

IBM
SYSTEM/360 COBOL

Writing Programs in COBOL
Reference Handbook

Programmed Instruction Course

This publication, R29-0211-2, is a reprint of
Form R29-0211-1 incorporating minor editorial
changes made on pages dated (7/67). The
original publication is not obsoleted.

Minor Revision (July 1967)

C o p ie s o f th is p u b lic a t io n c a n b e o b ta in e d th ro u g h IBM B ran ch O ffic e s .
A d d ress c o m m e n ts c o n c e rn in g th e c o n te n ts o f th is p u b lic a t io n t o :
IBM DPD E d u ca tio n D e v e lo p m e n t, E d u ca tio n C e n te r , E n d ic o tt, N ew Y o rk

©International Business Machines Corporation 1966

1

PREFACE

This reference handbook provides information
that will assist people in composing original
COBOL programs. It is designed to be studied
in conjunction with the Writing Programs in
COBOL programmed instruction textbook
(Form R29-0210).
The reader of these publications is expected
to have read the previous course in this
series, COBOL Program Fundamentals. The
publications for that course are a programmed
instruction textbook (Eorm R29-0205) and a
reference handbook (Form R29-0206).
Duplication of topics in the reference hand
books has been held to a minimum, with this
handbook taking up where the previous one
left off; therefore, the reader should also
have a copy of the other handbook.
This publication is not intended to serve as
a comprehensive reference manual for System/360
COBOL. Rather, it contains a selection of the
most commonly used entry formats. In most
cases, the formats have been abbreviated to
reduce the number of details with which the
programmer must concern himself. Particularly,
entries and portions of entries that are used
for processing non-sequential (random) files
have been omitted. Thus, this book presents
a subset of System/360 COBOL which is
adequate for processing sequential files.
Complete specifications for System/360 COBOL
may be found in the reference manual, IBM
Operating System/360 COBOL Language
(Form C28-6516) , or IBM System/360 Disk and
Tape Operating Systems COBOL Language
Specifications (Form C24-3433). The appropriate
manual should be selected based upon the
operating system that you plan to use.

J

ACKNOWLEDGEMENT

The following information is reprinted from COBOL Edition 1965-,
published by the Conference on Data Systems Languages (CÖDASYL),
and printed by the U. S. Government Printing Office.

"Any organization interested in reproducing the COBOL
report and specifications in whole or in part, using
ideas taken from this report as the basis for an
instruction manual or for any other purpose is free to
do so. However, all such organizations are requested to
reproduce this section as part of the introduction to
the document. Those using a short passage, as in a book
review, are requested to mention "COBOL" in acknowledge
ment of the source, but need not quote this entire
section.
"COBOL is an industry language and is not the property
of any company or group of companies, or of any
organization or group of organizations.
"No warranty, expressed or implied, is made by any
contributor or by the COBOL Committee as to the
accuracy and functioning of the programming system
and language. Moreover, no responsibility is assumed
by any contributor, or by the committee, in connection
therewith.
"Procedures have been established for the maintenance
of COBOL. Inquiries concerning the procedures for
proposing changes should be directed to the Executive
Committee of the Conference on Data Systems Languages.
"The authors and copyright holders of the copyrighted
material used herein

FLOW-MATIC (Trademark of Sperry Rand Corporation),
Programming for the Univac (R) I and II, Data
Automation Systems copyrighted 1958, 1959, by
Sperry Rand Corporation; IBM Commercial
Translator Form No. F28-8013, copyrighted
1959 by IBM; FACT, DSI 27A5260-2760, copyrighted
1960 by Minneapolis-Honeywell

have specifically authorized the use of this material
in whole or in part, in the COBOL specifications.
Such authorization extends to the reproduction and
use of COBOL specifications in programming manuals
of similar publications".

TABLE OF CONTENTS

Program Sheet Format and Rules

Program sheet format........ 3 Rules for program entries . . 5
How elements are written

in entries................ 4

Introduction to Entry Formats

System of notation used to
describe entry formats. . . 9

Identification Division Entry Formats

Identification division . . .13

Environment Division Entry Formats

Environment division........ 17 APPLY..................... .19
SELECT.......................18

Data Division Entry Formats

Data division 22-23
File description..........24-25
Record structure............26
Record description..........27

Data names............ . . . 2 8
Item description.29
Condition-name.............. 30

Procedure Division Entry Formats
Procedure division..........
ACCEPT (1)............ . . .
ACCEPT (2)..................
ADD (1)
ADD (2)
CLOSE
COMPUTE
Arithmetic expressions. . . .
DISPLAY (1)
DISPLAY (2)
DISPLAY (3)
DIVIDE (1)..................
DIVIDE (2)...................
GO TO
IF (1)..........
IF (2).......................
Test conditions
MOVE..................

33 MULTIPLY (1)................. 51
34 MULTIPLY (2)................ 52
35 NOTE (1)..................... 53
36 NOTE (2)..................... 54
37 OPEN (1)..................... 55
38 OPEN (2)..................... 56
39 OPEN (3)..................... 57
40 PERFORM (1)................. 58
41 PERFORM (2) 59
42 READ......................... 60
43 STOP (1)..................... 61
44 STOP (2)..................... 62
45 SUBTRACT <1)................. 63
46 SUBTRACT (2).................64
47 WRITE (1)65
48 WRITE (2)................... 66
49 WRITE (3) 67
50

(8/66) V

Program Sheet Format and Rules

PROGRAM SHEET FORMAT. The program sheet is designed to be the source
document for keypunching COBOL program cards. A separate card is
punched for each line that is used on the sheet. The sheet provides
for 80 columns of information, corresponding to the 80 columns of a
card. Information entered in the unnumbered boxes (labeled "System",
"Program", etc.) at the top of the sheet is not punched.

IBM COBOL PROGRAM SHEET
System Punching Instructions Sheet of

Program Graphic 11 Cord Fo rm # * Identification

Programmer | Date Punch 1 ______ 73j teo

16 20 24 28 32 36 40 48 52 56 60 64 68 72
0 1

A standard card form, IBM electro C61897, is available for punching source statements from this form.

Columns 1-6 are used to number the lines of a program. Each succeeding
line is given a higher number. Optionally, these columns may be left
blank. Columns 4-6 are prenumbered for your convenience.
Column 7 is used for a hyphen to signify continuation of non-numeric literals.
Columns 8-72 are used for program entries. These columns are grouped
into two "margins" — margin A (8-11) and margin B (12-72).
Columns 73-80 are used for the name of the program. Optionally, these
columns may be left blank.

(7/67) 3

HOW ELEMENTS ARE WRITTEN IN ENTRIES.

Elements written on program sheets. Each element in an entry must be
written in full on one line.

Exception: A non-numeric literal may be written on two or
more lines if necessary.
• Characters of the literal are written all the way to

column 72, since any blanks left at the end of a continued
line are considered part of the literal.

• On every continuation line, a hyphen is written in column 7,
and an extra quotation mark is written in margin B,
followed immediately by more characters of the literal.

SEOU
(PAGE)
1 3

ENCE
(SERIAL)4 6

H
Z

8
7

A iB
8 *12 16 2C) 24 28 32 36 40 44 48 52 56 60 64 68 72

i ' m ; : I | | i j —r- T t : | M

i 1 ! d ; i s p L A Y
i S E C U jR 1 T Y P A s j s W o R D 1 S i N O t ! v a L 1 D . F U R T H E R E X E C U T 1 O l N ! l o l F

1 1 - ! j 1 T H Ms P R O g ! r A sm I 1 S S U S P E N d ! e D . A N D T H E C 0 'U P U T E R r ! u N 1 s i

1 1
|

- i c A N C E L L e ! d . 1 ' 1 ! i | : ! ! ; j I 1 T . 1 i i l l ;

Spacing between elements. Each element must be separated from the next
element by at least one space. (Note: If an element ends in column 72,
it is treated as if it were followed by a space.)

Exception: Certain symbols must be written directly next to
other elements, with no spaces left between.
The following symbols must not be followed by a space:
• Left parenthesis
• Beginning quotation mark (However, a space may be the

first character of the literal enclosed by the quotation
marks.)

The following symbols must not be preceded by a space:
• Period used to end an entry
• Comma or semicolon used to punctuate an entry
• Right parenthesis
• Ending quotation mark (However, a space may be the last

character of the literal enclosed by the quotation marks.)

