

IBM

SYSTEM/360 COBOL

COBOL Programming Techniques
Text

Programmed Instruction Course

L

Copies of this publication can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:
IBM DPD Education Development, Education Center, Endicott, New York

© International Business Machines Corporation, 1966

System/360 COBOL COBOL Programming Techniques
PREFACE

The general objective of this book is to teach students techniques
by which they can make the most effective and efficient use of
COBOL. Major emphasis is centered on discussions of the ways in
which fundamental procedural statements are executed, and what
the programmer can do to cause the most efficient execution of
these statements. Students learn that the instructions compiled
for a statement like "ADD A, B, GIVING C" may cause data to be
not only added, but also moved, converted to a different data
code, shifted to align decimals, truncated, and edited, to name
only a few possibilities! These actions depend partly on the way
in which the programmer has defined the data items and specified
the processing to be done; students learn how to write entries so
as to eliminate unnecessary actions, in order to get efficient
processing while still getting the desired data results.

The statements which are discussed are: First, the MOVE statement
and the three ways in which it may be executed -- alphanumeric
moves, numeric moves, and edit moves; included are the rules for
using all editing picture characters. Second, arithmetic
statements, including the ROUNDED and SIZE ERROR options. Third,
IF statements, emphasizing compound conditional expressions,
nested IF statements, and the execution of relation tests.

Fourth, PERFORM statements -- especially the "TIMES", "UNTIL",

and "VARYING" options.

Throughout, the text explains how these fundamental statements

may be applied to typical programming situations. In addition,

one lesson is devoted to ways of writing program switches in COBOL,
and two lessons deal with data tables and subscripting.

To teach COBOL facts, rules, and techniques is not the only aim
of this book, however. Another aim is to develop good working
habits =-- concern for object program efficiency, and attention to
details, for instance. A final, and very important, aim is to
make the student self-sufficient in his future work with COBOL;
to this end, the student is given many reading assignments in the
regular COBOL reference manual, so that he will know how to use
it to find whatever information he may need in the future.

This is the third in a series of programmed instructions courses
on System/360 COBOL. The student is expected to have completed
the previous courses: COBOL Program Fundamentals (text R29-0205
and reference handbook R29-0206), and Writing Programs in COBOL
(text R29-0210 and reference handbook R29-0211).

(6/66) i

R ([|

System/360 COBOL

COBOL Programming Techniques

ACKNOWLEDGEMENT

The following information is reprinted from COBOL-61 EXTENDED,
published by the conference on Data Systems Languages (CODASYL),
and printed by the U. S. Government Printing Office.

This publication is based on the
COBOL System developed in 1959 by
a committee composed of government
users and computer manufacturers.
The organizations participating

in the original development were:

Air Materiel Command,
United States Air Force
Bureau of Standards,
Department of Commerce
David Taylor Model Basin,
Bureau of Ships, U.S. Navy
Electronic Data Processing Divi-
sion, Minneapolis-Honeywell
Regulator Company
Burroughs Corporation
International Business Machines
Corporation
Radio Corporation of America
Sylvania Electric Products, Inc.
Univac Division of Sperry-Rand
Corporation

In addition to the organizations
listed above, the following
organizations participated in the
work of the Maintenance Group:

Allstate Insurance Company

Bendix Corporation, Computer
Division

Control Data Corporation

DuPont Company

General Electric Company

General Motors Corporation

Lockheed Aircraft Corporation

National Cash Register Company

Philco Corporation

Royal McBee Corporation

Standard O0il Company (N.J.)

United States Steel Corporation

This manual is the result of
contributions made by all of the
above-mentioned organizations.

no warranty, express or implied,
is made by any contributor or by
the committee as to the accuracy
and functioning of the programming
system and language. Moreover, no
responsibility is assumed by any
contributor, or by the committee,
in connection therewith.

(6/66)

N

It is reasonable to assume that a
number of improvements and addi-
tions will be made to COBOL. Every
effort will be made to insure that
the improvements and corrections
will be made in an orderly fashion,
with due recognition of existing
users' investments in programming.
However, this protection can be
positively assured only by individ-
ual implementors.

Procedures have been established
for the maintenance of COBOL.
Inquiries concerning procedures

and methods for proposing changes
should be directed to the Executive
Committee of the Conference on
Data Systems Languages.

The authors and copyright holders
of the copyrighted material used
herein: FLOW~-MATIC (Trade-mark of
the Sperry-Rand Corporation),
Programming for the UNIVAC ® I and
II, Data Automation Systems © 1958,
1959, Sperry-Rand Corporation;

IBM Commercial Translator, Form No.
F28-8013, copyrighted 1959 by IBM;
FACT, DSO 27A5260-2760, copyrighted
1960 by Minneapolis-Honeywell; have
specifically authorized the use of
this material, in whole or in part,
in the COBOL specifications. Such
authorization extends to the repro-
duction and use of COBOL specifi-
cations in programming manuals or
similar publications.

Any organization interested in
reproducing the COBOL report and
initial specifications in whole or
in part, using ideas taken from
this report or utilizing this
report as the basis for an instruc-
tion manual or any other purpose
is free to do so. However, all
such organizations are requested
to reproduce this section as part
of the introduction to the
document. Those using a short
passage, as in a book review, are
requested to mention "COBOL" in
acknowledgement of the source, but
need not quote this entire section.

System/360 COBOL

(6/66)

TABLE OF CONTENTS

Student Instructions

How to

LESSON

LESSON

LESSON

LESSON

LESSON

LESSON

LESSON

LESSON

LESSON

LESSON

Study this Book
1

> W N

N B < N S |

10

COBOL Programming Techniques

vii

ix

15
27
45
63
77
91
107
123
137

System/360 COBOL COBOL Programming Techniques

4.

(6/66)

STUDENT INSTRUCTIONS

This is the third in a series of programmed instruction courses
on System/360 COBOL. The preceding courses (COBOL Program
Fundamentals and Writing Programs in COBOL) are prerequisites to
this course.

Be sure to read the Preface of this book, which explains the
overall goal of this course.

Besides this book, you must have:

[a System/360 COBOL reference manual. (Use the manual that
corresponds to the operating system your installation uses,
For the full Operating System, use IBM Operating System/360
COBOL Language, Form C28-6516. For Disk or Tape Operating
System, use IBM System/360 Disk and Tape Operating System,
COBOL Language Specifications, Form C24-3433,

° a pad of COBOL program sheets (Form X28-1464).

° the reference handbooks you received in the earlier courses
of this series (Form R29-0206 and R29-0211).

All reading assignments given in this textbook are in your
reference manual. An assignment will name the topic you are to
read, but will not give the page numbers in the manual; you are
expected to look up the topic in the Index of the manual to get
the page numbers for yourself. Also, you should use the reference
handbooks from the earlier courses whenever you need to review
what you studied before. In a few cases, this text will ask you
to read specific topics in the reference handbooks.

This textbook will be used by other students after you, so do not
fill in any of the blanks or make any notes in this book.

The format of this book is exactly the same as that used in the
previous texts of this series. As before, topics of study are
presented in a series of frames, with most frames requiring you

to choose an answer or to formulate an answer mentally. The
correct answers are given right after each question. You should
use a card or a sheet of paper to cover up the correct answer until
you have formulated your own answer to a question.

If the meanings of symbols like brackets and braces (as they are
used in frames) are fresh in your mind, you may begin Lesson 1;
otherwise, read "How to Study this Book" on the next page.

System/360 COBOL COBOL Programming Techniques

HOW TO STUDY THIS BOOK

1. Each lesson is broken up into a number of frames, which are simply
convenient instructional steps to be studied in sequence. Most
frames have two parts: the first part usually asks a question or
requires you to take some action; the second part gives the
correct answer to the question. The end of the first part is
marked by a group of three dots. If the frame asks a question,
the correct answer is printed on the same page, below the three
dots.

2. As you study each frame, you must use an ordinary sheet of paper
or a card to hide the correct answer from yourself. You will
learn best by working out the answers, not by just reading words.

3. Start each page by putting your "hider" sheet or card at the top.
Then slide your sheet down until you uncover a group of three
dots. This allows you to read the first part of a frame, and to
formulate your answer to the question or problem it poses. When
you have your answer clearly in mind, slide the "hider" sheet
down to the next group of three dots. This reveals the correct
answer, and also uncovers the first part of the next frame.
Frames vary in length; a page may contain only one frame, or as
many as seven frames.

4., Your answer to a frame may sometimes be different from the printed
answer, but it should mean the same. If your answer is wrong,
study the question again with the correct answer in mind.

5. On the whole, the course is composed of reading assignments and
questions. When a frame gives you a reading assignment, be sure
to complete the reading before you go on to the next frame. The
frames that follow a reading assignment may ask questions about
what you have read, or ask you to apply what you have read; they
may also provide additional information about the topic. You will
find instructions, remarks, and the author's opinions printed in
italics in some frames.

6. When you come to a blank in a frame, you are to think of
one or more words that complete the sentence. The length of the
blank space is always the same, so it is not a clue to the length
of the answer. Do not write your answer in the book.

7. Some frames present a choice of answers, from which you are to
select the one best answer. The choices are stacked in braces {}.

8. Other frames present a choice of answers, from which you are to
select all correct answers. All of the choices, more than one
choice, just one choice, or none of the choices may be correct.
It is therefore necessary for you to examine every choice. Each
choice of this kind is enclosed in brackets [].

(6/66) ix

System/360 COBOL COBOL Programming Techniques

(6/66)

LESSON 1

You already know how to cause data to be moved from one place to
another in gtorage. However, you will be able to do an even more
effective job of using MOVE statements when you have learned what
happens during a move operation. You will learn that there are
really three types of moves, and that each type involves a large
number of different actions. Lessons 1, 2, and 3 are devoted to
this subject.

The first piece of information that i8 useful to know i8 that
eertain moves are not permitted! That ig, you are not allowed to
move data from certain items to certain other items. Your
reference manual contains a table of all moves, showing which
moves are permitted and which are not; take a couple of minutes
to examine the table, but don't try to memorize the moves that
are permitted. In succeeding frames we will discuss why some
moves are permitted while others are not, and we will try to
simplify the table of permissible moves for study purposes.

Reading assignment: MOVE statement -- Table of permissible moves

To find thie table, look under "MOVE" in the Index of your
reference manual. Only examine the table at this time; other
information about the MOVE statement will be covered by later
reading assignments.

By actual count, there are about equal numbers of Yeses and Noes
in the table you have just looked at. Why is it that about half
of all possible moves are not legal? A large part of the answer
to this question lies in the definitions of the classes of items.
For instance, items classed as "alphabetic" are permitted to
contain only letters and spaces, whereas items that are "numeric"
(external decimal, internal decimal, binary, and floating-point)
may contain only digits.

. . . . can
This would explain why alphabetic source items {cannot} be
moved to numeric receiving items.

cannot

System/360 COBOL COBOL Programming Techniques

n At the same time, it is plain to see why you are not allowed to
move numeric source items to alphabetic receiving items. On the
other hand, items classed as "alphanumeric" may contain all kinds
of characters -- letters, digits, special characters, or spaces.

You would expect, then, that [numeric] [alphabetic] items can be
moved to alphanumeric items.

BOTH numeric AND alphabetic

In fact, all except floating-point items (which have a special
kind of format) can be moved to alphanumeric receiving items.

Here is a simplified version of the table in the reference manual.
Only the main kinds of items are included in this version;
figurative constants and sterling (British currency) items are
omitted. Also, all numeric items have been lumped together here,
since they are treated alike (with a minor exception in the case
of floating-point items). The shaded boxes represent moves that
are not valid.

VALID MOVES

Receiving Item

Elementary

Source ltem Group |Alphanumeric

Group \/ \/
Alphanumeric \/ \/
Alphabetic \/ \/

Alphabetic

Elementary
Numeric \/ \/ *
Report \/ \/
* Whole numbers only, and not floating-point numbers
o060
(6/66) 2

System/360 COBOL COBOL Programming Techniques

I COBOL students sometimes jump to the conclusion that if it is
legal to move one item to another (say, item A to item B), it is
also legal to move the items in the other direction (item B to
item A). 1Is this conclusion correct?

