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Preface 

This text is intended to introduce to the student the 
characteristics of System/360 and its instruction set. 
Many sample programs are 'used to illustrate specific 
instructions and programming techniques. It is ex
pected that the student has some knowledge of com
puting systems. 

The following IBM System/360 Student Texts have 
been incorporated in this publication; however, the 
individual books are not obsoleted by this version: 
Fixed-:Point Operations (C20-1613) 
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Introduction to Assembly Language Programming 
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Subroutines and Subprograms (C20-1625) 
Th~ new material in this text includes the chapters 

on "Architecture," "Floating Point and Advanced 
Loops in Scientific Applications," and "Automatic 
Interrupts." 

No attempt at completeness has been made and, 
therefore, it is expected that the student will refer to 
the appropriate Systems Reference Library ( SRL) 
publications for additional detail. 

°Number Systems (C20-1618) will continue to be available as 
a separate publication. 
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Introduction 

Chapters 1 and 2 provide the student with an intro
duction to the architecture of System/360 and to the 
numbering systems that are of some significance to 
System/360. This knowledge provides a background 
for later chapters in which many of the instructions 
in the System/360 instruction set are introduced as 
well as illustrated by sample assembler language pro
grams. (These samples were prepared by the 7090/ 
7094 Support Package for IBM System/360.) In addi
tion, some chapters discuss programming techniques 
that will be valuable to those studying the assembler 
language. One chapter discusses in detail the charac
teristics and use of the System/360 interrupt feature, 
which is introduced in the first chapter. 

Questions and exercises are provided at the end of 
each chapter to help the student review the material; 
answers may be found at the back of this text. 

This text is not directed to anyone of the levels 
of programming systems support a~ailable for System/ 
360 (Basic Programming Support, Basic Operating 
System/360, Operating System/360, and the 7090/ 
7094 Support Package for IBM System/360). There
fore, IOCS programming is not covered. 

It is assumed that the student, while studying this 
text, has access to IBM System/360 Principles of 
Operation (A22-6821), and to one of the SRL pub
lications on the assembler language. Also, the student 
may wish to refer to the appropriate SRL publica
tions for specific details on one or more of the pro
gramming systems available for System/360. 

1 



Chapter 1: Architecture 

This chapter introduces the student who has some 
knowledge of computing systems to the overall struc
ture of System/360 and the implications of its struc
ture for new application areas. An introduction to 
such System/360 features as channels, automatic in
terrupts and the general purpose registers, and to 

instruction formats, data formats, and the various 
types of arithmetic operations, provides the student 
with a background that is prerequisite to an under
standing of the later chapters of this text. This chapter 
also provides some insight into the need for a super
visory program. 

System Features for New Application Approaches 

The demands made upon a data processing system 
normally increase in the volume of processing to be 
done and in the scope of applications for which the 
system is utilized. To allow for growth in volume, 
System/360 was designed for implementation over a 
wide cost and performance range and to maintain pro
gram compatibility among the various models. For 
growth in application scope, the logical structure is 
that of a general purpose system for commercial, sci
entific, communication, and control applications. 

To the user, a concern more immediate than growth 
considerations is cost versus performance. Before se
lecting higher-performance equipment, it is important 
to achieve maximum throughput from a lower-per
formance (and lower-priced) system. Achieving maxi
mum throughput means decreasing the time required 
to process a total number of jobs so that the backlog 
of jobs is reduced. There is often, however, an oppos
ing objective of decreasing the turnaround, or re
sponse, time for a given job. A report that takes three 
minutes of processor time is needed within an hour, 
but another four-hour run in progress requires two 
more hours for completion. Can we disrupt the pro
gram in progress? The answer has depended on the 
system and the programmed facilities available for 
restarting an interrupted program. 

Because System/360 was designed to encompass 
solutions to such problems in all areas of data proc
essing, it is helpful to further examine some of these 
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conventional problems and to consider recent appli
cation approaches. 

The most basic concept of computing, with which 
we are all familiar, is a program of sequential in
structions. The processing unit fetches an instruction, 
decodes and executes it, increments an instruction 
counter, and then repeats this sequence of operations. 
A branch causes the contents of the instruction counter 
to be replaced with another address, and processing is 
continued from this address. This machine instruction 
fetch-execute-increment cycle is still basic to digital 
computers. In programming, however, we have come 
a long way from routines that read a card, process the 
data from the card, and write the results with no con
current or overlapped operation. 

The degree of concurrent operation that can be 
achieved depends not only on machine facilities but 
also on the programming employed. 

The processing unit may be used for some portion 
of time and encounters recurring delays while await
ing input/output operations. Then the I/O equipment 
may be idled while processing takes place. Further, 
a system must often be configured for the largest job 
at the installation. That largest job may be run infre
quently and the many smaller jobs that use the proc
essing unit's time may utilize only a small portion of 
the totaf system's capacity. Lost time on the process
ing unit, lost time on I/O equipment, and less-than
maximum storage utilization are all wasteful. 



The designers of System/360 sought solutions to 
these problems with a design that allows and encour
ages maximum utilization of available system re
sources. First, this design philosophy recognizes that 
data processing systems and programming systems 
should be integrated and not developed independ
ently. New and sophisticated control techniques in
corporated into the equipment for maximum utiliza
tion of resources take over many functions that pre
viously were the concern of the problem programmer 
or of programming systems programmers. This last 
statement is not intended to imply that programming 
systems are not essential to utilize the system, but 
rather that there is a larger degree of interplay be
tween equipment and program. In fact, the equipment 
was designed to run with a monitor program in con
trol. System/360 and its control program are indis
tinguishable to the problem programmer. 

Another consideration in the system's design was 
to facilitate the newer application approaches to com
puting, such as communications and multiprogram
ming. 

Communications applications include time sharing, 
message switching, and the whole area of tele
processing. Time sharing or conversational mode is the 
use of a number of remote terminals where each ter
minal has access to the computer. Here each terminal 
may be regarded as a personal computer, and all the 
independent users have access to a single computer 
virtually simultaneously because of ultra-high process
ing and switching speeds. 

Message switching involves a telecommunications 
network where messages from remote points are sent 
to a central location for routing to their destination. 

A common teleprocessing application is the proc
essing of inquiries from remote terminals. Each ter
minal user introduces data to the system, and pro
grams residing in the system perform w ha tever proc
essing is required. The message may be simply a 
query for information stored within the system or it 
may be data to be entered and processed (with or 
without an answerback). 

The program that handles the messages is called the 
foreground program. Other processing may take place 
between the servicing of messages. This "background" 
program is interrupted and the <'foreground" program 
assumes control upon the receipt of a message. When 
the message is processed and no other messages are 
held pending, the foreground program relinquishes 
control to the background program. 

Maximum utilization of system resources becomes 
particularly vital to a communication (or teleproc
essing) system where input is unscheduled, where jobs 
are stacked (that is, where a series of jobs is run 

under the control of a supervisory program with a 
minimum of operator intervention), and in multipro
gramming. 

In applications involving multiprogramming opti
mum use is made of all facilities by having the system 
operate upon multiple programs or routines (tasks). 
While one task awaits data from an I/O device, an
other task utilizes the processing unit, and still other 
tasks utilize other I/O devices. As soon as a task 
utilizing the processing unit must wait for an I/O 
operation, it relinquishes control of the processing 
unit, and a waiting task assumes control. (The size, 
speed, and configuration of the system determine 
whether multiprogramming is practicable.) 

Channel Concept 
One of the system features that facilitate the simul
taneous operations necessary for maximum utilization 
of the system's resources is channel circuitry. The 
electronic circuitry of a channel may be regarded as 
a small, independent computer that responds to its 
own set of commands. Channels provide the ability 
to read, write, and compute concurrently. 

Each channel has its own program in main storage, 
and this program must be initiated by the supervisory 
program. A Start I/O instruction, for example, has 
the effect of selecting a specified I/O device and 
channel, and, if the device is available, starting the 
operation or operations specified by the channel pro
gram. In addition to the Start I/O instruction, there 
are three other instructions for communication be
tween the processing unit and the channel: Test 
I/O, Halt I/O, and Test Channel. 

These instructions are issued by the supervisory 
program, which contains an Input/Output Control 
System (IOCS). The address part of the instruction 
specifies the channel and the I/O device. When the 
channel and the device verify that the operation can 
be executed, the processing unit is released. The chan
nel fetches its program from main storage and exe
cutes it. The transfer of data to or from main storage 
and the initiation of new operations by the channel 
program do not prevent processing of instructions by 
the processing unit. 

Communications from the processing unit to the 
channels and I/O devices are discussed under "Chan
neIOrganization". 

Selector and Multiplexor Channels 

There are two types of channels: selector and multi
plexor. Selector channels are used for the attachment 
of high-speed devices such as magnetic tapes, files, 
and drums. Multiplexor channels are intended primar
ily for low-speed devices. More than one device is 
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usually attached to either a multiplexor or selector 
channel through one or more control units. The con
trol unit's functions are indistinguishable to the user 
from the functions of the I/O device, and in fact, 
some control units are physically housed within the 
I/O device. A control unit functions only with the type 
of device for which it is designed. One control unit 
can have more than one of the same devices attached. 
Multiple tape units, for example, may be attached to 
a single tape control unit (see Figure 1). 

When multiple slow-speed devices such as card 
readers are attached to a multiplexor channel, they 
can operate simultaneously through a time-sharing 
( interleaved) principle and processing can take place 
concurrently. When high-speed devices are attached 
to a multiplexor channel, only one device can operate 
at a time and the channel is said to be operating in 
burst mode. Operation of the Model 30 or 40 multi
plexor channels in burst mode inhibits all other activ
ity on the system. Selector channels always operate 
in burst mode and processing and I/O overlapping 
occur on all models (except a high-speed channel on 
Model 50, which inhibits processing). 

As many as six selector channels can be operating 
concurrently with processing on Models 65 and 75. 

Only one multiplexor channel can be connected to 
a system. The number of selector channels that can 
be attached varies from two on a Model 30 to six on 
Models 65 and 75. The important thing to remember 
is that channels all appear to function identically to 
the user; it is only the degree of simultaneity of chan
nel operations and overlapped processing that differs 
among the various models. 

Main 
Storage 

Channels 

Interrupts 
We have seen that the processing unit may initiate an 
input! output operation and resume processing while 
the channel proceeds independently. The processing 
unit must, however, maintain control over I/O opera
tions. When an I/O operation is completed and a 
channel is free, another operation in the channel 
should be begun, if possible, to gain maximum chan
nel utilization. Instead of having the problem program 
repeatedly interrogating channels to see whether they 
are free, the channels themselves signal the process
ing unit when they become free - that is, upon com
pletion of a channel program. The channel signals 
cause the supervisory program to take appropriate 
action such as starting another I/O operation. These 
signals belong to one class of interrupts that the 
processing unit must be prepared to handle. 

Here we begin to see how the circuitry takes over 
functions that were formerly the programmer's con
cern. The automatic interrupt system may be con
trasted with a programmed branch in which the con
tents of the instruction counter are replaced rather 
than incremented. These branches are the program
mer's concern. With the automatic interrupt system, 
however, an application program is written to include 
conventional testing and branching, but ignores those 
branches that will be handled as automatic interrupts. 
When an interrupt occurs, the contents of the equiva
lent of an instruction counter are automatically re
placed. This suspends the operation of the program 
in progress temporarily. In addition the control and 
status information needed to restart the program are 
automatically stored by the interrupt system itself. 

I/O Devices 

Control Units 

1--4-----IMultiplexor t------'-----'-------'------\ \----L.. ___ .....I 

4 

Central 
Processing 

Unit 

Selector 

Figure 1. IBM System/360 basic logical structure 
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There are five classes of interrupts : input/output, 
program, supervisor call, external, and machine check. 
• Input/output interrupts. The signal to the process

ing unit that a channel is free is typical of the class 
of interrupts called I/O interrupts. Special condi
tions in the channel or in an I/O unit cause the 
processing unit to take appropriate action. 

• Program interrupts. Unusual conditions encountered 
in a problem program create program interrupts. 
Eight of the 15 possible conditions involve over
How, improper divides, lost significance, and ex
ponent underHow. (Lost Significance and exponent 
underHow may occur in Hoating-point arithmetic 
operations.) The remaining seven deal with im
proper addresses, attempted execution of invalid 
instructions, and similar conditions. 

• Supervisor call interrupts. The significance of super
visor call interrupts will become apparent when we 
examine in more detail the effects of interrupts. 
Suffice it to say that Supervisor Call is an in
struction that the program uses to cause an in
terrupt. 

• External interrupts. Through an external call inter
rupt, the processing unit can respond to signals 
from the interrupt key on the system control panel, 
a built-in timer system, other processing units, or 
special devices. 

• Machine check interrupts. A machine check condi
tion initiates an automatic recording of the status of 
the system into a special scan-out area of main stor
age and then causes a machine check interrupt. A 
machine check can be caused only by a hardware 
malfunction and not by invalid data or instructions. 
Some classes of interrupts can be ignored or held 

pending under program control. This prevents the in
terrupt from occurring and the interrupt is said to be 
"masked". An anticipated overHow is an example of 
an interrupt that the programmer would mask. 

When the system is executing instructions of a prob
lem program, it operates in what is called the problem 
program state. Interrupts that occur while the system 
is operating in the problem program state cause the 
processing unit to switch to the supervisory state. To 
ensure that the system has control over I/O functions, 
the control program takes control when an I/O in
struction is required by a problem program. The con
trol program operates in the supervisory state and 
includes a resident IOCS. Instructions that are exe
cutable only in the supervisory state are called "privi
leged". 

A Supervisor Call instruction in a program is one 
method of causing a switch from the problem state 
to the supervisory state; that is, the problem pro
gram passes control to the supervisory progranl. An 

interruption code within the instruction may be used 
to convey messages from the calling program to the 
supervisory program. Two messages that the super
visory program would require are: ( 1 ) notification 
from the problem program that it is finished so that 
the supervisor can read in a new program, and (2) 
notification of requests to start I/O operations for the 
problem program. As soon as the I/O operation has 
begun, the supervisor program returns control to the 
problem program, which can continue processing 
while the I/O operation is taking place. Upon com
pletion of the I/O operation, an I/O interrupt oc
curs. The supervisor program now determines whether 
any abnormal conditions were detected during the op
eration and takes appropriate action. The overall status 
of the processing unit is determined by alternatives 
other than the supervisor or problem state. These al
ternatives provide control of system resources by pre
venting a problem program from stopping the opera
tion of the processing unit. There is no Halt instruc
tion. In the problem state, processing instructions are 
valid but all I/O instructions and a group of control 
instructions are invalid. In the supervisory state, all 
instructions are valid. 

The other alternative states are: running versus 
waiting state, masked versus interruptible state, and 
stopped versus operating state (see Figure 2). 

In the running state, instruction fetching and exe
cution proceeds in the normal manner. The wait state 
is typically entered by the program to await an inter
rupt - for example, an I/O interrupt or operator in
tervention from the console. In the wait state, no 
instructions are processed, the timer is updated, and 
I/O and exernal interrupts are accepted unless 
masked. 

The processing unit may be interruptible or masked 
for the system (I/O or external), program, and ma
chine interruptions. When the processing unit is in
terruptible for a class of interruptions, these interrup
tions are accepted. When the processing unit is 
masked, the system interruptions remain pending, but 
the program and machine-check interruptions are ig
nored. Instructions that alter the overall status of the 
processing unit are privileged. 

( No.ad OR InterruPtab~ 
AND 

( Problem OR Supervisor) 

AND 

( Wait OR Running ) 

Figure 2. Alternative states of the processing unit in operation 
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Program Status Words and their 
Control of Interrupts 

Passing control between problem programs and the 
supervisory program and returning to the right place 
in a program following an interrupt is accomplished 
with program status words ( PSW's ). Traditionally 
when information was required at some later point in 
a program, it was the programmer's responsibility to 
store it. With System/360, since the problem pro
grammer cannot anticipate many interrupts, they be
come the responsibility of the system. Two storage 
locations are associated with each of the five classes 
of interrupts. One of the locations contains the ad
dress of the routine in the supervisory program that 
handles this class of interrupt. When an interrupt 
occurs, the system automatically replaces the current 
or active PSW, which contains an instruction counter 
plus other machine status information, with the PSW 
appropriate to this interrupt. This "new" PSW indi
cates among other things that the system is operating 
in the supervisory state and specifies the address of 
the routine that handles this class of interrupt. The 
PSW of the interrupted program is automatically 
stored as the "old" PSW (see Figure 3). The routine 
in the supervisory program that handles this interrupt 
will be run. Its last processing step will be to restore 
the old PSW as the active or current PSW, and the 
interrupted program will resume processing at the 
point where it was interrupted. Unlike the automatic 
switching of PSW's when an interrupt occurs, the re
placement of the current PSW with the old PSW is 
accomplished by an instruction in the supervisory 
program. This programmed, rather than automatic, 
function was a deliberate design choice. Why, we may 
ask, does the Load PSW instruction need to address 
storage, since the system could readily determine 
the cause of the last interrupt? The answer is that in 
multiprogramming we frequently do not wish to re
turn to the "task" last interrupted, but prefer that the 
control program stack up and control a sequence of 
PSW's. 

InMain 
Storage 

In Control 
Circuitry 

Q-_-';'-'_~12~-~m Status Word 

@ __ J" 2~ 

! ~;Z~::::::]~---

Figure 3. Interrupt program switching 
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Because the principle of the interrupt system is best 
understood in terms of the various PSW's, let us take 
a moment to examine their place and function. The old 
and new PSW's have permanent address assignments 
in main storage. The current PSW is contained in the 
control circuitry of the processing unit and, like an 
instruction counter, is updated as the program pro
gresses. The new PSW locations contain the address 
of a routine to handle their particular class of inter
rupts. The addresses of these routines are not normally 
changed, and for a particular interrupt the same ad
dress will be read out each time this interrupt occurs. 
For each new PSW there is an old PSW that acts sim
ply as temporary storage for the current PSW when 
an interrupt occurs. The interrupt causes the current 
PSW to be stored as the old PSW, and the new PSW 
becomes the current PSW. At the conclusion of the 
interrupted routine, the old PSW replaces the current 
PSW, restoring the system to its prior state and allow
ing the continuation of the interrupted program. 

Old and new PSW's contained in storage are identi
cal in format to the current PSW, since they are called 
upon and become "current". The location of old and 
new PSW's is shown in Figure 4. In the next topic, 
"Data Representation", we shall see that PSW's are 
doublewords with individual bits labeled 0-63. We 
can see now from the table that a machine check will 
cause the current PSW to be placed in storage loca
tions beginning at 0048 and a new PSW will be 
brought out from locations beginning at 0112. 

Address Length Purpose 

a 0000 0000 double word Initial program Loading PSW 
8 0000 1000 double word Initial program Loading CCW1 

16 0001 0000 double word Initiql program Loading CCW2 
24 0001 1000 double word External old PSW 
32 0010 0000 double word Supervisor call old PSW 
40 0010 1000 double word Program 01 d PSW 
48 0011 0000 double word Machine check old PSW 
56 0011 1000 double word Input/output old PSW 
64 0100 0000 double word Channel status word 
72 0100 1000 word Channel address word 
76 0100 1100 word Unused 
80 0101 0000 word Timer 
84 0101 0100 word Unused 
88 0101 1000 double word External new PSW 
96 0110 0000 double word Supervisor call new PSW 

104 0110 1000 double word Program new PSW 
112 0111 0000 double word Machine check new PSW 
120 0111 1000 double word Input/output new PSW 
128 1000 0000 Diagnostic scan-out area * 

Figure 4. Permanent storage assignments 



SUPERVISORY STATE .... E;;-...;!----::iO;'.. PR.OBLEM PROGRAM STATE 

InMlin Storage In Main Storage , , 

Old PSW - Mlchine Check Active in New PSW - Machine Check 
Tasks Processing Unit 

Old PSW - Program I New PSW - Program 

(~,----!~H ~~W;_ II---+---~)a lCurrent PSW 

Old PSW - Supervisor Call 

Old PSW - External 

New PSW - Supervisor Call 

New PSW - External 

Old PSW - Input-Output New PSW - Input-Output 

Figure 5. Problem program PSW active in processing unit contrasted with input/output operations in supervisory state 

In a typical System/360 environment, more than 
one task is contending for time on the processing unit, 

. and while one interrupf is being serviced, perhaps an
other interrupt occurs, while still another interrupt is 
held pending. 

In Figure 5, the current PSW would reHect the status 
of a task B, which is being executed in the problem 
state. 

In Figure 6, an interrupt has caused the processing 
unit to switch to the supervisory state. A new I/O 
PSW is replacing the active PSW and the active PSW 
is being stored as the old I/O PSW. Upon leaving the 
I/O routine (which is executed using the resident I/O 
supervisory program), the old I/O PSW will again be
come the current PSW, unless other interrupts occur. 

We have seen that an interrupt causes a type of 
branch. What, we may ask, is the diHerence between 
a program branch and one caused by an interrupt? 
The portion of the PSW that has been compared with 
an instruction counter is called the instruction ad
dress. When a branch occurs, only the contents of the 
instruction address within the PSW are changed. On 
an interrupt the entire PSW is replaced. The PSW 

Old psw - Machine 

Old psw - Program 

Supervisor Current psw 

Old PSW - Supervisor Call 

Old PSW - External 

contains other status and control information in addi
tion to the instruction address, which the processing 
unit requires. This includes such information as pro
gram status (supervisor versus problem state, masked 
versus interruptible state, stopped versus operating 
state, and running versus waiting state). 

When interrupts occur is not the concern of the 
problem programmer. With reference to machine 
cycle time, it is interesting to note Cthat the machine 
designers chose an optimum economic «interruptible" 
point, since status information must be saved and_,re
stored. This turns out to be after an instruction has 
completed "E" time. In the case of I/O, external, or 
supervisor call interrupts, then, the current instruction 
will be completed before the interrupt is taken. How
ever, in the case of program and machine errors, the 
end may be forced by suppressing the instruction's 
execution. 

Other aspects of the automatic interrupt system are 
discussed under the chapter entitled «Automatic In
terrupts", which includes a discussion of simultaneous 
interrupts. The details of interrupts are found in the 
appropriate SRL publications. 

SUPERVISORY STATE 

New PSW - Machine 

New PSW - Program 

New PSW - Supervisor Call 

New PSW - External 

Old PSW - Input/Output ~ 1...----- New PSW - Input/Output 

Figure 6. Switching of PSW's during an input/output interrupt 
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Data Representation 

The most familiar method of data representation in 
commercial applications of computers has been binary 
coded decimal in which six bits are used to represent 
64 alphameric and special characters. Records consist 
of many fields of widely different lengths. Scientific 
computers, on the other hand, generally operate upon 
fixed-word-Iength fields of binary data. 

Several data formats can be used for processing with 
the System/360 to accommodate commercial and sci
entific applications. An eight-bit unit of information, 
called a byte, is fundamental to the formats. An initial 
byte may be addressed as an operand of an instruc
tion, with the number of bytes used specified by the 
instruction. Because eight rather than six bits are used 
to represent a character, up to 256 possible characters 
could be represented in the Extended Binary Coded 
Decimal Interchange Code (EBCDIC) shown in Fig
ure 7. Except for certain teleprocessing equipment, 
the code that makes use of characters is either 
EBCDIC or an eight-bit extension of a seven-bit code 
proposed by the International Standards Organization. 

The chart shows bit positions, which determine bit 
patterns, at the top and to the left of each table. 

The hole pattern of punched cards is shown at the 
bottom and to the right of each table in dark gray 
shading. 

The table at the upper left shows control characters. 
The explanation of their meaning is given in a sepa
rate listing. The characters PF, for example, indicate 
"punch off". 

Exceptions to the tabular representation of hole pat
terns to specify a binary bit pattern, a control char
acter, or a graphic character are identified by numbers 

8 

circled in the table, and the proper hole patterns are 
shown in a separate listing below the tables. The 
examples given opposite the tables are self-explanatory 
and serve to ensure correct reading of the tables. To 
illustrate this, the last example in the list is an excep
tion indicated by the number 4 circled in the table 
at the upper left. 

For further practice, translate the name John Doe 
into EBCDIC and use initial capitals and lowercase 
letters. The results should be: 

11010001 10010110 10001000 10010101 
J 0 h n 

11000100 10010110 10000101 
Doe 

Note that in the tables the digits 0-9 have these bit 
configurations: 

o 11110000 5 11110101 
1 11110001 6 11110110 
2 11110010 7 11110111 
3 11110011 8 11111000 
4 11110100 9 11111001 

We may well ask what purpose the four leading Is 
serve. The answer is that they provide a collating se
quence in which numbers are higher than alphabetics 
in alphameric fields, but they are not used in arithmet
ic operations. Instead, an instruction is provided that 
"packs" two decimal digits into a byte by eliminating 
the leading Is (see Figure 8). The decimal digits 0-9 
are represented in the four-bit binary coded decimal 
form by 0000 through 1001. The elimination of the 
leading Is (or zone portion) is accomplished with the 
Pack instruction. 



0000 

0001 

--.2mO 
"-

'" 0011 " '" ..<: 
~' co 

"-.? 

~ 0100 '" .! '0, ",' 

15 ... ' ~ £ 

~ ;;; 0101 ]I 
£ c 

0110 ;;; 

0111 

1000 

00 01 Bit Positions 0 11 

00 

1001 

1010 1010 

"-
" ",' 

1011 ..<: " ~ 
0 

j co 00 
.? ." ~ co 

1100 '0, ~' .? 0 

15 
~ 0 'm 

1101 110t 0 
;;; £ 

;;; 
1110 lUO 

1111 

CD 12-0-9-8-1 ® No Punches ® 12-{) @ 0-1 

® 12-11-9-8-1 @ 12 ® 11-{) Q1) 11-{)-9-1 

® 11-{)-9-8-1 CD 11 @ 0-8-2 @ 12-11 

® 12-11-0-9-8-1 ® 12-11-{) @ 0 

EBCDIC chart explanation continued on next page. 

Cantrol Characters S~cial Gra(>hic Characters 

NUL Null BS Backspace EOB End of Block 
Right Brocket Asterisk > Greater-than Sign 

PF Punch Off IL Idle PRE Prefix 
Period, Decimal Point Right Parenthesis Question Mark 

HT Hori zonta I Tab CC Cursor Control PN Punch On 
< Less-than Sign Semicolon Colon 

LC Lower Case OS Digit Select RS Reader Stop 
( Left Parenthesis A Circumflex, Logical NOT ; Number Sign 

DL Delete SOS Start of Significance UC Upper Case 
Plus Sign - Minus Sign, Hyphen @ At Sign 

TM Tope Mark FS Field Separator EaT End of T ransm ission 
Exclamation Point, Logical OR / Slosh Prime, Apostrophe 

RES Restore BYP Bypass SM Set Made 
& Ampersand Comma Equal Sign 

NL New line LF line Feed SP Space [ Left Bracket % Percent Quatation Mark 
$ Dollar Sign - Underscore 

Example Type Bit Pattern Hble Pattern 
Bit Positions 
01234567 Zone Punches IDigit Punches 

PF Control Character 00000100 12 -9 ~ 4 
0/0 Special Graphic 01 101100 O-B-4 

Upper Case 11 011001 11 .! 9 
Low"," Case 10000001 12 -{) ~ 1 
Control Character, 00 11 0000 12 - 11 - 0 -9"j 8 - 1 
function not yet I 

I assigned I 

Figure 7. Extended Binary Coded Decimal Interchange Code 
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Byte I I Byte Byte 
I I I I 

Ir-"D-i9-i-t""",-D-i9-i-t ""-,-Do-19-it---',--- ~~] Digit' Digit I Digit I Digit I Sign' 

Byte I Byte Byte 
I I I 

I Zone I Digit I Zone I __ J Digit Izone I Digit I Sign I Digit I 

Figure 8. Packed and zoned decimal number fonnats 

Arithmetic Operations 

There are four classes of processing operations: fixed
point arithmetic, floating-point arithmetic, logical 
operations, and decimal arithmetic. Fixed-point arith
metic and logical operations are part of the standard 
instruction set. The decimal option is intended pri
marily for commercial applications and the floating
point arithmetic option is intended for engineering and 
scientific applications. 

Fields of two, four, and eight bytes are called half
words, words, and doublewords respectively (see 
Figure 9). 

In fixed-point arithmetic the basic arithmetic 
operand is a signed value recorded as a binary integer, 
that is, a whole number (positive or negative) as con
trasted with a fraction. It is called fixed-point because 
the machine interprets the number as a binary integer; 
that is, the point is to the right of the least significant 

Binary 0000 0001 0010 001 I 0100 0101 0110 0111 1000 1001 1010 
Address 

Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte 

, 

Halfword Halfword Halfword Holfword Holfword 

l 

Word Word Word 

Double-Word Double-Word 

l 

Figure 9. Halfwords, words, and doublewords as they appear in 
main storage 
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position. The programmer has the responsibility for 
keeping track of an assumed point within a field. 

Fixed-point numbers occupy a fixed-length format 
consisting of a one-bit sign followed by the 31-bit 
integer field; alternatively, some operations may be 
performed on halfwords, and some multiply, divide, 
and shift instructions use a doubleword. 

U nti! numeric data is ready for output on a device 
that uses characters, such as a printer or punch 
( character-set oriented), storage is most economically 
used by holding the data in binary or packed decimal 
digits. 

In the following example of fixed-point arithmetic 
we shall, for the sake of simplicity, ignore the sign and 
fixed-length requirement. 

Assume that a card reader has read the number 
4096. The number itself will be transferred to main 
storage as four bytes of EBCDIC: 

11110100 11110000 11111001 11110110 

If this number is to be processed using fixed-point 
arithmetic, the PACK instruction is first issued and 
the number takes the binary coded decimal form: 

0100 0000 1001 0110 

A Convert to Binary instruction is then issued and, 
after its execution, the number takes the pure binary 
form: 

1000000000000 
which is 212. 



Note that the decimal values of bit positions are: 

I 128 I 64 I 32 1 16 I 8 I 4 I 2 I 1 I 
76543210 

The number itself is now ready for processing in fixed
point format. (Note that we have not illustrated the 
sign and length requirement.) After processing, a 
Convert to Decimal instruction and either an Unpack 
or an Edit instruction are used to prepare the output 
for a device using characters such as a printer or 
punch. If the results of processing are to be stored 
for further processing in binary form, the Convert 
to Decimal instruction and the Unpack or Edit in
struction are omitted. If the results are to be stored 
as packed decimal digits, the Unpack instruction is 
omitted. Figure 10 shows this processing sequence. 

No conversion from packed decimal to binary is 
necessary if the decimal instruction set is used. In
stead, addition, subtraction, multiplication, division, 
and comparison are performed on packed binary 
coded decimal digits (see Figure 11). While fixed
point operations are performed on fixed-length fields, 
all decimal operations are performed on variable
length fields, the length of which is specified in the 
instruction. The address tells where the data is located, 
and the length specification tells how much data the 
instruction is to operate upon. From 0 to 15 bytes may 
be specified, so that, in effect, a 16-byte field may be 

EBCDIC 
output 

EBCDIC 
input 

Edit 

Pack 

Convert 
to 

Binary 

Process 
with 
Binary 

Convert 
to 

Packed 

Binary output 

Packed Decimal 
output 

Unpack 
EBCDIC 
output 

Figure 10. Fixed-point arithmetic processing sequence on 
EBCDIC input 

addressed in arithmetic operations. A length specifi
cation of zero will address only the byte designated 
in the instruction address. 

Where numerical information such as a part number 
is not operated upon arithmetically, it may be proc
essed in the zoned format - that is, without packing 
the digits. 

Now consider the facts that lead the programmer to 
decide whether to use decimal or binary arithmetic 
operations. Decimal arithmetic can make the program
mer and the system more productive when processing 
requires relatively few computational steps between 
input and output. When extensive processing is re
quired, as in many scientific applications, storage and 
circuitry are more efficiently utilized with binary 
numbers. 

Note that the number 4096 requires 32 bit positions 
in EBCDIC, 16 bit positions in packed binary coded 
decimal, and 13 bit positions in pure binary. Does not 
the economy of the binary configuration suggest the 
efficiency of binary operations? Figure 12, however, 
demonstrates that the decimal instruction set is a more 
direct route from input to output. The criterion for 
selection is the amount of processing to be done in the 
blocks labeled "process with binary" and "process with 
decimal". 

As shown in Figure 12, the system will accept as in
put any code that is eight bits or less. For these other 
co'des, such as a teletype code, tables are set up in 
storage, and translate instructions permit conversion of 
entire records of up to 256 characters with a single in
struction. The figure lists output as binary, packed 
decimal digits, or EBCDIC. Actually, as with input, 
the output could be in any code up to eight bits 
through the use of translation tables. 

EBCDIC 
output 

EBCDIC 
input Pack 

Edit 

Packed Decimal 
output 

Unpack 
EBCDIC 
output 

Figure 11. Processing sequence using the decimal instruction 
set on EBCDIC input 
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EBCDIC-- --- ---

Packed Decimal 
Digits 

Binary---- ----

Packed Decimal ____ _ 
Digits 

- --> Binary 

____ ::::;. Packed Decimal 
Digits 

___ > Packed Decimal 
Digits 

----> EBCDIC 

- - - -> EBCDIC 

Figure 12. Various input processing sequences involving 
arithmetic 

Sign Codes 
When digits are read from cards, all unsigned digits 
are assigned the zone 1111 for EBCDIC. The sign 
patterns generated for EBCDIC are 1100 for plus and 
1101 for minus. The usual case is that the sign occupies 
the zone positions of the least significant digit of a 
field. A three-digit field, then, would have this format: 

12 

zone digit zone digit sign digit 
In EBCDIC a minus 123 would appear as: 

1111 0001 1111 0010 1101 0011 
123 

After a -Pack instruction is issued, the four-bit sign 
pattern occupies the four least significant bit positions 
of the field, and other zone bits are eliminated. A 
packed three-digit signed field, then, has this format: 

digit digit digit sign 
The digits and the sign code occupy four bit posi

tions each. A minus 123, for example, has this bit 
configuration: 

0001 0010 
1 2 

0011 
3 

1101 

After a Convert to Binary instruction, a fixed-point 
operand occupies 31 bits of a word or 15 bits of 
a halfword. Another bit in the most significant position 
carries the sign, which is 0 for plus and 1 for minus 
(see Figure 13). Recall now that fixed-point operands 
are fixed in length. When the integer represented oc
cupies less than a word or halfword, the sign bit is 
used to fill the unused high-order bit positions. The 
decimal number 4096, which we have seen is 
1000000000000 in binary, can be represented in a half
word as 0001000000000000 if the sign is plus, or as 
1111000000000000 in two's complement notation if the 
sign is minus. For a further explanation of complement 
notation see "Number Systems". 

Half Word 

Is I Integer 

o 1 15 

Word 

~ls~I ________ I_nte_ger ________ J 
o 1 31 

Figure 13. Fixed-point number format 



We have seen that System/360 can be used as a fixed
point binary computer with fixed-length operands and 
that it can perform decimal arithmetic on records 
characterized by many fields of varying length. A con
secutive group of n bytes constitutes a field of length 
n. We need these variable- and fixed-length capabili
ties for the most efficient handling of both commercial 
and scientific applications. It should be emphasized 
that storage is addressable to the byte. Some instruc
tions that address a byte always operate upon that 
byte and the next three consecutive bytes, so that a 
four-byte word is the operand. Other instructions re
quire that the programmer specify as part of the in
struction the number of bytes that constitute the 
operand. 

Mention has been made of bytes, halfwords, and 
doublewords. Actually, as many as 256 bytes can be 
specified as operands in some instructions, such as data 
transfers. 

Storage addresses within the system are represented 
by binary integers starting at zero. The location of a 
stored field is specified by the address of the leftmost 
byte of the field. 

Boundary alignment is a programming restriction on 
fixed-length operands that requires some explanation. 
A variable-length field of data may start at any byte 
location. A fixed-length field of two, four, or eight 
bytes must have an address whose decimal equivalent 
is a multiple of two, four, or eight bytes respectively. 
A word address, for example, must be divisible by 
four. These are called integral boundaries. In binary, 
it turns out that the address must have: 
• One low-order zero bit for a halfword 
• Two low-order zero bits for a word 
• Three low-order zero bits for a doubleword 

Because the operation code is examined to deter
mine whether fixed-length data is a halfword, word, or 
doubleword, the system can check to see that data is 
aligned on proper boundaries. A violation will cause a 
program interrupt that can be identified by the inter
ruption code of the program status word as being 
"specification". Figure 14 shows various alignment 
possibilities. 

Boundary Alignment 

The assembler language processor provides facilities 
that automatically position or allow us to force the re
quired boundary alignments. 

Boundary alignment restrictions were designed to 
force us to place words at consecutive integral 
boundaries to guarantee efficient machine operation 
when a program written for one model of System/360 
is run on another model. 

To illustrate, suppose that we correctly stored a haH
word in location 512 and 513 and then incorrectly 
stored a series of fullwords beginning at location 514 
(which is not divisible by 4). When we reference this 
data on a Model 50, which accesses a fullword on a 
single storage fetch, here is what would have to 
happen without boundary restrictions. An instruction 
that references the halfword at location 512 would also 
access half of the fullword beginning at location 514. 
Another storage access would be necessary to refer
ence the other half of the fullword, and each succes
sive fullword access would then fetch only half of the 
word we are seeking. 

Thus, to guarantee efficiency and to maintain pro
gram compatibility among the various models, bound
aries are identical for each model. 

o 2 4 6 8 
Binary 0000 0001 OOiO 0011 0100 0101 0110 0111 1000 1001 1010 
Address 

Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte 

b , 

Halfward Holfward Halfward Halfword Halfword 
-' 

Word Word Word 
, 

Double-Word Double-Word 

l 

Figure 14. Integral boundaries for halfwords, words, and 
doublewords 
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General Registers and Storage Addressing 

A set of 16 general purpose registers is standard. 
General registers can be used as index registers, re
location registers, accumulators for fixed-point arith
metic, and for logical operatiOns. 

Only four bits in an instruction are required to 
designate a register. Each register has a capacity of 
one 32-bit word. 

Before considering the details of how these registers 
are utilized, it is helpful to see why registers were 
designed as part of the system. 

Access time to storage increasingly limits perform
ance as processor speeds improve. Using a single 
faster-access accumulator decreases overall processing 
time compared with the time required for storage-to
storage arithmetic. To efficiently utilize the single 
faster accumulator, however, it is necessary that data 
be refetched whenever it is reused and that results be 
stored temporarily for later use. Many of these fetch 
and store operations can be eliminated when multiple 
accumulators are available as registers. 

Just as multiple registers improve the efficiency of 
arithmetic and logical operations, they can also provide 
a means of efficient address specification and modifica
tion. 

Because the ability to address vast amounts of main 
storage is a desirable feature, an internal address of 24 
binary bits is used. This permits up to 16,777,216 
unique bytes to be addressed (224 == 16,777,216). 

An instruction, then, that involves a storage address 
would appear to require 24 bits to address the 
operand. Instead, instructions that designate a main 
storage location specify a register. A four-bit field in 

R Field 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

Reg. No. 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

General Registers Floating-Point Registers 

~ 32 Bits::::!3 ~ 64 Bits ~ 
I 

~--------' 

Figure 15. General purpose registers 
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the instruction allows the specification of one of the 
registers numbered 0-15 as shown in Figure 15. The 
low-order 24 bits of this register contain an address 
referred to as the base address (B). The instruction 
must also contain a twelve-bit number called the dis
placement (D), which provides for relative addressing 
of up to 4095 bytes beyond the base address. The base 
and displacement are added together to produce an 
eHective address. 

Recall now that four bits of the instruction specify 
a register and twelve bits specify a displacement. With 
16 bits we are able to specify a 24-bit address. 

In addition to the base register, many System/360 
instructions designate another general register called 
an index register. In these cases, the eHective address 
is calculated by adding together the contents of the 
base register, the contents of the index register, and 
the displacement field (see Figure 16). 

The contents of all general registers and storage lo
cations participating in the addressing or execution 
part of an operation remain unchanged, except for the 
storing of the final result. This permits multiple in
structions to reference a register containing the same 
base or index value. 

Economy in instruction length through the use of 
the base-displacement addressing approach is one ad
vantage of register utilization in addressing. Another 
significant advantage is the relocation facility pro
vided. Since the instructions of a program reference 
registers, the contents of these registers can be speci
fied at load time, so that programs and data can be 
located in main storage almost at will. When the pro-



gram is to be used at another time, other values can 
be specified in the base and index registers, so that the 
program can be executed from another segment of 
storage. 

If, during the processing of a program, it is desirable 
to use these registers for other purposes, their contents 
can be stored in core storage. The registers would then 
be loaded with some other value, and processing con
tinued. Note that the registers must be reloaded with 
their appropriate base values before executing a seg
ment of the program that assumes the registers con
tain these values. 

This approach of saving the contents of the registers 
and then restoring them as they are needed removes 
any limitation problem that might result from the fact 
that the system has only 15 registers usable for ad
dressing. Register 0 cannot be used for address modifi
cation. A specification of 0 in either the base or index 
of an instruction means no base or index reference. 
This approach was taken to avoid the waste of having 
a register permanently filled with Os when no index
ing or when a base of 0 was desired. Certain instruc
tions allow this register to be used as an accumulator, 
but when 0 is used in the base or index field, the sys
tem interprets it as meaning no base or index register. 

There are multiple load and multiple store regis
ter instructions that make saving and restoration rela
tively simple operations. 

The time spent in storing and restoring registers is 
quite small when compared with the time saved by 
having each instruction that references core storage 
contain only a 16-bit address field rather than a 24-bit 
address field. Similarly, the space used to preserve the 
contents of the registers is small compared with the 
space saved by reducing the instruction length. 

Note that when we refer to a 'oase" or "index" we 
are referring to the use to which one of the 16 general 

2000 
Storage 

locations 

t 
3000 

Storage 
locations 

± 
Storage 

locations 

Program A 

Program B 

unused 

Figure 17 a. Consecutive ascending locations in storage when 
program B is run with program A 

purpose registers is being put, and not to a specialized 
register. 

General registers are an important aspect of Sys
tem/360. However, it is not only possible, but normal 
practice, to delegate to the assembly program almost 
all the clerical work of assigning base registers and 
computing displacements. Registers are used for ad
dressing in a variety of ways. Some of the methods 
used in connection with the assembler language are 
examined under "Programming with Base Registers 
and the USING Instruction". 

Relocation has been mentioned as one of the ad
vantages of base-displacement addressing. Let us con
sider a simple situation in which we benefit from the 
ability to relocate programs. Assume that programs A 
and B are to be run together. Program A is located in 
2000 consecutive storage locations as shown in Figure 
17a. The next 3000 storage locations are occupied by 
program B. The following 2000 locations are unused, 
but, except for these locations, we shall consider that 
no other storage is available. 

The next day program C, which requires 4000 bytes 
of storage, is to be run with program B. After looking 
at yesterday's storage map, we see that we have only 
2000 consecutive locations available (either in the lo
cations previously occupied by program A or in the 
unused area). 

The register used on the previous day to load pro
gram B can have its contents modified by a load 
register instruction, so that today the base value is 
2000 bytes higher than yesterday. Upon reloading pro
gram B, its starting address and all subsequent ad
dresses will be 2000 positions higher. Thus we have 
relocated program B, and the last 2000 positions of 
program B will now occupy the storage segment previ
ously unused. Four thousand consecutive locations are 
now available for program C, as shown in Figure 17b. 

4000 
Storage 

locations 

t 
3000 

Storage 
locations 

Program C 

Program B 

Figure 17b. Consecutive ascending locations in storage after 
relocation of program B to run with program C 
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Instruction Formats 

We have seen that variable-length fields as well as 
. words can be addressed. Instruction length is also vari
able. Some instructions cause no reference to main 
storage; others cause one or more references to main 
storage. To conserve storage space and save time in 
instruction execution, instruction length is variable and 
can be one, two, or three halfwords. Instructions 
specify the operation to be done and the location of 
data. Data may be located in main storage, registers, 
or a combination of the two. Instruction length is re
lated to the number of storage addresses necessary for 
the operation. As a result, instructions will be of dif
ferent lengths depending on the location of data. In
structions of different lengths can be arbitrarily com
bined in the same program. 

When both operands are in registers, only eight 
binary bits are needed for register addresses. Since 
eight binary bits are used for the operation and eight 
bits for operands, the shortest instruction consists of 
one halfword and there is no reference to main 
storage. 

When both operands are in main storage, a total of 
32 bits are needed for the addresses (one four-bit 
base and one twelve-bit displacement for each of the 
two addresses) and, because the operation code and 
length specification ( s ) will require additional bits, 
the longest instruction (three halfwords in length) is 
used. 

Figure 18 shows the five basic instruction formats. 
The format codes are RR, RX, RS, SI, and SS, which 
indicate the general locations of the operand or 
operands. RR denotes a register-to-register operation; 
RX, a register-to-indexed storage operation; RS, a 
register-to-storage operation; SI, a storage and im
mediate operand operation; and SS, a storage-to-stor
age operation. An "immediate operand" is a byte of 
data used as an operand that is carried in the instruc
tion itself. 

In the formats shown in Figure 18, Rl specifies the 
address of the register containing the first operand. 
The second operand location, if any, is defined dif-
ferently for each format. ' 

In the RR format, the R2 field specifies the address 
of the general register containing the second operand. 

In the RX format, the contents of the general regis
ters specified by the X2 and B2 fields are add~d to the 
contents of the D2 field to form an address designating 
the storage location of the second operand. 
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ONE HALFWORO 

4 4 

RR I OP R1 I R21 
T'NO HALFWOR05 

4 4 4 12 

RX I OP R1 1 X2 
1

82 02 

4 4 4 12 

R5 I OP R1 1 R3 
1

82 02 

4 12 

SI 
1 

OP I 81 01 

THREE HALFWOROS 

4 12 4 12 

55 OP I 81 01 I 82 D2 

4 4 12 4 12 

55 OP Lli L21 81 01 I 82 D2 

Figure 18. Instruction formats 

The symbology employed in the RS format is ex
plained with the example shown below. In shift opera
tions employing the RS format, the designations of 
fields differ from the example shown, but this does not 
concern us here. 

In most cases the results replace the first operand. 
except for the Store instruction, and the Convert to 
Decimal instruction, where the result replaces the sec
ond operand. 

The contents of all registers and storage locations 
participating in the addressing or execution part of an 
operation remain unchanged, except for the storing of 
the final result. 

In the following examples of the instruction formats, 
the operands are expressed as decimal numbers, and 
the operation codes are expressed in the symbolic 
assembly language explained in this publication. Print
outs of assembled programs (shown later in the text) 
are expressed hexadecimally. (The hexadecimal num
ber system is explained under "Number Systems".) 



RR Format 

OP Code Rl R2 

AR 7 9 

o 7 8 11 12 15 
Execution of this Add instruction adds the contents 
of general register 9 to the contents of general register 
7, and the sum is placed in general register 7. 

RX Format 

OP Code Rl X2 B2 

ST 3 I 10 14 300 

o 7 8 11 12 15 16 19 20 31 
Execution of this Store instruction stores the con
tents of general register 3 at a main storage location 
addressed by the sum of 300 and the low-order 24 
bits of general registers 14 and 10. 

R5 Format 

OPCode 

LM 

o 
3 9 11 300 

7 8 11 12 15 16 19 20 31 
This Load Multiple instruction causes the set of gen
eral registers starting with the register specified by 
Rl and ending with the register specified by R3 to be 
loaded from the locations designated by the second 
operand address. 

The storage area from which the contents of the 
general registers are obtained starts at the location 
designated by the second operand address and con
tinues through as many words as needed. The general 
registers are loaded in the ascending order of their ad
dresses, starting with the register specified by Rl and 
continuing up to and including the register specified 
by R3• 

It was pOinted out earlier that the storing and restor
ation of registers is a relatively simple matter. There 
is also a multiple store instruction that provides for 
the storing of the registers, while this multiple load 
instruction provides for their restoration. 

51 Format 

OP Code h Bl 

I MVI $ 12 100 

o 7 8 15 16 19 20 31 

With this Move Immediate instruction in the example 
shown, a dollar sign ($) is to be placed in location 
2100, leaving locations 2101-2105 unchanged. Let Z 
represent a four-bit zone. Assume that: 
Register 12 contains 00 00 20 00 
Location 2100-2105 (before) ZO. Zl Z2 Z3 ZO 
Location 2100-2105 (after) $ Zl Z2 Z3 ZO 

55 Format 

OP Code Ll 

AP I 4 4 6 

o 7 8 11 12 15 16 19 20 

64 6 68 

31 32 35 36 47 

With this Add Decimal instruction, the second oper
and is added to the first operand, and the sum is 
placed in the first operand location. If necessary, high
order zeros are supplied for either operand. Note 
that in the register-to-register (RR) instruction ex
ample, the addition is on fixed-length binary fields. 

The decimal arithmetic instruction in the SS format 
operates on data in the packed format with two deci
mal digits placed in one eight-bit byte. The length of 
the fields is specified explicitly in the instruction 
rather than implied in the operation code. 

In each format (RR, RX, RS, SI, or SS) the first 
byte contains the operation code in the binary code, 
which is the actual machine language. In binary, the 
length and format of an instruction are specified by 
the first two bits of the operation code. 

BIT INSTRUCTION INSTRUCTION 
POSITION LENGTH FORMAT 

00 One halfword RR 
01 Two halfwords RX 
10 Two halfwords RS or SI 
11 Three halfwords SS 

During instruction decoding, the processing unit 
examines these first two bits of the operation code 
and determines how many bytes to fetch for this in
struction. These bit configurations are part of the ma
chine instruction, so that when, for example, we speci
fy an Add register-to-register instruction, we are not 
concerned with specifying the instruction length. 

We have seen that for fixed-length instructions the 
length of the operand is implicit in the instruction, and 
for variable-length operands the length is specified in 
the instruction. We have also seen that the length of 
the instruction itself is part of the operation code. 
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Storage Protection 

System/360 was designed for operation with a super
visory program that schedules and governs the execu
tion of multiple programs, handles exceptional condi
tions, and coordinates and issues input! output in
structions. 

In addition, the computing system and the super
visory programs are designed to prevent one program, 
such as a problem program, from modifying another 
program, such as the supervisor program. A means is 
provided by which the supervisor program can change 
any area of main storage, while the problem program 
can change only its own assigned areas. It is desirable, 
for example, that the supervisor program be able to 
change the main storage locations containing the new 
program status words. However, we would not want 
the problem program to be able to modify this same 
area. It is undesirable to have any part of the super
visor program changeable by the problem program. 
The feature that prevents the read-in of data into 
a protected area of core and thus prevents one pro
gram from destroying another is called storage pro
tection. 

Storage protection is an optional feature on Models 
30 and 40 and is standard on the larger systems. It 
has been pointed out that medium to large-scale sys
tems are utilized most efficiently in a multipro
grammed environment and that the system is adept 
at handling communications applications involving 
more than one program. For such applications the 
supervisor program utilizing the storage protection 
feature assigns programs to particular areas of storage. 

For protection purposes, main storage is divided 
into blocks of 2048 bytes each. Each 2048-byte block 
of storage has a four-bit register associated with it. 
The supervisory program may store any four-bit com
bination into anyone of these registers. (Note that the 
supervisory program and not the problem program 
has access to these registers.) The four-bit combina
tions may be thought of as locks. Each block of stor
age, then, has its own lock. 

The same lock may be assigned to more than one 
block and these blocks of 2048 bytes need not be con
tiguous. 

The current PSW, as we have seen, acts as an in
struction counter. Another of its functions is to keep 
track of the protection key of the program with which 
each instruction is associated. When a store operation 
is attempted by an instruction, the protection key of 
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the current PSW is compared with the storage key 
of the affected block. When storing is specified not 
by a program instruction but by channel operation, a 
protection key supplied to the channel from the chan
nel address word ( CAW) is compared with the stor
age lock of the area in which the data is to be stored. 
Figure 19 illustrates a protection key for the channel 
address word in addition to the PSW protection key. 
The CA W is explained later under "Channel Organi
zation". It has already been pointed out, however., 
that channels have their own programs, and to under
stand storage protection we should be aware that the 
protection key in the CAW provides protection on in
put operations from channels similar to that pro
vided by the PSW on internal operations. 

Storage takes place only if the key and lock com
binations match or when the protection key is zero. 
Here storage key refers to the key stored in the regis
ter associated with a 2048-byte block of storage. Pro-

A 
2048 byte 
block 

B 
2048 byte 
block 

C 
2048 byte 
block 

D 
2048 byte 

"block 

E 
2048 byte 
block 

STORAGE 
KEY 

2 

4 

2 

15 

PROTECTION 
KEY 

PSW 

Store A OK 
Store B Program interrupt* 
Store C Program interrupt* 
Store D OK 
Store E Program interrupt* 

PROTECTION 
KEY 

141 
CAW 

Read A OK 
Write A I/O intenupt* 
ReadB OK 
Write B I/O Intenupt* 
ReadC OK 
Write C OK 
ReadD OK 
Write D I/O intenupt* 
ReadE OK 
Write E I/O intenupt* 

*prete ction error 
PROTECTION indicated 

KEY 

101 
PSW 

Store A,B,C,D, E OK 

Figure 19. Storage protectio.D 



tection key refers to the key contained in the PSW or 
channel. If the PSW, then, contains a nonzero protec
tion key, a store operation will not occur in an area 
of storage with the zero key. If, on the other hand, 
the protection key is zero, a store operation can be 
executed using any area of storage without regard for 
its storage key. The supervisory program will some
times require this zero master key in its PSW. The 

protection key of the current PSW in the problem pro
gram cannot be changed by the problem programmer, 
so interference with the supervisory program or with 
other programs is prevented. 

When an instruction causes a protection mismatch, 
execution of the instruction is suppressed or termin
ated, and program execution is altered by an interrupt 
as shown in Figure 19. 
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Floating-Point Arithmetic 

In fixed-point computatiOl" the position of digits must 
be aligned for each operand to express their integral 
or fractional value. The separation of the integral and 
fractional portion of a number denoted by a point in 
written notation is the programmer's responsibility. 

Scientific and engineering computations often in
volve multiplications and divisions where the magni
tude of the quantities involved varies from very small 
fractions to large integers. 

To relieve the programmer of the responsibility of 
shifting to position intermediate and final results, 
floating-point notation and circuitry to operate upon 
it have been characteristics of scientific computers. 
Floating-point arithmetic is an optional feature on 
Models 30 and 40 and is standard on the higher-per
formance models. 

Four 64-bit floating-point registers identified by the 

R Field 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

Reg. No. 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

General Registen Floating-Point Registers 

~32Bits~ ~64Bit5~ 

Figure 20. General and floating-point registers 
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numbers 0, 2, 4, and 6 are provided, as shown in 
Figure 20. The operation code determines whether a 
general purpose or floating-point register is to be used 
in an operation. An attempt to execute a floating-point 
instruction on a system not equipped with the feature 
will result in a program interrupt. 

The notation used permits representation of num
bers whose decimal equivalents have magnitudes in 
the range of 10-78 to 10+7°. 

In this introduction to the system's structure, we 
shall not go into the details of floating-point arith
metic. It is interesting to note that either a short (32-
bit) or long (64-bit) format operand may be speci
fied. The short-length, eqUivalent to seven decimal 
places of precision, permits a maximum number of 
operands to be placed in storage and gives the short
est execution time. The long-length, used when higher 
precision is desired, gives up to 17 decimal places of 
precision. The formats differ only in the length of the 
fraction, as shown in Figure 21. 

Short Floating-Point Number 

Is I Characteristic Fraction 

o 1 7 8 31 

Long Floating-Point Number 

~ls~l __ c_h_a~_a_c_te_ri_n_ic __ ~I ___________ F_ro_c_ti_on ______ ~)~ 
o 1 7 8 63 

Figure 21. Short and long floating-point number formats 



In the section entitled «Channel Concept" mention was 
made of communications between the processing unit 
and the channel. We shall now examine in more de
tail the ways in which the processing unit, the chan
nels, the control units, and the I/O devices communi
cate with each other. 

System/360 is designed for use in conjunction with 
a supervisor program that allocates equipment to mul
tiple programs and also monitors the execution of 
each problem program. The supervisor program must 
also monitor I/O operations. To permit unrelated 
problem programs to execute I/O op~rations concur
rently, the channel hardware together with the super
visor program provides a means of assigning to each 
program the required I/O facilities. This assignment 
consists of establishing a path not only for transferring 
data between the I/O device and the designated area 
of main storage, but also for exchanging control and 
status information between the program and the I/O 
facility. 

Input/output control units are attached to the chan
nel by a standard connection, called the I/O interface. 
This interface is common to all channels and control 
units. It provides an information and signal sequence 
that is common to all types of I/O control units. The 
interface has nine one-way lines for input and nine 
lines for output to accommodate one byte including 
parity. Other lines carry status and control informa
tion. The important thing to remember is that identi
cal lines are used for all control units including those 
for tape, disk, card, etc. The channel operates the con
trol unit, and the control unit is designed to meet the 
interface requirements. 

The control unit operates the actual device. Exam
ples of control units are tape control, communications 
control, card control, and printer control. The chan
nel, in turn, operates the control unit. The processing 
unit controls channel activity by means of four in
structions : 

Start I/O 
Test I/O 
Halt I/O 
Test Channel 
Commands constitute the channel program. The 

channel programs are held in main storage until an 
I/O operation is initiated by a Start I/O instruction. 
A channel address word ( CAW) is permanently as-

Channel Organization 

signed to contain the address of the initial channel 
command word (CCW) (see Figures 22, 23, and 24). 
CCW' s are decoded by the channel, which issues 
orders to the I/O device. 

I Key 10000\ Comma nd Address 

o 34 78 

Figure 22. Channel address word fonnat 

Command 
Code Data Address 

31 

o 78 31 

Flags looo~ Count 
32 3637 3940 4748 

Bits 0-7 specify the command code. 
Bits 8-31 specify the location of a byte in main storage. 
Bits 32-36 are flag bits. 

63 

Bit 32 causes the address portion of the next CCW to be used. 
Bit 33 causes the command code and data address in the next 

CCW to be used. 
Bit 34 causes a possible incorrect length indication to be 

suppressed. 
Bit 35 suppresses the transfer of information to main storage. 
Bit 36 causes an interruption as Program Control Interrupt 

Bits 37-39 must contain zeros. 
Bits 40-47 are ignored 
Bits 48-63 specify the number of bytes in the operation. 

Figure 23. Channel command word format 

CPU Channels Control Units 
and 

{Executes I/O Devices 

I/O (Executes 
Instructions) Commands) (Executes 

Orders) 

Figure 24. Relationship of I/O instructions, commands, and 
orders 
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The CCW contains the command to be executed, 
and for commands that initiate I/O operations it desig
nates the storage area associated with the operation 
and the action to be taken whenever transfer to or 
from the area is completed. The CCW's can be lo
cated anywhere in main storage on doubleword boun
daries, and more than one can be associated with a 
Start I/O instruction. The channel refers to a CCW 
in main storage only once, whereupon the pertinent 
information is stored in the channel. 

The £rst CCW is fetched during the execution of 
Start I/O. Each additional CCW in the chain is 
obtained when the operation has progressed to the 
point where the additional CCW is needed. 

The CCW has the format shown in Figure 23. 
Bits 0-7 specify the operation to be performed. 

There are six valid commands: 

Sense 
Transfer in Channel 
Read Backward 
Write 
Read 
Control 

The data address specifies the location of an eight
bit byte in main storage. It is the first location re
ferred to in the area designated in the CCW. 

The count specifies the number of eight-bit byte 
locations beyond the initial byte designated by the 
address. 

It has been mentioned that channels function much 
like small independent computers. As such they con
tain registers. Bits 32 through 36 of the CCW are 
labeled "Hags" (see Figure 23). The channel registers 
include a flag register that indicates command modes. 
These Hags serve to chain data or commands for this 
series of CCW's, interrupt the processing unit, skip 
a portion of a record, suppress length indication, or 
terminate the operation. 

