
------------------------------------ ------

Field Engineering Education
Student Self-Study Course

L ___ _

~-------------------------- -----------

Introductory Programming
Book 3 - Fixed Point Binary Operations

Preface

This is Book 3 of the System/360 Introductory
Programming Student Self-Study Course.

Course Contents
Book 1: Introduction R23-2933
Book 2: Program Control

and Execution R23-2950

• Book 3: Fixed Point Binary
Operations R23-2957

Book 4: Branching, Logical
and Decimal
Operations R23-2958

Book 5: Input/Output
Operations R23-2959

Prerequisites
• Systems experience (1400 series with

tapes, 7000 series with tapes) or a
basic computer concepts course.

• Books 1 and 2 of this Introductory
Programming course.

Instructions to the student and advisor
• This course is to be used by the

student in accordance with the
procedure in the Instructions to the
Student section in Book 1 of this course.

• The course is to be administered in
accordance with the procedure in the
System/360 Introductory Programming
Administrator Guide, Form #R23-2972.

This edition, R23-2957 -1 is a minor revision
of the preceding edition, but it does not
obsolete R23-2957 -0. Numerous changes of
a minor nature have been made throughout
the manual.

Issued to: _____ _

Branch Office:

Department:

Address: __________ . ______ _

If this manual is mislaid, please return it to the above address.

Copies of this and other IBM publications can be obtained through IBM
Branl:h Offices. Address comments concerning the content of this publication
to: IBM, FE Education Planning, Dept. 911, Poughkeepsie, N. Y., 12602

© by International Business Machines Corporation 1964, 1965

How to use this book

There are five sections to this text. At the beginning of each section,
is a list of Learning Objectives which you will be expected to learn as
a result of studying that particular section. Instead of having review
questions at the end of each section, this book has a programming
exercise in the last section and review questions for the entire book.
You can evaluate your understanding of the book as you do this
exercise. You will go through this book in a serial fashion. That is,
you will not be expected to skip or branch around. The answer to
each frame is· in the next frame. You may find it helpful to use a
standard IBM card to cover the answers as you read the frames.

Periodically, as you go through this book, you will be directed to study
areas of the System/360 Principles of Operation manual. This will help
you to become familiar with the manual so that it may be used as reference
material at a later date.

THE CONTENTS OF THIS BOOK

This book deals mainly with the fixed point arithmetic instructions of the
System/360. These instructions are part of the Standard Instruction set
and are standard on models 30 - 70 of the System/360. The fixed point
arithmetic instructions use both the (1) Storage-to-Register concept and
the (2) Register-to-Register concept. These instructions also assume
that the operands are in the Binary Data format.

SECTION I Review of Data and Instruction Formats

SECTION II Converting Data To/From Binary

SECTION III Fixed Point Instructions

SECTION IV Fixed Point Programming Exceptions

SECTION V Analyzing Fixed Point Programs

ALPHABETICAL INDEX

System/360 Fixed Point Binary Operations

• Section I:
Section II:
Section III:
Section IV:
Section V:

Heview of Data and Instruction Formats
Converting Data To/From Binary
Fixed Point Instructions
Fixed Point Programming Exceptions
Analyzing Fixed Point Progran1s

SECTION I LEARNING OBJEC TIVES

At the end of this review section. you should be able to:

1. State the names of the System/360 CPU data flow blocks and lines.

2. State that fixed point data fields are of halfword, word or doubleword
lengths.

3. State that fixed point operands are of halfword or word lengths and
are addressed by their high-order byte.

4. State that fixed point instructions are of the RR, RX, or RS format
and are one or two halfwords in length.

5. State that negative binary operands appear in complement form.

6. Add and subtract binary operands.

7. Determine when a fixed point overflow occurs.

8. State the function of the Op code bits.

ii Review of Data and Instruction Formats

Review of Data and Instruction Formats

.... ,.

I

~ ---iI-

r

!
I
I
I
I

I

)~ ~

~ ~ ~ +-. ~

Shown above are the blocks that make up the System/360 CPU as well as
main storage.

1. Identify the blocks as to:
main storage
control section
general registers
ALU
floating point registers
fixed length operations
variable length operations
floating point operations

2. Identify the lines as to:
addresses
instructions
data

Review of Data and Instruction Formats 1

STORAGE ADORE SS MAIN STORAGE

INSTRUCTIONS ~DATA~

CONTROL.
SECTION

0, 15
1, 15
1, 15

b; The effective base
or index address will
be all zeros.

AL.U

FIXED POINT VARIABL.E FL.OATING
OPERATIONS FIEL.D L.ENGTH POINT

OPERATIONS OPERATIONS 1
~DATA~ ~DATA~

16 4
GENERAL. FL.OATING POINT

REGISTERS REGISTERS]

For use as accumulators, the programmer has available general registers
__ through __ .

For use as base registers, the programmer may use general registers
_ through __ .

For use as index registers, the programmer has available general
registers __ through __ .

When the programmer specifies general register 0 as a base register or
an index register: (Circle one of the following.)

a. The contents of register 0 are added to the displacement.

b. The contents of register 0 are ignored in generating the effective
storage address.

c. A program interrupt will occur.

Number the bit poSitions of the general register below and indicate where
a halfword operand would be placed.

2 Review of Data and Instruction Formats

o

a, b

leftmost

bytes
specific ation

15 16

program interrupt

binary

1. halfword
2. word
3. doubleword

sign
integer

HALFWORD
OPERAND

31

Fixed length operands are processed using which of the following concepts:
(Circle one or more.)

a. Register-to-register

b. Storage-to-register

c. Storage-to-storage

A fixed length operand in main storage is addressed by its
(leftmo st/ rig htmost) byte location.

The specified address of a fixed length operand must be divisible by the
number of in the field or a exception will
occur.

A specification exception will cause a p _i ____ _

Fixed length operands are in a (binary/decimal) format.

The three sizes of fixed length data are:

1.

2.

3.

The leftmost bit of a binary operand is the s position while the
remaining bits are the ..::..i ___ _

Positive binary numbers are represented in their form with a
_ (0/1) in the high-order bit position.

Review of Data and I nstruction Formats 3

true
()

Show the dec imal value of + 1 as a halfword binary operand.

J

I
~----~

o 0 0 0 ,0 0 0 0 ,0 0 0 0: 0 0 0 ,\

eomplement
1

Negative binary numbers are represented in their
with a _ (0/1) in the high-order bit position.

Show the decimal value of -1 as a halfword binary operand.

form

In System/360, can a negative binary number be represented in true form?

No; The only way the System/360 knows that a binary operand is negative is by examining the
high-order bit. If that bit is 1, the machine assumes that it is a complement (negative) number.

No; If the operands
have unlike signs, this
means that one of them
is negative and there
fore is already in
complement form.

1 110 1 0 0 0

On an "add" instruction involving two binary operands with unlike signs,
does one of the operands have to be complemented before adding?

Add the following operands.

Sign Integer

I~
+0 1 0 1 100 1

1 000 1 1 1 1
1st Operand
2nd Operand

On a subtract instruction involving two binary operands with unlike signs,
does one of the operands have to be complemented before adding?

4 Review oj Data and Instruction Formats

Yes Because negative binary numbers in the System/360 can only be repre
sented in complement form, sign analysis does not apply to System/360
fixed point instructions. It boils down to this:

1. On an "add" instruction, the two operands are true added. That is,
the machine does not need to complement (or re-complement in the
case of negative numbers) either operand before adding.

2. On a "subtract" instruction, one of the operands IS complemented
(or re-complemented if negative) and then the two operands are
added.

Subtract the following operands.

Sign

t
o
1

Integer
t
~ o 1 1 0 1 1 1
111 1 1 1 1

1st Operand
2nd Operand

o 0 1 1 1 0 0 0; The 2nd operand (even though already in complement form) had to be re
complemented before the two operands were added.

fixed point overflow

does not

Whenever the largest negative or positive number is exceeded as a result
of a binary operation, a f p 0 will occur.

The System/360 detects a fixed point overflow whenever the carry out of
the sign position (does/does not) agree with the carry out of
the high-order bit of the integer.

Do the following binary problems. Show all work, indicating comple
menting when necessary. Also indicate whether or not a fixed point
overflow will occur.

Sign Integer

~ t
~

a. ADD 0 1 1 110 0 1 1st Operand

0 o 0 0 1 1 1 1 2nd Operand

------ (Overflow/No Overflow)

(Frame continued on next page.)

Review of Data and Instruction Formats 5

a.

b.

b. ADD 1 000 1 o 0 1 1st Operand

0 010 011 0 2nd Operand

(Overflow/No Overflow)

c. SUBTRACT

1 1 1 1 1 1 1 1 1st Operand

o 0 1 1 0 1 1 1 2nd Operand

(Overflow /No Overflow)

d. SUBTRACT

1 0 0 0 1 0 0 0 1st Operand

0 1 0 1 0 0 0 0 2nd Operand

(Overflow/No Overflow)

ADD 0 1 1 1 1 0 0 1

0 0 0 0 1 1 1 1

h
1 0 0 0 1 0 0 0 Overflow

The fixed point overflow is due to the fact that there was a carry into the sign position and
no carry out of it.

ADD 1 000 1 001

o 0 100 110

1 0 101 111 No Overflow

(Answers continued on next page.)

6 Review of Data and Instruction Formats

c.

d.

SUBTRACT 1 1 1 1 1 111 1111111 1
=

-00110111 + 11001001

,k""\ "....

C11001000

No Overflow

Notice that because the instruction is "subtract, ,t the 2nd operand was complement added to
the 1st operand. Also, note that the carry out of the sign bit position did not result in a fixed
point overflow. This is because there was also a carry into the sign position.

SUBTRACT 1 000 1 000 100 0 100 0

01010000+ 1 0 1 1 0 0 0 0

~

COO 1 1 100 0

Overflow

The 2nd operand was again complement added to the 1st operand. A fixed point overflow did
occur this time because there was a carry out of the sign position and there was no carry
into it.

In the previous examples of binary arithmetic, you were working with an
eight-bit (1 byte) number. As you know. fixed point binary arithmetic in
the System/360 uses either halfword or word operands. The principles
of determining when to complement or how to detect a fixed point overflow
still apply, regardless of the length of the operands.

Whenever a fixed point overflow is detected, a cP ___ _
may occur depending on the program mask in the PS\V.

program interrupt If the program mask in the PSW allows the program interrupt, the fixed
point overflow exception will be noted in the c of
the "old" PSW.

interruption code Fixed point instructions use both halfword and word binary data as
operands. These operands may be processed with both the storage-to
register and the register-to-register concepts. The Op code of the
instruction will determine which size operand and which processing
concept to use. Let's see what you remember about Op codes and
instruction formats.

Instructions are a multiple of in length.

Review of Data and Instruction Formats 7

halfwords

HH, HX, H8. 81. 88
(In any order)

Op code
0, 1

---------.---

00
halfword

OP CODE R 1

general register
1st

1st

HX

two halfwords

OP CODE Rl

main storage

R2

X2

The five instruction formats are:

The first byte of every instruction is the . The instruction
format is indicated by bits __ and __ of the Op code.

An HH format is indicated by a
HR format instruction is one

in bits 01 and 1 of the Op code. The
in length.

Indicate the fields of the RR format.

The H 1 field us uaUy contains the address of a
This register contains the (1st/2nd) operand.

The results of the instruction (such as add or subtract) will usually
replace the __ (1st/2nd) operand.

If bits 0 and 1 of the Op code are 01, an

An RX format instruction is

Indicate the fields of the RX format.

82 D2

In the RX format, the 2nd operand is located in

Binary operands in main storage may be one
in length.

format is indicated.

in length.

or one

8 Review of Data and Instruction Formats

halfword
word

2

3

X2, B2, D2

adding the contents
of the index and base
registers to the dis
placement.

24
two
four

are not

operation or instruc
tion such as add,
subtract, etc.

In the RX format, the length of the 2nd operand is indicated by bits
and __ of the Op code.

101 00 XXXX

LL LOPCODE

HALFWORD. THESE BITS WOULD BE 01 FOR A WORD.

RX FORMAT

The location of the 2nd operand in the RX format is indicated by the

--'-' and fields.

The effective address of the 2nd operand is generated by

The generated "effective address" is __ bits long. For a halfword
operand, this address must be divisible by ___ For a word operand,
this address must be divisible by

If the X2 or B2 fields contain zero, the contents of reg 0 __

(are/are not) used in generating the effective storage address.

While bits 0 - 3 of the Op code indicate the instruction format and type of
data, bits 4 - 7 indicate the specific

Indicate the fields of the RS format.

Review of Data and Instruction Formats 9

[OP CODE Rl R3 82 02

The RR and .RX formats are the two with whic h you will be most concerned
while learning the fixed point instructions, although there are a few RS
type instructions. Basic to any type of data processing is the ability to
add and subtract. If the System/360 had only one type and length of data,
it could possibly get by with one "add" instruction and one "subtract"
instruction. However, as you have learned, the System/360 has fixed as
well as variable length and binary as well as decimal data formats.

In the fixed length binary format, it can even have two different operand
lengths, halfwords and words. The halfword operand format can be
processed storage to register, while the word operand format can be
processed both storage to register and register to register. At this time?
we are only concerned with the fixed point instructions. These instructions
deal with fixed length binary operands.

Write in the names of the data flow blocks and lines.

Circle the lines upon which fixed point data will flow.

'"

~

~ ~
..

I
I
I

I

I

~

........ ~ f+ ~ ,

10 Review of Data and Instruction Formats

STORAGE ADORE SS ... MAl N STORAGE

'. .

INSTRUCTIONS : +-DATA-+
COMPUTER ~-------------;'--f I

SYSTEM
CONTROL

FIXED POINT
OPERATIONS

I \

I I

: ~DATA-+ :
I / /

'., .' \ '
v v

16
GENERAL

REGISTERS

v ALU

VARIABLE
FIELD LENGTH
OPERATIONS

v

FLOATING
POINT
OPERATIONS

.... DATA~

4
FLOATING POINT

REGISTERS

Go to the IBM System/360 Principles of Operation manual and briefly
study the following areas of the Fixed Point Arithmetic section.

Data Format
Number Representation
Condition Code
Instruction Format
Instructions (Study the list only. Do not study the explanation of

the individual instructions.)

-- --

Before studying these fixed point instructions, let's be sure you know how
data can be put in the binary format. The next few pages will cover the
converting of data to and from the binary format.

Review of Data and Instruction Formats 11

System/360 Fixed Point Binary Operations

Section I:
• Section II:

Section III:
Section IV:
Section V:

SECTION II

Review of Data and Instruction Formats
Converting Data To/From Binary
Fixed Point Instructions
Fixed Point Programming Exceptions
Analyzing Fixed Point Programs

LEARNING OBJECTIVES

A t the end of this section, you should be able to do the following when
given mnemonics of PACK, UNPK, CVB and CVD.

1. State instruction length and format.

2. State location and format of operands.

3. Determine the result and where it will be located.

4. State effect on condition code.

5. State which program checks are possible.

12 Convertinf!. Data To/From Binary

four

byte

Binary Coded
Decimal (BCD)

EBCDIC
8

Converting Data To/From Binary

You have demonstrated a knowledge of binary data formats. You know
that positive numbers are represented in true form and that negative
numbers are represented in complement form. You also know that
these binary numbers appear in main storage as halfwords or full
words. You are probably wondering, however, how data from a
punched card gets into main storage in these binary formats. You
should know the standard card code (hollerith). So let's start at that
point.

To punch the decimal number 1234 in an IBM card would require
columns.

Each column of a card read into a System/360 usually occupies one
b of main storage.

Data from a card reader is usually represented in main storage in
the Extended Interchange Code.

The Extended Binary Coded Decimal Interchange Code is usually
called • The code uses __ bits to represent a card
column.

