File No. S360-25
Form C28-2007-0 TSS

¥ g

ST

IBM Systems Reference Library

IBM System/360 Time Sharing System

IBM FORTRAN IV '

This publication describes and illus-
trates the use of the IBM FORTRAN IV
language for the IBM System/360 Time Shar-
ing System referred to hereafter as Time
Sharing System/360. The reader is presumed
to have some knowledge of an existing
FORTRAN language.

The IBM FORTRAN IV language is a symbol-
ic programming language. It parallels the
symbolism and format of methematical nota-
tion. In addition, many programming fea-
tures and facilities are available for
expressing the method of solution of a
mathematical problem as a meaningful
FORTRAN prograin.

PREFACE

This publication describes the IBM
System/360 Time Sharing System IBM FORTRAN
IV language referred to in this manual as
FORTRAN 1IV. A reader should have some
knowledge of an existing FORTRAN 1language
before using this publication. The publi-
cation FORTRAN General Information, Form
F28-8074, 1is a useful source for such
knowledge.

The material in the FORTRAN IV publica-
tion is arranged to provide a quick defini-
tion and syntactical reference to the var-
jous elements of the language by means of a
box format. In addition, sufficient text
describing each element, with appropriate
examples of possible use, is given.

There are four appendixes which give
additional information useful in writing a
FORTRAN IV source program. They are:

A: Table of Source Program Characters

B: Other FORTRAN Statements Accepted
by IBM FORTRAN IV

C: FORTRAN Supplied Subprograms

D: Sample Programs

First Edition

Significant changes or additions to the specifications contained in this
publication will be reported in subsequent revisions or Technical
Newsletters.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page
impressions for photo-offset printing were obtained £rom an IBM 1403
Printer using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office servina vour locality.

A form is provided at the back of this publication for reader's

comments. If the form has been removed, comments may be addressed to
the IBM Corporation, Time Sharing System/360 Programming Publications,
Department 504, 2651 Strang Blvd., Yorktown Heights, N. Y. 10598

© International Business Machines Corporation 1966

CONTENTS

INTRODUCTION 2 « ¢« « = o =« o = o s s« o « 5 CONTINUE Statement « « . . 37
PAUSE Statement. 38

The IBM System/360 Time Sharing System STOP Statement 38
FORTRAN IVa ¢ ¢ o o © « o o o ¢ o o« « « 5 END Statement. « . . 39

Features of the Time Sharing System INPUT/OUTPUT STATEMENTS. . . . & - « . . U0

FORTRAN IV.e v ¢ o « « = o o = o o « s &« 5
Basic Input/Output Statements. 40

ELEMENTS OF THE LANGUAGE « « « « o o .« « 1 READ Statement. < . . . 41
The Form READ (a,x). . o « « . - . U2

Statements o . . B | The Form READ (a,b) List 4i
Coding FORTRAN Statements - Card The Form READ (a) List 45
Input. « . . . o o = D | Indexing I/0 Lists U6
Coding FORTRAN Statements - Reading Format Statements. 47
Keyboard Input « « « o &« &« « « « « o 8 WRITE Statement ¢« . « « o . . U7
Initial Lines. « &« « ¢« &« o « =« « « 9 The Form WRITE (a,x) . + « « « - . U8
Continuation Lines « « « « « « « « 9 The Form WRITE (a,b) List. 49

The Form WRITE (a) List. 50

CoNStantSe o« o o o « = « o o o « « « o » 10 FORMAT Statement. . . . « » « . « . . 50
Integer Constants . . « ¢« « « « « . . 10 G Format Code. « &« « « 4 « « « « o 52
Real ConstantS. « « « o « « « « « « « 11 Numeric Format Codes (I,F,E,D) . . 56
Complex Constant. . . . « . . . o . . 12 I Format Codee v - « « v « « = . « 57
Logical Constants . . = « « « « « o . 13 F Format Code. 58
Literal Constants = . « « « « « . . . 13 D and E Format Codes . . . - . . . 58

L Format Code. . <« « ¢« o« « « « - « 59

VariableS. « « « o ¢« o o o« o 4 o o o« « o« 13 A Format Code. e « « - « 59
Variable NameS. . . . e« w e e o = 184 Literal Data in a Format
Variable Types and Length Statement 61

Specifications - 14 H Format Code. . . . + . « « . . . 62
Type Declaration by the Predeflned X Format Code. . . . « . « 63
Specification. « o « 15 T Format Code. « + v « » « « « - . 6U4
Type Declaration by the IMPLICIT Scale Factor = P « « « - . 64
Specification Statement. 15 Carriage Control« . =« . . 66

Type Declaration by Explicit

Specification Statements 16 Additional Input/Output Statements . . . 67
END FILE Statement 67
AYTYayYS o u o o = 2 o o » » o « » » o « o 16 REWIND Statement « . . 67
Declaring the Size of an Array. . . . 18 BACKSPACE Statement. 67

Arrangement of Arrays in Storage. . . 19
SPECIFICATION STATEMENTS . « . » « - « - 68
EXPressionSe « o« « « = « =
Arithmetic Expressions.
Arithmetic Operators

19 The Type Statements. 68
IMPLICIT Statement 68

s & & & @
& & 4 & a
PRI
L] L] . L] .
.
.
« & s @
*]
[=]

Logical Expressions . . .- . 23 Explicit Specification
Relational Operators .- . 24 StatementS. « « ¢« ¢« ¢« 4 o o & - o 10
Logical Operators. . . « . « « « . 24 Adjustable Dimensions. 72
ARITHMETIC AND LOGICAL ASSIGNMENT Additional Specification Statements. . . 73
STATEMENT o <« v« © « o o © o o = o o « o« 27 DIMENSION Statement. « . . 73
COMMON Statement 74
CONTROL STATEMENTS . « = « « o « « « o « 29 Blank and Labeled Common 76
EQUIVALENCE Statement. 77
The GO TO Statements . . . w e e o o o 29

Unconditional GO TO staiement. - . 29 SUBPROGRAMS.: « « « o « o « « « « =« « = » 80
Computed GO TO Statement 30 Naming Subprograms. . . « « « « « . » 80
The ASSIGN and Assigned GO TO FUNCtions « ¢ « « « o o = o « « « = » 80
StatementS. « « o« « ¢ 0 o o - o o 31 Fuanction Definition. 81
Function Reference 81
Additional Control Statements. 32 Statement Functions 81
Arithmetic IF Statement. 32 FUNCTION SubprogramsS. . « - « « « « « 83

Logical IF Statement . .+ + « « . . 33 Type Specification of the
DO Statement o+ « « « o o 34 FUNCTION Subprogram . « . « « . - 8U

RETURN and END Statements in a Arguments of a FUNCTION or

Function Subprogram 85 SUBROUTINE Program Enclosed by
SUBROUTINE SubprogramS. . « . « . . « 86 Slashes ¢ ¢ o ¢ ¢« ¢« 4 « &« « = « « 98
CALL Statement - . . 87
RETURN Statement in a SUBROUTINE APPENDIX C: FORTRAN SUPPLIED
Subprogram. « « « « o 88 SUBPROGRAMS +« ¢ o o « o « o « « « « » 99

Multiple ENTRY 1nto a Subprogram . 89
Additional Rules for Using ENTRY . 91 Mathematical Function Subprograms. . . . 99

The EXTERNAL Statement 92
FORTRAN Supplied Subprograms. 93 Machine Indicator Tests.102

BLOCK DATA Subprogram . « « « « « « « 93
The EXIT, DUMP, and PDUMP Subprograms. .102

APPENDIX A: SOURCE PROGRAM CHARACTERS . 95 EXIT Subprogram. . . . « . « « « 2102
DUMP Subprogram. « « « « « « « « -103
APPENDIX B: OTHER FORTRAN FEATURES PDUMP Subprogram . . «103

ACCEPTED BY FORTRAN IV. « 2 « « « « « « 96
READ Statement . . ¢« ¢« & &« « « « . 96 APPENDIX D: SAMPLE PROGRAMS .« . « « . 104
PUNCH Statement. . « « « = « « « « 96
PRINT Statement. . . « « - . « « « 97 Sample Program 1 « « « « « . <104
DATA Initialization Statement. . . 97

DOUBLE PRECISION Statement 98 Sample Program 2 « « «. . - . 2105

INDEXe o 2 o o = o o s o ¢ o « o = o « 2112

ILLUSTRATIONS

FIGURES TABLES

Figure 1. FORTRAN Coding Form 8 Table 1. Insurance Premium Cocdes. . . . 18
Figure 2. Sample Program 1 104 Table 2. Determining the Mode of an
Figure 3. Sample Program 2 107 Expression Containing Variables of

Different Types and Lengths 21
Table 3. Valid Combinations With

Respect to the Arithmetic 22
Table 4. Mathematical Function.

SUbPrOgrams « « o o o « « « o o o « o« « 99

INTRODUCTION

THE_IBM SYSTEM/360 TIME SHARING SYSTEM FORTRAN IV

The IBM Time Sharing System/360 FORTRAN IV is comprised of a
language, a library of subprograms, and a compiler.

The FORTRAN language is especially useful in writing programs both in
conversational and nonconversational mode for Scientific and engineering
applications that involve mathematical computations. In fact, the name
of the language - FORTRAN - is derived from its primary use: FORmula
TRANslating.

Source programs written in the FORTRAN language consist of a set of
statements constructed from +the elements of the language described in
this publication.

The FORTRAN compiler analyzes the source program statements and
transforms them into an object program that is suitable for execution on
the IBM System/360. In addition, when the FORTRAN compiler detects
errors in the source program, appropriate error messages are produced.
At the wuser's option a complete 1listing of the source program is
produced.

The FORTRAN compiler operates under control of Time Sharing
System/360, which provides the FORTRAN compiler with input/output and
other services. Object programs generated by the FORTRAN compiler also
operate under System/360 Operating System control and depend on it for
similar services.

The IBM Time Sharing System/360 FORTRAN IV language is compatible

with and encompasses the American Standards Association (ASA) FORTRAN,
including its mathematical subroutine provisions.

FEATURES OF THE TIME SHARING SYSTEM FORTRAN IV

The Time Sharing System/360 FORTRAN IV is a further development of
previously implemented FORTRAN systems and contains many of the features
of these systems. In addition, the following features facilitate the
writing of source programs and reduce the possibility of coding errors:

1. Variable Attribute Control: The attributes of variables and arrays
may now be explicitly specified in the source program. This
facility is provided by a single explicit specification statement
which allows a programmer to:

a. Specify storage length.

b. Explicitly type a variable as integer, real, complex, or
logical.

c. Specify the dimension of arrays.

d. Specify data initialization values for variables.

Introduction 5

Adjustable Array Dimensions: The dimensions of an array in a
subprogram may be specified as variables; when the subprogram is
called, the absolute array dimensions are substituted.

Additional Format Code: An additional format code - G - can be used
to specify the format of numeric and 1logical data. Previously
implemented format codes are also permitted.

Mixed Mode: Expressions may consist of constants and variables, of
the same and/or different types and lengths.

Named I/0 List: Formatting of inputs/output data is facilitated by
reading and writing operations, without reference +to a FORMAT
statement or list.

Spacing Format Code: The T format code allows input/output data to
be transferred, beginning at any specified position.

Literal Format Code: Apostrophes may be used to enclose literal
data.

ELEMENTS OF THE LANGUAGE

STATEMENTS

Source programs consist of a set of statements from which the
compiler generates machine instructions, constants, and storage areas.
A given FORTRAN statement effectively performs one of three functions:

1. Causes certain operations to be performed (e.g., add, multiply,
branch).

2. Specifies the nature of the data being handled.
3. Specifies the characteristics of the source program.

FORTRAN statements are usually composed of certain FORTRAN key words
used in conjunction with the basic elements of the language: constants,
variables, and expressions. The five categories of FORTRAN statements
are as follows:

1. Arithmetic and Logical Assignment Statements: Upon execution of an
arithmetic or logical assignment statement, the result of calcula-
tions performed or conditions tested replaces the current value of
a designated variable or subscripted variable.

2. control sStatements: These statements enable the user to govern the
flow and terminate the execution of the object program.

3. Input/Output Statements: These statements, in addition to control-
ling inputs/output (I/0) devices, enable the user to transfer data
between internal storage and an I/0 medium.

4, Specification Statements: These statements are used to declare the
properties of variables, arrays, and subprograms (such as type and
amount of storage reserved) and to describe the format of data on
input or output.

5. Subprogram Statements: These statements enable the user to name and
define functions and subroutines.

The basic elements of the language are discussed in this section.
The actual FORTRAN statements in which these elements are used are
discussed in following sections.

CODING FORTRAN STATEMENTS - CARD INPUT

The statements of a FORTRAN source program can be written on a
standard FORTRAN coding form, Form X28-7327 (Figure 1). FORTRAN
statements are written one to a line from columns 7 through 72. If a
statement is too long for one line, it may be continued on as many as 19
successive lines by placing any character, other than a blank or =zero,
in column six of each continuation 1line. For the first line of a
statement, column six must be blank or zero.

Columns 1 through 5 of the first line of a statement may contain a

statement number consisting of from 1 through 5 decimal digits. Leading
zeros in a statement number are ignored. The statement numbers may be

Elements of the Language 7

assigned in any order; the value of statement numbers does not affect
the order in which the statements are executed in a FORTRAN program.

columns 73 through 80 are not significant to the FORTRAN compiler and
may, therefore, be used for program identification, sequencing, or any
other purpose.

Comments to explain the program may be written in columns 2 through
80 of a 1line, if the letter C is placed in column one. Comments may
appear anywhere within the source program. They are not processed by
the FORTRAN compiler, but are printed on the source program listing.

Blanks may be inserted where desired to improve readability.

IBM FORTRAN Coding Form
ProGRAM I P [omme [T T T T 1 Jre o
PROGRAMMER oate —l INSTRUCTIONS t"“c" I I | J l | I qunmcmo NONEET

et |5
e |

FORTRAN STATEMENT lbss?gclzti‘»cvéan
71 74 1575777;79@’

i

. ST A S - -

L ‘ H
T 23 4 506]7 @ 9 W 1112 13 14 15 16 17 18 15 20 31 22 73 24 35 36 77 8 29 30 31 12 33 34 35 36 37 38 39 40 41 47 43 44 45 46 47 4B 49 50 51 52 53 5455 56 57 5 59 60 61 02 63 G4 & 66 &7 6B 69 70 1\ 72|73 A 75 76 77 78 79 W0
A iondard cord form, 1M slactic BB1S7, 1+ availoble for punching sarsments from s Torm

Figure 1. FORTRAN Coding Form

CODING FORTRAN STATEMENTS -~ KEYBOARD INPUT

It is desirable to free a conversational keyboard operator from
strict positional requirements when typing in a FORTRAN source progran.
The following conventions for statement numbers, text starting posi-

tions, and continuation lines are accepted when input is from an on-line
keyboard.

Initial Lines

If a 1line is the initial line of a statement, it may have a statement
number. (The statement number, if any, must appear on the first line of
the statement.) The numeric statement number must be the first nonblank
material in the line. It can start in any column, and is terminated
after five adjacent columns, or by the occurrence of a nonblank,
nonnumeric character, whichever happens first.

If a statement has a statement number, the text of the statement
begins with the first nonblank character following the statement number,
unless this character is a horizontal tab. If a tab is used to separate
the statement number from the text, the text begins with the first
nonblank character following the tab.

If a statement does not have a statement number, the text of the
statement begins with the first nonblank, nonnumeric character of the
line, unless this character is a horizontal tab.

If a tab is used to begin the line, the text starts with the first
nonblank character following the tab.

Continuation Lines

A 1line of input is a continuation line, rather than the initial line
of a statement, if the last character (blanks included) of the 1last
preceding noncomment line was a '-' (EBCDIC 60).

A continuation 1line in keyboard input may not have a statement
number. The text of the line begins with the first character (blank or
not) of the line, unless this character is a horizontal tab. If a tab
is used to begin the line, the text starts with the first character
(blank or not) following the tab.

Caution is needed in the use of '-~' at the end of a line, and tab (in
alphameric constants) or the letter C, at the beginning of a line, to
avoid conflict between the FORTRAN text and the continuation, comment,
and tab conventions of keyboard input.

Elements of the Language 9

CONSTANTS

A constant is a fixed, unvarying quantity. There are three classes
of constants -- those that deal with numbers (numerical constants),
those that deal with truth values (logical constants), and those that
deal with literal data (literal constants).

Numerical constants may be integer, real, or complex numbers; logical
constants may be .TRUE. or .FALSE.; literal constants may be a string
of alphameric and/or special characters enclosed by quotes.

INTEGER CONSTANTS

|
|
|
|

Definition

Integer Constant - a whole number written without a decimal point.
It occupies four locations of storage.

e e
b e s e e e e e e}

Maximum Magnitude: 2147483647, i.e., (231-1).

An integer constant may be positive, zero, or negative; if unsigned,
it is assumed to be positive. Its magnitude must not be greater than
the maximum and may not contain embedded commas.

Examples:

Valid Integer Constants:

0

91

173
-2147483647
=12

Invalid Integer Constants:

0.0 (contains a decimal point)
27. (contains a decimal point)
3145903612 (exceeds the allowable range)
5,396 (embedded comma)

10

REAL CONSTANTS

Real Constant: - a number with a decimal point optionally followed
by a decimal exponent, or an integer constant followed by a decimal
exponent. This exponent may be written as the 1letter E or D
followed by a signed or unsigned, one- or two-digit integer
constant. A real constant may assume one of two forms:

E decimal exponent. This form occupies 4 storage locations.

2. Either one through seven decimal digits followed by a D decimal
exponent or 8 to 16 decimal digits optionally followed by a D
decimal exponent. This form occupies eight storage locations
and is sometimes referred to as a double precision constant.

Magnitude: (either form) 0 or 163 through 1663 (i.e., approxi-

|
s
I
|
I
|
I
:
| 1. From one through seven decimal digits optionally followed by an
I
|
|
|
I
|
}
| mately 107%).

L

L e e s i b i . e P —— — — o — . St s st e st

A real constant may be positive, zero, or negative (if unsigned, it
is assumed to be positive) and must be of the allowable magnitude. It
may not contain embedded commas. The decimal exponent E or D permits
the expression of a real constant as the product of a real constant
times 10 raised to a desired power.

Examples:

Valid Real Constants (4 storage locations):

+0.

-999.9999

0.0

5764.1

7.0E+0 (i.e., 7.0 x 10° = 7.0)
19761.25E+1 (i.e., 19761.25 x 10t = 197612.5)
TE3

7.E3

7.0E3 (i.e., 7.0 x 103 = 7000.0)
7.0E03

7.0E+03

7.0E-03 (i.e., 7.0 x 10-3 = .007)

Valid Real Constants (8 storage locations):

21.98753829457168

1.0000000

7.9D3

7.9D03 (i.e., 7.9 x 103 = 7900.0)
7.9D+03

7.9D+3 .
7.9D-03 (i.e., 7.9 x 10-3 = .0079)
7.9D0 (i.e., 7.9 x 10° = 7.9)
0.0 (i.e., 0.0 x 10° = 0.0)
7D3 (i.e., 7 x 103 = 7000)

Elements of the Language 11

Invalid Real Constants:

0 (missing a decimal point)
3,471.1 (embedded comma)
1.E (missing a one- or two-digit integer

constant following the E. Note that it is not
interpreted as 1.0 x 10°)

7.9D (missing a one- or two-digit integer
constant following the D)

1.2E+113 (E is followed by a 3 digit
integer constant)

21.3D90 (value exceeds the magnitude permitted;
that is, 21.3 x 109°>1663)

23.5E+97 (value exceeds the magnitude permitted;

that is, 23.5 x 1097>1663)

COMPLEX CONSTANT

Definition

e s e s e ———— —— — ———— —— ol —]

Complex Constant — an ordered pair of signed or unsigned real
constants separated by a comma and enclosed in parentheses. A
complex constant may assume one of two forms:

|
t
|
|
|
|
| 1. From one through seven decimal digits optionally followed by an
| E decimal exponent. In this form, each number in the pair
| occupies four storage locations.

|

|

|

|

|

|

I

|

|

2. Either one through seven decimal digits followed by a D decimal
exponent or 8 through 16 decimal digits optionally followed by a
D decimal exponent. In this form each number in the pair
occupies eight storage locations.

Magnitude: (either form) 0 or 16-%2 through 1662 (i.e., approxi-
mately 1075) for each real constant in the pair.

The real constants in a complex constant may be positive, zero, or
negative (if unsigned, they are assumed to be positive), but they must
be in the given range. The first real constant in a complex constant
represents the real part of the complex number; the second represents
the imaginary part of the complex number.

Examples:

Vvalid Complex Constants:

(3.2,- 1.86) (has the value 3.2-1.861)
(-5.0E+03,.16E+02) (has the value -5000.+16.01)
(4.0E+03,.16E+02) (has the value 4000.+16.01i)

(2.1,0.0 (has the value 2.1+0.01)
(4.7D+2,1.9736148) (has the value 470.+1.97361481i)
Where i =J-l

12

Invalid Complex Constants:

(292704,1.697) (the real part does not
contain a decimal point)
(1.2E113,279.3) (the real part contains

an invalid decimal exponent)

LOGICAL CONSTANTS

1 1
| Definition |
L ——— e s e e e o o e _l
[|
| Logical Constant - There are two logical values: |
| |
| . TRUE. |
| |
| . FALSE. |
b - - _—— _ - -1

A logical constant must be preceded and followed by a period. The
logical constants .TRUE. and .FALSE. specify that the value of the
logical variable they replace or the term of the expression they are
associated with is true or false, respectively. (See the section
"Logical Expressions.")

LITERAL CONSTANTS

Definition

.
I
b - _——
|
I
I

Literal Constant - a string of alphameric and/or special characters
enclosed in apostrophes.

b —— - —_— -

[SR Sip——— |

The number of characters in the string, including blanks, may not be
greater than 255. Since apostrophes delimit literal data, a single
apostrophe within such data is represented by double apostrophes.

Examples:

'DATA"

' INPUT/OUTPUT AREA NO. 2'

' X-COORDINATE Y-COORDINATE Z-COORDINATE'
*3.14°"

'DON' TI

VARIABLES

A FORTRAN variable is a symbolic representation of a quantity that
may assume different values. The value of a variable may change either
for different executions of a program or at different stages within the
program.

Elements of the Language 13

For example, in the statement:
A = 5.0+B
both A and B are variables. The value of B is determined by some

previous statement and may change from time to time. The wvalue of A
varies whenever this computation is performed with a new value for B.

VARIABLE NAMES

Definition I
Variable Name - from 1 through 6 alphameric (i.e., numeric, 0 - 9, |
or alphabetic, A - Z and $) characters, the first of which must be |
alphabetic. |

- e i . o e et e e e e e . . e i e S e e e e e e . e e e e . e o . . e o i e B e o i e e o e J

[e e e s)

A variable name may not contain special characters (see Appendix A).
Variable names are symbols wused to distinguish one variable from
another. A name may be used in a source program in one (and only one)
way (e.g., the name of a variable and that of a subprogram may not be
identical in the same source program).

The use of meaningful variable names can serve as an aid in
documenting a program. That is, someone other than the programmer may
look at the program and understand its function. For example, to
compute the distance a car traveled in a certain amount of time at a
given rate of speed, the following statement could have been written:

X =Y * 7

where *# designates multiplication. However, it would be more meaningful
to someone reading this statement if the programmer had written:

DIST = RATE * TIME

Examples:

Valid Variable Names:

JOHN
B292
VAN
RATE
L17NOY
SQ704

Invalid Variable Names:

B292704 (contains more than six characters)
4ARRAY (first character is not alphabetic)
SI.X (contains a special character)

VARIABLE TYPES AND LENGTH SPECIFICATIONS

The type of a variable corresponds to the type of data the variable
represents. Thus, an integer variable represents integer data, a real
variable represents real data, etc.

14

For every type of variable, there is a corresponding standard and
optional length specification which determines the number of storage
locations reserved for each variable. The following list shows each
variable type with its associated standard and optional length:

Variable Type Standard Optional
Integer 4 2
Real 4 8
Complex 8 16
Logical 4 1

The three ways a programmer may declare the type of a variable are by
use of the:

1. Predefined specification contained in the FORTRAN language.
2. IMPLICIT specification statement.
3. Explicit specification statements.

The optional length specification of a variable may be declared only
by the IMPLICIT or Explicit specification statements. If, in these
statements, no length specification is stated, the standard 1length is
assumed (see the section "The Type Statements").

