
Systems RefE3rence Library

IBM System/3S0 Time Sharing System

IBM PORTRIlN IV

This publication describes and illus­
trates the UBe of the IBM FORTRAN IV
language for 1the IBM System/360 Time Shar­
ing System ref4~rred to hereafter as Time
Sharing System/360.. The reader is presumed
to have some knowledge of an existing
FORTRAN language.

The IBM FOR~rRAN IV language is a symbol­
ic programming language~ It parallels the
symbolism and format of mothematical nota­
tion. In addit.ion., many programming fea­
tures and facilities are available for
expressing the method of solution of a
mathematical problem as a meaningful
FORTRAN program..

File No. S360-25
Form C28'-2007-0 TSS t·

PREFACE

This publication describes the IBM
System/360 Time Sharing System IBM FORTRAN
IV language referred to in this manual as
FORTRAN IV. A reader should have some
knowledge of an existing FORTRAN language
before using this publication. The publi­
cation FORTRAN General Information., Form
F28- 8074" is a useful source for such
knowledge.

The material in the FORTRAN IV publica­
tion is arranged to provide a quick defini­
tion and syntactical reference to the var­
ious elements of the language by means of a
box format. In addition, sufficient text
describing each element" with appropriate
examples of possible use. is given.

There are four appendixes which give
additional information useful in writing a
FORTRAN IV source program,. They are:

A: Table of Source Program Characters
B: Other FORTRAN Statements Accepted

by IBM FORTRAN IV
C: FORTRAN Supplied Subprograms
D: Sample Programs

First Edition
Significant changes or additions to the specifications contained in this
publication will be reported in subsequent revisions or Technical
Newsletters.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
Printer using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office servino your locality.

A form is provided at the back of this publication for reader's
comments. If the form has been removed, comments may be addressed to
the IBM Corporation, Time Sharing System/360 Programming Publications,
Department 504,2651 Strang Blvd., Yorktown Heights, N. Y. 10598

© International Business Machines Corporation 1966

INTRODUCTION • • • 5

The IBM System/360 Time Sharing System
FORTRAN IV. • • .. " .. • • • • • • •

Features of the Time Sharing System
FORTRAN IV.. .. • ,. •

ELEMENTS OF THE LANGUAGE ..

5

5

7

Statements • • • • 7
Coding FORTRAN Statements _. Card

Input. ,. ,. • 7
Coding FORTRAN Statements _.

Keyboard Input • •• " 8
Initial Lines. • • .. 9
continuation Lines .. 9

Constants,. • .. ••
Integer Constants.

10
10

Real Constants. • • •
Complex constant,. "

• • • 11

Logical Constants '.
Literal Constants

• 12
13

,. 13

Variables.. •• .. ,. 13
Variable Names. • .. • • .. 14
Variable Types and Length
Specifications • • • 14

Type Declaration by the Predefined
Specification. • • " " • • • ,. '. 15

Type Declaration by the IMPLICIT
Specification Statement. • • • 15

Type Declaration by Explicit
Specification Statements 4' • • •• 16

Arrays " ,. • • .. 16
Declaring the Size of an Array. • • • 18
Arrangement of Arrays in Storage. • • 19

Expressions
Ari thmetic Expressions,.

Arithmetic Operators •
Logical Expressions • •

Relational Operators
Logical Operators.. •

ARITHMETIC AND LOGICAL ASSIGN~mNT

• 19
,. 19

20
23
24
24

STATEMENT • " .. • • • • 27

CONTROL STATEMENTS • .• 29

The GO TO Statements "
Unconditional GO TO Statement.
Computed GO TO Statement ...
The ASSIGN and Assigned GO TO

Statements. • • '" • •

Addi tional Control Statements ..
Arithmetic IF Statement.. .. •
Logical IF Statement
DO Statement • • • •

• • 29
29

.. 30

31

32
• 32
'. 33
• 34

CONTENTS

CONTINUE Statement •
PAUSE Statement.
STOP Statement •
END Statement. • •

INPUT/OUTPUT STATEMENTS. .

• 37
• 38
'. 38
• 39

" 40

Basic Input/Output Statements. • •• 40
READ Statement. .. • • . • .. • • 41

The Form READ (a,x) 42
The Form READ (a, b) List. • • 44
The Form READ (a) List • 45
Indexing I/O Lists • • • • 46
Reading Format Statements .•..• 47

WRITE Sta. tement • • '. • • • •• 47
The Form WRITE (a.x) • .. • • . 48
The Form WRITE (a,b) List. . • 49
The Form WRITE (a) List. . 50

FORMAT Statement. • • 50
G Format Code. • • 52
Numeric Format Codes (I~F~E,D) ... 56
I Format Code. • 57
F Format Code. • • • • . • • • • • 58
D and E Format Codes 58
L Format Code. • • 59
A Format Code. . " 59
Literal Data in a Format
Statement... . • • •

H Format Code. •
X Format Code.
T Format Code.
Scale Factor - P •
Carriage Control ..

Additional Input/Output Statements •

61
'. 62

· • 63
64

• 64
· • 66

67
• 67 END FILE Statement • .

REWIND Statement • ,. •
BACKSPACE Statement. •

• • . • 67

SPECIFICATION STATEMENTS

The Type Statements. • •
IMPLICIT Statement
Explicit Specification
Statements. '. • • • •

Adjustable Dimensions.

Additional Specification Stabements.
DIMENSION Statement. • .
COMMON Statement •. • .
Blank and Labeled Common .
EQUIVALENCE Statement.

SUBPROGRAMS. .. • .. • •
Naming Subprograms.
Functions • • • .. •

Function Definition. •
Function Reference

Statement Functions • •
FUNCTION Subprograms.

Type Specification of the
FUNCTION Subprogram • • • •

67

68

• .. 68
• • 68

· • 70
· .. 72

• '. 73
73

· • 74
'. 76
• 77

80
80

• .• 80
81
81

• 81
83

84

RETURN and END Statements in a
Function Subprogram • '. • 85

SUBROUTINE Subprograms. • • • • • • • 86
CALL Statement • • • • • • • • • • 87
RETURN Statement in a SUBROUTINE

Subprogram. • • • ~ • • • • • • • 88
Multiple ENTRY into a Subprogram • 89
Additional Rules for Using ENTRY • 91
The EXTERNAL Statement • • • . • • 92

FORTRAN Supplied Subprograms.. • • • 93
BLOCK DATA Subprogram • • • • • • • • 93

APPENDIX A: SOURCE PROGRAM CHARACTERS • 95

APPENDIX B: OTHER FORTRAN FEATURES
ACCEPTED BY FORTRAN IV.. . • • 96

READ Statement • • • ,. • • • • 96
PUNCH Statement. • • • • • 96
PRINT Statement. • • • • • 97
DATA Initialization Statement. '. • 97
DOUBLE PRECISION Statement •• 98

ILLUSTRATIONS

FIGURES

Figure 1.
Figure 2.
Figure 3.

FORTRAN Coding Form 8
Sample Program 1 . . 104
Sample Program 2 107

Arguments of a FUNCTION or
SUBROUTINE Program Enclosed by
Slashes • • .. • • • • • • 98

APPENDIX C: FORTRAN SUPPLIED
SUBPROGRAMS • .. 99

Mathematical Function Subprograms. • .• 99

Machine Indicator rests ••••••.•. 102

The EXIT, DUMP, and PDUMP Subprograms •• 102
EXIT Subprogram. • • 102
DUMP Subprogram. • •• • ••• 103
PDUMP Subprogram. • • .103

APPENDIX D: SAMPLE PROGRAMS • ,.104

Sample Program 1 '. .. • .104

Sample Program 2 • • • ,.105

INDEX. • .112

TABLES

Table 1. Insurance Premium Codes. • • • 18
Table 2. Determining the Mode of an
Expression Containing Variables of
Different Types and Lengths • • • •• • 21

Table 3. Valid Combinations With
Respect to the Arithmetic • • • • • •• 22

Table 4. Mathematical Function,
Subprograms • • • • .. • • • • .• • • • .• 99

INTRODUCTION

THE IBM SYSTEMI'360 TIME SHARING SYSTEM FORTRAN IV

The IBM Ti.me Sharing System/360 FORTRAN IV is comprised of a
language" a library of subprograms.. and a compiler.

The FORTRAN language is especially useful in writing programs both in
conversational and nonconversational mode for scientific and engineering
applications that involve mathematical computations. In fact" the name
of the langua.ge FORTRAN - is derived from its primary use: FORmula
TRANslating.

Source programs written in the FORTRAN language consist of a set of
statements constructed from the elements of the language described in
this publication.

The FORTRAN compiler analyzes the source program statements and
transforms therrl into an object program that is suitable for execution on
the IBM Syste~m/36 O. In addition" when the FORTRAN compiler detects
errors in the source program, appropriate error messages are produced.
At the user's option a complete listing of the source program is
produced,.

The FORTRA.N compiler operates under control of Time Sharing
System/360" which provides the FORTRAN compiler with input/output and
other services4 Object programs generated by the FORTRAN compiler also
operate under System/360 Operating System control and depend on it for
similar services.

The IBM Time Sharing System/360 FORTRAN IV language is compatible
with and encompasses ~the American Standards Association O~"SA) FORTRAN,
including its mathema'tical subroutine provisions ..

FEATURES OF THE TIME SHARING SYSTEM FORTRAN IV

The Time Sharing System/360 FORTRAN IV is a further development of
previously implemented FORTRAN systems and contains many of the features
of these systems. In addition, the £ollowing features facilitate the
writing of source programs and reduce the possibility of coding errors:

1. Variable Attribute Control: The attributes of variables and arrays
may now be explicitly specified in the source program. This
facility is provided by a single explicit specifica"tion statement
which allows a programmer to:

a. Specify storage length.

b. Explicitly type a variable as integer" real" complex" or
logical ..

c. Specify the dimension of arrays ..

d,. Specify data initialization values for variables,.

In1troduction 5

6

2,. Adjustable Array Dimensions: The dimensions of an array in a
subprogram may be specified as variables; when the subprogram is
called" the absolute array dimensions are substituted.

3. Additional Format Code: An additional format code - G - can be used
to specify the format of numeric and logical data. Previously
implemented format codes are also permitted.

4. Mixed Mode: Expressions may consist of constants and variables, of
the same and/or different types and lengths.

5.. Named I/O List: Formatting of input/output data is facilitated by
reading and writing operations" without reference to a FORMAT
statement or list.

6. Spacing Format Code: The T format code allows input/output data to
be transferred, beginning at any specified position.

7. Literal Format Code: Apostrophes may be used to enclose literal
data.

ELEMENTS o.F THE LANGUAGE

STATEMENTS

Source programs consist of a set of statements from which the
compiler generat.es machine instructions" constants, and s1:orage areas.
A given Fo.RTRAN statement effectively performs one of three functions:

1.. Causes certain operations to be performed (e.g .. II add" multiply"
branch> ,.

2. Specifies the nature of the data being handled.

3~ Specifies the characteristics of the source program.

Fo.RTRAN stabements are usually composed of certain FORTRAN key words
used in conjunction with the basic elements of the language ,: constants"
variables" and expressions. The five categories of FORTRAN statements
are as follows:

L. Arithmetic ,S!,nd Logical Assignment Statements: Upon exeeution of an
arithmetic or logical assignment statement l, the result, of calcula­
tions performed or conditions tested replaces the curr~~nt value of
a dasignated variable or subscripted variable~

2. Control Statements: These statements enable the user to govern the
flow and terminate the execution of the object program,.

3. Input/o.utput Statements: These statements" in addition to control­
ling input,loutput (I/O.> devices, enable the user to 1transfer data
between internal storage and an I/O. medium.

4. Specification Statements,: These statements are used to declare the
properties of variables, arrays" and subprograms (such as type and
amount of storage reserved> and to describe the format of data on
input or output.

5. Subprogram statem~nts: These statements enable the user to name and
define functions and subroutines.

The basic elements of the language are discussed in this section.
The actual Fo.RTRAN statements in which these elements are used are
discussed in following sections.

Co.DING Fo.RTRAN STATEMENTS - CARD INPUT

The statements of a FORTRAN source program can be written on a
standard Fo.RTRAN coding form" Form X28-7327 (Figure 1) • Fo.RTRAN
statements are written one to a li.ne from columns 7 through 72,. If a
statement is too long for one line ll it may be continued on ,as many as 19
successive lines by placing any character" other than a blank or zero l,

in column six of each continuation line. For the first line of a
statement, column six must be blank or zero.

Columns 1 thr'ough 5 of the first line of a statement may contain a
statement number' consisting of from 1 through 5 decimal digits.. Leading
zeros in a statement number are ignored. The statement numbers may be

Elements of the Language 7

assigned in any order; the value of statement numbers does not affect
the order in which the statements are executed in a FORTRAN program.

Columns 13 through 80 are not significant to the FORTRAN compiler and
may., therefore" be used for program identification" sequencing, or any
other purpose.

Comments to explain the program may be written in columns 2 through
80 of a line~ if the letter C is placed in column one. Comments may
appear anywhere within the source program. They are not processed by
the FORTRAN compiler~ but are printed on the source program listing.

Blanks may be inserted where desired to improve readability.

IBJtt FORTRAN Codin~ Form p,.,."J '" 1J.~,A.

I PWGRAM
PlJNCI~ING

I GRAPHIC I I I I PAGI. 0'

I PROGRAMMER IOAH
INSTRUCTIONS

I PUNCH 1 1 I I
ST~~~~:~T I FORTRAN STATEMENT IO's~~0~~~ ION

.'
I

eem i
k' ~ ,:" t,

I :'\-
, '

I
i

I II 1
, I I'
I

-
!

II
r'" \

:'"
i

I II I
i I

I -'-!~4,r b. ,

:

I "
!

I ,

It
I

I I

,~ 1

i i ' ;

i ! I I I I I , ,

I I I I ; I I '
, i

I. 8 I 141 IiI7 " " " " ..
" I

61 8()

"A

Figure 1.. FORTRAN Coding Form

CODING FORTRAN STATEMENTS - KEYBOARD INPUT

It is desirable to free a conversational keyboard operator from
strict positional requirements when typing in a FORTRAN source program.
The following conventions for statement numbers" text starting posi-

8

tions., and continuation lines are accepted when input is from an on-line
keyboard.

Initial Lines

If a line is the initial line of a statement" it may have a statement
number. (The st:atement number" if any. must appear on the first line of
the statement ..) The numeric statement number must be the first nonblank
material in the line. It can start in any column" and is terminated
after fi ve ad:iacent, columns,' or by the occurrence of a nonblank,
nonnumeric character~ whichever happens first.

If a statement has a statement number" the text of the statement
begins with the first nonblank character following the statement number"
unless this character is a horizontal tab. If a tab is used to separate
the statement number from the text, the text begins w·ith the first
nonblank character following the tab.

If a statement does not have a statement number., the text of the
statement begins with the first nonblank, nonnumeric character of the
line. unless this character is a horizontal tab.

If a tab is used to begin the line. the text starts with the first
nonblank character following the tab.

Continuation Lines

A line of input is a continuation line. rather than the initial line
of a statement, if the last character (blanks included) of the last
preceding nonco~~ent line was a '-' (EBCDIC 60).

A continuation line in keyboard input may not ha.ve a statement
number.. The text of the line begins with the first charact,er (blank or
not) of the line. unless this character is a horizontal tab.. If a tab
is used to begin the line, the text starts with the first character
(blank or not) following the tab.

Caution is needed in the use of '_I at the end of a line, and tab (in
alphameric constants) or the letter C, at the beginning of a line, to
avoid conflict between the FORTRAN text and the continuation, comment,
and tab conventions of keyboard input.

Elements of the Language 9

CONSTANTS -----

A constant is a fixed. unvarying quantity. There are three classes
of constants -- those that deal with numbers (numerical constants)~
those that deal with truth values (logical constants) " and those that
deal with literal data (literal constants).

Numerical constants may be integer, real. or complex numbers; logical
constants may be • TRUE. or .FALSE.; literal constants may be a string
of alphameric and/or special characters enclosed by quotes .•

INTEGER CONSTANTS

r---~--------------------------,
I Definition I
.--~
I I
I Integer Constant - a whole number written without a decimal point. I
I It occupies four locations of storage. I
I I
I Ma.ximum Magnitude: 2147483647., i.e., (2 3 1.-1). I L __ J

An integer constant may be positive. zero, or negative; if unsigned,
it is assumed to be positive. Its magnitude must not be greater than
the maximum and may not contain embedded commas.

Examples:

10

Valid Integer Constants:

o
91
173
-2147483647
-12

Invalid Integer Constants:

0.0
27.
3145903612
5,396

(contains a decimal point)
(contains a decimal point)
(exceeds the allowable range)
(embedded comma)

REAL CONSTANTS

r--,
I Definition I
~--i

Real Constant: - a number with a decimal point optionally followed
by a decimal 4~xponent, or an integer constant followed by a decimal
exponent. This exponent may be written as the letter E or D
followed by a signed or unsigned, one- or two-digit integer
constant,. A real constant may assume one of two forms:

1. From one through seven decimal digits,QJ2tionally followed by an
E decimal f=xponent. This form occupies 4 storage locations.

2. Either on4~ through seven decimal digits followed by a D decimal
exponent or 8 to 16 decimal digits optionally followed by a D
decimal exporient,. This form occupies eight storagE~ locations
and is somE~times referred to as a double precision constant.

Magnitude: (either form) 0 or 16- 63 through 16 63 (i.e.. approxi­
mat.ely 10 75).

A real constant may be positive. zero. or negative (if unsigned, it
is assumed to be positive) and must be of the allowable ma9nitude. It
may not contain embedded commas. The decimal exponent E or D permits
the expression of a real constant as the product of a real constant
times 10 raised to a desired power.

Examples:

vali9, Real Constants (4 storage locations):

+0,.
-999.9999
0,.0
5764.1
7,.OE+0
19761.25E+l

7E3 ! 7.E3
7.0E3
7.0E03
7.0E+03
7.0E-03

(i.e., 7.0 x 10 0 = 7.0)
(i.e., 19761.25 x 101 = 197612.5)

(i.e •• 7.0 x 10 3 7000.0)

(i.e •• 7.0 x 10- 3 .007)

Valid Real Constants (8 storage locations):

21.98753829457168
1.0000000

7.903 I 7,.9D03
7.9D+03
7.9D+3
7.9D-03
7.900
0.0
7D3

(i.e., 7.9 x 10 3 7900.0)

(i.e., 7.9 x 10- 3 = .0079)
(i.e •• 7.9 x 10 0 = 7.9)
(i.e., 0.0 x 10 0 = 0.0)
(i.e •• 7 x 10 3 = 7000)

Elements of the Language 11

Invalid Real Constants:

o
3,471.1
1.E

7.90

1..2E+113

21.3090

23.5E+97

(missing a decimal point)
(embedded comma)
(missing a one- or two-digit
constant following the E.
interpreted as 1.0 x 10 0)

(missing a one- or two-digit
cons·tant following the 0)
(E is followed by a 3 digit
integer constant)
(value exceeds the magnitude
that is, 21.3 x 1090 >16 63)

(value exceeds the magnitude
that is, 23.5 x 1097>16 63)

integer
Note that it is not

integer

permitted;

permitted;

COMPLEX CONSTANT

r--,
I Definition I
~--i

Complex Constant - an ordered pair of signed or unsigned real
constants separated by a comma and enclosed in parentheses. A
complex constant may assume one of two forms:

1. From one through seven decimal digits optionally followed by an
E decimal exponent. In this form, each number in the pair
occupies four storage locations.

2. Either one through seven decimal digits followed by a 0 decimal
exponent or 8 through 16 decimal digits optionally followed by a
o decimal exponent. In this form each number in the pair
occupies eight storage locations.

Magnitude: (either form) 0 or 16- 63 through 16 63 (i.e •. , approxi­
mately 1075) for each real constant in the pair. L _____________________________________ . ________________________________ _

The real constants in a complex constant may be positive, zero, or
negative (if unsigned .. they are assumed to be positive), but they must
be 1n the given range. The first real constant in a complex constant
represents the real part of the complex number; the second represents
the imaginary part of the complex number.

Examples:

Valid Complex Constants:

12

(3.2,- 1.86)
(-5.0E+03,.16E+02)
(4.0E+03,.16E+02)
(2.1,0.0)
(4.70+2,1.9736148)

(has the value 3.2-1.86i)
(has the value -5000.+16.0i)
(has the value 4000.+16.0i)
(has the value 2.1+0.0i)
(has the value 470.+1.9736148i)

Where i =£1

Invalid Complex Constants:

(292704;,1.697)

(1. 2E113, 279 ... 3)

LOGICAL CONSTANTS

(the real part does not
contain a decimal point)
(the real part contains
an invalid decimal exponent)

r----------------.--------------------~---------------------------------,
I Definition I
~----------------.--~
I I
I Logical Constant - There are two logical values: I
I I
I • TRUE. I
I I
I • FALSE. I L __ J

A logical constant
logical constants ~TRUE~
logical variable they
associated with is true
"Logical Expressions.")

LITERAL CONSTANTS

must be preceded and followed by a period. The
and • FALSE. specify that the value of the

replace or the term of the expression they are
or false. respectively. (See the section

r--,
I Definition I
~-------------------------------------~---------------------.-----------~
I I
I Literal Constant - a string of alphameric and/or special characters I
I enclosed in apostrophes. I L _____________________________________ ~ _____________________ . ___________ J

The number of characters in the string, including blanks, may not be
greater than 255. Since apostrophes delimit literal daita, a single
apostrophe within such data is represented by double apostrophes.

Examples:

'DATA'
'INPUT/OUTPUT AREA NO.2'
'X-COORDINATE Y-COORDINATE Z-COORDINATE'
'3.14'
'DON'T'

VARIABLES

A FORTRAN variable is a symbolic representation of a quantity that
may assume different values. The value of a variable may change either
for different executions of a program or at different stag-es within the
program.

Elements of the Lamguage 13

For example. in the statement:

A = 5.0+B

both A and B are variables.. The value of B is determined by some
previous statement and may change from time to time. The value of A
varies whenever this computation is performed with a new value for B.

VARIABLE NAMES

r--,
I Definition I
~--~
I Variable Name - from 1 through 6 alphameric (i. e. " numeric., 0 - 9, I
I or alphabetic, A - Z and $) characters, the first of which must be I
I alphabetic. I L __ J

A variable name may not contain special characters (see Appendix A).
Variable names are symbols used to distinguish one variable from
another. A name may be used in a source program in one (and only one)
way (e.g., the name of a variable and that of a subprogram may not be
identical in the same source program).

The use of meaningful variable names can serve
documenting a program. That is, someone other than the
look at the program and understand its function.
compute the distance a car traveled in a certain amount
given rate of speed, the following statement could have

x Y * Z

as an aid in
programmer may
For example, to
of time at a

been written:

where * designates multiplication. However, it would be more meaningful
to someone reading this statement if the programmer had written:

DIST = RATE * TIME

Examples:

Valid Variable Names:

JOHN
B292
VAN
RATE
L17NOY
SQ704

Invalid Variable Names:

B292704
4 ARRAY
SI.X

<contains more than six characters)
(first character is not alphabetic)
(contains a special character)

VARIABLE TYPES AND LENGTH SPECIFICATIONS

The type of a variable corresponds to the type of data the variable
represents. Thus. an integer variable represents integer data, a real
variable represents real data, etc.

14

For every t)rpe of variable, there is a corresponding standard and
optional length Bpecification which determines the number of storage
locations reserved for each variable.. The following list shows each
variable type wi1:h its associated standard and optional lengrth:

Variable Type
Integer
Real
Complex
Logical

standard -4----

4
8
4

Optional
2
8

16
1

The three ways a programmer may declare the type of a variable are by
use of the:

i.. Predefined specification contained in the FORTRAN language.
2. IMPLICIT spE~cification statement ..
3,. Explicit spE~cification statement~.

The optional length specification of a variable may be declared only
by the IMPLICI~~ or Explicit specification statements. If, in these
statements, no lE~ngth specification is stated, the standard length is
assumed (see the section "The Type Statements").

TYPE DECLARATION BY THE PREDEFINED SPECIFICATION

The predefinE~d specification is a convention used to s.pecify vari­
ables as integer or real., as follows:

1. If the first character of the variable name is I, J, K, L. M, or N,
the variable is integer of standard length .•

2,. If the first: character of the variable name is any other letter,
the variable is real of standard length.

This convention is the traditional FORTRAN method of implicitly
specifying the type of a variable as being either integer or real. In
all examples that follow in this publication it is presumed that this
specification holds, unless otherwise noted.

TYPE DECLARATION BY THE IMPLICIT SPECIFICATION STATEMENT

This statement: allows a pr0grammer to specify the type of variables
in much the saLme way as was specified by the predefined. convention.
That is" in both, the type is determined by the first character of the
variable name. However" the programmer" using the IMPLICIT statement,
has the option of specifying which initial letters designate a particu­
lar variable tYPE!,. Further, the IMPLICIT statement is applicable to all
types of variablE!S -- integer I real" complex" and logical ..

The IMPLICIT statement overrides the variable type as determined by
the predefined convention. For example" if the IMPLICIT statement
specifies that variables beginning with the letters A through M are real
variables. and variables beginning with the letters N through Yare
integer variables, then the variable ITEM (which would be treated as an
integer variable under the 'predefined convention) is now treated as a
real variable. Note that variables beginning with the letters Z and $
are (by the predefined convention) treated as real variables. The
IMPLICIT statement is presented in greater detail in the section "Type
Statements."

Elements of the Language 15

TYPE DECLARATION BY EXPLICIT SPECIFICATION STATEMENTS

Explicit specification statements (INTEGER" REAL" COMPLEX, and
LOGICAL) differ from the first two ways of specifying the type of a
variable, in that an explicit specification statement declares the type
of a particular variable by i ts ~" rather than as a group of
variables beginning with a particular character.

For example" assume:

1. That an IMPLICIT specification statement overrode the predefined
convention for variables beginning with the letter I by declaring
them to be real.

2. That a subsequent Explicit specification statement declared 'that
the variable named ITEM is complex.

Then, the variable ITEM is complex and all other variables beginning
with the character I are real. Note that variables beginning with the
letters J through N are specifie8 as integer by the predefined
convention.

The Explicit specification statements are discussed in greater detail
in the section "Type Statements."

