
Field Engineering Education
Student Self-Study Course

Introductory Programming
Book 1 - Introduction

_______ J

Preface

This is Book 1 of the System/360 Introductory
Programming Student Self-Study Course.

Course Contents

• B.Qok 1: Introduction R23-2933
Book 2: Program Control

and Execution R23-2950
Book 3: Fixed Point Binary

Operations R23-2957
Book 4: Branching, Logical

and Decimal
Operations R23-2958

Book 5: Input/Output
Operations R23-2959

Prerequisites
• Systems experience (1400 series with

tapes, 7000 series with tapes) or a basic
computer concepts course.

• Books 1 through 5 of this course must be
taken in sequence.

Instructions to the student and advisor
• This course is to be used by the student

in accordance with the procedure in the
Instructions to the Student section in
Book 1 of this course.

• The course is to be administered in
accordance with the procedure in the
System/360 Introductory Programming
Administrator Guide, Form #R23-2972.

This edition, R23-2933-1, is a revision of the
preceding edition, but it does not obsolete
R23-2933-0. Numerous changes of a minor
nature have been made through the manual. The
Introductory Programming Student Guide,
R23-2975-0 is incorporated in the "Instructions
to the Student" section of this edition.

Issued to: ___ _

Branch Office: No: _______ _

Department:

Address: ___ _

If this manual Is misloid, please return it to the above address.

Copies of this and other IBM publications can be obtained through IBM
Branch Offices. Address comments concerning the content of this pUblication
to: IBM, FE Education Planning, Dept. 911, Poughkeepsie, N. Y., 1 2602

© by International Business Machines Corporation 1964, 1965

Instructions to the student

This course is designed to be learned on a "self-study" basis. Because
each student is different and requires a different type of presentatjon,
there may be parts of this course that are not immediately clear . If you
are confronted with this situation, consider these three courses of action:

1. Review the material immediately preceding the probleln area.

2. Continue ahead and see if the area is cleared up· with additional
material.

3. Contact a previously trained CE or SE and ask for help. (fake
this step only after steps 1 and 2 have been tried.)

Do not attempt to memorize everything that is nlentioned. If you can
answer the review questions at the end of the sections and can analyze
the programming examples without too much difficulty, you are progres
sing satisfactorily.

You will probably be able to complete this course in about 48 to 56 hours.
If you are a CE with considerable systems experience, you will be able to
complete some sections rather rapidly. However, do not skip any material
unless you are told to do so. You should not spend more than four hours
a day on this course.

Don't expect this to be an easy course. The material is in a self-study
format and will require much active participation on your part. Many
of the blanks that you will be asked to fill in will require that you figure
out a problem on scratch paper or seek additional information. Don't
hesitate to refer back to the preceding material or to the reference
material.

If you continually look at the answers, before trying to fiU in the blanks,
you won't retain the material you are learning. Make every effort to fill
in the blanks before looking at the answer. However, there will be a few
times when you cannot think of the answer and will have to look at the
correct answer.

Read the remainder of this Instructions to the Student section before
starting the actual self-study text.

Student Materials

System/360 Introductory Programming Course

System/360 Introduction

System/360 Program Control and Execution

System/360 Fixed Point Binary Operations

System/360 Branching, Logical and Decimal
Operations

System/360 Input/Output Operations

Reference Material

System/360 Principles of Operations

Course Objectives

R23-2933

R23-2950

R23-2957

R23-2958

R23-2959

A22-6821

This course is intended to prepare you for further training on the IBM
System/360. At the end of this course, you should have a comprehensive
knowledge of the System/360 principles of operation. You will be able to
work readily with the hexadecimal numbering system. Given a program
which uses the Standard Instruction Set with the Decimal Feature, you
will be able to analyze it.

Detailed learning objectives are listed at the beginning of each section.

Course Description

This System/360 Introductory Programming course consists of five self
study books. It uses the System/360 Principles of Operation manual
(Form A22-6821) as reference material. The course is designed to teach
the Standard Instruction Set and the Decimal Feature of IBM System/360.
The usual time for completing this course ranges from 48 to 56 hours.
However, this is a self-study course and allows you to proceed at your own
rate. As such, there is no way to state exactly how long it will take you
to complete this course. You should never spend more than four hours
a day on it. Therefore, you can expect to spend approximately three
calendar weeks on this course.

Each of the five self-study books has an alphabetical index of the topics
which they contain. In addition, a comprehensive index covering all
five books is located in the front of Book 1 (this book).

You will be given two examinations. After completing the first two books,
you will take amid-course examination. In order to continue with this
course, you must achieve a score of 80% or better.

ii

If your score is less than 80%, you will have to review the material and
take another quiz. The best way to review is to take the review quizzes
at the end of each section in the first two books. If you have trouble with
these review questions, then you will have to re-read the text material.

When you have completed all five self-study books, you will be given the
final examination. To successfully complete this course, you must obtain
a score of 70% or better on this quiz. Both quizzes are of the closed
book, multiple-choice type. However, this is not a "memory" course.
Included in the final examination will be several pages of reference mate
rial.

You have just read the description of the entire Introductory Programming
course. A description of each book follows.

Description of Student Materials

Book 1: System/360 Introduction R23-2933

This self-study book contains three sections. In these sections, you will
learn the numbering systems used in the System/360, the logical organi-
zation of the system, and its data formats. At the beginninf~ of each
section is a list of learning objectives. Review questions at the end of
each section will help you determine if you have met the obj ectives of that
section. You can use these review questions at any time in the course
if you feel a need to review the material. This book usually takes about
8 to 9 hours to complete.

Book 2: System/360 Program Control and
Execution R23-2950

This book has four sections in which you will learn the following:

1. Instruction Formats.
2. Control of the sequence in which instructions are executed.
3. System interrupts ("hardware branches").
4. Storage protection feature.

As in the first book, each section in this book has a list of learning objec
tives and review questions. You will probably take about 9 to 10 hours
to complete this book. However, since you are to proceed at your own
rate, you may take longer than this. If you do, don't become too con
cerned. It is not an obj ective of this course to learn how to be a speed
reader. Rather, it is to learn the System/360 Principles o:lf Operation.

When you have completed this book, you will be given the mid-course
examination. This examination will test you on the learning objectives
of the first two books. A score of 80% or better is required.

iii

Book 3: System/360 Fixed Point Binary Operations R23-2957

In this oook you will learn the instructions that operate on fixed point binary
data. The System/360 Principles of Operation manual will be used exten
sively as reference material. You will first review the binary data and
instruction formats. Then, you will learn how to convert IBM card data into
the necessary binary data formats. You will study the fixed point binary
instructions and the program errors that can result from improper usage.
To determine your over-all understanding of the binary operations, you
will be given a number of programming examples to analyze. These
programming examples can be used to review the material covered. This
book usually takes about 10 to 12 hours to complete.

Book 4: System/360 Branching, Logical and Decimal
Operations R23-2958

This self-study book also makes extensive reference to the System/360
Principles of Operation manual. The branching instructions will be learned
first. Then you will learn the instructions which are used to process logical
and decimal data. To test your understanding of these operations, you will
be required to both analyze and write a few short programs. This book will
usually take about 12 hours to complete.

Book 5: System/360 Input/Output Operations R23-2959

This is the final book of your Introductory Programming course. You will
learn the input/output instructions as well as the various control words used
during the I/O channel operations. You will be made familiar with some of
the I/O devices and with the standard interface between the I/O device and
the channel. You will probably complete this book in 10 to '12 hours. You
will then be given a final examination. You must obtain a score of 70% or
better to successfully complete this course. This examination will test
you on the contents of all five self-study books. It consists of fifty multiple
choice questions and you will be given a maximum of two hours to answer
them. You will not be allowed to use any reference material other than that
which is supplied with the examination. This reference material will include:

1. An alphabetical list of the instructions taught with their mnemonics,
formats, and hexadec imal Op codes.

2. The formats of the System/360 control words.
3. The meaning of condition code settings.

Reference Book: System/360 Principles of Operation A22-6821

This manual is your source of reference for all information which concerns
the programming aspects of the System/360 Instruction Set. This manual
includes a description of each instruction as well as an appendix section whi.ch
can be used for quick reference.

iv

You will frequently be directed to the Principles of Operation manual.
The areas that you are to read will not be referred to by page number.
Instead, you will be given the name of the area and will have to use the
contents pages of the manual in order to find the actual page numbers
that you need. This is done to reduce reference errors which occur when
manuals are changed.

When you finish this course, you may keep all material listed. If you go
on to further System/360 training, bring the Principles of Operation
manual with you.

v

Alphabetic Index of Books 1 through 5

This index should be used to refer you to a particular area of your self
study books so that you can review those points which are giving you trouble.
The index will refer you to a pa.ge or group of pages in one of the five books.

NOTE: This index is to be used for the purpose of referring to explanatory
material while taking this self-study course. After you have completed the
course, it is expected that you will use the Principles of Operation manual
(Form A22-6821) for reference purposes.

COMPLETE INDEX

Add and Subtract Instructions - Logical
Add Decimal Instruction
Add Instructions - Algebraic
Addition of Binary and Hexadecimal Numbers
Analyzing Decimal Feature Programs - Section IV.
Analyzing Fixed Point Programs - Section V.
Analyzing I/O Programs - Section VII
And Instruction - Or Instruction
And Or Operations.
ASC Mode IT

Binary Arithmetic Operations
Binary Data Formats
Branch and Link Instruction
Branch On Condition Instruction - Review
Branch On Count Instruction
Branch On Index High Instruction.
Branch On Index Low or Equal Instruction
Branching Operations - Section I .

Card Read-Punch, 1442 Nl
Central Processing Unit
Chaining Check
Channel Address Word - CAW
Channel Command Word - CCW
Channel Concepts
Channel Data Check - Channel Control Check
Channel Ending Sequence
Channel Error Conditions - Section V
Channel Status Word - CS\V.
Channel Status Word - CS\V - Basic Function
Channels

vi

BOOK

3
4
3
1
4
3
5
4
4
2

1
1
4
4
4
4
4
4

5
1
5
5
5
5
5
5
5
5
5
1

PAGE

44
78
32
13

119
89

109
42
39
77

97
90

4
2
7
8

13
1

61
46

103
18
21

1
102

83
95
35
23
62

Oompare Decimal Instruction
Compare Instructions.
Compare Logical Instruction .
Complement Addition
Comprehensi ve Index of Books 1 through 5
Converting Data To/From Binary - Section IT .
Converting from Decimal to Hexadecimal and Binary .
Converting from Hexadecimal to Decimal
Convert to Binary Instruction
Convert to Decimal Instruction. . .

· 4
. .. 3

.4
· 1

1

· . 3
1

· 1
3
3

Course Objectives and Description. 1

Data Formats - Section ITI .
Data Handling Sequence. . .
Decimal Data Formats . .
Decimal Operations - Section III
Divide Decimal Instruction
Divide Instructions

Edit Instruction . .
Edit and Mark Instruction
Exclusive Or Instruction
Execute Instruction . . .

Fixed Length Operations
Fixed Point Instructions - Section ITI
Fixed Point Programming Exceptions - Section IV
Flag Bits - C CW
Floating Point Operation .
Format Types.
Full word Binary Operands

Halfword Binary Operands

Incorrect Length
Initial Program Load Procedure - Section V1
Initial Selection
Insert Character - store Character Instructions.
Instruction Formats - Section I
Instruction Sequencing and Branching - Section IT .
Instructions to the Student
Interface Control Check
Interrupt Action.
Interrupt Prevention - Masking.
Interrupts - Section III
Introduction to I/O Operations - Section I

· 1
5
1

.4
· 4
· 3

4
4

.4

.4

1
3

3

5

· 1
· 2

1

· 1

· 5
· . 5
· . 5

.4
· . 2
· .2

· 1
.5

· 2
.2
.2
.5

88

66
:n
19
vi
13

6
9

20
25
ii

75
84

78

75
99
61

104
115

46
14

51
31
83
27
56
15
95

91

49
38

9
53

1
29

89
51
69
45
96

vii

I/O Devices - Section II . 5 105
I/O Device Status Byte - CSW 5 78
I/O Instructions . 5 103
I/O Instructions - Section IV . 5 1

Load Address Instruction. 4 55
Load Instructions . 3 49
Logical Operations - Section II . 4 21

Machine Check Mask 2 73
Magnetic Tape Units, 2400 Series 5 49
Move Instructions - Programming Examples 4 29
Move Numerics Instruction . 4 25
Move With Offset Instruction . 4 94
Move Zones Instruction . 4 26
Multiplexor Channels . 1 67
Multiply Decimal Instruction 4 90
Multiply Instructions 3 55
Multi-Programming. 2 104

Numbering Systems - Section I . 1 1

Op Code. ... 2 2
Operand Addressing 2 5
Organization - Section II 1 35

Pack Instruction 3 16
Printer, 1443 N1 5 66
Problem State Bit 2 80
Program Check - CAW 5 97
Program Check - CCW 5 99
Program Mask 2 74
Program #1 (Decimal) 4 122
Program #2 (Decimal) 4 123
Program #3 (Decimal) 4 126
Program #4 (Decimal) 4 129
Program #5 (Decimal) 4 131
Program #1 (Fixed Point) :3 91
Program #2 (Fixed Point) 3 92
Program #3 (Fixed Point) 3 94
Program #4 (Fixed Point) 3 97
Program #5 (Fixed Point) 3 101
Progra m #6 (Fixed Point) 3 102
Program #7 (Fixed Point) :3 104
Program #1 (I/O) 5 109
Program #2 (I/O) . 5 114

viii

Programmed Controlled Interrupt (PCl)
Protection Check
PSW .- Condition Code . . .
PSW - Instruction Address.
PSW - Review.

Review of Data and Instruction Formats - Section I .
Review Questions on Binary Formats
Review Questions on Branching. Logical and Decimal

Operations
Review Questions on Central Processing Unit. . . .
Review Questions on Channels
Review Questions on Decimal Formats and Extended

BCD Code
Review Questions on Fixed Point Binary Operations
Review Questions on Instruction Formats
Review Questions on Instruction Sequencing and

Branching
Review Questions on Interrupts
Review Questions on Introduction to I/O Operations.
Review Questions on Main Storage. . . .
Review Questions on Numbering Systems
Review Questions on Storage Protection.

Selector Channels.
Set Storage Key
Set Sy stem Mask - Set Program Mask .
Shift Instructions - Algebraic
Shift Instructions - Logical.' . .
Standard Interface - Section TIl
Storage Protection - Section IV
Store Instructions.
Subtract Decimal Instruction . .
Subtract Instructions - Algebraic. .
Subtraction of Binary and Hexadecimal Numbers.
System Mask .

Tear-Out Program #1 (I/O)
Tear-Out Page Program #2 (I/O).
Test Under Mask Instruction ..
Transfer In Command.
Translate and Test Instruction
Translate Instruction

5

5

2
2
2

3
1

4
1
1

1
3

2

2
2
5

1
1
2

1
2
2
3
3
5

2
3
4
3
1

. 2

5
5

4
5
4
4

95

101
34
31

112

1
106

136
fi8
78

87
108

24

41
88
44
44
27

108

G5

99

83
69

78
73
95

!>2
H4

40
14
70

12a
124

48
:~4

H8
G8

ix

Unpack Instruction . 3

Variable Field Length Operation 1

Wait Bit 2

Zero and Add Instruction 4

x

28

48

79

86

How to use this book

There are three sections to this text. At the beginning of each section,
is a list of Learning Obj ectives , which you will be expected to learn as
a result of studying that particular section. At the end of each section
(or subsection) is a list of Review Questions so that you can evaluate
your progress. You will go through this book in a serial fashion. That
is, you will not be expected to skip or branch around. The answer to
each frame is in the next frame. You may find it helpful to use a standard
IBM card to cover the answers as you read the frames.

Periodically, as you go through this book, you will be directed to study
areas of the System/360 Principles of Operation manual. This will help
you to become familiar with the manual so that it may be used as
reference material at a later date.

THE CONTENTS OF TillS BOOK

SECTION I Numbering Systems

It is expected that you would be familiar with some of the numbering
systems used in computers because of either your previous experi
ence or your completion of a course in basic computer concepts.
In this section you will learn the numbering systems used by the
System/360. This will ensure that you are at the proper level to
study the System/360 and its data formats.

SECTION II Organization

This section will introduce you to the logical structure of the
System/360. You will learn the basic units and the role they play
in a System/360.

SEC TION III Data Formats

In this section you will learn the data formats used in the
System/360 with the exception of the Floating Point formats. The
Floating Point feature of System/360 is not covered in this self-study
course.