No. For example, although it is legal to move a numeric item to
an alphanumeric item, it is not legal to move an alphanumeric
item to a numeric item. You can find several other examples as
well.

lﬂl Our simplified table makes it easier to see the patterns of valid
and invalid moves. It is especially easy to see that only
source items can be moved to numeric receiving items.

XX
numeric

You may wish to look at the larger table in the reference manual
to see for yourself that this is8 an accurate rule.

EB A "report" item is used to receive numeric data which will be
edited with spaces or special characters when the data is moved
into the item. If the number 12345 were moved to a report item,
the report item might contain $123.45 after the move.

Can you explain why a report item must not be moved to:

1. an alphabetic item?
2. a numeric item?
3. another report item?

1. Alphabetic items are not allowed to contain digits and
special characters.

2. Numeric items are not allowed to contain special characters.

3. Report items can receive only numeric data which has not yet
been edited; moving from one report item to another would
mean editing data that is already edited.

(6/66) 3

System/360 COBOL COBOL Programming Techniques

Kl ve have been dealing with the four main classes of data items:
alphanumeric, alphabetic, numeric, and report. If you look back
at the table of valid moves, you will find that an item's class
must be considered

only if it is a group item.

{ regardless of whether it is a group item or an elementary item.}
only if it is an elementary item.

only if it is an elementary item

I} can you recall what the difference is between group and
elementary items?

A group item is made up of smaller items. An elementary item is

not made up of smaller items. Or stated another way, in the Data
division a group item is further subdivided, while an elementary

item is not further subdivided.

Bl our simplified table indicates that all moves are valid in which
a group item is the [source item] [receiving item].

receiving item

Besides items, we frequently use literals in MOVE statements.
Here are two examples, the first containing a numeric literal,
the second a non-numeric literal.

T

MOVE| 532 TO [MINIMUM-|LEVE[L.

__ Move| '90| pav|s oviErDUE' Tlo Ac|TioN[..

While literals are not shown on the tables of permissible moves,
all literals are treated as elementary items. Numeric literals
are treated as numeric items. Non-numeric literals are treated as

alphabetic items.

{alphanumeric items.}
report items.

alphanumeric items

This 18 because non-numeric literals, like alphanumeric items,
may contain all kinds of eharacters.

i (6/66) 4

System/360 COBOL COBOL Programming Techniques

Let's apply this information about valid and invalid moves to a
practical case. Suppose that you are checking a program, and
you come across this statement in the Procedure division:

___MovE| DATEE To| INV|0oICE-DAT|E.

Can you tell by looking at this statement whether or not it is a
valid move?

No, you must find out the level (group or elementary) and class
(alphanumeric, alphabetic, numeric, or report) of each item.

I You could find this additional information in the division
of the program.

Data

Carrying this example further, suppose that these are the Data
division entries that describe DATE and INVOICE-DATE:

03 |DATE[. | |

o4 IMONTH, PlICTURRE 9|9.
04 |DAY,| PICITURE| 99,
04 |YEAR|, PI/CTURIE 99|.

I Y Y I

_lo2 [involice-paTE], pilcTurlE 9(s).

From these entries, we learn that both DATE and INVOICE-DATE
contain numeric data. We also learn that

DATE and INVOICE-DATE are both elementary items.
DATE is an elementary item, but INVOICE-DATE is a group item.

DATE is a group item, but INVOICE-DATE is an elementary item.
DATE and INVOICE-DATE are both group items.

DATE is a group item, but INVOICE-DATE is an elementary item

(Remember that iteme with pictures must be elementary items.)

(6/66) 5

System/360 COBOL ‘ COBOL Programming Techniques

(6/66)

You can now definitely conclude that the sample move (MOVE DATE
TO INVOICE-DATE) 1 jg not} a valid move.

You may refer to the table of permissible moves if you wish.

o060
is not

A group item cannot be moved to an elementary numeric item.

We will have a little more to say about this particular example
later in this lesson. For now, let's sum up the point it teaches:
A move that "looks reasonable" is not necessarily valid! Whenever
you are in doubt, refer to the table of permissible moves.

You have also seen that it is quite important to be able to
identify the class of an elementary item. Most of the time, we
can do this by looking at the picture of the item. To refresh
your memory on how to identify an item from its picture, you may
wish to read the discussion of PICTURE clause, under Item
Description Entries (Data Division), in the COBOL Program
Fundamentals reference handbook.

Whenever a picture contains the letter A, you can tell that the

item is { alphanumeric}

alphabetic
o0
alphabetic
Pictures of alphanumeric items always contain the letter .
(XX}
X
6

AR | |

System/360 COBOL COBOL Programming Techniques

Ell Pictures of numeric items contain the digit 9 and may also contain
S (sign), V (assumed decimal point), and P (assumed position).

Pictures of report items resemble those of numeric items, in that
they too may contain the characters 9, V, and P. However, a
report item's picture must also contain one or more editing symbols,

such as
(1) # @ % &
{ (2) "2
(3) $. * +
o000
(3) $. * +

Iﬂﬂ Identify the class of each item described by the pictures below.

1 [z, 277 ele 5) Hoogl. 99
@ K27y (6) [slolgolvies
(3 Jslolts) | (7 |aalaa
(4) gi%, x|, % (8) |x
(N X]
(1) report

(2) alphanumeric
(3) numeric

(4) report

(5) report

(6) numeric

(7) alphabetic
(8) alphanumeric

(6/66) 7

System/360 COBOL COBOL Programming Techniques

Different classes of items are moved in different ways. The
reference manual briefly outlines some of the main differences.
While the manual identifies two types of "simple'" moves, we will
find it convenient to think in terms of three types; you will
learn about this shortly.

Reading assignment: MOVE statement

Note 1: Here i8 a tip on how to read the reference manual. Read
it twice! The firset time, read through the material fairly
raptdly, just to get a general idea of what the book is talking
about. The second time, pay closer attention to the facts and
rules which the book presents.

Note 2: If your reference manual contains information about two
options of the MOVE statement, read about Option 1 only. Option 2
(the "MOVE CORRESPONDING" option) applies to special situations,
and can be used only when the source computer has larger than
average storage capacity; therefore, we will not discuss Option 2
in this book. I believe that after you have mastered the "simple"
MOVE (Option 1), Option 2 will seem equally simple -- and if
necessary you will be able to learn about it easily on your own.

Let me summarize the general idea of what you have just read in
the manual: The actions that occur during a move vary somewhat,
depending on the kind of source item and the kind of recetiving
item. In this course, we will talk about three types of moves:
alphanumeric, numeric, and edit moves.

(6/66) 8

A | |

System/360 COBOL COBOL Programming Techniques

(6/66)

To help you visualize when each type of move occurs, here is our
table of valid moves again, this time showing the types of moves:

A = Alphanumeric

TYPES OF MOVES N = Numeric
E = Edit

Receiving Item

Elementary

Source ltem Group |Alphanumeric| Alphabetic Numeric Report

Group A A

Alphanumeric A A
Alphabetic A A
Numeri A | A
Report A A

Elementary

* Whole numbers only, and not floating-point numbers

The type of move that occurs in nearly all permissible moves
is .

alphanumeric

A numeric move takes place when [a group numeric item]
[an elementary numeric item] is moved to [a group numeric item]
[an elementary numeric item].

ONLY when an elementary numeric item is moved to an elementary
numeric item.

All group items are treated as alphanumeric, even though they
may contain numeric data.

System/360 COBOL COBOL Programming Techniques

An edit move occurs only when an item is moved to an
item.

elementary numeric to elementary report

We will study each type of move in detail. The A's dominate the
table, so it seeme reasonable to begin with the alphanumeric type
of move. Happily, this type also involves the fewest actions --
and therefore the fewest rules to learn. The remainder of this
lesson 18 devoted to the rules that govern the action of alpha-
numeric moves. Numerice moves are the subject of Lesson 2, and
edit moves are discussed in Lesson 3.

Ef] Alphanumeric move. There are just three rules:

Rule 1. Left justification. Data is aligned at the left end of
the receiving item.

Rule 2. Receiving item longer than source item. Any extra
positions at the right end of the receiving item are filled with
spaces (blanks).

Rule 3. Receiving item shorter than source item. After the
receiving item is filled, no more characters are moved from the
source item,

Kl After an alphanumeric move, the data in the receiving item will
look exactly like the data in the source item, provided that

the source item is shorter than the receiving item.

{ the receiving item is shorter than the source item. }
the receiving item is the same length as the source item.

eoo
the receiving item is the same length as the source item.
EZ] suppose that the value of the source item is TFX and the picture

of the receiving item is A(5). After the move, the value of the
receiving item will be .

TFXbb (Throughout this book, little b's are used to represent
blanks -- spaces -- in the value of an item.)

(6/66) 10

[|

System/360 COBOL

(6/66)

COBOL Programming Techniques

Assume that the picture of a receiving item is X(6). What will

be the value of this item following a move if the value of the-
source item is :

(1) KANSAS
(2) OHIO
(3) DbOHIO
o000
(1) KANSAS
(2) OHIObb
(3) DbOHIOb

"Left justification" does not include elimination of left-hand
blanks. The initial blank in "DOHIO" is regarded as the first
character in the source item, and it is moved to the leftmost
position of the receiving item.

The contents of a receiving item before a move do not affect the
actions that occur during the move.

Say that the value 96823 is moved to an item whose picture is X(8).
Which choice below correctly shows the contents of the item after

the move -- (1) if the previous value of the item was 00000000 and
(2) if the previous value was 12345678?

(1) 96823000 and (2) 96823678
(1) 00096823 and (2) 12396823
(1) 96823bbb and (2) 96 82 3bbb
(1) 96823000 and (2) 96823000

(1) 96823bbb and (2) 96 82 3bbb

When the receiving item is not large enough to hold all of the
characters from the source item, the extra characters are not

moved. We say that the remaining characters in the source item
are truncated.

"to cut off"
"Truncate" means "to exchange"
"to erase"
(X X

"to cut off"

Truncation does not change the source item's value in any way.

(The contente of the source item are not altered by any type of
move.)

11

System/360 COBOL COBOL Programming Techniques

E} 1f the name SMITH were moved to an item whose picture is Aa,
which characters would be truncated?

o000
ITH

Note that neither the compiler nor the computer considers
truncation to be an error. Both assume that the programmer knows
what he <is doing. In the example given in this frame, presumably

the programmer wante only the first two letters of a name for
some reason.

Take a case in which BEARINGSbbbb is the value of the source
item. On a piece of scratch paper, jot down the value of the
receiving item after the move, if the receiving items picture is:

(1) X(e)
(2) X(12)
(3) X(18)
[X N J
(1) BEARIN

(2) BEARINGSbbbb
(3) BEARINGSbbbbbbbbbb

An alphanumeric move can be '"reversed" if desired. That is, you
can cauge the data to be right-justified (aligned at the right end
of the receiving item). Accordingly, truncation or filling with
blanks then takes place at the left end of the data.

Such a reversed move will occur if the description of the

receiving item (in the Data division) includes a JUSTIFIED RIGHT
clause.

Reading assignment: JUSTIFIED RIGHT clause

(6/66) 12

N | | |

System/360 COBOL COBOL Programming Techniques

It i8 not likely that you will find much use for the right-
Justified move, so we will not spend much time on it. I think I
owe you one example of where you might be able to use such a move,
though.

Imagine that you are preparing a customer bill, at the bottom of
whieh you want to print three lines that look like this:

GROSS AMOUNT $205.30
DISCOUNT $4.11
NET AMOUNT $201.19

In this case, the words that identify the amounts are "justified
right". This result can be accomplished in more than one way, of
course. Using the JUSTIFIED RIGHT clause i8 an easy way to do it.

We begin by defining a single item to which the words will be
moved. This item deseription would be part of a record
description. We make the item large enough to contain the longest
string of characters (GROSSbAMOUNT). And we speceify that data
moved to this item is to be right-justified.