ARRAYS

A FORTRAN array is a set of variables identified by a single variable
name. A particular variable in the array may be referred to by its
position in the array (e. g., first variable, third variable" seventh
variable, etc.). Consider the array named NEXT~ which consists of five
variables, each currently representing the following values:

273" 41, 8976" 59" and 2

NEXT(1) is the representation of 273
NEXT (2) is the representation of 41
NEXT (3) is the representation of 8976
NEXT(4) is the representation of 59
NEXT (5) is the representation of 2

Each variable in this array consists of the name of the array (i. e. "
NEXT) followed by' a number enclosed in parentheses" called a subscript.
The variables which comprise the array are called subscripted variables.
Therefore, the subscripted variable NEXT(1) has the value 273: the
subscripted variable NEXT(2) HAS THE value 41, etc.

The subscripted variable NEXT(I) refers to the tilth" subscripted
variable in the array, where I is an integer variable that can assume a
value of 1, 2, 3, 4, or 5.

To refer to the first element of an array, the array name must be
subscripted. The array name does not represent the first element. The
number of subscripts must correspond to the declared dimensionality
except in the EQUIVALENCE statement,.

16

r--,
I General Form I
~--i

Subscripts - may be one of seven forms:

v
c'
v+c'
v-c'
c*v
c*v+c'
c*v-c'

Where: v represents an unsigned# nonsubscripted# integer variable.

c and c' represent unsigned integer constants. __ J

Whatever subscript form is used_ its evaluated result must always be
greater than zero. For example# when reference is made to the
subscripted variable V(I-2), the value of I should be greatE!r than 2.

Examples:

ARRAY (IHOLD)I
NEXT(19)
MATRIX(I-5)
A{S*L)
W{4*M+3)

An array may consist of up to seven subscript parameters, separated
by commas. Thus, the following are valid subscripted 'Vrariables for
their corresponding arrays:

Array Name
A
TABLE
B
MATRIX

sUBscript~d Variable
A(5# 100# J. K+2)
TABLE (1, 1# 1_ 1. 1_ 1, 1)
B{I, J. K. L. M# N)
MATRIX (I + 2,,6 *JOB- 3" KFRAN)

Consider the following array named LIST consisting of two subscript
parameters, the first ranging from 1 through 5, the second from 1
through 3:

Columnl Solumn2 Column3
Rowl 82 4 7
Row2 12 13 14
Row3 91 1 31
Row4 24 16 10
Row5 2 8 2

Suppose it is desired to refer to the number in row 2, column 3; this
would be:

LIST (2,,3)

Thus, LIST (2.3) has the value 14 and LIST (4.1) has the value 24.

Ordinary mathE~matical notations might use LIST i, j to re'present any
element. of the array LIST. In FORTRAN" this is written a.s LIST(I,J) "
where I equals 1,2,3#4, or 5, and J equals 1#2# or 3.

Elements of the I,anguage 1 7

As a further example, consider the array named COST" consisting of
four subscript parameters. This array might be used to store all the
premiums for a life insurance applicant , given (1) age, (2) sex r, (3)
health. and (4) size of life insurance coverage desired. A code number
could be developed for each statistic., where IAGE represents age, ISEX
represents sex~ IHLTH represents health, and ISIZE represents policy
size desired (see Table 1).

Table 1. Insurance Premium Codes
r----------------------------------T-----------------------------------,
I AGE I SEX I
.----------------------------------+-----------------------------------~
I I I
I Age in years Code I Sex Code I
I I I
I 1-5 IAGE=l I Male ISEX=l I
I 6-10 IAGE=2 I Female ISEX=2 I
I ~-----------------------------------~
I I POLICY SIZE I
I .-----------------------------------i
I 96-100 IAGE=20 I I
.----------------------------------~ Dollars Code I
I HEALTH I I
.----------------------------------i 1~000 ISIZE=l I
I Health Code I 3,000 ISIZE=3 I
I I 5_000 ISIZE=4 I
I Poor IHLTH=l I 10.,000 ISIZE=5 I
I Fair IHLTH=2 I 25,000 ISIZE=6 I
I Good IHLTH=3 I 50,000 ISIZE=7 I
I Excellent IHLTH=4 I 100,000 ISIZE=8 I L __________________________________ ~ ___________________________________ J

Suppose an applicant is 14 years old., male, in good health" and
desires a policy of $25,000. From Table 1, these statistics can be
represented by the codes:

IAGE=3
ISEX=l
IHLTH=3
ISIZE=6

(11 - 15 years old)
(male)
(good health)
($25,000 policy)

Thus~ COST (3, 1, 3_ 6) represents the premium for a policy, given
the statistics above. Note that "IAGE" can vary from 1 to 20, "ISEX"
from 1 to 2, "IHLTH" from 1 to 4, and "ISIZE" from 1 to 8. The number
of subscripted variables in the array COST is the number of combinations
that can be formed for different ages, sex, health_ and policy size
available - a total of 20x2x4x8 or 1280. Therefore, there may be up to
1280 different premimums stored in the array named COST.

DECLARING THE SIZE OF AN ARRAY

The size of an array is determined by the number of subscript
parameters of the array and the maximum value of each subscript. This
information must be given for all arrays before using them in a FORTRAN
program, so that an appropriate amount of storage may be reserved.
Declaration of this information is made by a DIMENSION statement., a
COMMON statement, or by one of the Explicit specification statements
(INTEGER, REAL, COMPLEX, and LOGICAL); each is discussed in further
detail in the section "Specification Statements."

18

ARRANGEMENT OF ARRAYS IN STORAGE

Arrays are stored in ascending storage locations" with the value of
the first of their subscripts increasing most rapidly. and the value of
the last increasing least rapidly.

ExamplE~s :

The array namted A, consisting of one subscript parameter which varies
from 1 to S~ appears in storage as follows:

A(l) A(2) A(3) A(4) A(S)

The array named B" consisting of two subscript paramE~ters, whose
first subscript vifties over the range from 1 to 5, and second varies
from 1 to 3, appears in ascending storage locations in the following
order:

B(l"l) B (2.1) B (3,1) B(4,1) B(S.,l)]

Lt:BCL,2) B(2,,2) B(3~2) B(4~2) B(S,,2)-,

~L,,3) B(2,3) B(3,3) B (4,,3) B(S,3)

Note that B(l,2) and B(l,3) follow in storage B(S,l) and B(S,2),
respectively ..

The following list is the order of an array named C, consisting of
three subscript parameters" whose first subscript varies from 1 to 3,
second varies from 1 to 2, and third varies from 1 to 3:

C(L,l,l) C(2,,1,l) C(3,1.,l) C (1,2,,1) C(2,2,1) C(3,2,,1)-,

~l,l,2) C(2,1,,2) C(3,,1,,2) C (1, 2,,2) C(2,2,2) C (3~ 2, 2)--,

~1,1!,3) C (2,,1,,3) C(3,,1,,3) C(1,,2,3) C(2,2,,3) C(3,2,3)

Note that C(1,l,2) and C(1~l,3) follow in storage C(3,2,l) and C(3,2,2),
respectively .•

EXPRESSIONS

Expressions in their simplest form consist of a single constant or
variable. They may also designate a computation or show a relationship
between two or more constants and/or variables. Expressions may appear
in arithmetic and logical assignment statements and in ce,["tain control
statements.

FORTRAN provides two kinds of expressions: arithmetic and logical.
The value of an arithmetic expression is always a number 'whose type is
integer, real" or complex,. However, the evaluation of a logical
expression always yields a truth value: • TRUE. or .FALSE ••

ARITHMETIC EXPRESSIONS

The simplest arithmetic expression consists of a single constant,
variable" or subscripted variable of the type integer, real, or complex.
If the constant" variable, or subscripted variable is of the type

Elements of the Language 19

integer. the expression is in the integer mode. If it is of the type
real~ the expression is in the real mode# etc.

Examples:

Expression
3

Type of Quantity
Integer Constant
Integer Variable
Real Constant
Real Variable
Real Constant

Mode of Expression
Integer

I Integer
3,.0 Real
A Real
3.1403 Real with eight loca­

tions of storage re­
served

B(2*I) Real Variable <Specified
as such in a Type
statement)

Real with four loca­
tions of storage re-
served ..

(2.0,5.7)
c

Complex Constant
Complex Variable
(Specified as such in a
Type statement)

Complex
Complex

In the expression B(2*I), the subscript (2*1), which must always
represent an integer" does not affect the mode of the expression. That
is, the mode of the expression is determined solely by the type of
constant. variable. or subscripted variable appearing in that expres­
sion.

More complicated arithmetic expressions containing two or more
constants and/or variables may be formed by using arithmetic operators
that express the computation(s) to be performed.

Arithmetic Operators

The arithmetic operators are as follows:

Arithmetic Operator Definition
Exponentiation
Multiplication
Division
Addition
subtraction

**
*
/
+

RULES FOR CONSTRUCTING ARITHMETIC EXPRESSIONS: The following are the
rules for constructing arithmetic expressions that contain arithmetic
operators:

L. All desired computations must be specified explicitly. That is, if
more than one constant, variable, subscripted variable, or subpro­
gram name (see the section "SUBPROGRAMS") appears in an arithmetic
expression, they must be separated from one another by an arithme­
tic operator. For example, the two variables A and B will not be
multiplied if written:

AxB or AB or A-B

If mUltiplication is desired, then the expression must be written:

A*B or B*A

2. No two arithmetic operators may appear in sequence in the same
expression. For example, the following expressions are invalid:

A*/B and A*-B

20

However" in the expression, A*-B" if the - is meant t~o be a minus
sign rather than the arit.hmetic operator designating subtraction rr

then the expression could be written:

A* (-B)

In effect. -B will be evaluated first" and then A will be
multiplied ~Nith it,. (For further uses of parentheses" see Rule 6.)

3. The mode of an arithmetic expression is determined by t:he type and
length specification of the variables in the expression. Table 2
indicates hl:)w the mode of variables of different types and lengths
may be determined using the operators: + I, -, * I, /.

Table 2. Dletermining the Mode of an Expression Containing
Variables of Different Types and Lengths

~-------T---------T---------T---------T---------T---------T-------,
I I INTEGER I INTEGER 1 REAL 1 REAL 1 COMPLEX 1 COMPLEX I
1+ - * /1 (2) I (4) I (4) I (8) 1 (8) 1 (16) 1
.-------+---------+---------+---------+---------+---------+-------i
I INTEGER I Integer I Integer 1 Real I Real I Complex I Complex I
1 (2) 1 (2) I (4) 1 (4) I (8) I (8) I (16) I
.-------+---------+---------+---------+---------+---------+-------~
I INTEGER I Integer 1 Integer 1 Real I Real I Complex I Complex I
1 (4) I (4) I (4) I (4) I (8) I (8) I (16) I
.-------+---------+---------+---------+---------+---------+-------i
1 REAL I Real I Real 1 Real I Real I Complex I Complex I
I (4) 1 (4) 1 (4) I (4) I (8) 1 (8) I (16) I
~-------+---------+---------+---------+---------+---------+-------i
I REAL I Real 1 Real 1 Real I Real I Complex IComplexl
I (8) I (8) I (8) I (8) I (8) I (16) I (16) I
.-------+---------+----~----+---------+---------+---------+-------i
1 COMPLEX I Complex I Complex I Complex I Complex I Complex I complex I
I (8) I (8) I (8) I (8) I (16) I (8) I (16) I
.-------+---------+---------+---------+---------+---------+-------i
I COMPLEX I Complex I Complex I Complex I Complex I Complex I Complex I
I (16) I (16) I (16) I (16) I (16) I (16) I (16) I L _______ L _________ L----_____ L _________ ~ _________ ~ _________ L _______ J

From Table 2 it can be seen that there is a hierarchy of type and
length specification (see the section "The Type statements") that
determines the mode of an expression. For example" complex data
that has a length specification of 16 when combined with any other
types of constants and variables results in complex data of length
16,.

Assume that the type of the following variables has been specified
as follows:

Variable Names
ROOT, E
A" I., F
C.D

~
Real variable
Integer variables
Complex variable

Length Specification
4,,8
4,,2,,2
16,,8

Then the following examples illustrate how constants and variables
of differing types may be combined using the arithmetic operators:

+" -" /. *:

Expression
ROOT*5
A+3
C+2.9D10
E/F+19

Mode of
Real of
Integer
Complex
Real of

EXQression
length 4
of length 4
of length 16
length 8

Elements of the Language 21

C-18.7E05
A/I-i)

Complex of length 16
Complex of length 8

4. The arithmetic operator denoting exponentiation (i. e. " **) may only
be used to combine the types of constants" variables

"
and sub­

scripted variables shown in Table 3.

Table 3. Valid Combinations With Respect to the Arithmetic
Operator **

r---,
I Base Exponent I
f---~
IInteger or Real (either length)** Integer or Real (either length) I
I I
IComplex (either length) ** Integer (either length) I L ___ J

Assume that the type of the following variables has been specified
as follows~ and that their length specification is standard:

Variable Names
ROOT~E

A, I, F
C

~
Real variable
Integer variables
Complex variable

Then the following examples illustrate how constants and variables
of differing types may be combined using the arithmetic operator"
**,.

Examples:

Expression
ROOT**(A+2)
C**A
ROOT**I
I**F
7,. 98E21**ROOT
ROOT**2.1E5
A**E

~
(Real**Integer)
(Complex**Integer)
(Real**Integer)
(Integer**Integer)
(Real**Real)
(Real**Real)
(Integer**Real)

Result
(Real)
(Complex)
(Real)
(Integer)
(Real)
(Real)
(Real)

5. Order of Computation: Where parentheses are omitted" or where the
entire arithmetic expression is enclosed within a single pair of
parentheses. effectively the order in which the operations are
performed is as follows:

22

Operation
Evaluation of Functions (see the
section "Subprograms")

Exponentiation (**)
Multiplication and Division (* and /)
Addition and Subtraction (+ and -)

Hiera!:chy
1st (highest)

2nd
3rd
4th

In addition. if two operators of the same hierarchy (with the
exception of exponentiation) are used consecutively, the two
operations are performed from left to right. Thus, the arithmetic
expression A/B*C is evaluated as if the result of the division of A
by B was multiplied by C.

For example" the e:xpression:

(A*B/C**I+D)

is effectively evaluated in the order:

a. C**I
h. A*B
c. Y/X
d.. Z+D

Call the result X
Call the result Y
Call the result Z
Final operation

(exponentiation)
(multiplication)
(division)
(addition)

For exponent:ia tion the evaluation is from right to left.. Thus" the
expression:

A**B**C

is evaluated as follows:

a. B**C
b. A**Z

Call the result Z
Final operation

6. Use of Pa]~entheS!es: Parentheses may be used in arithmetic expres­
sions" as in algebra, to specify the order in which thE~ arithmetic
operations are to be computed.. Where parentheses are used" the
expression ~~ithin the parentheses is evaluated before t~he result is
used.

For example,., the expression:

(B+«A+B)*C)+A**2)

is effectively evaluated in the order:

a ... (A+B) Call the result X
b~ (x*C) Call the result y
c., A**2 Call the result Z
dOl B+Y+Z Fina.l operations

LOGICAJ.J EXPRESSIONS

The simplest form of logical expression consists of a single logical
constant., logical variable. or logical subscripted variable., the value
of which is always a truth value (i.e~" either ,.TRUE .• or .]~ALSE.).

More complica·ted logical expressions may be formed by using logical
and relational operators. These expressions may be in one of the three
following forms:

1. Relational operators combined with arithmetic expreBsions whose
mode is integer or real.

2. Logical operators combined with logical constants (.TRUE. and
• :fALSE.), logical variables" or subscripted variables,.

3. Logical operators combined with either or both forms of the logical
expressions described in items 1 and 2.

Item 1 is discussed in the following section, "Relational Operators";
items 2 and 3 are discussed in the section "Logical Operato:rs."

Elements of the :Language 23

Relational Operators

The six relational operators, each of which must be preceded and
followed by a period" are as follows:

Relational Operator
.GT.
.GE.
• LT.
• LE.
.EQ ..
4ONE.

Definition
Greater than (»
Greater than or equal to (~)
Less than (<)
Less than or equal to (5)
Equal to (=)
Not equal to (*)

The relational operators express an arithmetic condition which can be
either true or false. Only arithmetic expressions whose mode is integer
or real may be combined by relational operators. For example, assume
that the type of the following variables has been specified as follows:

variable Names
ROOT, E

~
Real variables

A, I, F Integer variables
Logical variable
Complex variable

L
C

Then the following examples illustrate valid and invalid logical
expressions using the relational operators.

Examples:

valig Logical Expressions Using Relational Operators:

(ROOT*A).GT.E
A.LT.I
E**2.7.EQ.(5*ROOT+4)
57.9.LE.(4.7+F)
.5.GE •• 9*ROOT
E.EQ4027.3D+05

Invalid Logical Expressions Using Relational Operators:

C40 LT. ROOT

C .• GE. (2. 7 , 5.9 E3)

L. EQ. (A+F)

E**2.EQ97.1E9

.GT.9

Logical operators

(Complex quantities may never appear in logical
expressions)
(Complex quantities may never appear in logical
expressions)
(Logical quantities may never be joined by
relational operators)
(Missing period immediately after the relational
operator)
(Missing arithmetic expression before the rela­
tional operator)

The three logical operators., each of which must be preceded and
followed by a period, are as follows. (A and B represent logical
constants or variables, or expressions containing relational operators.)

24

Logical Operator Definition

.. NOT,. ,.NOT.A if A is • TRUE. , then .NOT.A has the value
• FALSE. ; if A is ,.FALSE., then .NOT.A has the value
• TRUE.

.AND. A.AND.B- if A and B are both .TRUE.., then A.AND.B
has the value .TRUE.; if either A or B or both are
• FALSE. ;, then A.AND.B has the value ,.FALSE.

.OR. A.OR.B if either A or B or both are .TRUE., then
A.OR.B has the value .TRUE.~ if both A and Bare
.FALSE.~ then A.OR.B has the value .FAU;E.

Two logical operators may appear in sequence only if the second one
is the logical operator .NOT ••

Only those expressions which" when evaluated, have the ,ralue • TRUE.
or ,. FALSE. may be combined with the logical operators to form logical
expressions. For example., assume that the type of the following
variables has be.~n specified as follows:

Variable Names
ROOT" E

~
Real variables

A" I, F Integer variables
Logical variables
Complex variable

L, W
C

Then the following examples illustrate valid and invalid logical
expressions usin~J both logical and relational operators.

Examples:

Valid Logical Expressions:

(ROOT*A.GT.A).AND.W
L .. AND ... NOT .. (J[.GT.F)
(E+5.9D2.GT.2*E).OR.L
.NOT.W.AND •• NOT.L
L,. AND, ... NOT .• W,., OR. I. GT. F
(A**F .. GT.R001~) ,.AND. '. NOT. (I,.EQ.E)

Invalid Logical Expressions:

A .. AND.L
• OR. W

NOT. (A,. GT. F)

(C. EQ • I) '. AND. L

L.AND •• OR. W

.AND.L

(A is not a logical expression)
(.OR. must be preceded by a ~ogical
expression)
(missing period before the logical operator
• NOT.)
(a complex variable may never appear in a
logical expression)
(the logical operators .AND. and .OR. must
always be separated by a logical expression)
(.AND. must be preceded by a logical
expression)

Order of COllEut;ations in Logical Expressions: Where parentheses are
omitted, or where! the entire logical expression is enclosed wi thin a
single pair of parentheses~ the order in which the operations are
performed is as follows:

Elements of the Language 25

Operation
Evaluation of Functions
Exponentiation (**)

Hierarchy
1st (highest)
2nd

Multiplication and division (* and /)
Addition and subtraction (+ and -)

3rd
4th

• LT. , • LE •. , .. EQ NE •. , .. GT. , • GE. 5th
.NOT. 6th
• AND .. 7th
• OR. 8th

For example" the expression:

(A. GT. D**B. AND. '. NOT .. L. OR. N)

is effectively evaluated in the following order:

1. D**B Call the result W (exponentiation)
2. A .• GT .. W Call the result X (relational operator)
3. .NOT.L Call the result Y (highest logical operator)
4 .. X.AND.Y Call the result Z (second highest logical operator)
5. Z.OR.N Final operation

Use of Parentheses in Logical Expressions: Parentheses may be .used in
logical expressions to specify the order in which the operations are to
be performed.. Where parentheses are used, the expression contained
wi thin the most deeply nested parentheses (that is" the innermost pair
of parentheses) is effectively evaluated first. For example~ the
logical expression:

«I.GT. (B+C».AND.L)

is effectively evaluated in the following order:

1.. B+C
2. I.GT.X
3,. Y .• AND .• L

Call the result X
Call the result Y
Final operation

The logical expression to which the logical operator .. NOT. applies
must be enclosed in parentheses if it contains two or more quantities.
For example, assume that the values of the logical variables A and Bare
,. FALSE.. and .. TRUE,. " respectively. Then the following two expressions
are not equivalent:

.. NOT .. (A,. OR. B)

.NOT.A.OR.B

In the first expression, A. OR. B., is evaluated first. The result is
• TRUE.; but • NOT .• (. TRUE,.) implies. FALSE.. Therefore., the value of the
first expression is .FALSE ••

In the second expression" • NOT. A is evaluated first.
.TRUE.; but .TRUE •• OR.B implies .TRUE ... Therefore, the
second expression is .TRUE ••

26

The result is
value of the

ARITHMETIC AND LOGICAL ASSIGNMENT STATEMENT

r--,
I General Form I
.--i
I I
I ~ = 12 I
I I
I Where: ~ is any subscripted or nonsubscripted variable. I
I I
I Q is any arithmetic or logical expression. I
I I
I Note:: ~ must be a logical variable. if" and only if., !2 is a I
I logical expression. I L __ J

The FORTRAN ~!\rithmetic and Logical Assignment statement closely
resembles a conventional algebraic equation; however" the E~qual sign of
the FORTRAN Ari~thmetic statement specifies replacement rather than
equivalence,. That is,. the expression to the right of the E~qual sign is
evaluated" and the resulting value replaces the current va.lue of the
variable to the left of the equal sign.

Assume that the type of the following variables has been specified
as:

variable Names !Y~ Length SEecification
I, J., W Integer variables 4,4,,2
AI, B, C. D Real variables 4,,4.8.8
E Complex variable 8
G, H Logical variables 4,,4

Then the following examples illustrate valid
using constants., variables" and subscripted
types:

arithmetic statements
variables of different

statements
A = B

W B

A = I

I = I + 1

E = I**J+D

A = C*D

G = . TRUE.

H .NOT .. G

DescriEtion
The value of A is replaced by the current: value of B..

The value of B is truncated to an integer value" and
the least significant part replaces the value of W.

The value of I is converted to a real value., and this
result replaces the value of A.

The value of I is replaced by the value of I + 1.

I is raised to the power J and the result is
converted to a real value to which the va.lue of 0 is
added. This result replaces the real part of the
complex variable E. The imaginary part of the
complex variable is set to zero.

The most significant part of the product of C and D
replaces the value of A.

The value of G is replaced by the logical constant
• TRUE. '.

If G is .TRUE., the value of H is replaced by the
logical constant .FALSE •• If G is .FALSE., the value
of H is replaced by the logical constant .TRUE ••

Arithmetic and Logical Assignment Statement 27

G = 3 •• GT,. I

E (1.0,,2.0)

28

The value of I is converted to a real value; if the
real constant 3. is greater than this resultw the
logical constant • TRUE. replaces the value of G. If
3. is not greater than I~ the logical constant
• FALSE. replaces the value of G.

The value of the complex variable E is replaced by
the complex constant (1.0 w2.0). Note that the state­
ment E (A,B) where A and B are real variables is
invalid.

Normally. FOR'I'RAN statements
after one statement has been
following it will be executed.
that may be USE!d to alter and
of statements in the program.

THE GO TO STATEMENTS

CONTROL STATEMENTS

are executed sequentially; that is,
executed, the statement immediately

This section discusses the statements
control the normal sequence of execution

These statements cause control to be transferred to the statement
specified by a. statement number,. There are three GO TO
statements: Uncondi tional GO TO" Computed GO TO" and Assigned GO TO,.
Every time the same Unconditional GO TO statement is executed, a
transfer to the same specified statement is made. However" the Computed
and Assigned GO TO statements cause control to be transferred to one of
several statement.s, depending upon the current value of a particular
variable.

Unconditional GO TO Statement

r----------------·--,
I General Form I
.--1
I I
I GO TO xxxxx I
I I
I Where: ~ is an ex,ecutable statement number. I L ________________ . __ J

This GO TO statement causes control to be transferred to the
statement specified by the statement number. Every subsequent execution
of this GO TO statement results in a transfer to that same statement.

Example:

50 GO TO 25
10 A = B + C

25 C = E**2

Explanation:

In the above e~xample" every time statement numbered 50 is executed,
control is transferred ,to the statement numbered 25.

Control Statements 29

computed GO TO Statement

r--,
I General Form I
~--~
I I
I GO TO (~~, ~2' ~3 " ' ••• ".!n).. 1: I
I I
I Where: ~~'~2' .".',~n', are executable statement numbers. I
I I
I 1: is a nonsubscripted integer variable which is in the I
I range: 1 ~ 1: ~ n I L __ J

This statement causes control to be transferred to the statement
numbered ~~. ~2" ~3' ••• ' or ~" depending on whether the current value
of 1: is 1. 2, 3, •••• or n, respectively. If the value of 1: is outside
the allowable range, the next statement is executed.

Example:

GO TO (25. 10, 50, 7), ITEM

50 A = B+C

7 C = E**2+A

25 L = C.GT"D.AND.F.LE.G

10 B = 21.3E02

Explanation:

In this example, if the value of the integer variable ITEM is 1~
statement 25 will be executed next. If ITEM is equal to 2, statement 10
will be executed next, and so on.

30

The ASSIGN and Assigned GO TO Statements

r--, I General Form I
.---------------,-------------------------:------------------.------------~

ASSIGN i TO ill

GO TO ill. (~1' ~2' ~3"'. 0 • I, ~n)

Where: i is an executable statement number,.

!!! is a nonsubscripted integer variable of length I~ to which
is assigned one of the following statement numbers:
X1, X2, :K3" ,..,. Xn. L _________ = __ =_ .. :: _____ = ___ J

The Assigned GO TO statement causes control to be transJCerred to the
statement numberled ~1"!2'!3·'.' •• "or ~n, depenjing on whether the current
assignment of ![!! is ~1"~2'~3' •••• or ~n" respectively.. FOJr example, in
the following statement:

GO TO N., (10" 25, 8)

If the current assignment of the integer variable N is statement number
8" the statement numbered 8 is executed next. If the current assignment
of N is statement number 10, the statement numbered 10 is executed next.
If N is assigned statement number 25" the statement numbered 25 is
executed next.