These Hags may be set on or oH in each of the chan
nel control words and the Bag register is updated with 
each new CCW. Other registers within the channel 
circuitry are (1) a command counter, which tells the 
channel where to get the next command in a manner 
similar to that of an instruction counter in a process
ing unit, (2) a command register, which tells the 
channel which command is to be performed, (3) an 
address register, which tells the channel where to get 
or put data into core storage, (4) a count register, 
which indicates how many characters are to be read 
or written, and (5) a key register, which contains 
the storage protection key for the current operation. 

The generalized CCW commands listed earlier ap
ply to all devices. Read, Write, and Read Backward 
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are self-explanatory. The Sense command is a request 
to the I/O control unit for device-dependent status 
information, such as the position of magnetic tape, 
the condition of the card stacker and hopper, or the 
detailed conditions detected in the last operation. This 
status information is transferred to the channel as 
data and is placed in the main storage area designated 
bytheCCW. 

Normally the detailed information provided by the 
sense command is not required, and an eight-bit status 
byte is provided to the channel (upon completion of 
an I/O operation) indicating the general conditions 
detected during the operation. This status byte is 
common to all I/O devices and cannot convey the 
detail conditions of termination provided by the sense 
command. 

A control command causes the control unit to ini
tiate at the I/O device an operation not involving the 
transfer of data - such as backspacing or rewinding 
magnetic tape, or positioning a disk access mechan
ism. 

The Transfer in Channel command causes the next 
CCW to be fetched from the location designated by 
the data address field of this command instead of 
fetching the next sequential CCW. In effect, then, the 
Transfer in Channel command causes a branch from 
one sequence of CCW's to another. 

When command chaining is specified by a Bag bit 
in the CCW, the channel uses the new CCW to ini
tiate a new operation at the device and permits the 
processor program to start with a single I/O instruc
tion such sequences as printing multiple lines or read
ing multiple tape blocks. With command chaining it 
is possible for the channel to execute I/O programs of 
any number of I/O operations. 

When data chaining is specified by a flag bit in the 
CCW, the channel uses the new CCW to designate 
another data area for the original I/O operation and 
the device continues to execute this operation. Only 
the allocation of storage areas is aHected. Data chain
ing permits the reorganization of information as it is 
transferred between main storage and the I/O device. 

The proper use of the available channel command 
words permits the following types of I/O functions: 

Scatter-read - reading one physical record into 
multiple, noncontiguous areas of storage. 

Extraction - reading only selected portions of a 
record into storage. 

Control nondata I/O operations - for example, 
backspace, rewind, etc. 

Command chaining - for sequentially performing 
operations on the same device, for example, reading 
over an interrecord gap. 



Upon completion of the channel program, an I/O 
interrupt occurs; that is, the channel interrupts the 
processing unit. The channel makes available in main 
storage a channel status word (CSW). This double
word contains an address that is eight bytes higher 
than the address of the last CCW used, and indicates 
in the count field the difference between the count 
in the last CCW and the amount of data transferred. 
The format of the channel status word is shown in 
Figure 25. The storage protection key is the key used 
in the operation. It is first supplied to the channel 
from the CAW as a result of a Start I/O instruction. 

Bits 32-47 of the channel status word contain an 
eight-bit I/O device-status byte and a channel status 
byte. These two bytes provide such information as 
data-check, chaining check, and control unit end. The 
channel status word has a permanent storage assign
ment of locations 64 through 71 in main storage as 
shown in Figure 4. 

Command Address 

o 34 78 31 

Status Count 
32 4748 63 

Bits 0-3 contains the storage-protection key used in the 
operation. 

Bit 4-7 contain zeros. 
Bits 8-31 ~pecify the location of the last CCW used. 
Bits 32-47 contain an I/O device-status byte and a channel

status byte. The status bytes provide such information as data
check, chaining check, control-unit end, etc. 

Bits 48-63 contain the residual count of the last CCW used. 

Figure 25. Channel status word format 

With the command address, status, and count fields 
of the CSW, the program can determine the status of 
an I/O device or the conditions under which an I/O 
operation has been terminated. 

The processing unit's program depends on I/O in
terrupts for information concerning the progress of 
I/O operations. So that the processor program can 
tell in advance when conditions in the channel or in 
the device should alert the program, a mask bit is 
associated with each channel. A masked channel can
not cause an I/O interrupt, and consequently the 
supervisor program can suppress I/O interrupts by 
masking the cnannels. The conditions in the channels 
and devices are preserved until accepted by the 
processor program. The program can determine 
whether an interrupt condition is pending in the 
channel by issuing the instruction Test Channel. 

Channel masking allows the processor program to 
accept I/O interrupts selectively by channel. How
ever, on a given channel more than one I/O control 
unit can contain pending conditions that cause pro
gram interruption. The instruction Test I/O allows 
a program to accept interrupts selectively by I/O 
device. This instruction gives the program the status 
of the designated device and clears any interrupt con
ditionpending in the device. Test I/O provides the 
same information as an I/O interrupt, since the chan
nel status word is stored. Keeping the channels masked 
and interrogating devices by the Test I/O instruc
tion prevents the program from being interfered with 
by conditions unrelated to the program being run. 

In a real-time or communications environment, on 
the other hand, the processor program would keep all 
channels unmasked and depend on I/O interrupts 
for information concerning the progress of I/O events 
as they occur. 
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Summary 

System/360 includes provisions for large storage capa
city, simple program relocation, flexible protection, 
and general supervisory facilities. Provisions are also 
included for a variety of data formats, an extensive 
set of processing operations, and machine language 
compatibility among the various models. 

To compensate for higher computational speeds 
relative to human reaction time, and to adapt the 
system to online and real-time multiprogramming 
tasks, the system is more highly automated by having 
the system resources controlled by a supervisory pro-
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gram. Provision for this control is embodied in these 
concepts: 

• Supervisory mode with associated privileged 
instructions 

• Storage protection 

• Hardware monitoring 

• The ability to perform interrupts 

• A wait state available to the supervisor program, 
rather than a stop or halt instruction available to 
the problem programmer. 



1. Can a tape unit be attached to a multiplexor 
channel? 
2. If the problem program issues a Load PSW in
struction to cause the new I/O PSW to be loaded, can 
the problem program cause an I/O operation to be 
executed? 
3. The instruction address contained in the new Su
pervisor Call PSW addresses a routine to handle this 
class of interrupts. What action must this routine first 
take? 
4. A program interrupt will occur if the Convert 
to Binary instruction attempts to operate upon data 
that contains invalid codes for packed decimal. What 
are the valid four-bit codes for packed decimal? 

Questions and Exercises 

5. Is data punched in an IBM card as Hollerith code 
acceptable as input to a System/360 equipped with a 
card reader? 
6. If Boating-point arithmetic is intended for scien
tific and engineering applications, while the decimal 
instruction set is primarily for commercial applica
tions, by whom are fixed-paint arithmetic instructions 
used? 
7. In what position is the sign of a riumber located? 
8. What storage location is addressed by an instruc
tion with zeros in the index and displacement fields 
and the number 5 in the base register field? 
9. Why does the programmer select a particular in
struction length? 
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Chapter 2: Number Systems 

Numeric symbols, or numbers, were invented to facili
tate counting. Various number systems differ in the 
arrangement and type of number symbols used. Early 
number systems frequently employed cumbersome 
symbols and inconvenient rules, which hindered the 
advance of systematic mathematical thought. The 
slowly increasing rationality of systems of numerical 
notation and the arithmetical rules built upon them 
bears a close relation to the progress of mathematics 
and science, in general. 

Positional Notation 

The Arabs invented the numerical symbols and system 
of positional notation on which our present decimal 
system and other number systems are based. Each of 
the symbols has a fixed value one higher than that of 
the symbol before it in the progression from smallest 
to largest: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. When several 
symbols (or digits) are combined, the value of the 
number depends upon the relative positions of the 
individual digits, as well as on the digit values. In 
any system of positional notation, the digit position 
on the extreme right is the one of least value, or low
est order, and is called the "least significant digit" 
( LSD); the digit on the extreme left is the one of 
highest value and is called the "most significant digit" 
( MSD ). The increase in value of each digit position 
depends on the base, or radix, of the number system. 
Thus, in the decimal system, with base 10, the value 
of the digit positions to the left of the least significant 
(or unit) digit, increases by a power of 10 for each 
position. The decimal system has the base (radix) 10 
because it has ten discrete number symbols (0-9) 
available for counting. 

As an example of positional notation, consider the 
decimal number 6,594. Although its value is imme
diately apparent, the notation 6,594 actually signifies 

6 thousands + 5 hundreds + 9 tens + 4 units 
or 6000 + 500 + 90 + 4 = 6,594 

The positional value of each digit is made even 
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The following sections present a brief review of 
the basis of modern positional number systems and 
the arithmetical manipulation and conversion of the 
binary and hexadecimal systems of notation, both of 
which have been found useful in electronic data 
processing. 

clearer when the number is expressed in powers of 
ten: 

6,594 = 6 X 103 + 5 X 102 + 9 X 101 + 4 X 100 

= 6 X 1000 + 5 X 100 + 9 X 10 + 4 X 1 

Positional notation is not possible without the zero. 
Its presence within a number simply means that the 
power of the base represented by the 0 digit position 
is not used. Thus, the decimal number 8,003 signifies 

8 X 103 + 0 X 102 + 0 X 101 + 3 X 100 

= 8 X 1000 + 0 X 100 + 0 X 10 + 3 X 1 
= 8,000 + 3 = 8,003 

Fractions and mixed numbers are treated in posi
tional notation in just as simple a fashion. Each digit 
position to the right of the point is assigned a negative 
power of the base, starting with -1, in ascending se
quence. Thus, in the decimal system, the first digit to 
the right of the decimal point is multiplied by 10-1, 

the second digit by 10-2 , the third by 10-3, and so on. 
For example, the mixed decimal number 436.578 may 
be expressed as 

4 X 102 + 3 X 101 + 6 X 100 + 5 X 10-1 + 
7 X 10-2 + 8 X 10-3 

= 400 + 30 + 6 + 5/10 + 
7/100 + 8/1000 

= 436.578 

These rules of positional notation are generally ap
plicable to all number systems, regardless of the base, 
or radix, used. 



The binary (base 2) number system uses only two 
distinct symbols, 0 and 1, which signify "no units" and 
"one unit", respectively. In contrast to the decimal 
system, however, the place value of binary digits to 
the left of the least significant digit (LSD) increases 
by a power of 2 each time, rather than by powers of 
10. For example, the binary number 101101 signifies: 

101101 = 1 X 25 + 0 X 24 + 1 X 23 + 1 X 22 + 0 X 21 + 1 X 20 

= (1 X 32) + 0 + (1 X 8) + (1 X 4) + 0 + (1 Xl) 
32 + 0+ 8 + 4 + 0 + 1 

= 45 (in the decimal system) . 

Expressing a binary number in powers of 2, thus, is 
one way (though not usually the best) of finding its 
decimal equivalent. To avoid confusion when several 
systems of notation are employed, it is customary to 
enclose each number in parentheses and to Write the 
base as a subscript, in decimal notation. Using the 
previous example: 

( 101101 ) 2 = ( 45}10 

Fractions are handled in the same way by assigning 
negative powers of 2 to the right of the binary point 
in ascending sequence. For instance, the binary num
ber 0.1011 means: 

Binary Numbers 

(0.1011)2 = 1 X 2-1 + 0 x 2-1I + 1 x 2-8 + 1 x 2-' 
1/2 + 0 + 118 + 1/16 = 

11/16 
0.5 + 0 + 0.125 + 0.0625 = 

(0.6875)10 

Again, a literal expansion of the hinary number in 
powers of 2 yields the decimal equivalent. Simpler 
methods of conversion will be described later on. 

For reference, the first 16 binary numbers and their 
decimal equivalents are: 

Decimal 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Binary 
()()()() 

0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 
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Hexadecimal Numbers 

Large binary numbers consist of long strings of zeros 
and ones, which are frequently awkward to interpret 
and handle. The hexadecimal (base 16) numbering 
system is used as a convenient way of representing 
such large binary numbers. Each hexadecimal digit 
stands for four binary digits. 

Hexadecimal notation requires the use of 16 sym
bols to represent 16 number values. Since the decimal 
system provides only ten number symbols (0 - 9), six 
additional marks are needed to represent the remain
ing values. The letters A, B, e, D, E, F have been 
adopted for this purpose, though any other six marks 
could have served equally well. The entire list of 
hexadecimal symbols, thus, consists of 0, 1, 2, 3, 4, 5, 
6,7,8,9, A, B, e, D E, and F, in ascending sequence 
of value. Table 1 shows equivalent decimal, hexadeci
mal, and binary numbers (through decimal 31). Note 
that upon reaching decimal 16, the hexadecimal sym
bols are exhausted, and a "1 carry" is placed in front 
of each hexadecimal symbol during the second cycle, 
from decimal 16 through 31. 

To convert binary numbers to hexadecimal notation, 
simply divide the number into groups of four binary 
digits, starting from the right, and replace each group 
by the corresponding hexadecimal symbol. If the left
hand group is incomplete, fill in zeros as required. For 
example, the binary number 

111110011011010011 = 0011/1110/0110/1101/0011 
= 3 E 6 D 3 
= (3E6D3)lG 

If the binary number is a fraction or a mixed number, 
care must be taken to mark off groups of four bits 
from each side of the binary point position. Thus, the 
binary number 

1011001010.1011011 = 0010/1100/1010.1011/0110 
2 CAB 6 

= (2CA.B6) 16 

Similarly, to convert hexadecimal numbers into 
binary, substitute the corresponding group of four 
binary digits for each hexadecimal symbol and drop 
off any unnecessary zeros. For instance, the hexa
decimal number 

( 6C4F2E. 7B8 ) 16 

=6 C 4 F 2 E 7 B 8 
= 0110 111001 010011111/0010/1110.0111/1011/1000 
= (11011000100111100101110.011110111 )2 

The meaning of hexadecimal numbers is made clear 
by expansion in powers of 16. For example, the hexa-
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Decimal Hexadecimal Binary 

0 0 0000 
1 1 0001 
2 2 0010 
3 3 0011 
4 4 0100 
5 5 0101 
6 6 0110 
7 7 0111 
8 8 1000 
9 9 1001 

10 A 1010 
11 B 1011 
12 e 1100 
13 D 1101 
14 E 1110 
15 F 1111 

16 10 10000 
17 11 10001 
18 12 10010 
19 13 10011 
20 14 10100 
21 15 10101 
22 16 10110 
23 17 10111 
24 18 11000 
25 19 11001 
26 lA 11010 
27 IB 11011 
28 Ie 11100 
29 ID 11101 
30 IE 11110 
31 IF 11111 

Table 1. Decimal, hexadecimal, and binary notation 

decimal number 2eA.B6, above, means (when deci
mals are substituted for hexadecimal symbols) 

2 X 162 + 12 X 161 + 10 X 160 + 11 X 16-1+ 6 X 16-2 

= 2 X 256 + 12 X 16 + 10 X 1 + 11/16 + 6/256 
512 + 192 + 10 + 0.6875 + 0.0234375 
714 + 0.7109375 = (714.7109375)10 

In working out an example of this type, it is best to 
arrange the products in a vertical column for con
venient addition. 



Arithmetic in bases other than 10 can always be car
ried out by converting all operands to the decimal 
system, doing the required arithmetic, and then re
converting the results to the original number base. 
This procedure is not recommended for binary arith
metic, which is extremely simple, but may be advisable 
for complicated hexadecimal arithmetic, particularly 
when a good hexadecimal-decimal conversion table is 
available. (See, for example, the conversion table in 
Appendix E of the manual IBM Systemj360 Principles 
of Operation, A22-6821.) Nevertheless, the program
mer should be familiar, at least, with simple addition 
and subtraction in the binary and hexadecimal nota
tions and, therefore, examples of these operations are 
included. 

The rules of arithmetic are the same in all positional 
number systems. Thus, it is necessary only to recall 
the corresponding rules of decimal arithmetic to be 
able to do arithmetic.in any other number base. 

Binary Addition 
Addition is essentially a shortcut to counting. We add 
two digits either by counting through the values of 
the two digits in sequence or, more simply, by memor
izing the sum of the digits from an addition table. 
Whenever the sum of two digits exceeds the available 
number symbols of the notation (that is, the limit of 
any digit position), a 1 is carried to the next-higher
order digit position. Thus, in the decimal system, 
3 + 5 == 8, but 9 + 1 == 0 with a carry of 1 (that is, 
10). 

In the binary system, there are only two symbols, 
o and 1. Hence, adding 1 plus 1 in binary notation 
exceeds the limit of counting (no symbol being avail
able) and, therefore, the result is 0 with a 1 carried 
to the next-higher-order digit position. The complete 
rules of binary addition are given below. 

Binary addition 

0+0==0 
0+1==1 
1+0==1 
1 + 1 == 0 with a carry of 1. 

(This may be written as 10, but is pronounced "one, 
zero".) The binary addition table below is a con
venient way of summarizing these results. 

Binary and Hexadecimal Arithmetic 

Binary addition table 

ftH
i 

001 
1 1 10 

Three examples of binary addition are given below. 
The example on the left is self-explanatory. The center 
example develops a carry, which is indicated above 
the proper digit position. The example on the right 
consists of the addition of two eight-bit numbers and 
involves several carries, which are indicated. As a 
check, the binary operands also have been converted 
to decimals, and the addition has been carried out in 
both systems. The results check, as you can verify by 
conversion. 

1 +-Carries~ 1 11 
lOlO 

+ 101 
101010 00111001 = 57 

+ 001001 + OOlOOOl1 = + 35 

1111 110011 01011100 = 92 

It is frequently necessary to add two 1's and a 1 
carry from a lower-order position. This results in a 1, 
with a carry of 1 to the next-higher-order position. In 
brief, 

1 + 1 + 1 == 1 with a carry of 1 (which may 
be written 11). The following two examples illustrate 
the process 

Carries III 
lUI 

+ III 

III 
10111000 = 184 

+ 00111011 = + 59 

lOUO 11110011 = 243 

When adding together several binary numbers, more 
than one carry may be developed to a single column. 

C . {I 1 arnes 11111 

1011 
1101 
1001 
0001 
1001 

101011 

Additional exercises in binary addition can be 
found later. 

Hexadecimal Addition 
Addition in the hexadecimal system follows the same 
rules as decimal and binary addition. \Vorking with 
alphameric symbols - numbers and letters - appears 
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strange at first, particularly since results long familiar 
from decimal addition have a diHerent meaning in 
hexadecimal notation. This requires a degree of re
orientation and practice. For instance, while 4 + 5 
== 9 in both the decimal and hexadecimal systems, 
7 + 8 == F (not 15) in hexadecimal notation. When
ever the sum of two digits exceeds F - the highest
valued hexadecimal symbol - a carry of 1 is developed 
to the next-higher-order digit position. Thus, 7 + 9 
== 10 (that is, 0 with a carry of 1), 9 + 9 == 12 (that 

1 2 3 4 5 6 7 8 9 ABC D E F 

l00Mwoooom~~MOOOC®OOWWl 

2 03 04 05 06 07 08 09 OA OB OC ODOE OF 10 11 2 
3 04 05 06 07 08 09 OA OB OC OD OE OF W 11 12 3 
4 05 06 07 08 09 OA OB OC OD OE OF 10 11 12 13 4 
5 06 07 08 09 OA OB OC OD OE OF 10 11 12 13 14 5 
6 07 08 09 OA OB OC OD OE OF 10 11 12 13 14 15 6 
7 08 09 OA OB OC OD OE OF 10 11 12 13 14 15 16 7 
8 09 OA OB OC OD OE OF 10 11 12 13 14 15 16 17 8 
9 OA OB OC ODOE OF 10 11 12 13 14 15 16 17 18 9 
A OB OC OD OE OF 10 11 12 13 14 15 16 17 18 19 A 
B OC OD OE OF 10 11 12 13 14 15 16 17 18 19 lA B 
C OD OE OF W 11 12 13 14 15 16 17 18 19 lAs. IB C 
D OE OF 10 11 12 13 14 15 16 17 18 19 lA IB lC D 
E OF 10 11 12 13 14 15 16 17 18 19 lA IB lC ID E 
F 10 11 12 13 14 15 16 17 18 19 lA IB lC ID IE F 

1 234 5 6 7 8 9 ABC D E F 

Table 2. Hexadecimal addition 

is, 2 with a carry of 1), C + 9 == 15, and so on. (Refer 
to Table 1.) 

The hexadecimal addition table (Table 2) has 
16 X 16 == 256 entries, which one could hardly be 
expected to memorize. Hence, reference to the table 
is required during hexadecimal addition. The use of 
the table is simple. 
Locate the two hexadecimal digits in the respective 
row and column of the table. (It makes no difference 
which digit is selected for a column and which for a 
row.) The sum of the two digits is given by the inter
section of the row and column. Note that the highest 
entry, at the bottom right of the table, is IE, which 
represents the sum of F plus F (decimal 15 + 15). 
If a carry of 1 needed to be added to this, the result 
would be IF (equivalent to decimal 31); that is, 
F + F + 1 == IF. In general, if a carry develops dur
ing hexadecimal addition, it is convenient to mentally 
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add the 1 carry to the lower-valued of the two oper
ands and then add in the other operand by use of the 
addition table. As an alternative, the two digits may 
first be added by use of the table; the carry is then 
added in by going to the next square to the right or 
below the intersection that represents the sum of the 
digits. For example, to add the digits 7 + C + 1 
( carry), one may add 7 plus 1 (carry) equals 8, and 
then look up the result of adding 8 (column) plus C 
(row) at the intersection of the 8-column and the 
C-row, which shows 14. Alternatively, one can add 7 
( column) plus C (row) by use of the table, finding 
13 at the intersection; the 1 carry is then added in by 
going one square below (or to the right of) the inter
section, which again yields 14 as the result. Three 
examples of hexadecimal addition follow. Additional 
exercises are given at the end of the chapter. 

Hexadecimal addition 

9654 = 38,484 
+ 4528 = + 17,704 
DB7C = (56,188) 10 

11 
6AE 

+ IFA 
8A8 

1 1 
8F97 

+D44C 
163E3 

The example at left is straightforward and does not 
involve any carries. To verify the results, each of the 
operands has also been converted into decimals (by 
expansion in powers of 16) and the addition carried 
out in the decimal system. The center example, which 
does involve carries, may be verbalized as follows, 
using Table 2: A plus E equals 8 with a carry of 1 
into the next-higher-order digit position. Adding the 
next-higher-order digits, F plus A equals 9 with a 
carry of 1, plus the lower-order carry equals A, with a 
carry of 1 into the next-higher-order digit position. 
Adding the next-higher-order digits, 1 plus 6 equals 7, 
plus the carry of 1 equals 8. This completes the addi
tion. Similarly, adding the lowest-order digits of the 
example at right, we obtain C plus 7 equals 3, with a 
carry of 1 into the next-higher-order digit position. 
Adding the next-higher-order digits, 4 plus 9 equals D, 
plus the carry of 1 equals E with no carry. (Alterna
tively, 4 plus the 1 carry equals 5, plus 9 equals E 
with no carry.) Addition of the next-higher-order 
digits yields 4 plus F equals 3 with a carry of 1 to the 
next-higher-order position. Adding these digits, D plus 



8 plus a 1 carry equals 6 with a carry of 1; since there 
is no higher-order position, this carry is placed next to 
the 6. This completes the addition. 

Binary Subtraction 
In checking out programs, it may be useful to be 
familiar with the conventional, direct method of sub
traction, ''borrowing'' whenever necessary. The rules 
of direct binary subtraction are given below. 

Binary subtraction 

0-0==0 
1-1==0 
1-0==1 
o - 1 == 1 with a borrow of 1 

(from the next-higher-order digit position). By incor
porating the borrow, the last rule above may be 
interpreted to mean 

10 - 1 == 1 
(which is equivalent to decimal 2 - 1 == 1). 

Borrowing is necessary whenever the subtrahend 
(the number on the bottom) is larger than the minu
end (the number on top). It consists of subtracting 
a 1 from the next-higher-order digit to the left in the 
minuend and placing it next to the lower-order digit 
in the minuend. Since additional higher-order bor
rows arc frequently required, the process is often 
confusing. An alternative, and frequently better, way 
is to "pay back", or carry, the 1 borrowed from the 
minuend digit at left to the subtrahend immediately 
beneath it. An example illustrates the method. 

Conventional method 
10 

Borrows 0 ~ 10 
1 0 l t 0 1 1 ~Minuend~ 

- 1 0 0 1 1 1 1 ~Subtrahend~ 

Payback method 

1 1 
1011011 

-1001111 

o 0 0 1 1 0 0 Carry 1 1 

000 1 100 

Note, in the conventional method (at left), the 
many changes necessary in the minuend to accommo
date successive borrowing. This may become con
fusing at times and it is best to write down the minu
end once again after all borrowing is completed. 

In the payback method of subtraction, a borrow of 
1 is simply placed next to any minuend digit that re
quires it. This 1 is then paid back as a carry of 1 to 
the next-higher-order subtrahend digit at the left. Al
though the method is easily carried out in one's head, 
the example above could be verbalized as follows. 
Starting with the lowest-order digit position, 1 from 1 
leaves 0 (put down 0); 1 from 1 leaves 0 (put down 
0); 1 from 10 (after borrowing) leaves 1 (put down 
1 and carry 1 to the next-higher-order subtrahend 
digit); the carry of 1 plus 1 equals 10, and 10 from 11 

(after borrowing) leaves 1 (put down 1 and carry 1 
to the next-higher-order subtrahend digit); the carry 
of 1 plus 0 equals 1, and 1 from 1 leaves 0 (put down 
0); next, 0 from 0 leaves 0 (put down 0), and finally, 
1 from 1 leaves 0 (put down 0). This completes the 
subtraction. 

Three more examples of binary subtraction are 
given below. The method has not been indicated, since 
either one can be used, according to individual pref
erence. The additional exercises at the end of this 
chapter should also be completed at this time. 

1000 
- 1 

III 

Binary subtraction 
10110001 110011 

- 01010101 - 011101 

01011100 010110 

51 
-29 

22 

Hexadecimal Subtraction 
Subtraction in the System/360 is actually carried out 
by complementing the subtrahend and adding it to 
the minuend (see "Complements" later in this man
ual). It is useful for the programmer to know, how
ever, how to perform direct subtraction of hexadecimal 
numbers. 

Hexadecimal subtraction follows the same rules as 
decimal and binary subtraction with the proviso that 
a carry or borrow of 1 in hexadecimal notation repre
sents decimal 16. To obtain the difference of two 
hexadecimal digits, refer to Table 2. Locate the 
column heading that represents the digit to be sub
tracted (subtrahend) . Go down this column to the 
digit ( s) that represents the minuend. The heading of 
the row horizontally across from the minuend repre
sents the difference between the two digits. When the 
subtrahend digit is greater than the minuend digit, it 
will be necessary, of course, to add in a borrow of 1 
to the minuend digit before looking up the difference 
in the table. Either the conventional or the payback 
method of subtraction can be used, as is illustrated in 
the following two examples: 

Borrows: 

Carries: 

Hexadecimal subtraction 
1. Conventional method 

19 
7 ~ 18 
$ A $ 

-1 F A 

6 A E 

2. Payback method 
1 1 1 

163 E 3 
D 4 4 C 

1 1 1 

o 8 F 9 7 

Minuend 
Subtrahend 

Minuend 
Subtrahend 
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Example 1, above, illustrates the borrowing method. 
Starting with the lowest -order digits at right, A cannot 
be subtracted from B, since it exceeds B. Hence, a 1 is 
borrowed from the next-higher-order digit at left, A, 
reducing that digit to 9 (since A-I == 9) and in
creasing the minuend digit to lB. To carry out the 
subtraction IB - A, Table 2 is consulted. Under the 
A-column (the subtrahend), the minuend digits, 18, 
appear in the E-row. Hence, IB minus A equals E. 
Put down E. Proceeding to the next-higher-order digit 
position, F cannot be subtracted from 9; hence a 1 is 
borrowed from the B at left, reducing that digit to 7, 
and increasing the minuend to 19. In the table, going 
down in the F-column (subtrahend), the minuend 
digits, 19, appear in the A-row. Therefore, 19 minus F 
equals A. Put down A. Finally, the difference between 
the high-order digits at left, 7 minus 1, equals 6. Put 
down 6. This completes the subtraction. 

Example 2, above, illustrates the payback method of 
hexadecimal subtraction. Starting with the low-order 
( right) digits, C cannot be subtracted from 3; hence, 
add in a 1 (actually a 10, of course), making it 13. 
From Table 2, 13 minus C equals 7. Put down 7. In 
the next-higher-order digit position, a carry of 1 is 
first added to the subtrahend; 4 plus 1 equals 5. Then, 
from the table, E minus 5 equals 9. Put down 9. In 
the next digit position at left, 4 cannot be subtracted 
from 3, but after borrowing, 13 minus 4 equals F 
(from the table). Put down F. The 1 previously bor
rowed is added to the subtrahend of the next digit 
position; D plus 1 equals E. After borrowing, 16 minus 
E equals 8 (from the table). Finally, 1 minus the carry 
of 1 equals O. Put down O. Alternatively, the two high
order minuend digits, 1 and 6, could have been taken 
together as 16. Then, by subtracting E from 16, the 
difference of B is obtained at once. 

Three additional examples of hexadecimal subtrac
tion are given below. Work out these examples, as 
well as the exercises in back, and verify the results by 
adding back. 

F9D5 
-EB63 

E72 

Hexadecimal subtraction 

D935F 
-8E7C2 

4AB9D 

FDE74B.2C6A5 
- 7B 3AF4.95C09 

82 AC56.96A9C 

Binary Multiplication 
The three rules of binary multiplication are: 
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OXO==O 
o X 1 == 0 (or 1 X 0 == 0) 
lXl==1 

In practice, it is not necessary to remember these 
rules. Simply copy the multiplicand (the number on 
top) whenever the multiplier digit (on the bottom) 
is 1 and shift an extra place to the left (or copy O' s ) 
for each multiplier digit that is a O. The following 
examples illustrate the method: 

1. 
011 

X 011 

3. 

011 
on 
1001 

Binary multiplication 

Multiplicand 
Multiplier 

1st partial product 
2nd partial product 

Product 

4. 

2. 
1100110 

X 1000 

n00110000 (copy O's in 
multiplier) 

1.01 
X 10.1 

110110 Multiplicand 
X 110011 Multiplier 

101 
1010 

11.001 

110110 Copy multiplicand 
110110 Shift once and copy 

110110 
nOllO 

Shift 3 times and copy 
Shift and copy 

101011000010 Add partial products 

Hexadecimal Multiplication 
The rules of multiplication in the hexadecimal system 
are the same as those in the decimal and binary sys
tems. However, since the process is fairly complicated, 
it will be necessary to refer to Table 3 to determine 
the product of multiplying two hexadecimal digits. In 
the decimal and binary systems it is customary to dis
play the partial products of the multiplier digits with 
the multiplicand on a single line, each. Because of the 
carries, this is not usually convenient in hexadecimal 
multiplication; each product of two digits is separately 
written down and added, allowing for necessary shifts. 

The following two examples illustrate the process of 
hexadecimal multiplication, using Table 3: 

Hexadecimal multiplication 

Example 1: 
9D7 

X 5A 

46 ~A X 7} 
82 ~A X D 

5A ~A X 9 

23~5X7} 
41 ~5 xD 

2D ~5 X 9 
Carries 11 

37596 

Partial products of 
first multiplier digit 

Partial products of 
second ~ultiplier digit 

t t'-____ 15 hexadecimal, carry 1 
L_ ----17 hexadecimal, carry 1 

Note that each of the partial products of a multi
plier digit is shifted one place to the left with respect 



to the previous product. Care must be taken, however, Example 2: 
to shift the first partial product of the second multi- ABCD 
plier digit (23, above) only one place with respect to xABCD 

the first partial product of the first multiplier digit (46, A9 D X D 
above), as in decimal multiplication. In adding up the 9C D X C Partial 

8F D X B products partial products, use is made again of Table 2. Any 82 D X A 
resulting carries are applied to the next-higher-order 

9C C xD digit position, as is indicated in the example. 90 C X C 
84 C X B 

78 C X A 

1 2 3 4 5 6 7 8 9 A B C D E F 8F B X D 

lA lC IE 84 B X C 2 04 06 08 OA OC OE 10 12 14 16 18 79 B X B 
3 06 09 OC OF 12 15 18 IB IE 21 24 27 2A 20 6E B X A 
4 08 OC lO 14 18 lC 20 24 28 2C 30 34 38 3C 82 A X D 
5 OA OF 14 19 IE 23 28 2D 32 37 3C 41 46 4B 78 A X C 

6E A X B 
6 OC 12 18 IE 24 2A 30 36 3C 42 48 4E 54 5A 64 A X A 
7 OE 15 lC 23 2A 31 38 3F 46 4D 54 5B 62 69 Carries: 1 3 3 2 3 2 
8 lO 18 20 28 30 38 40 48 50 58 60 68 70 78 "fttt Answer: (73,4B8,229)18 

51 63 6C 75 7E 87 
734B8229 

9 12 IB 24 2D 36 3F 48 5A 

13, carry 1~~22' carry 2 A 14 IE 28 32 3C 46 50 5A 64 6E 78 82 8C 96 

B 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5 
34, cany 3 32, cany 3 
3B, carry 3 28, carry 2 

C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4 
The carries resulting from the addition of the partial 

D lA 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3 
products are indicated above. The computation can 

E lC 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2 be verified by converting the operands to decimal no-
F IE 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 El tation, as is later shown, carrying the arithmetic 

through in decimals, and converting the result back to 
Table 3. Hexadecimal multiplication hexadecimal notation. 
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Number Base Conversion 

It may be necessary to ascertain the equivalent of a 
number in a base different from the one in which it is 
expressed. It may, for example, be occasionally desired 
to enter decimals into storage without using the con
version instruction of the machine. 

A great number of conversion methods exist, of 
which only a few are useful in practice. As has been 
shown earlier, the literal method of expanding the 
number in powers of its base readily yields the deci
mal equivalent of the number, provided all arithmetic 
is carried out in the decimal system. The method also 
has the advantage that it works equally well for whole 
numbers, fractions, and mixed numbers; other methods 
generally require separate treatment for whole num
bers (integers) and fractions. For conversions into 
bases other than ten, however, the method of literal 
expansion into a power series (sometimes called trans
literation) frequently becomes difficult to carry out. 

Another direct conversion technique is the method 
of subtraction, or casting out. To convert from base A 
to base B, first find the largest multiple of the highest 
power of B contained in the base A number (the 
number to be converted). This multiple represents the 
most significant digit (MSD) of the new base B num
ber. Subtract this highest-power multiple from the 
original number and determine the largest multiple of 
the next-highest power of B contained in the remain
der. This forms the next-most significant digit of the 
new number. Subtract again and continue the process 
until every power of base B has been exhausted. The 
multiple of the lowest power of B contained in the 
number is the least Significant digit (LSD) of the 
new number. 

The process is relatively simple for conversions to 
the binary system, since the multiples of the powers 
of 2 are either 1 or O. For example, to convert decimal 
25 into the binary system, proceed as follows: 

Decimal Binary Digits 
25 

Highest power of 2 in 25: 16 = 1 X 24 1 (MSD) 
-

Remainder: 9 
Next-highest power of 2: - 8 = 1 X 23 1 

-
Remainder: 1 

Next-highest power of 2: o = 0 X 22 0 
-

Remainder: 1 
Next-highest power of 2: o = 0 X 21 0 

-
Remainder: 1 

Lowest power of 2: -1 = 1 X 20 1 (LSD) 
-

Remainder: 0 
Hence, (25 ho = (11001 h 
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The method of subtraction becomes tedious for 
larger numbers and requires memorization (or a 
table) of the powers of the base into which the num
ber is to be converted. A more rapid and convenient 
technique is the division/multiplication method. Here 
division is used for conversion of integers from one 
base to another, while multiplication is used for con
version of fractions, as will be described in the follow
ing paragraphs. For the conversion of integers, the 
method of division may be summarized as follows: 

To convert from base A to base B, divide repeatedly 
by the base A equivalent of B, until the quotient 
comes out zero. (U se base A arithmetic.) The re
mainder of the first division is the rightmost or 
least significant digit. The remainder of the last divi
sion is the leftmost or most Significant digit. If B is 
greater than A, convert the remainder digits into 
base B. 

Most of the conversion examples that follow will il
lustrate this method, which is the most useful in 
practice. 

Decimal to Binary Integer Conversion 
Conversion .of decimal integers into binary notation by 
the division method can be done mentally, since it in
volves division by 2. Proceed as follows: 

Divide the decimal number repeatedly by 2, until 
a quotient of 0 is obtained. The equivalent binary 
number is composed of the remainders, the first 
remainder being the rightmost or least significant 
digit, while the last remainder is the leftmost, or 
most significant digit. 

Since the divisions can be performed mentally, the 
quotients may be placed directly beneath the dividend 
and the remainders opposite the quotients, as illus
trated in the examples below: 

Decimal to binary integer conversion 
Quotients Remainders Quotients Remainders 

(27ho (568 )10 
13 1 (LSD) 284 0 (LSD) 
6 1 142 0 
3 0 71 0 
1 1 35 1 
0 1 (MSD) 17 1 

(27ho (l1011h 8 1 
4 0 
2 0 
1 0 
0 1 (MSD) 

(568 )10 ( 1000111000h 



Note, in each case, that the divisions are carried out 
through a zero quotient. The remainders are then writ
ten horizontally, left to right, beginning with the bot
tom of the column. 

Decimal to Hexadecimal Integer Conversion 
The division method is used, as follows: 

Divide the decimal number repeatedly by 16, until 
a zero quotient is obtained. Convert decimal re
mainders 10-15 into hexadecimal symbols A-F. 
The first remainder is the least significant hexadeci
mal digit; the last remainder is the most significant 
digit. 

Here the divisions usually have to be done longhand 
in all but the simplest cases. Record the quotient and 
remainder of each division, as shown in the examples 
below: 
Example 1: Convert decimal 195 into hexadecimals. 
Divide by Base 16 = Quotient + Remainder (= Hex Digits) 

195 16 = 12 + 3 3 
12 16 0 + 12 = C 

(195ho = (C3ha 

Example 2: Convert decimal 1710 into hexadecimals. 
Divide by Base 16 Quotient + Remainder (Hex Digits) 
1710 16 106 + 14 = E 

106 16 = 6 + 10 A 
6 16 = 0 + 6 6 

(l710)yo = (6AEhe 

The hexadecimal equivalents of decimal numbers in 
the range of 0-4095 (hexadecimal O-FFF) may also 
be looked up directly in the hexadecimal-decimal con
version table in Appendix E of the manual IBM Sys
teml360 Principles of Operation (A22-6821) 

Binary to Decimal Integer Conversion 
The decimal equivalent of a binary number is easily 
obtained by the method of direct expansion in powers 
of 2, as was described earlier. This works well for all 
binary numbers - integers, fractions, and mixed num
bers - and can frequently be done mentally by inspec
tion. Simply write down the powers of 2 of the binary 
number in column format (starting with the high-order 
digit) and add up the column to obtain the equivalent 
decimal. 

A shortcut method of binary-to-decimal conversion 
is known as the double-dabble method (dabble means 
double and add). The method consists of the following 
p-rocedure: 

Double the highest-order (leftmost) binary digit 
and add it to the digit at its right. Double the sum 
and add 1 or 0, depending upon whether the next 
digit to the right is a 1 or a O. Repeat until the sum 
contains the lowest-order digit at right. 

For example, to convert 1011 into a decimal, start with 
the 1 bit at left, double (making it 2) since the next 
bit is 0, then dabble since the next bit is a 1 (that is, 
2 X 2 == 4; adding 1 makes 5), and finally, dabble 
again since the last bit at right is a 1, making it a total 
of decimal 11 (that is, 2 X 5 == 10; adding 1 makes 
11). 

The double-dabble technique can be done very 
quickly with a little practice, by simply remembering 
to double each time if the next digit is 0, and to double 
and add 1 if the next digit is 1. Additional exercises 
are presented below and in the back. 
Example 1: Convert (110101 h into decimals. 
Binary digits: 1 1 0 1 0 1 
Decimal sums: 2 + 1 = 3 6 13 26 53 