(3/66) 4

RULES FOR PROGRAM ENTRIES

Entries that begin in Margin A . The following entries are required to
begin in margin A (columns 8-11); customarily they begin in column 8:
• Division headers (must always be written on a line by themselves)
• Section headers (generally must be written on a line by themselves)
• Paragraph headers (need not be written on a line by themselves)
• File descriptions (found in the Data division — start with

two-letter reserved words called "level indicators", such as FD;
the level indicator must be written in margin A, but the rest of
a file description entry must be written in margin B)

• Two special headers in the Procedure division — DECLARATIVES
and END DECLARATIVES (must be written on a line by themselves)

Level numbers found in item description entries (as distinct from the
level indicators mentioned above) may be written in margin A if desired.
They are not required to be written there, however, and are usually
indented into margin B.
No other entries are permitted in margin A.
Entries that begin in margin B. All other entries are required to begin
in margin B (anywhere in columns 12 through 72). In practice, these
entries usually either begin in column 12, or are indented to a column
whose number is a multiple of 4 — 16, 20, 24 ... Every fourth column
of the program sheet is conveniently marked by a heavier line and
numbered at the top.
New line required. Any entry that is required to begin in margin A
must be written on a new line. Also, if an entry is required to appear
on a line by itself, the next entry must begin on a new line.
Spacing between entries. Except when the next entry in a program is
required to begin on a new line, it may follow on the same line as the
previous entry, but must be separated from it by at least one space.
However, it is not necessary to fill out each line with entries, and a
frequent practice is to begin each entry on a new line. A short entry
may take up only part of a line, and the rest of the line may be left
blank. An entry that would fit on one line may, if desired, be spread
over two or more lines. It is also permissible, and often desirable,
to leave entire lines blank.
Continuation of entries. If an entry is too long to fit on one line, it
is simply continued on the next line or lines. The continuation of an
entry is always written in margin B, regardless of whether the entry
began in margin B or in margin A. A hyphen is not written in column 7
to indicate continuation of an entry.

/

(3/66) 5

Introduction to Entry Formats

SYSTEM OF NOTATION USED TO DESCRIBE ENTRY FORMATS

• Reserved words are printed entirely in capital letters.
• Reserved words that are required in the format are underlined.

These words may be omitted only if the portion of the format
containing them is itself optional.

• Optional reserved words are not underlined. These words are used
only for the sake of readability, and may be included or omitted.

• Required symbols, such as periods and equal signs, are printed in
the format, but not underlined. Optional symbols, such as commas
and semicolons, are not printed in the format.

• Information to be supplied by the programmer is represented by
words printed entirely in small letters. Unless it is in an
optional portion of the format, this information is required
(even though the words are not underlined).

• Optional portions of the format are enclosed in brackets []. Such
portions may be used or omitted, as required for the program.

• A choice of optional portions is indicated by stacking them
within brackets. This indicates that one — or none — may be
used.

• A choice of required portions of the format is indicated by
stacking them within braces 1 J . This indicates that one, and
only one, must be used. '

• Portions of the format that may be repeated any number of times
are followed by three dots When the dots follow a word, they
apply only to that word. When the dots follow brackets or braces,
they apply to all of the enclosed portion of the format.

Sample entry format.
required

reserved word

I

optional
reserved word

I

information to he
supplied by programmer

/IF test-condition THEN statement-1 [statement-2 ...]
ELSE
OTHERWISE

choice of
required portions

statement-m

optional
portion

[statement-n ...] _required
symbol

portion may he repeated
any number of times

(3/66) 9 J

Identification Division Entry Formats

1

Function

Format

Example

Notes

(3/66)

IDENTIFICATION DIVISION

To specify the name of the program; and optionally, to
provide other information about the program.

IDENTIFICATION DIVISION .
PROGRAM-ID . *

* program-name' .
[AUTHOR .

entry ...]
[INSTALLATION .

entry ...]
[DATE-WRITTEN .

entry ...]
[DATE-COMPILED .

entry ...]
[SECURITY .

entry ...]
[REMARKS .

entry ...]

i d e n ! t I F 1 C A T I O N D 1 y i S 1

■— ! — r “ 1

O N .

P R O G R A M - I D .

! ' p a y R O L L
1

i • i

R E N I A l R K S .
j

I p r e p A R E S P A Y C H E C K S F O R A L L S A L A R 1 E D

l E M P L 0 Y E E S . C O M P U T E S T A X E S A N D O T H E R

i
1

I d e d u C T 1 0 N S « i U P D A T E S A C C O U N T S T O S H O W

i C H A N G E S 1 N S A L A R Y X E M P T I O N S , E T C .
i

Program-name must consist of a letter followed by no more
than seven letters and/or digits. No special characters are
allowed. The name must be enclosed in quotation marks.
Entries in the optional paragraphs may be made up of any
words, numbers, or symbols, terminated by a period.

13

Environment Division Entry Formats

ENVIRONMENT DIVISION

Function

Format

Example

Notes

To specify the computers used to compile and execute the
object program. Also, to assign each file to an input-output
device, and to define special input-output conditions and
techniques.

ENVIRONMENT DIVISION .
CONFIGURATION SECTION .
fSOURCE-COMPUTER .

IBM-360 [model-number! T)
fOBJECT-COMPUTER .
_ IBM-360 [model-numberl.]
" INPUT-OUTPUT SECTION .
FILE-CONTROL .

SELECT-entry ...
[I -O-CONTROL .
_ tAPPLY-entry ... I

einM i N o NME N T D 1 Vj l S I ON •
— ■ I—

: :. , i ... i s ! l | i j j
c 'o Wf I i Ig u R A t I 10 N SE C T I 0 n /

. j .
; , ; S ! i

s o u r Ic e - C 0 MP U T E R . . : ■ ' ; ; ' ; 5 ' ;

• !l BM- 3 610 E 3 0 • s s 1 ; ■ i s i ! t

OB j e !c t - c

! i b m -
OjMjP
36 0

U T E R
H 40 .

; J !
----- —f—i i i .- ; |

IN p u !t - o u TP UT S E C T 1 JOIN * : ; ! : j i i ! j i

F I LEi ' -CON T R O L
! ' 1

♦ | j | | l ‘ * j ; « ! ; j

SSELE C T S A L E S !a s SU G N * S Y SOO 1 ' UT 1 L 1 T Y .
iS ELE C T S U MM A RY - 0 F - S A l !e : ;

; J| 1 | A S S 1GN S Y S O 02 u !n ! i |t - R E C ORD 1 403 • : f
1 - 0 - ! c 0N;T ROL . i 1 1 ! ! ! 1 i

Ia p p l Y EN D - O F - S H E E T T

O„ÜLo

R M -0 V E R F LOW i ri t
ON S UMMA RY - 0

<CO1li. L E S • ; J> {

Model-number consists of a letter to designate main core
storage capacity, followed by the System/360 model number.
The Input-Output section must be included if there are any
input or output files; hence, it is required in most
programs. The 1-0-Control paragraph may be omitted if no
special techniques or conditions need to be defined in the
program. The formats of the SELECT-entry and APPLY-entry
are explained on the following pages.
Besides the APPLY-entry, the 1-0-Control paragraph can
contain entries that are not discussed in this book.

(7/67) 17

SELECT

Function

Format

Example

I

Notes

To assign a file to an input-output device.

SELECT file-name ASSIGN TO 'external-file-name'
(UTILITY) frora]
< DIRECT-ACCESS > [device-number mn-Tc].
I UNIT-RECORD) L J

This entry is written in the File-Control paragraph.
A separate SELECT entry is required for each file.
The format shown is only suitable for sequential files.
There is a different format of the SELECT entry, with
several additional clauses, which is used for non-sequential
files.
File-name is the programmer-supplied name by which the file
will be referred to in the Data and Procedure divisions.
External-file-name is the name by which the file will be
referred to on a job control card at the time that the
object program is executed. It must consist of a letter
followed by no more than seven letters and/or digits. No
special characters are allowed. The name must be enclosed
in quotation marks. If you are using DOS/TOS then it must
be of the format 'SYSnnn' where nnn is a 3-digit number
between 000 and 244.
UTILITY is specified for machines that can read and write
data sequentially — magnetic tape, disk, drum, and data
cell devices. Allowable device-numbers for this class are
2400, 2301, 2302, 2311, 2321, and 2314.
DIRECT-ACCESS is specified for machines that can read and
write data randomly — disk, drum, and data cell devices.
(Note that these machines also fall into the UTILITY class.)
Allowable device-numbers are 2301, 2302, 2311, 2321, and
2314.
UNIT-RECORD is specified for printers and card read/punches.
Allowable device-numbers are 1403, 1404, 1443, 1442R, 1442P,
2520R, 2520P, 2540R, and 2540P. (R indicates Reader;
P indicates Punch.)

(7/67) 18

APPLY

Format

Example

Notes

Function To define a condition name which will be used in an overflow
test in the Procedure division. An overflow test determines
whether the forms in a printer are at the end of a page.
An APPLY entry is written only for an output file which is to
be printed, and which overflows from sheet to sheet.

APPLY overflow-name TO FORM-OVERFLOW ON file-name .