02 | |AMOUNT-IlD, | | | |
o+ NusTiFiEp RUGHT. |)

plicTure al¢12hf, (]

At appropriate points during processing, these procedural state-
ments are acted on:

+

| [T MovE| ["cRRlols's’ [aMoulNT " [T0 AlMOuN[T—(D[. | [

|| movE| 'pijscouNT' |to Amoun[T-ipl. | | | ||

| MovE[I'NE[T aMounT]' To| aAmoluNT-[iD.

-

When the literals are moved to the item, they will be right-
Justified.

(6/66) 13

System/360 COBOL COBOL Programming Techniques

Another programmer, faced with the problem described in the
preceding frame, defined AMOUNT-ID like this:

o2 | AMoluNT-11p, PlicTuRrE Al(12)f. | |

He then wrote these MOVE statements:

| MOVE| 'GR0SS |AMOUNT' [TO AMOUN[T—1D[.

[T moVE[['TT] pifscount [ro Amounfr=ipl. [
| ™olvE| '] NET |amoulNT' |TOl AMounT-iDl. ||
Was this programmer's technique a correct solution to this
problem?
(XX
Yes

In faet, this solution is probably the better one, because the
programmer himself has right-justified the literals once and for

all, instead of having the computer do it each time the job is
run.

You will recall that the normal alphanumeric move does not
eliminate left-hand (leading) blanks. Similarly, the reversed
alphanumeric move does not eliminate right-hand (trailing) blanks.

To illustrate, suppose that a receiving item is defined as
JUSTIFIED RIGHT. Its picture is X(10). What will this item
contain after a move if the value of the source item is:

(1) CARROTSbbb

(2) PEASbb
o000
(1) CARROTSbbb
(2) bbbbPEASbb
(6/66) 14

— i |

System/360 COBOL COBOL Programming Techniques

LESSON 2

This lesson deals with the numeric type of move. The numeric
move ig significantly different from the alphanumeric move. The
main difference 18 that the numeriec move is concerned about the
meaning of the data it transfers, whereas the alphanumeric move
doesn't bother about the data's meaning.

Let me explain. To the alphanumeric move, data consists of a
string of bytes, each byte containing a bunch of bits. Those bits
have a meaning that depends on the data code; a string of bits
means one thing if the data code is binary, and something
completely different if the code is8 packed-deeimal. In COBOL
terms, items can have different usage. However, the alphanumeric
move transfers data without regard for the usage of the items.
Thus, i1f a computational (binary) item were moved to an alpha-
numeric display (BCD) item, the data would not be converted from
one data code to the other.

By contrast, if the binary item had been moved to a numeric
display item, a numeric move would have been performed, and the
data would have been converted from binary to BCD. The numeric
move pays attention not only to the usage of the source and
receitving itemg, but also to their signs and the locations of
their deeimal points.

Numeric move.

Rule 1. Data code conversion. The data is converted, if required,
to match the usage of the receiving item.

Since conversion depends entirely upon the usage of the source
item and the receiving item, it would be wise to review what usage
means.

Reading assignment: USAGE clause

You may also find it useful to re-read the information on the
USAGE clause in the COBOL Program Fundamentals reference handbook.
You will find it under Item Description Entries in the section on
the Data division.

(6/66) 15

Systemn/360 COBOL COBOL Programming Techniques

Translate the COBOL usage terms below into the terms that are

normally used to describe the data codes of the System/360.

(1) COMPUTATIONAL-3
(2) COMPUTATIONAL
(3) DISPLAY

(1) COMPUTATIONAL-3: "packed decimal" or "internal decimal”

(2) COMPUTATIONAL: "binary"

(3) DISPLAY: "BCD" (binary-coded decimal), "EBCDIC" (extended
binary-coded decimal interchange code), or "external
decimal"

lﬂﬂ Conversion is done by instructions generated by the compiler, and

(&/66)

usually takes place in a work area set aside by the compiler.
There is a price to be paid for conversion, then, in terms of
time and storage space. When possible, conversion should be

avoided.

Which of the statements below is the best rule for avoiding
conversion during a move?

Make sure that the lengths of the source and receiving
items are equal.

Try to keep the usage of the source and receiving items
the same.

Do not allow the source and receiving items to have unlike
signs.

Try to keep the usage of the source and receiving items the same.

16

— i

System/360 COBOL COBOL Programming Techniques

B Keeping the usage of items the same is good advice if you are
designing the formats of data records. But suppose that the
records have already been designed, and your job is just to get
them processed. Sooner or later you may run into a situation
like this: an input record contains a packed decimal item which
is to be moved to four BCD items at various points in a procedure.
If you simply write four moves, the same item is going to be
converted from internal to external decimal four times!

You can avoid such unnecessary conversions by moving the data
first to an intermediate area whose usage is the same as that of
the final receiving fields. Then move from the intermediate area
to the receiving fields. In this way, the data is converted only
once, at the time it is moved to the intermediate item.

For the situation described above, which of these entries defines
an intermediate item with the desired usage?

(W77 | Box-l1,l PlicTUrRE Sslozyl. | | |]!

2 1 IalA PR N
(2)[77 _BOX-|1,/ PlICTURE s|9(7)|, Us

(D77 Box-l1, plIcTURE sloi('7)], coMPUTIATIONAL.

(77 Box-[i, PlicTURE slo(7)], compuTlaTIONAL-]3.

Both (1) and (2) are acceptable, since they define external
decimal items.

B conversion is only one of the actions that may go on during a
numeric move. The remaining actions depend on the pictures of
the source and receiving items. Before we go on to additional
numeric move rules, read what the manual has to say about pictures
of numeric items.

Reading assignment: PICTURE clause, Numeric-form option

(6/66) 17

System/360 COBOL COBOL Programming Techniques

Numeric move.

Rule 2. Operational signs. If the receiving item's picture
contains an S, a sign 1is developed. Otherwise, bits that
represent "no sign" are put into the receiving item.

Iﬁ] The option of either developing a sign or developing "no sign"
bits applies to external decimal (BCD) and packed decimal items.
It does not apply to binary items. Why not?

Binary (COMPUTATIONAL) items always have a sign. In their case,
there is no such thing as a "no sign" bit-configuration. There-
fore, an S is always required in the pictures of binary items.

B 7To develop "no sign" bits requires the compiler to generate
additional instructions in the object program. Therefore, it is
best to have an S in the picture, except where the receiving item
definitely must not have a sign.

You probably would not want the item to have a sign if its
contents are to be [used as a factor in an arithmetic calculation]
[printed on a report] [written on magnetic tape]

[tested by an IF statement].

ee0o
printed on a report

When a signed number is printed, the sign bits are treated as the
zone bits of an alphabetic character, so a letter rather than a
digit i8 printed in the units position. (It i8 possible to get a
sign indicator to print -- for instance, a plus sign or minus
stgn, "CR" or "DB" -- but this i8 one of the functions of the edit
move which you will study later.) You might also want to have no
sign 1f the data were punched in a card, where the sign would
result in a zone overpunch in the low-order position.

Numeric move.

Rule 3. Alignment. The assumed decimal point in the value of
the source item is aligned with the assumed decimal point in the
receiving item.

(6/66) 18

System/360 COBOL COBOL Programming Techniques

In numeric items, deecimal points are always assumed. They are
not stored as actual characters in the item. Because the letter
V i8 used to show the location of assumed deecimal points in
pictures, we will use a little "v" in this book to show the
asgumed decimal points within data values, for example "1v375",

Where is the assumed decimal point located? 1If there is a V in
an item's picture, such as S999V99, then the answer is obvious.
But suppose there is no V, as in the pictures shown below. For
each of these pictures, tell where the assumed decimal point is.

(1) S9999
(2) sPPP9(8)
(3) S99P(5)

(1) This is a whole number (integer). The assumed decimal point
is at the end of the number. The picture of this item might
also have been written as S9999V.

(2) The Ps represent "assumed positions" and are used to locate
the assumed decimal point away from the actual number. So
in this example, the assumed decimal point is located in
front of the first P. The picture might also have been
written as SVPPP9(8).

(3) The assumed decimal point is located after the last P.

The picture might have been written as S99P(5)V or S99PPPPPV.

In this book, to represent the situations discussed above, we
will use little "p's" for assumed positions. For instance, if an
item's picture is PPP999, and the item actually contains the
digits 235, we will show the item's value as "vppp235". When it
comes to integers, we will gshow their value without a "v"; for
example, "50" and not "§0v".

B} Numeric literals must enter our thinking too. Unless they are
integers, literals are written on program sheets with real decimal
points, like .2635, 4.1796, etc. It is important to realize that
these decimal points are not stored as separate characters when
the literals are put into items in storage.

So the value of the literal 3.1416 is really , and the
literal .75 is treated as .
(XX

3v141l6; v75

(6/66) 19

System/360 COBOL COBOL Programming Techniques

Numeric move. When the decimal points are aligned.

Rule 4. Extra positions in receiving item. Any extra positions,
at either or both ends of the receiving item, are filled with
zeros.

We can visualize this action graphically. Suppose that the
pieture of the receiving item is 999V99. We can show this item

as a string of five boxes:
\"

Suppose that the source value i8 27v5. The assumed decimal point
of this value is aligned with the decimal point of the receiving
item.

2 Tyb5

The extra positions are filled with zeros. This is the final
result:
\

0O|12]|7]5]0

Iﬂl If the source value is 95v4 and the receiving picture is 999Vv99,
the value of the receiving item following a numeric move will be

095v40

Assume source value is 6v5 and receiving picture is 9V999 in a
numeric move. The result will be .

6v500

EJ Take one more numeric move. Source value: 25. Receiving
picture: 9999V99. Result: .

0025v00

(6/66) 20

AR (1| |

System/360 COBOL COBOL Programming Techniques

After this MOVE statement is executed, the value of QUANTITY will
be . (The picture of QUANTITY is 99V999.)

MOVE| 11| Tlo ‘QulaNT[T]Y]. AREERRERREN |

01lv000

I:] When there are different numbers of decimal places in the source
and receiving items, as in the above example, the compiler will
instruct the computer to shift the data over the appropriate
number of positions. Naturally, the object program will be more
efficient if we can do without such shift instructions; we can
avoid them by making sure that the source and receiving items
have the same number of decimal places.

On a COBOL program sheet, rewrite the MOVE statement shown in the
preceding frame so that it will not be necessary for the computer
to shift the source value during the move.

T MolVE[[1..0lolo_ 1o QuANTA[TYL [] |

BBl Numeric move. When the decimal points are aligned...

Rule 5. Truncation. Any digits for which there is no room in
the receiving item are truncated. Truncation can occur at either
or both ends.

This rule means that you can lose digits during a move -- and
they can be very significant digits. Consider the MOVE statement
below.

M jo.ool To |lamounNT. | 1]

OVE| 11/00/0. 00| TO AMQQNTa BN EEEEEEE «
If a picture of AMOUNT is S999V99, the value of AMOUNT after the
move will be .
(XX
000v00
(6/66) 21

System/360 COBOL COBOL Programming Techniques

Although losing significant digits is probably not what you had
in mind, the computer will do exactly what your COBOL program has
indicated. Every now and then, to be sure, you may want to drop
certain parts of an item. Imagine that you have an item whose
picture is S9999V999,

(1) What picture would you give to a receiving item if you
wanted to move only the whole number and not the fraction?
(These might be dollars-and-cents, and you want to move
only the whole dollars.)

(2) What picture would you give to the receiving item if you
wanted to move only the fraction?

(3) What picture would you give to the receiving item if you
wanted to move the entire number, but with only two decimal
places instead of three?

(1) S9999
(2) sSv999
(3) $S9999Vv99

Let's carry this example a step further. Suppose that what you
want to move 18 just one digit, the leftmost digit, which
represents the number of thousands. Thus, if the value of our
item 18 7263v05, all you want to move is the digit 7.