dabble double dabble double dabble 
Therefore, (110101)2 = (53 )10 

Example 2: Convert (1110011) 2 into decimals. 

~~~~~ 
Dabble Dabble Double Double Dabble Dabble 

Binary: 
Decimal 

sums: 

1 1 
3 

1 
7 

o 
14 

o 
28 

Hence, (1110011 h = (115)10 

1 
57 

1 
115 

In most cases the procedure can be done mentally 
without bothering to write down the partiaJ sums 
each time. 

Hexadecimal to Decimal Integer Conversion 
Although the division method can be used for the 
conversion of hexadecimal integers into decimals, the 
two methods presented below will be found to give 
results more rapidly. The direct method consists of 
expansion of the hexadecimal numbers in powers of 
16, using decimal arithmetic for the calculations. This 
method can be formulated by the following rule: 

Multiply the decimal equivalent of each hexadecimal 
digit by the place value of the digit, expressed in 
decimals (that is, by the appropriate power of 16). 
Add all such products to obtain the equivalent 
decimal. 
U sing the previous examples, but in reverse: 

Example 1: Convert (C3) 16 into decimals. 
C3 = 12 X 161 + 3 X 160 = 192 + 3 = (195)10 
~ 

Example 2: Convert (6AE) 16 into decimals. 
~ 

6AE-== 6 X 162 + 10 X 161 ~14 X 16° 

= 6 X 256 + 10 X 16 + 14 X 1 
= 1536 + 160 + 14 = 1710 
= (1710)10 

The method requires memorization, or a table, of 
powers of 16 and becomes unwieldy for larger-size 
hexadecimal numbers. Another technique, which con-
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sists of a combination of multiplication and addition, 
is frequently easier than direct expansion. It may be 
stated as follows: 

Multiply the decimal equivalent of the high-order 
( leftmost) hexadecimal digit by 16. Add in the 
decimal equivalent of the next lower-order hexa
decimal digit (at right) and multiply the sum again 
by 16. Continue this process until the last (right
most) hexadecimal digit is added to the product. 
The last sum is the decimal sought for. Do not 
multiply it by 16! 
Using again the previous example, to convert 

( 6AE ) 16 into decimals: 

6 A E hexadecimal 
Multiply X 16 

96 
Add inA + 10 

106 
Multiply X 16 

AddinE 

Sum 

636 
106 

1696 
+ 14 
1710 decimal. Hence, (6AE h6 = (1710 ho 

The conversion of large hexadecimal numbers by 
either direct expansion or the multiplication-addition 
method described above becomes quite tedious and 
difficult. The use of conversion tables makes possible 
rapid conversion of hexadecimal integers into equiva
lent decimals, so that necessary arithmetic can be per
formed in the decimal system. The hexadecimal
decimal conversion table in Appendix E of IBM Sys
tem/360 Principles of Operation permits direct con
version of three-position hexadecimal integers into 
decimals, and vice versa. This includes the range of 
hexadecimal numbers 000 to FFF, which is equivalent 
to decimal 0000 to 4095. Hexadecimal integers of four 
to eight positions can be converted by using the ex
tended hexadecimal-decimal integer conversion table 
(Table 4) in conjunction with the three-position table 
in the Principles of Operation Manual. (Alternatively, 
the three low-order digits of a hexadecimal number 
may be converted by using one of the methods de
scribed earlier.) Table 4 consists essentially of powers 
of 16 (163 through 167 ), multiplied by the range of 
hexadecimal digits from 1 through F. Thus, all the 
arithmetic necessary for expansion of a hexadecimal 
integer in powers of 16 is already performed in the 
table. 

The following two examples illustrate the use of 
Table 4, as well as a comparison with the multiplica
tion-addition method of conversion described earlier. 
Example 1: Convert (FA9C4D h6 into decimals, 

using tables. 
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XOOO XOOoo XOOOOo XOOOooo XOOOOOOO 

1 4,096 65,536 1,048,576 16,777,216 268,435,456 

2 8,192 131,072 2,097,152 33,554,432 536,870,912 

3 12,288 196,608 3,145,728 50,331,648 805,306,368 

4 16,384 262,144 4,194,304 67,108,864 1,073,741,824 

5 20,480 327,680 5,242,880 83,886,080 1,342,177,280 

6 24,576 393,216 6,291,456 100,663,296 1,610,612,736 

7 28,672 458,752 7,340,032 117,440,512 1,879,048,192 

8 32,768 524,288 8,388,608 134,217,728 2,147,483,648 

9 36,864 589,824 9,437,184 150,994,944 2,415,919,104 

A 40,960 655,360 10,485,760 167,772,160 2,684,354,560 

B 45,056 720,896 11,534,336 184,549,376 2,952,790,016 

C 49,152 786,432 12,582,912 201,326,592 3,221,225,472 

D 53,248 851,968 13,631,488 218,103,808 3,489,660,928 

E 57,344 917,504 14,680,064 234,881,024 3,758,096,384 

F 61,440 983,040 15,728,640 251,658,240 4,026,531,840 

Table 4. Hexadecimal-decimal integer conversion 

From Table 4: FOOOOO = 15,728,640 
AOOOO 655,360 

9000 36,864 
From 3-position table (or below): C4D 3,149 

Sum: (FA9C4Dh6 = 16,424,013 
decimal 

(C4D)16 = 12 X 162 + 4 X 16 + 13 X 1 = 
3072 + 64 + 13 = 3,149 

Example 2: Check the hexadecimal multiplication 
ABCD X ABCD = 734B8229 by converting to 
decimal arithmetic. Use both tables and longhand 
methods. 

Solution: 
(ABCD)16 = 10 X 163 + 11 X 162 + 12 X 161 + 13 X 160 

= 10 X 4096 + 11 X 256 + 12 X 16 + 13 X 1 
= 40,960 + 2,816 + 192 + 13 
= (43,981) 10 

Carrying out the multiplication in decimais: 
43981 decimal 

X 43981 decimal 

43981 
351848 

395829 
131943 

175924 

1934328361 Answer: (1,934,328,361 )]0 

To check the hexadecimal multiplication, convert 
( 73,4B8,229) 16 into decimals: 
1. By use of conversion tables (Table 4 or the table in 

the Principles of Operation Manual) : 
From Table 4: 70000000 1,879,048,192 

3000000 50,331,648 
400000 4,194,304 

BOOOO 720,896 
8000 32,768 

From 3-position table: 229 553 

Sum: (734B8229) 16 = (1,934,328,361) 10 



This checks the answer obtained above by decimal 
multiplication. 
2. By use of multiplication-addition method: 

Hexadecimal 
Multiply 

Addin3 

Multiply 

Add in 4 

Multiply 

Add in B 

Multiply 

Add in 8 

Multiply 

Add in 2 

Multiply 

Add in 2 

Multiply 

Add in 9 

Final Sum: 

734B8229 

~J 112 
+3 
115 

X 16 
690 

115 

1840 
+ 4E--
1844 
X 16 

11064 
1844 

29504 
+ 11~,--""" 
29515 
X 16 

177090 
29515 
472240 
~ Eo,------' 

472248 
X 16 

2833488 
472248 

7555968 
+ 2~----""" 

7555970 
X 16 

45335820 
7555970 

120895520 
+ 2~,-------.....I 

120895522 
X 16 
725373132 

120895522 
1934328352 
+ 9 ~,---------' 

1934328361 Answer: (1,934,328,361 )10 

The conversion ~_gain checks the previous results. 
Note, however, the excessive length of this method 
compared with direct use of the tables for conversion. 

Conversion of F radions 
In general, the fractional part of a number must be 
converted separately from its integer part, since the 
process of conversion is different for each. Frequently, 
the conversion of a fraction is the inverse of integer 
conversion. Where the integer part is converted by a 

process of repeated division, the fractional part is con
verted by repeated multiplication; where the integer is 
converted by multiplication, the fraction is converted 
by division. 

Conversion of Decimal Fractions to Binary 

Decimal fractions are converted into the binary system 
by successively multiplying the fraction by 2. The in
teger parts formed during multiplication are the suc
cessive binary digits, the first integer being the most 
Significant digit of the binary fraction. Ignore the inte
ger parts during each multiplication and continue 
multiplying by 2 until the fraction either has been re
duced to zero or a sufficient number of binary digits 
have been generated, in the event of a nonterminating 
fraction. The scheme of the example below may be 
used. 
Example: Convert the decimal fraction 0.828125 into 

binary. 
Decimal Integer 
Fraction X 2 = Product Part (Binary Digit) 
0.828125 X 2 = 1.65625 1 (MSD) 
0.65625 X 2 = 1.3125 1 
0.3125 X 2 = 0.625 0 
0.625 X 2 = 1.25 1 
0.25 X 2 = 0.50 0 
0.5 X 2 1.00 1 (LSD) 

Collecting digits from top to bottom and placing 
them to the right of the binary point, the answer is 
(0.110101 h. 

Conversion of Decimal Fractions to Hexadecimal 

The same procedure is used as for conversion to 
binary, except that the fraction is repeatedly multi
plied by 16. The integer part of the first product is 
the high-order or most significant digit of the hexa
decimal fraction. Convert decimal integers between 
10 and 15 into corresponding hexadecimal digits (A 
through F). Continue multiplication by 16 until either 
the fraction is removed or a sufficient number of hexa
decimal digits have been generated. 
Example: Convert (0.828125) 10 into a hexadecimal 

fraction. 
Decimal Fraction X 16 = Product Integer Part = Hex Digit 

0.828125 X 16 = 13.25 13 = D (MSD) 
0.25 X 16 = 4.00 4 = 4 (LSD) 

Collecting digits and placing to right of hexadecimal 
point: 0.D4 

Therefore (0.828125) 10 == (O.D4) 16 

Conversion of Binary Fractions to Decimals 

The method of repeated multiplication can be used for 
converting binary fractions into equivalent decimals. 
The technique is somewhat clumsy, however, since all 
arithmetic must be done in binary notation; that is, the 
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fraction must be multiplied by the binary equivalent of 
decimal 10 == (1010) 2 and the binary digits developed 
must then be converted back into decimals. In most 
cases, a literal expansion of the binary fraction in 
ascending negative powers of 2 will give the decimal 
equivalent more quickly and less laboriously. A table 
of the decimal equivalents of negative powers of 2 will 
prove handy for conversion. (See Appendix D in the 
above-mentioned manual IBM System/360 Principles 
of Operation. ) 

Add in the decimal equivalent of the high-order digit, 
D (==13):. 

0.25 + 13 == 13.25 
Divide 13.25 again by 16, as shown below: 

0.828125 
16/ 13.250000 

128 

45 
32 

Example: Convert (0.110101 h into a decimal fraction. 
0.110101 = 1 X 2-1 + 1 X 2-2 + 0 + 1 X 2- 4 + 0 + 

130 
128 1 X 2-e 

= 1/2 + 1/4 + 0 + 1/16 + 0 + 
1/64 = 53/64 

0.5 + 0.25 + 0 + 0.0625 + 0 + 
0.015625 

= (0.828125 ho Answer 

20 
16 

40 
32 

Conversion of Hexadecimal Fractions to Decimals 
80 

Answer: (0.828125) 10 80 
The conversion of a hexadecimal fraction to decimals 
is the inverse of hexadecimal-to-decimal integer con
version and, accordingly, requires repeated division 
by 16. The rule is: 

00 
Since the conversion of hexadecimal fractions proves 

frequently lengthy and tedious, as the example illus
trates, Table 5 has been included for the direct con
version of up to three-place hexadecimal fractions into 
equivalent decimal fractions. The example below il
lustrates the use of Table 5: conversion table. 
Example: Convert the hexadecimal fraction O.ABC 

Divide the decimal eqUivalent of the low-order 
( rightmost) hexadecimal digit by 16. Add the quo
tient to the next-higher-order hexadecimal digit (at 
left) and again divide by 16. Repeat the process 
until the high-order (leftmost) digit of the hexa
decimal fraction has been used. The last quotient is 
the answer. 

Example: Convert (O.D4) 16 to a decimal fraction. 
First divide the low-order digit, 4, by 16: 

4.00 -7- 16 == 0.25 

o.x O.Ox 
1 0.0625 0.00390625 
2 0.1250 0.00781250 
3 0.1875 0.01171875 
4 0.2500 0.01562500 
5 0.3125 0.01953125 

6 0.3750 0.02343750 
7 0.4375 0.02734375 
8 0.5000 0.03125000 
9 0.5625 0.03515625 

A 0.6250 0.03906250 
B 0.6875 0.04296875 
C 0.7500 0.04687500 

D 0.8125 0.05078125 
E 0.8750 0.05468750 
F 0.9375 0.05859375 

into an equivalent decimal fraction, using the table. 

From Table 5: O.A = 0.625000000000 
O.OB = 0.042968750000 
O.OOC = 0.002929687500 

Sum: O.ABC = 0.670898437500 
Hence, (O.ABC he = (0.6708984375 ho 

O.OOX 
0.000244140625 
0.000488281250 
0.000732421875 

0.000976562500 
0.001220703125 
0.001464843750 
0.001708984375 
0.001953125000 
0.002197265625 

9·002441406250 
0.00278q5468~5 

0.002929687500 

0.003273828125 
0.003517968750 
0.003662109375 

Table 5. Hexadecimal-decimal fraction conversion 
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It has been mentioned earlier that subtraction is car
ried out by the addition of complements. The present 
section is concerned with the use of complements to 
represent negative numbers and for the addition and 
subtraction of signed (positive or negative) numbers. 
The meaning and use of complements must be thor
oughly understood to avoid mishandling of arithmetic 
instructions. The definitions and examples which fol
low should therefore be studied carefully. 

Subtraction with Ten's Complement 

The meaning of the phrase "subtraction by addition 
of the complement" is made clear by an illustration 
from decimal arithmetic. Suppose the six-digit decimal 
number 235,481 is to be subtracted from 584,673. This 
may be done conventionally: 

584,673 - 235,481 == 349,192 
Alternatively, the subtraction may be done by the 
addition of the ten's complement as follows: 

584,673 + (1,000,000 - 235,481) - 1,000,000 , 

ten's complement 
The term in parentheses (1,000,000 - 235,481) is 
called the ten's complement of 235,481. It turns out 
to be 

1,000,000 
235,481 

764,519 (ten's complement of 235,481) 

Note that the ten's complement can be written down 
by inspection, by subtracting each digit of the number 
from 9, and then adding 1 to the low-order (least 
significant) digit at right. (Alternatively, the ten's 
complement of a number may be formed by subtract
ing each digit from 9, except the rightmost, which is 
subtracted from 10.) 
N ow adding the ten's complement to the minuend, 

584,673 
+ 764,519 

1,349,192 

Complements 

Finally, to subtract 1,000,000 (indicated above), it 
is necessary only to drop the high-order 1 at left. Thus 
the final result is 349,192, which checks with the result 
of conventional subtraction. Note that in a computer 
with fixed-length arithmetic registers - say, six digits 
each - the high-order 1 (appearing in the sum of the 
minuend and the complement) would have been 
dropped automatically, since it could not have been 
contained in the register. Thus, with fixed-length 
arithmetic (as is the case in a computer), subtraction 
can always be done by adding the complement of the 
subtrahend to the minuend, and simply ignoring the 
high-order carry ( off-register). 

Definition of Radix Complement 
It has been shown that the ten's complement of a 
number is obtained by subtracting it from 1000000 
. . . (as many zeros as there are digits in the number). 
More precisely, the ten's complement of a number 
(N) is obtained by subtracting it from the base, or 
radix, of 10 raised to a power equal to the number 
( n) of digit positions: 

Ten's complement of N == IOn - N, 
where n == number of digit positions in N 
Note that IOn is one more than the largest fixed

length decimal number that can be formed with n 
digit positions; that is, the largest possible decimal of 
n digits is 

IOn - 1 
More generally, the radix or base (b) complement 

of a fixed-length number (N) is obtained by subtract
ing the number from the base raised to a power equal 
to the number (n) of digit positions. Expressed in 
mathematical form: 

Radix (base) complement of N == bn - N 
where b is the base, or radix, of the number system 
and n is the number of digit positions in N. 
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Again, the largest fixed-length number of radix b that 
can be formed with n digit positions is equal to b n - 1. 
Thus, when the original number is added back to the 
complement, the resulting number 

[(bn - N) + N] is == bn == 1()()()() ... 

This is 1 more than the largest possible number of 
length n. For this reason the high-order carry of 1 can 
be ignored in fixed-length arithmetic. Since the extra 
1 may be ignored, an alternative definition for the 
radix complement of a fixed-length number is as 
follows: 

The radix complement of any number in a fixed
length arithmetic system is that number which when 
added to the original number produces all zeros. 

Signed Numbers 
Fixed-point numbers carry a sign bit (the first bit posi
tion ), which indicates whether the number is positive 
or negative. Positive numbers are represented in true 
(binary) form with a zero sign bit, while negative 
numbers are represented in complement form with a 
one bit in the sign position. The handling of signed 
numbers will be described later under "Two's Com
plementNotation". Since the rules for handling signed 
numbers are the same, however, in any numerical 
system, they will be briefly reviewed at this time. Two 
rules should be recalled: 

1. To add numbers of like sign (both positive or 
both negative), find the sum of the numbers and 
give it the common sign. In other words, the sum 
of two positive numbers is positive, and the sum 
of two negative numbers is negative. 

2. To add numbers of unlike sign, find the difference 
between the numbers and give it the sign of the 
larger number. 

It is of interest to note that in a computer using com
plement notation and sign bits, the signs pretty much 
take care of themselves. The only case that causes con
cern is the addition of a large negative number to a 
smaller positive number, or equivalently, the subtrac
tion of a larger number from a smaller number. How 
does the computer know that the result is negative in 
this case? An example with decimal arithmetic shows 
how complement notation takes care of this. Assume 
that 584,673 is to be subtracted from 235,481. Using 
the conventional method and rule 2, above, it is found 
that 

+ 235,481 
- 584,673 

- 349,192 
U sing the method of adding the complement, first find 

40 

the ten's complement of 584,673, which is 415,327 (by 
inspection). Now adding the complement, 

235,481 
+ 415,327 ( ten's complement of 584,673) 

650,808 (complement of correct result) 
This is, of course, the wrong result. Note, however, 

that no high-order carry (oH-register) has been gen
erated this time, as was the case in the earlier example 
of 584,673 - 235,481. This provides the clue to the 
computer: whenever there is no carry oH-register after 
adding the complement, the result is negative and 
should be recomplemented. (Alternatively, whenever 
there is a carry of 1 oH-register, the result is positive 
and recomplementing is unnecessary.) Thus, recom
plementing the earlier result, 

1,000,000 - 650,808 == 349,192 
which is the correct answer after a negative sign has 
been affixed (that is, - 349,192). 

Finally, the steps required in subtraction of decimals 
with the ten's complement may be summarized as 
follows: 

Compute the ten's complement of the subtrahend 
and add it to the minuend. If there is a carry of 1 
( oH-register ), the result is positive and recomple
menting is not necessary. If there is no carry, the 
result is negative and must be recomplemented. 
With two's complement notation, the sign bits gen-

erally indicate the sign of the result. Since negative 
numbers are always represented in complement form, 
recomplementation is not necessary, as will be shown 
later. 

Two's Complement 
The two's complement and one's complement in 
binary notation are analogous to the ten's complement 
and nine's complement of the decimal system. Accord
ing to the definition of the radix complement, the two's 
complement of a binary number (N) with n digit 
positions is: 

Two's Complement of N == 2n - N 
Thus, for an eight-bit binary number (N) the two's 
complement is 

28 - N == 100000000 - N 
The two's complement of the binary number 00111001, 
for example, is 28 - 00111001, or 

100000000 
- 00111001 

11000111 
Note that actual subtraction is not required, since the 
two's complement can be obtained by inspection of 
the number. Each bit of the number is simply inverted 



(that is, a 1 is changed to a 0, and a 0 is changed to 
a 1) and a 1 is then added to the low-order (least 
significant) bit at right. Thus, the 

binary number 00111001 
is inverted 11000110 
1 is added + 1 

to obtain 11000111 == two's complement 
. of 00111001, 

which checks with the result obtained above. 

Summing up, the two's complement of a binary 
number is obtained by inverting each bit of the num
ber and adding a 1 in the low-order (least significant) 
bit position. 
Examples of addition and subtraction of negative 
'numbers in two's complement form are given in the 
next section. 

Two's Complement Notation 
The first bit position (0) of a fixed-point binary in
teger holds the sign of the binary number; the re
maining bit positions designate the magnitude of the 
number. Positive numbers are represented in true 
binary notation with a zero sign bit. Negative num
bers are represented in two's complement notation 
with a one bit in the sign position. The representation 
of negative numbers in complement notation makes 
recomplementation unnecessary. 

In addition to making recomplementation unnecess
ary, two's complement notation facilitates extension of 
the operands for high-precision multiplications and 
divisions. In the type of number representation de
scribed above, the halfword or full word operands may 
be considered the low-order portion of an infinitely 
long representation of the number. The bits between 
the sign position and the leftmost significant bit of the 
integer are always the same as the sign bit. When the 
number is positive, all bits to the left of the most sig
nificant bit, including the sign bit, are zeros. When 
the number is negative, all bits to the left of the MSD, 
including the sign bit, are ones. Therefore, to extend 
an operand with high-order bits (to a fullword or two 
words in length), a field of the proper length is pre
fixed, in which each bit equals the high-order (sign) 
bit of the operand. For example, the 16-bit positive 
number 

S 
o 1101011 00011010 

may be extended to 32 bits by prefixing a/field of 16 
zeros to the high-order zero bit: / 

S 
o 0000000 00000000 01101011 00011010 

Similarly, the 16-bit negative number 
S 
1 1011001 10011010 

is extended to 32 bits by prefixing 16 ones to the one 
sign bit: 

S 
1 1111111 11111111 11011001 10011010 

Zero and Maximum Numbers 
It is important to note that tW9's complement notation 
does not include the representation of a negative zero. 
A zero is always positive and includes a zero (posi
tive) sign bit. Thus, 

S 
o == 0 0000000 OOOOOOOO 

Because of the one sign bit in negative numbers, 
the range of negative numbers in two's complement 
notation is one larger than the total set of positive 
numbers. Since the sign bit is occupied by a zero, the 
largest positive 16-bit number consists of 15 one bits 
and a zero sign bit, which is equal to 215 - 1, or 
decimal 32,767 (since 215 == 32,768): 

S 
215 -1 == 32,767 == 0 1111111 11111111 (max. + 

number) 

The largest 32-bit positive number consists of a zero 
sign bit, followed by 31 one bits. This comes out 
to 231 - 1, or decimal 2,147,483,647 (since 231 == 
2,147,483,648). 

In contrast, the largest negative number consists of 
an alI-zero integer field with a sign bit of 1. Thus, the 
largest 16-bit negative number is 

S 
- 215 == - 32,768 == 1 0000000 00000000 

and the largest 32-bit negative number is 
- 231 == - 2,147,483,648 == 

1 0000000 00000000 00000000 00000000 
The CPU of the System/360 cannot represent the 

complement of the largest negative number. When an 
operation, such as subtraction from zero, produces the 
complement of the largest negative number, the num
ber remains unchanged, and a fixed-point overflow ex
ception is recognized. (This causes a program inter
ruption when the fixed-point overflow mask bit is 1.) 
When the final result of the complemented number is 
within the representable range, however, an overflow 
does not occur. An example would be a subtraction 
from - 1. The product of the two largest negative 
numbers also does not cause an overflow, since it is 
representable as a double-length positive number. 
Additional examples of overflow conditions are de
scribed in the next section. 
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Overflow 
When the result of an add, subtract, or shift operation 
exceeds the capacity of the register or field containing 
the result, an overflow condition results. Since an over
flow carries into the leftmost, or sign-bit, position, it 
changes the sign. (However, in shift operations the 
sign of the shifted number remains unchanged, even if 
significant high-order bits are shifted out.) Thus, in a 
positive overflow, the final sum or difference comes out 
negative, while a negative overflow results in a positive 
sum. 

The CPU recognizes an overflow condition by com
paring the carries out of the sign-bit (leftmost) posi
tion with the high-order bit position (MSD) of the 
binary number. (No carry out is equivalent to a carry 
of zero.) If the carries out and the high-order bit are 
the same, the result is satisfactory and no overflow 
occurs; if they are different, an overflow is recognized 
and the sign bit changes. (This is not corrected after 
the overflow.) Moreover, an overflow causes a pro
gram interruption when the fixed-point overflow mask 
bit is 1. 

The presence or absence of an overflow condition 
may be recognized by the condition of the carries. (As 
an alternative, the indicated operation may be per
formed in decimals to check whether the result exceeds 
the capacity of the register.) The result of an opera
tion does not overflow if there is either no carry into 
the high-order bit position and no carry out, or a 
carry of 1 into the high-order position and also a carry 
out. In contrast, an operation overflows if there is 
either a carry into the high-order position and no carry 
out, or a carry out but no carry into the high-order bit 
position. The following examples, which have only 
eight bit positions for convenience, illustrate the four 
possible cases. Decimal equivalents are given for com
parison purposes. Note that the results of the two op
erations which result in overflow exceed decimal 127 
(that is, 27 -1), which is the maximum number that 
can be contained in an eight-bit register in two's 
complement notation. 

Examples of Two's Complement Notation 
1. + 62 = 00111110 

+ 27 = + 00011011 

+ 89 = 01011001 

No overflow 

In this straightforward addition, there is neither a 
carry into the high-order bit position nor a carry out. 
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Since the carries agree ( both are zero), there is no 
overflow. 
2. + 62 = 00111110 

- 27 = + 11100101 (two's complement of 00011011 = 27) 
1 ~ Carry in 

+ 35 = ~ 00100011 No overflow 
Carry out 

In this example, there is both a carry into the high
order position and a carry out, which is ignored. There 
is no overflow. 

3. + 27 = 00011011 No overflow 
- 62 = + 11000010 (two's complement of 00111110 = 62) 
- 35 = 11011101 (two's complement of 00100011 = 35) 

In this subtraction of a larger number from a 
smaller number, there is neither a carry in nor a carry 
out, but the sign changes to 1, indicating that the re
sult (-35) is in complement form. There is no over
flow. 
4. - 62 = 11000010 (two's complement of 00111110 = 62) 

- 27 = + 11100101 (two's complement of 00011011 = 27) 
1 

- 89 = ~ 10100111 (two'scomplementof89 = 01011001) 

Here there is both a carry into the high-order posi
tion and a carry out (which is ignored). There is no 
overflow, but the sign bit of 1 indicates that the result 
is in two's complement form and, hence, negative. 
5. + 62 = 00111110 

+ 89 = + 01011001 Overflow! 
1 

+ 151 = 10010111 

In this addition example, there is a carry into the 
high-order bit position, but no carry out, indicating an 
overflow condition. (This is also evident from the 
decimal result, 151, which exceeds 127, the maximum 
number that can be contained in an eight-bit register. ) 
Note also that the sign bit has changed to 1, indicating 
a negative result for positive overflow. 
6. - 62 = 11000010 (two's complement of 00111110 = 62) 

- 89 = + 10100111 (two's complement of 01011001 = 89) 
Overflow! 

-151 = ~ 01101001 (two's complementoflOO10111 = 151) 

Here no carry into the high-order bit position is 
developed, but there is a carry out, indicating an over
flow. This is also evident from the decimal result, since 
-151 exceeds the capacity (-127) of an eight-bit 
register. Note further that the sign bit has changed to 
zero, indicating a positive result for a negative over
flow condition. 



1. Express the following numbers In successive pow
ers of the radix and evaluate their decimal equiv
alents (where applicable): ( 547) 10; ( 3,289.6375) 10; 

( 121,001 h; (3213)s; (110,110,001) 2; (100011 h; and 
( 0.111111) 2. 

2. What is the meaning of the hexadecimal number 
9B4D.3A 7 in positional notation? What is its decimal 
equivalent? 

3. Convert the following binary numbers into hexa
decimal notation: 

10001010; 1001110100; 1110101.001110101. 
4. Convert the following hexadecimal numbers into 

binary notation: 
A72B; 39BF4D; ABCDEF; 52.A7EF98; 123.ABC. 

5. Add the binary numbers 1100011 and 0111001; 
111101111 and 111101111; 1000 1111 1010 0001 and 
0001 0011 1110 0101. 

6. Add the following hexadecimal numbers, using 
Table 2 when necessary: 12345 and 56789; 8FB5 and 
CD69; 345.789 and 832.BDE; ABCD.09EF and 
1234.5698. 

7. Give the rules of binary subtraction and subtract 
the following binary numbers, using either the conven
tional or payback method, as desired: 100000 - 1; 
111010- 100100; 111111111-100000000; 10001.11001 
- 1101.00110. 

8. Perform the following hexadecimal subtractions, 
using Table 2: 

Questions and Exercises 

F865 - 9AB7; E73F.A983 - A9CD.87FE. 
9. Perform the following binary multiplications: 

1100 XII; 1010 X 1001; 10.001 X 1.01. 
10. Perform the following hexadecimal multiplica

tions, using Table 3: 
3E7 X5B9; D.38 X 6.EF. 

11. Explain the subtraction (casting out) method of 
number conversion and convert to binary the following 
decimal numbers: 39; 583; 7946. Also, describe the 
division method and perform the conversions above by 
this method. Which method is more rapid? 

12. Using the division method, convert to hexa
decimal notation the following decimal numbers: 89; 
438; 999; 5793; 875,472,925. 

13. Describe the double-dabble method for convert
ing binary integers into decimals and convert the fol
owing binaries: 110101; 1110110001; 111111111. 

14. Explain the direct and the multiplication-addi
tion method for converting hexadecimal integers into 
decimals and perform the following conversions 
(check the results by use of Table 4 of this manual 
and the table referred to earlier in IBM Systemj360 
Principles of Operation): 7E5; F8D; 89F7. 

15. Convert the following decimal fractions and 
mixed numbers first into binaries and then into hexa
decimals (check the results by converting each of the 
fractions back into decimals): 0.79; 0.6666666 ... ; 
0.123; 34.675. 
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Chapter 3: Introduction to Assembler Language Programming 

This chapter is an expository introduction to System/ 
360 assembler language programming. Later chapters 
in this text make considerable use of assembler lan
guage program samples, and thus require the back
ground that this chapter provides. 

Review and Terminology 

Programming in an assembler language offers a 
number of important advantages over programming in 
the actual language of the computer: 

1. Mnemonic operation codes are provided. For 
instance, the actual operation code for the instruction 
Store in hexadecimal is 50; in the assembler language 
we can write the mnemonic operation code ST. Most 
programmers never learn the actual codes. 

2. Addresses of data and instructions can be writ
ten in symbolic form, and in practice almost all ad
dresses are so written. The programmer is thereby 
relieved of severe problems in the effective allocation 
of storage, and the resulting program is far easier to 
modify. Furthermore, the use of symbolic addresses 
reduces the clerical aspects of programming and elim
inates many programming errors. If the symbols are 
chosen to be meaningful, the program is also much 
easier to read and understand than if written with 
numerical addresses. 

3. Data may be introduced into the program struc
ture, and space reserved for results, by the use of 
suitable assembler instructions. These are written in 
somewhat the same form as machine instructions but 
are treated quite differently by the assembler. 

4. Many other assembler instructions direct the 
assembler in various other matters of concern. Among 
the most important of these are the techniques for 
letting the assembler assign base registers and com
pute displacements. 

The sum effect of these advantages is so great that 
it is virtually out of the question to program in actual 
machine language, that is, to write actual operation 
codes and numerical addresses, and, in the case of 
the System/360, to write actual base register numbers 
and displacements. 

An assembler language program is not directly exe
cutable by the computer. The mnemonic operation 
codes and symbolic addresses must be translated into 
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the form the machine expects of instructions. This is 
the function of the processor program, also called the 
assembler. 

The assembly process begins with a source program 
written by the programmer. Ordinarily, a special cod
ing form is used such as that shown in Figure 27. (We 
shall study this program in detail later.) Cards are 
punched from this form, making up the source pro
gram deck. This source program deck becomes the 
primary input to the assembly process, as shown in 
Figure 26. 

Systetn / 360 

Figure 26. Schematic representation of the assembly process 

The assembly is done, in our case, by the System/ 
360 under control of a processor program. The proc
essor program is supplied by IBM; it consists of many 
thousands of machine instructions. 

There are two outputs from the processor run. The 
first is an object program consisting of actual machine 
instructions corresponding to the source program 
statements written by the programmer. In many cases 
the object program is punched into cards; in other 
cases it is left on magnetic tape or magnetic disks. 
The second output is a program listing or assembly 
listing. This important document shows the original 



source program statements side by side with the ob
ject program instructions created from them. Many 
programmers work from the assembly listing as soon 
as it is available, hardly ever referring to their coding 
sheets again. An example appears as Figure 28, which 
we shall also consider in detail later. 

In this chapter we shall consider the broad out
lines of the assembler language for the System/360. 
The presentation will be largely in terms of examples 
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that bring out most of the matters needed for writing 
simple programs. 

There will be no attempt to cover every feature of 
the assembler language. Some topjcs will be treated in 
other chapters in this text; others are of such a spe
cialized nature as to be best left to the assembler 
language reference manual. 

It is assumed that the reader has access to one of the 
SRL publications on the assembler language. 
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Figure 27. A program to illustrate assembler language concepts. The "processing" performed by the program is not intended to be 
realistic, and it is not necessary to understand the functons of the various instructions for the purposes of this publication. 
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A First Example 

Our first example of a program written in the assem:
bIer language for the System/360 (shown in Figure 
27), and written on a coding form, does some elemen
tary processing, the details of which do not concern us. 

The coding form permits a maximum of four fields 
on each line. These are called name, operation, oper
and, and comments. The ,name provides a reference 
identification for the line, if other parts of the program 
need to refer to it. Names are not required for every 
line. They are most commonly given to data elements 
and to instructions to which branches are made. It is 
also permissible to use a name simply for identifica
tion on an instruction to which a branch is not made. 

An operation is required on every line, with the 
exception of a comment line, which begins with an 
asterisk. The operation is most commonly a mnemonic 
operation code for a System/360 instruction, but it 
may also be anyone of a number of assembler instruc
tions. Examples of assembler instructions in this pro
gram are TITLE, START, USING, DC, DS, and END. 
We shall study each of these shortly. 

For the purposes of this chapter, it is not neces
sary that the reader understand the functioning of the 
various instructions used in the sample programs. All 
instructions are explained in other chapters of this text. 

The operand is most often a part of a System/360 
instruction, including an address part. 

The comments field may be used freely, at the pro
grammer's discretion, to document the purpose and 
the methods of the program. A comment for a given 
line may begin anywhere following the operand, as 
long as there is at least one blank space between op
erand and comment. Many programmers prefer to be
gin all comments in some fixed column, such as column 
30 or column 40, but this is discretionary. 

The column assignments printed on this form are 
acceptable for our purposes and will be used through
out this text. 'Ve may note in passing, however, that 
considerable Hexibility is permitted in the format of 
the source program. (The reader is referred to the 
SRL publication.) 

Let us now turn to the program itself. 
The first line contains an assembler instruction, 

TITLE. Whatever is written in the operand field, 
ILLUSTRATIVE PROGRAM in this case, will be 
printed at the top of every page of the assembly 
listing. 

46 

The START instruction is used to dictate the start
ing address of the assembled object program. The 
value used in this example is 10016. 

The next two lines are important ones, which 
'should be written in every program. BALR is the 
mnemonic operation code for Branch and Link Reg
ister, which has the general format BALR R1,R2, 
where R1 and R2 are registers. The action of the in
struction is to place in R1 the address of the instruc
tion following the BALR, and to branch to the ad
dress contained in R2 unless R2 is zero, in which case 
there is no branch. Our instruction, BALR 15,0, will 
ther~..Qre place. the ~ddr~§'L.2.L~_I.!~~ machine in
~ction in regist;; 15 ynd there will be ~2. .. !?~~.~£.~,~ .. _ 
~-tli~stetror:1hlU?!.9-f{~_~.:_ . 
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Let us review the effect of the BALR-USING com
bination. The BALR places in register 15 the address 
of the next machine instruction, which is the L 2, 
DATA, since USING is not a machine instruction and 
takes no space in the object program. The USING 
then informs the assembler that register 15 is avail
able as a base register and what its contents will be. 

As in so many other aspects of programming, it is 
important to understand when these actions occur. 
The BALR is an object program instruction and is not 
executed until the assembled object program is loaded. 
The assembler, of course, does not execute it. The 
USING is strictly an assembler instruction, in this case 
giving information to the assembler about what will 
be done later by the object program. Once the as
sembly is finished, the USING has no further function. 

Now we come to the body of the program, starting 
with the L 2,DATA instruction. L is the mnemonic 
operation code for Load, which in this case places in 
register 2 the contents of the fullword having the sym
bolic address DATA. Looking down the page, we see 
that DATA is in the name field of a DC assembler in
struction, which, as we shall study in a moment, 
stands for Define Constant. The A 2, TEN is a similar 
type of instruction, adding to register 2 the contents 
of a fullword having the symbolic address TEN. 

The next instruction, SLA 2,1, is a little different. 
SLA stands for Shift Left Single. The contents of reg-



ister 2 are to be shifted left one binary place. There 
is no symbolic address in this case. 

The Subtract instruction that comes next, S 2,DA T A 
+4, exhibits relative addressing: the address is given 
«relative to" another address. The address is specified 
as four bytes beyond DATA. Looking at the constant 
area of the program, we see that four bytes (one full
word) beyond DATA there is indeed another fullword 
constant, the number 15. The Store instruction, ST 
2,RESULT,. introduces no new assembler ideas. 

The following three instructions present no new 
assembler concepts either. The Load and Add are fa
miliar, forming a sum in register 6. The Convert to 
Decimal (CVD) converts the contents of register 6, 
which are binary, to a decimal number in the location 
DEC. DEC is required by the machine design to be a 
doubleword, aligned on a doubleword boundary. We 
shall see how the alignment is handled in considering 
the data definition assembler instructions, the DC's 
and DS's. 

The final System/360 instruction is the Supervisor 
Call, which returns control to the "supervisor" pro
gram that runs the System/360 between jobs. (There 
is no Stop instruction in the system.) 

The DC assembler instruction, which stands for 
Define Constant, allows us to introduce data into the 
program structure. Specification of the type of data, 
and the amount of space needed for it, is the function 
of the type designation, in this case the F. F stands 
for Fullword, in binary format. The number written in 
quotes following the F will be assembled and entered 
into storage along with the assembled instructions. 

Down at RESULT we have another assembler in
struction, DS, which stands for Define Storage. This 
is used to allocate space without entering anything 
into storage. We use a type specification F to indicate 
the amount of storage and what boundary alignment 
should be performed, if any. That is, the assembled 
address of an F -type DC or DS must be a multiple of 
4; the assembler will skip over a few bytes, if re
quired, to reach such an address. 

The DS at DEC will allocate an eight-byte space, 
aligned on a doubleword boundary; that is, the as
signed address will be a multiple of 8. 

The END assembler instruction specifies that noth
ing further follows; the assembly process may be com
pleted. If an operand is written, as we have done, it 
directs the assembler to set up the object program so 
that when it is executed, the first instruction will be 
the one named. In our case, we have said that when 
the object program is carried out the BALR at BEGIN 
should be the first instruction. 

Now we may turn to Figure 28, the assembly listing 
for this program, to see how things were handled. 

We see that the source program we wrote has been 
reproduced without change on the right-hand side of 
the listing. The object program instructions created 
from the source program statements are shown at the 
left, with the storage location of each line appearing 
in the leftmost column in hexadecimal. Source pro
gram lines from which no object program entries were 
created are blank in the object program position; in 
this program, TITLE, START, USING, and END are 
in this category. 

The TITLE line has indeed caused the words IL
LUSTRATIVE PROGRAM to be printed at the top 
of the page. The START 256 instruction has caused 
the first word of the program to be placed in 10016 == 
25610• We can read the assembled BALR instruction; 
05 is the actual operation code, F is R1, and 0 is R2. 
The assembled object program instructions and con
stants are given exclusively in hexadecimal. For in
stance, base register 15 is shown as F, in hexadecimal. 

BALR is a representative of the RR format instruc
tions: a one-byte operation code, and a second byte 
containing two register numbers. 

The USING has generated no object program entry; 
its work was finished when it informed the assembler 
that register 15 was available for use as a base reg
ister and that base register 15 would contain the ad
dress of the next machine instruction. We see that the 
address of the next machine instruction has been 
printed: 000102. 

That next instruction is the first actual processing 
operation, the Load. Load is an example of an RX for
mat instruction. Reading the assembled bytes from 
left to right, we have: 58 is the operation code, 2 is 
the register to be loaded, 0 means there is no index 
register, F is the base register, and 022 is the displace
ment. We remember that in an RX format instruction 
the effective address is formed from the sum of the 
base register contents, the index register contents, if 
any, and the displacement. In this case the base reg
ister contains 102, there is no index, and the displace
ment is 022; the sum of these is 124. Looking down 
to the assembled location of the symbol DATA, we 
see that it is 124, as it should be. 

In the Add instruction that follows, the pattern is 
the same. The base register contents of 102, plus the 
displacement of 02A, gives a sum of 12C, which is the 
location of TEN. 

The SLA instruction is an example of an RS format 
instruction; the major difference in format between an 
RX and an RS instruction is that the RS does not per
mit an index register. In the instruction at hand, there 
is as a matter of fact no reference to storage, but a 
base register may still be specified if we wish, in order 
to provide for a variable number of positions of shift-
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ing. In this case, however, such is not desired. The 
index register and base register positions are simply 
zero; the effective address (the shift amount) is just 
the displacement of l. 

The next five instructions are further examples of 
RX formats, offering no new concepts. The reader may 
wish to check that displacements have been computed 
correctly, taking into account the relative addressing 
on the Subtract. 

We see even in this simple example that the as
sembler has assumed a great deal of the clerical bur
den that would be required to program the System/ 
360 in actual machine language. To the familiar ad
vantage of an assembler language (mnemonic opera
tion codes and symbolic addressing), which are im
portant enough, we have the added feature of auto
matic base register assignment and displacement 
computation. 

The assembled entries for the DC's are simply the 
requested constants, in hexadecimal. We note that the 

ILLUSTRATIVE PROGRAM 

TITLE 
START 

000100 05 FO BEGIN BALR 
000102 USING 

000102 58 20 F 022 L 
000106 5A 20 F 02A A 

DS enters nothing, but simply reserves space. A study 
of the address for the doubleword constant, DEC, 
shows that boundary alignment has been performed. 
The fullword constant BIN2 was placed at 138; a 
fullword is four bytes, so 13C was available for DEC. 
But 13C is not on a doubleword boundary, so four 
bytes were skipped over and DEC was assigned to 
140. 

The action of the assembler instruction END, in 
causing the first executed instruction to be the one 
named BEGIN, is not exhibited on the assembly list
ing. This is done as a part of the makeup of the object 
program deck. 

As it happens, the designation of BEGIN as the 
first instruction is not actually required. If the instruc
tion is written simply as END, which is permitted, the 
assembler arranges to start executing instructions with 
the first word of the object deck. This would be the 
BALR instruction anyway. We have written the op
erand BEGIN as a matter of good programming habit. 

ILLUSTRATIVE PROGRAM 
256 
15,0 
*.15 
2.DATA LOAD REGI S TER 2 
2.TEN ADD 10 

• THE FOLLOWING SHIFT HAS THE EffECT Of MULTIPLYING BY 2 
00010A 8B 20 0 001 SlA 2.1 
00010E 56 20 F 026 S 2.0AfA+4 NOTE RELATIVE ADD~ESSI~~ 
000112 50 20 F 02E ST 2.RESUlT 
000116 58 60 F 032 l 6,BINl 
OOOllA 5A 60 F 036 A 6.BIN2 
00011E 4E 60 F OlE CVD 6,OEC CONVERT T() DECIMAL 
000122 OA 00 SVC 0 SUPERVISfjt( CALL 
000124 00000019 DATA DC F'25' 
000128 OOOOOOOF DC f'15' 
00012C OOOOOOOA TEN DC f'10' 
000130 RESULT OS F 
000134 OOOOOOOC BINi DC f' 12' 
000138 0000004E BIN2 DC F'7S' 
000140 DEC OS 0 

END BEGIN 

Figure 28. Assembly listing of the program of Figure 27 
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A simplification of the writing of a program in the 
first place is only one of the major advantages of as
sembler language programming. Once written, the pro
gram is a great deal easier to modify than if it had 
been written with actual machine addresses. To illus
trate this fact, we now make a few minor changes in 
the program of the preceding section. 

Let us suppose that for some unspecified reason it is 
necessary to store the sum of BINI and BIN2, in bi
nary before converting it to decimal. We must insert 
an instruction: 

ST 6,BINANS 

just before the CVD. 

This is a rather simple sort of change and one that 
is representative of the kind of modification that is 
made with routine frequency on most programs. Yet 
it can have the effect of changing almost every effec
tive address in the program! The insertion of the four
byte instruction "pushes down" the storage spaces for 

Modifying an Assembler Language Program 

the DC's and DS's, requiring a change in the displace
ments of all the instructions that refer to the constants. 

Figure 29 is the assembly listing of the modified pro
gram. Scanning down the assembled instructions, we 
see that the displacements have been computed to re
flect the change in locations. Continuing the compari
son, however, we see that the displacements in the 
Convert to Decimal instruction are the same as in the 
earlier version. Has there been a mistake? 

The answer is the boundary alignment of the dou
bleword constants. In the earlier version, it was nec
essary to skip four bytes to provide an address for 
DEC that was on a doubleword boundary. The in
serted instruction, in effect, filled that skipped space. 
The reassembly therefore left the assembled address 
for DEC unchanged. 

The intended lesson in this example is that the as
sembler handled clerical details of address computa
tions in a more or less automatic manner that relieves 
the programmer of work and concern. 

START 256 
000100 05 FO BEGIN BALR 15,0 

000102 USING *,15 
000102 58 20 F 026 L 2,OATA LOAD REGISTER 2 
000106 5A 20 F 02E A 2,TEN ADO 10 

• THE FOLLOWING SHIFT HAS THE EFFECT OF MULTIPLYING BY 2 
00010A 88 20 o 001 SLA 2,1 
00010E 58 20 F 02A S 2,OAIA+4- NOTE RELATIVE AOOKESSING 
000112 50 20 F 032 ST 2,RESULT 
000116 58 60 F 036 L 6,B1NI 
00011A 5A 60 F 03A A 6,BIN2 
00011E 50 60 F 046 ST 6,BINANS 
000122 4E 60 F 03E evo 6,OEe 

SUPERVIS,R CALL TO EXIT 000126 OA 00 sve 0 
000128 00000019 DATA De F'25' 
00012e OOOOOOOF De F '15' 
000130 OOOOOOOA TEN De F'10' 
000134 RESULT OS F 
000138 oooooooe BINI De F'12' 
00013e 0000004E BI1II2 De F'18' 
000140 DEC OS 0 
000148 BINANS OS F 

END BEGIN 

Figure 29. Assembly listing of a slightly modified version of the program of Figure 27 
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Error Analysis by the Assembler 

Certain kinds of programming errors can be detected 
rather simply by the assembler. Some errors make it 
impossible to generate an instruction, and thereby dis
able the entire program. Others cannot be identified 
as definite errors, but only as possible or probable 
errors. 

The assembler for the System/360 carries out the 
complete assembly, if possible, regardless of the num
ber of errors, and regardless of the fact that the first 
error detected may have made it impossible to execute 

000100 05 fO 
000102 

M 000102 58 00 0 000 
000106 5A 20 F 026 

0 
U OOOlOA 58 00 0 000 
U OOOlOE 50 00 0 000 

SQ 000112 58 00 0 000 
000116 5A 60 F 02E 
OOOllA 4E 60 f 02A 
000 lIE OA 00 
000120 00000019 

T 000124 00000000 
000128 OOOOOOOA 

D 000l2C 
OOOlZC OOOOOOOC 
000130 0000004E 
000138 

M 000140 00000019 

the object program. The idea is that if there are many 
errors the programmer would like to know about all 
of them, not just the first one the assembler en
countered. 

Figure 30 is the assembly listing of a program writ
ten specially with a number of errors in it, to demon
strate what the assembler can do and how it an
nounces its findings. It will be noted in Figure 30 that 
many instructions have letters at the left end of the 
line. Figure 31 is the key to the meaning of these let-

START 256 
BEGIN BALR 15,0 

USING .,15 
L 2,DATA 
A 2,TEN 
SLS 2,1 
S 2,DATA4 
ST 2,RESULT 
L 6BINl 
A 6,BIN2 
CVD 6,alNI 
SVC 0 

DATA DC f ' Z5' 
DC F'9816543210' 

TEN DC F'IO' 
RESULT OS 
BINI DC F'lZ' 
BIN2 OC F'78' 
DEC OS 0 
DATA DC F'25' 

END BEGIN 

Figure 30. Assembly listing of a program with a number of deliberate errors 

1 Q OPERAND OR FIELD MISSING - THIS MAY BE AN ERROR 
I 0 OPERATION CODE NOT RECOGNIZED 
1 D ERROR IN DATA SPECIFICATION 
2 U SYMBOL IN VARIABLE FIELD IS UNDEfiNED 
1 M SYMBOL IN VARIABLE FIELD IS MULTIPLY DEFINED 
1 T ELEMENT IN VARIABLE FIELD HAS BEEN TRU~CATEO 
1 S ILLEGAL ELEMENT IN VARIABLE FIELD 
1 M LABEL IS MULTIPLY DEFINED 

Figure 31. Key to the error codes in Figure 30. This listing was produced by the assembler 
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ters; it was printed by the assembler as part of the out
put. Let us see what the assembler has told us. 

The M is identified as meaning "label is multiply 
defined". If we try to take this too literally, it is a bit 
confusing: this instruction has no label. How about 
the address, DATA? Scanning down the page, we see 
the M again on the last DC, and we then notice that 
DA TA has been used twice as a label. In such a case 
the assembler cannot know which was the intended 
one and which was the error, so it marks the error and 
does not assemble the instruction. 

The next error is 0, for "operation code not recog
nized". SLS was presumably written for SLA, with the 
programmer remembering the operation name Shift 
Left Single and writing SLS. The assembler makes no 
guesses on incorrect operation codes, and assembles 
no instruction. 

The U on the next error means "symbol in variable 
field is undefined". The undefined symbol is DATA4. 
Remembering the earlier version of the program, we 
know that DATA+4 was meant-but the assembler 
cannot know that. The symbol DATA4 is simply un
defined, since it never appears anywhere as a label. 

The next instruction also has an undefined symbol. 
Why? We certainly have an entry for RESULT. But 
looking at the entry for RESULT, we see that it has 
an error: D for "error in data specification". The error 
is the complete absence of any kind of type specifica
tion. Without a type specification, the assembler can
not know how many bytes to allocate to the DS. 

The next instruction is tagged as having two errors. 
S is for "illegal element in variable field", and Q means 
"operand or field missing-this may be an error". This 
is instructive: the whole trouble is the absence of a 

comma; the assembler did not tell us that, but came 
back with two rather different comments. This is no 
failure of the writers of the assembler; in many cases 
it is a very difficult matter to guess the writer's inten
tions when something does not meet specifications. 
The errors detected were that the first element in the 
operand field was something other than a number be
tween zero and 15, and that there was only one field 
where there should be two. It will usually happen 
that even where the error comment is not directly in
dicative of the error, once the existence of an error has 
been pointed out we can see it fairly readily. 

The T on the DC means "element in variable field 
has been truncated". What this refers to is the fact 
that the decimal number 9876543210 cannot be con
tained in a 32-bit word. We see that zero was estab
lished as the value to be loaded. 

The other two errors have already been discussed. 

There are several other errors that the assembler can 
detect. It does not seem worthwhile to devise error 
programs to either illustrate or list all of them. Pro
grammers making the errors will discover soon enough 
the capabilities of the assembler. It must be noted, 
however, that there are many kinds of errors that are 
beyond the power of the assembler to analyze. If we 
incorrectly write DATA4 where we mean DATA+4, 
the assembler can detect it-unless DATA4 is itself a 
legitimate symbol! 

In short, the error analysis capabilities of the Sys
tem/360 assembler can be much help to us in produc
ing a correct program, but the absence of error indica
tions should never be taken to mean that the program 
is correct. 
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Decimal Instructions in Assembler Language 

We have seen that the System/360 assembler language 
can automatically assign base registers and compute 
displacements. These functions are extensions of the 
ordinary assembler to handle special features of the 
computer. In assembling programs using the System/ 
360 decimal arithmetic instructions, the assembler 
also goes somewhat beyond normal practice in allow
ing for lengths of operands to be implied rather than 
stated explicitly. 

In the case of implied base registers, it is possible 
but seldom necessary to state a base register explic
itly. In the case of the lengths of decimal operands, it 
is possible and frequently essential to state explicit 
lengths. For this reason, among others, the discussion 
that follows will be somewhat more involved than 
what has preceded. The reader who wishes to pro
ceed to the study of fixed-point operations immedi
ately will not be handicapped by skipping over this 
section and returning to it later, in connection with a 
study of decimal arithmetic. In fact, the reader without 
previous contact with System/360 decimal instructions 
is advised to postpone study of the rest of this chapter 
until he has become at least slightly familiar with 
decimal arithmetic. 

Figure 32 is the assembly listing of a simple repre
sentative program to do some elementary processing 
of information with the decimal arithmetic feature of 
the System/360. 

000100 05 FO BEGIN 
000102 

000102 02 00 F 02E F 035 
000108 94 FO f 020 
00010e FD 41 F 02A F 02F 
000112 FA 21 F 02A F 033 
000118 01 00 F 028 F 02e 
OOOllE 02 01 F 031 F 02A 
000124 02 03 F 03A F 036 
00012A OA 00 
00012e Ol93648F SUM 
000130 PAD 
000131 487F NUMBER 
000133 AVERAG 
000135 050F ROUND 
000131 OF ZERO 
000138 FOFOFIC6 ZONED 
00013C TEMP 

The START, BALR, and USING are much as be
fore. Base register assignment is completely automatic 
in this program, as it was before. 

The first processing instruction is: 
MVC SUM+4(1),ZERO 

MVC stands for Move Characters. The instruction 
calls for the field at ZERO to be moved to a location 
the first byte of which is at SUM+4, and the field 
moved is one character long. Move Characters is an 
SS (Storage to Storage) format instruction, so there 
are two core storage addresses. The instruction is six 
bytes long. Reading across it, we have: the actual op
eration code is D2; one less than the length of the 
field moved is zero - that is, the field is one character 
in length; the base register for the first operand ad
dress is F; the displacement for the first operand ad
dress is 02E; the base register for the second operand 
address is also F; the displacement for the second 
operand address is 035. 

This instruction tells us a number of things about 
how the assembler handles decimal instructions. 

The length code in a decimal instruction is always 
one less than the length of the field to be moved. 
When we specify an explicit length, however, we are 
able to write the actual length; the assembler sub
tracts one to get the length code. 

The symbol SUM, we see from the constants area of 
the program, is equivalent to 12C. The address in the 

START 256 
BAlR 15,0 
USING .,15 
Mve SUM+4(1),ZERO 
NI SUM+3,240 
DP SUM(5),NUMBER 
AP SUM(3),ROUND 
MVN SUM+l(1),SUM+2 
Mve AVERAG,SUM 
Mve TEMP, ZONED 
sve 0 
De Pl4'193.648' 
OS ell 
De PL2'48.7' 
OS PL2 
De Pl2'50' 
DC PLI'O' 
DC ZL4'1.6' 
OS Zl4 
END BEGIN 

Figure 32. Assembly listing of a program involving decimal instructions 
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instruction was SUM +4, which is equivalent to 130. 
The base register contains 102 and the displacement is 
02E, which add to 130 as required. (It is essential 
never to forget that variable-length fields in the Sys
tem/360 are always addressed by the leftmost byte.) 
The base register contents of 102 plus the displace
ment of 035 also correctly lead to the address of 137 
for ZERO. 

The next instruction is an example of the final type 
of instruction format, the SI (Storage-Immediate). In 
this class of instruction, a part of the instruction con
tains data. (This is the meaning of "immediate", as 
distinguished from a reference to a storage location 
addressed by the instruction.) In the example at hand, 
a certain logical operation is to be performed using 
the one character at SUM +3 and the part of the in
struction represented by the decimal number 240. 

Looking at the assembled instruction, we have: the 
actual operation code is 94; the "immediate" part, in 
hexadecimal, is FO; the base register for the one stor
age reference is F; the displacement is 02D. 

The next instruction is a Divide Decimal, which is 
an SS format instruction, but with a slight difference 
in that there are two length codes in the actual in
struction, one for each field. In the symbolic instruc
tion, we have written one of the lengths explicitly and 
left the other implied. The length of 5 with SUM was 
done to extend the field by one character, to include 
an extra byte for division. In the assembled instruc
tion, after the operation code of FD, we see 41. The 4 
is the length code for SUM ( 5), the code being one 
less than the actual length. The length code for the 
second operand is 1, and we see that NUMBER is in 
fact a two-byte field. The assembled address for 
SUM ( 5) is 102 + 02A = 12C, the address of the left
most byte of the field. 

The Add Decimal instruction that follows intro
duces no new assembler concepts. It is also an SS for
mat instruction with two length codes. Note in this 
case that we needed an explicit length of 3 to be asso
ciated with SUM, so the length code in the instruc
tion came out 2; this did not affect the assembled 
address. 

The Move Numeric (MVN) again presents no new 
assembler ideas. 

The Move Characters that follows contains two ad
dresses, both written without explicit lengths. The two 
implied lengths are different, in an instruction in 
which there is only one length code. We see that the 
assembler has picked the implied length of the first 
operand, A VERAG. 

The final Move Characters and the Supervisor Call 
should present no difficulties. 

In the DC assembler instruction for SUM we have a 
new type specification, P, for Packed. "Packed" refers 
to the two-digits-in-one-byte form in which numbers 
must appear for use with the decimal arithmetic in
structions. Since decimal arithmetic deals with vari
able-length data, we use a length modifier to indicate 
how many bytes are to be assigned. (Actually, the 
length modifier may be omitted if we are satisfied to 
accept the length that would be implied by the num
ber of digits to be stored. In this case, the length as
signed would be 4 even without the U in the op
erand.) 

The assembled constant shows that the sign (F) has 
been put into the rightmost four bits of the rightmost 
byte, as required, that the one unused digit position 
has been filled with zero and placed at the left, and 
that the decimal point in the constant as we wrote it 
has been ignored. (We may write decimal points in a 
P-type DC or not, as desired, for our convenience. If 
written, they have no effect on the assembler.) 

The symbol PAD goes with a DS instruction to re
serve one character position, that is, one byte, in 
which we place nothing. The type designation this 
time is C, for Character. This is the type designation 
that may be used whenever variable-length space is 
reserved with a DS instruction, and it may be used on 
a DC to enter data in character form, such as alpha
betic information. 

The next four enli"ies provide further examples of 
the same types of DC and DS instructions we have 
already seen. 

The DC for ZONED introduces one more type des
ignation, Z, for Zoned. This refers to the zoned format 
for numerical data, in which each digit takes up a com
plete byte, and the sign is contained in the zone por
tion (leftmost four bits) of the rightmost byte. In the 
assembled constant, the F's are the zones attached to 
the nonsign digits, and the C is the plus sign. The deci
mal point in the constant as we wrote it has again 
been ignored. 

The length modifier here is essential, if we really 
want the assembled constant to have four bytes; with
out a length indication, the assembler would assign the 
two bytes in which the constant can be stored. 

Summary 

The techniques presented in this chapter will help 
the programmer write useful System/360 programs in 
assembler language. Further aspects of the language 
appear in other chapters in this text, and the interested 
reader can study the appropriate SRL document on 
the assembler language. 
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Questions and Exercises 

1 .. The name of an instruction refers to the (leftmost, 
rightmost) byte of the instruction. The name of a con
stant refers to the (leftmost, rightmost) byte of the 
constant. 

2. On; an assembly listing, the storage location of 
each instruction, constant or area, as well as the ob
ject instruction and constant are printed in (decimal! 
hexadecimal) . 

3. Consider Figure 28: 
a. State the location of the instruction ST 2,RE

SULT. 
b. State the location of the field RESULT. 
c. Recall that an object instruction (including the 

one for ST 2,RESULT) refers to a storage location 
through the specification of a base regist~r, a dis
placement, and sometimes an index register. At execu
tion time System/360 develops the address (the effec
tive address) of the storage location by developing the 
sum of the contents of the specified base register, the 
contents of the specified index register (if ~my), and 
the displacement. Now consider how, for the object 
