
SETA cell. Statement 5 would yield a value of 17 in the SETA cell since
statement 4 would have generated STEXT stripped of its terminal apos-
trophes and one of the two ampersands.

Section S: Defining System HMacro Imstructions 85

[NS D W D T T G . VU) w— CUD mug ey G - — wuD

n
(2)

(3)

(4)

(3)

BTCX &TEXT
5A1 S%TA K*&TEXT-2
CHDXX Dé CP5TEXT®
&A1l S%Tl L*CHDXX
HéHD

e R e R S ————

FPigure 17.

Symbol

You may use this operand form in several ways:

Determining the length of a character string

in the name field of

a generated statement, as a character string to be passed as a parame-—
ter, or as an entry point or module name to be used as the argument of

an address constant, usually R—-type or V-type.

L-FORM S-TYPE MACRO DEFINITION

RX addressing is not allowed in the L-form of the S-type macro in-
struction.
RX addressing requires the generation of executable code, it cannot be

used.

EXAMPLE A:

(m
(2)

(3)
%)
(3)
(6)
(7
(8)
(9)
(10)
amn
(12)

(13)
(14)
(15)
(16)

86

ENAME

- LFORM

ENAME
-SYHN

«PROC

&B

.OMIT3

~OMIT1

The L-form is used to generate a parameter list only.

Since

Coding the L-form part of an S-type macro definitionm

MACRO

STYPE ELENLOC,&EPROC,ESYN,ESYMLEN,

AIF
AIF
DC
AIF
DC
AIF
DC
LCLB
AIF
AIF

SETB
DC
MEXIT
ANOP

EEF=1

{(*8MF* EQ 'L*) .LFORNM

(*SNAKE® EQ '') .E1
(K*SLENLOC EQ 0) .OMIT1
A (§LENLOC)

(*6SYM' EQ **).E2
CLB*§&SYM®

(K*6SYMLEF EQ 0) .E4
AL1 (6SYMLEN)

2B

(K*S§PROC EQ 0) .OMIT3
(*SPROC® NE 'E' AND
'*§PROC® NE *P') .E3
(*EPROC' EQ "F')
AL1(EB)

HEADER STATEMENT
PROTOTYPE

LFORNM OF MACRO?

IS NAME FIELD OK

IS FIRST FIELD OK
ENTER FIRST OPERARD
3RD OPERAND OK

ENTER 3RD OPERAND

4TH OPERAND OK

ENTER 4TH OPERAND
ESTABLISH SETB

IS 28D OPERAND PRESENT

IS 28D OPERAYD VALID
SET CODE
DEFAULT 2ND OPERAND

DEFAULT 1ST OPERAND

(17) &NAME DC A (0) RESUME PROCESSING
(18) AGO .SYN

(19) .El ANOP

(20) .E2 ANOP

(21) .E3 ANOP

(22) .E& ANOP

(23) MEND

Example A illustrates this limitation. If you intend to permit the
user of your macro imstruction to use the L-fora, you may wish to empha-
size the operand form limitation in your macro description. All other
operand forms allowed in the standard form are also allowed in the L-
form. Although operands in L-form may be used as path indicators, they
are generally used as the arguments of DC statements or are translated
to values that are ased as arguments.

Since the user controls the placement of the parameter list, do not
include a statement to generate a control section; specifically, domn®t
attempt to locate the parameter list in the PSECT.

Figure 18 shows how the S-type macro definition in Example A would be
presented to the user. ¥Notice that the name field im the L-form is man-
datory. This is a good general rule to followv because most users gener-
ate the parameter list and later modify it with an E-form. The name as-
signed the L-form is a good way to identify the parameter list for later
modification.

The coding shown in Example A would genmerate the parameter list shown
in Pigure 19. Statements 3, &4, 6, 8, 11, and 12 test for the existence
and the validity of each parameter. Statements 5, 7, 9, 1, and 17 gen-—
erate the parameter list. Notice that lines 3 and 6 use a null test to
verify the presence of operands.

Standard form:

T L T B
|Name joperation|Operand |
2 i L 3
| L
l[sylbol];ST!PE {length location,procedure,symbol,synbol length }
L A A 3
L-form:
1] i)] ~
|Name joperation|Operand |
1 L 1 3
4

1] ¥
|symbol |STYPE i[length location], [procedure],syanbol,synbol length,
1 | |NP=L

} B

i L

Figure 18. Standard and L-form S-type macro description

Defaults have been provided in lines 18 and 16. If the second
operand is omitted, line 11 branches to line 14 which uses £B as the
argqument of the address constant. Since 8B was initialized to zero by
the LCLB instruction,