

IBM
SYSTEM/360 COBOL

COBOL Program Fundamentals

Text

Programmed Instruction Course

Copies of this publication can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:
IBM DPD Education Development, Education Center, Endicott, New York

©International Business Machines Corporation, 1966

1

System /360 COBOL COBOL P rog ra m Fundam enta ls

PREFACE

The general objective of this book is to teach students
to read System/360 COBOL programs with a high degree of
comprehension. Some of the major topics dealt with are:
the elements of the COBOL language -- reserved words,
programmer-supplied names, symbols, literals, level
numbers, and pictures; the organization of COBOL programs,
and how the divisions of a program are related to each
other; and the interpretation, in detail, of entries in
each program division.
Additional information needed in order to compose
original COBOL programs has deliberately been omitted.
It will be found in other publications of this series.
The subject matter has been arranged in this way to give
the student a chance to see what makes up a complete
COBOL program, before he is required to write one. The
student can concentrate on the meaning and function of
program entries, without being concerned about their
formats and alternate options.
Several other topics are not discussed in this publication;
for instance, the Report Writer feature, the Sort feature,
floating-point operations, direct-access devices, and
so on. However, care has been taken to teach concepts in
a way that allows such topics to fall right into place
later, with no contradictions or inconsistencies.
This programmed instruction textbook is designed to be
studied in conjunction with the COBOL Program Fundamentals
reference handbook (Form R29-0206TÜ The reference
handbook contains technical information, and is kept by
the student for reference purposes after he completes
his studies. This textbook gives the student reading
assignments in the reference handbook, explains the
concepts that make sense of the technical information,
and lets the student apply the information to practice exercises and problems. In short, the textbook teaches
the student to find and to apply the information that is
in the reference handbook. The student learns to look up
information when he needs it, instead of memorizing it.

(3/66)

J

1

System /360 COBOL COBOL P rog ra m Fundam entals

ACKNOWLEDGEMENT

The following information is reprinted from COBOL-61 EXTENDED,
published by the conference on Data Systems Languages (CODASYL),
and printed by the U. S. Government Printing Office.

This publication is based on the
COBOL System developed in 1959 by
a committee composed of government
users and computer manufacturers.
The organizations participating
in the original development were:
Air Materiel Command,

United States Air Force
Bureau of Standards,

Department of Commerce
David Taylor Model Basin,

Bureau of Ships, U.S. Navy
Electronic Data Processing Divi

sion, Minneapolis-Honeywell
Regulator Company

Burroughs Corporation
International Business Machines

Corporation
Radio Corporation of America
Sylvania Electric Products, Inc.
Univac Division of Sperry-Rand

Corporation
In addition to the organizations
listed above, the following
organizations participated in the
work of the Maintenance Group:

Allstate Insurance Company
Bendix Corporation, Computer

Division
Control Data Corporation
DuPont Company
General Electric Company
General Motors Corporation
Lockheed Aircraft Corporation
National Cash Register Company
Philco Corporation
Royal McBee Corporation
Standard Oil Company (N.J.)
United States Steel Corporation

This manual is the result of
contributions made by all of the
above-mentioned organizations,
no warranty, express or implied,
is made by any contributor or by
the committee as to the accuracy
and functioning of the programming
system and language. Moreover, no
responsibility is assumed by any
contributor, or by the committee,
in connection therewith.

It is reasonable to assume that a
number of improvements and addi
tions will be made to COBOL. Every
effort will be made to insure that
the improvements and corrections
will be made in an orderly fashion,
with due recognition of existing
users' investments in programming.
However, this protection can be
positively assured only by individ
ual implementors.
Procedures have been established
for the maintenance of COBOL.
Inquiries concerning procedures
and methods for proposing changes
should be directed to the Executive
Committee of the Conference on
Data Systems Languages.
The authors and copyright holders
of the copyrighted material used
herein: FLOW-MATIC (Trade-mark of
the Sperry-Rand Corporation),
Programming for the UNIVAC ® I and
II, Data Automation Systems © 1958,
1959, Sperry-Rand Corporation?
IBM Commercial Translator, Form No.
F28-8013, copyrighted 1959 by IBM?
FACT, DSO 27A5260-2760, copyrighted
1960 by Minneapolis-Honeywell? have
specifically authorized the use of
this material, in whole or in part,
in the COBOL specifications. Such
authorization extends to the repro
duction and use of COBOL specifi
cations in programming manuals or
similar publications.
Any organization interested in
reproducing the COBOL report and
initial specifications in whole or
in part, using ideas taken from
this report or utilizing this
report as the basis for an instruc
tion manual or any other purpose
is free to do so. However, all
such organizations are requested
to reproduce this section as part
of the introduction to the
document. Those using a short
passage, as in a book review, are
requested to mention "COBOL” in
acknowledgement of the source, but
need not quote this entire section.

(3/66) i i i

A

System /360 COBOL COBOL P rogram Fundam entals

TABLE OF CONTENTS

STUDENT INSTRUCTIONS vii

LESSON 1 1

LESSON 2 13

LESSON 3 25

LESSON 4 39

LESSON 5 57

LESSON 6 69

LESSON 7 81

LESSON 8 101

LESSON 9 115

LESSON 10 131

(8/66) V

System /360 COBOL COBOL P rog ra m Fundam entals

STUDENT INSTRUCTIONS

1. This textbook must be used in conjunction with a reference
handbook, form R29-0206. If you don't have the reference hand
book, get one before you go any further.

2. The general objective toward which you will be studying, and the
division of information between this textbook and the reference
handbook, are explained in the Preface of this book. Have you
read it?

3. The purpose of this textbook is to guide and direct your study of
System/360 COBOL. It is not meant to serve as a reference book -
that's where the reference handbook comes in. In other words,
once you have read this textbook, the odds are that you will have
no further use for it; as a result, it is meant to be used by
more than one student. The point is: Don't make any marks or
notes in this book.

4. The reference handbook, on the other hand, is yours to keep. If
you care to make any notes, make them in the reference handbook.

5. There are ten lessons in this book. In general, the lessons
consist of reading assignments and questions. You will read
specified parts of the reference handbook, and then answer
questions about what you just read, or about something that you
had previously read.

6. There may be several reading assignments in a lesson, not just
one at the beginning. The reading assignments give the major
titles and subtitles of what you are to read, rather than page
numbers. The major titles appear in the table of contents in the
reference handbook.

7. A lesson may also give you new information to supplement or
explain what you read in the reference handbook.

8. Each lesson is broken up into a number of frames, which are
simply convenient instructional steps. You proceed through the
lesson one frame — one step — at a time. The format of a
frame usually looks like this (in miniature):

First part of frame^
gives reading
assignment, other
instructions, new
information; usually
asks a question or
requires you to
take some action

• • •

econd part of frame
(not present in
some frames) gives
correct answer to
question asked in
first part.

(Continued on next page)

(3/66) v ii

r

System /360 COBOL COBOL P rog ra m Fundam entals

9. The first part of every frame is ended by a group of three dots.
If the frame asks you a question, the correct answer is printed
on the same page, below the three dots. As you study each frame,
you must hide the correct answer from yourself, so that you will
feel challenged to come up with your own answer -- and thereby
learn the subject, instead of just reading words.

10. Use an ordinary sheet of paper or a card to hide the correct
answers. Just make sure that the paper is heavy enough so you
cannot see through it. (No onion skin or tracing paper allowed!)

11. Start each page by putting your "hider sheet” at the top. Then
slide your sheet down until you just uncover a set of three dots, as illustrated below.

12. Then read the first part of the frame, and formulate your answer
to the question or problem it poses. When you have your answer
clearly in mind, slide the "hider" sheet down to the next set
of three dots. This will not only reveal the correct answer, but
also uncover the first part of the next frame.

correct answer to
question in first
frame

first part of
next frame

13. Study at your own speed, but don't spend too much time with any
one frame. Too much concentration on an isolated detail may
destroy your comprehension of a general concept. (Which means:
Don't let the trees block your view of the forest.)

14. You will find additional instructions, along with helpful
remarks and the author's opinions, printed in italics in some of
the frames of the book.

(3/66) viii
L

System /360 COBOL COBOL P rog ra m Fundam entals

LESSON 1

H If you have ever studied a foreign languaget it is possible that
somebody challenged you to say something in the language when
you had barely finished your first lesson! Wellt this sort of
thing happens when you study programming languages too. Although
people are not likely to challenge you to say something in COBOLt
you may get questions like, "What is COBOL, anyway?" For you to
say that you're not suret would sound like a forestry student
admitting that he isn't sure what a tree is! In self defenset
the thing for you to do first is to learn a few general facts
and ideas about COBOL. Sot our first lesson is concerned with
introductory generalities.

In your reading, you should pick up the information that you need
in order to answer these two questions in your own words: What
is COBOL? What are its purposes?

Reading assignment: INTRODUCTION TO COBOL
Origins
Aims
Differences

All reading assignments are in the reference handbook that
accompanies this textbook. Always complete the reading
assignment before going on to the next frame. The frames that
follow will ask you to apply what you have readt or will
supplement your reading with additional information.

• • •

2 There are several types of frames in this book. Most of them
have this much in common: they require you to formulate an
answer mentally. This particular frame asks you to criticize
a statementt based on what you have just read in the reference
handbook. Your answer will probably be different from the
printed answer, but it should mean the same. Do not write your
answer in the book.

What is wrong with this statement: "COBOL was invented by IBM".
• • •

No single person or company can take credit for inventing COBOL.
IBM participated in the development of COBOL, together with
several other computer manufacturers and users.

(3/66) 1

System /360 COBOL COBOL P rog ra m Fundam entals

3 The answer that is required by a frame may be a matter of
opinion, judgment, or fact. In this frame, you are expected to
recall a fact from your reading; however, if you cannot remember
it, you may look it up in your reference handbook.

In what year were the original specifications for COBOL drawn up?
• • •

1959

Frames like this one require you to think of one or more words
or numbers that complete the sentence. The length of the blank
space will always be the same, so it will not be a clue to the
length of the answer. Do not write your answer in the book.

The name "COBOL" is derived from the words _____.
• • •

COmmon Business Oriented Language

5 In this type of frame, you are given a choice of answers, which
are stacked in braces. Select the one best answer.

The name "COBOL" is pronounced KO-BALL.
In other words, "COBOL" should be pronounced to rhyme with
noble
hobble
snowball
low bowl

• • •
snowball

(3/66) 2

System /360 COBOL COBOL P rog ra m Fundam entals

6 Here is another kind of frame that offers you a choice of answers.
In this kind of framet each choice is enclosed in brackets.
lour job is to select all the correct answers. To do thisj you
must examine every choice, instead of merely looking for a
correct answer3 because more than one of the choices may be
correct. Perhaps all of the choices are correct. Or none of them.

In an effort to standardize programming, COBOL provides the
programmer with [a standard program structure] [standard entry
formats] [standard solutions for business data processing jobs].

• • •
a standard program structure AND standard entry formats
But not standard solutions to data processing jobs. Problem solving
is the programmer's job; COBOL is a language in which he can express
his solutions.

You can think of "Common Business Oriented Language" as COBOL's
official title. Unfortunately, each one of the words of the
title can possibly be taken in various ways, so they require a
little explaining.
The title is intended to convey the basic purpose of COBOL:
to be one language for all computers — a standard language for
programming business problems.

COBOL is "common" in that it is
ordinary
well-known
conversational
shared

• • •
shared (shared by all computers)

(3/ 66) 3
J

System /360 COBOL COBOL P rog ra m Fundam entals

8 Although COBOL is common to all computers, you could not take a
COBOL program prepared for one computer (say, an IBM 1410) and
drop it into the card reader of a different computer (say, an IBM
System/360). You would not have to write a new program, starting
from scratch, but you would have to make some changes.
It would be a mistake, then, to say that COBOL is identical for
all computers. But it would be equally wrong to exaggerate the
differences in COBOL for different computers. What it amounts
to, is that there are several versions of a common language,
much like dialects of a spoken language.
Which statement best sums up this idea?
{Several different programming languages bear the name "COBOL".
; All COBOL systems except System/360 COBOL are alike,
jThe similarities of COBOL systems far exceed their differences.
V It is a mistake to use the name "COBOL" for different languages.

• • •
The similarities of COBOL systems far exceed their differences.

9 The words "business oriented" also require a little explaining.
They have three implications: first, that COBOL is business
procedure oriented, rather than machine oriented; second, that
COBOL is particularly applicable to business data processing
problems, as opposed to scientific problems; and third, that
COBOL is a language that businessmen can understand.
Because COBOL is not machine oriented, the COBOL programmer
does not need to know
[what the operation code for adding binary numbers is]
[what data items make up his input records]
[what the general registers are used for]
[whether the output data is to be punched, or written on
magnetic tape].

• • •
what the operation code for adding binary numbers is AND what
the general registers are used for
The COBOL programmer does need to know the layout of data
records, and the media on which they are recorded.

(3/66) 4

System /360 COBOL COBOL P rog ra m Fu ndam enta ls

Since it is machine independent to a large degree, COBOL

{is not^outdatedj new ^evel°Pments in computer technology.
• • •

is not outdated

11 Consider this statement: "COBOL must be obsolete, because there
have been revolutionary changes in computers since 1959”. There
are at least a couple of good reasons why this statement is false.
One is the point made in the previous frame. Another reason why
COBOL is right up-to-date is that the COBOL specifications have
been several times since 1959.

• • •
revised and improved

12 We say that COBOL is oriented to business procedures because a
COBOL program consists of descriptions of (1) the procedures
according to which data files are to be processed, (2) what the
contents of the data files are, and (3) what input-output devices
the data files are to be assigned to.
You have undoubtedly seen definitions of "computer program" that
go something like this: A program is a series of machine
instructions that direct the computer to perform a sequence of
operations. Would you say that this definition applies to
COBOL programs?

• ••
No. A COBOL program is a "program" in a broader sense — it is
a solution for a problem. (Ultimately, to be sure, a series of
machine instructions will be compiled from the COBOL program.)

(3/66) 5

System /360 COBOL COBOL P rog ra m Fundam enta ls

13 COBOL is also business oriented in the sense that it is
particularly applicable to business data processing problems,
as opposed to scientific problems. Here I am paying lip service
to that unfortunately vague line between business and scientific
computer applications. Tasks like preparing reports and updating
files fall into the business category, to which COBOL is oriented.
Tasks that involve trigonometric functions (sines, cosines, etc.)
or Boolean algebra (logical ands, logical ors, etc.) are examples
of tasks that fall into the scientific category.
Decide which category each of these tasks belongs to:

1. Calculating logarithms
2. Sorting records

• • •
Calculating logarithms is a task that most people put into the
scientific category; sorting records is in the business category.

14 For the most part, business data processing involves moving data
around — putting data in and out, rearranging it, changing its
appearance, comparing items of data, locating desired items, etc.
Arithmetic operations are involved, but they are generally limited
to adding, subtracting, multiplying, dividing, and occasionally
exponentiating (raising a number to a power, or finding a root of
a number). COBOL is designed for these kinds of operations.
Jobs that involve complicated mathematics are harder to program
in COBOL. As a general rule, such tasks are in the scientific
category.
Categorize each of these tasks as business or scientific tasks:

1. Computing a hyperbolic tangent
2. Searching a table for a particular data item
3. Calculating the area of a circle

• • •
The hyperbolic function involves mathematics that seems
complicated to me, so I would call it scientific. Searching a
table is definitely a business task. The formula for the area
of a circle (irr2) really calls for two simple multiplications
(3.1416 x r x r), which puts it into the business category.
Notice that we begin to get into a gray area here. Finding the
area of a circle is simple to program in COBOL> while finding
the area under a hyperbola is not.

(3/66) 6

System /360 COBOL COBOL P rog ra m Fu ndam enta ls

15 COBOL is "business oriented" in a third sense: a businessman
can understand COBOL programs after a short introduction to the
language, whether or not he is a programmer.
A sample COBOL sentence is printed below. Notice that it is
practically self-explanatory. It illustrates that the COBOL
language resembles the _____ language.
* ‘ !1 !— I—\—!— !—

f ! M U lLT 1 P L Y
.1- 'f j

iU|N!l T — P R 1 b M q U ANT
r .i..

IfT Y '. i ! i I 5 i

G 1 V 1n & It 0 T A L - p r |i O m •

i . ;
--!--f"""f.

English

16 Computers can't understand English, so what's the point of
writing programs in English?

• • •
Programs written in English serve to communicate data processing
procedures to people, in addition to serving as source programs
for computers.

17 When a programmer writes a program in machine language or in an
abstract symbolic language, he prepares a detailed explanation
of what the program does and how the program does it. This
supplementary write-up, called "documentation" of the program,
often takes as much time to prepare as it took to write the
program itself.
Since COBOL programs are similar to English, they
require more documentation than other programs
require just as much documentation
require less documentation
require no documentation at all

require less documentation
Although COBOL programs are sometimes referred to as
"8elf-documenting"t some documentation is almost always needed --
possibly just remarks and notes added to the program.

< V «) 7

System /360 COBOL COBOL P rog ra m Fundam entals

There is danger of going overhoard on the idea that COBOL is
like English. If COBOL were completely self-explanatory , there
would be no point in studying a course on how to read COBOL>
would there? You have already seen one sample COBOL entry that
was an easily readable sentence. In order to get a balanced
point of view, let's look at some entries that are not quite so
readable:

1. Certain elements of the COBOL language have symbolic
meanings, as illustrated by the OS and the 9(6)V99 found
in the entry below.

— ----p -
03 S A L E s - v o L UM E P 1 CT URE 9 (6) Vi99i.

2. In some cases, the words are easy enough to ready but
their meaning is not obvious. For instance, the words
below mean "the data in this item is recorded in binary
code" -- but a person must have studied System/360
COBOL in order to know that.

______1______ U S A G E I S C OM P U T A T I ON A L

3. It is also possible for a programmer to misuse the
languagey by writing entries that are hard to understand.
Perhaps the example below is a trifle extreme, but it
will serve to show what happens when programmers use
abbreviations that are meaningful only to themselves,
a common error.

Im o v e T K V H L T 0 A F P T D S 7 P F D OT T •

• • •

19 Even though a COBOL program is not exactly the same as a story
written in Englishy at least COBOL makes an attempt to
approximate English. And one thing is certain: writing
programs in COBOL is a far cry from writing programs in the
actual language of the computer.

Of course, the idea that programs need not be written in machine
language is one of the main ideas behind programming systems in
general. Although those ideas are not new to you, it will be
worth your while to review some of the familiar terms -- and to
see how they apply to the COBOL system in particular.

Reading assignment: COBOL PROGRAMMING SYSTEM TERMS
• • •

(3/66) 8

System /360 COBOL COBOL P rog ra m Fundam entals

20 The ultimate objective of using the COBOL system is to produce
correct, efficient machine language programs, which are
called

• • •
object programs

Q J Object programs are produced by jcomputersrS
• • •

computers

22 COBOL programs are ƒ source programs)
(object programs)

• ••
source programs

23 Source programs are produced by
• • •

j programmers)
(computers]

programmers

24 Can a COBOL program be executed by a computer?
• ••

No, because it is not in machine language.

25 Every programming system includes a processor — a program that
directs the computer to produce an object program from a source
program. In the COBOL system, the processor is called the ____

• ••
COBOL compiler

(3/Ó6) 9

System /360 COBOL COBOL P rog ra m Fundam entals

26- The program that is compiled is the
COBOL program \
COBOL compiler f
source program /
object program'

• • •
object program
Make sure that you have the relationship between these programs
straight. An object program is compiled from a COBOL program.
A COBOL program is a source program written in COBOL. The COBOL
compiler is executed during compilationt to cause an object
program to be compiled.

27 The System/360 used to compile an object program is the
(object computer)
(source computer)

• • •
source computer

28 The object computer is a System/360 that is used to [compile]
[execute] the object program.

• • •
execute ONLY

29 For a given System/360 COBOL program, the source computer and
the object computer
[may be the same System/360]
[must be the same System/360]
[may be different System/360s]
[must be different System/360s].

• • •
may be the same System/360 OR may be different System/360s
This is strictly a matter of hardware configurations.
A System/360 may be used both as the source computer and as the
object computer provided that it contains the hardware required
to execute the COBOL compiler and the object program. On the
other handt & System/360 Model 30 might be used to compile a
program, while a System/360 Model SO might be used to run the job.