instruction for ST 2,RESULT, the effective address of 
RESULT is formed (no indexing is specified). 
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( 1) What base register is specified? 
( 2) What are the indicated contents of the 

base register? 
( 3) What is the displacement? 
(4) What is the effective address? 

4. State the difference between the DC and DS As
sembler instructions. 
5. Consider the constants set up in Figure 28 and 
assume that the instruction beginning at location 112 
is ST 2,DATA+12 instead of as shown in Figure 28. 
State the effective address of DATA+12. 
6. Consider Figure 28: 

a. State the locations that are allocated by the 
statement RESULT DS F. 

b. State the locations that are occupied by the 
constant BIN2. 

c. State the locations that are allocated by the 
statement DEC DS D. 
7. Assume the DS statements given below and also 
assume that the assembler assigned a location of 138 
to AREAl and 140 to AREA2. What locations will the 
assembler assign to the next four areas? 

Location 
138 AREAl DS F 
140 AREA2 DS D 

AREA3 DS F 
AREA4 DS D 
AREA5 DS F 
AREA6 DS D 

8. In answering question 7, you will have- observed 
that some locations were skipped to align fields on 
their proper boundaries. Resequence the DS state
ments in question 7 so that storage is used more effi
ciently. Assume that the first DS will start at 138. 



Chapter 4: Fixed-Point Operations 

This chapter introduces and discusses some of the 
fixed-point operations in the System/360. These in
clude the arithmetic and shifting instructions as the 
central topic, with important consideration also of 
certain logical operations (comparison, branching) 
and loop methods. 

In the course of presenting the instructions and 
considering programming methods used with the 
System/360, we shall review the basic ideas of the 
machine organization and operation. 

The presentation will be almost entirely through the 
medium of eight examples and a final extended case 
study. 
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Addition and Subtraction 

For a first example we shall consider a simple inven
tory calculation. We begin the calculation with an 
on-hand quantity, a receipt quantity, and an issue 
quantity. We are required to compute the new on
hand, according to the formula: 

new on-hand == old on-hand + receipts - issues 
Using fairly obvious symbols for the four quantities, 
this becomes: 

NEWOH == OLDOH + RECPT - ISSUE 
A program to carry out this calculation is shown in 

Figure 33. We shall be concentrating on the four 
actual processing instructions, but at the outset we 
shall display all programs in logically complete form. 

Nome Operation Operand ) 
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Figure 33. A program, written in assembler language, to perform 

a simple arithmetic computation in binary 

The first three lines of coding are rather standard 
preliminaries; instructions of this character will appear 
at the beginning of all but highly specialized pro
grams. To review briefly, the START establishes a 
reference point for the assembly: the assembly listing 
(shown later) will assume that the first byte is to be 
loaded into 256 as shown. The BALR (Branch and 
Link Register) and the USING, as written here, to
gether direct that register 15 shall be used as a base 
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register wherever one is needed, and inform the as
sembler that the base register at execution time will 
contain the location of the first byte after the USING. 

Now we reach the first processing instruction, where 
we wish to concentrate our attention. 

The Load instruction is classified as an RX format 
instruction, which implies a number of facts about it: 

1. The instruction itself takes up four bytes of 
storage. 

2. The fields within the instruction are, from left to 
right: the operation code (eight bits), the number of 
the register to be loaded from storage (four bits), the 
number of the register used as an index register (four 
bits) , the number of the register used as a base 
register (four bits), and the displacement (twelve 
bits ). 

3. The instruction involves a transfer of information 
between storage and a general register. 

4. The effective address of a byte in storage is 
formed by adding the contents of the base register, 
the contents of the index register, and the displace
ment. If register zero is specified for an index register 
or a base register, zero is used in the address com
putation, rather than whatever register zero may 
contain. 

The operation of the Load instruction is straight
forward: obtain a fullword (four bytes) from storage 
at the effective address specified, and place the word 
in the general register indicated. The effective address 
must refer to a fullword boundary, which means that 
the address must be a multiple of 4. 

Let us consider the complete line of coding for the 
Load instruction to see what each part does. 

The letter L is the mnemonic operation code for 
Load; this is converted by the assembler into the 
actual machine operation code for Load, 58. The 3 is 
the number of the general register we wish loaded 
with a word from storage. OLDOH is the symbolic 
address of the word in storage to be copied into 
general register 3. By writing the address in this 
fashion, we have indicated that the assembler should 
supply the base register and the displacement, and 
that we do not wish indexing. 

The assembly listing for this program is shown in 
Figure 34. Looking at the machine instruction assem
bled from this symbolic instruction, and remembering 
that all numbers are shown in hexadecimal, we see 
that the operation code is 58, the general register is 3, 



START 256 
000100 05 FO BEGIN 8AlR 15,0 

000102 USING ·,15 
000102 58 30 F 012 l 3,OlDOH 
00010l> 5A 30 F 016 A 3,RECPT 
OOOlOA 5B 30 F OlA S 3,ISSUE 
00010E 50 30 F OlE ST 3,NEWOH 
000112 OA 00 SVC 0 
000114 00000009 OlDOH DC F'9' 
000118 00000004 RECPT DC F'4' 
00011C 00000006 ISSUE DC F'6' 
000120 NEWOH OS F 

Figure 34. The assembly listing for the program of Figure 33 

the index register is zero, the base register is F 
(== 1510), and the displacement is 01216• Since the base 
register contains 102, the effective address is 114, 
which we see is the address associated with OLDOH. 

The Add instruction is also of the RX format. The 
operation is to add the fullword at the storage address 
specified, to the general register named. In our case, 
we have, of course, named the same general register 
as in the Load instruction, since the intent is to add 
OLDOH and RECPT together. Looking at the assem
bled instruction, we see that things have been handled 
much as they were with the Load. Base register 15 
has been assigned, there is no index register, and the 
displacement has been computed to give the effective 
address of the storage location associated with RECPT 
(118 ). 

Mter the execution of this instruction, register 3 
will contain the sum of the storage quantities identi
fied in our program by OLDOH and RECPT. 

The Subtract instruction (S) in the next line sub
tracts the quantity idenlified by the symbol ISSUE 
from the quantity now standing in register 3. The 
format and general operation of the instruction are 
very similar to Add. 

Now we have the desired result in register 3. The 
problem statement required the result to be placed in 
another location in storage, that identified by the 
symbol NEWOH. Placing the contents of a general 
register in storage is the function of the Store instruc
tion (operation code ST). The general register con
tents are unchanged by the operation. The format is 
again RX, so address formation is as before. 

This completes the actions required by the problem 
statement, but we must now somehow indicate what 
we want done next. The System/360 provides no 
Stop instruction, to force a program organization that 
keeps the machine in operation as much of the time 

END BEGIN 

as possible. What we have shown here is a Supervisor 
Call instruction. The use of this instruction assumes 
that there is in storage, at the time of execution of this 
program, a supervisor program that runs the machine 
between jobs. We here indicate to the supervisor pro
gram that this program has no further need for the 
machine; the operand of zero specifies that no further 
actions on the part of the supervisor program are 
needed by this program. 

We have not written the result onto any output 
device. In actual practice, previous parts of the pro
gram would have read the values used in the calcula
tion, and subsequent parts would use the result. We 
are not prepared at this time to write the input and 
output instructions and, indeed, will not do so through
out this publication. We have simply entered illustra
tive values for the input quantities with DC instruc
tions, and reserved space for the output with aDS. 
The F's in the DC's and the DS specify fuIIwords of 
four bytes. The Load, Add, Subtract, and Store in
structions all operate on fullwords. (There are corre
sponding halfword instructions, as we shall see in 
later examples. ) 

The END instruction informs the assembler that 
the termination of the program has been reached and 
(in this case) specifies that the first instruction to be 
executed when the program is loaded should be the 
one having the name BEGIN, namely the BALR. 

With a suitable program it is possible, and rather -
simple once the methods are clear, to get a "dump" of 
the contents of selected areas of storage. With such a 
dump routine we can get our data and 'results out of 
the machine without writing any output instructions. 

This was done, leading to the numbers reproduced 
in Figure 35. The four items, in sequence, are 
OLDOH, RECPT, ISSUE, and NEWOH. 

It might be interesting to run this program again, 
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but with the illustrative value for ISSUE being, say, 
16. This will result in a negative quantity for NEWOH. 
We know that negative fixed-point numbers are repre
sented in 2's complement form. The dump routine 
used above will make a conversion to true-number
and-sign, as shown in the first line of Figure 36. In the 
second line, the same numbers are printed also in 
hexadecimal; this was done by a slightly different 
dump call to the supervisor program. 

We see that the first three numbers, which are 
positive, have zeros before the significant digits. The 
last number, however, being negative, is shown in 
hexadecimal form to have 1's to the left of the signifi
cant digits, since F 16 == lllh. If we were to write out 
this hexadecimal number, FFFFFFFD, in its binary 

form, we would have thirty 1's followed by 01. Re
ferring to the rules for formation of a 2' s complement, 
we see that the complement of this number is lh, 
which is 3. Checking with the given data and the 
formula, we see that this is the correct answer and, 
of course, -3 was printed as the decimal value for a 
further check, if one was needed. 

Naturally, if such a result were actually produced 
in an inventory control program, it would indicate 
some kind of trouble, probably bad data; it is not 
possible to issue more than there are on hand plus 
what you received, which is what the negative result 
would imply. A complete program would include a 
test for the possibility of a negative result, with some 
kind of corrective action. 

0000009+ 0000004+ 0000006+ 0000001+ 

Figure 35. Output of the program of Figures 33 and 34. The 
four numbers are OLDOH, RECPT, ISSUE, and 
NEWOH, in that order. 

0000009+ 0000004+ 0000016+ 0000003-

00000009 00000004 00000010 

Figure 36. Output of the program of Figures 33 and 34, with a 
value for ISSUE that causes NEWOH to be nega
tive. The values of OLDOH, RECPT, ISSUE, and 
NEWOH are printed in the top line in decimal. In 
the second line they are printed in hexadecimal; the 
value for NEWOH is in complement form. 
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For a simple example of multiplication in the Sys
tem/360, consider the following problem. We are to 
multiply an ISSUE quantity by a PRICE to get 
TOTAL. We shall assume that PRICE is an integer, 
expressed in pennies. The product will therefore also 
be in pennies. For instance, an ISSUE of 5 and a 
PRICE of 25 would give a TOTAL of 125. 

The program to do this multiplication is shown in 
Figure 37. The first three lines are standard. The Load 
places the multiplicand in general register 5. The 
Multiply (M) forms the product of what is in 5 and 
what is in the full word identified by PRICE, and 
places the result, which could of course be much long
er than either of the factors, in registers 4 and 5 com
bined. It is required that the general register named in 
the Multiply be even numbered; if it is not, a specifi
cation exception and an interrupt occur. The multi
plicand must always be in the odd-numbered register 
of an even-odd pair, such as 4 and 5 here. The multi
plicand in the odd register, and whatever may have 
been in the even register, are both destroyed by the 
operation of the Multiply. 

After the product has been formed, we store it in 
TOTAL on the assumption that the result does not 
exceed the length of one register. The validity of such 
an assumption, of course, is the responsibility of the 
programmer; if in fact the product extended over 
into register 4, there would be no automatic signal of 
the fact that the result in TOTAL is not the complete 
product. If a product extending into. the even register 
could be a legitimate outcome, we would naturally 
have to arrange to store both parts of- the product. 

000100 05 FO 
00010Z 

000102 58 50 F OOE 
000106 5C 40 F 012 
00010A 50 50 F 016 
00010E OA 00 
000110 00000001 
000114 00000011 
000118 

Multiplication and Division 

Let us try this program with several sets of sample 
factors in order to see precisely how the operation 
works. The printout of Figure 38 gives ISSUE, PRICE 
TOTAL, and the contents of register 4 and 5 after the 
completion of the program. The identifications were 
produced with suitable instructions to the dump rou
tine. We see that the product of 7 and 23 is indeed 
161, as we might expect. This number is shown as the 
contents of register 5, while register 4 is zero; the 
product was not long enough to extend into 4. 

ISSUE 0000001+ 

PRICE 0000023+ 

TOTAL 0000161+ 

REG 4 0000000+ 

REG 5 0000161+ 

Figure 38. Output of the program of Figure 37 

START 256 
BEGIN BALR 15,0 

USING .,15 
l 5.ISSUE 
M 4,PRICE 
ST 5,rOTAl 
SVC 0 

ISSUE DC Fil' 
PRICE DC FIZ3 1 

TOTAL OS F 
END BEGIN 

Figure 37. Assembly listing of a program to perform a binary multiplication 
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In Figure 39 the numbers are the same except that 
the 7 is negative. (This makes no sense in terms of the 
problem, of course.) We see that TOTAL and register 
5 are negative, as expected, but what has happened 
to register 4? The answer is that the product is a 
full 64 bits long; a negative number has I's to the 
left of the leftmost significant digits. Register 4 proper
ly contained all I's which, considered as part of the 
64-bit product, are merely sign bits. But printed as a 
separate number (which is pointless, in reality), a 
word of alll's represents -1, as shown. A printout not 
reproduced here substantiates what we have said: 
register 4 printed in hexadecimal form appears as 
eight F's. 

ISSUE 0000007-

PRICE 0000023+ 

TOTAL 0000161-

REG 4 0000001-

REG 5 0000161-

Figure 39. Output of the program of Figure 37, with a negative 
value for ISSUE 

In Figure 40 we see an example of what can happen 
when the numbers entering the machine do not con
form to the assumptions made in setting up the pro
gram (that is, the product would never extend into 
register 4). With both factors being 87654, the prod
uct, in decimal, should be 5858830849. This is too 
long to fit into register 5, so we would expect TOTAL 
to contain only the equivalent of the part of the prod-
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ISSUE 0087654+ 

PRICE 0087654+ 

TOTAL 6110876-

REG 4 0000001+ 

REG 5 6110876-

Figure 40. Output of the program of Figure 37, with values for 
ISSUE and PRICE that lead to a TOTAL too large 
to fit in a fullword 

uct that appeared there. But we would hardly have 
expected it to be negative! What happened? 

The answer becomes apparent if we convert the 
product to hexadecimal and look at the part of it that 
would appear in register 5. The complete product is 
lC9F4BOA4, that is, nine hexadecimal digits - a reg
ister can hold eight. So the 1, preceded by seven 
hexadecimal zeros, would be the contents of register 4, 
as shown. The part in register 5 begins with the 
hexadecimal digit C, which is 1100 in binary. This 
means that the leftmost bit is 1, which signals a nega
tive number when register 5 is taken as a word by 
itself! 

This recitation of troubles is not meant to suggest 
any difficulty in using the System/360. Any program
mer appreciates the necessity of knowing a good deal 
about his data and for testing it for validity if he is 
not sure of it. The purpose in showing these slightly 
surprising results is simply to clarify how the machine 
operates, especially since many programmers will not 
have had previous contact with complement repre
sentation of negative numbers. 



Multiplication and Division with Decimal Points 

The next example involves a little further practice 
with multiplication, an application of the Divide in
struction, and a rather basic question of decimal point 
handling in binary. ' 

The task is to increase a principal amount named 
PRINe by an interest rate of 3%. The principal is 
stored to pennies as in the previous example; lor 
instance, 24.89 would be stored simply as the integer 
2489. Later program segments would have to insert 
any ccgraphic" decimal point that might be desired for 
printing; at this point we make a mental note of the 
true situation, while pretending for programming 
purposes at the moment that the unit of currency is 
the penny. 

One possible program is shown in Figure 41. (There 
are other ways, as we shall see.) After the usual pre
liminaries we load the principal into an odd-num
bered register preparatory to multiplying. The inter
est rate is shown as 103, which should be read as 
1.03. This is a shortcut: instead of multiplying the 
principal by 0.03 and adding the product to the prin
cipal, we multiply the principal by 1.03. The result is 
the same either way; our way saves an addition. 

The absence of the decimal point is another matter. 
We are saying here that instead of multiplying by 
1.03, we will multiply by 103; the product will be 
100 times too large as a result. It will be necessary 
in a subsequent step to divide by 100 to correct for 

000100 05 FO 
000102 

000102 5'S 50 F 016 
000106 5C 40 F 01A 
00010A 5A 50 F OlE 
00010E 50 40 F 022 
000112 50 50 F 016 
000116 OA 00 
OOOllS 00000989 
OOOllC 00000067 
000120 00000032 
000124 00000064 

this. The reason for this is that there is a question 
of how to represent a decimal fraction in binary form. 
The question can be answered, as we shall see, lead
ing to a different program. For now, let us take what 
seems a.t first to be the easy way out and stay with 
integers. 

U sing the sample principal mentioned above, 24.89, 
the product after multiplication is 256367 . We shall 
assume that the product in all cases is short enough 
to be held in register 5 alone. 

We now wish to round off. We think of the product 
as $25.6367; the desired rounded value is $25.64. Re
membering that the computer knows nothing of our 
behind-the-scenes understanding about decimal points, 
all we have to do to round off is to add 50 to the in
teger product. We will think of the 50 as $0.0050, but 
to the computer it is 50. 

Having done this, we need finally to divide by 100 
to correct for using 103 in place of 1.03. This requires 
the Divide instruction, which as we might expect is 
a close relative to the Multiply instruction. The divi
dend must be in an even-odd pair, as a 64-bit number. 
This requirement is already met by the way the Mul
tiply leaves the product in an even-odd pair (the 
machine was designed to make it simple to follow a 
Multiply with a Divide). The remainder is placed in 
the even register and the quotient in the odd. Our 
quotient will be 2564 (we read: $25.64) and the re-

START 256 
BEGIN BAlR 15,0 

USING .,15 
L 5.PRINC 
M 4,INT 
A 5,(50 
0 4,(100 
ST 5.PRINC 
SVC 0 

PRINe De F'2489' 
INT DC F'103' 
C50 DC F'SO' 
CI00 DC F'100' 

END BEGIN 

Figure 41. Assembly listing of a program involving binary multiplication and division, with binary rounding by a decimal amount 
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mainder will be 17 (we don't care about this). The 
quotient can now be stored back in the location for 
PRINC, as required in the problem statement. 

The question will occur to many: Why was it neces
sary to divide? Why not simply shift two places right 
to drop the right two digits? The answer is, of course, 
that we could do precisely that in decimal, but this 
is binary. Shifting one place to the right in decimal 
divides the number by 10; shifting one place to the 
right in binary divides the number by 2. There is 
no number of binary shifts that divides a number by 
a factor of decimal 100. Six places divides it by 64, 
and seven places by 128. With this way of approach
ing the problem, we have no choice but to divide. 

It should be kept clearly in mind that in all exam
ples so far we have explicitly stated that all quantities 
were to be viewed for programming purposes as in
tegers, whatever we on the outside might understand 
by the digits. This was by agreement, not necessity. 
We can work with binary numbers that are taken to 
have ''binary points" elsewhere than at the extreme 
right. Let us, for instance, attempt to express the fac
tor 1.03 as a binary number. 

It may be recalled from a study of the conversion 
rules that there will be in general no exact binary 
equivalent for a decimal fraction. If we try 1.03 we 
get an infinitely repeating binary fraction. The first 
twelve bits are 

1.00000111101 

The binary point is, of course, understood (by us). 
If we enter such a number as the constant (which 

we shall see how to do in a moment), we can mul
tiply by it. The machine cares nothing for our under
stood binary points, and carries out the multiplication. 
We must then take into account the understood 
binary point in the product, according to a literal 

translation of familiar rules: the binary point in the 
product will have as many places to the right as 
the sum of the number of places to the right of the 
binary points in the multiplier and in the multipli
cand. If the constant has eleven places to the right, 
as written above, and the principal is still understood 
to be an integer (zero places), then the product will 
have eleven places to the right. 

Let us turn to Figure 42 to see how this much of 
the revised program looks. 

The Load is the same as before, as is the Multiply. 
The constant used for the multiplication is different, 
however. Down at INT we see that the DC is 

FS11'1.03' 
The F stands for fullword, as before. The S stands 
for Scale factor and is the number of binary places 
that are to be reserved for the fractional part of the 
constant. We have indicated eleven places as the 
number of bits to the right of the binary point in 
the factor as we wrote it before. 

The Add to round off is the same as before, but 
once again the constant is different. What we have 
after the multiplication this time is not an integer 
but a binary fraction. To the left of the assumed bi
nary point we have a whole number of pennies; to 
the right a fractional part of a penny. This time, to 
round off we need a constant that is 0.5 cent expressed 
in the same form as the fractional part of our prod
uct. The Scale factor method shown gives this. ( In 
fact, the constant consists of a 1 followed by ten 
zeros. ) 

After rounding off we are left with eleven super
fluous bits at the right end of the product. These can 
be shifted off the end of the register with a suitable 
shift instruction. "Suitable" in this case means that 
the shift should be to the right, it should involve a 

START 256 
000100 05 FO BEGIN BAlR 15.0 

000102 USING -,15 
000102 58 50 F 016 l 5,PRINC 
000106 5C 40 F 01A M 4,INT 
00010A 5A 50 F OlE A 5.HAlF 
00010E 8A 50 0 OOB SRA 5,11 
000112 50 50 F 016 ST 5,PRINC 
000116 OA 00 SVC 0 
000118 00000989 PRINt DC F'2489' 
00011C 00000830 INT DC FS11'1.03' 
000120 00000400 HALF DC FS11'0.5' 

END BEGIN 

Figure 42. A different version of the program of Figure 41, using a scale factor to get a binary fraction in a DC constant 
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single register, and it should be an algebraic shift 
so that if the number were negative, proper sign bits 
would be shifted into the register. The instruction is 
called Shift Right Single (SRA), in which we specify 
the register first and then the number of positions 
of shift desired. Bits shifted off the right end of the 
register are lost. After the shift we are ready to store 
the result. 

The point of doing all this is that we have replaced 
a Divide with a Shift, and the latter is considerably 
faster than the former. In some applications the dif
ference in time could be significant. 

If we print the result, we get a surprise: the answer 
is 2463 ($24.63); rounding seems not to have taken 
place. The trouble is that the binary "equivalent" of 
the decimal number 1.03 was not exactly equivalent. 
To prove the point, let us ask for 15 binary places 
in the fractional part of the constant created for 1.03. 
We change the rounding constant likewise, and make 
the shift 15 places. This time, the printout shows 2464 
( $24.64) as before. 

The moral of this story is that decimal fractions do 
not usually have exact binary equivalents. Computa
tions that are required to be exact to the penny should 
be done in integer form, as in the first version of the 
program. (Even though a larger number of bits led 

to a correct answer this time, it would not always 
do so, particularly for larger principal amounts.) 

This means, in most situations, that it would be 
most unwise to go the further possible step of rep
resenting penny amounts as binary fractions. Unless 
approximate results are acceptable, which they some
times are, of course, the use of anything but integer 
arithmetic leads to problems more severe than they 
are worth. 

Some readers may be wondering whether binary 
arithmetic is worth the trouble. The answer is yes, of 
course. Many applications of binary arithmetic raise 
none of the questions suggested here and do not in
volve the possible complications with complement 
form either. For the straightforward cases, it is barely 
necessary to know anything about the binary and 
complement matters. We present examples like these 
to warn the unwary and to lay a foundation of un
derstanding for those with problems where the ad
vantages of binary arithmetic are worth the care that 
must be exercised in using it. It is true that many ap
plications will suggest staying with decimal arithme
tic, for users having the decimal instruction set, but 
even then there will be more than a few occasions 
where binary operations are the only ones that make 
sense from a standpoint of time. 
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Shifting and Data Manipulation 

Having introduced the shifting operation briefly in 
the previous example, let us now turn to an applica
tion that will involve considerably more shifting. 

We begin with a fullword, supplied by some other 
program we assume, in which three data items are 
packed in binary form: 

Bits 
0-11 

12-23 
24-31 

Item name 
A 
B 
C 

We are required to separate the three data items 
and store each in a separate halfword storage loca
tion, with names for the latter as shown. All three 
numbers are positive. 

The program shown in Figure 43 is a more or less 
straightforward matter of shifting and storing, but a 
few notes are necessary to make clear what is hap
pening at certain points. 

The numbers in the Comments field are sample 
contents of registers 6 and 7 as they would appear 
during execution of the program if the original 
packed word were hexadecimal 78ABCDEF. These 
sample values, of course, were entered when the 
source program was punched; it is quite impossible 
for the object program to print anything on the assem
bly listing. 

We begin by loading the packed word into an even
numbered general register. This permits us to con
tinue with a double-length shift that moves bits from 

the named even-numbered register into the adjacent 
odd-numbered register, which we think of as being 
to the right. This is what "double" means in Shift 
Right Double Logical (SRDL). The "'logical" refers 
to the handling of sign bits and means that zeros 
are entered at the left of register 6. This is in con
trast to the "algebraic" shifts, in which the bits en
tered at the left are made to be the same as the origi
nal "sign bit", that is, the original leftmost bit. Here, 
we were guaranteed in the problem statement that 
all three numbers are positive, so we can ignore any 
question of what the leftmost bit in each item might 
be. Whether it is zero or one, the number represented 
is positive. 

The SRDL moves the rightmost eight bits into reg
ister 7; from there we move them to the right-hand 
end of the same register, using a single-length logical 
shift that does not affect register 6. What were origi
nally the rightmost eight bits of the packed fullword 
are now properly positioned in register 7 to be stored 
in a halfword location with the Store Halfword (SH) 
instruction. The action here is to store the rightmost 
16 bits of the register named, in the two bytes identi
fied by the effective address. The register is not dis
turbed by the operation of the instruction. This is an 
RX format instruction; it could be indexed if we had 
occasion to do so. 

N ow we again shift the two registers together to get 
the twelve-bit B item into register 7. From there we 

START 256 
000100 05 FO BEGIN BALR 15,0 

000102 USING ·,15 
000102 58 60 F 022 L 6,FWORO 78A8tOEF 00000000 
000106 8t 60 0 008 SROL 6,8 0018A8tO EFOOOOOO 
00010A 88 10 0 018 SRL 7,24 0078A8eO OOOOOOEF 
00010E 40 70 F 02A 5TH 7,t 0018AHCD OOOOOOEF 
000112 8t 60 o ooe SROL 6,12 0000018A 8COOOOOO 
000116 88 10 o 014 SRL 1,20 000OO18A OOOOOBeO 
OOOllA 40 70 F 028 STH 7,8 00OOO18A 000006eO 
OOOllE 40 60 F 026 STH 6,A 0OOOO18A OOOOOB~O 
000122 OA 00 sve 0 
000124 FWORO OS F 
000128 A OS H 
00012A 8 OS H 
00012e C OS H 

END BEGIN 

Figure 43. Assembly listing of a program to separate three quantities packed in one fullword 
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move it on over to the right-hand end of 7 and store 
it. A further shift of what was originally the leftmost 
twelve bits is not needed, since they are now in the 
right-hand end of 6, from whence they may be stored. 

Actually, the restriction to positive numbers is not 
too difficult to remove. It would have to be agreed 
that the leftmost bit of each item was its sign bit, that 
is, that in generating the packed word each item was 
in complement form and of such length as to fit in 
the item size allotted. With this assumption, the pro
gram of Figure 44 properly expands the sign bits of 
the items and stores the three items in halfwords in 
complement form. The "'expansion" of the sign bit 
is one of the functions of an algebraic shift, as noted 
above. The program must also be changed to include 
a final two shifts to expand the sign of item A. 

START 256 
000100 05 FO BEGIN 8AlR 15,0 

000102 USING *,15 
000102 58 60 F 02A l 
000106 8e 60 0 008 SROl 
00010A 8A 70 0 018 SRA 
OOOlOE 40 70 F 032 STH 
000112 8e 60 0 ooe SROL 
000116 8A 70 0 014 SRA 
OOOllA 40 70 F 030 STH 
OOOllE 8e 60 o ooe SRDL 
000122 8A 70 o 014 SRA 
000126 40 70 F 02E STH 
00012A OA 00 sve 
00012e FWORO OS 
000130 A OS 
000132 B OS 
000134 C OS 

END 

Figure 44. Modified version of the program of Figure 43, 
making it operate correctly if the three quantities 
are allowed to be negative 

Figure 45 shows the output of the two programs for 
the sample input word of 78ABCDEF. The three parts 
of the combined word, in hexadecimal, were therefore 
78A, BCD, and EF. In the first line of Figure .45 we 
see that these have been put into halfwords by the 
program of Figure 43 as 078A, OBCD and OOEF, that 
is, as three positive numbers. In the second line we see 
that the program of Figure 44, on the other hand, in
terpreted the second and third numbers as negative 
since their leftmost bits were I's. The three output 
halfwords are 078A, FBCD, and FFEF, showing that 
the sign bits of the second and third numbers were 
properly expanded. 

6,FWORO 78A8eOEf 00000000 
6,8 0078ABCO EfOOOOOO 
7,24 0078A8CD ffFfffff 
7,e 0078ABCO FfFffFEf 
6,12 0000078A BCDFFfFF 
7,20 0000018A FFFFFBCD 
7,B 0000018A FFFFF8CO 
6,12 00000000 78AFffff 
7,20 00000000 00OO078A 
7,A OOOOOOCO 0OOOO78A 
0 
F 
H 
H 
H 
8EGIN 

018A OBeo OOEF 

078A F8eD fFEF 

Figure 45. Output of the programs of Figure 43 (first line) and 
Figure 44 (second line) with the original word 
being hexadecimal 78ABCDEF 
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Branches and Decision Codes 

Decisions and branching are important parts of 
data processing, and the programming methods by 
which these operations are carried out are important 
aspects of the programming task. The facilities offered 
by the System/360 are particularly powerful and 
flexible. The basic action is the setting of the condi
tion code by any of a large number of instructions 
and the subsequent testing of the condition code by 
a Branch on Condition instruction. 

Many arithmetic, shift, and logical instructions have 
as a part of their action the setting of the condition 
code to indicate something about the result of the 
instruction's execution. For instance, after an Add in
struction, the condition code indicates whether the 
sum was zero, positive, negative, or too large for the 
register. After a Compare instruction the condition 
code indicates whether the first operand was greater 
than, equal to, or less than the second operand. The 
meaning of each of the different values of the condi
tion code is specified in the description of each in
struction that affects the code. (Many instructions do 
not.) The four possible values are 0, 1, 2, and 3. 

At any time after the condition code has been set 
by the action of an instruction, it may be tested by 
using a Branch on Condition ( BC ) instruction. In 
this instruction, which is in the RX format, the four 
bits that in other instructions designate a general 
register are here used for a mask that designates 
which values of the condition code are of interest 
to us. The leftmost bit of the mask checks for a con
dition code of zero, the next bit for code 1, the next 
for code 2, and the rightmost for code 3. If the condi
tion code is e.qual to any of the values selected by 
the mask bit(s), the Branch is taken. The correspond-
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ences between condition codes and mask are sum-
marized as follows: 

Mask bits Decimal value C odes tested 
0000 0 None 
0001 1 3 
0010 2 2 
0011 3 2 or 3 
0100 4 1 
0101 5 1 or 3 
0110 6 1 or 2 
0111 7 1, 2, or 3 
1000 8 0 
1001 9 o or 3 
1010 10 o or 2 
1011 11 0, 2, or 3 
1100 12 ° or 1 
1101 13 0, 1, or 3 
1110 14 0, 1, or 2 
1111 15 0, 1, 2, or 3 

A decimal mask value of zero makes the instruc
tion test for no condition codes; it thus becomes a 
no-operation instruction. A mask of 15 tests for any 
condition code; it is thus an unconditional branch. 

To see how some of these ideas are applied, con
sider a simple example. We are given three fullword 
data items named A, B, and C. They may be positive 
or negative. We are required to change any negative 
values to positive, and then to rearrange the three 
values in storage to make the number in A the largest, 
the number in B the next largest, and the number in 
C the smallest of the three. Figure 46 expresses the 
logic of the method that will be used here to perform 
the sort; other ways are possible. 



A~B 

A~C 

B~ 

Make 
A,B,C 
positive 

A<B 

Interchange 
A and B 

Interchange 
A and C 

Interchange 
Band C 

Figure 46. Program flowchart of a method of sorting three 
numbers into descending sequence. Any negative 
numbers are changed to positive before sorting. 

We first make all three numbers positive. A com
parison is then made between A and B; if A is the 
smaller we interchange the two values. Now we know 
that what is in A is the larger of the two, whether 
because it originally was or because we interchanged 
it with the original B. A similar process compares A 
and C and interchanges if A is smaller. Having done 
this, we know that what is in A is the largest of the 
three. A final comparison of the numbers now in B 
and C, and an interchange if necessary, gets the «mid
dle" number in B and the smallest in C. 

The program of Figure 47 involves some instruc
tions that we have not used before. The Load Multiple 
( LM) instruction begins loading fullwords from the 
specified storage location. The first word goes into 
the first-named register. Successive fullwords go into 
higher-numbered registers until the second-named 
register has been loaded. In the program, the result 
of the LM instruction will be to· place A in 1, B in 2, 
and C in 3. 

N ow three Load Positive Register (LPR) instruc
tions change any negative numbers to positive, leav
ing any positive numbers unchanged. This is an RR 
format instruction, meaning that both of its operands 
are registers. Here both operands are the same reg
ister, as will frequently be the case. The action is to 
take the value from a register, complement it if it 
was negative, and place the result back in the same 
register. If it were necessary, the two registers could 
of course be different. 

Next comes a Compare Register (CR) instruction, 
which is also in the RR format. This instruction does 
not change the contents of either register, but simply 
sets the condition code to zero if the two operands 
are the same, to 1 if the first operand is low, and to 
2 if the first operand is high. (The comparison is alge
braic, meaning that signs are taken into account ac
cording to the rules of algebra, by which any positive 
number is greater than any negative number. We 
know that our numbers are by now all positive, so this 
feature does not concern us.) 

Next comes the Branch on Condition instruction, 
with a mask of 10 (decimal) and a branch address of 
COMP2. The mask of 10, checking with the table 
above, tests for condition code zero or 2. Following 
a Compare-type instruction, these mean, respectively, 
that the first operand is equal to or greater than the 
second operand. If the condition code is either of 
these, we branch; otherwise the next instruction in 
sequence is taken. The effect is: if the number in reg
ister 1 is already equal to or greater than the number 
in register 2, we skip down to the second comparison, 
because A and B are already in correct sequence. 

Fixed-Point Operations 67 



START 256 
000100 05 FO BEGIN BALR 15,0 

000102 USING *,15 
000102 98 13 F 036 LM 1,3,A LOAD REGS WITH 3 NUMBERS 
000106 10 11 LPR 1,1 MA.KE POSITIVE 
000108 10 22 LPR 2,2 
00010A 10 33 LPR 3,3 
00010C 19 12 CR 1,2 COMPARE A AND B 
OOOlOE 47 AO F 016 BC 10,COMP2 
000112 18 61 LR 6, 1 INTERCHANGE IF NECESSARY 
0001111- 18 12 LR 1,2 
000116 18 26 LR 2,6 
000118 19 13 COMP2 CR 1,3 COMPARE A AND C 
00011A 47 AO F022 BC 1!),COMP3 
00011 E 18 61 LR &', 1 INTERCHANGE IF NECESSARY 
000120 18 13 LR 1,3 
000122 18 36 LR 3,6 
0001211- 19 23 COMP3 CR 2,3 COMPARE BAND C 
000126 47 AO F 032 BC 10,OUT 
00012A 18 62 LR 6,2 INTERCHANGE IF NECESSARY 
00012C 18 23 LR 2,3 
00012E 18 36 LR 3,6 
000130 90 13 F 036 OUT STM l,3,A STORE SORTED VALUES 
0001311- OA 00 SVC 0 
000138 00000001 A DC F' l' 
00013C 00000002 B DC F' 2' 
000140 00000003 C DC F' 3' 

END 8EGIN 

Figure 47. Assembly listing of a program to carry out the sorting procedure charted in Figure 46 

The interchange, if it is necessary, is performed by 
moving the contents of register 1 to register 6, moving 
2 to 1, and finally moving 6 to 2. These transfers are 
made with the Load Register (LR) instruction. 

The remaining instructions repeat these operations 
twice for the other comparisons. Finally, there, is a 
Store Multiple (STM) instruction to place the re
arranged items back in the original three locations, as 
required by the .problem statement. 

Figure 48 shows before-and-after values of A, B, 
and C for the six possible original orderings of the 
three values. Each pair of lines is one set. These are 
hexadecimal numbers; the original value of A in the 
last set is -3. 
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00000001 00000002 00000003 
00000003 00000002 00000001 

00000001 00000003 00000002 
00000003 00000002 00000001 

00000002 00000001 00000003 
00000003 00000002 00000001 

00000003 00000002 00000001 
00000003 00000002 00000001 

00000003 00000001 00000002 
00000003 00000002 00000001 

ffffFffO 00000002 00000001 
00000003 00000002 00000001 

Figure 48. Sets of sample input and output for the program of 
Figure 47. Each pair of lines represents three input 
values (first line) and the sorted output (second 
line) . 



Further Decisions: The Social Security Problem 

In this application, which is presumably familiar to 
many readers, we combine two decisions with some 
arithmetic processing. 

We are given a man's earning for a week (EARN), 
his previous ("old") year-to-da te earnings 
( OLDYTD ), and his previous year-to-date Social 
Security tax (OLDSS). We are to compute his Social 
Security tax for this week ( TAX), his new year-to
date earnings (NEWYTD) and new Social Security 
tax ( NEWSS ) . Assume the Social Security tax is 
computed as 3~~% of earnings (with certain exclusions 
such as sick pay, which we shall ignore) up to an 
annual limit on taxable income of $4800. The program 
must decide whether the employee has yet earned 
$4800 this year; if so, he is exempt from further So
cial Security tax. Actually, the situation is slightly 
more complex than that: if the man has not yet earned 
$4800 before this week's pay but, counting this week's 
pay, goes over $4800, only the portion of this week's 
pay that takes him up to the $4800 limit is taxable. 

The Howchart of Figure 49 expresses the logic we 
have just described. Figure 50 translates this logic into 
a program illustrating in the process that there are 
many ways to implement a Howchart. 

We begin by loading the previous year-to-date into 
a register, and from there immediately load it into 
another register, in order to have it both places. This 
method saves a little time over loading twice from 
storage. We add this week's earnings, giving the new 
year-to-date, which is stored. Now we compare the 
old year-to-date with $4800. The Branch on Condi
tion that follows asks whether the condition code is 
1, that is, whether the first operand is low. This can 
be read: branch if the old year-to-date was less than 
$4800. If the branch is not taken, the old year-to-date 
was already over $4800, so there is no tax to pay. We 
clear register 7, where. the tax is developed if there 
is any, by subtracting it from itself - the fastest and 
simplest way to clear a register to zero. The Branch 
on Condition with a mask of 15 is an unconditional 
branch down to the final instructions where the tax 
is stored and the Social Security updated. 

If the branch is taken, there is a tax to be paid, but 
we still need to know whether this week took the man 
over the top. Accordingly, at the instruction labeled 
YES, we compare the new year-to-date with $4800. 
The Branch on Condition with a mask of 2 asks 
whether the first operand - the new year-to-date -

Over $4800 
before this 
week 

TAX = $0.00 

NEWYTD 
.. OLDYI'D 

+ EARN 

TAX = 
35/8% of 
EARN 

NEWSS= 
O1OSS+ 
TAX 

Over $4800 
counting 
this week 

TAX = 3 5/8% of 

(48oo-0LDYTD) 

Figure 49. Program Howchart of a procedure for computing a 
Social Security tax 

was greater than $4800. If so, it is necessary to com
pute the tax on just that part of this week's pay that 
takes the total up to $4800. At OVER48, accordingly, 
we load register 7 with $4800 and subtract the ll.J;e
vious year-to-date; the difference is just the amount 
that is taxable. If the branch was not taken, the full 
week's earnings are taxable, and they are therefore 
loaded into register 7 and we branch unconditionally 
to MULT. 

At that location is an instruction to multiply what
ever is in register 7 - either the full week's payor 
some part of it - by 3~%. This constant is entered as 
the integer 3625, which is the decimal fraction form 
of the percentage. We must think of this number as 
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START 256 
000100 05 FO BEGIN BAlR 15,0 

000102 USING .,15 
000102 58 60 F 052 l 6,OlDYTD 
000106 18 56 lR 5,6 
000108 5A 60 F 04E A 6,EARN 
00010e 50 60 F 056 ST 6,NEWYTD 
000110 59 50 F 066 C 5,e4800 
000114 41 40 F Ole 8C 4,YES 
000118 IB 11 SR 1,1 
OOOllA 41 FO F 040 8C 15,STORE 
OOOllE 59 60 F 066 YES e 6.e4800 
000122 41 20 F 02e 8e 2,OVI:R48 
000126 58 70 F 04E l 7,EA~N 

00012A 41 FO F 034 Be 15,MUlT 
00012E 58 10 F 066 OVER48 l 1,e4800 
000132 5B 10 F 052 S 1,OlOYTD 
000136 5C 60 f 06A MUlT M 6,e358 
000l3A 5A 10 F 06E A 1,HAlF 
00013E 50 60 F 012 0 6,eHUN 
000142 50 10 F 06'2 STORE ST 1,TAX 
000146 5A 10 F 05A A 1,OlDSS 
00014A 50 10 F 05E ST 1,NEWSS 
00014E OA 00 sve 0 
000150 00002824 EARN De F'10216' 
000154 00012BFO OlDYTD De f'410000' 
000158 NEWYTO OS F 
00015e 00004268 OlOSS De F'11000' 
000160 NEWSS os F 
000164 TAX os F 
000168 00015300 e4800 De F'480000' 
00016e 00000E29 C358 DC F'3625' 
000110 0000C350 HALF DC F'50UOO' 
000174 0OO186AO CHUN DC F'100000' 

END BEGIN 

Figure 50. Assembly listing of one version of a program to calculate Social Security tax 

0.03625, however, remembering that it is a fraction. 
The constant for rounding, HALF, is therefore 50,000, 
and we remove all the excess decimals by dividing by 
100,000. At this point the tax is in register 7 ready to 
be stored by the instruction at STORE. This same 
Store instruction is the one to which we branched 
if there was no tax to pay, having cleared register 7. 
A final Add and Store update the year-to-date Social 
Security. 

This program fulfills the requirements of the prob
lem statement and does the processing described by 
the flowchart - but it is quite unacceptable. The 
problem is something not mentioned in the problem 
statement. Let us see what the trouble is by looking 
at an example. 

Suppose we have a man who earns $102.76 per 
week. Multiplying by 0.03625 and rounding to the 
nearest cent, we get a Social Security tax of $3.73. 
In 46 weeks of working at this rate, the man will 
accumulate a year-to-date earnings of $4726.96 and 
a year-to-date Social Security tax of $171.58. Now in 
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the next week his full earnings are not taxable, but 
only the part that takes him up to $4800, or $73.04; 
the tax on this amount is $2.65. Adding $2.65 to his 
previous year-to-date Social Security, we get $174.23, 
which is more than 3%% of the $4800 maximum 

The difficulty is in the computation of the tax on 
one week's earnings. Before rounding, the product 
of $102.76 and 0.03625 is $3.725050. When we round 
this to $3.73 we add nearly half a cent. For each of 
the 46 weeks we are adding nearly half a cent -
which adds up to 23 cents. 

This would be sloppy; the employee would have a 
right to claim a refund, if he wanted to bother; the 
government would be annoyed. Social Security tax is 
very seldom computed the way we have shown. 

Fortunately, correcting the trouble is not only fairly 
easy, but leads to a shorter program. The general 
approach is to compute 3%% of the new year-to-date 
earnings, then compute the tax by subtracting from 
this the previous year-to-date Social Security. The 
effects of the rounding error are thus balanced from 



week to week, and we are never more than half a cent 
oH . in the accumulated total. 

Consider the example given above. The first week 
of the year, we get $3.73 as the tax. The second week, 
we begin by computing 0.03625 times $205.52, the 
new year-to-date gross; this gives us $7.45 as the new 
year-to-date Social Security, which we store. This 
week's tax is $7.45 minus the previous year-to-date 
Social Security of $3.73, or $3.72. In other words, 
where last week we were a half a cent high, now we 
are half a cent low; the two cancel each other. The 
oHset will not always be so simple; however, we can 
never be more than half a cent oH. 

The test for reaching the maximum taxable amount 
is now made in terms of the tax instead of the earn
ings. We compute the Social Security on the new 
year-to-date earnings, then ask whether the result is 

000100 05 FO 
000102 

000102 58 50 F 036 
000106 SA 50 F 032 
00010A 50 50 F 03A 
00010E 5C 40 F 04A 
000112 SA 50 F 04E 
000116 50 40 F 052 
00011A 59 50 F 056 
00011E 47 40 F 024 
000122 58 50 F 056 
000126 50 50 F 042 
00012A 58 50 F 03E 
00012E 50 50 F 046 
000132 OA 00 
000134 00002824 
000138 00072BFO 
00013C 
000140 00004268 
000144 
000148 
00014C 00000E29 
000150 0000C350 
000154 000186AO 
000158 000043F8 

greater than $174. If so, the result is replaced by $174 
and the tax is computed as before, by subtracting the 
previous year-to-date Social Security. If that was 
already $174, that is, if the maximum had already been 
reached, then the tax computed by this method is 
zero, as it should be. If this week's pay is taking him 
over the limit, the tax is the diHerence between the 
maximum tax and the amount already paid, which is 
correct. 

The program shown in Figure 51 should not be too 
difficult to follow after the description of the process 
that has just been given. The program is eight instruc
tions shorter and considerably less complex. Both 
versions have been tested with a variety of data; 
both give cCcorrect" results in that they do what we 
expect, although, of course, the results are not iden
tical. 

START 256 
BEGIN BALR 15,0 

USING *,15 
L 5,OLOYTO 
A 5,EARN 
ST 5,NEWYTO 
M 4,C358 
A 5,HALF 
0 4,CHUN 
C 5,C174 
BC 4,UNDER 
L 5,C174 

UNDER ST 5,NEWSS 
S 5,OLDSS 

STORE ST 5,TAX 
SVC 0 

EARN DC F'10276' 
OLDYTD DC F'470000' 
NEWYTD OS F 
OLDSS DC F'17000' 
NEWSS OS F 
TAX OS F 
C358 DC F'3625' 
HALF DC F'50000' 
CHUN DC F'lOOOOO' 
C174 DC F'17400' 

END BEGIN 

Figure 51. Assembly listing of a much better version of a program to calculate Social Security tax 
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Simple Loops: Finding a Sum 

A frequent programming requirement is to perform 
some operation on a set of values arranged in some 
systematic way in storage. We shall examine some 
of the coding methods available for such operations 
in the Systemj360, in terms of a very simple example. 

For our illustrative problem, suppose that there 
are 20 fullwords in consecutive fullword locations 
starting with the one identified by the symbol 
TABLE. We are required to form the sum of the 20 
numbers and place it in SUM. 

We shall consider the three different ways of doing 
this. All three involve the use of an index register to 
modify the effective address in an instruction. The 
contents of the index register are changed between 
repetitions of the loop. 

The first version of the program is shown in Figure 
52. We shall use register 8 to accumulate the sum 
and register 11 as the index register. We want reg
ister 8 cleared to zero so that the sum will be correct; 
as it happens, we want the index register cleared to 
zero also. Both operations are done with Subtract 
Register instructions. 

Now comes the instruction that does the actual 
computing. We add to register 8 the contents of some 
fullword in storage. The first time through the loop 
we want to add the- word at TABLE. The instruction 
specifies that the contents of index register 11 should 
be used in computing the effective address - but we 
just made those contents zero, so the effective address 
is that of the word at TABLE. The first time through 
the loop, this instruction therefore adds the word at 
TABLE to register 8, which was cleared to zero. 

The next time through the loop, we want the full
word at TABLE+4 added to register 8. This can be 
accomplished by adding 4 to the index register. In 
this version of the program, we do so with an Add 
instruction. 

Now we are at the point in the program where a 
test for completion must be made. The last of the 20 
words is located at TABLE +76. We are modifying 
before testing, however. At the point where the loop 
has just been executed with TABLE + 76 for an effec
tive address, we will now have 80 in the index reg
ister. That is, therefore, the correct constant to use 
in testing for completion. We do so with a Compare, 
then Branch on Condition with a mask that asks for 
a branch if the index was less than 80. 

The branch will be executed 19 times, giving 20 
executions of the Add at LOOP. After that, the branch 
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is not executed, we store the total at SUM, and the 
program is completed. 

The reader will no doubt have recalled the custom
ary names for the parts of a loop. The part at the 
beginning that gets the loop started is the initializa
tion section; here, it consists of the first two instruc
tions. The part that does the actual work of the loop 
is called the compute part, and here consists of the 
Add at LOOP. The modification section changes 
something between repetitions; here, it is the modifi
cation of the index contents by the Add. The testing 
section determines whether the action of the loop has 
been completed, and consists here of the Compare 
and the Branch on Condition. The sequence of the 
last three sections is not always as in this example. 
And as we shall see in the third version, the modifica
tion and testing can often be combined into one 
instruction. 

The second version shortens the repeated section 
of the loop by one instruction. Normally, we do not 
worry too much about trying to get the last micro
second out of programs, but in heavily repeated parts 
it is worth some effort. 

The method will require us to go "backward" 
through the table, which in this particular example 
is permissible; sometimes, of course, it would not be. 
As shown in Figure 53 we again clear register 8, 
This time, however, instead of loading the index reg
ister (11) with zero, we use a new instruction, Load 
Address, to put 76 in it. The Load Address (LA) 
simply puts the address part of the instruction itself 
in the designated register; there is no reference to 
storage whatsoever. 

Now when we execute the indexed Add instruction 
at LOOP, the effective address is TABLE +76. Fol
lowing this, we subtract 4 from the index register. As 
it happens, the execution of a Subtract sets the con
dition code. A condition code of zero indicates that 
the result was zero, 1 indicates a negative result, and 
2 a positive result. (A code of 3 indicates an overflow 
- a result too large to hold in the register. If the 
program is correct an overflow cannot occur here, so 
the possibility does not concern us.) We want to 
branch back to LOOP as long as the result of the 
subtraction is either positive or zero, so the mask on 
the Branch on Condition is 10: 8 picks condition code 
zero and 2 picks up code 2. 

The Store is as before. 
Where in the first version there were four instruc-



START 256 
000100 05 FO BEGIN BALR I!»,O 

000102 USING .,15 
000102 lB 88 SR 8,8 
000104 lB B8 SR ll,ll 
000106 SA 88 F 01A lOOP A 8, TABLE flU 
00010A SA BO F 06E A l1,C4 
00010E 59 BO F 072 C l1,C80 
000112 47 40 F 004 BC 4,LOOP 
000116 50 BO F 06A ST 8.SUM 
OOOllA OA 00 sve 0 
OOOllC 60000001 TABLE DC F'I' 
000120 OOOOOOOZ DC F'Z' 
000124 00000003 DC F'3' 
000128 00000004 DC F'4' 
00012C 00000005 DC F'S' 
000130 00000006 DC F'6' 
000134 00000007 DC F'7' 
000138 00000008 DC F"8' 
00013C 00000009 DC Fig' 
000140 OOOOOOOA DC F"l0' 
000144 00000008 DC F'l1' 
000148 oooooooc DC F"1Z' 
00014C 00000000 DC F'13' 
000150 OOOOOOOE DC F'llt' 
000154 OOOOOOOF DC F'IS' 
000158 00000010 DC F' 16' 
00015C 00000011 DC F'17' 
000160 OOOOOOlZ DC F'18' 
000164 00000013 DC r'19' 
000168 00000014 DC F'ZO' 
00016C SUM OS F 
000170 00000004 Cit DC F'It' 
000174 OOOOOO~O C80 DC F'80' 

END BEGIN 

Figure 52. First version of a program to form the sum of 20 numbers 

START 25b 
000100 05 FO BEGI .... BALR 15,0 

000102 USI .... G .,15 
00010Z 18 88 SR 8,8 
000104 41 80 0 04C LA ll,76 
000108 5A 86 F OlA lOOP A 8,TASlEfll) 
OOOlOC 58 80 F 06E S 11,C4 
000110 47 AO F 006 BC 10,LOOP 
000114 50 80 F 06A Sf 8,SUM 
000118 OA 01 SVC 1 
00011A OA 00 SVC 0 
00011C 00000001 TA8LE DC F'l' 
0001Z0 OOOOOOOZ DC F'Z' 
0001Z4 00000003 DC F'3' 
000128 00000004 DC F'It' 
00012e 00000005 DC F'S' 
000130 00000006 DC F'b' 
000134 00000007 DC F' 7' 
000138 00000008 DC F'8' 
00013C 00000009 DC F'9' 
000140 OOOOOOOA DC F'10' 
000144 00000008 DC F'll' 
000148 OOOOOOOC DC F'IZ" 
00014C 00000000 DC Fill' 
000150 OOOOOOOE DC F'14' 
000154 OOOOOOOF DC FilS' 
000158 00000010 DC F'lb' 
OOOlSC 00000011 DC F'17' 
000160 00000012 DC F'lS' 
000164 00000013 DC F"19' 
000168 00000014 DC F'20' 
00016C SUM OS F 
000170 00000004 C4 DC F'4' 
000174 OOOOOOSO C80 DC F'80' 

END BEGIN 

Figure 53. Second version of a program to form the sum of 20 numbers 
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tions in the repeated portion of the loop, here there 
are three. The final version reduces this number to 
the minimum, two. The technique is to use the Branch 
on Index Low or Equal instruction (BXLE), which is 
a combination of an Add, a comparison, and a con
ditional branch. 

Let us assume we have three registers set up as 
follows: Register 11 will be the index; it initially 
contains zero. Register 12 will contain the amount 
by which the index is to be incremented each time 
around the loop, 4. Register 13 will contain the· limit 
value, the value of the index which is not to be ex
ceeded, 76. If we have the instruction: 

BXLE 11,12,LOOP 

the action will be as follows: The contents of register 
12 (4) are added to register 11, which is the index 
and initially contains zero. If the sum is less than or 
equal to the contents of register 13, the limit, the 
branch to LOOP is taken; otherwise the next instruc
tion in sequence is taken. 

The instruction is written in assembly language in 
the general form: 

BXLE Rl,R3,D2( B2) 

Three factors, each of which must be located in a 
register, are required by the BXLE instruction. An 
index must be in the register specified by Rl. An incre
ment must be in the register specified by R3. A limit 
value must also be in a register but the register is not 
explicitly specified in the instruction. The BXLE in-

START 256 
000100 05 FO BEGIN BAlR 15,0 

000102 USI NG -.IS 
000102 lB S8 SR 8,8 
000104 16 BB SR 11,11 
000106 41 CO 0 004 lA 12,4 
00010A 41 DO 0 04e LA 13,16 
00010E SA 88 F OlA lOOP A S,TABlEIUI 
000112 87 Be F ooe BXlE 1l.12,lOOP 
000116 50 SO F 06A ST 8,SUM 
OOOIlA OA 00 SVC 0 
00011C 00000001 TABLE DC F'l' 
000120 00000002 UC F'2' 
000124 00000003 DC F'3' 
000128 00000001t DC F',., 
OOOlze 00000005 UC F'S' 
000130 00000006 DC F'6' 
GOO13,. 00000007 DC F'7' 
000138 00000008 DC F'S' 
00013C 00000009 UC F'q' 
000140 OOOOOOOA DC F'lO' 
000144 OOOOOOOB DC F'11' 
00011t8 OOOOOOOC DC F'12' 
00014C 00000000 OC F'13' 
000150 OOOOOOOE DC F'14' 
000154 OOOOOOOF DC F'15' 
000158 00000010 UC F'16' 
00015C 00000011 DC F'17' 
000160 00000012 DC F'lS' 
000164 00000013 DC F'19' 
000168 00000014 DC F'20' 
00016e SUM US F 
000170 00000004 Cit DC F'4' 
000174 00000050 C80 DC F'80' 

END BEGlh 

Figure 54. Third version of a program to form the sum of 20 
numbers. This shortest version uses the Branch In
dex Low or Equal (BXLE) instruction. 
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struction will first add the increment to the index. It 
will then compare the resultant index against the limit. 
If the index is less than or equal to the limit, a branch 
is taken to the location specified by D9.( B2); otherwise 
the next instruction in sequence is taken. The register 
containing the limit value is always odd-numbered and 
is chosen in the follOWing way: 

1. If the register specified by R3 is an even num
bered register, the limit value is assumed to be in 
the next higher numbered register. If we have 
the instruction: 

BXLE 11,12,LOOP 

the limit value is in register 13, the next higher
numbered register. 

2. If the register specified by R3 is an odd-numbered 
register, a third register is not used. In this case 
the BXLE instruction assumes that R3 specifies 
the register to be used for both the increment and 
the limit. If we have the instruction: 

BXLE 6,7,LOOP 

register 7 will be used by BXLE as the source of 
the increment and the limit. 

\Ve shall see in later chapters how it can be useful to 
have the second and third registers the same - for now 
we shall use R3 operands that are even-numbered. 

This instruction at first glance seems more compli
cated than it is. Let us turn to an example to see 
how it works. Figure 54 is the final version of our 
summing loop. 

We begin the program by loading the 3 registers 
that will be used by the BXLE instruction (registers 
11, 12, and 13), with the desired initial contents. We 
then proceed to the Add instruction at LOOP, which 
is the same as in the previous two versions. Next comes 
the BXLE, which operates as described. 

The operation of the BXLE instruction is most easily 
remembered if we think in terms of three registers 
representing the index, the increment, and the limit, 
in that order. 

For situations where it is desired to work back
wards, in which case· the increment would be nega
tive, the Branch on Index High (BXH) instruction is 
available. 

The BXLE and BXH instructions are very power
ful and very flexible. They will find heavy use in 
many practical applications, and are well worth the 
investment of effort necessary to understand them 
fully. 



Case Study 1: Averaging a List of Temperatures 

computed. In any case, we are to store in NGOOD 
the number of good readings found. The average 
should be rounded off to the nearest degree. 

In an attempt to draw together some of the things 
that have been discussed in this chapter, we shall 
now consider a final problem that involves several 
different concepts. 

Suppose we have in storage a group of halfwords 
giving the temperature, to the nearest degree, on 
each of the days of a month. There may be 28, 29, 30, 
or 31 of them; the number is given by a halfword 
named DAYS. The table of temperatures begins at 
TEMP and continues for a total of 31 halfwords; if 
there are fewer than 31 days in the month at hand, 
the last entries of the table are to be ignored. It is 
possible that the temperature may be missing for 
some days; a missed reading is indicated in storage 
by a halfword of all 1's. We are to form the average 
of the temperatures for the month, using only as many 
good readings as are found. If the entire table should 
happen to contain bad readings, a halfword of all 1's 
should be stored to indicate that the average was not 

The program shown in Figure 55 uses the halfword 
variations of a number of instructions that should be 
quite familiar in their full word forms. 

000100 05 FO BEGIN 
000102 

000102 48 50 F 096 
000106 1B 66 
000108 18 76 
00010A 18 86 
00010e 41 AO 0 002 
000110 48 BO F 098 
000114 4B BO F 094 
000118 88 80 0 001 
00011e 18 E6 
00011E 49 5E F 054 LOOP 
000122 47 80 F 02C 
000126 4A 7E F 054 
00012A 4A 80 F 094 
00012E 87 EA FDIC ZERO 
000132 40 80 F 09C 
000136 12 88 
000138 47 70 F 040 
00013C 40 50 F 09A 
000140 OA 00 
000142 88 70 o 001 NOT 
000146 10 68 
000148 4A 70 F 094 
00014C 8A 70 o 001 
000150 40 70 F 09A 
000154 OA 00 
000156 0001 TEMP 
000158 0002 
00 

000190 uuu: 
000192 OOlF 
000194 0020 
000196 0001 ONE 
000198 FFFF ONES 
00019A DAYS 
00019C AVER 
00019E NGOOD 

Before analyzing the operation of the program, it 
may be helpful to summarize the functions of the 
registers used, which will often be a valuable thing 
for the programmer to do. 

Register 
5 
6 
7 
8 

10 
11 
14 
15 

Usage 
Word of 1's 
Left half of dividend 
Sum of temperatures-right half of dividend 
Count of nonzero temperatures 
Increment for BXLE 
Limit for BXLE 
Index register 
Base register 

START 256 
BALR 15,0 
USING .,15 
LH 5,ONES 
SR 6,6 
LR 7,6 
LR 8,6 
LA 10,2 
LH 11, DAYS 
SH 11, ONE 
SLA 11,1 
LR 14,6 
CH 5,TEMP(l4) 
BC 8,ZERO 
AH 7, TEMPe 14 J 
AH 8,ONE 
8XLE IIt,lO,LOOP 
STH 8,NGOOD 
LTR 8,8 
Be 7,NOT 
STH 5,AVER STORE O~ES IF ~o ~O~D DATA 
SVC 0 HOP 
SLA 7,1 TO GET EXTRA BINARY PLACE I ~ :;WOTIEH 
DR 6,8 DIVIIJE REGISTER 
AH 7,ONE ROUND Off 
SRA 7,1 DROP E)(TRA BIT 
STH 7,AVER fINAL RESULT 
sve 0 OUT 
DC H'l' 
DC H'2' 
I)C 

Ul. 

De H'30' 
DC H'31' 
DC H'l2' 
DC H'l' 
DC x'FFFF' 
OS H 
OS H 
OS H 
END 8EGIN 

Figure 55. A program to compute the average of a set of temperatures, taking into account the possibility of missing readings 
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The initialization consists of setting up the contents 
of the seven registers used by the program. The first 
one to be set to zero (6) is cleared by a Subtract 
Register, the others by Load Registers from 6. The 
Load Halfword to get the number of days into reg
ister II automatically expands the halfword into a 
fullword, which would mean that the sign bit of a 
negative number would be filled out. With correct 
data, the word here cannot be negative, of course. 
The number of days is to be used to terminate the 
summing loop that adds up the temperatures. The 
loop should be executed as many times as the number 
of days; it should be repeated (after the first time) 
one less time than the number of days. We accord
ingly subtract I from register II after loading it. 

Since the table of data consists of halfwords, the 
index register will have to be incremented by 2 be