TYPE DECLARATION BY THE PREDEFINED SPECIFICATION

The predefined specification is a convention used to specify vari-
ables as integer or real, as follows:

1. If the first character of the variable name is I, J, K, L, M, or N,
the variable is integer of standard length.

2. If the first character of the variable name is any other letter,
the variable is real of standard length.

This convention is the traditional FORTRAN method of implicitly
specifying the type of a variable as being either integer or real. In
all examples that follow in this publication it is presumed that this
specification holds, unless otherwise noted.

TYPE DECLARATION BY THE IMPLICIT SPECIFICATION STATEMENT

This statement allows a programmer to specify the type of variables
in much the same way as was specified by the predefined convention.
That is, in both, the type is determined by the first character of the
variable name. However, the programmer, using the IMPLICIT statement,
has the option of specifying which initial letters designate a particu-
lar variable type. Further, the IMPLICIT statement is applicable to all
types of variables -- integer, real, complex, and logical.

The IMPLICIT statement overrides the variable type as determined by
the predefined convention. For example, if the IMPLICIT statement
specifies that variables beginning with the letters A through M are real
variables, and variables beginning with the letters N through Y are
integer variables, then the variable ITEM (which would be treated as an
integer variable under the predefined convention) is now treated as a
real variable, DNote that variables beginning with the letters Z and $
are (by the predefined convention) treated as real variables. The
IMPLICIT statement is presented in greater detail in the section "Type
Statements."

Elements of the Language 15

TYPE DECLARATION BY EXPLICIT SPECIFICATION STATEMENTS

Explicit specification statements (INTEGER, REAL, COMPLEX, and
LOGICAL) differ from the first two ways of specifying the type of a
variable, in that an explicit specification statement declares the type
of a particular variable by its name, rather than as a group of
variables beginning with a particular character.

For example, assume:

1. That an IMPLICIT specification statement overrode the predefined
convention for variables beginning with the letter I by declaring
them to be real.

2. That a subsequent Explicit specification statement declared ‘that
the variable named ITEM is complex.

Then, the variable ITEM is complex and all other variables beginning
with the character I are real. Note that variables beginning with the
letters J through N are specified as integer by the predefined
convention.

The Explicit specification statements are discussed in greater detail
in the section "Type Statements."

ARRAYS

A FORTRAN array is a set of variables identified by a single variable
name. A particular variable in the array may be referred to by its
position in the array (e.g., first variable, third variable, seventh
variable, etc.). Consider the array named NEXT, which consists of five
variables, each currently representing the following values:

273, 41, 8976, 59, and 2

NEXT (1) is the representation of 273
NEXT (2) is the representation of 41
NEXT (3) is the representation of 8976
NEXT (4) is the representation of 59
NEXT(5) is the representation of 2

Each variable in this array consists of the name of the array (i.e.,
NEXT) followed by a number enclosed in parentheses, called a subscript.
The variables which comprise the array are called subscripted variables.
Therefore, the subscripted variable NEXT(1) has the value 273; the
subscripted variable NEXT(2) HAS THE value 41, etc.

The subscripted variable NEXT(I) refers to the "Ith" subscripted
variable in the array, where I is an integer variable that can assume a
value of 1, 2, 3, 4, or 5.

To refer to the first element of an array, the array name must be
subscripted. The array name does not represent the first element. The
number of subscripts must correspond to the declared dimensionality
except in the EQUIVALENCE statement.

16

General Form

Subscripts - may be one of seven forms:

v
Cl
v+c!
v-¢'
c*v
ckv+c!
c*v-¢'

Where: Vv represents an unsigned, nonsubscripted, integer variable.

c and c' represent unsigned integer constants.

[e s e . . e o S e e o . o . S e]
e e e et . e e e e i, e e e e e ek, s =

Whatever subscript form is used, its evaluated result must always be
greater than zero. For example, when reference is made to the
subscripted variable V(I-2), the value of I should be greater than 2.

Examples:

ARRAY (IHOLD)
NEXT(19)
MATRIX(I-5)
A(5%L)
W(4*xM+3)

An array may consist of up to seven subscript parameters, separated
by commas. Thus, the following are valid subscripted variables for
their corresponding arrays:

Array Name Subscripted Variable

A A(5, 100, J, K+2)

TABLE TABLE (1, 1, 1, 1, 1, 1, 1
B B(I, J, K, L, M, N)

MATRIX MATRIX(I+2,6*J0OB-3,KFRAN)

Consider the following array named LIST consisting of two subscript
parameters, the first ranging from 1 through 5, the second from 1
through 3:

Colunmnl Column2 Column3
Rowl 82 4 7
Row2 12 13 1
Row3 91 1 31
Rowl 24 16 10
Row5 2 8 2

Suppose it is desired to refer to the number in row 2, coclumn 3; this
would be:

LIST (2,3)
Thus, LIST (2,3) has the value 14 and LIST (4,1) has the value 24.
Ordinary mathematical notations might use LIST i;j to represent any

element of the array LIST. In FORTRAN, this is written as LIST(I,J),
where I equals 1,2,3,4, or 5, and J equals 1,2, or 3.

Elements of the Language 17

As a further example, consider the array named COST, consisting of
four subscript parameters. This array might be used to store all the
premiums for a life insurance applicant, given (1) age, (2) sex, (3)
health, and (4) size of life insurance coverage desired. A code number
could be developed for each statistic, where IAGE represents age, ISEX
represents sex, IHLTH represents health, and ISIZE represents policy
size desired (see Table 1).

Table 1. Insurance Premium Codes

r T 1
| AGE | SEX |
t + i
| | I
| Age in years Code | Sex Code |
| | I
| 1-5 IAGE=1 | Male ISEX=1 |
| 6-10 IAGE=2 | Female ISEX=2 |
| . . T {
| . . | POLICY SIZE |
| . . b i
| 96-100 IAGE=20 | |
I | Dollars Code |
| HEALTH | |
b - i 1,000 ISIZE=1 |
| Health Code i 3,000 ISIZE=3 |
’	5,000 ISIZE=4
Poor IHLTH=1	10,000 ISIZE=5
Fair IHLTH=2	25,000 ISIZE=6
Good IHLTH=3	50,000 ISIZE=7
Excellent IHLTH=U4	100,000 ISIZE=8
L 4 — 4

Suppose an applicant is 14 years old, male, in good health, and
desires a policy of $25,000. From Table 1, these statistics can be
represented by the codes:

IAGE=3 (11 - 15 years old)
ISEX=1 (male)

IHLTH=3 (good health)
ISIZE=6 ($25,000 policy)

Thus, COST (3, 1, 3, 6) represents the premium for a policy, given
the statistics above. Note that "IAGE" can vary from 1 to 20, "ISEX"
from 1 to 2, "IHLTH" from 1 to 4, and "ISIZE" from 1 to 8. The number
of subscripted variables in the array COST is the number of combinations
that can be formed for different ages, sex, health, and policy size
available - a total of 20x2x4x8 or 1280. Therefore, there may be up to
1280 different premimums stored in the array named COST.

DECLARING THE SIZE OF AN ARRAY

The size of an array is determined by the number of subscript
parameters of the array and the maximum value of each subscript. This
information must be given for all arrays before using them in a FORTRAN
program, so that an appropriate amount of storage may be reserved.
Declaration of +this information is made by a DIMENSION statement, a
COMMON statement, or by one of the Explicit specification statements
(INTEGER, REAL, COMPLEX, and LOGICAL); each is discussed in further
detail in the section "Specification Statements."

18

ARRANGEMENT OF ARRAYS IN STORAGE

Arrays are stored in ascending storage locations, with the value of
the first of their subscripts increasing most rapidly, and the value of
the last increasing least rapidly.

Examples:

The array named A, consisting of one subscript parameter which varies
from 1 to 5, appears in storage as follows:

A(1l) A(2) A(3) A(4) A(S)

The array named B, consisting of two subscript parameters, whose
first subscript v#fies over the range from 1 to 5, and second varies
from 1 to 3, appears in ascending storage 1locations 1in the following
order:

B(1,1) B(2,1) B(3,1) B(4,1) B(5,1)-]

L’B(1,2) B(2,2) B(3,2) B(4,2) B(5,2)—1

LbB(ZL,3) B(2,3) B(3,3) B(4,3) B(5,3)

Note that B(1,2) and B(1,3) follow in storage B(5,1) and B(5,2),
respectively.

The following list is the order of an array named C, consisting of
three subscript parameters, whose first subscript varies from 1 to 3,
second varies from 1 to 2, and third varies from 1 to 3:

c(i,1,1) c(2,1,1) c(3,1,1) c(1,2,1) Cc(2,2,1) C(3,2,1%1

l"'C(.1.q,1,2) c(2,1,2) ¢(3,1,2) ¢(1,2,2) c(2,2,2) C(3,2,2%j

LFC(l,l,,3) c(2,1,3) ¢(3,1,3) c(1,2,3) C(2,2,3) C(3,2,3)

Note that ¢(1,1,2) and C(1,1,3) follow in storage C(3,2,1) and C(3,2,2),
respectively.

EXPRESSIONS

Expressions in their simplest form consist of a single constant or
variable. They may also designate a computation or show a relationship
between two or more constants and/or variables. Expressions may appear
in arithmetic and logical assignment statements and in certain control
statements.

FORTRAN provides two kinds of expressions: arithmetic and logical.
The wvalue of an arithmetic expression is always a number whose type is
integer, real, or complex. However, the evaluation of a 1logical
expression always yields a truth value: .TRUE. or .FALSE..

ARITHMETIC EXPRESSIONS

The simplest arithmetic expression consists of a single constant,
variable, or subscripted variable of the type integer, real, or complex.
If the constant, variable, or subscripted variable is of the type

Elements of the Language 19

integer, the expression is in the integer mode. If it is of the type
real, the expression is in the real mode, etc.

Examples:
Expression Type of Quantity Mode of Expression
3 Integer Constant Integer
I Integer Variable Integer
3.0 Real Constant Real
A Real Variable Real
3.14D3 Real Constant Real with eight loca-
tions of storage re-
served
B(2*I) Real variable (Specified Real with four loca-
as such in a Type tions of storage re-
statement) served b
(2.0,5.7) Complex Constant Complex
C Complex Variable Complex

(Specified as such in a
Type statement)

In the expression B(2*I), the subscript (2+%I), which must always
represent an integer, does not affect the mode of the expression. That
is, the mode of the expression is determined solely by the type of
constant, variable, or subscripted variable appearing in that expres-
sion.

More complicated arithmetic expressions containing two or more

constants ands/or variables may be formed by using arithmetic operators
that express the computation(s) to be performed.

Arithmetic Operators

The arithmetic operators are as follows:

Arithmetic Operator Definition

** Exponentiation
* Multiplication
/ Division

+ Addition

- Subtraction

RULES FOR_CONSTRUCTING ARITHMETIC EXPRESSIONS: The following are the
rules for constructing arithmetic expressions that contain arithmetic
operators:

1. All desired computations must be specified explicitly. That is, if
more than one constant, variable, subscripted variable, or subpro-
gram name (see the section "SUBPROGRAMS") appears in an arithmetic
expression, they must be separated from one another by an arithme-
tic operator. For example, the two variables A and B will not be
multiplied if written:

AxB or AB or AeB
If multiplication is desired, then the expression must be written:
A*B or B*A

2. No two arithmetic operators may appear 1in sequence in the same
expression. For example, the following expressions are invalid:

A*/B and A*-B

20

However,

in

the expression, A*-B,
sign rather than the arithmetic operator

then the expression could be written:

A* (-B)

In effect

multiplied with it.

The mode of an arithmetic expression is determined by the type
specification of the variables in the expression.

length

« —-B will be

evaluated first,
(For further uses of parentheses,

and then

if the - is meant to be a minus
designating

subtraction,

A will be
see Rule 6.)

and
Table 2

indicates how the mode of variables of different types and 1lengths
may be determined using the operators:

+y *,

/.

Detefmining the Mode of an Expression Containing

Table 2.
Variables of Different Types and Lengths

I T T T T T T —
| | INTEGER | INTEGER | REAL | REAL | COMPLEX |COMPLEX|
|+ = * /| (2) | () |) | (8) | (8) | (16) |
I 1 4 e
t ¥ 1 1 ¥ ¥ : 1
| INTEGER| Integer | Integer | Real | Real | Complex |Complex|
1 2y | (2) | (u) | | (8) | (8} | (16) |
" - ¥ -—1 4 | -
| INTEGER| Integer | Integer | Real | Real | Complex |Complex|
|) | (w) |) |) | (8) | (8) | (16) |
e t y - e
| REAL | Real | Real | Real | Real | Complex |Complex|
|) | (4) | (4) (€Y | (8 | (8) | (16) |
L IR] P 1 —— | A I,
v T T T + T + {
| REAL | Real | Real | Real | Real | Complex |Complex|
| (8) | (8) i (8) | (8 -] (8) | (16) | (16) |
L 1 ! | - -
r +_"" T T 'I""'— T + {
| COMPLEX| Complex | Complex | Complex | Complex | Complex [Complex|
1 8 | (8) i (8) | (8) | (16) | (8) | (16) |
i + ~d4 e e e e
¢ ¥ 4 1 ¥ ¥ ¥ i
| COMPLEX| Complex | Complex | Complex | Complex | Complex |Complex|
| (16) | (16) | (16) | (1&) | (16) | (16) | (16) |
| Lo 1 L L L —d -d

From Table 2 it can be seen

length

specification

that there is a hierarchy of type
(see the section "The Type Statements") that

determines the mode of an expression.
that has a length specification of 16 when combined with any other

types of constants and variables results in complex data of

i6.

For

example,

and
complex data

length

Assume that the type of the following variables has been specified

as follows

-
ks

Variable Names Type Length Specification
ROOT, E Real variable 4,8

A, I, F Integer variables 4,2,2

c,D Complex variable 16,8

Then the following examples illustrate how constants and variables
of differing types may be combined using the arithmetic operators:

Yy e e ¥
Expression Mode of Expression
ROOT*5 Real of length 4
A+3 Integer of length 4
C+2.9D10 Complex of length 16
E/F+19 Real of length 8

Elements of the Language 21

22

C-18.7E05 Complex of length 16
A/I-D Complex of length 8

The arithmetic operator denoting exponentiation (i.e.,**¥) may only
be used to combine the types of constants, variables, and sub-
scripted variables shown in Table 3.

Table 3. Valid Combinations With Respect to the Arithmetic
Operator **

1
Base Exponent |

-— d

{

Integer or Real (either length)** Integer or Real (either length)|

Complex (either length) ** Integer (either length)]
- -

o e e e e o =y

Assume that the type of the following variables has been specified
as follows, and that their length specification is standard:

Variable Names Type

ROOT, E Real variable

A, I, F Integer variables
C Complex variable

Then the following examples illustrate how constants and variables
of differing types may be combined using the arithmetic operator,
*%,

Examples:

Expression Type Result
ROOT** (A+2) (Real**Integer) (Real)
C**A (Complex**Integer) (Complex)
ROOT** I (Real**Integer) (Real)
I**F (Integer**Integer) (Integer)
7.98E21**ROOT (Real**Real) (Real)
ROOT*#*2,.1E5 (Real**Real) (Real)
A**E (Integer**Real) (Real)

Order of Computation: Where parentheses are omitted, or where the
entire arithmetic expression is enclosed within a single pair of
parentheses, effectively the order in which the operations are
performed is as follows:

Operation Hierarchy

Evaluation of Functions (see the 1st (highest)
section "Subprograms")

Exponentiation (#*%*) 2nd

Multiplication and Division (¥ and /) 3ra

Addition and Subtraction (+ and -) 4th

In addition, if two operators of the same hierarchy (with the
exception of exponentiation) are used consecutively, the two
operations are performed from left to right. Thus, the arithmetic
expression A/B*C is evaluated as if the result of the division of A
by B was multiplied by C.

For example, the expression:
(A¥B/C*+*I+D)

is effectively evaluated in the order:

a. C**I Call the result X (exponentiation)
b. A*B Call the result Y (multiplication)
c. Y/X Call the result 2 (division)
d. Z+D Final operation (addition)

For exponentiation the evaluation is from right to left. Thus, the
expression:

A**B**C
is evaluated as follows:

a. B*x*C Call the result %
b. A**7Z Final operation

6. Use of Parentheges: Parentheses may be used in arithmetic expres-
sions, as in algebra, to specify the order in which the arithmetic
operations are to be computed. Where parentheses are used, the
expression within the parentheses is evaluated before the result is
used.

For example, the expression:
(B+ ((A+B) *C) +A**2)

is effectively evaluated in the order:

a. (A+B) Call the result X
b. (X*C) Call the result Y
C. A*¥2 Call the result 2
d. B+Y+Z Final operations

LOGICAL EXPRESSIONS

The simplest form of logical expression consists of a single logical
constant, logical variable, or logical subscripted variable, the value
of which is always a truth value (i.e., either .TRUE. or .FALSE.).

More complicated logical expressions may be formed by using logical
and relational operators. These expressions may be in one of the three
folilowing forms:

1. Relational operators combined with arithmetic expressions whose
mode is integer or real.

2. Logical operators combined with 1logical constants (.TRUE. and
.FALSE.), logical variables, or subscripted variables.

3. Logical operators combined with either or both forms of the logical
expressions described in items 1 and 2.

Item 1 is discussed in the following section, "Relational Operators";
items 2 and 3 are discussed in the section "Logical Operators."

Elements of the Language 23

Relational Operators

The six relational operators, each of which must be preceded and
followed by a period, are as follows:

Relational Operator Definition

.GT. Greater than (>)

.GE. Greater than or equal to (2)
- LT. Less than (K)

.LE. Less than or equal to (X)
-EQ. Equal to (=)

. NE. Not equal to (%)

The relational operators express an arithmetic condition which can be
either true or false. Only arithmetic expressions whose mode is integer
or real may be combined by relational operators. For example, assume
that the type of the following variables has been specified as follows:

Variable Names Type

ROOT, E Real variables

A, I, F Integer variables
L Logical variable

C Complex variable

Then the following examples illustrate valid and invalid 1logical
expressions using the relational operators.

Examples:

Valid Logical Expressions Using Relational Operators:

(ROOT*A) .GT.E
A.LT.I

E**2,7.EQ. (5%¥ROOT+4)
57.9.LE. (4.7+F)
+«5.GE..9%ROOT
E.EQ.27.3D+05

Invalid Logical Expressions Using Relational Operators:

C.LT.ROOT (Complex quantities may never appear in logical
expressions)

C.GE. (2.7,5.9E3) (Complex quantities may never appear in logical
expressions)

L.EQ. (A+F) (Logical quantities may mnever be joined by
relational operators)

E**2_ EQ97.1E9 (Missing period immediately after the relational
operator)

.GT.9 (Missing arithmetic expression before the rela-

tional operator)

Logical Operators

The three 1logical operators, each of which must be preceded and
followed by a period, are as follows. (A and B represent logical
constants or variables, or expressions containing relational operators.)

24

Logical Operator Definition

«NOT. .NOT.A ~ if A is .TRUE., then .NOT.A has the value
~FALSE.; if A is .FALSE., then .NOT.A has the value
- TRUE.

<AND. A.AND.B- - if A and B are both .TRUE., then A.AND.B

has the value .TRUE.; if either A or B or both are
«-FALSE., then A.AND.B has the value .FALSE.

«OR. A.OR.B - 1if either A or B or both are .TRUE., then
A.OR.B has the value .TRUE.; if both A and B are
.FPALSE., then A.OR.B has the value .FALSE.

Two logical operators may appear in sequence only if the second one
is the logical operator .NOT.. '

Only those expressions which, when evaluated, have the value .TRUE.
or .FALSE. may be combined with the logical operators to form logical
expressions. For example, assume that +the type of the following
variables has been specified as follows:

Variable Names Type

RoOOT, E Real variables

A, I, F Integer variables
L, W Logical variables
C Complex variable

Then the following examples illustrate valid and invalid logical
expressions using both logical and relational operators.

Examples:

Valid Logical Expressions:

(ROOT*A.GT.A) .AND. W

L.AND..NOT. (I.GT.F)
(E+5.9D2.GT.2*E) .OR. L
+NOT.W.AND. .NOT. L
L.AND..NOT.W.OR.I.GT.F
(A**F.GT.ROOT) . AND. .NOT. (I.EQ.E)

Invalid Logical Expressions:

A.AND.L (A is not a logical expression)

«OR.W (.OR. must be preceded by a Jlogical
expression)

NOT. (A.GT.F) (missing period before the logical operator
.NOT.)

(C.EQ.I).AND.L (a complex variable may never appear in a
logical expression)

L.AND..OR.W (the logical operators .AND. and .OR. must
always be separated by a logical expression)

~AND.L (.AND. must Dbe preceded by a logical
expression)

Order of Computations in Logical Expressions: Where parentheses are
omitted, or where the entire logical expression is enclosed within a
single pair of parentheses, the order in which the operations are
performed is as follows:

Elements of the Language 25

Operation Hierarchy

Evaluation of Functions 1st (highest)
Exponentiation (%%) 2nd
Multiplication and division (* and /) 3rd
Addition and subtraction (+ and -) 4th
.LT.,.LE.,;-EQ., .NE.,.GT., .GE. 5th
- NOT. 6th
.AND. 7th
-OR. 8th

For example, the expression:
(A.GT.D**B, AND. .NOT.L.OR.N)
is effectively evaluated in the following order:

1. D#*%*B Call the result W (exponentiation)

2. A.GT.W Call the result X (relational operator)

3. .NOT.L Call the result Y (highest logical operator)

4, X.AND.Y Call the result Z (second highest logical operator)
5. Z.OR.N Final operation

Use of Parentheses in Togical Expressions: Parentheses may be .used in
logical expressions to specify the order in which the operations are to
be performed. Where parentheses are used, the expression contained
within the most deeply nested parentheses (that is, the innermost pair
of parentheses) is effectively evaluated first. For example, the
logical expression:

((I.GT. (B+C)).AND.L)
is effectively evaluated in the following order:

1. B+C Call the result X
2. I.GT.X Call the result Y
3. Y.AND.L Final operation

The logical expression to which the logical operator .NOT. applies
must be enclosed in parentheses if it contains two or more quantities.
For example, assume that the values of the logical variables A and B are
- FALSE. and .TRUE., respectively. Then the following two expressions
are not equivalent:

.NOT. (A.OR.B)
.NOT.A.OR.B

In the first expression, A.OR.B, is evaluated first. The result is
-TRUE.; but .NOT.(.TRUE.) implies .FALSE.. Therefore, the value of the
first expression is .FALSE..

In the second expression, .NOT.A is evaluated first. The result is

.TRUE.; but .TRUE..OR.B implies .TRUE.. Therefore, the value of the
second expression is .TRUE..

26

ARITHMETIC AND LOGICAL ASSIGNMENT STATEMENT

logical expression.

- -
General Form |
-—= {

I I
g:Q I
|

| Where: a is any subscripted or nonsubscripted variable. |
| |
b is any arithmetic or logical expression. |

|

Note: a must be a logical variable if, and only if, b is a |

|

J

The FORTRAN Arithmetic and Logical Assignment statement closely
resembles a conventional algebraic equation; however, the equal sign of
the FORTRAN Arithmetic statement specifies replacement rather than
equivalence. That is, the expression to the right of the equal sign is
evaluated, and the resulting value replaces the current value of the
variable to the left of the egual sign.

Assume that the type of the following variables has been specified
as:

Variable Names Type Length Specification
I, J, W Integer variables 4,4,2

A, B, ¢, D Real variables 4,4,8,8

E Complex variable 8

G, H Logical variables 4,4

Then the following examples illustrate valid arithmetic statements
using constants, variables, and subscripted variables of different
types:

Statements Description
A =B The value of A is replaced by the current value of B.
W=RB8 The value of B is truncated to an integer value, and

the least significant part replaces the value of W.

A=1I The value of I is converted to a real value, and this
result replaces the value of A.

I=1I+1 The value of I is replaced by the value of T + 1.

E = I#**J+D I is raised to the power J and the result is
converted to a real value to which the value of D is
added. This result replaces the real part of the
complex variable E. The imaginary part of the
complex variable is set to zero.

A = C*D The most significant part of the product of C and D
replaces the value of A.

G = .TRUE. The value of G is replaced by the logical constant
. TRUE. .

H = .NOT.G iIf 6 is .TRUE., the value of H is replaced by the

logical constant .FALSE.. If G is .FALSE., the value
of H is replaced by the logical constant .TRUE..

Arithmetic and Logical Assignment Statement 27

28

3..GT.I

(1.0,2.0)

The value of I is converted to a real value; if the
real constant 3. is greater +than this result, the
logical constant .TRUE. replaces the value of G. If
3. is not greater than I, the 1logical constant
.FALSE. replaces the value of G.

The value of the complex variable E 1is replaced by
the complex constant (1.0,2.0). Note that the state-
ment E = (A,B) where A and B are real variables is
invalid.

