

IBM
SYSTEM/3B0 COBOL

COBOL Programming Techniques
Text

Programmed Instruction Course

Copies of this publication can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:
IBM DPD Education Development, Education Center, Endicott, New York

© In te rn a tio n a l Business M achines C o rp o ra tio n , I960

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

PREFACE

The general objective of this book is to teach students techniques
by which they can make the most effective and efficient use of
COBOL. Major emphasis is centered on discussions of the ways in
which fundamental procedural statements are executed, and what
the programmer can do to cause the most efficient execution of
these statements. Students learn that the instructions compiled
for a statement like "ADD A, B, GIVING C" may cause data to be
not only added, but also moved, converted to a different data
code, shifted to align decimals, truncated, and edited, to name
only a few possibilities! These actions depend partly on the way
in which the programmer has defined the data items and specified
the processing to be done; students learn how to write entries so
as to eliminate unnecessary actions, in order to get efficient
processing while still getting the desired data results.
The statements which are discussed are: First, the MOVE statement
and the three ways in which it may be executed — alphanumeric
moves, numeric moves, and edit moves; included are the rules for
using all editing picture characters. Second, arithmetic
statements, including the ROUNDED and SIZE ERROR options. Third,
IF statements, emphasizing compound conditional expressions,
nested IF statements, and the execution of relation tests.
Fourth, PERFORM statements — especially the "TIMES", "UNTIL",
and "VARYING" options.
Throughout, the text explains how these fundamental statements
may be applied to typical programming situations. In addition,
one lesson is devoted to ways of writing program switches in COBOL,
and two lessons deal with data tables and subscripting.
To teach COBOL facts, rules, and techniques is not the only aim
of this book, however. Another aim is to develop good working
habits — concern for object program efficiency, and attention to
details, for instance. A final, and very important, aim is to
make the student self-sufficient in his future work with COBOL;
to this end, the student is given many reading assignments in the
regular COBOL reference manual, so that he will know how to use
it to find whatever information he may need in the future.
This is the third in a series of programmed instructions courses
on System/360 COBOL. The student is expected to have completed
the previous courses: COBOL Program Fundamentals (text R29-0205
and reference handbook R29-0206), and Writing Programs in COBOL
(text R29-0210 and reference handbook R29-0211).

(6/66) i

■lima]<i

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

ACKNOWLEDGEMENT

The following information is reprinted from COBOL-61 EXTENDED,
published by the conference on Data Systems Languages (CODASYL),
and printed by the U. S• Government Printing Office.

This publication is based on the
COBOL System developed in 1959 by
a committee composed of government
users and computer manufacturers*
The organizations participating
in the original development were:
Air Materiel Command,

United States Air Force
Bureau of Standards,

Department of Commerce
David Taylor Model Basin,

Bureau of Ships, U.S* Navy
Electronic Data Processing Divi

sion, Minneapolis-Honeywell
Regulator Company

Burroughs Corporation
International Business Machines
Corporation

Radio Corporation of America
Sylvania Electric Products, Inc.
Univac Division of Sperry-Rand

Corporation
In addition to the organizations
listed above, the following
organizations participated in the
work of the Maintenance Group:

Allstate Insurance Company
Bendix Corporation, Computer

Division
Control Data Corporation
DuPont Company
General Electric Company
General Motors Corporation
Lockheed Aircraft Corporation
National Cash Register Company
Philco Corporation
Royal McBee Corporation
Standard Oil Company (N.J.)
United States Steel Corporation

This manual is the result of
contributions made by all of the
above-mentioned organizations,
no warranty, express or implied,
is made by any contributor or by
the committee as to the accuracy
and functioning of the programming
system and language. Moreover, no
responsibility is assumed by any
contributor, or by the committee,
in connection therewith.

It is reasonable to assume that a
number of improvements and addi
tions will be made to COBOL. Every
effort will be made to insure that
the improvements and corrections
will be made in an orderly fashion,
with due recognition of existing
users' investments in programming.
However, this protection can be
positively assured only by individ
ual implementors.
Procedures have been established
for the maintenance of COBOL.
Inquiries concerning procedures
and methods for proposing changes
should be directed to the Executive
Committee of the Conference on
Data Systems Languages.
The authors and copyright holders
of the copyrighted material used
herein: FLOW-MATIC (Trade-mark of
the Sperry-Rand Corporation),
Programming for the UNIVAC (§) I and
II, Data Automation Systems © 1958,
1959, Sperry-Rand Corporation ?
IBM Commercial Translator, Form No.
F28-8013, copyrighted 1959 by IBM;
FACT, DSO 27A5260-2760, copyrighted
1960 by Minneapolis-Honeywell; have
specifically authorized the use of
this material, in whole or in part,
in the COBOL specifications. Such
authorization extends to the repro
duction and use of COBOL specifi
cations in programming manuals or
similar publications.
Any organization interested in
reproducing the COBOL report and
initial specifications in whole or
in part, using ideas taken from
this report or utilizing this
report as the basis for an instruc
tion manual or any other purpose
is free to do so. However, all
such organizations are requested
to reproduce this section as part
of the introduction to the
document. Those using a short
passage, as in a book review, are
requested to mention "COBOL” in
acknowledgement of the source, but
need not quote this entire section.

(6/66) i i i

I l l

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

TABLE OF CONTENTS

Student Instructions vii
How to Study this Book ix
LESSON 1 1
LESSON 2 15
LESSON 3 27
LESSON 4 45
LESSON 5 63
LESSON 6 77
LESSON 7 91
LESSON 8 107
LESSON 9 123
LESSON 10 137

(6/66) V

Ill I

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

STUDENT INSTRUCTIONS

1. This is the third in a series of programmed instruction courses
on System/360 COBOL. The preceding courses (COBOL Program
Fundamentals and Writing Programs in COBOL) are prerequisites to
this course.

2. Be sure to read the Preface of this book, which explains the
overall goal of this course.

3. Besides this book, you must have:
• a System/360 COBOL reference manual. (Use the manual that

corresponds to the operating system your installation uses.
For the full Operating System, use IBM Operating System/360
COBOL Language, Form C28-6516. For Disk or Tape Operating
System, use IBM System/360 Disk and Tape Operating System,
COBOL Language Specifications, Form C24-3433.

• a pad of COBOL program sheets (Form X28-1464).
• the reference handbooks you received in the earlier courses

of this series (Form R29-0206 and R29-0211).
4. All reading assignments given in this textbook are in your

reference manual. An assignment will name the topic you are to
read, but will not give the page numbers in the manual; you are
expected to look up the topic in the Index of the manual to get
the page numbers for yourself. Also, you should use the reference
handbooks from the earlier courses whenever you need to review
what you studied before. In a few cases, this text will ask you
to read specific topics in the reference handbooks.

5. This textbook will be used by other students after you, so do not
fill in any of the blanks or make any notes in this book.

6. The format of this book is exactly the same as that used in the
previous texts of this series. As before, topics of study are
presented in a series of frames, with most frames requiring you
to choose an answer or to formulate an answer mentally. The
correct answers are given right after each question. You should
use a card or a sheet of paper to cover up the correct answer until
you have formulated your own answer to a question.

7. If the meanings of symbols like brackets and braces (as they are
used in frames) are fresh in your mind, you may begin Lesson 1;
otherwise, read "How to Study this Book" on the next page.

• •VII(6/66)

Hill ■

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

HOW TO STUDY THIS BOOK

1. Each lesson is broken up into a number of frames, which are simply
convenient instructional steps to be studied in sequence. Most
frames have two parts: the first part usually asks a question or
requires you to take sane action; the second part gives the
correct answer to the question. The end of the first part is
marked by a group of three dots. If the frame asks a question,
the correct answer is printed on the same page, below the three
dots.

2. As you study each frame, you must use an ordinary sheet of paper
or a card to hide the correct answer from yourself. You will
learn best by working out the answers, not by just reading words.

3. Start each page by putting your "hider" sheet or card at the top.
Then slide your sheet down until you uncover a group of three
dots. This allows you to read the first part of a frame, and to
formulate your answer to the question or problem it poses. When
you have your answer clearly in mind, slide the "hider" sheet
down to the next group of three dots. This reveals the correct
answer, and also uncovers the first part of the next frame.
Frames vary in length; a page may contain only one frame, or as
many as seven frames.

4. Your answer to a frame may sometimes be different from the printed
answer, but it should mean the same. If your answer is wrong,
study the question again with the correct answer in mind.

5. On the whole, the course is composed of reading assignments and
questions. When a frame gives you a reading assignment, be sure
to complete the reading before you go on to the next frame. The
frames that follow a reading assignment may ask questions about
what you have read, or ask you to apply what you have read; they
may also provide additional information about the topic. You will
find instructions, remarks, and the author's opinions printed in
italics in some frames.

6. When you come to a blank _____ in a frame, you are to think of
one or more words that complete the sentence. The length of the
blank space is always the same, so it is not a clue to the length
of the answer. Do not write your answer in the book.

7. Some frames present a choice of answers, from which you are to
select the one best answer. The choices are stacked in braces j |.

8. Other frames present a choice of answers, from which you are to
select all correct answers. All of the choices, more than one
choice, just one choice, or none of the choices may be correct.
It is therefore necessary for you to examine every choice. Each
choice of this kind is enclosed in brackets [].

(6/66) ix

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

LESSON 1

You already know how to oause data to be moved from one ^laoe to
another in storage. However, you will be able to do an even more
effective job of using MOVE statements when you have learned what
happens during a move operation. You will learn that there are
really three types of moves, and that each type involves a large
number of different actions. Lessons 1, 2, and 3 are devoted to
this subject.

• • •

2 The first piece of information that is useful to know is that
certain moves are not permitted! That is, you are not allowed to
move data from certain items to certain other items. Your
reference manual contains a table of all moves, showing which
moves are permitted and which are not; take a couple of minutes
to examine the table, but don't try to memorize the moves that
are permitted. In succeeding frames we will discuss why some
moves are permitted while others are not, and we will try to
simplify the table of permissible moves for study purposes.

Reading assignment: MOVE statement — Table of permissible moves
To find this table, look under "MOVE" in the Index of your
reference manual. Only examine the table at this time; other
information about the MOVE statement will be covered by later
reading assignments.

• • •

3 By actual count, there are about equal numbers of Yeses and Noes
in the table you have just looked at. Why is it that about half
of all possible moves are not legal? A large part of the answer
to this question lies in the definitions of the classes of items.
For instance, items classed as "alphabetic” are permitted to
contain only letters and spaces, whereas items that are "numeric"
(external decimal, internal decimal, binary, and floating-point)
may contain only digits.

This would explain why alphabetic source items
moved to numeric receiving items.

(can)
\ cannot t be

• • •
cannot

(6/66) 1

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

Q At the same time, it is plain to see why you are not allowed to
move numeric source items to alphabetic receiving items. On the
other hand, items classed as "alphanumeric" may contain all kinds
of characters — letters, digits, special characters, or spaces.
You would expect, then, that [numeric] [alphabetic] items can be
moved to alphanumeric items.

• • •

BOTH numeric AND alphabetic
In fact, all except floating-point items (which have a special
kind of format) can be moved to alphanumeric receiving items.

5 Here is a simplified version of the table in the reference manual.
Only the main kinds of items are included in this version;
figurative constants and sterling (British currency) items are
omitted. Also, all numeric items have been lumped together here,
since they are treated alike (with a minor exception in the case
of floating-point items). The shaded boxes represent moves that
are not valid.

V A L I D MOVES

Receiving Item

Elementary

Source Item Group Alphanumeric Alphabetic Numeric Report

Group / ✓ /

Alphanumeric / V /

Elementary
Alphabetic / / /

Numeric v / / * / ✓

Report / /
"

* Whole numbers only, and not floating-point numbers

• • •

(6/66) 2

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

6 COBOL students sometimes jump to the conclusion that if it is
legal to move one item to another (say, item A to item B), it is
also legal to move the items in the other direction (item B to
item A). Is this conclusion correct?

• • •

No. For example, although it is legal to move a numeric item to
an alphanumeric item, it is not legal to move an alphanumeric
item to a numeric item. You can find several other examples as
well.

Our simplified table makes it easier to see the patterns of valid
and invalid moves. It is especially easy to see that only _____
source items can be moved to numeric receiving items.

• • •
numeric
You may wish to look at the larger table in the reference manual
to eee for yourself that this is an accurate rule.

8 A "report" item is used to receive numeric data which will be
edited with spaces or special characters when the data is moved
into the item. If the number 12345 were moved to a report item,
the report item might contain $123.45 after the move.
Can you explain why a report item must not be moved to:
1. an alphabetic item?
2. a numeric item?
3. another report item?

• • •
1. Alphabetic items are not allowed to contain digits and

special characters.
2. Numeric items are not allowed to contain special characters.
3. Report items can receive only numeric data which has not yet

been edited; moving from one report item to another would
mean editing data that is already edited.

(6/66) 3

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

9 We have been dealing with the four main classes of data items:
alphanumeric, alphabetic, numeric, and report. If you look back
at the table of valid moves, you will find that an item's class
must be considered

{regardless of whether it is a group item or an elementary item, only if it is a group item,
only if it is an elementary item.

• • •

only if it is an elementary item

10 Can you recall what the difference is between group and
elementary items?

• • •

A group item is made up of smaller items. An elementary item is
not made up of smaller items. Or stated another way, in the Data
division a group item is further subdivided, while an elementary
item is not further subdivided.

11 Our simplified table indicates that all moves are valid in which
a group item is the [source item] [receiving item].

• • •
receiving item

12 Besides items, we frequently use literals in MOVE statements.
Here are two examples, the first containing a numeric literal,
the second a non-numeric literal.

1 !m o v e 5 3 2 1 T0 M 1 N 1M U M - L E V E L .
■

Im o v e ' 9 0 DAY S OV ERDU E ' T 0 AC T 1 ON •

While literals are not shown on the tables of permissible moves,
all literals are treated as elementary items. Numeric literals
are treated as numeric items. Non-numeric literals are treated as

{alphanumeric items, alphabetic items,
report items.

• • •
alphanumeric items
This is because non-numeric literals, like alphanumeric itemst
may contain all kinds of characters.

(6/66) 4

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

13 Let's apply this information about valid and invalid moves to a
practical case. Suppose that you are checking a program, and
you come across this statement in the Procedure division:

Im o v e DAT E TO 1 NV 0 1 CE - D A T E .

Can you tell by looking at this statement whether or not it is a
valid move?

• • •

No, you must find out the level (group or elementary) and class
(alphanumeric, alphabetic, numeric, or report) of each item.

14 You could find this additional information in the
of the program. division

• • •

Data

15 Carrying this example further, suppose that these are the Data
division entries that describe DATE and INVOICE-DATE:

1 0 3 DATE •
1... 1 . _ .. 0 4 MONT H , P 1 CTU RE 9 9 .

' ! * 1 i i .1 ; 0 4 DAY . P 1 C TURE 9 9 .
M i i M 0 4 YEAR , P 1CTUR E 9 9 •

l02 1 N VO 1 C E - DATE v -P J . CTUR E 9 (6|) ,

From these entries, we learn that both DATE and INVOICE-DATE
contain numeric data. We also learn that
(DATE and INVOICE-DATE are both elementary items.
) DATE is an elementary item, but INVOICE-DATE is a group item.
\ DATE is a group item, but INVOICE-DATE is an elementary item.
(DATE and INVOICE-DATE are both group items.

• • •
DATE is a group item, but INVOICE-DATE is an elementary item
(Remember that items with pictures must be elementary items.)

(6/66) 5

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

16 You can now definitely conclude that the sample move (MOVE DATE
TO INVOICE-DATE) j | | not | a valid move.

You may refer to the table of permissible moves if you wish.

• • •
is not
A group item cannot be moved to an elementary numeric item.

17 We will have a little more to say about this particular example
later in this lesson. For now, let’s sum up the point it teaches:
A move that "looks reasonable” is not necessarily valid! Whenever
you are in doubt, refer to the table of permissible moves.

• • •

18 You have also seen that it is quite important to be able to
identify the class of an elementary item. Most of the time, we
can do this by looking at the picture of the item. To refresh
your memory on how to identify an item from its picture, you may
wish to read the discussion of PICTURE clause, under Item
Description Entries (Data Division), in the COBOL Program
Fundamentals reference handbook.

• • •

19 Whenever a picture contains
item is alphanumeric)

alphabetic f

the letter A, you can tell that the

• • •

alphabetic

20 Pictures of alphanumeric items always contain the letter
• • •

X

(6/66) 6
'II

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

21 Pictures of numeric items contain the digit 9 and may also contain
S (sign), V (assumed decimal point), and P (assumed position).
Pictures of report items resemble those of numeric items, in that
they too may contain the characters 9, V, and P. However, a
report item's picture must also contain one or more editing symbols,
such as

(1) # 8 % &)
(2) " ? ; ! >
(3) $. * +)

(3) $. * +

22 Identify the class of each item described by the pictures below.
(1)

(2)

(3)

(4)

2 : i z U z , Z Z . 9 9 !

> : : (2 7)

i

C
i 9 l (l 5)

i) * , * r * * # *

• • •
(1) report
(2) alphanumeric
(3) numeric
(4) report
(5) report
(6) numeric
(7) alphabetic
(8) alphanumeric

(6/66) 7

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

Different classes of items are moved in different ways. The
reference manual briefly outlines some of the main differences.
While the manual identifies two types of "simple" moves, we will
find it convenient to think in terms of three types; you will
learn about this shortly.

Reading assignment: MOVE statement
Note 1: Here is a tip on how to read the reference manual. Read
it twice! The first time, read through the material fairly
rapidly, gust to get a general idea of what the book is talking
about. The second time, pay closer attention to the facts and
rules which the book presents.

Note 2: If your reference manual contains information about two
options of the MOVE statement, read about Option 1 only. Option 2
(the "MOVE CORRESPONDING" option) applies to special situations,
and can be used only when the source computer has larger than
average storage capacity; therefore, we will not discuss Option 2
in this book. I believe that after you have mastered the "simple"
MOVE (Option 1), Option 2 will seem equally simple - - and if
necessary you will be able to learn about it easily on your own.

Let me summarize the general idea of what you have gust read in
the manual: The actions that occur during a move vary somewhat,
depending on the kind of source item and the kind of receiving
item. In this course, we will talk about three types of moves:
alphanumeric, numeric, and edit moves.

• • •

• • •

(6/66) 8

min iii

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

25 To help you visualize when each type of move occurs, here is our
table of valid moves again, this time showing the types of moves:

A = Alphanumeric
TYPES OF MOVES N = Numeric

E = Edit

Receiving Item

Elementary

Source Item Group Alphanumeric Alphabetic Numeric Report

Group A A A
Alphanumeric A A A

Elementary
Alphabetic A A A
Numeric A A* N E
Report A A

* Whole numbers only, and not floating-point numbers

• • •

26 The type of move that occurs in nearly all permissible moves
is

• • •
alphanumeric

27 A numeric move takes place when [a group numeric item]
[an elementary numeric item] is moved to [a group numeric item]
[an elementary numeric item].

• • •
ONLY when an elementary numeric item is moved to an elementary
numeric item.
All group items are treated as alphanumeric, even though they
may contain numeric data.

(6/66) 9

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

28 An edit move occurs only when an
item.

item is moved to an

• • •

elementary numeric to elementary report

29 We will study each type of move in detail. The A 'e dominate the
table, 80 it seems reasonable to begin with the alphanumeric type
of move. Happily, this type also involves the fewest actions --
and therefore the fewest rules to learn. The remainder of this
lesson is devoted to the rules that govern the action of alpha
numeric moves. Numeric moves are the subject of Lesson 2, and
edit moves are discussed in Lesson 3.

• • •

30 Alphanumeric move There are just three rules:
Rule 1. Left justification. Data is aligned at the left end of
the receiving Item.
Rule 2. Receiving item longer than source item. Any extra
positions at the right end of the receiving item are filled with
spaces (blanks).
Rule 3. Receiving item shorter than source item. After the
receiving item is filled, no more characters are moved from the
source item.

• • •

31 After an alphanumeric move, the data in the receiving item will
look exactly like the data in the source item, provided that

!the receiving item is shorter than the source item, the source item is shorter than the receiving item,
the receiving item is the same length as the source item.

• • •
the receiving item is the same length as the source item.

32 Suppose that the value of the source item is TFX and the picture
of the receiving item is A (5). After the move, the value of the
receiving item will be _____ .

• • •

TFXbb (Throughout this book, little b's are used to represent
blanks — spaces -- in the value of an item.)

(6/66) 10

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

33 Assume that the picture of a receiving item is X(6). What will
be the value of this item following a move if the value of the'
source item is
(1) KANSAS
(2) OHIO
(3) bOHIO

(1) KANSAS
(2) OHIObb
(3) bOHIOb

• • •

"Left justification" does not include elimination of
blanks. The initial blank in "bOHIO" is regarded as
character in the source item, and it is moved to the
position of the receiving item.

left-hand
the first
leftmost

34 The contents of a receiving item before a move do not affect the
actions that occur during the move.
Say that the value 96823 is moved to an item whose picture is X(8).
Which choice below correctly shows the contents of the item after
the move — (1) if the previous value of the item was 00000000 and
(2) if the previous value was 12345678?
(1) 96823000 and (2) 96823678
(1) 00096823 and (2) 12396823
(1) 96823bbb and (2) 96823bbb
(1) 96823000 and (2) 96823000

• • •

(1) 96 82 3bbb and (2) 96 823bbb

35 When the receiving item is not large enough to hold all of the
characters from the source item, the extra characters are not
moved. We say that the remaining characters in the source item
are truncated.

("to cut off"
"Truncate" means < "to exchange"

("to erase"
• • •

"to cut off"
Truncation does not change the source item's value in any way.
(The contents of the source item are not altered by any type of
move.)

(6/66) 11

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

36 If the name SMITH were moved to an item whose picture is AA,
which characters would be truncated?

• • •
ITH
Note that neither the compiler nor the computer considers
truncation to he an error. Both assume that the programmer knows
what he is doing. In the example given in this framet presumably
the programmer wants only the first two letters of a name for
some reason.

37 Take a case in which BEARINGSbbbb is the value of the source
item. On a piece of scratch paper, jot down the value of the
receiving item after the move, if the receiving items picture is:
(1) X(6)(2) X (12)
(3) X (18)

• • •

(1) BEARIN
(2) BEARINGSbbbb
(3) BEARINGS bbbbbbbbbb

38 An alphanumeric move can be "reversed" if desired. That is> you
can cause the data to be right-gustified (aligned at the right end
of the receiving item). Accordingly, truncation or filling with
blanks then takes place at the left end of the data.

Such a reversed move will occur if the description of the
receiving item (in the Data division) includes a JUSTIFIED RIGHT
clause.

Reading assignment: JUSTIFIED RIGHT clause
• • •

(6/66) 12

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

39 It ia not likely that you will find much use for the right-
justified move, so we will not spend much time on it. I think I
owe you one example of where you might he able to use such a move,
though.

Imagine that you are preparing a customer bill, at the bottom of
which you want to print three lines that look like this:

GROSS AMOUNT $ 2 0 5 .3 0

DISCOUNT $4. I I

NET AMOUNT $ 2 0 1.19

In this case, the words that identify the amounts are "justified
right". This result can be accomplished in more than one way, of
course. Using the JUSTIFIED RIGHT clause is an easy way to do it.

We begin by defining a single item to which the words will be
moved. This item description would be part of a record
description. We make the item large enough to contain the longest
string of characters (GROSSbAMOUNT). And we specify that data
moved to this item is to be right-justified.

! 0 2 1 AMOU N T - 1 D , P 1 C T U RE A (1 2) % '
1 j [

; 1 ; ,
1 J U S T 1 F 1 E D R 1 G H T .

\ J ‘ ! j: 1 i l i i

At appropriate points during processing,
ments are acted on:

these procedural state-

| M olv E I'Ig Ir o s s AlMOUN f TO A MOUN
1 ' ! | \ - { ! f

T - i d . :

l±J>O3
1 ' D 1 S C O U N T ' T O A MOUN T - l D •, ' ; !

1 Im o v E 1' In Ie T AM O U N T ' TO AMO U N T - I D . —1—-1-----

When the literals are moved to the item, they will be right-
justified.

• • •

(6/66) 13

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

40 Another programmer, faced with the problem described in the
preceding frame, defined AMOUNT-ID like this:

1 ! 1 Sold \fdoh N T - 1D « P ilcl b R E A (12) •
--— —̂ p-—T.;.! I !. M !