The 8 bits of EBCDIC have two parts: zone and numeric. The zone
part consists of bits and the numeric part consists of bits

Converting Data To/From Binary 13

0-3
4-7

11110001

11000001

11
1
11010001

1.2
11
1.0010001

o
8
4
01101100

THE EBCDIC BYTE

2345671

-...--'-~

l L.. REPRESENT VAL.UES OF 8,

00 A-I
01 J-R
10 S-Z

4, 2, 1

11 NUMERIC

11 UPPER CASE AL.PHABETIC AND NUMERIC
10 L.OWER CASE AL.PHABETIC
01 SPECIAL. CHARACTER
00 NO CHARACTERS ASSIGNED

Go to the Principles of Operation manual and refer to the EBCDIC chart
in the Logical Operations area of the System Structure section.

Notice that the dark areas indicate card punching and that the circled
numbers refer to notes on the bottom of the chart. The notes show
some special card punching combinations.

As can be seen on the EBCDIC chart, a numeric "1" punch would be repre
sented by a combination of 8 bits in EBCDIC as

The letter A (12 and 1 hole punches) would be represented as

The character flJ" is represented on a card by an __ zone punch and a
_ digit punch. It is represented in main storage as the following byte:

A lower case flj" would be represented in a card by a digit punch of 1 and
zone pun.ches of and . It would be represented in storage as

The special character % would be represented by a zone punch and
digit punches of and • It would be represented in storage as

To get the bit combination 01101100 into storage would require a zone
punch of __ and digit punches of __ and __ •

14 Converting Data To/From Binary

o
8
4

01000000

12
o
9
8
1

A blank column on a card would be represented in storage as
(Refer to note 5 on the chart.)

To get a bit combination of 00000000 would require zone punches of
__ and digit punches of __ , __ , __ . (Refer to note 1)

Usually cards are punched in the standard hollerith card code. That is,
only decimal and alphabetic information is punched in the card. Then
after the data is brought into storage, it can be converted (via instructions)
to binary and processed with the fixed point instructions.

Given the following card record:

I

000000000000000 00000000000000000000000000001110000000
1 23456 78910"UUM~ 2~~~~U~~~~~~~~$D~~~~~~"~~D~~ronnD~mnnnn~

111111111111111 11111111111111111111111111111111111111

2 2 2 2 2 2 2 ? 2 '2 2 12 2 2 2 2

33333333333333333 333.3 3-3 3 3 3 3 3 3 3 33333333333333333313333

444444444444444444 44444444444444444444444444444441444

5555555555555555555 5555555555555555555555555555555155

9999999999999999999

, 666666666666&66666666666666666616

7 7 7 7 7 7 7 77 I
888888888888888888888888888888888

9999999999999999999999999999999999
46 41 484950 51 51 ')3 54 55 55 ~7 58 5960 E' 62 E3 E4 B5 6667 6B 69 70 n 72 73 74 75 76 n 18 19 80

~~ ______________________ ~ ~ ______________________ ~J
Y

t
2048

MAIN STORAGE

The card contains + 0001234567 in columns 71-80. Assuming that the
entire card record has been read into main storage starting at location
2048, columns 71-80 will be in byte locations __ through

Converting Data To/From Binary 15

2118, 2127;
locations 2048-2117
would contain card
columns 1-70

zoned

~ 0 I F 0 , '\
1"111 OQOO
~

0-3
low

0

"pack"

digits
sign
4-7

F 0 IF

Numeric fields in EBCDIC are said to be in the
decimal format.

___ (zoned/packed)

Show (in hex) the zoned decimal data from colmnns 71-80 of the card.

IF 2

tBYTE LOCATION
2118

IF 3 IF 4 I F 5

t \ ---1 1 1 1 001 1
~

3

IF 6 Ie 7 I

I \ -- 01'i1 1100 --
12 7

.I~

BYTE LOCATION J
2127

The sign of a zoned decimal data field is in bits
high) order byte.

of the

PACK INSTRUCTION

(low/

Decimal datc'1. must be in the packed format before it can be converted to
binary. Zoned decimal fields can be changed to the packed decimal format
by an instruction called " "

Packed deciInal data consists of two
byte containing one digit and the

____ . per byte with the low-order
The sign of a packed decimal

field is in bits ___ of the low-order byte.

Show (in hex) how the data in columns 71-80 would look if it were packed
into eight bytes.

16 Converting Data To/From Binary

00 00 00

OP CODE L1

zoned

assumed to be the
sign

00

L2

12 34 56 7C

The instruction "pack" is of the SS format. Label the fields.

SS FORMAT

81 01 82 D2

Read the description of the "pack" instruction in the Decimal Arithmetic
section of your Principles of Operation manual.

In the "pack" instruction, the 2nd operand contains the
zoned) decimal data.

(packed/

The low-order byte of the 1st operand receives the low-order byte from
the zoned data field. The zone bits of this byte are
(assumed to be the sign/ignored).

The zone and digits bits from the low-order byte of the zoned decimal
field are before being placed in the 1st operand.

reversed or swapped as shown below

0--3 4--7

ZONED)1 ZONE : DIGIT

X LOW ORDER BYTE

PACKED ~ 1 DIGIT : SIGN

Converting Data To/From Binary 17

Each remaining byte of the 1st operand receives the (zone/ digit)
bits from two successive bytes of the zoned decimal field.

digit; As shown below

0------7 0 ------7

ZONED S I ZONE DIGIT ZONE I DIGIT I ~

/
PACKED S I DIGIT DIGIT I S

0-------7

The zone bits from the 2nd operand in the preceding example are

ignored The bytes from the zoned decimal field (2nd operand)
checked for valid sign or digit combinations.

----- (are/are not)

are not The zoned decimal field (2nd operand) and the resulting packed decimal
field (1st operand) __ (can/cannot) be of different lengths.

can The 2nd byte of the "pack" instruction contains the codes of the
two operands. The number in the length code is
(equal t%ne less than) the number of bytes in the operand.

length
one less than The maximum number of bytes in either operand of a "pack" instruction is

16; As shown below

~I L1 L2 I S off---- 2ND BYTE OF PACK INSTRUCTION

t t
1 1 1 1 1 1 1 1 .. B I NARY 1 5

ONE LEiss LONE LESS THAN ZONED
THAN RESULTING FIELD LENGTH
PACKED FIELD
L,ENGTH

18 Converting Data To/From Binary

zeroes
ignored

00 00

t
BYTE
LOCATION
2048

high

00 00

If the length codes are such that the 1st operand is long (compared to the
2nd operand), the packed decimal field will be extended with high-order

If the length codes are such that the 1st operand cannot contain all the
digits from the zoned field, the remaining digits are ------

Given the following "pack" instruction, show the resulting packed
decimal field. Instructions and data are shown in hex.

F2 7 o 800 o

~ ~

BYTE LOCATION
3072 .1 FO I I

12

BYTE LOCATION
2048

BEFORE FF

AFTER

34 56 7C

LOC
2048

FO

FF

LOC
3072

FO I Fl

FF

t
BYTE
LOCATION
2057

I F2

FF

F3 F4

FF FF

F5

BYTE LOCATION
3081

F6

BYTE LOCATION
2057

Just as with the previous instructions dealing with fixed length operands,
the operands of the "pack" instruction are addressed by their
(high/low) order byte location.

The address of the low-order byte of either operand in the "pack"
instruction can be determined by adding its code to its
generated effective address.

Converting Data To/From Binary 19

length

00 00 00 00

Given the following "pack" instruction, show the resulting packed decimal
field. Everything is shown in hex.

F2

~~

+L-_____ +.L-__ LOCATION 2048

ZONED FO FO FO 1 F I
1

F2 F3 F4 F5 F6
1 C~

r r
LOCATION LOCATION

2048 2057

~ !
PACKED "fii

1
]

00 I OOJ- 12 I 34.1 56 7C

Notice that the original zoned data field was used to contain the resulting
packed decimal field.

CONVERT TO BINARY INSTRUCTION

You have now seen how the "pack" instruction can change a zoned decimal
field to a packed decimal field. The packed decimal data can now be
changed to a word of binary data by use of the instruction: "convert to
binary." This instruction will not only convert the data to binary, it
will also load it into a general register. Read the description of the
"convert to binary" instruction in the Fixed Point Arithmetic section of
your Principles of Operation manual.

In the CVB ("convert to binary") instruction, the 2nd operand contains a
(zoned decimal/packed decimal/binary) data field.

20 Converting Data To/From Binary

packed decimal

eight
8
specification

general register

data

data
data

1100;- These are
the zone bits for the
letters A-I
1101; These are
the zone bits for the
letters J-R

1111; These are
the zone bits for the
numbers 0-9

plus

To use the CVB instruction, the packed decimal field must consist of
___ bytes. The specified address of the high-order byte must be
divisible by __ or a exception will occur.

The results of the CVB instruction will be a binary word and will be
loaded into a

The data in the packed decimal field is checked for valid sign and digit
codes. If any codes are improper, a exception will be recognized.

0000-1001 are valid digit codes. If any of the digits of the packed decimal
field are coded from 1010-1111, a exception will be recognized.

Valid sign codes are 1010-1111. If the sign of the packed decimal field
(low-order four bits) contains any of the valid digit codes, a
exception will be recognized.

Since a twelve hole punch is used to indicate a plus field on a card, the
usual EBCDIC plus sign will be • (Refer to the EBCDIC chart)

Since an eleven hole punch is used to indicate a minus field on a card,
the usual EBCDIC minus sign will be

Sometimes plus fields in a card do not have a twelve hole punch. In
these cases, the expected EBCDIC plus sign would be

Because decimal data may be in EBCDIC or in extended 8-bit ASCII
(depending on PSW bit 12), either 1101 (EBCDIC) or 1011 (ASCII)
are acceptable as minus signs. All other bit combinations of 1010-1111
are acceptable as signs.

If the sign of the packed decimal field is plus, the binary equivalent of the
field will be loaded into a register in (true/complement) form.

If the sign of the packed decimal field is minus, the binary equivalent
of the field will be loaded into a register in (true/
complement) form.

Converting Data To/From Binary 21

true
complement

Example of conversion from packed decimal format to binary format.

I 1.::'1-- I l:-l PACKED DECIMAL
... _0_0......,j __ 0_0_~""-_0_0_~_0_0 _0_0_""-_0_1......,j __ 2_4_.l._3':J FIE LD I N STORAGE

r---- -- - - - - -- - - - - - - - - --- - --l

I DECIMAL 1243 = HEX 4DB 1

1 (REFER TO HEX-DEC CONVERSION TABLE)
I
I
I

I
HEX 4 D B 1

~------------------r -r -1 J

10000 10000 1 0000 I 00001 0000 101001"01 l '01J RESULTING BINARY
DATA IN GEN REG

In the preceding example, the conversion was made by first changing the
decimal data to hex data and then the hex data to binary data. We go
through the hex step simply because it makes decimal to binary conver
sion easier. Of course, the System/360 does not go through this hex step.
It converts directly from decimal to binary.

Given the following packed decimal field, show the converted results in
binary bits (not EBCDIC bits) in the general register.

PACKED DEC IMAL IN 00 00 00 00 I 00 00 10 7+ STORAGE --------4~~ ~ ____ ~ ____ ~ __ ~ ____ .~. ____ ~ ____ ~ ________ ~

RESULTING BINARY ... I
DATA IN GEN REG 7'

~--~----~--~----~--~----~--~----~

10000 : 0000 :0000 0000: 0000 : 0000: 01 10: 101 1

22 Converting Data To/From Binary

Given the following packed decimal field, show the binary results
in the general register.

PACKED DECIMAL
I N STORAGE -----4

RESULTING BINARY
DATA IN GEN REG ~

1 1 1 1 1 1 1 ': 1 1 1 1 : 1 1 1 1 : 1 1 1 1 : 1 11 1 : 1001 : 0101

00 00 00

Notice that the -107 is loaded as the complement of the value 107.

00 00 00 10

If the value of the packed decimal field exceeds +2,147,483,647
or -2,147 , 483,648 it cannot be expressed in a binary word. When
this happens, the low-order binary bits are placed in the register and
a fixed point d exception is recognized.

Divide! Of course, this instruction has nothing to do with division. The fixed point divide
exception code is used in this case in the "old" PSW only as a convenient way of indicating
what kind of programming error occurred on the CVB instruction. .

While a fixed point divide exception is usually thought of as something
like dividing by zero, it is used with the CVB instruction to indicate
that the packed decimal number was too large for a binary word.

When the binary equivalent of the packed decimal number cannot be
contained within a binary word, a ___ _
exception is recognized.

J

Converting Data To/From Binary 23

fixed point divide

four

two

Column 70; 12, 9, 4
punches

Column 71; 5 hole
punch

Let's stop a minute and go back and consider reading in data from a card.
You just learned how normal numerical punching can be read in and,
through the use of the "pack" and "convert to binary" instructions,
end up as binary data in storage.

It is also possible to use special punching in the cards. This punching will
result in the direct entry of binary data into storage o The "pack" and
"convert to binary" instructions will not be needed.

Since each card column comes into storage as a byte,
columns would be required to bring in a binary word.

To bring in a binary halfword, card columns are used.

card

To bring in the following halfword would require two card columns.
Assume columns 70-71 are used. Column 70 would be punched
______ ,_ and Column 71 would be punched • (Refer
to the EBCDIC chart.)

0---------------------------15

10 0 0 0: 0 1 0 0: 1 1 1 1: 0 1 0 1 I BINARY RESULTS
DESIRED IN STORAGE

To bring a value of -1 in a halfword (using columns 70-71) would require
the following holes to be punched in both columns 70 and 71.

12, 11, 0, 9, 8, 7 as shown below.

0----------------------------15

~, , , , , , '.' , , , , , , , 1 ... - VALUE OF -,

:---------------:~:
COLUMN 70 COLUMN 71

l l

12, 1 " 0, 9, 8, 7
PUNCHES IN BOTH COLUMNS

24 Converting Data To/From Binary

20

four

Of course to originally punch this binary information into cards would
require use of the multi key on the keypunch. Binary information in
main storage can be sent to a card punch unit and automatically
punched out in the EBCDIC card code. Each byte of binary data would
be punched in a card column as one of the 256 possible punching
combinations.

Since each card column comes into main storage as a byte, an IBM card
can hold __ binary words.

To avoid specification exce}1tions later on, the beginning address of an
input area for an IBM card containing 20 binary words should be divisible
by __ '

In review then, data must be in the binary format to be processed with
the fixed point instructions. Since each of the 256 different bit combi
nations in a byte can be obtained with the EBCDIC card code, it is
possible to bring data into the machine in the binary format. In the
event, however, that data is punched in the card, in the conventional
manner (that is, decimal fields with a 12 or 11 hole punch over the units
column) the data can be changed to binary via the "pack" instruction and
the "convert to binary" instruction. The "pack" instruction will change
a zoned decimal field (EBCDIC) in storage to a packed decimal field
in storage. The "convert to binary" instruction will take a doubleword
of packed decimal data and convert it to the binary format. The resulting
binary word will be placed in the specified general register. In convert
ing to binary, the packed decimal field is checked for:

1. Invalid digit and sign data codes - data exception.
2. Specified address not on a doubleword boundary - specification

exception.
3. Decimal value is too large for binary word - fixed point divide

exception.

CONVERT W DECIMAL INSTRUCTION

After the data has been processed, it may be desirable to change it back
to the zoned decimal format (EBCDIC). This would be necessary if we
wished to print the data out in recognizable form or punch the data out in
standard card code. This can be done by use of two instructions. The
"convert to decimal" instruction will convert the contents of a general
register to the packed decimal format and place it in main storage.
This packed decimal field can then be changed to the zoned format hy use
of the "unpack" instruction.

Read the description of the "convert to decimal" instruction in the Fixed
Point Arithmetic section and the description of the "unpack" instruction
in the Decimal Arithmetic section of the Principles of Operation manual.

Converting Data To/From Binary 25

packed

specification

1100
1101

ASCII

low
15

The first step in changing a binary result to EBCDIC is to use the CVD
instruction. This instruction will change the binary word to a doubleword
of decimal data.

If the address of the 2nd operand (packed decimal result) in the CVD
instruction is not on a doubleword boundary, a exception will
be recognized.