(3/66) 10

System /360 COBOL COBOL P rog ra m Fundam entals

30 This review of terms was pretty superficial -- and deliberately
so. There is nothing to be gained by spending any more time on
a subject that you are already familiar with. However, you
should feel fairly confident of your knowledge of these terms
before you continue. You may find it useful to read the
definitions in the reference handbook once again. Incidentally,
if you didn't recognize the terms, or if our discussion of them
seemed like a lot of gibberish, then that is a good indication
that you do not have the background you need to put the rest of
this course to good use; in that case, you ought to put this
course aside for now, and study "Basic Computer Systems
Principles" instead.

• • •

(3/66) 11

System /360 COBOL COBOL P rog ra m Fundam entals

LESSON 2

31 So fart we have talked about COBOL in general terms. Nowt let's
get down to specifics, and find out what elements make up the
COBOL language. I use the term "element" for the basic units
that are found in COBOL programs: the various kinds of words,
numberst and symbols. "Element" is not an "official" termt but
it will do the job in the absence of a better term.

Find out how many elements there are, what they are called, and
where they come from.

Reading assignment: LANGUAGE ELEMENTS
Examples of elements

• • •

32 How many elements are there?
• • •

six

33 See how many of the elements you can name.
• • •

reserved words, programmer-supplied names, symbols, literals,
level numbers, pictures

34 Which elements are composed by programmers, following certain
rules?

• • •
programmer-supplied names, literals, and pictures

35 Which elements are selected from fixed sets as they are needed?
• • •

reserved words, symbols, and level numbers

(3/66) 13

System /360 COBOL COBOL P rog ra m Fu ndam enta ls

36 At this point, you will learn detailed information and rules
about each element in turn. Don't waste your time memorizing
the rules; after all, you can always look them up when you need
them. The important thing is to be aware of the areas in which
rules exist, and how much latitude they give the programmers,
or how severely they limit him.

Reading assignment: RESERVED WORDS
Types of reserved words
Figurative constants
Complete list of reserved words

for System/360 COBOL
• • •

Reserved words are (selected)
(composed) by programmers,

• • •
selected

38 Examine the reserved word list. Notice that most of the
reserved words are simple English words, made up of letters only.
A few of the words contain digits. Some contain hyphens.

Spaces are)
are not) found in some of the words.

• • •
are not
Spaces, you will later learn, are used to separate words and
other elements in entries, so they are never found within words.

39 The reserved words are an inherent part of the COBOL compiler's
vocabulary, but of course, the words must be spelled exactly
right in order for the compiler to recognize them. Exact
spelling includes hyphens, too.
Under this rule, is WORKING STORAGE equivalent to
WORKING-STORAGE?

• • •

No, it is not.

(3/66) 14

System /360 COBOL COBOL P rog ra m Fundam entals

40 No substitutions are allowed in the reserved word list.
Webster's Dictionary may prefer "numerical”/ but COBOL insists
on NUMERIC.
Refer to your reserved word list to pick the correct spelling in
each pair of words below:

1. ALPHABETIC or ALPHABETICAL?
2. PROGRAM-IDENTIFICATION or PROGRAM-ID?
3. IDENTIFICATION or ID?
4. ZEROS or ZEROES?

• • •
1. ALPHABETIC
2. PROGRAM-ID
3. IDENTIFICATION
4. Both ZEROS and ZEROES are correct.
You oan see that there is a certain arbitrariness about the list
of reserved words. COBOL programmers generally keep the list
right at their elbows when they write a program.

41 You will see many of the reserved words as you proceed through
this course, in the context of the entries in which they are used.
There fore t we will not go down the list to discuss what each word
i8 used for. However, one type of reserved word, the figurative
constant, has been singled out for a little extra attention in
the reference handbook. This has been done because the
figurative constants ZERO and SPACE are found in many different
entries.

"Figurative constant" is a mouthful to say, but it is a
reasonable term, since words like ZERO stand for constant data,
rather than actually being the data. In other words, they are
constants in a _____ sense, rather than a literal sense.

• • •
figurative

42 The reference handbook discusses the figurative constants ZERO
and SPACE, and their respective plural forms. The other
figurative constants are HIGH-VALUE, LOW-VALUE, QUOTE and ALL
(plu8 their plurals); these figurative constants have
relatively specialised uses, which you will learn in due time.

• • •

(3/66) 15

System /360 COBOL COBOL P rog ra m Fundam entals

43 Now let's turn to the subject of programmer-supplied names.
"Programmer-supplied names" -- there is another mouthful for
you! This term is useful to ust thought because we must
distinguish names that are composed by programmers from names
that are reserved words. We will give some attention first to
the rules that govern the formation of programmer-supplied
names; then we will see how programmer-supplied names and
reserved words are used together.

Reading assignment: PROGRAMMER-SUPPLIED NAMES
Rules governing programmer-supplied names
Examples of programmer-supplied names in
an entry

• • •

44 Reserved words have preassigned meanings. By contrast,
programmer-supplied names must be _____ within the program in
which they are used.

• • •
defined

45 Programmers supply names for
• • •

data items, data conditions, and procedures

46 According to the rules, programmers may compose names like
PAYROLL, ACCOUNTS-RECEIVABLE, or 265. PAYROLL and ACCOUNTS-
RECEIVABLE might be names of data items, data conditions, or
procedures; however, 265 could only be the name of a _____.

• • •
procedure (because names of data items and data conditions must
contain at least one letter, while procedure names can be
composed entirely of digits)

47 Any letter or digit may be used in a name, but the only special
character allowed is the

• • •

hyphen

(3/66) 16

System /360 COBOL COBOL P rog ra m Fundam entals

48 A hyphen is not allowed to be [the first character]
[the last character] of a name.

• • •
NEITHER the first character NOR the last character may be a
hyphen.

49 The word CODE is not an acceptable programmer-supplied name.
Why not?

• • •
CODE is a reserved word, and therefore cannot be used as a
programmer-supplied name. It violates the rule that a
programmer-supplied name must not be spelled exactly the same
as a reserved word.

50 Is RECORD-CODE an acceptable programmer-supplied name?
• • •

Yes. Even though it contains two reserved words, RECORD and
CODE, they have been joined by a hyphen to form a new word whose
spelling is different from either of these words.

51 Is the following statement true or false? 90-DAY-ACCOUNT is an
illegal name for a data item because the first character of a
name must be a letter.

• • •
False. The rule states that names of data items must contain at
least one letter, but does not specify that the first character
must be a letter. 90-DAY-ACCOUNT is a perfectly legal name.

(3/66) 17

System /360 COBOL COBOL P rog ra m Fundam entals

52 Check your understanding of the rules for programmer-supplied
names. For each name below, decide what rule, if any, is being
violated.

1. 5
2. SYSTEM/360
3. OVERFLOW4. ECONOMIC-ORDER-QUANTITY-COMPUTATION
5. ENTRY-PROCESS
6. HEADING LINE
7. F.I.C.A.

• • •
1. O.K. (acceptable for procedures, though not for data items

or conditions).
2. Contains an illegal special character (SYSTEM-360 would

be correct).
3. Not allowed because OVERFLOW is a reserved word.
4. Exceeds 30 characters.
5. O.K.
6. No spaces are allowed.
7. Contains illegal special characters (FICA or F-I-C-A)

would be all right, but F-I-C-A- would violate still
another rule).

53 You can see that the rules for programmer-supplied names are not
especially restrictive. They permit programmers to invent gust
about any name under the sun. In fact, they give the programmer
so much freedom to invent names, that he must learn to hold back
his inventive genius. Remember that one of the aims of COBOL is
to produce programs that read like English, which mean that the
programmer should either use English words for names (SALARY,
DEDUCTIONS, etc.), or compose names from two or more English
words, connecting them with hyphens (SOCIAL-SECURITY, FEDERAL-
INCOME-TAX, etc,). Since names can be characters long, there
is no need to abbreviate or to make up code names.

• • •

(3/66) 18

System /360 COBOL COBOL P rog ra m Fundam entals

54 But suppose that a programmer decides to use a name like ZQX-3.
First, is ZQX-3 a legal name (does it violate any rules)?
Second, is it a good name?

• • •
ZQX-3 is a legal name, inasmuch as it does not violate any rules.

The answer to the second question is a matter of opinion. I hope
you agree that meaningless names have no place in a COBOL program
because they defeat the purpose of making programs easy to read
and understand. By this standard3 ZQX-3 is a good name only if it
is readily understood by everyone who has to read the program.
It is a bad name if it makes sense only to the programmer.

For instance, if the program has something to do with the
manufacture of self-starting charcoal briquetst and ZQX-3 is the
secret new ingredient that makes light fluid obsolete> then
ZQX-3 is the name to use. But if the programmer decided to use
ZQX-3 in place of MINIMUM-BALANCE because it is shortera or
because he once met a cab driver named Zarathustra Q. Xerxes IIIj,
then it is a bad name.

55 Reserved words and programmer-supplied names together account for
nearly all of every COBOL program. The reserved words may be
thought of as forming the skeleton, while the programmer-supplied
names are the meat of most program entries. To get the idea,
pick out the reserved words (with the aid of the reserved word
list) and the programmer-supplied names in the entry below.

Iad D qIuIaIn T 1 Thr -— r r - ON- ORDE R TO STO 0 7k 1 CD ALAN cIeL

• • •

reserved words-

(add)(q u a n t i ty - on- o r d e r) (to)(s t o c k - b a l a n c e

* \ 7programmer-supplied names

(3/66) 19

System /360 COBOL COBOL P rog ra m Fundam entals

56 Pick out the reserved words and programmer-supplied names in the
entry below. Notice that this entry has the same framework of
reserved words as the entry in the preceding frame.

lADD GiROS S TO !Y!EiA - IT O - O A T E - G R O S S

• • •
reserved words

Y E A R - T O - D A T E - G R O S S .)

programmer-supplied names

57 Here is a slightly longer program entry, with a considerably
different ratio of reserved words to programmer-supplied names.
Using the reserved word list, find out which words in the entry
are reserved words, and which are programmer-supplied names.

FD |PAYR O L L - F 1 L E | I ! i—j— : : 1 !

Il a b e L; RE CORD S AR E S T AND A RD ' 1 !

Id a t a R E C ORD I S E M P LO Y E E - M A S T E R . !

• • •

Reserved words
FD
LABEL
RECORDS
ARE
STANDARD DATA
RECORD
IS

In this example, the programmer has supplied the names of a data
file and a. data record. You have read that names for data items,
data conditionst and procedures are supplied by programmers;
for the moment3 you can think of the file and the record as
types of data items.

Programmer-supplied names
PAYROLL-FILE
EMPLOYEE-MASTER

(8/66) 20

System /360 COBOL COBOL P rog ra m Fundam entals

58 You can see that two of the main tasks involved in COBOL
programming are to select the reserved words required for the
framework of entries, and to supply names to fill in the frame
work — especially names for data items. You know that it is up
to the programmers to define the names that he uses.
You also know that there is an exception to this general rule;
namely, that there are a few predefined data items with reserved
names, which are called _____.

• • •
figurative constants

59 The most commonly used figurative constants are
• • •

ZERO (ZEROS, ZEROES) and SPACE (SPACES)

60 In the sample entries that you have seen, you have undoubtedly
noticed some symbols -- specifically, periods and commas. These
are only two of a large number of symbols that play an important
role in COBOL programs. The typical procedure entries below
illustrate a few more of the symbols used in COBOL.

Learn what groups the symbols are divided into> and get a general
idea of what symbols are in each group. Look for symbols that
appear in more than one of the groups.

Reading assignment: SYMBOLS
Punctuation symbols
Arithmetic symbols
Condition symbols

(3/66) 21

System /360 COBOL COBOL P rog ra m Fundam entals

61 In the reference handbook, symbols are defined as "special
characters which, _____, have particular meanings for the
compiler".

• • •
individually

62 Some of the special characters which are used as symbols also
appear in other elements, but there they are not used
individually, and there also, they have different meanings.
For example, a hyphen and a minus sign are the same character;
however, they are used differently and obviously have different
meanings. A hyphen is found embedded between other characters in
reserved words and programmer-supplied names, where it has no
special meaning, and serves only to improve readability. A minus
sign stands apart in an arithmetic formula, with spaces before
and after it,and signifies subtraction.
Accordingly, the correct way to read the formula for computing
CURVE in the entry below is

RANGE minus ARCH minus RADIUS
RANGE-ARCH minus RADIUS
RANGE minus ARCH-RADIUS

: !co MSP U ITE e lu R V E = R A N G E - A R C H - R A D i ld s L
i 1 j

• • •
RANGE minus ARCH-RADIUS

63 COBOL symbols fall into three groups:
symbols, and _____ symbols.

symbols,

• • •
punctuation, arithmetic, condition

(3/66) 22

System /360 COBOL COBOL P rog ra m Fundam entals

64 Punctuation symbols make program entries more readable. In most
cases, the use of punctuation marks is left up to the programmer.
At his discretion, he may use commas to separate a series of
operands or clauses. Or he may use semicolons to separate a
series of clauses, in place of commas.
Certain punctuation is mandatory, though. A symbol that is
required in every program entry is the _____ that terminates the
entry.

• • •
period
In this course, the term "entry" is used in the precise sense of
a series of language elements, the last of which is a period.
That is to say, an "entry" will not be spoken of as just
something entered on a coding sheet. This is discussed further
in a later lesson.

65 Arithmetic symbols allow the COBOL programmer to write formulas
in mathematical notation. There are, then, two general ways of
doing arithmetic in COBOL: narratives and formulas. The
difference between the two can easily be shown by an example;
these two entries mean the same in COBOL:

t t s D
— H

D R E G U
- t - 1
L A R I P v | e R T 1 M E G 1 v S i i n I g i G ' R p s l s l . 1

i i ! J c Io Im I p U T E j G R l O|— t— S s =1 . r e | g u L M - +1 j o l v E J R
I

T i l m I e U 1i i—

In this example, the entries are exactly the same length, but
you might guess that, in most cases,
(a narrative is shorter than the equivalent formula)
| a formula is shorter than the equivalent narrative ƒ

• • •
a formula is shorter than the equivalent narrative

(3/66) 23

System /360 COBOL COBOL P rog ra m Fundam entals

66 Like arithmetic symbols, condition symbols are shorthand
equivalents of written narratives. The two entries below have
identical meanings.

!i F M A S T E R N U M B EjR < D E T A 1 L N U M B E R f
i

, » WR 1T E A S T e '|R— R E C 0 R D •

IT F M A S T 1
s

R — NilH ii -

§
1 S L e |s S fh|a N □ nn

1
1 D E T i L 5 ijuft|B R JL WR ik E 3 m T E R — a Ec QR BU

This example shows that the symbol < is equivalent to what
reserved words?

• • •
IS LESS THAN

67 Certain symbols appear in more than one group of symbols. For
instance, the equal sign is both an arithmetic symbol and a
condition symbol. In the first entry below, the equal sign is
used as a condition symbol; here it calls for two items to be
compared to see if they are equal. In the second entry, it is
used as an arithmetic symbol; there it causes the data named at
the left of the equal sign to be made equal to the result of the
computation — that is, it calls for the result to be moved into that data item.

00 \ l |a N c Ie 1= M i In i Im Iu M J Ig Io hiö W A R N i In Ig L
- j - -

1 1 ic ONIP l JT E idM|0 U N 'eJ = Q U A n It I i It y | N p Ir I i !c e I

Which statement best sums up this idea?

I
 An equal sign never has exactly the same meaning twice in

succession.

No matter what they mean, all equal signs look alike to the
untrained eye.

Equal signs are unpredictable, but the compiler can usually
figure them out.

Equal signs in arithmetic and conditional entries have
different meanings.

All equal signs are created equal, but some are more equal
than others.

• • •
Equal signs in arithmetic and conditional entries have different
meanings.

(3/66) 24

System /360 COBOL COBOL P rog ra m Fundam entals

LESSON 3

68 By this time, you should feel quite at ease with the various
sample entries you have been looking at. You should be able to
identify the reserved words and the programmer-supplied names in
any entryt and you should be able to explain the difference
between those elements. You also have a general idea of the
kinds of symbols that you will run across in COBOL programs.

In this lessont we will discuss the three remaining elements --
literals3 level numbers, and pictures. In contrast with the
first three elements you have studied> these elements have
comparatively specialized purposes, and do not occur as
frequently in a program. However3 it is every bit as important
for you to know how these elements are used, and to be able to
recognize them in program entries.

You will study literals first. Learn what a literal is3 and what
the two main types of literals are. Determine how you can tell
the difference between the two types.

Reading assignment: LITERALS
Rules governing numeric literals
An example of a numeric literal in an entry
Rules governing non-numeric literals
An example of a non-numeric literal
in an entry

• • •

69 A literal is an actual used in a program.
• • •

value

70 The two main types of literals are
• • •

numeric and non-numeric
System/360 COBOL permits the use of a third type of literal, the
floating-point literal, which we will not deal with in this book.

'3/66) 25

System /360 COBOL COBOL P rog ra m Fu ndam enta ls

71 Pick out the literal in the entry below,
is it?

What type of literal

A D D 1 IT N U M B E R - O F - R E C O R DS
• • •

The digit 1 in this entry is a numeric literal.

72 Which characters are not permitted in numeric literals?
• • •

Letters and most special characters are not permitted. The only
special characters permitted are a plus or minus sign as the
leftmost character, and a decimal point as any character except
the rightmost.

73 The correct way to write "minus one-half" as a numeric literal is

• • •
-.5

74 One of the rules for numeric literals is that whole numbers are
written without decimal points. A decimal point may not be the
rightmost character of the literal. The entry below appears to
violate this rule, yet it is a correct entry. Can you explain
this discrepancy?

ICO M P C H m L O A D = W E l GH T * 04 O •

• • •
The last character is not a decimal point; it is the period that
ends the entry. This becomes clear when the entry is rewritten
as COMPUTE LOAD = 30 * WEIGHT.
This is another example of a character having different meanings
in different contexts. However, this should not seem unreasonable
to yous inasmuch as the same character is used in the same two
ways in everyday English.

(8/66) 26

System /360 COBOL COBOL P rog ra m Fundam entals

75 Non-numeric literals are easily recognized, because they are
enclosed in

• • •
quotation marks
Notice that we use the single quotation mark (') and not the
double quotation mark ("). Single and double quotation marks
are distinctly different special characters, with different data
codes in System/360. Non-numeric literals in System/360 COBOL
must be enclosed by single quotation marks, one before and one
after the literal.

76 Don't be misled by the name "non-numeric". Non-numeric literals
may contain digits, and they may be numbers. Which of the
literals in this list are valid non-numeric literals?

'JANUARY, 1966'
•NOT IN FILE'
'50'
'1'

• • •
These are all valid non-numeric literals.

77 Suppose that all of the items in the list below are literals.
Which are numeric literals and which are non-numeric literals?

50
30565
'-5.03'
3.1416
'TOTAL'

• • •
The numeric literals are 50, 30565, and 3.1416. The non-numeric
literals are '-5.03' and 'TOTAL'.
I have reprinted the quotation marks here because they are
essential to the identification of the type of literal.
Remember, thought that the quotation marks merely enclose a
non-numeric literal, and are not part of the literal.

(3/66) 27

System /360 COBOL COBOL P rog ra m Fundam entals

78 Which character is not permitted in non-numeric literals?
• • •

The quotation mark is not permitted, because it signifies "end of
literal" to the compiler.

79 In non-numeric literals, you can write anything you want between
the quotation marks, as long as you don't throw in another
quotation mark. You might, for example, use a non-numeric
literal for the message 'NUMERIC SECURITY CONTROL IS OMITTED',
even though every word in this message is a _____ word.

• • •
reserved

80 Can the last character of a non-numeric literal be a decimal
point, for example, '$4500.'?

• • •
Yes

81 From time to time3 I have mentioned that programmers must define
the names that they use in programs. To define the name of a
data itemt the programmer merely includes the name in an item
description entry. Level numbers and pictures are also found in
these item description entries. The subject of item description
entries will be explored in depth in a later lesson3 but we will
touch on it briefly at this point. The thing for you to learn
now is how to recognize level numbers and pictures in a program.