ALPHABETICAL INDEX

xi

xii Numbering Systems

System/3 SO Introduction

• Section I:
Section IT:
Section ITI:

Numbering Systems
Organization
Data Formats

SECTION I LEARNING OBJECTIVES

At the end of this section, you should be able to:

1. Express any decimal value from 0 to 15 as a four position binary
number.

2. Express any decimal value from 0 to 15 as a one hexadecimal digit.

3. Express the complement of any decimal, binary, or hexadecimal
number.

4. Add any two decimal, binary, or hexadecimal numbers.

5. Subtract via complement addition one decimal, binary, or hexa
decimal number from another.

6. Convert any decimal number to a binary or hexadecimal number.

7. Convert any binary or hexadecimal number to a decimal number.

terms
digit
place value
base

1
1

Numbering Systems

Numbering systems were developed by man so that he could count. Later
the simple act of counting was expanded to the four basic mechanics of
arithmetic: addition, subtraction, multiplication, and division. A
number is basically a string of symbols. Suc h a number in the decimal
system, with which you are quite familiar, is 360. Each symbol in a
number has a definite place value. At this point, let's review some
general rules and see how they apply to the numbering systems used by
System/360.

A number is a sum of terms. Each term is a product of a digit symbol
and its place value. The place value of the digit symbol is some power
of the base. The power of the base starts with zero and increases by 1
from right to left.

A number is a sum of
and its

____ . Each term is a product of a ____ _
The decimal numbering system has a

of ten.

Looking at the decimal number 360 as a sum of terms you can see that:

360 ;3 x r2
\ +6 x 10'

Digit Base Exponent
or

Power of Base

,------~--~~------~I
TERM

This could also have been expressed in this manner:

360 = 3 x 100 + 6 x 10 + 0 x 1

Notice that 10° = 1. Any valueto the power of 0 equals 1.

Another rule that you can see from the previous example is that the place
value of each digit increases going from right to left. The rightmost
digit of a number is called its low-order or least Significant position.
The leftmost digit is called its high-order or most significant position.
Example: ~360~

High Order Low Order
or or

Most Significant Least Signific ant

Given the decimal number 479, express it as a sum of terms and indicate
the low-order pOSition.

479 =

Numbering Systems 1

+

4 x 100 +

a. Binary
b. Decimal
c. Hexadecimal

7 X 10'
or

7 x 10

2 Numbering Systems

+
o

9 x 17LOW Order

9 x 1 +

Of course, you would not ordinarily express deci:r:nal numbers as sums of
terms because you are too familiar with the decimal numbering system.
However, numbering systems with a base other than 10 can also be
expressed as a sum of terms. So as you will see, there are definite
similarities between numbering systems regardless of the base.

The System/360 is capable of performing arithmetic instructions involving
three different numbering systems. As part of its standard instruction
set, the System/360 can do basic arithmetic with.!>inary numbers. With
the addition of the decimal feature, it can do arithmetic with binary coded
decimal numbers. With the floating point feature, it can do floating point
arithmetic operations with hexadecimal numbers.

List three numbering systems used by the System/360.

a. b. c.

You have been working with the decimal system most of your life. It uses
the value 10 (ten) for its base. This means that each place in a decimal
number represents ten raised to a power.

I ' 00, 000 I ' ~t 000 , t 000 '00 I '0 I,]
It uses ten digit symbols (0-9). Each time the highest digit value (9) is
exceeded by 1 in any place of the numbeT, the result is zero and there is
a carry of 1 to the next higher place value.
Example:

09 o x 10 + 9 x 1
.±-.Q!. = + o x 10 + 1 x 1

o x 10 + /0 xl
+ 1 x 10-+-Carry

10 1 x 10 + o x 1

The principle illustrated here is true for the other numbering systems as
well. Let's see if you know the principle.

When the highest digit value is exceeded by 1, J!.!!.your own words)

The result is zero
and there is a carry
of 1 to the next higher
place value.

A numbering system other than decimal which you may be familiar with
is the binary numbering system. It uses the base 2 and has only two digit
symbols (0 and 1).

Express the binary number 1000 as a sum of its terms.

1 X 2 3 + 0 X 22 + 0 X 2' + 0 x 2 0

or
1x8 + Ox4 + Ox2 + Ox1

100,000 10,000

Notice that a binary number increases by the powers of 2. That is, each
added place to a binary number doubles it. Binary 1000 is double binary
100. In decimal, adding a place multiples the number by ten. Decimal
1000 is ten times decimal 100.

Fill in the place values of a six-position decimal number.

Fill in the place values of a six-position binary number.

1,000 100 10 I 1

32 16 I 8 I 4 I 2 I 1

1 1 0 0 1

c. 1200

Express the decimal value of 25 as binary number.

Which of the following is not a binary number?

a. 1011 b. 0000 c. 1200

1200 is not a valid binary number because 2 is not a valid symbol. The
binary numbering system has only two valid symbols; 0 and 1.

Add 1 to binary number 1001.

Numbering Systems 3

1010

DECIMAL BINARY
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

4 Numbering Systems

Express the decimal values 0-15 as four-position binary numbers.

DECIMAL BINARY

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Because the binary numbering system uses only two symbols (0 and 1), it is
ideally suited for use in computers. Each bit poSition in a computer can be
used to represent a Binary Digit. To represent a decimal dig~t, four bit
positions are needed. For instance, a decimal 9 would be represented like
this: 1001.

A third numbering system in use in the System/360 is the hexadecimal
numbering system. The hexadecimal system uses the decimal value of
16 as its base.

163 162 '6
'

16 0

4096 256 16 1

The binary system can only count as high as 1 before a carry occurs.
(1) 0 + 1 = 1
(2) 1 + 1 = 0 with a carry

The decimal system can count as high as 9 before a carry occurs.
(1) 8 + 1 = 9
(2) 9 + 1 = 0 with a carry

In the hexadecimal numbering system you can count as high as 15 before
a carry occurs.

(1) 14 + 1 = 15
(2) 15 + 1 = 0 with a carry

To express the value 10 to 15, the symbols A to F are used. This will
probably be the hardest thing for you to get used to; seeing alphabetic
characters in a number.

Express the following hexadecimal number as a sum of terms;
796 = ____________________ _

796 7 x 162 + 9 X 16' + 6 x 16
0

A

or
7 x 256 + 9 x 16 + 6 x 1

The decimal value 112 can be expressed as the hexidecimal number 70.

Hexadecimal 70 is equal to: 7 x 16 ' + 0 x 16 0

Add 1 to a hexadec imal 9. 9 + 1

Count from a decimal 10 to a decimal 20 in hexadecimal.
Decimal

10
11
12
13
14
15
16
17
18
19

Hexadec imal

Numbering Systems 5

Decimal Hexadecimal ----
10 A
11 B
12 C
13 D
14 E
15 F
16 10
17 11
18 12
19 13

6 Numbering ... "'ystems

These are the hexadecimal
symbols for the decimal
values 10 to 15.

Since you think most readily in decimal terms, you will find it very
helpful to be able to convert from one numbering system to another.
You have already expressed several small decimal values as both
binary and hexadecimal numbers. It becomes more difficult as the
values get larger. Fortunately, there are a few simple rules to
remember for converting any number.

CONVERTING FROM DECIMAL TO HEXADECIMAL AND BINARY

Conversion Rule

1. Divide entire decimal number by the new base (16).

2. Remainder becomes low order of new number.

3. Divide quotient by the new base (16).

4. Remainder becomes next digit of new number.

5. Repeat steps 3 and 4 until a quotient of zero is obtained.

Decimal 456 to hexadecimal

o 1 C 8

ri6 1)0 Remainder of 1 "'~t
16 28 ------)oo)oo-Remainder of 12 or C --

16 456)0 Remainder of 8 -----

USing the preceding rules, do the following problen:ls:

Convert 972 to hexadecimal

16

~
72) Remainder of 12~-+---LOW Order

16 60 -----,)o~Remainder of 12=:--l

16 ~)0 Remainder of 31 t
3 C C

--~7~·'-----

16
16

Convert 1248 to hexadecimal

) Remainder of O~~LOW Order
) Remainder of 14~

----~)o~Remainder of 4 ~ t
4 E Q

Convert 247,200 to hexadecimal

--- --- ---

16
16

----------l~~Remainder of O------------------,~Low Order
'---;,-----

---------l~~Remainder of 10----------------,
'----.,.-----

.. Remainder of 5 ~
~ Remainder of 12~

---~)~Remainder of 3 t +
3 C 5 A o

The rules for converting from decimal apply to binary as w~ll as hexa
decimal. The only difference is that the "new base" is 2 rather than 16.

2
2

2

Convert decimal 47 to binary

------------~--Remainder of 1---------,~Low Order
L-..r----

~ Remainder of 1~
• Remainder of 1~

---------:~~Remainder of 1;11
-----------,)o~Remainder of 01
----------)~Remainder of ITt

o 101 111

Numbering Systems 7

8 Numbering Systems

As you can imagine, converting larger numbers to binary would take quite
some time. The usual procedure is to convert large numbers to hexa
decimal. Then the hexadecimal number is easily converted to binary. The
base of the binary system is 2' while the hexadecimal system uses a base
of 16 or 24. You can see that there is a direct 4-to-1 relationship
(24 to 2') between the two bases. Every hexadecilnal digit becomes four

binary digits. Every four binary digits in turn can be converted to a
single hexadecimal digit.

Convert hexadecimal 4EO to binary

4 E o
t t t

0100 1110 0000

Convert binary 010011100000 to hexadecimal

0100 1110 0000

T T T
4 E o

Besides using the hexadecimal numbering system for floating point
calculations, the System/360 also uses the hex system in most printed
material to express long binary numbers. An example of this i.s
expressing the 24-bit binary addresses of main storage as six hexadecimal
digits. The six hex digits can be easily converted to binary if it is
necessary to find the actual machine language address.

"Hex" Address -----I.~ 0 0 0 4 E C

Binary Address~ 0000 0000 0000 0100 1110 1100

If it is desired to find the decimal byte location, the hex address can be
converted to decimal.

Prior to seeing how to convert from hexadecimal back to decimal, let's
do another conversion problem.

Convert decimal 147,332 to binary by first converting to hexadecimal.

16 147332------..,., Remainder of 4 ~-- Low Order
-----I., Remainder of 8

'--1""--
----l)'-..... Remainder of 15
-------,])0 Remainder of 3
-----3., Remainder of 2

o

Hex 2 3 F 8 4

t t + ~ t t
Binary 0010 0011 1111 1000 0100

CONVERTING FROM HEXADECIMAL TO DECIMAL

--------------------------------------- --------

Conversion Rules

1. Multiply the high-order digit of the number by the old base (16).

2. Add next digit to product.

3. Multiply sum by the old base (16).

4. Repeat steps 2 and 3.

5. Stop at step 2 when low-order digit has been added.

"Hex" Ie 8 to decimal

1 C

X16~
16

+ 12
28

x 16
168
28
448

8

+ 8 -+----~
456

Using the preceding rules, do the following hexadecimal to decimal
conversion problems.

Convert 3CC to decimal

Numbering Systems 9

972

3
x 16

48

± 12
60

x 16
360
60
960
12
972

1248

4
x 16

64

+ 14
78

x 16
468
78

1248

+ 0
1248

247,200

C C

J

E 0

J

Convert 4EO to decimal

Convert 3C5AO to decimal

The rules for converting to decimal apply to binary numbers as well as
hex numbers. The only difference is that the old base is 2 rather than 16.

x

Convert 101111 to decimal
10111 1

~J -+"---

x
2
2
4

+ 1
5

x 2
10

+ 1 ~---'

11
x 2

22
+ 1

23
x 2

46
+ 1 ~-------'

47
----------------------~~-.. -------------------

10 Numbering Systems

As you can see, the direct conversion from binary to decimal can be
rather lengthy. It is much better to convert from binary to hexadecimal
and then to decimal.

1 0 1 1 1 1""'--Binary

T t
2 F ... Hex

x 16

~ 32

+ 15
47 ~ Decimal

Given the following 24 bit binary address, what is the decimal byte location?

o 0 O' 0.1 0 0 1,11 0 0.11 0 1.111]. 0 0 0 1

Numbering Systems 11

0000 1001 1100 1101 1111 0001 ~""--Binary

TTTTT T
0 9 C

x 16

I 54

--1:4 ~
--+~

156
x 16 ----

936
156 ----
2496

--+~
2509
x 16 ----

15054
2509 ----
40144

--+~~
40159
x 16 ----

240954
40159 ----
642544

D F 1 .. -+----Hex

__ + ___ 1_~----------------~
642545 ~--------------Decimal

12 Numbering Systems

Conversion of small decimal and hexadecimal numbers can also be
accomplished by using a reference table. Go to the IBM System/360
Principles of Operation manual and briefly study the Hexadecimal
Decimal Conversion Table that is located in the Appendix.

So far you know how to count in decimal, binary, or hexadecimal. You
can also convert from one numbering system to another. But can you
add or subtract with these numbers? Keep going and you will find out.

You certainly can add and subtract with decimal numbers. But let's
review some of the rules of algebra concerning Signed numbers.

When adding two numbers with like signs, the numbers are a ----
and the s is retained.

When adding two numbers with unlike signs, _s _____ the smaller
number from the larger and use the Sign of the _1 ____ number.

When subtracting A from B, c"'---__ _ the sign of ___ . Now follow
the rules of addition.

added
sign
subtract
larger
change
A

o with a carry of 1
A
o with a carry of 1
1 with a carry of 1

a. 0000 with a carry
of lout of the high
order.

b. 1100
c. 1110 with a carry

of lout of the high
order

Algebraic Rules:

1. Subtract + 17 from + 51 3. Subtract -51 from +17
+51 +17
-17 +51
+34 +68

··2. Subtract -17 from + 51 4. Subtract + 51 from + 1 7
+51 +17
+17 - 51
+68 - 34

ADDITION OF BINARY AND HEXADECIMAL NUMBERS

Addition is similar to counting. The following illustrates a principle
that YOU learned earlier.

Add 1 to a binary 1.

Add 1 to a hex 9.

Add 1 to a hex F.

Now add 2 to a hex F.

Adding is a fast method of counting. Of course, with binary numbers,
adding is very simple. The following illustrates the rules of binary
addition:

0+ 0 = 0
1 + 0 = 1
0+ 1 = 1
1 + 1 = 0 with a carry of 1

1 + 1 + 1 = 1 with a carry of 1

Do the following binary additions:
a. 1001 b. 0111

0111 0101
c. 1111

1111

Since the binary numbering system uses only two symbols, it is easy
to state all the possible rules of binary addition.

a. 0 + 0 == __ _

b. 1 + 0 = __ _
c.
d.
e.

0+1= __ _
1+1= __ _
1+1+1= __ _

Numbering Systems 13

a. 0
b. 1
c. 1
d. o with a carry
e. 1 with a carry

a. E
b. F

c. 10
d. F

e. 14
f. 16
g. IE

a. 0
b. 0
c. 1
d. 1
e. 0
f. o with a carry
g. 1 with a borrow

+ 1110

14 Numbering Systems

Hexadecimal arithmetic has too many possible conditions because it has
16 different symbols. However, hexadecimal digits are added just like
decimal digits. The difference is that hex addition doesn't result in a carry
until the decimal value of 15 is exceeded.

Decimal-----:i)-~ 9 + 6 = 15
Hex--- ~ 9 + 6 = F
Hex ~ 9 + 7 = 10

Do the following hexadecimal additions:

a. 9+ 5 = e. A + A = _--,----,--_
b. 8+ 7 = f. B+ B= ___ _
c. 8+ 8 = g. F+ F= ___ _
d. A+ 5 =

SUBTRACTION OF BINARY AND HEXADECIMAL NUMBERS

Just as addition is a form of counting, subtraction i.s a form of discounting
or counting backwards.

In binary, 1 + 0 = 1. Therefore, if 1 is taken away from 1, the result
must be 0 (1 - 1 = 0). In like manner, 1 + 1 = 0 with a carry of one.
Therefore, if 1 is taken away from 0, a 1 must be borrowed from the next
digi t. Then the result will be 1.
Example: 01 10

-±...QL -01
10 01

In like manner, all rules of binary subtraction may be derived from those
of binary addition.

a. 0+ 0= e. 1 - 1 = ----
b. 0 - 0 = f. 1+] -

c. 0+ 1 = g. 0 - 1 = -----
d. 1 - 0 =

Earlier you reviewed the rules for adding or subtracting signed numbers.
Using those rules, do the following problems in binary addition and
subtraction.

+1001
+ +0101

+1001
+ - 0101

+0100 Notice that in the last problem you had to borrow from the high-order
position. In doing so, it left the high order with a O.

+1001
+0101

+ 0100 Here is the rule that should have been used: Change the sign of A and follow the rules
of addition. Once the sign of A has been changed, the problem becomes identical to the problem
preceding it.