CONTROL STATEMENTS

Normally, FORTRAN statements are executed sequentially; that is,
after one statement has been executed, the statement immediately
following it will be executed. This section discusses the statements
that may be used to alter and control the normal sequence of execution
of statements in the program.

THE GO _TO STATEMENTS

These statements cause control to be transferred to the statement
specified by a statement number. There are three GO TO
statements: Unconditional GO TO, Computed GO TO, and Assigned GO TO.
Every time the same Unconditional GO TO statement is executed, a
transfer to the same specified statement is made. However, the Computed
and Assigned GO TO statements cause control to be transferred to one of
several statements, depending upon the current value of a particular
variable.

Unconditional GO TO Statement

General Form |

GO TO XXXXX |

Where: xxxxx is an executable statement number. |

[—— . o S e By

This GO TO statement causes control to be transferred to the
statement specified by the statement number. Every subsequent execution
of this GO TO statement results in a transfer to that same statement.

Example:

50 GO TO 25
10 A =B + C

Explanation:

In the above example, every time statement numbered 50 is executed,
control is transferred to the statement numbered 25.

Control Statements 29

Computed GO TO Statement

General Form

GO TO (_}E:L' Xae X34 '--'-wl(n)w }_
Where: Xjs,Xa2s-+-¢Xns are executable statement numbers.

i is a nonsubscripted integer variable which is in the
range: 1 < i <n

e b e
e s e e e s cratne e el .

This statement causes control to be transferred to the statement
numbered X1, Xa2v X3ee.+s O Xn, depending on whether the current value
of i is 1, 2, 3,..., Or n, respectively. If the value of i 1is outside
the allowable range, the next statement is executed.

Example:

Go TO (25, 10, 50, 7)), ITEM

50 A = B+C

7 C = E**2+A

25 L = C.GT.D.AND.F.LE.G

10 B = 21.3E02

Explanation:

In this example, if the value of the integer variable ITEM is 1,
statement 25 will be executed next. If ITEM is equal to 2, statement 10
will be executed next, and so on.

30

The ASSIGN and Assigned GO TO Statements

r
General Form

ASSIGN i TO m
| .

GO TO my (E:.:Ez'ﬁar-o-wi‘_n)

Where: i is an executable statement number.
Xg1sX20X3r+++9¢Xn are executable statement numbers.
m is a nonsubscripted integer variable of length # to which

is assigned one of the following statement numbers:
XasX29X3pmeneXne

o e s e e S — — —— —— — —— b c— o

[s o . S — — ——

The Assigned GO TO statement causes control to be transferred to the
statement numbered XisXzsX3s.--20r Xn, depenling on whether the current
assignment of m 1S X3,X2¢Xase--+s0r Xn, Yespectively. For example, in
the following statement:

GO TO N, (10, 25, 8)

If the current assignment of the integer variable N is statement number
8, the statement numbered 8 is executed next. If the current assignment
of N is statement number 10, the statement numbered 10 is executed next.
If N is assigned statement number 25, the statement numbered 25 is
executed next.

The current assignment of the integer variable m is determined by the
last ASSIGN statement executed. Only an ASSIGN statement may be used to
initialize or change the value of the integer variable m. The value of
the integer m is not the integer statement number; ASSIGN M TO I is not
the same as I=M.

Example 1:

-

ASSIGN 50 TO NUMBER
10 GO TO NUMBER, (35, 50, 25, 12, 18)

Explanation:

In the above example, statement 50 is executed immediately after
statement 10.

Control Statements 31

Example 2:

ASSIGN 10 TO ITEM

-

13 GO0 TO ITEM, (8, 12, 25, 50, 10)

10 B=C + D
ASSIGN 25 TO ITEM
GO TO 13

25 C = E#*%*2

Explanation:
In the above example, the first time statement 13 is executed,

control is transferred to statement 10. On the second execution of
statement 13, control is transferred to statement 25.

ADDITIONAL CONTROL STATEMENTS

Arithmetic IF Statement

General Form |

f

|

T T T
| IF (a) Xi1,X2sXs |
| |
| Where: a is an arithmetic expression which is not complex. |
| I
| X1¢X24X3 are statement numbers. |
L —_— e o o o 7 2 o A o e o e o e S o . o o o e | - -d

This statement causes control to be transferred to the statement
numbered X;,Xz,Xs3 wWhen the value of the arithmetic expression (a) is
less than, equal to, or greater than zero, respectively. The first
executable statement following the arithmetic IF statement should have a
statement number; otherwise, it can never be referred to or executed.

32

Example:

IF (A(J,K)**3-B)10, 4, 30

10 E = (F*B)/D+1

Explanation:

In the above example, if the value of the expression (A(J,K)**3-B) is
negative, the statement numbered 10 is executed next. If the value of
the expression 1is zero, the statement numbered 4 is executed next. If
the value of the expression is positive, the statement numbered 30 is
executed next.

Logical IF Statement

—_— e e e . e e e e 2 e o e e e 1

General Form |

———— PR —_— ——— ___.|

IF(a)s |

Where: a is any logical expression.

[e e e e e e e e

|
|
s 1is any statement except a specification statement, DO |
statement, or another logical IF statement. |

J

The logical IF statement is used to evaluate the 1logical expression
(a) and to execute or skip statement s, depending on whether the value
of the expression is .TRUE. or .FALSE., respectively.

Example 1:

-

5 IF(A.LE.0.0) GO TO 25

10 C =D + E

15 IF(A.EQ.B) ANSWER = 2.0*%A/C
20 F = G/H

25 W = X**3Z

Control sStatements 33

Explanation:

In statement 5, if the value of the expression is .TRUE. (i.e., A is
less than or equal to 0.0), the statement GO TO 25 is executed next, and
control is passed to the statement numbered 25. If the value of the
expression is .FALSE. (i.e., A is greater than 0.0), the statement GO
TO 25 is ignored, and control is passed to the statement numbered 10.

In statement 15, if the value of the expression is .TRUE. (i.e., A
is egqual to B), the value of ANSWER is replaced by the value of the
expression (2.0*A/C), and the statement numbered 20 is executed. If the
value of the expression is .FALSE. (i.e., A is not equal to B), the
value of ANSWER remains unchanged, and the statement numbered 20 is
executed next.

Example 2:

Assume that P and Q are logical variables.

5 IF(P.OR..NOT.Q)A=B
10 C = B**2

Explanation:

In statement 5, if the value of the expression is .TRUE., the value
of A is replaced by the value of B and statement 10 is executed next.
If the value of the expression 1is .FALSE., the statement A = B is
skipped and statement 10 is executed.

DO_Statement

r— - - ST e 1
| General Form |
o e e e e e e e e e e e oo e o e e e e - - — e e e o i e e o e i _l
L}

i End of DO Initial Test |
| Range Variable Value Value Increment |
I N — N e —— N — N |
| DO X i = ms, Mo, puks |
I [
| Where: x 1is an executable statement number, that is not defined |
| before the DO statement. |
| |
| i is a nonsubscripted integer variable. |
I I
| my, Moy, M3, are either unsigned integer constants greater |
| than zero or unsigned nonsubscripted integer variables whose |
| value is greater than zero. The sum mp+ms+l must not exceed |
] the size of virtual storage. (my, is optional; if it is |
| omitted, its value is assumed to be 1. 1In this case, the |
| preceding comma must also be omitted.) |
L e _— _— e 1

The DO statement 1is a command to execute repeatedly the statements
that follow, up to and including the statement numbered x. The first
time the statements in the range of the DO are executed, 1i is
initialized to the value m;; each succeeding time i is increased by the
value my. When, at the end of the iteration, i is equal to the highest

34

value that does not exceed m,, control passes to the statement following
the statement numbered x. Thus, the number of times the statements in
the range of the DO is executed is given by the expression:

where the brackets represent the largest integral value not exceeding
the value of the expression. If m, is less than m,, the statements in
the range of the DO are executed once. Upon completion of the DO, the
DO variable is undefined.

There are several ways in which looping (repetitively executing the
same statements) may be accomplished when using the FORTRAN language.
For example, assume that a manufacturer carries 1000 different machine
parts in stock. Periodically, he may find it necessary to compute the
amount of each different part presently available. This amount may be
calculated by subtracting the number of each item used, 0OUT(I), from the
previous stock on hand, STOCK(I).

Example:
5 I=0
10 I=I+1

25 STOCK(I)=STOCK(I)- OUT(I)
15 IF(I1-1000) 10,30,30
30 A=B+C

Explanation:

The three statements (5, 10, and 15) required to control the loop
could be replaced by a single DO statement, as shown in Example 1.

Example 1:

DO 25 I = 1,1000
25 STOCK(I) = STOCK(I)-0OUT(I)
30 A=B+C

Explanation:

In the above example, the DO variable I is set to the initial value
of 1. Before the second execution of statement 25, I is increased by
the increment 1 and statement 25 1is again executed. After 1000

executions of the DO loop, I equals 1000. Since I is now equal to the
highest value that does not exceed the test value 1000, control passes
out of the DO loop, and statement 30 is executed next. Note that the DO
variable I is now undefined; its value is not necessarily 1000 or 1001.

Control Statements 35

Example 2:

DO 25 I1=1, 10, 2

15 J=I+K
25 ARRAY(J) = BRAY(J)
30 A=B+C

Explanation:

In the above example, statement 25 is the end of the range of the DO
loop. The DO _variable I is set to the initial value of 1. Before the
second execution of the DO loop, I is increased by the increment 2, and
statements 15 and 25 are executed a second time. After the fifth
execution of the DO loop, I equals 9. Since I 1is now egqual to the
highest value that does not exceed the test value 10, control passes out
of the DO loop, and statement 30 is executed next. Note that the DO
variable I is now undefined; its value is not necessarily 9 or 11.

Programming Considerations in Using a DO Loop

1. The indexing parameters of a DO statment (i, my, m>, M3) may not be
changed by a statement within the range of the DO loop.

2. There may be other DO statements within the range of a DO
statement. All statements in the range of the inner DO must be in

the range of the outer DO. A set of DO statements satisfying this
rule is called a nest of DOs.

Example 1:
DO 50 I = 1, U

A(I) = B(I)#*%2

Range of
DO 50 J=1, 5 Outer DO
Range of
50 C(J+1) = A(I) Inner DO
Example 2:
DO 10 INDEX = L, M
N = INDEX + K
g Range of
DO 15 J = 1, 100, 2 Outer DO
Range of
15 TABLE(J) = SUM(J,N)-1 Inner DO

10 B(N) = A(N)

3. A transfer out of the range of any DO loop is permissible at any
time.

4. 1If, and only if, a transfer is made from the range of an innermost
DO 1loop, transfer back into the range of that innermost DO loop is
allowed provided none of the indexing parameters (i,m,,mp,m3) are
changed outside the range of the DO. A transfer back into the
range of any other DO in the nest of DOs is not permitted.

36

Example:

Explanation:

In the preceding example, the transfers specified by the numbers
1, 2, and 3 are permissible, whereas those specified by 4, 5, and 6
are not.

The indexing parameters (i,my,m2,M3) may be changed by statements
outside the range of the DO statement only if no transfer is made
back into the range of the DO statement using those parameters.

The last statement in the range of a DO loop (statement x) may not
be a GO TO, Arithmetic IF, PAUSE, STOP, RETURN or another DO
statement. In addition, the last statement may not be a logical IF
statement containing any of those statements.

The use of, and return from, a subprogram from within any DO 1loop
in a nest of DOs is permitted.

CONTINUE Statement

General Form

o e e e s 2 R . . . o e S e . e e 8 e 2 S S e -_———n

o . s s .

CONTINUE

L S

CONTINUE is a dummy statement which may be placed anywhere in the

source program without affecting the sequence of execution. It may be
used as the last statement in the range of a DO in order to avoid ending
the DO loop with a GO TO, Arithmetic IF or another DO statement.

Example 1:

DO 30 I =1, 20

7 IF (A(I)-B(I)) 5,30,30

5 A(I) =A(I) +1.0
B(I) = B(I) -2.0
GO TO 7

30 CONTINUE

40 ¢ = A(3) + B(7

Control Statements 37

Explanation:

In the preceding example, the CONTINUE statement is used-as the last
statement in the range of the DO to avoid ending the DO 1loop with the
statement GO TO 7.

Example 2:

DO 30 I=1,20
IF(A(I)-B(I))5,40,40
5 A(I) = C(I)
GO TO 30
40 A(I) = 0.0
30 CONTINUE

In Example 2, the CONTINUE statement provides a branch point enabling
the programmer to bypass the execution of statement 40.

PAUSE Statement

r 1
| General Form I
t e e m oo 1
| I
| PAUSE |
| PAUSE n |
| PAUSE 'message' |
I I
| Where: n is an unsigned 1l-through 5-digit integer constant. |
I I
{ message is any literal constant. J

The PAUSE statement causes the program tc display 'PAUSE'. If n is
specified, 'PAUSE n' is displayed; likewise, if 'message' is specified,
'PAUSE message' is displayed. The program waits until operator inter-
vention causes it to resume execution, starting with the next statement

after the PAUSE statement.

STOP Statement

[T s s s e 1
| General Form |
e — — —1
|

STOP

!
I
| STOP n
!
|

Where: n is an unsigned 1l-through 5-digit integer constant.

U, ———————————— —_— _

This statement terminates the execution of the object program and
displays n if specified.

38

END Statement

The END statement is a nonexecutable statement that defines the end
of a source program or source subprogram for the compiler. Physically,
it must be the last statement of each program or subprogram.

The END statement must be contained on a single 1line; however,
interspersed blanks between the characters E, N, and D are permitted.

control Statements 39

INPUT/OUTPUT STATEMENTS

The input/output statements enable a user to transfer data, belonging
to a named collection of data, between I/0 devices (such as disk units,
card readers, and magnetic tape units) and internal storage. The named
collection of data is called a data set and is not restricted to device
correspondence. A data set 1is referred to by an unsigned integer
constant or integer variable. Formerly, this reference was called a
symbolic unit number. However, since it more appropriately refers to
the data rather than any specific device, this number is referred to in
this publication as the data set reference number.

For the FORTRAN user, a data set is considered to be a continuous
string of data which may be subdivided into FORTRAN records. This
subdivision of data sets into FORTRAN records is stated by the use of
one or more of the following:

1. A FORMAT statement referred to by an I/0 statement
2. An I/O0 list appearing in an I/0 statement
3. A NAMELIST name appearing in an I/0O statement

In addition to subdividing data sets into records, a FORMAT statement
may be used to declare the form in which the data is to be transmitted.

There are five I/0 statements: READ, WRITE, END FILE, REWIND, and
BACKSPACE. The READ and WRITE statements are used to transfer data into
or from internal storage. The END FILE statement defines the end of a
data set; the REWIND and BACKSPACE statements control the positioning of
data sets.

Even though the I/0 statements described below are device indepen-
dent, in that a given I/0 statement may be applicable to a data set on
any number of devices or device types, it 1is often meaningful to
consider the original source, or ultimate destination of the data being
transferred. Thus, for the sake of demonstration, subsequent examples
will be in terms of card input and print-line output.

BASIC INPUT/OUTPUT STATEMENTS

The basic input/output statements are READ and WRITE. The statements
FORMAT and NAMELIST, though not I/0 statements, may be used in
conjunction with certain forms of READ and WRITE statements. All four
statements are presented in greater detail in the following sections.

40

READ STATEMENT

General Form

READ (a, b, END=¢, ERR=d4) list

Where: a is an unsigned integer constant or an integer variable of

length 4 that represents a data set reference number.

1
|
{
I
I
|
|
|
b is either the statement number or array name of the FORMAT |
statement describing the data being read, or a NAMELIST |
name. |
"¢ is the statement number to which transfer is made upon =
I

I

!

|

|

!

I

I

|

4

encountering the end of the data set.

d is the statement number to which transfer is made upon
encountering an error condition in data transfer.

list is a series of variable or array names, separated by
commas, which may be indexed and incremented. They specify
the number of items to be read and the locations in storage
into which the data is placed.

[e e o s o o . i e e S e . e . e S OO S, b, S e

The READ statement may take many different forms. For example, the
parameters END=c and ERR=d are optional and, therefore, may or may not
appear in a READ statement. Furthermore, either the 1list or the
parameter b may be omitted.

When one or more of the parameters END=c or ERR=d are used after the
a and b portion of a READ statement, they may appear in any order within
the parentheses. For example, the following are valid READ statements:

READ(5, 50, ERR=10)A,B,C
READ(5, 25, END=15) D,E,F,F,H
READ (N, 30, ERR=100, END=8) X,Y,Z

If a transfer is made to a statement specified by the END parameter,
no indication is given the program as to the number of items in the list
(if any) read before encountering the end of the data set. If an END
parameter is not specified in a READ statement, the end of the data set
terminates execution of the object program.

If a transfer is made to a statement specified by the ERR parameter,
no data is read into the list items associated with the record in error.
No indication is given the program as to which input record or records
are in error; only that one or more data items read into the list may be
in error. If an ERR parameter is not specified in a READ statement, an
error terminates execution of the object program.

The three basic forms of the READ statement are:
READ (a,x)

READ(a,b)list

READ(a)1list

The parameters END=¢ and ERR=d may be wused in the combination

described above in each of these three forms.

Input/Output Statements 41

The Form READ (a,Xx)

This form is wused to read data from the data set associated with a
into the locations in storage specified by the NAMELIST name X. The
NAMELIST name X is a single variable name that refers to a specific list
of wvariables or array names into which the data is placed. A specific
list of variable or array names receives a NAMELIST name by use of a
NAMELIST statement. The programmer need only use the NAMELIST name in
the READ (a,x) statement to reference that 1list thereafter in the
program.

The format and rules for constructing and using the NAMELIST
statement are described in the following text.

| General Form

} ________________ — —_— - —_—

NAMELIST/X/8¢Dpee-eC/Y/8¢€4---¢f/2/9,0,...,1
Where: x,y, and z,... are NAMELIST names.

a,n,c,d,... are variable or array names.

o ot i . s s e b e el

| e e e e e e e 2 i e o

The following rules apply to defining and using a NAMELIST name:

1. A NAMELIST name consists of from 1 through 6 alphameric characters,
the first of which is alphabetic.

2. A NAMELIST name is enclosed in slashes. The list of variable or
array names belonging to a NAMELIST name ends with a new NAMELIST
name enclosed in slashes or with the end of the NAMELIST statement.

3. A variable name or an array name may belong to one or more NAMELIST
names.

L. A NAMELIST name may be defined only once by its appearance in a
NAMELIST statement and must be so defined before its use. After it
is defined in the NAMELIST statement, the NAMELIST name may appear
only in input or output statements thereafter in the program.

5. A NAMELIST statement may appear anywhere in a FORTRAN program prior
to its use in a READ/WRITE statement.

6. Variable or array names appearing anywhere in a NAMELIST statement
or NAMELIST name may not appear in a FUNCTION, SUBROUTINE, or ENTRY
statement.

Example:

Assume that A, I, and L are array names.

NAMELIST /NaM1/A,B,I,J,L/NAM2/A,C,J,K

READ (5,NAM1)

L2

Explanation:

The above READ statement causes the record that contains the input
data for the variables and arrays that belong to the NAMELIST name
referenced, NAMl, to be read from the data set associated with the data
set reference number 5.

When a READ statement references a NAMELIST name, input data in the
form described in the following text is read from the designated input
data set.

Input Data

The first character in the record 1is always ignored. The second
character of the first record of a group of data records to be read must
be ¢, immediately followed by the NAMELIST name. This name is followed
by any combination of data items 1 and 2 below, separated by commas. (A
comma after the last item is optional.)

The form the data items may take is:

1. Variable name = constant

The variable name may be a subscripted variable name or a single
variable name. Subscripts must be integer constants.

2. Array name = set of constants (separated by commas)

The set of constants may be in the form "k* ccnstant,” where k is
an unsigned integer called the repeat constant. It represents the
number of successive elements in the array to be initialized by the
specified constant. The number of constants must be equal to the
number of elements in the array.

Constants used in the data items may be integer, real, 1literal,
complex, or logical data. If the constants are logical data, they may
be in the form T or .TRUE. and F or .FALSE..

Any selected set of variable or array names belonging to the NAMELIST
name appearing on the first record may be used as specified by items 1
and 2 in the preceding text. Names that are made equivalent to these
names may not be used unless they also belong to the NAMELIST name.

The end of a group of data is signaled by the character sString §END
with no embedded blanks and all appearing in the same record.

Blanks must not be embedded in a constant or repeat constant, but may
be used freely elsewhere in a data record. The last item on each record
that contains data items must be a constant followed by a comma. (The
comma is optional on the record that precedes the record containing
&END.)

Example:

Assume that ©L 1is an array consisting of one subscript parameter
ranging from 1 to 10.

Input/Output Statements 43

column 2
+

First Data Card: &§NAML

Second Data Card: I1(2,3)=5, J=u,

Third Data Card: A(3)=4.0, 1=2,3,8%*4,
Last Data Card: EEND

Explanation:

If this data is input to be used with the NAMELIST and READ
statements previously illustrated, the following actions take place.
The first data card is read and examined to verify that its name (and
the data items that follow) is consistent with the NAMELIST name in the
READ statement. If that NAMELIST name is not found it reads to the next
namelist group. When the second data card is read, the integer
constants 5 and U4 are placed in I(2,3) and J, respectively. When the
third data card is read, the real constant 4.0 is placed in A(3). Also,
since L is an array not followed by a subscript, the entire array is
filled with the succeeding constants. Therefore, the integer constants
2 and 3 is placed in L(1) and L(2), respectively, and the integer
constant 4 is placed in L(3), L(4),...,L(10).

The Form READ (a,b) List

This form is used to read data from the data set associated with a
into the locations in storage specified by the variable names in the
list. The list, used in conjunction with the specified FORMAT statement
b (see the section "FORMAT statement"), determines the number of items
(data) to be read, the locations, and the form the data will take in
storage.

Example 1:

Assume that the variables A, B, and C have been declared as integer
variables.

-

75 FORMAT (G10, G8, G9)

READ (J, 75) A, B, C

Explanation:

The above READ statement causes input data from the data set
associated with data set reference number J to be read into the
locations A, B, and C according to +the FORMAT statement referenced
(statement 75). That is, the first 10 positions of the record are read
into storage location A; the next 8 positions are read into storage
location B; and the next 9 positions are read into storage location C.

The 1list can be omitted from the READ (a,bl)list statement. In this
case, a record is skipped or data is read from the data set associated

Ly

with a into the locations in storage occupied by the FORMAT statement
numbered b.

Example 2:

98 FORMAT (*HEADING')

Explanation:

The above statements would cause the characters H, E, A, D, I, N, and
G in storage to be replaced by the next 7 characters imn the data set
associated with data set reference number 5.

Example 3:

98 FORMAT (G10, *HEADING')

READ (5,98)

-

Explanation:

The above statements would cause the next record in the data set
associated with data set reference number 5 to be skipped. No data is
transferred into internal storage because there is no 1list item that
corresponds with format code G10.

The Form READ (a) List

The form READ (a) list of the READ statement causes binary data
(internal form) to be read from the data set associated with a into the
locations of storage specified by the variable names in the list. Since
the input data is always in internal form, a FORMAT statement is not
regquired. This statement is used to retrieve the data written by a
WRITE (a) list statement.

Example:
READ (5) A, B, C

Explanation:

This statement causes the binary data from the data set associated
with data set reference number 5 to be read into the storage locations
specified by the variable names A, B, and C.

The list may be omitted from the READ (a) list statement. In this
case, a record is skipped.

Input/Output Statements 45

Example:
READ (5)

Explanation:

The above statements would cause the next record in the data set
associated with data set reference number 5 to be skipped. No data is
transferred into internal storage.

Indexing I/0 Lists

Variables within an I/0 list may be indexed and incremented in the
same manner as those within a DO statement. These variables and their
indexes must be included in parentheses. For example, suppose it is
desired to read data into the first five positions of the array A. This
may be accomplished by using an indexed list as follows:

15 FORMAT (G10.3)

READ (2,15) (A(I),I=1,5)
This is equivalent to:

15 FORMAT (G10.3)

po121=1,5
12 READ (2,15) A(I)

As with DO statements, a third indexing parameter may be used to
specify the amount by which the index is to be incremented at each
iteration. Thus,

READ (2,15) (a(1), I=1,10,2)

causes transmission of values for A(1l), A(3), A(5), A(7), and A(9).