!a p -p L Y [n !o -M O R

ocr
. 1 1
LÜ OM T 0 FO R M -0

1 1 '1—
v !e !r !f L 0w

, 1 M ! 0InLJmON TH L Y - A C T 1 V 1 T Y - L I ST i n g L

This entry is written in the 1-0-Control paragraph. It has
other formats which serve different functions, such as
specifying special input-output techniques for files; the
other formats are not discussed in this book.
Overflow-name is the programmer-supplied name for the form-
overflow condition. This entry is all that is required to
define the meaning of this name; the name is not defined
further in the Data division.
File-name is the programmer-supplied name of the file that
is to beprinted. This name must also appear in a SELECT
entry in the File-Control paragraph; in that entry, the file
must be assigned to a printer. In this way, the overflow-
name is associated with the sensing of a 12-punch in the
carriage control tape of a particular printer.
If the program involves more than one output file, a
separate APPLY entry is written for each printed file for
which an overflow test is needed.

(3/66) 19

Data Division Entry Formats

DATA DIVISION

Function

Format

Example

(Continued

To describe data files and the records in the files, as
well as items in working-storage. The structure of each
record is usually shown, with itêms described in the order
in which they appear in the record, and with a breakdown of
smaller items within larger items.

DATA DIVISION .
[FILE SECTION .
file-description
record-description ...
[file-description
record-description ...] ...]
[WORKING-STORAGE SECTION .
[independent-item-description ...]
[record-description ...]]

D A T A
1 ! ! !

> i D 1 V i i s ! i b N . ! j j — s— 1 — — T - ! ' |

F I L E : ! S E C T 1 O N ! 1 ! i 5
F D S t r a n S A C T 1 O N : B L O C K C O N T A 1 N S 2 5 !

S R E C O r | o ; s L L A B E L R E C O R D S A R E S T A N D A R D ; |
\ i -I I i

o r :
S O A T A
S t r a n

i R ' E b
s ! a c t

O R D
1 O N -

1 S T
R E C O

R A N S
R D .

A C T 1 O N - R E C O i R

: 1 : ! o 2 | a ! c ! c ’ o U N T - N U M B E R y P 1 C T U R E X (1 0) U 1
j

S O 2
S o 2

T R A N
a I m o u

S A C T
N T ,

1 O N -
P 1 C T

C O D E
U R E

f ! P I
9 (6)

C T U R
V 9 9 .

E X .
; i

j
i

w o r k S i n g - S T O R A G E S E C T I O N .
7 7 S p r e v 1 O U S - N U M B E R , P I C T U R E X { 1 0) .
0 1 S m e s s A G E .

S o 2 A C C O U N T , P I C T U R E X (1 0) .
S 0 2 F I L L E R , P 1 C T U R E X X » V A L U E S P A C E .
S 0 2 T O T A L . , p 1 C T U R E $ z z z , Z Z Z . 9 9 .
l 0 2 F 1 L L E R , P I C T U R E X X , V A L U E S P A C E . 1

S o 2 C O M M E N T S i P I C T U R E X (3 0) .

on next page)

(3/ 66) 22

"1

Notes

DATA DIVISION (Continued)

Only the two most frequently used sections, the File section
and the Working-Storage section, are shown in this format.
There are other, less common, sections, which are not
discussed in this book.
The File section is required in any program that processes
input or output files; hence, it is required in most
programs. It must contain a file description entry for
every file named in a SELECT entry in the Environment
division. Each file description entry must be followed by
at least one record description; there must be a record
description for each type of record in the file.
The Working-Storage section contains descriptions of
constants and work areas. It may be omitted when constants
and work areas are not used in a program.
Items in working storage that are not subdivided into
smaller items are defined as independent items (level-77
items). The descriptions of all independent items must
precede any record descriptions in the Working-Storage
section.
Items in working storage that are subdivided into smaller
items are defined as records. Record descriptions in the
Working-Storage section have the same make-up as record
descriptions in the File section. (Note, however, that
records in the Working-Storage section are always group
items, whereas records in the File section can be
elementary items.)
Record descriptions are made up of item description entries.
The formats of file description and item description
entries are given on the following pages.

L (3/66) 23

FILE DESCRIPTION

Function

Format

Example

Notes

(Continued

To specify such characteristics of a file as its recording
mode, the number of characters or records in a block, the
number of characters in a record, whether there are label
records, and what the names of its data records are.

FD file-name
[RECORDING MODE IS mode]

[BLOCK CONTAINS integer-1 CHARACTERSI,
RECORDS (J

[RECORD CONTAINS [integer-2 TO] integer-3
LABEL RECORD IS)
LABEL RECORDS ARE)

STANDARD)
OMITTED >
data-name)

CHARACTERS]

(DATA RECORD IS)
(DATA RECORDS ARE) record-name ...

F D lOP 1 N I O N - S U R V E!Yjt [
—i—f—r—s I !

Ir e c o R D T N G MO D E 1S V , f ■
Ib l o c K CO NT A 1 NS 5 RiEC 0 R D S t

!I
IRE CO RD C O N T A 1 NS 1 2 0 T O 2 0 0

J ; 1 : < : 1 : i C H A R A C T E R S ,
| L A B E Ü R E C O R D S- AR E S T AND A R D ,
|DATA R E C o r |d | IIS R E S P O N S E .

There must be a file description entry for each input or
output file. The above format is used for nearly all kinds
of files; however, slightly different formats are used to
describe files for the Report Writer and Sort features of
COBOL. The other formats are not discussed in this book.
File-name is the programmer-supplied name of the file, and
must be the same as a file-name specified in a SELECT entry
in the Environment division.

on next page)

(7/67) 24

FILE DESCRIPTION (Continued)

Notes Mode must be either V, P, or U; however, the entire
RECORDING MODE clause can be omitted when the mode is V.
If each record is preceded by a control field that specifies
the length of the record, then the mode is V. If all
records in the file are the same length, and there are no
record-length control fields, then the mode is F. If the
records have variable lengths, and there are no record-
length control fields, then the mode is U.
All integers called for in the format must be unsigned
whole numbers.
Integer-1 specifies the number of characters in the longest
block, or the number of the longest records that would form
the longest block. The word CHARACTERS may be omitted when
the number of characters is specified. The BLOCK CONTAINS
clause is completely omitted when there is just one record
in each block.
Integer-2 specifies the length of the shortest record, and
integer^ specifies the length of the longest record in the
file. ïKe RECORD CONTAINS clause may be omitted, since the
compiler determines record lengths from the record
descriptions.
The LABEL RECORD clause is required. STANDARD is specified
for files with standard labels. OMITTED is specified for
files with no labels or with non-standard labels. A data-
name is specified for files that have user labels in
addition to standard labels. Data-name is the programmer-
supplied name of a storage area in which the user labels
will be processed.
The DATA RECORD clause is also required. Record-name is
the programmer-supplied name of a record in the file. The
names of all records in the file must be written in this
clause. Each record-name must also appear in a level-01
entry (in a record description) following the FD entry for
its file.

L

(3/66) 25

RECORD STRUCTURE. Records are usually subdivided into smaller items.
Some or all of those items may be further subdivided into still smaller
items.
• When an item is subdivided, its parts fall into the next level

of items within the record structure. Suppose, for instance, that
DATE is subdivided into MONTH, DAY, and YEAR. In that case, DATE
is at one level in the structure of the record, while MONTH, DAY,
and YEAR are all at the next level.

• Each level is given a number, always beginning with 01 for the
most inclusive item -- the record itself. Succeeding levels are
given larger numbers, usually 02, 03, 04, etc.

• In subdividing a record, the numbers of the levels need not be
consecutive, and numbers as large as 49 may be used. This gives
the programmer some flexibility in assigning numbers; for example,
he may choose to number the levels 01, 03, 05..., or 01, 05, 10,
15...

• It is not necessary for all items to be subdivided at every level;
some may be subdivided, and others not. An item that is further
subdivided is called a group item. An item that is not further
subdivided is called an elementary item.

An illustration of levels of data items. In this schematic drawing,
each box represents an item. The box for level 01 represents the area
occupied by the entire record. At succeeding levels, the same area is
subdivided into smaller items. In the case of one item (STATUS-CODE),
subdivision stops at level 02; but subdivision of other items is
carried as far as level 05. The boxes that represent elementary items
are shaded in this drawing.

01
PURCHASING

02
LEVELS

03
ACCOUNT

NUMBER
STOUS-CODE

TRANSACTION VENDOR

PURCHASE

04
CATEGORY

NAME

NUMBER

DATE

AMOUNT

05

MONTH

DAY

YEAR

(8/66) 26

AN EXAMPLE OF A RECORD DESCRIPTION. In addition to a COBOL record
description, a schematic drawing of the structure of the record, and
the format of the physical record are shown. In this case, the record
is shown on a card form, but it might just as well have been on any
other recording medium.

LEVELS
01 02 03 04

oi l ! 1 ;a C CO u n!tIs—1—1—s— - !REC e I i Maw r e !c o RD. 1 ' ! > ! ! ! j

m !o 2 CU'S T̂ O M E R ! ! ! ! ! j ; i I
! I i ! 1 0 3 ! NUMB e W ^ 1 1 ! P I C T URE X (6) j i
: ; : 1 r 03! 1 NAME ! ' 1 P I C T URE X (3 0 > j

_ M 1 !o z! S a |l 1e SMAN .
I | i ; 0 3 ! 1 BRAN C H - 0 F F 1 C E P 1 CT URE 9 9 9 . |

: ! ; 1 1 Ol3 ' SERi l A L - N UMBE R P 1 CT URE 9 (5) .