+0101
+ -1001

-0100 This particular problem involving adding unlike signs was solved by subtracting the
smaller from the larger and using the sign of the larger like this:

(-) 1001
0101

-0100

Subtraction in hexadecimal is just like decimal subtraction. However,
whenever you borrow from the high order, you are borrowing 16 rather
than 10.
Example: Decimal

17 0 (17)

- 08 becomes -0 8 ~
09

Hexadecimal
17 0 (23) decimal value

- 08 becomes - 0 8
OF

Do the following hexadecimal subtraction problems:

a. 9A
- 57

b. AB
- 9A

Numbering Systems 15

a.
b.

a.
b.

43
11

510
50B

16 Numbering Systems

Just as a check on the previous problem, let's convert both numbers to
decimal, subtract decimally, and convert the result back to hexadecimal.

1st Number
AB

160

2nd Number

144 ~J
±-1:.!.:

~JA
-±...!.Q

1 r SUbtracti:Jn 154

~171
- 154

Reconversion

----cr= Rernainder of 1
16 ~ Remai~der of]

a. F9F
- A8F

017

b.

o ~ r
Final Result 1 1 .

F9A
-A8F

In problem b of the preceding frame, you had to borrow in order to
subtract a hex F from the units position. Since you borrowed 16, the
problem became this:

FOA
-A8F

F 8
A 8
5 0

(26) f----Decimal Value
F
B

47B

B8FF

That was a real toughie! You had to borrow from two places over to
subtract from the units pOSition. It worked like this:

/DeCimal vale

FOA----l .. ~ E(16)A ~ EF(26)
- A8F - A 8 F - A8F

47B

Actually this is just like decimal borrowing; for example:

Decimal

807--.... 7 (10) 7 ---~~79(17)
- 128 - 1 2 8 - 12 8

679

You may have had trouble with the last hexadecimal problem, so do
another just like it.

DOOA
- 170B

If you followed the proper procedure for borrowing, you should have
arrived at the correct answer. Let's make sure you know the proper
procedure for borrowing from hexadecimal numbers.

Each time you borrow 1 from a hex digit, you bring over a decimal value
of

Numbering Systems 17

16

18 Numbering Systems

Let's check the answer to the last hexadecimal subtraction problem by
doing it in decimal.

1. Convert operands to decimal

D 0 0 A 1 7

x 16 J
208

+ 0
208

x 16
3328

+ 0
3328

x 16
53248

x

+

16 J 16
7

+ 10 -----'
53258

2. Subtract decimally

53258
5899

47359

3. Convert result to hexadecimal

23
x 16

368

+ 0
368

x 16
5888

+ 11
5899

16)- Remainder of 15
)- Remainder of 15

0

0

~ Remainder of 8 ~
)0 Remainder of 11 t

B 8

B

n
F F

You have not only checked the validity of the answer; you have also seen
that you can solve hexadecimal calculations by converting the numbers to
decimal. The choice of uSing decimal or hexadecimal to solve problems
is yours. Normally it is faster to solve hex problems in hexadecimal.

complement
complement

032

COMPLEMENT ADDITION

So far you have been adding and subtracting signed and unsigned nun1bers.
Actually you should reali ze by now that unsigned numbers are treated
mathematically as if they had plus signs. The numbers you have been
working with have been decimal, binary, and hexadecimal numbers.
Before you can continue and can see the data formats used in the
System/360, there is one last item to be learned concerning numbers.
That item is Complement Addition.

Complement addition is the way most computers (System/360 included)
perform subtraction. '

A complement number is defined as that quantity which, when added to a
number, would result in a zero answer and a carry out of the high-order
position.

The quantity 544 when added to the number 456 would result in an
answer of 000 with a carry out of the high-order position.

In the preceding example, the quantity 544 is considered the ----
of 456. Conversely, 456 could be considered the of 544.

The procedure for complementing any number (decimal or otherwise) is
the same. Subtract each digit of a number from the highest digit value of
the numbering system and add 1 to the low-order position.

For decimal numbers, this means to subtract each digit from 9 and add 1
to the low order.
Example:

To Complement 456 999
- 456

543
+ 1

Complement of 456---I~~ 544

The complement of a decimal number is usually called the "tens"
complement.

What is the "tens" complement of 968?

What is the "tens" complement of 999?

What is the "tens" complement of 500? -------
What is the "tens" complement of OOO? ______ _

Numbering Systems 19

001
500
000 cannot be

conlplemented

"sixteens"

a. B 1 8
b. 544

a. 2 C 6
b. 001

20 .,:rvumbering Systems

Example of why 000 cannot be complemented:

999
- 000

999 Each digit can be subtracted from 9

999
~ However, when 1 is added to low order,

/000 the result goes back to zero.
Carry

For complementing hexadecimal numbers, each digit is subtracted fro~
F(15) and 1 is added to low order.

To complement a hex 1 C 8

FFF
-lC8

E37
+ 1

E38 ~Complement of 1C8

The complement of a hexadecimal number is usually called the "sixteens"
complement.

E38 is the _" _____ " complement of 1C8.

What is the complement of the following hexadecimal numbers?

a. 4 E 8 b. ABC

a. D3A b. F F F

a. 800 b. 000

a. 800
b. Just as in decimal

the quantity zero
cannot be comple
mented.

invert
1

a. 1 1 0 1 0 0 0 1
b. 0 0 0 0 0 0 0 1

a. 0 1 0 0 0 0 0 0
b. Again the quantity

zero cannot be
complemented. The
operation always
results in a zero
answer.

To complement binary numbers, subtract each digit from 1 and add 1 to
the low order. Another way of saying this is to say: Invert each binary
digit and add 1.

To complement the binary number 0 0 0 1 1 1 0 0 1 0 0 0

1111111 1 111 1

00011 100 100 0
1 1 100 0 110 111

+ 1
1 1 100 0 1 1 100 0

The/6omplement of a binary number is called the "twos" complement.

To !obtain the "twos" complement of a binary number ___ _
and add to the low order.

Obtain the "twos" complement of the following binary numbers:

a. o 0 101 111

a.

a. 1 1 000 000

a.

b.

b.

b.

b.

1 1 1 1 1 1 1 1

00000 0 0 0

each digit

Now that you can obtain the compleme~t of any number, what does this
mean to you? Earlier it was stated that most computers perform sub
tractions by means of complement addition. This means that, instead of
subtracting a number, most computers derive the correct result by
adding the complement of a number. An example of this follows.

Numbering Systems 21

complement
addition

adder

22 Numberinf!, Systems

Example:
To subtract a decimal 456 from 847:

1. You do it this way:

847
- 456

391

2. The computer does it this way:

847 847
- 456 ----l~~ + 544

391

Ca~t of high order

Notice that the answer in both cases is the same. The act of complement
addition will always result in the same answer as subtraction. Computers
usually use adders in their Arithmetic and Logical Units. Subtracting by
complement addition allows the computer to use its adder for both addition
and subtraction. Of course, there is some subtraction involved in
complementing a number. In complementing, however, a number is always
subtracted from the same value (the base minus 1). This can be handled by
a minimum amount of circuitry on the input to the adder.

Computers usually subtract by means of ____ _

Both addition and subtraction are usually done in the computer's ALU by
the

The statement was made earlier that complement addition will always
result in the same answer as subtraction. The result of complement
addition, however, will be in one or two forms: True or Complement.
Let's take a look at the previous example and explore this further by first
looking at regular subtraction.

Subtraction
847

- 456
391

Subtraction always gives a answer.

true

true
complement

carry out of. high
order

that the answer is
in complement form

true

that the ans we r is
in complement form

Now let's look at complement addition.

Complement Addition 847
+544

~391

Carry out of high order

By inspection, you can tell that the answer is in true form. But how
can a computer tell whether it is in true or in complement form?

If you will notice, there was a carry out of the high order when
complement adding in our example. This carry is a signal to the
computer that the answer is in true form.

The results of complement addition may be in
form.

or in

The computer is Signaled that the result is in true form by
(in your own words)

Since a carry out of the high order indicates that the answer is true,
the absence of a carry indicates (in your own words)

Now let's reverse our numbers and subtract 847 from 456.

Subtraction 456 847
-847 -456

- 391

The -391 is called the answer.

Complement Addition 456
- 847

456
+153

609

The absence of a high-order carry indicates (in your own words)

To obtain the true answer, the computer must do two things:

1. Complement the complement answer. This is known as
"Re-complementing. "

2. Change the sign of the result field. In the previous example,
the unsigned field (847) was considered plus. As a result, the
true answer will be minus.

Complementing a complement answer is known as

Numbering Systems 23

re-complementing

changing the sign

Complementing
999

-760 ---
239

_±-L
240

Re-complementing also involves (i_n y'-o_u_r_o_wn_w~o..;..rd_s-")r..-.-_______ _
of the result field.

Re-complementing

Subtraction
456

- 847
-391

Complement Addition
456

+ 153
609

Re-'complementing
999

- 609
390

+ 1
-391

Solve the following decimal subtraction problems by complement addition.
Re-complement if necessary to obtain a true answer.

789
-760

Adding
789

+ 240
C~029

The true answer is +029. Re-complementing was not necessary.

Complementing
999
821
178

~
179

The true answer is -574.

24 Numbering Systems

247
- 821

Adding
247

+ 179
426

Re-complementing
999

- 426
573
+ 1

- 574

Complement Addition
11101001
10010101

C~O 1 111 11 0

The true answer is
+0 1 1 1 1 110.

Complement Addition
010 1 100 1

+ 100 1 100 1
1 1 110 010

In the answers to the preceding problems, the complementing of the fields
and subsequent addition are shown as two separate operations. Actually,
in computers the complementing is done as the field is being sent to the
adder. The complementing and any subsequent re-complementing is done
automatically by the computer.

You have just done some complement additions with decimal fields. Since
you already know how to complement binary and hexadecimal fields, go
ahead and solve the follOwing binary problems by complement adding.

1 1 1 0 100 1
-01101011

o 101 100 1
-01100111

There was no carry, so re-complement

1 1 1 1 111 1
- 11110010

00001101
+ 1

- 0 0 001 11 O~The true answer

You have just done two problems of subtraction with binary numbers. You
solved them by complement addition. Later on when you study data
formats, you will see that the System/360 does its binary calculations in
. a unique fashion. For now, solve the following hexadecimal problems
with complement addition.

E7A4
- A 4 8 E

Numbering Systems 25

Complement
FFFF

-A 4 8 E
5 B 7 1

+ 1
5 B 7 2

Addition
E7A4

+5 B 7 2
C~4 3 1 6

4 3 1 6 is the true hexadecimal answer.

Complement

FFFF
-E DC B
123 4

+ 1
1 2 3 5

ABCD
- E DC B

Addition

ABCD
123 5
BE 0 2

Re-complement

FFFF
- B E 0 2

4 1 F D

+ 1
- 4 1 F E

The true answer is - 4 1 FE.

26 Numbering Systems

In summary, complement addition is the method most computers use to
subtract. The result of complement addition is in true form if there is a
carry out of the high-order position. The absence of a carry indicates
that the answer is in complement form. To obtain the true answer, the
computer must re-complement the answer and change the sign.

After doing the review questions on the following pages, you will be ready
to study the System/360 org'anization.

REVIEW QUESTIONS ON NUMBERING SYSTEMS

• Try to answer the questions without referring to the material. However,
if you do require aid, refer to this book and/or the System/360 Principles
of Operation manual and consider reviewing the area where aid is required.

1. Express the decimal values 0-15 as a four position binary number
and as one hexadec imal digit.

Decimal Binary Hexadec imal

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

2. Write the "tens" complement of the following decimal numbers:
a. 705 b. 671 ____ _

3. Write the "twos" complement of the following binary numbers:
a. 1 1 0 1 1 0 1 1 b. 1 0 0 0 0 1 1 0

4. Write the "sixteens" complement of the following hexadecimal
numbers:
a. FAD E b. D E A F

5. Add the following:

Decimal
a. 705

+ 671

Binary
b. 1 1 0 1 1 0 1 1

+10000110

Hexadec imal
c. FADE

+ DEAF

Numbering Systems 27

28 Numbering Systems

6. Subtract the following using complement addition:

Decimal

a. 705
-671

d. 671
-705

Binary

b. 1 1 0 1 1 0 1 1
-1 0 0 0 0 1 1 0

e. 1 0 0 0 0 1 1 0
-1 1 0 1 1 0 1 1

Hexadecimal

c. FADE
-DEAF

f. DEAF
-FADE

7. Convert the following decimal numbers to hexadecimal and binary
numbers:

a. 705 b. 671

8. Convert the following binary numbers to decimal numbers:

a. 1 1 0 1 1 0 1 1 b. 1 0 0 0 0 1 1 0

9. Convert the following hexadecimal numbers to decimal numbers:

a. FADE b. DEAF

10. Express the following decimal numbers in binary and hexadecimal.

Decimal Binary Hexadecimal

16

70

161

Numbering Systems 29

30 ... TVumbering Systems

ANSWERS TO REVIEW QUESTIONS

1.

2.

3.

4.

5.

6.

Decimal Binary Hexadecimal

0 0000 0
1 0001 1

2 0010 2

3 0011 3
4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A
11 1011 B

12 1100 C
13 1101 D

14 1110 E

15 1111 F

a. 295
b. 329

a. 00100101
b. 011 110 1 0

a. 0522

b. 2151

a. 1376
b. 101100001

c. 1D98D

a. 705 705
- 671 +329

Carry~034.......-True Answer

b. 1 1 0 1 1 0 1 1
-10000110

110 1 1 0 1 1

+0 1 1 1 1 0 1 0
Carry~O 1 0 1 0 1 0 I-+-True Answer

c. FADE
-DEAF

FADE

+ 2 151
Carry ~lC 2 F--t-True Answer

6. d. 671 671
-705 + 295

966 ~ Complement Answer

- 034~ True Answer

e. 10000110 10000 1 1 0
- 110 110 11= + o 0 100 101

1 0 1 0 1 0 1 1 ~ Complement Answer

- 0 1 0 1 0 1 0 1 ~ True Answer

f. DEAF DEAF
-FADE 0522

E 3D 1 ~ Complement Answer

- lC 2 F ~True Answer

7. a.
16 ~ ~ l-+--Hexadecimal

16 44 ~ C

\ 16 2 ~ 2

1
0 I
~ L.L.QJ> ~ ~ Binary

b.
16 ~ ~ F~Hexadecimal

16 41 ~ 9

\ 16 2 ~ 2

1 0 I
o 0 1 0 1 0 0 1 !....LU-~ Binary

iVumbering Systems 31

8.

32 Numbering Systems

a. 110 110 1 1

: ~j

~J
6

x 2
12

±-_1_
13

x 2
26

±-_1_ 1------'

27
x 2 ---

54
±-_O_ ~t------'

54
x 2

108
+ 1 ------'

109
x 2 ----

218
+ 1 ...------'

219

b. LetVs do this one by first converting to hexadecimal.

1 0 000 1 1 0 ----
8 6

~J 128

±-..L
134

(15) (10) (13) (14)
9. a. F A D E

x 16J 90
15
240

+ 10
250

x 16
1500
250
4000

13
4013

x 16
24078
4013
64208

+ 14
64222

(13) (14) (10) (15)
b. D E A F

x 16 J 78
13
208

+ 14
222

x 16
1332
222
3552

+ 10
3562

x 16
21372
3562
56992

£ __ .-1..L
57007

10. Decimal Binar;y Hexadec imal

16 10000 10
70 1000110 46

161 10100001 Al

Numbering Systems 33

34 Organization

System/360 Introduction

Section I: Numbering Systems
Organization • Section II:

Section III: Data Formats

SECTION II LEARNING OBJECTIVES

At the end of this section, you should be able to:

A. With reference to main storage:

1. Define: Byte, Halfword, Word, and Doubleword.
2. State that each and every byte in main storage is individually

addressable with a 24 bit (3 byte) binary address.
3. Referring to the above terms, state the boundary

re strictions.

B. With reference to the General Registers:

1. State the number of general registers.
2. State that each register is addressable with a 4 bit binary

address.
3. State that in some operations, an even-odd address pair

of registers is used. In these cases, the high-order
(even address) register is used for addressing purposes.

4. State that the registers are used to hold:
a. Operands (Accumulated Data)
b. Indexing Factors
c. Base Address

C. State that the System/360 can do the following data operations:

1. Register to register with fixed length operands.
2. Storage to register with fixed length operands.
3. Storage to storage with variable length operands ..

D. With reference to the I/O Channels:

1. Describe the difference between a Selector and a
Multiplexor Channel.

2. Describe the difference between burst and multiplex modes.

True

Organization

The System/360 is a general purpose computer system. By this we mean
it is designated to be used for commercial, scientific, and communica
tions applications. In the past, these applications were handled by
separate computer families.

t 7090 7080
709 705 III Growth
704 705 II
701 702

Scientific Commercial

One scientific computer family and its comparable commercial
equivalent.