He then wrotia these MOVE statements ••

Sm o M e
1,1 i
Ï iGlRO S S A M O U NT' T O A M O U N T - I D •

M ! !m o|v E T T | D 1S C O U NT' T O A M O U N T - I D • -
\ i i

>O E M l{ N E T A M O U n 7 ' l TO! A M O U N T - I D • ■ i i

Was this programmer's technique a correct solution to this
problem?

• • •
Yes
In factt this solution is probably the better onet because the
programmer himself has right-gustified the literals once and for
all, instead of having the computer do it each time the gob is
run.

41 You will recall that the normal alphanumeric move does not
eliminate left-hand (leading) blanks. Similarly, the reversed
alphanumeric move does not eliminate right-hand (trailing) blanks.
To illustrate, suppose that a receiving item is defined as
JUSTIFIED RIGHT. Its picture is X(10). What will this item
contain after a move if the value of the source item is:
(1) CARROTSbbb
(2) PEASbb

(1) CARROTSbbb
(2) bbbbPEASbb

(6/66) 14

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

LESSON 2

42 This lesson deals with the numeric type of move. The numeric
move is significantly different from the alphanumeric move. The
main difference is that the numeric move is concerned about the
meaning of the data it transfers, whereas the alphanumeric move
doesn't bother about the data's meaning.

Let me explain. To the alphanumeric move, data consists of a
string of bytes, each byte containing a bunch of bits. Those bits
have a meaning that depends on the data code; a string of bits
means one thing if the data code is binary, and something
completely different if the code is packed-decimal. In COBOL
terms, items can have different usage. However, the alphanumeric
move transfers data without regard for the usage of the items.
Thus, if a computational (binary) item were moved to an alpha
numeric display (BCD) item, the data would not be converted from
one data code to the other.

By contrast, if the binary item had been moved to a numeric
display item, a numeric move would have been performed, and the
data would have been converted from binary to BCD. The numeric
move pays attention not only to the usage of the source and
receiving items, but also to their signs and the locations of
their decimal points.

• • •

43 Numeric move.
Rule 1. Data code conversion. The data is converted, if required,
to match the usage of the receiving item.
Since conversion depends entirely upon the usage of the source
item and the receiving item, it would be wise to review what usage
means.

Reading assignment: USAGE clause
You may also find it useful to re-read the information on the
USAGE clause in the COBOL "Program Fundamentals reference handbook.
You will find it under Item Description Entries in the section on
the Data division.

• • •

(6/66) 15

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

44 Translate the COBOL usage terms below into the terms that are
normally used to describe the data codes of the System/360.
(1) COMPUTATIONAL-3
(2) COMPUTATIONAL
(3) DISPLAY

• • •
(1) COMPUTATIONAL-3: "packed decimal" or "internal decimal"
(2) COMPUTATIONAL: "binary"
(3) DISPLAY: "BCD" (binary-coded decimal), "EBCDIC" (extended

binary-coded decimal interchange code), or "external
decimal"

45 Conversion is done by instructions generated by the compiler, and
usually takes place in a work area set aside by the compiler.
There is a price to be paid for conversion, then, in terms of
time and storage space. When possible, conversion should be
avoided.
Which of the statements below is the best rule for avoiding
conversion during a move?

I Make sure that the lengths of the source and receiving items are equal.

Try to keep the usage of the source and receiving items
the same.

Do not allow the source and receiving items to have unlike
signs.

• • •
Try to keep the usage of the source and receiving items the same.

(6/66) 16

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

46 Keeping the usage of items the same is good advice if you are
designing the formats of data records. But suppose that the
records have already been designed, and your job is just to get
them processed. Sooner or later you may run into a situation
like this: an input record contains a packed decimal item which
is to be moved to four BCD items at various points in a procedure.
If you simply write four moves, the same item is going to be
converted from internal to external decimal four times1
You can avoid such unnecessary conversions by moving the data
first to an intermediate area whose usage is the same as that of
the final receiving fields. Then move from the intermediate area
to the receiving fields. In this way, the data is converted only
once, at the time it is moved to the intermediate item.
For the situation described above, which of these entries defines
an intermediate item with the desired usage?

(1)

(2)

(3)

(4)

7 7 Ib O X - I L L p I C T U RE S 9 (7)
—r-i—: i "t.

7 7 I B O X - 1 p I C T U RE 5 9 (7) . US AGE D T S P L A Y .

7 7 !b o x - 1 « :p I C T U RE S 9 (T) . CO M P U T

OI-<

N A L .

7 7 I B O X - IP, I C T U RE S 9 (7) tCO M P U T A T I 0 N A L - 3 .

• • •
Both (1) and (2) are acceptable, since they define external
decimal items.

47 Conversion is only one of the actions that may go on during a
numeric move. The remaining actions depend on the pictures of
the source and receiving items. Before we go on to additional
numeric move rules, read what the manual has to say about pictures
of numeric items.

Reading assignment: PICTURE clause, Numeric-form option
• • •

(6/66) 17

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

48 Numeric move.
Rule 2. Operational signs. If the receiving item's picture
contains an S, a sign is developed. Otherwise, bits that
represent "no sign" are put into the receiving item.

• • •

49 The option of either developing a sign or developing "no sign"
bits applies to external decimal (BCD) and packed decimal items.
It does not apply to binary items. Why not?

• • •
Binary (COMPUTATIONAL) items always have a sign. In their case,
there is no such thing as a "no sign" bit-configuration. There
fore, an S is always required in the pictures of binary items.

50 To develop "no sign" bits requires the compiler to generate
additional instructions in the object program. Therefore, it is
best to have an S in the picture, except where the receiving item
definitely must not have a sign.
You probably would not want the item to have a sign if its
contents are to be (used as a factor in an arithmetic calculation]
[printed on a report] [written on magnetic tape]
[tested by an IF statement].

• • •
printed on a report
When a signed number ia printed, the sign bits are treated as the
zone bits of an alphabetio character, so a letter rather than a
digit ie printed in the units position. (It is possible to get a
sign indicator to print - - for instance, a plus sign or minus
sign, "CR" or "DB" — but this is one of the functions of the edit
move which you will study later.) You might also want to have no
sign if the data were punched in a card, where the sign would
result in a zone overpunch in the low-order position.

51 Numeric move.
Rule 3. Alignment. The assumed decimal point in the value of
the source item is aligned with the assumed decimal point in the
receiving item.

• • •

(6/66) 18

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

52 In numeric items, decimal points are always assumed. They are
not stored as actual characters in the item. Because the letter
V is used to show the location of assumed decimal points in
pictures, we will use a little "v" in this book to show the
assumed decimal points within data values, for example "lv37S".

Where is the assumed decimal point located? If there is a V in
an item's picture, such as S999V99, then the answer is obvious.
But suppose there is no V, as in the pictures shown below. For
each of these pictures, tell where the assumed decimal point is.
(1) S9999
(2) SPPP9(8)
(3) S99P(5)

• • •

(1) This is a whole number (integer). The assumed decimal point
is at the end of the number. The picture of this item might
also have been written as S9999V.

(2) The Ps represent "assumed positions" and are used to locate
the assumed decimal point away from the actual number. So
in this example, the assumed decimal point is located in
front of the first P. The picture might also have been
written as SVPPP9(8).

(3) The assumed decimal point is located after the last P.
The picture might have been written as S99P(5)V or S99PPPPPV.

53 In this book, to represent the situations discussed above, we
will use little "p's" for assumed positions. For instance, if an
item's picture is PPP999, and the item actually contains the
digits 235, we will show the item's value as "vppp235". When it
comes to integers, we will show their value without a "v"; for
example, "SO" and not "50v".

• • •

54 Numeric literals must enter our thinking too. Unless they are
integers, literals are written on program sheets with real decimal
points, like .2635, 4.1796, etc. It is important to realize that
these decimal points are not stored as separate characters when
the literals are put into items in storage.
So the value of the literal 3.1416 is really _____ , and the
literal .75 is treated as

• • •
3vl416; v75

(6/66) 19

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

55 Numeric move When the decimal points are aligned.
Rule 4. Extra positions in receiving item. Any extra positions,
at either or both ends of the receiving item, are filled with
zeros.
We can visualize this action graphically. Suppose that the
picture of the receiving item is 999V99. We can show this item
as a string of five boxes: V

Suppose that the source value is 27vS. The assumed decimal point
of this value is aligned with the decimal point of the receiving
item.

2 5

The extra positions
result:

are filled with zeros.

V
0 2 7 5 0

This is the final

• • •

56 If the source value is 95v4 and the receiving picture is 999V99,
the value of the receiving item following a numeric move will be

• • •

095v40

57 Assume source value is 6v5 and receiving picture is 9V999 in a
numeric move. The result will be

• • •
6v500

58 Take one more numeric move. Source value: 25.
picture: 9999V99. Result: _____ .

Receiving

• • •
0025V00

(6/66) 2 0

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

59 After this MOVE statement is executed, the value of QUANTITY will
be _____ . (The picture of QUANTITY is 99V999.)

J f S VE 1 IT QU N T ITYl

• • •
OlvOOO

60 When there are different numbers of decimal places in the source
and receiving items, as in the above example, the compiler will
instruct the computer to shift the data over the appropriate
number of positions. Naturally, the object program will be more
efficient if we can do without such shift instructions; we can
avoid them by making sure that the source and receiving items
have the same number of decimal places.
On a COBOL program sheet, rewrite the MOVE statement shown in the
preceding frame so that it will not be necessary for the computer
to shift the source value during the move.

• • •

h o y k li J o 0 0 T ol IqIu A nitIi t M. ! ' -
"T IT -

l l i T

61 Numeric move. When the decimal points are aligned...
Rule 5. Truncation. Any digits for which there is no room in
the receiving item are truncated. Truncation can occur at either
or both ends.
This rule means that you can lose digits during a move — and
they can be very significant digits. Consider the MOVE statement
below.

I S 0.00 AMOU N T.

If a picture of AMOUNT is S999V99, the value of AMOUNT after the
move will be _____ .

• • •
OOOvOO

(6/66) 21

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

62 Although losing significant digits is probably not what you had
in mind, the computer will do exactly what your COBOL program has
indicated. Every now and then, to be sure, you may want to drop
certain parts of an item. Imagine that you have an item whose
picture is S9999V999.
(1) What picture would you give to a receiving item if you

wanted to move only the whole number and not the fraction?
(These might be dollars-and-cents, and you want to move
only the whole dollars.)

(2) What picture would you give to the receiving item if you
wanted to move only the fraction?

(3) What picture would you give to the receiving item if you
wanted to move the entire number, but with only two decimal
places instead of three?

• • •
(1) S9999
(2) SV999
(3) S9999V99

63 Let'a carry this example a step further. Suppose that what you
want to move is just one digit, the leftmost digits which
represents the number of thousands. Thus, if the value of our
item is 7263vOSt all you want to move is the digit ?.

It should be clear that if you made the picture of the receiving
item just 9a the digit you would move is the units digit: 3. It
is necessary to introduce three "assumed positions" into the
picture in order to obtain the desired alignment. The correct
picture for this problem would be 9PPP (or 9PPPV). This picture
describes a one-digit itema you will recalla because no storage
space is reserved for Ps in a picture.

Assume that a source value is 025936v45, and you wish to move
only the thousands (025). The receiving item picture must be

• • •
999PPPV

(6/66) 2 2

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

64 Now that you have seen the effect of having Ps in the receiving
picture, consider how Ps affect a move when they are in the source
picture. There, they serve as "assumed zeros".
Work these exercises out on scratch paper:
(1) The source value is 256pppv, and the receiving picture is

9(7)V99. After the move, the receiving item will contain

(2) The source value is vpppp797, and the receiving picture is
9V9(6). After the move, the receiving item will contain

• • •
(1) 0256000V00
(2) 0V000079

65 You have studied all of the rules that govern actions during a
numeric move. Before we go on to the edit move, though, I want
to pick up a loose thread from way back in Lesson 1. When we
were discussing the fact that some moves are valid while others
are not, we looked at a sample MOVE statement (MOVE DATfc TO
INVOICE-DATE) and decided that the move was not valid, even
though both items contained numeric data. The reason for this
was that DATE happened to be a group item, while INVOICE-DATE
was an elementary item.

Now in fact, these data items can be redefined in such a way as
to make a valid move possible! For instance, it is possible to
redefine the group item (DATE) as an elementary numeric item.
And, for that matter, the number item (INVOICE-DATE) can be
redefined as an alphanumeric item. Depending on how we define
the items, we would cause either a numeric move or an alphanumeric
move !

This idea goes well beyond the bounds of this little problem.
The key point is that you, the programmer, define the data items,
and depending on how you define them, you may make moves possible
or impossible. Also, you determine whether an alphanumeric or
a numeric move takes place. In general, you define an item once,
and you decide, for instance, whether to make the picture of a
number 9(5) or X(5). But the ability to redefine items is a
powerful tool in your bag of COBOL programming techniques, because
it permits you to have two or more definitions for the same item.

Reading assignment: REDEFINES clause
Also, re-read the summary of the REDEFINES clause in the COBOL
Program Fundamentals reference handbook (under Item Description
Entries in the Data Division section).

• • •

(6/66) 23

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

66 These were the Data division entries you read in Lesson 1 when
we decided that it was not legal to MOVE DATE TO INVOICE-DATE:

1
1 0 3 D A T E •
1

L-___1____ _ 0 4 M O N T H , P 1 C T U R E 9 9 .
1 0 4 D A Y t P 1 C T U R E 9 9 .

M i 1 M
_Li_i__Li_ 0 4 Y E A R » P I C T U R E 9 9 •

l0 2 I N V O 1 C E - D A T E »■ .- P i C T U R E 9 (6.)

Take a COBOL program sheet, and on it write an entry that
redefines DATE as an elementary numeric item named CURRENT-DATE.

• • •
t --------r ~

i 0 3 C U R R E N T - D A T E , R E D E F 1 N E S D A T E *1
• P 1 C T U R E 9 (6) • ;

67 The entry you have just written would appear
on the line above 03 DATE,
on the line below 03 DATE,
on the line below 04 YEAR, PICTURE 99.

• • •
on the line below 04 YEAR, PICTURE 99.

68 Does the entry you wrote make it valid to MOVE DATE TO INVOICE-DATE?
• • •

No, since DATE is still a group item. However, it does make it
valid to MOVE CURRENT-DATE TO INVOICE-DATE.

69 If we wanted to cause an alphanumeric instead of a numeric move,
we would redefine INVOICE-DATE as an alphanumeric item. On your
program sheet, write this redefinition. Name the new item
R-INVOICE-DATE.

• • •

l0 2 R - 1 N V 0 1 C E - D A T E , R E D E F 1 N E S
1
1 1 N V O 1 C E - D A T E ^.... P. 1 C T U R E X (6) .

(6/66) 2 4

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

70 Two valid MOVE statements can be written to move the date into
R-INVOICE-DATE. On the program sheet, write both of those
statements.

• • •

Im o v e D A T E T O R - 1 N V O 1 C E - D A T E .
! i i

• M O V E C U R R E N T - D A T E T O R - 1 N V O 1 C E - D A T E .

71 All of the redefining that we have been doing has been predicated
on the notion that the original definitions were necessary for
some other processing being done with those items. Otherwiset it
would not have made sense to go to the trouble of redefining the
itemst and we could have just chanqed the picture of INVOICE-DATE
from 9(6) to X(6)t to make MOVE DATE TO INVOICE-DATE a valid
move.

The point is that redefinition makes sense only if two or more
definitions of an item are really necessary, for instance, when
an item will be processed in two or more different ways. Suppose
that we have an item called ITEM-A; at one point in a procedure,
a number must be moved from an alphanumeric item to ITEM-A;
later in the proceduret the number must be moved from ITEM-A to
an elementary numeric item.

ITEM-A seems to be caught in the middle. If we define ITEM-A as
an alphanumeric itemt the second move will not be valid. If we
define ITEM-A as a numeric itemt the first move will not be valid.
Based on what we know about this problem, it certainly appears
that ITEM-A must be both alphanumeric and numeric! This is a
legitimate place to employ redefinition.

On a program sheet, define this item and then redefine it. First,
define it as a 5-character alphanumeric item named ITEM-Al; then,
redefine it as ITEM-A2, a 5-digit numeric item. Both times, the
level number is 02. (As you have read, you cannot change the
level number when you redefine an item.)

• • •

! i i Ï02! 1 i M e Im
- T .> ?
- A 1 , W i !c t U r ’E lx (5

I ! I - - *

! l 0 2
[j

1 T E 1 V I - A 2 . R E D E'F-1 !N E S I T E M - A 1 V
! i ' ’

1 i ! i ;
■ M i 1 i 1

I
1

1 -4 - Pi 1 C T U R E 9 (5) •
! ! I ! i

(6/ÓÓ) 2 5

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

LESSON 3

72 As we get into edit moves, you will discover that they resemble
numeric moves in many ways. (These two types of moves, as you
know, are treated as one type in the reference manual.) There
are basic similarities when it comes to alignment of data by
decimal points, truncation, zero fill, and the treatment of signs

But the picture^of the receiving items (report items) are very
different, and can become extremely complicated. It is these
pictures that we will spend most of our time on during this
lesson. Instead of dealing with the rules that govern edit moves
you will learn the rules for causing certain kinds of editing to
occur - - that is, you will learn to write report pictures .

On the whole, you will work with pictures in two ways. First,
given the picture of the receiving item, and the source value,
you will be asked to determine what the result of the move would
be. Second, given the source value and the desired result, you
will formulate the necessary picture for the receiving item.

• • •

73 Alphanumeric and alphabetic data cannot be edited using the edit
move. An edit move occurs only when an elementary _____ item is
moved to an elementary item.

• • •
numeric; report

74 Numeric data is edited when it is moved
• • •

f to \

\ from) a report item.

to

75 "Editing" means [deleting] [replacing] [inserting] characters in
an item.

• • •
ALL of these may be involved in editing, although they may not be
all required in every edit move.

(6/66) 27

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

76 Here is an example of an edit move. When the source value
00762401 is moved to an item whose picture is $ZZZ,ZZZ.99, the
result is$bb7,624.01. (Remember, the little "b's" represent blank
spaces in an item's value; nothing would print where the b's are
shown.)
Compare the source value with the result. What characters are
deleted? What characters were inserted?

• • •
The high-order (leading) zeros were deleted. A dollar sign,
comma, and decimal point were inserted.

77 Here is how editing is actually done:

1. The compiler uses the report picture you write in a program
to make the "pattern" of characters which the System/360 needs
for editing. The pattern is stored as a constant in the object
program. The compiler also reserves a work area of storage in
which the editing will take place.

2. During the execution of the move, first the pattern is moved
to the work area. Then the data from the source item is moved to
the work area and edited by the computer. Finally, the edited
result is moved from the work area to the receiving item.

This explanation may seem brieft but it is the whole story, short
of getting into the technicalities of internal operations of the
System/360 - - about whicht as COBOL programmers, we frankly
couldn’t care less.

• • •

78 Here are three questions asked by COBOL students. See if you can
answer them, based on the explanation given in the preceding
frame.
(1) Is a report picture put into the object program?
(2) If the picture is stored in the receiving item, won't it be

destroyed as soon as some data is moved into it?
(3) Is the editing done in the receiving item?

• • •
The answer to all three questions is NO. (1) The COBOL report
picture is converted into a System/360 edit pattern. (2) The
picture itself is not around at all during the execution of the
object program; its equivalent, the edit pattern, is stored else
where with other constants until it is needed, and is not stored
in the receiving item. (3) Editing is done in a work area, not
in the receiving item; only the edited result is moved to the
receiving item.

(6/66) 2 8

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

79 We eee that the way in which the object program edits the data is
based on the picture we write for the report item. Each editing
picture character causes one or more actions to take place during
editing. Therefore, literally thousands of combinations of actions
are possible. While we will study all of the picture characters,
don't expect us to study all of the possible combinations of
characters!

Reading assignment: PICTURE clause, Report-form option
Important: This reading assignment contains a great deal of
detailed information. Don't try to absorb it all at once!
Instead, merely scan the material at this time, to get an idea of
the kinds of characters that can appear in report pictures. As we
study the characters in detail -- and we will do this one, two, or
three characters at a time -- go back to the reference manual to
re-read the information about those characters carefully.

• • •

80 Edit rule 1. To move digits just as in a numeric move, use
picture characters 'k9M , “V", and ,èP“ the same as in pictures of
numeric items. "S" cannot be used.
All five of the actions we discussed for numeric moves can occur
in the edit move:

1. Conversion. Remember that the usage of report items is
always DISPLAY. Therefore, we will always wind up with the edited
result in BCD (external decimal), regardless of the usage of the
source item.

2. No sign. There cannot be an S in a report picture, so
"no sign" bits will be developed in the edited result.

S. Alignment by decimal points.

4. Zero fill in any extra positions at either or both ends.

5. Truncation of digits for which there is no room, at either
or bo~th ends.

• • •

(6/66) 2 9

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

81 In report pictures# the character "9" defines a position into
which a digit is to be placed without being changed in any way.
As an illustration, the picture 99,999 calls for the insertion of
a comma into a number, but indicates that the digits themselves
are not to be changed in any way. So, if the source value were
00065, the edited result would be _____ .

• • •

00,065

82 We say that "9" defines a digit position in the picture. Later
you will learn that the characters "Za , , and in certain cases,
"$", "+", and also define digit positions.
By contrast, "P" and "V" do not define positions into which digits
are put. As you already know, these characters are used to _____ .

• • •

align the data

83 Edit rule 2. To insert an actual decimal point, write in the
picture. This takes the place of an assumed decimal point in
aligning the data. A picture cannot contain both a and a "V".

• • •

84 The character is a real character which actually occupies a
byte of storage in the edited result. Whereas the picture 999V99
defines an item that is _____ bytes long, the picture 999.99
defines an item that is _____ bytes long.

• • •

5; 6

85 A report item's picture is 999.99; what will the edited results
be if the source value is (1) 123v45, (2) 123, (3) lv23, and
(4) 1234V567?

• • •
(1) 123.45 (2) 123.00 (3) 001.23 (4) 234.56

(6/66) 3 0

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

86 Edit rule 3. To suppress leading zeros and replace them with
blanks or asterisks, write WZ" or "*" in each digit positionin
which you want suppression. A picture cannot contain both an

and a "Z".
• • •

87 In most cases, the zero suppression stops when you get to the
end of the Zs or when the first significant digit is reached.
Suppose that ZZZZ is the picture of a receiving item; what will
be the edited result is the source value is (1) 0500, (2) 0002,
(3) 0000?

• • •
(1) b500 (2) bbb2 (3) bbbb

88 Zs and 9s (or *s and 9s) can both appear in a picture, but a Z or
an * cannot appear anywhere to the right of a 9. This means that
you cannot get zero suppression to start and stop repeatedly, or
to occur in the middle of an item; zero suppression is strictly
for high-order zeros.
On scratch paper, write a picture that defines five digit
positions, with zero suppression in the two leftmost positions.

• • •
ZZ999

89 Write a report picture which will produce the result bbbb.23 from
a source value 0000v23.

• • •
ZZZZ.99

90 What report picture will produce the result *****.09 from
00000v09?

• • •
* * * * * , g g

Asterisks used in this way are often called uoheok protection"
symbols. They are printed on checks to make it difficult to
increase the amount by typing additional digits.

(6/66) 31

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

91 Some special rules apply to pictures that call for zero suppression
and also contain a decimal point. First of all, you can write Zs
or *s to the right of the decimal point; however, zero suppression
stops at the decimal point unless the source value is zero.
On scratch paper, write down what the edited result would be in
each of these cases;

Report Picture Source Value Edited Result
(1) ZZZ.ZZ OOOvO 3 ?
(2) ZZZ.99 000v03 ?
(3) ZZVZZZ OOvOOl ?
(4) ZZ9.9 00v5 ?

• • •

(1) bbb.03 (2) bbb.03 (3) bbvOOl (4) bbO.5

92 Here is a second special rule that involves decimal points: Only
one kind of digit position character is allowed to appear to the
right of the decimal point. For example, a Z may appear to the
right of a decimal point only if all digit positions are
represented by Zs.
Decide which of these pictures are right and which are wrong;
(1) ZZ.9999
(2) ZZZ.Z99
(3) **** ** •
(4) 9999.ZZ

• • •
Pictures (1) and (3) are correct. Picture (2) is wrong because
it violates the rule stated in this frame. Picture (4) violates
the earlier rule that Zs or *s may not appear anywhere to the
right of a 9.