! ! !0;2. ; i |n v 0 I C E . i 1 1
i
i 1 ! 1 h 0 3l NUMB e !r P 1 CT U'Rld 9 (;5)

0 3! DATE . 1 ; ! i

1 ; ! | 04 MONT H P 1 C T URE 9 9 . j
j - 0 4 ! DAY P 1 CT URE 9 9 . I '

■ ' • J ! ' i 1 i i 0 4 1 Y E A R P 1 CT URE 9 9 .
1 o!3; AMOU N T; P I CT URE 9 (4) V 9 I9

' !02 PAYIV E NT . : i !
| 0 I3 ; ; D A T£ ! 1

1
—j—p O 4: MONT H PI CT URE 9 9 . i l l '

M 1 04 DAY P I C T URE 9 9 . 1
< , 1 04 Y E AR P I CT URE 9 9 . ' | ,

: > : 1 ; : ; 03 ! D 1 SC OUNT P I C T URE 9 (4) vW .
03 N E T - AMOU NT P I CT URE 9 (4) V 9 9 .

l02 R E C O R D - C ODE P I C T URE X .

CUSTOMER SALESMAN INVOICE PAYMENT

NUMBER NAME BR SERIAL NO.
DATE

AMOUNT
DATE

D Y
d 'c o u n t N E T

000000
1 2 3 4 5 6

m m
2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

5 5 5 5 5 5

6 6 6 6 6 6
7 7 7 7 7 7

8 8 8 8 8 8
9 9 9 9 9 9
1 2 3 4 5 6

000000000000000000000000000000000
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2S 27 28 29 30 31 32 33 34 35 36 37 38 39

111111111111111111111111111111111

2 2

3 3

4 4

5 5

6 8 6

7 7

8 0 8 8 8

9 9

0 0 0 0 00 0 0 0 0 o o o o o o(o o o o'o ojo o o o o oio o o o o olo Q 0
10 41 42 43 44 45 46 47 46 49 50 51|52 53 54 55 56 5711111
2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

6 6 6 6 6
7 7 7 7 7

8 8 8 8 8

9 9 9 9 9

1 1 1 1 1 1 1| 1 1|1 1 1 1 1 1 1 1 1 1 i l l i l l 1

UU'UUU U|U U U U U U U U'U U U U U UIU u
58 53(s0 61 61,6764 65BS 67 6e 69 70 7lj72 73 74 75 76 V J78 78

I I I 1 1 1 111 11 1 1 1|1 1 1
2 2 2 2 2 2 2|2 2*2 2 2 2 2 2|2 2 2 2|2 2|2 2 2 2 2 2J2 2 2 2 2 2*2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

6 6 6 6 6
7 7 7 7 7

8 8 8 8 8

9 9 9 9 9

4 4|4 4|4 4

3 3 3 3j3 33*3 3|3

n
5 5l5 5|5 b

6 sjs eje 6 6 6 6 6|6

3 3J3 3^ 3 3 3 3 3|3 3 3 3 3 3|3 3 3

A 4 4 4j4 4 4 4l4 4|4 4 4 4 4 4J4 4 4 4 4 4|4 4

5 5 5 5|5 5 5 5J5 5(5 5 5 5 5 5|5 5 5 5 5 5I5 5 5

7|7 7|7

I

sjs 6*6
7 7 7 7^ 7 7 7|7 7*7 7 7 7 7 7j7 7

8*8 818 8
7 7 7 7^ 7

8 8 8 8|8 8
I I ' I

8 8|8 8|8 8 8 8 8 8*8 8 8 8 8 8*8 8 8

7 8 9 10 11 12 13 14 15 16 17 18 W 20 21 22 23 24 25 26 V 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 42 44 45 46 47 48 49 >(
9 9|9 9 9 9 9 9 9 9l9 9 9 9*9 9*9 9 9 9 9 9|9 9 9 9 9 9l9 9 9
SO 5lj52 53|54 5f 56 57 58 59k<t 61 62 63|64 6sjs« 67 68 69 70 71172 73 74 75 76 77|78 79 80

(8/66) 27

DATA NAMES. It must be possible to identify every data item uniquely,
in order to refer to each item individually in procedural statements.
For this reason, items are given names; however, items can be referred
to uniquely even when they do not have unique names.
Two ways of naming data items.
• A data item can have a unique name, that is, a name spelled

differently from any other name in the program. In this case, the
data name alone is enough to identify a specific data item.

• Two or more items can have the same name, that is, their names
can be spelled exactly alike. In this case, each name must be
"qualified" when it is used in the Procedure division, so there
will be no doubt as to which data item is being referred to.
(Qualification is explained below.)

Qualification of names. The name of a data item is "qualified" in the
Procedure division bygiving the names of one or more other data items
that the item is part of. The names of the other items are called
"qualifiers".
• Qualifiers are written after the name they qualify, with each

qualifier preceded by the word OF or IN. (The illustration below
shows excerpts from both the Data and Procedure divisions.)

i'02 ORD E R .
11 03 AMOU NT P 1 CT URE 9 (4) V 9 9 .

0 3 D A T E P 1 CT URE 9 (6) •

Im o v e CUR R E N T - DAT E TO D A T E OF ORD ER .

• Whenever two or more items in a program have the same name,their
names must be qualified, and each name must have at least one
qualifier that is different from any possible qualifier of the
others. The "highest" qualifier must be a unique name. •

• In the File section, the highest possible qualifier is the name of
a file; thus, it is permissible for two records to have the same
name, but the names of files must be unique. In the Working-
Storage section, a record name is the highest possible qualifier,
so all record names in that section must be unique. Names of
independent items must be unique, since they cannot be qualified.

(8/66) 28

ITEM DESCRIPTION

Function

Format

Example

Notes

To specify the level number and name of an item, and to
describe its picture, value, and usage.

level-number (data-name)
I FILLER ƒ

[PICTURE IS
alpha-forman-form
numeric-form
report-formfp-form

]

[VALUE IS literal](DISPLAY \
COMPUTATIONAL
COMPUTATIONAL-1 \] .
COMPUTATIONAL-2 (
COMPUTATIONAL-3)

7 ' T Id'e IpU f?TME N~ t O T A L , P I CTUlR E S9 (5)\
---- ! f '"1 ■■
/9!9U -

SVALU E: |z |e R 0 _ t _ COMP U T A T 1 ONA L - 3 .
\ 1

—i—i—i-
1 ! ii ■ :

This format is an abbreviation of the complete item
description entry format, and shows only the three most
most commonly used clauses: PICTURE, VALUE, and USAGE.
Level-number must be 01 if the item is a record; between
02 and 49, inclusive, if the item is part of a record;
77 if it is an independent item.
Picture is required in every description of an elementary
item. It is forbidden in descriptions of group items.
A VALUE clause is permitted only in descriptions of
elementary items, and only in the Working-Storage section.
However, it is not allowed in descriptions of report items
or external floating-point items. Literal must be a
numeric literal if the item is numeric, and a non-numeric
literal if the item is alphabetic or alphanumeric. The
figurative constant ZERO may be used in place of either a
numeric or a non-numeric literal, and SPACE may be used in
place of a non-numeric literal.
A USAGE clause is allowed in both group and elementary item
descriptions. This clause may be omitted if an item's usage
is display, or if usage is specified for any group item that
this item is part of (when this item has the same usage as
the group item).

(7/67) 29

CONDITION-NAME

Function

Format

Example

Notes

o

To assign a name to a particular value of an item.

88 condition-name VALUE IS literal .

8 8 P A R C E L - P O S T . V A L U E 1 2 .

Condition-name is a programmer-supplied name that will be
used as a test-condition (usually in an IF sentence) in the
Procedure division.
The condition name is the name of a value of an item, not
the name of an item; an item description entry is required
to define the item itself. Level-88 entries must follow
immediately after the item description entry for the item
with which they are associated.
A condition name can only be associated with an elementary item.
Literal must be a numeric literal if the item has a
numeric picture, and a non-numeric literal if the item has
an alphanumeric or alphabetic picture. The figurative
constant ZERO may be used in place of either a numeric or
a non-numeric literal, and SPACE may be used in place of
a non-numeric literal.

(3/66) 30

Procedure Division Entry Formats

Function

Format

Example

Notes

PROCEDURE DIVISION

To specify the actions — such as input-output, data
movement, and arithmetic — that are required to process
the data. Also, to control the sequence in which those
actions are carried out.

PROCEDURE DIVISION .
procedure-name .

sentence ...
[procedure-name .

sentence ...] ...