The scientific computers were usually fixed word length machines and
used a pure binary form of coding. On the other hand, the commercial
computers were usually variable word length (character oriented) machines
and used a binary coded representation of decimal information. The
System/360 uses binary as well as BCD and has both fixed and variable
length fields.

To fit the cost and volume needs of computer users, the IBM System/360
is available in several models. For instance, to suit the demands of users
who need a minimum number of answers per month, a model 30 is avail
able at a minimum cost. A model 70, however, will give approximately
50 times as many answers per month. Both models (30 and 70) are,
however, program compatible. That is, a program written for a model
30 can run on a model 70 and vice versa. The answers will be the same;
the numbers of answers per month will be different.

A machine language program written for one model of the System/360 can
run on any other model. (True/False)

The System/360 also uses a new technology known as Solid Logic
Technology. This new technology is commonly referred to as SLT.
Basically, it consists of printed circuitry instead of physical wiring on the
back panel. It also uses packaged logic circuits. This new technology
reduces manufacturing costs, increases reliability and reduces mainte
nance time. The details of SLT will not be covered in this course.

SLT stands for

Organization 35

Solid Logic
Technology

core

36 Organization

CPU

PUNCH

C C
H H
A A
N PRIMARY N
N STORAGE N
E E
L L

TYPICAL DATA PROCESSING SYSTEM

In the preceding figure, you can see the components that make up a data
processing system. You should be familiar with these components
either from past experience or because of a basic computer systems
principles course.

Let's learn about these components as they apply to the System/360!

The primary storage is that section of a DP system that contains the
program to be executed as well as the data to be processed. All data
entering the system goes into the primary storage before it can be
processed. Mter processing, the data must be placed back into primary
storage before it can be sent to an output device.

Primary storage is sometimes referred to as main storage. Most com
puters use ferrite cores as their primary storage device. The System/360
also uses ferrite cores for its main storage.

The type of storage used for primary storage in the System/360 is
storage.

The smallest addressable unit of main storage in the System/360 is called
the byte. The byte consists of eight data bits and one parity bit.

THE BYTE

As can be seen above, the leftmost bit of a byte is the parity bit.
System/360 uses odd parity. That is, an odd number of bits in every
byte will be set (in the 1 state). The remaining bits will be reset (in the
o state). If an even number of bits are set, a machine check (error)
will be indicated.

The smallest addressable unit of main storage is called a . It
consists of data bits and one bit. The leftmost bit is ---
the bit. A machine error will be indicated if a byte has an

number of bits set.

byte
eight
parity
parity
even

byte

As would be expected, the faster models of System/360 would need more
storage bytes than the slower models. Also each model of the system
would have as an option several sizes of main or core storage. As can be
seen from the following figure, the model 30 comes in four sizes from
approximately 8K bytes to 65K bytes. The model 70, on the other hand,
can have either 262K or 524K bytes in main storage.

MAIN STORAGE
(USUAL.L.Y L.OCATED IN THE PROCESSING UNIT)

9APACI1Y
~BYTES}

8, 192
16,384

\32,768
65,536

-1.8"1, 072
",,262,144

524,288

BYTES / ACCESS

MAl N STORAGE
SPEED IN USECS

C30
030
E30
F30

1.5

SYSTEM MODEL.

040
E40
F40 F50
G40 G50 G60
H40 H50 H60 H62

160 162

2 4 8 8

2.5 2 2

MAIN STORAGE IN MODEL.S 60 - 70 IS HOUSED
EXTERNAL.L.Y TO THE PROCESSING UNIT.

PROCESSING UNIT

Besides the byte ,size of each model of the System/360, there is other
information available from the preceding figure.

1. The time required to take a storage cycle varies between models of
the System/360.

2. In all but the models 60-70, the main storage is housed in the same
physical structure as the processing unit.

3. The number of bytes accessed during each storage cycle varies with
each model of the System/360. A storage cycle is the period of time
during which information is read out of main storage. The infor
mation that is read out is either regenerated or new information
is placed back into main storage.

The smallest addressable unit of main storage is called a

Use the preceding figure to answer the following:

A model 40 of the System/360 can have as few as bytes or as
many as bytes.

Every time a model 30 takes a storage cycle, one byte is accessed. Every
time a model 50 takes a storage cycle, bytes are accessed.

O~ganization 37

16,384
262,144
four

5 storage cycles with
addresses 0000, 0002
0004, 0006, 0008

One thing you should understand now is that the byte is the smallest
addressable unit of main storage. This means that, regardless of which
model we are discussing, each and every byte of nmin storage is individ
uallyaddressable. To read out the first eight bytes of main storage, the
model 30 would take eight storage cycles. For each cycle, the model 30
would change its storage address by 1, using addresses 0-7. The model
50 on the other hand, would need to take only two storage cycles. To
access bytes 0-3, the storage address would be 0000. For the next four
bytes (4-7) the address would be 0004 and not 0001. Actually, to access
bytes 0-3 on a model 50, any of the 4 addresses (0000-0003) could be
used. Later on you will learn that in certain cases, special restrictions
are placed on the addresses used.

It is desired to read out the first ten bytes (0-9) of main storage on a
model 40. How many storage cycles and what addresses would be used?
Use the preceding figure for reference.

You should now realize that main storage addresses start with 0000 for the
first byte and increase by 1 for each byte in the particular main storage
unit. Valid storage addresses for a model 30 wouLd start with 0000 and
continue up to 65,535. On a model 70, valid main_storage addresses
start with 0000 and continue up to 524,287. To allow for program com
patibility as well as for future growth, the System!360 uses a 24-bit
binary address to address main storage. A 24-bit binary number allows
us to go as high as 16,777,215 for an address. You can see the future
growth that is possible here! A binary rather than a binary coded decimal
address is used because it is more efficient with large addresses.

Write the 24-bit binary address that would be used to address byte
location 0007.

000000000000000000000111

3 B Organization

You should be familiar enough at this point with the binary numbering
system to have done the preceding question without much difficulty. Of
course, you might have a slight case of writer's cramps from writing
out a 24-bit address. Normally, machine addresses are expressed
hexadecimally. Hexadecimal is another numbering system you are
familiar with. Binary uses a base of two (2') while hexadecimal uses
a base of sixteen (2 4

). There is a direct 4-to-1 ratio between binary
and hexadecimal. Each four binary bits can be expressed as one
hexadecimal digit. Address 0007 could be expressed as six hexadecimal
digits:

ooooooooooooooooooooo111------~.~000007

How would the highest 24 bit binary address be expressed hexadecimally?

FFFFFF

byte
24-bit

eight, parity
parity, odd

One

c

Each main storage address refers to an individual Every
main storage can be located by a __ -___ binary address.

Every byte has data bits and one
bit is the bit and is used to give every byte an
of bits set (in the 1 state).

bit. The leftnlOst
number

How many bytes are read out during a storage cycle on a model 30?

Express the decimal value 12 as a hexadecimal digit.

You are probably a little perplexed about this byte by now. You know that a
byte consists of eight data bits and a parity bit! You know that each byte
is individually addressable by a 24-bit binary address! You know that main
storage size can vary from approximately, 8K bytes on a model 30 to over
500K bytes on a model 70! You know that the model 30 accesses one byte
per storage cycle while a model 70 accesses eight bytes per storage cycLe!
However, you are probably asking yourself:

Is the byte a character?
Is it a binary number?
Just what is it?

The answer to these questions is simple. The eight data bits of a byte can
be coded to represent characters, binary numbers, or anythi~KYou want
them to be. The instructions of the System/360 are many and varied. Some
of the instructions treat bytes as characters. Some instructions treat
bytes as part of a binary number. So the answer to the question, "What
does a byte represent?" is that it depends on the particular instruction
being ex;ecuted at the time. This question will be answered more to your
satisfaction after you study the data formats and some of the instructions.

As was previously stated, the System/360 is a general purpose data proces
sing system. As such it is designed to operate with fixed length as well as
variable length data. The byte as you have already learned is a very
versatile unit. It is individually addressable. By further specifying the
number of desired bytes, we can have a variable length field in main
storage starting and ending at any byte address.

The System/360 can operate with variable length data. Variable length
data can start at ___ byte address.

Orf!,anization 39

any

halfword
o to 15

two

40 Orf(anization

To be of truly general purpose, the System/360 most also be capable of
operating with fixed length data. Whereas variable length data has a
variable number of bytes, fixed length data always has a fixed number
of bytes. The simplicity of this last statement almost scares you! So
let's go on and define these fixed length fields.

A halfword is two bytes in length.

HALFWORD

The data bit positions of a halfword are numbered 0-15 from left to right.

HALFWORD

Notice that the parity bits are not shown. They will not be shown from
here on, since they do not represent data. However, remember that
every byte does contain a parity bit for checking purposes.

Two bytes are contained in a . Its data bit positions are
numbered _ to __ , left to right. Each halfword has
parity bits associated with it.

A word is 4 bytes long.

BYTE BYTE BYTE BYTE

WORD

The data bit positions of a word are numbered 0-31 from left to right.

--------------~
WORD

eight, parity

halfword
word
doubleword

A doubleword is 8 bytes long.

BYTE BYTE BYTE BYTE BYTE BYTE BYTE

DOUBLEWORD

The data bit positions of a doubleword are numbered 0-63 from left to
right.

10------

DOUBLEWORD

Remember now that each byte of a halfword, word, or doubleword carries
its own parity bit.

A byte contains data bits and one bit.

A is two bytes in length.

A is four bytes in length.

A is eight bytes in length.

The data bit positions of fixed length data are numbered from ___ _
(right to left/left to right) starting with bit position O.

Each of fixed length data contains a parity bit.

Organization 41

left to right
byte

high

42 Organization

Remember now that it is the instr:uction being executed that determines
whether to consider data as variable or fixed. The Op code of the
instruction will also determine, in the case of fixed length data, whether
it is a halfword, word, or doubleword.

Before leaving the definitions of fixed length data, you must learn the
restrictions placed on the use of fixed length data.

The rule is that fixed length data must reside on the correct boundaries
in main storage.

-------r.------.-----~----~

BYTE
0000

BYTE
0001

~ __ --L-

BYTE
0002

BYTE
0004

BYTE
0005

BYTE
0006

BYTE
0007

HALFWORD HALFWORD HALFWORD HALFWORD
___ . __ ... ___ .-.L.... ________ --/ ________ ..L _______ -+ __ -\

WORD WORD

.... ----.-------'-------.. ---------.-------+-------4

DOUBLEWORD

Fixed length data is addressed by the high-order byte (leftmost byte) of
the field.

For halfwords, this address must be divisible by two.

For words, this address must be divisible by four.

For doublewords, this address must be divisible by eight.

Another way of stating this rule is to say that the .24-bit binary address:

1. Of a halfword must have one low-order zero bit.
2. Of a word must have two low-order zero bits.
3. Of a doubleword must have three low-order zero bits.

A fixed length data field is addressed by its ____ (low/high) order
byte.

The binary address of a word must contain
bits.

The binary address of a doubleword must contain
zero bits.

low-order zero

low-order

two
three

The boundary restriction placed on the use of fixed length fields is a
restriction placed on the user. If you violate these rules, it is not a
machine check. Instead it is, and rightfully so, considered a program_
check.

Starting a halfword data field at an odd address (such as 000001) will
result in a check.

Incorrect parity in a halfword data field will result in a
check.

----------------------------~-- ----_.

program
machine

Specification
Addressing

specification

As there are other restrictions placed on the programmer, you should
be able to identify program checks by type. The type of program
check caused by a violation of fixed length boundaries is known as a
specification exception.

Another exception to valid programming is addressing a byte location
that is not available on your particular model of System/360. The
largest size main storage available on the model 30 is 65,536 bytes.
Any address higher than this, would result in a program check. This
type of check is known as an addressing exception.

What two types of program check exceptions could occur when
addressing main storage?

If the binary address of a word does not contain two low-order zero
bits, the program check that occurs is identified as a
exception.

Orf!,anization 43

44 Organization

REVIEW QUESTIONS ON MAIN STORAGE

• Try to answer the questions without referring to the lmaterial. However,
if you do require aid, refer to this book and/or the System/360 Principles
of Operation manual and consider reviewing the area where aid is
required.

1. The byte consists of data bits and one bit.

2. If a byte has an
will occur.

number of its bits set, a machine check

3. Each main storage address refers to a unique
location.

4. Data field bit positions are numbered starting with 0 from
to

5. Data fields are addressed by their ____ -order byte location.

6. A is two bytes long.

7. A is four bytes long.

8. A is eight bytes long. ----------

9. What two program check exceptions could occur when addressing
main storage?

10. The address of fixed length data fields must be divisible by the
number of in the field or a
exception will occur.

ANSWERS TO MAIN STORAGE REVIEW QUESTIONS

1. eight,. parity

2. even

3. byte

4. left, right

5. high

6. halfword

7. word

8. doubleword

9. Specification, Addressing

10. bytes, specification

Organization 45

46 Organization

CENTRAL PROCESSING UNIT

Now that you know the primary storage capabilities of the System/360,
let's explore those of the Central Processing Unit (CPU).

READER

C
H
A
N
N
E
L

TYPICAL DATA PROCESSING UNIT

STORAGE ADORE SS

CPU

PRIMARY
STORAGE

C
H
A
N
N
E
L

r-------------.,
I I

PUNCH

I MAl N STORAGE I
)ttl I

I I
I I
L -------.----r-.J

"'"
INSTRUCTIONS ~DATA-~

COMPUTER
SYSTEM ,

CONTROL ALU
INDEXED

ADDRESS FIXED POINT VARIABLE FLOATING
OPERATIONS FIELD LENGTH POINT

OPERATIONS OPERATIONS

,. ~

-f-DATA~ ~DATA~ ,

16 4
GENERAL FLOATING POINT

REGISTERS REGISTERS

CENTRAL PROCESSING UNIT LOGIC FLOW

control
instruction
control
executed

In the preceding frame, you can see the logical structure of the CPU for
the System/360 and its relationship to the main storage.

As you know, ,there are two main sections in CPU. They are: 1) the
control section,and 2) the arithmetic and logical section (called ALD).

From the illustration on the facing page, you should be able to see SOlne
of the functions of the control section. They are:

1. All references to main storage, whether for instructions or for
data, are made by the control section.

2. During I time of any instruction, the control section addresses main
storage and causes the.instruction to be fetched and sent to the
control section. The instruction is then decoded by the control
section and executed during E time.

During I time of an instruction, the instruction is brought out of main
storage to the section. The control section decodes the

All addresses are supplied to the main storage by the section.

During E time of an instruction, the instruction is

In general, the arithmetic a~d logical section of a computer contains
the circuits necessary for adding and comparing data fields as well as
the other circuits neces~ary for operating on data fields.

As can be seen from the CPU Logic Flow illustration, the ALU can do:

1. Variable field length operations.
2.. Fixed point operations involving fixed length fields.
3. Floating point operations ..

In your own words, what is the function of the arithmetic and logical unit
of a computer? ______________________ .

Organization 47

After the instruction
has been fetched and
decoded in the control
section, the data fields
are brought out to the
ALU, and the oper
ation (such as add or
subtract) is executed.

48 Organization

VARIABLE FIELD LENGTII OPERATIONS

In looking at the ALU, let us first consider variable length fields as used
in many commercial computers of the past. Two main concepts were
used. The storage-to-storage concept was used by computers of the
1401 family. In it the data fields were brought out of main storage,
operated upon, and the results went back into main storage.

STORAGE-TO-STORAGE CONCE PT

Other computers such as those of the 702 - 705 family used a storage-to
accumulator concept. The accumulator was a small storage device. The
storage medium could be core storage, vacuum tube or transistorized
registers. In the storage-to-accumulator concept, one of the data fields
would be in main storage and the other would be in an accumulator. Both
fields would be brought out to the ALU, operated upon, and the result
would go back into the accumulator.

L-------r--]
L....--...r----r---],

ACCUMULATOR]

STORAGE-TO-ACCUMULATOR CONCEPT

For its variable length operations, the System/360 uses the storage-to
storage concept.

MAIN STORAGE

~DATA ... ,

-
ALU

FIXED POINT n VARIABLE I FLOATING
OPERATIONS ~ FIE LD LENGTH POINT

~ OPERATIONS 1 OPERATIONS

STORAGE ADORE SS

Sections of the System/360 necessary for a variable length operation,
including I time, are shown in this frame. Label the blocks as to:

Control Section
Main Storage
ALU
Variable Field Length Operations

On the lines connecting the blocks, indicate whether they are:

Addresses
Instructions
Data

"
MAIN STORAGE

,

,

INSTRUCTIONS ~DATA----'"
COMPUTER ~

SYSTEM ,~

CONTROL ALU

VARIABLE
FIELD LENGTH
OPERATIONS

Organization 49

operand
operand

any
a length code in the
instruction.