It should be clear that if you made the picture of the receiving
item just 9, the digit you would move is the units digit: 3. It
18 necegsary to introduce three "assumed positions'" into the
pieture in order to obtain the desired alignment. The correct
piteture for this problem would be 9PPP (or 9PPPV). Thig picture
describes a one-digit item, you will recall, because no storage
space 18 reserved for Ps in a picture.

Assume that a source value is 025936v45, and you wish to move
only the thousands (025). The receiving item picture must be

999PPPV

(6/66) 22

- "]

System/360 COBOL COBOL Programming Techniques

2] Now that you have seen the effect of having Ps in the receiving

(6/66)

picture, consider how Ps affect a move when they are in the source
picture. There, they serve as "assumed zeros".

Work these exercises out on scratch paper:

(1) The source value is 256pppv, and the receiving picture is
9(7)Vv99. After the move, the receiving item will contain

(2) The source value is vpppp797, and the receiving picture is
9v9(6). After the move, the receiving item will contain

(1) 0256000v00
(2) 0wv000079

You have studied all of the rules that govern actiong during a
numeric move. Before we go on to the edit move, though, I want
to pitek up a loose thread from way back in Lesson 1. When we
were discussing the fact that some moves are valid while others
are not, we looked at a sample MOVE statement (MOVE DATE TO
INVOICE-DATE) and decided that the move was not valid, even
though both items contained numeric data. The reason for this
was that DATE happened to be a group item, while INVOICE-DATE
was an elementary item.

Now in fact, these data items can be redefined in such a way as

to make a valid move possible! For instance, it is possible to
redefine the group item (DATE) as an elementary numeric item.

And, for that matter, the number item (INVOICE-DATE) can be
redefined as an alphanumeric item. Depending on how we define

the items, we would cause either a numeric move or an alphanumeric
move !

This idea goes well beyond the bounds of this little problem.

The key point is that you, the programmer, define the data items,
and depending on how you define them, you may make moves possible
or impossible. Also, you determine whether an alphanumeric or

a numeric move takes place. In general, you define an item once,
and you decide, for instance, whether to make the picture of a
number 9(5) or X(5). But the ability to redefine items is a
powerful tool in your bag of COBOL programming techniques, because
it permits you to have two or more definitions for the same 1item.

Reading assignment: REDEFINES clause

Algo, re-read the summary of the REDEFINES clause in the COBOL
Program Fundamentals re ference handbook (under Item Description
Entries in the Data Division section).

23

System/360 COBOL COBOL Programming Techniques

l:, These were the Data division entries you read in Lesson 1 when
we decided that it was not legal to MOVE DATE TO INVOICE-DATE:

03 |DATE[. 4

_lo4 _|MONTH, P{ICTUIRE 9|9,
_loa IpAY,| PICTURE| 99.|
___loa |YEAR|, PIICTURIE 99|,

Y) i g

o2 |INvolicE-IpATE|, PIICTURE 9(6),

Take a COBOL program sheet, and on it write an entry that
redefines DATE as an elementary numeric item named CURRENT-DATE.

___lo3 IcURRENT-|DATE|, RE|DEFIINES [DATE[,
| IPICTIURE [|9(6)|. ‘ L

- e

The entry you have just written would appear

on the line below 03 DATE.

{ on the line above 03 DATE. }
on the line below 04 YEAR, PICTURE 99.

on the line below 04 YEAR, PICTURE 99.

[X] Does the entry you wrote make it valid to MOVE DATE TO INVOICE-DATE?

No, since DATE is still a group item. However, it does make it
valid to MOVE CURRENT-DATE TO INVOICE-DATE.

I:I If we wanted to cause an alphanumeric instead of a numeric move,
we would redefine INVOICE-DATE as an alphanumeric item. On your
program sheet, write this redefinition. Name the new item
R-INVOICE-DATE.

o2 | R—1NVolclE-DATE, [REDE|F INE|S
1+ |lINvO|I CE-DATE|, PI|CTURE X(|6).

(6/66) 24

e e i

System/360 COBOL COBOL Programming Techniques

70

Two valid MOVE statements can be written to move the date into
R-INVOICE-DATE. On the program sheet, write both of those
statements.

— —
T

__Move| paTlE To| R—INVOIlcE-DlATE.] | |

T T

__MOVE| CURRENTI-DAT[E TO| R—I|NVOI|CE-DATE.]

-

liﬂ All of the redefining that we have been doing has been predicated

(6,66)

on the notion that the original definitions were necessary for
some other processing being done with those items. Otherwise, it
would not have made sense to go to the trouble of redefining the
items, and we could have just changed the picture of INVOICE-DATE
from 9(6) to X(6), to make MOVE DATE TO INVOICE-DATE a valid
move.

The point is8 that redefinition makes sense only if two or more
definitions of an item are really necessary, for ingtance, when
an item will be processed in two or more different ways. Suppose
that we have an item called ITEM-A; at one point in a procedure,
a number must be moved from an alphanumeric item to ITEM-A;

later in the procedure, the number must be moved from ITEM-4 to
an elementary numeric item.

ITEM-A geems to be caught in the middle. If we define ITEM-A as
an alphanumeric item, the second move will not be valid. If we
define ITEM-A as a numeric item, the first move will not be valid.
Based on what we know about this problem, it certainly appears
that ITEM-A must be both alphanumeric and numeriec! This is a
legitimate place to employ redefinition.

On a program sheet, define this item and then redefine it. First,
define it as a 5-character alphanumeric item named ITEM-Al; then,
redefine it as ITEM-A2, a 5-digit numeric item. Both times, the
level number is 02. (As you have read, you cannot change the
level number when you redefine an item.)

o000
J H Y T T
02 | [TEM-A1,] PLCITUREl X/(5h. [| |
102 |T;MEA2. REDIEF INE'S 1|TEM-|A1, |
| PlhcTurE |9 (5)]. il |

25

R | | -

System/360 COBOL COBOL Programming Techniques

(6/66)

LESSON 3

As we get into edit moves, you will discover that they resemble
numeric moves in many ways. (These two types of moves, as you
know, are treated as one type in the reference manual.) There

are basic similarities when it comes to alignment of data by
deeimal pointe, truncation, zero fill, and the treatment of signs.

But the picturesof the receiving items (report items) are very
different, and can become extremely complicated. It is these
piectures that we will spend most of our time on during thie
lesson. Instead of dealing with the rules that govern edit moves,
you will learn the rules for causing certain kinds of editing to
oceur -- that is, you will learn to write report pictures.

On the whole, you will work with pictures in two ways. First,
given the picture of the receiving item, and the source value,
you will be asked to determine what the result of the move would
be. Second, given the gource value and the desired result, you
will formulate the necessary picture for the receiving item.

Alphanumeric and alphabetic data cannot be edited using the edit
move. An edit move occurs only when an elementary item is
moved to an elementary i1tem.

numeric; report

to

from} a report item.

Numeric data is edited when it is moved {

to

"Editing" means [deleting] [replacing] [inserting] characters in
an item.

ALL of these may be involved in editing, although they may not be
all required in every edit move.

27

System/360 COBOL COBOL Programming Techniques

Here is an example of an edit move. When the source value

(6/66)

00762401 is moved to an item whose picture is $22Z,22%Z.99, the
result is$bb7,624.01. (Remember, the little "b's" represent blank
spaces in an item's value; nothing would print where the b's are
shown.)

Compare the source value with the result. What characters are
deleted? What characters were inserted?

The high-order (leading) zeros were deleted. A dollar sign,
comma, and decimal point were inserted.

Here 18 how editing is actually done:

1. The compiler uses the report picture you write in a program
to make the "pattern" of characters which the System/360 needs
for editing. The pattern is stored as a constant in the object
program. The compiler also reserves a work area of storage in
which the editing will take place.

2. During the execution of the move, first the pattern is moved
to the work area. Then the data from the source item is moved to
the work area and edited by the computer. Finally, the edited
result 18 moved from the work area to the receiving item.

This explanation may seem brief, but it is the whole story, short
of getting into the technicalities of internal operations of the
System/360 -- about which, as COBOL programmers, we frankly
couldn't care less.

Here are three questions asked by COBOL students. See if you can
answer them, based on the explanation given in the preceding
frame. ’

(1) Is a report picture put into the object program?

(2) If the picture is stored in the receiving item, won't it be
destroyed as soon as some data is moved into it?

(3) Is the editing done in the receiving item?

The answer to all three questions is NO. (1) The COBOL report
picture is converted into a System/360 edit pattern. (2) The
picture itself is not around at all during the execution of the
object program; its equivalent, the edit pattern, is stored else-
where with other constants until it is needed, and is not stored
in the receiving item. (3) Editing is done in a work area, not

in the receiving item; only the edited result is moved to the
receiving item.

28

— IR | | |

System/360 COBOL COBOL Programming Techniques

(6/66)

We see that the way in which the objeet program edits the data is
based on the picture we write for the report item. Each editing
ptceture character causes one or more actions to take place during
editing. Therefore, literally thousands of ecombinations of actions
are possible. While we will study all of the picture characters,
don't expect us to study all of the possible combinations of
characters!

Reading assignment: PICTURE clause, Report-form option

Important: This reading assignment contains a great deal of
detailed information. Don't try to absorb it all at once!
Instead, merely scan the material at this time, to get an idea of
the kinds of characters that can appear in report pictures. As we
study the characters in detail -- and we will do this one, two, or
three characters at a time -- go back to the reference manual to
re-read the information about those characters carefully.

Edit rule 1. To move digits just as in a numeric move, use
picture characters "9", "V", and "P" the same as in pictures of
numeric items. "S" cannot be used.

All five of the actions we discussed for numeric moves can occur
in the edit move:

1. Conversion. Remember that the usage of report items is
always DISPLAY. Therefore, we will always wind up with the edited
result in BCD (external decimal), regardless of the usage of the
gource item.

2. No sign. There cannot be an S in a report picture, so
"mo sign" bits will be developed in the edited result.

3. Alignment by deeimal points.
4. Zero fill in any extra positions at either or both ends.

5. Truncation of digits for which there is no room, at either
or both ends.

29

System/360 COBOL COBOL Programming Techniques

Bl In report pictures, the character "9" defines a position into
which a digit is to be placed without being changed in any way.
As an illustration, the picture 99,999 calls for the insertion of
a comma into a number, but indicates that the digits themselves
are not to be changed in any way. So, if the source value were
00065, the edited result would be .

00,065

We say that "9" defines a digit position in the picture. Later
you will learn that the characters "zZ", "*", and in certain cases,
"$", "+", and "-" also define digit positions.

By contrast, "P" and "V" do not define positions into which digits
are put. As you already know, these characters are used to .

align the data

Edit rule 2. To insert an actual decimal point, write "." in the
plcture. This takes the place of an assumed decimal point in
aligning the data. A picture cannot contain both a "." and a "V".

The character "." is a real character which actually occupies a
byte of storage in the edited result. Whereas the picture 999V99
defines an item that is bytes long, the picture 999.99
defines an item that is bytes long.

5; 6

A report item's picture is 999.99; what will the edited results
" be if the source value is (1) 123v45, (2) 123, (3) 1lv23, and
(4) 1234v567?

(1) 123.45 (2) 123,00 (3) 001.23 (4) 234.56

(6/66) 30

N | | | I

System/360 COBOL COBOL Programming Techniques

(6/66)

Edit rule 3. To suppress leading zeros and replace them with
blanks or asterisks, write "Z" or "*" in each digit position in
which you want suppression. A picture cannot contain both an
"k" and a "2".

In most cases, the zero suppression stops when you get to the
end of the Zs or when the first significant digit is reached.
Suppose that Z2ZZZ is the picture of a receiving item; what will
be the edited result is the source value is (1) 0500, (2) 0002,
(3) 00002

(1) b500 (2) bbb2 (3) bbbb

Zs and 9s (or *s and 9s) can both appear in a picture, but a 2 or
an * cannot appear anywhere to the right of a 9. This means that
you cannot get zero suppression to start and stop repeatedly, or
to occur in the middle of an item; zero suppression is strictly
for high-order zeros.

On scratch paper, write a picture that defines five digit
positions, with zero suppression in the two leftmost positions.