The current assignment of the integer variable !!! is detel:-mined by the
last ASSIGN stabement executed.. Only an ASSIGN statement ma.y be used to
initialize or change th.e value of the integer variable m. ~~he value of
the integer ill is not the integer statement number; ASSIGN ~1 TO I is not
the same as I=M.

ExamplE~ 1:

ASSIGN 50 TO NUMBER
10 GO TO NUMBER, (35" 50" 25., 12" 18)

50 A = B + C

Explan~tion:

In t.he above E~xample" statement 50 is executed immediately after
statemE~nt 10.

Control Statements 31

Example 2:

ASSIGN 10 TO ITEM

13 GO TO ITEM, (8., 12" 25, 50, 10)

8 A = B + C

10 B = C + D
ASSIGN 25 TO ITEM
GO TO 13

25 C = E**2

Explanation:

In the above example, the first time statement 13 is executed,
control is transferred to statement 10. On the second execution of
statement 13, control is transferred to statement 25.

ADDITIONAL CONTROL STATEMENTS

Arithmetic IF Statement

r--,
I General Form I
~--~
I I
I IF (~) ~~'~2'~3 I
I I
I where: a is an arithmetic expression which is not complex.. I
I I
I ~~'~2'~3 are statement numbers. I l __ J

This statement causes control to be transferred to the statement
numbered ~~'~2'~3 when the value of the arithmetic expression (~) is
less than, equal to, or greater than zero, respectively. The first
executable statement following the arithmetic IF statement should have a
statement number; otherwise, it can never be referred to or executed.

32

Example::

4 D = B + C

30 C = D**2

10 E = (F*B)/D+l

In t~he above example" if the value of the expression (A(~r"K) **3-B) is
negative, the statement numbered 10 is executed next. If the value of
the expression is zero, the statement numbered 4 is execut:ed next. If
the value of the expression is positive, the statement numbered 30 is
executed next.

Logical IF statement

r--,
I General Form I
~--i
I IF <.~) §. I
I I
I Where: ~ is any logical expression. I
I I
I §. is any statement except a specification statement, DO I
I stateml=nt, or another logical IF statement. I L __ J

The logical IF statement is used to evaluate the logical expression
(~) and to execute or skip statement §., depending on whether the value
of the expression is .TRUE. or .FALSE •• respectively.

Example 1:

5 IF(A.LE.O.O) GO TO 25
10 C = D + E
15 IF(A.EQ.B) ANSWER = 2.0*A/C
20 F = G/H

25 W = x**z

Control statements 33

Explanation:

In statement 5, if the value of the expression is .TRUE. (i.e., A is
less than or equal to 0.0), the statement GO TO 25 is executed next~ and
control is passed to the statement numbered 25.. If the value of the
expression is • FALSE. (i.e., A is greater than O.O)~ the statement GO
TO 25 is ignored, and control is passed to the statement numbered 10.

In statement 15, if the value of the expression is .TRUE. (i.e., A
is equal to B), the value of ANSWER is replaced by the value of the
expression (2.0*A/C), and the statement numbered 20 is executed. If the
value of the expression is • FALSE. (i.e.~ A is not equal to B), the
value of ANSWER remains unchanged, and the statement numbered 20 is
executed next.

Example 2:

Assume that P and Q are logical variables ..

5 IF(P.OR •• NOT.Q}A=B
10 C = B**2

Explanation:

In statement 5, if the value of the expression is.TRUE., the value
of A is replaced by the value of B and statement 10 is executed next ..
If the value of the expression is .FALSE., the statement A = B is
skipped and statement 10 is executed.

DO Statement

r---,
I General Form I
~--~

End of DO Initial Test
Range Variable Value Value Increment
"-v-' ~ ~~ ~

DO i =

Where: x is an executable statement number, that is not defined
before the DO statement.

i is a nonsubscripted integer variable.

m~, m2* m3, are either unsigned integer constants greater
than-zero or unsigned nonsubscripted integer variables whose
value is greater than zero. The sum m2+m3+1 must not exceed
the size of virtual storage. (~3' is optional; if it is
omitted, its value is assumed to be 1. In this case, the
preceding comma must also be omitted.) L ___ _

The DO statement is a command to execute repeatedly the statements
that follow, up to and including the statement numbered x. The first
time the statements in the range of the DO are executed, i is
initialized to the value ~~; each succeeding time i is increased by the
value ~3. When. at the end of the iteration, i is equal to the highest

34

value that does not exceed !!!2, control passes to the statement following
the statement numbered x. Thus, the number of times the statements in
the range of the DO is ~xecuted is given by the expression:

r ,
I !!!2 - !!!j. I
I ------- I +1
I !!!3 I
L J

where the brackets represent the largest integral value not exceeding
the value of the expression. If m2 is less than mj., the statements in
the range of the DO are execute~ once. Upon co~pletion of the DO, the
DO variable is undefined.

There are several ways in which looping (repetitively E!xecuting the
same statements) may be accomplished when using the FORTRAN language.
For example, assume that a manufacturer carries 1000 different machine
parts in stock~ Periodically# he may find it necessary to compute the
amount. of each different part presently available. This amount may be
calculated by subtracting the number of each item used, OU1'(I), from the
previous stock on hand, STOCK(I).

Example:

5 1=0
10 1=1+1
25 STOCK(I)=STOCK(I)- OUT(I)
15 IF(I-l000) 10,30~30
30 A=B+C

Explanation:

The three statements (5, 10, and 15) required to control the loop
could be replacE?d by a single DO statement, as shown in Example 1.

DO 25 I = 1,1000
25 STOCK(I) = STOCK(I)-OUT(I)
30 A=B+C

In the above example, the DO variabl~ I is set to the Jniti£.!.-yalue
of 1. Before the second execution of statement 25, I is increased by
the incr~ment 1 and statement 25 is again executed. After 1000
executions of the DO loop, I equals 1000. Since I is now equal to the
highest value that does not exceed the test value 1000, control passes
out of the DO loop, and statement 30 is executed next. Note that the DO
variable I is now undefined: its value is not necessarily 1000 or 1001.

Control Statements 35

Example 2:

DO 25 I=l, 10, 2
15 J=I+K
25 ARRAY(J) BRAY(J)
30 A=B+C

Explanation:

In the above example, statement 25 is the end of the range of the DO
loop. The DO variable I is set to the initial value of 1. Before the
second execution of the DO loop, I is increased by the i~£~ement 2, and
statements 15 and 25 are executed a second time. After the fifth
execution of the DO loop, I equals 9. Since I is now equal to the
highest value that does not exceed the test value 10, control passes out
of the DO loop, and statement 30 is executed next. Note that the DO
variable I is now undefined; its value is not necessarily 9 or 11.

Programmi~onsiderations in Using a DO LOOp

1.. The indexing parameters of a DO statment (i, !!!1, !!!2, !!!3) may not be
changed by a statement within the range of the DO loop.

2. There may be other DO statements within the range of a DO
statement. All statements in the range of the inner DO must be in
the range of the outer DO. A set of DO statements satisfying this
rule is called a nest of DOs.

Example 1:

DO 50 I = 1, 4

I A(I) = B(I)**2
.-

Range of
DO 50 J=1, 5 } outer DO

Range of
50 C (J.+1) = A(I) Inner DO

Example 2:

DO 10 INDEX = L, M

N = INDEX + K

}
Range of

DO 15 J = 1, 100, 2 outer DO
Range of

15 TABLE(J) = SUM(J,N)-1 Inner DO

10 B(N) = A(N)

3. A transfer out of the range of any DO loop is permissible at any
time.

4. If, and only if, a transfer is made from the range of an innermost
DO loop, transfer back into the range of that innermost DO loop is
allowed provided none of the indexing parameters (i,!!!1,!!!2,!!!3) are
changed outside the range of the DO. A .transfer back into the
range of any other DO in the nest of DOs is not permitted.

36

Example:

DO DO

,.. ______ ;;;.0.;..0) 1

"'--5

Explanatior!:

In the preceding example, the transfers specified by the numbers
1. 2, and 3 are permissible. whereas those specified by 4, 5, and 6
are not.

5. The indexing parameters (i',!!!1.,!Il2'!!!3) may be changed by statements
outside the range of the DO statement only if no transfer is made
back into t:he range of the DO statement using those pa.rameters.

6. The last st:atement in the range of a DO loop (statemeIllt ~) may not
be a GO TO" Ari thmetic IF, PAUSE, STOP 1 RETURN or another DO
statement. In addition, the last statement may not bE~ a logical IF
statement containing any of those statements.

7.. 'I'he use of I' and return from, a subprogram from within any DO loop
in a nest of DOs is permitted.

CONTINUE Statement

r--,
I General Form I
~--~
I I
I CONTINUE I L __ J

CONTINUE is a dummy statement which may be placed anywhere in the
source program \l7ithout affecting the sequence of execution. It may be
used as the last statement in the range of a DO in order to avoid ending
the DO loop with a GO TO~ Arithmetic IF or another DO statement.

Example 1:

DO 3 0 I := 1, 20
7 IF (A(I)-B(I» 5~30,30
5 A(I) =A(I) +1.0

B(I) = B(I) -2.0
GO TO 7

30 CONTINUE
40 C = A(3) + B(7)

Control Statements 37

Explanation:

In the preceding example, the CONTINUE statement is used"as the last
statement in the range of the DO to avoid ending the DO loop with the
statement GO TO 7.

Example 2:

DO 30 1=1,20
IF(A(I)-B(I»5,40,40

5 A(I) = C(I)
GO TO 30

40 A(I) = 0.0
30 CONTINUE

In Example 2, the CONTINUE statement provides a branch point enabling
the programmer to bypass the execution of statement 40.

PAUSE Statement

r--,
I General Form I
~--~
I I
I PAUSE I
I PAUSE n I
I PAUSE 'message' I
I I
I Where: n is an unsigned 1-through 5-digit integer constant. I
I I
I message is any literal constant. I l __ J

The PAUSE statement causes the program to display 'PAUSE'. If g is
specified, 'PAUSE g' is displayed; likewise, if 'message' is specified,
'PAUSE message' is displayed. The program waits until operator inter­
vention causes it to resume execution, starting with the next statement
after the PAUSE statement.

STOP Statement

r--,
I General Form I
~--~
I I
I STOP I
I STOP g I
I I
I Where: n is an unsigned i-through 5-digit integer constant. I l __ J

This statement terminates the execution of the object program and
displays n if specified.

38

END Statement

r--,
I General Form I
.--~
I I
I END I L ______________________ - ______________ - ________________________________ J

The END statement is a nonexecutable statement that defines the end
of a source prosrram or source subprogram for the compiler. Physically,
it must be the last statement of each program or subprogram.

The END statement must be contained on a single line; however~
interspersed blanks between the characters K, N, and. D are permitted.

Control statements 39

INPUT/OUTPUT STATEMENTS

The input/output statements enable a user to transfer data# belonging
to a named collection of data# between I/O devices (such as disk units#
card readers, and magnetic tape units> and internal storage.. The named
collection of data is called a data set and is not restricted to device
correspondence. A data set is referred to by an unsigned integer
constant or integer variable. Formerly, this reference was called a
symbolic unit number. However, since it more appropriately refers to
the data rather than any specific device, this number is referred to in
this publication as the data set reference number.

For the FORTRAN user, a data set is considered to be a continuous
string of data which may be subdivided into FORTRAN records. This
subdivision of data sets into FORTRAN records is stated by the use of
one or more of the following:

1.. A FORMAT statement referred to by an I/O statement
2. An I/O list appearing in an I/O statement
3. A NA~mLIST name appearing in an I/O statement

In addition to subdividing data sets into records, a FORMAT statement
may be used to declare the form in which the data is to be transmitted.

There are five I/O statements: READ, WRITE, END FILE, REWINO, and
BACKSPACE. The READ and WRITE statements are used to transfer data into
or from internal storage. The END FILE statement defines the end of a
data set; the REWIND and BACKSPACE statements control the positioning of
data sets.

Even though the I/O statements described below are device indepen­
dent~ in that a given I/O statement may be applicable to a data set on
any number of devices or device types, it is often meaningful to
consider the original source, or ultimate destination of the data being
transferred,. Thus, for the sake of demonstration, subsequent examples
will be in terms of card input and print-line output.

BASIC INPUT/OUTPUT STATEMENTS

The basic input/output statements are READ and WRITE. The statements
FORMAT and NAMELIST., though not I/O statements, may be used in
conjunction with certain forms of READ and WRITE statements. All four
statements are presented in greater detail in the following sections.

40

READ STATEMENT

r--,
I General Form I
.--i

READ (~, 12" END=£" ERR=g> list

Where: ~ is an unsigned integer constant or an integer variable of
length 4 that represents a data set reference number.

12 is either the statement number or array name of the FORMAT
statement describing the data being read., or a NAMELIST
name.

c is the statement number to which transfer is made upon
encountering the end of the data set.

d is the statement number to which transfer is made upon
encountering an error condition in data transfer ..

lis~ is a series of variable or array names, separated by
commas, which may be indexed and incremented. They specify
the! number of items to be read and the locations in storage
int.o which the data is placed. L __________________________________ ~ _________________________ ~ ________ _

The READ statement may take many different forms. For example, the
parameters E:ND=£ and ERR=Q are optional and., therefore, mayor may not
appear in a READ statement. Furthermore" either the list or the
parameter 12 may be omitted.

When one or more of the parameters END=£ or ERR=Q are used after the
a and 12 portion of a READ statement, they may appear in any order within
the parentheses. For example, the following are valid READ statements:

READ(S,SO.ERR=10)A,B,C
READ(S.25, END=15) D.,E,F"F.,H
READ (N. 30, ERR=100!, END=8) X" Y, Z

If a transfer is made to a statement specified by the END parameter.,
no indication is given the program as to the number of itents in the list
(if any) read before encountering the end of the data set. If an END
parameter is not specified in a READ statement, the end of the data set
terminates execution of the object program.

If a transfer is made to a statement specified by the ERR parameter,
no data is read into the list items associated with the record in error.
No indication is given the program as to which input record or records
are in error; only that one or more data items read into the list may be
in error. If an ERR parameter is not specified in a READ statement, an
error terminates execution of the object program.

The three basic forms of the READ statement are:

READ (a.,x)
READ (a-;b)list
READ (~) Ii'st

The parame·ters END=£ and ERR=g may be used in the combination
described above in each of these three forms.

Input/Output statements 41

The Form READ (a" x)

This form is used to read data from the data set associated with a
into the locations in storage specified by the NAMELIST name~. The
NAMELIST name ~ is a single variable name that refers to a specific list
of variables or array names into which the data is placed. A specific
list of variable or array names receives a NAMELIST name by use of a
NAMELIST statement. The prograwmer need only use the NAMELIST name in
the READ (~,~) statement to reference that list thereafter in the
program.

The format and rules for constructing and using the NAMELIST
statement are described in the following text.

r--,
I General Form I
~--~
I I
I NAMELIST/~~.Q,···.£/y/Q,~,···,f/~/g,h,···,i I
I I
I Where: ~.y., and ~, ••• are NAMELIST names. I
I I
I ~,~,£,~, ••• are variable or array names. I L __ J

The following rules apply to defining and using a NAMELIST name:

1. A NAMELIST name consists of from 1 through 6 alphameric characters,
the first of which is alphabetic.

2. A NAMELIST name is enclosed in slashes. The list of variable or
array names belonging to a NAMELIST name ends with a new NAMELIST
name enclosed in slashes or with the end of the NAMELIST statement.

3. A variable name or an array name may belong to one or more NAMELIST
names.

4. A NAMELIST name may be defined only once by its appearance in a
NAMELIST statement and must be so defined before its use. After it
is defined in the NAMELIST statement, the NAMELIST name may appear
only in input or output statements thereafter in the program.

5. A NAMELIST statement may appear anywhere in a FORTRAN program prior
to its use in a READ/WRITE statement.

6. Variable or array names appearing anywhere in a N~JELIST statement
or NAMELIST name may not appear in a FUNCTION, SUBROUTINE, or ENTRY
statement.

Example:

Assume that A, I, and L are array names.

NAMELIST INAM1/A,B,I,J,L/NAM2/A,C,J,K

READ (S,NAM1)

42

The above RgAD statement causes the record that contains the input
data for the variables and arrays that belong to the N]~ELIST name
referenced, NAMl, to be read from the data set associated ~7ith the data
set reference number 5.

When a READ st:atement references a NAMELIST name, input data in the
form described in the following text is read from the desi.gnated input
data set.

Input Data

The first character in the record is always ignored. The second
character of the first record of a group of data records to be read must
be &, immediately followed by the NAMELIST name. This nam€~ is followed
by any combination of data items 1 and 2 below, separated by commas. {A
comma after the last item is optional.}

The form the data items may take is:

1. Variable name = constant

The variable~ name may be a subscripted variable name or a single
variable name. Subscripts must be integer constants.

2. Array name set of constants (separated by commas)

The set of constants may be in the form "k* constant," where k is
an unsigned integer called the repeat constant. It represents -the
number of successive elements in the array to be initialized by the
specified constant. The number of constants must be equal to the
number of elements in the array.

constants used in the data items may be integer, real, literal,
complex~ or logical data. If the constants are logical data, they may
be in the form T or .TRUE. and F or .FALSE ••

Any selected set of variable or array names belonging to ·the NAMELIST
name appearing on the first record may be used as specified by items 1
and 2 in the preceding text. Names that are made equivalent to these
names may not be used unless they also belong to the NAMELIs'r name.

The end of a group of data is signaled by the character string &END
with no embedded blanks and all appearing in the same record.

Blanks must not be embedded in a constant or repeat constant, but may
be used freely elsewhere in a data record.. The last item on each record
that contains data items must be a constant followed by a comma. {The
comma is optional on the record that precedes the record containing
&END. }

Example:

Assume that L is an array consisting of one subscript parameter
ranging from 1 to 10.

Input/Output Statements 43

First Data Card:
Second Data Card:
Third Data Card:

Last Data Card:

Explanation:

column 2
t
&NAMl
1(2,3)=5, J=4,
A(3)=4.0, L=2,3,8*4,

&END

If this data is input to be used with the NAMELIST and READ
statements previously illustrated, the following actions take place.
The first data card is read and examined to verify that its name (and
the data items that follow) is consistent with the NAMELIST name in the
READ statement. If that NAMELIST name is not found it reads to the next
namelist group. When the second data card is read, the integer
constants 5 and 4 are placed in 1(2,3) and J, respectively. When the
third data card is read, the real constant 4.0 is placed in A(3). Also,
since L is an array not followed by a subscript, the entire array is
filled with the succeeding constants. Therefore, the integer constants
2 and 3 is placed in L(l) and L(2), respectively, and the integer
constant 4 is placed in L(3), L(4), •••• L(10).

The Form READ (a.b) List

This form is used to read data from the data set associated with a
into the locations in storage specified by the variable names in the
list. The list, used in conjunction with the specified FORMAT statement
b (see the section "FORMAT statement"), determines the number of items
Idata) to be read, the locations, and the form the data will take in
storage.

Example 1:

Assume that the variables A, B, and C have been declared as integer
variables.

75 FORMAT (Gl0, G8, G9)

READ (J, 75) A, B, C

Explanation:

The above READ statement causes input data from the data set
associated with data set reference number J to be read into the
locations A, B, and C according to the FORMAT statement referenced
(statement 75). That is~ the first 10 positions of the record are read
into storage location Ai the next 8 positions are read into storage
location Bi and the next 9 positions are read into storage location C~

The list can be omitted from the READ (a.b)list statement. In this
case, a record is skipped or data is read from-the-aata set associated

44

with a into the locations in storage occupied by the FOR~lAT statement
numbered ~ ..

Example 2:

9S FORMAT (" HEADING')

READ (5 .. 91S)

Explanation:

The above stat.ements would cause the characters H"
G in storage to be replaced by the next 7 characters
associated with d.ata set. reference number 5.

Example 3:

98 FORMAT (G10~·HEADING')

REAl) (5,,98)

Explanation:

E" A, 0"
in the

I, N, and
data set

The above statements would cause the next record in ithe data set
associated with data set reference number 5 to be skipped. No data is
transferred into internal storage because there is no list item that
corresponds with format code G10.

The Form READ (a) List

The form READ (a) list of the READ statement causes binary data
(internal form) ito beread from the data set associated with a into the
locations of storage specified by the variable names in the JLis!::. Since
the input data is always in internal form, a FORMAT statemE~nt is not
required. This statement is used to retrieve the data \iritten by ?
WRITE (~) list statement.

Example:.

READ (5) A, Bj , C

Explanat.ion:

This statement causes the binary data from the data set associated
with data set rE~ference number 5 to be read into the storagre locations
specified by the variable names A~ B~ and C.

The J:ist may be omitted from the READ (~) list statement.
case, a record is skipped.

In this

Input/Output Statements 45

Example:

READ (5)

Explanation:

The above statements would cause the next record in the data set
associated with data set reference number 5 to be skipped. No data is
transferred into internal storage.

Indexing I/O Lists

variables within an I/O list may be indexeo. and incremented in the
same manner as those within a DO statement. These variables and their
indexes must be included in parentheses,. For example" suppose it is
desired to read data into the first five positions of the array A. This
may be accomplished by using an indexed list as follows:

15 FORMAT (G1Q,.3)

READ (2,15) (A(I), 1=1" 5)

This is equivalent to:

15 FORMAT (Gl0.3)

DO 12 I = 1,,5
12 READ (2,15) A(I)

As with DO statements" a third indexing parameter may be used to
specify the amount by which the index is to be incremented at each
iteration. ThUS,

READ (2,,15) (A (I), 1=1,10,,2)

causes transmission of values for A(l), A(3), A(5). A(7), and A(9).

Furthermore, this notation may be nested. For example, the state­
ment:

READ (2,,15) «C(I,J)"D(I"J) ,J=1,3)',I=1.,4)

would transmit data in the following order:

C(l~l), D(l,l), C(1,2). D(l,2), C(1,3). D(l,3)
C (2" 1) " D (2 .. 1);, C (2 , 2), D (2" 2), C (2" 3), D (2 , 3)
C(3.1), D(3,l), C(3,2). D(3,2), C(3,3), D(3,3)
C(4,l), D(4,l), C(4,2). D(4,2), C(4,3), D(4,3)

Since J is the innermost index" it varies more rapidly than I.

As another example. consider the following:

READ (2,25) I, (C(J),J=1.,I)

The variable I is read first and its value then serves as an index to
specify the number of data items to be read into the array C.

46

If it is desired
necessary to index that
the array A consists of
1 to 10. Then the
sta tement numberE~d 5:

READ (2.5) A

to read data into an entire array, it is not
array in the I/O list,. For example, assume that
one subscript parameter varying in t:he .range of
fo.llowing READ statement referring to FORMAT

would cause data to be read into A(l>'. A(2),., •• ,A(10).

The indexing of I/O lists applies to WRITE lists, as WE!ll as READ
lists,.

Reading Format St:atements

FORTRAN provides the facility for variable FOR~T statements by
allowing a FORMA,]~ statement to be read into an array l.n storage and
using the data in the array as the FORMAT specifications for subsequent
I/O statements.

For example. the following statements result in A~ B. and the array C
being read. converted, and stored according to the FORMAT specifications
read into the array FMT at object time:

DIMENSION FMT (18)
1 FORMAT (1. 8A4)

READ (5,1) FMT
READ (5~FMT) A.B. (C(I).I=1,5)

1. The name of the variable FORMAT specification must appear in a
DIMENSION st~atement" even if the array size is only 1,.

2. The form of the format codes read into the FMT array at object time
must take the same form as a source program FORMAT statement"
except that the word FORMAT is omitted (see the section "The FORMAT
Statement") '.

WRITE STATEMENT

r------'--,
I General Form I
~--i

WRITE (~, Q) list

Where: ~ is an unsigned integer constant or an integer variable of
length 4 that represents a data set reference number.

b is either the statement number or array name of -the FORMAT
statement describing the da.ta being written., or a NAMELIST
name.

list is a series of variable or array names. separated by
commas" which may be indexed and incremented. Th1ey specify
the number of items to be written and the locations in
storage from which the data is taken. L ___ . __________ _

Input/Output Statements 47

The WRITE statement may take many different forms. For example, the
list or the parameter !2 may be omitted.. .

The three basic forms of the WRITE statement are:

WRITE(a,x)
WRITE (a" b) list
WRITE(~)Iist

The Form WRITE (a., xl

This form is used to write data from the locations in storage
specified by the NAMELIST name ~ into the data set associated with ~
(see the section "The Form READ(~,~)") ..

Example:

WRITE(6,NAM1)

Explanation:

This statement causes all variable and array names (as well as their
values) that belong to the NAMELIST name, NAM1, to be written on the
data set associated with data set reference number 6.

When a WRITE statement references a NAMELIST name:

1. All variables and arrays and their values belonging to the NAMELIST
name will be written out, each according to its type. The complete
array is written out by columns.

2. The output data will be written such that:

a. The fields for the data will be large enough to contain all the
significant digits.

b. The output can be read by an input statement referencing the
NAMELIST name.

Example:

Assume that A is a 3 by 3 array.

NAMELIST/NAMl/A,B,I,D
WRITE (8,NAM1)

Assuming that the output is punched on cards, the format would be:

First Output Card:
Second Output Card:
Third Output Card:
Fourth Output Card:
Fifth output Card:

48

Column 2
t
&NAM1
A= 3. 4, 4 • 5" 6 .• 2., 25 • 1,

9.0, -15.2~-7.6, 0.576Eb12~
2.717"B=3.14,I=10,D=0.378E-15,
&END

The Form WRITE (a,b) List

This form is used to write data in the data set associated with a
from the locations in storage specified by the variable names in the
list. The list" used in conjunction with the specified FORHAT statement
~determines- 1:.he number of items (data) to be written" the locations,
and the form the data will take in the data set.

ExamplE~ 1:

In the following example, assume that the variables A, B, and C have
been declared as integer variables.

75 FORMAT «(;10" G8" G9)

WRITE (J, 75) A, B, C

Explanation:

The above WRITE statement causes output data to be written in the
data set associai:.ed with the data set reference number ~r, from the
locations A" B., C" according to the FORMAT statement: referred to
(statement 75). That is, the 10 rightmost digits in A are written in
the data set associated with the data set reference number ai the next 8
positions in the data set will contain the 8 rightmost digits in Bi and
the next 9 positions in the data set will contain the 9 rightmost digits
in C,.