50 Organization

Fields of data (fixed or variable length) are often referred to as operands.

Instructions usually contain an Op code, the address of a first
and the address of a second

As you have previously learned, variable length fields can start at any
byte location in main storage. They are not restricted by storage
boundaries as are fixed length operands. However, there must be some
way of indicating to the system the length of the fields. In computers
of the past, this was done several ways. The 1401 used a special word
mark bit over the high order. The 705-II used zone bits. In the
System/360, variable length operations use binary and decimal operands.
In order to be code independent, System/360 specifies the length of
these fields by a }ength code in the instruction.

Variable length fields can start at ___ byte location in main storage.
Their length is specified by .>....(i_n v"-o_u_r_o_w_n_w_o_r_d_s-L,) __________ _

The length code can be either 4 or 8 bits long, depending on the instr,;!ction.
The length code is in binary. As a result, the maximum length can be
either 16 or 256 bytes. The value of the code is one less than the total
number of bytes.

Length code of 0000 = 1 Byte
Length code of 1111 = 16 Bytes
Length code of 11111111 = 256 Bytes

A length code of 0111 would specify a variable field length of how many
bytes?

Eight (8)

16
general registers

storage
accumulator

general registers

0000

FIXED LENGTH OPERATIONS

STORAGE ADORE SS .. MAIN STORAGE

INSTRUCTIONS--DATA
COMPUTER ~

SYSTEM
CONTROL ALU

i

i i

FIXED POINT 1
i

OPERATIONS I i
I

J i

~DATA-+-

16
GENERAL

REGISTERS

When operating on fixed length fields (such as halfwords, words, or
doublewords), the System/360 uses the storage-to-accumulator concept.
These fixed length operations use binary operands. For use as accumu
lators, the System/360 has __ registers available to the programmer.
As these registers can be used for purposes other than accumulating,
they are called

When working with fixed length operations, the System/360 uses a
_s ____ -to- _a _____ _ concept.

For use as accumulators, the programmer has available 16 ___ _
These registers are numbered 0-15 and are addressed

in an instruction by a 4 bit binary address field.

To use general register 0 as an accumulator, what address is given?

General registers 0-15 are all one word in length. How many bytes may
be contained in a general register?

Organization 51

four Being a word in length, a general regi_ster can be used to contain a
halfword data field. Data fields are sometimes referred to as operands.

o 15 16 31

I HALFWORD I
. OPERAND .

GENERAL REGISTER

As can be seen in the preceding figure, the bits of a general register
are numbered left to right starting with the number O. Also, we can see
that a halfword operand is placed in the low-order bits (16-31) of a
general register.

None of the general registers 0-15 can contain a doubleword. For
those operations that use a doubleword operand, such as fixed length
divide, a pair of adjacent registers is used. In these cases, an even-odd
pair of registers (such as 0-1 or 6-7) is used, and the even register
is addressed.

With general register address 1100 specified, which two general
registers would be used in a fixed length divide operation?

-- ----------------_.

12 and 13 In the preceding question, bits 0-63 of the doubleword would be in the
registers as shown below.

REG 12

31 0
I

DOUBLEWORD

REG 13

Fixed length operands in main storage must be on integral boundaries
or a program _c ___ will occur indicating a _s ________ e ____ _

check Number the bit positions of the general register below. Also show where
specification exception a halfword operand would be placed.

o 15 16

GENERAL REGISTER

52 Organizatioli

GENERAL REGISTER

HALFWORD
OPERAND

31

With sixteen general registers, sometimes both fixed length binary
operands will be in the general registers. In these cases, another data
flow concept is used. The System/360 can do a register-to-register
(accumulator-to-accumulator) operation.

STORAGE ADDRE SS .. MAIN STORAGE

INSTRUCTIONS I
COMPUTER

SYSTEM
CONTROL ALU

FIXED POINT i
OPERATIONS I

J
--:J-'-'

~DATA~

16 OJ
GENERAL

REGISTERS

Organization 53

54 Organization

Sections of the System/360 necessary for fixed length operations,
including I time are shown in this frame. Label the blocks as to:

Control Section
ALU
Main Storage
Fixed Length Operations
General Registers

On the lines connecting the blocks indicate whether they are:

Addresses
Instructions
Data

0(

,

--

--]
I
I

I

I
I
I

STORAGE ADDRE SS MAl N STORAGE

~
INSTRUCTIONS

COMPUTER
SYSTEM

CONTROL

1. Accumulators
2. Index Registers
3. Base Registers

-+-DATA

ALU

FIXED POINT
OPERATIONS

I

~DATA--'-

~

16
GENERAL

REGISTERS

The general registers are also used for purposes other than accumulating.
Two other .main uses are as Index Registers and Base Registers. Indexing
is a form of indirect addressing. An increment contained in an index
register is added to the data address in the instruction to form an effec
tive main storage address. Neither the index register nor the instruction
in storage is changed by indexing. The use of the general registers as
index and base registers will be explained later in this course. Base
registers are similar to index registers.

List three main uses of the general registers. '1.
2. 3.

Organization 55

56 Organization

FLOA TING POINT OPERATION

The floating point feature is not an objective of this course. Some
information however, is necessary to acquaint you with the term
"floating point." Floating point is the term given to arithmetic operations
involving a fraction and an exponent. For instance:

217,000 can be expressed as .217 x 106

296,000 can be expressed as • 296 x 10
6

Fixed point arithJnetic would add the numbers as fonows:

217,000
+ 296,OQO

513,000

Floating point arithmetic would do it like this:

.217 X 10
6

6 + . 296 ~ 10
~.513 x 10~

Add fraction Retain exponent

The example shown is an example of decimal floating point. The
System/360 uses hexadecimal floating point. For instance:

.7Fx16
6

6
~lF x_16_

.9E x 166

four

four
o
2

4
6
general registers

0, 2, 4, 6

64
doubleword

STORAGE ADORE SS MAl N STORAGE

INSTRUCTIONS
COMPUTER

SYSTEM
CONTROL --

ALU
.-

FLOATING
POINT
OPERATIONS

~DATA~t
~

FLOATIN-;' POI]
REGISTERS

Floating point arithmetic is most useful for expressing very large nunlbers
and operating on them with much precision. To do floating point arithmetic,
the System/360 has floating point registers.

The four floating point registers are numbered 0, 2, 4, 6. These are not
the same as general registers 0, 2, 4, 6. The floating point registers
are separate registers used only as accumulators during floating point
operations.

There are floating point registers numbered ___ . __
The floating point registers are not the same as

(in your own words) ."

The floating point registers are doubleword registers and are addressed
by a 4-bit binary address in floating point instructions.
o

FP REG ADDRESS- 011 0

Floating point registers are ___ bits long and can contain a

Organization 57

58 Organization

REVIEW QUESTIONS ON CENTRAL PROCESSING UNIT

• Try to answer the questions without referring to the material. However,
if you do require aid, refer to this book and/or the System/360 Principles
of Operation manual and consider reviewing the area where aid is required.

1. Instructions are decoded by the of CPU.

2. For its variable field length operations, the System/360 uses the
to concept.

3. Variable length fields can start at ___ byte location in main
storage.

4. The length of variable length fields is specified by (in your own
words)

5. For fixed length operations, the System/360 uses a
concept.

6. For use as accumulators, the programmer can address

to

7. Number the bit positions of the general register below. Also show
where a halfword operand would be placed.

8. With general register address 1100 specified, what two general
registers would be used in a fixed length divide operation?

9. List three main uses of the general registers.

1.

2.

3.

10. When both fixed length operands are in general registers, a

11.

to concept may be used.

For floating point operations, the System/360 has
point registers.

floating

12. System/360 uses the
floating point expressions.

numbering system for its

13. The floating point registers are __ bits long.

14. Shown below are the blocks that make up the System/360
CPU as well as main storage.

Identify the blocks as to:

Main Storage
Control Section
General Registers
ALU
Floating Point registers

Identify the lines connecting the blocks as to:

Addresses
Instructions
Data

FIXED POINT

~

,It

VARIABLE

,
~

.-

FLOATING
OPERATIONS FIELD LENGTH POINT

OPERATIONS OPERATIONS

....... ~ ~
~

'--

Organization 59

ANSWERS TO CENTRAL PROCESSING UNIT REVIEW QUESTIONS

1. control section

2. storage-to-storage

3. any

4. length code in the instruction

5. storage-to·-accumulator (or register)

6. sixteen general registers

7.
IO---------_~~_1_5~_1_6 __________ 3~11

I
HALFWORD

. OPERAND _

8. General Registers 12 and 13

9. 1. Accumulators
2. Index Registers
3. Base Registers

10. register-to-register or accumulator-to-accumulator

11. four

12. hexadecimal

13. 64

14. STORAGE ADORE SS MAIN STORAGE
r

j

-L
INSTRUCTIONS ~DATA~

COMPUTER ...-
SYSTEM ~

CONTROL ALU

FIXED POINT VARIABL.E FLOATING
OPERATIONS FIELD LENGTH POINT

OPERATIONS OPERATIONS

j

~DATA~ ~DATA~

~

16 4
GENERAL FLOATING POINT

REGISTERS REGISTERS

60 Organization

The organization of the System/360 which you have been learning is its
logical structure. By this we mean that this is the way the System/360
appears to the programmer. The manner in which this logical
organization is implemented will vary between the different models
of the System/360.

For example this is how the registers are implemented:

1. In models 60, 62, 70 of the System/360, the general and floating
point registers are conventional transistor registers as used in
past computers.

2. In models 40 and 50 a core array is used for the general and
floating point registers. This array is similar to main storage
but is a separate physical entity. It is called Local Store.

3. In model 30 the general and floating point registers are located in
the main storage unit. However, they do not use any of the
available main storage addresses o The area of the main storage
unit used for registers is called Bump Storage.

Another example of hardware differences is in the control section of the
System/360. In the model 70 the control section is made up of high-speed
conventional transistorized circuits. However, other models of System/360
use a capacitor or a transformer storage device for most of their control
functions. This device is called Read Only Storage (ROS). The ROS is
a storage device but cannot be changed by the programmer. It is strictly
a hardware control device.

In this section of the course your objective is to learn the logical organi
zation of the System/360 and to be able to program it. Let's go on and
learn the logical organization of System/360 channels!

Organization 61

main storage

main storage

channels

62 Organization

CHANNELS

READER

C
H
A
N
N
E
L

CPU

PRIMARY
STORAGE

C
H
A
N
N
E
L

~ PUNCH I

~

From your knowledge of basic computer systems principles, you should
realize the importance of input-output channels in any computer system.
Their main function is to act as an intennediary between the I/O devices
and the main storage unit.

Before input data can be processed in the ALU, it must first reside in

Before processed data can be sent to an output device, it must be placed
in

All data flow between I/O devices and the main storage passes through
the

One of the main functions of a channel is to handle I/O requests for a
main storage cycle. The channel receives data from the System/360 I/O
devices one byte at a time. When enough data has been received to
justify the use of main storage, the channel will request a storage cycle.
The amount of data required will vary from one to eight bytes depending
on the particular lnodel of System/360. After the data has been placed
in main storage the channel will wait for additional information from the
input device. For an output device the procedure reverses. The
channel requests a main storage c~J('le and brings out data. It passes
this data to the output device one byte at a time. The requesting of
a main storage cycle by the channel for I/O data is commonly referred
to as a "Break-In. "

The channel receives of data at a time from an I/O
device. Requesting of a main storage cycle by the channel is known as
a " "
------------~

one byte
"break-in"

overlap

standard interface

control unit

Since the channel is taking care of main storage cycles for the I/O device,
the central processing unit now is logically free to continue processing
instructions. We say that processing is "overlapped" with the I/O
operation.

This simultaneous operation of an I/O device and the processing of
instructions is known as

On some models of the System/360, overlapping the channel with CPU
operations is not allowed at certain times. Once the CPU has started a
channel operation, it has to wait for the channel operation to finish before
it can continue processing instructions.

----------- .

All data and control information are communicated between the System/360
channel and its I/O devices via a Standard Interfaee cable. More on this
later!

Each I/O device logically ties into the System/360 channel's Standard
Interface through a control unit.

MAIN
STORAGE I--_~

C
H
A
N
N
E
L

Fill in the blanks in the illustration.

READER

CABLE

The I/O device logically ties into the channel's Standard Interface
through a

Another name for a control unit is adapter. For some I/O devices, the
control unit or adapter is built into the device o For other devices,
the control unit is external to the device.

The control unit, or ______ , may be housed in the
or may be external to it.

Organization 63

adapter
device

standard interface
eight

64 Organization

C
H
A
N
N
E
L

fr STANDARD I NTE RFACE

ADAPTER

PRINTER

1443 MODEL
N1

C
H
A
N
N
E
L

fr STANDARD INTERFACE

ADAPTER --E- 2803 TAPE
CONTROL

o
'- UP TO EIGHT 2401 TAPE UNITS

Some adapters can control only one I/O device while others can
control a number of similar I/O devices. The 1443 Printer Model
N1 is an example of an I/O device with a self-contained adapter
which controls only one printer. The 2803 tape control is an
example of a stand-alone adapter which can control up to eight
2401 magnetic tape units.

Each channel of the System/360 has the ability to select up to 256 I/O
devices. There are physical limitations, of course. One of these is
in the standard interface between the channel and the I/O device.
The re can only be up to eight control units tied into the standard
interface cable.

The communication lines between the channel and its I/O devices are
known as the The maximum number of
control units that can tie into the standard interface cable is

Label each block of the channel organization shown below as to
channel, control unit, or type of device. Indicate which line is the
standard interface.

TO MAIN
STORAGE
AND CPU

Q

STANDARD
INTERFACE

C
H
A
N
N
E
L

~

selected
complete record
standard interface

CONTROL
UNIT

CONTROL
UNIT

CONTROL
UNIT

CARD
READER
PUNCH

PRINTER

Channels are logical concepts in I/O operations. In the System/360, they
may be stand-alone units as in the model 70 or may be packaged along with
main storage in the CPU housing as in the model 30. In the lower models
of the System/360, many of the processing units I circuits are used by the
channels for their functions. There are two types of channels used by
System/360: 1) selector channels, and 2) multiplexor channels. Let's
discuss the selector channels first!

SELECTOR CHANNELS

Selector channels are available on all models of the System/360. The
maximum number per model varies from two for a model 30 to six for a
model 70. The selector channel is so named because only one I/O device
can be selected on the channel at anyone time. Once selected, a complete
record is transferred over the standard interface one byte at a time.

On a selector channel, only one I/O device can be at a time.
Once selected, a is transferred over the ___ _

one byte at a time.

Once the record has been transferred, the channel is free to select another
I/O device. When a channel is transferring an entire record between main
storage and an I/O device, it is said to be operating in "Burst Mode. I'
Since a selector channel always transfers an entire record, it can only
operate in burst mode.

The operation of a channel with only one I/O device for the entire record
is known as Burst mode is the only mode in which a

channel can operate.

Organization 65

burst mode
selector

entire record
burst mode
channel

standard interface
cable

simultaneously

66 Organization

In summary then, on a selector channel, one I/O device transfers
an entire record over the channel's standard interface. During this
time no other I/O device can be using the channeL The other I/O
devices could, however, be in the process of a feed cycle involving
no data transfers over the channel. This is most apparent in those
I/O devices which have buffers in their control units.

On a selector channel, one I/O device transfers an ___ _
over the channel. This mode of channel operation is known as
____ • During this period of time no other I/O device can be using
the

Although only one I/O device can be operating on a selector channel at any
one time, multiple selector channels can be operating simultaneously.
The following illustration shows an input record being read in from tape
over selector channell at the same time as an output record is being
transferred over selector channel 2. All channels have their own
individual standard interface cable.

C C
H MAIN H
A STORAGE A
N N
N N
E E
L L

N SEL SEL
CH 1 CH 2

Each channel has its own

All channels can be in operation ("'--y_ou_r_o_w_n_vv_'_o_r_d_s.L...) __________ _

Selector channels are designed to operate with high data rates. I/O
devices such as magnetic tape, disk units, drums, and buffered
card devices are the devices most likely to operate on a selector channel.
For operating with communication terminals in a real time appli-
cation and with low data rate devices like an unbuffered card punch
unit, a multiplexor channel is used. A multiplexor channel is available
on models 30, 40, 50 of System/360.

I/O devices that operate at high data rates usually use
channels which can operate only in mode.

For operation with low-speed or real-time I/O devices, a
channel is available on System/360.

selector
burst
mu.ltiplexor

mllitiplexor
byte

burst
multiplex

MULTIPLEXOR CHANNELS

A S~lector channel is designed to operate with only one I/O deviee at a
time on an entire record basis. A Multiplexor channel is designed to
operate with a number of I/O devices simultaneously on a byte basis.
That is, several I/O devices can be transferring records over the
multiplexor channel, time-sharing it on a byte basis.