Reading assignment: LEVEL NUMBERS
Examples of level numbers in entries
PICTURES
Examples of pictures in entries

• • •

82 A number that designates the level of a data item, in relation
to other data items, is called a _____.

• • •
level number

(3/66) 28

System /360 COBOL COBOL P rog ra m Fundam entals

83 Level numbers are found in entries that assign
and data values.

to data items

• • •
names

84 The numbers 01 through 49, 77, and 88 may be used as level
numbers. Level numbers 01 through 49 are used for data items
that form

• • •
records

85 Level number 77 is used for items that are neither records nor
part of records. Such items are called _____.

• • •
independent items

86 Level number 88 is used to assign names to
may as s ume.

that data items

• • •
values

87 There are three elements in this entry. The last element, as
always, is a punctuation symbol — the period that indicates the
end of an entry. The first element, 01, is a , while
PARTS-CATALOG-ITEM is a

i’ll I !p!ai x |a TSAI IT EIMI
• • •

level number
programmer-supplied name

(3/66) 29

System /360 COBOL COBOL P rog ra m Fundam entals

88 As in every entry that contains a level number, the level number
is the ____ element in this entry.

32 clc um - N UlMB \ % : P I C T U R E 9(6)
• • •

first

89 A string of characters with special meanings that describes
certain characteristics of a data item is called a

• • •
picture

90 A picture is easy to recognize in a program because it is preceded by the reserved word _____.
• • •

PICTURE (or PICTURE IS)

91 The picture in this entry is
PICTURE 99
PICTURE
99

M O N T H P I C T U R E 9 9

• • •
99
The reserved word PICTURE merely signals that 99 is a picturey
just as on a sign that reads "SPEED LIMIT SO", SO is the speed
limit and the words that precede it are there merely to
distinguish the number from other numbers on signs along the
road. The two elements PICTURE 99 together are called a
"picture clause". The clause might also have been written as
PICTURE IS 99.

(3/66) 30

System /360 COBOL COBOL P rog ra m Fundam entals

92 Pictures present us with the interesting situation of sometimes
having an element within an element, since pictures may contain
numeric literals. These literals must be unsigned whole numbers,
and are easy to spot because they must be enclosed in _____.

• • •
parentheses

93 The picture in the entry below is the abbreviated way of writing
56 Xs. Aside from the fact that a programmer would be out of his
mind if he didn't write X(56) instead of 56 Xs, it would be
illegal to write a string of 56 Xs. Why?

: 1 t e a f ! i Il Il E R , P I C T U R E X (5 6) .
— P

• • •
A picture must not be over 30 characters long.
The picture X(56) is only five characters long, even though it
represents 56 Xs.

94 The literals help to make the picture more readable. You see,
one of the things that a person might want to know when he is
checking out, debugging, or analyzing a program, is fust how
often a picture character of a certain kind is repeated. He
might miscount the repetitions if the picture were 9999999999,
while 9(10) practically eliminates the possibility of a mistake.

The number in parentheses indicates the number of times the
picture character occurs without interruption by some other
character. Thus, the correct abbreviation of S999999V99999 is

!
SV9 (11))
S 9 (11) V i

9 (11) SV (
S9(6)V9(5)J • • •

S9(6)V9(5) (The character V interrupts to form two strings of 9s.)

(3/66) 31

System /360 COBOL COBOL P rog ra m Fundam entals

95 Pictures are found only in entries that begin with level numbers,
as the first entry below illustrates. However, as the second
example illustrates, an entry with a level number

does not necessarily contain a picture)
must always be written with a picture > .
is not complete if it lacks a picture)

" “P " .I T 1 ..
l02: 1 R E D I J C T 1 0

I l f
N - F A C t Io R T R T C T U R E I S 9k 1 e |) | t

1 . • M
. i : ; l U SAiC5E i s C O M P U T A T 1 ON A L .

1 !
! I I i !__i_i_

I ! 1 162! 1 p |u |r c ; H A S E - D A T E,t, C O M P U T A T 1 0 n ;a |l —
—’
_ U L .

• • •
does not necessarily contain a picture

96 You will learn much more about pictures in a later lessont so
don’t be concerned about not knowing what the Xs and 9s and
other picture characters actually mean. However, you should now
be aware that pictures appear in some item description entries3
and that they play a role in the process of defining data items.
And you should be able to recognize a picture when you see one.

• • •
97 You have now studied all six COBOL language elements. You will

find these elements in all COBOL entries, in all COBOL programs.
Knowledge of the elements has little value in and of itself,
though — unless you can recognize each element when you see it
in a program.
To make the task a little harder, some of the elements may look
alike. For instance, the number 99 could be a [reserved word]
[programmer-supplied name] [literal] [level number] [picture].

• • •
programmer-supplied name OR literal OR picture

The number 99 might be the name of a procedure. It is also a
valid literal or picture. It is not a reserved wordt since it
does not appear on the reserved word list. And it is not a
level numbert because it is not a number between 01 and 49;
77; or 88.

(3/66) 32

System /360 COBOL COBOL P rog ra m Fundam entals

98 The meaning of a number in a COBOL program is determined by the
context in which it is used. It is possible for the same number
to be used in several different ways within one program.
Applying this general rule to a specific case, you can conclude
that the number 25
cannot be used as a literal because it is reserved for use

as a level number
can be used as a literal even though it is also used as a

level number
can be used as a literal only if it has not previously been

used as a level number
• • •

can be used as a literal even though it is also used as a level
number

99 Often it is fairly easy to identify an element
the number 999 in the entry below must be a For example,

because

Dl I (SIC O U N T - C O D I C TO RE! 19

• • •
picture, because it is preceded by the word PICTURE

100 The task isn't always as easy as it was in the previous example,
but it is usually possible to make a positive identification
based on the rules that you are already familiar with. See how
well you do in the following cases.
In this entry, 15 is a _____ because

I115 O F A S T - P A Y M N T Pi I CTiUR 9K 6)

• • •
level number because it is the first element of the entry and is
followed by a programmer-supplied name

(3/66) 33

System /360 COBOL COBOL P rog ra m Fundam entals

101 In this entry, 65 is a because

7 7 !UP P E R - L 1M I T , P 1 C T U R E X X . V A L U E ' 6 5 ' .

• • •
non-numeric literal because it is enclosed in quotation marks

102 The rules for identifying pictures , level numbe rs, non-numeric
literals, and reserved words are fairly simple. And you can
generally identify other elements by a process of elimination.
If; for instance, you come across a name that contains letters,
and it is neither a reserved word nor a non-numeric literal, then
it must be a programmer-supplied name. Similarly, if you find a
number that is not a level number, not a picture, and not a
non-numeric literal, then it must be either a numeric literal or
the programmer-supplied name of a procedure -- and the context
in which you find it will generally tell you whether the number
is a literal or a procedure name.

• • •

103 In the entry below, you can determine that FD is definitely
a _____. Also, you can figure out that 32 must be a _____.

F D I l N V E N T OR Y - F 1 L E

Ib l o c K CO N T A 1 N S 3 2 R E C O R D s ;
Il a b e L R E C O R D S A R E S T A N D A R D i

j

Id a t a R E C O R D I S 1 N V E N T O R Y - R E C O R D .

• • •
reserved word; numeric literal
You should have identified FD easily and positively with the aid
of the reserved word list. And you should have figured out that
32 is a literal from the sense of the entry, which says that a
block in the inventory file actually -- literally -- contains
32 records.

In certain entries, such as the one in this frame, literals are
required to be whole numbers, and to have no sign. You have
already seen such literals in pictures. You will find that these
unsigned whole numbers are called "integers" in COBOL manuals.
For the present time, the important thing for you to realize is
that the values of these numbers are taken literally by the
compiler, so we will call them all "literals".

(8/66) 34

System /360 COBOL COBOL P rog ra m Fundam entals

104 One of the numbers in this entry is a procedure name,
a literal. Which is which?

and one is

!l F A R E A - C O D E = 6 O ? V GO T 0 5 8 2 .

• • •
The procedure name is 582. The literal is 607.
Notice that the name 582 reveals nothing about the processing
done in that procedure. This entry would have meant more to the
reader: IF AREA-CODE = 607t GO TO COMPUTE-TOLL. This illustrates
why English words are usually preferred to numbers so far as
names are concerned.

105 In the next four framest identify all of the elements in each
entry.

iSUBT R A C T 1 F R O M L O O P - C O U N T .

• • •
reserved words punctuation

S U B T R A C T \ F R O M (L 0 O P - C OU N j)X
nume n o
literal

programmer-supplied
name

symbol

Id i s p L A Y ' I N I T I A T E E R R O R P R O C E D U R E 3 '

_____ I_____ U P O N C O N S O L E •
• • •

D I S P L A Y

reserved
words

F
■ punctuation symbols-

T I A T E E R R O R P R O C E D U R E 3)*
C O N S O L E .

punctuation
symbol

Xnon-numeric
literal

(8/66) 35

System /360 COBOL COBOL P rog ra m Fundam entals

108

109

110

jO 2‘ 1 AIV E R A G E - C O S T C T U R E $ Z Z Z . Z y\ S L . \
•—i —!1

• • •
level number punctuation symbols-

0 2 (a v e r a g e - c o s t) / ^ p i c t u r e ($ z z z . z z
7 7 . ,pro gramme r-supp h e a

name
\ . reserved
word

T
picture

-]t 0 - CHAN Ne!l!—2Ü.JP 1 CTU RE X t VA LUE
\ \ .?

'fcl'I.7 71 jS K I P

• • •
punctuation symbols-

_________________________________ - / - t~T I

7 7 f s K I P - T O - C H A N N E L - 2) / P I C T U R E X| V A L U E * 2 ' "\ V ---------- J - ---------- * \ /
level number 'programmer-supplied reserveaX literal

name words

picture

The information you have learned about the six COBOL elements is,
of course, not an end in itself. Rather, it provides you with a
foundation of terminology, and with the ability to recognize the
elements in programs. The elements will come up again and again
in future lessons; whenever a reference is made to an element,
and you are not quite sure of the facts about it, make a point
of looking back at the reference handbook. By repeatedly
looking up facts when you need them, you will solidify your
knowledge of them; in particular, you will see much more clearly
how new facts relate to facts you have previously studied.

• • •

(8/66) 36

System /360 COBOL COBOL P rog ra m Fundam entals

111 Let'8 quickly review some of the material you have been studying.
1. Which elements are selected by the programmer from

fixed sets?
2. Which elements are composed by the programmer?

1. reserved words, symbols, level numbers
2. programmer-supplied names, literals, pictures

112 One of the major restrictions imposed on elements composed by
the programmer is their length. See if you can recall the
maximum length of each of these elements:
1. programmer-supplied names
2. non-numeric literals
3. numeric literals
4. pictures

• • •
1. 30 characters
2. 120 characters
3. 18 digits
4. 30 characters

(3/66) 37

System /360 COBOL COBOL P rog ra m Fundam entals

113

114

115

LESSON 4

In leeeon 1, you learned that standardized programming is one of
the aims of the COBOL system. To this end, the system provides
standard language elements, standard entry formats, and a
standard program structure. Lessons 2 and 3 concerned themselves
with the COBOL language elements. In this lesson, we will turn
to the COBOL program structure. As in the preceding lessons, the
emphasis will really be on mastering the vocabulary of COBOL, in
preparation for further work with the language. This time, you
will learn terms such as "division" and "section". And as before,
I hope that you will not waste your time and energy memorizing
the definitions of these terms. Rather, your efforts should be
directed toward learning to apply the definitions -- to recognize
a division in a program, for instance, and to perceive the
relationship between divisions and sections.

Find out how many divisions there are, their names, and their
sequence. Determine how you would recognize the beginning of a
division, section, and paragraph. Learn what distinguishes an
entry.

Reading assigment: PROGRAM STRUCTURE
Divisions
Sections
Paragraphs
EntriesSample division with structural

units identified
• • •

How many divisions are there in a COBOL program?
• • •

four

The four divisions are Data, Environment, Identification, and
Procedure, but this is not their correct order. What is their correct order?

• • •
Identif i c a t i o n , E n v i r o n m e n t , Data, P r o c e d u r e

(3/66) 39

System /360 COBOL COBOL P rog ra m Fundam entals

116

117

118

119

120

The entries that comprise a COBOL program are divided into four
divisions according to the purpose served by the entries. This
allows the programmer to give his full attention to one division —
one set of entries — at a time, instead of having to worry about
the whole program at once.
Since every program is divided into the same divisions, which
always appear in the same order, it is easy for someone other than
the author of the program to pick it up and know where to find
whatever he is looking for.
You can conclude that the standardized program structure is
[an aid to program writers] [an aid to program readers].

• • •
an aid to program writers AND an aid to program readers

Name the divisions of a COBOL program, in order.

Identification, Environment, Data, Procedure

As part of your reading assignment, you examined a sample
division. Which division was it?

• • •
Environment division (The first entry of the division gives the
division name.)

The beginning of a division is marked by a division header entry.
What marks the end of a division?

• • •
There is no special "end of division" entry. You know that the
preceding division has ended when you come to the next division
header entry.

Every division header entry contains the word _____, and every
section header entry contains the word _____.

• • •

DIVISION; SECTION

(3/66) 40

System /360 COBOL COBOL P rog ra m Fundam entals

121 Note that all header entries begin to the left of the broken
vertical line on the program sheett while all other entries are
written to the right of the broken line. The rules that govern
this are explained in detail in the next course in this series.
At this time3 it will suffice to say that the headers are brought
out a little to the left for emphasis.

You also note that each header, like every other entry, is
terminated by a _____.

• • •
period

There is no "official" definition for "entry" in COBOLt but the
definition given in the reference handbook does not contradict
anything you may later read in other COBOL publications. Most
COBOL manuals refer to some entries as "entries", to others as
"sentences"t and have no term at all for still others.
Throughout this course, however, we will use the term "entry"
in one, precise way.

Which of these is a valid paragraph header entry:
DATE-WRITTEN
SEQUENCE-CHECK-PROCEDURE. I
FILE-CONTROL PARAGRAPH.
MINOR-TOTAL PARAGRAPH.

• • •
SEQUENCE-CHECK-PROCEDURE.

DATE-WRITTEN is an acceptable paragraph name, but is not a valid
header entry because the period is missing. (If looking for
periods seems to you like picking nits, let me assure you that
one of the hallmarks of an effective COBOL programmer is his
meticulous attention to the smallest details.)

(8/66) 41

System /360 COBOL COBOL P rog ra m Fundam entals

123 Inasmuch as periods are so important to the compiler, it behooves
us to be able to tell the difference between a period and a
decimal point in an entry. A period is always followed by a
space; a decimal point is never followed by a space.
This distinction explains why a decimal point must never be
written as the rightmost character of a numeric literal. How
would the entry below appear to the compiler if the literal were
written with a decimal point (66365.)?

£ 0 VE 6163 6 5 t 0 !cjo N T R L - D A TE
• • •

The entry would appear as two entries, MOVE 66365. and TO CONTROL-
DATE. Neither of these "entries” would make sense to the compiler,
of course, and both would be regarded as being incomplete.

124 The correctly written section header entry is
INPUT/OUTPUT SECTION.)
INPUT-OUTPUT SECTION.)
INPUT-OUTPUT-SECTION.J

• • •
INPUT-OUTPUT SECTION.

125 Every section begins with a section header entry. There is no
"section trailer entry", but you will know that you have passed
the end of a section when you come to the next
[division header entry]
[section header entry]
[paragraph header entry].

• • •
division header entry OR section header entry

126 One of the divisions is too small and too simple to require
sectionalizing. This division, which never contains sections,
is the division.

• • •

I d e n t i f i c a t i o n

(3/66) 42

System /360 COBOL COBOL P rog ra m Fundam enta ls

127

128

129

130

131

132

Although he is not required to do so, the programmer may, at his
own discretion, choose to establish sections in the _____
division of a program.

• • •
Procedure

The Data division contains sections, but not paragraphs. In
place of paragraphs, the division contains entries arranged in a
form that somewhat resembles an outline. Most of the entries in
the Data division begin with numbers like 01, 02, etc. These
numbers are definitely not paragraph headers; rather, as you
already know, they are _____.

• • •
level numbers

The only division that always contains both paragraphs and
sections is the _____ division.

• • •
Environment

The division that always contains paragraphs, and sometimes
contains sections, is the _____ division.

• • •
Procedure

There are always sections, but never paragraphs, in the
division.

Data

There are always paragraphs, but never sections, in the
division.

• • •
I d e n t i f i c a t i o n

(3/66) 43

System /360 COBOL COBOL P rog ra m Fundam entals

133

134

135

136

137

138

139

It is necessary that you get a good idea of how divisions t
sections t and paragraphs appear in an actual program. For this
purposet turn to the CASE STUDY program at the end of the
reference handbookt and locate the four divisions. The next
seven frames all refer to that program.

• • •

The longest division in the case study program is the
division.

• • •
Data

How many paragraphs are in the Identification division?
• • •

four

How many paragraphs are in the Environment division?
• • •

three (two in the Configuration section, and one in the
Input-Output section)

How many paragraphs are in the Data division?
• • •

none (The Data division never contains paragraphs.)

What are the names of the sections of the Data division?
• • •

File section and Working-Storage section

How many sections are in the Procedure division?
• • •

none

(8/66) 44

System /360 COBOL COBOL P rog ra m Fu ndam enta ls

140

141

142

143

How many paragraphs are in the Procedure division?

eight

So far we have been looking at COBOL programs in bits and pieces,
to become conversant with the elements that are found in programs,
and with the structure of programs. From this point on, we are
going to start paying more attention to the content of COBOL
programs, and the meaning of various entries. In your next
reading assignment, you will take an overall look at the four
divisions, to see what kinds of information each one contains.

You should learn to describe the kinds of information found in
the divisions, to name the division in which you would look for
specified information, and to discuss how the divisions are
related to each other.

Reading assignment: PROGRAM CONTENTS
Identification division
Environment division
Data division
Procedure division

• • •

Their names are excellent clues to the kind of information in the
divisions. So if you remember the names of the divisions, the
rest is almost too easy.
As its name indicates, the Identification division _____ the
program. The Environment division describes the machine _____
for compiling and executing the program. The Data division
describes the _____ to be processed. And the Procedure division
tells the _____ to be followed in processing the data.

• • •
identifies; environment; data; procedures

While each division contains information of a different kind, all
of the divisions have certain functions in common. For example,
every division is intended, to a large extent, to inform people
who read the program. However, the division that exists almost
solely for that purpose is the _____ division.

• • •

Identification

(3/66) 45

System /360 COBOL COBOL P rog ra m Fundam entals

144

145

146

147

The name of the game is "data processing", so all of the divisions
have something to do with data. Only one division is called the
Data division, though, and in it you would see the
[assignment of data files to input-output devices]
[breakdown of data files into records]
[reading and writing of data files].

• • •
ONLY the breakdown of data files into records

In which division would you look to find out:
How the output records are organized?
What actions will follow the processing of the last input

record?
What input-output devices are used in the program?
What the name of the program is?

• • •
Organization of records: Data division
Actions: Procedure division
Input-output devices: Environment division
Program name: Identification division

While the divisions work together as a team, each division is
independent. That is, each has a separate and distinct role to
play. For example, the Data division describes data files and
records, but does not tell what input-output device will read or
write the data. Assigning files to input-output devices is a
job of the _____ division.

• • •
Environment

Likewise, the Procedure division uses the names of data items,
but does not describe the items. If you wanted to know how many
characters a data item contains, or where the item appears
within a data record, you would look in the _____ division.

• • •
Data

(3/66) 46

System /360 COBOL COBOL P rog ra m Fundam entals

148

149

Let'8 get more specific, by taking a closer look at each division.
Remember that we are not concerned with the rules for composing
program entries, even though — unavoidably -- some of the rules
will pop up in our discussion. You are not expected to be able
to write a program at the conclusion of this course; only to be
able to read a program, and comprehend what you read. The rules
for program entries have some bearing on this, for they help you
to realize the ways in which other programs may be different from
the sample programs.

Reading assignment: IDENTIFICATION DIVISION ENTRIES
Sample Identification division

• • •

Although the sample Identification division given in the
reference handbook occupies several lines, only a small part of
it is actually required by COBOL rules. Determine which part is
required.

• • •

All of the other entries are optional, but very useful. They all
fall into the category of "program documentation", and are well
worth the few extra moments it takes to write them.

(3/66) 47

System /360 COBOL COBOL P rog ra m Fundam entals

150

151

152

Seven fixed paragraph names are mentioned in the reference
handbook. Each name is a reserved word. The reference handbook
makes it clear that

I
 the programmer must write a Program-Id paragraph and no

more than six other paragraphs, for which he can
invent names or use fixed names,

no more than seven paragraphs may be written, and their
names must be chosen from among the seven fixed names,

the programmer is allowed to write more than seven

paragraphs, provided that he uses reserved words for
the names of the paragraphs.

• • •
no more than seven paragraphs may be written, and their names
must be chosen from among the seven fixed names.
One paragraph, the Program-Id paragraph is required. The
programmer is not allowed to invent names for the other
paragraphs. Nor is he allowed to use any reserved words for
names of paragraphs in the Identification division, other than
the seven fixed names that are provided.
How many additional paragraphs might the sample division have had?