The coding of the sign bits of the packed decimal result will depend on the
sign of the binary word and bit position 12 of the PSW. If bit 12 of the PSW
is 0, the EBCDIC plus sign of or minus sign of ___ will be
generated. (Refer to EBCDIC chart.)

If bit 12 of the PSW is set to 1, the standard EBCDIC signs will not be
generated. Instead, the generated signs will be those of the extended

code.

The generated sign is placed in the (low /high)r order four bits of
the doubleword in storage. The remaining bits of the doubleword will
contain a total of __ BCD digits.

Given the following CVD instruction, show the resulting packed decimal
field.

800 HEX ------------
lE-:FF-ECTIVE ADDRESS IS 2048

BINARY CONTENTS OF GEN REG 1

(1ST CONVERT THE BINARY TO HEX. USE
THE HEX-DEC CONVERS~ON TABLE TO FI NO
THE DECIMAL RESULT.)

RESULTING PACKED DEC IMAL DATA

LOCATION
2048

LOCATION
2055

1 1 1

26 Converting Data To/From Binary

00 00

o 0

00 00 00 03 85 5+

Show the bit structure of the 3 low-order bytes of the preceding
packed decimal field o

)i

o 1 1 i, o 0 1 0

BINARY
CONTENTS
OF GEN REG 1

RESULTING
PACKED
DECIMAL DATA

Given the following binary word, show how the packed decimal double
word would appear after using the CVD instruction.

(CONVERT BINARY TO HEX. COMPLEMENT THE
HEX. CONVERT COMPLEMENTED HEX TO DECIMAL.)

Converting Data To/From Binary 27

FFFF7A40 ~----- Hex representation of complement binary number in general register.

t
o 0 0 0 85 CO --o(f------ Hex representation of the true form of the binary number.

85 CO --.. f---- Convert to decimal using Hex-Dec Conversion Table.

Hex
5CO

8000
85CO

Break down hex number to fit table.

Decimal

1472 }
32768 Add together

34240

RESULTING PACKED DECIMAL DATA Go I 00 I 00 I 00 I 00 I 34 r-
4
-.......-

0
---::r....... ORIGINAL NUMBER WAS NEGATIVE

packed

UNPACK INSTRUCTION

Now that the binary results of the processed data have been placed back
in main storage as packed decimal data, the "unpack" instruction can be
used to change the data to the zoned decimal forluat.

The 2nd operand of the "unpack" instruction is as sumed to be in the
(zoned/packed) format.

Bits 4-7 of the 2nd operand's low-order byte are placed unchanged in bits
of the 1st operand's low-order byte.

0-3; These bits represent the sign as shown below.

0 3 4 7

PACK DECIMAL SI I SIGN I LOW ORDER BYTE

/
ZONED DECIMAL 51 t>IGN

I =.J LOW ORDER BYTE

0 3 4 7

28 Converting Data To/From Binary

digits
4-7; As shown below.

Z D

1111

The remaining bits of the packed decimal field represent
These digits are placed in bits __ of the bytes of the 1st operand.

I D DID DID DID DID DID 5 I PAC KE D

~/l~
Z D I Z D I Z D I Z D I Z D I Z DIS D I ZONED

Bits 0-3 of the zoned decimal field represents the zone. If PSW bit 12
is 0 (EBCDIC), zone bits of will be inserted.

In review, then, once data has been processed with the fixed point
instructions, it can be converted back to the zoned decimal format.
This would allow the data to be punched out in the standard card code or
printed out in readily readable form. To convert binary data to zoned
decimal data requires using the "convert to decimal" instruction and
the "unpack" instruction. The "convert to decimal" instruction will take
the binary contents of a general register and place it in main storage
as a doubleword of packed decimal data. The "unpack" instruction will
change the packed decimal data to zoned decimal data.

You should now know that data can be put into the binary format by one
of the two following methods:

1. Numeric Data can be punched in the standard card code (Hollerith)
and read into storage as zoned decimal data. Then by means of
two instructions it can be changed to the binary format.

2. By using the 256 possible punching combinations of EBCDIC, any
binary bit combination can be read into main storage.

You are now ready to study the fixed point instructions. These instruc
tions will process data which is in the binary format.

Converting Data To/From Binary 29

System/360 Fixed Point Binary OperatiDns

Section I: Review of Data and Instruction Formats
Section II: Converting Data To/From Bi.nary

• Section III: Fixed Point Instructions
Section IV: Fixed Point Programming Exceptions
Section V: Analyzing Fixed Point Programs

SECTION III LEARNING OBJECTIVES

At the end of this section, you should be able to do the following when given
the mnemonic of any fixed point instruction.

1. State instruction length and format.

2. State location and format of operands.

3. Determine the result and where it will be located.

4. State effect on condition code.

5. State which program checks are possible.

30 Fixed Point Instructions

5, 1

F, B, 1
B, carry

2~ A, 1
D

Fixed Point Instructions

Binary numbers are often shown in hexadecimal. This is done to simplify
working with the binary data. Hex arithmetic is used in many of the
System/360 manuals and will be used when you receive System/360
training at a plant school. Therefore, it is important that you becOlne
thoroughly familiar with hex arithmetic.

Before studying the fixed point add instructions, let's review hex addition.

Example of adding hex AB9 to hex 2FC: (Dark numbers are hex arithmetic)

2 F C
DECIMAL 2 DECIMAL 15 DECIMAL 12

+
A B 9
DECIMAL 10 DECIMAL 1 1 DECIMAL 9

1 1

0 B 5
DECIMAL 13 DECIMAL 27 DECIMAL 21 SUM

MINUS MINUS
HEX BASE 16 HEX BASE 16

1 1 5

Use this example to complete the following frames.

In the low-order position of the preceding example, a hex C is added to
a hex 9. The result is a hex __ and a carry of a hex __ .

In the next position, a hex
is a hex and a ~c __ _

and
of hex 1.

The high-order position shows the addition of a hex
The result is a hex

Hex addition rule:

are added. The result

and

Any time the addition of two hex numbers results in more than F (decimal
15) the amount over (more than) decimal 16 becomes the s and a
carry of hex __ is added to the next position.

F'ixed Point Instructions 31

sum
1

Do the following:

1. Use the Hexadecimal-Decimal Conversion table in the Appendix of
the Princples of Operation manual and convert the two decimal
numbers of the addition problem to hex.

2. Add the decimal numbers.
3. Add the hex numbers.
4. Use the conversion table to check your hex sum against the decimal

sum.

Addition problem:

Decimal

2849
+ 1021

Hex

+

Okay, now that you have reviewed hex addition, let's start the fixed point
add instructions.

ADD INSTRUCTIONS - ALGEBRAIC

Shown below are three instructions which can be used to add the binary
data form·ats that you have learned.

Mnemonic

AH
A
AR

Hex Op Code

4A
5A
1A

Data Flow

Halfword storage to register
Fullword storage to register
Fullword register to register

It is assumed that you know that a mnemonic is a symbolic method of repre
senting an Op code. Notice that the letter "A" is used to indicate an add
instruction. An ending letter of "H" is used to indicate a halfword operand
length while an ending letter of "R" is used to indicate an RR type instruction.

In eac h of the above instructions, the 2nd operand is added to the 1st
operand and the sum replaces the 1st operand.

Read the description of the preceding "add" instructions in your Principles
of Operation nlanual. These descriptions will be found in the Fixed Point
Aritlunetic section. Do not read the description of the "add logical"
instruction. It will be covered later.

Write (using "hex") the complete instruction to add field A to field B.
Assume field A is in register 5 and field B is in register 2.

RR FORMAT

32 Fixed Point Instructions

Notice that since we are adding to field B, field B (reg 2) is implied to be the 1st operand.

Write the preceding instruction in binary bit fashion.

000 110 1 000 100 101

RRFO~/ / /
Word Add 1st

operand
is in

Reg 2

r
2nd operand
is in Reg 5

Show the contents of registers 2 and 5 as a result of the preceding
instruction.

B:..~

004824AB

B~g 5

F F F F A A A A

Reg 2

Reg 5

00487A01

F F F F A A A A

Notice that the 2nd operand is unchanged by the addition. The 1st operand (in reg 2)
is replaced by the sum.

Example of how the System/360 executes the instruction uSing the actual binary operands.

Reg 2 0000 0000 0100 1000 0111 1010 0000 0001

Reg 5 1111 1111 1111 1111 1010 1010 1010 1010

0000 0000 0100 1000 0010 0100 1010 1011

t t t t t t t t
0 0 4 8 2 4 A B

In the preceding example, reg 2 contained a
negative) number and reg 5 contained a
number.

(positive/
(positive/negative)

Fixed Point Instructions 33

positive
negative

positive

would not

00
01
10

o
1
2

11 3

As a result of adding the above numbers, the surn was
(positive/negative) .

Since the carry bit into the sign position agreed with the carry out of the
sign position, a fixed point overflow (would/would not) occur.

After an "add" instruction, the condition code is set to indicate one of the
four possible arithmetic results.

Indicate the condition code setting for each of the following arithmetic
results.

Result

Zero
< Zero or Negative
)Zero or Positive
Overflow

Binary Hex

The mnemonic "A" is used to indicate a full word add of storage to register.
This instruction, whose Op code is a hex 5A, is of the ____ format.

RX Assuming that the base address is in reg 5 and that there is no index
address, write the instruction that would add a fullword in storage to a
full word in reg 7.

FIX FORMAT

XXX

OP CODE R1 X2 82 D2~.~----DISPLACEMENT

34 Fixed Point Instructions

Given the following, show the contents after execution of the preceding
instruction.

Before After
Reg 0 E E E E E E E E
Reg 5 0 0 0 0 0 .F 0 0
Reg 7 0 F 0 F 0 F 0 F
Storage F F F F F F F F

Reg 0
Reg 5
Reg 7

EEEEEEEE
OOOOOFOO
OFOFOFOE

Storage F F F F F F F F

The resulting sum which replaces the original operand in reg 7 can be determined either by
converting the operands to binary and then adding, or simply by adding the hex numbers. Of
course, as far as the System/360 is concerned, these are binary operands.

+

Hex Addition

FFFFFFFF

OFOFOFOF

OFOFOFOE

did not

10; The final sum was
positive or greater
than zero.

Binary Addition

1111 1111 1111 1111 1111 1111 1111 1111

0000 1111 0000 1111 0000 1111 0000 1111

0000 1111 0000 1111 0000 1111 0000 1110 -- -------- ------
-+ t t t -+ + t -+-
OF 0 F 0 FOE

The preceding instruction
overflow.

(did/did not) result in a fixed point

The condition code setting as a result of the above instruction would be

Again, notice that even though the two operands were opposite in signs.
there was no need to complement on this add instruction. This is because
negative fixed point operands are already in their form.

Fixed Point Instructions 35

complement Using the following instruction, show the contents of reg 7 and storage
after instruction execution.

Storage
Reg 7

7 xxx

Before

FOFOFOFO
FFFFFFFF

After

Storage
Reg 7

Unchanged
FOFOFOEF

FFFFFFFF

FOFOFOFO

FOFOFOEF

01

OP CODE R1

o

X2

1111 1111 1111 11111111 11111111 1111

1111 0000 1111 0000 1111 0000 1111 0000

1111 0000 1111 0000 1111 0000 1110 1111

Notice that the final sum was negative and as such is in "twos" complement
form. The condition code setting will be __

If the operand in storage is a halfword, the Op code "4A" (mnemonic: AH)
can be used. It also is of the RX format.

Write the instruction that will add the following binary operands. Assume
reg 1 has a base address of 2048.

REG 2 ---.....iI OFFFFFFF

STORAGE ----l~ .. 1 00 I 01

BYTE LOCATION J ~
2048 -

2049

INSTRUCTION~~[________ ~ ____ ~ ____ ~ __ ~ ____ • ________ ~

000

B2 D2

36 Fixed Point Instructions

Reg 2 80000000
Storage 0001

11
fixed point overflow

program mask

AR
A
AH

RR
halfword

In the add halfword instruction~ the entire register contents are used. The
halfword from storage is expanded to a fullword by propagating the sign bit
to the left. The operands are then added and the result goes back into the
register.

Show (in hex) the contents of reg 2 after adding the indicated halfword.

Reg 2
Storage

Before

7FFFFFFF
000 1

After

In the preceding problem ~ the carry bit into the sign position does not
agree with the carry bit out of the sign position. The condition code would
be set to __ indicating a

Remember now, that in the AH instruction, only the storage operand is
considered to be a halfword. It is expanded to a fullword by sign bit
propagation before being added to the fullword in the register.

Because of the overflow in the previous "add halfword" instruction, a
program interrupt might occur depending on the
the PSW.

in

In review then, there are three instructions to algebraically add binary
operands. List their mnemonics.

A mnemonic which ends in the letter R (such as AR) indicates an instruc
tion of the __ __ format. If the mnemonic ends in the letter H (suc h
as AH), it indicates that the second operand is a

The hexadecimal Op code for the mnemonic AR is 1A. Assuming that the
1st operand is in reg 0 and the 2nd operand is in reg 8, write the binar.v
bit structure of the instruction that would add these.

~Fixed Point Instructions 37

0001 1010 0000 1000
--+-T T
Op Code R1 R2

Given the following, what would be the contents of reg 0 after the instruc
tion is executed? What would be the condition code?

Instruction I Mnemonic is AR 1A 0 8

I +
Reg 0 Before OA43F876

Reg 8 Before 000321F9

Reg 0 After

PSW Condition Code

Reg 0 = 0 A 4 7 1 A 6 F The hexadecimal Op code for the mnemonic A is 5A. Assuming that the
Condition Code 1 0 1st operand is in reg 6 and that the 2nd operand has a displacement of zero,

LSA 6 o

MNEMONIC IS R 1 X2
A

with a base address in reg 5 and no index factor, write the instruction
(in hex) that would add these operands.

S 000

B2 02

Referring to the preceding instruction and given the following, what will
be the contents of reg 6 after the instruction is executed? What will be
the condition code?

5A I 6 0 S 000

1st Operand Before A087FA76

2nd Operand Before 074A0237

Reg 6 After

PSW Condition Code

38 Fixed Point Instructions

Reg 6 = A 7 D 1 F CAD
Condition Code 01

4A 5 o

To save main storage space, smaller binary numbers can be kept in main
storage as halfwords. The mnemonic to add a halfword in storage to a
fullword in a register is AH. The hexadecimal Op code is 4A.

Assuming that reg 12 has a base address of 2048, write (in hex) the
instruction that will add the following halfword to the word in reg 5.

STORAGE HAL.FWORD OPERAND

16 4 1 A 71

t
L.OCATION

2056

c

+
L.OCATION

2057

008

L SASE ADDRESS IS IN REG 12

Given the following, show the contents of reg 5 and the condition code
after the instruction is executed.

4A

1st Operand

2nd Operand

Reg 5

5 o

Before

Before

After

PSW Condition Code

c 008

074AA43F

6 4 A 7

Fixed Point Instructions 39

Re g 5 = 0 7 4 B 0 8 E 6
Condition Code 10

SUBTRACT INSTRUCTIONS - ALGEBRAIC

Just as there are three Op codes for algebraic addition of binary operands,
there are three Op codes for algebraic subtraction.

Mnemonic

SH
S
SR

Algebraic Subtraction

Hex Op Code

4B
5B
1B

Data Flow -----

Halfword storage from register
Fullword storage from register
Fullword register from register

Notice the similarities between the subtract Op codes above and the add Op
codes below.

Mnemonic

AH
A
AR

Algebraic Add

Hex Op Code

4A
5A
1A

Data Flow

Halfword storage to register
Fullword storage to register
Fullword register to register

"A" is the mnemonic for add while "S" is the mnemonic for

A mnemonic ending in "H" (such as AH or SH) indicates that the second
operand is a

A mnemonic ending in "R" (such as AR or SR) indicates that the
instruction is of the format.