PRO C'EDUR E D 1V 1 S I O N . ; : ! |

s t a r It - r u N • ■ 1 : i I
j

!o PEN 1 NP U T P RO DU C T S t O U T p U T SAMP L E S .
p r o c Ie s s - R ECO RDS . , | ;

Ir e a d PRO D U C T S i A T EN D , '
1 . . 1 C L O S E PR 0 DU C T S i SAMP L E S ; : 1 j

; , 1 ; . S T O P RUN Ï ; . i ! | '
Il F P RO DU C T - N UMBE R > SAMP L E - B A S E ,
1
1 MOVE PRO D U C T - REC ORD H Ö O) AMP L E » 1
1 WR 1 T E SA M PLE i ■

_____ i§0._T 0 PR O C E S S - RE CORD S .

The Procedure division contains one or more paragraphs.
Paragraphs may also be grouped into sections.
Procedure-name is the programmer-supplied name of a
paragraph or section.
A sentence is a procedural entry that consists of one or
more statements. Each statement specifies an action to be
taken, and begins with a verb, such as READ, MOVE, COMPUTE,
or PERFORM.
The formats of the most commonly used procedural statements
are given on the following pages.

(3/66) 33

ACCEPT (1)

Function

Format

Example

Notes:

\

To obtain as many as 80 characters of data from the input
device which has been specified as the "system logical
input device". This input device might be a disk file,
tape drive, card reader, etc.; however, the data must
originally be punched into a card, and entered into the
computer along with the job control cards at the time that
the object program is executed — hence the 80-character
limit. This statement is used to get low-volume input,
such as the current date, an initial serial number, or
control totals; it is not used to read files of data.

ACCEPT data-name

i H 'T Ia c c e
'' [..-

PT 1N 1 T 1A L i Z

o■ 1-
< N - D A T A .

Data-name is the name of an item described in the Working-
Storage section of the Data division. The data obtained by
the ACCEPT statement is automatically moved into this item.
The data moved into the item will come from the leftmost
positions of the input block. Thus, the item may be four
bytes long if only the leftmost four characters of the
block are desired; or 25 bytes long if the leftmost 25
characters are desired; and so on, to the maximum number
of characters.
Data-name must represent either an elementary item
described in a level-77 entry, or a record composed of two
or more items. In the latter case, data-name would be the
name given in the level-01 entry of the record description.

<3/*> 34

ACCEPT (2)

Format

Example

Notes

Function To obtain as many as 72 characters of data from the console
keyboard. This enables the program to get information from
the console operator during the running of the job.

ACCEPT data-name FROM CONSOLE

o o m PT C URRE NT - DA T E FROM CON S O L E •

This statement causes a message code generated by the
system to be typed on the console printer, followed by the
words 'AWAITING REPLY'. Execution of the program is then
suspended until the operator uses the keyboard to type the
same message code and the information needed by the program.
The operator must, of course, know what information he is
required to type on the keyboard. A frequent practice is
first to use a DISPLAY UPON CONSOLE statement to type
instructions to the operator on the console printer, and
then to use the ACCEPT FROM CONSOLE statement to obtain the
operator's reply.
All of the Notes for ACCEPT (1) also apply to this
statement.

(3/66) 35

ADD (1)

Function

Format

Example

Notes

To add the values of two or more items, and to place the
sum into one of the items.

|data-name-1
(numeric-literal-1 [data-name-2 nume r i c-1 i t e r a 1- 2

TO data-name-n

!a d d GROS S - EA RN 1 NG S T 0 PL A N T - T O T A L .

All data-names must represent elementary numeric items.
Implied decimal points are aligned.
The values of all of the items are added, including the
value of data-name-n.
The sum replaces the original value of data-name-n.
The sum is not edited.
The word GIVING cannot be written in the same statement
with the word TO.

(7/67) 36

ADD (2)

Function

Format

example

Notes

(7/67)

1

To add the values of two or more items, and to place the
sum into seme other item.

ADD |data-name-1
(numeric-literal-1

(data-name-2
(numeric-literal-2[data-name-3 numeric-literal-3 GIVING data-name-n

> D D Q c > NT i It Y - 0 N - h |a ND |
—1

11 Q UA NT 1 |T Y - 0 N - o Ir W e R |■- 1
U u G I V 1N gL Q U A NT 1 !t M - A V A 1 L A B L E • j

All data-names except data-name-n must represent elementary
numeric items. Implied decimal points are aligned.
At least two data-names or numeric-literals must precede
the word GIVING. The word TO cannot be written in the
same statement with the word GIVING.
Data-name-n must represent either an elementary numeric
item or anelementary report item. The value of
data-name-n is not added.
The sum replaces the original value of data-name-n, and is
edited according to that item's picture.

37
J

CLOSE

Format

Example

Notes

Function To terminate the processing of one or more data files, and
to release the storage areas that were used as buffers for
those files. When applicable, end-of-file label records
(trailer labels) are written, and the file is repositioned
at its beginning.

CLOSE file-name-1 [file-name-2 ...]

I C L O S E SA L E S - S T A T 1 S T 1C S .

Any file that was opened must be closed before the run is
stopped.
All files may be closed at one time, or each file may be
closed as soon as its processing is finished.
Files are not identified as "input" or "output" files.
After a file has been closed, neither that file, nor any
record or data item in that file, may be referred to in a
procedure; except that the file may be opened again, using
an OPEN statement. A common technique is to open a file
(say, a magnetic tape file) on which to write the output of
a segment of a program; the file is closed at the end of
that segment, at which time the tape is rewound; then the
file is opened again, this time as an input file for the
next segment of the program.

(3/66) 38

COMPUTE

Function

Format

Example

Notes

To place the value of an arithmetic expression, data item,
or numeric literal into a data item.

(arithmetic-expression data-name-2
numeric-literal

!c 0 M P U T E N E W - BA LA N C E « O L D - B A L A N C E +
1 R E C E 1 P T S - 1 S S U E S .

The value of whatever is written to the right of the equal
sign is placed into the item represented by data-name-1.
Data-name-1 must represent either an elementary numeric
item or an elementary report item. The value placed into
the item is edited according to the item's picture.
Arithmetic-expressions are discussed on the following page.
In addition to the information given there, it should be
noted that data-name-1 may be used in the arithmetic
expression; for instance, it is possible to write
COMPUTE TOTAL - TOTAL + INCREASE - DECREASE. In this
example, the original value of TOTAL is used to compute a
new value to be placed into TOTAL. When data-name-1 is
used in this way, it must represent an elementary numeric
item, and there is no editing of the result.
When the data-name-2 or numeric-literal option is used, the
result is the same as if a MOVE had been written. For
example, COMPUTE RESULT * 100 is equivalent to MOVE 100
TO RESULT.
Data-name-2 must represent an elementary numeric item.
The figurative constant ZERO may be used in place of the
numeric-literal 0.

(3/66) 39

ARITHMETIC EXPRESSIONS

Function

Format

Example

Notes

To express an algebraic formula consisting of a series of
two or more operands to be added, subtracted, multiplied,
divided or exponentiated. The formula may call for any
number of these operations, in any sequence. Arithmetic
expressions are used in COMPUTE entries and IF entries.

(data-name-1
(numeric-literal-1

data-name-2
numeric-literal-2

data-name-3
numeric-li teral-3

(1 + RA T E / BAS E) * * (Y E A R S * B A S E) !-i 1

Data-names must represent elementary numeric items.
Operations are represented by symbols, as follows:
+ stands for "plus"; - for "minus"; * for "times";
/ for "divided by"; and ** for "raised to the power of".
(On the program sheet, these symbols must be preceded and
followed by spaces.)
Normally, operations are performed in order from left to
right, with all exponentiations being performed first, then
all multiplications and divisions, and finally all additions
and subtractions.
The normal order of operations may be changed by using
parentheses to enclose two or more operands and the symbols
between them, such as (REGULAR-HOURS + 1.5 * OVERTIME-HOURS).
Operations in parentheses are performed prior to operations
outside parentheses. When there are parentheses within
parentheses, such as ((ON-HAND + ON-ORDER) * UNIT-PRICE),
the operations in the innermost set of parentheses are
performed first.
Work areas needed to perform calculations are provided by
the compiler.
Implied decimal points are aligned where required.

(3/66) 40

DISPLAY (1)

Function

Format

Example

Notes

To put as many as 120 characters of data out on the output
device which has been designated as the "system logical
output device". This output device might be a disk file,
tape drive, printer, etc.; sooner or later, though, the
data will be printed out. This statement is used for low-
volume output, such as exception records, control totals,
or messages; it is not used to write files of data.