• • •
two (Date-Compiled and Security)

The program name, which is required to appear in the Program-Id
paragraph, is the name by which the program will be identified
on a job control card at the time that the object program is
executed. Program name is an example of a special kind of
non-numeric literal called an "external name". Like all non
numeric literals, external names are enclosed in quotation marks.
Unlike other non-numeric literals (which can contain as many as
120 characters), external names are limited to eight characters —
a letter followed by up to seven letters and/or digits.

• • •

(8/66) 48

System /360 COBOL COBOL P rog ra m Fundam entals

153 There is not much more that can be said about the Identification
division, so we will go on to the Environment division. Here our
sample division involves a card input file and a printed output
file; however, the same sorts of entries are used for all
sequentially organized files, whether they are on tape, disk,
card, or printer devices. Additional entries, which we will not
deal with in this course, are used for non-sequentially organized
data files, on disk or other direct-access devices.

Reading assignment: ENVIRONMENT DIVISION ENTRIES
Sample Environment division
System/360 model numbers
Assignment of files to input-output devices

• • •

154 Knowing how to decipher the model number and storage capacity
codes in the Source-Computer and Object-Computer paragraphs is a
minor, but useful bit of information. The actual model number is
given, so only the storage capacity code represents a problem.
An easily solved problem, however, since you can look up the
meanings of the code letters whenever you need them.

Use the table of code letters in the reference handbook to
interpret the sample Environment division. Both the source
computer and the object computer are IBM System/360 Model _
with a storage capacity of _____ bytes.

• • •
30; 65,536
The precise number of bytes in storage is rarely useful to anyone.
It is sufficient to know the approximate number. So, we
generally talk in terms of round numbers; for instance, the
letter E can be said to stand for 32,000 (32K) bytes of storage.
These code letters are used in many references to System/360 —
not merely in System/360 COBOL. Reference manuals, for example,
may speak of "F compilers”, by which they mean compilers that
require a system with 64K bytes of storage. One way to remember
the approximate values of the code letters is to remember that
the table starts with C, which stands for 8,000 (8K). Then just
double the number of bytes for each succeeding letter; D is 16K,
E is 32K, F is 64K, and so on. By this method, you will be off
by several thousand bytes by the time you get to I, but at least
you will know what ball park you are playing in.

(3/66) 49

System /360 COBOL COBOL P rog ra m Fundam entals

155

156

157

158

Turn to the Environment division of the case study program in
your reference handbook. What is the source computer for that
program?

• • •
An IBM System/360 Model 50 with 128K (actually 131,072) bytes
of storage

The File-Control paragraph of the Environment division is
important because in it every input or output _____ is assigned
to an input or output _____.

• • •
file (data file); device

Each entry in the File-Control paragraph begins with the word
SELECT, followed immediately by the file name. The file name is

I
 the name by which that file will be identified on a job l

control card. 1

a name which indicates the type of input-output device /
used for that file. I

the name which that file is called in the Data and (
Procedure divisions. J

a name which has been filed with the Program Registrar ƒ
in Washington. ƒ

• • •
the name which that file is called in the Data and Procedure
divisions

The external name that appears in each SELECT entry is the
job-control-card name for
(the file)
(the device to which the file is assigned)

• • •
the file
You encountered another external name earlier -- the program
name given in the Program-Id paragraph of the Identification
division. »

(3/66) 50

System /360 COBOL COBOL P rog ra m Fundam entals

159 The file name and the external name are, then, two names for the
same data file. It is permissible for these names to be the
same; however, external names are limited to eight characters,
whereas file names (like all programmer-supplied names) may be
up to _____ characters long.

• ••
30

160 The SELECT entry below states that a file known as within
the program will be called _____ on a job control card.

r m ? ELECtJ pARTS —EXPL0s' 1oInL f 1 LE T T T I j j I

IM S Asis 1GN T0 ' PARTS i 1 M ; : ; ! ' 1 | ! i st § §
i i i i Url I L 1TY 2400 UN 1TS . 1 I

| i j I

• • •
PARTS-EXPLOSION-FILE; PARTS

161 The assigning of a file to a device consists of naming a device
class and a device number. Which statement below gives the
correct rule regarding device classes and numbers?

Both device class and device number must be specified for
every file.

Device class must be given for every file; number is
sometimes omitted.

Device number is required for every file; device class
may be omitted.

Device class and device number are optional; both may
be omitted.

• • •
Device class must be given for every file; number is sometimes
omitted.
Device number is sometimes omitted in order to make the program
"device independent". This means that an object program may be
compiled without specifying exactly which input-output devices
are to be used. The choice of devices can then be made when the
object program is executed.

(3/66) 51

System /360 COBOL COBOL P rog ra m Fundam entals

162 What are the three device classes?
• • •

UTILITY, DlRECT-ACCESS, and UNIT-RECORD

163 Magnetic disk devices are included in
[UTILITY]
[DIRECT-ACCESS]
[UNIT-RECORD].

• • •
BOTH UTILITY AND DIRECT-ACCESS (because they can read and
write data both sequentially and randomly)

164 In which device class or classes does each of the following
devices belong?

1. IBM 2540 Card Read Punch
2. IBM 7320 Drum Storage
3. IBM 2403 Magnetic Tape Unit
4. IBM 2302 Disk Storage
5. IBM 1403 Printer

• • •
1. UNIT-RECORD
2. Both UTILITY and DIRECT-ACCESS
3. UTILITY
4. Both UTILITY and DIRECT-ACCESS
5. UNIT-RECORD

(3/66) 52

System /360 COBOL COBOL P rog ra m Fundam entals

165

166

We have seen that there are three classes of devices; UTILITY,
DIRECT-ACCESS, and UNIT-RECORD. But our main concern is with
data files rather than the devices used for reading and writing.
Files basically fall into two categories: sequential and non
sequential. In sequential files, records are read or written in the order in which they are physically stored. In non-sequential
files, records are not read or written in the order in which they
physically appear on the storage medium.
Sequential files can be assigned to all three device classes.
Non-sequential files can be assigned only to DIRECT-ACCESS
devices. This means that _____ devices can be used only for
sequential files, while _____ devices can be used for both
sequential and non-sequential files.

• • •
UTILITY and UNIT-RECORD devices can be used only for sequential
files, while DIRECT-ACCESS devices can be used for both sequential
and non-sequential files.
(Card f i l e s and p r in te d f i l e s must be assigned to UNIT-RECORD;
on ly these f i l e s may be assigned to th is device c la s s .)

(sequential)The file named in the entry below is a {non-sequential) file*

e m a n Id , aIs s i g In Hd Ie ImIaInIp H lull'llIl IIS E

• • •
sequential (A file must be sequential if it is assigned to a
UTILITY device.)
As i t is used here, the term "se q u e n tia l f i l e " does not
n e c e s s a rily im ply th a t the records in the f i l e are " in sequence".
I t does mean th a t the records are read from the storage medium
(fo r in s ta n ce , m agnetic tape) one a f t e r another, in the o rd er in
which they appear; o r th a t the records are w ritte n in consecutive
places on the storage medium. Note, however, th a t the records
might be out o f o rd er as f a r as t h e ir c o n tro l numbers are
concerned; a sim ple example o f th is is a f i l e o f unsorted records
on m agnetic tape - - these records w i l l be read s e q u e n tia lly by
the s o rt program, but they are not in sequence.

(3/66) 53

System /360 COBOL COBOL P rog ra m Fundam entals

167

168

SELECT entries not| specify whether a file is to serve as
input or as output.

• • •
do not
The f i l e w i l l he id e n t i f ie d as in p u t o r output in the Prooedure
d iv is io n e n try th a t "opens" the f i l e (makes i t ready fo r read ing
or w r it in g) . This arrangement makes i t p o s s ib le f o r the COBOL
programmer to use the same SELECT e n try in a t le a s t a couple o f
programs -- the program th a t creates the f i l e , and any program
th a t uses th a t f i l e as in p u t.

Read the SELECT entry below, and then answer the following
questions.

! : ISELIE c t h N V E N T ORY - M A S T E R
5 1 I 1 1

j ; : 1 . ; 1 A;ssh GN T 0 M i N VMS T 1 -

H ; 1 ' I ;
u It i HL 1 TY 2 4 0 0 UN I T S .

1. Is the file a sequential file, or a non-sequential file? Why?
2. Is it an input file, or an output file? How can you tell?
3. What class of device is assigned to the file? What specific

device?
4. What is the file's external name?
5. What name will be used in the Procedure division to refer to

the file?
• • •

1. A sequential file, because it is assigned to a UTILITY device.
2. There is no way of telling from the SELECT entry whether

this is an input or output file; it would be necessary
to examine the Procedure division of the program to
see how the file is processed.

3. UTILITY; specifically, magnetic tape units of the IBM2400 series.4. INVMST
5. INVENTORY-MASTER

(3/66) 54

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

169

170

Keeping in mind that there must be a SELECT entry for every file
that is processed by the program, look at the Environment division
of the case study program in the reference handbook.
1. How many files are processed by the program?
2. What are the file names?
3. No device number is given for one of the files; what

kinds of input-output devices might be used for
this file?

4. For each file, determine whether it is sequential or
non-sequential.

• • •
1. two
2. BILLING-FILE, CUSTOMER-BILL-FILE
3. Magnetic tape, disk, drum, or data cell devices might be

used for the BILLING-FILE.
4. Both files are sequential.

A final word about sequential and non-sequential files: This
course is restricted to COBOL programs that process sequential
files. This has been done because the logic of sequential input,
processing, and output is familiar to even the beginning
programming student -- which makes it possible for us to
concentrate on COBOL instead of taking excursions into the worlds
of systems design, data management, and so on, to explain what
the COBOL program is trying to accomplish.

Non-sequential file processing is not necessarily more difficult
to program in COBOL than sequential file processing, but many
people are unfamiliar with its underlying principles. Besides,
there are different methods of non-sequential file organization:
"indexed", "direct", and "relative" -- each with its own
processing logic. So, we will steer clear of non-sequential files
in this course, oust to keep your introduction to COBOL from
being complicated by too many other programming considerations.

• • •

(8/66) 55

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

LESSON 5

171 The Data division of most COBOL programs is quite a hit longer
than the Environment division or the Identification division.
But don't get the idea that this division is harder to understand
gust because it is longer. The fact is that the Data division
consists of many entries of similar types* repeated again and
again; when you get the hang of one or two item description
entriest for instance, you will be able to cope with most of the
item description entries that you may find in any program — and
these account for the bulk of the Data division.

As you examine the sample Data divisions in the reference hand
book, it will be worth your while to read every entry
individually, instead of merely glancing at the page. That will
help you to grasp the pattern of entries.

Reading assignment: DATA DIVISION ENTRIES
Sample Data division
Another sample Data division, with

entry types identified
• • •

172 File description entries are found in the
• • •

section.

File

173 File description entries are made up of
[record descriptions]
[item description entries]
[descriptions of independent items]

• • •
NONE of these
File description entries are clearly separate from other entries
and groups of entries in the division.

(3/66) 57

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

174

175

176

177

Record descriptions may appear in the
[Working-Storage section]
[File section]

BOTH the Working-Storage section AND the File section
The second sample Data division in the reference handbook
illustrates this.

Record descriptions are made up of
[file description entries]
[item description entries]
[descriptions of independent items]

• • •
item description entries

The descriptions of independent items are
(record descriptions)
(item description entries)

• • •
item description entries

Review the two previous frames. Is it logical to conclude that
record descriptions are made up of descriptions of independent
items?

• • •
NO
Record descriptions and independent item descriptions are
separate and distinct parts of the Data division. This is shown
in the second sample division.

(3/66) 58

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

178 We have been dealing with several terms in looking at the make-up
of a typical Data division — terms like "file", "record", "item",
and "independent item". Each of these terms has a precise
meaning that you will need to know before you can go further in
your study of this division. Along with the definitions of the
above terms, I have included definitions of other terms that you
will be using very shortly, like "elementary item" and "group
item". I don't want you to learn the definitions word for word;
gust make sure that you can explain to yourself the differences
and similarities between the various terms.

Reading assignment: SYSTEM/360 COBOL TERMS FOR UNITS OF DATA
• • •

179 An item is (a piece of data 1
|a storage area that will hold a piece of data} *

• • •
a storage area that will hold a piece of data
This is a useful distinction to make. What the COBOL programmer
actually accomplishes in the Data division is to reserve areas
in which data will be stored while it is being processed. The
data itself will change with each record that is put in or out --
except in the case of constants.

180 Suppose that an item named DATE is made up of three smaller items,
MONTH, DAY, and YEAR. The three smaller items are not made up
of still smaller items.
In COBOL terms, DATE is
(a group item)
(an elementary item} *

while MONTH, DAY, and YEAR are
(group items) ̂
(elementary items}’

• • •
a group item; elementary items

(3/66) 59

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

1.81 A record is [a group item] [an elementary item] [not an item].
• • •

EITHER a group item OR an elementary item
A record is nearly always a group item, in that it consists of
smaller items. However, the programmer may sometimes decide to
define a record as an elementary item; that is, he may choose not
to describe any of the smaller items that make up the record,
and treat it as one big item.

182 Earlier we noted that descriptions of independent items are
separate from record descriptions in the Data division. The
reason for this should now be clearer to you, since an
independent item, by definition, is any item that is
[not a part of the record] [not a record].

not a part of a record AND not a record

183 Thus, there are three possible things that an item can be:
1. a record
2. a part of a record
3. an independent item

It is possible for an elementary item to fall into any one of
these three categories. However, a group item can only be
[a record]
[a part of a record]
[an independent item].

• • •
EITHER a record OR a part of a record

(3/66) 60

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

184

185

186

187

Any group item can be made up of elementary items and/or other
group items. For example/ there might be an item called CATALOG-
NUMBER which is made up of AVAILABILITY-CODE/ SHIPPING-CODE/ and
WAREHOUSING-NUMBER. WAREHOUSING-NUMBER might be further sub
divided into WAREHOUSE-LOCATION, MANUFACTURER, PRIORITY, and
BIN-NUMBER. One or another of these subdivisions might be still
further subdivided.
Sooner or later, however, we will arrive at the point where no
item can be subdivided any further. That is, any group item can
ultimately be reduced to a group of _____ items.

• • •
elementary

Perhaps this notion of items-within-items will be easier for you
to see if we look at it from the opposite point of view. We can
begin with a number of elementary items, and combine them into
group items. The group items can then be combined into larger
group items. When we have combined all of our items into one,
all-inclusive group item, that item is called a _____ .

• • •
record

By going one step further, and collecting an entire set of all
similar records, we will create a
(block)
lfile) ‘

• • •
file

In addition to data records, a file may include _____ records
which contain information about the file.

• • •
label
Label records (often spoken of simply as "labels") are generally
written at the beginning and end of a file. Labels are also
written at the beginning and end of each physical volume,
especially when a file occupies more than one volume; for
instance, labels would be written at the beginning and end of
each magnetic tape reel if the file occupied more than one reel.

(3/66) 61

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

188 When ten data records are written at one time by an output device,
those ten records constitute a

• • •
block

189 Which statement is correct?

!A record must contain more than one item.A block must contain more than one record.

A group item must contain more than one elementary item.
An elementary item must contain more than one independent item.

• • •A group item must contain more than one elementary item.
The fourth statement above is ridiculous, but the first two verge
on being correct. However, a record may itself be an elementary
item (although most records are group items); and a block may
contain gust one record. When it comes to blocks, there is a
similar but conflicting term that you should watch out for:
"blocked". Records are sometimes said to be "blocked" when two
or more records are combined into one physical data unit.
In COBOL, we do not use this term: instead, we have the term
"block", which is used only as a noun, meaning a physical data
unit that comprises one or more records.

190 In your next reading assignment, which deals with file description
entries ("FD entries"), you will encounter several of the terms
we have gust defined. You may, of course, look back at the
definitions of terms whenever you need to. You will read many
details about clauses of FD entries, but don't try to memorize
these details. As you read about each clause, you should look
for that clause in the sample FD entry, and in the FD entries of
the sample Data divisions in the reference handbook. Try to
explain the meaning of each clause to yourself. By the way, be
sure to note that even the absence of a clause from an FD entry
has some significance.

Reading assignment: FILE DESCRIPTION ENTRY
Level indicator
File name
RECORDING MODE clause
BLOCK CONTAINS clause
RECORD CONTAINS clause
LABEL RECORDS clause
DATA RECORD clause

• ••

(3/66) 62

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

191 A file description entry always gives the file name. We have
previously studied file names (in lesson 4), because the file
name also appears in a _____ entry in the _____ division.

• • •
SELECT; Environment

192 FD entries | ̂ ° ^ > specify whether a file is to serve as(do not)
input or as output.

• • •
do not

193 The level indicator and the file name are always required in a
file description entry. Which clauses are always required?

• • •
LABEL RECORDS and DATA RECORD clauses

194 The LABEL RECORDS clause in the FD entry below signifies that
there are
[no label records of any kind in the file]
[standard label records in the file, but no additional user labels]
[non-standard label records in the file].

F D lA'Cido u In T s -R!E!C E l VA B L E
M f "; 1) i ; l ; ;..! ■■

T T ",,-i- ...
; Il a b e l | R E CO RD S AR E OM 1 T T E D

; '• i s \
i i
I 1

1 jD A T A |r E C ORD 1 s c o fc fcE c lT ili i.. 0 n U a c—i Hi.Hc b u kHi" ■ i—Hi t L I 1 ! 1

• • •
EITHER no label records of any kind OR non-standard label records
If there are no label records (as in a card file), no further
work is required of the programmer. If there are non-standard
labels, the programmer doesn't get off quite so easily, since he
must provide for the input or output, and processing, of these
records. Even though the handling of non-standard labels is
interesting, and often quite challenging, it would take us out
of our way to discuss how it is done; suffice it to say that the
programmer's life is simpler when label records are standard.

(3/66) 63

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

195

196

197

198

The file described in the entry below contains
[standard label records]
[non-standard label records]
[user label records].

F b ! S ' P R O D u C T —U-S A G e M f I i
;

* I Ir e c o R D'1N G MO d e ' V I ; 1 1 ■

Ib l o c K C 0 N T A 1N S 2 0 R E C O R D S : :
I f I
! ' l

Sl a b e L R E C O R D S A R E A U D I T j — D A T A
- j

i I D A T A R E C O R D 1 S P R O D U C T - U S A G E - R E C O R D . M l

• ••
BOTH standard label records AND user label records
Whenever a programmer-supplied name appears in the LABEL RECORDS
clause, there are user labels in addition to standard labels in
the file. The user labels provide information about the file
beyond that given in the standard labels.

Standard label records must meet the format standards specified
by IBM for the System/360. These labels provide information
used by the input-output control system (IOCS), and so are
sometimes called "System standard" labels.

Both user and non-standard label records are created and
processed by the user. User (sometimes called "user standard")
labels are those that meet certain minimum format standards
specified by IBM; whereas non-standard (sometimes called "user non
standard") labels are those that do not follow IBM System/360
standards.

• • •
The DATA RECORDS clause [names] [describes] each kind of record
in the file.

• • •
names ONLY

The three recording modes are __
• • •

V, F, and U

(3/66) 64

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

199 The letters V, F, and U stand for _____ , respectively.
• • •

variable length, fixed length, and unspecified length

200 Block-length and record-length fields are found only in mode
• • •

V

201 The length of a mode U record is "unspecified" in the sense that
there is no definite way of determining how many

characters it contains
the programmer has been given no idea of how long

the record might be
the length is not specified in a record-length or

block-length field
the length might vary unpredictably anywhere from

zero to infinity
• • •

the length is not specified in a record-length or block-length
field

202 Variable length records are permitted in recording mode
[V] [F] CU1.

• • •
BOTH V and U

203 Which statement is true?
In recording mode V, there must be more than one record

in each block.
In recording mode U, there must be more than one record

in each block.
In recording mode V, there must be only one record in

each block.
In recording mode U, there must be only one record in

each block.
• • •

In recording mode U, there must be only one record in each block.

(3/66) 65

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

204

205

206

207

208

The names of the recording modes are a little deceptive.
In particular, the mere fact that each block of a file contains
one fixed-length record does not necessarily mean that the
recording mode is F. Besides F, the recording mode for such a
file might also be [V] [U].

• • •
EITHER V OR Ü
However, this choice is not available for files that are assigned
to UNIT-RECORD devices. The recording mode for unit-record files
(card files and printer files) can only be F.

In which mode or modes can there be one variable-length record
per block?

• ••
either V or O

In which mode or modes can there be more than one variable-length
record per block?

• • •
V only

True or false: Records written in mode V need not be variable-
length.

• ••
True. (Fixed-length records may be written in mode V.)