-----_._--------_._---------.. --

subtract
halfword
RR

0001

The four high-order bits of add and subtract Op codes are the same,
assuming that the data flow concept and length of data are the same o

The four high-order bits of the SR instruction are 0001. The four high
order bits of the AR instruction are

The four low-order bits of an Op code indicate the specific operation such
as add or subtract.

The four low-order bits of the SR instruction are
(the same as/different from) those of the AR instruction.

40 Fixed Point Instructions

different from Read the description of the following "subtract" instructions in your
Principles of Operation manual. They will be found in the Fixed Point
Arithmetic section. Do not read the description of the "subtract
logical" instruction. It will be covered later.

Mnemonics
SR
S
SH

--- ~~~~~ -"-

18 o

OP CODE R1

7

R2

Write (in hex) the complete instruction that will subtract field B from
field A. Both fields are binary operands. Field A is in register 0
and field B is in register 7.

Notice that since we are subtracting field B (reg 7) from field A
(reg 0), register 0 contains the 1st operand. Also note that register
o can be used as an accumulator. As you have previously seen,
register 0 could not be used as a base or an index register.

added

Because the preceding instruction says to subtract binary operands,
the 2nd operand will be complemented and then to the
1st operand.

18 7

In the SR instruction above, the register that will have its contents
complemented is register __ •

"Fixed Point Instructions 41

7 In the preceding instruction, the complementing of the 2nd operand
(reg 7) during a binary subtract operation (does/
does not) change the contents of the 2nd operand (reg 7).

does not; In other words, the 2nd operand will be brought out to the ALU without changing the register.
In ALU, the 2nd operand is complemented and added to the 1st operand which has also
been brought out to ALU. The resulting answer is then put back in the location of the
1st operand. The actual mechanics of how the ALU does the complementing or adding
may vary from one model of System/360 to another. Such topics will not be covered
here.

Given the following information, show the complernent of the 2nd operand as
well as the result that will replace the 1st operand.

Instruction

18 - I 4 I 6

Reg 4 0100 1000 0010 0001 0001 0010 0100 1000

Reg 6 0001 0010 0100 1000 1000 0100 0010 0001

Complement of
2nd operand

Final Result
in Reg 4

1110 1101 1011 0111 0111 1011 1101 1111
0011 0101 1101 1000 1000 1110 0010 0111

did not

In the preceding problem, there was a carry into the sign position and a
carry out of it. Because of this, a fixed point overflow
(did/did not) occur.

Because the sign bit of the final answer was 0, the condition code (bits
34-35 of the PSW) would be set to •

42 Fixed Point Instructions

10; This indicates
a positive result.

zero; The preceding
instruction is a good
example of how a
register may be
cleared out.

00

RX
complemented

specification
"old" PSW

program interrupt

cannot

18 6

The SR instruction will subtract the contents of one register from
another. It can also be used to subtract the contents of a register
from itself. In the instruction above, the contents of register 6 after
instruction execution will be

In the preceding example, the condition code was set to

The SR instruction used the RR format. The Sand SH instruction use
the ____ format. These Sand SH instructions are identical to
the A and AH instructions with the following exception. In the S
and SH instructions, the 2nd operand (main storage) is adde.c;1 to
the 1st operand after it (2nd operand) has been

Just as in the A and AH instructions, the main storage operands
specified by the Sand SH instructions must reside on the correct
fixed length boundaries. If not, a program interrupt will result
and a exception will be indicated in the II "

If the address of the main storage operand is not available on the
particular System/360 (such as address 16,000 on an 8K machine) ,
an addressing exception will cause a

The preceding types of program interrupts ___ _ (canl cannot)
be masked.

If the carry out of the sign position does not agree with the carry
into it in the preceding add and subtract instructions, there will be
a

Fixed Point Instructions 43

fixed point overflow

program interrupt
fixed point overflow;
Bit 36 of the PSW
will prevent the
interrupt if it
contains a O.

A fixed point overflow can cause a The
program mask (bits 36-39) of the PSW can be used to prevent program
interrupts caused by

For the following mnemonics, indicate the instruction formats and the
length of the 2nd operand.

Mnemonic

AR
A
AH
SR
S
SH

Format Length of 2nd Operand

Mnemonic Format Length of 2nd Operand

AR RR Fullword
A RX Fullword
AH RX Halfword
SR RR Fullword
S RX Fullword
SH RX Halfword

In all the above instructions, the 1st operand is a word in length.

ADD AND SUBTRACT INSTRUCTIONS-LOGICAL

.-----.---------------------------------.--.-------------------.------

There are four more add and subtract instructions which are quite similar
to the ones you have just studied. They are the "add logical" and "subtract
logical" instructions. Before proceeding, read the descriptions of these
instructions in your Principles of Operation nlanual. You will find the
descriptions in the Fixed Point Arithmetic secHon.

Logical Add and Subtract

Mnemonic

AL
ALR
S L
SLR

44 Fixed Point Instructions

Hex Op Code

5E
1 E

5 F
1 F

Data Flow ----

Fulhvord storage to register
Fullword register to register
Fullword storage from register
Fullword register from register

L

R

fullword
H

To differentiate the "logical add/subtract" instructions from the
"algebraic add/subtract" instructions, which you previously learned,
the logical instructions include the letter __ in their mnemonics.

Just like the algebraic instructions, the logical instructions denote the
RR format by the ending letter of __ .

The length of both operands in the "logical add/subtract" instructions
is always a Therefore, these instructions do not use the
mnemonic,

AL = 5E A 5A
ALR= IE AR lA
SL 5F S 5B
SLR = IF SR IB

The high-order four bits of the AL, ALR, SL, SLR instructions are the
same as those of the A, AR, Sand SR instructions, respectively.
This is because the instruction formats and type of data (fullword binary)
are the same. The low-order four bits are different, however, because
the specific operations are different. The instruction AR calls for an
algebraic add (signed numbers) while the ALR instruction calls for a
logical add (unsigned numbers). Actually, the arithmetic results are
the same for both algebraic add/subtract and logical add/subtract.

+

Algebraic Add

01101101
00111000
10100101

+

Logical Add

01101101
00111000
10100101

Notice that the arithmetic results of the previous example are the same.
The operands shown were 8 bits in length for purposes of simplicity. If
the arithmetic results of algebraic and logical addition are the same,
what is the difference between the two types of instructions? The
difference is in the setting of the condition code (bits 34 and 35 of the
PSW) and its meaningo

Fixed Point Instructions 45

01

Algebraic Add

01101101
+ 00111000

10100101

Logical Add

011011011
+ 001110010

10100101

PSW Condition Code = 11 PSW Condition Code = 01

In the preceding example of an algebraic add, a fixed point overflow
resulted because of a carry into the sign position without a carry out of
it. This overflow was indicated by a condition code of 11. A program
interrupt might also occur depending on the program mask (bits 36-39)
in the PSW. If the program mask prevents the interrupt, the next
instruction could be a "branch on condition" instruction to test the conditio:
code.

In the case of the preceding logical add instruction, a fixed point overflow
cannot possibly occur because there is no sign bit to consider. All that
can be indicated is:

Condition Code

00
01
10
11

Meaning

No carry and zero result
No carry and a non-zero result
Carry and zero result
Carry and a non-zero result

Notice that (for the logical add/subtract instructions only) PSW bit 34
means a carry while bit 35 means non-zero.

Examples: 11 00

Carry JLNon-zero No Carry JL Zero

The resulting PSW condition code of the following "logical add" would
be •

10011100
+ 01001100

11101000

The resulting PSW condition code of the following "logical add" would be

+ 10010001
11010001

46 Fixed Point Instructions

11 In summary then:

1. The arithmetic results of "logical" and "algebraic" addition of

2.

3.

binary operands are (identical/different).

The "logical add/subtract" instructions use
only.

A "logical add/subtract" instruction
result in a fixed point overflow.

____ operands

(can/cannot)

4. The "logical add/subtract" instructions use the letter
in their mnemonic.

5. The condition code settings and their meanings are as follows:

Condition Code Algebraic Logical

00 Zero Result No carry, zero
01 Negative Result No carry, non-zero
10 Positive Result Carry, zero
11 Overflow Carry, non-zero

Fixed Point Instructions 47

identical
fullword
cannot
L

Before going on to more instructions, let's consider one use of the "logical
add/subtract" instructionso

As you learned in the beginning of the "add" instruction section, only
words and halfwords can be added. What happens \vhen a programmer
desires to add two doublewords? What he can do is place the high-order
word of the 1st operand in one register and the low-order word in another.
Then he can logically add the low-order word of the 2nd operand to the
low-order word of the 1st operand. There is no fixed point overflow
possible. He can then test the condition code for a carry. If a carry
resulted, he can add a value of + 1 to the high-order word of the 1st
operand. In any case, the last step would be to algebraically add the
high-order word of the 2nd operand to the high-order word of the 1st
operand. The following flowchart and sample program should
illustrate this more clearly.

FLOW CHART OPERANDS

ADD +1
TO
REG 2

ASSUME:

5E

07

4A

5A

ADD LOGICAL
LOCATION 2052

TO REG 3

ADD ALGEBRAIC
LOCATION 2048

TO REG 2

1ST OPERAND
(DOUBLEWORD IN TWO REGISTERS)

o 31 0

II REG. 2 REG. 3

I
2ND OPERAND

(DOUEILEWORD IN STORAGE)

t
BYTE

LOCATION
2048

t
BYTE

LOCATION
2052

31

PROGRAM (IN HEX)

A. REG 1 HAS BASE ADDRESS OF 2048
B. LOCATION 2056 HAS A HALFWORD CONTAINING A VALUE OF +1

l

I ~ a 004
ADD LOGICAL LOCATION 2052
TO REG 3

4

I ~ a

2 o

BRANCH ON CONDITION. ASSUME R4 CONTAINS
ADDRESS OF OP CODE 5A.

008

000

ADD + 1 TO REG 2

ALGEBRAIC ADD LOCATION
2048 TO REG 2

48 Fixed Point Instructions

L
R
H

is not

LOAD INSTRUCTIONS

So far you have been adding and subtracting binary operands in the
general registers. You have not seen how the data was originally
placed in the registers. As you know, all input data must come
into main storage before it can be processed. In turn, processed
data must be in main storage before it can be sent to an output
unit. As a result, there must be instructions to take data out of main
storage and place it in a general register and later to put the
processed binary data back in storage. These instructions are the
"load and store" instructions. "Load" instructions put data in a
register, while "store" instructions put data back in main storage.

There are three "load" instructions which do no more than place data
in a general register. These instructions have no effect on the PSW
condition code and do not change the 2nd operand. Read the
descriptions of the following three "load" instructions in your
Principles of Operation manual. You will find the descriptions in the
Fixed Point Arithmetic section.

Mnemonic

LR
L
LH

Hex Op Code

18
58
48

Data Flow

Fullword register to register
Fullword storage to register
Halfword storage to register

A "load" operation is specified by the letter __ in its mnemonic.
Just like the "add/subtract" instructions, the mnemonics of the "load"
instructions to denote RR format or halfword use ending letters of

or --

The condition code in the PSW
LR, L, or LH instructions.

(is/is not) changed by the

The Land LH instructions load a register with data from main
storage. The LR instruction loads a register from a register. Write
the instruction (in hex) that will load reg 1 from reg 5.

Fixed Point Instructions 49

16
31

changed

5

The LH instruction loads a halfword from storage into bits
through __ of a general register.

As a result of the LH instruction, bits 0-15 of the register are
(changed/unchanged) •

The following halfword is placed in a register by use of the LH instruction.
Show (in hex) the resulting contents of the register.

Storage

Register after execution
of LH instruction

A7B6

-----,-------------------_._----------_. ---.

F F F F A 7 B 6; The halfword is expanded to a fullword by propagating the sign bit to the left.

In the preceding example, the result in the register is a
(positive/negative) number.

Negative; As a reminder, don't forget that negative binary numbers are carried in their complement
form.

specification
addressing

--_ .. _-------_ .. --------

The two programming errors that are possible when using the Land LH
instructions are and exceptions.

You have just studied the instructions used to load data into general
registers. In addition to the three previously mentioned instructions
(LR, L, LH), there are also several special purpose "load"
instructions. They are special in the sense that they affect the condition
code and may also change the data as it's loaded" Read the following
descriptions in the Fixed Point Arithmetic section of your Principles
of Operation manual.

Mnemonic Hex Op Code Data Flow -----
LTR 12 Load and test
LCR 13 Load complement
LPR 10 Load positive
LNR 11 Load negative

50 Fixed Point Instructions

RR
condition code

As indicated by the last letter of their mnemonics, the four instructions
you just read about use the format. All four of these instructions
can change the (data/ condition code).

The only difference between the LR instruction and the "load and test';
(LTR) instruction is the effect on the PSW

condition code; By specifying the same register in the Rl and R2 fields, the LTR instruction can
be used to test the contents of a register.

complement

after

The LCR instruction will change the condition code and will also
the data.

With the LCR instruction, the condition code shows the status of the data
(before/after) it was complemented.

The LPR instruction only complements
numbers.

(positive/negative)

negative; The LPR instruction boads Eositive numbers into the register regardless of the
original sign of the numbers.

The LNR instruction complements numbers.

positive; The LNR instruction boads ~egative numbers into the register regardless of the
original sign of the numbers.

zero

The only positive number that cannot be complemented by either the
LCR or the LNR instruction is

Given the following list of mnemonics, indicate the effect
(changed/unchanged) on the condition code and on the data.

Mnemonic

LR
L
LH
LTR
LCR
LPR
LNR

PSW Condition Code Data

Fixed Point Instructions 51

Mnemonic

LH
L
LH
LTR
LCH
LPR
LNR

"store"

1st
1st
2nd

PSW Condition Code

Unchanged
Unchanged
Unchanged
Changed
Changed
Changed
Changed

Data

Unchanged
Unchanged
Unchanged
Unchanged
* All data is complemented
Negative data is complemented
* Positive data is complemented

* With the Exception of Zero

STORE INSTRUCTIONS

Besides the ability to put data into the registers wllth the "load" instruction,
System/360 also needs the ability to put data from the registers back into
main storage.

This last type of operation is accomplished by a " ___ " instruction.

Read the descriptions of the following "store" instructions in the Fixed
Point Arithmetic section of your Principles of Operation manual.

Mnemonic

8T

8TH

Hex Op Code

50

40

Data Flow

Fullword, register to
storage

Halfword, lmv-order of
register to storage

You have learned that, as a general rule, most instructions cause the
results to replace the (1st/2nd) operand. The "store" instructions
are an exception to the preceding rule. In the ST and STH instructions,
the (1st/2nd) operand replaces the __ (1st/2nd) operand.

In the case of the S TH instruction, the 2nd operand in main storage is
replaced by bits __ through __ of the general register.

16 Just like the Land LH instructions, the STand S TH instructions
31 (change/do not affect) the condition code.

52 Fixed Point Instructions

do not affect

protection
different

cannot

50

t
C

t
o

A programming error that can occur on a "store" instruction, but not
on a "load" instruction, is called a exception. It can occur on
a "store" instruction when the storage key associated with the 2nd operand
and the protection key in the PSWare (different/alike).

If the protection key is zero, a protection exception
cannot) occur.

(can/

Write the instruction (in hex) that will store the contents of general register
12 in byte locations 2052-2055. Assume reg 7 contains a base address of
2048.

7 004

--------~--~-----------~
ST REG 12 EFFECTIVE ADDRESS IS 2052

Notice again that storage addresses refer to the high-order (leftmost)
byte location.

OP CODE R1 R3

Two more instructions that you should learn now are the "load multiple"
(LM) and "store multiple" (STM) instructions. You will find descriptions
of these instructions in the Fixed Point Arithmetic section of your
Principles of Operation manual. Read the descriptions and then continue
with the following frames.

The LM and STM instructions are the first ones you have studied in this
book that use the RS format. Label the fields of the RS format.

82 02

Fixed Point Instructions 53

do not change

2
4

0008
0011

15
0063

Like the Land ST ins tructions, the LM and STM
(change/do not change) the condition code.