DISPLAY
data-name-1
literal-1
figurative-constant-1

data-name-2
literal-2 ...
figurative-constant-2

iD I SP LiAY A C C O U N T - N U M B E R , F I N A L - T O T A L

Data-names can represent either group or elementary items.
Literals can be either numeric or non-numeric.
The contents of the items represented by data-names, or the
actual characters represented by literals and figurative-
constants , will be displayed.
Any number of data-names, literals, and figurative-constants
can be written in one statement, but the combined size of
the items must not exceed the specified maximum.
When two or more items are displayed, no spaces are left
between them. If a space is desired, either the figurative
constant SPACE must be used, or a space must be included in
a non-numeric literal. For example: DISPLAY CUSTOMER-NUMBER,
SPACE, TRANSACTION-AMOUNT, SPACE, EXCEPTION-CODE.
The quotation marks that enclose non-numeric literals are
not displayed. If quotation marks are to be part of the
output, the figurative constant QUOTE must be used. For
example: DISPLAY 'BEGIN' QUOTE 'PHASE 2' QUOTE. The data
that would be displayed in this case is BEGIN 'PHASE 2'

(3/66) 41

DISPLAY (2)

Function

Format

Example

Notes

To type as many as 72 characters of data on the console
printer. This statement is used to type a one-line
message to the operator.

(data-name-1 literal-1
f igura tive-cons tant-1

data-name-2
literal-2
figurative-constant-2

UPON CONSOLE

!d i s p L A Y ' G 1 V E CU R R E N T DA T E ' ; : : 1 ;
: l ! l U P O N C O N S O L E • *

! * !

All of the Notes for DISPLAY (1) also apply to this
statement.

(3/66) 42

DISPLAY (3

Function

Format

Example

Notes

To put as many as 72 characters of data out on the output
device which has been designated as the "system logical
punch device". This output device might be a disk file,
tape drive, reader-punch, etc.; sooner or later, however,
the data will be punched into a card. This statement is
used for low-volume output, such as exception or summary
information, not for punching files of data cards.

{data-name-1) [data-name-2
literal-1 > literal-2
figurative-constant-1) [figurative-constant-2

UPON SYSPÜNCH

1 Id i s p L A Y 1° 1s C R E P A N C Y _ R E C 0 R
|—r
D

1 1
L i- U P 0 s Y S P U NC H ■ • JL

An 80-character record is produced, with the data to be
displayed put into the leftmost positions.
If fewer than 72 characters are to be displayed, the
remaining positions through position 72 are filled with
spaces.
Positions 73-80 are reserved for the name of the program.
The name placed into these positions is the name given in
the PROGRAM-ID paragraph of the Identification division.
All of the Notes for DISPLAY (1) also apply to this
statement.

(3/66) 43

DIVIDE (1)

Function

Format

Example

Notes

To divide the value of one item into the value of another
item, and to place the quotient into the second item.

DIVIDE |data-name-1 } INT0 data-name-2------ (numeric-literal) ----

D I V I DE 1 N TO T W E L V E ' - MO NTH T O T A

Data-names must represent elementary numeric items.
The value of data-name-1 or numeric-literal is the divisor.
The original value of data-name-2 serves as the dividend,
and is replaced by the quotient. The quotient is not edited.

(3/66) 44

DIVIDE (2)

Function

Format

Example

Notes

To divide the value of one item into the value of another
item, and to place the quotient into a third item.

DIVIDE data-name-1
nume r i c-1 i t e r a 1-1 INTO data-name-2

nume ri c-1 i te ra 1- 2
GIVING data-name-3

!d i v i DE P URCH A S E - QU AN T 1 T Y 1 NT 0: l : T O T A L - C O S T , G I V I NG U N 1 T - C OST #

Data-name-1 and data-name-2 must represent elementary
numeric items. Data-name-3 must represent either an
elementary numeric item oran elementary report item.
The value of data-name-1 or numeric-literal-1 is the
divisor.
The value of data-name-2 or numeric-literal-2 is the
dividend.
The quotient replaces the original value of data-name-3,
and is edited according to that item's picture.

GO TO

Format

Example

Notes

Function To cause a branch to a procedure in the program. The normal
flow of control is resumed at the beginning of the specified
procedure.

GO TO procedure-name

Ig o t 0 CO MPAR e ' - t r A N S A CT 1 0 N -N U M B E R S .

Procedure-name must be either the name of a paragraph or
the name of a section in the Procedure division. The word
SECTION is not used after a section name in the statement.
It is permissible to branch from some point in a procedure
back to the beginning of the same procedure. In other
words, procedure-name may be the name of the procedure that
the GO TO statement is part of.

(3/66) 46

Format

Example

Notes

Function

IF (1)

To cause one or more statements to be acted on only if a
certain condition exists.

IF test-condition THEN statement-1 [statement-2 ...].

1 I i i f I Ib A L A N CE 1S NE 6 A T 1V E ,
1 ■ i l l p E R F ORM R E FU N D - P JO o o m DURE • f

Test-condition may be a relation test, sign test, condition-
name test, class test, or overflow test. Formats for these
tests are given on the page following IF (2).
Any number of statements may follow test-condition. These
statements are acted on if the condition exists, and are
jumped over if the condition does not exist.
Normal flow of control is followed when the statements are
acted on. In other words, statement-1 is acted on first,
statement-2 second, and so on. This means that if
statement-1 is a GO TO or STOP statement (for instance),
then statement-2 will never be acted on. It is up to the
programmer to make sure that the statements appear in a
logical sequence.
An IF statement must be terminated by a period. All
statements following test-condition, up to the period, are
dependent on the condition.

(3/6Ó) 47

Function

Format

Example

Notes

IF (2)

To cause one or more statements to be acted on only if a
certain condition exists, and to cause one or more other
statements to be acted on only if the condition does not
exist.

IF test-condition THEN statement-1 [statement-2 ...]
(ELSE
| OTHERWISE statement-m [statement-n] •

! i f a 6 E < 21 »11 ADD 1 TO NUM B E R - O F - M I NOR S i
Ie l s e »• a d D 1 T O N UMBE R - O F - M A J OR S .

Statements up to the word ELSE or OTHERWISE are acted on
only if the condition exists.
Statements following ELSE or OTHERWISE, up to the period,
are acted on only if the condition does not exist.
All of the Notes for IF (1) also apply to this statement.

(3/66) 48

Function

Relation
test
format

Sign
test
format

Condition-
name test
format

Class
test
format

Overflow
test
format

Notes

i
i

TEST CONDITIONS

To compare two data values; to examine the operational sign
of a data item; to check for a specific value in an item;
to check the class of data in an item; or to determine
whether the form in a printer is at end of page. These
tests are used in IF entries.

data-name-1
literal-1
arithmetic-expression-1
figurative-constant-1

I IS [NOT]

EQUAL TO
GREATER THAN
LESS THAN
><

data-name-2
literal-2
arithmetic-expression-2
figurati ve-cons tant-2

data-name
arithmetic-expression [NOT]

[NOT] condition-name

data-name IS [NOT] {ALPHABETIC 1

[NOT] overflow-name

In a relation testy all combinations of operands are
permitted, except two literals, two figurative constants,
or a literal anda figurative constant.
Arithmetic-expressions are discussed on the page following
COMPUTE.
Condition-name must be defined in a level-88 entry in the
Data division.
Overflow-name must be defined in an APPLY entry in the
Environment division.

(3/66) 49

MOVE

Function

Format

Example

Notes

To move data to one or more receiving items. Editing and/or
conversion of the data may occur when the data is moved.
Editing occurs when data is movecl to an elementary report
item. Conversion occurs when data is moved to an
elementary numeric item whose usage is different (for
example, when data from a DISPLAY item is moved to a
COMPUTATIONAL-! item.)

{data-name-1 J
literal > TO data-name-2 [data-name-3 ...]
figurative-constant)

h/IOVE Z E R O S T 0 H 1GH - S C O R E 1 ; LO w - S C O R E , j

! A V E R A G E - S C O R E . !

There may be any number of receiving items, but only one
data source. The same data is moved to all receiving items.
The choice of source and receiving items is subject to the
following rules:
1. Data may be moved to group items from any source.
2. Data may be moved to elementary alphanumeric items

from any source except from an elementary floating
point item.

3. Data may be moved to elementary numeric items or
to elementary report items only from an elementary
numeric item, a numeric literal, or the figurative
constant ZERO (ZEROS, ZEROES).

4. Data may be moved to elementary alphabetic items
only from an elementary alphabetic item, an
alphabetic literal, an elementary alphanumeric
item, a group item, or the figurative constant
SPACE (SPACES).

(3/66) 50

Function

Format

Example

Notes

1

MULTIPLY (lj

To multiply the value of one item by the value of another
item, and to place the product into the second item.

MULTIPLY |data-name-1 } BY data-name-2-------- (numeric-literal) —

' SVIULTI P L Y .0 2 - r r r5 B'Y It a 'x - b a s e I.I ! 1

Data-names must represent elementary numeric items.
The original value of data-name-2 is used as a factor in
the computation, and is replaced by the product. The
product is not edited.

(3/66) 51

MULTIPLY (2)

Function

Format

Example

Notes

To multiply the value of one item by the value of another
item, and to place the product into a third item.