22999

Write a report picture which will produce the result bbbb.23 from
a source value 0000v23.

2222.99

What report picture will produce the result ***%** 09 from
00000v09?

kkkk%k_QQ

Asterisks used in this way are often called "check protection”
symbols. They are printed on checks to make it difficult to
inerease the amount by typing additional digits.

31

System/360 COBOL COBOL Programming Techniques

l:l Some special rules apply to pictures that call for zero suppression
and also contain a decimal point. PFirst of all, you can write Zs
or *s to the right of the decimal point; however, zero suppression
stops at the decimal point unless the source value is zero.

On scratch paper, write down what the edited result would be in
each of these cases:

Report Picture Source Value Edited Result
(1) 222.22 000v03 ?
(2) 22Z2.99 000v03 ?
(3) ZZVZ2ZZ 00v001 ?
(4) 229.9 00v5 ?
o000

(1) bbb.03 (2) bbb.03 (3) bbv001l (4) bb0.5

Eﬂl Here is a second special rule that involves decimal points: Only
one kind of digit position character is allowed to appear to the
right of the decimal point. For example, a Z may appear to the
right of a decimal point only if all digit positions are
represented by Zs.

Decide which of these pictures are right and which are wrong:

(1) 2z.9999

(2) 222.299
(3) **k*x *x

(4) 9999.22

Pictures (1) and (3) are correct. Picture (2) is wrong because
it violates the rule stated in this frame. Picture (4) violates
the earlier rule that Zs or *s may not appear anywhere to the
right of a 9.

EEl This is the last special rule about decimal points: If zero
suppression is called for in all digit positions, and the source
value is zero, all of the zeros are suppressed and the decimal
point is suppressed too.

This rule means that when the source value is zero, the picture
Z22.2Z will produce an edited result of

bbb .bb
{ bbb.00 }
bbbbbb
(N N J

bbbbbb

(6/66) 32

IS 1 ¢ | I

System/360 COBOL COBOL Programming Techniques

(6/66)

Take careful note of that last special rule. There is an
important difference in the end result depending on whether or

not the source value is zero. With a receiving picture of Z(5).ZZ,
and a source value of 00v00, the edited result is . With the
same receiving picture, and a source value of 00v05, the result

is .

bbbbbbbb; bbbbb.05

The same action applies to pictures that have *s in all digit
positions, except of course, that all of the suppressed
characters -- including the suppressed decimal point -- are
replaced by asterisks. If the receiving item's picture is
**kkkk ** and the source value is zero, the result will be .

& % ke k ke ke k k

Edit Rule 4. To insert commas, spaces, or zeros, write "," where
you want a comma, "B" where you want a blank space, and "0" where
you want a zero.

Apply this rule in the case of a social security number. The
source value is a string of nine digits, such as 300926354. You
want to insert blank spaces after the third and fifth digits, to
get 300b92b6354 as the edited result. The picture needed to
accomplish this editing is .

eoe0
999B99B9999
Commas are the insertion characters you will undoubtedly use most

often. Write a picture which will insert commas into the source
value 9285406 to produce 9,285,406 as the result.

9,999,999

33

System/360 COBOL COBOL Programming Techniques

::I Write a picture that will do the following things: (a) edit a
seven-digit number; (b) insert a decimal point between the dollars
and the cents; (c) insert a comma between thousands and hundreds
of dollars; (d) suppress zeros up to the decimal point, and
replace them with blanks. For example, given the source value
02307v95, the edited result should be b2,307.95.

2%Z,22Z.99

) sometimes inserted commas and zeros are not significant
characters. If the report picture calls for zero suppression,
the inserted characters are suppressed and replaced along with the
leading zeros of the source value. For example, if the picture
is *,*** and the source value is 0009, the result will be ***%*9
(not *,*%*9),

For each source value listed below, figure out the edited result
if 222,222.22 is the picture of the receiving item.

Source Value Edited Result
(1) 002800v03 ?
(2) 000529v61 ?
(3) 000000v07 ?
(4) 000000vOO ?
(X X

(1) bb2,800.03
(2) bbbb529.61
(3) bbbbbbb.07
(4) bbbbbbbbbb

IIII Keep in mind that the inserted commas are suppressed only if zero
suppression is called for by the report picture. Assume that
0062v25 is the source value; how will the result differ if the
report picture is 9,999.99 as opposed to Z,2Z9.99?

eo0e0
Result with first picture: 0,062.25
Result with second picture: bbb62.25
(6/66) 34

I | | |

System/360 COBOL COBOL Programming Techniques

(6/66)

Edit rule 5. To put a fixed dollar sign to the left of an amount,
write "$" where the dollar sign is to appear.

When we speak of a "fixed" dollar sign, we mean one that stays in
one position. (Later you will study about "floating" dollar signs.)

On scratch paper, write the edited results in these cases:

Report Picture Source Value Edited Result
(1) $z,222.99 3001v02 ?
(2) $2,22%2.99 0982v75 ?
(3) $z,222.22 0000v04 ?
o000

(1) $3,001.02 (2) $bb982.75 (3) $bbbbb.04

Take the case where all digit positions in a picture are
represented by Zs or *s. You have learned that in such a case,
when the source value is zero, not only the zeros but also the
commas and decimal point are suppressed. It would be pretty silly
to print a fixed dollar sign in this situation, so the dollar sign
is also suppressed.

What will the edited results be if the source value is zero and
the report picture is (1) $22Z or (2) $2,222,2%Z?

(1) bbbb (2) bbbbbbbbb

If the report picture is $*** ** and the source value is zero,
the edited result will be a string of

6 asterisks

{5 asterisks
7 asterisks }

7 asterisks (Both the dollar sign and the decimal point are
replaced by *s.)

35

System/360 COBOL COBOL Programming Techniques

IfA observe the difference in edited results when the source value is
zero and the report picture is (1) $2,22Z.99 and (2) $2,222.2Z.
Write down the two results on scratch paper.

(1) $bbbbb.00 (2) bbbbbbbbb

Incidentally, another way of achieving a result of all-blanks when
the source value is zero is to write a BLANK WHEN ZERO clause in
the deseription of the report item.

Reading assignment: BLANK WHEN ZERO clause. (Also referred to
in the manual simply as the BLANK clause.)

ECE) These two ways of defining a report item would produce identical
edited results:

g

[o2 | [INVEINTOR)Y-WOlRTH,| P c|TURE| $7.|z77.[z7Z].

—— p—

4 LNVEINTIORlY-WORTH,| P Ilc[TURE $2,/z2z.l99
| | |BlLANIKI WHEN_Z[ERO. B N

-~ et

The BLANK WHEN ZERO method might give glightly more efficient
action when the source value is likely to be zero fairly frequently.
This clause causes the value of the source item to be tested before
any editing is done; if the value is zero, no editing is done, and
the receiving item is just blanked out. The important thing,
though, is that the end result is the same either way you do it.

I[:l Edit rule 6. To identify negative values with CR, DB, or -
(but to have no identification for positive values), write "CR"
or "DB" at the right end of the picture, or write "-" as either
the first or last character of the picture.

To identify a value with + when it is positive and - when it is
negative, write "+" as either the first or last character of the
picture.

(6/66) 36

System/360 COBOL COBOL Programming Techniques

Bl 7he sign indicators covered by this rule are "fixed" indicators.

(6/66)

That is8, the characters remain in the position you epecify.
(Later, we will discuss "floating" plus and minus signs.)

Only one kind of sign indication can be used in a picture: CR or
DB or - or +. Which of these is the only one that can be used to
identify positive values?

CR, DB, and - all identify negative values. When one of these is
used in a picture, and the source value is positive, what sign
identification appears in the edited result?

None. Blanks appear where the sign indicator would have been for
a negative value. (One blank in the case of the minus sign; two
blanks for CR or DB, since each of these occupies two character
positions.)

If + is used in a picture, and the source value is negative, what
sign identification appears in the edited result?

Let's compare the results when + and - are used in pictures. Jot
down the edited result on scratch paper.

Edited result when Edited result when
Source value report picture is +999 report picture is -999
(1) 005 ? ?
(2) -613 ? ?
(3) 000 ? ?
(XX}

When picture is +999: (1) +005 (2) -613 (3) b00O
When picture is =-999: (1) bO0O0S (2) -613 (3) b000O

In COBOL, you will recall, zero is neither positive nor negative,
8o there 18 never any sign indication for a zero value.

37

System/360 COBOL COBOL Programming Techniques
] what will be the edited results if the report picture is 2222-
and the source value is (1) -0265 and (2) 0053?

(1) b265- (2) bb53b

IREf Write a single report picture that will produce these edited
results (from different source values):

$1,005.67bbb
$bbb35.00bCR
$bbbbb.50bbb

(Notice that a blank has been inserted between the amount and
the sign indication.)

$2,222.99BCR (or $2,Z2%Z.ZZBCR)

IIEI Edit rule 7. To "float" a dollar sign, plus sign, or minus sign
up to the first significant digit, and at the same time, to
replace leading non-significant characters with blanks:

a. Write a string of "$" signs to get a floating dollar sign.

b. Write a string of "+" signs to get a floating + sign when
the value is positive, and a floating - sign when the
value is negative.

c. Write a string of "-" signs to get a floating - sign when
the value is negative, but no sign indicator when the
value is positive.

A picture can contain only one of these "floating strings".

IARA To begin with, we will talk about floating dollar signs only;
however, everything we will say also applies to floating plus
signs and minug 8signs. Let's take a moment to look at two columns
of figures, just to see the difference between amounts printed
with a fixed dollar sign and those printed with a floating dollar

sign.
$25,000.00 $25,000.00
$ 250.00 $250.00
$.25 $.25
(XX
(6/66) 38

. B | |

System/360 COBOL COBOL Programming Techniques

EEE] To get a fixed dollar sign and zero suppression for a four-digit

(6/66)

number, we can write this report picture: $22z2.

To get a floating dollar sign and zero suppression for the same
number, we write this report picture: $$$$S.

Not all of the dollar signs in the "floating string" have the
same significance, as illustrated below.

All remaining $s in a string
represent digit positions.
e e ™ e,

The first $ in a string $ $ $ $ $

does not represent a

digit position. \/‘
Thus, the rule for a floating string is that the string must
contain one extra $ in addition to a § for each digit position.

This means that a report item whose picture is $$$$$$ is large
enough to hold up to digits.

o000
five
The largest amount that can be edited with the picture $$$
is .
(XN

99

Insertion characters (, B 0) can be put into a floating string.
The dollar sign "floats through" the insertion characters to get
right next to the first significant digit. For instance, a report
picture might be $$,$$$; if the value moved to this item were
0362, the edited result would be .

bb$362 (The dollar sign has floated through to replace the comma.)

39

System/360 COBOL COBOL Programming Techniques

121

(6/66)

A picture with a $-string doesn't have to be composed entirely
of dollar signs. You can end the $-string at the rightmost
position to which you want the $ to float. The remaining digit
positions must then be represented by 9s.

For instance, the picture $$,$$$.99 allows the $ to float up to
the decimal point only. With this picture, a source value of
0000v05 would be edited like this: bbbbb$.05

How would you change this picture in order to make the result
bbbb$0.05?

$$,$$9.99

The preceding frame pointed out that any digit positions to the
right of a floating string must be represented by 9s. 2s and *s,
then, are nok allowed. But let's say that you are editing a
dollars-and-cents amount with a floating dollar sign, and you
want the edited result to be all blanks when the amount is zero.

You must not write $$$$.2Z, but there are two other things that
you can do.

One is to write $$$$.99 as the report picture, and specify
BLANK WHEN ZERO. The second is a special extension of the
floating string designed just for this purpose: write dollar

signs in all positions to the right of the decimal point --
$$$5.85.

In this special picture, with all digit positions represented by
dollar signs, the $ never actually floats to the right of the
decimal point. If the source value is less than one dollar, the
$ floats up to the decimal point. If the source value is zero,
the edited result is all blanks.