98 2 4 o 004

In the above LM instruction! byte locations 0004 thru 0015 will be loaded
into register through __ .

98 2 4 o 004

In the above LlVI instruction. register 3 will be loaded \vith the contents of
byte locations _ through

90 o F o 000

In the above STM instruction, register 0 through will be stored in
byte locations 0000 through (Assume the storage and protection
keys match.)

-~-~-~~~~~----

90 o F o 002

The above STM instruction will result in a exception.

--------------------~~----

specification; Address 0002 is okay for halfwords but not for full words . The LM and STM instruc
tions use the entire contents (fullword) of the registers.

90 01 000

The above STM instruction v.i.ll not result in a specification exception but
may (depending on the keys) result in a exception.

54 Fixed Point Instructions

protection

H

multiplier
full word

MDLTIPL Y INS TR DC TIONS

At this point, you should have the ability to load binary data into the
registers, add and subtract this data, and store the resulting data back
into main storage. Now let's forge ahead and see how this data can be
multiplied and divided. The first instruction you will learn is "multiply
halfword" (MH). Read its description in the Fixed Point Arithmetic
section of your Principles of Operation manual and then continue with
the following frames.

The "multiply halfword" instruction, like all instructions involving
halfwords in main storage, has a mnemonic which ends with the letter

In the MH instruction, the multiplicand is in a general register while a
halfword in main storage is the • The halfword from
storage is expanded to a before the multiplication.

In the MH instruction, the multiplicand is ___ bits long.

32; The entire register is multiplied by the multiplier. Normally, the register will only be
holding a halfword and therefore the register's 16 high-order positions will not affect the
product. The net result is that a halfword will be multiplied by a halfword.

Binary multiplication can be quite lengthy if done by hand. The following
is an example of an 8-bit multiplicand being multiplied by a 4-bit multiplier.

Binary
01101011 ~ Multiplicand

x 0111~Multiplier

01101011 Partial Products
01101011 }

01101011
00000000
01011101101----+- Product

Judging from the preceding example you can see that binary multiplication
is quite lengthy. If it is necessary to determine the results of a "multiply"
instruction, you should convert the numbers to decimal and then multiply.

Fixed Point Instructions 55

The MH instruction follows the rules of algebra. That is, if both ope rands
are true numbers (plus) the product will be a (true/
complement) number.

true If both operands are complement numbers (negative), the product will
be a (true/complement) number.

true; Multiplication of like signs always results in a positive answer. For example:
(+2) x (+7) = +14; (-2) x (-7) = +14

negative

complelnent;
Because of the
unlike signs, the
product will be
negative.

If multiplication of like signs results in a positive product, multiplication
of unlike signs should result in a (positive/negative)

product.

If the multiplicand (1st operand) is a complement number and the multiplier
(2nd operand) is a true number, the product of the MH instruction will
be a (true/complement) number.

As was previously stated, it is best to convert the operands to decimal
numbers and then multiply if you are interested in determining the product.
For instance: +2 times +7 = + 14.

If the preceding were shown (for the sake of simplicity) as four-bit
binary numbers, it would look like this:

(+7)
<+2)

(+ 14)

x
0111
0010
0000

0111
0000

0000
0001110

Supposing both operands were negative:

(-7)
(-2)

1001
x 1110

----II.-1\vos complement of 7 ____ ~-=---~ .. -Twos complement of 2
OOuO

1001
1001

1001
1111110 -----'.~ 1\vos complement of 2

(Algebraically " this should be
positive number.)

(Frame continued on next page.)

56 }'ixed Point Instructions

As you can see, the binary multiplication of complement numbers does
not produce the desired product. Obviously, the System/360 must do
something internallv to the operands since the results of multiplication
should be algebraically correct. The obvious solution would be to makE.'
the two negative operands true numbers and then multiply.

(-7)
(-2)

1001
x 1110

(+ 14)

0111
~ ~x ___ 0:...0:...1--:0=---_

0000
0111

0000
0000
0001110

What if only one operand is negative? The solution again is to make it
a true number, multiply and then complement the producto

(-7)
x (+2) x

1001
0010

And then because the
original signs were
different, complement
the product.

(-14)

0111
~ x 0010 -------

0000
0111

0000
0000
0001110

'--..

~1110001
+ 1

1110010 ~ Twos complement
of 14

Another rule of multiplication is that the maximum number of significant
bits in the product is equal to the total number of significant bits in multi
plicand and multiplier.

For example: 0111 ~3 significant bits
;:;;;x ____ 0_1_1_1 +- 3 significant bi ts

0111
0111

0111
0000
0110001-+-6 significant bits

Fixed Point Instructions 57

halfword
halfword
fullword
register

2

31

~ ___ 4_C ____ ~_R_~~~ __ X_2 __ ~B_2 __ ~ ______ D_2 ______ ~1 MH INSTRUCTION

1ST OPERAND
MULTI PLiCAND

o
I~----'- HALFWORD

\
PRODUCT

31

2ND OPERAND
MULTI PLiER

o 16

HALFWORD

EXPANDEY

HALFWORD

The example above shows that the MH instruction is normally used to
multiply one h (1st operand) by another h (2nd
operand). The maximum product that could result would be a _f _____ ,
and would replace the contents of the 1st operand _r ___ _

If the MH instruction is used with a multiplicand that has 15 significant
bits and a multiplier that has 15 significant bits, the product will be in bits
__ through __ of the register that previously held the multiplicand.

o

MORE
THAN

1ST OPERAND
MULTIPLICAND

MORE
THAN

31

: HALFWORD

\
PRODUCT ~.~-------------

FUL~WORD

2ND OPERAND
MULTIPLIER

o 16

COMPLETE
HALFWORD

EXPANDEV

COMPLETE
HALFWORD

The example above shows that the 1st operand regilster contains more than
a The 2nd operand contains a complete (16 significant bits)

If the MH (multiply halfword) instruction is used, the product will be more
than bits long. The entire product will not fi~ in the 1st operand
r

58 Fixed Point Instructions

halfword
halfword
32
register

32
lost

is not

32

unchanged

In the preceding example, the resulting product in the 1st operand reg
ister contained only the __ low-order bits of the actual product. The
high-order bits of the actual product were

The preceding example
of the MH instruction.

(is/is not) a normal application

The product of the 32-bit multiplicand and the 16-bit multipler may
exceed 32 bits but only the low-order __ bits of the product replace
the 1st operand.

Although the register containing the 1st operand may not contain the
entire product, a fixed point overflow will not occur and the condition
c ode remains

If the register containing the multiplicand had been loaded with the LH
instruction, the low-order 32 bits of the product (will/
will not) contain all of the significant bits of the product.

will; This is because a halfword contains only 15 integer bits. The maximum length of the
product is equal to the total number of significant bits in the multiplier and multiplicand.

RR
1st
2nd
1st

even
specification

In summary, the MH instruction multiplies the contents of a general
register by a halfword from main storage. The low-order 32 bits of the
product replace the multiplicand. No fixed point overflow is possible
and the condition code remains unchanged.

Let's now study two more binary multiply instructions. You will find the
descriptions of the M and MR instructions in the Fixed Point Arithmetic
section of your Principles of Operation manual.

The mnemonic MR denotes a multiply instruction of the format.
The instructions MH, M, and MR cause the (1st/2nd) operand to
be multipled by the (1st/2nd) operand. The product of the MH,
MR, or M instructio~places the __ (1st/2nd) operand.

The R1 field in both the M and MR instructions must contain the address
of an __ (even/odd) numbered register. If the R1 field of an M
or MR instruction has an odd address, a program interrupt will be
caused by a exception.

A speCification exception of an M instruction can also be caused by a
2nd operand address that is not divisible by __ .

Fixed Point Instructions 59

4; The 2nd operand
is a full word in
storage.

odd

5
7

5
4

Although the R1 field contains the address of an even-numbered register,
the 1st operand (multiplicand) is actually in an (even/odd)
numbered register.

If the R1 field of an M instruction contains a 4, the contents of register
4 are ignored and the multiplicand is brought out of register •

4 7

In the above MR instruction, the multiplicand is in register
multiplier in register

1C

In the above MR instruction, the multiplicand is in register
multiplier is in register __ •

and the

and the

In the preceding MR instruction, both the multiplicand and the multiplier
were wiped out by the product which is placed in register and •

------------------~-.----------------------------------

4
5

Show the register contents (expressed decimally) after the following MR
instruction is executed.

BEFORE AFTER

-7 +7

REG 4 REG 5 ~·~4----------~R~E~G~5----~
+2-J

REG 7 REG '7

60 Fixed Point Instructions

Reg 4 = Zero
Reg 5 = +14
Reg 7 = +2

even
odd

divisor
dividend
quotient

quotient
remainder

Notice that in the preceding instruction, register 4 was zeroed out even
though the product was small enough to be fitted into reg 5.

EVEN REGISTER ODD REGISTER

BEFORE IGNORED I S I INTEGER MULTIPLICAND

AFTER I s I INTEGER INTEGER PRODUCT

+ +
HIGH ORDER LOW ORDER

The example above shows that the product of an MR or M instruction is
always developed as a doubleword with the high-order in the
register and the low-order in the __ register.

DIVIDE INSTRUCTIONS

Now that you have studied the instructions that multiply fixed length
binary numbers, let's consider the instructions that will divide fixed
length binary numbers. But first, let's review some information
concerning division.

120
12) 1440

The problem above shows a division of decimal numbers. The number
12 is called the and the number 1440 is the
The answer is called the

12) 1443

The divide problem above has a
of 3.

of 120 and a

The sign of the quotient follows the rules of algebra. If both the divisor
and dividend have plus signs, the quotient will also have a
sign.

If both the divisor and dividend have negative signs, the quotient will have
a sign.

Fixed Point Instructions 61

plus
plus

minus

the same as

To illustrate the preceding rules, consider the following:

+ 12
-12) -144

To check, multiply the quotient and divisor.

+ 12 x -12 = -144

If the divisor and dividend have opposite signs, the quotient will have a
sign.

To illustrate the preceding rule, consider the following:

- 12
-12) + 144

To check, multiply the quotient and divisor.

-12 x -12 = + 144

What about the sign of the remainder? By definition, the remainder is
what is left from the dividend. As a result, the sign of the remainder
should be (the same as/ different from) that of the
dividend.

To illustrate the preceding rule, consider the following:

+ 120 with a remainder of -3
-12) -1443

To check the above, multiply the quotient and divisor and add the
remainder.

-12 x + 120 = -1440
-1440 + (-3) = -1443

Show the quotient and remainder.

-12) +1443

62 Fixed Point Instructions

- 120 with a remainder of + 3
-12) + 1443

To check:

-12 x -120 + 1440
+1440 + (+3) = +1443

D
DR; Notice that
there is no DH
instruction.

even
specification

dividend

divisor
main storage

dividend

You are now ready to study the binary divide instructions. You will
find a description of the D and DR instructions in the Fixed Point
Arithmetic section of your Principles of Operation manual. Read the
description and then continue with the following frames o

There are two binary divide instructions. Their mnemonics are
and •

The Rl field of the D and DR instructions must contain the address of
an (odd/even) register or a program interrupt will be caused
by a exception.

The even-odd pair of registers addressed by the Rl field of the divide
instruction contains a doubleword that is the (divisor/dividend).

In the DR instruction, the R2 field has the address of the register
containing the

In the D instruction, the divisor is a word from

The quotient and remainder from a D or DR instruction replaces the
(dividend/divisor).

10

In the above DR instruction, the dividend is in

Fixed Point Instructions 63

Regi.sters 2 and 3 as sho'A'll below

o 1 31 0 31

~--------D-I-V-ID~;E-N-D----------~

REG 2 REG 3

10 2

In the above DR instruction, the divisor is in

Register 4 as sho'A'll below

o 1 31

[SI DIVISOR

REG 4

Reg 3
Reg 2 as shown below

o 1 31 0 1

rs-GEMAINDER I S I
REG 2

In the above instruction, the quotient will be in
and the remainder will be .in

31

QUOTIENT I
REG 3

64 Fixed Point Instructions

Given the following DR instruction, show (in hex) the contents of
registers 2 and 3 after the instruction has been executed. Assume the
dividend is -1443 and the divisor is -12.

10 2 4

REG 2 REG 3

-- ---- ---

REG 2 REG 3

IF F F F F F F 01 0 0 0 0 0 0 7 81 ---
t t ~01111000

CONTAINS QUOTIENT OF +120

CONTAINS REMAINDER OF -3

------------------------------------- ---------- --

fixed point divide

You have already learned some of the exceptions that can cause
program interrupts. They are as follows:

1. Fixed point overflow
2. Specification
3. Addressing
4. Protection

An additional exception is fixed point divide. A fixed point divide
occurs any time the quotient cannot be contained as a 32-bit signed integer.

When the divisor is zero, a program interrupt will be caused by a
exception.

No division takes place and the dividend is left undisturbed any tim(~ the
System/360 recognizes a
exception.

Fixed Point Instructions 65

fixed point divide The System/360 would recognize a divisor of ____ as a fixed point
divide exception.

zero
DR 1D

DIVIDEND E: F F F F F F IF F F F F F F F

DIVISOR I 7 F F F F F F F I·
In the above problem:

Will a fixed point divide be recognized? __ _
Will the contents of registers 4 and 5 be changed?

Yes. The quotient cannot be contained in reg 5 because it is too large.
No. A fixed point divide exception will occur instead.

will

If that portion of the dividend that is in the even register is equal to or
greater than the divisor, the system (will/will not) recognize a
fixed point divide exception.

COMPARE INSTRUCTIONS

You should now be in a position to load registers, do multiplication,
division, addition, or subtraction, and store the results. You have two
more types of instructions (compare and shift) to learn and then we will be
able to see some programming examples. Let's examine the "compare"
instructions first. You will find de scriptions of the CR, C, and CH instruc
tions in the Fixed Point Arithmetic section of your Principles of
Operation manual. Read the descriptions and continue with the following
frames.

To indicate a "compare" instruction, the mnemonic: uses the letter
To compare a halfword in storage to the contents of a general register
you would use the mnemonic __ • To compare the contents of one
register to another, you would use the mnemonic ___ •

66 Fixed Point Instructions

C
CH
CR

unchanged
condition code

"branch on condition"

00

1st
2nd
1st

less

01 (or a hex 1);
The 1st operand
(reg 4) is low
because it is a
negative number
which is
algebraically less
than a pos itive
number.

The 1st and 2nd operands are (changed/unchanged)
by the compare operation. The operation is used to set the PSW

A "compare" instruction would usually be followed by the instruction

" "

If a compare operation shows that both operands are equal, the
condition code would be set to •

A condition code of 01 indicates a low compare. In other words, the
(1st/2nd) operand is less than the (1st/2nd) operand.

A condition code of 11 is impossible after a compare but a code of 10
would indicate that the (1st/2nd) operand is higho

The comparison is algebraic. In other words, the operands are
considered as signed integers. A negative operand would be
(less/greater) than a positive integer.

Given the following CR instruction, indicate the condition code setting.

Reg 4 AOF10FFF

Reg 7 7 F F F F F F F

PSW Condition Code

Given the following CH instruction, indicate the condition code setting.

49 4 OOF

Reg 4 7FFF7F70

Main Storage 7 F F F

PSW Condition Code

Fixed Point Instructions 67

10 (or a hex 2);
The halfword is
expanded to a full
word by sign pro
pagation. Then the
two full word operands
are algebraically
compared.

So far you have studied most of the instructions in the Fixed Point
Arithmetic section of your Principles of Operation manual. Shown below
are most of these instructions with hex Op codes:

Halfword (RX) Fullword (RX) Fullword (RR)
Load 48 58 18
Compare 49 59 19
Add 4A 5A 1A
Subtract 4B 5B 1B
Multiply 4C 5C lC
Divide None 5D ID
Add Logical None 5E IE
Subtract Logical None 5F IF
Store 40 50 None

Notice!

1. The 1st hex digit for each column of instruction§' is the same.
That is, all the halfword operations have the same 1st hex
digit (4).