A number of I/O devices can be operated simultaneously with a ____ _
channel. The I/O devices time-share the multiplexor channel on a

basis.

This time-sharing mode of operation is known as "Multiplex" mode.
Selector channels can only operate"'in mode. Multiplexor
channels can operate in mode.

A comparison of burst versus multiplex mode can be seen below.

RECORD A IBV:E IB;:rE IB;:rE I B';,TE

RECORD B IB';E IB';iE IB~TE I B';iE BYTE r~TE I
C C

DATA GOING TO MAIN STORAGE

RECORD C

BURST MODE

RECORD A

RECORD B

RECORD C

MULTIPLEX MODE

-- -----

Orf!,anization 67

registers
command

mul tiplexor
storage area

68 Organization

To handle data flow from an I/O device, the channel needs to know
certain information such as:

1. In which direction does data flow (input versus output)?

2. Where in main storage should data be placed or taken out of?

3. How many bytes should be sent to an output device or accepted
from an input device?

Information of this type is contained in the I/O command addressed
to a particular I/O device. For a selector channel, which operates with
only one I/O device at a time, the information may be placed in the
channel registers and left there to control the operation.

Information necessary to control a selector channel operation is
contained in the channel . This information was contained
in the I/O ______ addressed to a particular I/O device.

On a multiplexor channel, it is possible to have up to 256 I/O devices
operating simult~neously. The actual maximum nUID.ber varies with the
particular model and main storage of the System/360. In any case, it
is not feasible to have all this information sitting in the multiplexor
channel's registers. A set of registers would be necessary for each
I/O device! Instead, the multiplexor channel keeps this information in
a compact storage area. As a byte of data comes in from a particular
I/O device, the multiplexor channel brings the necessary information
out of the compact storage area and places it in its registers. After the
byte of data from the I/O device has been serviced, the information in
the registers is automatically put back into the compact storage area.

A number of I/O devices can operate on a channel
simultaneously. The control information necessary for each I/O device
is kept in a compact

As a byte of data comes in from an I/O device, the control information is
brought out and pLaced in the channel

After the byte of data has been serviced, the control information is
placed back into the compact

registers
storage area

The compact storage area used by the multiplexor channel is known as
Bump storage. Bump storage is part of the physical core array used for
the ~ storage unit.

MAIN
STORAGE

BUMP

} ADDRESSES OF 000000 ON UP TO MAXIMUM

-+- USED BY MULTIPLEXOR CHANNEL TO STORE REGISTERS

As can be seen above, the bump storage does not use any of the main
storage addresses. It is a physical part of the core array used by the
main storage unit. However, logically it is separate from it and has
separate addressing lines. On the model 30, part of the bump storage
available to the hardware is also used to contain the sixteen general
registers.

The control information necessary for each I/O device on a multiplexor
channel is contained in . The control information in
bump storage comes from the original I/O c addressed to a
particular I/O device.

---_._-- '-

bump storage
command

Each I/O device has an area in
information from the original I/O

to contain its control

--
bump storage
command

Bump storage does not use any of main storage (your own words)

addresses or avail
able area or equiv
alent

On the model 30, bump storage is also used to contain the

--.----
sixteen general

registers
Each I/O device has an area of bump storage for its own individual use
when operating on a multiplexor channel. In effect then, a multiplexor'
channel is comprised of a number of subchannels. Each subchannel has
its own area of bump storage. All subchannels (I/O devices) can be
transferring records simultaneously. However, the multiplexor channel
registers can be used with only one subchannel at a time. When the
subchannel has finished servicing a byte of data for its I/O device, its
control information is placed back into its area of bump storage. The
multiplexor channel registers are now free to be used by another (or
possibly the same) subchannel.

Organization 69

subchannels
subchannel

bump storage

The multiplexor channel can be said to be a number of
The multiplexor channel registers can contain at anyone time the control
information for only one

When not being used to service data bytes, the subchannel information is
contained in ----- ---------

Operating several I/O devices simultaneously on a Inultiplexor channel
and servicing their data bytes as needed is known as mode.

--

multiplex

Selector
burst mode

________ channels can operate with only one I/O device at a time. This
mode of operation is called

Multiplexor channels can also operate in burst mode if necessary. Burst
mode can be forced on the multiplexor channel by the I/O device. This is
done if high-speed devices are placed on the multiplexor channel.

Multiplexor channels can operate in two modes: and

------ -----

--
multiplex mode
burst mode

multiplex mode
I/O device

The normal mode of operation for a multiplexor channel is
Burst mode can be forced on a multiplexor channel by the

Go to the IBM System/360 Principles of Operation manual and briefly
study the following areas of the System Structure section:

Main Storage
Information Formats
Addressing
Information Positioning

Central Processing Unit
General Registers
Floating Point Registers

Arithmetic and Logical Unit

----_._---- ---------------------.----------------------------_.

70 Organization

REVIEW QUESTIONS ON CHANNELS

• Try to answer the questions without referring to the material.
However, if you do require aid, refer to this book and/or the
System/360 Principles of Operation manual and consider
reviewing the area where aid is required.

1. All data flow between I/O devices and the main storage passes
through the

2. The channel rec ei ves
an I/O device.

of data at a time from

3. The requesting of a storage cycle by the channel is known as

4. The simultaneous operation of an I/O device on the channel and
the processing of instructions in the CPU is known as _____ _

5. The I/O device communicates with its channel via a
cable.

6. The I/O device logically ties into the standard interface through a

7. The operation of a channel with only one I/O device for the entire
record is known as

8. Each channel has its own cable.

9. channels are designed to operate at high data rates
and can operate only in mode.

10. A channel is designed to operate with a number of
I/O devices simultaneously.

11. The control information necessary for each I/O device in
operation on a multiplexor channel is contained in

12. Multiplexor channels can operate in two modes:
and

Organization 71

13. The following illustration shows a mode operation.

RECORD A

RECORD B

RECORD C

72 Organization

ANSWERS TO CHANNEL REVIEW QUESTIONS

I. channels

2. one byte

3. break-in

4. overlap

5. standard interface

6. control unit

7. burst mode

8. standard interface

9. Selector, burst

10. multiplexor

II. bump storage

12. burst mode, multiplex mode

13. multiplex

Organization 73

74 Data Formats

System/360 Introduction

Section I: Numbering Systems
Section II: Organization

• Section lIT: Data Formats

SECTION III LEARNING OBJECTIVES

At the end of this section, you should be able to:

A. Decimal Formats

1. Show the Extended BCD Interchange Code for alphameric
characters.

2. Show a numeric field in the packed and unpacked format.
3. Add and subtract packed decimal operands.
4. State the rules for determining a decimal overflow.

B. Binary Formats

1. Show a binary number in both the halfword and word formats.
2. State that negative binary operands appear in "twos" complement

form.
3. Add and subtract binary operands.
4. State the rules for determining a fixed point overflow.

C, B, A, 8, 4, 2, 1

C

A
B

B and A bit

C,B,l

character

Data Formats

It is assumed that you have had experience with the IBM card code or,
as it is sometimes called, the Hollerith Card Code. From your previous
computer experience or from a basic computer systems principles
course, you are also familiar with the Standard BCD (Binary Coded
Decimal) code.

The seven bits of the standard BCD code are ----

Correct parity is established by using the __ bit.

The zone bits are the and bits.

The standard BCD code equivalent of a twelve hole punch in an IBM card
is the

--- --- -- --- -

Assuming odd parity, the character J would consist of the
bits in the standard BCD code.

The basic unit of information in the System/360 is the byte. Just as each
card column can be contained as a character in the Standard BCD code,
it can also be contained as a character in the System/360 byte.

The byte in the System/360 can be used to contain a

The character code used in the System/360 is known as the Extended BCD
Interchange code. Neglecting parity for now, the extended BCD code uses
8 bits to express a character, whereas the standard BCD code uses only
6 bits.

The character code used in the System/360 is known as the ______ _
BCD Interchange Code. This code uses __ bits to express a character.

Data Formats 75

extended
8

256
card

0, 7

76 Data Formats

The use of 8 bits may seem inefficient. However the extended code has
some definite advantages not contained in the standard BCD code:

1. 256 different bit configurations are possible.

2. Both upper and lower case alphabetic information can be coded.

3. All possible 256 bit combinations can be punched into an IBM card.
This allows pure binary information to be coded on an IBM card,
with each column representing 8 bits of binary informationo

There are possible bit combinations in the extended BCD code.
All 256 possible bit combinations can be punched into an IBM

Basically, most character codes are divided into zone and numeric parts.
The extended BCD i.nterchange code is no exception. Let's take a look at
the System/360 byte and see how it is divided.

The bit positions of a byte are numbered __ through __ from left to right.

The EBCDIC (Extended BCD Interchange Code) divides the eight bits of
a byte as shown below:

1012345671
--...-- --..--

ZONE NUMERIC

Bit positions 0 - 3 are used to express the zone portion of a character
while bits 4 - 7 are used to express its numeric portion.

The numeric portion of a character uses bits __ through __ of a byte.
The zone porti.on of a character uses bit~ __ through __ of a byte.

4, 7
0, 3

8, 4, 2, 1

Let's see how alphameric characters are expressed in the Extended BCD
code as compared with the Standard BCD code.

B A 8 4 2 tOt 2 3 456 7

I, , 0 0 0 , 1- :,~~~L~~::: --" , 0 0 0 0 0 , 1
STANDARD CODE EXTENDED CODE

Notice that bits 4 - 7 of the extended BCD code are used just like bits
8, 4, 2, and 1 of the standard code.

THE EXTENDED BCD BYTE I 0 , 2 3 4 5 6 71

I L SAME AS 8, 4, 2, 1 BITS IN STANDARD CODE

~O o A-I
o 1 J-R
1 0 S-Z
1 1 NUMERIC

'------- 1 1 UPPER CASE ALPHA AND NUMERIC
1 0 LOWE R CASE ALPHA
o 1 SPECIAL CHARACTER
o 0 NO CHARACTERS ASSIGNED

Go to the IBM Systems/360 Principles of Operation manual and study the
EBCDIC chart in the Arithmetic and Logical Unit, Logical Operations
area of the Systems Structure section. Use the chart as an aid while doing
the following frames.

Bits 4-7 of the extended BCD code are used just as bits
and of the standard code.

Bits 2 and 3 of the extended code are used like the B and A bits of the
standard code but in reverse order. In the stamw.rd code, the presence
of B and A bits indicates the letters A-I and the absence of them indicates
the numbers 0-9. In the extended code the absence of bits 2 and 3
indicates the letters A-I while the presence of them indicates the numbers
0-9.

Bits 2 and 3 of the extended code are the reverse counterpart of the
bits of the standard BCD code.

Data Pormats 77

BandA

11000010

10000010

11110010

numeric
decimal numbers

78 Data Formats

Bits 0 and 1 of the extended code are used to group the characters.
Both bits indicate numeric as well as upper case letters. Bit 0 by itself
indicates lower case letters while bit 1 by itself indicates special
characters.

Examples:
Character

A
a
1

/

Bit Combination
11 00 0001
10 00 0001
11 11 0001
01 10 0001

What is the extended BCD code for the character "B"?

What is the extended BCD code for the character "b"?

What is the extended code for the character "2"?

DECIMAL DATA FORMATS

-------~----""-""---------"-"-------"-----~"-----~-""-"-----

Decimal data consists of numeric fields which are coded to represent
decimal numbers. For instance, the decimal number "17" can be
represented in two columns of an IBM card by a I-hole punch and a 7-
hole punch. In the extended BCD code, this same nUlnber can be
represented in two bytes like this:

I, , , , 0 0 0 ,- V, , , 0 , , , I
7

Decimal data consists of
(in your own words)

fields which are coded to represent

In the preceding illustration, the number 17 did not have a sign and was
considered plus.

How is the sign of a numeric field conventionally indicated in an IBM card?

By a zone punch over
the low~rder or units
position of the field.

11
12
plus

plus
1

A
1100 0001

unpacked

zone

A minus field is indicated by an __ hole punch while a plus fh
a __ hole punch. The absence of zone punches in a card can a
used to indicate a field.

A 12 and 1 punch in the low-order of a field would indicate a ___ sign
and a low-order digit of __ •

When not dealing with decimal data fields a 12 and 1 punch can also be
used to represent the character , and in the extended BCD code would
have this bit configuration:

Decimal numeric fields in the extended BCD code are said to be in the
zoned or unpacked format. The zoned or unpacked decimal format looks
like this:

BYTE
LOW ORDER

1101 = MINUS SIGN
1100 = PLUS SIGN
1111 = PLUS SIGN

Decimal data in the extended BCD code are said to be in the
or zoned format.

----------- -

If the input to the System/360 is in card form, the sign of the unpacked
format is indicated by a punch over the low-order digit.

It is a waste of storage space and processing speed to use the unpacked
or zoned format for decimal arithmetic operation. The decimal feature
of the System/360 uses a more efficient format for decimal arithnletic.
It is called the packed or unzoned format. Since only four binary bits
are needed to express a decimal digit, why not pack two digits into each
byte of a decimal field? This is the packed format as used by the
System/360.

The decimal feature of the System/360 uses the format. The
packed format has ___ decimal digits in a byte.

Data Formats 79

packed
two

low-order digit
sign
0-3

What about the sign of a packed field? It is contained in the low-order bits
of the low-order by teo A comparison of the unpacked and packed low-order
byte is shown below.

I SIGN: DIGITI
UNPACKED

I DIGIT: SIGN I
PACKED

The packed format has two digits in each byte except for the low-order byte
which has the in bits 0 to 3 and the in bits
4 to 7.

In the unpacked format, the sign is in bits of the low-order byte.

The next question is: If the System/360 will only process decimal data
when it is in the packed format, how do you pack it? The System/360 has
an instruction called "pack" which will take a decimal field in the zoned
format and change it to the packed format as follows:

o
(DIGIT)
~ 2:0NED FORMAT

1
I ___ --------PACKED FORMAT

You are not expected to know this instruction at this time. You should be
aware, however, that zoned decimal fields can be changed to the packed
format by a machine instruction.

Show a three-digit field in the zoned format.

[Z : D I Z : Dls:oJ Show a three-digit field in the packed format.

I : I : I BYTE

I 0 : 0 I 0 : 5 I
....

BYTE

by a machine
instruction called
"pack."

packed

BO Data Formats

A zoned decimal field can be changed to the packed format (in your own
words)

To be able to use the instructions of the decimal feature, decimal fields
must be in the format.

Decimal fields are variable in length and, as such, are processed using
the storage -to-storage concept as previously discussed.

Variable length fields can start at __ byte location in main storage.

any

length code in the
instruction

variable
storage -to-storage

packed

an instruction called
"unpack"

The length of a variable length field is specified by (in your own words-1

Decimal fields are
-to---------- ---------

in length, and are proce ssed using the
concept.

To process fields using the decimal feature instrUctions, the fields nlust
be in the format.

After decimal fields have been processed, they may be left in the packed
format if the output medium is code insensitive. A magnetic tape unit
would be a case of an output device that is code insensitive. If the output
device is code sensitive, the packed fields must be changed to the zoned
format. An example of a code sensitive output device is a card punch
unit. Just as there was an instruction called "pack," there is an
instruction called "unpacko " The "unpack" instruction will change a
packed format field to the zoned format as shown below.

II(PACKED FORMAT

1
IZONE :DIGIT I ZONE :DIGIT I SIGN :DIGIT I f------ ZONED FORMAT

t t AUTOMATICALLY INSERTED

After packed fields have been processed, they may be changed to the zoned
format by (in your own words)

Now that you know how to complement decimal numbers and the format of
decimal fields, let's take a few examples of decimal arithmetic. Decimal
fields, of course, will be in the packed format. These arithmetic oper
ations will involve the storage-to-storage concept. This means that both
operands are located in main storage and that the result will go back into
main storage. What you may not realize about the storage-to-storage
concept is that the result will replace one of the operands. In the
System/360 the operands are referred to as the 1st and 2nd operands.
In most System/360 operations involving two operands, the result
of the operation replaces operand 1.

In the System/360, the results of decimal arithmetic operations replace
the operand.

Data Formats 81

1st

, ST OPERAND

lFB
---"._-----_._" ,,----

82 Data Formats

Supposing you wanted to add + 17 to + 115.

, ST OPERAND 2ND OPERANL

[
et=. ~:._~ _---r-__ E_o J 7 '+

t
I, : 3 12 + RESULT

Notice that in the above example:

1. The result will replace the 1st operand.
2. The 2nd operand has a high-order zero digit. Packed decimal

fields are variable by byte length, not by digit length.

In similar fashion as the preceding example, show the addition of + 171 to
+694.

2ND OPERAND

I, : 7 I' >. I
f

I

RESULT

The first step in a decimal arithmetic operation is sign analysis. In
the above add operation the signs were the same, so you added the two
operands. If the signs were different, the rules of addition would call for
subtracting the smaller from the larger. Of course subtraction is
handled by complement addition.