Furthermore, this notation may be nested. For example, the state-
ment :

READ (2,15) ((c(1,0),D(I1,J),J=1,3),I=1,4)
would transmit data in the following order:
c(,1, p(1,1y, C(,2), D(1,2), Cc(1,3), D(1,3)
c(,1), D(2,1), C(2,2), D(2,2), Cc(2,3), D(2,3)
ce,1y, o@3,1), c3,2, b(3,2), c3,3), D(3,3)
c(4,1y, D(4,1), C(4,2), D(4,2), C(u,3), D(4,3)
Since J is the innermost index, it varies more rapidly than I.
As another example, consider the following:
READ (2,25) I1,(C(J),J=1,1)
The variable I is read first and its value then serves as an index to

specify the number of data items to be read into the array C.

46

If it 1is desired to read data into an entire array, it is not
necessary to index that array in the I/O list. For example, assume that
the array A consists of one subscript parameter varying in the range of
1 to 10. Then the following READ statement referring to FORMAT
statement numbered 5:)

READ (2,5) A
would cause data to be read into A(1), A(2),...,A(10).

The indexing of I/0 lists applies to WRITE lists, as well as READ
lists.

Reading Format Statements

FORTRAN provides +the facility for variable FORMAT statements by
allowing a FORMAT statement to be read into an array in storage and
using the data in the array as the FORMAT specifications for subsequent
I/0 statements.

For example, the following statements result in A, B, and the array C
being read, converted, and stored according to the FORMAT specifications
read into the array FMT at object time:

DIMENSION FMT (18)
1 FORMAT (18AW)
READ (5,1) FMT
READ (5,FMT) A,B, (C(I),I=1,5)

i. The name of the variable FORMAT specification must appear in a
DIMENSION statement, even if the array size is only 1.

2. The form of the format codes read into the FMT array at object time
must take +the same form as a source program FORMAT statement,
except that the word FORMAT is omitted (see the section "The FORMAT
Statement").

WRITE STATEMENT

General Form

WRITE (a, b) list

is an unsigned integer constant or an integer variable of

Where: a
length 4 that represents a data set reference number.
b

is either the statement number or array name of the FORMAT
statement describing the data being written, or a NAMELIST
name.

list is a series of variable or array names, separated by
commas, Wwhich may be indexed and incremented. They specify
the number of items to be written and the locations in
storage from which the data is taken.

[A Bt st o . S L S———— — — S et =}
bt s s o o s S At T— —— O — vt s]

Input/Output Statements 47

The WRITE statement may take many different forms. For example, the
list or the parameter b may be omitted. .
The three basic forms of the WRITE statement are:
WRITE(a,x)

WRITE(a,b)list
WRITE(a)list

The Form WRITE (a,x)

This form is used to write data from the locations in storage
specified by the NAMELIST name X into the data set associated with a

(see the section "The Form READ(a,x)").

Example:
WRITE (6 ,NAM1)

Explanation:

This statement causes all variable and array names (as well as their
values) that belong to the NAMELIST name, NAMl, to be written on the
data set associated with data set reference number 6.

When a WRITE statement references a NAMELIST name:

1. All variables and arrays and their values belonging to the NAMELIST
name will be written out, each according to its type. The complete
array is written out by columns.

2. The output data will be written such that:

a. The fields for the data will be large enough to contain all the
significant digits.

b. The output can be read by an input statement referencing the
NAMELIST name.

Example:
Assume that A is a 3 by 3 array.

NAMELIST/NAM1/A,B,I,D
WRITE (8,NAML)

-
-

Assuming that the output is punched on cards, the format would be:

Column 2

4
First Output Card: §NAML
Second Output Card: A=3.4, 4,5, 6.2, 25.1,
Third Output Card: 9.0, -15.2,~-7.6, 0.576Ebl2,
Fourth Output Card: 2.717,B=3.14,1=10,D=0.378E-15,
Fifth Output Card: E§END

48

The Form WRITE (a,b) List

This form is wused +to write data in the data set associated with a
from the locations in storage specified by the variable names in the
list. The list, used in conjunction with the specified FORMAT statement
b, determines the number of items (data) to be written, the locations,
and the form the data will take in the data set.

Example 1:

In the following example, assume that the variables A, B, and C have
been declared as integer variables.

75 FORMAT (G10, G8, G9)

-

WRITE (J, 75) A, B, C

Explanation:

The above WRITE statement causes output data to be written in the
data set associated with the data set reference number J, from the
locations A, B, CC, according to the FORMAT statement referred to
(statement 75). That is, the 10 rightmost digits in A are written in
the data set associated with the data set reference number J; the next 8
positions in the data set will contain the 8 rightmost digits in B; and
the next 9 positions in the data set will contain the 9 rightmost digits
in C.

The list may be omitted from the WRITE (a,b) list statement. 1In this
case, a blank record is inserted, or data is written in the data set
associated with a from the locations in storage occupied by the FORMAT
statement b.

Example 2:
98 FORMAT (' HEADING"')

WRITE (5,98)

The above statements would cause a blank and the characters H, E, A,
D, I, N, and G in storage to be written in the data set associated with
data set reference number 5.

Example 3:
98 FORMAT (G10, "HEADING')

WRITE (5,98)

Explanation:
The above statements would cause a blank record to be placed in the

data set associated with data set reference number 5. No data is
transferred into the data set.

Input/Output Statements 49

The Form WRITE (a) List

The WRITE (a) list form of the WRITE statement causes binary data
(internal form) from the locations of storage specified by the variable
names in the list to be writtem in the data set associated with a.
Since the output data is always in internal form, a FORMAT statement is
not required. The READ (a) list statement is used to retrieve the data
written by a WRITE (a) list statement.

Example:
WRITE (5)A, B, C

Explanation:

The statement causes the binary data from the locations specified by
the variable names A, B, and C to be written in the data set associated
with data set reference number 5.

FORMAT STATEMENT

General Form

]

|

|

[
ke e

XXxXxXX FORMAT (gl,gz,a..,gn/gl"gz"cuc'gn'/l--)
Where: xxxxx is a statement number (1 through 5 digits).

C1sC2¢--+4Sn and c1',C2",...,Cn' are format codes which may
be delimited by one of the separators: comma, slash, or
parenthesis. These codes specify the length, decimal point
(if any), and position of the data in the data set.

[et e e e ot . i P v . s Mo . Y

/ may be used to separate FORTRAN records.

Ly U —

The FORMAT statement is used in conjunction with the READ and WRITE
statements in order to specify the desired form of the data to be
transmitted. The form of the data is varied by the use of different
format codes. The twelve format codes are: G, T, X, P, literal, A, I,
¥, B, D, H, and L. Any number used 1in a FORMAT statement except a
statement number or a literal must be less than 256.

USE__OF THE FORMAT STATEMENT: This section contains general information
on the FORMAT statement. The points discussed below are illustrated by
the examples that follow.

1. FORMAT statements are nonexecutable and may be placed anywhere in
the source program.

2. A FORMAT statement may be used to define a FORTRAN record, as
follows:

a. If no slashes or additional parentheses appear within a FORMAT
statement, a FORTRAN record is defined by the beginning of the
FORMAT statement (left parenthesis) to the end of the FORMAT
statement (right parenthesis). Thus, a new record is read when
the format control is initiated (left parenthesis); a new
record is written when the format control is terminated (right
parenthesis).

50

Example:

xxxxx FORMAT (----, -=--, ----)

---corresponds to 1
FORTRAN record

If slashes appear within a FORMAT statement, FORTRAN records
are defined by the beginning of the FORMAT statement to the
first slash in the FORMAT statement, from one slash to the next
succeeding slash, or from the last slash to the end of the
FORMAT statement. Thus, a new record is read when the format
control is initiated, and thereafter a record is read upon
encountering a slash; a new record is written upon encountering
a slash or when format control is terminated.

Example:
xxxxx FORMAT (----/ =-——=/ -=-=-)

<===> <===> <-==>

L ettt each corresponds to
1 FORTRAN recorxrd

If more than one level of parentheses appears within a FORMAT
statement, a record is defined by the beginning of the FORMAT
statement to the end of the FORMAT statement; thereafter, from
the first-level left parenthesis from the right of the FORMAT
statement to the end of the FORMAT statement.

Example 1:
0 1 2 21 0
xxxxx FORMAT (--- (--= (=-=)) ---)
<— >
| < >
| |
| |
| |
| |
L - —-————each corresponds to
1 FORTRAN record
Example 2:
0 1 1 1 1 0
xxxx FORMAT (--- (--=) -== (-==) ---)
G e e >
Lmmmm e >

—-each corresponds to
1 FORTRAN record

Input/Output Statements 51

When defining a FORTRAN record by a FORMAT statement, it is
important to consider the original source (input) or ultimate
destination (output) of the record. For example, if a FORTRAN
record is to be punched for output, the record should not be
greater than 80 characters. For input, the FORMAT statement should
not define a FORTRAN record longer than the record referred to in
the data set.

Blank output records may be introduced or input records may be
skipped by using consecutive slashes (/) in a FORMAT statement. If
there are n consecutive slashes at the beginning or end of a FORMAT
statement, n input records are skipped or n blank records are
inserted between output records, respectively. If n consecutive
slashes appear anywhere else in a FORMAT statement, the number of
records skipped or blank records inserted is n-1.

Successive items in an I/0 1list are +transmitted according to
successive format codes in the FORMAT statement, until all items in
the list are transmitted. If there are more items in the list than
there are codes in the FORMAT statement, control transfers to the
preceding left parenthesis of the FORMAT statement and the same
format codes are used again with the next record. If there are
fewer items in the list, the remaining format codes are not used.

A format code may be repeated as many times as desired by preceding
the format code with an unsigned integer constant.

A limited parenthetical expression is permitted to enable repeti-
tion of data fields according to certain format codes within a
longer FORMAT statement. Two levels of parentheses, in addition to
the parentheses required by the FORMAT statement, are permitted.
The second 1level of parentheses facilitates the transmission of
complex quantities.:

When transferring data on input or output, the type of format code
used, type of data, and type of variables in the I/O list should
correspond.

In the following examples, the output is shown as a printed 1line.
A carriage control character 'x' (see "Carriage Control") is
specified in the FORMAT statement but does not appear in the first
print position of the print line. This carriage control character
appears as the first character of the output record on any I/O
medium except the printed line.

G Format Code

General Form . |

(5]

@
A
191

[e e e e e . s e . e . S S . ==}

Where: a is optional and is an unsigned integer constant used to

denote the number of times the same format code 1is repeti-
tively referenced.

w is an unsigned integer constant less than or equal to 255
specifying the total field length.

s is an unsigned integer constant specifying the number of
significant digits.

The G format code is a generalized code, in that it may be used to
determine the desired form of data, whether it be integer, real,
complex, or logical.

The .s portion may be omitted when transferring integer or logical
data. If present, it is ignored. When real data is transferred, the w
portion of the G format code includes four positions for a decimal
exponent field.

If the real data, say n, is in the range 0.1<n<10**s, where s is the
s portion of the format code Gw.s, this exponent field is blank.
Otherwise, the real data is transferred with an E or D decimal exponent,
depending on the length specification (either 4 or 8 storage 1locations,
respectively) of the real data.

For simplification, the following examples deal with the printed
line; however, the concepts developed apply to all input/output media.

Example 1:

Assume that the variables A, B, C, and D are of type real, whose values
are 292.7041, 82.43441, 136.7632, .8081945, respectively.

FORMAT (*'x',G12.4,G12.5,G12.4,G12.7)
FORMAT ('x',G13.4,G13.5,G13.4)
FORMAT ('x',G13.4)

wN

WRITE (5, b) A, B, C, D

Explanation:

a. If b had been specified as 1, the printed output would be: (b
represents a blank)

Print Position 1 Print Position 48
t *
bbb292., 7Tbbbbbb82. 434bbbbbbbl136.7bbbb. 80819%45bbbb

b. If b had been specified as 2, the printed output would be:

Print Position 1 Print Position 39

t t

bbbb292. 7bbbbbbb8 2. 434bbbbbbbbl136.7bbbb ILine 1
bbb0.8081bbbb Line 2

From the example, it can be seen that by increasing the field
width reserved (w), blanks are inserted.

c. If b had been specified as 3, the printed output would be:

Print Position 1
]

bbbb292.7bbbb Line 1
bbbb82. 43bbbb Line 2
bbbbl36.7bbbb Line 3
bbb0. 8081bbbb Line 4

Input/Output Statements 53

Example 2:

From the example, it can be seen that the same format code was
used for each variable in the list. Each repetition of the
same format code caused a new line to be printed.

Assume that the variables I, J, K, and L. are of type integer, whose
values are 292, 443428, 4908081, and 40018, respectively.

W

FORMAT ('x',G10,2G7,G5)
FORMAT ('x',G6)
FORMAT ('x',4G10)

-

-

WRITE (5, b) I, J, K, L

.

-

Explanation:

54

A

If b had been specified as 1, the printed output would be:

Print Position 1 Print Position 29
t t
bbbbbbb292b443428490808140018 Line 1

The same results would be achieved, if FORMAT statement 1 had
been written:

FORMAT ('x',G10, G7, G7, G5)

Note that the .s portion of the G format may be omitted when
transmitting integer data.

If b had been specified as 2, the printed output would be:

Print Position 1

+

bbb292 Line 1
443428 Line 2
908081 Line 3
bu40018 Line 4

Note that the second format code G6 is an incorrect specifi-
cation for the third variable K, i.e., 4908081. Thus, the
leftmost digit is lost. In general, when the width specifi-
cation w is insufficient, the 1leftmost characters are not
printed.

If b had been specified as 3, the printed output would be:
Print Position 1 Print Position 40

4 +

bbbbbbb292bbbbu 43428bbbt908081bbbbb40018 Line 1

From the above example, it can be seen that increasing the
field width w improves readability.

Example 3:

Assume that the variable I is integer (length 2), A and B are real

(length

4y, D 1is real (length 8), C is complex (length 8), and L is

logical (length 1) whose values are 292, 471.93, 81.91, 6.9310072,
(2.1,3.7), and .TRUE., respectively.

1 FORMAT ('x',G3,2G9.2,G13.7,2G8.2,G3)
2 FORMAT ('x',G3/'x',2G10.2/'x"',G9.1/'x"',2G8.2,G3)
3 FORMAT (//'x',G3,2G9%.2//'x',G13.7,2G8.2,G3//7/)

WRITE (5,b) I,A,B,D,C,L

Explanation:

Ae

C.

If b has been specified as 1, the printed output would be:

Print Position 1 Print Position 53
L t
292b0.47Eb03bb81. bbbbbé6.931007bbbbb2.1bbbbb3.7bbbbbbT

When complex data is being transmitted, two format codes are
required. The real and imaginary parts are each treated as
separate real numbers, and the parentheses and comma are not
printed as part of the output.

If b has been specified as 2, the printed output would be:

Print Position 1
¢

292 Line 1
bb0.47Eb03bbb81. bbbb Line 2
bbbé6bbbb Line 3
b2.1bbbbb3. 7bbbbbbT Line 4

From the example, it can be seen that the use of the slash (/)
to separate two format codes causes the data, not yet printed,
to be printed on a new line. If the output data 1is to be
punched on cards, the slash specifies that the following data
will be punched on another card.

If b has been specified as 3, the printed output would be:

Print Position 1
L]

(blank line) Line 1
(blank line) Line 2
292b0.47Eb03bb81. bbbb Line 3
(blank line) Line 4
b6.931007bbbbb2.1bbbbb3. 7bbbbbbT Line 5
(blank line) Line 6
(blank line) Line 7
(blank line) Line 8

In the example, note that 2 consecutive slashes appearing at
the beginning and 3 at the end of the series of format codes
causes blank lines to be inserted as shown. However, the two
consecutive slashes appearing elsewhere in the FORMAT state-
ment cause the insertion of a blank line, as shown in line 4.

Input/Output Statements 55

The principles illustrated in the previous output examples also apply

when
consi

1.

2.

using the READ statement on input. In addition, there are further
derations when using the FORMAT statement on input or output.

When reading real input data with a G format code, a decimal point
must be included.

The use of additional parentheses (up to two levels) within a
FORMAT statement is permitted to enable the user to repeat the same
format code when transmitting data. For example, the statement:

10 FORMAT (2(G10.6,G7.1),G4)
is equivalent to:
10 FORMAT (G10.6, G7.1, G10.6, G7.1, GWU)

If the data exists with a D decimal exponent, it 1is transferred
with this D decimal exponent.

If a multiline listing is desired such that the first two lines are
to be printed according to a special format and all remaining lines
according to another format, the last format code in the statement
should be enclosed in a second pair of parentheses. For example,
in the statement:

FORMAT ('x',G2,2G3.1/'x"',G10.8/('x"',3G5.1))

If more data items are to be transmitted after the format codes
have been completely used, the format repeats from the 1last left
parenthesis. Thus, the printed output would take the form:

G2,G3.1,G3.1
G10.8
G5.1,G5.1,G5.1
G5.1,G5.1,G5.1

As another example, consider the statement:
FORMAT ('x',G2/2('x',G3,G6.1),G9.7)

If there are thirteen data items to be transmitted, the printed
output on a WRITE statement would take the form:

G2
G3,G6.1,"x",G3,G6.1,G9.7
G3,G6.1,"'x"',G3,G6.1,G9.7
G3,G6.1

Numeric Format Codes (I,F,E,D)

Four types of format codes are available for the transfer of numeric

data.

56

These are specified in the following form:

General Form

alw

aFw.d

akw.d

abw.d

Where: a 1is optional and is an unsigned integer constant used to

denote the number of times the same format code 1is repeti-
tively referenced.

I, F, E, and D are format codes.

w is an unsigned integer constant less than or egual to 255
specifying the total field length of the data.

d is an unsigned integer constant specifying the number of
decimal places to the right of the decimal point, i.e., the
fractional portion.

[e o S s e s et S . et s, S . S S . i, S . s
L i e s e . e c— ——— —— —— —— — — ———— v——— wlan wwn]

For purposes of simplification, the following discussion of format
codes deals with the printed line. The concepts developed apply to all
input/output media.

I Format Code

The I format code is used in conjunction with the transferral of
integer data. The code I10 may be used to print integer data; 10 print
positions are resexrved for the number. It is printed in this
10-position field right-justified (that is, the units position is at the
extreme right).

If the number to be transmitted is greater than 10 positions, the
excess leftmost digits are lost. If the number has less than 10 digits,
the leftmost print positions are filled with blanks. If the quantity is
negative, the position preceding the leftmost digit contains a minus
sign. In this case, an additional position should be specified in the
total field 1length for the minus sign. On input, if the field length
specification w is greater than the number of digits being read into a
field, the integer data 1is right-justified and high-order zeros are
inserted.

The following examples show how each of the quantities on the left is
printed according to the format code I3 (b represents a blank):

Internal Value Printed Value

721 721

-721 721 (incorrect because of insufficient
specification)

-12 -12

568114 114 (incoxrect because of insufficient
specification)

0 bb0

-5 b-5

9 bb9

Input/Output Statements 57

F Format Code

The F format code is used in conjunction with the transferral of real
data that does not contain a decimal exponent. For F format codes, w is
the total field length reserved, and d is the number of places to the
right of the decimal point (the fractional portion). This differs from
the G format code, where the number of significant digits is specified.
The total field length reserved must include sufficient positions for a
sign (if any) and a decimal point. The sign, if negative, is printed.

If insufficient positions are reserved by d, the fractional portion
is truncated from the right. If excessive positions are reserved by 4,
zeros are filled in on the right. The integer portion of the number is
handled in the same fashion as numbers transmitted by the I format code.

The following examples show how each of the quantities on the left is
printed according to the format code F5.2:

Internal Value Printed Value

12.17 12.17

-41.16 41.16 (incorrect because of insufficient
specification)

-2 ~0.20

7.3542 b7.35 (last two digits of accuracy lost
because of insufficient specification)

-1. -1.00

9.03 9.03

187.64 87.6U (incorrect because of insufficient

specification)

D and E Format Codes

The D and E format codes are used in conjunction with the transferral
of real data that contains a D or E decimal exponent, respectively. A D
format code indicates a field length of 8; an E format code indicates a
field length of 4. For D and E format codes, the fractional portion is
again indicated by d. The w includes field 4, spaces for a sign, the
decimal point, and four spaces for the exponent. (For output, space
should be reserved for at least one digit preceding the decimal point.)

The exponent is the power of 10 by which the number must be
multiplied to obtain its true value. The exponent is written with a D
or an E, followed by a space for the sign and two spaces for the
exponent (maximum is 75).

The following examples show how each of the quantities on the left is
printed according to the format codes (D10.3/E10.3):

Internal Value Printed Value
238. b0.238Db03
-.002 -0.200E-02
.00000000004 b0.400D-10
-21.0057 -0.210Eb02 (Last three digits of accuracy
lost because of insufficient
specification)

When reading input data, the start of the exponent field must be
marked by an E, or, if that is omitted, by a + or - sign (not a blank).
Thus, E2, E+2, +2, +02, EO02, and E+02 all have the same effect and are
permissible decimal exponents for input.

58

Numbers for E, D, and F format codes need not have their decimal
point punched. If it is not present, the decimal point is supplied by
the 4 portion of the format code. If it is present in the card, its
position overrides the position indicated by the d portion of the format
code.

L Format Code

General Form

1y
[
1=

Where: a is optional and is an unsigned integer constant used to
denote the number of times the same format code is
repetitively referenced.

w is an unsigned integer constant less than or equal to 255,
specifying the number of characters of data.

el PR R S ——
o o et i e S v et e e ranlt e e

Logical variables may be read or written by means of the format code
Lw.

On input, the first T or F encountered in the next w characters of
the input record causes a value of .TRUE. or .FALSE., respectively, to
be assigned to the corresponding logical variable. If the field w
consists entirely of blanks, a value of .FALSE. 1is assumed.

On output, a T or an F is inserted in the output record corresponding

to the value of the logical variable in the I/0 1list. The single
character is preceded by w - 1 blanks.

A Format Code

General Form

aAw

Where: a is optional and 1is an unsigned integer constant used to
denote the number of times the same format code is repeti-
tively referenced.

w is an unsigned integer constant less than or equal to 255,
specifying the number of characters of data.

[o o e S . e S . s M Y
L e e . e — . —— — s ool —]

i
|

The format code Aw is used to read or write data. If w is equal to
the number of characters corresponding to the 1length specification of
each item in the I/0 list, w characters are read or written.

On input, if w is less than the length specification of each item in
the I/0 list, w characters are read and the remaining right-most
characters in the item are replaced with blanks. If w is greater than
the 1length specification, the number of characters equal to the
difference between w and the length specification are skipped and the

remaining characters are read.

Input/Output Statements 59

On output, if w is less than the length specification of the item in
the I/0 list, the printed line will consist of the leftmost w characters
of the item. If w is greater than the length specification, the printed
line will consist of the characters right-justified in the field and
will be preceded by blanks. Therefore it 1is important to always
allocate enough area in storage to handle the characters being written
(see the section "The Type Statements").

Example 1:

Assume that the array ALPHA consists of one subscript parameter ranging
from 1 through 20. The following statements could be written to "copy"
a record from one data set to another whose ultimate destination is a
card punch.

-

10 FORMAT (20A4)

READ (5,10) (ALPHA(I),I=1,20)

-

WRITE (6,10) (ALPHA(I),I=1,20)

Explanation:

In example, the READ statement would cause 20 groups of characters to
be read from the data set associated with data set reference number 5.
Each group of four characters would be placed into the 20 positions in
storage starting with ALPHA(1) and ending with ALPHA(20). The WRITE

statement would cause the 20 groups of four characters to be written on
the data set associated with data set reference number 6.