93 This is the last special rule about decimal points; If zero
suppression is called for in all digit positions, and the source
value is zero, all of the zeros are suppressed and the decimal
point is suppressed too.
This rule means that when the source value is zero, the picture
ZZZ.ZZ will produce an edited result of
(bbb. bb i
\ b b b .00 \
{ bbbbbb)

bbbbbb
• • •

(6/66) 32

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

94 Take careful note of that last special rule. There is an
important difference in the end result depending on whether or
not the source value is zero. With a receiving picture of Z(5).ZZ,
and a source value of OOvOO, the edited result is _____ . With the
same receiving picture, and a source value of 00v05, the result
is

• • •
bbbbbbbb; bbbbb.05

95 The same action applies to pictures that have *s in all digit
positions, except of course, that all of the suppressed
characters — including the suppressed decimal point — are
replaced by asterisks. If the receiving item's picture is
*****.**, and the source value is zero, the result will be

• • •

96 Edit Rule 4. To insert commas, spaces, or zeros, write where
you want a comma, **B** where you want a blank space, and "0" where
you want a zero.

• • •

97 Apply this rule in the case of a social security number. The
source value is a string of nine digits, such as 300926354. You
want to insert blank spaces after the third and fifth digits, to
get 300b92b6354 as the edited result. The picture needed to
accomplish this editing is _____ .

• • •
999B99B9999

98 Commas are the insertion characters you will undoubtedly use most
often. Write a picture which will insert commas into the source
value 9285406 to produce 9,285,406 as the result.

• • •
9,999,999

(6/66) 33

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

99 Write a picture that will do the following things: (a) edit a
seven-digit number; (b) insert a decimal point between the dollars
and the cents; (c) insert a comma between thousands and hundreds
of dollars; (d) suppress zeros up to the decimal point, and
replace them with blanks. For example, given the source value
02307v95, the edited result should be b2,307.95.

• • •
ZZ,ZZZ.99

100 Sometimes inserted commas and zeros are not significant
characters. If the report picture calls for zero suppression,
the inserted characters are suppressed and replaced along with the
leading zeros of the source value. For example, if the picture
is *,*** and the source value is 0009, the result will be ****9
(not *,**9).
For each source value listed below, figure out the edited result
if ZZZ,ZZZ.ZZ is the picture of the receiving item.

Source Value Edited Result
(1) 002800v03 ?
(2) 000529v61 ?
(3) 000000v07 ?
(4) 000000V00 ?

• • •

(1) bb2,800.03
(2) bbbb529.61
(3) bbbbbbb.0 7
(4) bbbbbbbbbb

Keep in mind that the inserted commas .
suppression is called for by the report picture. Assume that
0062v25 is the source value; how will the result differ if the
report picture is 9,999.99 as opposed to Z,ZZ9.99?

• • •
Result with first picture:
Result with second picture:

0,062.25
bbb62.25

(6/66) 3 4

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

102

103

104

105

Edit rule 5. To put a fixed dollar sign to the left of an amount»
write where the dollar sign is to appear.

• • •

When we speak of a "fixed" dollar sign, we mean one that stays in
one position. (Later you will study about "floating" dollar signs.)
On scratch paper, write the edited results in these cases:

Report Picture Source Value Edited
(1) $Z,ZZZ.99 3001v02 ?
(2) $Z ,ZZZ.99 0982v75 ?
(3) $Z,ZZZ.ZZ Q000v04 ?

• • •

(1) $3,001.02 (2) $bb982.75 (3) $bbbbb.04

Take the case where all digit positions in a picture are
represented by Zs or *s. You have learned that in such a case,
when the source value is zero, not only the zeros but also the
commas and decimal point are suppressed. It would be pretty silly
to print a fixed dollar sign in this situation, so the dollar sign
is also suppressed.
What will the edited results be if the source value is zero and
the report picture is (1) $ZZZ or (2) $Z,ZZZ,ZZ?

• • •
(1) bbbb (2) bbbbbbbbb

If the report picture is $***.** and the source value is zero,
the edited result will be a string of

15 asterisks) 6 asterisks >
7 asterisks)

• • •
7 asterisks (Both the dollar sign and the decimal point are
replaced by *s.)

(6/66) 35

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

106 Observe the difference in edited results when the source value is
zero and the report picture is (1) $Z,ZZZ.99 and (2) $Z,ZZZ.ZZ.
Write down the two results on scratch paper.

• • •

(1) $bbbbb.00 (2) bbbbbbbbb

107 Incidentally, another way of achieving a result of all-blanks when
the source value is zero is to write a BLANK WEEN ZERO clause in
the description of the report item.

Reading assignment: BLANK WHEN ZERO clause. (Also referred to
in the manual simply as the BLANK clause.)

• • •

108 These two ways of defining a report item would produce identical
edited results:

T " 1
1_ 1 tola 1 11 N VE: n It Ioir Y -W O R T H 1.

—!—r-i—
P I C TU RE i z L zizIzL z lz .

7 T T i ° 2 11 N VE■NT 0 R Y -W O R T H , Rl -C t U r e $;Z , zlz z . . 9 9 ft

_ L _ L L E3 L A f4K| W,H E N; Z ERO .
i ; si J i ; i '■ i 1 !

- 4 - -I--1—

The BLANK WHEN ZERO method might give slightly more efficient
action when the source value is likely to be zero fairly frequently.
This clause causes the value of the source item to be tested before
any editing is done; if the value is zero, no editing is done, and
the receiving item is fust blanked out. The important thing,
though, is that the end result is the same either way you do it.

• • •

109 Edit rule 6. To identify negative values with CR, DB, or -
(but to have no identification for positive values)» write "CR"
or "DB" at the right end of the picture, or write as either
the first or last character of the picture.
To identify a value with + when it is positive and - when it is
negative, write "+" as either the first or last character of the
picture.

• • •

(6/66) 3 6

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

110 The sign indicators covered by this rule are "fixed" indicators.
That ie, the characters remain in the position you specify.
(Later, we will discuss "floating" plus and minus signs.)

Only one kind of sign indication can be used in a picture: CR or
DB or - or + . Which of these is the only one that can be used to
identify positive values?

• • •
+

111 CR, DB, and - all identify negative values. When one of these is
used in a picture, and the source value is positive, what sign
identification appears in the edited result?

• • •
None. Blanks appear where the sign indicator would have been for
a negative value. (One blank in the case of the minus sign; two
blanks for CR or DB, since each of these occupies two character
positions.)

112 If + is used in a picture, and the source value is negative, what
sign identification appears in the edited result?

• • •

113 Let's compare the results when + and - are used in pictures
down the edited result on scratch paper.

Jot

Edited result when Edited result when
Source value report picture is +999 report picture is -999

(1) 005 ? ?
(2) -613 ? ?
(3) 000 ? ?

• • •
When picture is +999: (1) +005 (2) -613 (3) b000
When picture is -999: (1) b005 (2) -613 (3) bOOO
In COBOL, you will recall, zero is neither positive nor negative,
so there is never any sign indication for a zero value.

(6/66) 3 7

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

114

115

116

117

What will be the edited results if the report picture is ZZZZ-
and the source value is (1) -0265 and (2) 0053?

• • •
(1) b265- (2) bb53b

Write a single report picture that will produce these edited
results (from different source values):

$1,005.67bbb
$bbb35.00bCR
$bbbbb.50bbb

(Notice that a blank has been inserted between the amount and
the sign indication.)

• • •

$Z,ZZZ.99BCR (or $Z, ZZZ.ZZBCR)

Edit rule 7. To "float" a dollar sign, plus sign, or minus sign
up to the first significant digit, and at the same time, to
replace leading non-significant characters with blanks:
a. Write a string of "$" signs to get a floating dollar sign.
b. Write a string of "+" signs to get a floating + sign when

the value is positive, and a floating - sign when the
value is negative.

c. Write a string of signs to get a floating - sign when
the value is negative, but no sign indicator when the
value is positive.

A picture can contain only one of these "floating strings".
• • •

To begin with, we will talk about floating dollar signs only;
however, everything we will say also applies to floating plus
signs and minus signs. Let's take a moment to look at two columns
of figures, just to see the difference between amounts printed
with a fixed dollar sign and those printed with a floating dollar
sign.

$25,000.00
$ 250.00
$.25

$25,000.00
$250.00

$.25
• • •

(6/66) 3 8

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

118 To get a fixed dollar sign and zero suppression for a four-digit
number, we can write this report picture: $ZZZZ.
To get a floating dollar sign and zero suppression for the same
number, we write this report picture: $$$$$.
Not all of the dollar signs in the "floating string" have the
same significance, as illustrated below.

All remaining $s in a string
represent digit positions.

The f irs t $ in a string $ $ $ $ $
does not represent a
digit position.

Thus, the rule for a floating string is that the string must
contain one extra $ in addition to a $ for each digit position.
This means that a report item whose picture is $$$$$$ is large
enough to hold up to _____ digits.

• • •

five

119 The largest amount that can be edited with the picture $$$
is

• • •
99

120 Insertion characters (, B 0) can be put into a floating string.
The dollar sign "floats through" the insertion characters to get
right next to the first significant digit. For instance, a report
picture might be $$,$$$; if the value moved to this item were
0362, the edited result would be _____ .

• • •
bb$362 (The dollar sign has floated through to replace the comma.)

(6/66) 3 9

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

121 A picture with a $-string doesn't have to be composed entirely
of dollar signs. You can end the $-string at the rightmost
position to which you want the $ to float. The remaining digit
positions must then be represented by 9s.
For instance, the picture $$,$$$.99 allows the $ to float up to
the decimal point only. With this picture, a source value of
0000v05 would be edited like this: bbbbb$.05
How would you change this picture in order to make the result
bbbb$0.05?

• • •
$$,$$9.99

122 The preceding frame pointed out that any digit positions to the
right of a floating string must be represented by 9s. Zs and *s,
then, are nok allowed. But let's say that you are editing a
dollars-and-cents amount with a floating dollar sign, and you
want the edited result to be all blanks when the amount is zero.
You must not write $$$$.ZZ, but there are two other things that
you can do.
One is to write $$$$.99 as the report picture, and specify
BLANK WHEN ZERO. The second is a special extension of the
floating string designed just for this purpose: write dollar
signs in all positions to the right of the decimal point --
$$$$.$$.
In this special picture, with all digit positions represented by
dollar signs, the $ never actually floats to the right of the
decimal point. If the source value is less than one dollar, the
$ floats up to the decimal point. If the source value is zero,
the edited result is all blanks.
To see if you understand this action, figure out what the edited
results will be in the four cases below. In each case, $$$,$$$.$$
is the picture of the receiving item.

Source Value Edited
(1) 02000V00 ?
(2) 00030v00 ?
(3) 00000V04 ?
(4) OOOOOvOO ?

• • •

(1) b $ 2 ,000.00 (2) bbbb$30.00 (4) bbbbbbbbbb

(6/66) 4 0

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

123 Floating strings of plus or minus signs are like strings of
dollar signs in all respects.
Suppose that the picture of a source item is S9(4); write the
picture of a receiving item which will identify the sign of the
item with a floating + if the value is positive and a floating
if the value is negative.

• • •
++,+++ or +++++ or +(5)

124 What is wrong with this picture:
• • •

-.99?

The picture is correct in every respect, except that it doesn't
make sense to have only one minus sign to the left of the comma.
The first symbol in a floating string is an extra symbol which
does not represent a digit position. As it stands, the report
item will accommodate hundreds of dollars, and might better have
been written as ----.99; however, if the item was intended to
hold thousands of dollars, then — ,-- .99 would be the correct
picture.

125 Suppose that --- is the picture of a receiving item. What will
be the edited results when the source values below are moved to
the item?

Source Value Edited Result
(1) 02 ?
(2) 00 ?
(3) -50 ?
(4) -105 ?

• • •

(1) bb2 (2) bbb (3) -50 (4) b-5
The fourth source value is a little sneaky. I included it to
remind you that truncation occurs when the source value is longer
than the receiving item. This receiving item has positions for
two digits, and the assumed decimal point is at its right end.
Only OS is moved to the item; then the zero is suppressed, and
the - is floated up to the 5.

(6/66) 41

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

126 You have now learned about all of the editing picture characters,
but it would not be fair to leave the subject of editing without
at least a brief discussion of two topics: first, how to edit
alphabetic or alphanumeric data, and second, how to edit numeric
data when no permissible report picture suits your needs.

Actually, these two topics are just two aspects of one programming
technique. The technique is to "assemble" the desired result by
using a series of moves.

• • •

127 A typical instance in which such assembling must be done is when
a name that looks like this in an input record:
"DRUNKENBURGERbbbbbbbCS", must look like this on a printed report:
"C. S. DRUNKENBURGERbbbbbbb". To handle this, we define an area
in working storage, with spaces and periods in the appropriate
positions, and with room for the initials and last name. Three
moves are then needed to put the initials and last name where we
want them, and a fourth move transfers the edited name to the output record.
Let's take it step by step. This is how the name has been defined in the input record:
~ r ! !02S i N A M E • ; |

: i • ; M 0 3 L A S T -N A M E ,; P 1 ciTIU R E A (2 0) •
; 1 , M 0 3 F 1 RS T - 1 N I T . A L i, ! Ip 1 CT U R E A •

i : ! i 1 1 013 S E C O n !d — i N 1T 1M rU l . P 1C T U R E A JL

On a program sheet, write the entries to define a working-storage
record called EDITED-NAME, with INITIAL-1 in the first position,
followed by a period and a space; then INITIAL-2 in the fourth
position, another period and space; finally 20 postions for SURNAME.

• • •

d o R k Si In G — s T 0 R A GE s E C T 10 N •T.f
1 ^

0 1 !e d 1T E D — N A M E .
|0 2 1 N 1T 1A L i- 1 f P 1 c T U R E A •
jo|2 F 1 L L E

—?--
R , p I C T U R E X X * V A L U E 1 1

JL
|0 |2 1N 1T 1 A U - 2 | P 1 C T U R E A •
Jo2 F 1 L L E R | P 1 c T u R E X X V A L U E 1

JL
1 f

jq 2 S U R N A M E JL P 1 C T U R E A1 2 0) •

(6/66) 42

ini an

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

128

129

Now write the MOVE statements to put the pieces of the name into
their proper places in the working-storage record. (To avoid
complicating the problem, let's assume that everybody has two
initials.)
Finally, write a MOVE statement to transfer the edited name to
CUSTOMER-NAME. (Assume that CUSTOMER-NAME is a 26-position
alphanumeric item in the output record, which has already been
defined.)

• • •

)m|o V E F i R S I — I N 13 i A L T g i N 1 I i A L — 1
MO v E S E C o N D — 1 N 7 T i A L T g 1 N i T i A L — 2 •

MO V E L A S I — N A 3]

IS
E I o S y R N A M Ei •

m o V E E D i T E 0 — A ME I g c y s I 0 ME R —!N A ME • J

Now that you have the hang of it, try applying the technique to
editing numeric data in a way which no single report picture will
allow. Specifically, the problem is to edit a date in this way:
b4/b5/66 (when the source value is 040566).
A side comment: Beginners sometimes get the impression that they
can do absolutely anything with report pictures, and are tempted
to invent new pictures - - such as Z9/Z9/99 for this problem.
This is not a legal picture, and the compiler will refect it.
Your best bet is to strictly follow the rules you have studied --
the rules given in the reference manual. Take the attitude that
if the manual doesn't say you can do it, you can't do it!

For this problem, our approach will be to define a working-storage
record called TODAYS-DATE, composed of two positions called MO,
then one position containing a /, two more positions called DA,
another /, and then two final positions called YR. The pictures
of MO and DA must both call for zero suppression in their left
positions. Write the entries for this record on a program sheet.

• • •

IM0 R k ! i N 6 — S T 0 R A G E S E C T 1 0 N •
1
1

0 1 It 0 D A Y S — D A T E •

!o 2 0 f P 1 C T U R E Z 9 f
Iq 2 F 1 L L E R t P 1C T u R E X % V A L U E 1 / 1

•

lo 2 D A P 1 c T U R E z 9 •

|o 2 F 1 L L E R f P 1C T u R E X t V A L U E 1 / 1
•

|0 2 Y R JL P 1 c T U R E 9 9 JL

(6/66) 43

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

130

131

(6/66)

This is the data which we are to edit by moving it into our
working-storage area. On the coding sheet, write the necessary
MOVE statements.

T"" " y "—\—r-
i02! ! dia T E

.T T i! x f • j ; | 1 T r y i i i T .T r y
; u i M i

.. 0 3 MONT Hla_!_p 1 c T UR*E! 9 9 • ! ;
; j | ii ! I 1 !

i 1 M
, j ! 1 : ! j 0 3 DiAIy ^ !p ! i c T u RE 59!9! . ; 1 j i | 1
! ; ' ! ' U 0 3 YEAR z s C T UR E 9 9 i ;

• - . | !

• • •

iMOlvfe M0 N TH T 0 MO
"1: ? I) > i l > ? i ! j f l1 | ! i i

_ fc/IOVE DA Y TO d a -: i ; ! ; 1 i ! ! ? ' 1
•MOVE Y EA R T 0 Y R .

\ ! ! ! ! f' - i : „ i ! ! ;

The same basic technique could have been used to edit the date
with hyphens (for example, b4-b5-66).

From these little problems, you can see that it is more cumbersome
to edit information as soon as you get out of the range of the
"built-in" editing capabilities of the language. It is certainly
easier to write a single MOVE statement to a report item, and get
the editing done that way!

This suggests that it might be wise to re-evaluate any editing
requirements that fall outside the range of built-in language
capabilities. In the case of the date-editing problem you gust
worked on, we might ask, is it necessary for this report to have
the date edited like "4/ 5/66" or "4 - 5-66"? Or, would
"04 05 66" serve our purposes gust as well? If the latter format
will do, we can insert the blanks in one simple edit move, by
making 99B99B99 the picture of the receiving item.

• • •

44
11111311

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

132

133

LESSON 4

In this lessont you will study arithmetic operations in detail.
Although "arithmetic" may seem like it should be entirely different
from "data moving and editing"s you will discover that many of the
actions that go on are the same. In factt one of the main steps
in executing an arithmetic statement consists of making either a
numeric move or an edit move! So don't purge your mind of what
you have learned about moves in the first three lessons; also,
don't hesitate to go back over the material you have previously
studied -- either in this textbook or in the reference manual --
if you find that you have forgotten some of it.

Reading assignment: Arithmetic statements
Read through the entire section on arithmetic in the manual oncet
briefly. Later in this lessons you will be instructed to re-read
the information about certain clauses with greater care and
concentration.

• • •

This book deals only with arithmetic done on items whose usage is
DISPLAY, COMPUTATIONAL> or COMPUTATIONAL-3. In other words, you
will not be taught the details of "floating-point" arithmetict
which involves COMPUTATIONAL-1 and COMPUTATIONAL-2 items. This
topic was omitted mainly because comparatively few COBOL users
employ floating-point itemst and also because it would tend to
take us away from our main subject. You seet the question of
whether or not to use floating-point items is mainly a system
design questiony and doesn't affect the way arithmetic statements
are written in COBOL.

• • •

(6/66) 45

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

134 Four* major actions occur during the execution of an arithmetic
statement. This chart shows what the four actions are and the
sequence in which they occur. During this lessont you will study
these actions one at a time.

• • •

135 Arithmetic action 1. The data values are prepared for calculation.
If necessary, the usage of the values is converted to a data code
in which calculation is possible. Also, the sign bits are changed
in certain cases.

• • •

136 Arithmetic operations can be performed with certain kinds of
items, and with no other kinds. Specifically, computations may
be done using [elementary numeric items]
[elementary alphanumeric items] [report items] [group items]
[numeric literals] [non-numeric literals].

• • •
ONLY elementary numeric items and numeric literals

137 To this COBOL restriction, we must add a fact about the System/360.
The computer can execute arithmetic operations either on binary
items or on packed-decimal items. Therefore, in order to execute
an arithmetic statement, it is definitely necessary to convert
the data code of elementary numeric items whose usage is _____ .

• • •
DISPLAY (that is, BCD or external decimal)

(6/66) 46

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

138 The computer can perform computations on two packed-decimal items
or on two binary items. Therefore, the preparation of an
external-decimal (display) item is not the only time conversion
is necessary. Another time would be when one item is packed
decimal and the other is binary; one of these items must be
converted to the code of the other before computation can begin.
The only case in which both items must be converted is when

(both are binary.one is external decimal, and the other is binary.

one is external decimal, and the other is packed decimal.
both are external decimal.
both are packed decimal.
one is packed decimal, and the other is binary.

• • •
both are external decimal
(Both items will be converted to packed-decimal format.)

Imagine that this statement appears in a COBOL program:

EES!ad H K AIMOIUNiT iTlOl t a l .

Here are the descriptions of the items to be added:

|02> (; h E(ÏK - / 0 u Nilr , P IC ; t i j|r
—r
El

r - | -
S!9 (6) \ ' 9 9 , i i i

' ; 1
; : 1 (MF>U T t \!T i 0 Hi\ L — l3l. f ! ji_l_ _ _

! | | | |

p ï ï ï T F ï 1 O > r - T () T A l =4- r 1 (; t |u R E 9 (8) \ (I9l9
— i—U j !

s 1 1 ! 1 5 i |

(1) Is it permissible to add these items? Why?
(2) Will it be necessary to convert the data code of either

item? If so, which item, and to what data code must it
be converted?

• • •
(1) The items can be added because both are elementary numeric

items.
(2) FLOAT-TOTAL must be converted since it is a display (BCD)

item; it will be converted to packed decimal because that
is the data code of CHECK-AMOUNT.

(6/66) 4 7

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

140 Although we typically say that an "item" is converted, it would
be more accurate to say that the data from an item is converted
to a different code. It works like this: the data is moved from
the item to a work area, and converted there; then, the arithmetic
operation is done using the data in the work area. The contents
of the original data item remain unchanged.
The work area, by the way, is set up by the compiler, not by the
programmer. And the compiler also generates all of the necessary
instructions to cause conversion.
Note carefully that the converted data is used only for one
calculation. The next data conversion that is required will
probably be done in the same work area, erasing the previously-
converted data.
Check your understanding of these ideas by applying them to this
example.

! !sb b|t RAciT STO C K - C 0U NT FF*0 M ! 1 : 1 ;
; 1 : i : 1 E XPEC T E D -BAL a)n!ce 6 1LV i NG LOSS i ! ;■fj-i-i.- ! • i-1—4—1—

If STOCK-COUNT is an external-decimal item, and EXPECTED-BALANCE
is a packed-decimal item, the data from STOCK-COUNT is moved to a
work area in which it is converted to packed-decimal. Then
subtraction is done, using the data from

STOCK-COUNT)
the work area j *

• • •
the work area

141 Suppose that STOCK-COUNT is involved in two later calculations in
other procedures of the same program. What will happen when the
later calculations are performed?
The data from STOCK-COUNT will be converted again each

time it is used in a calculation.
The converted data from STOCK-COUNT will be saved in the

work area for use in the later calculations.
The compiler will generate instructions to bypass the later

calculations, to avoid using STOCK-COUNT in more than
one computation.

• • •
The data from STOCK-COUNT will be converted again each time it
is used in a calculation.

(6/66) 48

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

142

143

We generally want to prevent repeated conversions. We can do
this by making certain that the items we use in calculations have
the proper usage. In the example given in the preceding frames,
repeated conversions would not have been necessary if the usage
of the "stock count" data had been COMPUTATIONAL-3 (packed
decimal).
There are two ways that this can be done. First, by redesigning
the input record to have the data in packed-decimal format when
it enters storage for processing. This makes it unnecessary to
convert the data when it is used in calculations; however, it may
be necessary to convert the data to DISPLAY format elsewhere in
the program, if the data is printed or punched. The system
designer or programmer has to evaluate the overall processing
requirements to figure out^hether the data will more often be
used in calculations, in which case COMPUTATIONAL-3 usage is
better; or more often printed, in which case DISPLAY usage is the
right choice.
Whereas the first way of avoiding conversion is a system design
problem, the second way is a programming technique. This way is
to define an item in working storage whose usage is
COMPUTATIONAL-3, to MOVE the data to that item (thereby causing
it to be converted), and thereafter to use the working-storage
item in calculations of the data. In this way, the data is
converted only once, no matter how many times it is used in
calculations.
This programming technique is an efficient way of treating an
external-decimal item,

{provided that the item is used in one calculation only, if the item is used in two or more calculations,
no matter how many calculations the item is used in.