The list may be omitted from the WRITE (a"b) list statememt. In this
case" a blank reGord is inserted, or data is written in the data set
associated with ~ from the locations in storage occupied by the FORMAT
statement ~,.

Example 2:

98 FORMAT (. HEADING')

WRITE (5,,98)

The above stat:.ements would cause a blank and the charactE!rs H.r E, A"
Dr I, N, and G in storage to be written in the data set associated with
data set referenGe number 5.

Example 3:

98 FORMAT (G10, 'HEADING')

WRITE (~;, 98)

Explanation:

The above stat:ements would cause a blank record to be plalced in the
data set associated with data set reference number 5. No data is
transferred into the data set.

Input/Output statements 49

The Form WRITE (a) List

The WRITE (a) list form of the WRITE statement causes binary data
(internal form) from the locations of storage specified by the variable
names in the list to be written in the data set associated with a.
since the output data is always in internal form, a FORMAT statement Is
not required. The READ (a) list statement is used to retrieve the data
written by a WRITE (~) list statement.

Example:

WRITE (5) A, B, C

Explanation:

The statement causes the binary data from the locations specified by
the variable names A, B, and C to be written in the data set associated
with data set reference number 5.

FORMAT STATEMENT

r--,
I General Form I
~--~

~ FORMAT (£:1., £2*" • ., £n/£:1. ' , £2' , •• • , £n' / •••)

Where: ~ is a statement number (1 through 5 digits).

£:1., £2" ... • r £n and £:1. " £2' , ••• , £n' are format codes which may
be delimited by one of the separators: com~ma, slash, or
parenthesis. These codes specify the length, decimal point
(if any), and position of the data in the data set.

/ may be used to separate FORTRAN records.

The FORMAT statement is used in conjunction with the READ and WRITE
statements in order to specify the desired form of the data to be
transmitted. The form of the data is varied by the use of different
format codes. The twelve format codes are: G, T, X, P, literal, A, I,
F" E, 0, H" and L. Any number used in a FORMAT statement except a
statement number or a literal must be less than 256.

USE OF THE FORMAT STATEMENT: This section contains general information
on the FORMAT statement,. The points discussed below are illustrated by
the examples that follow.

1. FORMAT statements are nonexecutable and may be placed anywhere in
the source program.

2. A FORMAT statement may be used to define a FORTRAN record, as
follows:

50

a. If no slashes or additional parentheses appear within a FORMAT
statement, a FORTRAN record is defined by the beginning of the
FORMAT statement (left parenthesis) to the end of the FORMAT
statement (right parenthesis). Thus, a new record is read when
the format control is initiated (left parenthesis); a new
record is written when the format control is terminated (right
parenthesis) •

Example::

xxx}~ FORMAT (----" ----,' ----)

<-------------->
t
I
I
L---corresponds to 1

FORTRAN record

h. If slashes appear within a FORMAT statement, FOR,]~RAN records
are defined by the beginning of the FORMAT stat:ement to the
first slash in the FORMAT statement" from one slash to the next
succeeding slash~ or from the last slash to the end of the
FORMAT statement. Thus, a new record is read whE~n the format
control is initiated" and thereafter a record is read upon
encountering a slash; a new record is written upon encountering
a slash or when format control is terminated.

Example:

~~ FORMAT (----/ ----/ ----)

<---> <---> <--->
I I I
I I I
L---------------each corresponds to

1 FORTRAN recOlC'd

c. If morle than one level of parentheses appears wi1:hin a FORMAT
statement, a record is defined by the beginning of the FORMAT
statement to the end of the FORMAT statement; thereafter" from
the first-level left parenthesis from the right of the FORMAT
statement to the end of the FORMAT statement.

Example 1:

o 1 2 21 0
xxx~~ FORMAT (--- (--- (---» ---)

Example 2:

<----------------->
I <------------>
I I
I I
I I
I I
L---------------_-each corresponds to