Example 2:

As another example, consider all the variable names in the list of
the following READ statement to have been explicitly specified as REAL,
and the array CONST to have been specified as having one subscript
parameter ranging from 1 through 10. Then assuming the following input
data is associated with data set reference number 5:

ABCDE...XYZ$1234567890b

where ... represents the alphabetic characters F through W and b means
a blank, the following statements could be written:

10 FORMAT (27A1,10a1,Al1)
20 FORMAT (*x',6(7A1,5X))

READ (5,10)

’
1 '
2 v
3 1, 10), BLANK

60

DO 50 INDEX = 1,5

WRITE (6,20)

G,R,0,U, P, BLANK, CONST (INDEX) ,
1 B, L,0,C,K, BLANK, CONST (INDEX) ,
2 F,I,E,L,D, BLANK, CONST (INDEX),
3 GyR,0,U,P,BLANK, CONST (INDEX+5),
4 B,L,0,C,K, BLANK, CONST (INDEX+5),
5 F,I,E,L,D,BLANK,CONST (INDEX+5)

50 CONTINUE

-

Explanation:

The READ statement would cause the 37 alphameric characters and the
blank in the data set associated with data set reference number 5 to be
placed into the storage locations specified by the variable names in the
READ list. Thus, the variables A through Z receive the values A through
Z, respectively; the variable $§ receives the value $%; the numbers 1
through 9, and 0, are placed in the 10 fields in storage starting with
CONST(1) and ending with CONST(10); and the variable BLANK receives a
blank. The WRITE statement within the DO loop would cause the following
heading to be printed. A subsequent WRITE statement within the DO loop
could then be written to print the corresponding output data.

frint Position 1 Print Position 6:
| I
GROUP 1 BLOCK 1 FIELD 1 GROUP 6 BLOCK 6 FIELD 6
: - (outpu; data) - - -
GROU; 2 BLOEK 2 FIELD 2 GROBP 7 BLOEK 7 FIE;D 7

- - (output data) - - -

GROUP 5 BLOCK 5 FIELD 5 GROUP 0 BLOCK 0 FIELD O

- - (output data) - - -

Literal Data in a Format Statement

Literal data consists of a string of alphameric and special charac-
ters written within the FORMAT statement and enclosed in apostrophes.
The string of characters must be less than or equal to 255. For
example:

25 FORMAT (' 1964 INVENTORY REPORT")
An apostrophe character within the string 1is represented by two

successive apostrophes. For example, the characters DON'T are rep-
resented as:

Input/Output Statements 61

DON*"'T

The effect of the literal format code depends on whether it is used
with an input or output statement.

INPUT

A number of characters, equal to the number of characters between the
apostrophes, are read from the designated data set. These characters
replace, in storage, the characters within the apostrophes.

For example, the statements:

5 FORMAT (' HEADINGS')

READ (3,5)

would cause the next nine characters to be read from the data set
associated with data set reference number 3; these characters would
replace the blank and the eight characters H,E,A,D,I,N,G, and S in
storage.

OUTPUT

All characters (including blanks) within the apostrophes are written
as part of the output data. Thus, the statements:

5 FORMAT (' THIS IS ALPHAMERIC DATA')

WRITE (2,5)

-

would cause the following record to be written on the data set
associated with the data set reference number 2:

THIS IS ALPHAMERIC DATA

H Format Code

Where: w is an unsigned integer constant less than or equal to 255,
specifying the number of characters following H.

The H format code is used in conjunction with the transferral of
literal data.

The format code wH is followed in the FORMAT statement by w (w<255)
characters. For example,

5 FORMAT (31H THIS IS ALPHAMERIC INFORMATION)

Blanks are significant and must be inciuded as part of the count w.
The effect of wH depends on whether it is used with input or output.

1. On input, w characters are extracted from the input record and
replace the w characters of the 1literal data in the FORMAT
statement. :

2. On output, the w characters following the format code are written
as part of the output record.

X Format Code

|
|
+

General Form

I
]
B

s e . ot i s e i s e

wX

Where: w is an unsigned integer constant less than or equal to 255,
specifying the number of blanks to be inserted on output or
the number of characters to be skipped on input.

e S ——_—

When the wX (w<255) format code is used with a READ statement (i.el,
on input), w characters are skipped before the data is read in. For
example, if a card has six 10-column fields of integer quantities, and
it is not desired to read the second guantity, then the statement:

5 FORMAT (110,10%X,4110)
may be used, along with the appropriate READ statement.

When the wX format code is used with a WRITE statement (i.e., pn
output), w characters are left blank. Thus, the facility for spa01ng
within a printed line is available. For example, the statement:

10 FORMAT ('x',3(F6.2,5X))
may be used with an appropriate WRITE statement to print a 1line as
follows:

123.45bbbbb817.32bbbbb524. 67bbbbb

Input/Output Statements 63

T Format Code

r - 1
| General Form [
s 1
| |
| Tw |
I)) I
| Where: w is an unsigned integer constant less than or equal to 255, |
| specifying the position in a FORTRAN record where the |
| transfer of data is to begin. |
L — J

Input and output may begin at any position by using the format code
Tw (w<255). Only when the output is printed does the correspondence
between w and the actual print position differ. In this case, because
of the <carriage control character, the print position corresponds to
w-1l, as in the following example:

5 FORMAT (T40, '1964 INVENTORY REPORT' T80, 'DECEMBER' T1, ' PART
NO. 10095")

~

The above FORMAT statement would result in a printed line as follows:

Print Print Print
Position 1 Position 39 Position 79
4] L]

PART NO. 10095 1964 INVENTORY REPORT DECEMBER

The statements:

5 FORMAT (T40, ' HEADINGS')

READ (3,5)
would cause the first 39 characters of the input data to be skipped, and
the next 9 characters would then replace the blank and the characters
H,E,A,D,I,N,G and S in storage.

The T format code may be used in a FORMAT statement with any type of
format code. For example, the following statement is valid:

5 FORMAT (T100, F10.3, T50, E9.3, T1, * ANSWER IS")

Scale Factor - P

The representation of the data, internally or externally, may be
modified by the use of a scale factor followed by the letter P preceding
a format code.

The scale factor is defined for input and output as:
external quantity = internal quantity x 10 scale factor
For input, when scale factors are used in a FORMAT statement, they
have effect only on real data which does not contain an E or D decimal
exponent. For example, if input data is in the form xx.xxxx and, it is

desired to use it internally in the form .xxxxxx, the format code used
to effect this change is 2PF7.4.

6L

INPUT

As another example, bonsider the input data:
27bbb-93.209%4bb-175.8041bbbb55. 3647
where b represents a blank.
The statements:

5 FORMAT (I2,3F11.4)

-

READ (6,5) K,A,B,C
would cause the variables in the list to assume the values:

K : 27 B : -175.8041
A : -93.2094 C : 55.3647

The statements:

5 FORMAT (IZ2,1P3F11.4)

-

READ (6,5) X,A,B,C
would cause the variables in the list to assume the values:

K : 27 B
A : -9.3209 C

: -17.5804
: 5.5364

The statements:

5 FORMAT (I2,-1P3F11.4)

READ (6,5) X,A,B,C
would cause the wvariable in the list to assume the values:

K : 27 B
A : -932.094x C

~-1758.041x
553.647x

*s os

where the x represents an extraneous digit.

ouTPUT
Assume that the variables X,A,B, and C have the values:

K : 27 B : -175.8041
A : -93.2094 C : 55.3647

the statements:

5 TFORMAT (I2,1P3F11.4)

-

WRITE (4,5) K,A,B,C

Input/Output Statements

65

would cause the variables in the list to output the values:

~1758.041x

K : 27 B
: 553.647x

A -932.094x c

where the x represents an extraneous digit.
The statements:

5 FORMAT (I2,-1P3F11.4)

WRITE (4,5) K,A,B,C
would cause the variables in the list to output the values:

K : 27 B : -17.5804
A : -9.3209 C : 5.5364

For output, when scale factors are used, they have effect only on real
data. However, this real data may contain an E or D decimal exponent.
A positive scale factor used with real data which contains an E or D
decimal exponent increases the number and decreases the exponent. Thus,
if the real data was in a form using an E decimal exponent, and the
statement FORMAT (1X,I2,3E13.3) used with an appropriate WRITE statement
resulted in the printed line:

27bbb-0.932Eb02bbb-0.175Eb03bbbb0.553Eb02

Then the statement FORMAT (1X,I12,1P3E13.3) used with the same WRITE
statement would result in the printed output:

27bbb-9.320Eb01bbb-1.758Eb02bbbb5.536Eb01

The scale factor 1is assumed to be zero if no other value has been
given. However, once a value has been given, it will hold for all
format codes (i.e., thosé that correspond to real data) following the
scale factor within the same FORMAT statement. This also applies to
format codes enclosed within an additional pair of parentheses. Once
the scale factor has been given, a subsequent scale factor of zero in
the same FORMAT statement must be specified by OP.

Carriage Control

When records written under format control are prepared for printing,
the following convention for carriage control applies:

First Character Carriage Advance Before Printing
Blank One Line

0 Two lines

1 To first line of the next page

+ No advance

The first character of the output record may be used for carriage
control and is not printed. It appears in all other media as data.

66

ADDITIONAL INPUT/QUTPUT STATEMENTS

The statements END FILE, REWIND, and BACKSPACE are used to control
the data sets, as described in the following text.

END FILE Statement

- ———=1
| General Form]
¢ -~ -- — 1
| |
| END FILE a |

|
: Where: a is an unsigned integer constant or integer variable of |
| length 4 that represents a data set reference number. |
L -

The END FILE statement defines the end of the data set associated
with a. A subsequent WRITE statement defines the beginning of a new
data set.

REWIND Statement

r - ===
| General Form

p—- 1
| |
| REWIND a i
| |
| Where: a is an unsigned integer constant or integer variable of |
| length 4 that represents a data set reference number. |
e e e e e e e ————— J

The REWIND statement causes a subsequent READ or WRITE statement
referring to a to read data from or write data into the first data set
associated with a.

BACKSPACE Statement

r —==—=
| General Form |
p—r - 1
| I
| BACKSPACE a |
| ' I
| Where: a is an unsigned integer constant or integer variable of |
| length 4 that represents a data set reference number. |
L _ ——— _—— J

The BACKSPACE statement causes the data set associated with a to
backspace one record. If the data set associated with a is already at
its beginning, execution of this statement has no effect.

Input/Output Statements 67

SPECIFICATION STATEMENTS

The specification statements provide the compiler with information
about the nature of the data used in the source program. In addition,
they supply the information required to allocate locations in storage
for this data. Specification statements describing data may appear
anywhere in the source program, but must precede any statements which
refer to that data.

THE_TYPE STATEMENTS

There are two kinds of type statements: the IMPLICIT specification
statement and the Explicit specification statements (INTEGER, REAL,
COMPLEX, and LOGICAL).

The IMPLICIT specification statement enables the user to:

1. Specify the type of a group of variables or arrays according to the
initial character of their names.

2. Specify the amount of storage to be allocated for each variable
according to the associated type.

The Explicit specification statements enable the user to:

1. Specify the type of a variable or array according to their
particular name.

2. Specify the amount of storage to be allocated for each variable
according to the associated type.

3. Specify the dimensions of an array.

4. Assign initial data values for variables and arrays.

IMPLICIT Statement

General Form

IMPLICIT type*sS(ass@zysece)seesrtype*s(as,assess)

Where: type represents one of the following: INTEGER, REAL, COM-
PLEX, or LOGICAL.

*s is optional and represents one of the permissible length
specifications for its associated type.

Q14 Bopeae represent single alphabetic characters each
separated by commas, or a range of characters (in alphabetic
sequence) denoted by the first and last characters of the
range separated by a minus sign (e.g., (A-D)).

[e e e e s S S— — T o S s, W i,
e s e e e s . ot s et it . e et b s]

=)}
e}

The IMPLICIT statement, if specified, should be the first statement
in a main program, and the second statement in a FUNCTION, SUBROUTINE,
or BLOCK DATA subprogram.

The IMPLICIT type statement enables the user to declare the type of
the variables appearing in his program (i.e., integer, real, complex, or
logical) by specifying that variables beginning with certain designated
letters are of a certain type. Furthermore, the IMPLICIT statement
allows the programmer to declare the number of locations to be allocated
for each in the group of specified variables. The type a variable can
assume, along with the permissible length specifications are as follows:

Type Length Specification

INTEGER 2 or b (standard length is 4)
REAL 4 or 8 (standard length is 4)
COMPLEX 8 or 16 (standard length is 8)
LOGICAL- 1 or (standard length is 4)

For each type there is a corresponding standard length specification.
If this standard 1length specification (for its associated type) is
desired, the *s may be omitted in the IMPLICIT statement. That is, the
variables will assume the standard length specification. For each type
there is also a corresponding optional length specification. If this
optional length specification is desired, the *s must be included within
the IMPLICIT statement.

Example 1:
IMPLICIT REAL (A-H, 0-%,$%), INTEGER (I-N)

Explanation:

All variables beginning with the characters I through N are declared
as INTEGER. Since no length specification was explicitly given (i.e.,
the *s was omitted), four storage locations (the standard length for
INTEGER) are allocated for each variable.

All other variables (those beginning with the characters A through H,
O through Z, and $) are declared as REAL with four storage locations
allocated for each.

Note that the statement in Example 1 performs the exact same function
of typing variables as the predefined convention (see "Type Declaration
by the Predefined Specification").

Example 2:
IMPLICIT INTEGER*2(A-H), REAIL*8(I-XK), LOGICAL(L,M,N)

Explanation:

All variables beginning with the characters A through H are declared
as integer, with two storage locations allocated for each. All
variables beginning with the characters I through K are declared as
real, with eight storage locations allocated for each. All variables
beginning with the characters L, M, and N are declared as logical, with
four locations allocated for each.

Since the remaining letters of the alphabet (O through Z and §) were
left undefined by the IMPLICIT statement, the predefined convention will
take effect. Thus, all variables beginning with the characters O
through 2 and $ are declared as real, each with a standard length of
four locations.

Specification Statements 69

Example 3:
IMPLICIT COMPLEX#*16 (C-F)

Explanation:

All variables beginning with the characters C through F are declared
as complex, each with eight storage locations reserved for the real part
of the complex data and eight storage locations reserved for the
imaginary part. The types of the variables beginning with the charac-
terxrs A, B, G through 2, and $ are determined by the predefined
convention.

Explicit Specification Statements

- === - A |

General Form

TYEe*_S_ §_*§1 (}_Sj_) /&1/, Q*Ez (}_{2) /52/, e -,E*gn (}in) /Kn/
Where: Type is INTEGER, REAL, LOGICAL, or COMPLEX.

*¥S,%¥S4,%854++,%Sn are optional. Each s represents one of
the permissible length specifications for its associated

type.

a,b,...,2 represent variable, array, or function names (see
the section, "SUBPROGRAMS")

(K1), (k2)y...,{kn) are optional. Each k is composed of 1
through 7 unsigned integer constants, separated by commas,
representing the maximum value of each subscript in the
array. Each k may be an unsigned integer variable only when
it appears in a Type statement in a subprogram.

/X3/ g/X2/4-.¢/Xn/ are optional and represent initial data
values.

- — - —

[e S e e e e e e . S S S S e, . St o o, W S, SO .

The Explicit specification statements declare the type (INTEGER,
REAL, COMPLEX, or LOGICAL) of a particular variable or array by its
name, rather than by its initial character. This differs from the other
ways of specifying the type of a variable or array (i.e., the predefined
convention and the IMPLICIT statement). In addition, the information
necessary to allocate storage for arrays (dimension information) may be
included within the statement. However, if this information does not
appear in an Explicit specification statement, it must appear in a
DIMENSION or COMMON statement (see "DIMENSION Statement" or "COMMON
Statement").

Initial data values may be assigned to variables or arrays by use of
/%Xn/, Wwhere zxn is a constant or list of constants separated by commas.
This set of constants may be in the form "r* constant", where r is an
unsigned integer, called the repeat constant. No element may have more
than one initial value given in the same program. A function name may
not have an initial value assigned to it. An initially defined variable
or a variable of an array may not be in blank common. In a labeled
common block, they may be initially defined only in a BLOCK DATA
subprogram.

70

In the same manner in which the IMPLICIT statement overrides the
predefined convention, the Explicit specification statements override
the IMPLICIT and predefined convention. If the length specification is
omitted (i.e.,*s), the standard length per type is assumed.

Example 1:
INTEGER*2 ITEM/76/, VALUE

Explanation:

This statement declares that the wvariables ITEM and VALUE are of type
integer, each with two storage locations reserved. In addition, the
variable ITEM is initialized to the value 76.

Example 2:

COMPLEX C,D/(2.1,4.7)/,E*16

Explanation:

This statement declares that the variables C, D, and E are of type
complex. Since no 1length specification was explicitly given, the
standard length 1is assumed. Thus, C and D each have eight storage
locations reserved (four for the real part, four for the imaginary part)
and D is initialized to the wvalue (2.1,4.7). In addition, 16 storage
locations are reserved for the variable E. Thus, if a length specifi-
cation is explicitly written, it overrides the assumed standard length.

Example 3:
REAL*8 ARRAY, HOLD, VALUE*4, ITEM(5,5)

Explanation:

This statement declares that the variables ARRAY, HOLD, VALUE, and
the array named ITEM are of type real. In addition, it declares the
size of the array ITEM. The variables ARRAY and HOLD have eight storage
locations reserved for each; the variable VALUE has four storage
locations reserved; and the array named ITEM has 200 storage locations
reserved (eight for each variable in the array). Note that when the
length is associated with the type (e.g., REAL#*8), the length applies to
each variable in the statement unless explicitly overridden (as in the
case of VALUE#4).

Example 4:
REAL A(5,5)/20*%6.9E2,5%1.0/, B(100)/100%0.0/,TOAL*8(5)/5%0.0/
Explanation:

This statement declares the size of each array, A and B, and their
type (real). The array A has 100 storage locations reserved (four for
each variable in the array) and the array B has 400 storage locations
reserved (four for each variable). In addition, the first 20 wvariables
in the array A are initialized to the value 6.9E2 and the last five
variables are initialized to the value 1.0. All 100 variables in the
array B are initialized to the value 0.0. The array TOAD has 40 storage
locations reserved (eight for each variable). In addition, each
variable is initialized to the value 0.0.

Specification Statements 71

Adjustable Dimensions

As shown 1in the previous examples, the maximum value of each
subscript in an array was specified by a numeric value. These numeric
values (maximum value of each subscript) are known as the absolute
dimensions of an array and may never be changed. However, if an array
is used in a subprogram (see the section "Subprograms") and is not in
Common, the size of this array does not have to be explicitly declared
in the subprogram by a numeric value. That is, the Explicit specifi-
cation statement, appearing in a subprogram, may contain integer
variables that specify the size of the array. When the subprogram is
called, these integer variables then receive their values from the
calling program. Thus, the dimensions (size) of a dummy array appearing
in a subprogram are adjustable and may change each time the subprogram
is called.

The absolute dimensions of an array must be declared in a calling
program. The adjustable dimensions of an array, appearing in a
subprogram, should be less than or equal to the absolute dimensions of
that array, as declared in the calling program.

The following example illustrates the use of adjustable dimensions:

Example:
Cal;ing Program Subprogram
REA%*S A(5,5) SUBROUTINE MAPMY(...,R,L,M,...)
CAL;.. MAPMY(.ee,B,2,3,...) REA%..*B...,R(L,M),...
: DO iOO I=1i,L
Explanation: .

The statement REAL*8 A(5,5) appearing in the calling program declares
the absolute dimensions of the array A. When the subroutine MAPMY is
called, the dummy argument R assumes the array name A, and the dummy
arguments L and M assume the values 2 and 3, respectively. The
subscripted variables of the array A appearing in the calling program
occupy unique storage locations in the following order:

a(1,1) a(2,1) a(3,1) a(4,1) A(5,1)
A(1,2) A(2,2) A(3,2) A(4,2) A(5,2)
a(1,3) a(2,3) A(3,3) A(4,3) A(5,3)
A(l,4) A(2,4) A(3,8) A(4,4) A(,H)
A(1,5) A(2,5) A(3,5) A(4,5) A(5,5)
Thus, in the calling program the subscripted variable A(1,2) refers to

the sixth subscripted variable in the array A. However, in the
subprogram MAPMY the subscripted variable A(1,2) refers to the third

72

subscripted variable in the array A, namely, A(3,1). This is so because
the dimensions of the array A as declared in the subprogram are not the
same as those in the calling program.

If the absolute dimensions in the calling program were the same as
the adjusted dimensions in the subprogram, the subscripted variables
A(1,1) through A(5,5) in the Subprogram would always refer to the same
storage 1locations as specified by the subscripted variables A(1,1)
through A(5,5) in the calling program, respectively.

The numbers 2 and 3, which became the adjusted dimension of the dummy
array R, could also have been variables in the argument 1list of the
calling program. For example, assume that the following statement
appeared in the calling program:

CALL MAPMY (eee,A,I,Ty...)

Then as long as the values of I and J were previously determined, the
arguments may be variables. 1In addition, the variable dimension size
may be passed through more than one level of subprograms. For example,
within the subprogram MAPMY could have been a call statement to another
subprogram in which dimension information about A could have been
passed.

If any dimension of an array is variable, that dimension and the

array name must be dummy variables (i.e., they must appear in a
FUNCTION, SUBROUTINE, or ENTRY statement).

ADDITIONAIL SPECIFICATION STATEMENTS

DIMENSION Statement

General Form

DIMENSION El(k;i)ygz(]ﬁz)' a3 (53),‘-0-'_@'1\(51})
Where: A1y Bas Qaee=+, An a¥re arxrray names.

kKis koo Kzgyee..ekn are each composed of 1 through 7 unsigned
integer constants, separated by commas, representing the
maximum value of each subscript in the array. ki through kp
may be integer variables of length 4 only when they appear
in a DIMENSION statement within a subprogram.

- e e e e o e e e e e e
L e e o i ——— — — ——— b . sl

The information necessary to allocate storage for arrays used in the
source program may be provided by the DIMENSION statement. The
following examples illustrate how this information may be declared.

Examples:

DIMENSION A(10), ARRAY (5,5,5,5,5), LIST(10,100)
DIMENSION B(25,50),TABLE(25,25,25)

Specification Statements 73

COMMON_ Statement

General Form |

COMMON /xs/a (ks),b(kz),.../xr/c(ks),d(k),...
Where: a,b,...,c,d... are variable or array names.

I
|
I
|
kiekas--+ks,k ... are optional and are each composed of one |
through seven unsigned integer constants, separated by |
commas, representing the maximum value of each subscript in |
the array. |
|
|
I
I
J

V4 VAN represent optional common block names consisting of
one through six alphameric characters, the first of which is
alphabetic. These names must always be embedded in slashes.

i e ma

Although the COMMON statement may Dbe used to provide dimension
information, adjustable dimensions may never be used.

Variables or arrays that appear in a calling program or a subprogram
may be made to share the same storage locations with variables or arrays
in other subprograms by use of the COMMON statement. For example, if
one program contains the statement:

COMMON TABLE
and a second program contains the statement:
COMMON LIST
the variable names TABLE and LIST refer to the same storage locations.

If the main program contains the statements:

REAL A, B,C
COMMON A,B,C

and a subprogram contains the statements:

REAL X,Y,2
COMMON X,Y,Z

A shares the same storage 1location as X; B shares the same storage
location as ¥Y; and C shares the same storage location as Z.

Consider the following examples:

Example 1:
Calling Program Subprogram
- SUBROUTINE MAPMY (...)

- -

COMMON A, B, C, R(100)

REAL A,B,C COMMON X, Y, Z, S(100)
INTEGER R REAL X,Y,2

- INTEGER S
CALL MAPMY (...) -

T4

Explanation:

In the calling program, the statement COMMON A,B,C,R(100) would cause
412 storage locations (four locations per variable) to be reserved in
the following order:

r - ' ‘ 1
Beginning | A B . c | Layout of
of common | 4 locations 4 locations 4 locations | storage
area | |

b -— i

r

| R(1) - . . R(100) |

| 4 locations 4 locations |

e e i

The statement COMMON X, Y, Z, S(100) would then cause the variables
X, ¥, Z, and S(1)...S(100) to share the same storage space as A, B, C,
and R(1)...R(100), respectively.

From the above example, it can be seen that CCMMON statements may be
used to serve an important function: namely, as a medium to implicitly
transmit data from the calling program to the subprogram. That is,
values for X, ¥, Z, and S(1)...S(100), ©because they occupy the same
storage locations as A, B, ¢C, and R(1)...R(100), do nct have to be
transmitted in the argument list of a CALL statement.

Example 2:

Assume COMMON is defined in a main program and three subprograms as
follows:

Main program: COMMON A,B,C
Subprogram 1: COMMON D,E,F
Subprngram 2: COMMON QOsR,S$,T,0
Subprogram 3: COMMON VeW,X,Y,2

Further, assume the length specifications of the above variables are so
defined that the common area is shared as follows:

r - - T et 1
| A _ | B _ | ¢ |
| 8 locations | 4 locations | 2 locations |
b e -—- oo mmm e 1
| D , | E . | F |
| 8 locations | 4 locations | 2 locations |
o T t T ommmrm - 1
| @ | R | s | T | U I
| 4 locations| 4 locations| 2 locations| 2 locations| 2 locations |
-r $ t ¥ 3- —
| v W ol ox o 1 3z _ |
| U4 locations| 4 locations| 2 locations| 2 locations| 2 locations |
L L FR L i ——d

In this case, the variables A,B,C and D,E,F may be validly referred to
in their respective programs, as may Q,R,S,T,U and V,W,X,Y,Z. In
addition, all programs may validly refer to C,F,U, and Z. It is also
possible to cross-reference D in Subprogram 1 and Q0 and R in Subprogram
2. Such correspondences are highly data dependent and in certain cases
may be useful. For instance, if D is a complex variable, and Q and R
are real variables, Q and R correspond to the real and imaginary parts
of D, respectively. However, each such cross reference by the program-
mer must be considered on its own merits.