To see if you understand this action, figure out what the edited
results will be in the four cases below. In each case, $$$,$$$.$$
is the picture of the receiving item.

Source Value Edited Result
(1) 02000v00 ?
(2) 00030vO00 ?
(3) 00000vO4 ?
(4) 00000v0O ?
[X N]

(1) b$2,000.00 (2) bbbb$30.00 (3) bbbbbb$.04 (4) bbbbbbbbbb

40

———————e]

System/360 COBOL COBOL Programming Techniques

Floating strings of plus or minus signs are like strings of
dollar signs in all respects.

Suppose that the picture of a source item is S9(4); write the
picture of a receiving item which will identify the sign of the
item with a floating + if the value is positive and a floating -
if the value is negative.

++,+++ or +++++ or +(5)

What is wrong with this picture: -,---.99?

The picture is correct in every respect, except that it doesn't
make sense to have only one minus sign to the left of the comma.
The first symbol in a floating string is an extra symbol which
does not represent a digit position. As it stands, the report
item will accommodate hundreds of dollars, and might better have
been written as ----.99; however, if the item was intended to
hold thousands of dollars, then --,---.,99 would be the correct
picture.

Suppose that --- is the picture of a receiving item. What will
be the edited results when the source values below are moved to
the item?

Source Value Edited Result
(1) 02 ?
(2) 00 ?
(3) =50 ?
(4) -105 ?
(XX)

(1) bb2 (2) bbb (3) -50 (4) b-5

The fourth source value is a little sneaky. I ineluded it to
remind you that truncation occurs when the source value is longer
than the receiving item. This receiving item has positions for
two digits, and the assumed decimal point is at its right end.
Only 05 is moved to the item; then the zero is suppressed, and
the - is floated up to the 5.

(6/66) 41

System/360 COBOL COBOL Programming Techniques

You have now learned about all of the editing picture characters,
but it would not be fair to leave the subject of editing without
at least a brief discussion of two topiecs: first, how to edit
alphabetic or alphanumeric data, and second, how to edit numeric
data when no permissible report picture suits your needs.

Actually, these two topics are just two aspects of one programming
technique. The technique is8 to "assemble" the desired result by
using a series of moves.

A typical instance in which such assembling must be done is when
a name that looks like this in an input record:
"DRUNKENBURGERbbbbbbbCS", must look like this on a printed report:
"C. S. DRUNKENBURGERbbbbbbb". To handle this, we define an area
in working storage, with spaces and periods in the appropriate
positions, and with room for the initials and last name. Three
moves are then needed to put the initials and last name where we
want them, and a fourth move transfers the edited name to the
output record.

Let's take it step by step. This is how the name has been defined
in the input record:

[Tto2l [INaME[.. [[T
4 o3 |uasTl-NaME, plilcTURE |Al(l20))].
t o3 JFIRsS[T=INITIAL, PlICTURE .
' | | lo3__|sEciolND-1NIT|aLl, [PlicT|uRE Al

On a program sheet, write the entries to define a working-storage
record called EDITED-NAME, with INITIAL-1 in the first position,
followed by a period and a space; then INITIAL-2 in the fourth
position, another period and space; finally 20 postions for SURNAME.

[X N J

WORIK! I INIGI-|S| TIORIAGE [SECT]I/ON. I I
o - o
i Pl

lol1! | ED/I|TIED/-NIAME..
02 | lENiTaL-l1l, PlICTURE] Al
o2l | IFlILILIER, [PIICTIURE| [XX, |VIALWUIE! ['|| [']s
olel | [iNiTiaL-l2l, PlilciTuRlE lal.! | |
o2l | IFlILLIER,! [PIIICTIURE] [XXIs |VIALE !'l,] '],
j012] | |S|URINJAME|,| P/I'CITURE| A({2]0])].

(6/66) 42

R |||

System/360 COBOL COBOL Programming Techniques

Now write the MOVE statements to put the pieces of the name into
their proper places in the working-storage record. (To avoid

complicating the problem, let's assume that everybody has two
initials.)

Finally, write a MOVE statement to transfer the edited name to
CUSTOMER-NAME. (Assume that CUSTOMER-NAME is a 26-position
alphanumeric item in the output record, which has already been

defined.)
000
wolviel [FliRISITI=DiND T [alL] [rlol TiiniiTilalL=11],
wMowE| IslElcloinip/= 1 N[[T]1]alL! [Tlol [i|niiT i [al=l2].
MolVIE[[Lials|TI-INAME! Tlo| IslulRINAM[E.
olvE] E[D|1|T/ED[-|NJAME]| [Tlo] |clulsiT|oMEIR|-INAME .

VX4 Now that you have the hang of it, try applying the technique to
editing numeric data in a way which no single report picture will
allow. Specifically, the problem is to edit a date in this way:
b4/b5/66 (when the source value is 040566).

A side comment: Beginners sometimes get the impression that they
can do absolutely anything with report pictures, and are tempted
to invent new pictures -- such ag 29/29/99 for this problem.

This i8 not a legal picture, and the compiler will reject it.
Your best bet is to strictly follow the rules you have studied --
the rules given in the reference manual. Take the attitude that
if the manual doesn't say you can do it, you can't do it!

For this problem, our approach will be to define a working-storage
record called TODAYS-DATE, composed of two positions called MO,
then one position containing a /, two more positions called DA,
another /, and then two final positions called YR. The pictures
of MO and DA must both call for zero suppression in their left
positions. Write the entries for this record on a program sheet.

000
HORKEING-STORAGE sklcit]i o,
[
0] | iTlojpiAlY|SI—D|ATIE],
02| | Mol,l |PlIICTIURE! |Zl9],
o2l | FhiLieR! IPlilcTlulRlE]! [Xla| VIALUE] '/,
02 PA plilcTluREl Zlsl.
o2l | IFIHLLER,| [PlHICTIURIE IXl,! IVIALVE] 'i/]'].
o2l | [YIRl,| [P[I/CITIURE| |99l
(6/66) 43

System/360 COBOL COBOL Programming Techniques

This is the data which we are to edit by moving it into our
working-storage area. On the coding sheet, write the necessary
MOVE statements.

02 ! IplaTEl. } B
1 o3l | moNTH,| Plilc | i
1 lo3 | oay,] PlicTuR Jo
1 o3 | |YEAR|, PIICTURE ‘99|. | ' ||
o000

_MOVE| MONTH o mo, | [TPl
_ MovE|pav| Toi oA, | [|) bl
. move| YEAR Tof YR.| | T{ |]]

The same basic technique could have been used to edit the date
with hyphens (for example, b4-b5-66).

IEII From these little problems, you can see that it is more cumbersome
to edit information as soon as you get out of the range of the
"buitlt-in" editing capabilities of the language. It is certainly
easier to write a single MOVE statement to a report item, and get
the editing done that way!

This suggests that it might be wise to re-evaluate any editing
requirements that fall outside the range of built-in language
capabilities. In the case of the date-editing problem you just
worked on, we might ask, is it necessary for this report to have
the date edited like "4/ 5/66" or "4 - 5-66"? Or, would

"04 05 66" serve our purposes just as well? If the latter format
will do, we can insert the blanks in one simple edit move, by
making 99B9I9BI99 the picture of the receiving item.

(6/66) 44

R (|| |

System/360 COBOL COBOL Programming Techniques

LESSON 4

In this lesson, you will study arithmetic operations in detatil.
Although "arithmetic" may seem like it should be entirely different
from "data moving and editing”", you will discover that many of the
actions that go on are the same. In fact, one of the main steps
in executing an arithmetic statement consists of making either a
numeric move or an edit move! So don't purge your mind of what
you have learned about moves in the first three lessons; also,
don't hesitate to go back over the material you have previously
studied -- either in this textbook or in the reference manual --
1f you find that you have forgotten some of it.

Reading assignment: Arithmetic statements

Read through the entire section on arithmetic in the manual once,
briefly. Later in this lesson, you will be instructed to re-read
the information about certain clauses with greater care and
concentration.

Thie book deals only with arithmetic done on items whose usage 13
DISPLAY, COMPUTATIONAL, or COMPUTATIONAL-3. In other words, you
will not be taught the details of "floating-point"” arithmetic,
which involves COMPUTATIONAL-1 and COMPUTATIONAL-2 items. This
topiec was omitted mainly because comparatively few COBOL users
employ floating-point itemg, and also because it would tend to
take us away from our main subject. You see, the question of
whether or not to use floating-point items is mainly a system
design question, and doesn't affect the way arithmetic statements
are written in COBOL.

(6/66) 45

System/360 COBOL COBOL Programming Techniques

Four major actions occur during the execution of an arithmetic
statement. This chart shows what the four actions are and the

sequence in which they occur. During this lesson, you will study

these actions one at a time.

1. The data values are
prepared for calculation.

v

2. A raw result is calculated
in a work area.

v

3. |f desired, the size of
the raw result is tested.

Y

4. The raw result is moved
to the finished result item.

IKF] Arithmetic action 1. The data values are prepared for calculation.

If necessary, the usage of the values is converted to a data code
in which calculation is possible. Also, the sign bits are changed

in certain cases.
Y X

Arithmetic operations can be performed with certain kinds of
items, and with no other kinds. Specifically, computations may
be done using [elementary numeric items]

[elementary alphanumeric items] [report items] [group items]
[numeric literals] [non-numeric literals].

ONLY elementary numeric items and numeric literals

To this COBOL restriction, we must add a fact about the System/360.

The computer can execute arithmetic operations either on binary

items or on packed-decimal items. Therefore, in order to execute

an arithmetic statement, it is definitely necessary to convert
the data code of elementary numeric items whose usage is .

DISPLAY (that is, BCD or external decimal)

(6/66) 46

System/360 COBOL COBOL Programming Techniques

EEf] The computer can perform computations on two packed-decimal items

(6/66)

or on two binary items. Therefore, the preparation of an
external-decimal (display) item is not the only time conversion
is necessary. Another time would be when one item is packed
decimal and the other is binary; one of these items must be
converted to the code of the other before computation can begin.

The only case in which both items must be converted is when

both are binary.

one is external decimal, and the other is binary.

one is external decimal, and the other is packed decimal.
both are external decimal.

both are packed decimal.

one is packed decimal, and the other is binary.

(XX
both are external decimal

(Both items will be converted to packed-decimal format.)

Imagine that this statement appears in a COBOL program:

'ADID|_|cHEEIClKI~AMOUNT] TO [FiLioA|T-To[TAL.| |

aJ

Here are the descriptions of the items to be added:

‘o2l | [cHECK-AMouNT], PilcTURIE sol(e)vioe, |
v clomplulalt]ionajL-13., HIEENE

77| | FLloalT-|TiolTiaLl,| PlilcITIURE| |98l iveel.. | | || | |

(1) Is it permissible to add these items? Why?

(2) Will it be necessary to convert the data code of either
item? If so, which item, and to what data code must it
be converted?

(1) The items can be added because both are elementary numeric
items.

(2) FLOAT-TOTAL must be converted since it is a display (BCD)
item; it will be converted to packed decimal because that
is the data code of CHECK-AMOUNT.

47

System/360 COBOL COBOL Programming Techniques

IE] Although we typically say that an "item" is converted, it would

(6/69)

be more accurate to say that the data from an item is converted

to a different code. It works like this: the data is moved from
the item to a work area, and converted there; then, the arithmetic
operation is done using the data in the work area. The contents
of the original data item remain unchanged.

The work area, by the way, is set up by the compiler, not by the
programmer. And the compiler also generates all of the necessary
instructions to cause conversion.

Note carefully that the converted data is used only for one
calculation. The next data conversion that is required will
probably be done in the same work area, erasing the previously-
converted data.

Check your understanding of these ideas by applying them to this
example.

| isuBTlRACT sTolck-clounT FrRoM || ' | = | '
o ékXPECTED—&AlAmCE GlV|ING JLoSsSl, |

If STOCK-COUNT is an external-decimal item, and EXPECTED~-BALANCE
is a packed-decimal item, the data from STOCK-COUNT is moved to a
work area in which it is converted to packed-decimal. Then
subtraction is done, using the data from

STOCK~-COUNT
the work area ('’

the work area

Suppose that STOCK-COUNT is involved in two later calculations in
other procedures of the same program. What will happen when the
later calculations are performed?