True or false: Records written in mode F need not be fixed-
length.

• • •
False. (Variable-length records cannot be written in mode F.)

(3/66) 66

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

209

210

211

212

213

Turn to the oase study program at the baak of the reference
handbook, and locate the FD entry for the BILLING-FILE. The next
five frames refer to that entry.

• • •

How many records are in each block of the BILLING-FILE?
• • •

five

How many different types of records are in this file?
• • •

one (BILLING-RECORD)

Did the programmer make an error in omitting the RECORD CONTAINS
clause?

• • •
No. (It is permissible to omit this clause, for the compiler
can determine how many characters the record contains from the
pictures given in the record description.)

The recording mode of the BILLING-FILE is
mode V
mode F
not specified — hence, mode U,
unknown

mode V (Whenever the RECORDING MODE clause is omitted, the mode
is V.)

(3/66) 67

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

214

215

216

217

218

Does the BILLING-FILE therefore contain variable-length records?
• • •

No. Either fixed or variable-length records can be written in
mode V.
This particular file happens to contain fixed-length records.
You could not tell that from the FD entry, however. You will
learn shortly how to recognize a variable-length record by its
record description. (Of course, if the recording mode had been
Ft you would have known at once that record length was fixed.)

Now locate the FD entry for the CUSTOMER-BILL-FILE in the case
study program. The next three frames refer to that entry.

• • •

How many records are in each block of the CUSTOMER-BILL-FILE?
• • •

one (The BLOCK CONTAINS clause is omitted when there is only
one record per block.)

How many different types of records are in this file?
• • •

four (BILL-LINE-1, BILL-LINE-2, BILL-LINE-3, and BILL-LINE-4)

The recording mode of the CUSTOMER-BILL-FILE is F. Suppose that
a record of the first type (BILL-LINE-1) contains 133 characters.
From this you can conclude that
[all records of the first type must contain 133 characters]
[records of the other three types must also contain 133 characters]
[every record in the file contains exactly 133 characters].

• • •
ALL of these statements are correct. In recording mode F, all
records in the file are the same length.

(3/66) 68

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

LESSON 6

219 When you examined the sample Data divisions in the reference
handbook, you saw that there are comparatively few kinds of
entries that make up the division. First of all, there are the
division and section header entries (DATA DIVISION, FILE SECTION,
WORKING-STORAGE SECTION)t whose meaning is obvious. Next, there
are file description entries, which we have gust finished
discussing in some detail.

All remaining entries in the division are item description
entries. These may either be found in record descriptions, or
they may be descriptions of independent items. In this lesson,
we will discuss the concept of a "record description" and its
relation to the structure of a record. (You will study specific
details of item description entries in Lesson 7.)

Reading Assignment: RECORD DESCRIPTIONS
• • •

220 How many record descriptions will you find in a Data division?

IOneOne for each file
One for each type of record in each file

• • •
One for each type of record in each file

221 Suppose that a program is being written to process one input file
and one output file. There are three types of input records, and
one type of output record. Using "FD" to represent a file
description entry, and "01" to represent a record description,
the correct sequence of the File section for this program is

FD, FD, 01, 01, 01
FD, 01, 01, 01, FD
01, 01, 01, 01, FD

• • •
FD, 01, 01, 01, FD 01 (The record descriptions for each file
must follow right after the file description entry for that file.
The input file need not have been described first, so FD, 01, FD,
01, 01, 01 is another correct sequence.)

(3/66) 69

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

222

223

A record description tells the structure of a record. It will
help you a great deal in your study of COBOL if you are able to
visualize that record structure. This is simple to do -- once
you know how; and probably the simplest way to do it is by making
a drawing of the record. We will proceed to make such a drawing,
based on the sample record description given in the reference
handbook under RECORD DESCRIPTIONS (your latest reading assign
ment). Turn to that sample record description.

• • •

We could draw various kinds of diagrams to represent the record.
The one I will develop here is the one that seems to me to
correspond most closely to the way the record description itself
is organized.

The first thing I will do is draw a box that represents the whole
record. A record, you will remember, is the most inclusive data
item. It is a storage area that will contain data when the
program is executed. The name of this particular record is
PURCHASING.

PURCHASING

The level number of this record, like all records, is
• • •

01

(3/66) 70

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

224 The record is now subdivided. This means that the same storage
area that is known as PURCHASING is divided into smaller areas.
In fact, certain parts of this storage area will be divided again
and again, but the dividing is done one step at a time — or in
COBOL terms, one level at a time. The next level of this record
is level 02. The three items at level 02 are

• • •
ACCOUNT, STATUS-CODE, and TRANSACTION

225 This drawing shows how the record has been subdivided so far.
The three items shown below coincide with the original record.

ACCOUNT

STATUS-CODE

TRANSACTION

• ••

(3/66) 71

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

226 But we can still refer to the record as a whole by the name
PURCHASING, so I will put the original box back into the drawing
that we are developing.
The large box (on the left) and the three smaller boxes (on the
right) represent

{the same, identical area in storage two adjacent areas in storage
two separate storage areas of equal size

• • •
the same, identical area in storage

227 In a record description, an entry for a group item is followed by
entries for the items that make it up. A group item comprises
all the items described under it, until a level number equal to
or less than the level number of the group item is encountered.
This means that the items that make up a group item
(must be described right after the group item]
[must have level numbers that are equal to or less than the
group item]
[must have level numbers that are greater than the group item],

• • •
must be described right after the group item AND must have level
numbers that are greater than the group item

(3/66) 72

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

228

229

230

In the record description on which we are basing our drawing, a
level 02 item which is further subdivided is followed by items
with level number 03 or greater.
Which items defined at level 02 in this record description are
further subdivided?

• • •
ACCOUNT and TRANSACTION are further subdivided? STATUS-CODE
is not.

When level 03 is brought into our drawing, this is the result:

LEVEL— »- 01 0 2 0 3

• • •

Since STATUS-CODE is not further subdivided, it is
an independent item
a non-group item
an elementary item
a group item

• • •
an elementary item

(3/66) 73

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

231 You can tell which items are group items and which are elementary
items by examining the level numbers that follow them in a record
description. Group items are followed by items with higher level
numbers. Elementary items are followed by items with equal or
smaller level mombers.
Which of the level 03 items in our sample record description are
group items? Which are elementary items?

• • •
VENDOR and PURCHASE are group items; CATEGORY and NUMBER are
elementary items.
You may have noticed that there is a level 04 item named NUMBER,
and a level 03 item with the same name. Duplication of names is
perfectly all right in COBOL, as long as the names are "qualified"
when they are used in procedures, so the compiler will know
precisely which item is being referred to. Qualification is done
by naming the group item which the item with a duplicate name is
part of; in the record description we are working with, the items
would be qualified by calling them NUMBER OF ACCOUNT and NUMBER
OF VENDOR, to make it clear which is which. You will study the
rules for qualifying names in the next book of this series.

Here is our drawing with the level 04 items added,

LEVEL- 01 02 0 3
PURCHASING ACCOUNT CATEGORY

NUMBER

STATUS-CODE

TRANSACTION VENDOR

0 4

NAME

NUMBER

PURCHASE DATE

AMOUNT

Which level 04 item is a group item? What items does it contain?
• • •

DATE is a group item, containing MONTH, DAY, and YEAR.

(3/66) 74

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

233 Finally, we have a complete diagram of the structure of this
record. In our diagram, the sizes of the boxes do not indicate
the sizes of the items; actually, FAME contains 25 characters,
while STATUS-CODE contains gust 1 — but the boxes for these two
items are the same size. The reason for this is that we are not
concerned about the sizes of items at this moment. Instead, we
are concerned with the order in which the items appear in the
record, and how the items are related to each other.

LEVEL- 01
PURCHASING

02
ACCOUNT

0 3

CATEGORY

NUMBER

STATUS-CODE

TRANSACTION VENDOR

PURCHASE

0 4

NAME

NUMBER

DATE

AMOUNT

0 5

MONTH

DAY

YEAR

The diagram shows us the breakdown of a record into group and
elementary items. Any item that is divided into smaller items
at the next level is a group item. An item that is not divided
into smaller items is an elementary item.
Pick out the group items and the elementary items in the record.

• • •
Group items Elementary items
PURCHASING CATEGORY
ACCOUNT NUMBER
TRANSACTION STATUS-CODE
VENDOR NAME
PURCHASE NUMBER
DATE MONTH

YEAR
DAY
AMOUNT

(3/66) 75

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

234 Now let’s put our diagram side by side with the record description.
01

PURCHASING

02
ACCOUNT

0 3

CATEGORY

NUMBER

STATUS-CODE

TRANSACTION VENDOR

PURCHASE

0 4

NAME

NUMBER

DATE

AMOUNT

0 5

MONTH

DAY

YEAR

01 iPURCWAS 1NG . /
!02 AC COUNT . /
i 03 CATE GORY 1
i 03 NUMB ER \
|02 STAT US-C ODE \
|02 TRAN SACT 1 ON . J
11 03 VEND OR. • ; [
11 ; 04 NAME J

04 N U MBER (
°;3 PURC HASE \

1 1 ■ - 0 4 DATE ! 1 ! \
0 5 mo!n:t h)

: i 05 DAY ƒ
i 05 YEAR \

04 AMOUNT ;)

Which statement best describes the sequence in which the item
description entries appear?
' The level 01 entry appears first, followed by a level 02 1

entry, then entries for the items contained within 1
the 02 item; then another 02 entry, and so on. 1

The level 01 entry appears first, followed by all of /

I the level 02 entries, then all of the level 03 entries, \
04 entries, and 05 entries. (

The level 01 entry appears first, followed by a level 02]
entry, then an 03 entry; and then a rhythmic cycle is I
repeated: 02, 03, 04; 03, 04, 05; and so on. I

• • •
The level 01 entry appears first, followed by a level 02 entry,
then entries for the items contained within the 02 item; then
another 02 entry, and so on.235 The item description entries are made

!in any convenient sequence in the sequence of the items in the record
in numerical order by level number

• • •
in the sequence of the items in the record

(3/66) 76

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

236

237

238

True or false: The higher the level number, the smaller the
size of the item; for instance, a level 03 item is always
smaller than a level 02 item.

• • •
False. The level number and size of an item are two completely
separate considerations. Earlier we noted that there was a
one-character level 02 item in our record, as well as a 25-
character level 04 item.

The point made in the previous frame applies to items in general.
But suppose we were dealing with a group item and the items that
make it up. Then we would have a situation in which
[the group item must be larger than any item within it]
[the size of the group item is not related to the size of the
items within it]
[the size of the group item is equal to the sum of the items
within it].

• e •

the group item must be larger than any item within it AND the
size of the group item is equal to the sum of the items within it
And, as we have already seen, the items that make up a group item
must have higher level numbers than the group item. For examples
in the record that we have been working withy DATE (level number
04) contains MONTH, DAT and YEAR (all level number OS); each of
the level OS items happens to contain 2 digits, so DATE contains
6 digits.

Some record descriptions contain entries that begin with level
number 88. The reference handbook suggests that when you are
analyzing the structure of the record, you can

(treat level 88 entries as if they were 01 entries)
deal with level 88 entries just the same as other entries) .
ignore the level 88 entries)

• e •

ignore the level 88 entries

(3/66) 77

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

239

240

Before we go on to look at the clauses that make up item
description entriest I want you to try your hand at drawing a
diagram to represent the structure of a record. Turn to the
sample Data division in the reference handbook which is printed
under the title, Another sample Data division3 with entry types
identified. Draw a diagram of the STOCK-TRANSACTION record.
Make the same kind of diagram that you have seen in the preceding
frames. Use scratch paper. Neatness doesn't count.

• • •
________01

STO CK-
TR A N SACTIO N

STO CK-NUM BER

TRANSACTION-CODE

Q U A N TITY

U N IT -V A L U E

0 3
DISTR IB U TIO N -

C E N T E R _______

CATALOG-NUMBER

YEAR

DAY

0 4

C O N TR O LLIN G -
PARTY__________

ACCOUNT-NUM BER

SHIPPING-CODE

Turn to the first page of the case study at the back of the
reference handbook. There you will find another kind of diagram
that is sometimes used to show the structure of a record. The
horizontal format of the diagram is awkward in that we are
forced to break off several times, but the sequence of items
within the record is easy to seet as is the subdivision of items
into smaller items.

Although the levels of items are harder to seet some programmers
prefer this sort of diagram because it corresponds more closely
to the way the record would actually appear on tape or disk.
On the next page in this textbookt the BILLING-RECORD has been
diagrammed using the vertical format you have been taught.
Compare the two kinds of diagrams.

Also, examine the record description of the BILLING-RECORD in the
Data division of the case study program. It should be easy for
you to pick out the item description entry for each of the items
within the record structure. Simply keep in mind that every item
description entry begins with a level number.

• • •

(3/64) 78

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

LEVEL-

BILLING-RECORD ACCOUNT-
IDENTIFICATION

CREDIT-STATUS

ACCOUNT-HISTORY

TH IS -Y E A R -TO -
DATE

LAST-M O NTH

COLLECTION-
HISTORY

TYPE-OF-ACCOUNT

ACCOUNT-NUMBER

BILLING-CYCLE

CUSTOMER-NAME

STREET-ADDRESS

RATING-CODE

PURCHASE-LIMIT

YEAR-OPENED

YEAR-LAST-ACTIVE

HIGHEST-BALANCE

MONTHS-ACTIVE

M 0 N T H S -0 V E R -9 0

TOTAL-PURCHASES

TOTAL-RETURNS

MONTHS-ACTIVE

M 0 N T H S -0 V E R -9 0

TOTAL-PURCHASES

TOTAL-RETURNS

NUM BER-OF-
TRANSACTIONS

BALANCE-FORWARD

BILLING-DATE

NUMBER-OF-
TRANSACTIONS

CURRENT-BALANCE

OVERDUE-
BALANCES

LAST-PAYMENT

DUNNING-CODE

0 4

STORE-NUMBER

FILE-NUMBER

NUMBER

AMOUNT

NUMBER

AMOUNT

NUMBER

AMOUNT

NUMBER

AMOUNT

3 0 -DAY

6 0 - DAY

9 0-D A Y

1 2 0 -DAY

DATE

AMOUNT

(3/66) 79

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

LESSON 7

241 This lesson looks at item description entries in detail. Some
item description entries are quite simple, consisting only of a
level number and a programmer-supplied name. Others contain one
or more clauses, in addition to a level number and a name. We
will explore each clause in some depth.

To keep you from being swamped by a great many facts, the
reading assignment has been chopped up into a number of little
pieces. You will first read about the level number and name.
Then, in succeeding reading assignments, you will study the
important clauses one at a time.

Reading assignment: ITEM DESCRIPTION ENTRIES
Level number
Name or FILLER

(Do not go on to the USAGE clause yet.)
• • •

242 Where would you look for the level number in an item description
entry?

• • •
At the beginning; a level number is always the first element of
the entry.

243 What level number signifies that the item is an independent item?
• • •

77

244 Which level number is associated with an entry that is not,
strictly speaking, an item description? What type of entry is it?

• • •
88; condition-name entry
Condition names will be discussed in a later lesson.

245 Where would you look for the name of an item?
• • •

Just after the level number.

(3/66) 81

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

246

247

The word FILLER f - S(is not a name.
• • •

is not

The word FILLER is most often used to indicate that a portion of
a record contains no information. For instance, suppose that we
are processing a file of punched cards, and that one of the card
records contains only the current date plus an identifying code.
The record description of the date card might look like this:

0 1 Id a t e - C A R D .
| 0 2 C A R D - C O D E P I C T U R E X . ; : i
SO 2 C U R R E N T - D A T E P I C T U R E 9 (6) 0 <
So 2 ! FM'L L E R P I C T U R E X (7 3) . ' ■ I

This record description indicates that a card code is the first
character of the record, with the current date in the next six
positions. Even though there is no more data, it is necessary to
show that the record is 80 positions long; in order to "fill out"
the record, the programmer has defined 73 additional positions
and has called them

• • •
FILLER

(3/66) 82

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

248 Let's take a slightly different case. Suppose we are processing
a file of magnetic tape records: Each record contains 200
characters of data. The processing consists merely of splitting
the file into two smaller files. The splitting is to be done on
the basis of the control number in the first 12 positions of each
record. If the control number falls within certain limits, the
record is to be moved to one output area; otherwise, the record
is to be moved to a different output area.
Examine the record description below and decide whether the word
FILLER has been used properly in this case.

O h 1 Ic o iM iM OJD i T y - r !e C O R D • i !

! : i | 0 2 ! c | ° N T R O L - N U M B E R P I C T U R E 9 (1 2
! -

! i = | 0 2 ! ELL ;
i ; |

P 1 C T U R E X (1 8 8)

The use of the word FILLER in this record description is

I right, because there is no need for a procedure to refer separately to the data in the last 188 positions of
the record.

wrong, because the word FILLER can only be used for blank
positions, never for positions that contain data
characters.

wrong, because there is no name by which a procedure can
move all 200 characters of the record to an output area.

• • •
right, because there is no need for a procedure to refer
separately to the data in the last 188 positions of the record.
The control number is the only item within the record that will
be examined separately by the program. The only other processing
required is to move the entire record to an output area> and for
that purpose a procedure will use the name COMMODITY-RECORD.

(3/66) 83

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

249

250

I think it may be useful to pursue this "file-splitting” problem,
to explore other aspects of its solution, and especially to see
what kinds of item description entries are involved.

Suppose that the COMMODITY-RECORD is to be written in files
called PLANT-l-PRODUCTS-FILE and PLANT-2-PRODUCTS-FILE. The
whole record is moved to one file or the other with no changes
being made to any of the items in the record. Here is what the
file description entry and the record description might look like
for one of these files:

f |d | 1 !p l !a n T — 1 — P RjOlD u ic i f s E ' 1
i , t

M l Ib il Io c K o o N T A I NS 5 REC O R D S
I j i ! ! I

1 IUa Ib E L

ÜJ
JË

CORO S AR E S T AND A RD
j \ j I | !<

Id a t A Ir Ie c ORD I S P L A N T - 1 - P R ODU C T S . ; i ^
• i1 • > !

$ 5 1 '* \ > : ' l

0 1 ! Ip l ia N T 1-i_h
!> P ROD U C T S P I C T URE X (2 0 0) .

The record description consists of a single item description
entry that defines a storage area large enough to hold 200
characters. The PLANT-1-PRODUCTS record is not subdivided at all;
in other words, here is an example of a record that is treated as
an item.

• • •
elementary

For the PLANT-2-PR0DUCTS-FILE, we could have a file description
entry and a record description almost exactly like the one shown
above. The record for that file could be called PLANT-2-PRODUCTS.

You can visualize statements in the Procedure division of this
program, saying MOVE COMMODITY-RECORD TO PLANT-1-PRODUCTS or MOVE
COMMODITY-RECORD TO PLANT-2-PRODUCTS depending on the control
number.

Suppose that records whose control numbers range from
S09463SS2078 through 790084659302 are to be written in the first
filet and all other records in the second file. These numbers
are a little unwieldy, and the people in our firm don't go around
with them on the tips of their tongues; it would mean more if we
were to say that the first number is the control number for
wheelbarrows, and that the second is the control number for
pickup trucks.

• • •

(3/66) 84

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

251 To sum it upt we would like to be able to write the following
entry in the Procedure division:

: i 1
! h . i f C 0 N T R

—t !.;
O LiHN

—i-T' 'i
UM BE r ! ! i s In Io it LE S S; T H

—!—r—
AN ! : ? 1

w H E E L B A R R O W ,
j T"

! AN Di iC 0 N TR O L -N U M BE R ^ s l : 1 ;

; !n 0 T GR E A
! ! !

T E R t W a n Ip I i C k !u N - T r M c k U
1 I t •; ! i

f i 1
VI0 V E COM MOD 1 T Y - R ECOR D TO ; ! i » j 1 1 !

! ; 1

_ ! . L; m i P L A N T —1 - P R O D U C T S f ; ! S i i i1 : I
j . l ! ! m WR 1T E P L A N T - 1 - PR ODUC T S ; ! ;

! i !

! ! ! !o t !h !e RW 1S E , M O V E COMM OD I T Y - R E CORD TO » i
* ’ s | ; M P L A N T - 2 - PR OD U C T S 1

; ; 1 ; : I
J ? j

I ; ; • 1 : = w R 1T E P L A N T - 2 - P R ODUC T S . ! 1 ! i |

The entry uses the name WHEELBARROW in place of 309463552078,
and PICKUP-TRUCK in place of 790084659302. In order to use
these names* they must be defined; the required item description
entries would look like this:

7 7 1 IWHEE ÜBiAsR ROW, i PI C T U R E 9 (1 2) ,
1 ; : VALU E 3 0 9 4 6 3 5 5 2 0 7 8 .