Specification Statements 75

Blank and Labeled Common

In the preceding two examples, the common storage area (common block)
established is called a blank common area. That is, no particular name
was given to that area of storage. The variables that appeared in the
COMMON statements were assigned locations relative to the beginning of
this blank common area. However, variables and arrays may be placed in
separate common areas. Each of these separate areas (or Dblocks) is
given a name consisting of one through six alphameric characters (the
first of which is alphabetic); those blocks which have the same name
occupy the same storage space.

Those variables that are to be placed in labeled (or named) common
are preceded by a common block name enclosed in slashes. For example,
the variables A,B, and C will be placed in the labeled common area HOLD
by the following statement:

COMMON/HOLD/A, B, C

In a COMMON statement, blank common may be distinguished from labeled
common by preceding the variables in blank common by two consecutive
slashes or, if the variables appear at the beginning of the common
statement, by omitting any block name. For example, in the following
statement:

cOMMON A, B, C /ITEMS/ X, ¥, 2 /7 7 D, E, F
the variables A, B, C, D, E, and F will be placed in blank common in
that order; the variables X, Y, and Z will be placed in the common area
labeled ITEMS.

Blank and 1labeled common entries appearing in COMMON statements are
cumulative throughout the program. For example, consider the following
two COMMON statements:

COMMON A, B, C /R/ D, E /S/ F
COMMON G, H /S/ I, J /R/P//W

These two statements have the same effect as the single statement:
COMMON A, B, C, G, H, W /R/ D, E, P /S/ F, I, J

Example 3:

Assume that A&, B, C, K, X, and Y each occupy four locations of
storage, H and G each occupy eight locations, and D and E each occupy
two locations.

Calling Program Subprogram

. SUBROUTINE MAPMY(...)
COMMON H, A /R/ X, D // B .

. COMMON G, Y, C /R/ K, E
CALL MAPMY(...) .

-

76

Explanation:

In the calling program, the statement COMMON H,A/R/X,D//B causes 16
locations (four locations each for A and B, and eight for H) to be
reserved in blank common in the following order:

r——-—

Beginning | H A B |
of blank | 8 locations U4 locations 4 locations |
common | i

pmmm s - —

continuation of blank common |

o=

P —_—— ————1

gnd also causes six locations (four for X and two for D) to be reserved
in the labeled common area R in the following order:

L. [e e e e e e e e e e e e 1
Beginning | X D |
of labeled| |
common R 4 locations 2 locations |

continuation of labeled common

[e oy —
I
!
|
|
]
|
|
|
i
.

The statement COMMON G,Y,C/R/K,E appearing in +he subprogram MAPMY
would cause the variables G, Y..==a-¢ TO Share the same storage space
(in blank common) as H, A, =ond B, respectively. It would also cause the
variables K and B to share the same storage space (in labeled common
area R) as X and D, respectively. The length of a COMMON area may be
increased by using an EQUIVALENCE statement (see the section
"EQUIVALENCE Statements"). .

EQUIVALENCE Statement

fo——————- e o e e e e e e e e e e o e e S . e A i e e e

EQUIVALENCE (a, b, Cs --»)s (d, &/ £4...)

The subscripts may have two forms: If the variable is singly
subscripted it refers to the position of the variable in the
array (i.e., first variable, 25th variable, etc.). If the
variable 1is multi~subscripted it refers to the position in
the array in the same fashion as the position is referred to
in an arithmetic statement.

-——— p— —— —— —— [P e e e e e et e o i o e e e e e e e

1
] |
t i
| |
| |
| Where: a, b, ¢, ds €+ £,... are variables that may be subscripted. |
| |
| |
| |
| |
| |
| |
L J

The EQUIVALENCE statement provides the option for controlling the
allocation of data storage within a single program or subprogram. It is
analogous to the option of using the COMMON statement to control the
allocation of data storage among several programs. In particular, when
the 1logic of the program permits it, the number of storage locations
used can be reduced by causing locations to be shared by ftwo or more
variables of the same or differing types and lengths. The EQUIVALENCE
statement cannot be used to obtain mathematical equality of two
variables.

Specification Statements 77

Example 1:

DIMENSION B(5), c(i0, 10), D(5, 10, 15)
EQUIVALENCE (A, B(1), c(5,3)), (D(5,10,2), E)

Explanation:

This EQUIVALENCE statement indicates that the variables A,B(1), and
c(5,3) are assigned the same storage locations. In addition, it
specifies that D(5,10,2) and E are assigned the same storage loca§1ons.
In this case, the subscripted variables refer to the position in an
array in the same fashion as the position is referred to in an
arithmetic statement. Note +that variables or arrays that are not
mentioned in an EQUIVALENCE statement are assigned unique storage
locations. The EQUIVALENCE statement must not contradict itself or any
previously established equivalences. For example, the further equiva-
lence specification of B(2) with any other element of the array C, other
than C(6,3), is invalid.

Example 2:

DIMENSION B(5), ¢(10, 10), D(5, 10, 15)
RQUIVALENCE (A, B(1), c(25)), (D(100), E)

Explanation:

This BQUIVALENCE statémcnt-s=dqicates that the variable A, the first
varlable in the array B, namely B(1), ama-+he 25th variable in the array

C, namely C(5,3), are to be assigned the Samc storage locations. In
addition, it also specifies that D(100), i.e., D(5,10,2), and E are to
share the same storage locations. Note that the effect of the
EQUIVALENCE statement in examples 1 and 2 is the same.

Variables that are brought into COMMON through EQUIVALENCE statements
may increase the size of the Dblock, as indicated by the following:
statements:

COMMON A, B, C
DIMENSION D(3)
EQUIVALENCE (B,D(1))

This would cause a common area to be established containing the
variables A, B, and C. The EQUIVALENCE statement would then cause the
variable D(1) to share the same storage location as B, D(2) to share the
same storage location as C, and D(3) would extend the size of the common
area, in the following manner:

A (lowest location of the common area)
B, D(1)
Cc, D(2)

D(3) (highest location of the common area)

Since arrays must be stored in consecutive forward locations, a
variable may not be made equivalent to another variable of an array in
such a way as to cause the array to extend before the beginning of the
common area. For example, the following EQUIVALENCE statement is
invalid:

COMMON A, B, C

DIMENSION D(3)
EQUIVALENCE (B, D(3))

78

because it would force D(1l) to precede A, as follows:

D(1)
A, D(2) {(lowest location of the common area)
B, D(3)
C (highest location of the common area)

Two variables in one COMMON block or in two different COMMON blocks
may not be made equivalent.

Specification Statements 79

SUBPROGRAMS

It is sometimes desirable to write a program which, at various
points, requires the same computation to be performed with different
data for each calculation. It would simplify the writing of that
program if the statements required to perform the desired computation
could be written only once and then could be referred to freely, with
each subsequent reference having the same effect as though these
instructions were written at the point in the program where the
reference was made.

For example, to take the square root of a number, a program must be
written with this object in mind. If a general program were written to
take the square root of any number, it would be desirable to be able to
incorporate that program (or subprogram) into other programs where
square root calculations are regquired.

The FORTRAN language provides for the above situation through the use
of subprograms. There are three classes of subprograms: Statement
Functions, FUNCTION subprograms, and SUBROUTINE subprograms. In addi-
tion, there is a group of FORTRAN supplied subprograms (see Appendix C).

The first two classes of subprograms are called functions. Functions
differ from SUBROUTINE subprograms, in that functions return at least
one value to the calling program, whereas SUBROUTINE subprograms need
not return any.

NAMING SUBPROGRAMS

A subprogram name consists of from one through six alphameric
characters, the first of which must be alphabetic (special characters
may not be used). The type of a subprogram can be indicated in the same
manner as variables.

1. Type_ Declaration of a Statement Function: Such declaration may be
accomplished in one of three ways: by the predefined convention, by
the IMPLICIT statement, or by the Explicit specification state-
ments. Thus, the same rules for declaring the type of variables
apply to Statement Functions.

2. Type Declaration of FUNCTION Subprograms: Such declaration may be.
made in the same fashion as Statement Functions. In addition, the
type (INTEGER, REAL, COMPLEX, and LOGICAL) may appear in the
FUNCTION definition statement.

3. Type_ Declaration of a SUBROUTINE Subprogram: The type of a
SUBROUTINE subprogram cannot be defined, because the results that
are returned to the calling program are dependent only on the type
of the variable names appearing in the argument list of the calling
program and/or the implicit arguments in COMMON.

FUNCTIONS

A function is a statement of the relationship between a number of
variables. To use a function in FORTRAN, it is necessary to:

80

1. Define the function (i.e., specify what calculations are to be
performed).

2. Refer to the function by name, where required in the program.

Function Definition

There are three steps in the definition of a function in FORTRAN:

1. The function must be assigned a unique name by which it may be
called (see the section "Naming Subprograms").

2. The arguments of the function must be stated.
3. The procedure for evaluating the function must be stated.
Items 2 and 3 are discussed in detail in the sections dealing with

the specific subprogram (e.g., "Statement Functions," "FUNCTION Subpro-
grams," etc.).

Function Reference

When the name of a function appears in any FORTRAN arithmetic
expression, this, effectively, references the function. Thus, the
appearance of a function with its arguments in parentheses causes the
computations to be performed as indicated by the function definition.
The resulting quantity replaces the function reference in the expression
and assumes the type of the function. The type and length of the name
used for the reference must agree with the type and length of the name
used in the definition. .

STATEMENT FUNCTIONS

Statement functions are defined by a single arithmetic or logical
assignment statement within the program in which they appear. For
example, the statement:

FUNC(A,B) = 3.*A+B¥**2_ +X+Y+7Z

defines the statement function FUNC, where FUNC is the function name and
A and B are the function arguments.

The expression on the right defines those computations which are to
be performed when the function is used in an arithmetic statement. This
function might be used in a statement as follows:

C = FUNC(D,E)
which is equivalent to:
C = 3.*%D+E**2_,+X+Y+7Z

Note the correspondence between A and B in the function definition

statement and D and E in the arithmetic statement. The quantities A and

B enclosed in parentheses following the function name are the arguments
of the function. They are dummy variables for which the gquantities D

Subprograms 81

and E, respectively
arithmetic statement.

are

substituted when the function is used in an

1
General Form |
] T
name (a,by...,n) = expression
Where: name is any subprogram name (see the section "Naming
Subprograms").

asbDe¢--.4n are distinct (within the same statement) nonsub-
scripted variables.

expression is any arithmetic or logical expression that does
not contain subscripted variables. Any statement functions
appearing in this expression must be defined previously.

e .

[U IV S N

A maximum of 15 variables appearing in the expression may b
arguments of the function.

Note: All Statement Function definitions to be used in a
precede the first executable statement of the program.

Examples:

vValid statement function definitions:

e used as

program must

SUM(A,B,C,D) = A+B+C+D
FUNC(Z) = A+X*Y*Z
AVG(A,B,C,D) = (A+B+C+D) /U
ROOT(A,B,C) = SQRT(A**2+B**¥2+C**2)
VALID(A,B) = .NOT.A.OR.B
Note: The same dummy arguments may be used in more than one Statement
Function definition and as variables outside Statement Function defini-
tions.
Invalid statement function definitions:
SUBPRG(3,J,K)=3%I+J**3 (arguments must be variables)
SOMEF (A(I),B)=A(I)/B+3. (arguments must be nonsub-
scripted)
SUBPROGRAM(A, B) =A**2+B**2 (function name exceeds limit
of six characters)
3FUNC(D)=3.,14%*E (function name must begin with
an alphabetic character)
ASF(A)=A+B(I) (subscripted variable in the
expression)
Valid statement function references:
NET = GROS - sumMm(Tax, Fica, HOSP, MISC)
ANS = FUNC(RESULT)
GRADE = AVG(LAB, LECTUR, SUM(TESTl1l, TEST2, TEST3, TEST4), FACTOR)

82

Invalid statement function references:

WRONG = SUM(TAX, FICA) (number of arguments
does not agree with
above definition)

MIX = FUNC(I) (mode of argument
does not agree with
above definition)

FUNCTION SUBPROGRAMS

The FUNCTION subprogram is a FORTRAN subprogram consisting of any
number of statements. It is an independently written program that is
executed wherever its name appears in another program.

Subprograms") .

A4,82483¢-++942n are nonsubscripted variable, array, or dummy
names of SUBROUTINE or other FUNCTION subprograms. (There
must be at least one argument in the argument list.)

r - -1
| General Form I
t - - -1
| |
I FUNCTION name (ég_:,ig,?_a-,....,én) l
| - |
| . |
| - I
RETURN]
.
-
END
I . . o
Where: name is subprogram name (see the section "Naming
L J

Since the FUNCTION is -a separate subprogram, the variables and
statement numbers within it do not relate to any other program.

The FUNCTION subprogram may contain any FORTRAN statement except a
SUBROUTINE statement, another FUNCTION statement, or BLOCK DATA state-
ment.

The arguments of the FUNCTION subprogram (i.e., @i,82+237s++.,2n) May
be considered to be dummy variable names. These are replaced at the
time of execution by the actual arguments supplied in the function
reference in the calling program. The actual arguments may be any of
the following: any type of constant, any type of subscripted or
nonsubscripted variable, an arithmetic or 1logical expression, or the
name of another subprogram. The actual arguments must correspond in
number, order, and type to the dummy arguments. The array size must
also be the same, except when adjustable dimensions are used. All
arguments in a subprogram refer to the storage area assigned to the
arguments by the calling program.

The relationship between variable names used as arguments in the

calling program and the dummy variables used as arguments in the
FUNCTION subprogram is illustrated in the following example:

Subprograms 83

Example 1:

Calling Program FUNCTION Subprogram
. FUNCTION SOMEF(X,Y)
- SOMEF = X/Y

A = SOMEF(B,C) RETURN
- END

Explanation:

In the above example, the value of the variable B of the calling
program is used in the subprogram as the value of the dummy variable X;
the value of C is used in place of the dummy variable Y. Thus if B =
10.0 and C = 5.0, then A = B/C, which is equal to 2.0.

The name of the function must be assigned a value at 1least once in
the subprogram as the argument of a CALL statement, as a DO variable, as
the variable name on the left side of an arithmetic statement, or in an
input list (READ statement) within the subprogram.

Example 2:
Calling Program FUNCTION Subprogram
FUNCTION CALC (A,B,J)
- I = J%2
ANS = ROOT1#*CALC(X,Y,I) -
. CALC = A**I/B
RETURN
END

Explanation:

In this example, the values of X, ¥, and I are used in the FUNCTION
subprogram as the values of A, B, and J, respectively. The value of
CALC is computed, and this value is returned to the calling program,
where the value of ANS is computed. The variable I in the argument list
of CALC in the «calling program 1is not the same as the variable I
appearing in the subprogram.

When a dummy argument is an array name, an appropriate DIMENSION or
Explicit specification statement must appear in the FUNCTION subprogram.
None of the dummy arguments may appear in an EQUIVALENCE statement or a
COMMON statement.

Type Specification cf the FUNCTION Subprogram

In addition to the three ways of declaring the type of a FUNCTION
name (i.e., predefined convention, IMPLICIT statement, Explicit specifi-
cation statement), there exists the option explicitly specifying the
type of a FUNCTION name within the FUNCTION statement.

84

General Form

Type FUNCTION name*s (aj,az,83y««-san)
Where: Type is INTEGER, REAL, COMPLEX, or LOGICAL.
name is the name of the FUNCTION subprogram.

*s is optional and represents one of the permissible length
specifications for its associated type.

A4482,aa4e+4an are nonsubscripted variable, array, or dummy
names of SUBROUTINE or other FUNCTION subprograms. (There
must be at least one argument in the argument list.)

[s — c— . F— — o i — it S . s, S o, oy
b o et e v e —————— —— o o, . sttt s a]

Example 1:
REAL FUNCTION SOMEF (A, B)

SOMEF = A**2 + B*%2

-

RETURN
END
Example 2:
INTEGER FUNCTION CALC*2 (X,Y,Z)

-

CALC = X+Y+Z**2

RETURN
END

Explanation:

The FUNCTION subprograms SOMEF and CALC in examples 1 and 2 are
declared as type REAL (length #4) and INTEGER (length 2), respectively.

RETURN and END Statements in a Function Subprogram

Note that all of the preceding examples of FUNCTION subprograms
contain both an END and at least one RETURN statement. The END
statement specifies, for the compiler, the end of the subprogram; the
RETURN statement signifies a logical conclusion of the computation and
returns any computed value and control to the calling programn.

There may, in fact, be more than one RETURN statement in a FORTRAN
subprogram.

Subprograms 85

Example:

FUNCTION DAV (D,E,F)
IF (D-E) 10, 20, 30
A D+2.0*E

10

= F+2.0*E

A

DAV

20 A+B¥*2

RETURN
DAV = B*#%2

30

RETURN
END

SUBROUTINE SUBPROGRAMS

The SUBROUTINE subprogram is similar to the FUNCTION subprogram in
many respects: the rules for naming FUNCTION and SUBROUTINE subprograms
are the same, they both require an END statement, and they both contain
the same sort of dummy arguments. Like the FUNCTION subprogram, the
SUBROUTINE subprogram is a set of commonly used computations, but it
need not return any results to the calling program, as does the FUNCTION
subprogram.

The SUBROUTINE subprogram is called by the CALL statement, which
consists of the word CALL followed by the name of the subprogram and its
parenthesized arguments.

r -1
| General Form i
pmmm e e 1
| |
| SUBROUTINE name (23,22+237s~~«¢an) |
| . [
I - |
| . |
| RETURN |
I |
| END |
| , , |
| where: name is the subprogram name (see the section "Naming |
| Subprograms"). |
| |
| Q1v82s23s--+48n are arguments. (There need not be |
| any.) Each argument used must be a nonsubscripted variable |
| or array name, the dummy name of another SUBROUTINE or |
| FUNCTION subprogram, or of the form * where the character |
| "x" denotes a return point specified by a statement number |
| in the calling program. |
L —_ - —_ 4

Since the SUBROUTINE 1is a separate subprogram, the variables and

statement numbers within it do not relate to any other program.

86

The SUBROUTINE subprogram may contain any FORTRAN statement except a
FUNCTION statement, ¬her SUBROUTINE statement, or BLOCK DATA state-
ment.

The SUBROUTINE subprogram may use one or more of its arguments to
return values to the calling program. Any arguments so used must appear
on. the 1left side of an arithmetic statement or in an input list within
the subprogram, as arguments of a CALL statement, or as DO variables.
The SUBROUTINE name must not appear in any other statement in the
SUBROUTINE subprogram.

The arguments (a;, &z¢ 23¢---,2n) May be considered dummy variable
names that are replaced at the time of execution by the actual arguments
supplied in the CALL statement. The actual arguments must correspond in
number, order, and type to the dummy arguments. The array size must
also be the same except when adjustable dimensions are used. Dummy
arguments may not appear in an EQUIVALENCE or DATA statement within the
subprogram nor may they be given initial data wvalues in an Explicit
specification statement.

Example: The relationship between variable names used as arguments in
the calling program and the dummy variable used as arguments in the
SUBROUTINE subprogram is illustrated in the following example. The
object of the subprogram is to "copy" one array directly into another.

Main Program SUBROUTINE Subprogram
DIMENSION X(100),Y(100)
B SUBROUTINE COPY(A,B,N)
- DIMENSION A (100),B(100)
- po 10 1 =1, N
CALL COPY (X,Y,K) 10 B(I) = A (I)
- RETURN
- END

-

CALL Statement

The CALL statement is used only to call a subroutine subprogram.

r - - -1
| General Form |
t e e 4
| l
| CALL name (24,485s83¢+++4an)]
| |
| Where: name is the name of a subroutine subprogram. |
| |
/ Q448248139 ---08n are the actual arguments that are being |
| supplied to the subroutine subprogram. Each may be of the |
| form én where n is a statement number (see "RETURN State- |
| ments in a SUBROUTINE Subprogram"). |
L e e e e e e e e -1
Examples:

CALL 0OUT

CALL MATMPY (X,5,40,Y¥,7,2)

CALL ODRTIC (X,Y,Z,RO0T1,RO0T2)
CALL SUB1 (X+Y#*5,'ABDF',SINE)

Subprograms 87

The CALL statement transfers control to the subroutine subprogram and
replaces the dummy variables with the value of the actual arguments that
appear in the CALL statement. The arguments in a CALL statement may be
any of the following: any type of constant, any type of subscripted or
nonsubscripted variable, an arithmetic expression, the name of a
subprogram, or a statement number (see "RETURN Statements in a
SUBROUTINE Subprogram").

The arguments in a CALL statement must agree in number, order, and
type with the corresponding arguments in the subroutine subprogram. The
array sizes must also be the same in the subroutine and the calling
programs, except when adjustable dimensions are wused (see "Adjustable
Dimensions"). If an actual argument corresponds to -a dummy argument
that is defined or redefined in the referenced subprogram, the actual
argument must be a variable name, subscripted variable name, or array
name. All arguments in a subprogram refer to the storage area assigned
to the arguments by the calling program.

RETURN Statement in a SUBROUTINE Subprogram

General Form

RETURN
RETURN i
Where: i is an integer constant or variable of length 4 whose value,

say n, denotes the nth statement number in the argument list
of a SUBROUTINE statement.

o o . M S . S . S S e,
L e T

The normal sequence of execution following the RETURN statement of a
SUBROUTINE subprogram is to the next statement following the CALL in the
calling program. It is also possible to return to any numbered
statement in the calling program by using a return of the type where i
is an integer constant or variable. Returns of the type RETURN may be
made in either a SUBROUTINE or FUNCTION subprogram (see, "RETURN and END
Statements in a FUNCTION Subprogram"). Returns of the type RETURN i may
only be made in a SUBROUTINE subprogram. In a main program, a RETURN
statement performs the same function as a STOP statement.

88

Example:

Calling Program . Subprogram
. ' SUBROUTINE SUB (X,Y,Z,*,*)

10 CALL SUB (A,B,C,630,840)

20 Y = A+ B 100 IF (R) 200,300,400
- ' 200 RETURN
- 300 RETURN 1
. 400 RETURN 2

30 Y =A+C END

40 Y = B + C

END

Explanation:

In the preceding example, execution of statement 10 in the calling
program causes entry into subprogram SUB. When statement 100 is
executed, the return to the calling program will be to statement 20, 30,
or 40, if R is less than, equal to, or greater than zero, respectively.

A CALL statement that uses a RETURN i form may be best understood by
comparing it to a CALL and computed GO TO statement in sequence. For
example, the CALL statement:

CALL SuB (pP,&20,0,635,R,622)

is equivalent to:

CALL SUB (P,Q,R,I)
Go TO (20,35,22),1I

where the index I is assigned a value of 1, 2, or 3 in the called
subprogram.

Multiple ENTRY into a Subprogram

The standard (normal) entry into a SUBROUTINE subprogram from the
calling program is made by a CALL statement that references the
subprogram name. The standard entry into a FUNCTION subprogram is made
by a function reference in an arithmetic expression. Entry is made at
the first executable statement following the SUBROUTINE or FUNCTION
statement.

It is also possible to enter a subprogram (either SUBROUTINE or
FUNCTION) by a CALL statement or a function reference that references an
ENTRY statement 1in the subprogram. Entry is made at the first
executable statement following the ENTRY statement.

Subprograms 89

General Form

|
-

ENTRY name (21,32+3395++¢an)

Where: name is the name of an entry point (see "Naming
Subprograms").

Q4,82,83,+--s28n are the dummy arguments corresponding to an
actual argument in & CALL statement or in a function
reference.

| Sy A S S S SSpUS——

|
I
|
|
|
|
|
!

ENTRY statements do mnot affect control sequencing during normal
execution of a subprogram. The order, type, and number of arguments
need not agree between the SUBROUTINE or FUNCTION statement and the
ENTRY statements, nor do the ENTRY statements have to agree among
themselves in these respects. Each CALL or function reference, however,
must agree in order, type, and number with the SUBROUTINE, FUNCTION, or
ENTRY statement that it references. Entry may not be made into the
range of a DO; further, a subprogram may not reference itself directly
or through any of its entry points. This statement is regarded as
nonexecutable within its subprogram. If it appears in a function
subprogram the name given in the FUNCTION statement is still wused to
return the value of the function to the point of reference, rather than
the name of the ENTRY statement.