The data from STOCK-COUNT will be converted again each
time it is used in a calculation.

The converted data from STOCK-COUNT will be saved in the
work area for use in the later calculations.

The compiler will generate instructions to bypass the later
calculations, to avoid using STOCK~COUNT in more than
one computation.

The data from STOCK-COUNT will be converted again each time it
is used in a calculation.

48

S |

System/360 COBOL COBOL Programming Techniques

We generally want to prevent repeated conversions. We can do
this by making certain that the items we use in calculations have
the proper usage. In the example given in the preceding frames,
repeated conversions would not have been necessary if the usage
of the "stock count" data had been COMPUTATIONAL-3 (packed
decimal).

There are two ways that this can be done. First, by redesigning
the input record to have the data in packed-decimal format when
it enters storage for processing. This makes it unnecessary to
convert the data when it is used in calculations; however, it may
be necessary to convert the data to DISPLAY format elsewhere in
the program, if the data is printed or punched. The system
designer or programmer has,6to evaluate the overall processing
requirements to figure ouq@hether the data will more often be
used in calculations, in which case COMPUTATIONAL-3 usage is
better; or more often printed, in which case DISPLAY usage is the
right choice.

Whereas the first way of avoiding conversion is a system design
problem, the second way is a programming technique. This way is
to define an item in working storage whose usage is
COMPUTATIONAL-3, to MOVE the data to that item (thereby causing
it to be converted), and thereafter to use the working-storage
item in calculations of the data. In this way, the data is
converted only once, no matter how many times it is used in
calculations.

This programming technique is an efficient way of treating an
external-decimal item,

if the item is used in two or more calculations.

{ provided that the item is used in one calculation only.}
no matter how many calculations the item is used in.

if the item is used in two or more calculations

In the STOCK-COUNT example, we might previously have written the
statement "MOVE STOCK-COUNT TO CALC-STOCK-COUNT", with
CALC-STOCK-COUNT defined as a COMPUTATIONAL-3 item. To calculate
using this data, we would later have written "SUBTRACT FROM
EXPECTED-BALANCE GIVING LOSS".

oot

CALC-STOCK-BAEANCE

(6/66) 49

Systemn/360 COBOL COBOL Programming Techniques

Based on the picture of an item that is to be used in a
calculation, the compiler may also generate instructions to alter
its sign. Signs are always considered by the computer in
arithmetic operations; part of the computer's job, of course, is
to figure out the correct sign of a result.

The sign of a data value will be altered if there is no S in the
item's picture. Special "no sign" bits will replace the
operational sign bits in this case. The "no sign" bits are
interpreted as positive during calculations.

One reason you might omit the S from an item's picture would be
to use the "absolute value" of the item in calculations. The
absolute value of an item is its numerical value disregarding the
sign. Suppose an item's value is -826.036, but we want to treat
it as 826.036 in a calculation; we accomplish this by making the
picture of the item

9(6)
S999V999
999V999
NO-S999V999

(XX)
999Vv999

You will recall that S can be omitted from pictures of DISPLAY
and COMPUTATIONAL-3 items, but not COMPUTATIONAL items.

Take the opposite situation: you know that an item has no sign,
so you want to avoid the unnecessary insertion of "no sign" bits.
The picture you might write for such an item is

S9(5)
9(5)
99999
(X X)
S9(5)
By putting an S in the picture, we in effect say to the compiler,
"Use the sign bite -- or no-sign bits -- which this item already

containe."” By omitting the S, we in effect say, "Change the sign
bite of this item's value to no-sign'”.

(6/66) 50

S S R (||

System/360 COBOL COBOL Programming Techniques

147

(6/66)

Arithmetic action 2. A raw result is calculatec in a work area.
At this step, the actual adding, subtracting, multiplying,
dividing, or exponentiating is done. The "raw" result is the
numerical outcome of the calculation, such as 000306v4294,

(The "finished" result in this case might be $306.43.)

The compiler sets up the work areas needed for calculations.
(You do not define these areas in the Working-Storage section.)

The compiler makes the work area large enough to develop the
result you want -- based on the operation (addition, subtraction,
multiplication, division, or exponentiation) and the pictures of
the items. For example, when two numbers, both having the picture
S999Vv99, are added, the work area need only contain six positions;
but if the same numbers are multiplied, a ten-position work area
is needed.

Furthermore, the size of the work area is adjusted to take account
of any shifting of data values that is needed to align decimal
points. If the pictures of three numbers to be added together
were 99V99, 9Vv9999, and 9999V9, the work area would be

positions long.

'YX
nine

This may be easier for you to see when values are given to each
data item and the numbers are aligned, like this:

25v75
8v0036

+ 99812
10014v9536

In our discussion of numeric moves, I pointed out that alignment
by decimal points requires shifting when the numbers do not have
the same number of decimal places. The same point applies to
arithmetie. If you are concerned about saving storage space and
making your programs as efficient as possible, try to have the
same number of deeimal places in values that are added or
subtracted.

51

System/360 COBOL COBOL Programming Techniques

Arithmetic action 3. 1If desired, the size of the raw result is

151

152

(6/66)

tested. A test can be made to determine whether all of the
significant integral digits will fit into the finished result
item. The test is made only if an ON SIZE ERROR clause follows
the arithmetic statement.

If all significant integral digits of the raw result will fit into
the finished result item, the fourth arithmetic action is
performed -- the raw result is moved to the finished result item.
If they will not fit, the raw result is not moved; instead, the
execution of the arithmetic statement is suspended, and control
goes to the statements that are written in the SIZE ERROR clause.

I will explain what all this means, but before I do, carefully
re-read what the manual says about the SIZE ERROR test.

Reading assignment: Arithmetic statements, SIZE ERROR option
(X X

The integral digits of a number are those that appear in the

integral places of the number.

Let's define what we mean by "integral places". Decimal places

are the ones to the right of the actual or assumed decimal point.
Integral places are the ones to the of the decimal point.

left

5
An item whose picture is 999V99 has { 3} integral places.
2

Suppose the value of an item is 3924v00895. The integral digits
are .

3924

52

System/360 COBOL COBOL Programming Techniques

153

(6/66)

In the value 000306v2, which integral digits are significant?
Which are not significant?

significant
integral digits

000306v2
insignificant
integral digits

If the raw result 001002v05 were moved to a finished result itemn,
whose picture is 999V99, would any significant integral digits be
lost?

Yes, the 1 in the thousands place would be truncated along with
the two insignificant zeros. The finished result after the move
would be 002v05!

The SIZE ERROR test determines whether all significant integral
digits in the raw result will fit into the finished result items.
Notice that only the integral places are tested, not the decimal
places. This is because it is normal to drop excess decimal
digits; for instance, if an employee'’s nmet earnings are calculated
to be $175.98270635, he will be paid $175.98. But it generally
isn't considered quite fair to drop off digits at the other end
of the number!

It may be wise also for me to spell out what I mean by the
"finished result" item. I mean the item in which the result will
appear after the execution of an arithmetic statement has been
completed.

The test is made before
after

finished result item.

} the raw result is moved to the

(XX]
before
If an error exists, the result }is moved.
is not
(XX
is not
53

System/360 COBOL COBOL Programming Techniques

What is the fallacy in this reasoning:

"It doesn't do a bit of good to test for a size error during the
execution of a statement such as ADD A TO B. As soon as A and B
are added, the original value of B is changed -- and it's too
late then to find out that the sum won't fit into B."

This argument assumes that ADD A TO B is executed by adding the
value of A directly into item B. This is not the case, however;
A and B are added together in a work area. The raw result is
tested in the work area for a size error condition. If the sum
is too large to fit into B, it will not be moved into B; there-
fore, the original values of both A and B remain unchanged.

[EXd Return to your reference manual. This time look at the formats of the
arithmetic statements to see where the SIZE ERROR clause is written.

I!:I Rewrite this statement on a program sheet. Add to it a SIZE ERROR

clause which will cause a branch to OVERSIZE-SUM if a size error
occurs.

'Ablp| lolVER|T/IME| [Tlo [REElGlulL/AR—|E/ARN]I NGS],
000
1 ! ! !
wDD ovIERIT|IME| [Tl [REGUILIAR-|EARN|I NGS],
L loN[s|1zE! [ERRIOR],| 6lo 'Tio] 'OVE[R'S'I Z[E-'SUM.

(6/66) 54

System/360 COBOL COBOL Programming Techniques

This chart shows the flow of control through an arithmetic
gsentence that contains a SIZE ERROR clause.

¥

Data values are
prepared for calculation

Y

Raw result is calculated
in work area

YES statements after
SIZE ERROR, up to
the period, are acted on

NO

Result is moved

to finished result item
Next COBOL sentence
l is acted on, unless
one of the preceding
statements caused
{\lse)étc ' g:dog?L sentence a branch or
stopped the run

Notice that the logic of a SIZE ERROR clause is like that of an
IF sentence. In particular, notice the importance of terminating
the statements that follow the words "SIZE ERROR" with a period.
Thus, an arithmetic "statement'” must in fact be a sentence when
the SIZE ERROR option i8 speectified.

k¥l It is possible that you will not find much use for size error
testing in your programsg. After all, the test is not needed if
you have allowed enough room in the finished result item; for
instance, i1f two three-digit numbers are to be added, the result
eannot possibly exceed four digits -- so if the finished result
18 put into a four-digit item, there is no need for a size error
test. It would be folly to write unnecessary size error tests,
of course, since extra instructions are generated in the object
program each time a SIZE ERROR clause appears.

Also, it 18 unwise to put a lot of SIZE ERROR clauses into a
program to catch programming errors in miscalculating the sizes
of results. This would be an expensive substitute for thorough
testing and debugging of the program!

(6/66) 55

System/360 COBOL COBOL Programming Techniques

Here is a case in which the programmer is probably justified in

(6/66)

using the size error test. Four numbers (A, B, C, and D) are to
be multiplied to get their product, X. A, B, C, and D each
contain six digite; that is, the picture of each one is S9(6).
The picture of X is S9(18), which is the largest allowable size
for a numeric item.

If all of the factors contained the largest possible values, the
product would exceed 18 digits -- it would be 24 digits Llong.

The programmer does not expect a product longer than 18 digits,
because when some factors are very large, the others are supposed
to bevery small.

A 8ize error in this case would be a check on the validity of the
input data. In the event of a size error, the programmer will
have the computer perform an analysis routine to find out which
factors are not reasonable. So he has written:

icloMPlUITIE! IX| = |a] [% Bl 1% [c| % Ip's O|N iS!i|z
| RRORR],| PIERRIFIOIRM [FlAICITIO|R-AN|JAL Y'S]I

v Im

The alternative would be to analyze the factors before multiplying
them -- but that would increase the time for calculating X every
time. And an error will rarely, i1f ever, occur.

The size error test is the only test that can be performed during
an arithmetic calculation. It is built right into the arithmetic
actions. Many other tests are possible, though, i1f they are done
prior to an arithmetic statement or after it. For example, after
an arithmetic result has been calculated, it can be tested to see
t1f its value is zero. Or if its sign 18 plus or minus. Or if it
i8 less than or greater than established limits. Tests such as

these are simply written as separate IF sentences in the procedure.

56

System/360 COBOL COBOL Programming Techniques

165

(6/66)

Arithmetic action 4. The raw result is moved from the work area
to the finished result i1tem. The move will be a numeric move if
the receiving item is numeric, or an edit move if the receiving
item is a report item.

Let me emphasize that you do not write a MOVE statement to get
the result into the finished result item. The compiler generates
the instructions that are needed to get the result into that item.

As you learned in the preceding course, there are nine basic
formats for arithmetic statements. Four of those formats are
illustrated below. In each of these statements, the finished
result item is .