7 7 !p 1 C K U P - T RUCK 1 P 1 C T U RE 9 (1 2) 9 t T : ;
VALU E 7 9 0 0 8 4 6 5 9 3 0 2 . -

From their level numbers, you can identify these entries as
descriptions of _____ items.

• • •
independent
These entries actually cause the values to be stored as constants.
The procedural entry at the top of the page causes the control
number of a record to be compared with the constant values.
We will have much more to say about procedural entries later
in this book.

(8/66) 85

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

252 During our brief took at the hypothetical "file-splitting"
problemt we have seen several item description entries. We will
carry this gust one more step further3 by combining all of the
entries into a division, as they would appear in a program.

d a t a ! d i v IS 10 N . I i * — H — r ̂ I j ‘ • ' l l)
F 1 LE:! s e c T 1 ON

i i I ; j = : . | l }
FD IcOMM 0 D 1 T Y - F I L E

i ! ! ; • ' 1 i |
'BLOC K CO NT A I NS 5 REC ORDS * : : 1 ! 1

Il a b e L RE CORD S AR E iST AND A RD | j |

!d a t a *R E C ORD I S C OMMO D 1 TY - R E C ORD . ! I i ! | 1
01 ICOMM OD 1 T Y - R E CORD • ;

■ ; ji i
|02 CO NT R O L - NUMB ER P 1 CT URE 9 (1 2) V ; 1 3 1
!02 F 1 L L ER P I C T URE X (1 8 8) .

FD IPLAN T - 1 - PROD UCTS - F 1 L E
IBLOC K CO NT A I NS 5 RE CORDS I

Il a b e L RE CORD S AR E ST ANDA RD ’ • |
Id a t a REC ORD I S P LAN T - 1 - P RODU CTS . ? I $

01 '.PLAN T — 1 - PROD UCTS P I C T URE X (2 0 0) .

FD Ip l a n T — 2 - PROD UCTS ~ F 1 L E! ‘
Ib l o c K CO NT A I NS 5 REC ORDS
Il a b e L RE CORD S AR E ST ANDA RD
Id a t a REC ORD I S P LANT — 2 —P RODU CTS .

01 Ip l a n T - 2 - PROD UCTS P I C T URE X (20 0) .

WORK! I N G - STOR AGE SECT ION
7 7 IWHEE LB AR ROW P I CT URE 9 (1 2) '

1 VALU E 3 0 9 4 6 3 5 5 2 0 7 8 .
7 7 IP 1 C KU P - T RUCK P I CT URE 9 (1 2)1

i VALU E 7 9 0 0 8 4 6 5 9 3 0 2 .

Before you proceed to the next frame, take some time to look
through the above division. Be sure that you can distinguish
file description entries from item description entries. Be able
to identify where each entry begins and ends. Recognize that the
two sections of the division serve different purposes.

• • •

(8/66) 86

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

253

254

255

256

Now we will discuss the clauses that are found in item
description entries, beginning with the USAGE clause. We will
concentrate on USAGE before going on to clauses such as PICTURE
and VALUE, which you have seen in several item description entries.
Although the USAGE clause has not appeared in the entries that
you have seen, you will discover that every item has a
particular usage — even when the clause is omitted.
The reading assignment contains a number of specialized terms
with which you are expected to be familiar: bits, bytes,
floating-point, packed decimal, binary, hexadecimal, etc. Don't
get the impression that we are suddenly changing the rules of
the game, and making COBOL "machine-oriented"; we have simply
come to the point where the programmer must specify precisely
how the data appears. Also, don't be concerned if you can't
remember the exact definitions of these terms; as long as you
have a general, idea of their meaning, you will get along fine.

Reading assignment: ITEM DESCRIPTION ENTRIES (continued)
USAGE clause
What the usage words indicate
(Do not go on to the PICTURE clause yet.)

• • •

The reserved word USAGE in a USAGE clause.(need not appear)
• • •

need not appear

Since the word USAGE may be missing, you must look for one of
the five reserved words that specify the usage of the item.
Those five words are

• • •
DISPLAY, COMPUTATIONAL, COMPUTATIONAL-1, COMPUTATIONAL-2, and
COMPUTATIONAL-3

Which one of the five usage words may be omitted?
• • •

DISPLAY

(3/66) 87

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

257

258

259

Match the list of terms below. (Two or more of the terms on
the right may apply to a usage word.)

COMP UTATIONAL-1
COMPUTATIONAL-2
DISPLAY
COMPUTATIONAL-3
COMPUTATIONAL

internal decimal
external decimal
packed decimal
binary-coded decimal
binary
floating-point
EBCDIC
BCD

• • •
COMPUTATIONAL-1 and COMPUTATIONAL-2 ■ floating-point
DISPLAY = external decimal, binary-coded decimal, EBCDIC, BCD
COMPUTATIONAL-3 = internal decimal, packed decimal
COMPUTATIONAL « binary

The basic idea should be clear to you: In System/360 COBOL,
we can process data in five different formats. Thus, we can take
advantage of the flexibility of data representation that is
built into the System/360. It is not our purpose in this course,
thought to discuss the reasons for having different data codes,
nor to explain which codes are best for which purposes -- those
are "system design" considerations, not COBOL considerations.

The question that we want to tackle is, how can you figure out
what the usage of an item is by reading the item description
entry? Sometimes the answer is simple; for examples if the entry
say8 COMPUTATIONAL-3, there is no doubt at all — the data is in
packed decimal. But what if there is no usage word in the entry,
as in the entry below? What is the data code in that case?
We will explore this next.

0 3 A1M10U n It I—Ip Pl I iCTÜRE IS19!(6)
T T

V9

• ••

There are two key facts to keep in mind. The first is that the
usage specified for a group item

!has no bearing on the usage of the items in the group \
applies to the first item in the group, but not to the rest> •
applies to all of the items in the group)

• • •
applies to all of the items in the group

(3/66) 88

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

260

261

262

The second fact is that when no usage at all is specified for an
elementary item or for a group it is part of,

the item has no usage
the usage can be any one of the five possibilities
the usage is assumed to be DISPLAY

• • •
the usage is assumed to be DISPLAY

So, if no usage is specified for an elementary item, the first
thing to do is to see if usage has been specified for a group
item that this item is part of. What is the usage of AMOUNT-
PAID in the illustration below?

|o2 Pn?IVENT1 CoivPUTAT10NAL3f T11 03 AM0uNTDUE| P1CTURES9(6)V99•1
_ L - 03 A M0uNTPA1D1P1CTURES9(6)vta9• ■

• • •
COMPUTATIONAL-3, because that is the usage of the group item
that AMOUNT-PAID is part of; AMOUNT-DUE has the same usage.

Examine the item description entry below, and then select the
most accurate statement regarding the usage of the item.

iGlR0U PI URE S 9

Since no usage has been specified for this item, it must
be DISPLAY.

To determine its usage, you must see the entry for the
group item it is part of.

This item has whatever usage is specified for the record
it is part of.

There is no way of determining its usage without a large
crystal ball.

• • •
Since no usage has been specified for this item, it must be
DISPLAY.
The level number informs you that this is an independent item,
and therefore not part of a group item. What we have here3
thent is a self-contained item description entry; there is
absolutely no point in looking at the descriptions of any other
items to find out the usage of an independent item.

(3/66) 89

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

263 The record description below seems to indicate conflicting
usages. No usage is specified for the group item, nor for most
of the items within the group, yet one of the items within the
group is COMPUTATIONAL.
There is really no conflict. It is permissible for items within
a group to have varying usages. Avoid the misimpression that the
usage of a group item must be DISPLAY unless otherwise specified;
in fact, the usage of a group item is the same as the combined
usages of the elementary items it contains. Thus, the usage of
STOCK-TRANSFER in the example below is

(COMPUTATIONAL, since that is the only specified usage
DISPLAY, since that is the only specified usage
part DISPLAY and part COMPUTATIONAL

0 1 ISTtalc K— T R AiNSE ER . ' l "i Si 1 "T T i I j
!o|2! S T 0 C K - N U MBER l : pj 1 ic<T URE X (71) •

!0 2 D E S C R 1P T 1OiNl ! j PillciT u !r e ! X (l b) •

!o 2 UN 1T S — 0 F — SIro CiK Pi 1 CT
! \ t

UiREi S 9 (8)
11 C0 MP UT /MT 10 NA U .i !

l i1 l ! 1 i 1
i

l

• • •
part DISPLAY and part COMPUTATIONAL
There would be a conflict only if one usage were specified for
the group item3 and a different usage were specified for the
elementary items within the group -- for example, if the word
DISPLAY had actually been written in the level 01 entry above.
Such a conflictt incidentally, would be diagnosed as a programmer
error by the COBOL compiler.

(3/66) 90

COBOL P ro g ra m F u n d a m e n ta lsS y s te m /3 6 0 COBOL

264 When you are trying to figure out the usage of an elementary
item whose description does not contain a USAGE clause, you first
look for a USAGE clause in the description of a group item that
contains the elementary item. If you don't find a USAGE clause
in those item description entries, you can conclude that the
usage is DISPLAY.
It will be useful to keep in mind what you have already learned
about the structure of records, in particular the idea that items
can be subdivided several times. Or, from another point of view,
that an item can be part of several group items. In the example
below (which you may recall seeing before), MONTH is part of
DATE, which is part of PURCHASE, which is part of TRANSACTION,
which is part of PURCHASING. In other words, the elementary item
MONTH is part of four group items.

01 1 i PURC
. '

H}A!S i NG . t t t
r.i—f— ; ’

! 02 A C C 0 U N T .
i ; ;

: i . 0 3 C A T E G O R Y P I C T U R E X X . \ ' ;

0 3 N UMB ER P 1 C T U R E 9 (6) •

: ! 0 2 ' SITA T U S - C O D E P I C T U R E X .

io 2 ! t Ir a N S A C T 1 O N . - j j 1
1 i ? obi V E N D O R .

i \ i

1
1 \

1 ’ 0 4 N AME P 1 CT U R E X (2 5) . •
i

t i i 1 0 4 i N U MB E R P I C T U R E 9 (6)
0 3 P U R C H A S E • ?

j | 0 41 I D A T E • : '

; ; 0 5 M O N T H P 1 C T U R E 9 9 . * ‘ i
; i ; i 0 5 D A Y P I C T U R E 1 9 9 . \ i

1 0 5 Y E A R P I C T U R E 9 9 .
i i j < * * 0 4 A M 0 U N T ; ‘ ; P I C T U R E 9 (4) V 9 9 .

There is no USAGE clause in the item description entry for MONTH,
so we must look for a USAGE clause in the description entries for
all of the group items of which MONTH is a part. Since we find
no USAGE clause in any of these entries, we know that the usage
of MONTH must be

• • •
DISPLAY

(3/66) 91

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

265 Next, the PICTURE clause. You have seen PICTURE clauses in
every record, description, though not in every item description
entry. PICTURE clauses are easier to identify than USAGE
clauses, since they always contain the reserved word PICTURE.
Also, PICTURE clauses cannot optionally he omitted, as USAGE
clauses sometimes can; the rules are cut and dried -- there must
be a PICTURE clause actually written in certain cases, and in all
other cases there must not be a PICTURE clause.

Learn which item description entries must contain pictures, and
what you can tell about an item from its picture. Spend a little
extra time with the six common picture characters that are
explained in the reference handbook. Also note — but don't try
to memorize — the relationship of picture and usage.
Reading assignment: ITEM DESCRIPTION ENTRIES (continued)

PICTURE clause
How to identify an item from its picture
What some common picture characters mean
How picture and usage are related
(Do not read about the VALUE clause yet.)

• • •

266 Group items {always \
sometimes> have pictures,
never)

• • •
never

Pictures are required in the item description entries of

Sail elementary itemsall elementary items except those that are only one
character long

all elementary items except internal floating-point items• • •
all elementary items except internal floating-point items
(that is, all except COMPUTATIONAL-1 and COMPUTATIONAL-2 items)

(3/66) 92

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

268 Prom a picture, you can tell what category an item falls into
(alphanumeric, alphabetic, numeric, etc.), how many characters
the item contains, and what kinds of characters they are.
From the picture in this entry, determine the category of the
item, as well as the number and type of characters.

1i-Li— ° w s h | i |p p ll NG —Ir Io Iu t |e T c |t UF* e ! X X X X 1 3 1

• • •
alphanumeric; 4 characters; may be letters, digits, special
characters, or spaces

269 The usage of SHIPPING-ROUTE (see entry in previous frame)
can be determined only by looking at the entries for

the group items that contain this item
is most likely to be COMPUTATIONAL because shipping

routes are generally numbers
must be DISPLAY because alphanumeric items can only

have DISPLAY usage
must be COMPUTATIONAL-3 (packed decimal) because the

picture characters are packed together

must be DISPLAY because alphanumeric items can only have
DISPLAY usage
Translated from COBOLeset this means: the only data code in
which alphanumeric characters can be stored in the System/360
is BCD (or if you prefer, EBCDIC or external decimal).
All other ways of representing data in System/360 (binaryt packed
decimal, and internal floating-point) can be used only to store
numeric data.

270 The fact that SHIPPING-ROUTE is alphanumeric means that the
item may contain
[a number, such as 1234]
[letters, such as QWTG]
[a combination of characters, such as EC25]

• • •
a number, such as 1234 OR letters, such as QWTG OR a combination
of characters, such as EC25

(3/66) 93

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

271 The preceding frame makes the point that "alphanumeric" is a
catch-all category, and that the data stored in alphanumeric
items may be numeric, alphabetic, or mixed. This fact sometimes
leads beginning programmers to jump to the conclusion that they
can define all data items as alphanumeric. Why should they
bother with As and 9s and all those other symbols, when Xs can
stand for any characters imaginable?

Briefly, the answer is that an item's picture affects the way the
item can be processed. For instance, an item can be involved in
an arithmetic operation only if it is a numeric item. Also, only
numeric data can be moved into a report item; that is, only
numeric data can be edited (punctuated). Similarly, data cannot
be moved from an alphanumeric item into a numeric item. All of
these examples show how important it is for the picture to be an
accurate description of a data item; in particular, how important
it is to distinguish between "any old characters" (represented
by Xs) and "digits" (represented by 9s).

Rules of the sort that have just been mentioned are discussed in
later books of this series. In this book, we are concerned with
what pictures look like and what they mean, not with the whys and
wherefores of composing pictures.

• • •

272 Which of these might be the picture of a numeric item:
[99,999.99] [99V99] [9(6)] [99099099] [+9999] [S9(8)].

• • •
99V99 OR 9(6) OR S9(8) (All the rest are pictures of report
items.)

273 If an item's picture is 9999V999, how many digits does the item
contain? How many decimal places?

• • •
seven digits; three decimal places
The actual value of the number in storage might be 1234567.
The item in storage does not contain an actual decimal point
character, but because of the V in its picture, that value would
be treated as if it were 1234.567.

(8/66) 94

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

274 Suppose that the actual number stored in an item is 3975. As
what value would this number be treated if the item's picture
were:

1. 9(4)
2. P(4)9(4)
3. 999V9
4. 9999PPV
5. V9 (4)

• • •
1. 3975 (No assumed decimal point or assumed zeros are

indicated, so the value is treated as a whole number; the
result is the same as if the picture were 9999V).

2. .00003975 (This picture might also have been V P (4)9(4),
but the V is not necessary since its presence is implied
by the Ps. The Ps say, in effect, "the assumed decimal
point is located four positions in front of the first
actual digit"? thus, there are four assumed zeros.

3. 397.5
4. 397500 (This picture might also have been written as

9999PP, without the V.)
5. .3975

275 Although group items do not have pictures, you can figure out
what a group item looks like by examining the pictures of the
elementary items that make it up. From the entries below, you
can determine that ACCOUNT-NUMBER is a -digit item made
up of STORE-NUMBER, which is a _____ -digit item, and
FILE-NUMBER, which is a _____ -digit item.

1| 0 3 AC C0 u Wt — N u MB E R 1
1I 0]4 S|TfoiR E |- NU MB E R P 1CT U R E 9 9 9 •
1| 0)4 F l i f e - I n UM a E R P 1 C T U R E I9 (4) •

• • •
7? 3; 4

(3/66) 95

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

276

277

According to the picture in the entry below, the number of digits
that will be stored in BALANCE is

1 T i ; i"T~i..
! i i !0 2 ! b |a

l ! a
NC ÜL*. P 1 C T U R E S 9 (4) V 9 9 , ii

: M t ! ! '
_______ L _l__________ 1 %

\ C O M P U T A T I O N A L . | ;
: 1

• • •

6 (Each 9 represents a digit? neither S nor V represents a
character in storage.)

The item illustrated in the previous frame has COMPUTATIONAL
usage; therefore, the data code in which the digits will be
stored is binary. Instead of merely saying that BALANCE contains
six digits, it would be more accurate to say that BALANCE
contains

six binary digits
the binary equivalent of six decimal digits
six digits in binary-coded decimal (BCD) format

• • •

the binary equivalent of six decimal digits
When usage is COMPUTATIONAL, the data is stored in "true binary"
form, not in binary-coded decimal (BCD) -- which, after all, is
what we call DISPLAY usage in COBOL. It takes far more than six
binary digits -- in fact, it takes twenty binary digits -- to store
the equivalent of six decimal digits.

For the most part, COBOL programmers are not concerned with data
codes, or with bits and bytes in storage. Instead they "think
decimal" — even when they are dealing with packed decimal or
binary data items -- because the 9s in a picture represent
decimal digits.

(3/66) 96

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

278

279

280

We have spent a generous amount of time studying the USAGE and
PICTURE clauses. The remaining clausest VALUEt OCCURSt and
REDEFINES probably deserve equal timet but it would take us a
little afield -- into topics such as data tables -- if we were
to explore them thoroughly; therefore, we will limit ourselves
to a brief look at the final three clauses.

Your objective is to learn how each clause appears, and what it
means; not to learn the applications for which a programmer would
use it -- except in the most general sense.

Reading assignment: ITEM DESCRIPTION ENTRIES (continued)
VALUE clause
OCCURS clause
REDEFINES clause

• • •

One use of the VALUE clause is in level 88 (condition-name)
entries. We will skip over this use for the time beingt until a
later lesson in this book.

Another use of the VALUE clause is to assign initial values to
constants or work areas in storage. Entries that use the VALUE
clause in this way are not allowed in the File section; you
would look for them in the section of the Data division.

• • •
Working-Storage
This is the reason behind COBOL's ban on VALUE clauses for items
in the File section: Items described in the File section
constitute input or output records. The values of such items are
not expected to be constant; they will vary with each record that
is processed. For instance, each time an input record is ready
a value enters each of the items in the record. There is there
fore no good reason to assign initial values to those items; to
do that would only mislead some programmers into thinking that
the initial values would remain constant.

In a VALUE clause, the word VALUE (or VALUE IS) is followed
by _____ .

• • •
a literal

(3/66) 97

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

281 Even though both examples of VALUE clauses in the reference
handbook show numbers as literals, any valid literal may appear
in a VALUE clause. The example below uses letters and spaces
for the literal value.

7Ï7! ! Jt 'oWa Ü - ' 1 !D e In t i i F 1C|A T 1 0 N J P 1 C T U R E A (1 5) ,
' M i M ;

i V A L U E ' P A Y 1 It H 1 S AMOU N T ' .

As you might have expected, the literal in the VALUE clause must
be consistent with the picture of the item. In the example above,
the picture tells us this is an alphabetic item containing 15
characters; hence, the literal must be non-numeric, and must
contain no more than 15 letters and/or spaces.
If an item happened to be COMPUTATIONAL, and its picture was
S9(7)V99, you can guess that a _____ literal would have to be
used in the VALUE clause.

• • •
numeric

282 Another acceptable format of the VALUE clause makes use of
reserved words such as ZERO and SPACE. Here is an example:

7 7 !t RAN S A C T I O N - CO UN
—r-i—!—
T , P 1 C T U R E 9 9 9 .

" 1 1 ■
1 V A L U E Z E RO .

Earlier, you learned that ZERO is a
literal constant
reserved constant
numeric constant
figurative constant

• • •
figurative constant

283 In an OCCURS clause, the word OCCURS is followed by a
literal.

• • •
numeric (more specifically, the numeric literal must be an
unsigned whole number)

(8/66) 98

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

284

285

The OCCURS clause specifies how many times an item appears, in
sequence, in storage. The entry below describes a situation in
which an item appears in storage 12 times in a row. That is,
there are 12 items, each one named MONTH, and each one containing
(how many?) ___ letters and/or spaces.