• • •

if the item is used in two or more calculations

In the STOCK-COUNT example, we might previously have written the
statement "MOVE STOCK-COUNT TO CALC-STOCK-COUNT", with
CALC-STOCK-COUNT defined as a COMPUTATIONAL-3 item. To calculate
using this data, we would later have written "SUBTRACT FROM
EXPECTED-BALANCE GIVING LOSS".

• • •
CCU .vi -TCALC-STOCK-BALANCE

(6/66) 49

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

144 Based on the picture of an item that is to be used in a
calculation/ the compiler may also generate instructions to alter
its sign. Signs are always considered by the computer in
arithmetic operations; part of the computer's job, of course, is
to figure out the correct sign of a result.
The sign of a data value will be altered if there is no S in the
item's picture. Special "no sign" bits will replace the
operational sign bits in this case. The "no sign" bits are
interpreted as positive during calculations.
One reason you might omit the S from an item's picture would be
to use the "absolute value" of the item in calculations. The
absolute value of an item is its numerical value disregarding the
sign. Suppose an item's value is -826.036, but we want to treat
it as 826.036 in a calculation; we accomplish this by making the
picture of the item

9(6)
S999V999
999V999
NO-S999V999

• • •
999V999
You will recall that S can be omitted from pictures of DISPLAY
and COMPUTATIONAL-3 items, but not COMPUTATIONAL items.

145 Take the opposite situation: you know that an item has no sign,
so you want to avoid the unnecessary insertion of "no sign" bits.
The picture you might write for such an item is

S9(5)
9(5)
99999

• • •
S9(5)
jBy putting an S in the picture, we in effect say to the compiler,
"Use the sign bits -- or no-sign bits -- which this item already
contains. " By omitting the St we in effect sayt "Change the sign
bits of this item's value to no-sign".

(6/66) 5 0

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

146

147

Arithmetic action 2. A raw result is calculatec in a work area.
At this step, the actual adding, subtracting, multiplying,
dividing, or exponentiating is done. The "raw" result is the
numerical outcome of the calculation, such as 000306v4294.
(The "finished" result in this case might be $306.43.)
The compiler sets up the work areas needed for calculations.
(You do not define these areas in the Working-Storage section.)

• • •

The compiler makes the work area large enough to develop the
result you want — based on the operation (addition, subtraction,
multiplication, division, or exponentiation) and the pictures of
the items. For example, when two numbers, both having the picture
S999V99, are added, the work area need only contain six positions;
but if the same numbers are multiplied, a ten-position work area
is needed.
Furthermore, the size of the work area is adjusted to take account
of any shifting of data values that is needed to align decimal
points. If the pictures of three numbers to be added together
were 99V99, 9V9999, and 9999V9, the work area would be _____
positions long.

• • •
nine
This may be easier for you to see when values are given to each
data item and the numbers are aligned> like this:

25v7S
8v0036

+ 9981V2
10014v9536

In our discussion of numerio moveSj I pointed out that alignment
by decimal points requires shifting when the numbers do not have
the same number of decimal places. The same point applies to
arithmetic. If you are concerned about saving storage space and
making your programs as efficient as possiblet try to have the
same number of decimal places in values that are added or
subtracted.

(6/66) 51

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

148

149

150

151

152

(6/66)

Arithmetic action 3. If desired» the size of the raw result is
tested. A test can be made to determine whether all of the
significant integral digits will fit into the finished result
item. The test is made only if an ON SIZE ERROR clause follows
the arithmetic statement.
If all significant integral digits of the raw result will fit into
the finished result item, the fourth arithmetic action is
performed — the raw result is moved to the finished result item.
If they will not fit, the raw result is not moved; instead, the
execution of the arithmetic statement is suspended, and control
goes to the statements that are written in the SIZE ERROR clause.

• • •

I will explain what all this means3 but before I do3 aarefully
re-read what the manual says about the SIZE ERROR test.

Reading assignment: Arithmetic statements, SIZE ERROR option
• • •

The integral digits of a number are those that appear in the
integral places of the number.
Let's define what we mean by "integral places". Decimal places
are the ones to the right of the actual or assumed decimal point.
Integral places are the ones to the _____ of the decimal point.

• • •
left

An item whose picture is 999V99 has | 3 j integral places.

• • •
3

Suppose the value of an item is 3924v00895. The integral digits
are

• • •
3924

52

i l l l l l i ill

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

153 In the value 000306v2, which integral digits are significant?
Which are not significant?

• • •
significant
integral digits

000306v2
insignificant
integral digits

154 If the raw result 001002v05 were moved to a finished result item,
whose picture is 999V99, would any significant integral digits be
lost?

• • •
Yes, the 1 in the thousands place would be truncated along with
the two insignificant zeros. The finished result after the move
would be 002v05!

155 The SIZE ERROR test determines whether all significant integral
digits in the raw result will fit into the finished result items.
Notice that only the integral places are testedt not the decimal
places. This is because it is normal to drop excess decimal
digits; for instance, if an employee's net earnings are calculated
to be $175.982706351 he will be paid $175.98. But it generally
isn't considered quite fair to drop off digits at the other end
of the number!

It may be wise also for me to spell out what I mean by the
"finished result" item. I mean the item in which the result will
appear after the execution of an arithmetic statement has been
completed.

• • •

156 The test is made { }
finished result item.

the raw result is moved to the

• • •
before

157 If an error exists, the result •S \ is not) moved.
• • •

is not

(6/66) 53

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

158

159

160

(6/66)

What is the fallacy in this reasoning:
"It doesn't do a bit of good to test for a size error during the
execution of a statement such as ADD A TO B. As soon as A and B
are added, the original value of B is changed — and it's too
late then to find out that the sum won't fit into B."

• • •

This argument assumes that ADD A TO B is executed by adding the
value of A directly into item B. This is not the case, however;
A and B are added together in a work area. The raw result is
tested in the work area for a size error condition. If the sum
is too large to fit into B, it will not be moved into B; there
fore, the original values of both A and B remain unchanged.

Return to your reference manual . This time look at the formats of the
arithmetic statements to see where the SIZE ERROR clause is written.

• • •

Rewrite this statement on a program sheet. Add to it a SIZE ERROR
clause which will cause a branch to OVERSIZE-SUM if a size error
occurs.

Said Id Id v |e !r i l l ME b■o| R E GU L / E ARN 1 NGS |

• •

!a D D o < EjRT 1ME i ■0 R E GU Li/vr|—E ARN 1 NGS
[I

• t - j
f

i
j i ONJ S 1Z E uIR 0 R4- G0 TlO

ÜJ>Ö
' R S 1 Z E -S UM .

54

iiiiiii iii

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

161 This chart shows the flow of control through an arithmetic
sentence that contains a SIZE ERROR clause.

Notice that the logic of a SIZE ERROR clause is like that of an
IF sentence. In particular, notice the importance of terminating
the statements that follow the words "SIZE ERROR" with a period.
Thus, an arithmetic "statement" must in fact be a sentence when
the SIZE ERROR option is specified.

• • •

162 It is possible that you will not find much use for size error
testing in your programs. After all, the test is not needed if
you have allowed enough room in the finished result item; for
instance, if two three-digit numbers are to be added, the result
cannot possibly exceed four digits -- so if the finished result
is put into a four-digit item, there is no need for a size error
test. It would be folly to write unnecessary size error tests,
of course, since extra instructions are generated in the object
program each time a SIZE ERROR clause appears.

Also, it is unwise to put a lot of SIZE ERROR clauses into a
program to catch programming errors in miscalculating the sizes
of results. This would be an expensive substitute for thorough
testing and debugging of the program!

• • •

(6/66) 55

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

163 Here is a case in whiah the programmer is probably justified in
using the size error test. Four numbers (A, B, C, and D) are to
be multiplied to get their product, X. A, B, C, and D eaoh
contain six digits; that is, the picture of each one is S9(6).
The picture of X is S9C18), which is the largest allowable size
for a numeric item.

If all of the factors contained the largest possible values, the
product would exceed 18 digits -- it would be 24 digits long.
The programmer does not expect a product longer than 18 digits,
because when some factors are very large, the others are supposed
to be very small.

A size error in this case would be a check on the validity of the
input data. In the event of a size error, the programmer will
have the computer perform an analysis routine to find out which
factors are not reasonable. So he has written:

1 !co|mpuTE X a s A * B * C y D : 0 Ny 1ZE! !
j 11Ü ERR0RJ - PERF0RM FAcH° R-AN AJ4ÏSML

The alternative would be to analyze the factors before multiplying
them -- but that would increase the time for calculating X every
time. And an error will rarely, if ever, occur.

• • •

164 The size error test is the only test that can be performed during
an arithmetic calculation. It is built right into the arithmetic
actions. Many other tests are possible, though, if they are done
prior to an arithmetic statement or after it. For example, after
an arithmetic result has been calculated, it can be tested to see
if its value is zero. Or if its sign is plus or minus. Or if it
is less than or greater than established limits. Tests such as
these are simply written as separate IF sentences in the procedure.

• • •

(6/66) 56

mini iii

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

165

166

167

168

Arithmetic action 4. The raw result is moved from the work area
to the finished result item. The move will be a numeric move if
the receiving item is numeric, or an edit move if the receiving
item is a report item.

• • •

Let me emphasize that you do not write a MOVE statement to get
the result into the finished result item. The compiler generates
the instructions that are needed to get the result into that item.

• • •

As you learned in the preceding course, there are nine basic
formats for arithmetic statements. Four of those formats are
illustrated below. In each of these statements, the finished
result item is

B

In each statement shown in the preceding frame, items A and B are
both used in the calculation, so both items must be elementary
numeric items. For each statement, therefore, when the result is
moved from a work area to the finished result item,
[a numeric move] [an edit move] will occur.

• • •
a numeric move

(6/66) 5 7

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

169 These statements illustrate the remaining five formats.

|c 0 M p u T E Ri •=! A + B * C •

|A D D A B D 1 6 1V 1N G R
|S u B T R A C T A 1 B 1 C F R 0 M D 1 G I V I N G R •

!m u L T 1 P L Y A B Y B G 1V 1N G R f

Id i V 1 D E A 1N T 0 B J L G 1V 1N G R •

In each statement, the finished result item is R. In none of
these cases is R used in the calculation; it may therefore be
either an elementary numeric item or an elementary report item.
The move from the work area to the finished result will be
[a numeric move] [an edit move].

• • •

EITHER a numeric move OR an edit move (depending on the
receiving item)

170 It is important for you to have the effect of the GIVING clause
well in mind. At this timet re-read the brief discussion of
GIVING in the reference manual.

Reading assignment: Arithmetic statements, GIVING option
• • •

171 Conversion may be required when the result is moved to the
finished result item. This is true for both a numeric move and
an edit move. Remember that the raw result will be either binary
or packed-decimal. Conversion occurs when the usage of the
finished result item is different from that of the raw result.
Suppose the raw result is a packed-decimal number. The finished
result item is described by the entry below. Will conversion
occur?

lo2 D EFL ECT I o |n
! I

I P I CTURE SV 9 (8) J - Cm 4PUTAT I£ NAk 3 •

• • •

No (COMPUTATIONAL-3 usage means packed-decimal data format.)

(6/66) 5 8

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

172 Conversion of the raw result will always occur when the finished
result item is [an elementary numeric item]
[an elementary report item].

an elementary report item (All report items have DISPLAY usage.)

173 The conversion of the raw result may represent the second or
third time conversion has been done in the process of executing
an arithmetic statement.
This chart illustrates a process in which two conversions take
place. The arithmetic statement being executed is "ADD X TO Y".

IT E M X I T E M Y

Data from X is added
to the data from Y
to get the raw result
in packed decimal.

Raw result is converted
to external decimal
when it is moved to Y.

The programmer might also have written "ADD Y TO X". During the
execution of this statement,

no conversion
one conversion
two conversions
three conversions

would have been required.

• • •
one conversion (The data from Y would have to be converted to
packed-decimal in order to add it to the data from X? but the raw
result would not have to be converted because the finished result
item, X, is a packed-decimal item.)

(6/66) 59

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

174

175

176

177

As you know, other actions may take place during the move to the
finished result item. For one thing, a sign may be generated,
corresponding to the sign of the result, or "no sign" bits may be
placed in the result. Whether a sign or "no sign" bits are
generated depends on _____ .

• • •

whether there is an S in the picture of the finished result item

Decimal alignment is another action during the move, and as a
result of decimal alignment, truncation or zero-fill (or both)
may also occur.
Suppose that the raw result is 877v627594. What will the finished
result be if the picture of the finished result item is
(1) Z , ZZZ. 99 and (2) S9(5)V99?

• • •
(1) bb877.62 (2) 00877v62 (In both cases there is truncation
of low order digits; in the second case, there is also zero-fill
of the high order positions.)

In the example given in the preceding frame, notice that the
extra decimal places are just dropped, and not rounded off to the
nearest penny. If the programmer had wanted to, he could have
caused the raw result to be rounded before it was moved to the
finished result item. "Rounded" means that the rightmost digit
to be moved to the finished result item is increased by 1 if the
digit to the right of it in the raw result is 5 or greater.
A raw result is 04v3819. The programmer has specified that the
result is to be rounded. What will the finished result be if the
picture of the finished result item is (1) 99 (2) 99.9 (3) 99.99
(4) 99.999 (5) 99.9999?

• • •
(1) 04 (2) 04.4 (3) 04. 38 (4) 04.382 (5) 04.3819

In the preceding frame, the fifth picture contains just as many
decimal places as the raw result. Thus, there is no digit to the
right of the rightmost digit that will be moved. The finished
result is the same as the raw result — no rounding is possible.
This situation illustrates that you should specify a rounded
result only if there are extra digits at the right end of the
raw result which will be _____ when the result is moved to the
finished result item.

• • •

truncated (dropped)

(6/66) 60

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

178 It is very easy to specify that the finished result is to he
rounded.

Reading assignment: Arithmetic statements, ROUNDED option
• • •

179 Shown below are two sets of entries. Which set of entries
indicates the correct way to specify a rounded result — or are
both sets of entries correct?

- — !-------- f !" j

I f i U u L T 1p|L|Y Q U A N j b i It Y! BY p !r ! 1 C E « : ! !

M i l
. ; M i i i G 1 | v j l N G A M O U N T t ! -RO U N D m o •

•“ r T T T r r r "
7 7 ! Ia MOU N T . P 1 C T UR E S 9 (4) V 9 9 J

i i ; 1 1 M ■COMP U T A T 1 ONA L — 3 .
:

! 1 Mu L T 1P!L Y 0 UA N T 1T Y B Y p W i C E ,
» '! j 1 ;

1 1■4» i-. G 1V 1N Gr—A M0 UNT A I ; 1 1 ! f

?|7 |AM0 U Nt

1-oQ. U RE S 9 (4) lv:9'9 i i =y j : ; I ! ! > i !
j 1

, -I.. Co MP u !T!AT 1 ONA 1“ 1 OJ • ROU NDEb •
— 1—] 1 1 1

. ; - l —

• • •
Entry set (1) is correct. Entry set (2) is definitely not correct.

180 Carefully examine the formats of all arithmetic statements in the
reference manual. The ROUNDED option can be used

!in arithmetic statements that contain a GIVING clause, in all arithmetic statements except COMPUTE statements,
in all arithmetic statements.

• • •
in all arithmetic statements

(6/66) 61

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

181 In the reference manual, also observe where the word ROUNDED is
written.
ROUNDED is always written

at the end of the arithmetic statement,
just ahead of the ON SIZE ERROR clause,
right after the name of the finished result item.

• • •
right after the name of the finished result item.

182 Here are two arithmetic statements which call for the same
calculation. On a program sheet, rewrite these statements, adding
ROUNDED in the correct place in each statement.

! I i c 0 M P L IT E P R 1 C E A V E R a !g e * 1 ! . 8 5 . _1_ I

1! i H u]m ■E, M A < m R A g Ie | Ib Iy ! . :85u < 1 N Gj |P R

L±Jo

4 4 4

• • •

|cONAPIJT E PFtil Ice I,U r 0 u n 'c)E D = A \ /E RA GE * • 8l5 JLL-1

| Im UL_T 11 L 'lr fiiV E r]/ E B Y • 8 ‘ |
Ï'

|
i
i -4- <3 1 V I1 NGk P R 11 C E JL RC)U Nt) E dU

1i
!j

(6/66) 62

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

LESSON 5

183 Our next topic is "condition tests". Here you will review some
things you have learned about IF sentences in the earlier courses
of this series, and then go on to learn about "compound" conditions
and "nested" IF statements.

Before you proceed, carefully review the formats of IF sentences
and the five test conditions. These are summarized in the section
on Procedure Division Entry Formats in the Writing Programs in
COBOL reference handbook.

• • •

184 Check your ability to write both basic kinds of IF sentences.
First, write a sentence which will cause the value of MAJORS to
be increased by 1 provided that the value of AGE is more than 20.
(Assume that the items called MAJORS and AGE have already been
defined correctly in the Data division.) Use a program sheet for
this.

• • •

w B T O Mi JORi -*4- m u

185 On the same program sheet, write another IF sentence. This time,
add 1 to MINORS if AGE is equal to or less than 20, in addition
to adding 1 to MAJORS if AGE is greater than 20.

• • •

F A GE > 2 0 f A Db 1 T 0 M A J 0 RS ;
1 E L S E JL A D D 1 T 0 M I N0 R S J-

(6/66) 63

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

186 Like most decisions , the sentence you were asked to write in the
previous frame might have been written in various ways. In fact,
the same processing could have been done in three IF sentences:

Part of a programmer's task, though, is to reduce a procedure to
its most simple and efficient sequence. It is less efficient, of
course, to ask the computer to make three tests (as specified
above) instead of one test (as in the solution printed in the
preceding frame).

• • •

187 It will be worth your time, also, to review the flow of control
through IF sentences. If you are uncertain about it, re-read
Flow of Control in the COBOL Program Fundamentals reference hand
book.

• • •

188 When we chart the flow of control, we generally indicate the test
condition and the procedural statements in the sequence in which
they appear in the IF sentence. The "true" condition is
represented as a continuation of the flow of control, while
"false" is shown as a bypassing of certain statements. Below is
an IF sentence and its equivalent flowchart, to illustrate the
point.

il F AMo|uN
' !

T> IS
I

!NEG A 1
T ;i:v E , 1 1 i ! 1 : : ;

1L..1- ADD RIS E R V E - QuIan Ti 1 TY TO AMOUN T . I

(6/Ó6) 64

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

189 Whenever control comes to the word ELSE or OTHERWISE> it
immediately goes on to the next sentence. Control flows to the
statement after ELSE or OTHERWISE from the previous "false"
condition.

• • •

190 A statement vf.t an IF sentence may call for a branch. To avoid
cluttering up the flowchart with too many lines> this is how a
branch will be indicated in this book.

• • •

(6/66) 65

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

191 This is the flowchart of a 'procedure which assigns a grade of nB"
to a student whose score falls into the 85-92 range. On a
program sheet, write the procedural statements that correspond to
the flowchart. (Assume that all names used in the chart have
already been defined.)

• • •

1 ! ! l F s c 0 RE !< 8 5) G0 T 0 c — G R A DE •

t 1 ! iif s c 0 RE 9 2 G0 T 0 A — G R ADE •

m m
V E 1B 1J r 0 GRA D E lh—

192 The two tests made in the flowchart above can be combined into a
single test condition, called a ”compound" condition. Actually,
the computer would still make two tests, but we would be able to
combine them into one IF sentence.

Reading assignment: Compound conditions
• • •

(6/66) 6 6

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

193 A compound condition is produced simply by tying together two or
more test conditions with the words AND or OR. (The word NOT can
be used as usual to give the opposite meaning to a condition.)
Compound conditions are written after the word IF. For example/
IF ORDER < 500 AND REMAINDER > 100, GO TO FILL-ORDER. (Notice
that the word IF is not repeated after the word AND.)
In this example/ suppose that the value of ORDER happens to be
450/ and the value of REMAINDER is 90; with these values/ control

{ will not } 9° to FILL-ORDER.}
• • •

will not (The word AND means that both of the test conditions must
be true; the value of REMAINDER must be more than 100).

194 The word OR means that the compound condition is true if either
test condition is true. When the sentence below is acted on,
suppose that both test conditions are true — R-CODE is equal to
3/ and R-NUMBER and P-NUMBER are unequal; in this event/ control
j will
(will not go to TOTALS.

□ T i1F R—C0 DE ss 3 • 3
B

R1 R—NUMB E R jl s N0 I
□

11 Eo u A L I 0 P — UMB ER2 I 0 I 0 I A L S

• • •
will (A compound condition containing OR is true if one test
condition/ or the other/ or both are true.)

(6/66) 67

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

195 This flowchart shows how our earlier problem of assigning a "B"
grade could be solved using a compound condition. Write the IF
sentence that corresponds to the chart.

h I f s c] o | r ! e - m s 4 ! a N D L i s c 0 R E k ! ' 9 3 1 i__ i___
1

i I LM b i Y l E 1 1 T O G ; R l A D E • j ! 1 1 ï i ; !
!— !—

196 Here is another aspect of the grading problem. Write an IF
sentence using a compound condition to cause the testing and
branching described in the next paragraph.
"The value of SCORE is not valid when it is lower than 50. And
a SCORE that is higher than 100 is also invalid. When a student's
score is invalid, the program must branch to the procedure named
INVALID-SCORE".

• • •

!i F S C0 RE H 5 0 OR SCO RE >
\ 1
lb !0 I

1
..1 ■ 6 0 T o h N < r

i i -
D -S C 0 ‘REJL. : ! !

j i

(6/66) 68

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

197

r
198

One programmer wrote the following IP sentence, as his answer to
the problem in the preceding frame. He found that it didn't work.
Can you explain why?

!i F Sc c
r

o

E < 50 AND SG0RE > 10 0
1. G° l T 0 (1N VAL 1D- SC0RE• . 1 [—

• • •
This sentence puts the computer into the logically absurd position
of testing to see whether a number is simultaneously less than 50
and greater than 100. Both conditions cannot possibly occur at
the same time, so the compound condition will always be false.

Although compound, conditions will often be very useful to you in
programmingt you should keep in mind that they cause the computer
to make two or more tests - - and you want to avoid making two
tests where one will do.

Examine these two entries, one of which uses a compound condition,
while the other does not. Determine what the difference is in
the processing which the entries cause.

• • •
The entries produce the same end result, since "not less than" is
the logical equivalent of "equal to or greater than". The second
entry is preferable because it accomplishes the result by making
one test instead of two.

(6/66) 69

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

199

200

Another kind of conditional sentence that is permitted in COBOL is
one containing "nested" IF statements. The general idea of
"nested" IFs is that one or more IFs appear within a sentence that
begins with IF. Thereby it is possible to make a series of
decisions based on the outcome of previous decisions, and to take
different courses of aationt all within one sentence.

Reading assignment: Nested IF statements
• • •

This sentence contains nested IFs. Study it and its flowchart.
The flow lines on the chart should help you to see that the second
decision is nested within the range of the first decision.

(6/66) 70

i i i i l i J j i

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

201 The next 5 frames are based on the entry and flowchart printed in
the previous frame.

It is important to realize that the presence of a nested IF does
not change the basic flow of control. Look at the first decision,
and consider it to be just another IF sentence that does not
contain ELSE or OTHERWISE. As will all such IF sentences, when
the condition is "false", control goes to _____ .

• • •
the next sentence

202 The next sentence (does
(does not begin right after the semicolon.

• • •

does not (The next sentence begins after the period, and
therefore is not shown.)

203 If the first condition is "true", control proceeds to the next
statement in sequence (ADD 5.00 to AMOUNT-DUE). After that, the
next statement in sequence is _____ .

• • •
IF CALL-TIME NOT > MINIMUM, MOVE 'BASE RATE' TO LEGEND

204 Again, this statement is treated just like a simple IF statement
that does not contain ELSE or OTHERWISE — even though it is part
of an IF sentence. If the condition is "true", the MOVE
statement written after the test condition is carried out. If
the condition is "false", control goes directly to _____ .

• • •
the next sentence

205 Especially important: The second condition is tested only if the
first condition is found to be

• • •
true

(6/66) 71

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

206 Don't make the mistake of thinking that nested IF statements are
the same as a series of IF sentences. Below, side by side, are
entries that are identical except for a single period. But
observe the difference in the flow of control.