Example 1:
Calling Program Subprogram
. SUBROUTINE suBi (U,V,W,X,Y,2)
1 CALL suBl (A,B,C,D,E,F) o
- U=V

2 CALL SUB2 (G,H,P)

. ENTRY SUB2 (T,U0,V)
3 CALL SUB3 -
- ENTRY SUB3
END

Explanation:

In the preceding example, the execution of statement 1 causes entry
into SUB1, starting with the first executable statement of the
subroutine. Execution of statements 2 and 3 also causes entry into the
called program, starting with the first executable statement following
the ENTRY SUB2(T,U,V) and ENTRY SUB3 statements, respectively.

Entry into a subprogram initializes all references in the whole
subprogram to items in the argument list. Return from a subprogram is
made by way of the entry point referenced. ENTRY statements may only
appear in FUNCTION or SUBROUTINE subprograms. The dummy arguments in a
subprogram may appear in any statement if they first appear as dummy

90

arguments in a FUNCTION, SUBROUTINE, or ENTRY statement. The following
is a valid example:

SUBROUTINE suB (X,Y,2,I)

ENTRY SUB1 (A, B)

Example 2:

Calling Program Subprogram
. SUBROUTINE suBl (U,V,W,X,Y,2Z)
. RETURN
- ENTRY SUB2 (T,*,%*)
cALL suBl (A,B,C,D,E,F) U = V¥ W+T
- ENTRY SUB3 (*,%*)
. X = Y*%7Z
. 50 IF (U-X) 100, 200, 300
CALL SUB2(G,§10,&20) 100 RETURN 1
- 200 RETURN 2
- 300 RETURN
- END
CALL SuUB3(&10,8&20)
5 Y =A+B
10 Y = C+D
20 Y = E+F

-
-

Explanation:

In the example above, a call to SUB1 merely performs initialization.
Subsequent calls to SUB2 and SUB3 result 1in execution of different
sections of the subroutine SUBl. Then, depending upon the result of the
arithmetic IF at statement 50, return is made to the calling program at
statement 10, 20, or 5.

Additional Rules for Using ENTRY

1. A CALL may only change the value of explicit arguments (or implicit
arguments in COMMON). It cannot affect the value of those which
are initialized by some previous CALL.

2. If a name is identified as a dummy argument only by its appearance

in a given ENTRY statement, no use of that dummy argument may
appear in statements preceding (physically) the ENTRY statement.

Subprograms 91

3. The appearance of an ENTRY statement does not alter the rules
regarding the placement of Statement Functions in subprograms.

The EXTERNAL Statement

General Form

EXTERNAL a,b,C,««-

Where: a,bsCyee- are names of subprograms that are used as
arguments in other subprograms.

(o e . s e e e . ey
b s s s s s i e

The name of any subprogram that is used as an argument in another
subprogram must appear in an EXTERNAL statement. For example, assume
that SUB and MULT are subprogram names in the following statements:

Example 1:
Calling Program Subprogram
- SUBROUTINE SUB(X,Y, 2)
- IF (X) 4,6,6

.) D = Y (X,Z2%%*2)
EXTERNAL MULT

- -

CALL SUB (A, MULT,C) 6 RETURN
. END

Explanation:

In this example, the subprogram name MULT is used as an argument in
the subprogram SUB. The subprogram name MULT is passed to the dummy
variable Y, as are the variables A and C passed to the dummy variables X
and Z, respectively. The subprogram MULT will be called and executed
only if the value of A is negative.

Example 2:

CALL SUB (A,B,MULT (cC,D),37)

Explanation:

In this example, an EXTERNAL statement is not required because the
subprogram named MULT is not an argument; it is executed first and the
result becomes the argument.

92

FORTRAN SUPPLIED SUBPROGRAMS

FORTRAN provides the programmer with a 1library of commonly used
function and subroutine subprograms. There are three classes of
subprograms provided:

1. Mathematical function subprograms--defined as FUNCTION subprograms.

2. Subroutines which test the status of pseudo machine indicators
(sense lights)--defined as SUBROUTINE subprograms.

3. The three subprograms EXIT, DUMP, and PDUMP--alsc defined as
SUBROUTINE subprograms.

The EXIT subroutine terminates program execution; DUMP dumps storage
and terminates program execution; PDUMP dumps storage and continues
program execution.

Variables used as arguments of mathematical functions must be
declared (i.e., by the Explicit specification statements, the IMPLICIT
statement, or the predefined convention), in accordance with the
function in which they appear.

The entire 1library, along with appropriate dJdefinitions of each
subprogram, is given in Appendix C.

BLOCK DATA SUBPROGRAM

In order to enter data into a COMMON block, a separate subprogram
must be written. This separate subprogram contains only the DATA,
COMMON, DIMENSION, EQUIVALENCE, and Type statements associated with the
data being defined. Data may be entered into labeled (named), but not
unlabeled, COMMON by the BLOCK DATA subprogram.

General Form

1
|
|

BLOCK DATA

[i e s S S, . e S
L]
e e s e e e e e,

[}
|

1. The BLOCK DATA subprogram may not contain any executable state-
ments.

2. The first statement of this subprogram must be the BLOCK DATA
statement.

3. All elements of a COMMON block must be 1listed in the COMMON
statement, even though +they do not all appear in the DATA
statement; for example, the variable A in the COMMON statement in
the following example does not appear in the DATA statement:

BLOCK DATA

COMMON/ELN/C, A, B/RMG/Z, Y

REAL B(4)/1.0,1.2,2%1.3/,Z*8(3)/3%7.64980825D0/
COMPLEX C/(2.4,3.769)/

END

Subprograms 93

94

Data may be entered into more than one COMMON block in a single

BLOCK DATA subprogram.

No element may have more than one initial value
same program.

assigned

in the

APPENDIX A: SOURCE PROGRAM CHARACTERS

r T 1 H e 1
| Alphabetic | EBCDIC oxr BCDIC | Numeric | EBCDIC or BCDIC |
| Characters | Card Punches | Characters | Card Punches |
¢ $-—- t ¥ |
A	12-1	0	0
B	12-2	1	1
c	12-3	2	2
D	12-4	3 i 3	
E	12-5	4	4
F	12-6	5	5
G	12-7	6	6
H	12-8	7 [7]	
I	12-9	8	8
J	11-1	9	9
K	11-2		
L	11-3		
[M	11-4 ’ § T i		
N	11-5 Special	EBCDIC	BCDIC
o)	11-6 Characters	Card Punches	Card Punches]
P	11-7 b f —+ i		
Q	11-8	+	12-6-8
i R	11-9 -	11	11
S	0-2 /	0-1	0-1 i
T	0-3	=	6-8
U] 0-4	-	12-3-8	12-3-8
\Y	0-5)	11-5-8	12-4-8
W	0-6 *	11-4-8	11-4-8
X	0-7	¢ (comma)	0-3-8
] Y i 0-8	(12-5-8	0-4-8
Z	0-9	' (apostrophe)	5-8
$ 11-3-8	blank	(no punch)	(no punch)
l_ ____________ B —_———-X L — L —_— __Il			
Source programs are coded in either BCDIC or EBCDIC character codes.			
Mixing of the two, however, is not allowed.			
[R— —_ -2

The 48 characters 1listed above comprise the set of characters
acceptable by FORTRAN. In previously implemented FORTRAN languages,
there existed dual characters in the sense that two graphics
(characters) were associated with a single card code. The most commonly
used set of dual characters was the following:

vl
e R E- o

(apos.)

However, in IBM System/360 each of these duals now has separate card
codes. Thus, when specifying, for instance, a + character, care should
be taken that a 12-6-8 punch is used instead of a 12 punch which now
represents an &§. The card codes for the remaining duals is as follows:
#(8-3), (this graphic is now represented as a <) (12-4-8), %(0-4-8),
and a(8-4).

Appendix A: Source Program Characters 95

APPENDIX B: OTHER FORTRAN FEATURES ACCEPTED BY FORTRAN IV

This section discusses those features of previously implemented
FORTRAN IV languages that are incorporated into the IBM Time Sharing
System/360 FORTRAN IV language. The inclusion of these additional
language facilities allows existing FORTRAN programs to be re-compiled
for use on the IBM System/360 with little or no re-programming.

READ Statement

General Form

READ b, list

Where: b, is the statement number or array name of the FORMAT
statement describing the data.

list 1is a series of variable or array names, separated by
commas, which may be indexed and incremented. They specify
the number of items to be read and the locations in storage
into which the data is placed.

e e
bt et it . e s s s e e . s, e, sne)

This statement causes data to be read from the data set associated
with the system input.

PUNCH Statement

General Form

PUNCH b, list

Where: b is the statement number or array name of the FORMAT
statement describing the data.

list is a series of variable or array names, separated by
commas, which may be indexed and incremented. They specify
the number of items to be written and the 1locations in
storage from which the data is taken.

[e s e e e v s S s S, @ o Sy
U S S S RO Sep——

The PUNCH statement causes data to be written in the data set
associated with the system output.

96

PRINT Statement

General Form

PRINT b, list

Where: b is the statement number or array name of the FORMAT
statement describing the data.

list is a series of variable or array names, separated by
commas, which may be indexed and incremented. They specify
the number of items to be written and the locations in
storage from which the data is taken.

[e . S et ot e et e et S . =
s v s s e s S s nn el e]

The PRINT statement causes data to be written 1in the data set
associated with the system output.

DATA Initialization Statement

logical, or literal data constants.

iss+--yi represent unsigned integer constants indicating
the number of consecutive variables that are to be assigned
the value of dyse--,d -

r 1
| General Form |
L . |
| 1
| DATA Vigeees¥n/ia*dageeeein*dn/v¥ntiseeeyV Lints*dntsyeea,i *d /,... |

|
! Where: Vi,<«.,V are variables, subscripted variables (in which |
| case the subscripts must be integer constants), or array |
| names. |
| |
| [o DI are values representing integer, real, complex, |
| |
| I
| |
I I
| |
L J

A data initialization statement is used to define initial values of
variables and arrays. There must be a one-for-one correspondence
between these variables (i.e., Viy...,V) and the data constants (i.e.,
dygeneed).

Example 1:

DIMENSION D(5,10)
DATA A, B, C/5.0,6.1,7.3/,D/725%1.0/

Explanation:

The DATA statement indicates that the variables A, B, and C are to be
initialized to the values 5.0, 6,1, and 7.3, respectively. 1In addition,
the statement specifies that the first 25 variables in the array D are
to be initialized to the value 1.0.

Example 2:

DIMENSION A(5), B(3,3), L(4)
DATA Ar/5%1.0/, B/9%2.0/, L/4*.TRUE./, C/'FOUR'/

Appendix B: Other FORTRAN Features Accepted by FORTRAN IV 97

Explanation:

The DATA statement specifies that all the variables in the arrays A
and B are to be initialized to the values 1.0 and 2.0, respectively.
All the logical variables in the array L are initialized +to the value
-TRUE. . The letters T and F may be used as an abbreviation for .TRUE.
and .FALSE., respectively. In addition, the variable C¢ 1is initialized
with the literal data constant FOUR.

An initially defined variable, or variable of an array, may not be in
blank common; however, in a labeled common block, they may be initially
defined only in a block data subprogram. (See the section
" SUBPROGRAMS.")

DOUBLE PRECISION Statement

General Form

DOUBLE PRECISION a,b,Cs---

Where: a,b,c,... are variable names that may be dimensioned in the
statement, or function names.

[— o — —— o —
e e e . s s sy, e i}

The DOUBLE PRECISION statement explicitly specifies ‘that the vari-
ables a,b,c,... are of type double precision. This statement overrides
any specification of a variable made by either the predefined convention
or the IMPLICIT statement. This specification is identical to that of
type REAL*8.

In addition, FUNCTION subprograms may be typed double precision, as
follows:

DOUBLE PRECISION FUNCTION name (@i,22483¢=<s2n)

Arquments of a FUNCTION or SUBROUTINE Program Enclosed by Slashes

Arguments in a FUNCTION or SUBROUTINE subprogram may be enclosed in
slashes within the commas. This form is equivalent to the normal format
without the slashes.

98

MATHEMATICAL FUNCTION SUBPROGRAMS

APPENDIX C:

FORTRAN SUPPLIED SUBPROGRAMS

Table 4. Mathematical Function Subprograms
r = T T T -) T T T 1
| In-Line (I) |No. of| Type of | |
| Function |Name |Definition |Oout-of-Line (0)| Arg. | Arguments |[Function |
t , $ t $ + fommmm et 1
Exponential	EXP	earg	o]	1	Real *4	Real *4
	DEXP	earxg	¢}	1	Real *8	Real #8
	CEXP	earg	o]	1	Complex *8	Complex *8
	CDEXP	earg	o]	1	Complex *16	[Complex *16
f--=-- 1 : } ¥ ~4= ¥ -						
Natural Logarithm	ALOG	1n (Arg)	¢}	1	Real *u4 jReal *4	
	DLOG	1n (Arg)	o]	1	Real #*8	{Real *8
	CLOG [1n (Axrg)	0o	1	Complex *8	Ccmplex *8
	CDLOG	1n (Axg)	o]	1	Complex *16	Ccomplex #*16
L (] b e e e e e e e e e 1 4 4 LN d						
v T T T T T T 1						
Common Logarithm	ALOG1l0	log, (Arg)	o	1	Real *4	Real *4
	DLOG10}1logs (Arg)	0	1	Real *8 jReal *8		
t 1 ¢ $: e e -						
Arcsine	ARCSIN	arcsin (Arg)	0] 1	Real *4	Real *4	
	DARSIN	[i	Real *8	Real *8		
t t i $: -- + -						
Arccosine	ARCOS	arcos (Arg)]	1	Real *u	Real =*u4
	DARCOS				Real *8	Real *8
(8] IR Ll 1 ____I__ 1 - 4						
r 1 T T T T 1						
Arctangent	ATAN	arctan (Arg)	(0] i 1	Real *4	Real *4	
	ATAN2	arctan (Args,Argz)	o]	2	Real *4 [Real =4	
	DATAN	arctan (Arg)	o}	1	Real *8	Real *8
	DATAN2	arctan (Arg,/Argp)	[¢)	2	Real *8	Real *8
b== + 1 + t $ $ {						
Trigonometric	SIN	sin(Arg) 0	1	Real *u4	Real *Uu	
Sine	DSIN	sin(Arg) o]	1	Real *8	Real *8	
(Argument in	CSIN	sin(Arg) (o)	1	Complex *8	Complex *8	
radians)	CDSIN	sin(Axqg) 0]	1	Complex #16	Complex *16	
t . { + 1 1 $ 1 -						
Trigonometric	COos	cos(Arg))	1	Real *4	Real *4
Cosine	DCOS	cos(Arg)	o}	1	Real *8	Real *8
(Argument in	CCOS	cos(Arg) [¢)	1	Complex *8	Complex *8	
radians)	CDCOS	cos(Arg) ¢}	1	Complex *16	Complex *16	
Kl 1 1 1 4 J						
k) T T T T Ll						
Trigonometric	TAN	tan (Arg)	o	1	Real *4	Real =*4
Tangent	DTAN				Real *8	Real *8
1 H] 1 4						
T + T ! h						
Trigonometric COTAN	cotan (Arg) o) 1	Real *u4	Real *4			
Cotangent DCOTAN		Real *8	Real *8			
4 I] ¥						
T 1 T '						
Square Root SQRT	(Arg) (o] 1	Real *u4	Real *4			
DSQRT	(Axg) o} 1	Real #*8	Real *8			
CSQRT	(Arg) o] 1	Complex *8	Complex *8			
CDSQRT	(Arg) o] 1	Complex *16	Complex *16			
IS 4 L] }						
¥ T T T + T 1						
Hyperbolic	SINH	sinh (Arg)	o	1	Real *4	Real *4
Sine	DSINH				Real *8	Real *8
L 4 L 4 L L L J
(Continued)

Appendix C:

FORTRAN Supplied Subprograms

99

Table 4. Mathematical Function Subprograms (Continued)

r T T T - T T T 1
| | | | In-Line (I) |No. of| Type of | |
| Function |Name |Definition |out-of-Line (0)| Arg. | Arguments |Function |
b _ t + 1 + 1 ¥ {
| Hyperbolic |COSH |cosh (Arg) | (o] | 1 |Real *4 jReal *4 |
| Cosine | DCOSH | | | |Real #8 |Real #*8 |
F t p— - t 1 1 : 4
| Hyperbolic |TANH |tanh(Arg) | o] | 1 |Real #*4 |Real *u4 |
| Tangent |DTANH |tanh (Arg) | (o] | 1 |Real *8 |Real *8 |
b + t + + + t {
Remaindering	MOD	Arg, (mod Argy)	I	2	Integer *4	Integer *4
	AMOD		I	2	Real *4	Real *u4
	DMOD		I	2	Real *8	Real *8
t 3 : 1 t 4 + i						
Absolute value	IABS	{Arg		I	1	Integer *4
	ABS		I	1	Real *4	Real *u
	DABS		I] 1	Real #8	Real *8	
e —— + : —4 1 e 1						
Modulus	caBs		a2+b2	for at+bi	o]	1
	CDABS		o	1	Complex *16	Real *8
e ¥ - . ¢ $ ¢ $ 1						
Truncation	INT	Sign of Arg times	I	1	Real *u	Integer *4
]		largest integer				
		<larg				
[AINT		I	1	Real *u	Real *u4 i	
	IDINT		I	1	Real #*8	Integer *4
¢ + ¢ 4 + : ¥ i						
Largest value	AMAXO0	Max (Args,Argsz,...)	I	22	Integer *4	Real *4
	AMAX1		I	22	Real *4	Real *u4
	MAXO		I	22	Integer *4	Integer *4
[MAX1		I	22	Real *4	Integer *4	
	DMAX1		I	22	Real #8	Real *8
e 4 t 3 ¥ + ¥ 1						
Smallest value	AMINO	Min (Args,Ardgz,--.)	I	22 jInteger *4 {	Real *4	
	AMINL	i I { =22	Real #u	Real *u		
	MINO		I	22	Integer *4	Integer *4
	MIN1		I	22	Real *4	Integer *4
	DMINL		I	=2	[Real *8	Real #8
o~ t 1 ¢ 4 4 $ 1						
Float	FLOAT	Convert from	I	1	Integer *4	Real *4
	DFLOAT	integer to real	I	1	Integer *4	Real *8
k - f t -= + t + + i						
Fix	IFIX	Convert from	I	1	[Real *u	Integer #*4
	HFIX	real to integer	I	1	Real #4	Integer *2
L IR 1 1 1 [} ! i						
T T I 1 T v T A						
Transfer of sign	SIGN	[Sign of Arg, times	I	2	Real *4	Real *4
[1Arg,			I	l	
	ISIGN		I	2	Integer *4	Integer *U4
	DSIGN		I	2	Real *8	Real *8 i
p=———- T 1 ¥ == ¥ 1						
Positive	DIM	Arg, -Min(Arg, ,Argyz)	I	2	Real =*4	Real *U4
difference	IDIM				Integer *4	Integer *4
pmmmmmme + 4 + + e 1						
Obtaining most	SNGL		I	1	Real *8 jReal *4	
significant part						
[of a Real *8 [[
argument		I	[
(R 1 X 4 4 1l 1 3						
H . T [1 T T T 1						
Obtain real	REAL		I	1	Complex *8	Real *i
part of complex						
argument						
L L —4 1 L 1 4L]
(Continued)

100

Table 4. Mathematical Function Subprograms (Continued)

r - T T T T T T T 1
| | | | In-Line (I) |No. of| Type of i) |
| Function |Name |Definition |Out~of-Line (0)| Arg. | Arguments |Function |
L | i 4 i 1 1 1
r T T T T T T 1
|Obtain imaginary |AIMAG | | I | 1 |Complex *8 |Real *4 |
|part of complex | | | | | | |
|srgunent - 1 _— | ,'
—_—— T 1 T T T T 1
Express a Real	DBLE		I	1.	Real *4	Real *8
¥4 argument in		i				
Real *8 form i						
o ¥ $ 1 .l 3 -+- 1						
Express two real	CMPLX	C=Arg,,+iArg,	I	2	Real *4	Complex *8
arguments in com-	DCMPLX		I	2	Real #*8 [Complex *16	
plex form ! i	} i 1 j					
L 1						
r T T T T - T 1						
Obtain conjugate	CONJG	C=X-iY	I	1	Complex *8	Complex *8
of a complex	DCONJG	Foxr Arg=X+iy	I	1	Complex *16	Complex *16
argument					[
_ [L L 1 L 1 i)
Appendix C: FORTRAN Supplied Subprograms 101

MACHINE INDICATOR TESTS

In the following list of pseudo machine indicator test subroutines,
assume that i is an integer expression and that 3Jj is an integer
variable. These subroutines are referred to by CALL statements.

SLITE (i): If i = 0, all sense lights will be turned off. If i =1, 2,
3, or 4, the corresponding sense light will be turned on.

SLITET (i, j): Sense light i (egual to 1, 2, 3, or 4) will be tested and
turned off. The variable j will be set to 1 if i was on, or j will be
set to 2 if i was off.

Example:

Assume that it is desired to continue with the program if sense light
i is on and to write results if sense light i is off. This can be done
by using the Logical IF statement or a computed GO TO statement:

-

CALL SLITET (3,KEN)

Go TO (6, 17) ,KEN
17 WRITE (3, 26) (ANS (X) , K=1, 10)
6 CONTINUE

-

Explanation:

When the statement CALL SLITET(3,KEN) is executed, the variable KEN
is assigned the value 1 or 2 depending on whether sense light 3 is on or
off, respectively (and the sense light is turned off). If KEN is 1,
statement 6 is executed next; if KEN is 2, statement 17 is executed.

OVERFL (j): j is set to 1 1if a floating-point overflow condition
exists, i.e., 1if the result of an arithmetic operation is greater than
1663; j is set to 2 if no overflow condition exists; j is set to 3 if
floating-point underflow condition exists, i.e., if the result of an
arithmetic operation is less than 16-63. The machine is left in a no
overflow condition.

DVCHK (4): If the divide check indicator is on, j is set to 1 and the

divide check indicator is turned off; if the divide check indicator is
off, j is set to 2.

THE _EXIT, DUMP, AND PDUMP SUBPROGRAMS

EXIT Subprogram

A CALL to the EXIT subprogram terminates the execution of the object
program.

102

DUMP Subprogram

A CALL to the DUMP subprogram by the statement:
CALL DUMP (A;,B3sFs4yeeeeBnsBneFn)

causes the indicated limits of storage to be dumped and execution to be
terminated.

1. A and B are variable data names that indicate the limits of storage
to be dumped; either A or B may represent upper or lower limits.

2. Fp is an integexr indicating the dump format desired:

Hexadecimal
Logical #*1
Logical #*4
Integer #*2
Integer *U4
Real =*4
Real #*8
Complex *8
Complex*16
Literal

Fn =

COoONOLMEWNREO

3. If the argument Fp is omitted, it is assumed to be equal to 0, and
the dump will be hexadecimal.

4. The arguments A and B should be in the same program (main program
or subprogram) or same common block.

PDUMP Subprogram

A CALL to the PDUMP subprogram by the statement:
CALL PDUMP (B4,B3,Fiqe«««¢BnsBnysFn)

causes the indicated limits of storage to be dumped and execution to be
continued. The PDUMP arguments are the same as the DUMP arguments.

Appendix C: FORTRAN Supplied Subprograms 103

APPENDIX D: SAMPLE PROGRAMS

SAMPLE PROGRAM 1

Sample program 1 (Figure 2) is designed to find all of the prime
numbers between 1 and 1000. A prime number is an integer that cannot be
evenly divided by any integer except itself and 1. Thus 1, 2, 3, 5, 7,
11,... are prime numbers. The number 9, for example, is not a prime
number, since it can evenly be divided by 3.

IBM FORTRAN Coding Form
o GAMPLE PROGRAM 1 [S I N N N D 23 A W
G 666 17 e [[[T e

Somtn | % FORTRAN STATEMENT
0

c PRIME NUMBER PROBLEM

100 WRITE (648) B 3 R . -
" B FORMAT (52H FO[LLOWING IS| A LIST OF PRIME NUMBERS [FROM [TO 100p/

N 19XOH1 /19X 1H2/19X51H3) | | R
JdetjI=5, 1 1 , |

3 A=1 - l, '

182 A=SQRT(A)
13/ y=A1 | 1
[144 PO 1] K=35[-2 o
195 L=1/K - I D R e
166 TF(L¥K-T)[{72°8 T

1 |CONT]INUE
| 1@7 WRITE (esi5)T

5 FORMAT (I20)
2/ T=1+2 i T o N
108 IF(1@P@-1)) 72413 R I R R B ,””LwAAW}A

—

Y WRITE (699) N
9| FORMAT ({4H PROGRAM ERROR) | o
7IWRITE (6se) | | |

6| [FORMAT (éiﬂ_THIS IS THE END OF THE| PROGRAM)
109/ 5TOP| '
END

T 23 ¢ 5167 B 9 W 1112 93 14 05 16 17 10 15 70 71 77 71 24 75 76 77 73 29 30 1 101 4 5 1 17 W 39 40 41 47 144 15 I 47 45 49 50 51 57 53 54 S 34 57 58 50 0 &1 47 &1 61 &5 46 47 68 67 70 71 97|73 74 75 76 77 7870 80
A vionderd card Toum, AN sTecita BRETST, s ovarlable Tor punching siatements from Tt Torn. g

Figure 2. Sample Program 1

104

SAMPLE PRCGRAM 2

The n points (x;, yj) are to be used to fit an m degree polynomial by
the least-squares method.