2. Each specific operation such as load, add and so forth,
have the same last hex digit. That is, all the "multiply"
instructions have an Op code ending in C.

The preceding should agree with what you learned previously in the self
study book entitled "System/360 - Program Control and Execution." The
Op code is summarized as follows:

o 7

I x x y y z z z zl OP CODE

XX-- INSTRUCTION FORMAT (RR, RX AND SO FORTH)

YY---TYPE OF DATA (HALFWORD, WORD AND SO FORTH)

zzzz- SPECIFIC OPERATION (SUCH AS ADD, LOAD AND SO FORTH)

One other point to be made before continuing concerns the halfword
operations. In all of the halfword instructions, with the exception of store
halfword, the entire contents (fullword) of the register specified as the
1st operand is used. If this register had been initially loaded with a half
word and if all of the operations involving this register used the halfword
instructions, bits 16-31 of the register would possibly contain all of the
significant bits. Therefore the use of the "store halfword" instruction
would store the entire accumulated data. When in doubt about the
magnitude of the accumulated data, the "store" instruction should be used
instead. This instruction would store the entire fullword contents of the
register and four bytes of storage would be needed.

68 Fixed Point Instructions

8

100

SHIFT INSTRUCTIONS- ALGEBRAIC

Let's now examine the "shift" instructions in System/360! The "shift"
instructions only involve the general registers. Data in main storage
cannot be shifted.

What do we mean by shifting? Shifting basically is moving the contents
of the register to the right or to the left. For instance, assuming
we have a theoretical 8-bit register, shifting would take place as
follows:

If this register were shifted one place to the right it would look lilw this:

Notice that the low-order bit was shifted out. The resulting number (5)
in the register is 1/2 the original number (10). Right shifting is similar
to dividing by the powers of 2.

A right shift of two places is similar to dividing by 4; a right shif1 of
three places is similar to dividing by (6/8).

If the same theoretical 8-bit register shown below were shifted one place
to the left, what would the resulting register look like?

BEFORE
1
0 0 0 <, 0 1 01

AFTER I : 1
-----.. -~-- .- --

Notice that the result (20) of the preceding problem is twice that of the
original number (10). Left shifting is similar to
by the powers of two.

Fixed Point Instructions 69

multiplying

OP CODE

R3
RI

R1

indicate number
of shifts

six (6)

R3

The System/360 can shift a register or a pair of registers either to the
left or to the right. Furthermore, its "shift" instructions fall into two
categories: algebraic and logical.

All of the "shift" instructions use the RS format. Label the fields of the
RS format.

B2 02

Read the descriptions of the following "algebraic shUt" instructions in
the Fixed Point Arithmetic section of your Principles of Operation manual.

Mnemonic

SIA
SRA

Hex Op Code

8B
8A

Data Flow -----

Shift register to the left
Shift register to the right

In the SLA instruction as in all "shift" instructions, the RS format is used
but the __ field is ignored. The register to be sh:ifted by an SIA or SRA
instruction is indicated by the field.

The address generated by adding the base register contents and the
displacement is used to (address data/indicate
number of shifts).

The number of places to shift the register is indicated by the
low-order bits of the generated address.

The maximum number of shifts is

70 Fixed Point Instructions

63; 111111 = 63

will not

algebraic
is not

1; As shown. below

If the generated address is zero, the condition code will be set and the
register (will/will not) be shifted.

The letter A in the mnemonics (SLA, SRA) indicates that the shift is
(algebraic/logical). In an algebraic shift, the sign bit

(is/is not) shifted.

In the SLA instruction, the shifting is out of bit position (0/1) .

o 1 30 31

I S I \ INTEGER \) I I I

30 31

I : I' I'NTEGER)) I I I
~
SHIFT OUT
FROM HERE

"--
PUT ZERO
BITS HERE

In the SRA instruction, the sign bit is
to the right.

propagated; As shown below

o 1

I S I I INTEGER

"'-.)
PROPAGATED

)5 1
30n
~

SHIFT OUT
FROM HERE

(s hifted/ propaga ted)

Fixed Point Instructions 71

[---r-~
7FOA,7200

Given the following SLA instruction, show (in hex) the contents of the
shifted register.

88 2 [3 I 0 008

- --~ AFTER

The generated address was 0008. As a result " register 2 was shifted
eight places to the left. Let's take a look at the preceding example again.
This time, \ve will show the binary contentso

REG 2

REG 2

,: I I I ,; 0 0 0 0:' 0 I 0:0 I I .; 0 0 0 I BE FORE

~ SHIFT IN 8
ZERO 8ITS

Notice that no significant bits were shifted out in the preceding example.
If the register had been shifted 9 places, a significant bit would have been
lost.

When a bit is shifted out (SLA only) that is different than the sign bit, a
significant bit is lost. A exception will
result and a program interrupt may occur.

fixed point overflow; Notice that a program interrupt may occur. Remember that the fixed point
overflow interrupt can be prevented by use of the program mask (bits 36-39 of PSW).

Given the following SLA instruction, show the contents of reg 2 in
binary.

88 2 3 o F08 ---J
REG 2 --.------.-

1 1 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 8EFORE

AFTER

72 Fixed Point Instructions

Even though the displacement was F08, the shift was only 8 places. Only the low-order six bits
of the generated address determine the amount of shifting.

Did a fixed point overflow occur in the preceding example?

No; Since the original number was negative a fixed point overflow would be indicated by shifting
out a 0 bit as opposed to a 1 bit for positive numbers.

Given the following SLA instruction, indicate the contents of the shifted
register and the condition code.

88 3 o o OOF

REG 3
1----

1 0 0 0 0 8EFORE

D psw CONDITION CODE

G ~ FIXED POINT OVERFL.OW

Notice that even though the fixed point overflow occurs with the 1st bit shifted, the entire shift
of 15 places still occurs.

Fixed Point Instructions 73

Let's move on to the "shift right algebraic" instruction.

Given the following SRA instruction, show the contents of the shifted register.

SA 3 OOF

REG 3

1
1 1 1 1 :0 0 0 0 ~-1 -1-:·:-··:-~~·~-~T 0 0 0 0 1 1 1 1 :0 0 0 0 I BEFORE

- . I ! I I I . ,

AFTER

E 1 1: 1 1 1 1:1 1 1 1: 1 1 1 1,1 1 1 0: 0 0 0 1: 1 1 1 0:0 0 0

Notice the propagation of the sign bit.

The condition code setting for the preceding problem would be

01; This condition code reflects a negative result. Notice that a fixed point overflow cannot occur
on a right shift operation no matter what bits are shifted.

Given the following SRA instruction, show the contents of the shifted
register and the condition code.

SA FFF

REG 3

AFTER

D CONDITION CODE

-------_._----------------------_. -------- ------------

74 Fixed Point Instructions

G CONDITION CODE

Notice that a right shift of 31 or greater of a positive number will zero out a register, because
the sign bit of 0 is propagated to the right.

I ' , 1 <, , , , : ' , 1 ,;,
G CONDITION CODE

Given the following SRA instruction, show the contents of the shifted
register and the resulting condition code o

SA o FFF

REG 4

~ ____ ~ ____________ ~ ____ ~ ____ ~ ______ ~ ____ ~ _____ J~ AFTER

D CONDITION CODE

, ,
, : 1 1 1 ,;, , ,

': 1

, , ,;, , , 1 REG 4

Notice that a right shift of 31 or greater of a negative number will result in a -1, because the
sign bit of 1 is propagated to the right.

Besides shifting a single register, the System/360 also has the ability
to shift a doubleword that resides in an even-odd pair of registers
(remember the doubleword product as a result of a multiply). Read the
description of the following :instructions in the Fixed Point Arithmetic
section of your Principles of Operation manual.

Mnemonic

SLDA
SRDA

Hex Op Codes

8F
8E

Data Flow

Shift double register to left
Shift double register to right

Fixed Point Instructions 75

The SLDA and SRDA instructions are similar to the SLA and SRA instructions
in that the field is ignored.

The SLDA, SRDA, SLA, and SRA are also similar in that the number of
shifts is determined by

R3 In both the SLDA and SRDA instructions, the Rl field must have the address
Only the low-order six of an
bits of the generated
address.

even-numbered
register 8F 3 001

The above SLDA instruction would result in a

specification;
Because the Rl field
has an odd address.

8F 4 006

exception.

In the above SLDA instruction, registers __ and __ will be shifted
together.

4
5

o
4 as shown below.

In the preceding example the sign of the doubleword is in bit position
of register __

o 1 310 31 G---- INTE-G-E-R----..-i--------------.i

I~~:
I I

: REG 4 REG 5 : , ,
' DOUBLEWORD -------......;)o~

76 Fixed Point Instructions

REG 4

Given the following SLDA instruction, show (in hex) the contents of the
shifted registers.

8F 4 o 010

REG 4 REG 5

10000:00 1 0IFOF~FFFFI BEFORE

AFTER

REG 5

A SHIFT OF 16 PLACES WAS SPECIFIED

Given the following SRDA instruction, show (in hex) the contents of the
shifted registers and the resulting condition code.

8E 4 3 o 010

REG 4 REG 5

10 0 0 0: 0 0 1 0: F 0 F 0: F F F F I
CONDITION CODE

HEX D

Fixed Point Instructions 77

R3

o 0 0 0 0 0
!

REG 4

10 0 1

Low-order six bits
of the generated
address.

o F 0\ HEX~
REG 5

SHIFT INSTRUCTIONS - LOGICAL

You have finished the four "algebraic shift" instructions and are now ready
to study the four "logical shift" instructions. The "logical shifts" differ
from the "algebraic shifts" in that the entire register participates in the
shift, the condition code is unchanged and a fixed point overflow cannot
occur. You will find descriptions of the following "logical shift"
instructions in the Logical Operations section of your Principles of
Operation manual.

Mnemonic Hex Op Code Data Flow

SLL 89 Shift register left
SRL 88 Shift register right
SLDL 8D Shift double reg left
SRDL 8C Shift double reg right

Just like the "algebraic shifts," the "logical shift" instructions ignore the
field. The number of logical shifts taken is determined by the

Unlike the "algebraic shifts," the "logical shifts"
change the condition code.

(do/do not)

---------------------------------------_.

do not In a "logical right shift, " the sign bit is not propagated. Instead, it is
shifted and zeroes are inserted in bit position __

78 Fixed Point Instructions

o as shown below
o 3031

LOGICAL RIGHT SHIFT I~I 01...--1 ~?(]]]
..A ~

ZEROES SHIFTED SHIFT OUT
IN HERE FROM HERE

o 30 31

ALGEBRAIC RIGHT SHIFT I .. _I_ ... I ____ ?(]]]
~V ~

THIS BIT IS
PROPAGATED TO
THE RIGHT

SHIFT OUT
FROM HERE

In a "logical left shift" such as SLL, shifting is done out of bit position
_ and zeroes are inserted into bit position __ e

0
31 as shown below

0 30 31

LOGICAL LEFT SHIFT I I I ?lIIJ
.) ~

SHIFT OUT ZEROES PUT
FROM HERE IN HERE

0 30 31

ALGEBRAIC LEFT SHIFT I I I ?lIIJ
..,,) ~

SHIFT OUT ZEROES PUT
FROM HERE IN HERE

\7 F F F: F F F F REG BEFORE

17 F F F: F F 0 0 I REG AFTER

Which of the following mnemonics (SLA, SRA, SLL, SRL)
would have produced the results indicated above?

Fixed Point Instructions 79

SLA; In this example, the condition code would have been set to 11 and a fixed point overflow occurs"
If the SLL instruction had been used, shifting would have been done out of position 0 and the sign bit
would have changed.

rA-O 0 0 F-O 0 0] REG BEFORE

10 F 0 0;0 ~ REG AFTER

Which of the following mnemonics __ (SLAp SRA, SLL, SRL) would
have produced the results indicated above?

SLL; In this example, bit position 0 is changed.

Before going to the next section of this book, let's take a minute to review
the fixed point operation's data flow.

Write in the names of the blocks and lines. Circle the lines upon which
fixed point data will flow.

--
--+

~ -+

I I I
I
I

I

I I
I

~ -+ -+- -+-
r

80 Fixed Point Instructions

STORAGE ADORE SS MAIN STORAGE

"
,...

i ,j ~

INSTRUCTIONS : ~DATA-+
COMPUTER

,
1\ It/ I

SYSTEM
CONTROL v

ALU
v

I I

FIXED POINT I
VARIABLE I FLOATING I I

OPERATIONS I FIELD LENGTH I POINT I I
I OPERATIONS I OPERATIONS I : ,.... ,.... I

\
~ \

I
I :

I ~DATA+ I -..DATA-+-
I I

I

\ It: I It
v v

16 4
GENERAL FLOATING POINT

REGISTERS REGISTERS

Fixed Point Instructions 81

System/360 Fixed Point Binary Operaticlns

Section I:
Section II:
Section III:

Review of Data and Instruction Formats
Converting Data To/From Binary
Fixed Point Instructions

• Section IV: Fixed Point Programming Exceptions
Section V: Analyzing Fixed Point Programs

SECTION IV LEARNING OBJECTIVES

At the end of this section, you should be able to use the Interruption
Action chart to do the following:

Determine from the PSW interruption code, the fixed point programming
exception that caused the interrupt.

82 Fixed Point ProJ!,ramminJ!, Exceptions

protection

storage
protection

zero

Fixed Point Programming Exceptions

A programming error on the System/360 will result in a program
interrupt. When the programming error is detected, the PSW is stored
in byte locations 0040-0047. Once stored, this PSW is referred to as

the "old" PSW. Just prior to storing this PSW, the exception code is
placed in the interruption code portion (bits 16-31 of the PSW). There
is an Interruption Action chart in the Interruption section and in the
Appendix of your Principles of Operation manual which shows the code
for the fifteen possible programming exceptions. Once the "old" PSW
has been stored at location 0040, the doubleword in locations 104-111
(called the "new" PSW) is fetched and becomes the controlling ("current")
PSW.

In going through the fixed point instructions, you have learned about
various programming exceptions. The next few pages will be a summary
of these programming' exceptions. But first read the description of
Fixed Point Arithmetic Exceptions in the Fixed Point Arithmetic section
of your Principles of Operation manual. Use the Interruption ActioD_
chart as reference when you read the following frames.

When a program interrupt occurs, bits 16-31 of the "old" PSW receive
the exception code. If the bits are coded as 00000000 00000100, a

exception is indicated.

A protection exception code indicates that the
storage location does not match the

key of a
key in the PSW.

Even though the two keys do not match, a protection exception will Dot
occur if the protection key is

Of the instructions covered so far in this text, only the three "store II
instructions (ST, STH, STM), the "convert to decimal," and the "pack"
and "unpack" instructions can cause a protection exception. This is
because these are the only instructions whose results are placed in main
storage. The other instructions covered so far place the results in a
general register.

If the interruption code in the "old" PSW (on a program interrupt) is
coded as 00000000 00000101, an exception is indicated.

Fixed Point Programming Exceptions 83

addressing An addressing exception can occur when an instruction addresses a location
of main storage that

Is not available on the particular System/360 installation. For instance, if a particular System/360
model 40 has a 64K main storage unit, an addressing exception will occur any time an address of
65, 536 or greater is used.

RR

specification

bytes

The only instructions that cannot cause an addressing exception are those
that do not address main storage, like the "shift" instructions and those of
the format.

If the interruption code in the "old" PSW (on a program interrupt) is
coded as 00000000 00000110, a exception is indicated.

A specification exception occurs any time a fixed length operand in storage
is addressed with an address that is not divisible by the number of
in the operand.

The address of a word operand in storage must be divisible by
or a exception is recognized.

--- -----------------------

four
specifica tion

odd

data

digit
sign (in either order)

1010
1111

On instructions (such as divide or multiply) in which a doubleword operand
is located in a pair of adjacent registers, a specification exception will
occur if the (odd/even) register is addressed.