1 FORTRAN record

Oil
~~~~~ FORMAT (--- (---) 

1 1 0 
(---) ---) 

<---------------------> 
I 
I <-------> 
I I 
I I 
I I 
L------------------each corresponds to 

1 FORTRAN record 

Input/Output Statements 51 



When defining a FORTRAN record by a FORMAT statement, it is 
important to consider the original source (input) or ultimate 
destination (output) of the record. For example" if a FORTRAN 
record is to be punched for output, the record should not be 
greater than 80 characters. For input, the FORMAT statement should 
not define a FORTRAN record longer than the record referred to in 
the data set. 

3. Blank output records may be introduced or input records may be 
skipped by using consecutive slashes (/) in a FORMAT statement. If 
there are n consecutive slashes at the beginning or end of a FORMAT 
statement~ n input records are skipped or n blank records are 
inserted between output records~ respectively~ If n consecutive 
slashes appear anywhere else in a FORMAT statE:ment, the number of 
records skipped or blank records inserted is n-l. 

4. Successive items in an I/O list are transmitted according to 
successive format codes in the FORMAT statement" until all items in 
the list are transmitted. If there are more items in the list than 
there are codes in the FORMAT statement., control transfers to the 
preceding left parenthesis of the FORMAT statement and the same 
format codes are used again with the next record.. If tbere are 
fewer items in the list, the remaining format codes are not used. 

5,. A format code may be repeated as many times as desired by preceding 
the format code with an unsigned integer constant. 

6. A limited parenthetical expression is permitted to enable repeti­
tion of data fields according to certain format codes within a 
longer FORMAT statement. Two levels of parentheses" in addition to 
the parentheses required by the FORMAT statement" are permitted. 
The second level of parentheses facilitates the transmission of 
complex quantities.' 

7. When transferring data on input or output~ the type of format code 
used, type of data, and type of variables in the I/O list should 
correspond. 

8. In the following examples, the output is shown as a printed line. 
A carriage control character 'x' (see "Carriage Control") is 
specified in the FORMAT statement but does not appear in the first 
print position of the print line. This carriage control character 
appears as the first character of the output record on any I/O 
medium except the printed line. 

G Format Code 

r----------------------------------------------------------------------, 
I General Form I 
~----------------------------------------------------------------------~ 

Where: a is optional and is an unsigned integer constant used to 
denote the number of times the same format code is repeti­
tively referenced. 

~ is an unsigned integer constant less than or equal to 255 
specifying the total field length. 

~ is an unsigned integer constant specifying the numbe~--2i 
significant digits. ______________________________________________________________________ J 

52 



The G format code is a generalized code, in that it may be used to 
determine the desired form of data, whether it be integer, real, 
complex, or logical .. 

The .s portion may be omitted wben transferring integer or logical 
data. If-pre.sent:, it is ignored. When real data is transfe~rred, the ~ 
portion of the G format code includes four positions for a decimal 
exponent field,. 

If the real data, say n, is in the range 0.1$n$10**s. where s is the 
§. portion of t:he format code G!!_§., this exponent fiE~ld is blank. 
Otherwise# the real data is transferred with an E or D decimal exponent# 
depending on the length specification (either 4 or 8 storagE! locations, 
respectively) of the real data. 

For simplification# the following examples deal with the printed 
line; however, the concepts developed apply to all input/output media. 

Assume that the "ariables A., B, C, and D are of type real, ~7hose values 
are 292.7041, 82.43441, 136.7632, .8081945. respectively. 

1 
2 
3 

FORMAT 
FORMAT 
FORMAT 

(~x',G12.4,G12.5,G12.4,G12.7) 

"x'#G13.4,G13.5#G13.4) 
I( 'x' ,G13_ 4) 

WRITE (5, b) A, B# C, D 

Explanation: 

a. If b had been specified as 1, the printed output would be: (b 
repr~sents a blank) 

Print Position 1 Print position 48 
t t 
bbb292 .. 7bbbbbb82. 434bbbbbbb136. 7bbbb. 8081945bbbb 

b. If Q ha.d been specified as 2, the printed output ~iould be: 

Print Position 1 Print Position 39 
t t 
bbbb29:2 .. 7bbbbbbb82.434bbbbbbbb136.7bbbb 
bbbO.8081bbbb 

Line 1 
J:..ine 2 

From the example. it can be seen that by increasing the field 
width reserved (~), blanks are inserted. 

c. If!2 had been specified as 3, the printed output \l7ould be: 

Print Position 1 
t 
bbbb292.7bbbb 
bbbb82.43bbbb 
bbbb136 ... 7bbbb 
bbbO.8081bbbb 

J:..ine 1 
]I:..ine 2 
J[.ine 3 
:I:..ine 4 

Input/Output sta.tements 53 



From the example, it can be seen that the same format code was 
used for each variable in the list. Each repetition of the 
same format code caused a new line to be printed. 

Example 2: 

Assume that the variables I, J, K, and L are of type integer, whose 
values are 292. 443428, 4908081, and 40018, respectively. 

1 
2 
3 

FORMAT 
FORMAT 
FORMAT 

('x',G10, 2G7 ,G5) 
( , x', G6) 
('x',4G10) 

WRITE (5, ~) I, J. K, L 

Explanation: 

54 

a. If Q had been specified as 1, the printed output would be: 

Print Position 1 Print Position 29 
t t 
bbbbbbb292b443428490808140018 Line 1 

The same results would be achieved" if FORMAT statement 1 had 
been written: 

FORMAT ('x',G10, G7, G7" G5) 

Note that the .§. portion of -the G format may be omitted when 
transmitting integer data. 

h. If ~ had been specified as 2, the printed output would be: 

Print Position 1 
t 
bbb292 
443428 
908081 
b40018 

Line 1 
Line 2 
Line 3 
Line 4 

Note that the second format code G6 is an incorrect specifi­
cation for the third variable K, i.e.. 4908081. Thus, the 
leftmost digit is lost. In general, when the width specifi­
cation w is insufficient, the leftmost characters are not 
printed:-

c. If b had been specified as 3, the printed output would be: 

Print Position 1 Print position 40 
t t 
bbbbbbb292bbbb443428bbb4908081bbbbb40018 Line 1 

From the above example, it can be seen that increasing the 
field width ~ improves readability. 



Example 3: 

Assume that the variable I is integer (length 2) " A and B are real 
(length 4), D is real (length 8), C is complex (length 8), and L is 
logical (length 1) whose values are 292, 471.93, 81.91, 6.9310012, 
(2.1,3.1), and .TRUE., respectively. 

1 FORMAT 
2 FORMAT 
3 FORMAT 

Explanation: 

(~x',G3,2G9.2,G13.1,2G8.2,G3) 
(~x·,G3/'x'.2Gl0.2/'x',G9.1/'x',2G8.2,G3) 
(//'x',G3,2G9.2//'x',G13.7,2G8.2,G3///) 

a,. If!2 ha.s been specified as 1, the printed output lJl0uld be: 

Print Position 1 Print Position 53 
t t 
292 bO • I~ 1 E bO 3 bb81. bbbbb6 • 931007 bbbbb2 • lbbbbb3. 1 bbbbbbT 

When complex data is being transmitted, two format codes are 
required. The real and imaginary parts are each treated as 
separa1c.e real numbers, and the parentheses and Gomma are not 
printed. as part of the output. 

b. If!2 has been specified as 2, the printed output ~~ould be: 

Print Position 1 
t 
292 
bbO.41Eb03bbb81.bbbb 
bbb6bbbb 
b2.1bbbbb3~1bbbbbbT 

Line 1 
Line 2 
J:.ine 3 
Line 4 

From the example, it can be seen that the use of 1:he slash (/) 
to separate two format codes causes the data, not yet printed, 
to be printed on a new line. If the output data is to be 
punched on cards, the slash specifies that the following data 
will be punched on another card. 

c. If!2 has been specified as 3, the printed output would be: 

Print Position 1 
t 
(blank line) 
(blank line) 
292bO. 41Eb03bb81. bbbb 
(blank line) 
b6,. 931007bbbbb2. lbbbbb3.1bbbbbbT 
(blank line) 
(blank line) 
(blank line) 

Line 1 
:Line 2 
:Line 3 
Line 4 
Line 5 
Line 6 
:Line 1 
:Line 8 

In the example, note that 2 ~onsecutive slashes appearing at 
the beginning and 3 at the end of the series of format codes 
causes blank lines to be inserted as shown. However., the two 
consecutive slashes appearing elsewhere in the FORMAT state­
ment cause the insertion of a blank line, as shown in line 4. 

Input/Output Statements 55 



The principles illustrated in the previous output examples also apply 
when using the READ statement on input. In addition" there are further 
considerations when using the FORMAT statement on input or output. 

1. When reading real input data with a G format code, a decimal point 
must be included. 

2. The use of additional parentheses (up to two levels) within a 
FORMAT statement is permitted to enable the user to repeat the same 
format code when transmitting data. For example, the statement: 

10 FORMAT (2(G10.6,G7.1),G4) 

is equivalent to: 

10 FORMAT (G10.p~ G7.1, G10.6, G7.1, G4) 

3,. If the data exists with a D decimal exponent, it is transferred 
with this D decimal exponent. 

4. If a multiline listing is desired such that the first two lines are 
to be printed according to a special format and all remaining lines 
according to another format, the last format code in the statement 
should be enclosed in a second pair of parentheses. For example, 
in the statement: 

FORMAT ('x',G2,2G3.1/'x',G10.8/C'x',3G5.1» 

If more data items are to be transmitted after the format codes 
have been completely used, the format repeats from the last left 
parenthesis. Thus, the printed output would take the form: 

G2,G3.1,G3.1 
G10.8 
G5.1,G5.1,G5.1 
G5.1,G5.1,G5.1 

As another example, consider the statement: 

FORMAT ('x',G2/2('x·,G3,G6.1),G9.7) 

If there are thirteen data items to be transmitted, the printed 
output on a WRITE statement would take the form: 

G2 
G3rG6.1,·x·~G3,G6.1,G9.7 
G3,G6.1,'x',G3,G6.1,G9.7 
G3,G6.1 

Four types of format codes are available for the transfer of numeric 
data. These are specified in the following form: 

56 



r----------------.------------------------------------------------------, 
I General Form I 
~----------------.---------------------------------------~--------------~ 

alw aFw.d 
aEw .• d 
~D~.~ 

Where: a is optional and is an unsigned integer consta.nt used to 
denote the number of times the same format code is repeti­
tively referenced. 

I, F. E:. and D are format codes .. 

~ is an unsigned integer constant less than or equal to 255 
specifying the total field length of the data. 

g is an unsigned integer constant specifying the number of 
decimal places to the right of the decimal point, i.e., the 
fractional portion. 

For purposes of simplification. the following discussion of format 
codes deals with the printed line. The concepts developed apply to all 
input/output media .. 

I Format Code 

The I format code is used in conjunction with the transferral of 
integer data. The cQde 110 may be used to print integer data; 10 print 
positions are reserved for the number. It is printed in this 
10-position field right-justified (that is, the units position is at the 
extreme right). 

If the number to be transmitted is greater than 10 positions, the 
excess leftmost digits are lost. If the number has less than 10 digits., 
the leftmost print positions are filled with blanks. If the quantity is 
negative, the position preceding the leftmost digit con1:ains a minus 
sign. In this case, an additional position should be specified in the 
total field length for the minus sign. On input, if the field length 
specification ~ is greater than the number of digits being read into a 
field. the integer data is right-justified and high-order zeros are 
inserted. 

The following examples show how each of the quantities on the left is 
printed accordinq to the format code 13 (b represents a blank): 

Internal Value 
721 
-721 

-12 
568114 

o 
-5 
9 

Printed Value 
721 
721 (incorrect because of insufficient 

specification) 
-12 
114 

bbO 
b-5 
bb9 

(incorrect because of insufficient 
specification) 

Input/Output statements 57 



F Format Code 

The F format code is used in conjunction with the transferral of real 
data that does not contain a decimal exponent.. For F format codes" w is 
the total field length reserved" and g is the number of places to -the 
right of the decimal point (the fractional portion). This differs from 
the G format code. where the number of significant digits is specified. 
The total field length reserved must include sufficient positions for a 
sign (if any) and a decimal point. The sign" if negative" is printed. 

If insufficient positions are reserved by ~, the fractional portion 
is truncated from the right,. If excessive positions are reserved by .9, 
zeros are filled in on the right. The integer portion of the number is 
handled in the same fashion as numbers transmitted by the I format code. 

The following examples show how each of the quantities on the left is 
printed according to the format code F5.2: 

Internal Value 
12 .• 17 
-41 .. 16 

-,.2 
7.3542 

-1. 
9.03 
187 .. 64 

Printed Value 
12 .. 17 
41 .. 16 (incorrect because of insufficient 

specification) 
- 0,.20 
b7.35 

-1.00 
b9.03 
87.64 

(last two digits of accuracy lost 
because of insufficient specification) 

(incorrect because of insufficient 
specification) 

o and E Format Codes 

The 0 and E format codes are used in conjunction with the transferral 
of real data that contains a 0 or E decimal exponent" respectively,. A 0 
format code indicates a field length of 8; an E format code indicates a 
field length of 4. For 0 and E format codes, the fractional portion is 
again indicated by ~. The ~ includes field ~, spaces for a sign~ the 
decimal point. and four spaces for the exponent. (For output" space 
should be reserved for at least one digit preceding the decimal point.) 

The exponent is the power of 10 
multiplied to obtain its true value. 
or an E, followed by a space for the 
exponent (maximum is 75). 

by which the number must be 
The exponent is written with a 0 
sign and two spaces for the 

The following examples show how each of the quantities on the left is 
printed according to the format codes (010,. 3/El0. 3) : 

Internal Value 
238. 

-.002 
.. 00000000004 
-21.0057 

Printed Value 
bO.2380b03 
-0.200E-02 
bO .. 4000-10 
-0.210Eb02 (Last three digits of accuracy 

lost because of insufficient 
specification) 

When reading input data" the start of the exponent field must be 
marked by an E, or, if that is omitted, by a + or - sign (not a blank). 
Thus, E2~ E+2, +2, +02~ E02, and E+02 all have the same effect and are 
permissible decimal exponents for input. 

58 



Numbers for E, Oi' and F format codes need not have th.eir decimal 
point punched. If it is not present, the decimal point is supplied by 
the g portion of the format code,. If it is present in the~ card" its 
position overridE~s the position indicated by the g portion of the format 
code. 

L Format Code 

r----------------------------------------------------------------------, 
I General Form I 
~----------------------------------------------------------------------i 
I I 
I aLw I 
I I 
I Where: ~ is optional and is an unsigned integer constant used to I 
I denote the number of times the same format; code is I 
I repetitively referenced. I 
I I 
I !! is an unsigned integer constant less than or equal to 255, I 
I specifying the number of characters of data. I L _____________________________________ -----------______________________ J 

Logical variables may be read or written by means of the format code 
L~. 

On input" the first T or F encountered in the next w characters of 
the input record causes a value of .TRUE. or .FALSE.~ respectively, to 
be assigned to the corresponding logical variable. If the field ~ 
consists entirel~r of blanks" a value of • FALSE. is assumed. 

On output, a T or all F is inserted in the output record corresponding 
to the value of the logical variable in the I/O list. The single 
character is preced,ed by ~ - 1 blanks. 

A Format Cod~ 

r----------------------------------------------------------------------, 
I General Form I 
.----------------------------------------------------------------------i 
I I 
I aAw I 
I I 
I Where: ~ is optional and is an unsigned integer constant used to I 
I denote the number of times the same format code is repeti- I 
I tively referenced. I 
I I 
I ~ is an unsigned integer constant less than or equal to 255" I 
I specifying the number of characters of data. I 
L _____________________________ - _______ ----------------________________ -J 

The format code Aw is used to read or write data. If ~~ is equal to 
the number of characters corresponding to the length specification of 
each item in the I/O list, ~ characters are read or written. 

On input, if w is less than the length specification of each item in 
the I/O list, w -characters are read and the remaining right-most 
characters in -the item are replaced with blanks. If w is greater than 
the length specification~ the number of character~ equal to the 
difference betw~een ~ and the length specification are skipped and the 
remaining charac'ters are read,. 

Input/Output Statements 59 



On output, if ~ is less than the length specification of the item in 
the I/O list, the printed line will consist of the leftmost w characters 
of the item. If~. is greater than the length specification#-the printed 
line will consist of the characters right-justified in the field and 
will be preceded by blanks. Therefore it is important to always 
allocate enough area in storage to handle the characters being written 
(see the section "The Type Statements"). 

Assume that the array ALPHA consists of one subscript parameter ranging 
from 1 through 20.. The following statements could be written to "copy" 
a record from one data set to another whose ultimate destination is a 
card punch. 

10 FORMAT (20A4) 

READ (5.,10) (ALPHA (I), I=l, 20) 

WRITE (6,,10) (ALPHA(IL,I=1.,20) 

Explanation: 

In example, the READ statement would cause 20 groups of characters to 
be read from the data set associated with data set reference number 5. 
Each group of four characters would be placed into the 20 positions in 
storage starting with ALPHA(l) and ending with ALPHA(20). The WRITE 
statement would cause the 20 groups of four characters to be written on 
the data set associated with data set reference number 6. 

Example 2: 

As another example, consider all the variable names in the list of 
the following READ statement to have been explicitly specified as REAL, 
and the array CONST to have been specified as having one subscript 
parameter ranging from 1 through 10. Then assuming the following input 
data is associated with data set reference number 5: 

ABCDE ••• XYZ$1234567890b 

where represents the alphabetic characters F through Wand b means 
a blank, the following statements could be written: 

60 

10 FORMAT 
20 FORMAT 

READ 
1 
2 
3 

(27Al,10Al,Al) 
( • x' , 6 (7 Al, 5X) ) 

(5,10)A,B,C,D,E,F,G,H,I, 
J,K,L,M,N,O,P,Q,R~ 

S,T,U,V,W,X,Y,Z,$, 
(CONST (IND),IND=l. 10), BLANK 



DO 50 INDEX 1.5 

WRITE 
1 
2 
3 
4 
5 

(6,,20) G, R, 0, U, p" BLANK, CONST (INDEX) " 
B, L. 0, C" K, BLANK, CONST (INDEX) " 
F" I'll E" L" D .. BLANK, CONST (INDEX) " 
G. R" 0., U, P ,BLANK, CONST (INDEX+5) " 
B" LII 0, C, K. BLANK, CONST (INDEX+5), 
F, I, E, L" D" BLANK, CONST (INDEX+5) 

50 CONTINUE 

Explanation: 

The READ statement would cause the 37 alphameric characters and the 
blank in the data set associated with data set reference number 5 to be 
placed into the storage locations specified by the variable names in the 
READ list,. Thus, the variables A through Z receive the valu,es A through 
Z, respectively; the variable $ receives the value $; the numbers 1 
through 9, and O. are placed in the 10 fields in storage starting with 
CONST(l) and ending with CONST(10); and the variable BLANK receives a 
blank. The WRITE statement within the DO loop would cause the following 
heading to be printed. A subsequent WRITE statement within the DO loop 
could then be written to print the corresponding output data. 

Print Position 1 Print Position 67 
t t 
I I 
GROUP 1 BLOCK 1 FIELD 1 GROUP 6 BLOCK 6 FIE:LD 6 

(output data) 

GROUP 2 BLOCK 2 FIELD 2 GROUP 7 BLOCK 7 FIE,LD 7 

(output data) 

GROUP 5 BLOCK 5 FIELD 5 GROUP 0 BLOCK 0 FIELD 0 

(output data) 

Literal Data :in a Format statement 

Literal data consists of a string of alphameric and special charac­
ters written within -the FORMAT statement and enclosed in apostropheis. 
The string of characters must be less than or equal to 255. For 
example: 

25 FORMAT (. 1964 INVENTORY REPORT') 

An apostrophe character within 
successive apostrophes. For example, 
resented as: 

the string is represented by two 
the characters DON'r are rep-

Input/Output statements 61 



DON" "T 

The effect of the literal format code depends on whether it is used 
with an input or output statement. 

INPUT 

A number of characters. equal to the number of characters between the 
apostrophes, are read from the designated data set. These characters 
replace, in storage~ the characters within the apostrophes. 

For example, the statements: 

5 FORMAT (' HEADINGS') 

READ (3,,5) 

would cause the next nine characters to be read from the data set 
associated with data set reference number 3; these characters would 
replace the blank and the eight characters H,E~A,D~I,N,G~ and S in 
storage .• 

OUTPUT 

All characters (including blanks) within the apostrophes are written 
as part of the output data. Thus, the statements: 

5 FORMAT (' THIS IS ALPHAMERIC DATA') 

WRITE (2,5) 

would cause the following record to be written on the data set 
associated with the data set reference number 2: 

THIS IS ALPHAMERIC DATA 

H Format Code 

r----------------------------------------------------------------------, 
I General Form I 
~----------------------------------------------------------------------~ 
I I 
I wH I 
I I 
I Where: ~ is an unsigned integer constant less than or equal to 255, I 
I specifying the number of characters following H. I l ______________________________________________________________________ J 

62 



The H format code is used in conjunction with the transferral <pf 
literal data. 

The format code wH is follLowed in the FORMAT statement by ~ (~~25$) 
characters.. For ~example, 

5 FORMAT (3lH THIS IS ALPHAMERIC INFORMATION) 

Blanks a·re significant and must be inc.Luded as part of the count ~. 
The effect of ~H depends on whether it is used with input or output. 

1. On input, ~~ characters are 
replace the ~ characters of 
statement. 

extracted from the inpu1: record ahd 
the literal data in the FOR~T 

2. On output, the ~ characters following the format code are written 
as part of the output record .• 

X Format Code 

r---------------------------------------------------------------------~, 
I General Form . I 
~---------------------------------------------------------------------~i 
I I 
I ~ I 
I I 
I Where: w is an unsigned integer constant less than or equal to 255,: I 
I specifying the number of blanks to be inserted on output or: I 
I the number of characters to be. skipped on input. I L _______________________ - ______________ ---------------________________ ~J 

When the wX (w~255) format code is used with a READ stattement (i. e~, 
on input)w ~ characters are skipped before the data is read in. Fbr 
example" if a card has six 10-column fields of integer quantities, ahd 
it is not desired to read the second guantityw then the statement: 

5 FORMAT (110" 10Xw 4110) 

may be used, along with the appropriabe READ statement. 

When the wX format code is used with 
output) , ~ -characters are left blank,. 
within a printed line is available. For 

10 FORMAT ('x',3(F6 .• 2,5X» 

a WRITE statement (i.e.~ pn 
Thus~ the facility for spacihg 

example, the statement: ! 

may be used with an appropriate WRITE statem~nt to pr1nt a line as 
follows: 

123. 45bbbbb817 .• 32bbbbb524. 67bbbbb 

Input/Output Statements 63 



T Format Code 

r----------------------------------------------------------------------, 
I General Form I 
~------~---------------------------------------------------------------~ 
I I 
I Tw I 
I I 
I Where: !! is an unsigned integer constant less than or equal to 255" I 
I specifying the position in a FORTRAN record where the I 
I transfer of data is to begin. I L ______________________________________________________________________ J 

Input and output may begin at any position by 
T!! (~~2SS). Only when the output is printed 
between ~ and the actual print position differ. 
of the. carriage control character, the print 
~-1, as in the following example: 

using the format code 
does the correspondence 
In this case~ because 
position corresponds to 

5 FORMAT (T40, 11964 INVENTORY REPORT' T80" 'DECEMBER' Tl" 
NO. 10095') 

PART 

The above FORMAT statement would result in a printed line as follows: 

Print 
position 1 
t 
PART NO,. 10095 

The statements: 

Print 
Position 39 
t 
1964 INVENTORY REPORT 

5 FORMAT (T40" • HEADINGS') 

READ (3.5) 

Print 
Position 79 
t 
DECEMBER 

would cause the first 39 characters of the input data to be skipped., and 
the next 9 characters would then replace the blank and the characters 
H,E.A~D,I,N,G and S in storage~ 

The T format code may be used in a FORMAT statement with any type of 
format code. For example, the following statement is valid: 

5 FORMAT (Tl00, Fl0.3, TSO, E9 .• 3, Ti, ;1 ANSWER IS') 

Scale Factor - P 

The representation of the data, internally or externally" may be 
modified by the use of a scale factor followed by the letter P preceding 
a format code .. 

The scale factor is defined for input and output as: 

external quantity = internal quantity x 10 scale factor 

For input, when scale factors are used in a FORMAT statement, they 
have effect only on real data which does not contain an E or D decimal 
exponent. For example, if input data is in the form xx.xxxx and, it is 
desired to use it internally in the form .xxxxxx, the format code used 
to effect this change is 2PF7.4. 

64 



INPUT 

As another example., consider the input data: 

21bbb-93.2094bb-115 .. 8041bbbb55 .. 3641 

where b represents a blank. 

The statements: 

5 FORMAT (12:., 3F11. 4) 

READ (6" 5) K" A" B., C 

would cause the ~rariables in the list to assume the values: 

K 
A 

21 
-93.2094 

The statements: 

B 
C 

-175 .• 8041 
55.3641 

5 FORMAT (I2.1P3F11.4) 

READ (6,5} K,A,B.C 

would cause the "ariables in the list to assume the values: 

K 
A 

21 
-9.3209 

The statements: 

B 
C 

-17.5804 
5.5364 

5 FORMAT (I2,-lP3F11 .• 4) 

READ (6, 5:~ Kif A, B. C 

would cause the ~iTariable in the list to assume the values: 

K 
A 

21 
-932.094:1{ 

B 
C 

-1758.041x 
553.647x 

where the x repr~esents an extraneous <iigit. 

OUTPUT 

Assume that the variables K"A,B" and C have the values: 

K 
A 

27 
-93.2094 

the statements: 

B 
C 

-175.8041 
55.3647 

5 FORMAT (I2.1P3Fl1.4) 

WRITE (4,5) K,A~B,C 

Input/Output statements 65 



would cause the variables in the list to output the values: 

K 
A 

27 
-932.094x 

B 
C 

-1758.041x 
553.647x 

where the x represents an extraneous digit. 

The statements: 

5 FORMAT (I2 r -1P3Fll.4) 

would cause the variables in the list to output the values: 

K 
A 

27 
-9.3209 

B 
C 

-17.5804 
5.5364 

For output, when scale factors are used, they have effect only on real 
data. However r this real data may contain an E or D decimal exponent. 
A positive scale factor used with real data which contains an E or D 
decimal exponent increases the number and decreases the exponent. Thus, 
if the real data was in a form using an E decimal exponent, and the 
statement FORMAT (1X.,I2,3E13.3) used with an appropriate WRITE statement 
resulted in the printed line: 

27bbb-0 .• 932Eb02bbb-0.175Eb03bbbbO. 553Eb02 

Then the statement FORMAT (lX,I2,1P3E13.3) used with the same WRITE 
statement would result in the printed output: 

27bbb-9.320Eb01bbb-1. 758Eb02bbbb5. 536EbOl 

The scale factor is assumed to be zero if no other value has been 
given.. However, once a value has been given, it will hold for all 
format codes (i.e.~ thos~ that correspond to real data) following the 
scale factor within the same FORMAT statement. This also applies to 
format codes enclosed within an additional pair of parentheses,. Once 
the scale factor has been given~ a subsequent scale factor of zero in 
the same FORMAT statement must be specified by OP. 

Carriage Control 

When records written under format control are prepared for printing" 
the following convention for carriage control applies: 

First Character 
Blank 
o 
1 
+ 

Carriage Advance Before Printing 
One Line 
Two lines 
To first line of the next page 
No advance 

The first character of the output record may be used for carriage 
control and is not printed. It appears in all other media as data. 

66 



ADDITIONAL INPUT/PUTPOT STATEMENTS 

The statements END FILE, REWIND, and BACKSPACE are used to control 
the data sets, as described in the following text. 

END FILE Statemen·t 

r-------------------~--------------------------------------------------, 
I General Form I 
t----------------------------------------------------------------------i 
I I 
I END FILE ~ I 
I I 
I Where: ~ is an unsigned integer constant or integer variable of I 
I length IlJ that represents a data set reference numbE~r. I L ______________________________________________________________________ J 

The END FILE statement defines the end of the data set: associated 
with a.. A subsequent WRITE statement defines the beginning of a new 
data set. 

REWIND Statement 

r----------------------------------------------------------------------, 
I General Form I 
.----------------------------------------------------------------------i 
I I 
I REWIND ~ I 
I I 
I Where: ~ is an unsigned integer constant or integer variable of I 
I length 4 that represents a data set reference number. I L ______________________________________________________________________ J 

The REWIND sta1tement causes a subsequent READ or wRITE! statement 
referring to ~ to read data from or write data into the first data set 
associated with ~~ 

BAqKSPACE Statement 

r-----------------------------------------------------------------------, I General Form I 
t-----------------------------------------------------------------------i 
I I 
I BACKSPACE ~ I 
I I 
I Where: ~ is an unsigned integer constant or integer variable of I 
I length t~ that represents a data set reference number. I L _________________________________________ . _____________________________ J 

The BACKSPACE statement causes the data set associated with a to 
backspace one record. If the data set associated with 2. is already- at 
its beginning" ex~~cution of this statement has no effect. 

Input/Output Statements 67 



SPECIFTCATION STATEMENTS 

The specification statements provide the compiler with information 
about the nature of the data used in the source program. In addition, 
they supply the information required to allocate locations in storage 
for this data4 Specification statements describing data may appear 
anywhere in the source program. but must precede any statements which 
refer to that data. 

THE TYPE STATEMENTS 

There are two kinds of type statements: the IMPLICIT specification 
statement and the Explicit specification statements (INTEGER, REAL" 
COMPLEX, and LOGICAL). 

The IMPLICIT specification statement enables the user to: 

1. Specify the type of a group of variables or arrays according to the 
initial character of their names. 

2. Specify the amount of storage to be allocated for each variable 
according to the associated type. 

The Explicit specification statements enable the user to: 

1. Specify the type of a variable or array according to their 
particular name. 

2. Specify the amount of storage to be allocated for each variable 
according to the associated type. 

3. Specify the dimensions of an array. 

4. Assign initial data values for variables and arrays. 

IMPLICIT Statement 

r----------------------------------------------------------------------, 
I General Form I 
~-------------------------~--------------------------------------------~ 

68 

Where: ~ represents one of the following: INTEGER, REAL" COM-­
PLEX. or LOGICAL. 

*8 is optional and represents one of the permissible length 
specifications for its associated type. 

~~. ~2' •• - represent single alphabetic characters each 
separated by commas, or a range of characters (in alphabetic 
sequence) denoted by the fir,st and last characters of the 
range separated by a minus sign (e.g., (A-D)). 



The IMPLICIT statement~ if specified, should be the first statement 
in a main program" and the second statement in a FUNCTION" SUBROUTINE., 
or BLOCK DATA subprogram. 

The IMPLICIT type sitatement enables the user to declare the type of 
the variables appE~aring in his program (i. e., integer, real, complex, or 
logical) by specifying that variables beginning with certain designated 
letters are of a certain type. Furthe~more, the IMPLICIT statement 
allows the programmer to declare the number of locations to be allocated 
for each in the group of specified variables. The type a vctriable can 
assume_ along with the permissible length specifications are as follows: 

~ Length §E~.if ication 
INTEGER 2 or L~ (standard length is 4) 
REAL 4 or B (standard length is 4) 
COMPLEX 8 or 16 (standard length is 8) 
LOGICAL, 1 or L~ (standard length is 4) 

For each type there is a corresponding standard length specification. 
If this standard length specification (for its associated type) is 
desired., the *2 may be omitted in the IMPLICIT statement. That is, the 
variables will assume the standard length specification. For each type 
there is also a corresponding optional length specification. If this 
optional length specification is desired., the *2 must be included within 
the IMPLICIT statement. 

Example 1: 

IMPLICIT REAL (A-H., O-Z,$)" INTEGER (I-N) 

Explanation: 

All variables beginning with the characters I through N are declared 
as INTEGER. Sinc~e no length specification was explicitly given (i.e., 
the *s was omi·tted)., four storage locations (the standard length for 
INTEGE~) are allocated for each variable. 

All other variables (those beginning with the characters A through H. 
o through Z_ and $) are declared as REAL with four storage locations 
allocated for each. 

Note that the statement in Example 1 performs the exact same function 
of typing variables as the predefined convention (see "'rype Declaration 
by the Predefined specification"). 

Example 2: 

IMPLICIT INTEGER*2(A-H), REAL*8(I-K), LOGICAL(L,M,N) 

Explanation: 

All variables beginning with the characters A through H are declared 
as integer, with two storage locations allocated for each. All 
variables beginning with the characters I through K are declared as 
real, with eight storage locations allocated for each. All variables 
beginning with the characters L. M. and N are declared as logical, with 
four locations allocated for each. 

Since the remaining letters of the alphabet (0 through Z and $) were 
left undefined by the IMPLICIT statement, the predefined convention will 
take effect. Thus, all variables beginning with the characters 0 
through Z and $ are declared as real# each with a standard length of 
four locations. 

Specification Statements 69 



Example 3: 

IMPLICIT COMPLEX*16 (C-F) 

Explanation: 

All variables 
as complex., each 
of the complex 
imaginary part. 
ters A" B" G 
convention. 

beginning with the characters C through F are declared 
with eight storage locations reserved for the real part 
data and eight storage locations reserved for the 

The types of the variables beginning with the charac­
through Z, and $ are determined by the predefined 

Explicit specification statements 

r----------------------------------------------------------------------, 
I General Form I 
~----------------------------------------------------------------------~ 

Where: ~ is INTEGER, REAL, LOGICAL, or COMPLEX. 

*~, *~j., *~~, ••• , *~n are optionaL. Each §. represents one of 
the permissible length specifications for its associated 
~. 

~,~.,_ ••• ~ represent variable, array, or function names (see 
the section, "SUBPROGRAMS") 

(kj.), (k 2 ) ', ••• " (kn ) are optional. Each ~ is composed of 1 
through 7 unsigned integer constants, separated by commas, 
representing the maximum value of each subscript in the 
array.. Each!s may be an unsigned integer variable only when 
it appears in a Type statement in a subprogram. 

/~~/'/~2/., ••• ,/~n/ are optional and represent initial data 
values. ______________________________________________________________________ J 

The Explicit specification statements declare the ~ (INTEGER" 
REAL, COMPLEX, or LOGICAL) of a particular variable or array by its 
~, rather than by its initial character. This differs from the other 
ways of specifying the type of a variable or array (i. e .•• the predefined 
convention and the IMPLICIT statement). In addition, the information 
necessary to allocate storage for arrays (dimension information) may be 
included within the statement. However, if this information does not 
appear in an Explicit specification statement, it must appear in a 
DIMENSION or COMMON statement (see "DIMENSION Statement" or "COMMON 
Statement"). 

Initial data values may be assigned to variables or arrays by use of 
/xn/, where ~n is a constant or list of constants separated by commas. 
This set of constants may be in the form "r* constant"" where r 1S an 
unsigned integer. called the repeat constant. No element may have more 
than one initial value given in the same program. A function name may 
not have an initial value assigned to it. An initially defined variable 
or a variable of an array may not be in blank common. In a labeled 
common block, they may be initially defined only in a BLOCK DATA 
subprogram .. 

70 



In the same manner in which the IMPLICIT statement overrides the 
predefined convention., the Explicit specification statements override 
the IMPLICIT ancl predefined convention. If the length specification is 
omitted (i.e.,*~)w the standard length per type is assumed. 

Example 1: 

INTEGER*2 ITEM/76/" VALUE 

Explanation: 

This statement declares that the variables ITEM and VALUE are of type 
integer, each wiith two storage locations reserved. In addition., the 
variable ITEM is initialized to the value 76. 

Example 2: 

COMPLEX C,D/(2.1,4.7)/,E*16 

Explanation: 

This statement declares that the variables C, D, and E are of type 
complex. Since no length specification was explicitly given, the 
standard length is assumed. Thus, C and D each have eight storage 
locations reserved (four for the real part, four for the imaginary part) 
and D is initialized to the value (2 .. 1,4.7). In addition, 16 storage 
locations are reserved for the variable E. Thus, if a length specifi­
cation is explicitly written, it overrides the assumed standard length. 

Example 3: 

REAL*8 ARRAY" HOLD, VALUE*4, ITEM(S.,S) 

Explanation: 

This statement declares that the variables ARRAY, HOLD, VALUE, and 
the array named ITEM are of type real. In addition, it declares the 
size of the array ITEM. The variables ARRAY and HOLD have E~ight storage 
locations reserved for each: the variable VALUE has four storage 
locations reserved: and the array named ITEM has 200 storage locations 
reserved (eight for each variable in the array). Note that when the 
length is associated with the type (e.g., REAL*8), the length applies to 
each variable in the statement unless explicitly overridden (as in the 
case of VALUE * 4 ) '. 

Example 4: 

REAL A ( S, S ) /:2 0 * 6 • 9 E 2., S * 1. 0/, B ( 100) /100 * 0 • 0/, TOAD* 8 ( S ) /5* O. 0/ 

Explanation: 

This statement declares the size of each array, A and B, and their 
type (real). The array A has 100 storage locations reserved (four for 
each variable in the array) and the array B has 400 storage locations 
reserved (four for each variable). In addition, the first 20 variables 
in the array A are initialized to the value 6.9E2 and the last five 
variables are initialized to the value 1.0. All 100 variables in the 
array B are initialized to the value 0.0,. The array TOAD has 40 storage 
locations reserved (eight for each variable). In addition, each 
variable is initialized to the value 0.0. 

Specification Statements 71 



Adjustable Dimensions 

As shown in the previous examples, the maximum value of each 
subscript in an array was specified by a numeric value. These numeric 
values (maximum value of each subscript) are known as the absolute 
dimensions of an array and may never be changed. However, if an array 
is used in a subprogram (see the section "Subprograms") and is not in 
Common, the size of this array does not have to be expl~citly declared 
in the subprogram by a numeric value. That is" the Explicit specifi­
cation statement, appearing in a subprogram, may contain integer 
variables that specify the size of the array. When the subprogram is 
called, these integer variables then receive their values from the 
calling program. Thus, the dimensions (size) of a dummy array appearing 
in a subprogram are adjustable and may change each time the subprogram 
is called .• 

The absolute dimensions of an array must be declared in a calling 
program. The adjustable dimensions of an array~ appearing in a 
subprogram, should be less than or equal to the absolute dimensions of 
that array, as declared in the calling program. 

The following example illustrates the use of adjustable dimensions: 

Example: 

Subprogram 

REAL* 8 A ( S. 5) SUBROUTINE MAP MY ( ••• , R, L., M, ••• ) 

CALL MAPMYC ••• ,A,2,3, ••• ) 

DO 100 I=l,L 

Explanation: 

The statement REAL*8 A(S,S) appearing in the calling program declares 
the absolute dimensions of the array A. When the subroutine MAPMY is 
called" the dummy argument R assumes the array name A, and the dummy 
arguments Land M assume the values 2 and 3, respectively. The 
subscripted variables of the array A appearing in the calling program 
occupy unique storage locations in the following order: 

A(l~l) A(2,1) A(3,l) A(4,1) A(S,l) 

AC1,2) A(2,2) A(3,2) A(4,2) A(S,2) 

A(1,3) A(2,3) A(3.3) A(4,3) A(S,3) 

A(1,4) A(2,4) A(3,4) A(4,4) A(S,4) 

AC1,S) A(2,S) A(3,S) AC4,S) ACS,S) 

Thus, in the calling program the subscripted variable A(1,2) refers to 
the sixth subscripted variable in the array A. However, in the 
subprogram MAPMY the subscripted variable A(1,2) refers to the ~hirg 

72 



subscripted variable in the array A, namely~ A(3~1). This is so because 
the dimensions of the array A as declared in the subprogram are not the 
same as those in the calling program. 

If the absolu1:e dimensions in the calling program were t~he same as 
the adjusted dimensions in the subprogram, the subscripted variables 
A(l"l) through AI( 5,5) in the subprogram would always refer t~o the same 
storage locations as specified by the subscripted variables A(l,l) 
through A(5,5) in the calling program~ respectively. 

The numbers 2 and 3.,. which became the adjusted dimension of the dummy 
array R, could also have been variables in the argument list of the 
calling program.. For example, assume that the following statement 
appeared in the calling program: 

CALL MAPMY C. ' •• , A" I" J" ••• ) 

Then as long as ·the values of I and J were previously deb::!rmined" the 
arguments may be variables. In addition, the variable dimension size 
may be passed through more than one level of SUbprograms. :~or example, 
within the subprogram MAP MY could have been a call statement to another 
subprogram in which dimension information about A could have been 
passed. 

If any dimension of an array is variable, that dimension and the 
array name must be dummy variables (i.e., they must appear in a 
FUNCTION, SUBROUTINE, or ENTRY statement). 

ADDITIONAL SPECIFICATION STATEMENTS 

DIMENSION Statement 

r----------------------------------------------------------------------, 
I General Form I 
.~----------------------------------------------------------------------~ 
I I 
I DIMENSION ~j. (~:j.) " ~2 (~2)' !!3 (~3) , •• • , ~n (~n) I 
I I 
I Where: ~j., ~2' ~3' ••• ' !!n are array names. I 
I I 
I ~j., ~~U ~3" •••• ' ~n are each composed of 1 through 7 unsigned I 
I int~gE~r constants, separated by commas, repre:senting the I 
I maXl.mum value of each subscript in the array. ~j. through ~n I 
I may bE~ integer variables of length 4 only when t.hey appear I 
I in a DIMENSION statement within a subprogram. I 
L _____________________ --------------_-----------------_________________ J 

The information necessary to allocate storage for arrays used in the 
source program may be provided by the DIMENSION staltement. The 
following examples illustrate how this information may be declared. 

Examples: 

DIMENSION A(lO)" ARRAY (5,5,5,,5,5), LIST(10,100) 
DII"1ENSION B I( 25.,50) , TABLE (25,25,25) 

Specification Statements 73 



COMMON Statement 

r---------------------------------------------------------------------.-, 
I General Form I 
~----------------------------------------------------------------------~ 

Where: ~,2, ... ,E,.Q .... are variable or array names .. 

~1'~2' ••• ~3'~ ••• are optional and are each composed of one 
through seven unsigned integer constants, separated by 
commas, representing the maximum value of each subscript in 
the array. 

/r/... represent optional common block names consisting of 
one through six alphameric characters, the first of which is 
alphabetic. These names must always be embedded in slashes. ______________________________________________________________________ J 