tween loop repetitions, and the proper limit value is 
two less than double the number of days. We can 
double a number quite simply by shifting left one 
place in a binary machine. (If the table had consisted 
of fullwords, requiring an increment of 4, a left shift 
of two places would multiply the number of days by 
4.) 

In the working part of the loop we first check to 
see whether the particular temperature is valid, by 
comparing with the word of all 1's that had been set 
up in register 5. The Compare Halfword expands the 
halfword from storage to a fullword hy propagating 
the sign bit. This is necessary to us, since the load 
halfword that put the word of all I's in register 5 did 
the same thing. We next branch on equal to the in
struction at ZERO, which would happen if the read
ing was bad. If it was good, the branch is not taken; 
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we add in the temperature, add one to the count of 
good readings, and then reach the BXLE. 

The BXLE increments the index register (14) by 2 
(which is in 10) and checks whether the index is now 
the same as what we put in II. If the index is low or 
equal, meaning that the list has not been exhausted, 
we branch back to LOOP to go around again. 

When the loop is finished, we reach the Store Half
word after the BXLE. Here we store the count of good 
readings at NGOOD; this conceivably could be zero. 
N ext we check whether it was zero, using the Load 
and Test Register instruction (L TR). With the two 
register designations being the same, as they are here, 
the effect of this instruction is to set the condition 
code according to the sign and magnitude of the count 
in register 8. The Branch on Condition instruction 
then asks whether the count was either positive or 
negative and branches if so. If it was neither of these 
it must have been zero, in which case we store the 
word of all 1's for the average in AVER, and stop. 

H there was at least one good reading, we are ready 
now to compute the average. In order to be able to 
round off to the nearest degree, it is necessary to ar
range the division so that the quotient has one binary 
place in it; this can be done by shifting the dividend 
to the left one place before dividing. The division is 
done this time with the Divide Register instruction, 
since the desired divisor (the count) is already in a 
register. Following the Divide Register we add 1 to 
the rightmost bit position of the quotient register to 
round off. Having done so, we shift the quotient back 
to the right to get rid of the extra bit and store the 
result. 



1. The L, A, S, and ST instructions all operate on a 
( full word, halfword). 
2. The first operand of an instruction usually speci
fies the operand that (sends, receives) information. 
3. In a ST instruction the first operand specifies the 
operand that (sends, receives). Does the ST instruc
tion, in this respect, follow the general rule, or is it 
an exception to the general rule? 
4. Is the instruction M 7,QTY a legitimate instruc
tion? If not, why not? 
5. The D instruction specifies _________ _ 
as· the first operand, and the _________ _ 
as the second operand. After completion of the divide 
operation, where is the quotient located? Where is 
the remainder located? 
6. Assume that a fullword area of storage (reserved 
by a DS), to be addressed as XANDY, contains two 
positive items as below: 

x Y 

XANDY-O 19 20 31 

Questions and Exercises 

Write the program to store X in a fullword area in 
core called X, and Y in a halfword area in core called 
Y. 
7. The instruction BC 5,ROUT3 would branch to 
ROUT3 if the: 

a. Condition code is 5. 
h. Condition code is 1, 2, or 3. 
c. Condition code is 1 or 3. 

8. Write an instruction to branch unconditionally to 
an instruction called NEWONE. 
9. There are four full words named Xl, X2, X3, and 
X4 sequentially located in storage. Write one instruc
tion that loads these four fullwords into registers 2, 3, 
4, and 5 respectively. 
10. Write an instruction that clears register 5 to zero. 
11. Consider the instruction named LOOP in Figure 
52. How will the effective address of TABLE ( 11) be 
formed? 
12. Write a single instruction that adds the contents 
of register 6 to register 5, tests to see if the sum now 
in register 5 is equal to or less than the contents of 
register 7, and then branches to an instruction called 
NEWONE if the answer is yes. 
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Chapter 5: Programming with Base Registers and ~the USING Instruction 

A major programming feature of the System/360 is 
the use of base registers, which provide three impor
tant advantages. First, compatibility is maintained 
between the small system with its short addresses 
and the large system with its longer addresses. The 
same instruction size and format accommodates both. 
Second, through appropriate use of base registers it 
is possible to relocate assembled programs almost at 
will. Great flexibility in program organization is thus 
achieved, since storage locations can be reassigned as 
dictated by the needs of the particular "mixture" of 
programs or program segments. Third, if proper care 
is exercised, base registers may still be used for index
ing through storage addresses without destroying their 
eHectiveness for the first two purposes. 

Base registers are thus deeply involved in program-

The USING Instruction 

Automatic assignment of base registers and the auto
matic computation of displacement require the pro
grammer to supply two items of information to the 
assembler and one to the object machine. With the 
USING instruction, the programmer tells the assem
bler: 

1. Which general registers may be used as base 
registers 

2. What each one will contain at the time the 
object program is executed 

With this information the assembler can do its 
work: assign base registers and compute displace
ments. It still remains to place in the base registers 
the values we have promised the assembler will be 
there. This can in principle be done in many ways, 
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ming and in program execution. However, as we shall 
see, it is possible to delegate to the assembler almost 
all of the clerical work of assigning base registers and 
computing displacements. With a full understanding 
of these techniques, the programmer is able to leave 
the housekeeping to the assembler where appropriate, 
and to employ more sophisticated methods where 
needed. 

In the remainder of this publication we shall see 
how the automatic techniques are called into opera
tion and how the assembler implements them, and 
we will explore a few slightly more advanced tech
niques. As in so many other aspects of programming, 
particular emphasis must be placed on the question 
of the timing of various actions: during assembly, pro
gram loading, or program execution. 

but the most common is to use the Branch and Link 
Register instruction (BALR). The general format of 
this instruction is: 

BALR Rl,R2 
Rl receives the address of the next byte after the 
BALR; R2 supplies a branch address unless it is zero, 
in which case the next instruction in sequence is taken 
as usual. For our purposes here, the second operand 
(R2) is always zero. For instance, in the illustrative 
program we shall be conSidering shortly, we have an 
instruction: 

BALR 15,0 
This places in register 15 the address of the next byte 
after the BALR, and there is no branch. The choice of 
register 15 was arbitrary . 



These ideas may be made more concrete by consider
ing an example. Figure 56 is an assembly listing of a 
program the processing details of which do not con
cern us. 

The START instruction specifies that the assembled 
first byte of the program is location 25610 :;::::: 10016• We 
see that the BALR instruction has in fact been placed 
in 100. (All numbers in the object program area of 
the assembly listing - on the left-hand side - are 
hexadecimal.) The BALR instruction specifies that 
general purpose register 15 is to be loaded with the 
address of the next machine instruction. This, of 
course, is done at execution time by the object ma
chine. The USING instruction, which is an assembler 
instruction and takes no space in the object program, 
informs the assembler that general purpose register 
15 will contain the address of the next machine in
struction. Register 15 becomes the base register for 
this program. The BALR is a two-byte instruction, 
so the next instruction, the Load, is placed at 102. 
This number, printed to the left of the USING, indi
cates what the assembler assumed would be the con
tents of base register 15. 

Let us now look at the Load instruction to see how 
the assembler handled it. Reading from left to right 
the operation code is 58, the register loaded with a 

START 
000100 05 FO BEGIN 8ALR 

000102 USING 
000102 58 20 F 022 L 
000106 5A 20 F 02A A 

An Example 

word from storage is number 2, no index register is 
specified, the base register is F 16 == 1510, and the dis
placement is 02216• With base register 15 containing 
102 and with a displacement of 22, we get an actual 
address of 12416• Looking down the listing we see that 
124 is in fact the absolute address corresponding to 
the symbol DATA, as it should be. 

The Add instruction is similar. With base register 
15 again automatically designated, we have a base 
address of 102 and a displacement of 2A for an effec
tive address of 12C, which is the absolute equivalent 
of the symbol TEN. 

The Shift Left Algebraic instruction is a little dif
ferent. All shift instructions have the RS format, with 
the index portion unused, but they still must specify 
a base register. Even though the effective "address" 
is never used for a storage reference, it is possible to 
make effective use of a variable number of positions 
of shift by varying the contents of the base register. 
In this program, however, such is not the case and 
we need a base register designation of zero. We see 
that this was done. The effective address is therefore 
just the displacement of 1. The remainder of the pro
gram presents no new base register concepts. 

As always, it is most important to distinguish be
tween what is done at assembly time and what is 

256 
15,0 
.,15 
2,DATA LOAD REGISTER 2 
2,TEN ADD 10 

• THE FOLLOWING SHIFT HAS THE EFFECT OF MULTJPlYl~G BY 2 
00010A 88 20 0 001 SLA 2,1 
00010E 58 20 F 026 S 2,OATA+4 NOTE RELATIVE ADDRESSING 
000112 50 20 F 02E ST 2,RESULT 
000116 58 60 F 032 L 6,81Nl 
00011A 5A 60 F 036 A 6,81N2 
00011E 4E 60 F 03E CVO 6,DEC CONVERT TO DECIMAL 
000122 OA 00 SVC 0 
000124 00000019 DATA DC F'2S' 
000128 OOOOOOOF DC F ' 15' 
00012C OOOOOOOA TEN DC F'10' 
000130 RESULT OS F 
000134 OOOOOOOC BINI DC F'lZ' 
000138 0000004E BIN2 DC F ' 78' 
000140 DEC OS 0 

END BEGIN 

Figure 56. Assembly listing of a program to illustrate base register assignment and displacement computation. The "processing" 
performed is not intended to be realistic. 
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done at execution time. The assembler, in the exam
ple at hand, has filled in base register numb~rs where 
needed and has computed displacements. These base 
register numbers and displacements become part of 
the actual instructions, as listed down the left side of 
the assembly listing. In carrying out the assembly 
operations, the assembler had to know what base reg
ister we wished to use and what we planned to put in 
it; this information we provided with the USING. 

The assembler cannot load the base register for 
the execution of our program, since that can be done 
only when the program is executed. We therefore pro
vided the BALR instruction, which, at execution time, 
places the address of the next instruction into the 
specified register. The remainder of the program can 
now be carried out, with effective addresses being 
developed as intended. 

Actually, there is a third "time" that should be con
sidered: loading time of the object program. We said 
With our START instruction that the first byte of the 
program should be placed in 25610 == 10016. Every
thing said so far has assumed that the program is ac
tually loaded starting in 10016. But what if it were 
not? Suppose we were to decide after assembling 
the program that in order to avoid conHict with other 
programs the program should be loaded into 120016. 
With a suitable control card we inform the relocatable 
loader that the first byte of the assembled object pro
gram is to go into 1200. What would have to be 
changed in order to make the object program operate 
correctly from the new location? 

The answer is that nothing need be changed. When 
the program has been loaded we begin by executing 
the BALR instruction. Now, what is the address of the 
next instruction after the BALR? Answer: 1202. This 
value goes into register 15 and becomes the base ad-
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dress. The displacements in the assembled instructions 
have not changed, of course. The effective address in 
the Load instruction is now 1202 + 22 == 1224. With 
the new starting location, 1224 is exactly where DATA 
appears. All other addresses are correctly computed 
as well, including the "address" in the Shift, which 
is completely unchanged since no base register is used. 

A complete relocation of the program after assem
bly is thus a simple matter of changing a control card 
in loading. In more complex program structures the 
loader has more work to do than this example might 
suggest, but it is nevertheless feasible to execute pro
grams from whatever storage locations may be con
venient. 

As we have noted, this simplicity of program reloca
tion was one of the reasons for providing base registers 
in the System/360. 

It is possible, of course, to circumvent the system 
partially, by designating base register zero, in which 
case no base register is used at all. The program is 
then restricted to the use of addresses that can be 
contained in the displacement portion of the instruc
tions, namely zero through 409510• Although there 
may conceivably be circumstances that justify this 
attack, it must be strongly discouraged as a general 
practice. The lower parts of storage of course have 
special functions (in connection with the PSW's) that 
cannot be disturbed. Even if these locations were 
avoided, however, it is inadvisable to discard the relo
cation feature. 

The techniques of program relocation are heavily 
involved in a discussion of subroutines and subpro
grams. For the remainder of this presentation we shall 
assume that each program is loaded where indicated 
by the START. 



The displacement in an instruction is limited to a posi
tive number in the range 0-409510 == O-FFF 16. This 
means that an effective address cannot be less than 
the base register contents, nor more than 4095 greater 
( assuming no indexing, of course). If a program must 
reference a range of addresses greater than 4095, 
either the base register contents must be changed 
or more than one base register must be used. For 
routine programming, the latter solution is much more 
common. 

It should be noted, however, that it takes a rather 
large program segment to exhaust the range of dis
placements using one base register. With average 
length instructions, it takes a full pad of coding paper 
to use up 4096 bytes. It will usually be desirable to 
break a program this large into smaller segments 
anyway, so it will probably be extremely rare in prac
tice to need more than one base register because of 
program length. Long sections of storage for data or 
results are another matter. It may fairly frequently be 
advantageous to assign one base register to the pro
gram and another to data. This is done in the exam
ple in the last section of this presentation. 

For now, to establish some basic ideas, let us make 
up a program that does use more than 4096 bytes 
for combined data and program. We shall naturally 
not actually write an illustrative program that large, 

More Than One Base Register 

but we can simulate the effect of such a size by using 
the ORG assembler instruction to advance the loca
tion counter. -

The program shown in Figure 57 was designed with 
the sole purpose of illustrating base register ideas; 
the «processing" is not intended to be meaningful. 
After the usual START, we have a BALR to load base 
register 15 with the address of the next instruction. 
The USING instruction is slightly different this time. 
Instead of using an asterisk to denote the address of 
the first byte of the following instruction, we give 
that instruction a symbolic name (HERE) and use 
the symbol. This gives exactly the same effect with 
respect to register 15, and permits us to refer to the 
contents of 15 in terms of a symbol, which we shall 
need for loading register 13. (The choice of register 
13 was arbitrary.) 

In loading the second base register, we cannot use 
a BALR: we want register 13 to contain not the ad
dress of the next instruction, but 4096 more than what
ever went into 15. To accomplish this we use an ad
dress constant, named BASE in this case, which is 
written with the address HERE +4096. We see that 
the constant BASE has been assembled as we in
structed: 1102 is 1000 hexadecimal greater than the 
value of the symbol HERE, and 100(h6 == 409610. 

Base register 13 will thus be loaded with 110216 at 

START 256 
000100 05 Fa BEGIN BALR l~-,Q 

000102 USING HERE,lS 
000102 58 DO F OOA HERE L 13,BAsE 

001102 USING HERE+4096,13 
000106 47 Fa F OOE BC 15,FIRST 
OOOlOC 00001102 BASE DC A(HERE+4096) 
000110 58 20 F FFE FIRST l 2,DATA 
000114 5A 20 D OOE A 2,TEN 
000118 47 FO 0 002 BC 15,SECOND 

001100 ORG *+4068 
001100 00000078 DATA DC F'123' 
001104 58 30 F FFE SECOND L 3.DATA 
001108 5A 30 0 OOE A 3,TEN 
OOllOC 47 FO F DOE BC 1S,FIRST 
001110 OOOOOOOA TEN DC F'lO' 

END BEGIN 

Figure 57. Assembly listing of an illustrative program that has an Origin assembler instruction to make the program appear to have 
more than 4096 bytes, thus requiring two base regiSters 
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execution time. This information is given to the as
sembler with a USING that has the address HERE+ 
4096. 

It is worthwhile noting which base register was 
used in the Load instruction that loaded base register 
13: we see that the base register is 15 (which con
tains 102) and there is a displacement of A (+10 deci
mal). The effective address is thus 10C, which we see 
is indeed the address of the constant BASE. It is im
portant to realize that at the time register 13 is being 
loaded, the only base register available is 15; the 
effective address of the instruction that loads 13 there
fore cannot be more than 4096 greater than the con
tents of 15; Thus the address constant BASE cannot 
be at the end of the entire program, which would 
be more than 4096 bytes away. We have chosen to 
place it at almost the beginning and branch around 
it. Other placements are possible, so long as they do 
not cause the assembler to try to use a displacement 
in the Load instruction at HERE that is negative or 
greater than 4095. 

(As an example of an attempt to use a negative dis
placement, suppose we were to put the address con
stant BASE at the very beginning of the program, 
between the START and the BALR: then the dis
placement in the Load would need to be -6, which 
is impossible.) 

Following the constant BASE we have two instruc
tions that are meant to suggest the processing steps of 
the program, and then a branch to an instruction near 
the end. For the sake of illustration, we want the pro
gram to look as though it is more than 4096 bytes 
long. This we can simulate by an ORC that, in this 
case, advances the location counter by 4068. This arb i-
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trary-appearing number was chosen to put DATA at 
the end of a 4096-byte segment controlled by base 
register 15, which means that the following instruc
tions and data are referenced by base' register 13. 

Let us noW investigate how the assembler assigned 
base registers and computed displacements. 

The Branch on Condition to FIRST involves a lo
cation under the control of base register 15; if base 
register 13 were specified, the displacement would 
have to be negative. The Load at FIRST refers to 
DATA. The base is 15, with a large displacement of 
FFE16 == 409410. The Add refers to a location that is 
more than 4096 bytes away from the beginning of 
the program, so base register 15 cann()t be used. We 
see that 13 has been indicated, with a displacement 
of E16 == 1410• The following Branch on Condition 
references a storage location 2 greater than what was 
placed in register 13, so register 13 is the base and 
the displacement is 002. 

Down at SECOND, the base registers and displace
ments for getting DATA and TEN are exactly as they 
were before; these matters are unaffected by the lo
cation of the instructions. The assembled Branch on 
Condition to FIRST is precisely the same as the as
sembled Branch on Condition that appeared earlier, 
just before BASE. 

The essential concept is that the assembler assigns 
whatever base register is necessary to get a displace
ment less than 4096. If the program has been written 
so that two or more base registers have contents that 
satisfy this rule, the assembler chooses the one that 
leads to the smallest displacement. We shall see later 
an instance in which this rule for choosing base regis
ters is important. 



Separate Base Registers for Instructions and Data 

We have suggested that it will be rare for a program 
segment to be so long as to require more than one 
base register. On the other hand, it mayb.~ fl!idy 

-..;;~~~"?Jl_tO .. wanL.sep~.~~~,~_J?~~~, !(~i~I~!~is_. fo,r' i~.~t~~~_, 
tions and data, even. th<.>uzh. t.he instructions J~k~Jar. 

-·fe~er tha;;409'6-byt-e'~~-' "How thi~' -~~~"h~pp-~n is illus-
tratedTn~lllefo1Iowing problem. 

Suppose we have six records in storage, each record 
consisting of 80 characters. The six records are in con
secutive storage locations; the first of the 480 bytes 
has the symbolic address DATA. Within each record 
there are eight fields of ten characters each, named 
FIELDl, FIELD2, etc. Each field is in packed deci
mal format. We are required to add FIELDI and 
FIELD2 and place the result in FIELD3. The other 
five fields are not used in this program. This process
ing is to be done for each of the six records, using a 
loop. 

Now the question is, How do we attack the loop? 
The arithmetic will use decimal instructions, which 
have the SS format and are not indexable. We could 
write instructions to modify the displacement of every 
instruction that refers to the records, but this is very 
poor form if there is a better way available. 

The solution proposed here is to modify the base 
register contents so as to pick up the records in suc
cession, which means that between loop repetitions 
we will add 80 to the base register. But now we have 
a new problem: if only one base register is used, 
how do we modify its contents and still get a cor
rect base for Branch instructions and for references 
to program constants? The simplest answer is prob
ably obvious: use two base registers, the second of 
which refers only to the data processed by the loop. 

A program is shown in Figure 58. The loading of 
base registers is much as it was in Figure 57, except 

START 256 
000100 05 FO BEGIN 6ALR 15,0 

000102 USING *,15 
000102 58 80 F OlE lOOPl L 8,BASE 

00012C USING OATA,e 
000106 02 09 a 014 8 000 LOOP2 MVC FIEL03,FIELDI 
OOOlOC fA 99 8 014 8 OOA AP FIELU3,FIELD2 
000112 5A 80 F 022 A a,EIGHTY 
000116 59 80 F 026 C 8,TEST 
00011A 41 10 F 004 BC 1,LOOP2 
OOOllE OA 00 SVC 0 
000120 0000012C BASE DC A(OAIA) 
000124 00000050 EIGHTY DC F'80' 
000128 0000030C TEST DC A(OArA+~80) 

00012C DATA OS OF 
000l2C FIELDl OS CLIO 
000136 FIELD2 os CLIO 
000140 FIELD] OS CLIO 
00014A FIELD4 uS CLIO 
000154 FIELDS OS CLIO 
00015£: FIEl06 OS CLlO 
000168 FIELD1 OS CLIO 
000112 FIELDS os CLIO 
00011C os CL80 
OOOlCC OS CL80 
00021C OS CLSO 
00026C OS CL80 
0002BC OS CLSO 

END BEGIN 

Figure 58. Assembly listing of a program that has separate base registers for program and data, with the base register for data being 
used for looping 
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that ·this time register 8 is loaded with the address 
corresponding to DATA, rather than with 4096 more 
than what 15 contained. As a matter of fact, it turns 
out that 15 contains 10216, and 8 contains 12C16• This 
will mean that the first byte of the area named DATA 
could be obtained by adding a displacement of 2A 
to register 15, or by adding a displacement of zero to 
register 8. As we noted, the assembler picks the way 
that gives the smaller displacement. It is essential for 
us to be able to depend on this fact. 

We see also that in this program the address con
stant for loading register 8 has been placed at the 
end of the instructions rather than in the instruction 
stream. This is permissible as long as we are sure 
that it is not more than 4096 bytes away from the be
ginning of the program, which it obviously is not. 

It is assumed, for the purposes of this illustration 
of base register ideas, that the data is provided by 
another program segment and used later by some 
other. We therefore have provided space for the data 
with DS instructions that allot space for the required 
number of characters but do not assemble constants 
to be entered. The DS for DATA, in fact, does even 
less than that: it provides a reference point for the 
symbol, but does not even reserve space since a zero 
is written for the duplication factor. Thus DATA and 
FIELD 1 both refer to the same byte. The point of 
this approach is to have DATA for a name for the 
entire 480-character storage area, and still use names 
for the fields within the first record. An alternative 
approach would have been to use DATA as the name 
of the first field, DATA+10 for the second, DATA+20 
for the third, etc. The loss of meaningful names is a 
disadvantage. Another alternative would have been 
to omit the entry for DATA and use FIELD 1 wher
ever DATA appears earlier. This would also be a lit
tle less meaningful, perhaps. 

The Move Characters instruction at LOOP2 moves 
the first field to the third field location. Reading across 
the assembled instruction, we have: the actual opera
tion code D2; the length code is 09; the base register 
for the first operand is 8; the displacement for the first 
operand is 014; the base register for the second oper
and is also 8; the displacement for the second oper
and is zero. The length code of 9 is correct for a field 
of length 10; the assembler picked up the implied 
length from the DS entry for FIELD 1, and subtracted 
1 from the length to get the length code. Checking 
the address calculations, we see that a base address of 
12C plus a displacement of 014 give an eHective ad
dress of 140, which is correct for FIELD3. A base 
address of 12C and a displacement of zero give the 
address of FIELDl. 
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The Add Decimal instruction that follows does the 
required addition. This instruction has two length 
codes, both 9 in this case, for two fields of length 10. 
The displacement of OOA, together with the base ad
dress of 12C, correctly lead to 136, the address of 
FIELD2. The addressing of FIELD3 is as before. 

N ow we are ready to add 80 to the base register 
associated with DATA and go back to process more 
records if more remain. We add 80 to base register 
8 and then compare with an address constant to test 
for completion of the loop. What should the test con
stant be? Since we modify before testing, and since 
there are 480 characters in the six records, we should 
stop repeating if at this point the base register con
tains a number 480 greater than what it was to start. 
It was originally the equivalent of the symbol DATA, 
so the test value ought to be DATA +480, as shown. 
The Branch on Condition here is in effect a «Branch 
if U nequaJ". If the Branch is not executed, we are 
finished and the next instruction is a Supervisor Call. 

If the program had been written to use only one 
base register, we would be in trouble with the address 
of the Branch on Condition. The assembler would 
have assumed a certain value for the base register 
and computed a displacement accordingly. After mod
ifying the base register contents, we would no longer 
have the desired branch address. 

It is of course true that we are modifying the con
tents of base register 8 also, but we have carefully 
arranged that it is not used as a base for anything 
besides DATA. No confusion is caused, therefore, be
cause we have "cheated" by changing the contents 
of a bas~ register from what we promised the assem
bler would be there. What we told the assembler 
correctly led to the first record processed; by the time 
we changed the contents (during execution) the as
sembler is no longer on the scene to know that any
thing happened. 

In practice it would normally be necessary to proc
ess many blocks of six records, not just one. In that 
case we would have to get register 8 back to its start
ing value. This is readily done simply by re-executing 
the Load instruction at LOOPl. 

If this program were ever relocated, it is perhaps 
obvious that something would have to be done during 
loading to take care of the address constants at BASE 
and TEST. It would clearly not be enough to change 
the initial program loading location, without notifying 
the address constants of the change. This matter is 
properly handled by an automatic flagging of all ad
dress constants in the deck or tape produced by the 
assembler, and by suitable modifications performed 
by the relocatable loader. 



In order to illustrate one last facet, suppose that 
there were some compelling reason to place additional 
instructions after DATA. (It is assumed that there 
would be a Branch to them.) Suppose that within 
these additional instructions there were Branches to 
locations within the new group. What would the base 
register situation be? With the size of program and 
data shown, either base register 15 or 8 could supply 
a displacement of acceptable size; the assembler could 
pick the one leading to the smaller displacement: 8. 

Base registers, when used eHectively, provide some of 
the most powerful and flexible processing features of 
the System/360. From addressing compatibility be
tween systems, to program relocation, to indexing in 
SS format instructions - these are only some of the 
ways in which base registers add to the power of the 
system. In other chapters· in this text we shall see how 

But the contents of 8 change as the loop is executed; 
how can we tell the assembler that 15 is wanted, not 
8? 

The answer is the DROP instruction, in which we 
would say DROP 8 at the beginning of the new group 
of instructions. This says to the assembler that gen
eral purpose register 8 may no longer be used as a 
base register. The only one left is then 15, so it is the 
one used, as desired. 

Summary 

they come into play in program segmentation and in 
double indexing through tables, to mention only two 
others. 

With a thorough understanding of what is done at 
each of the three "times" - assembly, loading, and 
execution - the inventive programmer will nnd many 
other ways to make good use of base registers. 
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Questions and Exercises 

Consider the following program. Note that some of 
the program statements have been omitted from the 
listing. The locations assigned to each instruction, 
constant, and area are listed in hexadecimal, as in all 

Reg IS 

Va lue Assumed 
by Assembler 

program listings. The locations are such that you 
. should have no difficulty with hexadecimal arithmetic 
when answering questions 1-4, which refer to this 
program. 

Value Loaded at Execution Time 
Program loaded I PrQ9ram loaded 
at 20016 at 120016 

I 

Location Location Execution Time 

(relocated) Object Instruction Effective Address 

Program Program 
Base Displace- loaded loaded 
Register ment at 200]6 at 120016 

START 512 
1200 200 BEGIN BAlR lS,O 

USING * IS 

202 l 2JMID 

206 A 2.fTEN) 

· 
234 S 2 ,(DATA-hi) 
238 ST 2~ -· · 
252 l 6[siN1) -· · 
~ DATA DC F'2S' 

308 DC F'lS' 

· · 
324 TEN DC F'lO' 

328 RESULT DS F 

· · 344 BINI DC F'12' 

· 
END BEGIN 

Symbol Table 
location length 

BEGIN 200 2 
BINI 344 4 
DATA 304 4 
RESULT 328 4 
TEN 324 4 
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la. What instruction informs the assembler that reg
ister 15 is to be used as a base register, and tells the 
assembler what value it must assume to be in that 
base register at execution time? 
b. What instruction causes register 15 to be loaded 

with the base address at execution time? 
2. The assembly process can be explained in terms of 
two phases. In the first phase, the assembler, among 
other functions, determines the length and location 
for each instruction, area, and constant. While doing 
this it constructs a symbol table (note the symbol 
table at the bottom of the assembly listing). The 
symbol table consists of one entry for each symbol 
appearing in the name field of the source program. 
Each entry contains the symbol, the storage address 
assigned to it, and the length (in bytes) of the stor
age area associated with it. 

In the second phase, the assembler again processes 
the source program, developing for each symbolic 
operand the base register and displacement that will 
appear in the object instruction. To develop the base 
register specification and displacement, the assembler 
builds and uses a base register table, containing one 
entry for each USING instruction. Each entry notes 
the base register and the value the assembler assumes 
will be loaded into that base register at execution 
time (both of which are specified by the USING 
instruction) . 

a. In the space provided in the assembly listing, 
write the value the assembler assumes to be in base 
register 15 at execution time. 

b. U sing the symbol table and answer 2a, write 
(in the space provided) the base register and dis
placement appearing in the object instruction for each 
encircled operand. 

3. Assuming the program is not relocated: 
a. In the space provided, write the value placed 

in register 15 at execution time. 

b. U sing the specified base register and displace
ment, write (in the space provided) the effective ad
dress developed at execution time for each encircled 
operand. 
4. Assume that the program, when loaded, is relo
located starting at 120016 instead of 20016• In the 
spaces provided, list: 

a. The locations into which each instruction, area, 
and constant is loaded. 

b. The value placed in register 15 at execution 
time. 

c. The effective address computed at execution 
time for each encircled operand. 
5. Consider the following program. As in the previ
ous program, some of the program statements have 
been omitted, the locations are listed in hexadecimal, 
and the locations are such that you should have no 
difficulty with hexadecimal arithmetic. In the· spaces 
provided, list: 

a. The symbol table prepared by the assembler 
( symbol and location only). 

b. The contents of base registers 13, 14, and 15 
assumed by the assembler. 

c. The base register and displacement for each 
encircled operand. 

d. The value actually placed in registers 13, 14, 
and 15 at execution time (assuming the program is 
not relocated) . 

e. The effective address computed at execution 
time for each encircled operand. 
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Value Assumed Value loaded at Execution Time 

by Assembler Program loaded 
at 100016 

Reg 15 
Reg 14 
Reg 13 

Location Object Instruction Execution Time 
Effective Add ress 

Program 
Base Displace- Loaded 
Register ment ~t 100016 

START 4096 

1000 BEGIN BALR 15,0 

USING FIRST,15 

1002 FIRST BC 15 SKIP 

1006 DATA DC F'3472' 
· · · · · · 

1024 BASEl DC A(FIRST+4096) 
1028 BASE2 DC A(FIRST ---8192) 

-. -. · · · · · · -- _ .. = 
1104 SKlP L 14 .(BASE f) 

USING FIRST+4096,14 

1108 L 13,fBASEf) 
-=-=---

USING FIRST +8192, 13 

· · · · · · 
2504 BC 15.6(8) · · ~ · · · · 
2898 LOOP A 4,(o"ATAj 
· · -· · · · 

3204 LOOPS S 5, DATA · ,. · · · · 
3508 BC 8,(l()op) · · "----' · · · · 
3904 CK8 BC 8,(LOOPB) 

END BEGii'f 

Symbol Table 

Symbol Location 
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The decimal instruction set is an optional feature 
of the System/360, but one that most users elect. Be
sides making it possible to do arithmetic in the more 
familiar decimal system, the decimal instruction set 
includes instructions for editing data (preparing data 
for printing by the insertion of characters such as 
, . $). The decimal instruction set permits operations 
on variable length data and includes the following 

/ instructions: 
Add Decimal 
Compare Decimal 
Divide Decimal 
Edit 
Edit and Mark 
Multiply Decimal 
Subtract Decimal 
Zero and Add Decimal 
Data operated upon by instructions in the decimal 

set must be in one of two forms, packed or zoned, 
depending on the instruction. As a rough generaliza
tion, we can say that the packed format is required 
for arithmetic and the zoned for input/output. 

In the packed format, two decimal digits are placed 
in each byte except the rightmost, which contains a 
digit and the sign of the entire number. 

Digits and sign occupy four bits each. 
The decimal digits 0-9 have the binary codes 0000-

1001. In the sign position, the code combinations 1010, 
1100, 1110, and 1111 are taken to mean plus, and 1011 
and 1101 are recognized as minus. When a sign is 
generated as a part of an arithmetic result, a plus is 
1100 and a minus is 1101.0 

°These are the EBCDIC codes, which we shall use through
out. See the SRL manuals for a discussion of ASCII codes. 

Chapter 8: Decimal Operations 

In the zoned format the rightmost four bits of a byte 
are called the numeric portion of the byte and con
tain a digit. The leftmost four bits are called the zone 
and contain either a zone code or, in the case of the 
rightmost byte, the sign of the number. 

The codes for signs are treated as described for the 
packed format. The code for the zone bits is 1111. 

Decimal instructions have precise requirements that 
operands be in packed or zoned format. The Pack and 
Unpack instructions, standard instructions on the sys
tem, are available for converting from one form to 
another. The Move with Offset instruction, another of 
the standard instructions, is often used for shifting 
factors used or developed in decimal arithmetic oper
ations. Instructions for converting between binary and 
packed are also part of the standard instruction set. 
"Ve shall see examples of all of these operations later. 

Decimal instructions use the SS ( Storage-to-Stor
age) format: 

Op Code 

There are two addresses, both of course referring to 
core storage. Each address is formed from a base 
register contents and a displacement. The address 
always refers to the leftmost byte of an operand. 

For each operand there is a separate length in most 
cases. In the instruction the length code may vary 
between 0000 and 1111, or zero and 15. These cor
respond to lengths of one to 16. In other words, the 
actual length is one greater than what appears in the 
length code of the instruction. In assembler language 
programming, lengths will quite often be implicit in 
the data definitions, but when we do write an explicit 
length, it is the actual length. The generation of the 
proper code in the instruction (one less than whatever 
we write) is the function of the assembler. 

With these preliminaries in mind, let us tum to an 
example. 
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Addition and Subtraction in Decimal 

Let us take the first example used in the chapter on 
"Fixed-Point Operations" and write it with decimal 
arithmetic. The application is an inventory updating. 
We were given an old on-hand (OLDOH), a number 
received (RECPT), and a number issued (ISSUE); 
we were to compute the new on-hand (NEWOH). 
For this program we shall assume that all data entries 
are already in packed format and are four bytes long. 
Four bytes can contain, in packed format, seven deci
mal digits and the sign. 

In Figure 59 let us look first at the data definitions. 

......, 
Name Operation Operand 

1 6 8 12 14 20 25 

SIT II V? Ir 2l.f6 I 
IJ'$ 6 I " BIfJ L Ie 1 15 I. 0 II 

VI$ ~ !Vb ~ .15 , 
MV C HIE iW ()H ,~ 

!. I' lD 19> J.I 
/lIP N ~ W 'IH f~ )1£ C~ T 
~ ip II IE W 'H .. lJ SS U E.. 
sl~ ie 0 " \ 

t~ D '~ 1/ IJJc p '- 4- ' 'I ' . h 
R'£ CP r J)C PL .; '.y. / 
IS SU E- ll) Ie p lL -# 'l' ' f 
}JE.. N :~ 1-1 I/) LS' p Li4 --\ fiN J) 8£ ~ 'I IAI 

.-~;;;;;;;..- - -r-~ - :::..~..,;.---...;,;..::.:;J! 

Figure 59. An assembler language program to perform a simple 
arithmetic calculation in decimal, using the 
System/360 decimal instruction set 
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The DC instructions for OLDOH, RECPT, and 
ISSUE and the DS for NEWOH all have operands 
that start with PL4. The P stands for packed format, 
and the L4 for a length of 4. (Lengths are always 
in bytes, never digits.) This is our first contact with 
a length modifier in a DC instruction. Here, we are 
specifying that the constants must be four bytes long. 
If we had omitted the length, the constant generated 
by the assembler would have been as long as needed 
to hold the data value we wrote, in this case one byte. 
(Length modifiers are actually permitted for other 
types of data, too, although we have had no previ
ous occasion to use them. ) 

Looking at the assembly listing in Figure 60, we see 
that the DC entries have resulted in four-byte con
stants. In each case, with the data shown, there are six 
zeros, followed by a digit, followed by a hexadecimal 
F (binary 1111), which is what the assembler used 
for a plus in this case. 

Turning back to the instructions of the program, 
we see that the START, BALR, and USING are 
standard. The first processing instruction is a new 
one, Move Characters (MVC). This is an SS fonnat 
instruction of a slightly different sort: it moves from 
storage to storage, but there is only one length, be
cause the "sending" and "receiving" fields must be of 
the same length. That length may be from one to 
256 bytes. Looking at the assembled instruction, we 
see that a length code of 3 has been supplied by the 
assembler; this is the correct code for a length of 
four bytes. The length of the operands was implied 



000100 05 fO BEGIN 
000102 

000102 02 03 F 020 F 014 
000108 FA 33 f 020 F 018 
00010E FB 33 F 020 F 01C 
000114 OA 00 
000116 0000009F OlDOH 
OOOllA 0000004F RECPT 
OOOllE 000OOO6F ISSUE 
000122 NEWOH 

Figure 60. Assembly listing of the program of Figure 59 

from the data definitions. It is also possible, and fre
quently necessary, to write explicit lengths to over
ride what the assembler would imply. 

The generation of an address from the base register 
contents and the displacement is as before: for in
stance, for OLDOH the base register contains 102, 
the displacement is 014; the sum of these is 116, which 
we see is the address for OLDOH. 

The purpose of the Move Characters instruction 
was to get the old on-hand quantity into a location 
where we can perform arithmetic without disturbing 
the original quantity. The decimal instructions make 
no references to the general registers (except, of 
course, to get the base), so we must provide storage 
locations for all operations. We do not wish to destroy 
the old on-hand, so we must arrange f~r the arith
metic results to go somewhere else. In this case, the 
obvious place is NEWOH, where we want the even-

START 256 
BAlR 15,0 
USING -,15 
MVC NEWOH.OLOOH 
AP NEWOH,RECPT 
SP NEWOH,ISSUE 
SVC 0 
DC Pl4'9' 
DC Pl4'4' 
DC Pl4'6' 
OS Pl4 
END BEGIN" 

tual result anyway. In other problems, as we shall see, 
it is often necessary to provide temporary working 
storage. 

The Add Decimal (AP, for Add Packed) instruc
tion adds the quantity received to the old on-hand, 
which by now is in NEWOH. Note that the result 
of an arithmetic operation is always stored in the 
first operand location. The two fields in an Add Deci
mal instruction need not be the same length, since 
there are two length codes in the instruction. Here, 
they are the same, as it happens. The Subtract Deci
mal (SP) instruction deducts the quantity issued. 

There is no need for something equivalent to a 
Store instruction; every instruction already involves 
two storage addresses, one of which receives the re
sult. 

The storage dump of Figure 61 shows that the re
sult has been correctly computed. 

0000009+ 0000004+ 0000006+ 0000007+ 

Figure 61. Output of the program of Figures 59 and 60. The four quantities are OLDOH, RECPT, ISSUE, 
and NEWOH, in that order. 
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Decimal Multiplication 

For a simple example of decimal multiplication, let 
us write a program for the computation of a new 
principal amount. 

We are given a principal (PRINe), here taken to 
be four bytes, and an interest factor ( INT) , two 
bytes; we are to compute the new principal amount 
after adding in the year's interest. The interest rate 
of 3% is expressed as the factor 1.03, so that a single 
multiplication does the whole job. A program is shown 
in Figure 62. 

The decimal multiply instruction takes the second 
operand to be the multiplier; the first operand ini
tially contains the multiplicand, and at the end of 

. the operation contains the product. However, we 
cannot begin with a multiply instruction specifying 
PRINe as the multiplicand, as we might be inclined, 
because extra space is required. The first operand 
is required to have at least as many high-order zeros 
as the size of the multiplier field. We need, therefore, 
to move the principal to a working storage area hav
ing extra positions at the left. These extra positions 
must be cleared to zero before the multiplication 
starts. 

The Zero and Add (ZAP) does just what we need. 
The effect of the instruction is to clear the first oper
and (PROD, in this case) to zero, then add the sec
ond operand (PRINe) to it. PROD is two bytes 
longer than PRINe; these extra four digit positions 
will be cleared to zeros before PRINe is added in. 
This provides the zeros needed to satisfy the multi
plication rule. 

000100 05 FO 
000102 

START 256 
BEGIN BALR 15,0 

USING .,IS 
• 

Now we multiply. With the sample data shown, 
the result in PROD will be 00000256367+, as shown 
in the comments field. We were regarding 2489 as 
meaning $24.89, and 103 as meaning 1.03, so there 
are four places to the right of the understood decimal 
point in the product, which we therefore regard as 
0000025.6367+. We would now like to round this off 
to $25.64. This can be done in a number of ways. 
Here we simply add a constant (ROUND) properly 
set up to add a 5 into the second place from the 
right. The second operand in an Add Decimal instruc
tion is permitted to be shorter than the first (which 
holds the result). When this is done, any carries that 
occur are properly propagated . 

Always bear in mind that the rightmost byte of an 
operand in decimal arithmetic must have a sign. We 
might be tempted, for instance, to set up a constant 
consisting of a 5 without a zero, and add directly into 
the position where we want to get the rounding. This 
would be illegal. 

We are now ready to discard the two digits at the 
right end of the product. But this is not quite as sim
ple as just not moving them to PRINe, because if we 
did that, PRINe would not be a legal operand in any 
subsequent arithmetic operation, since it would not 
have a sign. Before moving the result back to PRINe, 
therefore, we must move the sign from where it is, 
to the byte just to the left. This we can do with a 
Move Numeric (MVN) instruction, which transmits 
only the numeric portions of the bytes. The instruc
tion says: Take the numeric portion of the byte at 

• THE NUMBERS IN THE COMMENTS FIELD ARE THE CJ~TE~TS 

000102 F8 53 F 026 F 020 
000108 Fe 51 F 026 F 024 
OOOIOE FA 51 F 026 F 02C 
000114 01 00 F 02A F 02B 

OOOllA 02 03 F 020 F 021 
000120 OA 00 
000122 00021t89F 
000126 103F 
000128 
00Ol2E 050F 

• Of PROD AFTER THE EXECUTION OF EACH I~STRUCTIO~ 
• THE C IS A PLUS SIGN IN THE PACKED FORMAT 
• 

lAP 
MP 
AP 
MVN 

• THIS IS 
Mve 
SVC 

PRINe DC 
INT DC 
PROD DS 
ROUND DC 

END 

PROD,PRINe 
PROD,INT 
PROD,ROUND 
PROD+ItCI),PROD+5 
NOW JHE eONTE~TS 
PRINe,PROD+I 
0 
PLIt'21t89' 
Pl2'103' 
PL6 
PLZ'50' 
8EGIN 

OF 

00 00 00 02 48 9C 
00 00 02 56 36 1C 
00 00 02 56 41 1C 
00 00 02 56 4: 1C 

PRI~C 
00 02 56 ItC 

Figure 62. Assembly listing of a program involving a decimal multiplication 
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PROD+5 (which is the rightmost byte of the PROD, 
and contains the sign) and move it to the byte at 
PROD+4 (which is the byte to the left and will be 
the rightmost byte of PRINe after the next instruc
tion); the field to be moved is one byte long. The 
length for this instruction cannot be left to the assem
bler; the implied length here would be 6 (the length 
of PROD), which would destroy the result. The Move 
Numeric instruction has only one length code, so 
we need give only one explicit length. 

Finally, we are ready to move the result to the 
field where it is required to be at the end of the pro-

gram, PRINe. Remember that PROD is six bytes long. 
The leftmost byte contains two zeros, we assume: the 
maximum size of the result is taken to be seven digits. 
(The validity of such an assumption, as always, is the 
responsibility of the programmer and systems ana
lyst.) The rightmost byte of PROD contains a digit 
and sign that we now wish to drop, since they are 
to the right of the product after rounding. To drop 
the leftmost byte, we write the address as PROD+l. 
To drop the rightmost, we need a length of 4, which 
happens to be the implied length of PRINe, so no 
explicit length is necessary. 
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Decimal Division 

Some of the operations in working with the decimal 
instruction set are different enough from similar op
erations in other machines that it may be well to pause 
and consider them in somewhat more detail than we 
have devoted to other topics. Division is one such 
operation; the equivalent of shifting, considered later 
in "Shifting of Decimal Fields", is another. 

The Divide Decimal (DP) instruction is in the 
SS format. The first operand is the dividend (the num
ber divided into), the second the divisor (the number 
divided by). After the operation is completed, the first 
operand field holds the quotient (at the left) and the 
remainder (at the right). The remainder is the same 
length as the divisor. Let us see how this description 
works out in an example. 

Suppose we begin with the symbolic locations 
DIVID and DIVIS as follows: 

DIVIDbefore 
DIVIS 

000004246+ 
o 3 1 + 

We have indicated DIVID as a "before" value, be
cause after the division the same field will contain 
both the quotient and the remainder. All operands are 
in packed format, as with other decimal arithmetic 
operations. After executing the instruction: 

DP DIVID,DIVIS 

the contents of DIVIS would be unchanged; the con
tents of DIVID would be: 

DIVIDafter 00136+030+ 

This means that 4246 divided by 31 in this way gives 
a quotient of 136 and a remainder of 30. The divisor 
was two bytes, so the remainder is two bytes. The 
quotient takes up the remaining space in the first 
operand field. 

The question of the lengths of the various fields can 
be answered with a useful rule: 

Number of bytes in dividend = number of 
bytes in divisor + number of bytes in quotient 

It is perhaps most common to know the number of 
bytes in the divisor and the number desired in the 
quotient, the question being how much space to allow 
in the dividend in order to get the specified size of 
the quotient. If two of the three lengths are known, 
the formula can be used to get the length of the third. 

Note that the formula is stated in terms of the 
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number of bytes, not the number of digits. The reason 
is that the. first operand field contains only one sign at 
the beginning, when it is the dividend, but two after
ward, when it contains both quotient and remainder. 
This change would invalidate a rule stated in terms of 
digits. 

A very similar rule gives the relationship among 
decimal points. If we agree that by "decimal places" 
we mean the number of digits to the right of an as
sumed decimal point, the rule is: 

Number of places in dividend = number of places 
in divisor + number of places in quotient 

In the example given above, we assume that all quan
tities were integers, that is, have no decimal places. 
The rule still holds, although in its most elementary 
form: 

0=0+0 

Let us see what the result would be if we were to 
arrange the dividend of the example so that it had one 
decimal place: 

DIVIDbefore 0 0 0 0 4 2 4 6 0 + 
In other words, we now view the dividend as 4246.0. 
The result is: 

DIVIDafter 0 1 3 6 9 + 0 2 1 + 
The rule says that the quotient should have one deci
mal place: the dividend had one and the divisor had 
zero. The quotient must therefore be interpreted as 
meaning 136.9. (And if anything has to be done with 
the remainder, it should be taken as meaning 2.1.) 

Suppose the dividend had been shifted one more 
place to the left: 

DIVIDbefore 0 0 0 4 2 4 6 0 0 + 
DIVIDafter 1 3 6 9 6 + 0 2 4 + 

This result should be read as 136.96. 
What would happen if we tried to set up the divi

dend with yet one more shift to the left? There is 
room in the dividend - but there is no more space 
in the quotient field. This constitutes a divide excep
tion, which occurs whenever the quotient is too large 
to fit in the field available to it. An interrupt occurs. 

It is possible to check for the possibility of a divide 
exception, given sample numbers. To do this, the left
most digit position of the divisor is aligned with the 
second digit position from the left of the dividend. 



When the divisor, so aligned, is less than or equal 
to the dividend, a divide exception will occur. Take 
the situation suggested: 

DIVIDbefore 0 0 4 2 4 6 0 0 0 + 
DIVIS 031+ 

This is the alignment described by the rule. As 
aligned, the divisor is smaller. We saw before that 
there would not be enough room for the quotient. 

This question does depend on the particular num
bers involved, of course. Suppose the quantities were 
aligned the same way but that the dividend were 2246 
instead of 4246: 

D IVIDbefore 
DIVIS 

002246000+ 
031+ 

This is entirely acceptable. 
To be completely confident that a divide exception 

cannot occur, we have to know the maximum possi
ble size of the dividend and the minimum possible 
size of the divisor, or we must know the maximum size 
of the quotient. 

Further examples of decimal division will be given 
after we have studied shifting, which is often needed 
to arrange the dividend as desired to give the neces
sary number of decimal places. 
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Shifting of Decimal Fields 

Shifting as such is not provided in the System/360 
decimal operations. As in other variable-field-length 
computers with which the reader may be familiar, 
the equivalent of shifting is performed by appropri
ate combinations of data movement instructions. 

The matter is made somewhat more complex by the 
factor of packed formats, with two digits per byte 
and with the special status of the sign position. This 
is simply the price we pay for the increased storage 
economy of the two-digits-per-byte arrangement. 

It is also necessary to exercise caution when over
lapping fields are to be manipulated in order to be 
sure that no data is destroyed. This is another occa
sion where it is absolutely essential to remember that 
all operands are addressed by the leftmost byte. 

Let us begin with the simplest type of shift: a 
decimal right shift of an even number of places. 
Suppose that we have a five-byte, nine-digit number 
in SOURCE; we are to move it to a five-byte field 
named DEST with the last two digits dropped and 
two zeros at the left. We can do this two ways: 
with or without disturbing the original contents of 
SOURCE. Let us do it first without disturbing them. 

Suppose that the two fields originally contain: 
SOURCE DEST 

12 34 56 78 9S 55 55 55 55 55 
The S stands for a plus or minus sign, whichever it 
might be. The instructions for accomplishing the shift 
could be as follows, where we have also shown the 
contents of the two fields after the execution of each 
instruction: 

SOURCE DEST 
MVC 

DEST + 1 ( 4) ,SOURCE 12 34 56 78 9S 55 12 34 56 78 
MVN 

DEST +4( 1 ) ,SOURCE +4 12 34 56 78 9S 55 12 34 56 7S 
MVC 
DEST( 1 ) ,ZERO 12345678 9S 00123456 7S 

In the first Move Characters instruction, an explicit 
length of 4 is stated; this length applies to both fields. 
With the first operand address being DEST+l, the 
four bytes of the destination are the rightmost four. 
The second operand is given simply as SOURCE, so 
the four bytes there are the leftmost. The last two 
digits (one byte) have been dropped. 

But the sign has been dropped, too, in the process. 
We accordingly use a Move Numeric instruction to 
attach it to the shifted number. This must be done 
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with an explicit length of one, to avoid disturbing 
any of the digits of DEST. Both addresses must be 
written with the "+4" to pick out the proper one 
character. Finally, we move one byte of the constant 
named ZERO (not shown), which contains zeros, to 
the first byte of DEST. This clears to zero whatever 
may have been there before. 

If the contents of SOURCE are no longer needed 
in their original form, the following sequence is a 
bit shorter. 

SOURCE DEST 
MVN 
SOURCE+3( 1 ),SOURCE+4 123456 7S 9S 5555555555 

ZAP 
DEST,SOURCE (4) 123456 7S 9S 00 123456 7S 

The Move Numeric moves the sign to the byte 
which will contain the sign in the eventual result. The 
Zero and Add picks up four bytes of SOURCE and 
adds them to DEST after clearing DEST to zeros. 
The Zero and Add has two length codes. For DEST 
we use the implied length of 5; for SOURCE it is 
necessary to give an explicit length in order to drop 
the last two digits. 

Finally, suppose that for some reason it is neces
sary to leave the shifted result in SOURCE, without 
resorting to the expedient of simply moving the sign 
and appending zeros at the left. 

MVN SOURCE+3( 1 ),SOURCE+4 
ZAP SOURCE,SOURCE( 4) 

SOURCE 
12 34 56 7S 9S 
00 12 34 56.7S 

The sign movement is as before. In the Zero and 
Add, the second operand is given as SOURCE ( 4), 
which means a four-byte field the leftmost byte of 
which has the address SOURCE; this is just 
12 34 56 7S. The first operand is simply SOURCE, 
with its implied length of 5, which means the whole 
field. 

It is important to know that this type of overlap 
is permitted. The relevant statement from the Prin
ciples of Operation Manual (A22-6821) is: "The first 
and second operand fields may overlap when the 
rightmost byte of the first operand is coincident with 
or to the right -of the rightmost byte of the second 
operand." A little study shows that a violation of this 
rule would result in destroying bytes of the second 
operand before they have been moved. 

Let us now turn to a slightly more complex shift, 
one that involves an odd number of places. This 



requires the use of a special instruction designed for 
the purpose, the Move with Offset. The action of this 
instruction can be described as follows. The sign of 
the first operand is not disturbed. The second operand 
is shifted to the left by four bit positions in moving it 
to the first operand. Any unused high-order digit posi
tions in the first operand are filled with zeros. 

Looking at an example, take the fields described 
in the previous illustration, but suppose that the shift 
must be three positions instead of two. 

SOURCE DEST 
MVO 
DEST,SOURCE(3) 12 345678 9S 00 01 234565 

MVN 
DEST +4( 1 ),SOURCE+4 12 34 56 78 9S 00 01 23 45 6S 

In the Move with Offset, the second operand is 
given as SOURCE ( 3 ), which picks up a three-byte 
field starting at the left, namely, the bytes containing 
12 34 56. The first operand is DEST, with its implied 
length of 5. The digits 12 34 56 are moved to DEST 
with an offset of four bits, or one digit, leaving 
00 01 23 45 65 in DEST; the rightmost 5 is the one 
that was there to begin with. A final Move Numeric 
attaches the source sign to the destination field. 

-- If the shift is required to leave the result in 
SOURCE, only one instruction is needed, since the 
Move with Offset instruction has no effect on the sign 
of the first operand, and the left end of the receiving 
field is filled with zeros. 

SOURCE 
MVO SOURCE, SOURCE ( 3) 00 01 23 45 6S 

The overlapping fields here cause no trouble, since 
again the movement is to the right of. the original 
contents. (Actually, overlap of any type is permitted; 
it is the programmer's responsibility to make sure 
that the result is meaningful.) 

A shift to the left presents slightly different prob
lems. Suppose that we have a source field of three 
bytes this time and a destination of five. 

Before SOURCE DEST 
12 34 5S 99 99 99 99 99 

Let us take our problem, to move the number at 
SOURCE to DEST, with four zeros to the right at 
DEST, and with DEST left ready to do arithmetic. 
An acceptable sequence of instructions is shown be
low. 

MVC DEST (3) ,SOURCE 
MVC DEST+3(2),ZEROS 
MVN DEST+4(l),DEST+2 
MVN DEST + 2 ( 1) ,ZEROS 

SOURCE DEST 
12 34 5S 12 34 5S 99 99 
12 34 5S 12 34 5S 00 00 
12 34 5S 12 34 5S 00 OS 
12 34 5S 12 34 50 00 OS 

The first Move Characters needs an explicit length 
on DEST; otherwise, the length would improperly 
(for us) be implied from DEST as 5. The last two 
bytes of DEST aTe unaffected by the first Move; a sec
ond clears them. A Move Numeric transfers the sign, 
and a second Move Numeric clears the now extrane
ous sign that went with the source data on the first 
Move Characters. 

Another way to clear the extraneous sign is avail
able, using the And Immediate instruction. cCAnding" 
two quantities gives a result that has a one bit wher
ever both operands had r s, and a zero elsewhere. 
For instance, if we "and" 1100 and 1010, the result is 
1000; only in the first bit position did both operands 
have ones. In the And Immediate instruction (NI), 
both operands are exactly eight bits long. One of 
them is given by the byte specified by the address; 
the other is contained in the instruction itself (which 
is the reason for the term cCimmediate"). The result 
replaces the byte specified in storage. 

In the example at hand, we wish to leave the first 
four bits of the byte at DEST +2 just as they were; 
this can be done by placing ones in the correspond
ing positions in the part of the instruction that will 
be c'and-ed". (This is usually called the mask.) We 
wish to make the right four bits of DEST +2 zero, 
whatever they were before; this can be done by 
placing zeros in that part of the mask. The mask, 
in short, should be 11110000, expressed in binary. To 
write the instruction, we can either convert this to 
its decimal equivalent 240, or write it in hexadecimal, 
X'FO'. In other words, we can replace the last in
struction with either of the following: 

NI DEST+2,240 
NI DEST+2,X'FO' 

Finally, consider a shift to the left of an odd num
ber of places. For an example, take the data of the pre
ceding illustration, but suppose there are to be three 
zeros at the right instead of four. 

MVC 
MVC 
MVN 
NI 
MVO 

Before 
DEST ( 3) ,SOURCE 
DEST+3(2),ZEROS 
DEST+4( 1),DEST+2 
DEST+2,240 
DEST( 4),DEST( 3) 

SOURCE DEST 
12 34 5S 99 99 99 99 99 
12 34 5S 12 34 5S 99 99 
12 34 5S 12 34 5S 00 00 
12 34 5S 12 34 5S 00 OS 
12 34 5S 12 34 50 00 OS 
12 34 5S 01 23 45 00 OS 

The first four instructions are just the same as in the 
previous example, with the And Immediate substituted 
for the Move Numeric. The final instruction now is a 
Move with Offset that shifts one digit position to the 
right. 
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Decimal Division with Shifting 

We are now prepared to approach a realistic problem 
in decimal division. 

Suppose that in a four-byte field named SUM we 
have the total of the number of hours worked by all 
the employees in a factory, given to tenths of an hour. 
In NUMBER we have the number of employees in
cluded in the sum; this is a two-byte number. We are 
to calculate the average workweek, to tenths of an 
hour, rounded, and place it in a two-byte location 
named A VERAC. 

We begin the analysis of the problem knowing that 
the dividend (SUM) has one decimal place to start, 
and the divisor (NUMBER) has none. If we set up 
the division this way, we would get a quotient having 
one plaee; this would not permit rounding. Evidently 
we shall have to allow extra places to the right. One 
more would be sufficient, but this would involve a 
shift of an odd number of places; it would be simpler 
for us and faster in the machine to make a shift of 
two places and simply ignore the extra digit. The 
dividend therefore should be set up like this: 

XX XX XX XO 0+ 

The X's stand for any digits. 
Now we tum to the rule stating that the number of 

bytes in the dividend is equal to the number of bytes 

START 
000100 OS FO BEGIN 8ALR 

000102 USING 
* 

in the divisor plus the number of bytes in the quo
tient. We know that we have two bytes in the divisor 
as it stands. The quotient need be only three: there 
can be no more than two digits before the decimal 
point, there will be three after the decimal point, 
and there will be a sign. (There will be three decimal 
places in the quotient because there are three in the 
dividend and none in the divisor.) The dividend 
evidently should be five bytes. As it happens - which 
will by no means always be the case - that is just 
how long it will be as the result of the shifting we 
decided upon. 

With this much background, let us now look at the 
program shown in Figure 63. We assume that it is per
missible to destroy the original contents of SUM; if 