MULTIPLY jdata-name-1) BY (data-name-2
1 numeric-literal-1f — (numeric-literal-2

GIVING data-name-3

ÏVIULT 1 P L Y WAG E - RA T E B Y
1■ 1 ; R E G U L A R - H OU R s - WO RKED

; i : G I V I NG R EG UL AR - P AY .

Data-name-1 and data-name-2 must represent elementary
numeric items.
Data-name-3 must represent either an elementary numeric
item or anelementary report item.
The product replaces the original value of data-name-3,
and is edited according to that item's picture.

(3/66) 52

NOTE (1)

Format

Example

Notes

Function To enter an explanatory sentence into the source program
listing. The sentence is printed with the other entries
of the Procedure division.

NOTE any words, numbers, or symbols.

1 !n !o T E — — C 0 NT R 0 L A R E A il s f |i l |l E D W 1 T H
1 11 9 1 S A F T E R L A S T R e |c 0 R D o |f MA S T E R
1 1__1_ F 1 L E H A S B E E N R E a |d •

The object program is in no way affected by a NOTE.
There are no restrictions on the length or contents of a
NOTE sentence. Even reserved words can be used.
A NOTE entry must be terminated by a period.
A NOTE must not be the first sentence of a paragraph, unless
the whole paragraph is made up of explanatory sentences.
(The format of a NOTE paragraph is explained on the next
page.)

(3/66) 53

NOTE (2)

Function

Format

Example

Notes

To enter a paragraph of comments into the source program
listing. The paragraph is printed with the other paragraphs
of the Procedure division.

paragraph-name
NOTE any words, numbers, or symbols .

[any sentence ...]

C OM!m!e N T - 6'. 1 1 1
f 1' S '1; | < ï I

In o t e T H A T JU S T T H E F 1 RST 3 D 1 G 1 T S OF
; ; !t h e CL AS S I F 1C A T 1ON C ODE ARE 1

1ANAL Y Z ED .: TH 1 S 1S DO NE 1N OR DER TO
JCHOO s !e ! !a MONG 8 S P E C 1A L 1 Z ED S U B - f

’ ' .ROUT i In e s WH 1CH A N A L Y ZE T HE R EMA 1N 1 NG j

Id i g i t Is U 1 F T HE F 1 RST 3 D 1 G 1 T S AR E
l l L L E gIa U , TH E REC ORD I S D UMPE D OU T ON

! It h e OH E C K PO 1NT T A P E AND THE N E X T i

IRECO r !ds h S RE A D .

Coding format rules must be observed, the same as for any
other paragraph. The paragraph header entry must begin in
margin A, and one or more sentences must be written in
margin B.
Only the first sentence of the paragraph must start with
the word NOTE. The other sentences may start with any word
or character.
The entire paragraph must be made up of comments. Even if
one of the sentences in the paragraph was intended to be a
MOVE or ADD statement (for instance), the compiler will
treat it as a comment, and disregard it while compiling the
object program. Therefore, it is necessary to start a new
paragraph for the next procedural statement after a NOTE
paragraph.
All of the Notes for NOTE (1) also apply to this format.

(3/66) 54

Format

Example

Notes

Function

(3/66)

OPEN (1)

To make one or more input data files ready for reading, and
to prepare buffers (storage areas) to receive 'blocks of
data. When applicable, header labels (beginning-of-file
label records) are checked to make sure that the file is
current and that it contains appropriate data for the job.
An OPEN statement does not make any records available for
processing; a READ statement is required to do that.

OPEN INPUT file-name-1 [file-name-2 ...]

! i ! !o>p ï: n i NF>UT R E C E I V A BL ES * i | 5 ? j j ; !
m i : ! rJE w -

Ooo<T

u |nMs • 1 1 | j i I • ; i | \

An input file must be opened to enable READ statements to
obtain records for processing.
All files may be opened with one OPEN statement. It is also
possible to use a separate OPEN statement for each file.
Each file named in an OPEN statement must be defined in a
file description entry in the Data division of the program.

55
*

OPEN (2)

Function

Format

Example

Notes

To make one or more output files ready for writing, and to
prepare buffers (storage areas) to transmit blocks of data.
When applicable, the old header labels (beginning-of-file
label records) are checked to make sure that it is all right
to destroy the old information recorded on the output
volume (magnetic tape, magnetic disk, etc.); and new header
labels are written. An OPEN statement does not write any
data records in the file; a WRITE statement is required to
do that.

OPEN OUTPUT file-name-1 [file-name-2 ...]

lOPEN O U T P U T N E W - P A Y R O L L - F I L E •

An output file must be opened to enable WRITE statements to
release output records.
All of the Notes for OPEN (1) also apply to this statement.

(3/66) 56

OPEN (3)

Function

Format

Example

Notes

To combine the function of opening one or more input files,
with the function of opening one or more output files.
These functions are discussed on the preceding two pages.

OPEN INPUT file-name-1 [file-name-2
OUTPUT file-name-m [file-name-n . .]

!op e|n 1NP UT | l NV E NT 0RY | B A dpc - 0|R!DE RS •1»l I 0u T P uT JL ST 0CK— ST A T US • ! I 1 I

All of the Notes for OPEN (1) and (2) also apply to this
statement.

(3/66) 57

PERFORM (1)

Format

Example

Notes

Function To cause a branch to a procedure in the program, and when
the end of that procedure is reached, to cause control to
return to the next statement after the PERFORM statement.
In other words, the procedure is treated as a subroutine,
and the PERFORM statement in the main routine provides the
linkage to and from the subroutine.

PERFORM procedure-name

Ip e r f ORM n e t :- p Ia M- C A L C U LA T 1 ON . ; 1 ; ! | f

Procedure-name can be either the name of a paragraph or the
name of a section in the Procedure division. The word
SECTION is not used after a section name in the statement.
Procedure-name must not be the name of a procedure that the
PERFORM statement is part of.
The procedure to be performed can be separate from the main
routine. Or, it can be part of the main routine; that is,
it can be situated so as to be executed "in line" — during
the normal flow of control from procedure to procedure —
as well as being performed "out of line”.
A procedure can be named in more than one PERFORM
statement.
A procedure that is performed may itself contain other
PERFORM statements.
The instructions that cause control to return to the main
routine are generated by the compiler. In a procedure to
be performed, the programmer writes only the statements to
do the required processing; he does not write a GO TO
statement to branch back to the main routine. In fact, a
GO TO statement must not be the last statement of a
procedure that is to be performed.

(3/66) 58

Format

Example

Notes

Function

(3/66)

PERFORM (2)

To cause a branch to the first procedure in a series of two
or more procedures, and when the end of the last procedure
in the series is reached, to cause control to return to the
next statement after the PERFORM statement.

PERFORM procedure-name-1 THRU procedure-name-2

Ip e r f 0 RM M 1 NO R - TO t !a L T ii
j ; s — r—i— r-

: 1 i |
• (1 * ! \ T H RU MAJ O R - T 0 T A L

j
• i i l

There may be any number of procedures in the series.
Procedure-name-1 is the name of the first procedure, and
procedure-name-2 is the name of the last procedure in the
series.
The PERFORM statement must not be part of any procedure in
the series. However, the procedures in the series may
contain other PERFORM statements that name procedures
outside the series.
The procedures in the series must actually follow one
another in the COBOL program. They must be arranged in the
order in which they are to be performed.
All of the Notes for PERFORM (1) also apply to this
statement.

59

READ

Function

Format

Example

Notes

To make a data record from a sequential input file
available for processing, and to cause one or more state
ments to be acted on when the end of the file is reached.
Data records are made available one at a time from the
input blocks. When the end of a volume is reached for a
multi-volume file, volumes are switched; for example, at
the end of a tape reel, the tape is rewound and the next
reel is read. Normally, standard header and trailer labels
are checked.

READ file-name AT END imperative-statement-1
[imperative-statement-2 ...] .

!r e a d FOR E C A S T - F 1l e ‘ }
1
l A T E ND , C LOS E FO R E C A S T - F 1 L E ,
l S T O P RUN

This format is used for sequential files, including
magnetic tape files, card files, and sequentially-organized
files on direct-access devices. A different format is used
for non-sequential files.
The file must have been opened before it can be read.
A record remains available until the file is read again or
closed.
If the file contains more than one type of record, the next
record is made available, regardless of type. (The
programmer cannot specify the type of record to be read.
Note that the format requires the name of the file, not of
a record.) The differing records share the same input area,
so the program must determine which type of record is
available in the input area at any given time.
The statements that follow the words AT END are acted on
when a READ is called for, but the last data record of the
file has already been read. Conditional statements such as
IF statements are not allowed in the AT END clause.
However, a branch may be specified (AT END, GO TO procedure-
name) to a procedure that may contain conditional as well
as imperative statements.
A READ statement must be terminated by a period. All
statements following the words AT END, up to the period,
are taken to be end-of-file actions.

(3/66) 60

STOP (1)

Function

Format

Example

Notes

(3/66)

To terminate execution of the object program.