If the interruption code in the "old" PSW (on a program interrupt) is
coded as 00000000 00000111, a ___ exception is indicated.

A data exception indicates that a packed decimal operand contains invalid
or codes.

Invalid digit codes are those in the range of ____ through

Invalid sign codes are those in the range of ____ through

84 Fixed Point Programming Exceptions

0000
1001

digit
sign

"convert to binary"

are not

parity

even
machine check

eight
parity

Invalid sign codes are valid codes.

Invalid digit codes are valid codes.

The only instruction you have studied so far that can cause a data
exception is the " ____ _ ____ " instruction.

Sign and digit codes on a "pack" or "unpack" instruction
(are/are not) checked for validity.

One point should be made absolutely clear at this time. Checking sign
and digit codes for validity is not the same as checking a byte to ensure
that the byte contains an odd number of bits set.

Checking for an odd or even number of bits set in a byte is called
p checking.

A parity error occurs whenever a byte has an (odd/even)
number of bits set. The parity error cannot be caused by programming.
Therefore, a parity exror will not cause a program interrupt. Parity
errors cause interrupts.

In order to have a parity checking function, every byte must consist of
data bits and one bit.

Normally, the parity bit is not shown with bytes. Whenever it is shown,
it is the (leftmost/rightmost) bit.

leftmost; As shown below.

THE BYTE

2 3 4 5 6 7

Fixed Point Programming Exceptions 85

Assume the following bytes are the low-order byte of the packed decimal
operand on a CVB instruction. The parity bit is shown.

I' , 0 0 , , 1 0 ~

BYTE A BYTE B BYTE C

1. Which byte will cause a program interrupt?
2. Which byte will not cause any interrupt?
3. Which byte will cause a machine check interrupt?

1. B; because bits 0-3 (digit)and bits 4-7 (sign) are not valid codes.
2. A
3. C; because there is an even number of bits set to "1. "

fixed point overflow

one

do not

logical

sign

If the interruption code in the "old" PSW (on a program interrupt) is coded
as 00000000 00001000, a exception is
indicated.

A fixed point overflow can only cause a program interrupt when its corres-
ponding mask bit in the PSW (bit 36) is set to ___ (zer%ne).

On the "algebraic add/ subtract" instructions, a fixed point overflow occurs
whenever the carry into the sign position and the carry out of it
(do/do not) agree.

Fixed point overflows cannot occur on the I_I ___ (logical/algebraic)
add/ subtract" instructions.

A fixed point overflow will occur on an "algebraic left shift" instruction
whenever a bit shifted out of position 1 of the register is different from the

bit.

Fixed point overflows cannot occur on the _" ___ (logical/algebraic)
shift" instructions.

86 Fixed Point Prof!,ramming Exceptions

logical

does not agree
wi th the carry out
of the sign position.

11

fixed point divide

fixed point divide

word

"convert to binary"

Fixed point overflows can also occur on the "load positive" and "load
complement" instructions. The overflows occur when, as a result of
complementing, the carry into the sign position

The fixed point overflow mask bit in the PSW cannot prevent the
overflow. It can only prevent the resulting program interrupt. Any
time a fixed point overflow occurs, the condition code is set to

If the interruption code in the "old" PSW (on a program interrupt) is
coded as 00000000 00001001, a exception is
indicated.

Division by zero will cause a exception.

A fixed point divide exception will also occur if the quotient cannot be
contained within a (halfword /word/ doubleword).

A fixed point divide exception will also occur if the value of the packed
decimal operand is too large to be contained as a binary word when
using the instruction tIc to b "

You have just covered the fixed point instructions, including data
conversions and possible programming exceptions. In the next and last
section of binary operations, you will analyze a few programs using the
fixed point instructions.

Fixed Point Prof!.ramminf!. Hxceptions 87

System/360 Fixed Point Binary Operations

Section I:
Section II:
Section III:
Section IV:

• Section V:

Review of Data and Instruction Formats
Converting Data To/FroIn Binary
Fixed Point Instructions
Fixed Point Programming Exceptions
Analyzing Fixed Point Programs

SECTION V LEAHNING OBJECTIVES

At the end of this section, you should be able to use fixed point instructions
to do the following:

Write programs, using stored data in any form (binary, zoned or packed
decimal), to solve the following equations.

A+ B C

A + B - C D
AxB C
A+B C
Ax B D

C

88 Analyzinf!, Fixed Point Prof!,rams

Analyzing Fixed Point Programs

Notice: This section of the binary operations is very important. Your
ability to learn the System/360 and ultimately, to service the system,
will depend upon your understanding of the following material. The
material will require much effort and concentration. Don't expect it
to be easy. Use the Principles of Operation manual for reference
and/ or review whenever you are unsure of the details of a fixed point
instruction.

Remember, now is the time and here is the place to learn.

To make the following programs easier to read, we are showing the
instructions symbolically. The symbolic instruction format we will
use will be similar to, but not necessarily identical to, the source
language format required by the System/360 assembler program.
For instance, to add the contents of register 1 to the contents of
register 2, the following machine language instruction could be used.

1A I 2 I i-RR FORMAT

Lop CODE IN HEX

Symbolically we will show this instruction like this:

AR 2,1

Notice that the mnemonic of the instruction rather than its "hex" Op code
will be used. The operand addresses will be separated by a comma and the
1st operand will be listed first.

Let's see if you understand the format we will be using. Write in this
symbolic format the instruction that will subtract the contents of
register 7 from the contents of register 5.

A nalyzing Fixed Point Programs 89

SH 5, 7 Fine! Now how about symbolically expressing an RX format instruction.
Supposing we wish to algebraically add the contents of a halfword from
location 4096 to the contents of register 3.

Assuming that there is no indexing factor and that register 2 contains a
base address of 2048, the machine language instruction would look like
this:

~ ___ 4_A ____ I~_3 __ ~I __ O _____ 2 __ ~ _____ 8_0_0 _______ 1 IN HEX

OP CODE R1 X2 82 02

Symbolically we will show this instruction like this:

AH 3, 2048 (0, 2)

t t t t \
Mnemonic HI D2 (X2, B2)

Notice the use of the decimal number (2048) for the displacement
rather than the machine language displacement (800). Also note that
the X2 and B2 fields are in parentheses after the displacement.

Assuming that register 4 has a base address of .2048, write in the
symbolic format the instruction that will subtract the halfword at
location 5000 from the contents of register 5.

90 Analyzing Fixed Point Programs

8H 5, 2952 (0, 4)

I 00 14A IFF I FA I 00 144

PROGRAM #1

Consider the following symbolic program:

LH
AH
8TH

1, 2048
1, 2050
1, 2052

(0, 0)
(0, 0)
(0, 0)

Given the following data (shown in hex), show the contents of the storage
area after execution of program #1.

STORAGE

100 14A IFF I FA 1 88 1 88 I BEFORE

t
BYTE
LOCATION 2048

AFTER

In the preceding program, the halfword from location 2048 (004A) was
loaded into register 1. Then the halfword at location 2050 (FFF A) was
added to it. The resulting answer was then stored as a halfword (0044)
at location 2052.

Analyzing Fixed Point Programs 91

El 00 I ABIF:IBBJ

1
1

zero

PROGRAM #2

Consider the following program:

SR
AH
AR
ST

1, 1
1, 2048 (0, 1)
1, 1
1, 2048 (0, 0)

Given the following data in storage (shown in hex), show the storage
contents after execution of program #2. If you have trouble analyzing
program #2, continue on to the next frame and do the step-by-step
analysis of the program.

55 FF 00 I EE I BB I BEFORE

t
LOCATION

2048

~ __ ~ __ ~ __ ~ __ ~ __ ~I AFTER

If you had the correct answer, you analyzed the program quite well. You
may proceed to program #3 or you may continue with the following frames
and review your solution. If you had the wrong answer, proceed with
the following frames, which will analyze program #2 step-by-step.

The first instruction will cause the contents of register
subtracted from register __

Subtracting register 1 from itself will reduce its contents to

to be

The second instruction will add a (byte/halfword/word) from
storage to register

92 Analyzing Fixed Point Programs

halfword
1

1

The effective address of the storage operand will be generated by adding
the displacement of 2048 and the contents of register which will be

zero; Because register 0 was specified for the index register, it wasn It used in generating the
storage address,

2048
2049

000055FF

1
1; In effect, this will
double the contents of
register 1.

The second instruction will add the halfword from byte locations
and to register 1.

After the second instruction has been executed, register 1 will contain
(in hex)

The third instruction will cause the contents of register
to the contents of register __ '

to be added

After execution of the 3rd instruction, register 1 will contain (in hex)

OOOOABFE as shown below

2048

000055FF
+ 000055FF

OOOOABFE

Reg 1
Reg 1

The 4th instruction will cause the contents of register 1 to be stored
in byte locations through

2051; Notice that the 4th instruction was 8T and not 8TH. This meant that the entire contents of
the register was stored.

A nalyzing Fixed Point Prof!,rams 93

I 00 I 01 -- 00 02 00

~

PROGRAM #=3

Consider the following program:

LH 3, ° (0, 1)
AH 3, 2 (0, 1)

MH 3, 4 (0, 1)

8H 3, 6 (0, 1)
8TH 3, 8 (0, 1)

Given the following data (shown in hex), and assuming register 1 contains
2048, show the storage contents after execution of program #=3.

I 00 [01 [00 [02 [00 [03 I 00 I 04 I FF I FF I BEFORE

...
LOCATION

2048

I 03 I 00 I 04 --

t
ALL IN HEX

I 00
1

05 I
UNCHANGED BY PROGRAM

3

Notice the use of general register 3 in program #=3 to accumulate the results of the program. The
final result is then stored in main storage.

If you analyzed the program without difficulty and obtained the correct
result, you may proceed to program #=4. Other\\'ise, continu~ \vith the
following step by step analysis of program #=3.

The 1st instruction of program #=3 loaded register 3 with the contents of
byte locations ____ and _____ •

94 Analyzing Fixed Point Programs

2048
2049

10 0 0 0: 0 0 0 1

~~

Assume that prior to execution of the 1st instruction, register 3
contains FFFFFFFF. What will be the contents of register 3 after
executing the instruction?

J I HALFWORD FROM
T ~STORAGE

SIGN BIT
PROPAGATED
TO THE LEFT

2050
2051

00000003

The 2nd instruction will cause the bytes at locations and
to be added to the contents of register 3.

The contents of register 3 after executing the 2nd instruction will be
(in hex)

Show the preceding answer as 32 binary bits.

00000000000000000000000000000011

2052
2053

The 3rd instruction will cause the contents in register 3 to be multiplied
by the bytes in location and

After execution of the 3rd instruction register 3 will contain (in hex):

A nalyzing Fixed Point Programs 95

For your convenience, this is a repeat of Program #3.

LH 3, 1 (0, 1)
AH 3, 2 (0, 1)
MH 3, 4 (0, 1)
SH 3, 6 (0, 1)
STH 3, 8 (0, 1)

The binary multiplication is shown in the following example. The example uses only the four
low-order bits as the remaining bits are zero anyway.

1st Operand ~ 0011
2nd Operand~ x 0011

0011 }
0011

0000
0000 ----

Partial Products

0001001 ~ Product

The 4th instruction will subtract the bytes at locations
from register 3.

and

2054
2055

After execution of the 4th instruction, register 3 will contain

c---------;--------]

The final instruction will cause bits
stored in byte locations and

96 Analyzinf!, Fixed Point Prof!,rmns

through of register 3 to be

16
31
2056
2057

PROGRAM #4

Consider the following program:

Assume register 9 contains the address 2048.

L 1,0(0,9)
M 0, 4 (0, 9)
DO, 8 (0, 9)
M 0, 12 (0, 9-)
ST 1, 16 (0, 9)

Given the following data (shown in hex), show the storage contents
after execution of program #4.

LOCATION BEFORE AFTER

2048 ~ 00
1

00
1

00
I

04 I

2052 ~ 00 I 00 I 00 I 02 I
2056 ~ 00

1
00

1
00 I 07 I

2060 .. 00
1

00 I 00 I 10 I

2064 ~ 11
1
00

1
00 I FO I

Locations 2048-2063 are unchanged.
Locations 2064-2067 contain

I 00 I 00 00 10

If you analyzed the program without much difficulty and obtained the
correct result, you may proceed to program #5. Otherwise continue
with the following step-by-step analysis of program #4.

A nalyzing Fixed Point Programs 97

1
2048
2051

will not

1
2052
20f)5

are ignored

° 1

For your convenience, this is a repeat of Program #4.

L 1, ° (0, 9)

M 0, 4 (0, 9)
D 0, 8 (0, 9)

M 0, 12 (0, 9)

ST 1, 16 (0, 9)

The first instruction of program #4 will cause register to be loaded
with a word from byte locations through

The condition code
the first instruction.

(will/will not) be changed as a result of

---------------------_.

After execution of the first instruction register 1 will contain (in hex):

The second instruction of program #4 will multiply the contents of register
by the storage word in byte locations ____ through

In the second instruction, the original contents of register °
(are ignored/ should be zero).

The product of the multiplication is developed as a doubleword. The high
order word is placed in register __ with the low-order being placed in
register

The sign of the product (from the second instruction) is in bit position
of register __ .

------------------------ ---------

° °
After execution of the second instruction, the contents of register ° and 1
'will be: (indicate your answer in hex)

J
REG 0 REG 1

98 Analyzing Fixed Point Programs

I 0 0 0 0: 0 0 0 0 II 0 0 0 0: 0 0 O-a]

REG 0 REG 1

As a result of the second instruction, the condition code
(will/will not) be changed.

will not; The multiply and divide instructions do not change the condition code.

The third instruction will cause the doubleword in registers and
to be divided.

0, 1; This doubleword is the dividend. It was the product of the previous multiply instruction.

2056
2059

1
o

REG 0

REMAINDER

The divisor for the third instruction comes from byte locations
through __ •

Since the third instruction has a dividend of + 8 and a divisor of + 7,
there will be a quotient of and a remainder of __ _

The quotient will be placed in register
register __ •

and the remainder in

Show in hex the contents of registers 0 and 1 after executing the third
instruction.

II
REG 0 REG 1

REG 1

QUOTIENT

A nalyzing Fixed Point Programs 99

For your convenience, this is a repeat of Progranl #4.

L
M
D
M
ST

1, 0
0, 4
0, 8
0, 12
1, 16

(0, 9)
(0, 9)
(0, 9)
(0, 9)
(0, 9)

The remainder from the third instruction
executing the fourth instruction.

___ . (is/is not) ignored in

------------------------ --------

is; Only the contents
of reg 1 (the previous
quotient) are used as
the multiplicand.

1
2064
2067

REG 0

After executing the fourth instruction, the contents (in hex) of registers
o and 1 will be:

REG 0 REG 1

I 0 0 0 0: 0 0 0 ,I 0 0 0 0: 0 0 0 ,I BE FORE

AFTER

REG 1

The final instruction of program #4 will store the contents of register
in byte locations through

Did any of the instructions of program #4 change the condition code?

------------------ ----------------------------

No How many bytes of main storage were necessary to hold the five instruc
tions of program #4?

100 A nalyzing ~Fixed Point Programs

20 bytes; Since all
five instructions
were of the RX
format, each instruc
tion was two half
words or 4 bytes in
length.

PROGRAM #5

Consider the following program.

Assume that the program begins at location 2048 and that general
register 9 contains the base address of 2048.

LOCATION INSTRUCTION

2048 L 1, 256 (0, 9)
2052 M 0, 260 (0, 9)
2056 LTR 0, 0
2058 BC 4, 18 (0, 9) R1 field is the
2062 BC 15, 22 (0, 9) Mask Field
2066 LCR 0, 0
2068 LCR 1, 1
2070 ST 0, 264 (0, 9)
2074 ST 1, 268 (0, 9)

Which of the following statements is correct concerning the instruction
at location 2056 (circle one):

a. This instruction does nothing useful.
b. This instruction will set the condition code according to the

contents of register O.

b; The purpose of the "load and test" instruction is to test the contents of a register.

negative

unconditional; 15
in the R1 field would
be all bits (1111).
This will always
result in a "branch"

The instruction at location 2058 will cause a "branch" only when the
product of the previous multiply instruction is a (positive/
negative) number.