Y T agt a4xX + azx2 + ... t+ apxl

In order to obtain the coefficients ag, a44---, am, it is necessary to
solve the normal equations:

(1) Woag + Wyqaq + ... + Wmam = ZO
(2) Wi g + Woaq. + ... + Wm.‘.:‘am = Z4
(m+1) Wma + Wm+1a1 +t eee T Wzmam = Zm
where:
n
Wo = n zZ =3 v
i=1
n n
Wy =3 x4 Z, = X YiXi
i=1 i=1
n n
W, = 3 x42 Z2 = ¥ y;x;?
i=1 i=1
- n
- Zy = 3 yixim
) i=1

n
Wop =X x;20
1

After the W's and Z's have been computed, the normal eguations are
solved by the method of elimination which is illustrated by the
following solution of the normal equations for a second degree rolynomi-
al m= 2).

(&) Woa, + Wea,y + Waap = Z,
(2) Wiao + Waaq + Waa, = Z4
(3) Waa, + Wiaq + Waap = Z,

The forward solution is as follows:
1. Divide equation (1) by W,

2. Multiply the equation resulting from step 1 by W4 and subtract from
equation (2) .

3. Multiply the equation resulting from step 1 by W, and subtract from
equation (3} .

Appendix D: Sample Programs 105

The resulting equations are:

(4) a, + byaa,

(5) Ejaa,

(6) bazaq
where:

bea = We/Wy, bsa

baa = Wa-bqsaWe , bas

baa = Wa—bqaWy; , bas

+

+

+

by3az = by,
basaz = bagy
baazaz = bay
Wa/W, baqa

Wa-bqsaWe , ba,

Wy=beaWa , bay

Zo/Wo
Z4=bqy W,

Zz‘b1qW2

Steps 1 and 2 are repeated using equations (5) and (6), with b,;, and ba,,
The resulting equations are:

instead of W, and W,.
(7 aq t+ Caaay
(8) Caaag

where:

i

Caas

baa/ba2 ¢+ Cas

Cas = basz—=Ca3bas , Cau

The backward solution is

(9) @23 = Ci3u/Cas

(10) a,

(1) a

Figure 3 is a possible
case: n = 100,
ceey W(2M+1),

calculations for the

stored in W(1), W(2), W(3),

Ca24—C23d3

by -by2a4-bgsaz

Cau

Cau

ba4/baa
= bay~Ca4bsaz

as follows:

from equation (8)

from equation (7)

from equation (4)

FORTRAN program for carrying out the
m < 10. Wo’ W., W;, LI Wzm are

respectively. 20¢ Z4, Zj,

esey Zm are storxed in 2 (1), 2 (2), 2 (3)y e<e, Z(M+1), respectively.

106

IBM PORTAAN Coding Form

[rose SAMPLE PROGRAM 7 oo aiied moe { o 3
oo [6/66 | momichons t:;’—fj"i:j%‘{f;}"—+““+— RO O

TATEMENT y IDENTIFICATION.
*onene FORTRAN STATEMENT SequEnce
T 73 4 5|el|7 ® 7 10 T 131415 16 7_W 19 W 71 725 74 %5 75,47 78 27 3 3\ 37 33 94 3 36 37 38,39 M A1 42 43 43 45 A6 47 4 4v 50 SV 57 53 54 55 56§ 35 39 60 61 67 &) 64 & % &7 W 6v 70 71 7273 75 73 76 77 78 79 w]

B REALI X(1000)sY (160) 5N (21)}2Z(11))2AC11) 9B ([11912])
L[|FORMAT (T2sI3/[(4F14[.7)) v

2| [FORMAT (BE15.6) | [|
READ| (591]) MsNj» (X(I]D)sY(IDaI=1|2N) . ‘
i ' i i i IK

DO 5| J=2(1LW
tﬁ’ 5N = d.pp
DO 6 J=ipLZ N L
=dp T : I

o Jcont,

r‘
=
[
[
X
=
+

19N

™
o~
-
[
Wle

1Y +Y (1) ' |

29L7Z :)
P BN : ‘ o
J)+P j
) +Y (L) %P V :
LB9LW 1
P s :

X)W
| N~
—

to\

L — <
M| N NS S

P
W(

13 [2(
DO
P

"
ol
~
—

il

S i H .
18 19 20 2\ 22 23 24 75 2 27 28 29 30 31 32 33 34 35 J6 37 3 39 40 41 42 43 44 45 46 47 48 49 50 SI 57 53 54 55 36 57 38 39 60 61 62 63 64 65 66 67 68 69 70 71 7273 74 73 76 77 78 7% 80
ementh from 1053 for

T 2 5 4 5|6l 8 % o iz @
A andard cord fam. 1BM Electio B8157. s avollable for

Figure 3. Sample Program 2

IBM FORTRAN Coding Form

noom _GAMPLE PROGRAM 2 Toewe [T T T T T T T Tego3
ROGRANER IDA" 6/66 ‘l INSTRUCTIONS INMN I I , , l J | lmkowmr

STATEMENT
NUMBER

I0ENTIFICATION
FORTRAN STATEMENT SEQUENCE
T 2 3 5]a|7 8 9 10 T 13 W15 J6 17819 2% 2 % 33 % 75 % 27 38 35 %0 337 37 34 % 35 37 30 3% 4 41 4. 43 W & 46 & 45 49 50 ST 57 57 54 55 56 57 38 5% 60 61 67 61 64 & & &7 8 &v 70 71 7|7 74 ;3 I 77 18 7 &

16/ W(J)| = W()+p
17[p0 28 TI={sL%
DO 20 K=ftoL¥
J = K+I
20 B(KoI) = W(J-1])
DO 22 K=lsLE B
22 B(KoLB) =| Z(K) N
23 D0 31 L=lisLE
DIVB| = B(lLoL)
DO 26 J=LsLB
26| BC(L3lJ) = B(L»JD/DIVE —
I1 = L+1 T
IF (I1-LB) 28433433 -

28/ DO 3 1=[11sLZ ' i

FMULITE = B(IsLD
DO 3

Jf%lLB '
31 B(Told) = B(I+J)-BCL>J)¥FMULTB
33 A(LZ B(LZ5LB)

I =

35/ 516G
DO 3

con.

®

~|

L

N> T~ -
"

3
J=IsLZ

V23 4 567 8 9 1o U 12 1314 15 G5 17 1819 % I\ % 25 24 25 %6 27 7829 30 31 32 33 3 3 J6 37 36 39 40 41 47 & 4 4> 46 47 45 9 50 51 57 53 54 35 56 57 5857 60 61 &2 63 oA & b6 6 o8 by 70 71 7217 74 75 7 7 76 70 &
A Sianand card o, 18KA alactio BBBIST, s Gvailabls tor ouncning iotameats fiom s form "

Figure 3. Sample Program 2 (Continued)

Appendix D: Sample Programs 107

IBM FORTRAN Coding Porm it
mooms SAMPLE PROGRAN‘ 2 r / e GRaPHIC ELE]
ROCRAVER oaTe 6 6 6 INSTRUCTION o CARD ELECTRO NUMBER |
e FORTRAN STATEMENT e
‘234767l’IDTT)UIIISMU|.l‘r202|ﬁﬂﬂﬂﬂ,z?l;ﬂ3|32133,11}36373[}?7!@4)IZQVUQIAHM'A?»!)51539455!557“!960“6269646666676059707I727374757éﬂn79w
7| [SITIGMA] =] [S|TIGMAH[BI(|T]-[4]>}J])¥AICII)
I = II4
ACIID] = BI(JT|>|LIB])[-SITIGMA
TF|_[([T-ED| HA[s4t P35 T
1] WRIITIE] [(l6[212)] [CAI(TIDaT|=4]s]LiZ)
S(TIOP] IRD
END |
I
S L _,A’.A
i
T 2 3 4 s5|&f7 e 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 24 27 28 29 30 31 32 33 34 25 36 37 38 39 40 A) 42 43 A4 45 46 47 48 4950 51 52 53 54 55 36 57 58 59 60 61 62 63 64 &5 86 67 68 69 70 7)1 72173 74 75 76 77 78 79 80
*A vtandard cord form, [BM electro 888137, 13 avalioble for punching statements from this fom

Figure 3. Sample Program 2

The elements of the W array, except W(l), are set equal to =zero.
W(1l) is set equal to N. For each value of I, X; and Y; are selected..
The powers of Xj are computed and accumulated in the correct W counters.
The powers of Xj are multiplied by Yj, and the products are accumulated
in the correct Z counters. In order to save machine time when the
object program is being run, the previously computed power of Xj is used
when computing the next power of Xj. Note the use of variables as index
parameters. By the time control has passed to statement 17, the
counters have been set as follows:

108

W) = N (1) = 3 ¥
1=1
) N N
W@ =2 X 2 = 2 yx
. N N
W =2 % 2 = 2 X
: N
: Z(M+1) = §=1YIXIM

N
W(2M+1l) = Z XIzM
I=1

By the time control has passed to statement 23, the values of W , W,,
eeey Wom+, have been placed in the storage locations corresponding to
columns 1 through M + 1, rows 1 through M + 1, of the B array, and the
values of Zg, Zis <-«, Zm have been stored in the locations correspond-
ing to the column of the B array. For example, for the illustrative
problem (M = 2), columns 1 through 4, rows 1 through 3, of the B array
would be set to the following computed values:

WO W1 Wz ZO
Wi Wa Wa Zy
Wa Wi Wy Z3

This matrix represents equations (1), (2), and (3), +the normal
equations for M = 2.

The forward solution, which results in equations (4), (7), and (8) in
the illustrative problem, is carried out by statements 23 through 31.
By the time control has passed to statement 33, the coefficients of the
Al terms in the M + 1 equations which would be obtained in hand
calculations have replaced the contents of the 1locations corresponding
to columns 1 through M + 1, rows 1 through M + 1, of the B array, and
the constants on the right-hand side of the equations have replaced the
contents of the locations corresponding to column M + 2, rows 1 through
M + 1, of the B array. For the illustrative problem, columns 1 through
4, rows 1 through 3, of the B array would be set to the following
computed values:

1 by 2 bi3 by
0 1 Cza Cay
0 0 Cas Cagq

This matrix represents equations (4), (7), and (8).

The backward solution, which results in equations (9), (10), and (11)
in the illustrative problem, is carried out by statements 33 through 40.
By the time control has passed to statement 41, which prints the values
of the A9 terms, the values of the (M + 1) *A7 terms have been stored in

Appendix D: Sample Programs 109

the M + 1 locations for the A array. For the illustrative problem, the
A array would contain the following computed values for a,, a;, and a,,
respectively:

Location Contents

A(3) c3u/03$

A(2) Ca4=Cgzady

A(D) biu-bsaas-byaaz

The resulting values of the AI terms are then printed according to
the FORMAT specification in statement 2.

110

A format code 59-62
ABS
(see mathematical function subprograms)
Addition
(see arithmetic operators)
Additional input/output statements 67
BACKSPACE 67
END FILE 67

REWIND 67
Adjustable dimensions 70-72
AIMAG

(see mathematical function subprograms)
AINT

(see mathematical function subprograms)
ALOG

(see mathematical function subprograms)
ALOG10

(see mathematical function subprograms)

Alphabetic characters (table) 95

Alphameric characters 14,95
AMAXO0

(see mathematical function subprograms)
AMAX1

(see mathematical function subprograms)
American Standards Association (Asn)

FORTRAN 5

AMINO

(see mathematical function subprograms)
AMIN1

(see mathematical function subprograms)
AMOD

(see mathematical function subprograms)
AND

(see logical operators)

Arithmetic and logical assignment 7,27-28
Arithmetic expressions 19-23
arithmetic operators 20-23
mode of 21 ,
order of computation in 22-23
use in logical expressions 23
use of parentheses in 23
Arithmetic IF 32-33
Arithmetic operators 20-23
Arrangement of arrays in storage 19
Arrays 16-19
arrangement in storage 19
declaring the size of 18

INDEX

(see X format code)

Blank lines

(see carriage control)

Blanks 8

BLOCK DATA subprogram 93

C (see comments lines)

CABS
(see mathematical
CALL statement
Carriage control 66
CCcos
(see mathematical
CDCOS
(see
CDEXP
(see
CDLOG
(see
CDSIN
(see mathematical
CDSQRT
(see
CEXP
(see mathematical
Character card punch
CLOG
(see mathematical
CMPLX
(see mathematical
Coding form 8
Comments 1lines

mathematical
mathematical

mathematical

mathematical

9-10

COMMON statement 74-

87-88

function subprograms)

function subprograms)
function subprograms)
function subprograms)
function subprograms)
function subprograms)
function subprograms)

function
codes 95

subprograms)

function subprograms)

function subprograms)

77

blank COMMON 76-77
declaring the size of an array 18
labeled COMMON 76-77

Compiler 5
Complex constants

12-13

COMPLEX statement 70-71
(see also FUNCTION subprograms)
Computed GO TO statement 30

CONJG
(see mathematical
Constants 7,11-14
complex 12-13
double-precision
integer 10

function subprograms)

11-12

suscripted variables 16

subscripts 17-18

ASSIGN statement 31-32

Assigned GO TO statement

ATAN
(see mathematical

BACKSPACE statement

Basic input/output statements

READ
WRITE

41-47
47-50

31-32
function subprograms)

67
40-50

Basic Operating System 5
Basic Programming Support 5

Blank common 76-77

Blank fields

literal 13

logical 13

real 11-12
Continuation lines 7
CONTINUE statement 37-38
Control statements 7,29-39

arithmetic IF 32-33

assigned GO TO 31-32

computed GO TO 30

CONTINUE 37-38

DO 34-36

END 39

logical IF 33-34

PAUSE 38

STOP 38

Index 111

unconditional GO TO 29
Conversion codes

(see format codes)
COS

(see mathematical function subprograms)
CSIN

(see mathematical function subprograms)
CSQRT

(see mathematical function subprograms)

D decimal exponent 11-12,58-59
D format code 58-59
DABS

(see mathematical function subprograms)
DATA initialization statement 97-98
Data set 40
Data set reference number 40
DATAN

(see mathematical function subprograms)
DATANZ2

(see mathematical function subprograms)
DBLE

(see mathematical function subprograms)
DCMPLX

(see mathematical function subprograms)
DCONJG

(see mathematical function subprograms)
DCOS

(see mathematical function subprograms)
Decimal exponents 11-12,58-59
Declaring the size of an array 18
Device (I/0) 40
DEXP

(see mathematical function subprograms)
DFLOAT

(see mathematical function subprograms)
Digit

(see numeric characters)
DIM

(see mathematical function subprograms)
DIMENSION statement 72-73

adjustable dimensions 72-73

declaring the size of an array 18
Division

(see arithmetic operators)
DLOG

(see mathematical function subprograms)
DLOG10

(see mathematical function subprograms)
DMAX1

(see mathematical function subprograms)
DMIN1

(see mathematical function subprograms)
DMOD

(see mathematical function subprograms)
DO statement 34-37
DO variable 34-36
Double-precision constants 11
DOUBLE PRECISION statement 98
DSIGN

(see mathematical function subprograms)
DSIN

(see mathematical function subprograms)
DSQORT

(see mathematical function subprograms)
DTANH

(see mathematical function subprograms)
DUMP subprogram 93,102-103

112

DVCHK
(see machine indicator tests)

E decimal exponent 11-12,58-59
E format code 58-59
END FILE statement 67
END parameter in a READ statement 41
END statement 39

in FUNCTION subprograms
ENTRY statement 89-91
EQ (see relational operators)
EQUIVALENCE statement 77-79
ERR parameter in a READ statement 41
EXIT subprogram 93,102
EXP

(see mathematical function subprograms)
Explicit specification statement 7,70-73
Exponentiation 23

(see also arithmetic operators)
Exponents

(see decimal exponents)
Expressions 19-26

arithmetic 19-23

logical 23-26
EXTERNAL statement 92

85-86

F format code 58
FALSE 13
(see also logical expressions)
Features of operating system FORTRAN IV
5-6
Fields 7-8
blanks (see also X format code) 8
comments 7-8
continuation 7
identification 7
statement number 7
FLOAT
(see mathematical function subprograms)
Format codes 50-66
A code 59-61
carriage control 66

D and E codes 58-59
F code 58
G code 52-57
H code 62-63
I code 57-58
L code 59
numeric codes 56
scale factor-P 64-65
T code 64
X code 63
FORMAT statement 40,50-66
format codes 50-66
FORTRAN record #0,50-52
literal data 61-62

reading FORMAT statements 47
FORTRAN

American Standards Association 5

basic operating system 5

basic programming support 5

coding form 7-8

compiler 5

library 92,99-103
object program 5
record 40,50-52

source program 5
statements 7

supplied subprograms 92,99-103
Functions 80-81

definition of 81

FUNCTION subprograms 83-86

reference to 81
statement function subprograms 81-83
G format code 52-56
GE (see relational operators)
GO TO statements 29-32
assigned 30-32
computed 30
unconditional 29
GT (see relational operators)
H format code 62-63
BFIX
(see mathematical function subprograns)
Hierarchy of operations
in a logical expression 25-26
in an arithmetic expression 22

I format code 57
I/0 list

within a NAMELIST u43-u44,48
within a READ 41
within a WRITE U47-u48

IABS

(see mathematical function subprograms)
IDIM

(see mathematical function subprograms)
IDINT

(see mathematical function subprograms)
IFIX

(see mathematical function subprograms)
Imaginary number

(see complex constants)
IMPLICIT specification statement
In-line

(see mathematical function subprograms)
Increment 34
Indexing I/0 lists

15,68-70

46-47

Indexing parameters in a DO 34-35
Initial value 34
Input/output statements 7,U40-66

BACKSPACE 67
END FILE 67

READ 41-47

REWIND 67

WRITE 47-50
INT

(see mathematical function subprograms)
Integer constants 10
INTEGER statements 70-73
(see also FUNCTION subprograms)
ISIGN
(see mathematical function subprograms)

L format code 59
Labeled COMMON 76-77
LE (see relational operators)
Length specification
(see optional length specification,
standard length specification)
Library (see FORTRAN)
Lines
(see blank lines, continuation lines)
List (see I/0 list)

Literal constants 13

Literal data in a FORMAT statement

Logical constants 13

Logical expressions 23-26
logical operators 24-25
order of computation in
relational operators 24
use of parentheses in 26

Logical IF statement 33-34

Logical operators 24-25

LOGICAL statement 70-73
(see also FUNCTION subprograms)

Looping (see DO statement)

LT (see relational operators)

61-62

25-26

Machine indicator tests 102
Mathematical function
93,99-101

MAXO. :
(see mathematical function subprograms)
MAX1

(see mathematical function subprograms)
MINO

(see mathematical function subprograms)
MIN1

(see mathematical function subprograms)
Mixed-mode 5-6

(see also expressions)
MOD

(see mathematical function subprograms)
Mode of an arithmetic expression 19-22
Muliline listing 56
Multiple ENTRY into a subprograim
Multiplication

(see arithmetic operators)

subprograms

89-91

Named common
(see labeled COMMON)
NAMELIST statement 42-44,048
NE (see relational operators)
Nest of DOs 36-37
NOT (see logical operators)
Numeric characters 95
Numeric FORMAT codes 56-57
Object program 5
Operators
(see arithmetic, logical, relational)
Optional length specification for
variables 14-15
(see also type statements)
OR (see logical operators)
Order of computation in
expressions 22-23
Order of computation in
expressions 25-26
Oout-of-line
(see mathematical function subprograms)
OVERFL
(see machine indicator tests)

arithmetic

logical

P format code 64
Parentheses

use of 23,26
Parentheses in arithmetic expressions 23
Parentheses in logical expressions 26
PAUSE statement 38
PDUMP subprogram 93,103

Index 113

C28-2007-0

Pre-defined specification (convention) 15
PRINT statement 97
Programming considerations in using a DO
loop 36-37
PUNCH statement 96
Range of a DO statement 34-35
READ statement 41-47
READ (a) list U45-46
READ (a,b) list 44-45
READ (a,x) 42-44
READ b, list 96
Reading FORMAT statements
REAL i
(see mathematical function subprograms)
Real constants 11-12
REAL statement 70-73
(see also FUNCTION subprograms)
Relational operators 24
Repeat constant 43
RETURN statement
in a FUNCTION subprogram 84
in a main program 89
in a SUBROUTINE subprogram 88-89
REWIND statement 67

L6-47

Sample program
program 1 104
program 2 105-111
Scale factor-P 64-66
Sense light subroutines 93
SIGN
(see mathematical functior subprograms)
SIN
(see mathematical function subprograms)
Slashes in a FORMAT statement 50-51,54-55
SLITE
(see machine indicator tests)
SLITET
(see machine indicator tests)
SNGL
(see mathematical function subprograms)
Source program 5
Source program characters 95
Special characters (table) 95
Specification statements 7,68-79
COMMON 74-77
DIMENSION 72-73
EQUIVALENCE 77-79
explicit 70-73
EXTERNAL 92
FORMAT 40,50-66
IMPLICIT 15,68-70
NAMELIST 42-44,48
Standard length
variables 14-15
(see also type statements)
Statement numbers 7-8
Statements 7-9

specification for

TSIV

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
{USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

arithmetic and
7,27-28
comments lines 8
continuation of 7
control 7,29-39
input/output 7,40-66
number 7
specification 7-8,68-79
subprogram 7,80-93
STOP statement 38
SQRT
(see mathematical function subprograms)
Subprogram names as arguments
(see EXTERNAL statement)
Subprograms 7,80-93
FORTRAN supplied
FUNCTION 81-83

logical assignment

92-93,99-103

statement functions 81-83
SUBROUTINE 86-89
Subscripted variable 16-18
Subscripts 16-18
Subtraction

(see arithmetic operators)
Symbolic unit number
(see data set reference number)

T format code 64
TANH
(see mathematical function subprograms)
Test value 35-36
TRUE 13
(see also logical expressions)
Type and length specification 15
Type declaration 15-16
explicit 16
IMPLICIT 15
pre-defined 15
Type specification of FUNCTION subprograms
84-86
Type statements 68-73
explicit 70-73
IMPLICIT 68-70

Unconditional GO TO statement 29

Variable FORMAT statements
(see reading FORMAT statements)
Variables 7,13-14
subscripted 16-18
type declaration 15-16
types and length specifications
variable names 14

14-15

WRITE statement U47-50
WRITE (a) list 50
WRITE (a,b) list 49
WRITE (a,x) ug

X format code 63

*¥°S°n UT pa3uTad

0-L002-820

READER'S COMMENTS FORM

IBM System/360 Time Sharing System
FORTRAN IV Language
C28-2007-0

® Your comments, accompanied by answers to the following questions, help us produce
better publications for ycur use. If your answer to a question 1is "No" or requires
qualification, please explain in the space provided below.

Yes No
e Does this publication meet your needs? . .
e Do you find the material:
Easy to read and understand?
Organized for convenient use?
Complete?
Well illustrated?
Written for your technical level?

® What is your occupation?

¢ How do you use this publication?
As an introduction to the subject? As an instructor in a class?
For advanced knowledge of the subject? ' As a student in a class?
For information about operating procedures? As a reference manual?

|

Other

s Please give specific page and line references with your comments when appropriate.

COMMENTS

Name:

Address:

e Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

Form: C28-2007-0

staple
fold fold
r 1
| FIRST CLASS I
= PERMIT NO. 34 :
| YORKTOWN HTS, N.Y.|
L ———— —_d

r -
| BUSINESS REPLY MAIL
| NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
Lo

.
I
I

J

RRARN
RERRN

NRRRN
IBM CORPORATION

PO BOX 344 Pt
2651 STRANG BLVD.

POSTAGE WILL BE PAID BY

YORKTOWN HTS., N.Y. 10598 RN K

ATTN: TIME SHARING SYSTEM/360 NERRN §
PROGRAMMING PUBLICATIONS DEPT. 504 o

NERRN »

__ o o L e =}
fold G
n

>

Q

[(o]

[0 0]

o

o

o

~1

S

TSIV

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017

[International] staple

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	replyA
	replyB