1 ! i ! | »F F U L L - I f 1 ME
1 1 i V E N AME TO

m 1 \ r| ! 1

! M N e G 1S T E R > ; . .
! !i f MA R R 1E D ,, 1 ; ;

H M o V E 1M 1 TO
i i ■
i ! !

: ! 1s t A T U S * ; j
: $ ÏEL S E M0 V E U 1

1 i It o I T A T U s U

| 1 T T f ' F u L J 3 3
—r-i-
1 ME T T

11 Sm0 V E N A
I ! !

ME TO
’ 1 \

l i i

|r E G 1s T E R
1 j ;

| i :F MA R R 1E D .
1m0 V E 1 M ' TO ' 1 ;

|ST A T U S) |
! ! ...
i s r

iE L S E M0 V E 1 1
| U ! !

J l
0 S T A T US

1

• (: i !

MOVE NAME
TO REGISTER

MOVE 'M*
TO STATUS

MOVE V ^
TO STATUS ^

T
► next sentenae

In the statements on the left, the second condition-name test is
made only if the first condition is "true". On the right, the
second test is made (when?) ____ .

• • •
regardless of whether the first condition is "true" or "false"

(6/66) 72

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

207

208

The preceding frame illustrates
that the rule about IFs that contain
ELSE applies to nested IFs. The rule
is: When control comes to ELSE, it
goes to the next sentence. Thus, if
you want control to leave a nested
sequence and to go the next sentence,
simply write ELSE, followed by
whatever statements are to be carried
out on a "false" condition.
Naturally, with nested IFs there will
be more than one "false" condition.
The rule here is: Control flows to
the statement after ELSE from the
last previous "false" condition that
has not already been paired with an
ELSE. This means that the ELSE
statements for the first IF will
come after the ELSE statements for
the second IF.
The flowchart at the right
illustrates this situation. It
represents nested IFs, with each
IF having an ELSE statement. The
ELSE statement for the first
condition is _____ , while the ELSE
statement for the second condition
is

• • •
ADD 1 to NOT-REGISTERED; ADD 1 TO NON-VOTERS

On a program sheet, write the single IF sentence that corresponds
to the flowchart in the preceding frame. (Assume that all names
have been defined. The decisions are condition-name tests.)

• • •

A . LA ! 1 F R E G 1S T E R E D»; I F VO T E D!. ADD 1 T

oI>Ö

t e r Is $
: ! Ie l -s E A D D 1 TO N O N -V OTER S f ‘ i ; i ; * I . i : : f

i Ie IUs E
X

A D D hi TO N O T -R EG I S t Ie r Ie PU: I ■ : i ! i s

(6/66) 73

S y s te m /3 6 0 COBOL COBOL P ro g ra m m in g T e c h n iq u e s

209 At the right is the flowchart of
another IF sentence. This one is
slightly more complex than the one
in the previous frame — but it is
just one IF sentence nonetheless.
The flowchart represents the
process of picking out the greatest
of three numbers, A, B, and C.
The three numbers have unequal values
for example, A might have a value of
25; B might be 10; and C might be 50.
The process would determine that C
(in this case) has the greatest
value, and would move the contents of
C to an item named GREATEST.
Analyze the flowchart to assure
yourself that the process will work.
You might try different values of
A, B, and C, to make sure the
highest value is the one that will
be moved.
Then write the single IF statement
that corresponds to the flowchart.

• • •

TT F A > B 1F A > C ft M0 V E A* T
—T"1
o| GR e |a t |e S lT f

1 1e L S E M0 V E C T 0 GR EA T E S T 1
i 11 j

I 1 !e L S E 1F B > C ft M0 V E B T 0 GR EA T E ST $ |
! 1 J e L s E M0 V E C T 0 GR EA T E s T J L

1—i— JLL

(6/66) 74

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

210 If you got lost somewhere along the
way in our discussion of nested IFs,
you may find it reassuring to know
that any decisions made by nested
IFs can also be made using common,
ordinary, un-nested IFs. And some
times it is better to do exactly that.

Nested IFs can become devilishly
complicated. Such statements are
almost impossible for a reader to
understand, and even harder for
another programmer to change when
program maintenance becomes
necessary. What's more, even the
original programmer is bound to have
trouble debugging them if the results
are not correct.

In all fairness to nested IFs, though,
I think we should admit that
complicated program logic remains
complicated whether or not the IFs
are nested. To illustrate this, I
have taken the problem you worked on
in the last frame (finding the
greatest of three numbers), and
written the solution without using
nested IFs. The COBOL statements
are printed below, and the flow of
control through them is shown by
the chart on the right.

I T F A > B G0 T 0 1 f
' \ ! i F B > C *

A |] - 1m 0 V E B T 0 G R E A T E S T

. . M l IE L S E 1
j ! !)M0 V E C T 0 G R E A T ' E S :t

i i ! !g 0 T 0 2 f
i i? ? i t

l 1i iL*i_M l F A > C t j j I M

lM0 V E A T 0 G R E a -He S T
s—!--
iL.

i 1 i !e |l S E

i M 9m Io V E C T 0 G R E A T I E S T •
z4 - L iik Jtem u,en je u

• • •
next sentence

(6/66) 75

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

211 A good rule ia: Keep your COBOL statements simple if you can.
But if you can't make them simple, document them completely
explanations of the processing they do (possibly NOTEs in the
Procedure division)t and with flowcharts of the logic of the
process.

• • •

with

(6/66) 76

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

212

213

LESSON 6

In Lesson 5, you wrote IF statements without paying any special
attention to the method by which conditions are tested by the
computer. Frankly, how the testing is done in most cases should
not matter to you. Take the "class test" for instance; you might
specify that a certain item is to be tested to see if its data is
numeric. The test will be made and you will get "true" or "false"
as your answer. That's all you need to know; you need not worry
about how the computer was instructed to determine the answer.

A major exception is the "relation test", which compares the
values of two data items to determine whether the first value is
greater than, equal to, or less than the second value. The
comparison may be done in one of two rather different ways,
depending on the types of data items that are compared. Two pairs
of data items may contain precisely the same data, but if the item
descriptions are different, the results of comparing them may be
exactly opposite!

These facts make a strong case in favor of exploring how relation
tests are carried out. One more fact makes the case even
stronger: comparisons of some items are not even allowed! It is
these facts about relation tests that we will discuss in this
lesson.

• • •

For a start, read what the reference manual has to say on the
subject.

Reading assignment: Relation test
(including the table of permissible
comparisons)

• • •

(6/66) 77

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

214

215

A simplification of the table of valid moves helped us in
Lesson 1. Here is a similar table of valid comparisons. As in
the earlier tablet all numeric items have been combinedt and
figurative constants and sterling items have been omitted.
A checkmark means the comparison is valid, while a shaded box
means the comparison is not valid.

V A L ID COMPARISONS

Second Operand

First Operand Group

Elementary

Alphanumeric Report Alphabetic Numeric

Group / / / / /

Elementary

Alphanumeric / / / / / *

Report

Alphabetic

Numeric

/

/

/

* Only whole numbers in external decimal code (BCD)

• • •

The entries in this table (unlike the table of moves) are
symmetrical. That is, it really doesn't matter which item is the
first operand and which is the second operand; if it is valid to
compare A with B, it is also valid to compare B with A. Most
combinations of items can validly be compared, such as an alpha
numeric item with an alphabetic item. Which combinations of
items cannot validly be compared?

• • •
It is not valid to compare (1) a report item with an alphabetic
item, (2) a report item with a numeric item, and (3) an alphabetic
item with a numeric item.

(6/66) 78

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

216

217

218

There is a good reason for not allowing these comparisons; report,
alphabetic, and numeric items are by definition incompatible items.
See if you can develop the reasoning for yourself. It will help
to recall that:
(a) Numeric items must contain _____ but must not contain _____ .
(b) Alphabetic items must contain _____ but must not contain _____
(c) Report items must contain _____ and may also contain _____ .

• • •
(a) digits (but not) letters, special characters, or spaces
(b) letters or spaces (but not) digits or special characters
(c) special characters or spaces (and also) digits and certain

letters

The importance of all of this for us is twofold. First, don't
try to write "forbidden" comparisons. The compiler analyzes the
pictures of items in relation tests, and rejects any incompatible
combinations. Second, recognize that computer comparisons are
necessarily more restricted than comparisons that we personally
can make. For example, we can see that $1.00 and IvOO are equal
values, but the computer can't see it that way.

• • •

There are two types of comparisons:
(1) Alphanumeric (sometimes called "non-numeric")
(2) Numeric
Our chart of comparisons, this time showing the types of
comparisons, is printed at the top of the next page. The chart
shows that all comparisons are alphanumeric, except when an
elementary _____ is compared with an elementary _____ item.

• • •
numeric; numeric

(6/66) 79

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

219

220

TYPES OF COMPARISONS
A = A lphanum eric
N = Num eric

Second Operand

First Operand Group

Elementary

Alphanumeric Report Alphabetic Numeric

Group A A A A A

Elementary

Alphanumeric A A A A A *
Report A A A
Alphabetic A A

’
A

Numeric A A * N
* Only whole numbers in external decimal code (B C D)

Alphanumeric comparison. Alphanumeric comparison is done in the
same way that you might put words into alphabetical order. Values
are compared character by character, proceeding from _____ to

• • •
left; right

Comparing continues until two characters are found that are not
the same, or until the ends of the items are reached. If two
part numbers were being compared, and their values were 1AT9262'
and 'AF8003', how many pairs of characters would the computer
have to examine to know that the numbers are unequal?

• • •

Just two pairs, first A:A, then T:F

(6/66) 80

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

221 Characters are compared on the basis of the EBCDIC (Extended
Binary-Coded Decimal Interchange Code) collating sequence. There
is nothing unusual about this sequence, despite its formidable
name.
Briefly, the collating sequence is as follows: (1) a blank space
has the lowest value; (2) next lowest are the special characters;
(3) then come the letters, A through Z — A being lowest and Z
being highest; (4) highest in value are the digits, 0 through 9.
Special characters are rarely involved in data which is compared,
so we will not concern ourselves with the order of value of
specific special characters.
According to the sequence of values, which has the greater value:
'22A675' or 'R19451'?

222

• • •
22A675 (The digit 2 is greater than the letter R.)

■JONES1 is { g|Utl5athan } 'SMITH'.
• • •

less than (J is less than S.)

223 'SMITHERS' is
equal to
greater than
less than

'SMITHMAN'.

• • •
less than (Remember, the comparing proceeds character by
character from left to right. In this case, the computer would
find equal comparisons for the first five pairs of characters it
examined. As the sixth pair, E and M would be compared; E is less
than M, so 'SMITHERS' is the lesser value.)

(6/66) 81

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

224 Once in a while, you may find it necessary to compare items that
have different lengths. The rule is that the shorter item is
thought of as being filled out with blanks to the length of the
longer item.
This rule is another way of saying that the comparison does not
necessarily stop when the computer gets to the end of the shorter
item. If all of the characters have been equal up to that point,
the computer will look at the remaining characters — if any —
in the longer item, and compare them with blanks. So, if the
remaining positions of the longer item contain blanks, the items
are equal; but if the remaining positions contain any characters,
the longer item has the greater value.
An example will make the point clearer. Suppose we are comparing
customer names of unequal lengths. The value of one is 'KARLOV
and the value of the other is 'KARLOVSKY'. Right up to the end
of the shorter item, all characters are equal. But the comparison
does not stop there; it proceeds to look at the next position of
the longer item, and compares the character in that position with
a blank. The items, then, are treated as if their lengths were
equal and the shorter value were filled out with blanks, like this

K A R L O V

K A R L O V

it , ilassumed

S K Y
blanks

f ill out shorter item

In this way, 'KARLOVSKY' is found to be greater than, not equal
to, 'KARLOV.
Let's try another example. What would be the result if 'MENDEZ'
were compared with 'MENDEZbbbbbbbb'?

• • •
These values are equal, since the shorter item is treated as if
it too were filled out with blanks.

225 Don't make the mistake of thinking that longer items are always
greater except when they are filled out with blanks.

'SANDER' is
equal to |
greater than> 'SANDBLASTER'. Why?
less than)

• • •
greater than, because E > B when the fifth pair of characters is
compared

(6/66) 82

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

226 Numeric comparison. Numeric comparison is done only when a
item is compared with a _____ item.

• • •

numeric; numeric

227 Differing usage of numeric items does not prevent a comparison of
their values.
This means that a binary
packed-decimal item.

item can)
cannot) be compared with a

• • •
can

228 When usages are different, however, the computer will be instructed
to convert one item or the other to make the usages the same. So,
when a binary and a packed-decimal item are compared, the binary
item is converted to packed decimal before the comparing begins.
This action is the same as the action of preparing data values for
an arithmetic operation. Numeric comparison is the same as
arithmetic in another respect; the computer can compare two
packed-decimal numbers, or it can compare two binary numbers.
Conversion is required whenever the usages of items are different,
and whenever external-decimal items are compared.
As you know, when the computer must convert data codes, it takes
additional instructions and more time to get the desired end
result -- and we say that the object program is less efficient.
It should be quite clear that the relative efficiency of the
program depends mainly on the characteristics of the data
arithmetic being processed -- and much less on the way a relation
test or an arithmetic statement is written in the Procedure
division.

Two numbers are to be compared, and you are in a position to
influence the data codes of the items which will contain the
numbers. Which of the three choices listed below would you
recommend for the most efficient comparison? Which would be the
least efficient? Why?
(a) Make both items packed decimal.
(b) Make both items external decimal.
(c) Make one item packed decimal, the other external decimal.

• • •

Choice (a) is most efficient because no conversion is required.
Choice (b) is least efficient because both items must be
converted for a numeric comparison.

(6/66) 83

System /360 COBOL COBOL P rog ra m m in g T ech n iq u es

229

230

Here is another action that will remind you of how arithmetic
and numeric moves are done. The assumed decimal points of the
values are aligned, and extra positions at either end of either
value are filled out with zeros. The end result is that the
sizes of the values are made the same. This action is done in
work areas set up by the compiler.
If the values to be compared are 009 and
zero-*fill will make the values look like
begins:

0 0 9 v 0 0 0
H Ê Ö 9 * 0 0 0

9v000, alignment and
this when comparison

Of course, additional steps are used for such shifting and zero
filling.
In the statement below, suppose that the picture of AMOUNT is
S999V99; what change would you suggest making in the statement to
make its execution more efficient?

T"r
m■ IF M) UfN T > 5 1 0 0 T O C R E D I T - C H E C K .

e e •

Change the literal to 500.00. That makes the literal the same
size as the data item, with the decimal points already aligned;
therefore, no shifting or zero-filling is needed, and comparison
can proceed at once.
The way in which the literal will be stored by the compiler will
depend on the usage of AMOUNT. If AMOUNT is a binary item, that’s
the way the literal will be stored. If AMOUNT is packed decimal,
the literal will be stored that way. The purpose, of course, is
to avoid unnecessary conversions.

The actual comparison is based on two things: the sign of the
number, and the magnitude of the number. Numbers that contain
plus signs or no signs are considered "positive"; numbers that
contain minus signs are "negative". The value zero is a special
case -- zero has no magnitude and its sign, if any, is disregarded.

{greater than)equal to >the value +0000v0.
less than)

e • e

equal to

(6/66) 84

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

231 You aan think of numeric comparison as the process of locating a
number's position along an "algebraic" number scale like the one
shown below. The number that is higher on the scale has the
greater value.

A

increasing
value

+ 5
+ 4
+3
+ 2
+1
0

-1
-2
-3
-4
-5

decreasing
value

v

Naturally, the scale can be extended endlessly in both directionst
and fractional values fit into their appropriate places between
the whole numbers shown here.

The scale shows that any positive number is greater than any
negative number. Thus, -53v67 is j j +20v08.

• • •
less than

The greater the magnitude of a negative number, the lower its
the scale. The value -4069v92 is j?£JJt|hanhan}_lv25‘value on

• • •
less than

233 The converse is true of positive numbers: the bigger they are,
the more they count. The value +4069v92 is j ^ t h a n * 13*1 | +lv25*

greater than

(6/66) 85

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

234

235

236

237

Programming considerations. When a number is stored in external-
decimal code (BCD), we have an option of defining the item as
alphanumeric or numeric. In this way, we are able to control the
type of comparison that will be done with that number. In the
next few frames, we will discuss some techniques of handling such
numbers in comparisons; specifically:

(a) the advantage of defining external-decimal numbers as
alphanumeric.

(b) pitfalls to watch out for when defining numbers in this way.
(o) how to avoid unnecessary conversions when external-decimal

numbers are defined as numeric.

• • •

Suppose that an item whose usage is DISPLAY contains a number,
such as 36255. Such an item can be described as either am
alphanumeric item or a num)6er;citem. To make it an alphanumeric
item, the item's picture must be _____ . To make it a numeric
item, the picture must be _____ .

• • •
X (5) ; 9(5) or S9(5)

Notice the relation test in the above sentence. If the pictures
of ACCOUNT-NUMBER and PREVIOUS-ACCOUNT-NUMBER are both 9(12),
which type of comparison will occur.

• • •

numeric comparison

In the relation test shown in the previous frame, which type of
comparison would have occurred if the picture of both items were
X(12)?

• • •
alphanumeric comparison

(6/66) 86

System /360 COBOL COBOL P rog ra m m in g T ech n iq u es

238

239

240

241

External-decimal numbers are converted to packed decimal during
[a numeric comparison] [an alphanumeric comparison].

a numeric comparison ONLY

Which is the more efficient way to define a department number
which will be used in relation tests?

,)CjL i b t P / r A.~ïïhife{N T , ï ‘~ \r I I .4 v |.

• • •

Description (2) is more efficient because it eliminates the need
for conversion to packed decimal.

There are a few pitfalls that you must avoid when you define
numbers as alphanumeric items. The worst pitfal exists when the
numbers are signed (+ or -). Let’s see why signed numbers can
present problems in an alphanumeric comparison.

It will help us to review how signs are stored in external-decimal
items. A sign is represented by zone bits in the rightmost byte
of the item. The value +7593 is in effect stored like this:

759%

The zone bits and the digit in the rightmost position are taken
togethert and treated as a letter or special character in an
alphanumeric comparison.

The value 759% would be treated as 759C in an alphanumeric
comparison.

• • •
In a numeric comparison, the values 125 and +125 are equal. In
an alphanumeric comparison, the same values are unequal because

• • •

the rightmost character of the second value would be taken to be
a letter (specifically, +125 would be regarded as 12E).

(6/66) 87

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

242

243

244

245

246

In a numeric comparison, the sign is the first thing considered.
Since an alphanumeric comparison proceeds character by character
from left to right, the sign is the _____ thing considered.

• • •

last (Even so, it is not recognized as a sign, but as the zone
bits of a character.)

If the values +236 and -435 were compared alphanumerically,
+236 would be found to be I ?reatJ5 than ! -435.(less than)

• • •

less than (The first pair of characters compared would show that
2<4.)

4* —In external decimal code, "2" is the same as "B" and "2" is the
same as "K". Accordingly, in an alphanumeric comparison, -912
is greater than) +912.

less than (
• • •

greater than (The values are compared as 91K and 91B; K>B.)

The moral of the story is that it is not wise to use an alpha
numeric comparison when the values are signed numbers. Use a
numeric comparison instead. However, defining numbers as alpha
numeric items will still work well in the large number of cases
in which unsigned external-decimal numbers are involved in
comparisons; for example, part numbers, customer numbers, employee
numbers, social security numbers, invoice numbers, etc.

• • •

Another problem that arises in giving alphanumeric pictures to
numbers is that alphanumeric data cannot be edited. In order to
move the data to a report item, it must be numeric.
This problem is easily solved, by writing a second item description
entry, this one containing a _____ clause and a numeric PICTURE
clause.

• • •

REDEFINES

(6/66) 88

System /360 COBOL COBOL P rog ra m m in g T ech n iq u es

247 All things considered, you may decide in a particular case to
define an external-decimal number as a numeric item only. Now
you face the fact that the compiler will cause conversion to be
done each time that item is used in relation tests, in arithmetic
operations, and possibly in moves.
Such repeated conversion would make the program quite inefficient.
In previous lessons, we discussed a technique by which repeated
conversions can be prevented. Can you describe that technique?

• • •
Move the data from the external-decimal item to an internal-
decimal item (or to a binary item — whichever is appropriate) in
working storage. Thereafter, use the name of the working-storage
item in relation tests, arithmetic operations, and moves.

(6/66) 89

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

248

249

250

LESSON 7

Still on the general subject of "decision making"t we will now
see how COBOL statements can be used to produce "program switches".
Three different switching techniques will be explained. Along the
way, you will be introduced to a new COBOL statement (ALTER) and
a variation on an old COBOL statement (GO TO -- DEPENDING ON).

• • •

A "program switch" is a point in a process, at which there is a
choice of alternate paths. The choice of the path to take is
determined by an earlier action.
On flowcharts, we generally show program switches as decision
steps.

Unlike ordinary decisions (condition tests), in a program switch
there is a delay between the action that determines which path
will be taken and the actual flow of control down the chosen path.
It's similar to a switch on a railroad track — the switch is set
before the train gets to it.

• • e

(6/66) 91

System /360 COBOL COBOL P rag ram m in g T ech n iq u es

251 The main uses for program switches are (1) to create a "linkage"
for subroutines, and (2) to "bypass" procedures at certain times
while executing them at other times. The diagrams below
illustrate these two uses.

Notice the difference. The switch is located after the subroutine,
to cause control to flow back to somewhere in the main routine.
The switch is located before the procedure that is sometimes
bypassed, to cause control to flow _____ .

• • •

around the procedure when bypassing is desired

252 At times, one switch may serve both purposes. Here is an example
of such a switch. Our problem is to execute some procedures in
this sequence: (1)A, (2)B, (3)C, (4)D, (5)B, (6)E. To form this
sequence of procedures, we could write procedure B in two places —
but suppose that B occupies quite a few bytes of storage, so that
writing it twice is out of the question. We will write procedure
B only once and create a linkage to it using a program switch.
The flowchart on the next page illustrates this solution.
To trace the flow of control, we start at A, then proceed to B.
The switch must now permit control to flow down line 1 to C and
D. No switch is shown after D — but control must be made to flow
along line 2 back to B; how can this be accomplished?

• • •
By writing an unconditional branch statement at the end of
procedure D — GO TO B.

(6/66) 92

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

253 After procedure B has been executed
for the second time, the switch must
cause control to flow along line 3
to procedure E.
Let's review what this switch does.
First, it provides the linkage
which lets us use procedure B as a
subroutine. It links to C after the
first time through B, and links to E
after the second time.
Second, it causes control to _____
procedures C and D after it leaves
procedure B the second time.

• • •

bypass

254 We have made the point that the
switch must be set to the desired
path before control gets to the
switch.
The switch must be set to line 3
sometime before control goes through
B for the second time, but sometime
after control goes _____ .

• • •
down line 1 (In practice, we would set
the switch to line 3 by a statement in
procedure D, just before we say GO TO B.)

255 We may assume that this entire process is to be repeated more than
once during the execution of the program. That being the case, we
cannot leave the switch set to line 3. We must get it back to its
line 1 setting; this might be done in procedure _____ .

• • •
A is probably the best choice — this sets the switch to line 1
just before control goes through B for the first time. (E is
another possibility.)

(6/66) 93

System/360 COBOL COBOL P rog ra m m in g T ech n iqu es

256 Switching technique 1. The "IF" switch. This type of switch
employs COBOL statements that you already know well — an IP
statement containing a relation test, plus a couple of MOVE
statements.
The operation of the switch depends on the contents of a one-
position item which has been defined in working storage by an
entry such as:

pi 7 Ï- or fc A To oC

The switch tests whether this item has a certain value (for
instance, 'R'); if so, a branch occurs to a specified procedure
(in our case, the procedure name is E). Write an IF statement
that will do this.

• • •

; cp j-tt&sdATóa. - 'R/j go to t .

257 To set the switch so that it will cause the branch to E, we must
get an 'R' into INDICATOR. Write a statement to do this.

• • •

L •ft‘ r<3 ï> i l A'l ,

258 To allow control to flow to the next procedure in sequence
(procedure C in our problem), the value of INDICATOR must be
changed from *R' to any other character or to a space. Write a
statement to change the value to a space.