Although the COMMON statement may be used to provide dimension 
information, adjustable dimensions may never be used .• 

Variables or arrays that appear in a calling program or a subprogram 
may be made to share the same storage locations with variables or arrays 
in other subprograms by use of the COMMON statement. For example, if 
one program contains the statement: 

COt-'lMON TABLE 

and a second program contains the statement: 

COMMON LIST 

the variable names TABLE and LIST refer to the saIne storage locations. 

If the main program contains the statements: 

REAL A,B,C 
COMMON A.B.C 

and a subprogram contains the statements: 

REAL X" Y" Z 
COMMON X., Y, Z 

A shares the same storage location as X; B shares the same storage 
location as Y; and C shares the same storage location as z. 

consider the following examples: 

Example 1: 

74 

COMMON A., B, c,' R(100) 
REAL A.,B.,C 
INTEGER R 

CALL MAPMY ( ••• ) 

Subprogram 
SUBROUTINE MAPMY ( ••• ) 

COMMON X" Y, Z, S (100) 
REAL X,Y,Z 
INTEGER S 



Explanation: 

In the calling program, the statement COMMON A"B,C,R(100) would cause 
412 storage locations (four locations per variable) to be reserved in 
the following order: 

r--------------------------~-----------------------, 
Beginning I ABC I Layout of 
of common I 4 locations 4 locations 4 locations I storage 
area I I 

~--------------------------------------------------~ I R(l) R(100) I 
I 4 locations 4 locations I L ___________________________ - ______________________ J 

The statement. COMMON X" Y" Z" S (100) would then cause the variables 
X~ Y, Z" and S(1) ••• S(100) to share the same storage space as A, B. C~ 
and R(1) ••• R(100)~ respectively. 

From the abov'e example, it can be seen that COMMON statements may be 
used to serve an important function: namely., as a medium to implicitly 
transmit data from the calling program to the subprogram. That is, 
values for XI' Y" Z, and S (1) ••.• S (100), because they occupy the same 
storage locations as A, B" C, and R(l) .... R(100), do not have to be 
transmitted in the argument list of a CALL statement. 

Example 2: 

Assume COMMON is defined in a main program and three subprograms as 
follows: 

Main program: 
Subprogram 1: 
Subprnqram 2: 
Subprogram 3: 

COMMON 
COMMON 
COMMON 
COMMON 

A,B,C 
D:, E, F 
Q"R,S,T,U 
V.,W.,X,Y,Z 

Further" assume the length specifications of the above variables are so 
defined that the common area is shared as follows: 

r--------------------------T--------------------------T----------------, 
I A I B I C , 
I 8 locations , 4 locations , 2 locations I 
~--------------------------+--------------------------+----------------i 
I DIE , F I 
, 8 locations , 4 locations , 2 locations I 
~-------------T------------+-------------T------------+----------------i 
I Q IH I S IT I U I 
I 4 locations I 4 locations I 2 locatiortsl 2 locations I 2 locations I 
~-------------+------------+-------------+------------+----------------i I V I W I X , y , Z , 
, 4 locations I 4 locations I 2 locations, 2 locations I 2 locations I 
L _____________ L ________ ----L-_________ ---L------------L ________________ J 

In this case., thE~ variables A,B-,C and D,E,F may be validly referred to 
in their respective programs, as may Q.,R,S"T,U and V,W"X,Y,Z. In 
addition., all programs may validly refer to C,F,U, and Z. It is also 
possible to cross-reference D in Subprogram 1 and Q and R in Subprogram 
2. Such correspondences are highly data dependent and in certain cases 
may be useful. For instance, if D is a complex variable., and Q and R 
are real variabl,~s, Q and R correspond to the real and ima9inary parts 
of D, respectively. However, each such cross reference by the program­
mer must be considered on its own merits. 

Specification Statements 15 



Blank and Labeled Common 

In the preceding two examples" the common storage area (common block) 
established is called a blank common area.. That is., no particular name 
was given to that area of storage. The variables that appeared in the 
COMMON statements were assigned locations relative to the beginning of 
this blank common area. However., variables and arrays may be placed in 
separate common areas. Each of these separate areas (or blocks) is 
given a name consisting of one through six alphameric characters (the 
first of which is alphabetic); those blocks which have the same name 
occupy the same storage space .• 

Those variables that are to be placed in labeled (or named) common 
are preceded by a common block name enclosed in slashes. For example, 
the variables A,B, and C will be placed in the labeled common area HOLD 
by the following statement: 

COMMON/HOLO/A,B,C 

In a COMMON statement, blank common may be distinguished from labeled 
common by preceding the variables in blank common by two consecutive 
slashes or, if the variables appear at the beginning of the common 
statement, by omitting any block name. For example, in the following 
statement: 

COMMON A, B., C /ITEMS/ X .. Y, Z / / 0, E, F 

the variables A., B, C, 0, E, and F will be placed in blank common in 
that order; the variables X, Y, and Z will be placed in the cornman area 
labeled ITEMS. 

Blank and labeled common entries appearing in COMMON statements are 
cumulative throughout the program. For example, consider the following 
two COMMON statements: 

COMMON A., B., C /R/ D., E /S/ F 
COMMON G, H /S/ I, J /R/P//W 

These two statements have the same effect as the single statement: 

COMMON A. B, C, G, H~ W /R/ 0, E, P /S/ F~ I, J 

Example 3: 

Assume that A, B, C, K, X~ and Y each occupy four locations of 
storage, Hand G each occupy eight locatioris, and D and E each occupy 
two locations. 

SUbprogram 

SUBROUTINE MAPMY( ••• ) 

COMMON H, A /R/ X, 0 // B 
COMMON G, Y, C /R/ K, E 

CALL MAPMY( ••• ) 

76 



Explanation: 

In the calling program, the statement COMMON H, A/R/X" D.l /B causes 16 
locations (four locations each for A and B, and eight for H) to be 
reserved in blank cornman in the following order: 

Beginning 
of blank 
cornmon 

r------------------------------------------------------------, 
I H A B I 
I 8 locations 4 locations 4 locations I 
I I 
~------------------------------------------------------------i 
I I 
I continuation of blank common I 
I I L ____________________________________________________________ J 

and also causes six locations (four for X and two for D) to be reserved 
in the labeled cornmon area R in the following order: 

r------------------------------------------------------------, 
Beginning I X D I 
of labeledl I 
cornmon R I , 4 locations 2 locations I 

.------------------------------------------------------------i 
I I 
! continuation of labeled common I 
I I L_______________________________________________________ _ _____ J 

The statement COMMON G,Y,C/R/K,E appearing in -I-ht9 subprogram MAP MY 
would cause thE~ variables G,. ¥ __ -~«t .c---CO share the same storctgc space 
(in blank common)) as H, At ~-B-.. respectively,. It would also cause the 
variables K and l!l -t:.o- snare the same storage space (in labeled common 
area R) as X and D. respectively. The length of a COMMON area may be 
increased by using an EQUIVALENCE statement (see the section 
"EQUIVALENCE Sta1:ements"). 

EQUIVALENCE Sta tE~ment 

r----------------------------------------------------------------------, 
I General Form I 
~----------------------------------------------------------------------i 
I I 
I EQUIVALENCE (~4' 12, £, ..• ), (g" ~, f,···) I 
I I 
I Where: a, b, c .. d. e, f.... are variables that may be subscripted. I 
I The-suEscripts may have two forms: If the variable is singly I 
I subscripted it refers to the position of the variable in the I 
I array (i.e., first variable, 25th variable .. etc.). If the I 
I variable is multi .... subscripted it refers to the position in I 
I the array in the same fashion as the position is referred to I 
I in an arithmetic statement. I 
L ______________________ - ______ - _______ ----------------_________________ J 

The EQUIVALENCE statement provides the option for con1:rolling the 
allocation of data storage wi~hin a single program or subprogram. It is 
analogous to the option of using the COMMON statement to control the 
allocation of da-ta storage among several programs. In particular I when 
the logic of "the p.rograrn permits it, the number of storage locations 
used can be reduced by causing locations to be shared by two or more 
variables of the same or differing types and lengths. The EQUIVALENCE 
statement canno"t be used to obtain mathematical equality of two 
variables. 

Specification Statements 77 



Example 1: 

DIMENSION B(5), C(lO, 10), 0(5, 10" 15) 
EQUIVALENCE (A, B(l), C(5,3», (D(5,10~2)~ E) 

Explanation: 

This EQUIVALENCE statement indicates that the variables A, B (1) " and 
C(5.3) are assigned the same storage locations. In addition, it 
specifies that D(5,10,2) and E are assigned the same storage locations. 
In this case, the subscripted variables refer to the position in an 
array in the same fashion as the position is referred to in an 
arithmetic statement. Note that variables or arrays that are not 
mentioned in an EQUIVALENCE statement are assigned unique storage 
locations. The EQUIVALENCE statement must not contradict itself or any 
previously established equivalences. For example, the further equiva­
lence specification of B(2) with any other element of the array C, other 
than C(6,3), is invalid. 

Example 2: 

DIMENSION B(5), C(10" 10), 0(5, 10, 15) 
F.QUIVALENCE (A, B(l), C(25», (0(100), E) 

Explanation: 

This EQuIVALENCE statenten\;..-~~ic~s that the variable A, the first 
var1.able in the array B, namely B (1) ,~ahd ---Io:.-he 25th variable in the array 
C, namely C(5,3), are to be assigned the SOme G~Oraoe locations. In 
addition, it also specifies that 0(100), i .. e., 0(5:,10,2), and E are to 
share the same storage locations.. Note that the effect of the 
EQUIVALENCE statement in examples 1 and 2 is the same .. 

Variables that are brought into COMMON through EQUIVALENCE statements 
may increase the size of the block, as indicated by the following: 
statements: 

COMMON A, B, C 
DIMENSION 0(3) 
EQUIVALENCE (B,O(l» 

This would cause a common area to be established containing the 
variables A, B, and C. The EQUIVALENCE statement would then cause the 
variable 0(1) to share the same storage location as B, 0(2) to share the 
same storage location as C, and 0(3) would extend the size of the common 
area, in the following manner: 

A 
B, D(l) 
C, 0(2) 

0(3) 

(lowest location of the common area) 

(highest location of the common area) 

Since arrays must be stored in consecutive forward locations, a 
variable may not be made equivalent to another variable of an array in 
such a way as to cause the array to extend before the beginning of the 
common area. For example, the following EQUIVALENCE statem~nt is 
invalid: 

78 

COMMON A, B, C 
DIMENSION 0(3) 
EQUIVALENCE (B, 0(3» 



because it would force D(l) to precede A, as follows: 
D( 1) 

A. 0(2) (lowest location of the common area) 
B'f D (3) 
C (highest location of the common area) 

Two variables in one COMMON block or in two different COMMON blocks 
may not be made equivalent. 

Specification Statements 79 



SUBPROGRAMS 

It is sometimes desirable to wri·te a program which., at various 
points, requires the same computation to be performed with different 
data for each calculation. It would simplify the writing of that 
program if the statements required to perform the desired computation 
could be written only once and then could be referred to freely, with 
each subsequent reference having the same effect as though these 
instructions were written at the point in the program where the 
reference was made. 

For example, to take the square root of a number, a program must be 
written with this object in mind. If a general program were written to 
take the square root of any number, it would be desirable to be able to 
incorporate that program (or subprogram) into other programs where 
square root calculations are required. 

The FORTRAN language provides for ·the above situation through the use 
of subprograms.. There are three classes of subprograms: Statement 
Functions" FUNCTION subprograms, and SUBROUTINE subprograms. In addi­
tion, there is a group of FORTRAN supplied subprograms (see Appendix C). 

The first two classes of subprograms are called functions. Functions 
differ from SUBROUTINE subprograms, in that functions return at least 
one value to the calling program, whereas SUBROUTINE subprograms need 
not return any. 

NAMING SUBPROGRAMS 

A subprogram name consists of from one through six alphameric 
characters, the first of which must be alphabetic (special characters 
may not be used). The type of a subprogram can be indicated in the same 
manner as variables. 

i. ~~ Dec1aratio~_of a.Statement Function: Such declaration may be 
accomplished in one of three ways: by the predefined convention, by 
the IMPLICIT statement, or by the Explicit specification state­
ments. Thus, the same rules for declaring the type of variables 
apply to Statement Functions. 

2. ~ Declaration of FUNCTION Subprogram~: Such declaration may be 
made in the same fashion as Statement Functions. In addition, the 
type (INTEGER, REAL, COMPLEX., and LOGICAL) may appear in the 
FUNCTION definition statement. 

3. ~~ Dec1~atiQ!L_QL_a SUBROUTINE Subprogram: The type of a 
SUBROUTINE subprogram cannot be defined, because the results that 
are returned to the calling program are dependent only on the type 
of the variable names appearing in the argument list of the calling 
program and/or the implicit arguments in COMMON. 

FUNCTIONS 

A function is a statement of the relationship between a number of 
variables. To use a function in FORTRAN, it is necessary to: 

80 



1. Define the function (i. e. " specify what calculations are to be 
performed) .. 

2. Refer to the function by name. where required in the program. 

Function Definition 

There are three steps in the definition of a function in FORTRAN: 

1. The function must be assigned a unique name by which it may be 
called (see the section "Naming Subprograms"). 

2. The arguments: of the function must be stated. 

3.. The procedure for evaluating the function must be stated. 

Items 2 and 3 are discussed in detail in the sections dealing with 
the specific subprogram (e.g., "Statement Functions," "FUNCTION Subpro­
grams," etc.). 

Function Reference 

When the namE~ of a function appears in any FORTRAN arithmetic 
expression. this. effectively~ references the fUnction. Thus. the 
appearance of a function with its arguments in parentheses ca~ses the 
computations to bE~ performed as indicated by the function definition. 
The resulting quantity replaces the function reference in the expression 
and assumes the type of the function. The type and length of the name 
used for the reference must agree with the type and length of the name 
used in the definition. 

STATEMENT FUNCTIONS 

Statement functions are defined by a single arithmetic or logical 
assignment statement within the program in which they appear. For 
example, the statement: 

FUNC{A.B) = 3.*A+B**2.+X+Y+Z 

defines the statement function FUNC" where FUNC is the function name and 
A and B are the function arguments. 

The expression on the right defines those computations which are to 
be performed when the function is used in an arithmetic state~ment. This 
function might be used in a statement as follows: 

C = FUNC{D,E) 

which is equivalent to: 

C 3.*D+E**2.+X+Y+Z 

Note the correspondence between A and B in the function definition 
statement and D and E in the arithmetic statement. The quantities A and 
B enclosed in parentheses following the function n<;l.me are the arguments 
of the function.. They are dummy variables for which the quanti ties D 

Subprograms 81 



and E, respectively are substituted when the function is used in an 
arithmetic statement. 

r-----------------------------------------------------------------------, 
I General Form I 
~----------------------------------------------------------------------~ 

name (2" Q, • ' •• ,,!!) = expression 

Where: name is any subprogram name (see the section "Naming 
Subprograms") .. 

a.b ••••• n are distinct (within the same statement) nonsub­
scripted-variables. 

expression is any arithmetic or logical expression that does 
not contain subscripted variables,. ' Any statement functions 
appearing in this expression must be defined previously. 

A maximum of 15 variables appearing in the expression may be used as 
arguments of the function. 

Note: All Statement Function definitions to be used in a program must 
precede the first executable statement of the program. 

Examples: 

Valid statement function definitions: 

SUM(A.B,C"D) = A+B+C+D 
FUNC(Z) = A+X*Y*Z 
AVG (A, B, C" D) = (A+B+C+D) /4 
ROOT(A,B,C) = SQRT(A**2+B**2+C**2) 
VALID (A"B) = .NOT.A .. OR.B 

Note: The same dummy arguments may be used in more than one Statement 
FUnCtion definition and as variables outside Statement Function defini­
tions. 

82 

Invalid statement function definitions: 

SUBPRG(3.J,K)=3*I+J**3 
SOMEF (A (I) " B) =A( I) /B+3,. 

SUBPROGRAM(A,B)=A**2+B**2 

3FUNC(D)=3.14*E 

ASF(A)=A+B(I) 

(arguments must be variables) 
(arguments must be nonsub­
scripted) 

(function name exceeds limit 
of six characters) 

(function name must begin with 
an alphabetic character) 

(subscripted variable in the 
expression) 

Valid statement function references: 

NET = GROS - SUM (TAX" FICA, HOSP" MISC) 
ANS = FUNC(RESULT) 
GRADE = AVG(LAB" LECTUR, SUM(TEST1, TEST2, TEST3, TEST4), FACTOn) 



Invalid statement function references: 

WRONG = SUM (T.l\.X., FICA) 

MIX = FUNC ( I) 

FUNCTION SUBPROGRAMS 

(number of arguments 
does not agree with 
above definition) 
(mode of argument 
does not agree with 
above definition) 

The FUNCTION subprogram is a FORTRAN subprogram consisting of any 
number of statements,. It is an independently written progra.m that is 
executed wherever its name appears in another program.. 

r----------------------------------------------------------------------, 
I General Form I 
.----------------------------------------------------------------------i 

RETURN 

END 

Where: ~ is subprogram 
Subprograms") ... 

name (see the section "Naming 

!!L, !!2. !!31' , •• '. ',!!n are nonsubscripted variable. array., or dummy 
names of SUBROUTINE or other FUNCTION subprograms. (There 
must be at least one argument. in the argument list,.) 

Since the FUNCTION is a separate subprogram, the variables and 
statement numbers within it do not relate to any other program .. 

The FUNCTION subprogram ;may contain any FORTRAN statement except a 
SUBROUTINE statement, another FUNCTION statement" or BLOCK DATA state­
ment,. 

The arguments of the FUNCTION subprogram (i .• e .• " !!1.'!!2'~3,. •• ,~n) may 
be considered to be dummy variable names. These are replaced at the 
time of execution by theact;ual arguments supplied in 1the function 
reference in the calling program,. The actual arguments may be any of 
the following: any type of constant" any type of subscripted or 
nonsubscripted variable" an arithmetic or logical expression, or the 
name of another subprogram. The actual arguments must correspond in 
number, order., and type to the dummy arguments. The array size must 
also be the same. except when adjustable dimensions ar4: used.. All 
arguments in a subprogram refer to the storage area assigned to the 
arguments by the calling program. 

The relationship between variable names used as arguments in the 
calling program and the dummy variables used as arguments in the 
FUNCTION subprogram is illustrated in the following example: 

Subprograms 83 



Example 1: 

Calling Program 

A SOMEFCB,C) 

Explanation: 

FUNCTION Subprogram 

FUNCTION SOMEFCX,Y} 
SOMEF = X/Y 
RETURN 
END 

In the above example. the value of the variable B of the calling 
program is used in the subprogram as the value of the dummy variable Xi 
the value of C is used in place of the dummy variable Y. Thus if B = 
10,.0 and C = 5.0, then A = B/C, which is equal to 2.0. 

The name of the function ~ust be assigned a value at least once in 
the subprogram as the argument of a CALL statement, as a DO variable, as 
the variable name on the left side of an arithmetic statement, or in an 
input list (READ statement) within the subprogram. 

Example 2: 

Calling Program 

ANS = ROOT1*CALC(X,Y,I) 

Explanation: 

FUNCTION SUbprogram 

FUNCTION CALC (A,B,J) 

I = J*2 

CALC 

RETURN 
END 

A**I/B 

In this example. the values of X, Y. and I are used in the FUNCTION 
subprogram as the values of A, B, and J, respectively. The value of 
CALC is computed, and this value is returned to the calling program, 
where the value of ANS is computed. The variable I in the argument list 
of CALC in the calling program is not the same as the variable I 
appearing in the subprogram. 

When a dummy argument is an array name" an appropriate DIMENSION or 
Explicit specification statement must appear in the FUNCTION subprogram. 
None of the dummy arguments may appear in an EQUIVALENCE statement or a 
COMMON statement. 

Type Specification of the FUNCTION Subprogram 

In addition to the three ways of declaring the type of a FUNCTION 
name (i.e •• predefined convention, IMPLICIT statement, Explicit specifi­
cation statement), there exists the option explicitly specifying the 
type of a FUNCTION name within the FUNCTION statement. 

84 



r----------------------------------------------------------------------, 
I General Form I 
.----------------------------------------------------------------------i 

Where: ~ is INTEGER, REAL, COMPLEX, or LOGICAL. 

~ is the name of the FUNCTION subprogram. 

*~ is optional and represents one of the permissible 
specifications for its associated type. 

I 
I 
I 
I 
I 
I 
I 

length I 
I 
I 

a 1.. a2. a~3' ...... an are nonsubscripted variable" array" or dununy I 
names of SUBROUTINE or other FUNCTION subprograms. (There I 
must be at lea~t one argument in the argument list.) I L ______________________________________________________________________ J 

Example 1: 

REAL FUNCTION SOMEF (A.B) 

SOMEF = A**2 + B**2 

RETURN 
END 

Example 2: 

INTEGER FUNCTION CALC*2 (X~Y~Z) 

CALC = X+Y+Z**2 

RETURN 
END 

Explanation: 

The FUNCTION subprograms SOMEF and CALC in examples 1 and 2 are 
declared as type REAL (length 4) and INTEGER (length 2), respectively .. 

RETURN and END S~atements in a Function Subprogram 

Note that all of the 
contain both an END and 
statement specifies. for 
RETURN statement signifies 
returns any computed value 

preceding examples of FUNCTION subprograms 
at least one RETURN statement,. The END 
the compiler, the end of the subprogram; the 

a logical conclusion of the computation and 
and control to the calling program. 

There may. in fact, be more than one RETURN statement in a FORTRAN 
subprogram. 

Subprograms 85 



Example: 

FUNCTION DAV (D.E,F) 
IF (D-E) 10, 20~ 30 

10 A = D+2.0*E 

5 A = F+2.0*E 

20 DAV = A+B**2 

RETURN 
30 DAV = B**2 

RETURN 
END 

SUBROUTINE SUBPROGRAMS 

The SUBROUTINE subprogram is similar to the FUNCTION subprogram in 
many respects: the rules for naming FUNCTION and SUBROUTINE subprograms 
are the same, they both require an END statement, and they both contain 
the same sort of dummy arguments. Like the FUNCTION subprogram., the 
SUBROUTINE subprogram is a set of commonly used computations, but it 
need not return any results to the calling program, as does the FUNCTION 
subprogram. 

The SUBROUTINE subprogram is called by the CALL statement, which 
consists of the word CALL followed by the name of the subprogram and its 
parenthesized arguments. 

r----------------------------------------------------------------------, 
I General Form I 
~-------------------------------------.---------------------------------~ 

RETURN 

END 

where: name is the subprogram name (see the section "Naming 
Subprograms" ) • 

a1.,f,a2,a3# •• • ,an are arguments. (There need not be 
any~) ~Each argument used must be a nonsubscripted variable 
or array name, the dummy name of another SUBROUTINE or 
FUNCTION subprogram, or of the form * where the character 
"*" denotes a return point specified by a statement number 
in the calling program. ______________________________________________________________________ J 

Since the SUBROUTINE is a separate subprogram, the variables and 
statement numbers within it do not relate to any other program. 

86 



The SUBROUTINE subprogram may contain any FORTRAN statememt except a 
FUNCTION statemE~nt.. another SUBROUTINE statement, or BLOCK DATA state­
ment. 

The SUBROUTINE: subprogram may use one or more of its clrguments to 
return values to the calling program. Any arguments so used must appear 
on. the left sicle of a.n arithmetic statement or in an inpu1: list within 
the subprogram, as arguments of a CALL statement, or as DO variables. 
The SUBROUTINE name must not appear in any other sta1:ement in the 
SUBROUTINE subprogram. 

The arguments (a1, a 2 .. a3' ..... an) may be considered dummy variable 
names that are r1eplaced at-the time of execution by the actual arguments 
supplied in the CALL statement. The actual arguments must correspond in 
number.. order. and type to the dununy arguments. The ar:ray size must 
also be the same except when adjustable dimensions are used. Dummy 
arguments may not appear in an EQUIVALENCE or DATA statement within the 
subprogram nor may they be given initial data values in an Explicit 
specification statement. 

Example: The relationship between variable names used as arguments in 
the calling program and the dummy variable used as arguments in the 
SUBROUTINE subprogram is illustrated in the following ,example.. The 
object of the subprogram is to "copy" one array directly into another. 

Main Program 

DIMENSION X(100),Y{100) 

CALL COPY (X,Y,K) 

CALL Statement 

SUBROUTINE SUbprogram 

SUBROUTINE COpy (A" B, N) 
DIMENSION A (100),B(100) 
DO 10 I = 1.. N 

10 B(I) = A (I) 
RETURN 
END 

The CALL stat~ement is used only to call a subroutine subprogram .. 

r----------------------------------------------------------------------, 
I General Form I 
~------------------------------------------------------------~---------~ 
I I 
I CALL ~ (~1"~2.~3,. ' ••• /,.e.n) I 
I I 
I Where: ~ is the name of a subroutine subprogram. I 
I I 
I aL'a2'a 3•••• .. an are the actual arguments that are being I 
I supplied to -the subroutine subprogram. Each roa,y be of the I 
I form ~~n where!! is a statement number (see "RE'I'URN State- I 
I ments in a SUBROUTINE Subprogram"). I L ______________________________________________________________________ J 

Examples: 

CALL OUT 
CALL MATMPY (X, 5, 40, y" 7,,2) 
CALL QDRTIC (X .. Y.Z.ROOT1.ROOT2) 
CALL SUB1 (X+Y*5,'ABDF',SINE) 

Subprograms 87 



The CALL statement transfers control to the subroutine subprogram and 
replaces the dummy variables with the value of the actual arguments that 
appear in the CALL statement. The arguments in a CALL statement may be 
any of the following: any type of constant" any type of subscripted or 
nonsubscripted variable, an arithmetic expression" the name of a 
subprograffi" or a statement number (see "RETURN Statements in a 
SUBROUTINE Subprogram"). 

The arguments in a CALL statement must agree in number" order" and 
type with the corresponding arguments in the subroutine sUbprogram. The 
array sizes must also be the same in the subroutine and the calling 
programs" except when adjustable dimensions are used (see "Adjustable 
Dimensions") '. If an actual argument corresponds to·a dummy argument 
that is defined or redefined in the referenced subprogram, the actual 
argument must be a variable name" subscripted variable name, or array 
name,. All arguments in a subprogram refer to the storage area assigned 
to the arguments by the calling program. 

RETURN Statement in a SUBROUTINE SUbprogram 

r----------------------------------------------------------------------, 
I General Form I 
~----------------------------------------------------------------------i 
I I 
I RETURN I 
I I 
I RETURN i I 
I I 
I Where: i is an integer constant or variable of length 4 whose value, I 
I say n~ denotes the nth statement number in the argument list I 
I of a SUBROUTINE statement. I L ______________________________________________________________________ J 

The normal sequence of execution following the RETURN statement of a 
SUBROUTINE subprogram is to the next statement following the CALL in the 
calling program. It is also possible to return to any numbered 
statement in the calling program by using a return of the type where i 
is an integer constant or variable,. Returns of the type RETURN may be 
made in either a SUBROUTINE or FUNCTION subprogram (see, "RETURN and END 
Statements in a FUNCTION Subprogram"). Returns of the type RETURN! may 
only be made in a SUBROUTINE subprogram. In a main program" a RETURN 
statement performs the same function as a STOP statement. 

88 



Example: 

Calling Program 

10 CALL SUB (A. B, C" &30" &40) 
20 Y = A + B 

30 Y = A + C 

40 Y = B + C 

END 

Explanation: 

100 
200 
300 
400 

SUbprogram 

SUBROUTINE SUB (X, Y" Z, *" *) 

IF (R) 200~300,400 
RETURN 
RETURN 1 
RETURN 2 
END 

In the preceding example, execution of statement 10 in the calling 
program causes entry into subprogram SUB. When statement 100 is 
executed, the re1turn to the c~lling program will be to statE~ment 20, 30" 
or 40~ if R is less than, equal to, or greater than zero, respectively. 

A CALL statement that uses a RETURN i form may be best understood by 
comparing it to a CALL and computed GO TO' statement in sequence. For 
example, the CAL:L statement: 

CALL SUB (P,&20"Q,&35,R,&22) 

is equivalent to: 

CALL SUB (P.Q~R"I) 
GO TO (20,35,22),I 

where the index I is assigned a value of 1" 2, or 3 :i.n the called 
sUbprogram. 

Multiple ENTRY into a Subprogram 

The standard (normal) entry into a SUBROUTINE subprogram from the 
calling program is made by a CALL statement that references the 
subprogram name. The standard entry into a FUNCTION subprogram is made 
by a function reference in an arithmetic expression. Entry is made at 
the first executable statement following the SUBROUTINE or FUNCTION 
statement. 

It is also possible to enter a subprogram (either SUBROUTINE or 
FUNCTION) by a CALL statement or a function reference that references an 
ENTRY statement; in the sUbprogram. Entry is made at the first 
executable statement following the ENTRY statement. 

Subprograms 89 



r----------------------------------------------------------------------, 
I General Form I 
.----------------------------------------------------------------------~ 
I I 
I ENTRY ~ (~1'~2'~3' ••• '~n) I 
I I 
I Where: name is the name of an entry point (see "Naming I 
I Subprograms"). I' 
I I 
I a1'a2'a3'···.an are the dummy arguments corresponding to an I 
I actual-argument in a CALL statement or in a function I 
I reference. I L ____________ ~ _________________________________________________________ J 

ENTRY statements do not affect control sequencing during normal 
execution of a sUbprogram. The order, type, and number of arguments 
need not agree between the SUBROUTINE or FUNCTION statement and the 
ENTRY statements, nor do the ENTRY statements have to agree among 
themselves in these respects. Each CALL or function reference~ however, 
must agree in order, type, and number with the SUBROUTINE" FUNCTION, or 
ENTRY statement that it references. Entry may not be made into the 
range of a DO; further, a subprogram may not reference itself directly 
or through any of its entry points. This statement is regarded as 
nonexecutable within its subprogram. If it appears in a function 
subprogram the name given in the FUNCTION statement is still used to 
return the value of the function to the point of reference, rather than 
the name of the ENTRY statement. 

Example 1: 

calling Program SUbprogram 

SUBROUTINE SUBl (U,V,W,X,Y,Z) 

1 CALL SUB1 (A,B,C,D,E,F) 
U = V 

2 CALL SUB2 (G,H,P) 
ENTRY SUB2 (T, U, V) 

3 CALL SUB3 

ENTRY SUB3 

END 

Explanation: 

In the preceding example, the execution of statement 1 causes entry 
into SUB1, starting with the first executable statement of the 
subroutine. Execution of statements 2 and 3 also causes entry into the 
called program, starting with the first executable statement following 
the ENTRY SUB2(T.U,V) and ENTRY SUB3 statements, respectively. 

Entry into a subprogram initializes all references in the whole 
subprogram to items in the argument list. Return from a subprogram is 
made by way of the entry point referenced. ENTRY statements may only 
appear in FUNCTION or SUBROUTINE subprograms. The dummy arguments in a 
subprogram may appear in any statement if they first appear as dummy 

90 



arguments in a FUNCTION, SUBROUTINE, or ENTRY statement. ThE~ following 
is a valid exampIE~: 

SUBROUTINE SUB <X.Y,Z,I) 

ENTRY SUBl (A" B) 

C = A+B 

Example 2: 

Calling Program 

CALL SUBl (A,B,C,D,E,F) 

CALL SUB2 <G, &10., &20) 

CALL SUB3(&10.&20) 
5 Y =A+B 

10 Y = C+D 
20 Y E+F 

Explanation: 

50 
100 
200 
300 

Subprogram 

SUBROUTINE SUBl <U,V.W,X,Y,Z) 
RETURN 
ENTRY SUB2 <T, *.,*) 
U = V* W+T 
ENTRY SUB3 (*,*) 
X = Y**Z 
IF <U-X) 100, 200, 300 
RETURN 1 
RETURN 2 
RETURN 
END 

In the example above, a call to SUBl merely performs initialization. 
Subsequent calls to SUB2 and SUB3 result in execution of different 
sections of the subroutine SUB1. Then, depending upon the result of the 
arithmetic IF a"t statement 50, return is made to the calling program at 
statement 10, 20, or 5. 

Addi tiona 1 Rules f or U~:>ing ENTRY 

1. A CALL may only change the value of explicit arguments (or implicit 
arguments in COMMON). It cannot affect the value of those which 
are initialized by some previous CALL. 

2. If a name is identified as a durruny argument only by its appearance 
in a given ENTRY statement, no use of that dummy argument may 
appear in statements preceding (physically) the ENTRY statement. 

Subprograms 91 



3. The appearance of an ENTRY statement does not alter the rules 
regarding the placement of Statement Functions in subprograms. 

The EXTERNAL Statement 

r----------------------------------------------------------------------, 
I General Form I 
~----------------------------------------------------------------------i 
I I 
I EXTERNAL ~J~'£I... I 
I I 
I Where: ~,Q,,£,...... are names of subprograms that are used as I 
I arguments in other subprograms. I L _____________________________________ . _________________________________ J 

The name of any subprogram that is used as an argument in another 
subprogram must appear in an EXTERNAL statement. For example, assume 
that SUB and MULT are subprogram names in the following statements: 

Example 1: 

Calling Program 

EXTERNAL MULT 

CALL SUB (A, MULT., C) 

Explanation: 

4 

6 

SUbprograJl! 

SUBROUTINE SUB ex., Y., z) 
IF ex) 4,6.,6 
D = Y eX,Z**2) 

RETURN 
END 

In this example, the subprogram name MULT is used as an argument in 
the subprogram SUR. The subprogram name MULT is passed to the dummy 
variable Y. as are the variables A and C passed to the dummy variables X 
and Z, respectively. The subprogram MULT will be called and executed 
only if the value of A is negative. 

Example 2: 

CALL SUB (A,B,MULT (C,D),37) 

Explanation: 

In this example, an EXTERNAL statement is not required because the 
subprogram named MULT is not an argument; it is executed first and the 
result becomes the argument. 

92' 



FORTRAN SUPPLIED SUBPROGRAMS 

FORTRAN provides the programmer with 
function and subroutine subprograms. 
subprograms provided: 

a library 
There are 

of commonly used 
three classes of 

1. Mathematical function subprograms--defined as FUNCTION SUbprograms. 

2. Subroutines which test the status of pseudo machine indicators 
(sense light;s)--defined as SUBROUTINE subprograms. 

3. The three subprograms EXIT" DUMP, and PDUMP--also defined as 
SUBROUTINE subprog.rams. 

The EXIT subroutine terminates program execution; DUMP dumps storage 
and terminates program execution; PDUMP dumps storage and continues 
program execution. 

variables used as arguments of mathematical functions must be 
declared (i.e.. by the Explicit specification statements. the IMPLICIT 
statement. or the predefined convention), in accordance with the 
function in which. they appear .• 

The entire library.. along with appropriate definitions of each 
subprogram, is given in Appendix C. 

BLOCK DATA SUBPROGRAM 

In order to enter da'ta into a COMMON block, a separate subprogram 
must be written. This separate subprogram contains only the DATA, 
COMMOR, DIMENSION, EQUIVALENCE., and Type statements associated with the 
data being defined. Data may be entered into labeled (named)~ but not 
unlabeled,. COMMON by the BLOCK DATA subprogram.. 

r-----------------------------------------------~----------------------, 
I General Form I 
~-----------------------------------------------------------·-----------i 
I BLOCK DATA I 
I I 
I I 
I I 
I END I l _____________________________________ ~ _____________________ . ___________ J 

1.. The BLOCK DATA SUbprogram may not contain any executable state­
ments. 

2. The first statement of this subprogram must be th4= BLOCK DATA 
statement. 

3,. All elements of a COMMON block must be listed in the COMMON 
statement. even though they do not all appear in the DATA 
statement; f or example, the variable A in the COMMON s1:atement in 
the following example does not appear in the DATA statement: 

BLOCK DA'TA 
COMMON/E.LN/C" A" B/RMG/Z, Y 
REAL B ( 4 ) /1 • 0, 1 .• 2'1 2 * 1 • 3/, Z * 8 ( 3 ) /3* 7 • 64980825 DO / 
COMPLEX C/ (2 .• 4" 3. 769) / 
END 

Subprograms 93 



4. Data may be entered into more than one COMMON block in a single 
BLOCK DATA subprogram.. 

5. No element may have more than one initial value assigned in the 
same program. 

94 



APPENDIX A: SOURCE PROGRA1>1 CHARACTERS 

r------------T-----------------T-------------T-------------------------, 
I Alphabetic I EBCDIC or BCDIC I Numeric I EBCDIC or BCDIC I 
I Characters i Card Punches I Characters I Card Punches I 

.------------+-----------------+-------------+-------------------------i 
A I 12-1 0 0 
B I 12-2 1 1 
C I 12-3 2 2 
D I 12-4 3 3 
E I 12-5 4 4 
F I 12-6 5 5 
G I 12-7 6 6 
H ,12-8 7 7 
I ,12-9 8 8 
J I 11-1 9 9 
K 11-2 
L 11-3 
M 11-4 ~-------------+------------T------------i 
N 11-5 I Special I EBCDIC , BCDIC , 
o 11-6 I Characters ICard Punches I Card Punches, 
P 11-7 ~-------------+------------+------------i 
Q 11-8, + I 12-6-8 I 12 I 
R 11-9 I I 11 I 11 , 
S 0-2 I / I 0-1 I 0-1 I 
T 0-3 I = I 6-8 I 3-8 , 
U 0-4, I 12-3-8 I 12-3-8 , 
V 0-5 I) ,11-5-8 I 12-4-8 , 
W 0-6 I * ,11-4-8, 11-4-8 , 
X 0-7 I. (comma) I 0-3-8 , 0-3-8 I 
Y 0-8, ( I 12-5-8 I 0-4-8 I 
Z 0-9 I • (apostrophe) ,5-8 I 4-8 I 

I $ 11-3-8 I blank I (no punch) I (no punch) I 

.------------~-----------------~-------------~------------~------------i I Source programs are coded in either BCDIC or EBCDIC charact:er codes. I 
I Mixing of the t\~O" however" is not allowed,. , L ______________________________________________________________________ J 

The 48 characters listed above comprise the set of characters 
acceptable by FORTRAN.. In previously implemented FORTRAN languages, 
there existed dual characters in the sense that two graphics 
(characters) were associated with a single card code. The most commonly 
used set of dual characters was the following: 

+ & 
# 

( 
) % 
• (apos. JI @ 

However, in IBM System/360 each of these duals now has sE~parate card 
codes. Thus, when specifying, for instance, a + character. care should 
be taken that a. 12-6-8 punch is used instead of a 12 punch which now 
represents an &. The card codes for the remaining duals is as follows: 
#(8-3), (this graphic is now represented as a <)(12-4-8), %(0-4-8)~ 
and @(8-4) .. 

Appendix A: Source Program Characters 95 



APPENDIX B: OTHER FORTRAN FEATURES ACCEPTED BY FORTRAN IV 

This section discusses those features of previously implemented 
FORTRAN IV languages that are incorporated into the IBM Time Sharing 
System/360 FORTRAN IV language. The inclusion of these additional 
language facilities allows existing FORTRAN programs to be re-compiled 
for use on the IBM System/360 with little or no re-programming. 

READ Statement 

r----------------------------------------------------------------------, 
I General Form I 
~----------------------------------------~-----------------------------~ 
I I 
I READ !2.list I 
I I 
I Where: Q, is the statement number or array name of the FORMAT I 
I statement describing the data. I 
I I 
I list is a series of variable or array names" separated by I 
I commas" which may be indexed and incremented.. They specify I 
I the number of items to be read and the locations in storage I 
I into which the data is placed. I L ______________________________________________________________________ J 

This statement causes data to be read from the data set associated 
with the system input. 

PUNCH statement 

r----------------------------------------------------------------------, 
I General Form , I 
.----------------------------------------------------------------------i 
I I 
I PUNCH Q, list I 
I I 
I Where: b is the statement number or array name of the FORMAT I 
I statement describing the data. I 
I I 
I list is a series of variable or array names. separated by I 
I commas., which may be indexed and incremented,. They specify I 
I the number of items to be w~itten and the locations in I 
I storage from which the data is taken. I L ______________________________________________________________________ J 

The PUNCH statement causes data to be written in the data set 
associated with the system output. 

96 



PRINT Statement 

r-------------------------------------~--------------------------------, 
I General Form I 
~----------------------------------------------------------------------i 
I I 
I PRINT Qw list I 
I I 
I Where: b is thE3 statement number or array name of the FORMAT I 
I statement. describing the data", I 
I I 
I list is a series of variable or array names, separated by I 
I commas. which may be indexed and incremented. They specify I 
I the number of items to be written and the IOGations in I 
I storage from which the data is taken. I L _____________________________________ ~ ________________________________ J 

The PRINT statement causes data to be written in the data set 
associated with the system output. 

DATA Initialization statement 

r----------------------------------------------------------------------, 
I General Form I 
.-------------------------------------~--------------------------------i 

Where: v:1.,. .••• ,. \r are variables" subscripted variables (in which 
case thE; subscripts must be integer constants) " or array 
names. 

d:1."" •• , Cl are values representing integer .. real., complex, 
logical;- or literal data constants. 

1:1.," ' ..... ~~ represent unsigned integer constants indicating 
the number of consecutive variables that are to be~ assigned 
the value of ~:1.' ••• Y~ • 

A data initialization statement is used to define initial values of 
variables and arrays.. There must be a one-for-one correspondence 
between these variables (i .. e., V:1.Y ...... v ) and the data constants (i.e., 
g:1., •••• g ). --

Example 1: 

DIMENSION D(S,10) 
DATA A. B, C/5,.O,6.1,,7.3/,D/2S*1,.01 

Explanation: 

The DATA statement indicates that the variables A/, B" and C are to be 
initialized to the! values S.O, 6,1, and 7 .• 3" respectively.. In addition, 
the statement specifies that the first 2S variables in the array Dare 
to be initialized to the value 1.0. 

Example 2: 

DIMENSION A(S)" B(3,3), L(4) 
DATA A/S*L.O/. B/9*2 .• 0/, L/4*.TRUE .• /, C/'FOUR'/ 

Appendix B: Other FORTRAN Features Accepted by FORTRAN IV 97 



Explanation: 

The DATA statement specifies that all the variables in the arrays A 
and B are to be initialized to the values 1.0 and 2.0~ respectively. 
All the logical variables in the array L are initialized to the value 
.TRUE.. The letters T and F may be used as an abbreviation for .TRUE. 
and .FALSE.~ respectively. In addition. the variable C is initialized 
with the literal data constant FOUR. 

An initially defined variable. or variable of an array., may not be in 
blank common; however., in a labeled common block, they may be initially 
defined only in a block data subprogram. <See the section 
"SUBPROGRAMS.") 

DOUBLE PRECISION Statement 

r-----------------------------------------------------------------------, 
I General Form I 
~----------------------------------------------------------------------~ 
I I 
I DOUBLE PRECISION ~,~.£.... I 
I I 
I Where: ~,~w£, •• ,. are variable names that may be dimensioned in the I 
I statement, or function names. I L ______________________________________________________________________ J 

The DOUBLE PRECISION statement explicitly specifies ,that the vari­
ables ~.~,£.... are of type double precision. This statement overrides 
any specification of a variable made by either the predefined convention 
or the IMPLICIT statement. This specification is identical to that of 
type REAL*8 .. 

In addition" FUNCTION subprograms may be typed double precision., as 
follows: 

DOUBLE PRECISION FUNCTION name (~:L" ~2" ~3' .. ' • • , ~n) 

Arguments of a FUNCTION or SUBROUTINE Program Enclosed by Slashes 

Arguments in a FUNCTION or SUBROUTINE subprogram may be enclosed in 
slashes within the commas. This form is equivalent to the normal format 
without the slashes. 

98 



APPENDIX C: FORTRAN SUPP]~IED SUBPROGRAMS 