this were not so, it would be a matter of one extra 
instruction to move the contents of SUM to a work
ing storage location. 

Notice in the list of constants at the end of the 
program that a one-byte constant named PAD has 
been established just after, and therefore to the right 
of, SUM. Now, instead of actually moving the con
tents of SUM in order to accomplish a shift, we sim
ply extend the field by one byte. This is the function 
of the first two instructions. We have assumed, rea
sonably enough, that the sum is always positive, so 

256 
15,0 
*,15 

* THE COMMENTS FIELD ON THE FOLLOWING I~STRUCTIONS SHOWS 
* THE CONTENTS OF SUM OR AVERAGE, AFTER THE EXE:UTION 
* OF THE INSTRUCTION 
* 

000102 02 00 F 028 F 02F MVC SUM+1t l 1) ,ZERO 01 93 61t 8+ 0+ 
000108 91t FO F 027 NI SUM+3,21t0 01 93 61t 80 0+ 
00010C FD 1t1 F 021t F 029 DP SUMlS),NUM8ER 39 76 3+ 21 9+ 
000112 FA 21 F 021t F 020 AP SUMll),ROUND 39 81 3+ 21 9+ 
000118 01 00 F 025 F 026 MVN SUM+1(1),SUM+2 39 8+ 3+ 21 9+ 
OOOllE 02 01 F 028 F OZIt MVC AVERAG,SUM 39 8+ 
000121t OA 00 SVC 0 
00012b SUM DC Pllt'019361t8' 
00012A PAD OS PLl 
000128 NUMBER DC PL2 '1t87' 
000120 AVERAG OS PlZ 
00012F 050F ROUND DC PLZ'SO' 
000131 OF ZERO DC Pll' 0' 

END BEGIN 

Figure 63. Assembly listing of a program involving decimal division and the equivalent of decimal shifting 
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a plus sign is moved with the first Move Characters, 
and the original sign is simply erased with the And 
Immediate. 

The Divide Decimal might seem to carry the pos
sibility of a divide exception. We must fall back on 
a knowledge of the data, which is the eventual foun
dation of any intelligent programming. We simply 

observe that the average hours worked would not be 
as great as 100 hours - and anything less can be con
tained in the space provided. 

Rounding is accomplished by adding 5 in the proper 
position. We move the sign to where it is needed, 
and finally transfer the result to the specified location 
in storage. 
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Format and Base Conversions 

It is often necessary to convert from zoned to packed 
format and vice versa, and to convert between binary 
and decimal form. In this sectiQn we shall examine 
an illustrative problem that involves both types of 
conversion, and the special instructions available to 
make them relatively simple. 

We are given a fullword named REG, in binary 
format. The three-byte field named PREM was read 
directly from a card on which the sign was in the 
high-order position, instead of the low-order. That is, 
a positive number was punched with a 12 zone over 
the leftmost digit, and a minus number was punched 
with an 11 zone over the leftmost digit. We are re
quired to place the sum of REG and PREM in ANS, 
as a decimal number in the normal zoned format, 
that is, with the sign in the zone of the low-order byte. 
The zone bits that result in a byte in storage from a 
12 zone on the card, are the zone bits required for 
a plus sign in the EBCDIC zoned format in storage. 
An 11 zone likewise is translated into the correct zone 
bits for a minus sign. Our problem, then, is simply 

START 
000100 05 Fa BEGIN BALR 

000102 USING 
• 

to move the zone bits of the high-order byte to the 
zone bits of the low-order byte. 

In the program of Figure 64 we have shown at the 
right of the first half-dozen instructions the contents 
of the last eight bit positions of registers 5 and 6, to 
aid in understanding how the instructions operate on 
sample data consisting of the three bytes: 

1101 0011 1111 0111 1111 1001 

With the card column assignments we have described, 
this is the EBCDIC representation of -379. 

The program begins with a new instruction: Insert 
Character (IC). This is an RX format instruction 
that gets one character (byte) from the specified 
storage location and places it in the rightmost byte 
position of the register named. The other bit positions 
of the register are not disturbed. We do not know 
what might be in them, but it will not matter, as it 
happens, since the following instruction clears them. 
This is an And to erase the numeric bits of the bigh
order character. 

256 
15,0 
-,15 

• THE COMMENTS FIELD ON THE FOLLOWING INSTRUCTIJ~S 

• SHOWS THE LAST BYTE (. 8 BITS) Uf RE~ISTERS 5 A'40 6 
• AFTER THE EXECUTION OF EACH INSTRUCTIJ~ 

• 
000102 43 50 F 03A IC 5,PREM 1101 0011 
000106 54 50 F 032 N 5,MASKl 1101 0000 
00010A 43 60 F 03C IC 6,PREM+2 1101 0000 1111 
00010E 54 60 F 036 N 6,MASK2 1101 0000 0000 
000112 16 56 OR 5,6 1101 1001 0000 
000114 42 50 F 03C STC 5,PREM+2 1101 1001 0000 
000118 F2 12 F 030 F 03A PACK WORK,PREM 
00011E 58 60 F 042 L 6,REG 
000122 4E 60 F 046 CVO 6,DOUBLE 
000126 FA 71 F 046 F 030 AP OOUBlE,WORK 
00012C F3 57 F 04E F 046 UNPK ANS,OOUBlE 
000132 OA 00 SVC 0 
000134 OS OF 
000134 OOOOOOFO MASKI DC X'OOOOOOFO' 
000138 OOOOOOOF MASK2 DC X'OOOOOOOF' 
00013C PREM DS Zl3 
00013F WORK DS Pl2 
000144 REG os F 
000148 DOUBLE os 0 
000150 ANS os Zl6 

END BEGIN 

Figure 64. Assembly listing of a program that moves zone bits from one byte to another, converts a number to 
packed format, converts another number from binary to decimal, and does arithmetic in decimal 
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Next we perform the similar operations on the low
order byte, using register 6, except that this. time we 
erase the zone bits. 

Now we have in register 6 the numeric bits of the 
low-order byte, and in register 5 the zone bits that 
are to be attached to that byte. They can be com
bined with an Or Register (OR) instruction. "Or-ing" 
two operands is a bit-by-bit operation that results in 
a 1 wherever either operand had a 1, and zero where 
both had zero. The result of this instruction is to com
bine the two groups of bits, leaving the result in 
register 5. This now is the byte that we want in the 
low-order position, so we use a Store Character in
struction (STC) to place it there. 

Insert Character and Store Character do not require 
the character to be on any sort of integral boundary. 
They are the only index able instructions for which 
this is true. The various decimal instructions do not 
require boundary alignment either, of course, but 
they are not indexable. The two And ( N ) instruc
tions, however, do require their operands to be on 
fuIIword boundaries. This is the purpose of the DS 
OF before the DC's for the masks. 

At this point we have merely got the sign where 
it is expected to be in the zoned format of a decimal 
number. Now we must convert from zoned to packed 
format, which is the function of the PACK instruc-

tion. The secoild operand names a field in zoned for
mat; the first names the field where the packed for
mat should be stored. Both fields carry length codes. 
Here, we are able to leave the lengths implied: three 
bytes for PREM and two for WORK (two bytes al
low space enough for three digits and sign in packed 
format). The PACK instruction ignores all zones ex
cept the rightmost, which is taken to carry the sign. 
Therefore we can leave the zone of the high-order 
byte as it was without disturbing the operation. 

With the PREM amount finally in packed format, 
we are almost ready to do the addition - but not 
quite, because the REG amount is still in binary. The 
next instruction, accordingly, is a Load followed by 
a Convert to Decimal (CVD). Convert to Decimal 
takes the binary number in the specified register and 
converts it to packed format decimal in the location 
given, which must be an aligned on a doubleword. 

At last it is possible to do the addition, which is 
done in decimal. A final instruction, Unpack (UNPK), 
converts back from packed to zoned, as required in 
the problem statement. This will leave the final answer 
with the sign in the zone bits of the low-order byte, 
which was stated to be the desired position for what
ever processing might follow. H it were necessary to 
get the result into the same format as PREM origi
nally was, we could of course do so. 
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Decimal Comparison: Overtime Pay 

Logical tests and decisions are as necessary in deci
mal operations as elsewhere. The System/360 pro
vides a Compare Decimal instruction, and the condi
tion code is set as a result of this and three arithmetic 
instructions. In this section we shall explore an exam
ple that uses the Compare Decimal instruction. 

For an example we take the familiar calculation 
of gross pay, with time-and-a-half for hours over 40. 
We have a RATE, given in dollars and cents, and an 
HOURS, to tenths of an hour. We are to place in 
GROSS the total wages earned. 

There are several ways to approach the overtime 
computation. We choose here to begin by figuring the 
pay at the straight-time rate, on the full amount in 
HOURS. We then inspect the hours worked, and if it 
was not over 40 the job is finished. If there was over
time, we multiply the hours over 40 by the pay rate, 
and multiply this product by one-half to get the pre
mium, which is then added to the previous figure. 
Several other ways to arrange the sequence of deci-

START 
000100 05 FO BEGIN 8ALR 

000102 USING 
• 

sions and multiplications are obviously possible. This 
one probably minimizes the computation time if most 
employees do not work overtime; if most did work 
overtime, a diHerent sequence might be a little better. 

The program in Figure 65 begins with a three-in
struction sequence to set up the multiplicand in a 
work area, multiply, and round. The Move with Offset 
instruction drops one digit in the move; this is the 
extra digit that was rounded off. The Move with Off
set instruction does not transmit the sign; we have 
shown GROSS as a DC to get a plus sign there from 
the outset. Since the pay can never properly be nega
tive, the plus sign will simply remain there through
out the operation of the program. 

The Compare Decimal ( CP ) instruction is not 
greatly different in concept from Compare instructions 
we have seen previously. The two operands are com
pared, algebraically; the condition code is set depend
ing on the relative sizes of the two; neither operand 
is changed. The mask of 12 on the Branch on Con-

256 
15,0 
-,15 

• THE COMMENTS FIELD SHOWS TH~ CONTENTS OF MO~( O~ bRJSS, 
• WHICHEVER IS OPERAND 1 ON A PARTICULAR I~ST~UCTIJ~, 

• AFTER THE EXECUTION OF THE INSTRUCTION 
• 

000102 F8 31 F 056 F 050 lAP WORK,HOURS 00 00 44 bC 
000108 Fe 31 F 056 F 04E MP WORK,RATE 00 18 05 OC 
00010E FA 30 F 056 F 05A AP WORK,FIVE 00 18 05 5C 
000114 F1 32 F 052 F 056 HVO GROSS,WORK(]) 00 01 80 ~c 
00011A F9 11 F 050 F 050 CP HOURS,FORTY 
000120 47 CO F 04C BC 12,OUT 
000124 F8 31 F 056 F 050 ZAP WORK,HDURS 00 00 44 6e 
00012A F8 31 F 056 F 050 SP WORK,FORTY 00 00 04 be 
000130 Fe 31 F 056 F 04E MP WORK,RATE 00 08 O~ De 
000136 FC 30 F 056 F 05A MP WORK,FIVE 00 40 25 OC 
ooonc FA 31 F 056 F 058 AP WORK, F IffY 00 40 30 DC 
000142 01 00 F 058 F 059 MVN WORK+2(1),WORK+3 00 40 3COC 
000148 FA 32 F 052 F 056 AP GROSS, WORK (3) 00 08 20 8C 
00014E OA 00 OUT SVC 0 
000150 175F RATE DC PL2'1.75' 
000152 446F HOURS DC PL2'44.6' 
000154 OOOOOOOF GROSS DC PL4'O' 
000158 WORK OS Pl4 
00015C SF FIVE DC PL1'S' 
000150 050F FIFTY DC PL2'50' 
00015F 400F FORTY DC PL2'40.0' 

END BEGIN 

Figure 65. Assembly listing of a program that computes a man's gross pay, including any overtime pay 
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dition will cause a branch if the contents of HOURS 
are less than or equal to FORTY, in which case there 
is no overtime to compute, and we simply branch 
out to whatever follows. (In this example we do not 
show the continuation of the computation.) 

If the man did work more than 40 hours, we com
pute his pay on the amount over 40, then multiply 
by 5, which we view as having a decimal point, that 
is, as being one-half. This is done because we have al
ready computed the straight-time pay on the amount 
over 40; now we need only to compute the extra pre
mium. After the multiplication by 5 we round off, 
using a different rounding constant this time because 
the multiplication by 0.5 has added another decimal 

place. (It is necessary to check that there is sufficient 
space in WORK to satisfy the rule about at least as 
many zeros as the size of the multiplier. Assuming 
that no employee could make $1000 in one week, 
the rule is satisfied.) 

After a Move Numerical to move the sign, we can 
add the rounded amount to GROSS to get the total 
pay. In the Add Decimal, note the length of 3 to 
drop the last byte, which after rounding is extraneous. 
We now reach the termination of the program, the 
same point to which we transferred if there was no 
overtime. In other words, both paths would lead, in a 
real program, to the same continuation point. 
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The Social Security Problem in Decimal 

For a little further practice in applying decimal op
erations, we may rewrite the Social Security calcu
lation of Figure 51 in the chapter on «Fixed-Point 
Operations". The logic of the decimal program shown 
in Figure 66 is the same as that of the earlier one. 
No new instructions are introduced, so a few notes 
should be all that is required to explain the program. 

We begin by moving the old year-to-date to the 
new year-to-date location. The purpose is simply to 
get one of the two operands in the following addi
tion where we want the result to be. Following is a 
Zero and Add to get the new year-to-date into working 
location where we can continue the processing with
out disturbing the NEWYTD location. From here on, 
the right side of Figure 66 shows the contents of the 

START 
Q00100 05 FO BEGIN BALR 

000102 USING 
000102 02 03 F 04F F 048 MVC 
000108 FA 32 F 04F F 0~8 AP 

* 

WORK field for sample data as shown in the DC 
instructions. 

In the Multiply Decimal instruction that computes 
the Social Security tax on the new year-to-date figure, 
we use a constant for the 3%% that has been set up 
with an extra zero at the right. This was done to put 
the product in a position where a Move with Offset 
would not be necessary. As it has been done, after 
rounding and moving the sign, we can carry out all 
following operations on the Social Security amount 
on the second, third and fourth bytes of WORK. Since 
the implied length from the DC is 7, an explicit length 
must be given. 

The remaining operations closely parallel the ones 
in the earlier version. 

256 
15,0 
*,15 
NEWYTD,OLDYTD 
NEWYTD,EARN 

* THE COMMENTS FIELD ON THE FOLLOWING INSTRUCTION SHOWS THE 
* CONTENTS OF WORK, IN EVERY CASE, AFTER THE 
* EXECUTION OF THE INSTRUCTION 
* 

00010E F8 63 F 066 F 04F ZAP WORK,NEWYTO 00 00 00 04 85 69 8+ 
000114 FC 62 F 066 F 05F MP WORK,C358 00 17 60 65 52 50 0+ 
00011A FA 63 F 066 F 062 AP WORK,HALF 00 17 60 70 52 50 0+ 
000120 01 00 F 069 F 06C MVN WORK+3(1),WORK+6 00 17 60 7+ 52 50 0+ 
000126 F9 32 F 066 F 05C CP WORK(4),C174 00 17 60 7+ 52 50 0+ 
00012C 47 40 F 034 BC 4,UNOER 00 17 60 7+ 52 50 0+ 
000130 02 02 F 067 F 05C MVC WORK + 1 ( 3) , C 174 00 17 40 0+ 52 50 0+ 
000136 02 02 F 056 F 067 UNDER MVC NEWSS(3),WORK+1 00 17 40 0+ 52 50 0+ 
00013C FB 22 F 067 F 053 SP WORK+1 (3) ,OLOSS 00 00 18 1+ 52 50 0+ 
000142 02 02 F 059 F 067 MVC TAX(3),WORK+l 00 00 18 1+ 52 50 0+ 
000148 OA 00 SVC 0 
00014A 10607F EARN DC PL3'106.07' 
000140 0475091F OLOYTO DC PL4'4750.91' 
000151 NEWYTD OS PL4 
000155 17219F OLOSS DC PL3'172.19' 
000158 NEWSS OS PL3 
00015.8 TAX OS PL3 
00015E 17400F C174 DC PL3' 174.00' 
000161 36250F C358 DC PL3'36250' 
000164 0500000F HALF DC PL4'500000' 
000168 WORK OS PL7 

END BEGIN 

Figure 66. Assembly listing of a program to compute Social Security tax in decimal 
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A certain programming exercise has been done by 
so many generations of IBM students that it is a 
classic. We present it here, worked out with the cal
culation in decimal and the counting in binary. 

The Indians sold Manhattan Island in 1627 for 
$24. If the Indians had banked their $24 in 1627, 
what would their bank balance be in 1965 at a 3% 
interest rate compounded annually? 

To make the problem a little more interesting, let 
us assume that the principal, $24, the interest rate 

000100 05 FO BEGIN 
000102 

000102 58 EO F 052 
000106 SO EO 0 06C 
00010A F2 63 F 068 F OSE 
000110 F2 12 F 06F F 062 
000116 F2 72 F 076 F 065 
00011C 4F 40 F 076 
000120 FC 61 F 068 F 06F lOOP 
000126 FA 61 F 068 F 07E 
00012e 01 00 F 060 F 06E 
000132 02 05 F 080 F 06B 
000138 F8 65 f 068 f 080 
00013E 46 40 F OlE 
000142 F3 86 F 086 f 068 
000148 OA 01 ERROR 
00014A C01001 
000140 000158 
0001S0 OA 00 
000154 00000148 AOCON 
000158 03 Cll 
000159 000188 
OOOlSC 09 
000150 000001 

The "Indian" Problem 

factor, 1.03, and the number of years, 338, are all 
initially in zoned format. The program of Figure 67 
accordingly begins with three PACK instructions to 
get from zoned to packed format. 

The general scheme of the program will be to 
multiply the principal by 1.03 as many times as there 
are years. In other words, we shall go around a loop 
repeatedly, each time performing a multiplication 
and subtracting 1 from a count. When the count has 
been reduced to zero, the computation of the bal
ance is completed. This counting down from 338 to 
zero could, of course, be done in decimal, and using 

START 256 
8AlR 15,0 
USING *,15 
l 14,AOCON 
ST 14,108 
PACK PRINCP,PRINCl 
PACK IN,r~INTI 

PACK YEARSP,YEARSl 
CV8 4,YEARSP 
MP PRINCP,INTP 
AP PRINCP,ROUND 
MVN PRINCP+S(1),PRINCP+6 
MVC TEMP,PRINCP 
ZAP PRINCP,fEMP 
BCT 4,lOOP 
UNPK BAlNCE,PRINCP 
SVC 1 
DC X'COI001' 
DC Al3(Cl1) 
SVC 0 
DC AIERROR) 
DC X'03' 
OC Al3(BAlNCE) 
DC Al1(9) 
DC Al3(1) 

000160 f2f4FOCO PRINtl DC Il4'24.00' 
000164 F1FOC3 INTI DC Ill'I.03' 
000167 f3F3C8 YEARSI OC Il3'338' 
00016A PRINCP OS PLl 
000171 INTP OS Pl2 
000178 YEARSP OS 0 
000180 050F ROUND DC PlZ'50' 
000182 TEMP OS PL6 
000188 BALNCE OS Pl9 

END BEGIN 

Figure 67. Assembly listing of a program to compute compound interest (the "Indian" problem) 
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a Compare Decimal instruction. It is better program
ming practice, however, to remove time-consuming 
operations from the repeated part of the loop wher
ever possible. Doing the combination of an Add Deci
mal, a Compare Decimal, and a Branch on Condition 
is much more time-consuming than another approach 
that is available to us. This other way is to convert 
the years to binary, once, before entering the loop, 
then use a Branch on Count (BCT) to subtract 1, 
test, and conditionally branch. 

The fourth instruction of the program is therefore 
a Convert to Binary (CVB) instruction, which in our 
program takes the doubleword at YEARSP and con
verts to a binary number in register 4. The Convert 
to- Binary instruction requires an aligned doubleword 
operand, which is why the DS for YEARSP was set 
up as it was instead of with a CLB. 

The repeated part of the loop starts with a Multi
ply Decimal that should by now be moderately fa
miliar. PRINCP was set up to be long enough to hold 
the size of number that previous runnings of the pro
gram have shown will be necessary. The programmer 
facing this problem completely fresh would have to 
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make either some preliminary calculations as to the 
possible size, or a guess. 

N ow comes a familiar sequence of decimal instruc
tions to round, move the sign, and shift right two 
digits (one byte). One might be tempted to replace 
the Move Characters and Zero and Add instructions 
with a single one of the sort: 

MVC PRINCP+1(6),PRINCP 

thinking that a right-to-Ieft operation would permit 
this sort of overlap. A check of the Principles of Op
eration Manual (A22-6821), however, discloses that 
Move Characters works from left to right I The in
struction suggested would therefore propagate the 
leftmost character through the entire field I This can 
be quite useful on occasion, and is permitted, but it 
is hardly what we want here. Overlapping fields must 
be treated with caution. 

The Branch on Count subtracts 1 from register 4; 
if the result is not zero, a branch occurs. If the re
sult is zero, the next instruction in sequence is taken. 
The loop will be carried out 338 times, as required. 

A final Unpack instruction puts the result into a 
location named BALANCE in zoned format. The an
swer is $523,998.22. 



la. Write the assembler instruction to define a packed 
decimal constant of 3 to be named CON3 and to oc
cupy 5 bytes of storage. 

b. Show how this constant appears on the assem
bly listing. 

2. A length code in an instruction is called implied 
if it is supplied by the on the basis 
of-------

An explicit length code is supplied by the 

3. An explicit length code is (equal to, one more 
than, one less than) the actual number of bytes to 
be dealt with. 

4. The length code in the object instruction is (equal 
to, one more than, one less than) the actual number 
of bytes to be dealt with. 

5a. The MP instruction specifies the location of 
------- ------- in the first oper
and, and the location of the 
------- in the second operand. 

b. Where is the product at the end of the mul
tiplication? 

6. If there were two successive DC statements of: 
PRINC DC PL4'2489' 
INT DC PL2'103' 

and PRINC were assigned a location of 158: 
a. What would be in the storage locations as

signed to these constants? 
b. To what storage location would the operand 

INT -2 refer? 

7. A DP instruction specifies in its first operand the 
location of the , and in its second 
operand the location of the . Where 
will the quotient and remainder be after the comple
tion of a DP instruction? 

8. Assume three factors: 
QUAN - 4 whole numbers 

TCOST - 6 whole numbers and 2 decimal places 
A VCOST - 6 whole numbers and 2 decimal places 

The problem is to divide QUAN into TCOST to de
velop a quotient A VCOST, which is not to be round
ed. 

a. How many decimal places must the dividend 
contain to develop a proper quotient? 

Questions and Exercises 

b. What must be the minimum size (in bytes) 
of the area in which the dividend is located at the 
time the DP instruction is executed? 

9. Assume two fields: 
SOURCE containing 66 55 44 33 22 11 
DEST containing 1122 33 44 55 6S (S = sign) 

Show the contents of SOURCE and DEST after the 
execution of the instructions below. In each case, 
assume that before execution the contents of SOURCE 
and DEST ar€ as shown above. 

a. MVC DEST+2(3),SOURCE 
'b. MVN DEST+3(1),DEST+5 
c. MVO DEST,SOURCE+2(2) 

10. Assume the same fields (SOURCE and DEST) 
as given in question 9. 

Would the instruction ZAP DEST,SOURCE be a 
legitimate one? It not, why not? 

11. Assume a 5-byte field called FACTOR, which 
contains 12 34 56 78 9S (S = sign). 

a. Write the instruction or instructions to store 
the leftmost 8 digits (12345678) and the sign in a 6-
byte field called RESULT. 

b. Write the instruction or instructions to store 
the leftmost 7 digits and the sign in RESULT. 
12a. The NI ( And Immediate) instruction is a 
------- format instruction. 

b. Write the NI instru"Ction( s) that will change the 
contents of a field named HOLD from 11 22 33 44 6S 
to 00 22 33 44 6S. 

c. 11 22 33 44 6S to 11 22 33 04 6S. 

13. What is the difference between the And Immedi
ate and Or Immediate instructions? 

14. Decimal arithmetic can be performed only on 
(zoned decimal, packed decimal) fields. 

15. What instruction converts information from zoned 
decimal to packed decimal form? 

16. What instruction converts information from 
packed decimal to zoned qecimal form? 

17. Write DC's to store the number 578 as: 
a. A fixed-point number. 
b. A 3·byte zoned decimal number. 
c. A 2-byte packed decimal number. 

18. Write a DC to store the hexadecimal equivalent 
of 7510. 
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19. Write an instruction that will place a byte named 
OLD in the rightmost byte position of register 6 with
out disturbing the remaining positions of register 6. 

20. Write an instruction that will store the contents 
of the rightmost byte position of register 6 in a storage 
byte named OLD. 

21. Consider the following excerpts from an assembly 
listing. MASK is located at 136 
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N 6,~ASK 

MASK DC X'()()OOOOOF' 
a. Will the N 6,MASK instruction be successfully 

executed? If not, why not? 
b. If not, what statement or statements could be 

inserted to correct the condition? 
c. How could the DC itself be rewritten to cor

rect the situation? 



Chapter 7: Logical Operations on Characters and Bits 

This chapter discusses the subject of logical operations 
through the medium of several illustrative programs. 
These illustrative programs were designed to bring 
out various aspects of the use of logical operations, 
with the logic being the primary focus of the example. 
The reader will realize, of course, that, in practical 
applications, logic is one of many tools and techniques 
used in a complete program. 

The first example demo~strates the logic involved 
in sorting three items into ascending sequence. Two 
sections show numerous examples of tests on com-

A frequent requirement in commercial data processing 
is the comparison of two alphameric quantities, such 
as names or account numbers, for relative magnitude. 
Sometimes this is done to establish correspondence 
between records in two files, both of which are in 
ascending sequence on the name or account number, 
which is called the key. Another common application 
is in arranging a group of records into ascending or 
descending sequence on keys contained in the records. 
Let us consider this problem, which is usually called 
sorting, although sequencing might in some ways be 
a preferable term. 

The problem will be to arrange three "records" 
of 13 characters each into ascending sequence on a 
five-character key contained in the middle five posi
tions of the record. The rearranged records are to be 
moved to three new record areas named SMALL, 
MEDIUM, and LARGE. 

The basic operation in the program will be an alpha
meric comparison of two five-character keys to de
termine relative magnitude. This will be done with a 
Compare Logical Character instruction (CLC). The 
word "logical" in the name means that in comparing 
two characters, all possible bit combinations are 

binations of bits in a byte and the setting of bit 
combinations. Another major example uses the com
putation of a check digit in a self-checking number 
to illustrate logical operations on a sequence of 
characters. A final example involves a series of bit 
and byte operations on input data fields. 

Instructions emphasized in this chapter include the 
various types of comparisons, Insert Character, Store 
Character, Test Under Mask, the various forms of 
And and Or, and Branch on Condition. 

Alphameric Comparison: An Address Sort 

valid, and the comparison is made on a binary basis. 
In a table of EBCDIC character codes, we can see 
that, according to such a scheme, all letters will be 
"smaller" than all digits; if punctuation characters 
occur, they rank smaller than either letters or digits. 
(In ASCII coding, the positions of letters and digits 
are just the opposite.) 

For our purposes here, we are not too concerned 
about the intricacies of where the various characters 
are ranked by the the comparison instruction 0 ; all we 
really need to know is that names will be correctly 
alphabetized and that digits are consistently ranked 
somewhere. 

The word "character" in Compare Logical Character 
is meant to imply that the instruction is in the SS 
format and operates on variable-length fields. There 
is one length code, which applies to both operands. 
The comparison is from left to right, and continues 
either until two characters are found that are not the 
same, or until the end of the fields is reached. (As 
soon as two characters are found to be different, 
there is no need to continue the comparison. If we 

°Called the machine's collating sequence 
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are comparing SMITH and SMYTH, we know that 
SMITH is "smaller" as soon as the I and Yare com
pared, regardless of what characters follow.) 

With this much preliminary, let us consider the 
program in Figure 68. Perhaps we should begin by 
looking at the storage allocation. We see DS entries 
for A, B, and C, the three original records; these are 
13 characters each. Next come three entries that de
fine the addresses of A, B, and C, as ADDRA, 
ADDRB, and ADDRC, respectively. When we write 
ADDRA as the operand in a Load, what we get in the 
register is not A, but its address. Finally there are 
DS's for SMALL, MEDIUM, and LARGE, where the 
results go. 

The processing begins by loading the addresses of 
A, B, and C into registers 2, 3, and 4, respectively, 
with a Load Multiple. Now we begin a sequence of 
comparisons and (if necessary) interchanges that will 
put the three quantities into ascending sequence. We 
first compare A and B. If A is already equal to or 
smaller than B, we do nothing; but, if A is larger, we 
interchange the addresses of A and B. Let us see how 
this works. 

The Compare Logical Character (CLC) instruction 
following the Load ~1ultiple is written with explicit 
base registers and explicit lengths. The general format 
of the instruction is 

CLC D1(L1,B1),D2(B2) 

START 256 
OOOloe 05 FO BEGIN BALR 15,0 

oca 102 USING ·,15 

As we have written the instruction here, the displace
ment for operand 1 is 4, the length of both operands 
is 5, the base register for the first operand is 2, the 
displacement for the second operand is 4, and the 
base register for the second operand is 3. Exactly 
what character positions do these addresses refer to? 
Remember that base register 2 contains the address 
of A. This base, plus a displacement of 4, gives the 
address of the fourth character from the leftmost 
character of the c'record". Since we said that the key 
was to be the middle five characters of each record, 
what we have here is the address of the leftmost 
character of the key of record A. The length of the 
key is given explicitly as 5. Operand 2, likewise, gives 
the address of the key of record B. 

The Branch on Condition asks whether the first 
operand (the key of A) was less than or equal to the 
second operand (the key of B). If so, there is a 
branch down to the next comparison, at X, since A 
and B are already in correct sequence. 

If the Branch is not taken, we reach the "inter
change" of A and B. Now, an actual interchange of two 
13-character records is a somewhat time-consuming 
operation; and, of course, this example is only sym
bolic of real applications, where the records to be 
sorted might be hundreds of characters long. It is 
much faster to interchange the addresses of A and B 
than to interchange the records themselves; the 

000102 98 24 F 012 LM 2,4,ADDRA LOAD REGISTERS WITH ADDRESSES 
000106 D5 04 2 004 3 004 CLC 4(5,2),4(31 COMPARE A AND B 
00010C 47 CO F 014 BC 12,.X BRANCH IF A ALREADY LESS OR EQUAL 
00011C 113 62 LR 6,2 INTERCHANGE ADDRESSES OF A AND B 
000112 18 23 LR 2,3 X 
000114 18 36 LR 3,6 X 
000116 D5 04 2 004 4 004 X CLC 4(5,2),414), COMPARE A AND C 
00011C 47 CO F 024 BC 12,Y BRANCH IF A ALREADY LESS OR EQUAL 
00012J 18 62 LR 6,2 INTERCHANGE ADDRESSES OF A AND C 
000122 III 24 LR 2,4 X 
000124 18 46 LR 4,6 X 
000126 D5 04 3 CC4 4 004 Y CLC 415,3),414) COMPARE BAND C 
OOO12C 47 CO F 034 BC 12,MOVE BRA~C~ IF B ALREADY LESS OR EUUAL 
00013C If! 63 LR 6,3 INTEPCHANGE ADDRESSES OF BAND C 
000132 18 34 LR 3,4 X 
000134 18 46 LR 4,6 X 
0OO13{; 02 ac F 07E 2 oeo MOVE MVC SMALL,C(21 ADDRESS OF SMALLEST nf THREE IS NO .. 
OOO13C D2 OC F OAB 3 000 MVC MEOIUM,0(3) LI KEwI SE fOR MEDIUM, IN REGISTER 3 
00,)142 D2 OC F 098 4 oeo II-VC LAR~[,OI4) LIKE~ISE FOR LARGEST, II'. REGISTER 4 
000148 OA 00 SVC C PROGRAM TERMINATIO~ 
00014A A DS CLl3 
000157 B OS CLl3 
000164 C DS CLl3 
000174 ('IOOOO14A ADORA DC A(A) 
000178 '](000151 ADURB DC A( B) 
0OO17C 00000164 A.DORC DC A(C) 
000180 SMALL OS CLl3 
00018C MEDI UM OS CLl3 
0OO19~ LAR.GE OS CLl3 

END BEGIN 

Figure 68. A program to sort three 13-character items into ascending sequence on keys in the 
middle five characters of each item. The three items are in A, B, and C; the sorted 
items are placed in SMALL, MEDIUM, and LARGE. 
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addresses are only four characters instead of 13, and, 
as written here, they are in registers rather than in 
storage. Three Load Register instructions, which are 
executed very rapidly, carry out the interchange. 

Now, when we continue to the comparison at X, 
what is the address situatiQn?We know that we want 
to compare whichever of A and B was the smaller 
with C. Accordingly, we write addresses using base 
registers 2 and 4. We cannot say whether 2 contains 
the address of A or B; but, whichever it is, it is the 
address of the smaller of the two. That is all we need 
to know. After this comparison and (possible) inter
change, we are guaranteed that base register 2 con
tains the address of the smallest of the three numbers. 

A final comparison using whatever addresses are 
by now in registers 3 and 4 gives us the address of 
the "middle" number in 3 and the address of the 
largest of the three in 4. 

Now, at MOVE, we are able to write three in
structions that perform the rearrangement. In the 
first Move Characters, we pick up the smallest, using 
whatever is in base register 2. The displacement this 
time is zero; we want the entire 13 characters. The 
length can be left implicit this time; it will be im
plied from SMALL, which is 13 characters long. 

Figure 69 shows the contents of registers 2, 3, and 4 
at four points in the program: at the beginning, at 
X, at Y, and at MOVE. The three original data items, 
in order, were 1111CCCCC1111, 2222BBBBB2222, 

and 3333AAAAA3333. In other words, the items were 
in reverse order according to their keys. 

Register 2 Register 3 Register 4 

Before 00OOO14A 00000157 00000164 

x 00000157 oooo014A 00000164 

y 00000164 oooo014A 00000157 

MOVE 00000164 00000157 0OOOOl4A 

Figure 69. The contents of registers 2, 3, and 4 at four points 
during the execution of the program of Figure 68. 
The original items were in reverse order according 
to their keys. 

In practical applications there are usually far too 
many records to be sorted internally for the keys of 
all of them to be held in base registers. On the other 
hand, the records are ordinarily so long that it is a 
saving in time to work with addresses held in storage 
rather than with the records themselves. The basic 
concept suggested here can readily be generalized. 
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Logical Tests: The Wallpaper Problem 

Problems sometimes arise in which it is necessary to 
work with combinations of logical tests, where each 
test is of the yes-or-no variety. Such situations are 
often most conveniently attacked as logical operations 
on sets of binary variables. If the data can be suitably 
arranged, the tests can sometimes be made very sim
ply with the Test Under Mask (TM) instruction. 

Consider the following problem, which is intended 
to be illustrative only. Suppose that a wallpaper manu
facturer classifies his products according to the colors 
each style contains. There are only four colors: red, 
blue, green, and orange. For each style there is a 
group of four bits at the right-hand side of a character 
named P A TTRN. These bits represent, from left to 
right, the four colors, in the order named. For each 
bit position, a 1 means that the style contains the 
color, and a zero means that it does not. For instance, 
0001 would mean a style with orange only; 1010 would 
describe a pattern with red and green, but no blue or 
orange. 

We wish to see how to set up instructions to answer 
questions of the following sort: 

Does this pattern have either red or green, or both? 
Does this pattern have red, or green, or orange, or 

any two of these, but not all three? 
Does this pattern have both red and orange, 

whether or not it has blue and/or green? 
Does this pattern have neither green nor orange? 
Does this pattern have red but not orange? 
Let us consider these questions in order. 
Red, or green, or both. Looking at the four color

bits, we are interested in the first and third. If we 
let X stand for a bit that we want to be a 1, and D 
for a bit about which we don't care, the required pat
tern is XDXD. 

The Test Under Mask instruction can handle this 
situation with just two instructions: 

TM PATTRN,10 
BC 5,YES 

In the Test Under Mask instruction, the 10 is the 
mask, written here in decimal. Writing it out as a 
binary number, we have 00001010. The two 1's here 
pick out the two bits in the character at P ATTRN 
that are to be tested. The resulting condition codes 
have meanings as follows: a code of zero means that 
all the selected bits were zero; a code of 1 means 
that the selected bits were mixed zeros and 1's; a 
condition code of 3 means that the selected bits were 
all 1's. (A condition code of 2 is not possible with 
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this instruction.) The question to be answered was: 
Does this pattern contain either red, or green, or 
both? We have selected the two bits that describe the 
presence or absence of red and green. If the two bits 
selected were a mixture of zeros and 1's, we have 
just one of the two colors in the pattern. If the two 
bits selected were both 1's, the pattern contains both 
colors. Either situation answers the question affirma
tively. We accordingly write a Branch on Condition 
instruction that tests for the presence of condition 
codes 1 or 3. (Remember that 8, 4, 2, and 1 in the Rl 
field of a BC correspond to condition codes of 0, 
1, 2, and 3, respectively. Branch on Condition with an 
R1 field of 5, therefore, tests for a condition code of 
either 1 or 3.) At YES, we assume, there would be 
instructions to do whatever action depended on an 
affirmative answer to the question. 

Red, green, or orange, but not all three. Here we 
need a mask that tests bits according to this scheme: 
XDXX. The necessary mask is 00001011, which is 11 
in decimal. The condition code that describes the wall
paper design specified is 1: mixed zeros and 1's. We 
want at least one 1, and two would do, but we must 
have at least one zero among the bits tested because 
the pattern must not have all three colors. The re
quired instructions are: 

TM PATTRN,l1 
BC 4,YES 

Both red and orange. This one is fairly simple. We 
pick out bits according to XDDX, and then ask 
whether they are all (both) l's. The instructions are: 

TM PATTRN,9 
BC I,YES 

Neither green nor orange. This is not very difficult, 
either. The bits are shown by DDXX, and we want to 
know whether they are all (both) zero. The instruc
tions are: 

TM PATTRN,3 
BC 8,YES 

Red but not orange. This is a different problem 
that cannot be done with a single Test Under Mask. 
We turn to the logical instructions And, and Exclu
sive Or. The bits in question are shown as X's in 
XDDX. We want the leftmost X to be a 1, and the 
rightmost to be a zero. 

We begin by moving PATTRN to WORK, where 
we may destroy its original value. An And Immediate 
instruction with an immediate portion of 9 (in binary: 



00001001) erases all bits except the ones we want. In 
the two positions of interest, if there was a 1 before, 
there still is, and if there was a zero, there still is. 
All other bit positions are guaranteed to be zero. If 
the pattern is to pass the test, there must now be 
exactly one 1 in WORK, and it must be in this posi
tion: ooooxooo. Whether this is so could be deter
mined with a comparison or two Test Under Mask in
structions. But let us continue with the logical 
operations. 

Exclusive Or is a logical operation; like And and 
Or, it is a bit-by-bit operation. In each bit position, the 
result is 1 if the two operands had exactly one 1 in 
that position; the result bit is zero if both operand bits 
were zero or if both were 1. Suppose we write an Ex
clusive Or Immediate in which the immediate portion 
is 00001000; the 1 here is in the position for red. The 
result after the Exclusive Or Immediate will be zero in 
this position if there had been a 1, and vice versa. 

In other words, if the result really was 00001000 
after the And Immediate, there will be all zeros after 
the Exclusive Or Immediate. If, on the other hand, 
there was a zero in the position for red, there will 
now be a 1. And if there was a 1 in the position for 
orange, there will still be a 1 there. In short, a zero 
result corresponds to an answer of «yes, there is red 
but no orange". As it happens, the various logical 
operations all set the condition code; and, in the case 
of the Exclusive Or, a condition code of zero means 
that the result was zero. The program can thus be: 

MVC WORK,PATTRN 
NI WORK,9 
XI WORK,8 
Be 8,YES 

Test Under Mask is a most useful instruction where 
it applies, and its usefulness is by no means limited to 
color-blind wallpaper manufacturers. It is useful part
ly because it is selective, testing only the bits specified 
by the mask, and partly because it gives a three-way 
description of the selected bits: all zero, mixed, or all 
1's. It does have the drawback, however, that only 
one character can be tested at a time. 

If it were necessary to extend the application to 
cover, say, 20 different yes-no descriptions instead of 
the four we had in the wallpaper situation, the Test 
Under Mask instruction could not be used, except in 
combinations that would get rather involved. In such 
a situation, we would turn instead to the RX forms 
of the logical instructions. After moving the pattern 
to a register, which can hold a 32-bit pattern, we 
would use an And to "select" the bits of interest. The 
operand of the And instruction would be a fullword 
in stQrage that has 1's where there are bits of interest 
in the pattern. 

What we do next depends on our answers to certain 
questions. 
Question: Were any of the selected bits 1's? 
Action: We need only test the condition code, which 

tells whether the result was all zeros or had at least 
one 1. 

Question: Were certain of the selected bits 1, with 
the others being zero? 

Action: We execute an Exclusive Or to change to 
zero the bits that should be 1's, then ask whether 
the result is all zero. 
Working with larger groups of bits is thus seen not 

to be a great deal more difficult than working with 
a single character. 
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Setting Bits On and Off 

A problem related to the one we have been consider
ing is to set a specified bit of a character or a word to 
be zero or 1, or perhaps to reverse them from what
ever they are. This might be necessary, for instance, 
if we were writing a program to develop the wall-: 
paper codes that we tested in the preceding section. 

Bearing in mind that fullword operands represent 
only a minor amount of additional programming 
effort, let us see how to carry out these operand opera
tions on one-character operands. 

To set a specified bit to 1, an Or Immediate is 
sufficient. Suppose that we are still working with a 
character named PATTRN, which now uses all eight 
bits, and that we want 1, 3, 6, and 7 to be "on" (1). 
(The bits of a character are numbered from zero to 7 
from the left.) In other words, we want the pattern to 
be D1DIDD11, where the D's stand for "don't care" 
or "leave them whatever they were". This action is 
precisely what will result from an Or Immediate in 
which the immediate part is 01010011 (83 decimal). 

. The Or results in a 1 in any bit position in which 
either operand, or both, had a 1. (The case of both 
having 1 is not excluded, as in the Exclusive Or. The 
ordinary Or is sometimes called the "inclusive" Or 
to distinguish between the two. ) 

The instruction could be 
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01 PATTRN,83 

If the required action is to set the same four bit
positions to zero, regardless of their previous values, 
and leave the others as they were, we would use an 
And Immediate with zeros where we want zeros and 
1's where we want the previous contents undisturbed. 
The necessary immediate portion is 10101100 (172 
decimal). The instruction is therefore 

NI PATTRN,172 

The And places a 1 in bit positions in which both 
operand bits were 1, and zero elsewhere. Wherever 
we put zeros in the immediate portion, therefore, there 
will be zeros in the result, as required. Wherever we 
placed 1's there will be a 1 if there was before, or a 
zero if there was a zero before. This is exactly what we 
need. 

Sometimes it is necessary to change a bit to 1 if it 
was zero, and to zero if it was 1. This is called com
plementing a bit. If we place 1's in the immediate 
portion wherever we want this complementing action, 
the Exclusive Or Immediate does precisely what is 
needed. Other bit positions will be unchanged. Assum
ing we are still working with bits 1, 3, 6, and 7, the 
instruction is 

XI PATTRN,83 



It is fairly common practice in business to devise ac
count numbers for things like credit cards so that the 
number is "self-checking". This means that one of the 
digits is assigned to provide a certain amount of pro
tection against fraud and clerical errors. This digit is 
assigned by some fixed sequence of operations on the 
other digits. 

We shall work in this section with a ten-digit ac
count number, the last ( rightmost) of which is a 
check digit. This digit is computed when the number 
is assigned. It consists of the last digit of the sum 
found by adding together the second, fourth, sixth, and 
eighth digits, together with three times the sum of 
the first, third, fifth, seventh, and ninth digits. For 
instance, if a nine-digit account number is 123456789, 
the check digit is the last digit of the sum 

(2 + 4 + 6 + 8) + 3 (1 + 3 + 5 + 7 + 9) == 95 
The last digit is five, so the complete account number 
would be 1234567895. 

There is a certain protection against fraud here; 
unless the person attempting the fraud knows the sys
tem, there is only one chance in ten that an invented 
account number will be a valid one. 

More important, perhaps, there is considerable pro-

START 256 
COOICC 05 00 BEGIN BUR 13.0 

OC0102 USING .,13 
000102 41 30 0 001 lA 3,1 
(;00106 41 40 0 009 lA 4,9 
00010A 02 01 D 064 D 066 tlVC SUM.ZERO 
000110 18 55 SR 5,5 
000112 43 54 0 059 LOOP IC 5,ACCT-1(4) 
000116 8~ 50 U 004 Sll 5,,. 
00011A 56 50 0 06A 0 5,PLUS 
OOOllE 42 50 0 068 STC 5,DIGIT 
000122 FA 10 0 064 D 068 liP SU,""DIGIT 
000128 13 33 l(.R 3,3 
0001204 47 20 U 038 BC 1,EVEN 
00u12E FA 10 U 064 0 068 AP SUM,DIGIT 
00OD4 FA 10 0 064 D 068 AP SUM,OIGIT 
00013A 46 40 LJ 010 EVEN RCT 4,LOOP 
00013E 43 50 D 063 IC 5,ACC T+9 
000142 89 50 0 004 Sll 5,4 
0OO14~ 56 50 0 06A 0 5,PLUS 
000144 42 50 0 064 STC 5,SU~ 

000lltE 05 00 U 064 D 065 ClC SUMll),SuM+l 
0001'>4 47 60 U 058 RC 6,ERROR 
000158 OA 00 OUT Svc 0 
00015A OA 00 ERRUR SVC C 
00015C ACCT OS Cl9 
000165 CHECK OS CLl 
000166 SUM OS ClZ 
000168 OOOC ZERU DC Pl2'O' 
0001bA DIGIT OS Cll 
00016C OS OF 
00016C OOOOOCOC PLUS DC X'OOCOOCOC' 

END REGIN 

A Self-Checking Number Routine 

tection against clerical error. If anyone digit is mis
copied, the erroneous account number will not pass the 
check. Furthermore, most transpositions of two ad
jacent digits will cause the check to fail. For instance, 
the check digit for 132456789 would be 

(3 + 4 + 6 + 8) + 3 (1 + 2 + 5 + 7 + 9) == 93 
The computed check digit of 3 is obviously not the 
same as the one in the number, so the account number 
is rejected as invalid. 

We wish now to study a program that will deter
mine whether an account number that has been en
tered into the computer is valid. VVe begin the pro
gram with a nine-digit account number in ACCT, in 
zoned format. Immediately following ACCT is a one
digit check digit named CHECK, also in zoned format. 

In the program in Figure 70 we begin by loading 
register 3 with 1. This will be used to determine 
whether a digit should be multiplied by 3 or not, as 
we shall see below. Register 4 is loaded with 9; this 
is an index register, used to get the digits in order 
from right to left. A Move Character puts a signed 
zero in SUM where the sum of the digits will be 
developed. A Subtract Register clears register 5 to 
zero. 

REGISTER 3 HAS ITS SIGN REVERSED IN LOOP 
COUNTER - 9 DIGITS IN NUMBER 
SUM OF DIGITS KEPT IN SUM 
CLEAR REGISTER 5 
PICK UP ONE DIGIT OF NU~BER -- INDEXED 
SHIFT LEFT 4 BITS 
ATTACH A PACKED PLUS SIGN 
STORF IN TEMPORARY LOCATION 
ADD TO SUM OF DIGITS 
REVERSE SIGN OF REGISTER 3 
SKIP NEXT 2 INSTRUCTIONS ODD TIMES THRU 
ADO DIGIT TO SUM IF ~OT SKIPPED 
SAME -- HAS EFFECT OF M~LTIPLYING BY 3 
BRANCH BACK IF NOT ALL CIGITS PROCESSED 
PUT CHECK DIGIT IN REGISTER 5 
SHIFT lEFT 4 BITS 
ATTACH SIGN -- PUTS IN SAME FORMAT AS SUM 
PUT CNE BYTE IN lEFT BYTE OF SUM 
IS SUM SAME AS CHECK DIGIT 
BRANCH TO ERROR ROUTINE IF DIFFERENT 
PROGRAM WOULD NORMAllY CONTINUE HERE 

Figure 70. A program to compute the check digit for a self-checking number, and compare the computed value with the check 
digit contained in the last position of the number 
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At LOOP we begin the processing of digits. With 
index register 4 containing 9, the effective address the 
first time through the loop will be ACCT +8, which 
is the address of the rightmost digit. The index is re
duced by one each time around the loop, so we pick 
up the digits one at a time, from right to left, as 
stated. 

The digit inserted in register 5 is shifted left four 
bits. This puts the numeric part of the digit, which was 
in zoned format, into the leftmost four bits of an 
eight-bit byte at the right end of the register, and 
brin'gs in four zeros at the right. Or-ing with PLUS 
puts a plus sign into the rightmost four bits, and we 
have a one-digit byte in correct packed format for 
use with an Add Decimal. We therefore put the as
sembled digit into a working storage location at 
DIGIT and add it to SUM. 

Now comes the question of whether or not this is a 
digit that is to be multiplied by 3. The rule requiring 
digits to be so multipled can be stated thus: the first 
digit is multiplied by 3; after that, every other digit 
is so multiplied. In other words, we need some tech
nique for getting a branch every other time through 
the loop. The method shown here is to reverse the 
sign of the contents of register 3 every time, then to 
ask whether the result is positive. The first time 
through we change a +1 to -1; the answer is '"no, the 
result is not positive". The second time through we 
change a -1 to + 1, and the answer is '"yes, the re
sult is positive". The third time through the +1 gets 
changed back to -1, and the answer is no. In short, 
every other time we ask whether the result of reversing 
the sign of register 3 is positive, the answer will be 
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yes. We accordingly Branch on Condition to EVEN 
if register 3 is positive. This means that for even
numbered digits the two additional Add Decimal in
structions will be skipped. These, if they are executed, 
have the effect of adding in a digit three times instead 
of once, which is equivalent to multiplying and some
what faster. 

At EVEN we Branch on Count back to LOOP if, 
after reducing the contents of 4 by one, the result is 
not zero. The loop will therefore be executed the last 
time around with 1 in register 4, so the last digit 
picked up is at ACCT, as it should be. 

Once all nine digits have been added to sum, we 
are ready to see whether the last digit of SUM is the 
same as CHECK. But it isn't qu.ite that simple; the 
digit at CHECK is still in zoned format. We accord
ingly go through the steps necessary to convert it to 
packed format, storing it for comparison in the left 
byte of SUM, which we no longer need. A Compare 
Logical Character with an explicit length of one now 
determines whether the check digit that came with 
the account number, which is now in SUM, is the 
same as the computed check digit, which is now in 
SUM + 1. We have ended the error path with a Super
visor Call, as well as the normal path. We will not 
attempt to indicate what steps might be taken to 
reject the record of which the invalid account number 
would have been a part. 

There are, of course, many other techniques for 
computing check digits which give greater protection 
or make the check digit operations simpler. For a 
more complete discussion of this topic, see Disk 
Storage Concepts (F20-8161). 



We turn now to a hypothetical example of the type 
of thing that is sometimes necessary in working with 
involved input formats. 

We are given two numbers. NUMBER is a seven
rugifquantity inzoneclformat.W-eare-l:o test each of 
the seven numeric portions separately in order to be 
certain that each represents a digit, that is, that the 
value of the numeric portion is less than ten. If all 
seven characters contain valid digits, we simply go on 
to the next test; if anyone contains numeric bits not 
valid for a digit, we shall go to a Supervisor Call. 

After completing this test, we are to check the zone 
bits of the rightmost byte of NUMBER to be sure that 
it contains a sign. The other zone positions are of no 
interest. As before, if there is an error condition, we 
go to a Supervisor Call. 

Next, we start with an eight-byte field named 
COMB. We shall assume for the purposes here that 

II I I 

A Final Example 

the numeric portions all represent valid digits; if this 
were questionable, they could be checked. The zones 
of the eight bytes contain either plus or minus signs. 
A plus sign is to be taken as meaning 1 and a minus 
sign as meaning zero; we are to assemble a one-byte 
quantity that contains a binary number formed from 
the signs. For instance, Figure 71 shows a card field 
that could have produced the data in COMB. If this 
field were viewed as an alphabetic quantity in normal 
IBM card code, it would be ABLMEOGQ. We want 
to view it, instead, as being a positive number 
12345678 together with a binary number (contained in 
the zones) of 11001010. The I's and zeros here cor
respond to the zones: ++--+-+-. We are to 
separate the two items contained in COMB, placing 
the number in NUMERC as a packed decimal num
berand the zones in CODES as a one-byte binary 
number. 

II II 
00000000000000000000000800000000000000000000000000000000000000000000000000000000 
12l45il.'~"nnM~.".~~~nn~~an3a.~UD~~.~ ••• aQa.G.U""~~UUM •• ~~H.MuaMft.v.n~nnnM~MnM~. 
1111111" 11111111111111111111111111111111111111111111111111111111111111111111111 

22222222222212222222222222222222222222222222222222222222222222222222222222222222 

33333333333331333333333333333333333333333333333333333333333333333333333333333333 

44444444444444144444444444444444444444444444444444444444444444444444444444444444 

55555555555555515555555555555555555555555555555555555555555555555555555555555555 

6&666666666666661666666666666666666666666i6666666666&66666666&6&6666666666666666 

7 17111117 11 7 71 71 717111 7 1 71 77 77 77 7 77 1 7117 17 71 77 77 77 777 77 77 77 7 77 77 77 77 17 777 77 1 77 77 

88111881818111118811118111111111111111111111111111111111111I1III1111111111111I11 

99~9999q9999999999999999999!!9999999!!!!9!99999999999999999995999999999999999999 
12l.~L 18'm"~~M~~».dm~nnN~an3~.~UDM •• D ••• ~Qa"G.u."~~UUM •• ~~ •• aUaMft.v ••• nnnH~.n.~ • 

•• '" :toe. 

Figure 7l. An illustrative card field for COMB, an area used in th e program in Figure 73 
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A flowchart showing the logic of this problem is 
shown· in Figure 72. 

Check Numeric 
Portions at 
Number 

Check for Sign 
in Rightmost 

Convert Zones 
of COMB 
to Binary 

Set Up + Sign 
in Rightmost 

PACK 

Figure 72. A flowchart of the processing carried out by the pro
gram in Figure 73 
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The program in Figure 73 does the processing re
quired. We start by placing a 7 in register 10, for 
use as an index. Register 9 is cleared. The instructions 
from LOOP to OK pick up the digits in turn, strip off 
the zone bits with a suitable And, and compare the 
numeric portions with 10. 

The instruction after OK picks up the rightmost byte 
of NUMBER; this should have either a plus sign or a 
minus sign. Another And, but with a different mask, 
strips off the numeric portion and the rightmost bit 
of the sign; we do not care whether the sign is plus 
or minus, a distinction which is made in the rightmost 
bit of the sign. A comparison then establishes whether 
the left three bits of the sign are 110, which they 
should be for an EBCDIC sign. 

At OK2 we are ready to go to work on the com
bined digits and zones at COMB. In preparation for 
what follows, we clear registers 8, 9, and 10. At 
LOOP2 there is a shift - before anything has been 
placed in the register shifted. The idea is that we 
want to shift the contents of this register seven times 
for eight bits. One way to accomplish this is to place 
the shift instruction so that it has no net effect the 
nrst time around. 

The Insert Character is indexed with register 10, 
which initially contains zero. We will therefore pick 
up the digits from left to right this time. For each 
digit we use an And to drop the numeric bits, then test 
against constants so as to determine whether the sign 
is plus or minus. If it is neither, we get out; there 
should be one or the other. If the sign is plus, we 
branch to YES, where a 1 is added into register 9 -
the one that we shifted at the beginning of the loop. 
Whether the sign is plus or minus, we now reach NO, 
where': we add 1 to the index register and branch 
back to LOOP2 if the contents are eight or less. 

Now, when we branch back, we again shift the 
contents of register 9 one position to the left. This 
means that each time we again reach the beginning of 
this loop, whatever has been assembled in register 9 
so far is shifted left one place, thereby m~king room 
for another bit at the rightmost position of the register. 
Thus, when we finally get out of the loop and arrive at 
the Store Character, the last byte of register 9 will 
contain a 1 in positions corresponding to plus signs in 
COMB, and zeros in positions corresponding to minus 
signs. The byte stored at CODES is just what the 
problem statement required. 

An And Immediate now erases the zone positions 
of the rightmost byte of COMB, and an Or Immediate 
places a plus sign there. The Pack instruction does 
not check zones, except in the rightmost byte, so we 
can proceed to it immediately, with no concern for 
the other zone positions. 



START 256 
0OO10e 05 FO BEGIN BALR 15,0 

OC0102 USING .,15 
000102 41 AO u 001 LA 10.1 REG1STER 10 IS USED AS AN INDEX 
000106 IB 99 SR 9.9 CLEAR REGISTER 9 
000108 43 9A F 015 lOOP IC 9.NUMBER-llIO) INSERT ONE DIGIT IN REGISTER 9 -- I~DExeD 

00010C 54 90 F 08t: N 9,MASK1 STRIP OFF SIGN 
0001lC 59 90 F OA6 C 9.lEN IS NUMBER LESS THAN 10 
000114 47 40 F 018 BC 4,OK BRANCH AROUND SUPERVISOR CALL IF OK 
00u118 01'1 00 SVC C "JOT A DIGIT 
OOOllA 46 AO F 006 OK BCT 10,LOOP REDUCE CONTENTS OF REG 10 BY 1 + BRANCH 
OOOllE 43 80 F 01C IC 8,NUMBER+6 IF HERE. ALL DIGITS CHECKED OK 
000122 54 80 F 092 N 8.MASK2 STRIP OFF DIGIT PART OF LAST BYTE 
000126 59 80 F OA2 C 8,SIGN COMPARE WITH CODING FOR PLUS SIGN 
0OO12A 41 80 F 02E BC 8,OK2 BRANCH IF OK 
00012E all 00 SVC 0 NO SIGN 
000130 1li 88 OK2 SR 8,8 CLEAR REG I STER 8 
000132 18 98 LR 9,8 CLEAR REGISfER 9 BY LOACING FROM 8 
000134 lEI A8 LR 10.8 CLEAR REGISTER 10 BY LOADING FROM 8 
000136 8A 90 0 001 LOOP2 SLA 9,1 SHIFT REGISTER 9 LEFT 1 BIT 
OOOUA 43 8A F 010 IC 8.COMB(lC) INSERT ONE BYTE IN REGISfER 8 -- INDEXED 
0OO13E 54 80 F 096 N 8,MASK3 STRIP OFF DIGIT PART 
000142 59 80 F 09A C 8,PLUS COMPARE WITH COOING FOR PLUS 
000146 47 80 F 052 BC 8,YES BRhNCH IF PLUS 
00014A 59 80 F 09E C 8,MINUS COMPARE WITH COOING FOR MINUS 
00014E 41 80 F 056 RC 8,NO BRANCH IF MINUS 
000152 OA 00 SVC G NEITHER PLUS NOR MINUS 
000154 5A 90 F OAA YES A 9,ONE AUD 1 TO CONTENTS OF REGISER 9 IF PLUS 
000158 5A AO F OAA NO II lO,ONE ADD 1 TO REGISTER 10 FO~ LOOP TEST 
aOO15C 59 AO F OAE C 10. H.ST COMPARE 
000160 41 10 F 034 BC 1,LOOP2 BRANCH BACK IF NOT FINISHED 
000164 42 90 F 085 s·rc 9,COO[S STORE LAST BYTE OF REG 9--
000168 '14 OF F C84 "11 COMB+ 1,15 STRIP OFF OLD lONE 
00016C 96 CO f- 084 01 COMB+1,192 ATTACli ZONED PLUS SIGN 
00011e F2 41 F 086 F 010 PACK NUMERC,CCMfl CONVERT TO PACKED FO~MAT 

000116 0" 00 SVC 0 PROGRAM TERMINATION 
000118 NUMBER OS CL7 
00~11F CUMB OS CL8 
000181 CODES OS ell 
COO188 NIJMERC os CL5 
(,00190 OS OF 
00019C ooooeOOF MASK1 DC X'OOOOOOOF' 
000194 OOOOOOtO MASK2 DC X'OOOOOOEO' 
000198 OOOOOOFO MASK3 DC X'OOOOOOFO' 
00Ol'lC ooooooeo PLUS OC x'ooooooeo' 
OOOlAC 00000000 MINUS DC X'OOOOOOOO' 
OOOlAlt ooooooco SIGN De x'ooooooco' 
0001A8 OOOOOOOA TEN DC F'lO' 
OOOlAC 00000001 ONE DC F'l' 
0001BO 00000008 T£ST DC F'8' 

END BEGIN 

Figure 73. A program to check a decimal field named NUMBER for validity, and to convert a combined field named COMB 
to a binary number and a packed decimal number 

Summary 

This chapter has illustrated some of the various tech
niques for logical operations in the System/360. The 
emphasis in this study has ranged from logic in the 
flowcharting sense, to bit-by-bit operations in making 
decisions, to two extended examples that involved bit 
operations on sequences of characters. In the course 
of this study we have seen how the great variety of 
actions described under the heading of "logical opera
tions" can be effectively approached with the pro
gramming features of the System/360. 
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Questions and Exercises 

1. The byte at location KEY in main storage con
tains four program switches in bit positions 4-7. Each 
of these bit positions may be 1 ( on) or 0 (off). Write 
an instruction that will reverse the setting of the pro
gram switches and leave bits 0-3 unchanged. 

2. In the following byte, located at AD DR in main 
storage, a 1 in a particular position shows the pres
ence of a characteristic and a zero its absence. Write 
instructions that will branch to ANIMAL for owners 
of dogs or cats or both, and proceed sequentially for 
all others. 

x x 0 0 0 000 

(not used) ----=r~ I ~~igeOn fancier 
t 

-.-J canary owner 
ca owner . I fi h . troplCa s raIser 

dog owner parrot owner 

3. Using the preceding, write instructions to branch 
to LIST2 for owners of fish but not canaries, or canar
ies but not fish. 

4. Suppose location SUM contains 05432+ in packed 
decimal format, and suppose that general register 2 
initially contains zero. Show what register 2 will con
tain (in hexadecimal or binary) after: 

a. IC 2,SUM 
b. IC 2,SUM +2 
c. IC 2,SUM + 1 

5. At most, the TM (Test Under Mask) instruction 
can test bit( s) or 
byte ( s) with one instruction. 

6. At most, the CLC (Compare Logical Character) 
instruction can compare bit ( s) or 
.......... ' .................. byte ( s) with one instruction. 

7. The CLC instruction will successfully compare 
two operands in only one of the following forms. 
Which is it? 

a. Packed decimal numbers 
b. Alphameric characters 
c. Zoned decimal numbers 

8. In the CLC instruction, comparison proceeds from 
left to right, byte by byte, but ceases immediately 
before the end of the operand is reached, when one 
of the following is encountered (select one) : 

a. The EBCDIC sign code 
b. A special character 
c. An inequality 
d. An improper zone code 

9. Neglecting leading zeros, give in decimal the con
tents of general register 5 after execution of each of 
the following: 
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a. 
b. 
c. 
d. 

LA 5,5 
LA 5,2 
LA 5,3(0,1) 
LA 5,FIELD 

FIELD DS F 
10. Write instructions to determine whether or not 
the byte at main storage location FIELD contains a 
5 (00000101 in binary). 
11. In the follOWing hypothetical program, the rows 
of dots represent straightforward instruction se
quences of any reasonable length, whose nature need 
not concern us. 

LOOP 

INST 

AD DR 

LA 2,10 

BC 
01 

O,ADDR 
INST + 1,X'FO' 

BCT 2,LOOP 
Which part of the BC instruction is addressed by the 
relative address INST + I? 
12. Bearing in mind that in question 11 the hexa
decimal immediate data X'FO' is simply a convenient 
way of specifying binary 11110000 (or decimal 240), 
can you say that the 01 (Or Immediate) instruction: 

a. Will be executed once and only once? 
b. Causes certain instructions within the BCT 

loop to be skipped on all but the first execution of 
the loop? 

c. Alters the bit structure of a mask field? 
d. Does all of the above? 

13. Assume that the overall loop of the following 
sequence will be executed a number of times. What 
will be the effect of the XI (Exclusive Or) instruc
tion? 

LOOP 

INST 

ADDR 

XI 
BC 

INST + 1,X'FO' 
O,ADDR 

BCT 5,LOOP 
14. Suppose that general register 5 contains a number 
of which only the high-order (leftmost) byte is of 
interest. Write a logical instruction to zero the three 
low-order bytes, togefher with any instructions neces
sary to define masks, load other registers, etc., as 
required. 



Chapter B: Edit, Translate, and Execute Instructions 

The design of the System/360 includes a large number 
of features that make data processing faster and more 
efficient and which simplify the work of programming 
once the concepts have been mastered. The three in
structions that are the main subject of this chapter are 
in this category. They can be characterized as ex
tremely powerful, with a broad range of applicability. 
The Edit instruction provides a way of preparing out
put for printing in an easily readable form. The opera
tion of the instruction is highly flexible, so that many 
kinds of editing actions can be performed, all in one 
pass through the data field. The Translate and Execute 
instructions have a broad range of application, limited 

only by the imagination of the programmer. 
This chapter provides many examples of the use of 

these instructions. Illustrations of the Edit instruction 
are followed by four complete programs. The first 
shows how the Translate instruction can be used for 