DDl Al [Tlo] B.
SUBTIRAICIT| A FIROM B .
MuLlTlilpily] A BlY B.
loj@qoe Al [INTO_B.
(N N J

In each statement shown in the preceding frame, items A and B are
both used in the calculation, so both items must be elementary
numeric items. For each statement, therefore, when the result is
moved from a work area to the finished result item,

[a numeric move] [an edit move] will occur.

a numeric move

57

System/360 COBOL COBOL Programming Techniques

IXJ These statements illustrate the remaining five formats.

171

(6/66)

'coMPlulTIEl [Rl = |al 1+ [B] * [cl.

iADID| [Al,| Bl,. CL.| D, |GIIIVIIINIG R|.

'suglTRAlcIT| A, |Bl.| icl,| [FRlOM IDl.| l6lilviING| R..
MulLThiPlLY] A BlYl IBl.| l6l1VIING Rl

o1 v[IDlE] Al INTlo| Bl,| l6[iV[ING |R.

In each statement, the finished result item is R. In none of
these cases is R used in the calculation; it may therefore be
either an elementary numeric item or an elementary report item.
The move from the work area to the finished result will be

[a numeric move] [an edit move].

EITHER a numeric move OR an edit move (depending on the
receiving item)

It i8 important for you to have the effect of the GIVING clause
well in mind., At this time, re-read the brief discussion of
GIVING in the reference manual.

Reading assignment: Arithmetic statements, GIVING option

Conversion may be required when the result is moved to the
finished result item. This is true for both a numeric move and
an edit move. Remember that the raw result will be either binary
or packed-decimal. Conversion occurs when the usage of the
finished result item is different from that of the raw result.

Suppose the raw result is a packed-decimal number. The finished
result item is described by the entry below. Will conversion
occur?

AT

No (COMPUTATIONAL-3 usage means packed-decimal data format.)

—

ON
UR

)
_{
Im

Isivislt|s])]s| |cloMP|UITIAIT] 1 iONIAIL:

58

System/360 COBOL v COBOL Programming Techniques

172

(6/66)

Conversion of the raw result will always occur when the finished
result item is [an elementary numeric item]
[an elementary report item].

an elementary report item (All report items have DISPLAY usage.)

The conversion of the raw result may represent the second or
third time conversion has been done in the process of executing
an arithmetic statement.

This chart illustrates a process in which two conversions take
place. The arithmetic statement being executed is "ADD X TO Y".

ITEM X ITEMY

external decimal

packed-decimal data (BCD) data - W

Data from Y is converted
to packed decimal.

WORK
AREA

\—E g packed-decimal data ——E————J

Data from X is added

to the data from Y Raw result is converted
to get the raw result to external decimal
in packed decimal. when it is moved to Y.

The programmer might also have written "ADD Y TO X". During the
execution of this statement,

no conversion

one conversion would have been uired
two conversions e be required.

three conversions

one conversion (The data from Y would have to be converted to
packed-decimal in order to add it to the data from X; but the raw

result would not have to be converted because the finished result
item, X, is a packed-decimal item.)

59

System/360 COBOL COBOL Programming Techniques

174

175

177

(6/66)

As you know, other actions may take place during the move to the
finished result item. For one thing, a sign may be generated,
corresponding to the sign of the result, or "no sign" bits may be
placed in the result. Whether a sign or "no sign" bits are
generated depends on .

whether there is an S in the picture of the finished result item

Decimal alignment is another action during the move, and as a
result of decimal alignment, truncation or zero-fill (or both)
may also occur.

Suppose that the raw result is 877v627594. What will the finished
result be if the picture of the finished result item is
(1) 2,222.99 and (2) S9(5)V99?

(1) bb877.62 (2) 00877v62 (In both cases there is truncation
of low order digits; in the second case, there is also zero-fill
of the high order positions.)

In the example given in the preceding frame, notice that the
extra decimal places are just dropped, and not rounded off to the
nearest penny. If the programmer had wanted to, he could have
caused the raw result to be rounded before it was moved to the
finished result item. "Rounded" means that the rightmost digit
to be moved to the finished result item is increased by 1 if the
digit to the right of it in the raw result is 5 or greater.

A raw result is 04v3819. The programmer has specified that the
result is to be rounded. What will the finished result be if the
picture of the finished result item is (1) 99 (2) 99.9 (3) 99.99
(4) 99.999 (5) 99.9999?

(1) o4 (2) 04.4 (3) 04.38 (4) 04.382 (5) 04.3819

In the preceding frame, the fifth picture contains just as many
decimal places as the raw result. Thus, there is no digit to the
right of the rightmost digit that will be moved. The finished
result is the same as the raw result -- no rounding is possible.
This situation illustrates that you should specify a rounded
result only if there are extra digits at the right end of the

raw result which will be when the result is moved to the
finished result item.

truncated (dropped)

60

System/360 COBOL COBOL Programming Techniques

It is very easy to specify that the finished result is to be
rounded.

Reading assignment: Arithmetic statements, ROUNDED option

Shown below are two sets of entries. Which set of entries
indicates the correct way to specify a rounded result -- or are
both sets of entries correct?

D11 MulTliply] qualNTiTlY BY| PRUJCE, | ||
1. L eviNG AMOUN(T, RIOUNDIED. | |
77 me‘}% RE s9/(a)vosl, |
| ONAL=-3.] ||

(2) MulL (1 [PILY] loualnTliTly] BY] PRI]CE HERE
! GIVIING AMOUNT.. | iR
MG A ole loal ~al | 1 T

7.7 | JAMOUIN[T PICWURE:S@(g)wag.Ep |
: CloMP|UTAT|I ONAL-3,| ROUNDED|. |

[X N J

Entry set (1) is correct. Entry set (2) is definitely not correct.

IEJ cCarefully examine the formats of all arithmetic statements in the
reference manual. The ROUNDED option can be used

in all arithmetic statements except COMPUTE statements.

{ in arithmetic statements that contain a GIVING clause.
in all arithmetic statements.

in all arithmetic statements

(6/66) 61

System/360 COBOL COBOL Programming Techniques

(6/66)

In the reference manual, also observe where the word ROUNDED is
written.

ROUNDED is always written

just ahead of the ON SIZE ERROR clause.

{at the end of the arithmetic statement. }
right after the name of the finished result item.

right after the name of the finished result item.

Here are two arithmetic statements which call for the same
calculation. On a program sheet, rewrite these statements, adding
ROUNDED in the correct place in each statement.

clel = [aAVERIAGE| [* |.lg5.!

icoMPlUlTE| [PR

MuLTilPLY| AVERAGE| BY! |.)85],| 6liv[iNG [PRIICE]

(X N J
icompluTE| [PR1IclEl,| RlolUNDIED =] AVEIRAGE| % .l85.
mullTlilely] avElRAGE] [BlY .§F. f | |
! 6lI|VlIING [PRIIICE|,| [ROUNDE|D!, | |

62

System/360 COBOL COBOL Programming Techniques

185

(6/66)

LESSON 5

Our next topic is "condition tests". Here you will review some
things you have learned about IF gsentences in the earlier courses
of this series, and then go on to learn about "compound"” conditions
and "nested" IF statements.

Before you proceed, carefully review the formats of IF sentences
and the five test conditions. These are summarized in the section
on Procedure Division Entry Formats in the Writing Programs in
COBOL reference handbook.

Check your ability to write both basic kinds of IF sentences.
First, write a sentence which will cause the value of MAJORS to
be increased by 1l provided that the value of AGE is more than 20.
(Assume that the items called MAJORS and AGE have already been
defined correctly in the Data division.) Use a program sheet for
this.

e - o

|m
A"/

Tl [alele] B T2lol,] Jalolo] T1] fr]o] MalsloRls].

3 ¥ L

On the same program sheet, write another IF sentence. This time,
add 1 to MINORS if AGE is equal to or less than 20, in addition
to adding 1 to MAJORS if AGE is greater than 20.

HIFl lalelel B l2lol,| (alpp| 1] Tlol Ml
i LisEl,| lapjp| 1] [Tio] MINORIs].|

(=

P)
[
oo

63

System/360 COBOL COBOL Programming Techniques

I iike most decisions, the sentence you were asked to write in the

(6/66)

previous frame might have been written in various ways. In fact,
the same processing could have been done in three IF sentences:

F] AlGlEl <] 120, abi| [1] o, M1]NOR
{1 F| lGlE! =| 20,] ADD| 1 Tlo MI|NOR
1F| njelE| 5| '20,| ADD| 1 Tjo MAly

-—

Part of a programmer's task, though, is to reduce a procedure to
tte most simple and efficient sequence. It is less effieient, of
course, to ask the computer to make three tests (as spectified
above) instead of one test (as in the solution printed in the
preceding frame).

It will be worth your time, also, to review the flow of control
through IF sentences. If you are uncertain about it, re-read

Flow of Control in the COBOL Program Fundamentals reference hand-
book.

When we chart the flow of control, we generally indicate the test
condition and the procedural statements in the sequence in which
they appear in the IF sentence. The "true" condition is
represented as a continuation of the flow of ceontrol, while
"false" i1s shown as a bypassing of certain statements. Below is
an IF sentence and its equivalent flowechart, to illustrate the
point.

- Moot sl NEGATIVE T 1 T T 1111
||F| AMOUNIT '1S| NEGATIVE, | . | || |
: ADD| |RESEIRVE-|QUAN[TITY| TO |AMOUNT, | |

AMOUNT IS
NEGATIVE

ADD RESERVE —
QUANTITY TO AMOUNT

!

next sentence -w-———————
00

64

11—

System/360 COBOL COBOL Programming Techniques

II:I Whenever control comes to the word ELSE or OTHERWISE, it
immediately goes on to the next sentence. Control flows to the
statement after ELSE or OTHERWISE from the previous '"false"

ceondition.

Kilpl;
TEIR_SP-2.

iW WiRIT

o WR[I|TE| [TIRIANIS

|m

._'
< |
nr
7=
o
-~ |>
— |
O |-
< |
|
>
i (%)

LF| lOl-F

ElL.

o

FALSE

TRUE

WRITE TITLE
(AFTER SKIP

WRITE TRANSACTION)
AFTER SP-2

!

\————p next sentence

KK 4 statement im an IF sentence may call for a branch. To avoid
eluttering up the flowchart with too many lines, this is how a

branch will be indicated in this book.
GlE .

(o
<\
>

W F EXIcElsls > Imaraliin, lclo ITlol 'sa

T

FALSE

TRUE

next sentence‘q—————)

(6/66) 65

System/360 COBOL COBOL Programming Techniques

(6/66)

Thies 18 the flowchart of a procedure which assigns a grade of "B"
to a gtudent whose score falls into the 85-92 range. On a
program sheet, write the procedural statements that correspond to
the flowchart. (Assume that all names used inm the chart have
already been defined.)

FALSE
SCORE< 85

FALSE

SCORE>92

MOVE 'B' TO GRADE. |#¢—m—«—/

000
HIF slclolrEl < I8lsl,| Iclo] Tlo] [ci=|6|R/ADIE].
1 F| slcloREl > Isl2l,| llo| ITlol ‘A-l6[RIADE].
Molve| |'iB'] ITlo| [cRIADIE

The two tests made in the flowchart above can be combined into a
single test condition, called a "compound”" condition. Actually,
the computer would still make two tests, but we would be able to
combine them into one IF gentence.

Reading assignment: Compound conditions

66

System/360 COBOL

COBOL Programming Techniques

A compound condition is produced simply by tying together two or

(6/66)

more test conditions with the words AND or OR. (The word NOT can
be used as usual to give the opposite meaning to a condition.)

Compound conditions are written after the word IF. For example,
IF ORDER < 500 AND REMAINDER > 100, GO TO FILL-ORDER. (Notice
that the word IF is not repeated after the word AND.)

In this example, suppose that the value of ORDER happens to be
450, and the value of REMAINDER is 90; with these wvalues, control

{xiii not} go to FILL-ORDER.}

will not (The word AND means that both of the test conditions must
be true; the value of REMAINDER must be more than 100).

The word OR means that the compound condition is true if either
test condition is true. When the sentence below is acted on,

suppose that both test condit<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>