• • •

- » V \ i v C t - f c T O ih 'TC K

259 These three procedural sentences constitute the complete "switching
mechanism". The only remaining question ist where should each of
these sentences appear in the overall process? Turn back to the
flowchart on the preceding page, and decide where each sentence
should appear. Then check your solution with the one printed on
the next page.

• • •

(6/66) 94

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

(6/66) 95

System/36Q COBOL COBOL P rog ra m m in g T ech n iqu es

260 Let's carry this type of switch one step further. Suppose that
we want to go through our subroutine (procedure B) an additional
time. You might imagine that in procedure M the need could arise
to repeat the processing done in procedure B. This time, after B
is executed, control should flow to procedure N.
To do this, we will write a second IP sentence immediately after
the one that presently constitutes the switch. The new IF
sentence will test the contents of INDICATOR for a different
value — say, 'S', and cause a branch to N if that value exists.
The switch is now made up of a series of two IF sentences:

w F I T N D 1 C A T 0 R s = r
1 R ' 1 G 0 T o T p r I j

i l F 1 N D 1 C A T 0 R l S 1

X
G o T

i i ?
0 ! !N|.

We can diagram the switch in this way:

Now the switch is prepared for a new setting. In procedure M, we
must do two things: (1) change the value of INDICATOR to 'S';
(2) cause a branch to procedure B. Write the statements that do
these two things.

• • •

0 VE 1s 1 T0 1 n!d 1c AT0 R 1 Ti 0 T0 B • 1 1 _ L- I

(6/66) 96

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

261 To oau8e the "IF" switch to branch to still another procedure, we
would oust add another IF sentence to the series, and of course,
another MOVE statement to put another value into INDICATOR.

Envision, however, how this type of switch would appear if the
subroutine were used ten or twelve times in the course of a
program. The series of IFs would occupy half the lines on a
program sheet, and there would be as many MOVEs. Norse still,
this method forces the computer to make several relation tests,
all but one of which will be "false", each time it leaves the
subroutine. Our original problem required only one relation test,
which didn'tseem inefficient; but the thought of a dozen relation
tests lined up in a row is enough to make you wonder, "Isn't there
an easier way to do it?" Nell, there is an easier way.

• • •

262 Switching technique 2. The "ALTER/GO TO" switch. In this type,
the switch is a GO TO sentence which is altered by specifying the
name of the procedure that you want to proceed to. In the problem
we have been working, you could alter the GO TO sentence to proceed
to C, or to E, or to N — or to any number of other procedures.
No matter how many procedures you will go to, the switch still
consists of just a single GO TO sentence. An "ALTER/GO TO" switch
might be diagrammed like this:

In this diagram, I have tried to convey the idea that "any number
can play" -- that is, you can make this GO TO branch to any one of
countless procedures.

• • •

263 To change the setting of the switch, you must write an ALTER
statement.

Reading assignment: ALTER statement
GO TO statement, Option 1

• • •

(6/66) 97

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

264 The first rule for this type of switch concerns the way in which
the GO TO is written. The GO TO must be the only statement in
a

• • •
paragraph

265 {must may
must not

have a paragraph header.

• • •
must

266 The correct GO TO paragraph is [example 1] [example 2].
(1) (?,c

(2)
| SfA>STL>H “ i i((s\ t

• • •
BOTH are correct. In the special case of the "ALTER/GO TO"
switch, you are permitted to write a GO TO with no procedure name.
The only requirement is that you must set the switch before
control gets to it during the execution of the process,* that is,
you must alter the switch to proceed to a specific procedure
before control gets to the switch.

267 The second rule, then, is to write an ALTER statement. Write an
ALTER statement which will cause the GO TO printed in the previous
frame to branch to procedure E.

• • •
* A H l To pfcöttfc-ö [o fc.

In "ALTER/GO TO" switches, no data values are tested, so no
working storage items are defined. This really is "an easier way
to do it!"

(6/66) 98

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

268 Printed below is the same problem we solved using an "IF" switch,
modified slightly to reflect the faot that an "ALTER/GO TO"
switch must always specify an unconditional branch to some
procedure, (In other words, there is no "fall through" to the
next sequential procedure; to get to C in this problem, the GO TO
must be altered to proceed to C.)

Decide where the GO TO and ALTERS belong on the flowchart. Then
turn the page to oheok your solution.

• • •

(6/66) 99

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

269

è

"ALTER/GO TO" is an efficient type of program switch> largely
because the computer is not required to make any decisions in
carrying it out. The GO TO paragraph is converted to an
unconditional branch instruction by the compiler. From each
ALTER statement, the compiler generates an instruction to change
the address in the branch instruction. "ALTER/GO TO" is the
basic type of switching facility which is built into the COBOL
language; it is undoubtedly the type of switch you will employ
most often in your programs.

• • •

(6/66) 100

System /360 COBOL COBOL P rog ra m m in g T ech n iq u es

270 Switching technique 3. The "GO TO/DEPENDING ON" switch. This
type of switch is similar to the "i f " switch in that branching is
based on the value of a data item. The switch lists the names of
procedures to which control may branch. If the value of the data
item is 1, control will go to the first procedure named in the
list; if the value is 2, control goes to the second named
procedure; if 3, it goes to the third named procedure; etc.
Any number of procedures can be named in the GO TO/DEPENDING ON
statement. If the value of the data item is zero, or if it is
greater than the number of named procedures, control automatically
goes to the next sequential statement.
Here is how we will diagram this type of switch. This diagram
also summarizes how control flows through the switch.

• • •

271 Reading assignment: GO TO statement, Option 2
• • •

(6/66) 101

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

272 A GO TO/DEPENDING ON statement is the equivalent of a series of
IF statementst so onoe again you can see the close similarity to
the "IF" switch you studied first. But it is easier to write than
a aeries of IFs, and the instructions generated by the compiler
will be somewhat more efficient than a series of relation tests
would be.

The test item on which branching depends must be
[an elementary numeric item] [a group numeric item]
[an elementary alphanumeric item] [a group alphanumeric item].
It cannot contain more than (how many?) _____ digits.
It must be a positive (or not signed) whole number, and its'usage
may be _____ , _____ , or _____ .

• • •
an elementary numeric item ONLY
four
COMPUTATIONAL (binary); COMPUTATIONAL-3 (packed decimal);
DISPLAY (external decimal — BCD)
Four digits will permit a 9 t999-way brancht which is enough for
most of us. In faott one or two digits are generally adequate.
COMPUTATIONAL usage gives the most efficient action, followed
closely by COMPUTATIONAL-3; DISPLAY usage calls for the most
converting when the statement is executed.

273 Assume that a numeric item has been defined, and that it meets
the requirements of the GO TO/DEPENDING ON statement. This series
of IF statements is based on testing that item. Write the
GO TO/DEPENDING ON statement which will cause the same branches
as the series of IFs.

j i !i !f1 !j 0 B = 1 , G 0 T 0 M A N AG E Rj.j ! : > : —!—
11

■' ' 1 I i If J 0 B as 2 , G 0 T 0 A N A i_|y s T J f ! J i1
; !i f J 0 B = 3 l

\ G 0 T 0 P R 0 g!r A M M E R
j j s • * 1 ■

_ l L E 1 J 0M
è r i14.1 G 0 T 0 0 P E rIa T O R . ■ ' : ! i i

i 1 1 1 !

• • •

... i ! 1 : 1 ' s
!g o it o Im !a

j i |
N A G E R » A n 'a L Y

. *. . r -1 ■”
S T , P ^ d G RA'MM F r 1

, 1 " p !
■ M l . ' 1

------ O P E R a It o ir 4J D E P E N D 1 NG O N J O B .
1l—I—i

1
H -L j j \.-4...

(6/ 00) 102

System /360 COBOL COBOL P rog ra m m in g T ech n iq u es

274 As the previous frame implies, the use of GO TO/DEPENDING ON is
not limited to program switching. It is a way of analysing any
code number and causing control to branch to procedures that
correspond to various values of the number.

In some cases, the code number is "made to order". For instance,
if processing of input data is varied depending on the month in
which a transaction occurred, and if the months are coded using
the numbers 01 through 12, then we can easily specify that control
is to GO TO twelve procedures DEPENDING ON MONTH. By the way, th
procedure names do not all have to be different; if the processin
for March and April is the same, we can simply make the third and
fourth procedure names the same.
At other times, it will be necessary to derive the value of the
test item by means of some calculation. Suppose a program
processes transactions for the years 1961 through 1966, in a
different way for each year; the year in which the transaction
took place is coded as 61, 62, etc., in the input record. What
calculation would make the value of YEAR suitable to use as a
test item in a GO TO/DEPENDING ON statement?

• • e

SUBTRACT 60 FROM YEAR. (This makes the values of YEAR 01
through 06.)

275 When GO TO/DEPENDING ON is used as a program switch, it is
necessary to set up an elementary numeric item in working storage
to serve as the test item. To set the switch, change the value
of the test item to a number corresponding to the desired branch.
The test item value can be changed by moving in a new value, as
we did with the "IF" switch. Another way of changing the value
is by adding digits to the test item -- which would make the
final value of the test item equal to the sum of a combination of
values; this method is especially appropriate when the path to he
taken at the switch depends on a combination of actions taken ax
separate points in a process, rather than on a single action.

Say that two events, A and B may occur sometime during a proces
When we get to the switch, we want to go in four different
directions depending on whether both A and B, only A, only B, or
neither A nor B occurred. We can set the value of the test item
to zero to begin with, add 1 to it if A occurs, and add 2 to it
if B occurs. When control reaches the switch, the value of the
test item will be zero if neither event occurred, 1 if only A
occurred, 2 if only B occurred, and 3 if both events occurred.

• • •

(6/66) 103

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

276 This diagram shows the logic of the switching method discussed in
the preceding frame. Notice that this kind of application could
not very well be done with an "ALTER/GO TO” switch -- there would
be no point in altering the switch when testing condition At
because you can't know if condition B will occur later; and at
condition Bt how can you tell whether condition A occurred?
Adding to the value of the test item in a "GO TO/DEPENDING ON”
switch solves this problem quite handily.

next sentence

• • •

(6/66) 104

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

277

278

Write the description of a working storage item named STATUS
which could be used as the test item in the process diagrammed on
the opposite page.

• • •

oIm p |uM/vt| i lojisiU7 7 iS AIT U IlC IT U

Write the GO TO/DEPENDING ON statement which acts as a program
switch in the diagram on the opposite page.

• • •
G10 T b l YU N NlG O N S T U1S

(6/66) 105

System /360 COBOL COBOL P rog ra m m in g T ech n iq u es

279

280

LESSON 8

Two of the main uses of program switches are to create linkage to
subroutines and to bypass procedures under certain conditions.
These things can also be done by using the PERFORM verb.

While it is simpler to write a PERFORM statement than to write a
switcht it is a less efficient way to accomplish the result
because more instructions are generated in the object program.
When you use PERFORMt you are ”letting George (the compiler) do
it”. There is a price to be paid in extra bytes of storage needed,
because the compiler has to allow for every possible event — such
as the possibility that while you are performing one subroutinet
you might decide to go off and perform a second subroutinet and
then come back to the first one.

In additiont as you will learn in this lessont PERFORM can be used
for operations other than subroutine linkage. Most importantlyt
it can be used to control the number of times a loop is executed.

To sum upt PERFORM is a convenient and versatile part of the
COBOL language. It allows you to set up subroutines and to control
loop8 with a minimum of planning and writing. Howevert you can
achieve these same functions with program switches; "switching”
takes more planning and more writingt but results in fewer object
program instructions.

• • •

You have previously studied the format of the ”simple” PERFORM.
Before we look at the other optionst let ’s review what you already
know.

Reading assignment: PERFORM statement (Option 1)
• • •

(6/66) 107

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

281 Check your knowledge of how to apply the PERFORM statement. Take
the problem we worked on in the preceding lesson: we have five
procedures (A, B, C, D, and E) and we wish to execute procedure B
twice. The desired order of execution i s A - B - C - D - B - E .
On a piece of scratch paper, draw a series of five boxes to
represent these procedures. Then decide what PERFORM statement
is needed to cause procedure B to be executed a second time, and
where that statement should be written.

• • •

A

B

C

D
PERFORM B.

E

In this solution, I have written "PERFORM B" as the last statement
in procedure D. Instead, I might have inserted a new procedure,
containing only the PERFORM statement, between procedures D and
E.

(6/66) 108

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

282 The statement "PERFORM B" sets up a switch at the end of
procedure B, as well as instructions to set and reset the switch
appropriately, and to cause control to branch to procedure B.
The PERFORM statement does everything that we did by using program
switches in the last lesson.
This diagram illustrates the location of the switch that is
generated by the compiler.

PROCEDURE
TO BE PERFORMED

When you "activate" a PERFORM, you must let control flow through
the switch generated by the compiler. If you branch out of a
procedure that is being performed, and fail to pass through the
compiler's switch, you "mess up" the switch by not permitting it
to be reset. This means that the IF sentence in the chart below is

allowed
not allowed

i
K

PERFORM M.

M
IF AM OUNT IS

ZER O , GO TO L .

• • •
not allowed

(6/66) 109

System/360 COBOL COBOL P rog ra m m in g T ech n iq u es

283

284

Suppose that "PERFORM Q THRU S" is
being executed. This chart shows
the flow of control when RESULT
is negative.
Is the branch away from procedure
Q permissible?

• • •

IF RESULT IS
NEGATIVE,GO TO S.

J

Yes. In this case, control bypasses some statements that are
within the "range" of the PERFORM statement, but the flow of
control is satisfactory because it does pass through the switch
instructions generated by the compiler.

In this instance, the
activated PERFORM
statement is
"PERFORM G THRU H".
When TOTAL exceeds 500,
the programmer wants
control to flow outside
the range of the PERFORM,
to procedure X, and then
to return to H.

Can this be done? Also, where will the generated switch
instructions appear?

• • •
This can be done. Control will flow through the generated
switch instructions, which will appear after procedure H.

(6/66) 110

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

2 8 5 In the situations shown in the last two frames3 control branched
away from a procedure that was being performed3 but then returned
to execute more statements within the range of the PERFORM and to
flow through the switch instructions.

Imagine a slightly different situation3 however. Under certain
circumstances 3 you want to branch away from a procedure that is
being performed3 and to flow through the switch instructions3
without executing any more statements in the range of the PERFORM.
Suppose3 for examplet that you want to perform procedure P-l3 hut
to leave P-1 and return to the statement after the PERFORM
statement if BALANCE is negative. In order to do this3 you. must
set up another paragraph (we'll call it P-2) which contains a
"dummy" statement. The "dummy" statement will perform no
operation3 but it will be followed by the switch instructions
generated by the compiler. When BALANCE is negative3 branch to
P-2; in this way3 no more real statements will be executed3 and
control will flow through the switch as required. To get the
switch instructions to be generated after P-23 you need to write
"PERFORM P-1 THRU P-2" instead of oust "PERFORM P-1".

This chart shows the flow of control when BALANCE is negative.

P -1

IF BALANCE IS -
NEGATIVE, GO TO P-2.

P -2II , IIdummy
statem ent

O8Y0tM?|gf||
■<—

-\

J

The "dummy" statement that is used in this kind of situation is
EXIT.

Reading assignment: EXIT statement
• • •

(6/66) 111

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

286

287

288

An EXIT statement must appear in a separate
• • •

paragraph

(must }
may > appear in the same paragraph,
must not)

• • •
must not

On a program sheet,
block:

write the paragraph that corresponds to this

i i
P-2«I , IIdummy

statement

switch

<*■ j

• • •

P — 12:. i [ElXll
If you wrote more than this3 you wrote too much. Remember that
the compiler generates the "switch” instructions automatically
when you write "PERFORM P-1 THRU P-2" elsewhere in the Procedure
division.

(6/66) 112

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

289 The three other formats of the PERFORM statement are used when it
is desired not only to set up a linkage to a routine, hut also to
control the number of successive times the routine is executed.
Usually, these formats apply when "looping" is desired, that is,
when a process is to be repeated until a terminal condition
prevaiIs.

One of these formats lets you specify the number of times a
procedure is to be performed.

Reading assignment: PERFORM statement (Option 2)
• • •

290 There are few instances in which you need to specify a literal
number of repetitions of a procedure, such as 2 or 10 or 25 times.
But suppose you have a job in which you are printing shipping
labels, and you want to produce exactly five labels for each
customer. You have written a procedure named PRINT-LABEL, which
prints one label. What PERFORM statement would you write to get
five labels?

• • •

;p[EREOlRlM PlRl I INT j-L IA B EIL 5 T IMES.
291 More often, you will want to repeat a procedure a certain number

of times for one record, and a different number of times for
another record, depending on the value of some data item in the
record.
Let's take such a case. Suppose that in processing late payments,
a penalty is to be imposed, based on the number of days the
payment is late, and compounded daily. For each payment, we may
first figure out from the current date and the payment date, how
many days it is late; let's assume that we have figured this out
for a payment, and that the result is called DAYS-LATE.
On a program sheet, write the entry that will cause a procedure
called PENALTY-CALCULATION to be repeated a number of times equal
to the value of DAYS-LATE.

• • •

1 ip E R F 0 R M P E N A L T Y - C A L C U L A T 1 ON •; i i ' ; ! i I5 ; 1
1 1 D A Y S —L A T E T 1 M E S . ; ; i | ! j I

(6/66) 113

System/360 COBOL

T
j

COBOL P rog ra m m in g T ech n iq u es

292 This diagram shows hdw the "TIMES" option of the PERFORM
statement works. It will be helpful to examine the diagram
briefly, and even more helpful to return to it later to compare
this option to the other options of PERFORM. In the diagram, the
term "number of times" refers to the value of the data name or
literal that precedes the word TIMES in the PERFORM statement, and
"count" refers to a tally item set up by the compiler.
(Incidentally, this diagram and the others you will see later in
this lesson merely represent the chain of reasoning followed in
executing PERFORM statements, and are not meant to show the exact
series of instructions generated by the compiler.)

L O G I C D I A G R A M O F " P E R F O R M / T I M E S " S T A T E M E N T

next sentence

• • •

(6/66) 114

System /360 COBOL

n

COBOL P rog ra m m in g T ech n iqu es

The logic diagram shows that the procedure is not performed at
all if the "number of times" is or

• • •
zero, negative
This is a very useful feature. It amounts to a sort of "automatic
program switch" which determines whether to perform or bypass the
procedure.

294 Also notice in the diagram that the value of
and compared with "number of times"
performed.

before)
after)

"count" is increased
the procedure is

• • •
after

295 Apply the logic diagram to the execution of the statement below.
Suppose that the value of NUMBER-OP-MONTHS is 12.
Inasmuch as "count" is increased and tested after each performance
of the procedure, INTEREST-COMPUTATION will actually be performed

!11 times \ 12 times >
13 times \

!p E R F 0 R M 1 N T E R E S |T mmmC 0 M P uji A T (Ion1_L_ N U M B E R — 0 F —■M O N T H S T 1 M E s, 1
• • •

12 times
Shortly, you will learn that in the remaining two options of
PERFORMj the condition is tested before the procedure is
performed, which of courses will affect the number of performances.

(6/66) 115

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

296

29 7

298

299

Very often, we need \to .keep repeating a loop until we get a
certain result or uritSi a certain condition prevails - regardless
of whether it takes one or one hundred performances. Options 3
and 4 of the PERFORM statement give us this type of loop control.

Reading assignment: PERFORM statement (Option 3)
• • •

Consider this example of a PERFORM/UNTIL statement.

! !p e r f 0 R M A L L O C A T 1 O N U N T 1 L R E S O U R C E: I S : ' i

• : 1 : ; 1 Z e Ir 0 O R R E S O U R C E I S N E G A T 1 V E • '

If the value of RESOURCE is 5000v00, will ALLOCATION be
performed 5,000 times?

• • •

Not necessarily. It all depends on how the value of RESOURCE is
changed by the ALLOCATION procedure. Let's say that the value of
RESOURCE is reduced by 1000 each time ALLOCATION is performed; in
that event, the procedure will be performed five times.

Look again at the PERFORM statement in the previous frame. What
will happen if the original value of RESOURCE is 5000v00 and the
value is not changed by the ALLOCATION procedure?

• • •
The ALLOCATION procedure will be repeated endlessly.

You can avoid the problem of the "endless loop" in a PERFORM/UNTIL
statement by following this rule: {must)

may >
must not)

the value of the data whose condition is tested in
PERFORM/UNTIL statement.

change
a

• • •
must

(6/66) 116

System /360 COBOL

300 L O G I C D I A G R A M O F " P E R F O R M / U
i

■ fcOBOL P rog ra m m in g T ech n iqu es

S T A T E M E N T

• • •

301 Note that the test-condition is evaluated before the procedure is
performed. If the test-condition is true to begin with, the
procedure will

be performed only one time
not be performed at all
be repeated endlessly

• • •
not be performed at all

302 Apply the logic of "PERFORM/UNTIL" to this case. You want to
perform a certain process for each part number between 31 and 74,
inclusive. To initialize the procedure, you move 31 to a control
number. The last statement in the procedure to be performed
increases the control number by 1. You write the following
PERFORM statement, but when you test your program you discover
that only part numbers 31 through 73 are processed! Can you
explain why you got this result, and what you can do to correct
it?

Ip e r If P A R T - I p r o C E S S U N T 1 L
: 1 • : i

.... ...: 1 ; i i

l-zoo

R 0 L - N U M B E R = J é s l
l ' 1

• • •

Control goes to the next statement as soon as the control number
is found to equal 74, before PART-PROCESS can be performed for
part number 74. You can correct this by changing the UNTIL
clause to either "...UNTIL CONTROL-NUMBER = 75" or
"...UNTIL CONTROL-NUMBER > 74".

(6/66) 117

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

303

304

305

So far3 you have studied three options of the PERFORM statement:
the simple PERFORM3 PERFORM/TIMES3 and PERFORM/UNTIL. The fourth
option3 the "PERFORM/VARYING" statement3 is a little more
oomplioated. Actually3 it is quite similar to "PERFORM/UNTIL" --
except that the PERFORM does more than test for a terminal
condition; it also moves an initial value to a data item and
increases the value of the item by a specified amount each time
the procedure is performed.

In the most complicated form of the PERFORM/VARYING statement3 the
values of three data items are initialized and increased3 and
three conditions are tested. In effect3 we can have a loop within
a loop within a loop. For the purposes of this course3 we will
study only the least complicated form of the statement -- in which
just one condition is tested and one item is initialized and
increased. As you read the reference manual3 there fore3 skim
lightly over the paragraphs and flowcharts that pertain to
statements in which more than one data item is varied.

Reading assignment: PERFORM statement (Option 4)
• • •

One of the actions of the PERFORM/VARYING statement is to change
the value of an item which we will call the "base item". This
base item is usually involved in the processing done by the
procedure that is being performed. In this statement, the base
item is

ip E R F o!rIm r 1e !T! 1 R E M E n M - - c O M P U T A T I O N ' ! ! ‘ \ *
1
1 I VIaIriY 1 N G è é é F R O M A G E - W H E N - H 1 R E D 5 ; ’
1.X-,7 T

.[1 b M !1 U N T
i 1 !

1 L A G E = 6 5 . !

• • •
AGE (The name of the base item always follows the word VARYING.)

Another action is to set the initial value of the base item. The
initial value is specified in the FROM clause. What is the base
item of this PERFORM statement, and what will be its initial value?

| i p E R F 0 R M D e |p R E C 1 A T l O N . V A R Y I ' N G V A L U A T i o ;n
i i

i F R Ofes/I S A L V
n
A G]E b y r a M e % : ! 1 i i

i
...l, „ U N T 11 L V A L U A T i M n ; s r t ; l ï

• • •
The base item is VALUATION, and its initial value will be the
value of SALVAGE.

(6/ 66) 118

System /360 COBOL COBOL P rog ra m m in g T ech n iq u es

306 After the procedure has been performed, the value of the base
item is increased by a specified amount. Either the literal
amount or the name of an item containing the amount is written
after the word

UNTIL
BY
FROM
VARYING

• • •
BY

307 The last clause of a PERFORM/VARYING statement is an UNTIL clause.
Just as in a PERFORM/UNTIL statement, the word UNTIL is followed
by a _____ .

• • •
test-condition

308 Here is the format of a PERFORM/VARYING statement,
be written in place of each of the numbered boxes?
remember, look in the reference manual.)