code conversion, in this case to change a collating 
sequence. The second employs Translate and Test to 
search for sentinels in a list of names and addresses. 
The Execute instruction, together with Translate and 
Test, is employed in a third program to break apart 
the subfields of an operand field in an assembler in
struction. A final example involves variable-length 
blocked records. 

Edit, Translate, and Execute Instructions 121 



The Edit Instruction 

The Edit instruction is one of the most powerful in the 
repertoire of the System/360. With proper planning it 
is possible, as we shall see, to suppress nonsignificant 
zeros, insert commas and decimal points, insert minus 
sign or credit symbol, and specify where suppression 
of leading zeros should stop for small numbers. All of 
these actions are done by the machine in one left-to
right pass. The condition code can be used to blank 
all-zero fields with two simple and fast instructions. A . 
variation of the instruction, Edit and Mark, makes 
possible the rapid insertion of floating currency 
symbols. 

We shall study the operation and application of 
this powerful instruction by applying it to successively 
more complex situations. 

We begin with a simple requirement to suppress 
leading zeros; no punctuation is to be inserted. We 
have a field to be edited, called DATA. It is four 
bytes long, and the decimal data is in packed format; 
the packed format for data to be edited is a require
ment of the Edit (ED) instruction. 

The data to be edited is named as the second 
operand of the Edit. The first operand must name a 
"pattern" of characters that controls the editing; after 
execution of the instruction the location specified by 
the first operand contains the edited result. (The 
original pattern has been destroyed by the editing 
process.) The pattern is in zoned format, as is the 
result; the Edit instruction involves a conversion 
from packed to zoned format. 

We said that in our example the data field to be 
edited was four bytes long, that is, seven decimal 
digits and sign, which we shall assume to be plus. The 
pattern must accordingly be at least eight bytes long: 
seven for the digits and one at the left to designate 
the "fill character". The fill character is of our choos
ing, but is usually a blank. This is the character that 
is substituted for nonsignificant zeros. 

The leftmost character of the pattern in our case 
will be the character blank. The other seven characters 
will contain a special coding, 2016, called a "digit 
select" character, used to indicate to the Edit instruc
tion that a digit from the source data may go into the 
corresponding position. 

Let us see how all this works out in our example. 
Suppose we set up an eight-byte working storage 
field named WORK into which we move the pattern 
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(located in an area called PATTRN). Then we will 
perform our edit using WORK and DATA as the two 
operands. The two instructions necessary to do the 
job are: 

MVC WORK,PATTRN 
ED WORK,DATA 

After execution of the two instructions, WORK con
tains our edited result. P A TTRN still contains the 
original pattern and can transmit that original pattern 
to WORK for the editing of any new value in DATA. 
At P ATTRN there should be the following characters, 
written here in hexadecimal: 

4020202020202020 
The 40 is the hexadecimal code for a blank. The 20s 
are the hexadecimal codes for the digit-select charac
ter. Suppose now that at DATA there is 

0001000+ 
The edited result would be 

bbb1000 
where the b's stand for blanks. All zeros to the left 
of the first nonzero digit have been replaced by 
blanks; but zeros to the right of the first nonzero digit 
have been left as they were. This is the desired action. 
Figure 74 shows a series of values for DATA and the 
resultant edited results in WORK, using the pattern 
stated. Note that the high-order position of WORK 
contains the fill character - a blank. The values of 
D A T A are packed decimal; the edited results are in 
zoned decimal format. 

80000000 
40 20 20 20 20 20 20 20 

1234567 
0120406 
0012345 
00010CO 
0000123 
0000012 
0000001 
0000000 

1234567 
120406 

12345 
1000 

123 
12 

1 

Figure 74. Examples of the application of the Edit instruction. 
The first line gives the editing pattern used, first in 
a.S¥ffibolic form and then in hexadecimal. In the 
symbolic form, B stands for blank and D for digit 
select. 



The fill character that we supply as the leftmost 
character of the pattern may be any character that 
we wish. It is fairly common practice to print dollar 
amounts with asterisks to the left of the first significant 
digit in order to protect against fraudulent alteration. 
This is usually called asterisk protection. 

To do this, we need only change the leftmost charac
ter of the pattern of the previous example. The hexa
decimal value for an asterisk is 5C; hence the new pat
tern is 

5C 20 20 20 20 20 20 20 
Figure 75 shows the edited results for the same DATA 
values. 

*0000000 
5C 20 20 20 20 20 20 20 

1234567 *1231+567 
0120406 **120406 
0012345 ***12345 
0001000 ****1000 
0000123 *****123 
0000012 ******12 
0000001 *******1 
0000000 ******** 

Figure 75. Examples of the application of the Edit instruction 
with the fill character as an asterisk 

Any characters in the pattern other than the digit 
select (and two other control characters that we shall 
study later) are not replaced by digits from the data. 
Instead, they are either replaced by the fill character 
(if a significant digit has not been encountered yet), 
or left as they are (if a significant digit has been 
found) . Suppose, for instance, that we set up a 
P A TTRN as follows: 

40 20 6B 20 20 20 6B 20 20 20 
The 6B is hexadecimal coding for a comma. The 
edited result will contain commas in the two positions 
shown, unless they are to the left of the first nonzero 
digit, in which case they are suppressed. Figure 76 
shows the results for the same data values. 

The characters in"serted are, naturally, not limited 
to commas. A frequent application is to insert a 
decimal point as well as commas. Let us assume that 
the data values we have been using are now to be 
interpreted as dollars-and-cents amounts. We need to 
arrange for a comma to set off the thousands of 
dollars, and a decimal point to designate cents. The 
characters in P A TTRN, where 6B is a comma and 4B 
is a decimal point, should be as follows: 

40 20 20 6B 20 20 20 4B 20 20 

The edited results this time are in Figure 77. 

80,000,000 
40 20 6B 20 20 20 68 20 20 20 

1234561 
0120406 
0012345 
0001000 
0000123 
0000012 
0000001 
0000000 

1,234,561 
120,406 

12,345 
1,000 

123 
12 

1 

Figure 76. Examples of the application of the Edit instruction 
with blank fill and the insertion of commas 

BDD,OOD.OO 
40 20 20 6B 20 20 20 4B 20 20 

1234561 
0120406 
0012345 
0001000 
0000123 
0000012 
0000001 
0000000 

12,345.67 
1,204.06 

123.45 
10.00 

1.23 
12 

1 

Figure 77. Examples of the application of the Edit instruction 
with blank fill and the insertion of comma and deci
mal point 

We see here something that would normally not be 
desired: amounts under one dollar have been edited 
with the decimal point suppressed. We would ordi
narily prefer to have the decimal point. This can be 
done by placing a significance-start character in the 
pattern. This character, which has the hexadecimal 
code 21, is either replaced by a digit from the data 
or replaced with the fill character, just as a digit
select character is. The difference is that the operation 
proceeds as though a significant digit had been found 
in the position occupied by the significance-start 
character. In other words, succeeding characters to 
the right will not be suppressed. (An exception to this 
generalization will be explored later.) 

The pattern for this action, assuming we still want 
the comma and decimal point as before, should be 

40 20 20 6B 20 20 21 4B 20 20 
The effect is this: If nothing but zeros have been 
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found by the time we reach the 21 significance-start 
character in a left-to-right scan, a "trigger" is turned 
on anyway. This trigger, called the S trigger, will make 
succeeding· characters be treated as though a nonzero 
digit had been found. The result is that the decimal 
point will always be left in the result, as will zeros to 
the right of the decimal point. The edited results this 
time are shown in Figure 78. 

800,00S.00 
40 20 20 bB 20 20 21 48 20 20 

1234567 
0120406 
0012345 
0001000 
0000123 
0000012 
OOOeOOl 
0000000 

12,345.67 
1,204.06 

123.45 
10.00 

1.23 
.12 
.01 
.00 

Figure 78. Examples of the application of the Edit instruction 
with blank fill, comma and decimal point insertion, 
and significance start. In the symbolic pattern, S 
stands for significance start. 

We can begin to get a little idea of how the machine 
does its work on this instruction by noting that the 
S trigger is initially set to zero before the scan begins. 
It stays at zero until a nonzero data digit is found, or 
until the Significance-start character is encountered, at 
which time it is set to 1. It is the status of the S trigger 
that determines whether a digit select character in the 
pattern will be replaced by a digit or by the fill 
character. An S trigger setting of zero means that no 
Significant (nonzero) digits have been found yet, so 
the fill character is used; an S trigger value of 1 means 
either that a significant digit has been found at some 
previous character position or that the significance
start character has been found; in either case the digit 
from the data is inserted even if it is a zero. 

We have so far ignored the sign portion of the 
source data. The four rightmost bits of the source 
field are examined and used to set the S trigger ac
cording to an entirely different rule: zero if plus, 1 
if minus. This is done every time the Edit instruction 
is executed, but if it happens after the completion of 
the scan of the pattern, as in the examples so far, it 
has no effect. As a matter of fact, if any of the source 
fields in the examples above had been negative, the 
results shown would have been exactly the same. 

Suppose, however, that patte:rn characters remain 
after the sign position has been examined. The action 
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of the S trigger in controlling the instruction con
tinues just as before, although the setting of the S 
trigger was accomplished in a rather different way. 
There are, of course, no more digits to move. Hence 
we will not want to place digit-select characters in the 
pattern in this position, but, rather, sign indicators, 
such as a minus sign or CR for credit. The action 
taken with the characters in the pattern is the same 
now as it was before: leave them unchanged if the 
S trigger has the value 1, but replace them with the 
fill character if the S trigger has the value zero. 

What we do, then, is to place in the pattern the 
characters we want to print if the quantity is negative. 
If the data is indeed negative, our sign will be left, but 
if the data is positive, the sign will be replaced by the 
fill character. 

Let us set up a suitable pattern for the example 
data. Let us print the letters CR for negative numbers, 
with one blank between the rightmost digit and the C. 
In hexadecimal, CR is C3 D9, so the pattern becomes 

40 20 20 6B 20 20 21 4B 20 2040 C3 D9 
Figure 79 shows the results for sample data values 

as before, together with two negative values. 

BDD,DDS.OOBCR 
40 20 20 6B 20 20 21 4B 20 20 40 C3 09 

1234561 12,345.61 
0120406 1,204.06 
0012345 123.45 
0001000 10.00 
0000123 1.23 
0000012 .12 
0000001 .01 
0000000 .00 

-0098165 981.65 CR 
-0000000 .00 CR 

Figure 79. Examples of the application of the Edit instruction 
with blank fill, comma and decimal point insertion, 
significance start, and CR symbol for negative num
bers. In the symbolic pattern, C and R are themselves. 

If we use an asterisk now as the fill character, posi
tive quantities will have three asterisks following the 
cents, as shown in Figure 80. This might or might not 
be desired. There are other ways to handle the signs, 
as we shall see next. 

We have seen above that an amount of zero prints 
in the general form .00 when significance start is used. 
It may in some cases be desirable to make such an 
amount print as all blanks or all asterisks. This is very 



*OO,OOS.DOBCR 
5C 20 20 6B 20 20 21 48 20 20 40 C3 09 

1234561 
0120406 
0012345 
0001000 
0000123 
0000012 
0000001 
0000000 

-0098765 
-0000000 

*12,345.67*** 
**1,204.06*** 
****123.45*** 
*****10.00*** 
******1.23*** 
*******.12*** 
*******.01*** 
*******.00**. 
****987.65 CR 
*******.00 CR 

Figure BO. Examples of the application of the Edit instruction 
(same as in Figure 79 except asterisk fill instead of 
blank fill) 

easily done by making use of the way the condition 
code is set by the Edit instruction: 

C ode Instruction 
o Result field is zero 
1 Result field is less than zero 
2 Result field is greater than zero 

This means that after completion of the Edit we can 
make a simple Branch on Condition test of the con
dition code and move blanks or asterisks to the result 
field if it is zero. The movement is particularly simpie 
because the fill character is still there in the field and 
an overlapped Move Characters instruction can be 
used as follows: 

BC 6,SKIP 
MVC WORK+l(12), WORK 

SKIP 

The explicit length of 12 is based on the most recent 
pattern, which has a total of 13 characters. The MVC, 
as written, picks up the leftmost character and moves 
it to the leftmost-plus-one position. It then picks up 
the leftmost-plus-one character and moves it to the 
leftmost-plus-two position, etc., in effect propagating 
the leftmost character through the field. This is pre
cisely what we want if the fill character is the one to 
be substituted. (If some other character is desired, a 
suitable Move Characters instruction can, of course, 
be written. ) 

Figure 81 shows our familiar data values with zero 
fields blanked, and Figure 82 shows them with zero 
fields filled with asterisks. Only the fill character dif
fers in the two programs that would produce the re
sults shown in Figures 81 and 82; the Edit, the Branch 
on Condition, and the Move Characters are the same 
in both cases. 

The condition code can be used also to distinguish 
between positive and negative numbers when it is 
necessary to present the sign in some manner that is 

BOO,DOS.DOBCR 
40 20 20 68 20 20 21 48 20 20 40 C3 09 

1234561 
0120406 
0012345 
0001000 
0000123 
0000012 
0000001 
0000000 

-0098165 
-0000000 

12,345.61 
1,204.06 

123.45 
10.00 

1.23 
.12 
.01 

987.65 CR 

Figure B1. Examples of the application of the Edit instruction, 
showing the blanking of zero fields by the use of 
two additional instructions 

*DO,DDS.OOBCR 
5C 20 20 68 20 20 21 4B 20 20 40 C3 09 

1234567 
0120406 
0012345 
0001000 
0000123 
0000012 
0000001 
0000000 

-0098765 
-0000000 

*12,345.61*** 
**1,204.06*** 
****123.45*** 
*****10.00*** 
******1.23*** 
*******.12*** 
*******.01**· 
************* 
****987.65 CR 
************* 

Figure B2. Examples of the application of the Edit instruction 
with asterisk fill and zero fields filled with asterisks 
instead of being blanked 

not possible by using the automatic features of the 
Edit. We might, for instance, wish to test the condi
tion code and use the results of the test to place a 
plus sign or minus sign to the left of the edited result. 

The Edit instruction can be used to edit several 
fields with one instruction. Doing so uses a final 
special character, the field separator, 2216• This charac
ter is replaced in the pattern by the fill character, and 
causes the S trigger to be set to zero. The characters 
following, both in the pattern and in the source data, 
are handled as described for a single field. In other 
words, it is possible to set up a pattern to edit a whole 
series of quantities, even an entire line, with one in
struction. The packed source fields must, of course, be 
contiguous in storage, but this is often no incon
venience. One limitation is that the condition code, 
upon completion of such an instruction, gives informa
tion only about the last field encountered after a field 
separator. 
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Let us consider an example. Suppose that at DATA 
we have a sequence of three fields. The leftmost of 
the fields has four bytes, the next has three, and the 
rightmost has five bytes. The first is to be printed with 
commas separating groups of three digits. The values 
are always positive and, therefore, no sign control is 
desired. Zero values will be blank since we shall not 
use a significance-start character. 

The second field is to be printed with three digits 
to the right of the decimal point, with significance
start to force numbers less than 1 to be printed with a 
zero before the decimal point. Positive quantities are 
to be printed without a sign, and negative quantities 
are to be printed with a minus sign immediately to 
the right of the number. 

The third number is a dollar amount that could be 
as great as $9,999,999.99. Commas and decimal point 
<are needed as just shown. Amounts less than $1 are to 
be printed with the decimal point as the leftmost 
character. Zero amounts are to be blanked. Signs are 
not to be printed. 

There is to be at least one blank between the first 
and second edited result, and at least three between 
the second and third. 

Let us write out the necessary pattern in shorthand 
form, with b standing for a blank, d for digit select, f 
for field separator, s for significance start and other 
characters for themselves: 

bd,ddd,dddfsd.ddd-fbbd,ddd,dds.dd 

The required blank between the first and second edited 
result will be placed there by the replacement of the 
field separator with the fill character. The significance
start character in the part of the pattern corresponding 
to the second field will give the required handling of 
quantities less than l. The extra two blanks between 
the second and third results are provided by the blanks 
in the part of the pattern corresponding to the third 
data item. (These are not treated as new fill characters; 
only the leftmost character in the entire pattern is so 
regarded.) 

Instructions to do the required actions are as follows: 
Mve WORK,PATTRN 
ED WORK, DATA 
Be 7,SKIP 
Mve WORK+30(3),WORK+18 

SKIP 

The choice of addresses in the final MVC that blanks 
a zero field is somewhat arbitrary. We reason that if 
the entire field is zero, the first three positions of it 
are surely blank by now; hence a three-character Mve 
from there to the last three positions of the field will 
be correct. 

Figure 83 shows initial source data values and edited 
results. The packed source fields must be adjacent as 
shown; we address the leftmost character. 

1234561C12345C123~56789C 1,234,567 12.345 1,234,567.89 

0123456C01234C012345678C 123,456 1.234 

0010009COO123COOI000000C 10,009 0.123 

0004502C980010000001210C 4,502 98.007-

0000800COOO12COOOOOOO06C 800 0.012 

00COOOICOOOOI0000000001C 1 0.001-

OOOOOOOCOOOOOCOOOOOOOOOC 0.000 

Figure 83. Examples of multiple edits. On each line the first 
field is a combination of three items; all three were 
edited with one Edit, giving the three results shown 
to the right. The editing pattern is shown in the text. 
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123,456.78 

10,000.00 
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The Edit and Mark instruction (ED MK) makes pos
sible the insertion of floating currency symbols. By 
this we mean the placement in the edited result of a 
dollar sign (or pound sterling symbol) in the character 
position immediately to the left of the first significant 
digit. This serves as protection against alteration, 
since it leaves no blank spaces. It is a somewhat more 
attractive way to provide protection than the asterisk 
fill. 

The operation of the instruction is precisely the 
same as the Edit instruction, with one additional 
action. The execution of the Edit and Mark places in 
register 1 the address of the first significant digit. The 
currency symbol is needed one position to the left of 
the first Significant digit. Consequently, we subtract 
one from the contents of register 1 after the execution 
of the Edit and Mark and place a dollar sign in that 
position. 

There is one complication: if Significance is forced 
by a significance-start character in the pattern, nothing 
is done with register l. Before going into the Edit and 
Mark, therefore, we place in register 1 the address of 
the significance-start character plus one. Then, if noth
ing happens to register 1, we still get the dollar sign 
in the desired position by using the procedure de
scribed above. 

Let us suppose that we are again working with a 
four-byte source data field, which we are to edit with 
a comma, a decimal point, and CR for negative num
bers. The pattern should, accordingly, be (in short
hand form) 

bd,dds.ddbCR 
The significance-start character here is five positions 
to the right of the leftmost character of the pattern. 
The complete program to give the required editing 
and the floating dollar sign is as follows: 

MVC WORK,PATTRN 
LA I,WORK+6 
EDMK WORK,DATA 
BCTR 1,0 
MVC O(I,I),DOLLAR 

The Edit and Mark Instruction 

The Load Address instruction as written, places in 
register 1 the address of the position one beyond the 
significance-start character. If significance is forced, 
this address remains in register 1, but otherwise the 
address of the first significant digit goes in register 1 
as part of the execution of the Edit and Mark. The 
Branch on Count Register instruction with a second 
operand of zero reduces the first operand register con
tents by 1 and does not branch. There are, of course, 
other ways to subtract 1 from the contents of register 
1, but this is the easiest and fastest. In the Move 
Characters instruction we write an explicit displace
ment of zero, an explicit length of 1, and an explicit 
base register number of l. The net effect is to move a 
one-character field from DOLLAR to the address 
specified by the base in register 1. This is the desired 
action. 

Figure 84 shows the effect on sample data values. 
Zero fields could be blanked by methods we have seen 
above. 

800.DoS.DD8CR 
40 20 20 68 20 20 21 48 20 20 40 C3 09 

1234561 
0120406 
0012345 
0001000 
0000123 
0000012 
0000001 
0000000 

-0098165 
-0000000 

SI2.345.61 
$1, 204.06 

$123.45 
S10.00 
$1.23 

$.12 
S.Ol 
$.00 

$981.65 CR 
$.00 CR 

Figure 84. Examples of the application of the Edit and Mark 
instruction to get a floating currency symbol 
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The Translate Instruction 

Another powerful programming feature of the 
System/360 is the ability, through the Translate in
struction, to convert very rapidly from one coding 
system of eight or fewer bits to another coding system. 
Using a preestablished conversion table, we can con
vert a string of characters from one form to another at 
speeds that compare favorably with that of decimal 
addition. 

In the 'example program for this topic we shall use 
the Translate instruction to permit a reversal of letters 
and digits in the collating sequence. When we use the 
decimal Compare to compare a letter and a digit in 
normal EBCDIC coding the letter will always show 
as "smaller" than the digit. We shall assume that, for 
some special reason, it is necessary to arrange things 
so that letters sort as "larger". 

It should be realized that we need to reverse the 
ordering of letters and digits as complete gTOUpS. It is 
therefore not possible simply to reverse the paths 
taken on the comparisons in the program. Consider 
an example. With EBCDIC coding and using the 
Compare Logical Character instruction, this is the 
correct ordering of the following five items: 

ADAMS 
JONES 
SMITH 
12345 
56789 

\Ve want to modify the sorted order to: 
12345 
56789 
ADAMS 
JONES 
SMITH 

If we were simply to reverse the paths taken after 
the comparison, the sorted order would be: 

56789 
12345 
SMITH 
JONES 
ADAMS 

We shall see how all this can be done fairly simply. 
using the Translate instruction. 

Looking at the instruction itself, Translate (TR) is 
an SS format instruction with two operands. The first 
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operand address names the leftmost byte of a group 
to be translated. The second operand address names 
the start of a list, or table, that is used to make the 
conversion. The bytes referenced by the first operand 
address are called argument bytes; the bytes in the 
table referenced by the secona operand address are 
called function bytes. 

The operation is as follows. An argument byte (first 
operand) is obtained from storage. The eight-bit byte, 
interpreted as a binary number, is added to the second 
operand address, thereby giving a new address some
where in the conversion table. The byte at this newly 
computed address is obtained from storage and is 
placed in the position occupied by the original argu
ment byte. This action is repeated for all argument 
bytes until the first operand is exhausted. 

The programming task is in designing the translate 
table properly. Perhaps the situation can be made 
clearer by looking at it another way. 

We view the byte to be translated as an eight-bit 
binary number used as an index. Adding this to the 
starting address of the table gives an address that is 
unique for each particular eight-bit combination; that 
is, there is a unique table address corresponding to 
each possible character to be translated. Our job is to 
arrange the translate table so that we will find at each 
such address the byte which should replace the input 
byte. 

Take an example. Suppose we have a translate 
table starting at 5000. We want an input (argument) 
character of A to be translated into a Q. What do we 
do? We look up the coding for A and find that it is 
11000001 in binary, which is C1 hexadecimal and 193 
decimal. The coding for Q is 11011000 == D8 == 216. 
We set up the table so that 193 bytes after the start of 
the table, namely at 5193, there is a byte consisting of 
1101100 == D8 == 216. An A appearing in the argu
ment stream will lead to the address 5193, where the 
translated coding will be found. The A is replaced 
with Q. If all possible eight-bit combinations can ap
pear in the input stream, there must be 256 translate
table entries. 

Let us turn to the problem just sketched of rearrang
ing the letters and digits so that digits sort ahead of 
letters, which is the opposite of the normal collating 
sequence of the machine. The translated characters 



will be used only for the sorting operation; we are not 
required to translate the characters into anything that 
would be otherwise meaningful. 

digits 0-9 are replaced by hexadecimal 01-10, A-I 
are replaced by 11-19, J-R by 21-29, and S-Z by 
32-39. These replacements satisfy the one basic re
quirement, that digits sort earlier than letters. The 
scheme also preserves the ordering of the letters within 
the alpha bet. (The particular choices for the letters 
are not critical, but they will seem reasonable to some
one familiar with punched cards. ) 

The only thing we need to do in setting up the table, 
therefore, is to replace digits with something smaller 
than what we replace letters with. There are, of course, 
a great many ways to do this. In the program of Figure 
85 we have chosen a scheme for its simplicity. The 

START 256 
000100 OS FO BEGIN BALR lS 9 0 

000102 USING *t15 
000102 02 04 F 097 F 070 MVC KEYA+4(5),A+4 MOVE KEYS TO LOCATIONS fOR TRANSLATE 
000108 02 04 F OA4 f 070 MVC KEYB+4(5),B+4 X 
00010E 02 04 F OBI F OBA MVC KEYC+4(S) ,C+4 X 
000114 DC 04 f 097 F OED TR KEYA+4(S),TABLE TRANSLATE KEYS TO CHANGE COLLATING SEQ 
0001lA DC 04 F OM F OED TR KEY8+4(5),TABLE X 
000120 DC 04 F OBI F OED TR KEYC+4(5),TABLE X 
000126 98 24 F OBA l.M 2,4,ADDRA PUT ADDRESSES IN REGISTER 2, ~, 4 
00012A 05 04 2 .o2B 3 02B CLC 43(5,2),43{3) COMPARE A AND B 
000130 47 CO F 038 BC 12,X BRANCH IF ALREADY IN SEQUENCE 
000134 18 62 LR 6,2 INTERCHANGE 
000136 18 23 LR 2,3 X 
000138 18 36 LR 3,6 X 
00013A OS 04 2 028 4 02B X CLC 43(5,2),43(4) COMPARE A AND C 
000140 47 CO F 048 BC 12,Y BRANCH IF ALREADY IN SEQUENCE 
000144 18 62 LR 6,2 INTERCHANGE 
000146 18 24 LR 2,4 X 
000148 18 46 LR 4,6 X 
00014A 05 04 3 028 4 02B Y CLC 43(5,3),43(4) COMPARE BAND C 
000150 47 CO F 058 BC 12,MOVE BRANCH IF ALREADY IN SECUENCE 
000154 18 63 LR 6,3 INTERCHANGE 
000156 18 34 LR 3,4 X 
000158 18 46 LR 4,6 X 
00015A D2 OC F OC6 2 000 MOVE MVC SMAll,O (2) MOVE USING ADDRESSES IN REGI STERS 
000160 02 OC F 003 3 000 MVC MEDIUM,O(3) X 
000166 02 OC F OEO 4 000 MVC LARGE,O(4) X 
00016C OA 00 SVC ° 00016E A OS CLl3 
00017B B OS CLl3 
000188 C OS CLl3 
000195 KEYA DS CLl3 
000lA2 KEYS DS CLl3 
000lAF KEVC OS CLl3 
0001BC 0000016E ADORA DC AlA) 
0001CO 0000011B AoDRB DC AlB) 
0001C4 00000188 ADDRC DC AIC) 
0001C8 SMALL OS CLl3 
000105 MEDIUM OS CLl3 
0001E2 LARGE OS CLl3 
0001EF 000000000000000000 TABLE DC X'oooooooooooooooooooooooooooooooooooooooo' 
0001F8 000000000000000000 
000201 0000 
000203 000000000000000000 DC X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO' 
00020C 000000000000000000 
000215 0000 
000217 000000000000000000 DC X'OOOOOOOOOOOOOOOOOOOOO~OOOOOOOOOOOOOOOOOO' 

000220 000000000000000000 
000229 0000 
00022B 000000000000000000 DC X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO' 
000234 000000000000000000 
00023D 0000 
00023F 000000000000000000 DC X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO' 
000248 000000000000000000 

Figure 85. A program to sort three fields named A, B, and C into ascending sequence on five-character keys contained in 
them, and to place the sorted items in SMALL, MEDIUM, and LARGE. The collating sequence of letters and 
digits is reversed by the use of a Translate instruction. 
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000251 0000 
000253 000000000000000000 DC X '0000000000000000000000000000000000000000' 
00025C 000000000000000000 
000265 0000 
000267 000000000000000000 DC X'OOOOOOOOOOOOOOOOOOOOOOO~OOOOOOOOOOOOOOOO' 
000270 000000000000000000 
000279 0000 
00027B 000000000000000000 DC X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO' 
000281t 000000000000000000 
00028D 0000 
00028F ~OOOOOOOOOOOOOOOOO DC X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO' 
000298 000000000000000000 
0002Al 0000 
0002A3 000000000000000000 DC X'OOOOOOOOOOOOOOOOOOOOOOOO' 
0002AC 000000 
0002AF 00 DC X'OO' 
00028C 11 DC X'11' 
000281 12 DC X'12' 
000282 13 DC X'13' 
000283 lit DC X'14' 
000284 15 DC X'15' 
000285 16 DC X'16' 
000286 17 DC X'11' 
000287 18 DC X'lS' 

.000288 19 DC X'19' 
000289 00 DC X'OO' 
0002BA 00 DC X'OO' 
000288 00 DC X'OO' 
00028C 00 DC X'OO' 
00028D 00 DC X'OO' 
00028E 00 DC X'OO' 
00028F 00 DC X'OO' 
0002CO 21 DC X'21' 
0002Cl 22 DC X'22' 
0002C2 23 DC X'23' 
0002C3 24 DC X'24' 
0002C4 25 DC X'25' 
0002C5 26 DC X'26' 
0002C6 27 DC X'21' 
0002C7 28 DC X'2S' 
0002C8 29 DC X'29' 
0002C9 00 DC X'OO' 
0002CA 00 DC X'OO' 
0002CB 00 DC X'OO' 
0002CC 00 DC X'OO' 
0002CD 00 DC X'OO' 
0002CE 00 DC X'OO' 
0002CF 00 DC X'OO' 
000200 00 DC X'OO' 
000201 32 DC X'32' 
000202 33 DC X'33' 
000203 34 DC X'34' ~ 

000204 35 DC X'35' 
000205 36 DC X'36' 
000206 37 DC X'37' 
000207 38 DC X'3a' 
000208 39 DC X'39' 
000209 00 DC X'OO' 
0002DA 00 DC X"OO' 
0002DB 00 DC X'OO' 
00020C 00 DC X'OO' 
000200 00 DC X'OO' 
00020E 00 DC X'OO' 
00020F 01 DC X'Ol' 
0002EO 02 DC X'02' 
0002El 03 DC X '03' 
0002E2 04 DC X'04' 
0002E3 05 DC X'05' 
0002E4 06 DC X'06' 
0002E5 07 DC X'Ol' 
0002E6 OS DC X'OS' 
0002El 09 DC X'09' 
0002ES 10 DC X'lO' 
0002E9 00 DC X'OO' 
0002EA 00 DC X'OO' 
0002E8 00 DC X'OO' 
0002EC 00 DC X'OO' 
0002EO 00 DC X'OO' 
0002EE 00 DC X'OO' 

END BEGIN 

Figure 85 (continued) 

130 



Weare assuming, for the purposes of this program, 
that the input stream contains nothing but letters and 
digits. There are only 36 of these. The other 220 posi
tions of the table have been filled with zeros, which is 
not quite representative of what we might do in prac
tice. In an actual application, if we really believed 
that nothing else could appear, we would use relative 
addressing to reference the table, and would not store 
the zeros before and after the table. If, as is more 
likely, we are concerned about the possibility of er
roneous data, we might use the table to do some kind 
of checking on the data. 

The task is to sort into the stated sequence three 
records of 13 characters each, using as the sort key the 
middle five characters of each record. In other words, 
the sorted records, which are named A, B, and C, are 
to be in sequence on their middle five characters after 
the execution of the program. 

In the program of Figure 85 we begin by moving 
the keys to locations in which they can be translated; 
we do not want to destroy the actual records. The 
working storage areas have been named KEY A, etc. 
We shall see shortly why these need to be 13 charac
ters. The three Translate instructions make the conver
sions of coding on the keys that we have described in 
detail above. The original records are not disturbed. 

Now we load three general registers with the ad
dresses of A, B, and C; it is the addresses that will be 
moved during the bulk of the sorting, not the records 
themselves. The Compare Logical that comes next 
must be studied carefully. The instruction says that 
the first operand begins 43 bytes after the address 
contained in register 2 and that the first operand is five 
bytes long. Register 2 at this point contains the 
address of A because of the Load Multiple just before 
this instruction. Looking at the data layout, we see 
that 43 bytes past the beginning of A is the beginning 
of the (translated) key of A. Similarly, the second 
operand refers to the key of B. (Only one length is 
required on this instruction.) Weare thus asking for 
a comparison between the translated key of A and the 
translated key of B. If the key of A is already equal to 
or smaller than the key of B, we Branch on Condition 
down to X where the next comparison is made. If the' 
key of A is larger than the key of B, we proceed in 
sequence to the three instructions that interchange the 
contents of registers 2 and 3. This means that when we 
arrive at X, register 2 contains the address of the 
smaller of the keys of A and B, whether or not there 
was an interchange. 

In the addressing scheme described in the preceding 
paragraph, it was essential that there be a fixed rela
tionship between the address of an item and the 
address of its (translated) key. In other words, the 

translated key of A in KEYA had to be the same 
distance beyond A as the translated key of B in KEYB 
was beyond B, and Similarly with KEYC and C. This 
is because the same displacement of 43 had to be 
used for all three items. This, in turn, is why KEY A, 
KEYB, and KEYC were made 13 characters long even 
though the keys are only five. 

We now carry out the same actions using the 
addresses in registers 2 and 4, thus comparing the keys 
of A and C. The two addresses are interchanged if 
necessary, to make the address in 2 that of the smaller. 
After this sequence of instructions, therefore, we can 
be positive that register 2 contains the address of the 
smallest of the (translated) keys. The same set of 
actions on registers 3 and 4 gets them in proper 
sequence. 

Now we know that whatever rearrangements may 
or may not have been carried out, register 2 contains 
the address of the smallest of the keys, register 3 the 
address of the middle-sized, and register 4 the address 
of the largest. We can therefore proceed to the three 
instructions that place the proper three records in 
SMALL, MEDIUM, and LARGE. For instance, the 
first of these instructions, the one at MOVE, says to 
move 13 characters from the address given in register 
2, whatever it may be, to SMALL. The other two in
structions do the same with registers 3 and 4. 

Figure 86 shows the contents of registers 2, 3, and 4 
at four points during the execution of the program: at 
the beginning, at X, at Y, and at MOVE. The three 
items, in order, were: 

1111SMITH1111 
2222ADAMS2222 
3333567893333 

In other words, the original items were in reverse 
order, according to the sequencing pattern we want. 

Register 2 Register 3 Register 4 

Before 0000016E 0000017B 00000188 

x 0OOO017B ooooo16E 00000188 

y 00000188 0000016E 0000017B 

MOVE 00000188 0000017B 0000016E 

Figure 86. The contents of registers 2, 3, and 4 during the 
execution of the program in Figure 85. The original 
items were in reverse sequence according to their 
keys. 
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The Translate and Test Instruction and The Execute Instruction 

The Translate and Test instruction (TRT) adds great 
power to the processing capability of the System/360. 
It is related to the Translate instruction, but is dif
ferent enough and powerful enough to merit our close 
attention. We shall, in fact, study it in three programs 
in this and the next two sections. 

As with Translate, we work with a table that is 
accessed exactly as in Translate. That is, a first operand 
argument byte addresses a particular entry in the table 
by an address computation. There is no change in the 
argument bytes as a result, however, despite the name 
C'translate". What happens, instead, is that the argu
ment byte is inspected. If the addressed function byte 
is zero, the next argument byte is inspected, etc. 
H all argument bytes reference function bytes 
that are zero, the condition code is set accordingly 
and the execution is complete. However, if ever a 
function byte is nonzero, that function byte is placed 
in register 2, and the address of the argument byte is 
placed in register 1. The operation is then terminated. 

This means that we can, with a single instruction, 
inspect a complete stream of argument bytes, looking 
for whatever interests us: error characters, end-of
message codes, blanks and commas that separate parts 
of a line, or whatever. The possibilities for the ap
plication of this instruction are almost limitless. 

To illustrate one way to use the instruction we take 
the following problem. 

Weare given the starting address of a string of 
characters of unknown length. The string contains an 
unknown number of names and addresses. Each name 
is of unknown length; each address component is of 
unknown length; there may be from one to four lines 
of address; we do not know how many names and 
addresses there are. All we do know is that (1) after 
each "line" of information there is a dollar sign, (2) 
after the last line of an address there are two dollar 
signs, and (3) at the end of the entire string there is 
a dollar sign followed by an asterisk. We are required 
to set up each name and address in four lines named 
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LINEl, LINE2, LINE3, and LINE4. Any unused 
lines must be blanked. When an address has been 
assembled in this manner, it is to be printed, after 
which we return to set up and print the next address. 

The table required for this application will consist 
of 254 zeros, with entries only in positions 91 and 92 
corresponding to dollar sign and asterisk respectively. 
For the dollar sign we have chosen to enter an 01 and 
for asterisk 02. These choices are highly arbitrary; as 
we shall see, any other two numbers would be just as 
good. All we need to know about the input stream is 
where the dollar signs and asterisks appear; we care 
nothing about any other characters. (It is assumed, of 
course, that dollar sign and asterisk would never be 
legitimate characters in a name or address. If this 
were not a good assumption, it would not be difficult 
to assign sentinels for which there is no graphic 
equivalent. ) 

The program in Figure 87 begins by placing in reg
ister 3 the address of the first character of the input 
stream that we shall break into names and addresses. 
On the assumption that there is only one such stream 
to process, this instruction is never repeated in this 
program. The next instruction is returned to each time 
another name and address is to be processed. It places 
a 4 in register 9 to be used as a guard against in
correct input streams; if ever a name and address 
would seem to require more than the four lines we 
have allotted, the program will stop. The next Load 
Address places in register 10 the address of the first 
line of the output. The next two instructions are over
lapping Move Characters that clear to blanks the out
put areas. With assumed line lengths of 120 characters, 
this makes 480 bytes to clear. Since the maximum 
length in a Move Characters is 256 bytes, two instruc
tions are needed, each clearing two lines. The first 
MVC instruction clears to blanks the first two lines 
and the first position of the third line. The second 
MVC instruction uses the blank now in the first posi
tion of the third line to blank the remaining positions 
of the third line and all of the fourth line. 



000100 

000102 
000106 
00010A 
00010E 
000111j. 
00011A 
000120 
000121j. 
000126 
000128 
00012C 
000130 
000131j. 
000138 
00013C 
00011j.0 
00011j.2 
00011j.1j. 
00011j.8 
00014C 
000150 
000152 
000154 
000155 
0001CD 
000245 
0002BD 
000335 
00033E 
000341 
000350 
000359 
000362 
000366 
00036F 
000378 
000381 
00038A 
000393 
00039C 
0003A5 
OOOHE 
000381 
0003CO 
0003C9 
0003C2 
0003C3 
0003CC 
0003E5 
0003EE 
0003F1 
0003F8 
000400 
000404 
000408 
000411 
000413 
00041C 
000425 
000421 
000430 
000439 
000438 
000444 
000440 
00044F 
000458 
000461 
000463 
000464 
000465 
000468 
000471 
00047A 
00047C 
000485 
00048E 
000490 
000499 
0004A2 
0004A4 
0004AD 
000486 
000488 
0004C1 
0004CA 
0004CC 
000405 
0004CE 
0004EO 
0004E9 
0004F2 
0004F4 
0004FD 
000506 

05 FO 

41 30 F 233 
41 90 0 004 
41 AO F 053 

000102 

02 FO F 053 052 
02 EE F 144 143 
DO 77 3 000 306 
47 80 F 050 
18 41 
1B 43 
5B 40 F 2FE 
47 40 FOli.O 
44 40 F 2F6 
41 30 1 001 
41 AA 0 078 
46 90 F 018 
OA 00 
OA 01 
41 30 1 001 
59 20 F 302 
47 70 F 004 
OA 00 
OA 00 
40 

E2D4C9E3CB5BC4C5E3 
D9D6C9E35858D14840 
C34B4001CIC3D2E2D6 
D558FIF2F3F440D4Cl 
C9D540E2E3D9C5C5E3 
5BC3C8C9 
C3CIC1066840C9D3D3 
C9D506C9E2SB5BC648 
40C34840D94840CI05 
C4C509E2060558F5F5 
F34004CID703CS40D7 
D3CIC3C540CID7CID9 
E3D4C5DSE340F5C3S8 
E6C8C9E3CS40D7D3Cl 
C9D5E26B4005C5E640 
E8D6D9D25B58C44840 
C44B40CIC4CID4E240 
CID5C440C6CID4C9D3 
E8 
5BF5FOFS40C7D9CIE3 
C8E2060SS8CID7E34B 
40F3F15B09CSCIC4C9 
OSC76BD7C5DSDS4BSB 
SC 
02 00 A 000 3 000 
00000001 
00000002 
000000000000000000 
0000 
000000000000000000 
000000000000000000 
0000 
000000000000000000 
000000000000000000 
0000 
000000000000000000 
000000000000000000 
0000 
000000000000000000 
000000000000000000 
0000 
01 
02 
000000 
000000000000000000 
000000000000000000 
0000 
000000000000000000 
000000000000000000 
0000 
000000000000000000 
000000000000000000 
0000 
000000000000000000 
000000000000000000 
0000 
000000000000000000 
000000000000000000 
0000 
000000000000000000 
000000000000000000 
0000 
000000000000000000 
000000000000000000 
0000· 
000000000000000000 
000000000000000000 
0000 

BEGIN 

AGAIN 

LOOP 

OUT 

ERROR 
BLANK 
LINEl 
LINE2 
LINE3 
LINE4 
NAME 

MVCINS 
ONE 
ENDCON 
TABLE 

START 
BALR 
USING 
LA 
LA 
LA 
MVC 
MVC 
TRT 
BC 
LR 
SR 
S 
BC 
EX 
LA 
LA 
BCT 
SVC 
SVC 
LA 
C 
BC 
SVC 
SVC 
DC 
DS 
DS 
DS 
DS 
DC 

DC 

DC 

DC 

MVC 
DC 
DC 
DC 

DC 

DC 

DC 

DC 

DC 
DC 
DC 
DC 

DC 

DC 

DC 

DC 

DC 

DC 

DC 

END 

256 
15,0 
*,15 
3,NAME 
9,4 
10, LINE 1 
LINE 1(241),BLANK 
LINE3+1(239),LINE3 
0(120,3),TABLE 
B,ERROR 
4,1 
4,3 
4,ONE 
1j.,0UT 
4,MVCINS 
3,1(0,11 
10,120 (10) 
9,LOOP 
o 
1 
3,1(0,11 
2, ENDCON 
7,AGAIN 
o 
o 
CL l' , 
CL120 
CL120 
CL120 
CL120 
C'SMITH$DETROIT$$J. 

STARTING ADDRESS OF RECORD 
FOR ERROR CHECKING 
INITIALIZE TO START OF FIRST LINE 
BLANK LINES 1,2 AND 1ST POS 3RD LINE 
BLANK OUT LAST TWO LINES 
SEARCH FOR DELIMITER 
BRANCH IF NO DELIMITER IN 120 CHARS 
GET LENGTH OF LINE 
X 
X 
BRANCH IF TWO DELIMITERS IN SEQUENCE 
MOVE LINE TO PRINTING POSITION 
SET UP NEXT TRT 
TO GET NEXT LINE 
BRANCH UNLESS FIFTH LINE 

THE PRINTING IS DONE HERE 
SET UP FOR NEXT ADDRESS 
SEE IF DELIMITER WAS * 
BRANCH IF NOT * 
ALL FINISHED IF HERE 
ERROR STOP 

C. JACKSON$1231j. MAIN STREET$CHI' 

C'CAGO, ILLINOISSSF. C. R. ANOERSONSSS3 MAPLE PLACE APAR' 

C'TMENT SCSWHITE PLAINS, NEW YCRK$SC. O. ADAMS AND FAMILY' 

C'$50S GRATHSO~$APT. 31SREADING,PENN.$*' 

0(0,10) ,0(3) 
F'l' 
F'2' 
X'OOOOOOOOOOOOOOOOOOOOCO' 

X '0000000000000000000000000000000000000000' 

X'OOOOOOOOOOOOCOOOOOOOOOOOOOOOOOOOOOOOOO00' 

X'OOOOOOOOOOOOOOOOOOO~OOOOOOOCOOOOOOOOOOOO' 

X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO' 

X'Ol' 
X'02' 
X'OOOOOO' 
X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOCOOO' 

X '0000000000000000000000000000000000000000 , 

X '0000000000000000000000000000000000000000 , 

X'COOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOC' 

X '0000000000000000000000000000000000000000' 

X'OOOOOOOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOOOO' 

X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO' 

X '0000000000000000000000000000000000000000 , 

BEGIN 

Figure 87. A program to print names and addresses. The input stream contains an unknown number of names and addresses; 
each name and address contains a variable number of lines; each line is of variable length 
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Now we come to the Translate and Test. The first 
operand starts at the address in register 3, which we 
set up with the starting address of the input stream; 
it is stated to be a maximum of 120 characters in 
length. The second operand address names the table. 
If the input stream is correct, a dollar sign will be 
found within 120 characters. If, because of some kind 
of error in the preparation of the input stream, which 
would in practice be done by some other program, 
there is no end-of-line dollar sign, we will have a con
dition code of zero at the completion of the execution 
of the instruction. A Branch on Condition, accordingly, 
takes us to an error exit. 

In the normal case of finding a dollar sign to indicate 
the end of the first line, what do we have in the 
registers? Register 1 contains the address of the dollar 
sign that stopped the Translate and Test. We wish to 
do a little arithmetic on this address without destroy
ing it, so we move it to register 4. Now we subtract 
from the address of the dollar sign and address of the 
first character of the line. The difference is the length 
of the line, in bytes. We are about ready to execute a 
Move Characters instruction in which we will use this 
computed address; but in the instruction itself the 
length code is always one less than the actual length. 
So we now subtract one from the difference residing 
in register 4. 

What wo~ld it mean if this difference were now 
negative? We shall see, in further analysis of the pro
gram, that it would indicate the double dollar sign that 
denotes the end of a name and address. We therefore 
Branch on Condition to OUT where we process the 
completed name and address. 

Let us review the status of things. We have in regis
ter 3 the starting address of a group of characters that 
should be moved; in register 10 we have the address to 
which they should be moved; in register 4 we have 
the correct length code for a Move Characters instruc
tion. We need either to place that length code in an 
instruction - or do something equivalent. "Something 
equivalent" is precisely what the Execute (EX) in
struction provides. We say 

EX 4,MVCINS 

This means to execute the instruction at the second 
operand address named (MVCINS), after or-ing to
gether the last eight bits of register 4 and the length 
code portion of the instruction named. Looking down 
at MVCINS we see that a Move Characters instruc
tion has been set up to do all the things just outlined 
as necessary, with the exception of the length. The in
struction set up at MVCINS says to move a group of 
bytes starting at the address given in register 3 to 
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another location given by the address in register 10. 
Both displacements are zero, because the base ad
dresses are exactly what are wanted. The length code 
is zero in the instruction; the actual l~ngth is supplied 
by the last eight bits of register 4. One line of the 
complete name and address is thus moved to a print
ing position. 

We are now about ready to go back for another 
look at the input stream. To do that, register 3 must 
contain the address of the next valid data character in 
the stream. Register 1 contains almost what we need; 
it has the address of the dollar sign just prior to the 
next valid character. We accordingly use a Load 
Address instruction to get the desired address into 
register 3. The instruction operates as follows. The 
displacement of one is added to the contents of the 
base register to get an effective address. (If an index 
register had been specified, its contents would also 
have been added in.) This address is then placed in 
register 3, with no actual reference to storage. ( It 
would have been legitimate to place the su'm bacl< in 
register 1, if that had been desired. Load Address pro
vides a fast and simple way to add a small positive 
amount to a register.) 

In the next Load Address instruction we see register 
10 being incremented by 120 by use of the method just 
described. The purpose is to set up the next line as 
the destination the next time around the loop. Finally 
we Branch on Count back to inspect the input stream 
again. If this would mean trying for a fifth line, the 
branch is not taken and we reach the error exit. 

At OUT, which we reach on discovering either two 
dollar signs in sequence or a dollar sign followed by 
an asterisk, we have the program segment to print the 
output. Here we see the dump request to the super
visor. In a complete program this would, of course, 
be replaced by something else, such as an lacs 
WRITE. 

Following the output operations we are ready to go 
back for another name and address, unless this was 
the last one in the stream. Whether that was the case 
can be determined by looking at the function byte in 
register 2 to see whether it is that produced by a 
dollar sign or by an asterisk, that is, a 1 or a 2 respec
tively. A comparison with ENDCON, which contains 
a 2 in proper form for a comparison with a fullword 
register, makes the determination. If the function byte 
is not that produced from an asterisk, we Branch on 
Condition back to AGAIN to repeat the whole process. 
Otherwise we reach the normal exit from the program. 

Figure 88 shows successive groups of output, based 
on the input stream assembled with the program. 



SMITH 
DETROIT 

J. C. JACKSON 
1234 MAIN STREET 
CHICAGO, ILLINOIS 

F. C. R. ANDERSQN 
553 MAPLE PLACE APARTMENT 5C 

WHITE PLAINS, NEW YORK 

D. D. ADAMS AND FAMILY 
505 GRATHSON 
APT. 31 
READING, PENN. 

Figure 88. Four names and addresses produced 
by the program in Figure 87 

An Assembler Application of Translate and Test and Execute 

Another example of the powerful combination pro
vided by the Translate and Test instruction with the 
Execute instruction is provided by a simplified version 
of part of the work an assembler must do. 

\Ve are given an input stream consisting of one type 
of operand field in an assembler language program. 
The operand that we shall process will always consist 
of: 

1. A one- or two-digit register number, in decimal 
2. A comma 
3. A symbol, consisting of from one to six letters 
4. Either a plus sign or a minus sign 
5. An integer of from one to four digits specifying 

an increment or decrement 
6. A blank 

We are required to place the register number in 
REG as a binary number, to place the symbol in SYM
BOL, and to place in INCDEC the increment or dec
rement as a properly signed binary number. 

\Ve are, of course, defining away a great deal of the 
actual work of an assembler where it would not be 
known, for example, that an instructions will have the 
relative addressing after the symbol, or that there are 
no errors. The complete task uses techniques of the 
sort we shall use here, but is much more complex. 

The task of the Translate and Test instruction this 
time will be to detect the "delimiters" that separate 
one part of the operand field from another. The de
limiters in the job as we have defined it are the comma, 
the plus sign or the minus sign, and the blank. These 
set off register from symbol, symbol from increment 
or decrement, and mark the end of the latter. We set 
up a translate table having entries in the positions cor
responding to these four delimiters. 

The input stream begins at symbolic location 
COL14, a name chosen to suggest where the operand 
field might begin on a card, although we realize that, 
in the System/360 assembler language, it is not 
required to begin there. 

The program of Figure 89 begins by clearing to 
blanks the location set up for the symbol. This must 
be done because we do not know whether the symbols 
we shall find will always have six characters; therefore, 
any previous contents of SYMBOL must be erased. 
A similar consideration applies to INCDEC: there may 
or may not be an increment or decrement, hence we 
are required to place zero there. It seems to be a 
little easier to clear INCDEC at the beginning and 
then to leave it zero, if nothing is placed there, rather 
than to clear it later if necessary. REG need not be 
cleared; we will always place something there. 
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000100 

000102 
000108 
00010A 
OOOIOE 
000112 
000118 
OOOIIA 
OOOllC 
000120 
00012" 
000128 
00012C 
000130 
000136 
00013H 
00013A 
00013E 
000142 
000146 
00014A 
00014E 
000152 
000156 
00015A 
00015E 
000162 
000168 
00016A 
00016C 
000170 
000174 
000178 
00017C 
000180 
000182 
000188 
00018C 
000190 
000194 
00019C 
OOOlAe 
0001A4 
000 lAS 
OOOlAE 
000180 
0001B8 
0001CO 
00J1C6 
0001CA 
000103 
00010C 
OOOlDE 
0001E7 
0001FO 
0001F2 
0001F8 
000204 
000206 
000201 
000210 
000214 
000215 
00021E 
000226 
000221 
000230 
000231 
000232 
000231\ 
000243 
00024C 
00024E 
000251 
000261) 
000262 
000268 
000274 
000276 
00027F 
000288 
00028A 
000293 
00029C 
00029t: 
0002A1 
000260 
00(j2~2 

0002B8 
000Z04 
0002C6 
oonCF 

05 FO 
OC01~2 

02 05 F 080 F C8E 
18 22 
50 20 F 08A 
58 30 F OBE 
DO OE F 1C4 F OC4 
18 "1 
18 43 
58 Ita F 09A 
44 itO F 092 
ItF 50 F OB6 
50 50 F 086 
41 31 0 001 
DO 06 1 001 F OC4 
18 1t1 
1B 1t3 
58 40 F 09A 
44 40 F OA6 
59 20 F 09A 
47 80 F 07E 
59 20 F OA2 
47 80 F 058 
41 60 0 000 
47 FO F 05C 
41 6e 0 C02 
41 31 0 001 
DO 04 1 001 F OCIt 
18 Itl 
1B 43 
58 40 F 09A 
44 40 F 092 
4F 50 F OB6 
4.4 06 F OAC 
50 50 F 08A 
OA 00 

000002C6 
F2 70 F 086 3 000 
00000001 
00000002 
00000003 
D2 00 F 080 3 000 
11 55 
10 55 

404040404040 
0000000C 
OOOOOOO~OOOOOOOOOO 
000000000000000000 
OooO 
000000000000000000 
000000000000000000 
0000 
000000000000000000 
000000000000000000 
0000 
01 
000000000000000000 
00000000 
03 
000000000000000000 
:)000000000000000 
04 
000000000000000000 
eo 
02 
0000000000000000 
000000000000000000 
OOOOOOOOOOOOODOOOO 
0000 
000000000000000000 
000000000000000000 
0000 
OOOOOOOOOOOOO~OOOO 
000000000"0 ooo-<ro 0 00 
0000 
OOOOODOOOOOOOQOOOO 
000000000000000000 
0000 
000000000000000000 
000000000000000000 
QGOO 
000000000000000000 
OOOooo~ooooooaOcoQ 
0000 
000000000000000000 
000000000000000000 
0000 
F1F56~C1C2t3C4C5Cb 
4~F1F2F3F440 

BEGI,.. 

PLS 
NEXT 

OUT 
SYMBOL 
REG 
INCDEC 
ACOL14 
PCKINS 
ONE 
TWO 
THREE 
.. VCINS 
MININS 

WORK 
BLANK 
TABLE 

CCl1l4 

START 
RALR 
USING 
MVC 
SR 
ST 
L 
TRT 
LR 
SR 
S 
EX 
CVB 
ST 
LA 
TRT 
LR 
SR 
S 
EX 
C 
BC 
C 
BC 
LA 
BC 
LA 
LA 
TRT 
LR 
SR 
S 
EX 
CVB 
EX 
ST 
SVC 
OS 
OS 
OS 
DC 
PACK 
DC 
DC 
DC 
MVC 
LNR 
LPR 
OS 
DC 
DC 
DC 

DC 

DC 

DC 
DC 

DC 
DC 

DC 
DC 

DC 
DC 
DC 

DC 

DC 

DC 

DC 

DC 

DC 

DC 

256 
15,0 
*,15 
SYMBOL,8LANK 
2,2 
2,INCDEC 
3,ACOllit 
C01l4, TA8LE 
4,1 
4,3 
4,ONE 
4,PCKINS 
5,WORK 
5,REG 
3,111) 
In,U,TABLE 
4,1 
4,3 
't,ONE 
4,MVCINS 
2,ONE 
8,OUT 
2,THREE 
8,PLS 
6,0 
15,NEXT 
6,2 
3,lIU 
115,1) ,TABLE 
4,1 
4,3 
4,ONE 
4,PCKINS 
5,WORK 
O,MININS(6) 
5,INCDEC 
o 
CL6 
F 
F 
AlCOLl4) 
WORK,OlO,3) 
F'l' 
F'Z' 
F'3' 
SYM80l(0),Cl3) 
5,5 
5,5 
o 
C' 

CLEAR LOCATION FOR SYMBOL 
CLEAR REGISTER Z 
CLEAR LeCATION FOR INCREMENT OR DEC 
PUT STARTING ADDRESS IN REG 3 
LOOK FOR FIRST DELIMITER 
SET UP LENGTH FOR REMOTE INSTRUCTION 
x 
X 
REGISTER NUM8ER TO WORK 
CONVERT TO BINARY IN R&GISTER 5 
STORE REGISTER NUMBER (IN BINARY) 
SET UP FOR NEXT TRT 
LOOK FOR NEXT DELIMITER 
SET UP LENGTH FOR REMOTE INSTRUCTION 
X 
X 
RESULT IN SYMBOL 
WAS THE DELIMITER A BLANK 
BRANCH IF SO 
CHECK SIGN 
BRANCH IF SIGN WAS PLUS 
SET UP FOR LATER REMOTE INSTRUCTION 

SET UP FOR LATER REMOTE INSTRUCTION 
SET UP FOR NEXT TRT 
LOOK FOR NEXT DELI~ITER 
SET UP LENGTH FOR REMOTE INSTRUCTION 
X 
x 
THIS IS INCREMENT OR DECRE~ENT 
CONVERT TO BINARY IN REGISTER 5 
COMPLEMENT IF SIGN WAS MINUS 
STORE 
PROGRAM TERMINATION 

X'OOOOOOCO' 
X'OOOOOOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO' 

X'OOOOOOOOOOOOOOOOGOOOOOOOOOOOOOOOOOOOOOOO' 

X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO' 

X'Ol' 
X'OOOOOOOOOOOOOOOOOOOOOOOOOO' 

X'03' 
X'OOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOOO' 

X'04' 
X'OOOOOOOOOOOOOOOOOOCO' 

X'02' 
X'OOOOOCOOOOOOOOOO' 
X'OOOOOOOOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO' 

X '0000000000000000000000000000000000000000' 

X'OOOOOOOOCOOOOOOQOOOOOOOOOOOOOOOOOOOOODOO' 

X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO' 

X'COOOOOOOOOOCOOCOCOOOOOOOOOOOOOOOOOOCOOOO' 

X '0000000000000000000000000000000000000000' 

X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooooaoo' 

C'15,ARCDEF+1234 ' 

END BE:GJN 

Figure 89. A program to break an assembler language operand into its constituent parts. All the subfields of the 
136 operand are of variable length. The program uses TraJlslate and Test instructions to detect the delimi

ters of comma, plus or minus, and blank. 



Following a procedure somewhat similar to that 
used in the name and address program of the preced
ing section, we now place in register 3 the address of 
the leftmost character of the stream. A Translate and 
Test will stop after two or three characters, depending 
on whether the register number has one or two digits. 
We now compute in register 4 the proper length code, 
either zero or 1, and use an Execute to carry out a 
Pack instruction that is stored at PCKINS. This re
mote Pack takes its first operand from the address 
given in register 3, its length from register 4, and 
places the result in WORK. The latter had been set up 
as a doubleword, so we may now do a Convert to 
Binary, placing the result in register 5 from whence we 
store it in REG. The first required action is complete. 

We are now ready to get the symbol, after some 
preliminaries. When. we have found the delimiter 
after the symbol (a blank, a plus, or a minus), it will 
be necessary to compute the length of the symbol. In 
order to be able to do this later we need now to put in 
register 3 the address of the first character of the sym
bol. This can be done with a Load Address instruction 
using register 1 as a base and with a displacement of 
1. The same scheme (base register 1 and displacement 
of 1) gives the correct starting address for the Trans
late and Test instruction also. 

Once again, after completing the Translate and Test, 
we compute the length of the symbol and use an 
Execute, this time to move the symbol from its posi
tion in the input stream to SYMBOL. When this has 
been done we inspect the delimiter. If it is a blank, 
signified by a function byte of 1 in the TABLE, we are 

finished because there is no increment or decrement. 
If it is not a blank, then it must be either a plus or a 

minus, always assuming for this example that there 
can be no errors. If it is a plus, we place a 2 in register 
6; otherwise a zero. The purpose of this will become 
clear in a moment. 

At NEXT we once again place the address of the 
next character in the stream in 3, this time to be able 
to compute the length of the increment or decrement. 
The next six instructions are much as they were be
fore, resulting in the value of the increment or decre
ment being placed in register 5 in binary. It will be 
positive; the sign was not included. 

Now we come to an Execute instruction used in a 
rather different way for a rather different purpose. We 
have specified register zero for the or-ing, which means 
that the executed instruction is not modified. Then we 
have indexed the address of the instruction to be 
modified. We will therefore execute either the instruc
tion at MININS, if register 6 contains a zero, or the 
instruction two bytes later, if register 6 contains 2. 
The net effect is to do nothing to register 5 if the 
sign is plus, and to make register 5 negative if the 
sign is minus. 

Having done this we store register 5 at INCDEC 
and our assigned task is completed; we have placed 
various parts of the operand in separate locations 
where they can be separately addressed. In the real 
world of an assembler, many more operations would 
have to be performed on this operand. Our small task 
(separating the various parts of the operand) would 
facilitate these further operations. 
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Loops with Variable-Length Blocked Records 

The following illustrative program applies techniques 
that are highly useful in certain commercial applica
tions, and which the features of the System/360 make 
particularly easy to accomplish. The task is the 
processing of blocked tape records - many logical 
records in one physical block - with a variable number 
of records per block and with variable-length records. 
We shall take a record design, furthermore, which 
places certain fixed-length items after the variable
length portion of the record. 

Each record in a block to be processed by the pro
gram of this example will contain four fields, with 
characteristics as follows: 

Field Length Type 
DESC Variable, at most alphameric 

60 characters 
ACCT 7 characters alphameric 
QOH 4 bytes binary 
DOLL 4 bytes binary 

The first field is a variable-length description of a 
stock item; it is alphameric and at most 60 characters. 
The next field is an account number, of exactly seven 
alphameric characters. The third field is four bytes 
long. It is a binary number giving the quantity on 
hand. The fourth and last field is also a four-byte 
binary number giving the year-to-date sales of the 
stock item to the nearest dollar. Immediately following 
the description, however long it might be, will be an 
equal sign to serve as a sentinel, marking the end of 
the variable-length portion of the record. There is 
an unknown number of records; immediately follow
ing the last record is an equal sign, which is the last 
character in the block. 

We are required to process such a block, which we 
assume has already been read into core storage. We 
are to set up a line for printing which contains the 
account number, the quantity on hand, the sales, and 
the description, in that order. The numeric quantities 
are to be in zoned format. After printing a line for 
each record in the block, we are to print the total 
dollar sales from all records on a separate line. 

The program is shown in Figure 90. After the usual 
preliminaries we clear register 4 and store the resulting 
zero in TOTAL in order to be sure that the accumula
tor for total sales is zeroed. Register 14 is next loaded 
with the address of the first character of the block; 
register 14 will always contain the address of the first 
character of the next record as the loop is repeated. 
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In the body of the loop we first blank out the space 
assigned to the description because, in general, it will 
be possible for a long description to be followed by a 
short one; without a prior. blanking, the end of the 
previous line would still be there. The Translate and 
Test instruction references a table in which the only 
nonzero entry corresponds to an equal sign. The 
effective address of the first operand in the Translate 
and Test is just the contents of register 14 because 
the explicit displacement is zero. The length of 60 sets 
a limit on the search for an equal sign. If no equal sign 
is found within 60 bytes, the condition code will be 
zero; a Branch on Condition transfers to an error 
routine if this happens. 

We now are ready to move the description from 
its place in the block to the space from which it will 
be printed. This can be done readily enough once we 
have available the length code of the description. 
Register 1 after the Translate and Test contains the 
address of the equal sign. Subtracting from this 
address the address of the first byte of the description 
gives the length of the description in bytes; one less 
than this number is the length code of the description. 
With this number in register 3, we can execute a re
mote Move Characters instruction that moves the 
description from the block storage area to a location 
from which it can be printed. Just before doing so, 
however, we have a Branch on Condition instruction 
to detect a negative number after the computation of 
the length code of the description; this would happen 
only if the first character of the "description" were an 
equal sign, which would signal the end of the block. 

Getting the account number from the block area to 
the printing location is an easy matter. We know that 
the account number begins one byte beyond the 
address of the equal sign, which is contained in regis
ter 1. The effective address of the account number is 
therefore just register 1 as a base with a 1 for dis
placement. The address of the quantity on hand is just 
eight bytes beyond the address in register 1. Here we 
must be careful of word boundaries. The quantity on 
hand was said to be a four-byte binary number, but, 