~~~B~~TICAL FUNCTION SUBPROGRAMS 

Table 4. Mathematical Function Subprograms

r-----------------T------T-------------------~----------~----T------T------------T------------,
I I I I In-Line (I) I No. of I TypE of I I
I Function I Name IDefinition 10ut-of-Line (0)1 Arg. I Arguments I Function I

~-----------------+------+-------------------+---------------+------+------------+------------i
I Exponential I EXP I earg I 0 I 1 I Real *4 I Real *4 I
I IDEXP learg I 0 1 1 IReal *8 IReal *8 I
I ICEXP learg 1 0 I 1 IComplex *8 IComplex *8 I
I I CDEXP I earg 1 0 I 1 1 Complex *16 I Complex *16 I
~-----------------+------+-------------------+---------------+------+------------+------------i
INatural LogarithmlALOG lIn (Arg) I 0 1 1 IReal *4 IReal *4 I
I IDLOG Iln (Arg) I 0 I 1 IReal *8 IReal *8 I
I I CLOG Iln (Arg) I 0 I 1 I Complex *8 I Complex *8 I
I I CDLOG Iln (AJeg> I 0 I 1 I Complex *16 I Complex *16 I
~-----------------+------+--------------------+---------------+------+------------+------------i
ICommon Logarithm IALOG10110g1 (Arg) I 0 I 1 IReal *4 IReal *4 I
I 1 DLOG10 Ilog1 (Arg) I 0 I 1 I Real *8 I Real *8 I
~-----------------+------+--------------------+---------------+------+------------+------------i
IArcsine IARCSINlarcsin (Arg) I 0 I 1 IReal *4 IReal *4 I
I IDARSINI I I IReal *8 IReal *8 I
~-----------------+------+------.-------------+---------------+------+------------+------------i
I Arccosine I ARCOS 1 arcos (Arg) I 0 I 1 I Real *4 I Real *4 I
I IDARCOSI I I IReal *8 IReal *8 I
~-----------------+------+------.-------------+---------------+------+------------+------------i
I Arctangent I ATAN I arctan (Arg) I 0 1 1 I Real *4 1 Real *4 I
I IATAN2 larctan (Arg1,Arg2) I 0 1 2 IReal *4 IReal *4 I
I I DATAN I arctan (Arg) I 0 I 1 I Real *8 I Real *8 I
1 IDATAN21 a rctan (Arg1/Arg2) 1 0 1 2 IReal *8 IReal *8 I
~-----------------+------+------"-------------+---------------+------+------------+------------i
I Trigonometric ISIN Isin(Arg) I 0 I 1 IReal *4 IReal *4 1
I Sine I DSIN 1 sin(AI:g) I 0 I 1 I Real *8 1 Real *8 I
I (Argument in ICSIN Isin(AI:g) 1 0 1 1 IComplex *8 IComplex *8 1
I radi.ans) I CDSIN I sin (AI:g) I 0 1 1 I Complex *16 I Complex *16 I

~-----------------+------+-------------------+---------------+------+------------+------------i
I Trigonometric ICOS Icos(Arg) I 0 I 1 IReal *4 IReal *4 I
1 Cosine I DCOS I cos (AI"g) 1 0 I 1 IReal *8 IReal *8 I
1 (Argument in ICCOS I cos (A.I"g) I 0 I 1 IComplex *8 IComplex *8 I
I radians) ICDCOS Icos(A.I"g) I 0 I 1 IComplex *16 IComplex *16 I
~-----------------+------+-------------------+---------------+------+------------+------------i
I Trigonometric I TAN I tan (A,rg) I 0 I 1 I Real *4 I Rea.l *4 I
I Tangent I DTAN I I 1 1 Real *8 I Real *8 I
~-----------------+-~----+-------------------+---------------+------+------------+--·----------i
I Trigonometric 1 COTAN I cotan (Arg) I 0 1 1 I Real *4 I Real *4 1
1 Cotangent 1 DCOTANI I 1 IReal *8 IReal *8 I
~-----------------+------+-------------------+---------------+------+------------+-------------i
ISquare Root ISQRT I (Arg) 1 0 1 1 IReal *4 IReal *4 1
I IDSQRT I (Arg) I 0 I 1 IReal *8 IReal *8 1
I I CSQRT I (Arg) 1 0 I 1 I Complex *8 I Complex *8 I
I I CDSQRT I (Arg) I 0 I 1 I Complex *16 I Complex *16 I
~-----------------+------+-------------------+---------------+------+------------+-------------i
I Hyperbolic I SINH I sinh (Arg) I 0 I 1 1 Real *4 I Real *4 I
I Sine I DSINH 1 I I I Real *8 I Real *8 I L _________________ ~ ______ ~ ___________________ ~ _______________ ~ ______ i ____________ ~ _____________ J

(Continued)

Appendix C: FORTRAN Supplied Subprograms 99

Table 4. Mathematical Function Subprograms <Continued)
r-----------------T------T-------------------T---------------T------T------------T------------,
I I I I In-Line (I) I No. of I Type of I I
I Function I Name I Definition lout-of-Line (0)1 Arg. I Arguments I Function I
~-----------------+------+-------------------+---------------+------+------------+------------~
I Hyperbolic ICOSH Icosh (Arg) I 0 I 1 IReal *4 IReal *4 I
I Cosine IDCOSH I I I IReal *8 IReal *8 I
~-----------------+------+-------------------+---------------+------+------------+------------~
I Hyperbolic I TANH Itanh(Arg) I 0 I 1 IReal *4 IReal *4 I
I Tangent 'DTANH Itanh (Arg) I 0 I 1 IReal *8 IReal *8 I
~-----------------+------+-------------------+---------------+------+------------+------------~
I Remaindering I MOD I Arg1 (mod Arg2) I I I 2 IInteger *4 IInteger *4 I
I IAMOD I I I I 2 IReal *4 IReal *4 I
I IDMOD I I I I 2 IReal *8 IReal *8 I
~-----------------+------+-------------------+---------------+------+------------+------------~
IAbsolute value I lABS IIArgl I I I 1 IInteger *4 IInteger *4 I
I lABS I I I I 1 IReal *4 IReal *4 I
I 'DABS , I I I 1 I Real *8 I Real *8 I
~-----------------+------+-------------------+---------------+------+------------+------------~
I Modulus 'CABS II a 2+b2 I for a+bi I 0 I 1 IComplex *8 IReal *4 I
I ICDABS I I 0 I 1 IComplex *16 I Real *8 I
~-----------------+------+-------------------+---------------+------+------------+------------~
I Truncation lINT ISign of Arg times I I I 1 IReal *4 IInteger *4 I
I I Ilargest integer I I I I I
I I 1<IArgl I I I I I
I IAINT I I I I 1 IReal *4 IReal *4 I
I IIDINT I I I I 1 I Real *8 I Integer *4 I
~-----------------+------+-------------------+---------------+------+------------+------------~
ILargest value 'AMAXO IMax (Arg1,Arg21 ••• >I I I 22 IInteger *4 IReal *4 I
I I AMAXl I I I I 22 IReal *4 I Real *4 I
I I MAXO I I I I 22 I Integer *4 I Integer *4 I
I I MAXl I I I I 22 I Real *4 I Integer *4 I
I IDMAXl I I I I 22 IReal *8 IReal *8 I
~-----------------+------+-------------------+---------------+------+------------+------------~
ISmallest value IAMINO IMin (Arg1,Arg21. 4 .>I I I 22 IInteger *4 IReal *4 I
I I AMINl I I I I 22 I Real *4 I Real *4 I
I I MINO I I I I 22 I Integer *4 I Integer *4 I
I IMINl I I I I 22 IReal *4 I Integer *4 I
I IDMINl I I I I 22 IReal *8 IReal *8 I
~-----------------+------+-------------------+---------------+------+-------------+------------i
I Float IFLOAT IConvert from I I I 1 IInteger *4 IReal *4 I
I IDFLOATlinteger to real I I I 1 IInteger *4 IReal *8 I
~-----------------+------+-------------------+---------------+------+------------+------------~
IFix IIFIX IConvert from , I I 1 IReal *4 IInteger *4 I
I IHFIX Ireal to integer I I I 1 IReal *4 IInteger *2 I
~-----------------+------+-------------------+---------------+------+------------+------------~
ITransfer of sign ISIGN ISign of Arg2 times I I I 2 IReal *4 IReal *4 I
, I I I Arg1 I I I I I I
I IISIGN I I I I 2 I Integer *4 I Integer *4 I
I IDSIGN I I I I 2 IReal *8 IReal *8 I
~-----------------+------+-------------------+---------------+------+------------+------------~
I Positive IDIM I Arg1-Min (Arg1,Arg2> I I I 2 IReal *4 IReal *4 I
I difference IIDIM I I I IInteger *4 IInteger *4 I
~-----------------+------+-------------------+---------------+------+------------+------------i
10btaining most ISNGL I I I I 1 IReal *8 IReal *4 I
Isignificant part, I I I I I I
I of a Real * 8 I I I I I I I
I argument I I I I I I I
~-----------------+------+-------------------+---------------+------+-----------.-+------------~
10btain real I REAL I I I I 1 IComplex *8 IReal *4 I
I part of complex I I , I I I I
I argument I I I I I I I L _________________ ~ ______ ~ ___________________ ~ _______________ ~ ______ ~ ____________ ~ ____________ J

(Continued)

100

Table 4. Mathematical Functi.on Subprograms (Continued)
r-----------------T------T-------------------T--------~------T------T------------T------------,
I I I I In-Line (1) INo. ofl Type of I I
I Function I Name I Definition 10ut-of-Line (0)1 Arg. I Arguments I Function I
~-----------------+------+---.-------~--------+---------------+------+------------t------------~
10btain imaginary IAIMAG I I I I 1 IComplex *8 IReal *4 I
Ipart of complex \ I I I I I I
I argument \ I I I I I I
~-----------------+------+---.----------------+---------------+------+------------+------------~
IExpress a Real IDBLE I I I I 1 \Real *4 IReal *8 I
1*4 argument in I I I I I I I
I Real *8 form \ I I I I I I
~-----------------+------+---.----------------+---------------+------+------------+------------~
IExpress two real ICMPLX IC=1\rg1,+iArg2 I I I 2 IReal *4 IComplex *8 I
larguments in com-IDCMPLXI I I I 2 IReal *8 \Complex *16 I
Iplex form I I I I I I I
~-----------------+------+--------------------+---------------+------+------------+------------~
10btain conjugate ICONJG IC=X-iY I I I 1 IComplex *8 IComplex *8 I
10£ a complex IDCONJGIFor Arg=X+iY I I I 1 IComplex *16 IComplex *16 I
I argument I I I I I I I L _________________ L ______ L ___________ -------_L _______________ L ______ L ____________ L ____________ J

Appendix C: FORTRAN Supplied Subprograms 101

MACHINE INDICATOR TESTS

In the following list of pseudo machine indicator test subroutines,
assume that i is an integer expression and that j is an integer
variable. These subroutines are referred to by CALL statements.

SLITE (i): If i = 0, all sense lights will be turned off. If i = 1~ 2,
3~ or 4~ the corresponding sense light will be turned on.

SLITET (i,j): Sense light i (equal to 1, 2, 3, or 4) will be tested and
turned off. The variable j will be set to 1 if i was on, or j will be
set to 2 if i was off.

Example:

Assume that it is desired to continue with the program if sense light
i is on and to write results if sense light i is off. This can be done
by using the Logical IF statement or a computed GO TO statement:

CALL SLITET (3.KEN)
GO TO (6. 17) " KEN

17 WRITE (3, 26) (ANS (K), K=1, 10)
6 CONTINUE

Explanation:

When the statement CALL SLITET(3.KEN) is executed, the variable KEN
is assigned the value 1 or 2 depending on whether sense light 3 is on or
off, respectively (and the sense light is turned off). If KEN is 1~
statement 6 is executed next; if KEN is 2, statement 17 is executed.

OVERFL (j): j is set to 1 if a floating-point overflow condition
exists, i .. e.. if the result of an arithmetic operation is greater than
16 63 ; j is set to 2 if no overflow condition exists; j is set to 3 if
floating-point underflow condition exists, i.e., if the result of an
arithmetic operation is less than 16- 63 • The machine is left in a no
overflow condition.

DVCHK (j): If the divide check indicator is on. J 1S set to 1 and the
divide check indicator is turned off; if the divide check indicator is
off, j is set to 2.

THE EXIT. DUMP, AND PDU~~ SUBPROGRAMS

EXIT SUbprogram

A CALL to the EXIT subprogram terminates the execution of the object
program.

102

DUMP Subprogram

A CALL to the DUMP subprogram by the statement:

causes the indicated limits of storage to be dumped and execution to be
terminated.

1. A and B are variable data names that indicate the limi·t:s of storage
to be dumped; either A or B may represent upper or lowE~r limits.

2. Fn is an in1teger indicating the dump format desired:

Fn == 0
1
2
3
4
5
6
7
8
9

Hexadecimal
Logical *1
Logical *4
Integer *2
Integer *4
Real *4
Real *8
Complex *8
Complex*16
Literal

3. If the argument Fn is omitted., it is assumed to be equal to 0" and
the dump will be bexadecimal ..

4. The arguments A and B should be in the same program <main program
or subprogram) or same common block.

PDUMP SUbprogram

A CALL to the PDUMP subprogram by the statement:

causes the indicated limits of storage to be dumped and ex'ecution to be
continued. The PDUMP ~rguments are the same as the DUMP ar9uments.

Appendix C: FORTRAN Supplied Subprograms 103

APPENDIX D: SAMPLE PROGRAMS

SAMPLE PROGRAM 1

Sample program 1 (Figure 2) is designed to find all of the prime
numbers between 1 and 1000. A prime number is an integer that cannot be
evenly divided by any integer except itself and 1. Thus i. 2. 3, 5, 7,
11., .• are prime numbers. The number 9, for example, is not a prime
number. since it can evenly be divided by 3.

IB,.,

STAT£MENT Z
NUMBfR 8

.-- _ .. -

Figure 2. Sample Program 1

104

FORTRAN Coding Form

FORTRAN STATEMENT

I GWHOC

I PUNCH

I I I I I I I leAG' 1 m 1
I I I I I I I ICA'."'C 00 NUM""

IDfNTIFfCATlOI'I
SEQUfNCE

---- -- --.. - --1-------+----1------1--------

-----1-------1-----\---- ----.------
-4-----~----~---------

- - - ---f---------- ---4----+.--.--~-f_____.--___+_---.___1

SAMPLE PRCGRAM 2

The n points (xi' Yi) are to be used to fit an m degree polynomial by
the least-squares method.

In order to ob1tain the coeff icients a o , a 1 , ••• , am, it is necessary to
solve the normal equations:

where:

(1)
(2)

(m+ 1)

Wo<:1o + W1 a 1 +
W1 C3 o + W2 a 1 +

Wma

Wo

W1

W2

+ Wnl+1 a 1

n

n
I. X· l
i=1

n
I. x· 2
i=1 l

n
I x .2m
i=l l

+

+ Wmam = Zo
+ Wm+1 am = Z1

... + W2ma m Zm

Z

Z1

Z2

Zm

n
= I y.

i=1 l

n
= I. YiXi

i=1

n
I. y.x. 2

i=1 l l

n
= I. y·x· m

i=1 l l

After the Wls and Zls have been computed, the normal equations are
solved by the method of elimination which is illust:cated by the
following solution of the normal equations for a second deg:cee polynomi­
al (m = 2) •

(1)

(3)

The forward solution is as follows:

1 • Divide equaition (1) by W,o

2. Multiply the equation resulting from step 1 by W1 and subtract from
equation (2]1.

3. Multiply thle equation resulting from step 1 by W2 and subtract from
equation (3]1.

Appendix D: Sample Programs 105

The resulting equations are:

(4) a o + b 12a 1 + b 13a 2 b 14

(5) b22a~ + b 23a 2 = b 2 ..