The first step in a decimal arithmetic operation is to analyze the ___ _

signs If the signs were different on an add operation, the two operands would
be (in your own words)

complement added
If the signs were alike on an add operation, the two operands would be
(in your own words) _.

added or more
correctly true added.

1ST OPERAND

Example: Add -15 to + 17
1 ST OPERAND 2ND OPERAND

1 0 :' 17:+ I 1 0 > [5:-[

IL...-----------;::Jf--------I ~ [}OMPLEMENT

Gr--I 0 : 0 12 [~~~] TRUE RESULT

Notice that in the above example:

1. Because of sign analysis, the 2nd operand is complement added
to the 1st operand.

2. The signs are analyzed but do not otherwise take part in the
addition.

3. The carry out of the high order indicates that the answer is in true
form and does not need to be re-complemented.

In a manner similar to the preceding example, show the addition of
-179 to + 863.

2ND OPERAND

8:613 :+1 l' :71 9 :-1

I ---L..---------=-t--I B :: I, I~.-J
&-1 6 : 8 I 4 [~~J

COMPLEMENT

TRUE RESULT

Data Formats 83

true

complement

the answer is in
complement fornl.

a new sign (minus)

complement
re-complemented
true

84 Data Formats

Supposing the operation says to subtract -17 from + 115. According to
the sign analysis, the two operands would be added.

If the operation says to subtract + 17 from + 115, the two operands would
be added.

Example: Subtract + 117 from + 115
, ST OPERAND 2ND OPERAND

I 1 : 1 1 5 ~ C> 17 : + I
~

L----------.f:z;-------li::: : \3 [}OMPLEMENT
I 9 : 9 \8 [~~.J

The absence of a carry in the above example indicates (in your own words)

Complement answers will be automatically re-complemented so that the
result will be in a true fOrl~.
Example of Re-complement:

~
9 8 ~~~J

---,
I o 0 2 I
I ----'

COMPLEMENT ANSWER

TRUE ANSWER

Since re-complementation also involves a sign change, the 1st operand will
contain at the end of the operation.

The absence of a high-order carry during complement addition indicates
that the result is in for'm and needs to be -------_.

The presence of a high-order carry during complement addition indicates
that the answer is in form.

In similar manner to previous examples, show the addition of + 17 to + 998.

1ST OPERAND 2ND OPERAND

9> ! a;+ I 10
: 1 17 : + I

t [I
~I 0 : 1 ! 5

In the preceding problem, because of sign analysis, the two operands were
added.

--- - --_ _-

true Notice that, in the preceding problem, there was a carry out of the high
order position. This carry is lost. Whenever a carry occurs out of the
high-order during true addition of decimal fields, it is known as a
"decimal overflow. "

The presence of a high-order carry during true addition indicates a

--- - -.-- -

decimal overflow

decimal overflow
large

A carry out of the high -order during true addition is called a ______ _
and occurs because the result is too (large/small)

to be contained in the 1st operand location.

A decimal overflow will occur anytime all the significant digits of true
addition cannot be contained in the length of the 1st operand.

One way Jor a decimal overflow to occur during true addition is to have
(in your own words)

-- - ---

a carry out of the
high-order

A decimal overflow will also occur if the 2nd operand contains more
Significant digits than the 1st operand has room for.

Example: Add + 112 to +78

2ND OPERAND

I, : 1 I 2 : + I

In the above example a decimal overflow occur because the
1st operand has room for all significant digits.

Data Formats 85

will not

decimal overflow

will not

1 ST OPERAND

I 0 : 0)5 : + I

86 Data Formats

Example: Add +11 to +5
1ST OPERAND 2ND OPERAND

I 5 : + I ~1':+1
L---------------------~f~----------------~

G
In the above example a would occur because all
significant digits of the result cannot be contained in the 1st operand.

Example Add +00112 to +078
1ST OPERAND

r li..:~_L_: _+_l ___ t
L_ I' > 1 0 [J

2ND OPERAND

In the above example a decimal overflow occur because the
1st operand location can contain all Significant digits of thc result.

The next question is: How can a programmer make sure a decimal over
flow will not occur during decimal arithmetic operahons? A good method
would be to make the 1st operand long enough (by having high-order zeros)
to accommodate 1) any possible high-order carry as well as 2) all 'significant
digits from the 2nd operand.

You wish to add + 11 to +5. Show the operands necessary to avoid a
decimal overflow 0

1ST OPERAND ---.-; ~+J
-_ ... _-

2ND OPERAND

10 i 1 I : + I
Hemember, a partial byte cannot be used as an operand.

Go to the IBM System/360 Principles of Operation manual and briefly study
the Decimal Arithmetic area of the System Structure section.

REVIEW QUESTIONS ON DECIMAL FORMATS
AND EXTENDED BCD CODE

• Try to answer the questions without referring to the material. However,
if you do require aid, refer to this book and/or the System/360 Principles
of Operation manual and consider reviewing the area where aid is
requiredo

1. The extended BCD code uses bits to express a character.

2. The numeric portion of a character uses bits of a byte.

3. Bits 2 and 3 of the extended BCD code are the reverse counterpart
of the bits of the standard BCD code for alphameric
information.

4. What is the extended BCD code for the character "2"?

5. Decimal data in the extended BCD code is said to be in the
format.

6. The packed format has ___ digits in each byte except the low-order
byte which has the sign in bits

7. Show a three-digit field in the zoned format. c--~

8. Show a three-digit field in the packed format. I]
9. To use the instructions of the decimal feature, decimal fields must

11.

12.

13.

14.

15.

be in the format.

Decimal fields are processed using the
concept.

-to----

Results of decimal arithmetic operations replace the operand.

The first step in a decimal arithmetic operation is to analyze the

If the signs were different on an add operation or alike on a subtract
operation, the two operands would be ------ ---.-- -

A high-order carry during complement addition indicates (in you~
own words)

Data Formats 87

88 Data Formats

16. The absence of a carry during complement addition indicates (in your
own words)

17. Besides complementing the result, re-complernentation also involves
a

18. Name two items that can cause a decimal overflow.

a.
b.

ANSWERS TO REVIEW QUESTIONS

1. eight

2. 4-7

3. B and A

4. 1 1 1 1 0 0 1 0

5. zoned or unpacked

60 two, 4-7

7. I ZONE: DIGITI ZONE: DIGITI SIGN: DIGITI

8 0 I DIGIT: DIGITI DIGIT: SIGN I

9. packed

10. a length code in the instruction

11. storage-to-storage

12. 1st

13. signs

14. complement added

15. the answer is in true form

16. the answer is in complement form and needs to be re-complemented.
NOTE: Re-complementation is done automatically by the computer.

17. sign change

18. a. High-order carry during true addition.
b. 2nd operand has more significant digits than the 1st operand

has room for.

Data Formats 89

byte
high

two
four
eight

bytes
spec ifica tion

BINARY DATA FORMA 'IS

You have just learned the decimal data formats. Decimal data is variable
in length and is processed with the storage-to-storage concept. Binary
data is fixed in length and is processed with both the storage-to-accumulator
and accumulator-to-accumulator concepts. Let's see what you remember
about fixed length operations on the System/360.

Each main storage address refers to a unique location.

Data fields are addressed by their (high/low) order byte location.

A halfword is ___ byte s long.

A word is bytes long.

A doubleword is bytes long.

The storage address of fixed length data fields must be divisible by the
number of in the field or a s exception will occur.

Fixed length operations use the storage-to-accumulator concept. For
use as accumulators, the programmer has available (in your own words)

16 general registers How many bytes may be contained in a general register?

four (4)

o 15 16

GENERAL REGISTER

90 Data Formats

Number the bit pOSitions of the general register below. Also show where
a halfword operand would be placed.

GENERAL REGISTER

HALFWORD

OPERAND

31

two
the high-order bit

two
specification

Whereas the length of decimal data was specified by a length code in the
instruction, the length of binary data is implied by the Op code of the
instruction. Binary operands may be either a halfword or a word in
length, depending on the INSTRUCTION. Let's discuss halfword operands
first.

HALFWORD BINARY OPERANDS

A halfword binary operand is two bytes in length a:qd can be used to
express numbers which do not exceed a value of 2 '5 - 1 (32,767).

HALFWORD

o 1 15

I 51 BINARY DIGITS I
~ 2 BYTE 5 ------.-

As can be seen above, the high order of a halfword is used to repres(~nt
the sign.

A halfword binary operand is __ bytes in length. The Sign of a
halfword operand is represented by (in your own words) .. ______ ~_

Halfword operands use only the storage-to-accumulator concept. The 1st
operand is located in the low-order (bits 16-31) of a general register
and the 2nd operand is located in main storage. As with decimal
arithmetic operations, the results of binary arithmetic operations
replace the 1st operand.

The address of the 2nd operand in halfword operation must be divisibl(~
by ___ or a exception will occur.

The 1st operand is located in (,_in---"y~o~u_r_o_w_n_w_o_r_d...;.s-l.) __________ _

bits 16-31 of a general The result of a binary arithmetic operation replaces the
register

operand.

1st The System/360 does its binary calculations in a rather unique way. As
you have already seen,decimal numbers were represented in their true
form (absolute value) with a + or - sign. The System/360 does not represent
binary numbers in this manner.

Positive binary numbers are represented in their true form while negative
numbers are represented in their complement form. The sign or high -
order bit is 0 for positive numbers and is 1 for negative or complement
numbers.

Data For»uJts 91

true
I- or - sign

true
o
complement
1

In the System/360, decimal numbers are represented in their
form with a

Positive binary numbers are represented in their
__ in the high-order bit position.

form with a

Negative binary numbers are represented in their form ------
with a in the high-order bit position.

Represent the decimal value + 17 as a halfword binary operand. (The small
vertical lines within the operand box have no significance; they simply
break up the operand into groups of 4 bits so that the number is easier to
read)

E 0 0 0 0 0:0 0 0 ': 0 0 0 ,\

The sign bit position in the preceding answer is O. This indicates
that the binary number is positive and is in its true form.

Represent the decimal value -17 as a halfword binary operand.

~------'-------r------~------~

~, 1 , , 1 ':' 1 1 0:' 1 1 ,I

92 Data Formats

The preceding answer is the complement of 17. The high-order 1 bit
tells us that the operand is negative and therefore is represented in its
complement form.

Show the largest positive binary number that can be in a halfword operand.

0'

Any positive binary number larger than the preceding answer would need
a 1 in the high-order bit position. The high-order bit is reserved as a
sign bit. A sign bit of 1 would indicate that the number is negative and
is in its "twos" complement form. It is very important to remember
that negative numbers are always represented in their "twos" complement
form.

Show the value of -1 in a halfword binary format.

l' 1 1 ': 1 1 1 ': 1 1 1 ': 1 1 1 '1

To verify the preceding answer, express the absolute value of the number
in true form and then complement it.

Example: 0000000000000001 ~--- ahsolute value of 1

To complement a binary number, invert each bit and add 1.

1111111111111110
+1

1111111111111111 ~r--- "Twos" complement of 1
or a -1

----,------------------------------------- ---_ ..

0000000000000001

As you recall from our earlier discussion on numbering systems, the
value of zero cannot be complemented. Since negative numbers are repre
sented in their complement form in the System/360, there can be no Dlinus
zero. This is desirable in arithmetic operations.

Show the value of + 1 in a halfword binary formato

Show the largest positive binary number that can be represented in a
halfword.

--.------------.
0111111111111111 Show the value of zero in a halfword binary format. ------- - ---.

0000000000000000 Show the value of -1 in a halfword binary format.

Data Formats 93

1111111111111111

1111111111111110

1000000000000000

Show the value of -2 in a halfword binary format.

Show the largest negative binary number that can be represented in a half
word binary format.

In the System/360 binary numbers are contained in fixed length operands.
At this point we are discussing halfword formats. A halfword consists of
16 bits (2 bytes). Of these sixteen bits, bits 1 to 15 represent the number,
while bit 0 represents the sign. However, bit 0 does not actually
represent a plus or minus sign. Instead it indicates whether bits 1 to 15
contain a true number or a complement number. The total range of the
sixteen bits of a halfword operand would look like this:

Complement {1111111~1~1111111 ~ (Minys one)
or Negative l l'
Numbers 1000000000000000. (Largest negative value)

True or
Positive
Numbers {

0111111\11111111 -~ (La1est positive value)

0000000000000001 .. (Plus one)
0000000000000000 -----l.~ (Zero)

true
positive
complement
negative

Go to the Principles of Operations manual and briefly study Appendix B.

If bit position 0 contains a 0 bit, it indicates that the halfword is the
form of a number.

If bit position 0 contains a 1 bit, it indicates that the halfword is the
form of a number.

A halfword binary number is placed into bit positions
general register.

of a

--0---------------------
16 to 31

94 Data Formats

When a halfword is placed or loaded into a general register, the halfword
is expanded to a fullword by propagating the sign bit to the left. In other
words, bits 0 to 16 will be the same. Bit position 16, of course, will
contain the sign of the halfword operand.

HALFWORD OPERAND IN A GENERAL REGISTER

0--------15 16 17------31

SAME AS SIGN
BIT

BINARY
NUMBER

When a halfword is loaded into a general register, it is expanded to a

word or fullword

propagating the sign
bit to the left.

A halfword is expanded to a fullword by (in your own word~

---- -- -- ._.-

Show the contents of a general register after it has been loaded with the
following halfword operand from main storage:

l' 0 1 1: 1 1 1 1: 1 1 1 ': 1 1 1 ,1 HALFWORD IN MAIN STORAGE

GENERAL REGISTER

1111 ':' 1 1 ':' 1 , ':',, ':' 0 1 ':' 1 1 ':' , 1 ':' , 1 ,I

FFFFBFFF

storage
accumulator
word

main storage
general registers
four

Show the contents of the preceding general register as 8 hex digits.

From the preceding discussion you should now realize that halfword
operands exist only in main storage. When a halfword is loaded into :1
general register, it is expanded to a fullword.

FULLWORD BINARY OPERANDS

For use with the binary arithmetic instructions, binary operands in the
System/360 may be either a halfword or a word in length. Halfwords are
processed using the storage-to-accumulator concept. Binary operands
in the general registers are always a word in length. Halfwords are
expanded to fullwords whenever they are placed into a general register.

Halfword binary operands are processed using the ______ to
concept. Binary operands in a general register are a in length.

Binary operands which are a word in length may reside either in ma in
storage or in a general register. Since there are sixteen general
registers, word operands may be processed using either the stor~e-t~:::
accumulator concept or the accumulator-to-accumulator concept.

Word operands may reside in either or in the _ _
______ • When in main storage they must have an address divisible by

or a specification exception will occur.

A specification exception is a type of P ___ _ check.

Data Formats 95

program

accumulator-to
accumulator or reg
ister-to-register

Besides the storage-to-accumulator concept, word operands may be
processed using the -to- concept.

As with halfword operands, bit position 0 of a word operand is the sign
bit and indicates whether the word is a positive number in true form or
a negative number in complement form.

Let's show the value (+679) as a word operand. We'll convert the decimal
value to hexadecimal first and then to binary.

Example:

16

I I ~~ --: 1~ } _--+-~ =
2 ... 2
o

"HEX" 2 A 7

!\~ WORD OPERAND

o 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 10 0 0 000 , 0 , 0 , 0 0 , , ,

0-- ------31

Show the value (-679) as a word operand. Remember this is a negative
number and will appear in complement form.

"DEC" 679 ::: "HEX" 2A 7

o 0 0 0'0 0 0 0
1

0 0 0 0'0 0 0 0'0 0 0 0 0 0 , 0
1, 0 , 00' 1 1 2A7 = ~ ____ ~ ______ ~ ____ ~~ ____ _L ______ ~ ____ ~ ______ ~ ____ __

1 1 1 1 1 1 1 1 " 1 1 1 1 1 1 , 1 1 1 1 1 1 0 1 0 1 0 1 1 0 0 1 -2A7 = ______ ~ ______ ~ ____ ~~ ____ _L ______ ~ ____ ~ ______ ~ ____ ~

96 Data Formats

From the two preceding problems, you can see that binary operands
baSically are unsigned numbers in either true or complement form.

BINARY ARITHMETIC OPERATIONS

The System/360 carries its decimal operand in the packed format. The
operands are in their true form with a plus or minus sign in the low
order position. To add or subtract decimal operands, System/360 first
has to analyze the signs. Then the two operands would be true or
complement added according to the rules of addition. If complement
addition did not result in a high-order carry, it meant the answer had to
be re-complemented.

--- -- -_.- -"--

plus or minus sign

analyze the signs

re -complement

Decimal operands are in the true form with a (in your own word~.L __ -__
in the low-order position.