What should
(If you don't

P E R F O R M V A R Y I N G F R O M B Y U N T I L
• • •

(1) the name of the procedure that is to be performed
(2) the name of the base item
(3) the initial value of the base item — either the literal

value, or the name of the data item that contains the value
(4) the amount by which the base item is to be increased each

time the procedure is performed — either the literal amount,
or the name of data item that contains the amount

(5) a condition which is tested to determine when to stop
performing the procedure

(6/ 66) 119

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

next sentence

Execution of a PERFORM/VARYING statement begins with the setting
of the initial value of the base item. Then the test-condition
is evaluated before the procedure is performed at all. After
each performance of the procedure, the base item is increasedt
and then the condition is tested again. As soon as the condition
is found to be true, control passes to the next statement after
the PERFORM statement.

• • •

310 This PERFORM statement will cause procedure Z to be executed
9 times)
10 times ? •
11 times)

1 !p E R F 0 R M
h-?..y...f - i
z u V

...f - t .r i
A'RIV'I n g ‘ a F R O M 1 B Y 1 i *

_ I

1 : 1 h —i!-- u N T h L A1 1 "?" * ! 1 0 i ! i
k ; ' I ——t—*—
• • •

9 times (The value of A will be increased to 10 right after the
ninth performance of the procedure; immediately the condition of
A will be tested and found to be "true" so there will not be a
tenth performance.)

(6/66) 120

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

311 On a program sheet, rewrite the PERFORM statement in the previous
frame so as to cause Z to be performed 10 times.

• • •
The best solution is to use a PERFORM/TIMES statement instead of
a PERFORM/VARYING statement. It is a misuse of PERFORM/VARYING
to use the base item merely as a counter.

m |eI 1 IP OlRlMI Z 10 T I MIE S

If you chose to stick with PERFORM/VARYING, you might have
corrected the statement in any one of these ways. All cause the
same result.

312

1 j Ip 'e Ir F 0 r m ' Z * V A R Y 1 N 6 A F R O M 1 B Y 1 f
i 1 ' i I Ii 1 1 I. 1 1 U N T 1 L A = 1 1 • j

—f-1
I

; l C '

: (i i
Ip e 'r If 0 R M Z , V A R Y I N 6 A F R O M 1 B Y 1 J
1 ; M u NT 1 L A > 1 0 •

Ip e r If o Ir m 2 , V A R Y I N G A F R O M 0 B Y 1 f ,
j i ; ;

u In t i L A =: 1 0 I I j
•: . ; ; I

i I

W hy \
____1

*on •t ttlis Stiatement func

L f 1

t io n p' roper]Ly?

! !p e !r F 0 R M B V A R Y I N G X f Ir Io Im 1 B Y 5
I
I

i i
I i J — u N T 1 L X « ! 4 5 i i i

* i i i-" ; ! :
|

----h +
• • •

The value of X starts at 1 and is increased by 5 each time;
therefore, it will never equal 45, and procedure B will be
performed endlessly. The error is fairly obvious in this entry
because it uses Xt or rather misuses Xt as a counter, with
literal values for the FROM3 BXt and UNTIL amounts. The same
error has a way of creeping in unnoticed when these amounts are
represented by data names. Careful checking is always necessary.)

(6/66) 121

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

LESSON 9

313 We began Lesson 8 by saying that PERFORM statements were convenient
and versatile - - but that their function could be accomplished by
using other statements and other techniques which you had already
studied. In a way, that's like saying that you don't have to use
an automobile because a horse and buggy will get you there gust
as well; but recall what our point was - - that using PERFORM will
result in a longer object program than using simpler statements to
achieve the same end. The point becomes especially important when
you are trying to squeeze a very large program into limited
storage space.

These same ideas apply to our next subject, which is another
convenient and versatile feature of COBOL: "subscripting".
Subscripting makes it easy to process data "tables" in storage.
You will want to study the subscripting capability closely,
because it enables you to handle your data in a rather different
way. Instead of bringing it into storage piecemeal, you can bring
large portions of data into storage at one time, and treat them
as data tables. Or instead of calculating certain results for
each transaction record, you might store a table of pre-calculated
values and simply locate the appropriate value when it is needed.
Thus, subscripting opens up a new dimension for solving problems
with COBOL: the use of data tables.

• • •

314 Some definitions are in order,
in COBOL:

Here is what we mean by a "table"

(1) A table is a series of data items of the same type.
(2) All items in a table must have identical descriptions — the

same size, class, and usage.
(3) The items in a table must be adjacent to each other; that is,

they must form a contiguous set of items in storage.
Keep in mind that an "item" is an area used to contain data — or
a "box" for data, if you will. Your mental picture of a table
should be a string of boxes, all the same size, one box after
another. To complete the picture, you can imagine that, in general,
(the boxes will all contain the same data values
(the boxes will contain different data values

• ••
the boxes will contain different data values

(6/66) 123

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

31*5

3 1 6

The definition of "table" also implies that the size of the items,
the number of items, and the kind of data they contain are
(determined by the programmer.)
(standardized and must be the same in all COBOL programs.)

• • •
determined by the programmer

The rule stated that all items in a table must be the same size,
but what the size is remains for the programmer to decide. Also,
different tables may have different-size items and different
numbers of items, and, of course, may contain different kinds of
data.

The items in a table are not given unique, individual names.
Instead, one name is assigned to the type of data item that is
found in the table. In this book, we will refer to this name as
the "type-name" of the items.
For example, in a table of the names of the states in the U. S.,
the items might be given the type-name "STATE". There are fifty
states, so there would be fifty items in the table, each item
called STATE. The structure of such a table can be shown in this
way:

There are 5 0
of these item s
in th is table.
All of them
have the samen. iity p e -n a m e .

STATE

S TA TE

STATE

U v? ^ t e 1

While each item in the table is called STATE, the table, as a
whole, has another name, which is _____ .

• • •
NATION

(6/66) 124

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

317

318

319

320

It should be clear that using the type-name by itself does not
allow us to refer to a specific item in the table. Thus, in the
table of states, using the name STATE alone would leave the
compiler scratching its head, wondering "Which STATE are they
talking about -- I've got fifty of them!"

Subscripting enables us to refer to specific items in a table.
At this point, get an idea of what subscripts are, and how they
are written.

Reading assignment: S u b s c r i p t i n g

• • •

To refer to an i n d i vidual item in a table, the type-name m u s t be

pre c e d e d by) , . ,
followed by a subscript.

• • •
followed by

The s u b s c r i p t indicates w h e r e the item appears in the table (first,
second, third, etc.). A s u b s c r i p t can be e i t h e r a data name or a
literal. E i t h e r way, the s u b s c r i p t m u s t represent a p o s i t i v e
whole n u m b e r whose value is no s m a l l e r than 1 and no larger than
the n u m b e r of items in the table.

For the table of state names, the s u b s c r i p t could r e p r e s e n t any
n u m b e r from to

• • w
1, 50

S u b s c r i p t s are w r i t t e n after the type-name, and are e n c l o s e d in
parentheses. N o t i c e h o w this is done.

subscript

- r - " — rf" lADD! pIr e ImI i um I 1 (T’-AisIk!) ! Mo GR OSS 1 ■
' i i ' i—

leave a no spaces space
space here here
here

• • •

(6/66) 125

System/360 COBOL COBOL P rog ra m m in g T ech n iqu es

321 T h e e x ample in the pre v i o u s frame i l l u s t r a t e s that subscripts are
w r i t t e n in the [Procedure division] [Data division].

• • •
P r o c e d u r e d i v i s i o n ONLY

322 If the value of a s u b s c r i p t is 1, it stands for the first item in
the table; if it is 2, it stands for the seco n d item, and so on.

On a p r o g r a m sheet, use a literal subsc r i p t to move the name of
the t h i r t i e t h state in our table o f state names to an item called
S T A T E - N A M E .

• • •

M t a T lE j H P .o j) , TIO fS T A T E - N A M E .

323 M o s t often, a data name is used as the subscript. A data-name
subsc r i p t is used in the ent r y below. This entry w i l l do e x a c t l y
the same p r o c e s s i n g as the e n t r y in the p revious frame, w h e n the
value of S T A T E - N U M B E R is 30.

11) T Om ISlTIA TIE K S iTj A T E - N U M S T A T E - N AM!E

The advantage of using a data name as a s u b s c r i p t is that the
value r e p r e s e n t e d by a data name is v a r i a b l e , w h e r e a s the value of
a literal is

• • •
c o n stant

(6/66) 126

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

324 The value of a data-name subscript such as STATE-NUMBER might be
determined by the contents of an input record. For instance/ a
state number is punched in columns 37-38 of the input card
printed below.

CUSTOMER NAME
OR

PRODUCT DESCRIPTION

INVOICE

NUMBER
DATE

MO. [ÖAY

CUSTOMER
NUMBER

PRODUCT

ITEM

SALES
AMOUNT

COST
AMOUNT

GROSS
PROFIT

o o o o o o o oöjo 0 o ojo oio o ó ljo OjO 0 0 oio 0|0 0 0 0■ o ojo o!o 0
4 45 46 47 48 49 50 51 52 53 54 55 56>57 58 59 60 61 62163 64 65 66 67 68[e9 70 71 72 73 7^75 76 77 78*79 80

1 1 111 1 1 1 i j l 1 1 l | l 1 1 1 l 1|1 1 1 1 1 M l 1 1 1 HI 1 1 1,1 1I
2 2| 2 2
3 3|3 3I
4 4j4 4

5 5i5 51
6 6*6 61
7 7|7 7I8 818 8I

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9|9 9 9 9 9 9|9 9 9 9 0 9i9 9 9 9 9 9|9 9 9 9|9 9
32 33l34 35 36b7 38139 40 41 42 43144 45 46 47M8 49r.t0 51 5263 54 55 56fc>7 5869 60 61 6263 64B5 66 67 68)69 70 71 72 73 74(75 76 77 78i79 80

0000000000000000000000000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 11 1 1 1

2 2

3 3

4 4

5 5

€ 6 8

7 7

8 8

9 9 9 9 99 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27|28 29l30 31

00
26 27|28 29 1 1

22
3 3

44

55

6 6

7 7

88
99 99

000
34 35 36 1 1 1
2 2 2
3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8
99 9

0 0 0 0 0
I8|39 40 414243ft- 11111 1
2 2 2 2 2
3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

6 6 6 6 6

7 7 7 7 7

2 2 2 2
3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

7 7 7 7

8 8 8 8
9 9 9 9

2 2 2
3 3 3

4 4 4

5 5 5

6 6

7 7 7

8 8 8
9 9 9

2 2 2 212 2 2 2 2 2(2 21
3 3 3 3,3 3 1
4 4 4 4|4 A

i
3 3 3 3|3 3

4 4 4 4*4 4
I

5 5 5 515 55 5 5 5|b 5 1
6 6 6 6 6*6 6 6 6 6 6|6 6

i
7 7 7 7,7 7 7 7 7 7i7 7

l
8 8 8 818 8

i888888

2 2 2 2]2 2

3 3 3 3(3 3

4 4 4 4i4 4
1

5 5 5 5|5 5

6 6 6 8|e 6
7 7 7 7i7 7

I888888
9 9 0 9i9 9

0 0 0 0>0 0
71 72 73 74J75 76

1 1 1 HI 1
I

2 2 2 2|2 2
I

3 3 3 3'33I
4 4 4 4|4 4

I5 5 5 515 5I6 6 6 6|6 6
mi\n

I

The state numbers punched in this card can range from 01 to 50,
with 01 being the code for Alabama, 02 for Alaska, and so on in
alphabetical order, through 50 for Wyoming. The card contains
only the number of the state; when we need the name of the state,
we can move it from our table.
The state number from the card can serve as the subscript when
referring to the table of state names,

(provided that the table has been arranged in alphabetical \ order, so the number from the card corresponds to the /
place of that state in the table. \

regardless of the arrangement of the table, since data f
can be located at random once it has been read into)
core storage. '• • •

provided that the table has been arranged in alphabetical order,
so the number from the card corresponds to the place of that
state in the table.

(6/66) 127

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

325

326

327

Here is how subscripting works. When you use a data name as a
subscript, the compiler generates a special subroutine in the
object program. During the execution of the object program, that
subroutine computes the storage address of the required item,
using the current value of the subscript. The System/360 uses
binary addresses, so the address computation is done most
efficiently when the usage of the subscript is COMPUTATIONAL.
In our STATE-NUMBER example, the subscript comes from a card
record, and so its usage is DISPLAY. You can guess that in cases
like this, the special subroutine will also convert the data code
of the subscript value to (what usage?) _____ .

• • •
COMPUTATIONAL (binary)

When you use a literal as a subscript, the compiler develops the
actual address of the table item during compilation. Therefore,

(will)the address < no^ > be computed again during the execution of
the object program.

• • •
will not

You have learned enough about tables and subscripting to be able
to write procedural entries that contain subscripts to refer to
items in tables. Eere is a problem situation that will let you
test your ability to write such entries.

Suppose that a company gives its customers quantity discounts that
vary from 1/2% to 5%, depending on the size of the order. There
are nine discount percentages, and their values have been stored
in a table which is diagrammed at the top of the next page.
Each customer order is assigned a rating number between 1 and 9.
The rating number is the same as the place of the corresponding
discount in the table. Thus, rating 1 is assigned to orders on
which the discount is 1/2% (v0050); rating 3 corresponds to a
discount of 1% (vOlOO); etc.

(6/66) 128

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

328

name of
entire tab le

Q UANTITY -
DISCOUNTS

tab le item
ty p e -n a m e

value contained
in th is item

On a program sheet, write a procedural statement to calculate
DISCOUNT-AMOUNT by multiplying ORDER-AMOUNT by the appropriate
discount. (The rating number is in an item called RATING. The
discount name is shown in the diagram above.)

• • •

: i I C O M P u t |e D 1 SiC O U N T - A M O U N T i i i! : : . ! ! ! 0 r !d E JO l > O U N T * D 1 S C O U N T (R A T 1 N G) • ’
You might also have written: MULTIPLY ORDER-AMOUNT BY DISCOUNT
(RATING) GIVING DISCOUNT-AMOUNT.

When the table diagrammed in the preceding frame is put into
storage, the items will actually contain [1] [2] [3] [4] digits.

• • •
4 digits ONLY (All items in a table must be the same size, so it
is not possible to store v007S for one item, and vOS for another
item.)

(6/66) 129

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

329 True or false:
In the discount problem, the computer is able to locate the
discount that corresponds to a rating number because the numbers
1 through 9 are actually stored in the table along with the
discount amounts.

• • •
False. The computer does not scan through the table looking for a
discount that is identified by a particular number. Instead, it
uses the subscript to compute the exact location of the desired
discounts and goes directly there to obtain the data. Each item
in the QUANTITY-DISCOUNT table contains only four digits as shown
in the diagram.

330 Now that you have seen how to use subscripts to refer to an item
in a tablet let's talk about how to set up tables. You are
permitted to use subscripts after a data name only if its item
description entry contains an OCCURS clause.

Reading assignment: OCCURS clause (Option 1)
• • •

331 These two entries are all that is required to set up the
QUANTITY-DISCOUNTS table we used in the discount problem. Note
that the level-02 entry, which contains the OCCURS clause,
defines a string of nine identical items.

0 1 |q u A N T 1 T Y - D i S C 0 U N T S T C O M P U T A T 1 0 N A L —3 •
— 1

|o 2 D 1 S C olu N T | 0 C C U l R i s y. ?t 1 M e s |1 p ! i C T u R e ! S V 9 9 9 1 9L 1
| 1 '

Do these entries also cause the discount values to be put into
the table items?

• • •
No. Setting up a table and filling it with data are two separate
considerations. A little later we will discuss how to get data
values into the table.

(6/66) 130

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

332

333

334

You might have no need to refer to the discount table as a whole,
using the name QUANTITY-DISCOUNTS. Still it is not correct to
define the table as shown below. What rule does this entry
violate?

0 1 i !d i s c 0 U N T Ii
__0 C C U R S B F t I M E S • : i I I I

■ \ 1 \ I p I |c T U B j E S V J P y C O M P U T A T I O N ' A !3 L—r—

• • •
An OCCURS clause must not be used in a level-01 entry.

On a program sheet, write the entries that define a table called
NATION which will contain the names of the fifty states. Allow
fourteen positions for each STATE, to accommodate the longest
state names (NORTH CAROLINA and SOUTH CAROLINA), even though this
means there will be ten blanks in the items that contain the
shortest state names (IOWA, OHIO, and UTAH).

• • •

In the table of discounts and in the table of states, we knew
exactly how many items there would be. This enabled us to use
Option 1 of the OCCURS clause. However, in some cases, the length
of a table is variable. For example, part of an input record
might be a table with one item for each transaction; if there had
been five transactions, the table in that record would contain
five items, but there might be 250 items in the table in another
record if there were that many transactions. Such variable length
tables can be handled in COBOL, provided that there is a data item
which specifies how many items are in the table each time. The
name of this data item must be written in an "OCCURS/DEPENDING ON"
clause.

Reading assignment: OCCURS clause (Option 2)

• • •

(6/ 66) 131

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

335 Study this example of a variable length record and its record
description. The record can contain information about several
invoices. Since there may be a number of consecutive appearances
of the INVOICE item, we can properly say that there is a table
within the record. Also, because INVOICE has been described using
an OCCURS clause, all references to INVOICE in the Procedure
division must be subscripted.

A C C O U N T -
RECEIVABLE

C U S TO M E R -
N U M B ER

CUSTO M ER-
NAME

NU M B ER-O F-
INVOICES

IN VO IC E

number of occurrences
of these items
corresponds to the value
of N U M B E R -O F-IN V O IC E S

DATE

AMOUNT

o i l 1 !a c !c 0 u In 't — R E C E —1 1 1 V ' A B i 1 'U E . 1 i 1 ; " ;: l02 cu'shr 0 M E R - n !u m B E M f Pl 1 C T U R E 9 (1 0) . | I!o 2! O u s t Q M E R - N A M E , P 1 C T U R E A (2 5) : 1102 N U M B E R — 0 F - 1 N V O 1 C E S , P I C T U R E 9 9 . |; ! I ',02 1 n ! v b 1 C E . O C C U R S 2 5 T 1 M E S * T ; I '
1 ! D E P E N D 1 N G O N N U M B E R 1 — O F - 1 N V O 1 c t s •■ ! i i ! 0 3'! D A T E , P I C T U R E 9 (6) . ; i — — ,— !—i ! 1; < 11,... i 1 1 0 3! A M O U N T . P I C T U R E 9 (5) V 9 9 . 1 ! f i ; !

According to the record description, INVOICE may appear

!no fewer than 25 times) no more than 25 times > in each record,
as many as 99 times)

• • •
no more than 25 times

The integer written in an OCCURS/DEPENDING ON clause specifies
the maximum number of occurrences. Even though the picture of
NUMBER-OF-INVOICES is 99, the value of this item will not exceed
25.

(6/66) 132

System /360 COBOL COBOL P rog ra m m in g T ech n iq u es

3 3 6 In the record illustrated in the previous frame, INVOICE is
subdivided into DATE and AMOUNT. These items are part of the
table, and occur just as often as INVOICE does. The names "DATE"
and "AMOUNT" are therefore type-names just as "INVOICE" is a
type-name, and none of these names may be written in a procedure
unless it is subscripted.
The subscript of the group item, INVOICE, applies to the items in
the group, DATE and AMOUNT. This is shown in the diagram below,
in which the table contains three INVOICES and literal subscripts
are included after each item name.

INVOICE (1)

INVOICE (2)

INVOICE (3)

DATE (1)

AMOUNT (1)

DATE (2)

AMOUNT (2)

DATE (3)

AM O UNT (3)

Write an entry which subtracts PAYMENT from the AMOUNT of the
second INVOICE.

iSIUmRlAlClT PlAjY M IEN FRIO M AM O U N T 111

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

337 In practice, we would not want to use literal subscripts to
process the invoice data. After all, there may be as many as 25
invoices in a record, and using literal subscripts would involve
writing 25 sets of processing statements. In place of this, we
will define a working-storage item to serve as the subscript.
We will set the value of this item at 1 to process the first
invoice data; then add 1 to the item to repeat the process for the
second invoice; and so on, until its value is equal to the number
of invoices in the record. The program excerpts below show how
this might be done. Study them carefully.

D)a !t a ! D 1 V 11 s i 1 lo N .I T
— .—,-----

! ! |] j j

\Mo N k ï i In Ig I— s5 T 0 |R AC> E S

I-oU
J 1 O N . j ; :

— T.r
7Ti • !p|o I N T Ie Ir L P I C T U R E S 99 s o Ö M P U T A T I 0 N A L .

. j ' ̂| i j|p M o Ic Ie Id U R E D 1v i s i Io n . I
Ai J i !r \E

rn
A D A c|c O U N T S - R E

r-! i-
C E I V a !b L e - F I L E jM i l ; A T E N D , G O T 0 CO M P L E T I O N

! !m o V E 1 |T 0 P O I N T E R .O•CD V E D A^T E (P 0 I N T E R) T O P U R C H A S E - D A T E • •W o V E A M0 U N T (P O I N T E R) T O AMO U N T - D U E .Ip e Sr F 0 R M B I L L I N G - R O U T I N E .ci.i ; ! i -f ! ip 0 I n |t E R = N U M B E R - O F - I N V O I C E S .
6 0 |t 0 B I L L -0 U T P U T f

JO TH E R W I is E . A D D 1 T O P O I N T E R . GO T O B •

• • •
The objective of this process is to read a record and then to
execute a loop (procedure 3) as many times as there are invoices
in the record. The loop might also have been controlled by a
PERFORM/VARYING statement: PERFORM B, VARYING POINTER FROM 1
BY 1, UNTIL POINTER > NUMBER-OF-INVOICES.

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

338 Each time a data-name subscript is used in the Procedure division,
an address calculation will be called for in the object program.
So, in the example on the preceding page, address calculation
will be done twice, once for DATE (POINTER), and again for
AMOUNT (POINTER).
Naturally, we want to keep the number of address calculations to
an absolute minimum. Usually, we can limit the number to one
when we are processing a table. We can do this by using a
technique that we have used before to eliminate other
inefficiencies, such as extra data code conversions — we will
define a work area which can contain one entire table item. The
processing of the data would actually be done from the work area,
not from the table.
The work area for our invoice problem could be defined in this
way:

o i l I i In M o l ! C E - D A p A
i i 1l 1 ! i i 1 . j

-- !-- j--1--- —r r.* — < ; ; T f
; 1 r r r r ■02 1 P U R C H A S t - ! d |a !t E 7 [¥ 1 C T U R E 9 (6) . : » ; | |

!02 ! A M 0 U N T - D P lic lT u Ir é 1—f Tl" 9 (5) V 9 9 . : :
I Ij j

Once the data for one invoice has been moved to the work area,
subscripting is no longer needed to process the data. A subscript
is used, in this case, only to locate the desired invoice data in
the table and bring that data out to a work area. (There is an
even greater advantage when the table item is subdivided into
more than two smaller items. You can imagine a table item being
subdivided into a dozen items; certainly in a case like that it
would be much more efficient to use subscripting once to move the
item to a work area, than to use subscripting a dozen times to
process the data directly from the table.)
On a program sheet, write the statement tht would be necessary
to move the data for an INVOICE to the work area, INVOICE-DATA.
The subscript item, POINTER, would still be defined and
progressively increased as shown in the previous frame.

• • •

(6/ 66) 135

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

LESSON 10

339 So far, we have briefly discussed: (1) what a table is; (2) what
subsoripts are and how they are written; (S) how tables are
defined in the Data division; and (4) how they may be processed.
NoWj we will turn our attention to the question of getting values
into a table. There are two general ways of doing this: first,
by defining the table in the File section and reading input data
into it; second^ by defining the table in the Working-Storage
section; and writing constant values for it in the program.

The first way is definitely required when the table is part of the
input record. This was true of the ACCOUNT-RECEIVABLE record
which you fust studied; when an input record was read3 the values
of the invoice dates and amounts were put into the table. There
are several other reasons for treating table data as an input file.
The data might be very longt and brought into storage a segment
at a time. It might be used by more than one program3 and read
in from a direct access device or from magnetic tape as it was
needed. Or the data might change frequentlys and be kept in a
file of punched cards to make updating easier.

The second way -- writing the table values in the program itself
-- is normally used when the table is not too long3 and when its
values do not change very often.

• • •

340 Suppose it has been decided to store the table data as one long
record on a direct access device. To get that data into the
computer, we will have to handle it like any other input file.
This means we will have to [open the file] [read the file]
[close the file].