; ;0 2 MON T H i P I . C T U R E A (9) ,
| 1 !

; i i i . 1 i ■ ' : » ‘ ' i O C C U R S 1 2 T 1 M E S . i • j i |

• • •
9

When an item's name is followed by the word REDEFINES, an area of
storage is not reserved for the item; rather, a second name is
assigned to a previously defined item.
Examine these entries, and answer the questions below.

- r r r
• , ! 0 3

—1
p URC HASE i P' CTUR E 9(4) V9

' ' "i""
9 . M T

1 1 f 1 0 3 REFU ND REDEF 1 NES PUR CHAS e , :
i 1

—th—;——1 ; 1 ■
1 ; 1

\ ; P 1 CT URE; 9 (4) V99i. j | :

1. For which item will an area of storage be reserved?
2. For which item will a new area of storage not be reserved?
3. By what two names will the originally reserved area of

storage be known?
• • •

1. An area of storage will be reserved for PURCHASE.
2. A new area of storage will not be reserved for REFUND.
3. The area of storage originally reserved for PURCHASE will

be known both as PURCHASE and as REFUND.
This is an example of an item that has a dual purpose in a record.
Sometimes the item contains the "purchase" amount, and sometimes
the "refund" amount. We would suppose that a code somewhere in
the record indicates whether the transaction is a purchase or a
refund; based on that codet the program procedures would do
something either with PURCHASE or with REFUND. Note thatt in
this case, it is just a matter of having two names for an items
so the appropriate name can be used in procedures.

(3/66) 99

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

286

287

288

LESSON 8

At last we have arrived at the final division, the Procedure
division. To some people the Procedure division represents
"the program", for it consists of procedures which the computer
is to follow in processing the data. The entries in this division
are very similar to English, so they will be easier for you to
comprehend at once than some of the Data division entries were;
also, there is very little in the way of special COBOL terminology,
as compared with the multitude of special terms that popped up
in your study of the Data division.

To be sure, there are a few such special terms, and the first one
that you will come across is "procedure". In this reading
assignment, you will examine a sample Procedure division, and
then you will learn exactly what we mean when we use the word
"procedure" in talking about COBOL. At the same time, you will
learn what we mean in COBOL by "sentences" and "statements".

Reading assignment: PROCEDURE DIVISION ENTRIES
Sample Procedure division

PROCEDURES
• • •

The six header entries that appear in the sample Procedure division
in the reference handbook are _____ . (Refer to the handbook, you
were not expected to remember this, of course.)

• • •
PROCEDURE DIVISION.
BEGINNING-OF-JOB.
DETAIL-PROCESSING.
READ-NEXT-CARD.
TOTAL-ROUTINE.
END-OF-JOB.

You will recall that the structural units of COBOL programs are
divisions, sections, paragraphs, and entries.
The first of the six header entries you have just looked at is
a _____ header entry. The other five are _____ header entries.

• • •
division; paragraph

(3/66) 101

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

289

290

291

292

293

294

Each paragraph in the Procedure division is called a

{sentence)
procedure > .
statement)

• • •
procedure

In addition to paragraphs, the word "procedure" applies to
in the Procedure division.

• • •
sections

A "sentence" is any Procedure division entry that is not a
entry.

• • •
header

Like all entries, a sentence must be terminated by a
• • •

period

A procedure must contain

!one sentence, or less 1 one or more sentences > .
more than one sentence)

• • •
one or more sentences

Since a procedure might contain just one sentence, the shortest

imaginable procedure would contain <2> entries.
i n { ! }

• • •
2 (a header entry in addition to a sentence)

(3/66) 102

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

295

296

297

The entry below calls for three actions: READ... CLOSE... and
GO TO... The COBOL term used for a specification of action, such
as READ OLD-MASTER, is

phrase
clause
i statementi
sentence

1 jR E A D 0 LD MA S T E R •
1 A T E N 0 %

- r
CL 0 S E I 1

11 0 L D - M A S T E RJL G 0 T 0 L 1 N IS H — N

3Ld m |a s t |e R •

• • •
statement

The complete procedure entry illustrated in the preceding frame
is called a

sentence

Each statement begins with a procedural word, like ADD, MOVE, etc.
Most procedural words are verbs, though one of the most important
words -- IF -- is technically a conjunction. The reference hand
book lists the seventeen most commonly used procedural words in
alphabetical order, but for study purposes we will look at just a
few words at a time. To begin with, you will read about four
input-output verbs. Your objective is to learn enough about each
verb to be able to read and comprehend statements using that verb.
Keep in mind that you are not expected to be able to write
original statements yet, so don’t try to memorize the format
rules.

Reading assignment: PROCEDURAL WORDS
OPEN
READ
WRITE
CLOSE

(Be sure to read the summaries of these
verbs in this sequence.)

• • •

(3/66) 103

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

298

299

Before a record may be written in a file, it is necessary to

{READ)OPEN > the file.
c l o s e) • • •

OPEN

A CLOSE statement is required after processing is completed for
[input files] [output files].

• • •
input files AND output files

(3/66) 104

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

300 The flowchart below shows the overall logic of processing
sequential files. In this example, there is one input file and
one output file. For simplicity's sake, an output record is
written for every input record.

This processing logic applies to sequential files that are stored
on [magnetic tape] [magnetic disk] [punched cards] [printed forms].

ALL of these storage media
Printed forms could serve only for the output file, of course,
while the other media could serve for both input and output.

(3/66) 105

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

301 The flowchart you just looked at contains a decision block
testing whether the end of the input file has been reached.
This AT END test is a clause of the

READ
WRITE
OPEN
CLOSE

statement.

• • •
READ

302 Which input-output statement is generally acted on at the
beginning of a run? At the end of a run?

• • •
Beginning: OPEN; end: CLOSE

303 OPEN and CLOSE statements are acted on once for each
whereas READ and WRITE statements are acted on once
for each j recordI •

(file
(record I

• • •
file; record

304 Turn to the Procedure division of the case study program in the
reference handbook. The next six frames all refer to the case
study program.

• • •

305 What is the name of the procedure in which the files are opened?
• • •

START-PROCESSING

(3/66) 106

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

306

307

308

309

310

What is the name of the input file? What is the name of the
output file?

• • •
BILLING-FILE; CUSTOMER-BILL-FILE
When these files were named in the Environment division and
described in the Data division, no indication was given as to
which file would be used for input3 and which for output. The
OPEN statement is where this is specified. This arrangement
permits the same Environment and Data division entries to be used
in other programst where for instancet the input file of this
program might be the output file.

Find the READ statement. What procedure is the computer told to
go to when the end of the input file is reached?

• • •
END-OF-RUN

Find the procedure named END-OF-RUN. What does the first
sentence of that procedure say?

• • •
CLOSE BILLING-FILE, CUSTOMER-BILL-FILE.

Both the OPEN and CLOSE statement gives the names of two files;
however, the OPEN statement tells which file is _____ and which
is _____ , while the CLOSE statement does not.

• • •
INPUT, OUTPUT

How many WRITE statements are there?
• • •

four

(3/66) 107

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

311 Now let's go baak to read about a aouple of other procedural
words that deal with input and output. Determine the difference
between these new words and READ and WRITE.

Reading assignment: PROCEDURAL WORDS
ACCEPT
DISPLAY

• • •

312 ACCEPT and DISPLAY are used for reading and writing
for

not

• • •
low-volume data; (not) files of data

313 What is the maximum number of characters that can be read by an
ACCEPT statement, and written by a DISPLAY statement?

• • •
maximum for ACCEPT: 80; maximum for DISPLAY; 120

314 ACCEPT and DISPLAY statements are used to receive information
typed in on the console typewriter keyboard, and to type out
information on the typewriter. For this use, the number of
characters that can be read or written cannot exceed

• • •
72

315 Now that you have seen the verbs that fall into the "input-output"
categoryt let's look at the "data movement" category. This
category has gust one basic verb: MOVE. You will find that this
verb can do three main things, though not necessarily all three
at one time. j

Reading assignment: PROCEDURAL WORDS
MOVE

• • •

(3/66) 108

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

316

317

318

319

A MOVE statement can _____ , _____ , and _____ data.
• • •

move, convert, edit

Most people find a MOVE statement easy to understand, but let's
take a moment for you to double-check your understanding of it.
In the sentence below, what would you say is the name of the
"source field" — the item from which data is to be moved?
What is the name of the "receiving field" — the item to which
the data is to be moved?

iMiOME u !m |b
-i— h

A L N TO o In t Ir OiLl— TE'M.
• • •

CATALOG-NUMBER is the source field; CONTROL-ITEM is the
receiving field.

When the COBOL compiler generates machine language instructions
for a MOVE statement, it refers to the descriptions of the items
to be moved as given in the Data division. The item descriptions
will indicate to the compiler how many characters are to be
moved, what the usage of each item is, etc.
In reference to the MOVE sentence printed in the previous frame,
suppose that CATALOG-NUMBER is a binary item (that is, its USAGE
IS COMPUTATIONAL). And suppose that the usage of CONTROL-ITEM
is DISPLAY. In this case, the compiler will generate the
instructions required not only to move CATALOG-NUMBER to
CONTROL-ITEM, but also to convert the data from (which item?)
_____ to external decimal (BCD) code.

• • •
CATALOG-NUMBER

A MOVE statement would cause data to be edited if the _____ of
the receiving item identified it as a report item.

• • •
picture

(3/66) 109

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

320

321

322

323

"Arithmetic" is a larger category: five verbs. An interesting
thing about this group of verbs is that one of them can replace
the other four. It would be possible, then, to use gust one
arithmetic verb for all arithmetic statements; however, you will
have a look at the other four verbs as well.

Reading assignment: PROCEDURAL WORDS
COMPUTE
ADD
SUBTRACT
MULTIPLY
DIVIDE

• ••

Which verb can be used for all arithmetic operations?
• • •

COMPUTE

Whereas other statements use words like ADD, SUBTRACT, etc,, to
specify arithmetic operations, COMPUTE statements use _____ to
specify operations.

• • •
arithmetic symbols

Notice that a COMPUTE statement not only computes a value, but
also edits that value if the result is to be put into a report
item. In the example below, into which item will the result be
put? How could you tell if it is a report item?

ICOMP UTE RATE = D 1 ST A NCE / t 1ME . ■ 1 :

• • •
The result will be put into RATE (the item named after the verb).
To find out if RATE is a report item, you would have to know
what its picture is.

(8/66) n o

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

324 A DIVIDE statement might have been used to do the calculation
specified in the COMPUTE statement above. In order to obtain an
edited result, the DIVIDE statement would have to contain a

clause.
• • •

GIVING

325 Is this DIVIDE statement equivalent to the COMPUTE statement
illustrated above?

iDl 1 !V IDIE! ID I S[T|A N CiEl NT!0 T I M E G I V I N G RAT

• • •
No. The correct equivalent would be DIVIDE TIME INTO DISTANCE
GIVING RATE.
In the COMPUTE statementt the formula DISTANCE/TIME would be
read "distance divided by time"; the meanings of arithmetic
symbols are given in your reference handbook under the topic
SYMBOLS.

326 A significant difference between COMPUTE and other verbs is that
a COMPUTE statement can call for more than one kind of arithmetic
operation. Name the operations that are called for in this
statement.

! !c 0 MP UTE c A PA c 1T Y —1 !(Ut !i l 1 T Y
r*-!—i—
*! S P a W) / =

i
J _ !_ (

<a: N GE + C0 N S u Im Ip T PON * e FF 1C 11 NC Y) .

• • •

multiplication division* S P A N) yC O M P U T E C A P A C I T Y = (U T I L I T Y
(R A N G E + C O N S U M P T I O N * E F F I C I E N C Y) .

\
addition J

mult iplication

(3/66) 111

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

327

328

329

ADD, SUBTRACT, MULTIPLY, and DIVIDE statements perform only the
type of arithmetic operation specified by the verb. Furthermore,
MULTIPLY and DIVIDE statements operate on only two numbers; they
multiply one number by another, or divide one number into another.
ADD and SUBTRACT, however, can operate on

only one number
only two numbers
more than two numbers

• • •
more than two numbers

An operation that can be done with a COMPUTE statement, but cannot
be done by any of the other arithmetic verbs is _____ .

• • •
exponentiation

Exponentiation is the raising of a number to a certain power.
To be sure, you can square a number (raise it to the second
power) using a MULTIPLY statement -- multiplying the number by
itself. But higher powers would require several MULTIPLY
statements; and if the exponent varied, MULTIPLY statements would
be hard to use.

Another important category of procedural words is "sequence
control". These words enable the programmer to control the
sequence in which other statements or procedures will be acted on
by the computer. There is IB, which permits different actions on
the basis of a test-condition; GO TO and PERFORM, which cause
branching; and STOP, which delays or halts the run.

You should get a general idea of the function of IF by reading
the summary in the reference handbook; however, we will postpone
our discussion of IF until the next lesson, when we will study it
in detail. We will discuss GO TO, PERFORM, and STOP at this time.
Make sure that you are able to describe the difference between
GO TO and PERFORM. And learn what the two types of STOP state
ments are, and how you would tell them apart.

Reading assignment; PROCEDURAL WORDS
IF
GO TO
PERFORM
STOP

• • •

(8/66) 112

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

330 A GO TO statement causes a branch to a

• • •
procedure

331 A GO TO statement contains the name of the procedure to which a
branch is desired. You can see that this name must be the same
as the name given in the _____ entry of the procedure.

• • •
header

332 How does a GO TO differ from a PERFORM?
• • •

A PERFORM causes a branch to a procedure or series of procedures,
just as a GO TO does. But after the procedure or procedures are
acted on, PERFORM causes a return branch to the statement after
the PERFORM statement.

333 The flow of control through procedurest and further study of GO
TO and PERFORMt will be taken up in the next lesson.

• • •

334 There are two kinds of STOP statements. One stops the execution
of the program permanently, the other temporarily. A permanent
stop is indicated when the verb STOP is followed by _____ .

• • •
the word RUN

335 If the stop is temporary, that is, if execution is to be resumed
after the computer operator takes some corrective steps, the verb
STOP is followed by _____ .

• • •
a literal

(3/66) 113

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

336

337

338

339

340

Here is an example of STOP followed by a literal. What will
happen to the literal when this stop is executed during the
running of the object program?

i 1 ! !s t o P
----TT~

HjA LT 7 ro üT
.

is

UJÜJ r u ;n b o o K • .
‘ 1

i l l

• • •

The literal will be typed out on the console typewriter.

The literal in the previous example is meant to be a
[message to the computer]
[comment in the source program listing]
[message to the computer operator].

• • •

message to the computer operator

The final category of procedural words is "program comments".
This is another one-word category, and deserves only brief study.

Reading assignment: PROCEDURAL WORDS
NOTE

• • •

NOTE entries are used for program documentation only. The
words written in a NOTE statement are
[converted into machine language statements]
[loaded into core storage as constants]
[printed in the source program listing].

• • •
printed in the source program listing ONLY

A NOTE

{has no size limitcannot exceed the width of the source program listing form
can be as long as 120 characters, like all non-numeric literals

• • •
has no size limit

(3/66) 114

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

LESSON 9

341 The brief summary of the procedural word IF, which you read in
the previous lesson, indicated in a general way, that IF causes a
condition to be tested, and causes alternate paths of action to be
taken, depending on whether the description of the condition is
true or false. In this lesson, we will first study the various
kinds of conditions that can be tested in IF statements. There
are five kinds of conditions (called "test-conditions" in COBOL
jargon); you will study two of these now, the other three a
little later.

Reading assignment: TEST-CONDITIONS
Relation test
Sign test
(Do not read about the condition-name
test yet.)

• • •

342 In this IF sentence, pick out the test-condition and the
statement to be acted on if the test-condition is true. Also,
identify the test-condition.

1 il F NET 1Si LE
—r-'T"" r
SS T h 'a n ‘ M 1 N 1MUM. : : ! ! ! 1

i 11 C0 MP u It 'ie! D E F 1C 1T = Ml N IMU M M NiElIL

• • •

I F

test-condition (relation test)
_________________ _ J _____________

(net i s less than m i n i m u m),
(compute d e f i c i t =m i n i m u m - net).

Vaction to be taken if condition is true
343 A relation test causes two values to be

• • •
compared

(3/66) 115

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

344

345

346

The reason for comparing the two values in a relation test is to
determine whether the stated relationship is true or false. In
the first example below, the stated relationship is true if the
values of the two data items are exactly equal, and false if
either value is higher or lower than the other.

0 c H
....r ! "■

A i S i E l R C O N T R o l |l | 1
— i " i
N O - I P A R T Y

....r r i "
. 1 ! 1 I

V E 1 N 0 C H A R G B 1 T O ! E X P L N A T 1 J 0 n L
!
1

In the next example, the stated relationship is true if
APPLICANT-AGE is [equal to] [less than] [greater than] 16; and
false if APPLICANT-AGE is [equal to] [less than] [greater than]16.

1 Ï F A P P L ,1 C A N T - A G E I S N O T G R E A T E R T H i A N ; 1 6 |
1 i I

__ i__ i__ 1__ . M 0 V E A P P L i 1 C A T 1 O N - R E C O R D T O
I

• M l
«, . ,i E X C E P T 1 1 0 N J W R 1 T E E X C E Ï P T I O N . I

• • •
true if EITHER equal to OR less than 16; false ONLY if greater
than 16
When we take up "flow of control" later in this lessont we will
look closely at what happens when the test-condition is true or
false.

In the sign test, ZERO is considered to be [positive] [negative].
• • •

NEITHER positive NOR negative

This means that an item whose value is zero

{must not have an operational sign 1
can have a sign, but it is ignored >
has a special ± (plus-or-minus) sign)

• • •

can have a sign, but it is ignored

(3/66) 116

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

347 The reference handbook points out that the sign test is another
way of stating a relation test that compares a number with zero.
What sign test would be equivalent to the relation test below?

IF T 1• TAIL - Id lu i s r GO TO WRI T E- B I L L .

• • •
IF TOTAL-DUE IS POSITIVE, GO TO WRITE-BILL.

348 Both the relation test and the sign test are easily comprehended.
Next you will learn about three other tests, whose meaning --
at least the meaning of two of the three -- is not always obvious.
Reading assignments TEST-CONDITIONS (continued)

Condition-name test
Overflow test
Class test

• • •

349 The class test is used to determine whether or not an item is
or

• • •
alphabetic, numeric

350 A possible use for class tests is to check the validity of certain
data items. For example, it might be desired to determine whether
an item that is supposed to contain numeric information actually
contains digits. (Such an item would have a picture identifying
it as a numeric item, but there is no automatic checking to verify
that data put into an item during the running of a program
corresponds to the item's picture.)

• • •

351 In a condition-name test, the test-condition consists solely
of a

• • •
programmer-supplied name

(3/66) 117

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

352

353

354

355

The _____ test resembles the condition-name test.
• • •

overflow

Since a condition-name test is another way of testing whether a
data item is equal to a literal, any condition-name test could
be replaced by a

relation test'
sign test
class test
overflow test

• • •
relation test

The reason a programmer might use a condition-name test instead
of a relation test is to make the program more readable. If he
has done his job right, the name of the condition will explain
the meaning of the condition. For instance:

i S I ! i f ! 1a P|P L 1 C A N T - m 1 L L - T R A V E L f
j 1 ! !; ; i 1 ; ’ i

_!_1___!_!___ g Io
i

J I 0 OP E N 1 N G S - 0 N T H E i R 0 A d L
1 ; ii

The condition name, APPLICANT-WILL-TRAVEL, actually represents a
specific value of a specific item. To find out what value, and
what item, you would look in the _____ division.

• • •
Data

A condition name is defined in a level number _____ entry in
the Data division.

• • •
88

(3/66) 118

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

356

357

Suppose the following entry appeared in the Data division:

i8!8 PPL GAIN i—lv̂ i Il Il !—1' A V E V A L U

This entry gives the condition name, and the value represented
by the condition name, but does not tell the name of the item.
Where would you look for the item description entry to which the
88-entry applies?

• • •

Above the 88-entry. Level-88 entries follow immediately after
the description of the entry to which they apply; there may,
however, be more than one level-88 entry for an item.

Here we see the condition-name entry in context.

; ! ; l0 2 i aM t ! 1TUDE
O1-i A RID!- TRAV EL P 1 C T URE X .