STOP RUN

smofp RIUIN

Control of the computer is turned over to the operating
system control program. In other words, when STOP RUN is
acted on, the computer does not halt, but goes on to some
other job.
STOP RUN is used at the end of a job, or when an error in
the data is so serious that it is impossible to continue
the run.

61

STOP (2)

Format

Example

Notes

Function To type a message on the console printer, and then to
delay the execution of the object program until the operator
takes required steps.

STOP literal

' .STOP 1 HA L T 3 50 - - CO NS U L T RU N BO 0 K ' .

Literal may consist of as many as 72 characters if it is
non-numeric, or as many as 18 digits if it is numeric.
A message code generated by the system is typed on the
console printer, followed by the literal. Execution of
the program is suspended until the operator uses the key
board to type the same message code. Execution then is
resumed at the statement following the STOP statement.
The literal usually consists of brief instructions to the
operator. If the instructions require more than 72
characters, a common practice is to make the literal a
code number that refers the operator to detailed instructions
contained in the run book.

(3/66) 62

SUBTRACT (1)

Function

Format

Example

Notes

To subtract the values of one or more items from the value
of another item, and to place the difference into the latter
item.

SUBTRACT data-name-1
numeric-literal-1

FROM data-name-n

data-name-2
numeric-literal-2

i S U B T R A C T R E F UNO FR O M AMO U N T - D U E

All data-names must represent elementary numeric items.
Implied decimal points are aligned.
The values of all of the data items named before the word
FROM are subtracted from the value of data-name-n.
The difference replaces the original value of data-name-n.
The difference is not edited.

(3/66) 63

SUBTRACT (2)

Function

Format

Example

Notes

To subtract the values of one or more data items from the
value of another item, and to place the difference into
still another item.

SUBTRACT data-name-1
numeric-literal-1

data-name-2
numeric-literal-2

FROM data-name-m
numeric-literal-m GIVING data-name-n

ISUBT R A C T DED U C T 1ONS FROM GRO S S - P A Y .
1i M i ; 1 G 1 V I NG N E T - P A Y .

All data-names except data-name-n must represent elementary
numeric items. Implied decimal points are aligned.
The values of all of the data items named before the word
FROM are subtracted from the value of data-name-m or
numeric-li teral-m. The calculation is done in a register
or in a work area, so the original value of data-name-m
or numeric-1iteral-m remains unchanged after the subtraction.
Data-name-n must represent either an elementary numeric
item or anelementary report item. The value of
data-name-n is not used in the calculation of the
difference.
The difference replaces the original value of data-name-n,
and is edited according to that item's picture.

(3/66) 64

WRITE (1)

Format

Example

Notes

Function

(3(/66)

To release a data record for a sequential output file.
Each output block is filled with the number of records
specified in the file description entry in the Data division.
When the end of a volume is reached for a multi-volume file,
volumes are switched; for example, at the end of a tape
file, the tape is rewound and the next reel is written.
Normally, standard header and trailer labels are written.

WRITE record-name

! i i Wr i t E IN V E N T O R Y - M A S T ER . 1 1 !

This format is used for sequential files, such as magnetic
tape files or sequentially-organized files on direct-access
devices. (The same format is used to write non-sequential
files; however, its function is different. Different
formats, discussed on the following pages, are used for
files that are punched or printed.)
The record is written in the file with which its record
description is associated in the Data division. Note that
the format requires the name of the record, not of a file.
The file must have been opened before a record can be
written in it.
When a record is released, it is no longer available for
processing. Accordingly, all desired processing of the
record must be done prior to the WRITE action.

65

WRITE (2)

Format

Example

Notes

Function To cause a card to be punched in an output card file, and
to select a stacker for the card.

WRITE record-name AFTER data-name

I W r i 1 TE si/\ L E1
— f —
S h s U'Mfv A RiY

_ L L l L L / \ F TE: r s |e L nick 1 M G:
o<1—GO K E R - 4 . i ! j

Record-name is the name of the card record to be punched.
The output record area must contain one more byte than the
number of characters to be punched. For the IBM 2540, for
instance, the output area must contain 81 bytes, even
though data characters are punched from only 80 bytes.
The extra byte must be the first byte of the output area;
it should be defined in the record description as a FILLER
item whose picture is X. The extra byte is required by the
compiler, and used for stacker-selection purposes.
Data-name represents an independent item whose value
determines which stacker will be selected for the card.
The item's picture must be X, and its value must be either
V or W. The value V causes the selection of stacker 4
(on the 2540) or stacker 1 (on the IBM 1442); W causes the
selection of stacker 8 (2540) or 2 (1442).
All of the Notes for WRITE (1) also apply to this statement.

(3/66) 66

WRITE (3)

Function

Format

Example

Notes

To cause a line to be printed, and to control spacing or
skipping.

WRITE record-name AFTER ADVANCING {data-name| lines----- ----- (integer j

Wr i T El H E A D 1 N G — L 1N E — 3 _ U 1 !

A I L a |f T E R A D V A NC 1N G 2 L 1 NE s i. ± u-

Record-name is the name of the line to be printed.
The output record area must contain one more byte than the
capacity of the printer; for example, it must contain 133
bytes for a 132-position printer. The extra byte must be
the first byte of the output area; it should be defined in
the record description as a FILLER item whose picture is X.
The extra byte is required by the compiler, and used for
form-control purposes.
Data-name represents an independent item whose value
determines how the forms will be spaced or skipped. The
item's picture must be X; its permissible values and their
meanings are:

+ (plus sign)
space (blank)
0 (zero)
- (hyphen)
1 through 9
A, B, C

no space (suppress spacing)
single space
double space
triple space
skip to channel 1 through 9, respectively
skip to channel 10, 11, 12, respectively

Integer can be 0, 1, 2, or 3, only. The integer 0
designates a skip to channel 1. The integers 1, 2, and 3
designate single, double, and triple spacing, respectively.
All of the Notes for WRITE (1) also apply to this statement.

(3/66) 67

STUDENT'S COMMENT FORM

SYSTEM/360 COBOL - Writing Programs in COBOL Reference Handbook
R29-0211-2

Your comments, as well as answers to the following questions, will
help us design and administer programmed or self-study courses in a
way that better suits your needs. If your answer to a question is
"No", or needs further explanation, please use the space provided below.
Comments and suggestions become the property of IBM.
• What is your occupation? ____________________________________
• Why did you take this course? _______________________________

Yes
Did this course, in general, meet your needs?
Did an IBM employee serve as your advisor?
Did you receive a completion certificate?
Did you find the material:
Easy to read and understand?

Organized for convenient use?

Well illustrated?

Did you feel that any particular topics should be
added or emphasized?

Did you feel that any particular topics should not
have been included?

□
□
□
□
□
□
□
□

□
□
□
□
□
□
□
□

• If you found any technical errors, please list them below,
giving form number, page, and frame number.

r
S t a p l e

F o ld Fold
------- 1

FIRST CLASS
PERMIT NO. 10
ENDICOTT, N. Y.

B U S I N E S S R E P L Y M A I L
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY_____

I BM C o r p o r a t i o n
1701 N o r t h S t .
E n d i c o t t , N . Y . 1 3 7 6 0

Attention: DP Education Development, Dept. 617

Fold Fold

: s4U0 ujujo3 | d u o 14 i p p y

C
u

t
A

lo
n

g
L

in
e

STUDENT'S COMMENT FORM

SYSTEM/360 COBOL - Writing Programs in COBOL Reference Handbook
R29-0211-2

Your comments, as well as answers to the following questions, will
help us design and administer programmed or self-study courses in a
way that better suits your needs. If your answer to a question is
"No", or needs further explanation, please use the space provided
below.
Comments and suggestions become the property of IBM.
• What is your occupation? ___
• Why did you take this course?

Yes
Did this course, in general, meet your needs?
Did an IBM employee serve as your advisor?
Did you receive a completion certificate?
Did you find the material:
Easy to read and understand?

Organized for convenient use?

Well illustrated?

Did you feel that any particular topics should be
added or emphasized?

Did you feel that any particular topics should not
have been included?

□
□
□
□
□
□
□
□

□
□
□
□
□
□
□
□

e If you found any technical errors, please list them below,
giving form number, page, and frame number.

S t a p l e [

Fold Fold I
-------------1

FIRST CLASS
PERMIT NO. 10
ENDICOTT, N. Y .

B U S I N E S S R E P L Y M A I L
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY_____

I BM C o r p o r a t i o n
1701 N o r t h S t .
E n d i c o t t , N . Y . 1 3 7 6 0

Attention: DP Education Development, Dept. 617

I

i

Fold Fold

I

S J U S U I I U O ^ | D U O | 4 | p p Y

Cu
t

A
lo

ng
 L

in
e

é

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains N Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

	\\OMV-TC\temp\Scan\IMG_0068.pdf
	\\OMV-TC\temp\Scan\R29-0211-2_S360_COBOL_Reference_Handbook.pdf