The instruction at location 2062 is a(n) ------ (condi tional/
unconditional) "branch. "

Given the following data in main storage show (in hex) the contents of
locations 2312 through 2319 after program #5 is cxecuted.

Location
2304
2308
2312
2316

2312

Before
0000000 1
FFFFFFFF
FFFFFFFF
o 000 0 000

AFTER

2319

A nalyzing Fixed Point Programs 101

2312 2319

c. Sixteen times

In the previous program problem, a value of + 1 was multipled by a value
of -1. The product would be -1. However, in the program, negative
products were complemented prior to being stored. As a result, a value
of + 1 is stored in locations 2312-2315 and in locations 2316-2319.

PROGRAM #6

Consider the following program. Assume that register 1 has a base
address of 2048.

Loca tion 4096

Location
2048
2050
2052
2054

LH
SH
CII
BC
STH

15, o (0, 1)
15, 2 (0, 1)
15, 4 (0, 1)

6, 2052 (0, 1)
15, 6 (0, 1)

Data in Hex
000 0
FFFF
0 010
o 0 0 0

The subtract instruction will be executed: (C ircle one of the follo\\ring.)

a. Once
b. Seven times
c. Sixteen times
d. Fifteen times

If you had the correct answer, you did fine. You may then proceed to
program #7. If you didn't have the correct answer, continue with the
following analysis of program #6.

------- --------------------

102 Analyzing Fixed Point Programs

zero

-1; Same as hex
FFFF.

+1;0- (-1)= +1

As a result of executing the first instruction of program #6, register
15 will be loaded with a value of

The second instruction will subtract a value of from register] 5.

After the second instruction is executed for the first time, register] 5
will c ontain a value of

In effect then, the second instruction will cause a value of 1 to be
(subtracted from/ added to) register 15.

--.---- -~ ---

added to The third instruction will compare the contents of register 15 to a value
of

+ 16; Location 2052
has a hex 0010 which
is a value of + 16.

After the compare instruction has been executed the first time, the
condition code will contain __ (00/01/10/11).

01; As shown below.

Condition Code After A Compare Operation

00 Equal
01 1st Operand is Lo\v
10 1st Operand is High
11 Impossible after a Compare

The fourth instruction is a "branch on condition." The PSW condition
code will be tested for which of the following settings: (Circle one or
more.)

a. 00
b. 01
c. 10
d. 11

Analyzing Fixed Point Prof!,rams 103

b, c; As shown below.

15

00

+ 16; Hex 0010

R1 field of "branch on condition" instruction

8 9 10 11

10 1-3
00--0(1 I I 1-----... 1 1

01~ ~'0

As a result of its R1 field, the fourth instruction is equivalent to a
"branch unequal" instruction. A successful "branch" will be taken
the first (15/16) times this instruction is executed.

The sixteenth time that the fourth instruction is executed, a "branch"
will not be taken because the condition code will contain __ (00/01/
10/11).

The sixteenth time through the program, the "store" instruction will be
executed. At this time a value of will be stored.

PROGRAM #7

This program will be written by you. Use only the instructions that you
have learned so far. Don't hesitate to refer to the Principles of
Operations manual.

A man borrows $1,000 (A) from a bank. A 6% (B) service charge is added
to the principle. The man agrees to payoff the debt with 12 monthly pay
ments (C). What will his monthly payment (D) be.

Which of the following equations could be used to solve the above problem:

a. AB + A_ = D
C

b. A x B D
C

c. A + AB = D
C

104 Analyzing Fixed Point Programs

a. AB + A D
C

Substituting the values given in the problem we have:

(1)

(2)

(3)

(4)

~1000 x .06 + ~1000 Monthly Payment
12

~60 + ~1000
12

~1060
12

$88.33

:: Monthly Payment

:: Monthly Payment

:: Monthly Payment

Given the following data, draw a flowchart of the instructions
necessary to solve the problem. Be sure to adjust for the decimal point
after multiplication.

Field A
Field B
Field C
Field D

$1000 ,t
6%
12

Assume that these fields are full
word binary operands.

Monthly Payment

Analyzing Fixed Point Programs 105

[LOAD FIELD A
IN ODD

REGISTER

-- I
MULTIPLY BY

FIELD BAND
ADJUST DECIMAL

POINT

I
ADD FIELD A

TO ODD
REGISTER

I r---

DIVIDE BY
FIELD C

I --
STORE
RESULT

-+--- SPECIFYING THE EVEN REGISTER

~ SPECIFYING THE EVEN REGISTER

Write the necessary symbolic instructions to solve the problem. Use
registers 0 and 1 for the accumulators. Assume register 8 has a base
address of 2048. Note: Adjust decimal point by dividing by a + 100.

Given:

LOCATION
2048
2052
2056
2060
2064

OPERAND
+ 100000
+6
+ 12
Stored Result
+ 100

COMMENT
$1,000.00
6% (.06)
of months
$XX.XX
To adjust decimal point

106 A nalyzin?, rzxed Point Prof!,rams

L 1, 0 (0, 8)
M 0, 4 (0, 8)
D 0, 16 (0, 8)
A 1, 0 (0, 8)
D 0, 8 (0, 8)
ST 1, 12 (0, 8)

The reason the product was divided by + 100 to adjust the decimal point is this: The decimal values
are being carried as binary values with a base of two. Therefore, we can't adjust the decimal
point by shifting the register.

Do you need a review? If you think that you may require a review of areas
of this book, do the following:

Read the learning objectives at the beginning of each section.

You should review only those areas where you think that you
cannot do what the objective indicates.

Starting on the next page is a self-evaluation quiz. It will allow you to
check your overall understanding of fixed point instructions.

A nalyzing Fixed Point Programs 107

108

REVIEW QUESTIONS ON FIXED POINT BINARY OPERATION

• Use only the Appendix section of the Principles of Operation manual to
answer these questions. When you are done, check your answers with
the answers on page 113, and allow yourself five points for each correct
answer. If your score is less than 80, review the areas of this text that
correspond with the questions answered incorrectly.

1. Which of the following represents a decimal value of -26 as a half
word binary operand?

a. 1000 0000 0010 0110
b. 1111 1111 1101 1010
c. 1000 0000 0001 1010
d. 1111 1111 1110 0110
e. None of the above

2. Which of the following instruction formats is used to add both half
word and word binary operands?

a. RR
b. RX
c. RS
d. SI
e. SS

:1. Columns 1 - ;) of an IBM card are punched 1, 2, 3, 4, and 5 re
spectively. It is desired to process this field as a binary word
operand. Which of the following statements is true.

a. The data field is automatically converted into a binary operand
when read into storage. All that is necessary is to use the
"load" instruction.

b. The data field is read into storage as packed decimal data. The
"convert to binary" instruction will change the data to the binary
format and load the register.

c. The data field is read into storage as zoned decimal data. The
"convert to binary" instruction will change it to the binary for
mat and load the register.

d. The data field is read into storage as zoned decimal data. The
"pack" instruction must be used to change it to packed decimal
data. The "convert to binar~'" instruction can then be used to
change it to the binary format and load the register.

e. None of the above.

4. The "convert to decimal" instruction:

a. Stores the contents of a register as packed decimal data into a
variable length storage field.

b. Stores the contents of a register as zoned decimal data into a
fixed length storage field.

c. Stores the contents of a register as packed decimal data into a
fixed length storage field.

d. Converts the contents of a register into packed decimal data
and leaves this decimal data in the register.

e. None of the above.

5. Which of the following programming exceptions is not possible on a
"convert to binary" instruction?

a. Specification
b. Addressing
c. Data
d. Protection
e. None of the above

6. \Vhat is the result of the following "unpack" instruction?

F3 800 I 0 I 800

~--------~--------~'
00 00 12 22 7F ...J

a. 01 02 02 02 F7
b. F1 F2 F2 F2 F7
c. F1 F2 F2 F2 7C
d. F1 F2 F2 F2 C7
e. None of the above.

7. Given the following fixed point "add" instruction:

4A 2 I 0 I 0

REG 21 7 4 3 A F 0 A 8

800

"-./-..... _------
I

foOD INSTRU~TION
\RX FORMAT)

t
HEX ADDRESS 800 - [FFF~1

Which of the following would be the resulting contents of register 2 ?

a. 743 B F 0 A 9
b. 7 4 3 A F 0 A 9
c. 7 4 3 A F 0 AD
d. F F F F F 0 A 9
e. None of the above.

109

110

8. Given the following fixed point "multiply" instruction, which of the
statements is true?

MR INSTRUCTION 1C

REG 3 ----t~ __ OOOOOOOF
REG 4 ~ 00000000

a. The "multiply" instruction will be executed and the product will
be placed in registers 3 and 4.

b. The "multiply" instruction will be executed and the product will
be placed in registers 2 and 3.

c. The "multiply" instruction will be executed and the product will
be placed in register 3.

d. The "multiply" instruction will not be executed. There will be
a program interrupt because the multiplier is zero.

e. The IImultiply" instruction will not be executed. There will be
a program interrupt because an odd register is being addressed
as the multiplicand.

9. Which of the mnemonics represents the instruction that would cause
the following result ?

1st operand - 0 0 F FEE A A
2nd operand - A A B Bee D D
Resul t 5 6 4 4 2 1 C D and a condition code of 10.

a. AR
b. AH
c. ALR
d~ SR
e. SLR

10. Which of the following statements is false?

a. Binary operands must be converted to deeimal to have a punched
card output.

b. On a fixed point "add" instruction, the si~~ns are not analyzed.
Instead, the operands are always added without complementing
an operand.

c. The arithmetic results (not including the condition code) of "alge
braic add" and "logical add" operations are always the same.

d. A fixed point overflow will not always cause an interrupt.
e. None of the above.

11.' Which of the following instructions (mnemonics) will not set the
condition code?

a. LR
b. LTR
c. LNR
d. LPR
e. LCR

12. Given the following LNR in'Struction, what will be the resulting
contents of register 7 ?

LNR INSTRUCTION 11

REG 7 -----i~~ 00000007

a. 8 0 0 0 0 0 0 7
b. 0 0 0 0 0 0 0 7
c. F F F F F F F 9
d. FFFFFFF 8
e. None of the above.

13. Which of the following is true concerning "compare" instructions?

a. The first operand is occassionally changed as a result of
the comparisons.

b. The condition code is always set to one of three settings by the
comparison.

c. An automatic branch will result when two operands compare
equal.

d. All of the above.
e. None of the above.

14. Which of the following is true concerning the "algebraic compare"
instructions (C, CR, CR)?

a. A positive operand is always higher than a negative operand.
b. If both operands are negative, the smaller absolute value is

considered the higher operand.
c. A zero value always compares higher than a negative value.
d. All of the above.
e. a or c above.

15. Given the following CR instruction, what would be the resulting
condition code?

a.
b.
c.
d.
e.

CR INSTRUCTION 19

REG 4 ----J A7654321
REG 7 • 7000000A

00
01
10
11
None of the above.

111

112

16. Which of the following is true concerning the "shift" instructions?

a. The "shift" instructions are usap to adjust the decimal point of
an operand.

b. When shifting left, bit position 0 is always changed.
c. When shifting right, bit position 0 is always propagated to the

right.
d. The number of places to be shifted is determined by the right

most bits of the generated address.
e. All of the above.

17. Which of the following instructions would have produced the indi
cated result ?

Register before - A 0 F F F F F F
Register after - F F F F F F 8 0

a. "Shift left algebraic" seven places.
b. "Shift left algebraic" eight places.
c. "Shift left logical" seven places.
d. "Shift left logical" eight places.
e. None of the above.

18. Which of the follOwing is true concerning the "store multiple"
instruction shown below?

STM INSTRUCTION 90 800

a. Registers 7 - 15 will be stored in that order.
b. No registers will be stored because the R1 field is larger than

the R3 field.
c. Registers 6 - 15 will be stored in that order.
d. Only registers 7 and 6 will be stored and in that order.
e. Registers 7 - 15 and 0 - 6 will be stored in that order.

19. Which of the following programming exceptions can occur on a
fixed point "add" instruction (RR format) ?

a. Specification
b. Addressing
c. Data
d. Fixed Point Overflow
e. Protection

20. Which of the following programming exceptions can be masked so
that a program interrupt does not occur?

a. Specification
b. Addressing
c. Data
d. Fixed Point Overflow
e. Protection

ANSWERS TO SELF-EVALUATION QUESTIONS

1. d
2. b
3. d
4. c
5. d
6. b
7. b
8. e
9. d

10. a
11. a
12. c
13. b
14. d
15. b
16. d
17. a
18. e
19. d
20. d

You have now finished the course on fixed point instructions. The next
course will deal with the logical and decimal instructions. At that time,
you will receive more programming problems.

Before proceeding to the next book of this System/360 Introductory
Programming Course, fill out and return the Course Evaluation Sheet
(located in the back of the book).

113

Alphabetical Index

Page
Add and Subtract Instructions - Logical 44
Add Instructions - Algebraic 32
Analyzing Fixed Point Programs - Section V 89
Compare Instructions 66
Convert to Binary Instruction 20
Convert to Decimal Instruction 25
Converting Data To/From Binary - Section II 13
Divide Instructions ... 61
Fixed Point Instructions - Section III 31
Fixed Point Programming Exceptions - Section IV 83
Load Instructions ... 49
Multiply Instructions 55
Pacl<: Instruction .. 16
Program Problem #1 91
Program Problem #2 92
Program Problem #3 94
Program Problem #4 97
Program Problem #5 101
Program Problem #6 : 102
Program Problem #7 104
Review of Data and Instruction Formats - Section I 1
Review Questions on Fixed Point Binary Operations 108

Shift Instructions - Algebraic 69
Shift Instructions - Logical 78
Store Instructions .. 52
Subtract Instructions - Algebraic 40
Unpack Instruction , 28

114

Book 3 System/360 Fixed Point Binary Operations
Student Course Evaluation

You can make this course and all future courses more useful by answering the questions on
both sides of this sheet and giving us your comments.

Do you feel that you have an adequate understanding of the learning objectives that are listed
at the beginning of the following sections?

Section I: Review of Data and
Instruction Formats YesD NoD

Section II: Converting Data To/From
Binary YesDNoD

Section III: Fixed Point Instructions YesD NoD
Section IV: Fixed Point Programming

Exceptions YesD NoD
Section V: Analyzing Fixed Point

Programs YesD NoD

List any technical errors you found in this book.

Comments

Please complete the information block on the opposite side. Thank you for your cooperation.
For form R23-2957-1

........ AU. UY.l.llt::t::1"lUg r.uucauon - ::JtuClent t.;ourse Evaluation IBM
Student Name I Man Number I B/O Number Area Number

Student: Please review this evaluation with the person administering the course; then remove it from
the book and send to the FE Education Center via IBM mail.

• Were you given a copy of this text to write in and keep? YesDNoD

• How many hours per day were scheduled for this course? -----
• Were you interrupted during this time? YesDNoD

• How many hours were needed to complete this course? -----
• Did you require assistance during this course? . YesDNoD

(If your answer is yes, explain in the comments section)

• Indicate your understanding of the total course. ExcellentD Good [~J Fair D Poor D

Reviewed by:

Reviewed by:

To be completed by course administrator

To be completed by FE Education Planning

IBM Corporation
FE Education Planning
Deportment 911
South Rood
Poughkeepsie, N. Y. 12602

Date

Date

~ ___ :J

FO

1
I

FOl

,
I , , ,
I
I ,
I
I ,
I
,-I
,fTI

I~
'::t IfTI
1::0
,fTI ,
I
I ,
I
j

R23-2957 -I

TIrn~
J

International Business Machines Corporation
Field Engineering Division
112 East Post Road, White Plains, N. Y. 10601

	0.001
	0.002
	0.01
	0.02
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	replyA
	replyB
	x_back