: 18 8i AP p L 1 CAN T - W I L l - ' n O T - T RAVE L VA LUE ‘ A ‘ .
8 i l8 8l 1_ A

Ï
PPL 1 CAN T - W I L L - T RAVE L VALU E ’ G • j : [•'

Which one of the following relation tests is the equivalent of
IF APPLICANT-WILL-TRAVEL...?
Cl) it F T 1T U dJe -■T 0 WARD - 1 'R AV E

—1—!—1—
LI : ! 1 i ! 1 I 1

11 1S EQUAL T 0 A P PL.1 c AN T*-WI L Ü -T RA v |e IkL

<2)p
+.1 1 . ■T F /XTTl i j l UDE--T 0 A RD-1rR AV E k .H ■

1 1
. ,Q|—»L-L_ | 1 !

• ••
(2)

(8/66) 119

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

358

359

Whenever a programmer wants to test whether the value of a data
item is equal to a literal, he has the choice of using either a
relation test or a condition-name test. His decision as to which
to use would be based in part on the readability of the relation
test. A relation test such as IF TEST-SCORE = 100... tells just
as much as IF PERFECT-TEST-SCORE..., so the programmer would
probably use the relation test.
On the other hand, if he had a choice of writing
IF MARITAL-STATUS = 7... or IF DIVORCED..., the programmer would
certainly write IF DIVORCED... In this instance, then, the

* (relation test)preferred test is the jconaition-name test) '
• • •

condition-name test

No similar choice exists when it comes to the overflow test.
The overflow test is the only way of testing whether the 12-punch
has been sensed in the carriage tape. (The punch in channel 12
of the carriage tape indicates when the last normal printing line
of the form has been reached, in order to leave a margin of blank
paper at the bottom of each form.)
This means that an overflow test will be found in most programs
where there is printed output. The logic of the IF sentence
containing the overflow test will nearly always be similar to the
sample sentence given in the reference handbook, but of course,
the programmer-supplied names will undoubtedly be different.
The programmer-supplied name that represents the form-overflow
condition is defined in an APPLY entry, which will be found in
the I-O-Control paragraph of the _____ division.

• • •
Environment

(3/66) 120

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

360

361

362

Our discussion of test-conditions leads naturally to closer study
of the flow of control through COBOL procedures. After all, the
reason for having test-conditions is to permit control to flow
along alternate procedural paths.

The COBOL compiler, as you know, will cause the COBOL procedural
statements to be translated into actual machine language
instructions. When we talk about flow of control, we are "playing
computer'*, so to speak, and acting as though the COBOL statements
had already been translated and are now being executed by the
computer. In order to trace the flow of control, you must know
such things as where the starting point is, what sequence is
normally followed, and what statements cause deviations from
that sequence.

Reading assignment: FLOW OF CONTROL
Starting point
Sequence
Branching
(Don't study the flow of control through
IF statements yet.)

• • •

"Declarative" procedures are used to alter the usual actions
performed by the input-output control system. One example of the
use of declaratives is in the processing of user label records,
that is, labels that provide file information over-and-above that
provided by the standard label records.

In this book, our only concern with declaratives is their effect
on the place at which execution of a COBOL program begins. What
is the starting point of program execution when there are
declaratives? When there are no declaratives?

• • •
When there are declaratives, control starts at the first
procedure after the declaratives. When there are no declaratives,
control starts at the first procedure of the Procedure division.

How can you tell whether a program contains any declarative
procedures? How can you tell where the declaratives end and the
regular procedures begin?

• • •
If a program contains declaratives, the line after the division
header will state: DECLARATIVES. And the line after the last
declarative procedure will state: END DECLARATIVES.

(3/66) 121

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

363

364

365

366

Control normally flows from one statement to the next

!in the order in which they are written in the program in alphabetical order according to the first letters of
the verbs

in order by verb categories, input-output being done first
• • •

in the order in which they are written in the program
When control comes to the end of a procedure, it normally

{stops temporarily, until an operator presses the Start key waits for the next command from the supervisor program
goes right on to the next procedure in sequence

• • •
goes right on to the next procedure in sequence

The procedural words which can change the normal flow of control
are the familiar quartet of "sequence control" words: GO TO, IF,
PERFORM, and STOP.

A GO TO statement causes control to branch unconditionally to
the _____ of a procedure.

• • •
first statement

After a GO TO has caused control to branch to the beginning of
a procedure,

1 control immediately branches back to the statement after \ the GO TO I

the normal flow of control is resumed l
control flows through that procedure, and then returns (

to the GO TO j
• • •

the normal flow of control is resumed

(3 /66) 122

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

367

368

These drawings graphically illustrate the difference between
GO TO (drawing A) and PERFORM (drawing B). Each drawing consists
of four boxes that represent procedures. In each case, the flow
of control begins at procedure P-1; part way through the first
procedure a sequence control statement is acted on. The flow
arrows remind us that a branch is caused by [GO TO] [PERFORM].

Q

I
P -4 .

o
P-1.

Ip e r f ORM P -3 .

P -2 .

1
P-3 . ---------------

P -4 .

• • •

BOTH GO TO AND PERFORM

In both cases, control flows through procedure P-3, but at that
point the difference occurs. In drawing A, control then flows
_____ , whereas in drawing B, control flows _____ .

• • •
(A) to the next procedure in sequence, P-4
(B) back to procedure P-1, where it will next act on the

statement following the PERFORM statement

(3 /66) 123

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

369 GO TO and PERFORM statements cause control to flow to the
beginning of a procedure, so the programmer must think in terms
of procedures when using these statements. IF sentences, on the
other hand, cause control either to flow through or to jump over
certain statements. Keep this difference in mind as you examine
the logic diagrams for IF statements, in the reference handbook.

Reading assignment: FLOW OF CONTROL (continued)
Flow of control through an IF sentence

that does not contain ELSE or OTHERWISE
Flow of control through an IF sentence

that contains ELSE or OTHERWISE
• • •

370 The logic diagrams you have just looked at ought to help you in
determining what processing is accomplished in an IF sentence.
The first step indicated in both diagrams is that the "data is
evaluated", to find out whether the description of the data
condition is true or false.
Of the five test-conditions that can be used in IF sentences,
one test-condition does not, strictly speaking, describe a data
condition. Which one?

• • •
overflow test
The logic diagrams apply to the overflow test, too, except that
the words "data is evaluated" are not appropriate. For that test,
it would be more appropriate to say something like "status of
electronic indicator in printer is tested". However, I am sure
we can get by with the diagrams as they stand; and might say that
the "status of an indicator" constitutes a piece of information,
and that it is therefore "data" — in the larger sense of the
word.

371 It is also important to emphasize the difference between a "data
condition", which is a matter of fact, and a "description of a
data condition", which might be true or false at any given time.
It is certainly not possible to tell whether a test-condition,
such as STOCK-LEVEL IS LESS THAN MINIMUM-BALANCE, is true or
false merely by looking at the COBOL entry. It is necessary to
look at the data itself; and if we find that the value of STOCK-
LEVEL is 355, and that the value of MINIMUM-BALANCE is 352, we
can then say that the test-condition is {false! at this time.

• • •
false

(3 /66) 124

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

372

373

374

(3 /66)

When an IF sentence does not contain ELSE or OTHERWISE, control
jumps to the next jgenteneed } the test-condition is false.

• • •
sentence

The end of a sentence is identified by a
• • •

period

It should be clear from the logic diagrams how important the
distinction between a "sentence" and a "statement" now becomes.
Previously, we have dealt with "unconditional" actions, where the
distinction was not so important. For example, the first sentence
below calls for exactly the same actions as the two sentences
below it.

M ! !a D D P E N A L T Y T O A MO UN T - D U E . M O V E ; ’ j j j

A M 0 U N T
1

- to UÏ0 T 0 ! PA Y A B L E . . : ! ! i \

; : : l
/ I ; i

; ; ' i *
M ; !a D D j. P E N A L T Y T O A MO UN T - D U E . i i

\ 1 !

0 v !e A M 0 u In t 1- D U E TO: -P A Y A B L E . *
j j i

But where the word IF is involved, the exact location of periods
is vital. Thus, the two sets of entries below do not mean the
same thing. Can you explain the difference between them?

! i F S A L E S
T ! "i"

j< Q U o M]a 1 MO VE 1 BELO W ' T
—!—1
0 s

rT “ME M
—T—!
Oi.

Sa D D S A L E s ‘ M o YEA R-M lo - D A T E - S A LES .
| ; ;

1
1 ! t ' ! I j | ■ i i

Si F SA L ES < Q UOTA ,! MO VE ’ BELO W ' T 0̂ ME M0 1
|a DD S A L E S TO YEA R - T O - D A T E - S A LES'. i 1 !

• ••

In the first set of entries, SALES will be added to YEAR-TO-DATE-
SALES whether or not the value of SALES is less than the value of
QUOTA. In the second set, SALES will be added to YEAR-TO-DATE-
SALES only if the value of SALES is less than QUOTA.

125

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

375

376

What is wrong with this reasoning:
The two sets of entries below accomplish exactly the same purpose.
In each one, the EMPLOYEE-PLAN procedure will be performed if the
value of AGE is less than 65; and RETIREE-PLAN will be performed
if AGE is equal to or greater than 65.

In the second set, RETIREE-PLAN will be performed no matter what
the value of AGE is.

The program-flowchart excerpts below correspond to the two sets
of COBOL entries that you studied in the previous frame. They
illustrate the difference between the two sets of entries. The
difference is precisely the same as the difference between the
two logic diagrams in the reference handbook; you might wish to
compare those general logic diagrams with these specific
application flowcharts.

• • •

(3 /66) 126

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

377

378

379

The flowcharts in the preceding frame show how a programmer
thinks about the verb PERFORM. He treats PERFORM as if it were
a process done "in tine" within a procedure. Of course, the
programmer is well aware -- just as you are aware — that PERFORM
actually causes control to branch off to some other procedure,
and then causes control to come right back. This linkage to and
from the other procedure is completely taken care of by the COBOL
compiler, which permits the programmer to take a simplified view
of things.

But, when you are analyzing a program that someone else has
written, to see just what the program does, you must locate the
procedure that is performed and examine the processing done in
that procedure. We are going to do just that next; we will trace
the flow of control through a portion of the sample Procedure
division in the reference handbook.

Turn to the sample Procedure division — the one you looked at
when you began detailed study of the division, not the case study
program. Locate the IF sentence in the READ-NEXT-CARD paragraph.

• • •

This frame, and the next seven frames, refer to the sample
Procedure division.

The IF statement states that TOTAL-ROUTINE is to be performed
IF _____ .

• • •
NUMBER OF COMMODITY IS NOT EQUAL TO OLD-NUMBER

TOTAL-ROUTINE is the programmer-supplied name of a _____ .
• • •

procedure (paragraph)

(3 /66) 127

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

380

381

382

383

TOTAL-ROUTINE is the next procedure in sequence following
READ-NEXT-CARD.

A procedure to be performed |™eed not^follow} t*le Proce< ûre
that contains the PERFORM statement.

• • •
need not follow
A little while ago, you studied a drawing that showed a PERFORM
statement in procedure P-1. The procedure to be performed did not
follow P-1; instead, it was procedure P-3, two procedures away.
And it would have been perfectly all right for a PERFORM
statement in procedure P-4 to say, "PERFORM P-1".

TOTAL-ROUTINE consists of some MOVE statements and a WRITE
statement. It does not contain a GO TO statement. How will
control be returned to the statement following the PERFORM
statement in the READ-NEXT-CARD procedure?

• • •

Instructions to cause control to return will be generated by the
COBOL compiler.

To what statement will control return after TOTAL-ROUTINE has
been performed?

• • •
GO TO DETAIL-PROCESSING.

DETAIL-PROCESSING is the name of a
• • •

procedure

(3 /66) 128

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

384 Thus, immediately after control returns from TOTAL-ROUTINE, it
is sent off to DETAIL-PROCESSING. This would seem to suggest,
why not add a last statement to TOTAL-ROUTINE that says, "GO TO
DETAIL-PROCESSING?" The main reason that this was not done is
because the TOTAL-ROUTINE is to be performed at another point in
the program, and at that point, control is not to go to
DETAIL-PROCESSING.
Find the other "PERFORM TOTAL-ROUTINE" statement in the program.
To what statement will control return following the execution of
that PERFORM?

• • •
The other "PERFORM TOTAL-ROUTINE" statement is in the END-OF-JOB
procedure. After it is executed, control will go to the
statement that reads, "CLOSE PURCHASING-FILE, PURCHASE-REPORT-
FILE" .

385 Let's continue to trace the flow of control from the CLOSE
statement. After the CLOSE statement is executed, control goes
to a DISPLAY statement, and then to a STOP statement.
1. Each of these COBOL statements also happens to be a

sentence. Does this fact alter the flow of control
in any way?

2. Exactly what will happen when the DISPLAY statement
is executed?

3. Where will control go following the execution of the
STOP statement?

• • •
1. No, not in this case; but as you have seen earlier,

the distinction between statements and sentences is
crucial when you are dealing with IF sentences.

2. The words PURCHASE REPORT FINISHED will be typed on the
console typewriter.

3. Control will not go anywhere, as far as this program
is concerned. STOP RUN means the job is finished.
(Incidentally, this does not mean that the computer
stop8 running; control is simply turned over to the
operating system control program, which will probably
load the next program and process the next gob.)

(8 /66) 129

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

386

387

388

389

LESSON 10

This final lesson will give you a ohanoe to find out whether you
have learned what you were expected to learn from the other
lessons, which is to read a COBOL program with a high degree of
comprehension. You can think of this lesson as a "self test",
inasmuch as you wilt be applying what you have previously
learned, rather than learning new information.

Although there are no reading assignments in this lesson, you
should feel free to took up information in the reference handbook
whenever you need to. We have covered a tot of ground in nine
lessons, and you were repeatedly urged not to memorize details,
so it would hardly be fair to expect you to remember any but the
most important facts! (You may be surprised to find how many of
the details have "stuck with you".) Anyway, the answers are what
count, not whether you have memorized them, or must look them up.

• • •

Mo81 of our work in this lesson will be done with the case study
program. Turn to the Procedure division of the case study
program, and locate the third procedure.
m. . . . , , . (READ-AND-CHECK-RECORD)The third procedure is V > .c (LINE-1-PROCEDURE)

• • •
LINE-1-PROCEDURE

The first sentence of that procedure is
(LINE-1-PROCEDURE.)
(MOVE SPACES TO BILL-LINE-1.)

• • •
MOVE SPACES TO BILL-LINE-1.

If "LINE-1-PROCEDURE.” is not a sentence, what is it?
• • •

It is a paragraph header entry (procedure header entry).

(3 /66) 131

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

390

391

392

393

394

395

"MOVE SPACES TO BILL-LINE-1." is the first sentence of its
procedure. What is the first statement of that procedure?

• • •

The sentence contains just one statement, "MOVE SPACES TO
BILL-LINE-1". (The sentence is terminated by a period, while the
statement is not; so the period is the only difference between
the first sentence and the first statement, in this case.)

SPACES is one of a few reserved words that are called
• • •

figurative constants

BILL-LINE-1 is a programmer-supplied name of a data item.
In which division would you look to find the description of the
item?

• • •
Data division

Find the item description entry for BILL-LINE-1. The level
number of that entry tells that BILL-LINE-1 is the name of a

• • •
record

The level-01 entry for BILL-LINE-1, plus the string of level-02
entries that follow it, together make up a _____ .

• • •
record description

BILL-LINE-1 is a record, and it is also
a group item
an elementary item
an independent item

• ••
a group item

(3 /66) 132

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

396 How many elementary items are there in the BILL-LINE-1 record?
• ••

thirteen — Every level-02 item in this record is an elementary
item.

397 There are no USAGE clauses in any of the entries in the
BILL-LINE-1 record description. Do the items in this record have
a usage? If so, what is their usage?

• ••
Yes — all data items have a usage, since "usage” is the COBOL
term that means the data code in which data will be stored in
an item.
The usage of the items in this record is DISPLAY; when no usage
is specified, it is assumed to be DISPLAY.

398 Seven of the items in this record are called FILLER.
"FILLER"?

What is

• ••
FILLER is a reserved word that can be used in place of a name
when the item is not going to contain any information or is not
going to be processed.

399 The picture of the item named CREDITS is
• • •

PICTURE
PICTURE $$,$$$.$$
$$,$$$.$$ $$,$$$.$$.

$$,$$$.$$ (The final period is not part of the picture; it is
the period that terminates the entry.)

400 The picture identifies CREDITS as a
• • •

item.

report (that is, an item used to store edited data)

(3 /66) 133

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

401 What is the name of the file in which BILL-LINE-1 is a record?
• • •

CUSTOMER-BILL-FILE

402 What does "FD" stand for?
• • •

File Description

403 The FD entry for CUSTOMER-BILL-FILE contains the following
clause: "RECORDING MODE F". What does "recording mode" mean?
What does "F" stand for?

• • •
"Recording mode" is the COBOL term for the format (layout) of
records. "F" stands for "Fixed length".

404 How many different kinds of data records are there in
CUSTOMER-BILL-FILE?

• • •
four — BILL-LINE-1, BILL-LINE-2, BILL-LINE-2, and BILL-LINE-4

405 Where would you look to find out what device CUSTOMER-BILL-FILE
is assigned to?

• • •
In the Environment division

406 Locate the Environment division
to device number _____ .

CUSTOMER-BILL-FILE is assigned

1403 (the IBM 1403 Printer)

(3 /66) 134

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

407 The Environment division also indicates that the object program
will be compiled and executed on j difflJ^nt j comPuter ra°dels.

• • •
different (Source computer is IBM-360 G50; object computer is
IBM-360 F30.)

408 The name of this COBOL program is
BILLFILE
CUSTBILL
BILLING
not specified

• • •

BILLING (See the Program-Id paragraph of the Identification
division.)

409 The Data division is the
first
second
third
fourth

division of the program.

• • •
third

410 Turn to the Data division once again. Where would you look to
find the descriptions of independent items?

• • •
In the Working-Storage section

411 Locate the Working-Storage section. Of the three items
described in the section, the [first] [second] [third] is an
independent item.

• • •
ALL THREE are independent items — all have level number 77.

412 How many characters does the item named SKIP-TO-CARRIAGE-
CHANNEL-1 contain?

• • •
one (Its picture is X.)

(3 /66) 135

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

413

414

415

416

417

Just above the Working-Storage section header is the record
description of the BILL-LINE-4 record. How many characters does
that record contain?

• • •
133 (40 + 22 + 71)

Does this mean that each of the other three records in the
CUSTOMER-BILL-FILE also contains 133 characters?

• • •
Yes, it does — in this instance. You previously observed that
the recording mode of the file is F, which means that all of the
records in the file have the same length.

Turn to the Procedure division again. Where will the flow of
control through the procedures of this program begin?

• • •
At the START-PROCESSING procedure (There are no declaratives
in this program.)

In a few words, what is the function of the OPEN statement in
the START-PROCESSING procedure? Also, what does the OPEN
statement tell you about BILLING-FILE and CUSTOMER-BILL-FILE?

• • •

The OPEN statement makes the input and output files ready for
reading and writing. It also tells us that BILLING-FILE is the
input file, and that CUSTOMER-BILL-FILE is the output file.

Where will control flow when it comes to the end of the
START-PROCESSING procedure?

• • •
To the next procedure in sequence: READ-AND-CHECK-RECORD

(3 /66) 136

S y s te m /3 6 0 COBOL COBOL P ro g ra m F u n d a m e n ta ls

418

419

420

421

(3/66)

How many statements are in the first sentence of the
READ-AND-CHECK-RECORD procedure?

• • •
two: READ BILLING-FILE and GO TO END-OF-RUN

BILLING-FILE is the name of a _____ , and END-OF-RUN is the name
of a _____ .

• • •
file; procedure

Under what condition will control branch to END-OF-RUN?
• • •

When the end of the file has been reached; that is, when all of
the data records have been processed.
(AT END is a clause of the READ statementt and is mentioned in
the summary of the READ verbt under PROCEDURAL WORDS in the
reference handbook.)

What actions are taken when control branches to the END-OF-RUN
procedure?

• • •

The input and output files are closed, and the run is stopped.

137
A

R 29-Q 2Q 5-1

In ternational B usiness M achines Corporation
Data Processing Division
112 East Post Road, W hite Plains, N.Y. 10B01
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, Now York, New York 10017
[International]

	\\OMV-TC\temp\Scan\R29-0206-1_S360_COBOL_Program_Fundamentals_Text.pdf
	\\OMV-TC\temp\Scan\R29-0206-1_S360_COBOL_Program_Fundamentals_Text1.pdf
	\\OMV-TC\temp\Scan\R29-0206-1_S360_COBOL_Program_Fundamentals_Text2.pdf