(6) b 32a". + b 33a 2 = b 34

where:

b t2 = W,,/W01 b 13 = W2/W 01

b 22 = W2-b12W,. I b 23 = W3-bIl3 'W1I , b 2 .. = Z1- b 1" W1

b 32 W3-b12W2 b 33 = W .. -b1l3W2 , b 3 .. = Z2-b W2

steps 1 and 2 are repeated using equations (5) and (6) , with b 22 and b 32
instead of Wo and W1 •

The resulting equations are:

where:

C33 = b 33- c 23b 32 , C3 .. = b 34t - C2 .. b 32

The backward solution is as follows:

(9) a2 = C3 .. / C33 from equation (8)

(10) a,. = C2 .. - c 23a 2 from equation (7)

(11) a = b 1 .. -b12a~ -b i 3a 2 from equation (4)

Figure 3 is a possible FORTRAN program for carrying out the
calculations for the case: n = 100, m ~ 10. Wo , W. , W2 , ••• r W2m are
stored in W(l), W(2), W(3), ••• , W(2M+l), respectively. ZOI Z1, Z.a,
••• I Zm are stored in Z (1), Z (2), Z (3) I ••• , Z (M+ 1) I respectively.

106

IBM FORTRAN Coding Form

J--"OO_RAM _Sr'TAM_P_LE_P_RO_GR-~A~M ::2~~==~~_~~-=-1 DA_TE-=-=~~~7i""7':6=--=-6~--=---=:1 :_~~Ti~~~~~N_S -,-I :,_::.:~e_---,-I ---,I~I EI--,--I -----'-1_-'-:::~_:EL!__rTR~FN_UMlE=~ ~---i
S'~~~~~T ~ FORTRAN STATEMENT IO~~~~~~T~ON

1 '2 3 4 56! 8 _ 9 ~o .!1 .. 1~ __ 13 ~4 ~s. 16 .I? .I~ 1~,-4 'l_, __ .n 23 24 2~ 26'27?8 29_30 J~ 32 33 l4_3~5 36 37_}8 39_~~~~.,:!6 47484950 51 52 53 5~ 55 56 S7 58 S9 60 6162 63 64 65 66 67

REA L X (10t4 Y (100) , Wi (211 , ~ (11) , A (1 tl~Ult.,L2 L __ -_ +--__ -+-__ -+---~__t_--
1 FORMAT (I2,I3/(ijF1ij.7») ,

1-----2~F=-6RMAT(-5E15 ~6)-----~- _ _ --:- f---- _________ + _______ , ,, _____ ~ ________________ ~
I----_-+-+R'-"-'E--.,-A-'-"D:.--f--->.(5,-1) M, N,(x'Ct),-y (1 f'(~-l ,Nl_-+ __ + ______ ~_+---+_-_'_+----+__--

LW • 2*M+i I
LB = M+2 ---­

-------~t_---+_--- -'-----+-------L 1 = M+ 1 ------!-----+-----/-'----[---- c----
f-t----__ --t-\;;:D~O;--;;5r-T=-2 iL W ----/-'---~,T-- -_f__---+-----/----+------i--_l__

5 N (J) = (2I.(lJ -+-~-+-'---+___,__-+--_+_--+-----+--__+-__1r__~_I_-~-r_-"-__ _

W(i) = N ",------
DO 6 J;;' i '-,-c-L=Z-.,-+----+---+---L---i-'----+---+---_=_:_=_~ _ _=__=_:-=-=-~:::::~-----+:_~-~=--=-=+_-----'---

6 l (J) = (21-. ~----:-c;--+---+-- -- .. - -":'----'--- - ------_+----t------ -t--~-+_---__t_~-_+_-------
DO 1 G I ·1~'-'-'N'-_+_--+---_f__--+----+--+-- ---+---+-- --+----/-'--------- r-----.---
P = 1. (1J - ,
l(t) ,. lTn +y (I)

DO 13 J:2c~'~L~i,:~+_---+--~+-~_4----~---+__--_+----------+--_4-------_t__---
p = X(I f*p ·
~(J) - W(J) +F' ---- ----------+------t------------+_--+----,--------- +-----t____+_~----'

1 3 l (J) = ~t:r> + y (I) * P ~- _c ___ +-____ __+-~----
DO 16-T.:-m l.W ---+--_4--++---+---_+---- ----------+_--~___l-~-~,
P = X(I) *'p-=--=--=~+----+--- --+---+---+----+--+--_4------ ----+----~ -t---t-----'-->--<_j

--+---+----~----t___-_+_---+_-~----r----r_---+-------1_~~~-~

~--------I_----+_--__t---_+_--r__._+---+--------- ---- --h---+-,---,.---L-,-+--+--.,---+--i
j t__--_t__r---+------- ----+_----t----~~~--_f_~-+_-~----~---~--~-----,~!~~~--'~--~-j

Figure 3. Sample~ Program 2

IBM fORTRAN Coding rorm

IOOAPH,e I I I I
STATEMENT Z IOfNTlflCATION

NUMBER 8 fORTRAN STATEMENT SEQUENCE

1 :l 3 4 5 6 1 8 _9 ... _'~. ~ ~.Y _ I~ _ I~ .. 1~ .Il'_" 11 18 19 ?O 21 n _ 2} 24 }5 11_ 27 28 29 _~o !1 32 33 3~ 35 36 37 J8 39 40 .1 42 43 44 45 46 .7 48 49 50 51 5<' 53 54 55 56 57 58 59 60 61 62 6J 6-' 65 66 67 68 69 70 71 72 73 7. 7~ 76 n 78 71 eo

16 W(J) ... W(J)+P
--1 7 DO 2~ (;;;' f,L-~-

DO 20----K-c 1-'~L-:::i~o-t-----t----+---t-----t----+----+----t----i----------+-- ----­
J - ,,;- K+-r-------- ----+-----II----_t__--+_-_4---+----+----+------+--------

t---2=-(1j+tB-'(-~K 'D=~";~jrCJ~-~~~ 1'T)----+-----1t----+----t_----J---+----+- ---+----t___---__-'- ____ _
DO 22 Kat 'Li~

22 B (K , L B f -... 'Cl=-'(':-'I!"-OO+-----/--~-_-_--j:--:"'-_-_-_-+-~-_-_-__ -"_+---~----------~--t___-_+_- __ ~- ----~------ -"---------

23 DO 31 L=1~'~L~i~~-_+_-_4r----_t_----+---~---_t_----t__---_+_- ~====~~:~------,--~---------~-----= D I V B = g-C L, L)
DO 26 J=L,.LB 26 B(L,J) ~-B~(~L~'~~J~)~/~D~I~Vb8--~----+-----t-----t----~---+---
11 '" L +:C ---_j__---t--
IF (Ii ~ygrr 2l3, 33,33 - ----+---+----- --------- --- +-----+------~=I__==-----+-------__ -"+_-----

1--'28 D-6 3 i I = i 1 , IL 2
F MUL TB ~- B~(~I::-:"=--OL=t.)C---+----+---j----t------!----+----/----~---+-----+-------j

f------c--c+-l-"-.D O~3,,-+i~ .. .J_~ Li LIS 31 B (I, J) = B (~I~,"'-;Jt.)--=6,-(-;-L~'--;-J.-)=*-dF~~IUL;-;T=--lB---\---+--+----+------+----+---- --- -------------
33 'A (LZ) = '6 (L~, L B) -F----"--t---~-__/--~-__+--_+_--_+----------+------ -

I - L ~ ---+---t__--+--_+_--J----_t_~ -- -" c--- ---------

35 5 r GMA =-'0 ~-F--" ---+---+-----+----+--+-----i-----+-~--+_---+----_t_-----­
DO 37 J. I, Ll=-f-----+---+---+---4---t----+--~----r--- -+------/-'---,---­

-t--_4------1-------~

f-----+-+----+------+-----~--,f---~--+_-__+--4_--+---_+-----+---~I__---------------­

------+---t----+--+_-~---+---+--_+ ~--+___--~-----+--- - --- --

Figure 3. Sample Program 2 (Continued)

Appendix D: Sample Programs 107

FORTRAN Coding Form

PIOGRAM SAMPLE PROGRAM 2 PUNCHING

"OGRAMMEA DATE to/fOG INSTRUCTIONS

STATEMENT Z FORTRAN STATEMENT N\IMIl. 8

G~PHIC I I I
PUNCH I I I

I PAGE 3 OF 3
xaa..rw·,

Prlntltd J .. U.S.A.

ICARD ElECTRO NUMBER-

IDENTIFICATION
SEQUENCE

I 23 .. 5 67 89 10 1l_~_2 _1_~ l~ IS~ 17. ~8r~~21 ~E_2.-4~_?~~~_~ 930313233 3:' ~ 36 3738_39_ ~ -41 -42 43 ~ .. ~ 46 <17 ~ .. "9 51'25354.55 '6.57585960 6162 63 64 6S 66 676869707172 737475767178 7980

37 5IG~A = SIGMA+r8(I-l~J)*A(J) ___
I • I-i
A'C I) = SIC I, LB) -5I GMA --

ij.1) IF (1 -1) ILU ,ij 1 , 35
ij1 ~R Irr E (6 ,2) (A (I) , 1= 1, Li')

-- -f--e- - ~ -- .

ST alP f---I-. ---- - --- ._1---

END

!

I
,

--.-
I

'.

- -

----- ... - --- - ---

-----<--.

I 23" 5 6 7 . 9 10 II 12 I l~ 14 1.5 16 17 18 19 20 21 22 23 24 25 26 21 21 29 30 31 32 33 :w lS 36 31 38 39 .4(l '.4' 42 43 44 .t!I .46 47 048 49·50 51 52 53 54 55 S6 57 .58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 71 78 79 "80
.. stcwMIord coni form, 11M .I.ch'o 888157. II avol ob • few punchlng.ltat.m.nh fl'Or'll "'1. form

Figure 3. Sample Program 2

The elements of the warray, except W(l), are set equal to zero.
W(l) is set equal to N. For each value of I, Xi and Yi are selected. ·
The powers of Xi are computed and accumulated in the correct W counters.
The powers of Xi are multiplied by Yi, and the products are accumulated
in the correct Z counters. In order to save machine time when the
object program is being run, the previously computed power of Xi is used
when computing the next power of Xi. Note the use of variables as index
parameters. By the time control has passed to statement 17, the
counters have been set as follows:

108

Well = N

N
W(2) = ~ XI

I=l

N
wen = ~ XI ;2

I=l

N
W(2M+l) = ~ XI 2M

I=l

N
Z (1) ~ YI I=l

N
Z(2) = ~ YIXI I=l

N
Z (3) = ~ YIX I

;2

I=l

Z(M+l)

By the time control has passed to statement 23" the valuE~s of W I' W.1!'
Ie,. .. , W;2ffi+.1 havE~ been placed in the storage locations corresponding to
columns 1 through M + L, rows 1 through M + 1, of the B array, and the
values of Zo, Z~ • , Zm hav~ been stored in the locations correspond­
ing to the COIU~l of the B array. For example, for the illustrative
problem (l"1 = 2)~, columns 1 through 4, rows 1 through 3" of the B array
would be set to 1:he following computed values:

Wo Wi. W2 Zo

W.1 W2 W3 Z1.

W2 W3 W,4 Z2

This matrix represents equations (1) " (2) " and (3) , the normal
equations for M =: 2.

The forward s()lution" which results in equations (4) I, (7), and (8) in
the illustrativE~ problem" is carried out by statements 23 through 31.
By the time control has passed to statement 33, the coefficients of the
AI terms in the M + 1 equations which would be obtained in hand
calculations have replaced the contents of the locations corresponding
to columns 1 through M + 1, rows 1 through M + 1, of the B array, and
the constants on the right-hand side of the equations have replaced the
contents of the locations corresponding to column M + 2, rows 1 through
M + 1, of the B array. For the illustrative problem, columns 1 through
4, rows 1 through 3, of the B array would be set to t~he following
computed values:

1

o 1 C24

o o C34

This matrix rE~presents equations (4), (7), and (8).

The backward solution, which results in equations (9)., (10), and (11)
in the illustrative problem, is carried out by statements 33 through 40.
By the time control has passed to statement 41, which prints the values
of the A9 terms, the values of the (M + 1) *AI terms have been stored in

Appendix D: Sample Programs 109

the M + 1 locations for the A array. For the illustrative problem, the
A array would contain the fo'llowing computed values for a2, aj,,# and a o "
respectively:

Location

A(3)

A(2)

A(l)

Contents

The resulting values of the AI terms are then printed according to
the FORMAT specification in statement 2,.

110

A format code 59-62
ABS

(see mathematical function subprograms)
Addition

(see arithmetic operators)
Additional input/output statements 67

BACKSPACE 67
END FILE 67
REWIND 67

Adjustable dimensions 70-72
AIMAG

(see mathematical function subprograms)
AINT

(see mathematical function subprograms)
ALOG

(see mathematical function subprograms)
ALOG10

(see mathematical function subprograms)
Alphabetic characters (table) 95
Alphameric characters 14,95
AMAXO

(see mathematical function subprograms)
AMAX1

(see mathematical function subprograms)
American Standards Association (ASA)

FORTRAN 5
AMINO

(see mathematical function subprograms)
AMIN1

(see mathematical function subprograms)
AMOD

(see mathematical function subprograms)
AND

(see logical operators)
Arithmetic and logical assignment 7,27-28
Arithmetic expressions 19-23

arithmetic operators 20-23
mode of 21
order of computation in 22-23
use in logical expressions 23
use of parentheses in 23

Arithmeti.c IF 32-33
Arithmetic operators 20-23
Arrangement of arrays in storage 19
Arrays 16-19

arrangement in storage 19
declaring the size of 18
suscripted variables 16
subscripts 17-18

ASSIGN st.atement 31-32
Assigned GO TO statement 31-32
ATAN

(see mathematical function subprograms)

BACKSPACE statement 67
Basic input/output statements 40-50

READ 41-47
WRITE 47-50

Basic Operating System 5
Basic Programming Support 5
Blank con~on 76-77
Blank fields

(see X format code)
Blank lines

(see carriage control)
Blanks 8
BLOCK DATA subprogram 93

C (see comments lines)
CABS

INDEX

(see mathematical function subprograms)
CALL statement 87-88
Carriage control 66
CCOS

(see mathematical function subprograms)
CDCOS

(see mathematical function subprograms)
CDEXP

(see mathematical function subprograms)
CDLOG

(see mathematical function subprograms)
COSIN

(see mathematical function subprograms)
COSQRT

(see mathematical function subprograms)
CEXP

(see mathematical function subprograms)
Character card punch codes 95
CLOG

(see mathematical function subprograms)
CMPLX
. (see mathematical function subprograms)
Coding form 8
Comments lines 9-10
COMMON statement 74-77

blank CO~h~ON 76-77
declaring the size of an array 18
labeled COMMON 76-77

Compiler 5
Complex constants 12-13
COMPLEX statement 70-71

(see also FUNCTION subprograms)
Computed GO TO statement 30
CONJG

(see mathematical function s;ubprograms)
Constants 7~11-14

complex 12-13
double-precision 11-12
integer 10
literal 13
logical 13
real 11-12

Continuation lines 7
CONTINUE statement 37-38
Control statements 7,29-39

arithmetic IF 32-33
assigned GO TO 31-32
computed GO TO 30
CONTINUE 37-38
DO 34-36
END 39
logical IF 33-34
PAUSE 38
STOP 38

Index 111

unconditional GO TO 29
Conversion codes

(see format codes)
COS

(see mathematical
CSIN

(see mathematical
CSQRT

{see mathematical

function

fUnction

function

subprograms)

subprograms)

subprograms}

D decimal exponent 11-12,58-59
D format code 58-59
DABS

(see mathematical function
DATA initialization statement
Data set 40
Data set reference number 40
DATAN

(see mathematical function
DATAN2

(see mathematical function
DBLE

(see mathematical function
DCMPLX

subprograms)
97-98

subprograms)

subprograms)

subprograms)

(see mathematical function subprograms)
DCONJG

(see mathematical function subprograms)
DCOS

(see mathematical function subprograms)
Decimal exponents 11-12,58-59
Declaring the size of an array 18
Device (I/O) 40
DEXP

(see mathematical function subprograms)
DFLOAT

(see mathematical function subprograms)
Digit

(see numeric characters)
DIM

(see mathematical function subprograms)
DIMENSION statement 72-73

adjustable dimensions 72-73
declaring the size of an array 18

Division
(see arithmetic operators)

DLOG
(see mathematical function

DLOG10
(see mathematical function

DMAXl
(see mathematical function

DMINl
(see mathematical function

DMOD

subprograms)

subprograms)

subprograms)

subprograms)

(see mathematical function subprograms)
DO statement 34-37
DO variable 34-36
Double-precision constants 11
DOUBLE PRECISION statement 98
DSIGN

(see mathematical function subprograms)
DSIN

(see mathematical function subprograms)
DSQRT

(see mathematical function subprograms)
DTANH

(see mathematical function subprograms)
DUMP subprogram 93,102-103

112

DVCHK
(see machine indicator tests)

E decimal exponent 11-12,,58-59
E format code 58-59
END FILE statement 67
END parameter in a READ statement 41
END statement 39

in FUNCTION subprograms 85-86
ENTRY statement 89-91
EQ (see relational operators)
EQUIVALENCE statement 77-79
ERR parameter in a READ statement 41
EXIT subprogram 93#102
EXP

(see mathematical function subprograms)
Explicit specification statement 7,70-73
Exponentiation 23

(see also arithmetic operators)
Exponents

(see decimal exponents)
Expressions 19-26

arithmetic 19-23
logical 23-26

EXTERNAL statement 92

F format code 58
FALSE 13

(see also logical expressions)
Features of operating system FORTRAN IV

5-6
Fields 7-8

blanks (see also X format code) 8
conunents 7-8
continuation 7
identification 7
statement number 7

FLOAT
(see mathematical function subprograms)

Format codes 50-66
A code 59-61
carriage control 66
D and E codes 58-59
F code 58
G code 52-57
H code 62-63
I code 57-58
L code 59
numeric codes 56
scale factor-P 64-65
T code 64
X code 63

FORMAT statement 40,50-66
format codes 50-66
FORTRAN record 40,50-52
literal data 61-62
reading FORMAT statements 47

FORTRAN
American Standards Association 5
basic operating system 5
basic programming support 5
coding form 7-8
compiler 5
library 92,99-103
object program 5
record 40,50-52
source program 5
statements 7

supplied subprograms 92,99-1.03
Functions 80-81

definition of 81
FUNCTION subprograms 83-86
reference to 81
statement function subprograms 81-83

G format code 52-56
GE (see relational operators)
GO TO statements 29-32

assigned 30-32
computed 30
unconditional 29

GT (see relational operators)

H format code 62-63
HFIX

(see mathematical function subprograms)
Hierarchy of operations

in a logical expression 25-26
in an arithmetic expression 22

I format code 57
I/O list

within a NAMELIST 43-44,48
within a READ 41
within a WRITE 47-48

lABS
(see mathematical function subprograms)

IDIM
(see mathematical function subprograms)

IDINT
(see mathematical function subprograms)

IFIX
(see mathematical function subprograms)

Imaginary number
(see complex constants)

IMPLICIT specification statement 15,68-70
In-line

(see mathematical function subprograms)
Increment 34
Indexing I/O lists 46-47
Indexing parameters in a DO 34-35
Initial value 34
Input/output statements 7,40-66

BACKSPACE 67
END FILE 67
READ ''''1-47
REWIND 67
wRITE 47-50

INT
(see mathematical function subprograms)

Integer constants 10
INTEGER statements 70-73

(see also FUNCTION subprograms)
ISIGN

(see mathematical function subprograms)

L format code 59
Labeled COMMON 76-77
LE (see relational operators)
Length specification

(see optional length specification,
standard length specification)

Library (see FORTRAN)
Lines

(see blank lines, continuation lines)
List (see I/O list)

Literal constants 13
Literal data in a FORMAT statement 61-62
Logical constants 13
Logical expressions 23-26

logical operators 24-25
order of computation in 25-26
relational operators 24
use of parentheses in 26

Logical IF statement 33-34
Logical operators 24-25
LOGICAL statement 70-73

(see also FUNCTION subprograms)
Looping (see DO statement)
LT (see relational operators)

Machine indicator tests 102
Mathematical function SUbprograms

93,99-101
MAX 0

(see mathematical function subprograms)
MAX 1

(see mathematical function s ltlbprograms)
MINO

(see mathematical function su.bprograms)
MIN1

(see mathematical function s 1tlbprograms)
Mixed-mode 5-6

(see also expressions)
MOD

(see mathematical function subprograms)
Mode of an arithmetic expression 19-22
Muliline listing 56
Multiple ENTRY into a subprogram 89-91
Multiplication

(see arithmetic ope~ators)

Named common
(see labeled COMMON)

NAMELIST statement 42-44,48
NE (see relational operators)
Nest of .DOs 36-37
NOT (see logical operators)
Numeric characters 95
Numeric FORMAT codes 56-57

Object program 5
Operators

(see arithmetic, logical, relational)
Optional length specification for
variables 14-15

(see also type statements)
OR (see logical operators)
Order of computation in arithmetic

expressions 22-23
Order of computation in logical

expressions 25-26
Out-of-line

(see mathematical function subprograms)
OVERFL

(see machine indicator tests)

P format code 64
Parentheses

use of 23,26
Parentheses in arithmetic expressions 23
Parentheses in logical expressions 26
PAUSE statement 138
PDUMP SUbprogram 93,103

Index 113

C28-2007-0

Pre-defined specification (convention) 15
PRINT statement 97
Programming considerations In using a DO
loop 36-37

PUNCH statement 96

Range of a DO statement 34-35
READ statement 41-47

READ (a) list 45-46
READ (a,b) list 44-45
READ (a"x) 42-44
READ h, list 96

Reading FORMAT statements 46-47
REAL

(see mathematical function subprograms)
Real constants 11-12
REAL statement 70-73

(see also FUNCTION subprugrams)
Relational operators 24
Repeat constant 43
RETURN statement

in a FUNCTION subprogram 84
in a main program 89
in a SUBROUTINE subprogram 8S-89

REWIND statement 67

Sample program
program 1 104
program 2 105-111

Scale factor-P 64-66
Sense light ,subroutines 93
SIGN

(see mathematical functiop subprograms)
SIN

(see mathematical function subprograms)
Slashes in a FORMAT statement 50-51,54-55
SLITE

(see machine indicator tests)
SLITET

(see machine indicator tests)
SNGL

(see mathematical function subprograms)
Source program 5
Source program characters 95
Special characters (table' 95
Specification statements 7~68-79

COMMON 74-77
DIMENSION 72-73
EQUIVALENCE 77-79
explicit 70-73
EXTERNAL 92
FORMAT 40,,50-66
IMPLICIT 15,,68-70
NAMELIST 42-44,48

Standard length specification for
variables 14-15

(see also type statements)
Statement numbers 7-8
Statements 7-9

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.106ot
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

arithmetic and logical assignment
7,27-28

comments lines 8
continuation of 7
control 7,29-39
input/output 7,40-66
number 7
specification 7-8,68-79
subprogram 7,80-93

STOP statement 38
SQRT

(see mathematical function subprograms)
Subprogram names as arguments

(see EXTERNAL statement)
Subprograms 7,80-93

FORTRAN supplied 92-93,99-103
FUNCTION 81-83
statement functions 81-83
SUBROUTINE 86-89

Subscripted va.riable 16-18
Subscripts 16-18
Subtraction

(see arithmetic operators)
Symbolic unit number

(see data set reference number)

T format code 64
TANH

(see mathematical function subprograms)
Test value 35-36
TRUE 13

(see also logical expressions)
Type and length specification 15
Type declaration 15-16

explicit 16
IMPLICIT 15
pre-defined 15

Type specification of FUNCTION subprograms
84-86

Type statements 68-73
explicit 70-73
IMPLICIT 68-70

Unconditional GO TO statement 29

Variable FORMAT statements
(see reading FORMAT statements)

Variables 7,13-14
subscripted 16-18
type declaration 15-16
types and length specifications 14-15
variable names 14

WRITE statement 47-50
WRITE (a) list 50
WRITE (a,b) list 49
WRITE (a,x) 48

X format code 63

n
I\.)

co
t

I\.)

o
o
....J
t

o

READER'S COMMENTS FORM

IBM System/360 Time Sharing System
FORTRAN IV Language
C28-2007-0

• Your comments. accompani.ed by answers to the following questions, help us produce
better publications for your use. If your answer to a question is "No" or requires
qualification, please explain in the space ,provided below.

• Does this publication meet your needs?

• Do you find the material:
Easy to read and understand?
Organized for convenient use?
Complete?
Well illustrated?
Written for your technical level?

• What is your occupation?

• How do you use this publication?
As an introduction to the subject?
For advanced knowledge of the subject?
For information about operating procedures?

Yes No

As an instructor in a class?
As a student in a class?
As a reference manual?

Other __ _

• Please give specific page and line references with your comments when appropriate.

COMMENTS

Name:

Address:

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

Fo:r::m: C28-2007-0

staple

fold fold
--~~---------------

fold

r--,
I BUS INESS REPLY .MAIL I
I NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. I L __ J

POSTAGE WILL BE PAID BY

IBM CORPORATION
PO BOX 344
2651 STRANG BLVD.
YORKTOWN HTS., N.Y. 10598

ATTN: TIME SHARING SYSTEM/360
PROGRAMMING PUBLICATIONS DEPT. 504

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

r--------------------,
I FIRST CLASS I
I PERMIT NO. 34 I
I I
IYORKTOWN HTS, N.Y.I l ____________________ J

IIIIII

111111

I 11111

111111

111111

111111

111111
1-'­
::s
c:: ·
· ~ ·
()
I\.)

00
I

I\.)

o
o
-..J
I

o

staple

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	replyA
	replyB