• • •
ALL of these

341 The file is called TABLE-PILE. Here are the entries that open
and read the file. How many times will the read statement have
to be executed in order to bring all of the table data into
storage?

1 • |0 p Ie N I N P
—M —I—u r n i t A b Il E _ f I i L E f T " + 1

J r e |a D t |a B U e h f I l Ie - »-X A T E N D3- 6 s L T Oj 2 • s —

• • •
Only once. The data has been stored as one long record, so a
single read will bring all of it into storage.

(6/ 66) 137

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

342

343

On a program sheet, write the entries that are needed to define
the table. The table as a whole is called TABLE; it consists of
250 items whose type-name is TABLE-ELEMENT. Each item in the
table is seven digits long, including two decimal places, and is
stored in packed-decimal form.

• • •

01 It a b l E .
!o 2 T A B L E - E L E M E N T , 0 C C U R S 25 0 T 1M E S tI

......1_______ P I C T U R E S 9 (5) V 99 3 _ C 0 M P U T A T 1 0 N A L - 3 .

It may be helpful to see how these entries fit in with other
vroaram entries, such as the SELECT entry in the Environment
division and the file description in the Data division. Keep in
mind that these program excerpts are only concerned with getting
the table data into the computer; other entries would be needed
to process the data.

Environment divisiont Input-Output section, File-Control paragraph
I S E L E C T T A B L E - F 1 L E , A S S I 6 N T O ' T A B L E '
1

_____ !___ :___ U T 1 L 1 T Y 2 31 1 U N I T .

Data divisio n, File seat• ion:

F D It a b l E - F I L E , R E C O R D I N 6 MO D E 1S V .
Il a b e L R E C O R D S A R E S T A N D A R D t -

Id a t a R E C O R D I S T A B L E •
1_______ 1___ ___

01 It a b l E .
1 l o 2 i T A B L E - E L E M E N T , 0 C C U R S 25 0 T 1m e s t: 1 l

M 1 f P I C T U R E S 9 (5) V 99 ■ i— CQ, M P U T A T 1 0 N A L - 3 , !

Procedure division:

1 . loPEN I N PU T T A B L E FILE .
Ir e a d T A B LE-F I L E ; A T END GO T O 2 •

2 . IC L O S E T A B L E - FILE .

(6/66) 138

System /360 COBOL COBOL P rog ra m m in g T ech n iq u es

344 If the table data file contains more than one record, each record
must be read in turn into an input area, and then moved into its
proper place in the table. Suppose that the data for a table is
punched into 100 cards. The 80 characters punched in each card
are the data for one item in the table. The input file, input
record, and table have been defined in this way:

d a t a ! d i v I S I 0 N • ; \ j

F 1 L e ! S E'C T l O N • i § \ (1i 2 5
F D I T A B L E - F I L E , R E C O R D I N G M 0 D E F v L A B E L

Ir e c o RiDS O M 1 T T E D t D A T A R E C O R D T A B L E - 1 N P U T •
0 1 I T A B L E h I N P U T , P 1 C T U R E X (8 0) . ; i 1 | ;

i ’ i) ; I ii { T T T
w o r k I i n g - s j r o R A G E S E C T I O N .

i . 1! ? j

0 1 It a b l e | . ;
; < .* - i

i ! 0 2 T A B L E M e !l E M E N T , 0 C C U R S 1 0 0 T l M E S . ;
1 !

P 1 C T U R E X (8 0) .

The problem now is to read the card records, and to put the data
from the first card into the first TABLE-ELEMENT, the data from
the second card into the second TABLE-ELEMENT, and so on. See if
you can solve this problem. Write the procedural entries to get
the data from the TABLE-FILE into the TABLE; you may also need to
write an additional data description entry in order to accomplish
this.

• • •
Probably the "natural" solution to this problem is to use
subscripting when moving the data into the table. I have defined
an additional working-storage item to serve as the subscript:

7 7 In U M B E.R.a.. P 1 C T U R E S 9 9 9

Oo• M P U T A T 1 0 N A L .

Then I have increased the value of the item by 1 each time an
input record is moved. In this way, the first record is moved to
TABLE-ELEMENT (1), the second record to TABLE-ELEMENT (2), and
so on:

1 . l o P E N 1 N P U T T A B L E - F I L

sJ

O V E 1 T O N U N B E R ; m
2 . Ir e a d T A B L E - F I L E : •_ % A T E N D . GO T O 3 •

ï l i

i M O V E T A B L E - I N P U T T O ' ’ !
1
1 T A B L E - E L E M E N T (N U M B E R) .

: (iI j
!a d d 1 T O N U M B E R • GO T O 2 •

: !
! i I

3 . I C L O S E T A B L E - F I L E
\] 1 | | j : ; i\ I—I—■

(6/66) 139

System /360 COBOL COBOL P rog ra m m in g T ech n iq u es

345 When a table is small and its values do not change very often, it
can be written in the Working-Storage section of the COBOL program
and constant values can be defined for it. The table, with the
values already in it, is then an integral part of the object
program, and is loaded into storage along with the computer
instructions. (To change these values, you would merely alter
the source program, and compile a new object program.)

In order to set up this kind of table, you must write two record
descriptions:

(1) First, describe a record and supply values for it.

(2) Then, describe a second record which redefines the first
one; in this record description, name the table item and
specify how many times it occurs.

This method must be followed because the rules of COBOL forbid a
VALUE clause to appear in an entry that contains an OCCURS clause.
In fact, you aren't allowed to write a VALUE clause in any entry
that is subordinate to an entry that contains an OCCURS clause,
either. So we must keep these clauses in separate record
descriptions, and by using a REDEFINES clause in the second record
description, we will specify that the two descriptions apply to
the same area of storage.

Although you have used both the VALUE clause and the REDEFINES
clause before, be sure to read what the reference manual has to
say about them.

Reading assignment: VALUE clause
REDEFINES clause

• • •

(6/66) 140

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

346 All of the "musts" and "may nots" in the reference manual can
become somewhat confusing, but the way in which we will use these
clauses is really quite simple and straightforward. After we have
written the entries to set up a table in working storage, you may
want to re-read the manual’s rules to assure yourself that our
method is perfectly legal.

This is the problem we will work on. We want a table of the names
of the days of the week: SUNDAY, MONDAY, ... SATURDAY. The table
item type-name is to be DAY, so that DAY (1) will refer to the
value 'SUNDAY', DAY (2) to 'MONDAY', etc.
But remember the approach that was described above. The first
thing that we will do is not to describe this table, but rather
to write an ordinary record description in which we will give the
values of the data items.
On a program sheet, write a description of a record named
DAYS-OF-THE-WEEK. Define seven items within the record. We will
not need any names for these items, so call each of them FILLER.
Make each item nine characters long, and make their values the
names of the days of the week beginning with Sunday.

• • •

w o r k ! i n g - S T O R A G E S E O T I O N .1

01 Id a y s —O F - T H E - W E E K • :
|02 F I L L E R , P I C T U R E A (9) 5 V A L U E ' S U N D A Y ! •
!02 F I L L E R , P I C T U R E A (9) V A L U E ' M O N D A Y ■ •
!02 F I L L E R , P I C T U R E A (9) V A L U E ' T U E S D A Y r •
|02 F I L L E R , P I C T U R E A (9) | V A L U E ' W E D N E S D A Y ' I .

l Ï02) i F I L L E R , P I C T U R E A (9) V A L U E ' T H U R S D A Y ' .
l02 F I L L E R , P I C T U R E A (9) V A L U E ' F R 1D A Y •
!02 F I L L E R j __ P I C T U R E A (9) i V A L U E ' S A T U R D A Y ’ .

347 Immediately below the record description you have just written,
write one that redefines DAYS-OF-THE-WEEK. Name it WEEK, and
indicate that it is composed of the item DAY, which occurs seven
times. DAY must be nine characters long.

• • •

o i W e e k , R E D E F I N E S D A Y S - O F - T H E - W E E K •

!o 2 D A Y . O C C U R S 7 M l M E S . P I C T U R E A (9

(6/66) 141

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

348 The two record descriptions you have just written together give
us the table we wanted. Take a moment to look back over your
work to make sure you know how the record descriptions work
together.

• ••

349 Now use the same method to set up a table in working storage that
contains the names of the twelve months, January through December.
Call the first record "MONTH-NAMES" and the second record
"TABLE-OF-MONTHS". Make the table item type-name "MONTH".

• • •

01 t a o i N T H - N A M E S . ' ;
' 6 U « »

— • !°2 i
. 0 2

F I L L
F I L L

E R - , -
E R ,

P I C T
P I C T

U R E
U R E

A (9)
A (9) , V A

, V A
L U E
L U E

' J A N
' F E B

U A R Y
R U A R

....... .. , SL
Y ' t

l 0 2 i F I L L E R , P I C T U R E A (9) , V A L U E ' M A R C H 1

!o 2 : FI I L L E R , , P I C T U R E A (9) v V A L U E ' A P R I L •
l 0 2 F I L L E R , P I C T U R E A (9) v V A L U E ' M A Y •
' .02 F' I L L E R ^ P I C T U R E A (9) , V A L U E ' J U N E
i 0 2 f ! I Ü L E R , P I C T U R E A (9) , V A L U E ' J U L Y 1 •
l 0 2 F; I L L E R , P I C T U R E A (9) , V A L U E ' A U G U S T •
! 0 2 F I L L E R v P I C T U R E A (9) , V A L U E ' S E P T E M B E R ' .
to 2 F I L L E R , P I C T U R E A (9) , V A L U E ' O C T O B E R *
!o 2 ; F I L L E R , P I C T U R E A (9) , V A L U E ' N O V E M B E R ' .
!o 2 ■ F I L L E R , , P I C T U R E A (9) t V A L U E ' D E C E M B E R ' .

0 1 It a b l m I o *n - M O N T H S R E D E F I N E S MO N T H - N A M E S .
l 0 2 M O N T H « 0 C C U R S 1 2 T I M P I C T U R E A(9)

By coincidencet the lengths of the longest month name and the
longest day name happen to be the samea so the pictures of the
table items in this table and the last one are both A(9).

(6/ 66) 142

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

350 Our discussion of getting values into tables rounds out the
subject. You have now seen how to define a table, how to fill it
with values, and how to use subscripts to process it.

Needless to say, the subject has many other aspects. In fact, an
entire book might be devoted to tables and subscripting. Very
briefly, we will look at two of these aspects: first, how to do
table "look up", and second, how to define tables within tables.

• • •

351 Table "look up" is done by applying rules that you already know
about tables. The need to look up information in a table arises
when we don't know exactly where the desired data appears -- that
is, when we don't know whether it is in the first item of the
table, in the second, third, etc. The fact is that there are
many cases in which an item's place in a table does not serve to
identify it; in such cases, we have to examine the value of the
data in an item in order to find out whether this is the item we
want.
To get the idea, suppose we have a table of employees' hourly
wage rates, some of whose values might look like this:

MAN-NUMBER WAGE-RATE
26725 2v250
28224 3vl25
30096 lv750
30105 lv275
36259 2v500

As the payroll is prepared, we want to look up the wage rate that
corresponds to each man number. For instance, when the time card
for man number 30096 comes up, we want to find the table item for
30096 and get the man's wage rate; $1.75 an hour. The table
changes from time to time as employees are added and removed, so
we cannot know what position man 30096 will occupy in the table.
The solution to this problem is to go through the table, item by
item, comparing man numbers until we find an equal comparison.
To step our way through the table, we can use a subscript item;
set its value at 1 to begin with, and use it to compare man
numbers; increase its value progressively and make repeated
comparisons until an equal condition occurs.

• • •

(6/66) 143

352 Here is one way in which the table of wage rates can be
structured. The man number and wage rate for each employee are
stored together in the table. In this example, there are 75
employees on the payroll.

PAYROLL EMPLOYEE (1)

EMPLOYEE (75)

MAN-NUMBER (I)

WAGE-RATE (75)

Which set of entries below corresponds to the record structure
diagrammed above?

— T- i - f - i I | 1
0 1 ' 1 i P A Y R 0 L L • 1 * i 1 “ t r rS 1 1

—i—r—i— ! j j

. ; .S.! fc)2 I E M P L o M e ê ! i ! 1 I 1 ' \ 5 1 !
-1 ,

; [1 1 i ! ! 0 3 M A N —
j j |
N U M B e W *0 o o c R S 7 5 T I M E S

;
i 1 i 1 ! ! : : . i i ; : ; : ! P 1 C T U R E ' 9 (5)

! ’ 1* * 1
■ 1 3 IS
: i i ! U 0 3 w a g Se - R A T m o o C U R S 7 5 T 1 M E S i J
1 i ■ • i 1 » i . ; ; 1 P I C T U R E 9 (5) • . ' ! !

— 4—j—
1 ’ i)f \ !

— S-. 1.4 ■■

0 1 Ip a Iy R 0 L L • i ' 1 ! | ---j— |—
i 1 1

I ! !o 2 ! E M P L 0 Y E E o c :c U R 'S 1 7 5 T 1 M E S 1 1 !• : 1 '
• M i : ! . : ; ; i m 0 3 M A N - N U M B E R ? r

P 1 C T U R E 9 (5)
i l l .

s' !
’ M i ' l l 0 3 W A G E —R A T Ë * . P 1 C T U R E 9 V 9 9 9 1 ; *

• • •
(2)

Record description (1) defines two tables, one containing a
string of 75 man numbers, the other containing a string of 75
wage rates. The structure of that record would be:

MAN-NUMBER (I)

WA6E-RATE(75)

(6/66) 144

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

353 Now that we have defined the
payroll table, let's take it
for granted that the table
would be filled with data by
one of the methods that you
have studied. Our next problem
is to program a table look-up
which will look at one man
number after another until an
equal comparison is found.
The flowchart excerpt on the
right shows one way in which
the look-up can be done. Just
prior to this excerpt, the
program has called for a time
card to be read. Then a 1 is
moved into a working storage
item called SUBSCRIPT; this
puts us at the beginning of the
table as we make our first
comparison of a MAN-NUMBER
from the table with the
TIME-CARD-NUMBER. If the
comparison is equal we move the
corresponding WAGE-RATE to a
PROCESS-AREA. Otherwise, the
subscript is increased by one,
and control branches back to
the comparison point.
Notice that this process checks
to make sure the subscript does
not exceed 75, which is the
size of the table. If we have
searched all 75 table items
without finding an equal
comparison, control branches
to a CARD-ERROR procedure.
Write the procedural entries
that correspond to the steps
in this flowchart.

• • •
The solution for this frame is
printed at the top of the next
page.

(6/66) 145

System /360 COBOL COBOL P rog ra m m in g T ech n iq u es

m o v e Hi T 0 S U B S C R 1 P T .
r e p e Ia t . I ' 1

!l F T 1 M E - C A R D - N U M B E R = M A N - N U M B E R
! (siu’B S C R 1 P T) , M O V E W A G E - R A T E (S U B S C R 1 P T)
!t o p R O C E S S - A R E A :
Jo t h e R W 1 S E , I F S U B S C R 1 P T < 7 5
!a d d 1 T O S U B S C R 1 P T , G O T 0 R E P E A T ;
l O T H E R W I S i->— £ 0 T O C A R D - E R R O R .

354 f/e could devote a lot more time to exploring various ways of
doing table look up in COBOL, but I think that one exercise has
been enough to give you a general idea of how to go about it.
Similarly, we will take only a short look at our next topic:
tables within tables.

In COBOL, it is possible to have another table within each table
item; in fact, you can have still another table within that table.
This enables us to process tables that have two or three
"dimensions", that is, tables in which the data is broken down
two or three ways.

Re-read the reference manual information on Subscripting, this
time paying particular attention to what is said about more than
one level of subscripting.

Reading assignment: Subscripting
• • •

(6/66) 146

System /360 COBOL COBOL P rog ra m m in g T ech n iq u es

355

356

357

We will study one example of a
"multi-level" table, to see how
it is defined and how "multi-level"
8ubsovipt8 are written.

Suppose that your company wants to
have a table of monthly sales
figures for the last five years,
for twenty different products.
This really amounts to a string
of 1,200 monthly sales totals
grouped into 20 product categories,
then divided into 5 yearly groups,
and arranged in order by months
within each year. The diagram at
the right may help you to visualize
what the string of items for one
product will look like.
From the diagram, you can conclude
that this particular table
(does)
(does not J
contain a thirteenth item for each
year which contains the yearly
sales total.

• • •

does not

Each yearly group is simply made
up of (how many?) _____ monthly-
sales items.

• • •

12

There are (how many?) _____
monthly-sales items for each
product.

• • •

Monthly sales information
about one product

First year

Second year

Third year

Fourth year

Fifth year

60

(6/66) 147

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

358

359

In COBOL, our thinking must proceed from the largest to the
smallest item; in planning our description of this record,
therefore, we must begin with the record as a whole. This
drawing suggests how we may think of the structure of this record
and its progressive subdivision.

TO TAL-SALES PRODUCT-SALES YEARLY-SALES

subdivided
into 2 0
product S
groups

each group
subdivided
into 5 ^
yearly
groups

each group
subdivided
into 12 ^
monthly
items

MONTHLY-SALES

Here is the start of the record description. See if you can
complete it. The elementary item, MONTHLY-SALES, consists of a
sign plus seven digits, including two decimal places, and is
stored in packed-decimal format.

0 1 It o t a L - S A L E S .
!o 2 P R O D U C T - S A L E S . 0 C C U R S 2 0 T I M E S .

• • •

o r It o t a L - S A L E S .
So 2 P R O D U C T - S A L E S T 0 C C U R S 2 0 T II M m C

O •

0 3 Y E A R L Y - S A L E S , O C C U R S 5 T I M E S •:
0 4 M O N T H L Y - S A L E s,

1 ̂ 1 O C C U R S 1 2 T I M E S t
|

: P 1 C T U R E S 9 (5) V 9 9 V
M i l :
i :i * 1 ; ! i C O M P U T A T I O N A •roI_l

By having three OCCURS clauses in one record descriptiony we have
created a three-level table. (Three levels of tables are the
maximum permitted in one record.) Each item of the first table
contains a second tabley and each item of the second table
contains a third table. The illustration on the opposite page
shows how the total number of tables is multiplied by having
tables within tables. Study the illustration for a moment before
proceeding to the next frame.

• ••

(6/66) 148

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

MONTHiy-SALES

S E C O N D -L E V E L
TA B LE

There a re 2 0
of these tables
in the record,
one in each
P R O D U C T -S A L E S
item .

F IR S T - L E V E L
T A B L E

There is just
one table like
th is in the
T O T A L -S A L E S
record .

V

/
T H IR D -L E V E L

T A B L E
There are 100
of these tables
in the record ,
one in each
Y E A R L Y -S A L E S
item .

(6/66) 149

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

360

361

362

As in the tables you studied before, subscripts are required when
you refer to items in a multi-level table. The problem of
referring to an individual item in one of the tables is
complicated a bit by the fact that there is actually a large
number of tables in this record.
For example, the computer would be confused if you referred to
MONTHLY-SALES (7) or YEARLY-SALES (2), although it would have no
trouble finding PRODUCT-SALES (10). Can you explain why?

• • •
If you wrote MONTHLY-SALES (7), presumably you want the sales
amount for the seventh month in one of the monthly sales tables —
but which table? We have seen that there are really a hundred of
them. By the same token, it doesn't make sense to call for the
second year's figures — the second year for which product?
On the other hand, there is only one product sales table, so
PRODUCT-SALES (10) leads the computer directly to the tenth
PRODUCT-SALES group.

Incidentally, if you wrote "MOVE PRODUCT-SALES (10) TO
WORK-AREA", you would move a string of (how many?) _____ monthly
sales amounts.

• • •

60

One subscript is sufficient to refer to an item in the first-level
table. But you must use two subscripts after the name of an item
in the second-level table, and three subscripts for an item in
the third-level table.
When two or three subscripts are written after a name, they are
all written inside a single pair of parentheses and they are
separated by commas.
Which is correct:

MONTHLY-SALES (PRODUCT), (YEAR), (MONTH)
MONTHLY-SALES (PRODUCT, YEAR, MONTH)
(MONTHLY-SALES, PRODUCT, YEAR, MONTH)

• • •
MONTHLY-SALES (PRODUCT, YEAR, MONTH)

(6/66) 150

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

363 Multiple subscripts are written in the same order as the table
levels were defined in the record description. Thus, the first
subscript tells where the item may be found in the first-level
table; the second subscript tells the item's location in the
second-level table; and the third subscript tells its location in
the third-level table.
To address a YEARLY-SALES item in our sample table, the first
subscript must indicate which product, and the second subscript
must indicate which year you want. Therefore, YEARLY-SALES (3, 5)
stands for
(the third year's sales amounts for the fifth product.)
} the sales amounts for the third product in the fifth year.)

• • •
the sales amounts for the third product in the fifth year

(6/66) 151

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

364 This drawing shows how certain items in our record would be
referred to in procedures, if literal subscripts were used. The
subscripting scheme is not hard to follow; you can think of it as
adding another subscript for each additional table level. So (3)
is the subscript for the third product; (3, 2) are the subscripts
for the third product, second year; and (3, 2, 4) are the
subscripts for the third product, second year, fourth month.

Y E A R L Y -
S A L E S (3 , I)

Y E A R L Y -
S A L E S (3 , 2)

Y E A R L Y -
S A L E S (3 , 3)

Y E A R L Y -
S A L E S (3 , 4)

Y E A R L Y -
S A L E S (3 , 5)

: M O N T H L Y -
; S AL ES (3 , 2 , H

' M O N T H L Y -
S A L E S (3 , 2 , 2)

M O N T H L Y -
S A L E S (3 , 2 , 3)

M O N T H L Y -
S A L E S (3 , 2 , 4)

i M O N T H L Y - I lSALE§^3I215lJ

: j SALES (3 , 2 , I I) |

M O N T H L Y -
: SA LE S (3 , 2 , 1 2)

You could get the sales amount for the seventh product, fourth
year, tenth month by addressing [PRODUCT-SALES (7, 4, 10)]
[YEARLY-SALES (7, 4, 10)] [MONTHLY-SALES (7, 4, 10)].

• • •
MONTHLY-SALES (7, 4, 10).
b e e n d e f i n e d f o r t h e t a b l e

Y o u m u s t u s e t h e t y p e - n a m e w h i c h h a s
l e v e l f r o m w h i c h y o u w a n t a n i t e m .

152

System /360 COBOL COBOL P rog ra m m in g T ech n iqu es

3 6 5

3 6 6

3 6 7

In the event that you needed to process every monthly sales item
in the table, you would define three subscript items in working
storage, possibly calling them PRODUCT, YEAR, and MONTH. You
would then refer to the table items as MONTHLY-SALES (PRODUCT,
YEAR, MONTH). To begin with, you would make all of the subscripts
equal to 1. Keeping the values of PRODUCT and YEAR at 1, you
would progressively increase the value of MONTH by 1 until it
reached 12.
At this point, you would keep the value of PRODUCT at 1, but
change the value of YEAR to _____ , and change the value of MONTH
to

• • •
2; 1

After you had processed the amounts for every month of the five
years for the first product, you would change the value of PRODUCT
to _____ , YEAR to _____ , and MONTH to _____ .

• • •

2 ? 1 ; 1

We needn't belabor the point. You can see that the processing of
multi-level tables is a fairly straightforward application of the
fundamental operations that you studied in the earlier lessons of
this book -- moving data, adding numbers, and making decisions.
For that matter, you have seen that defining and addressing
multi-level tables does not involve any new COBOL words; this
function is just another application of entries that you learned
about a long time ago.

I am quite certain that most of your future work in COBOL will
consist of applying familiar principles to new situations. In
this series of short courses on COBOL, you have studied nearly all
of the features of the language. Most important, you have learned
the fundamentals which will make it easy for you to understand and
apply the additional details which you may encounter in reference
manuals.

• • •

(6/66) 153

R29-0215-0

International Business Machines Corporation

Data Processing Division

112 East Post Road, White Plains, New York

	\\OMV-TC\temp\Scan\R29-0215-0_S360_COBOL_Program_Techniques_Text.pdf
	\\OMV-TC\temp\Scan\R29-0215-0_S360_COBOL_Program_Techniques_Text1.pdf
	\\OMV-TC\temp\Scan\R29-0215-0_S360_COBOL_Program_Techniques_Text2.pdf