The first step in a decimal arithmetic operation is to (in your own ~.9r~)

If the answer to a decimal operation is in complement form, the
System/360 has to it.

Because binary operands are basically unsigned numbers in either true
or complement form, there is no need for sign analysis. If the instruc
tion says ADD, the binary fields are added. If the instruction says
SUBTRACT, the binary fields are complement added. Since negative
numbers are carried in complement form, there is no need for
re-complementing.

---------------------------------, -----_._ ... -

Negative binary numbers are carried in their form.

complement In binary operations there (is/isn't) a need for sign analysis.

isn't If the result of a binary operation is in complement form, it _____ ._ ..
«does/does not) have to be re-complemented. This is because a
complement answer indicates a result.

Data Formats 97

does not
negative

true; The operation
says to add and there
is no sign analysis to
be done.

98 Data Formats

Let's take a look at System/360 binary operations. For simplicity,
binary operands will be shown as 8 bits in length.

° 1 2 3 4 5 6 7

I S I]

Show + 15 as an 8 bit binary operand.

Show +75 as an 8 bit binary operand.

The System/360 would add the two preceding operands like this:
+15 added to +75 =

1 ST OPERAND 2ND OPERAND

10 , ° 0:'0 1 ,\ ~oo>",\
f

'0 , ° 1 , ° 1 ° \ RE SUL T

Now supposing the operation is to add -15 to +75.

Show the -15 as an 8 bit binary operand.

Remember now that negative numbers are represented in complement
form.

The preceding operands (-15 and +75) would be
System/360.

Example of adding -15 to +75

, ST OPERAND

1°'° 0;' ~
I

f
CARRY ~ l o_o_'_'--I...>_,_o_o..J1

added by the

2ND OPERAND

I, , , ':0 ° ° ,
I

RESIULT

If you were to convert the result to decimal, you would come up with a
+ 60. As you can see, this is certainly the correct answer.

Suppose now that the operation is to add -15 to -75.

Show the first operand (-75) as an 8 bit binary operand. I ... ____ =~
-- -- ------ ----..

l' ° 1 ': ° 1 ° 1 1- Since negative numbers are represented in complement form, all you
should have done was to complement the 1st operand (+75) from the previous problem.

Show the addition of these two operands: (-15 to -75) Also show the
data flow lines.

1 ST. OPERAND 2ND OPERAND

RESULT

-- -- ------ --.

1ST OPERAND 2ND OPERAND

1, ° 1 1, 1 1 1 :0 ° ° 1 I
f

o ~ .. 1_' _0_'_0-,,-: 0_'_'_0_ RESULT

The result of the preceding problem is in form and
represents a number.

--- -----.--

conlplement
negative

01011010

90; This agrees
with our original
problem: Add -15
to -75.

10100110 is the complement of

01011010 converted to decimal is

Supposing you want to subtract + 15 from + 90.

Show the 1st operand (+ 90) as an 8 bit binary operand I ___I... __ ~_..J
--- -- -----_.

10 1 ° ': 1 ° , °

10 ° ° a: 1 1 1 1

Show the 2nd operand (+ 15) as an 8 bit binary operand I ___ ...L-._

To subtract + 15 from + 90 the System/360 will
2nd operand to the 1st operand.

add the

Data Formats 99

complement

1ST OPERAND

10 1 0 1 I 1 0 1 0 I

L

Show the subtraction (complement addition) of the two operands (+ 15
from +90).

1ST OPERAND 2NI) OPERAND

~ c:
L..---_---=-, -~C :

: COMPLEMENT

RESULT

2ND OPERAND

1
0 o 0 o : 1 1 1 t I

t
f 1 1 o 0 COMPLEMENT I 1 <0 '1

0~10 1 0
o :'

o 1 lJ RESULT

true
+75

halfword
word

Instruction; More
specifically the length
is implied by the Op
code portion of the
instruction.

true
complement

100 Data Formats

The result in the preceding problem is in
value of ---

form and has a decimal

In these problems, you have been working with 8 bit binary operands. Of
course, the System/360 uses halfword and word binary operands. The
arithmetic principles involved, however, are the same regardless of length.

Binary operands in the System/360 are a
length.

The length of a binary operand is implied by the I

or in

Positive numbers are in
form.

form while negative numbers are in

Bit position
is in true or
in

of a binary operand indicates whether the operand
form. If bit position 0 is aI, the operand is

form and represents a number.

zero
complement
complement
negative

are not

true
complemented

negative
isn't

Prior to adding or subtracting binary operands, the signs
(are/are not) analyzed.

If the instruction is ADD, the two operands are

If the instruction is subtract, one of the operands is
then added to the other operand.

added.

and

If the answer to a binary operation is in complement form, it represents
a number and (is/isn't) re-complemented.

------ --- _._.- -

There is one final principle of System/360 binary operations to be learned.
This is the Fixed Point Overflow. Earlier you learned about the decimal
overflow and what caused it. Read the following review frames on decimal
overflow.

'--- -'- --.-.-

The absence of a high -order carry during complement addition of decimal
fields indicates that the result is in c form and needs to be

--- -- - "-

complement
re-complemented

true

The presence of a high-order carry during complement addition of de~tm_~J
fields indicates that the result is in form.

The presence of a high-order carry during true addition of decimal fields
indicates a

-- -- -.--

decimal overflow

decimal overflow

Anytime all the significant digits of a decimal operation cannot be contained
in the resulting field a will occur.

A decimal overflow indicates that the decimal result is not correct. The
result has exceeded the maximum value that could be contained in the
result field (1st operand).

The maximum decimal value that can be contained by a three byte 1st oper
and is

----------------~--------------------------.- --".

3 BYTE PACKED OPERAND

Data Formats 101

0111111111111111

1000000000000000

A fixed point overflow indicates that the result of a binary operation is
not correct. The result has exceeded the maximum value that could be
contained in the result field (1st operand). Of course binary operands are
fixed in length and may be either a halfword or word in length.

Show the largest positive binary number that can be represented in a
halfword.

Show the largest negative binary number that can be contained in a half
word.

Show the largest positive binary number that can be contained in a word.

01111111111111111111111111111111

fixed point

fixed point overflow

fixed point overflow

01111111

1 1 1 1,1 1 1 1J

1 02 Data Formats

If the value of + 1 were added to the largest positive binary number, a
overflow would occur.

When the result of a binary operation exceeds the maximum value that
can be contained in the result field (1st operand), a

"'ill occ ur .

If the value of -1 were added to the largest negative binary number, a
would occur. ,

For the sake of simplicity in the following examples, let's again consider
the binary operands as being only 8 bits (one byte) in length.

Show the value of + 1 as a one byte operand.

Show the largest positive binary number that could be contained in one
byte

------~---

Show the value of -1 as a one byte operand.

Show the largest negative binary number that could be contained in one
byte

10000000

10000000; Notice
tha t this is the
largest negative
number.

fixed point overflow

o 111 1111; Notice
tha t this is the
largest positive
number.

fixed point overflow

fixed point overflow

Show the result of adding + 1 to the largest positive binary number.
o 000 0001 (+ 1)
o 111 1111 (largest positive number)

As a result of the preceding addition, a
would occur.

Show the result of adding -1 to the largest negative binary number.
1 111 1111 (-1)
1 000 0000 (largest negative number)

As a result of the preceding addition, a
would occur.

Whenever the largest negative or positive binary number is exceeded in
a binary operation, a will occur.

Let's review some of the principles of the binary numbering system as
used in the System/360. Again for the sake of simplicity, the binary
numbers are shown as one byte in length. Actually they are halfwords
or words when used in System/360. The principles are the same, how
ever, regardless of length.

Complement
or negative
numbers

True or
positive
numbers

{

1111 1111 -----'~ ... (MinT one)

1000 0000 ----~~~ (Largest negative value)

{

0111 1111 • (Larrst positive value)

0000 0001 -----l)o~ (Plus one)
0000 0000 ~ (Zero)

-- - ---"----

Data Formats 103

fixed point overflow
changed or different

was not

carry
is not

104 Data Formats

The range of numbers from 00000000~01111111 represent positive
numbers in true form. The range of numbers from 10000000-+-11111111
represent negative numbers in complement form. The binary numbering
system as used in the System/360 can best be illustrated by a circle as
shown below. ZE RO

o 000 0 0 0 0
o 0 0 0 000 '~tr--'

(-1)

1111111

(+ 1)
THE DARKARROW INDICATES
THE AREA WHERE A FIXED
POINT OVERFLOW WILL
OCCUR.

0111111
LARGEST + NUMBER

000 0 0 0 0
LARGEST - NUMBER

Whenever the largest negative or positive binary number is exceeded in
value a
the sign bit of the result will be

will occur. When it occurs
from the original numbero

Although the sign bit is changed when a fixed point overflow occurs, a
sign change is not ihe cause of the overflow. Instead it is the result of
it. The question then is "How does the System/360 know when a fixed
point overflow has occurred?" Let's take a look at the addition of +1 to
the largest binary number.

SIGN INTEGER

1 t
...-"--...

a 111 1111
a 000 0001
1 000 0000

There was a carry out of the high-order integer bit but there
(was/was not) a carry out of the sign bit.

When the largest positive binary number is exceeded in value, there is a
out of the integer, but there (is/is not) a carry out of

the sign bit.

Let's take a look at the addition of -1 to the largest negative number.
1 000 0000 (largest negative number)
1 111 1111 (nlinus one)

era 111 1111

There was no carry out of the high-order integer bU. However there was
a out of the sign bit.

carry

is not
sign

fixed point

integer
sign (in either order)

a. a 111 0000
a 010 0111
{'001 0111

b. 1 100 0000
1 000 1000

{'O 100 1000

c. a all 0000
a 100 0100
a 111 0100

d. 1 111 1111
1 111 1111

['('Ill 1110

When the largest negative value is exceeded in value, there
(is/is not) a carry out of the integer but there·is a carry out of the
bit.

In both of the previous examples, the carry out of the sign bit position and
the carry out of the integer did not agree. This is the way System/360
detects a overflow.

.--- -- ---- -

System/360 detects a fixed point overflow whenever the carry out of the
doe s not agree with the carry out of the

Indicate which of the following additions will result in a fixed point overflow.

a. a 111 0000
a 010 0111

bo 1 100 0000
1 000 1000

c. a all 0000
a 100 0100

d. 1 111 1111
1 111 1111

(overflow/no overflow)

(overflow/ no overflow)

(overflow / no overflow)

(overflow / no overflow)

overflow (integer carry, no sign carry)

overflow (no integer carry, sign carry)

no overflow (no integer carry, no sign carry)

no overHow (integer carry, sign carry)

Go to the IBM System/360· Principles of Operation manual and briefly study
the Fixed Point Arithmetic area of the System Structure section.

Data Formats 105

106 Data Formats

REVIEW QUESTIONS ON BINARY FORMATS

• Try to answer the questions without referring to the material. However,
if you do require aid, refer to this book and/or the System/360 Principles
of Operation manual and consider reviewing the area where aid is
required.

1. A halfword is
long.

bytes long while a word is tytes

2. A halfword in main storage is addressable by its
(high/low) order byte location.

3. The main storage adClre ss of a halfword must be divisible by
or a exception will occur.

4. The results of binary arithmetic operations replace the __ _
(1st/2nd) operand.

Positive binary numbers are represented in their
with a __ (1/0) in the high-order bit positiono

form

6. Negative binary numbers are represented in their
form with a bit in the high-order bit position.

7. Represent the decimal value +26 as a halfword binary operand.

8. Represent the decimal value -1 as a halfword binary operand.

9. Show the largest negative binary number that can be represented
in a halfword binary operand.

10. Show the above halfword after it has been placed in a general
register.

11. Halfword operands are processed using the
concept.

-to------

J

12. Prior to adding or subtracting binary operands, the signs __
__ (are/are not) analyzed.

13. Whenever the largest negative or positive number is exceeded in
a binary operation, a
will occur.

14. A fixed point overflow is detected when the carry out of the
does not agree with the carry out of the ___ ___ •

15. Do the following additions and indicate whether or not a fixed
point overflow will occur.

a. 0 111 0001
o 000 1010

b. 0 101 0001
o 011 0010

c. 0 001 0111
1 000 0100

d. 1 001 0000
1 011 0001

(overflow/ no overflow)

(overflow/ no overflow)

(overflow / no overflow)

(overflow/ no overflow)

Data Formats 107

ANSWERS 'IO REVIEW QUESTIONS

1. two, four

2. high

3. two, specification

4. 1st

5. true, 0

6. complement, 1

7. I 0 0 o 0:0 0 o 0:0 o 0 ,> 0 , 0 I
8. I ' , , , , , , , : 1

, , ,;, , , , I
r; o 0 0:0 0 o 0

1
0 0 o a: 0 0 o 0 I I 9.

I, , :-, I , "
I

o O~~~] , , , , I 1 1 , , , , , o 0 o 0 o 0 0
1
0

I I 10.

11. Storage-to-Accumulator (or Register)

12. are not

13. fixed point overflow

14. integer, sign (in either order)

15. a. 01111011 no overflow (no sign or integer carry)

b. i0000011 overflow (integer carry, no sign carry)

c. 10011011 no overflow (no sign or integer carry)

d. 01000001 overflow (no int(~ger carry, sign carry)

108 Data Formats

Do you need a review? If you think that you may require a review of areas
of this book, do the following:

Read the learning objectives at the beginning of each section.

You should review only those areas where you think that you
cannot do what the objective indicates.

Before proceeding to the next book of this System/360 Introductory Pro
gramming Course, fill out the Course Evaluation Sheet (located in the
back of this book).

109

Alphabetical Index

Page
Addition of Binary and Hexadecimal Numbers 13
Binary Arithmetic Operations 97
Binary Data Formats 90
Central Processing Unit 46
Channels .. 62
Complement Addition 19
Comprehensive Index of Books 1 through 5 vi
Converting from Decimal to Hexadecimal and Binary. 6
Converting from Hexadecimal to Decimal 9
Course Objectives and De-scription ii
Data Formats - Section III 75
Decimal Data Formats 78
Fixed Length Operations 51
Floating Point Operation 56
Fullword Binary Operands 95
Halfword Binary Operands 91
Instructions to the Student. .. i
Multiplexor Channels 67
Numbering Systems - Section I .,. .. 1
Organization - Section II' 35
Review Questions on Binary Formats 106
Review Questions on Central Processing Unit 58
Review Questions on Channels 71
Review Questions on Decimal Formats

and Extended BCD Code 87
Review Questions on Main Storage " 44
Review Questions on Numbering Systems " 27
Selector Channels 65
Subtraction of Binary and Hexadecimal Numbers 14
Variable Field Length Operations 48

110

Book 1 System/360 Introduction Student Course Evaluation

You can make this course' and all future courses more useful by answering the questions on
both sides of this sheet and giving us your comments.

Do you feel that you have an adequate understanding of the learning objectives that are listed
at the beginning of the following sections?

Section I: Numbering Systems
Section II: Organization
Section III: Data Formats

Yes 0 NoD
YesD NoD
YesD NoD

List any technical errors you found in this book.

Comments

Please complete the information block on the opposite side. Thank you for your cooperation.
For form R23-2933-1

Field Engineering Education - Student Course Evaluation IBM
Student Name I Man Number I B/O Number Area Number

Student: Please review this evaluation with the person administering the course; then remove it from
the book and send to the FE Education Center via IBM mail.

• Were you given a copy of this text to write in and keep? YesDNoD

• How many hours per day were scheduled for this course?

• Were you interrupted during this time? YesDNoD

• How many hours were needed to complete this course? -
• Did you require assistance during this course? YesDNoD

(If your answer is yes, explain in the comments section)

• Indicate your understanding of the total course. ExcellentD Good D Fair D Poor D
To be completed by course administrator Date

Reviewed by:
To be completed by FE Education Planning Date

Reviewed by:

~---.--~

IBM Corporation
FE Education Planning
Department 911
South Road
Poughkeepsie, N. Y. 12602

L.-_____ :J

f
I
I
1-1
11'1 ,>
,:u
liij
':u [1'1
II ,
I
i
I
r , ,
I
~ ,
i
~
f
!
I
i
!
I ,
i
I
l ,
~ FOLC

!
I
I
I
!
I
I
I
!
!
i
I
I ,
I
j

;FOLI

I
l

t ,
I
1-1
1m
I~
IJ:
1m
1:U
,m
I
!
I
I
I
I
I

R23·2933·1

International Business Mac:hines Corporation
Field Engineering Division
112 East Post Road, White Plains, N.Y. 10601

["
o
cP
o
o
7'

(J'l

C-
o...
/l)

?

	0.001
	0.002
	0.01
	0.02
	0.03
	0.04
	0.05
	0.06
	0.07
	0.08
	0.09
	0.10
	0.11
	0.12
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	replyA
	replyB
	x_back