because of the variable length of the description, it 
may not be aligned on a word boundary in the block 
storage area. We therefore use a Move Characters 
instruction to move it to a temporary storage area that 
definitely is aligned on a word boundary. TEMPI is 
on a word boundary because the DS says so. 

N ow this binary quantity can be loaded into a regis-



000100 

000102 
000104 
000101 
00010e 
00010E 
000114 
OOOllA 
OOOllE 
000120 
000122 
000126 
00012A 
00012E 
OOOUIt 
OOOUA 
OOOUE 
000 H2 
000H8 
00014E 
000152 
000156 
00015C 
000160 

000164 
000168 
00016A 
00016C 
000170 
0001710 
00017A 
000181 
000184 
00018C 
00018F 
000197 
00019A 
000198 
0001t8 
0001EO 
0001E8 
OOOlEC 
000 ItF5 
0001FE 
000200 
000207 
000208 
00020F 
000218 
000221 
000229 
000230 
0002310 
000238 
000241 
00024A 
000253 
P00257 
00025E 
000262 
000266 
000167 
000270 
000179 
000278 
000284 
000280 
00028F 
000298 
0002H 
0002A3 
0002~C 
OO02e5 
0002e7 
0002CO 
0002C9 
0002C8 
000201t 
0002tO 
0002CF 
0002E5 
0002E6 
OOOlEF 
0002F8 
0002FA 
000303 
00030C 
00030E 
000317 
000320 
000312 
000318 
000331t 
000336 
00033F 
000348 
00034A 
000353 
00035C 
00035E 

05 FO 

lIltlt 
50 itO F 0E6 
51 EO F OU 
11 11 
02 ]I F 099 
00 ]I E 000 
It1 80 F 068 
11 31 
18 3E 
58 30 F 06E 
1t7 itO F 066 
44 30 F 07l 
02 06 F 078 
02 03 F 006 
58 It::l F 006 
ItE itO F ODE 
F3 71 F 082 
02 03 F 006 
58 40 F 006 
4E itO F ODE 
F3 71 F 080 
5A itO F OE6 
50 ItO F OE6 

107 FO F OOC 
OA 00 
OA 00 
OOOOOIEC 
OOOOOJOI 
02 00 F 099 

10010040 

1t04040 

10010040 
100 

000102 

F 098 
F 165 

001 
008 

F ODE 
1 OOC 

F ODE 

E 000 

ClC5E5C5036840Cl03 
E4C56B40F640C905C3 
C87E 
FlF2F3CIC2C3F4 
000001CA 
000015CA 
C105C703C56840D9C5 
C468100F840C9D5C3C8 
40C6C609C7C5C47E 
F2F3F4E7E8E9F7 
OOOOlFItO 
000125CO 
C603C105CJC5681o0Fl 
40C9C5C3C86B40ElD7 
o9C1E8C5CIt~007E409 

0703C51E 
F1F5F3C7C8t1F8 
OOOOOOOC 
00001EBO 
7E 
000000000000000000 
000000000000000000 
0000 
000000000000000000 
000000000000000000 
0000 
OOOOOJOOoooaoooooo 
000000000000000000 
0000 
000000000000000000 
000000000000000000 
0000 
OOOOOOOOOOOOOOOOCO 
000000000000000000 
0000 
000000000000000000 
000000000000000000 
0000 
000000000000 
01 
OOOOOOOOOQOOJOOOOO 
000000000000000000 
0000 
000000000000000000 
000000000000000000 
0000 
000000000000000000 
000000000000000000 
0000 
00000)000000000000 
000000000000000000 
0000 
000000000000000000 
000000000000000000 
0000 
000000000000000000 
OOOOOOOI')OOOOQOOOOO 
0000 
000000000000000000 

START 
BEGUI BUR 

USING 
SR 
Sf 
L 
SR 

AGAIN MVC 
TRT 
BC 
LR 
SR 
S 
BC 
EX 
MVC 
MVC 
L 
CVO 
UNPK 
MVC 
L 
CVO 
UNPK 
A 
ST 

PRINTING 

OUT 
ERROR 
AFIRST 
ONE 
MVCI'IIS 
ACCT 

QOH 

BC 
SVC 
SVC 
DC 
DC 
MVC 
OS 
DC 
OS 
DC 

DOLL OS 

BLANK 
oESC 
TEMPl 
TEMP2 
TOTAL 
RECORO 

TABLE 

DC 
DC 
OS 
OS 
OS 
OS 
DC 

DC 
DC 
DC 
DC 

DC 
DC 
DC 
DC 

DC 
DC 
DC 
DC 
DC 

DC 

UC 

DC 

uC 

DC 

DC 
DC 
DC 

DC 

DC 

DC 

DC 

DC 

DC 
END 

256 
15,0 
-,15 
It ,It 
It ,TOTAL 
11t,AFIRST 
1,1 
DESC,BLANK 
0(60,14) ,TABLE 
a,ERROR 
3,1 
3,11t 
3,ONE 
4,OUT 
3,MVCINS 
ACCT,lll) 
TEMP1,8111 
4,TEMP1 
4, TEMP2 
QOH,TEMPl 
TEJIIIP1,llll) 
4, TEMPI 
4,TEMP2 
DOll, TEMP2 
4,TOTAL 
4,TOTAL 
~OULO BE DO~E HERE 
15,AGAIN 
o 
o 
AIRECORol 
f'l' 
oESClOI,C1l41 
CL7 
C' 
CL8 
C' 
CL8 
C' 
C' , 
CLbC 
F 
o 
F 

CLEAR TO GET ltRO 
ZERO TO TOTAL 
PUT ADDRESS OF FIRST CHARACTER IN lit 
CLEAR REGISTER 1 
START OF RECORD LOOP 
LOOK FOR SENTINEL 
NO DELIMITER FOUND IN oJ CHARACTERS 
SET UP LENGTH FOR REMOTE INSTRUCTION 
X 
X 
BRANCH IF • AT BEGINNING OF I(ECORO 
MOVE DESCRIPTION FOR PKI~TING 
ACCOUNT NUM8ER 
QUANTITY ON HAND 
PREPARE TO CONVERT TO DECIMAL 
CONVERT TO DECIMAL 
UNPACK FDK PRINTING 
DOllARS 

ADO DOLLARS TO TOTAL 

GO BACK FOR NEXT RECOI(O 
PROGRAM NORMAL STOP 
ERROR STOP 

C'BEVEL, BLUE, 6 INCH=' 

C'123A8CIo' 
FL4'1058' 
FL4'5578' 
C'ANGLE, REO, 8 INCH FORGED=' 

C'l3ItXYZ1' 
fL4'8000' 
FL4'75200' 
C'FLANGE, l INCH, SPRAYED PURPLE=' 

C '7S3GHJ8' 
FL4'll' 
FL4'7856' 
C'=' 
X 'oOOOOOOOOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOO , 

X'OOOOOOOOCOOOOOOODOOOCODOOOOOOOOOOOOOOOOO' 

X '0000000000000000000000000000000000000000' 

X'OOOOOOOOCOOOOOOOOOOOCOOOOOOOOOOOOOOOOOOO' 

x'CCOOOOOOCOOOOOOOOCOOCOOJOCOOOCOOOOOOOOOO' 

X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOCOCOOOOO' 

X '000000000000' 
X'Ol' 
X '0000000000000000000000000000000000000000' 

X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO~OOO' 

X'OOOOOOOOOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO' 

X '0000000000000000000000000000000000000000' 

X'OOOOOOOOOOOOOOOOOOOOOOOOvOOOOOOOOOOOOOOO' 

X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO' 

X'OOOOOOOOOOOOOOOOOO' 
BEGIN 

Figure 90. A program to process variable-length blocked records. The block, read from tape by IOCS instructions not shown, 
contains a variable number of records. Each record is of variable length, with fixed-length fields at the end of each 
record. The program uses a Translate and Test instruction in a loop to detect sentinels. 139 



ter and converted to decimal in a doubleword. From 
here it is unpacked to the location from which it will 
be printed, named QOH. 

The same sequence of operations gets the year-to
date sales into DOLL. Because the sales are still in 
register 4 in binary, they can be added to the total 
for the block. 

This completes the actions needed to set up the line 
for printing. A Supervisor Call to the dump routine 
prints the line. There may still be another record in 
the block, so we branch back to AGAIN to see whether 
there is, and, if so, process. 

At OUT we set up the total for printing and print it. 
The sample block that appears at BLOCK involves a 

little bit of trickery. One of the essential aspects of the 
assignment is that the binary fields appear in the block 
not aligned on word boundaries. Such a block would 
have been set up by a previous program in real life. 
Here, in attempting to set it up with DC entries, we 
run into the automatic boundary alignment that is 
normally performed on fullwords. This action can be 
overridden, however, by specifying a length modifier. 
A modifier of 4 is, of course, the same as we would get 
with a fullword; the whole purpose is to prevent 
boundary alignment. 

Summary 

This chapter has presented three of the most powerful 
instructions in the System/360 repertoire, Edit, Trans
late and Execute, with their variations. If the wide 
applicability of these instructions is properly under
stood, it is possible to write programs that are ex
ecuted quickly and take full advantage of the data 
processing capability of the system. 

The extended examples of the chapter were pre
sented to indicate the wide range of application of the 
instructions. 
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For questions 1-6, show the contents of WORK after 
the execution of ED WORK,SOURCE. The characters 
in WORK have the following meaning: 

Character 
B 

Meaning 
Blank 

1. 

2. 

3. 

4. 

5. 

S 
D 

C 
R 

Significance-start character 
Digit-select character 
Comma 
Decimal 
C 
R 

F Field-separator character 
WORK BDDDDDD 
SOURCE 001540+ 
WORK BDDDDDDDCR 
SOURCE 005721+ 
WORK BDD,DDS.DDBCR 
SOURCE 0000001-
WORK BDDD.DDCR 
SOURCE 00000+ 
WORK BSD,DDD.DDCR 
SOURCE 0000010+ 

Hexadecimal 
Equivalent 

40 
21 
20 
6B 
4B 
C3 
D9 
5C 
22 

6. WORK BDD,DDS.DDCRFDD.DDS.DDBCR 
SOURCE 0010143-0000107-

7 a. Write a DC named P A TRN to set up the editing 
pattern for a 9-digit amount to be printed as follows: 

BX,XXX,XXX.XXBBB (for a positive amount) 
BX,XXX,XXX.XXBCR (for a negative amount) 

Insignificant zeros should print as blanks. However, 
amounts less than one dollar must be punctuated with 
a decimal point. 

h. If SOURCE contains 0092500.01- :lnd we exe
cute ED PATRN,SOURCE what would PATRN then 
contain? 

c. What would PATRN contain if EDMK instead 
of ED were the operation? 
8. P A TRN DC X' 4020206B2020214B202040C3D9' 

EDMK PATRN,SOURCE 
Assume SOURCE contains 0123456-. Name the ad-

Questions and Exercises 

dress that would be in bits 8-31 of general register 1 
after execution of the EDMK instruction: 

a. PATRN 
b. PATRN+1 
c. PATRN+2 
d. PATRN+3 
e. ACBD 

9. Does the ED instruction affect general register I? 
10. What would be in location AREA as a result of 
the following operations? 

AREA DC X'00020103' 
TABLE DC C'ABCD' 

TR AREA, TABLE 
a. ABCD 
b. DBCA 
c. DCBA 
d. ADBC 
e. ACBD 

11. What would be in general registers 1 and 2 as a 
result of the following operations: 

AREA DC X'00010203' 
TABLE DC X'00000100' 

TRT AREA, TABLE 
a. Address of AREA+3 and X'03' respectively 
b. Address of TABLE+2 and X'Ol' respectively 
c. Address of T ABLE+3 and X'04' respectively 
d. Address of AREA+2 and X'Ol' respectively 

12. Assume the following sequence: 
CONI DC X'OA' 
WORK DC CL16'1234567899123456' 
AREA DS CL20 

LR 2,CON1 
MVI AREA,C'O' 
MVC AREA + 1 ( 19) ,AREA 
EX 2,MOVE 
BC 15,ROU2 

MOVE MVC AREA(l),WORK 
What will AREA contain after the instruction 

BC 15,ROU2 is executed? 
13. What will AREA contain if the EX instruction 
were EX 0}.10VE? 
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Chapter 9: Subroutines and Subprograms 

Subroutines and subprograms are frequently en
countered in programming. They are used in some 
cases to conserve storage space when a routine at one 
location in memory can be called into operation from 
many other points. They are also used to conserve 
programming time and effort when an existing sub
routine can be incorporated into a new -program. 

A subroutine is a segment of a complete program 
that is assembled at one time. A subprogram, on the 
other hand, is in object program form; it is called into 
operation by a main program that is not assembled 
with it. In fact, more than one subprogram may be 
loaded into storage with one main calling routine, 
which may actually be little but a sequence of calls 
to subprograms. This can become the organizing prin
ciple of the overall program. It also raises a question 
of how to handle subprograms that may originally 
have been assembled to load into the same core stor
age locations; this leads to the need for relocation of 
subprograms. 

In this chapter we shall be concerned primarily 
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with the general question of communication between 
a main calling routine and the subroutines and sub
programs that it calls. This investigation will involve 
such questions as:. 

How does the subroutine know where to return to 
when it is finished? 
How does the main program give the subroutine 
information about the location of data and results? 
How is a program modified to make it operate cor
rectly when it is relocated for execution from some 
place in storage other than where it was originally 
assembled? 
How do we inform the assembler that certain sym
bolic addresses will be defined only when the as
sembled program is loaded with other programs? 
Questions such as these, which are important in 

programming any computer, are answered in a power
ful and flexible manner by the design of the System 
/360, particularly the base registers. In fact, the easy 
relocatability of programs provided by suitable use 
of base registers is one major advantage of the system. 



Subroutine Linkages and Calling Sequences 

The basic idea of a subroutine is to put it in storage 
at one place, then call it into action whenever its 
function is needed. If we are using a square root sub
routine, for instance, we put it in one group of storage 
locations, available for use as needed. Then, at any 
point in the rest of the program that we need to take a 
square root, we branch to the square root subroutine, 
compute the square root, and branch back to the point 
in the main routine from which the subroutine was 
called. 

This raises two questions: How does the subroutine 
know where to go back to when its work is finished? 
How does the main routine provide the subroutine 
with information on the location of the number and its 
square root? 

The question of where to return to is answered by a 
linkage that deposits in a register the address of the 
next instruction after the one that branches to the 
subroutine. In the System/360 we do this with the 
Branch and Link Register (BALR) instruction that we 
have seen so frequently for loading a base register; 
but now we specify some second operand other than 
zero, so that it really is a branch. The technique is to 
place in a register, say 14, the address of the first in
struction of the subroutine. Then, if we have chosen 
register 13 to hold the link, we execute the instruction 

START 256 
000100 05 FO BEGIN BALR 15,0 

000102 USING .,15 

BALR 13,14 
This says to place in register 13 the address of the 
next byte after the BALR, and branch to the address 
given in register 14. At the end of the subroutine it is 
merely necessary to execute an unconditional branch 
to the address in register 13. This is done with a 
Branch on Condition Register ( BCR ) instruction in 
which the mask is 15 to specify an unconditional 
branch. 

We can make these ideas much more clear by con
sidering an example. It is not our purpose now to ex
plore new ideas in information processing, so we 
choose an unrealistically simple job for the subroutine 
to do: double a number by shifting it left one place. 
We solve the problem of communicating data and re
sult locations by an agreement between the main rou
tine and the subroutine that the number to be doubled" 
is to be placed in register 3 before branching to the 
subroutine, and that the doubled result is to be left in 
register 3 on the return to the main program. 

Figure 91 is a listing of one program consisting of a 
main, or calling, routine and the subroutine. (We re
call, from the Introduction, the distinction in termin
ology: a subroutine is assembled with its calling rou
tine. If separate assemblies are done and the resulting 
programs used together, we have a subprogram.) 

000102 58 30 F 022 L 3,FIRST FIRST NUMBER TO BE DOUBLED 
000106 58 EO F OlE L 14,ADSRl SUBROUTINE ADDRESS 
00010A 05 DE BALR 13,l1t LINKAGE - RETURN ADDRESS GOES INTO 13 
00010C 50 30 f 02A ST 3,ANS1 RETURN POINT FROM SUBROUTINE 
000110 58 30 F 026 L 3,SECOND SECOND NUMBER TO BE DOUBLED 
000114 58 EO F OlE L 14,ADSRl SUBROUTINE ADDRESS AGAIN 
000118 05 DE BALR 13, lit LINKAGE 
00011A 50 30 F 02E ST 3,ANS2 STORE SECOND RESULT 
00011E OA 00 SVC 0 SUPERVISOR CALL 
000120 00000134 ADSR1 DC A (SRlI SUBROUTINE ADDRESS 
000124 00000001 FIRST DC F'l' 
000128 00000004 SECOND OC F'4' 
00012C ANSl OS F 
000130 ANS2 OS F 

• 
• THIS IS THE END OF THE MAIN PROGRAM 
• THE SUBROUTINE BEGINS WITH THE USING, BUT THE LABEL MUST GO UN 
• THE FIRST INSTRUCTION 
• 

000134 USING .,14 
000134 88 30 0 001 SRl SLA 3,1 THIS IS THE ONLY PROCESSING INSTRUCTION 
000138 07 FO BCR lS,13 UNCONDITIONAL BRANCH BACK TO MAIN ROUTINE 

END 8EGIN 

Figure 91. A program containing a subroutine, showing a subroutine linkage 
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The first three instructions in Figure 91 are still 
necessary; they are unchanged by the fact that a sub
routine will be used. Next comes the first processing 
instruction of the main routine, to load register 3 with 
a number to be doubled by the subroutine. Register 14 
is now loaded with the address of the subroutine, us
ing an address constant, in preparation for branching 
to the subroutine with the BALR. The BALR as writ
ten here takes its branch address from register 14 and 
places in register 13 the address of the next instruc
tion, the Store. 

The Branch and Link (BAL) instruction can some
times be used instead of BALR, thereby avoiding the 
loading of a register before branching. The restriction 
is that the address of the subroutine must be within 
the range of addresses of the current program base 
register. This will not always be true, and will never 
be true for separately assembled routines, as we shall 
discuss later. BALR is probably a good habit even 
when not strictly needed. 

We have now branched to the subroutine, which, 
in this highly Simplified example, consists of just one 
processing instruction. The contents of register 3 are 
shifted left one place, which doubles the number, and 
the processing is finished. Weare now ready to return 
to the instruction in the main routine following the 
BALR. This address is precisely what is in register 13 
now, so an unconditional branch to the address speci
fied in 13 is the correct return. The BCR instruction is 
unconditional because of the 15 in the Rl field. 

On returning to the main routine we store the dou
bled number at ANSI and proceed to load another 
number into register 3 for doubling by the subroutine. 
We again go through the operations of loading register 
14 with the address of the subroutine and linking to it. 
Although it is true that register 14 still has the address 
of the subroutine in it from the last time, we prefer, 
even in this example, to load it again as a matter of 
good programming habit. In realistic programs, it is 
all too easy to cause trouble by trying to save a few 
microseconds. 

Figure 92 shows the values of FIRST, SECOND, 
ANSI, and ANS2, in that order, after the execution of 
the program. The dump that gave these results showed 
that at the completion of the program register 14 con-
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tained 134 (the address of the subroutine) and reg
ister 13 contained llA (the address of the next in
struction after the second BALR). In short, everything 
worked as we expected. 

100000001 00000004 00000002 00000008 1 

Figure 92. Values of FIRST, SECOND, ANSI, and ANS2, re
spectively, after execution of program in Figure 91 

Let us now add a feature to the program. Shifting a 
number left can, of course, result in loss of a bit from 
large numbers. Let us suppose that such a loss would 
be an unexpected event, one that should be signaled 
back to the main routine as an error. The method of 
signaling is as follows. If such a loss of information 
occurs, the subroutine returns to the instruction after 
the BALR; if there is no loss of information, the sub
routine returns to the instruction that is two bytes 
beyond the one after the BALR. In other words, the 
two-byte instruction after the BALR will be executed 
only in the error condition; this is called the error re
turn. The normal return will skip past this. 

We shall insert in the program, following each 
BALR to the subroutine, an SVC 0 instruction to dis
continue the program if the error arises. (In practical 
applications, of course, there might be corrective ac
tion that could be taken, rather than giving up com
pletely. The other actions might require space for a 
four-byte instruction at the error-return point; this 
could easily be arranged in the subroutine, as we shall 
see.) 

The choice of whether to go back to the error return 
or the normal return is, of course, made by the sub
routine. Figure 93 shows the modifications required. 
After shifting left, we execute a Branch on Condition 
Register instruction that, according to the setting of 
the condition code by the Shift Left Single instruc
tion, determines whether a bit is lost. If so, the branch 
is taken, and the error return is reached. If not, we 
should like to go back to the normal return, which is 
two bytes beyond the address now standing in register 



START 256 
000100 05 FO BEGIN BALR 15,0 

000102 USING .,15 
000102 58 30 F 026 L 3,FIRST FIRST NUMBER TO BE DOUBLED 
000106 58 eo F 022 L 14,ADSR1 SUBROUTINE ADDRESS 
00010A 05 DE BALR 13,14 LINKAGE - RETURN ADDRESS GOES INTO 13 
00010C OA 00 SVC 0 ERROR RETURN - SUPERVISOR CAll 
00010E 50 30 F 02E ST 3,ANSI RETURN POINT FROM SUBROUTINE 
000112 58 30 F 02A L 3,SECOND SECOND NUMBER TO BE DOUBLED 
000116 58 EO F 022 L 14,ADSR1 SUBROUTINE ADDRESS AGAIN 
OOOllA 05 DE BAlR 13,14 LINKAGE 
OOOllC OA 00 SVC 0 ERROR RETURN - SUPERVISOR CALL 
OOOlle 50 30 F 032 ST 3,ANS2 STORE SECOND RESULT 
000122 OA 00 SVC 0 SUPERVISOR CALL - PROGRAM TERMINATION 
000124 00000138 ADSRI DC A(SRI) SUBROUTINE ADDRESS 
000128 00000010 FIRST DC F'16' 
00012C 1FFFFFFF SECOND DC X '1FFFFFFF' 
000130 ANSI OS F 
000134 ANS2 OS F 

• 
• THIS IS THE END OF THE MAIN PROGRAM 
• THE SUBROUTINE BEGINS WITH THE USING, BUT THE LABEL MUST GO ON 
• THE FIRST INSTRUCTION 
• 

000138 USING ·,14 
000138 8B 30 0 001 SRI SlA 3,1 THIS IS THE ONLY PROCESSING INSTRUCTION 
00013C 01 10 BCR 1,13 GO TO ERROR RETURN IF OVERFLOW 
OOOl3E 41 FO 0 002 BC 15,2(0.13) UNCONDTIONAL BRANCH TO MAIN PROGRAM 

ENO BEGIN 

Figure 93. A program containing a subroutine, showing a subroutine linkage with an error return 

13. This is easily done with a Branch on Condition 
instruction that uses register 13 for a base register and 
has a displacement of 2. 

Figure 94 shows the information dumped at the end 
of execution of the program, with the new values for 
FIRST and SECOND noted. A doubled value for 
SECOND has not been stored, since the error return 
was taken and the second Store instruction was never 
reached. 

00000010 7FfFFFFF 00000020 

Figure 94. Values of FIRST, SECOND, and ANSI, respective
ly, after execution of the program in Figure 93. 
ANS2 was not computed because the error return 
was taken for SECOND. 

So far we have seen the linkage mechanism in ac
tion, with a variation that allows a choice between two 
return points. But there was a significant simplifica
tion in that the communication of data and results was 
handled by agreement on a register to be used for the 
purpose. This is probably not typical, and it is cer
tainly not always acceptable. We need, rather, to be 
able to specify data and data addresses in some much 
more flexible manner. The most common such tech
nique is to write the data and/or data addresses in 
the instruction stream immediately following the 
BALR, from which the subroutine can readily obtain 
them. Let us see, by means of an example, how this 
might be done. The example this time is representative 

of something that might actually be done with a sub
routine. We shall be able to use this example through 
the rest of this publication, including the sections on 
subprograms. 

We have in storage a group of fullwords in consecu
tive fullword locations. The list is described by its 
starting address and the -number, n, of entries. These 
two parameters are to be communicated to the sub
routine, along with the address at which it should 
store, after computing it, the average of the numbers. 

There are several possible ways to give the neces
sary information to the subroutine. We choose one 
that is representative. Immediately following the 
BALR that branches to the subroutine, there will be a 
calling sequence giving, in order, the address of the 
first word of the list, the value of n as a fullword, and 
the address where the average should be stored. A 
typical calling sequence might be: 

BALR 13,14 
DC A(LIST1) 
DC F'4' 
DC A(AVER1) 

The subroutine will be required to pick up the infor
mation it needs from this calling sequence, which it 
can do since it has in register 13 the address of the first 
word after the BALR. The return from the subroutine 
will, of course, have to be to the instruction after the 
calling sequence, or twelve bytes beyond what is in 
register 13. 

But what if the instruction before the BALR ended 
on a fullword boundary? Then the BALR (a two-byte 
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instruction) would occupy the first two bytes of the 
next word. The assembler, since it automatically aligns 
on a fullword boundary an A-type constant for which 
no length is specified, would skip two bytes before 
locating the A-type constant. When the BALR is exe
cuted, register 13 would contain the address of the 
byte following the BALR instruction, but this address 
would not be the address of the first byte of the A-type 
constant. This would cause a problem because the 
subroutine counts on register 13 containing the ad
dress of that constant. 

CNOP 2,4 
If, when the assembler reaches the BALR, the loca
tion counter is already set to a value that is two (2) 
greater than a fullword (4) boundary, the CNOP is 
ignored. If, on the other hand, this is not true, the 
assembler inserts a Branch on Condition (BCR) in
struction with a mask of zero, which never causes a 
branch regardless of the condition code. This BCR 
instruction, then, is equivalent to a no-operation. Its 
presence will put the BALR where required to cause 
the calling sequence to be located immediately fol
lowing the BALR. Solving this problem is the function of the assembler 

instruction Conditional No-Operation (CNOP). Just 
before the BALR we shall write the instruction 

Let us turn to the program in Figure 95 to see all 
this in context. 

START 256 
000100 05 FO BEGIN BALR 15,0 

000102 USING .,15 
000102 58 EO F 072 L 14,ADSRZ BRANCH ADDRESS 

000106 CNOP 2,4 CONDITIONAL NO-OP FOR ALIGNMENT 

000106 05 DE BUR 13,14 LINK TO SUBROUTINE 

000108 00000144 DC A(LlSH) CALLING SEQUENCE - DATA ADDRESS 

00010C 00000004 DC F'4' HOW MANY 

OOCllO 0000016C DC A (AVERlJ ADDRESS OF RESULT 

000114 58 EO F 036 L 14,A OTHER PROCESSING 

000118 5A EO F 03A A 14,8 X 

00011C 50 EO f 03E ST 14,C X 

000120 58 EO f 072 L 14,ADSR2 BRANCH ADDRESS 

000124 CNOP 2,4 CONDITIONAL NO-OP FOR ALIGNMENT 

000124 01 00 8CR 0,0 
000126 05 DE BALR 13,14 LINK TO SUBROUTINE 

000128 00000154 DC A (LlST2) CALLING SEQUENCE - DATA ADDRESS 

00012C 00000606 DC F'6' HOW MANY 
000130 00000170 OC A(AVERZ) ADDRESS OF RESULT 
000134 OA 00 SVC 0 PROGRAM TERMINATION 

000138 00000038 A DC F'56' 
00013C 0000004D B DC F'11' 
000140 C DS F 
000144 OOOOOOOA L1sn DC F'10' 
000148 OOOOOOOC DC F'12' 
00014C 00000013 DC F'19' 
00015C OODOOOOF DC F'15' 
000154 00000008 L1ST2 DC F'l1' 
000158 00000002 DC F'2' 
00015C 00000004 DC F'4' 
000160 fFffFfFD OC F'-3' 
000164 00000005 DC F'5' 
000168 fFFfFfFf DC F'-l' 
00016C AVERI OS F 
000110 AVERl OS F 
000114 00000118 ADSR2 DC A(AVER) 

• 
• THE END OF THE MAIN ROUTINE 

· 000118 USING .,14 
000118 90 21 E 040 AVER STM 2,1,TEMP SAVE REGI STERS 
00011C 58 5D 0 000 L 5,0(13) STARTING ADDRESS 
00018e 41 60 0 004 LA 6,4 INCREMENT 
000184 58 40 C 004 L 4,4(13) N 
000188 18 14 LR 7,4 N 
00018A 5B 10 £ 03C S 1,ONE N-1 
00018£ 88 10 0 002 SLA 7,2 4(N~I) 

000192 IA 15 AR 7,5 LIMIT 
000194 18 22 SR 2,2 CLEAR TO ZERO 
000196 18 33 SR 3,3 C LE AR TO ZERO 
000198 5A 35 0 000 LOOP A 3,0(5) ADO A VALUE FROM LIST 
00019C 81 56 E 020 BXLE 5,6,LOOP 
OOOIAO 10 24 OR 2,4 DIVIDE BY N 
0001A2 58 50 0 008 L 5,8(13) PICK UP ADDRESS OF RESULT 
000lA6 50 35 0 000 ST 3,0(5) STORE RESULT 
OOOIAA 98 21 E 040 LM 2,1,TEMP RESTORE REGISTERS 
OOOlAE 41 FD 0 DOC BC 15,IZ(13) RETURN TO MAIN PROGRAM 
000184 oeooooo 1 ONE DC F'l' 
000lB8 TEMP OS 6F 

END BEGIN 

Figure 95. A program containing a subroutine to compute the average of a list of numbers 
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After the usual preliminaries we load register 14 
with the subroutine address. The Conditional No Op 
in this case has no effect; we see that the BALR is al
ready located as described by the CNOP (that is, it 
starts on the second byte of a four-byte fullword), and 
the DC is thus on a fullword boundary without skip
ping any space between the BALR and the address. 
The starting address is given as LIST1, there are said 
to be four entries in the list, and the average should be 
stored at A VERI. At execution time, the BALR 
branches to the subroutine without, of course, trying 
to execute the calling sequence as instructions, which 
they are not. 

In the subroutine we begin with a Store Multiple 
instruction that saves the contents of the registers 
that will be used by the subroutine. This is normal 
practice; it is almost never the case that any registers 
are assumed to be available to the subroutine without 
first saving their contents. 

The thing the subroutine must do is to get the ad
dress of the first word of the list of numbers to be 
averaged. This is easily done by using a Load instruc
tion in which the effective address is simply the con
tents of register 13. After execution of this Load, reg
ister 5 contains the address of the first word of the 
list. Stepping through the list will be done with a 
Branch on Index Low or Equal instruction (BXLE), 
so we proceed to set up the other parameters required. 
Register 6 is accordingly loaded with 4, the increment 
between loop repetitions. With register 6 containing 
the increment, register 7 must contain the final ad
dress. This is: the starting address, plus four times one 
less than the number of entries. We load register 4 
with the contents of the fullword that is four bytes 
beyond the address in register 13; this is the second 
word of the calling sequence, giving the number of 
entries. It is to be left in register 4 for computing the 
average later. For the loop purposes we move it to 
register 7, subtract 1, shift left two places (in effect 
multiplying by four), and add the starting address. 
After clearing registers 2 and 3 we are ready to go 
into the loop. 

The Add instruction at LOOP uses as its address the 
contents of register 5, which is the index of the loop. 
Between loop repetitions, register 5 is incremented by 
the contents of register 6, which we set to be 4. The 
looping stops when all entries in the list have been 
added to register 3. 

Now we are ready to compute the average, which 

is a simple matter of dividing the contents of registers 
2 and 3 (the sum of all the numbers in the list) by the 
contents of register 4 (the number of entries in the 
list). A Divide Register instruction (DR) can be used 
to advantage. The quotient is the average, which is 
left in register 3. We are now ready to store the aver
age; where does it go? The answer is to be found by 
looking at the fullword address that is eight bytes 
beyond the contents of register 13; the address of the 
average is placed in register 5 by the Load. A Store 
instruction using this address now completes the work 
of the subroutine. We restore the registers that had 
been saved and branch back to the main routine. We 
re-enter the main routine just after the calling se
quence because of the displacement of 12 in the 
Branch on Condition instruction. 

Back in the main routine, we do some simple pro
cessing using register 14 to dramatize the fact that 
registers used for base registers and linkages have no 
special characteristics. Then we wish to average an
other list, which, as shown, requires a different calling 
sequence. This time, we note that the CNOP resulted 
in the creation of a No Operation instruction. If this 
had not been done, the BALR would have been placed 
at 124, thereby leaving a two-byte gap between the 
BALR and the first fullword of the calling sequence 
because the assembler aligns A-type DC's on fullword 
boundaries. The subroutine would know nothing but 
what the BALR told it by putting the address of the 
next byte after the BALR in register 13. The attempt 
to call for a fullword from 126 would cause a specifica
tion exception, leading to interruption of the program. 

The execution of the subroutine follows the same 
lines as before, although this time it operates on dif
ferent data and places the result in a different place. 

Figure 96 shows the four numbers of the first list 
followed by the average as computed by this program, 
together with the six numbers of the second list and 
the corresponding average. 

10 
11 

12 
2 

19 
4 

15 
-3 5 

14 
-1 3 

Figure 96. The data and results of the program in Figure 95. 
The last number in each line is the average of the 
others in that line. 
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Program Relocation 

We now approach the important question of pro
gram relocation: how do we arrange to execute an 
assembled object program from some set of storage 
locations other than those assigned in assembly? This 
matter is important for a number of reasons. For one, 
it is sometimes necessary to change storage locations 
of assembled programs because of changes in storage 
requirements of other programs that are in core at the 
same time. Reassembly is a possible solution, of 
course, but we prefer a less time-consuming method, 
if one is available. For another reason, it is often a 
major convenience to be able to borrow a completed 
program written by some other programmer and use 
it in combination with other program segments. In 
many such instances there will be conflicts in core 
storage assignments that must be resolved by relocat
ing some or all of the segments. Finally, and to many 
users most important, a machine run under control 
of a monitor program can have a constantly varying 
set of storage requirements, making necessary a job
by-job reallocation of storage locations. 

For whatever reason, it is not uncommon to want to 
execute a program from locations other than the ones 
assumed in assembly without reassembling. The ques
tion to be explored in this section is: how do we devise 
a program-loading procedure that makes program re
location simple? In the following section we shall move 
on to the equally interesting question of communica
tion among several programs, any or all of which may 
have been relocated in loading: how do they now 
know each others' locations? For now, however, we 
consider only the actions necessary to permit one pro
gram to operate correctly after it has been relocated. 

It is perhaps worthwhile to emphasize that through
out we are discussing an assembled obiect program. 
With a few important but quite special exceptions, the 
object program with which we are dealing is no longer 
in symbolic form. All addresses are in absolute form; 
that is, they are formed from actual displacements, 

148 

base register contents, and index register contents. In 
order to emphasize this aspect of the problem, let us 
see how a program actually appears in core storage 
after it has been assembled and subsequently loaded. 

Figure 97 is a slightly modified version of the pro
gram in Figure 95. The modification is the inclusion 
of a "dump call" after the conclusion of the main pro
gram. The Supervisor Call (SVC) with an operand of 
1 causes activation of a program that is usually in core 
storage thereby enabling us to print out (dump) core 
storage information. This is not the place to give a 
complete description of the dump program, but we 
may at least describe briefly what the parts of this 
call do. (Note the similarity to the calling sequences 
above.) 

The SVC with an operand of 1 starts the operation. 
The DC that follows is part of a calling sequence, in 
which we specify, in this case, that we wish to see the 
contents of the general registers but not the floating 
point registers, and that there is one "control list" 
elsewhere. In the DC that comes next, we give the 
address of the control list. Note the length modifier 
on the address-type DC; this permits us to pack more 
information into a fullword. 

The control list appears in this case at the beginning 
of the constants, immediately after the SVC 0 that 
will terminate the program when the dump is finished. 
This control list says: print halfwords in hexadecimal, 
with mnemonic operation codes below any halfword 
that can be interpreted as an operation code. The first 
halfword to be printed is located at BEGIN, each 
halfword is two bytes long (this is not really needed 
in this case), and 112 halfwords are to be printed. 
This last number was chosen to cause printing of the 
entire program, including main program, constants, 
and subroutines. 

Figure 98 is the dump produced when the object 
program was loaded and executed. 



000100 

000102 
000106 
000106 
000108 
00010e 
000110 
000114 
000118 
OOOIlC 
000120 
000124 
000124 
000126 
000128 
00012C 
000130 
000134 
000136 
000139 
00013C 
00013E 
00013F 
000142 
000143 
000148 
00014C 
000150 
000154 
000158 
OOOISC 
000160 
000164 
000168 
00016C 
000170 
000174 
000178 
00017e 
000180 
000184 

000188 
00018e 
000190 
000194 
000198 
00019A 
00019E 
000lA2 
0001A4 
0001A6 
000lA8 
000lAC 
0001BO 
0001B2 
000186 
0001BA 
0001BE 
0001C4 
0001C8 

05 FO 

58 EO F 082 

05 DE 
00000154 
00000004 
0000017C 
58 EO F 046 
5A EO F 04A 
50 EO F 04E 
58 EO F 082 

07 00 
05 DE 
00000164 
00000006 
00000180 
OA 01 
CO 100 1 
00013E 
OA 00 
04 
000100 
02 
000070 
00000038 
0000004D 

OOOOOODA 
OOOOOOOC 
00000013 
OOOOOOOF 
OOOOOOOB 
00000002 
00000004 
FFFFFFFD 
00000005 
FFFFFFFF 

00000188 

90 21 E 040 
58 50 0 000 
41 60 0 004 
58 40 0 004 
18 74 
5B 10 E 03C 
8B 10 0 002 
lA 15 
lB 22 
IB 33 
SA 35 0 000 
81 56 E 020 
10 24 
58 50 a 008 
50 35 0 000 
98 21 E 040 
41 FO a DOC 
0000000 1 

000102 

000188 

PR01 TITLE 
START 

BEGIN BALR 
USING 
L 
CNOP 
BALR 
DC 
DC 
DC 
L 
A 
ST 
L 
CNOP 

BCR 
BALR 
DC 
DC 
DC 
SVC 
DC 
DC 
SVC 

CLPROG DC 
DC 
DC 
DC 

A DC 
B DC 
C OS 
LIsn DC 

DC 
DC 
DC 

LIST2 DC 
DC 
DC 
DC 
DC 
DC 

AVERI OS 
AVER2 OS 
ADSR2 DC 

* 

'ONE RELOCATA8lE PROGRAM. 
256 

WILL PRINT DUMPS FROM 2 LOCS' 

15,0 
*,15 
14,ADSR2 
Z,4 
13,14 
A(LISTU 
F'4' 
A(AVERU 
14,A 
14,8 
14,C 
l4,ADSR2 
2,4 
0,0 
13,14 
A(LISTZ) 
F'6' 
A(AVERZ) 
1 
X'COlOOl' 
Al3 (CLPROG) 
o 
X'04' 
Al3(BEGIN) 
ALU2) 
Al3(112) 
FtS6' 
F'77' 
F 
FIlO' 
F '12' 
F'19' 
F'lS' 
Fill ' 
F'Z' 
F'4' 
F'-3' 
F'S' 
F'-l' 
F 
F 
A(AVER) 

BRANCH ADDRESS 
CONDITIONAL NO-OP FOR ALIGNMENT 
LINK TO SUBROUTINE 
CALLING SEQUENCE - DATA ADDRESS 
HOW MANY 
ADDRESS OF RESULT 
OTHER PROCESSING 
X 
X 
BRANCH ADDRESS 
CONDITIONAL NO-OP FOR ALIGNMENT 

LINK TO SUBROUTINE 
CALLING SEQUENCE - DATA ADDRESS 
HOW MANY 
ADDRESS OF RESULT 
SUPERVISOR CALL TO DUMP PROGRAM 

PROGRAM TERMINATION 

* THE END OF THE MAIN ROUTINE 

AVER 

LOOP 

ONE 
TEMP 

USING 
STM 
L 
LA 
l 
LR 
S 
SLA 
AR 
SR 
SR 
A 
BXLE 
DR 
L 
ST 
LM 
BC 
DC 
OS 

END 

·,14 
2,1,TEMP 
5,0(13) 
6,4 
4,4(13) 
1,4 
7,ONE 
7,2 
1,5 
2,2 
3,3 
3,0(5) 
5,6,LOOP 
2,4 
5,8{l3) 
3,0(5) 
2,1,TEMP 
lS,12{l3) 
Fill 
6F 
BEGIN 

SAVE REGISTERS 
STARTING ADDRESS 
INCREMENT 
N 
N 
N-l 
4(N-l) 
LIMIT 
CLEAR TO ZERO 
C LE AR TO ZERO 
ADO A VALUE FROM LIST 

DIVIDE BY N 
PICK UP ADDRESS OF RESULT 
STORE RESULT 
RESTORE REGISTERS 

Figure 97. A modified version of the program in Figure 95, changed to include a calling sequence to dump the 
program after execution 
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DYNAMIC DUMP OAOI COIOOIOOO13E PSW 0000000060000134 STORAGE KEYS 00000000000000000000000000000000 

GPR 0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 OOOOJOOO 

GPR 8 00000000 00000000 00000000 00000000 00000000 60000128 0000018ft 40000102 

C.L1ST 04000100 02000010 

0100 05FO 58EO F082 050E 0000 0154 0000 0004 0000 017e 58'EO F046 5AEO FOltA 50EO F04E 

8UR l ••• 8AlR ••• ••• ••• ••• ••• ••• l ••• A ••• ST ••• 
0120 58EO F082 0700 050E 0000 0164 0000 0006 0000 0180 OAOI CO"10 0100 OUE OAOO 0400 

l ••• BCR 8ALR ••• ••• ••• ••• ••• ••• SVC ••• ••• ••• sve SPM 

0140 0100 0200 0010 0000 0000 0038 0000 0040 0000 0085 0000 OOOA 0000 OOOC 0000 0013 

••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• 
0160 0000 OOOF 0000 0008 0000 0002 0000 0004 FFFF FFFO 0000 0005 FFFF FFFF 0000 OOOE 

••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• 
0180 0000 0003 0000 0188 9027 E040 5850 0000 4160 0004 5840 0004 1874 5870 E03e 8870 

••• ••• ••• ••• STM ••• L ••• LA ••• l ••• LR S ••• SLA 

o lAO 0002 U75 1822 1833 5A35 0000 8756 E020 1024 5850 0008 5035 0000 9821 E040 41FO 

••• AR SR SR A ••• 8XlE ••• OR L ••• ST ••• lM ••• 8e 

OltO oooe 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 oooc 0000 0000 

••• ••• ••• ••• ••• ••• ••• _ ... ••• ••• ••• ••• ••• ••• ••• ••• 

Figure 98. The dump produced when the object program in Figure 97 was executed 

The line that begins DYNAMIC DUMP gives cer
tain information about the machine at the time the 
dump was requested, after which we have the 16 
general register contents printed in hexadecimal. C. 
LIST means control list; this is a condensed form of 
the information we used to describe the dump we 
wanted. 

Next comes the storage dump proper. The number 
at the left of each line gives the address of the first 
halfword on that line. We see that at 100 the half
word was 05FO; under that we have BALR, since 05 
is the actual machine operation code for Branch and 
Link Register, which is indeed the instruction at 100. 
N ext comes a halfword consisting of 58EO. The mne
monic operation code is L for Load. Next is a half
word F082. There is no such operation code as FO in 
the System/360, so the dump program has printed 
asterisks. 

Now we are finally ready to attack the question 
posed at the beginning of this section: What would 
we have to do to execute this program from some 
starting location other than l00? 

Suppose it were desired to load it starting at 110016• 

The simplest part of the job is telling the loading pro
gram the new starting location, which is done with a 
control card that specifies the new loading address. In 
the system used in preparing this program, the control 
card was called a BASE card; this may vary in differ
ent installations. 

Now, what does the loader have to do to ensure that 
the program will operate correctly? Remarkably little, 
it turns out

f 
Consider what happens. The loader places 

the program into consecutive locations starting at 
1100, carries out another action that we shall discuss 
in detail shortly, and then transfers control to the 
instruction named on our END card. That, of course, 
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is the BALR. We recall that the BALR places in the 
named register ( F 16== 1510 ) the address of the next 
byte after the BALR. The two-byte instruction BALR 
itself was loaded at 1100, so the address of the next 
byte after the BALR is 1102; this goes into register 15 
as the base for the program. 

Now the Load asks for a storage reference. The ef
fective address is formed from the contents of register 
15 (1102) and the displacement: 1102 + 08A == 

118C. We have correctly reached the constant desired, 
which, in the relocated program, is indeed at 118C. It 
thus appears that addresses that use base registers 
will all be correct in the new locations, since the base 
register contents have been modified to reBect the 
new location of the program. This is indeed true and 
is one of the major advantages of the base register idea 
in the System/360. 

However, there is a little more work to be done. 
Not all addresses in our program are formed with base 
registers. Addresses in address-type DC instructions, of 
which we have a number, are not. As a matter of fact, 
the constant obtained by the Load instruction we were 
just discussing was an address constant giving the 
address of the subroutine. The constant we loaded 
said that the subroutine was located in 188; this is 
no longer true. And in the calling sequence to the 
subroutine we said that the first word of the list to be 
averaged was in 154, which is also wrong now. 

The solution to this problem is simple. What we 
need to do is to add to each such address constant the 
difference between the new loading address and the 
one assumed in the assembly. This number, which is 
called the relocation constant for the program, would 
be just 1000 in this example: 1100 minus 100. All we 
need is a list of the addresses of address constants that 
should be modified. With such a list available to the 



loader, the relocation constant can be added to each 
address constant. This is done after the object program 
has been loaded. 

Now that we know what the loader of the object 
program has to be able to do, let us investigate the 
makeup of the object program itself to see how the 
information needed by the loader is supplied. 

The sequence of cards in a complete object. pro
gram for this example is as follows: 

1. A Starting-Location card, which we supply, giv
ing the desired starting address of the loaded program. 

2. An External Symbol Dictionary card (ESD), type 
1. This gives the name of the program, if there is one, 
and the starting address that was assumed by the as
sembler. The address will be needed in computing the 
relocation constant. The ESD c~rd is produced auto
matically by the assembler, on the basis of the value 
given in the START card. If there is no START card, 
which is permissible, zero is used. 

3. A series of Text (TXT) cards containing the 
object program. Each card states the starting address 
of the sequence of bytes contained on that card, and 
the number of bytes. 

4. The Relocation List Dictionary card ( RLD ) . 
This gives the following information for each address 
constant in the program: 

a. Its address in the program as originally 
assembled 

b. Its length in bytes (address constants are 
most commonly four bytes but may be shorter) 

c. A Hag if the value is in complement form, in
dicating that the relocation constant should be 
subtracted 

With this much information, tog~ther with the new 

and old starting addresses of the program, the loader 
can correct all address constants. 

5. A Load END card. This is not the same as the 
END assembler instruction card in the source pro
gram, of course, although it is automatically produced 
from it by the assembler program. If the END in
struction in the source program stated an entry point, 
the address of that entry point is contained in the 
loader end card, and control is later transferred to 
this location. If the assembler END had no operand 
address, the first byte of the program is taken to be 
the starting point. 

6. A Load Terminate card (LDT) is supplied by us 
to indicate that the complete object program deck has 
been loaded and that program execution should begin. 

The exact formats of these various cards are given in 
appropriate reference manuals. They are moderately 
complex, and many programmers will not find it neces
sary to be able to read these cards, so we pass over 
the subject. 

We may now load the object program deck de
scribed above, execute it, and see what happens. Fig
ure 99 is a printout of the dump after execution. We 
have underlined the values that are diHerent from the 
corresponding position in the dump of Figure 98; all 
the differences are in address constants. A compsrrison 
will show that all the underlined address constants are 
precisely 1000 greater than tho~e in Figure 98. All oth
er values, including the computed results, are the same. 

Thus have we solved the relocation problem, for a 
single program. In the remainder of this publication 
we shall have to study what happens when several 
programs are relocated, all by different amounts in 
general, and they have to be able to communicate 
with each other. 

DYNAMIC DUMP OA01 C010D1001131: PSW 000000OO6000113~ STORAGE KEYS 00000000000000000000000000000000 

GPR 0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
GPR 8 00000000 00000000 00000000 00000000 00000000 60001128 00001188 40001102 

C.LI ST O~001100 02000070 

1100 05FO 58EO F082 050E gggg lU~ 0000 OOO~ -gggg IrC 58EO FOlt6 5AEO FOltA 50EO 
BALR L ••• BALR ••• LNR ••• ••• ••• L R L ••• A ••• ST 

1120 58EO Foa2 0700 050E 0000 1164 0000 0006 0000 1180 OA01 COlO 0100 U 3E OAOO 
L ••• BCR BALR ••• LNR ••• • •• ••• LNR SVC ••• • •• lNR sve 

1140 tAf 0200 0070 0000 0000 0038 0000 001M) 0000 0085 0000 OOOA 0000 OOOC 0000 
••• ••• ••• ••• ••• • •• ••• ••• ••• ••• ••• ••• ••• • •• 

1160 0000 OOOF 0000 OOOB 0000 0002 0000 0004 FFFF FFFO 0000 0005 FFFF FFFF 0000 
••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• 

1180 0000 0003 ggoo 1188 9027 E040 585D 0000 4160 0004 58~D 0001t 1874 5870 E03e 
••• ••• ••• LNR STM ••• L • •• LA ••• L ••• LR S ••• 

1 lAO 0002 U75 1822 1833 5A35 0000 8756 E020 1021t 5850 0008 5035 0000 9827 EOItO 
••• AR SR SR A ••• BXlE ••• DR L ••• ST ••• LM ••• 

lleo oooe 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 
••• ••• ••• ••• ••• ••• ••• ••• ••• • •• ••• ••• ••• ••• . ..• 

Figure 99. The dump produced when the object program in Figure 97 was relocated and executed. The program in this exam
ple is loaded beginning at 1100. The underlined values are the only differences between the values in this dump 
and those in Figure 98. 

FO~E 

••• 
01t00 
spr 
0013 
••• 
OOOE 
••• 
8B70 
SLA 
41FD 
8C 
0000 
••• 
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Communication Between Relocated Segments 

The preceding example has shown how it is possible 
for a program to keep track of addresses within itseH 
during program relocation. We now turn to the im
portant related question: how do two programs keep 
track of addresses within each other as they are both 
relocated, in general by different amounts? 

Let us investigate this question in terms of the 
illustrative program of the preceding sections. This 
time, however, we shall assemble the main calling 
program and the subroutine separately. Out of the 
two assemblies we shall get two object program decks, 
which we wish to be able to load at the same time, 
relocating them by different amounts, and have every
thing work just as it did before. 

Let us look first at what problems we have created 
in assembling the main program. The biggest problem 
is that we seem to have created an undefined symbol: 
AVER is used as an address constant in the main pro
gram, but it is, of. course, not defined in the main pro
gram since AVER is the name of the subroutine. If 
we simply took the main program part of Figure 97 

. and assembled it, the assembly would not be com
pleted because of the undefined symbol. 

We seem to need some way to say to the assembler: 
c'A VER is a symbol that is used in this program but 
defined elsewhere. Whenever you find the symbol 
AVER, which will be only in address constants, as
semble a zero and mark the location as one that will 
be supplied during the loading of the object program." 

This is precisely what the assembler instruction 
EXTRN does. Immediately after the START instruc
tion we place the EXTRN, naming AVER in the 
operand field and leaving the name field blank. This 
will cause the action outlined above. The symbol 
AVER will then be treated not as an undefined 
symbol but as an external symbol defined outside this 
program. 

Figure 100 is the assembly listing of the main pro
gram. An assembler TITLE instruction has been used 
in order to get an identification (in this case, MAIN) 
into the object deck in columns 73-76, thus distinguish
ing this object deck from other object decks. Just 
after the START is the EXTRN. Nothing is printed 
on the listing to describe the action of the EXTRN; 
this action really takes place only when the named 
symbol is encountered. 
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Scanning down the listing We see that things are just 
about the same as in the combined program of Figure 
97, with the exception of the two address constants for 
AVER, where zeros have been assembled. 

There is one rather minor change in the program. 
Now that the main program and the subroutine will 
be located in different parts of storage, we will want 
to be able to dump them separately. There are, ac
cordingly, two control lists in the Supervisor Call 
reference. One asks for the main program to be 
printed, starting at the symbol BEGIN and continuing 
for a total of 72 halfwords. The other starts dumping at 
AVER and prints a total of 44 haHwords. This creates 
another address constant reference to AVER. This 
address constant, incidentally, is three bytes long 
rather than the more common four; we saw before that 
the RLD card will contain a note of this fact so that 
the relocation can be done correctly. 

An inspection of the object program, which we shall 
not describe in detail, shows only one major change: 
another ESD card has been produced. This one gives 
the name of the symbol, AVER, and an identification 
number corresponding to it. Then, in the RLD card, 
the entries for AVER refer to the identification num
ber. By the time the loader relocates these address 
constants, it will have found a numerical equivalent 
for AVER. 

So much for the main program, in which there are 
references to symbols defined elsewhere. What about 
programs in which there are symbols that are defined 
here but used elsewhere, such as the symbol AVER in 
the subroutine? In a separate assembly of the sub
routine there are no references to AVER; furthermore, 
there are no address constants: If the subroutine 
were assembled just as it is, there would be nothing 
to indicate to the assembler (and later to the loader) 
that there was anything special about AVER. Actually, 
of course, there is something special: this symbol is 
used in the loading process to supply the missing in
formation in the main program. The assembler, how
ever, cannot know this without explicit notification, 
because we are not assembling the two programs at 
the same time. 

The answer is the assembler instruction ENTRY, 
which says that the symbol named in the operand 
field is used by some other program segment in refer-



000100 

000102 
000106 
000106 
000108 
00010C 
000110 
000114 
000118 
OOOHC 
000120 
000124 
000124 
000126 
000128 
00012C 
000130 
000134 
000136 
000139 
00013C 
00013E 
00013F 
000142 
000143 
000146 
000141 
00014A 
000148 
000150 
000154 
000158 
00015C 
000160 
000164 
000168 
00016C 
000170 
000114 
000178 
00017C 
000180 
000184 
000188 
00018C 

05 FO 

58 EO F 08A 

05 DE 
0000015C 
00000004 
00000184 
58 EO F OItE 
5A EO F 052 
50 EO F 056 
58 EO F ()8A 

01 00 
05 DE 
0000016C 
00000006 
00000188 
OA 01 
eOl002 
00013E 
OA 00 
04 
000100 
02 
000048 
04 
000000 
02 
00002e 
00000038 
00000040 

OOOOOOOA 
OOOOOOOC 
00000013 
OOOOOOOF 
00000008 
OOOOOOOZ 
00000004 
FFFFFFFD 
00000005 
FFFFFFFF 

00000000 

00010Z 

MAIN TITLE 'MAIN CALLING PROG FOR ASSEMBLY ANO RELOC' 
START 256 
EXTRN AVER 

BEGIN BALR 15,0 
USING .,15 
L IIt,ADSR2 
CNOP 2,4 
8ALR 13,14 
DC ACLISTU 
DC F'It' 
DC A(AVERl) 
L 11t,A 
A 14,B 
ST 14,C 
L 14,ADSR2 
CNOP 2,4 

8CR - 0,0 
BALR 13,14 
DC A(lIST2) 
DC F'6' 
DC A(AVER2) 
SVC 1 
DC X'COI002' 
DC AL3(CLPROG) 
SVC 0 

CLPROG DC X'OIt' 
DC AL3(8EGIN) 
DC AlUZ) 
DC Al3 17Z) 
DC X'04' 
DC AL3(AVER) 
DC Al 1(Z) 
DC . Al3 (44) 

A DC F'56' 
B DC F'7l' 
C OS F 
lJST1 DC F'lO' 

DC F'12' 
DC F' 19' 
DC F'15' 

LISTZ DC F'll' 
DC F'Z' 
DC fl4' 
DC F'-3-
DC F'S' 
DC F'-l' 

AVERI OS F 
AVERZ OS F 
ADSR2 DC A(AVER) 

END BEGIN 

BRANCH ADDRESS 
CONDIT-IONAl NO-OP FOR ALIGNMEN-T 
LINK TO SUBROUTINE 
CALLING SEQUENCE - DATA ADDRESS 
HOW MANY 
ADDRESS OF RESULT 
OTHER PROCESSING 
X 
X 
BRANCH ADDRESS 
CONDITIONAL NO-OP FOR ALIGNMENT 

LINK TO SUBROUTINE 
CALLING SEQUENCE - DATA ADDRESS 
HOW MANY 
ADDRESS OF RESULT 
SUPERVISOR CALL TO DUMP PROGRAM 

PROGRAM TERMINATION 

Figure 100. The main program portion of the program in Figure 97, separately assembled 
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SUBR TITLE • SUBROUTINE FOR SEPARATE ASSEMBLY AND RELOCATION' 
START 256 
ENTRY AVER 

000100 USING -,14 
000100 90 27 E 040 AVER STM 2,7,TEMP SAVE REGISTERS 
000101t 58 50 0 000 l 5,0(1) STARTING ADDRESS 
000108 41 60 0 004 lA 6,4 INCREMENT 
00010e 58 ItO 0 004 l ·\,It(3) N 
000110 18 74 lR 7,It N 
000112 58 70 E 03C S 7,ONE N-l 
000116 88 70 0 002 SlA 7,2 4(N-U 
00011A lA 75 AR 7,5 LIMIT 
00011e 18 22 SR 2,2 CLEAR TO ZERO 
00011E 18 33 SR 3,3 CLEAR TO ZERO 
000120 SA 35 0 000 LOOP A 3,0(5) ADD A VALUE FROM lIST 
000'121t 87 56 E 020 BXlE 5,6,LOOP 
000128 10 24 DR 2,It DIVIDE 8Y N 
00012A 58 50 0 008 l 5,8(13) PICK UP ADDRESS OF RESULT 
00012E 50 35 0 000 ST 3,0 (5 ) STORE RESULT 
000132 98 27 E 01t0 LM 2,7,TEMP RESTORE REGISTERS 
000136 47 FD 0 OOC BC 15,12(13) RETURN TO MAIN PROGRAM 
00013C 00000001 ONE DC F'l' 
000140 TEMP OS 6F 

END 

Figure 101. The subroutine portion of the program in Figure 97, separately assembled 

ring to this one. The typical reference is as a branch 
address, hence the name ENTRY, but the usage is 
actually not so restricted. 

Figure 101 is the assembly listing for the separately 
assembled subroutine. There is nothing exceptional 
about it. The object deck contains a third type of ESD 
card to convey to the loader the name of the symbol 
so that an actual numerical equivalent can be com
puted at load time and thus supplied to the program 
segments in which EXTRN instructions said it would 
be needed. There is no RLD card in this deck, be
cause there are no address constants. 

Now we may load the two segments and execute 
them. A loading location of 200016 was supplied for the 
subroutine and 300016 for the main program. When the 
program consisting of the two relocated segments was 
run, the two listings in Figures 102 and 103 were pro
duced. 

We see that where the main program referred to 
AVER, at 3047 and 308C, the loader supplied 200016, 

which is the correct value for AVER since the sub
routine was, in fact, loaded at 200016• The various 
address constants that make references within the 
main program have all been handled correctly. 

This program has illustrated important concepts. 
The most fundamental idea is that with a proper 
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combination of notifications to the assembler, through 
the ENTRY and EXTRN statements, we can arrange 
for programs to communicate correctly with each 
other even though any or all of the segments may be 
relocated by various amounts. 

There is no restriction in this scheme to just two 
program segments, nor to one symbol per program, or 
to branch addresses. A program can refer to many ex
ternal symbols and/or have many entry points from 
other programs. 

In our example, we arranged the object programs 
so that the main program was loaded after the sub
routine. This meant that the symbol AVER had a 
value by the time the main program was loaded. With 
some loading programs this is mandatory, but the 
more sophisticated loaders can "stack" requests for 
values of symbols that have not yet been defined, and 
relocate such references later. 

The symbol AVER was named in an ENTRY state
ment. Strictly speaking, this was not necessary because 
A VER, as it happens, was the name of a program. It 
was thus already named on the first type of ESD card. 
The duplication is no disadvantage, however, and may 
even have some value in helping the programmer to 
keep straight the interrelationships among program 
segments. 



3000 05FO 58EO F08A 050E 0000 305t 0000 0004 0000 3084 58EO F04E 5AEO FOS2 50EO F056 
8ALR L ••• 8ALR ••• LPER • •• ••• • •• LPER L • •• A • •• Sf • •• 

3020 58EO F08A 0100 050E 0000 306t 0000 00Q6 0000 3088 OA01 COlO 0200 303E OAOO 0400 
L ••• 8CR 8ALR ••• LPER ••• ••• • •• LPER SYC • •• • •• LPER sye SPM 

3040 3000 0200 0048 0400 2000 0200 002e 0000 0000 0038 0000 0040 0000 0085 0000 OOOA 
lPER ••• • •• SPM LPDR • •• • •• • •• • •• • •• • •• • •• ••• ••• • •• • •• 

3060 0000 OOOC 0000 0013 0000 OOOF 0000 0008 0000 0002 0000 0004 FFFF FFFD 0000 0005 
••• • •• ••• • •• • •• ••• ••• • •• * •• -... • •• • •• • •• • •• • •• • •• 

3080 FFFF ~FFF 0000 OOOE 0000 0003 0000 2000 
••• • •• ••• ••• • •• ••• • •• lPDR 

Figure 102. The dump of the main program in Figure 100, after the main program was relocated at 300016 and 
the subroutine at 200016 

2000 9027 E040 5850 0000 4160 0004 5840 0004 1874 5870 E03C 8870 0002 1A75 1822 1833 
STH ••• l ••• LA • •• l ••• lR S ••• SlA ••• AR SR SR 

2020 5A35 0000 8756 E020 1024 5850 0008 5035 0000 9827 E040 41FD OOOC 0000 0000 0001 
A ••• 8XlE • •• DR l • •• ST • •• lM • •• Be • •• • •• • •• • •• 

2040 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 
••• ••• • •• • •• • •• ••• • •• ••• ••• • •• • •• • •• 

Figure 103. The dump of the subroutine in Figure 101, after the main program was relocated at 300016 and the 
subroutine at 200018 

Subroutines which can be called into action from 
many places in a calling program are common pro
gramming techniques. We have shown one general 
form of calling sequence for making the transfer to the 
subroutine, providing the return link, and identifying 
necessary values and addresses. 

When a subroutine is not assembled as a part of an
other program, it is called a subprogram. We have 
explored briefly the basic issue of how two program 
segments can communicate even though, at the time 
each segment is assembled, the location of neither of 
them is known. 

This capability of relocating programs with little 
effort either in original programming or in operator 

Summary 

actions becomes a major feature of computer applica
tion. It is one of the important advantages of the 
System/360 that the base registers concept provides 
for such simplicity. 

It must be said, however, that this treatment leaves 
some challenges for the more advanced student. In 
particular, when there are a great many subroutine 
and/or subprogram calls, typically· with many pro
grammers working on different parts of the same large 
task, it becomes mandatory to establish rather rigid 
conventions on register usage. In fact, the program
ming systems for System/360 specify conventions for 
the use of certain general registers (see the appropri
ate SRL publication for details of these conventions). 
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Questions and Exercises 

1. The second operand of a CNOP instruction may 
specify that the instruction that follows is to be 
aligned within a doubleword (B) or a fullword (4) 
area. The first operand of the CNOP specifies that the 
location counter is to be set to ° or 2 bytes past a 
fullword boundary, or 0,2,4, or 6 bytes past a double
word boundary. Thus, CNOP 0,8 would specify that 
the next instruction is to be aligned at a doubleword 
boundary. If 
Doubleword 
Boundary 

--..11 . I . I . I . I. I . I 
ABC D 

Doubleword 
Boundary 

I,II,I,I,I,I,I,I,I,II+-
E F G H I 

is a representation of two doubleword areas, of the 
names we shall use to refer to various points within 
the areas, and the location counter stands at a point 
equal to point C: 

a. With what point would CNOP 2,B align the 
beginning of the next instruction? 

b. CNOP6,B 
c. CNOPO,4 
d. CNOPO,B 
e. CNOP2,4 

2. What kind of an operation does BCR 0,.0 cause? 
3. Assume subprograms CALLER and CALLED. 
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CALLER is to enter CALLED at an instruction in 
CALLED that is named ROUTl. Write the necessary 
statements in both subprograms to properly define the 
name (ROUT1) to both subprograms. 
4. Add the necessary statements in CALLER and 
CALLED to branch to CALLED (via register 13) 
leaving in register 14 the address of the next location 
in CALLER. 
5. Consider the following program. Note that the 
locations, effective addresses, and object instruction 
base register specification and displacement are writ
ten in hexadecimal. Assume that this program is re
located and loaded starting with location 400016 in
stead of 100016. In the spaces provided fill in: 

a. The location into which the instructions and 
data will actually be loaded. 

b. The relocation constant. 
c. The constants that will be assembled at BASEl 

and BASE2 at assembly time. 
6. What will be the contents of BASEl and BASE2 
at the end of the loading process (after the addition of 
the relocation constant)? 
7. Fill in the values loaded into registers 13, 14, and 
15 at execution time. 
B. Fill in the effective addresses developed at execu
tion time for each encircled operand. 



Relocation Constant Value Assumed Value Loaded at Execution Time 

Program loaded Program loaded by Assembler 
at 100016 at 400016 

Reg 15 1002 1002 
Reg 14 Z002 lO02 
Reg 13 3002 3002 

Location 
Object Instruction Execution Time 

Location Effective Address 
(re I oca ted) 
at 4000 16 Program Program 

Base Displace- Loaded Loaded 

Register ment at 100016 at 40001~ 

START 4096 

1000 BEGIN BALR 15,0 

USING FIRST, 15 

1002 FIRST BC 15 SKIP 

1006 DATA DC F'3472' 

· · · · · · 
1024 BASEl DC A(FIRST +4096) 

1028 BASE2 DC A(FIRST +8192) 

· · · · · · --

14,rsASE"fl 1104 F 02.l 102.4 SKIP L 
USING FIRST+41W6,14 

1108 t 02..6 102e L 13,}sASE2} 

· ---· USING FIRST +8192, 13 · · · · · · · 
2504 D 902- 3904 BC 15,6<8\ 

· · ---...-· · · · 
2898 F 004 1006 LOOP A 4,(oATA} 

· · -----..." 

· · · · 
3204 LOOPB S 5, DATA 

· · · · · · 
3508 £ 896 l898 BC 8,(l()Opj 

· · -----· · · · 
3904 D Z02 3204- CK8 Be 8,(LOOPBj 

END BEGIN 

Symbol Table 

Symbol Location 
BASE 1 10Z4 
BASE Z 1028 
BEGIN 1000 

(Kg 3904 
DATA 1006 
I=IRST 1002 
lOOP 2898 
Leop B 3204 
SKIP j104 
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Chapter 10: Floating Point and Advanced Loops 

in Scientific Applications 

For certain types of problems, typically those in the 
scientific and engineering areas, it is helpful or even 
essential to let the computer assume the task of keep
ing track of decimal points. Without this facility, that 
is, using only the "fixed-point" binary or decimal in
structions of the System/360, it is necessary to know 
a great deal about the sizes and quantities appearing 
in the calculation. It is necessary to know the maxi
mum possible sizes of all data, intermediate results, 
and final results; it is often also necessary to know the 
minimum sizes as well. This knowledge is necessary to 
avoid the possibility of exceeding the capacity of a 
register or of a storage location, and to avoid such 
things as divide exception. This exceptionally thorough 
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knowledge about problem data is often difficult, and 
sometimes impossible to develop. 

Furthermore, working in fixed point requires a con
siderable effort to align decimal or binary points cor
rectly throughout the often complex process of the 
shifting and rearranging needed to maintain signifi
cance while avoiding capacity overflow. 

For these reasons it is a great convenience to let the 
computer take over the clerical details of a complete 
accounting for number sizes and decimal point align
ment. The saving in programming time is important, 
and Boating point makes possible the solution of prob
lems that would otherwise be almost impossible. 



The basic idea of floating-point numbers is that each 
quantity is represented as a combination of two items: 
a numerical fraction and a power of 16 by which the 
fraction is multiplied to_ get the number represented. 
The power of 16 is called the characteristic by analogy 
with logarithms. (The 16 applies specifically to the 
System/360; other floating-point systems use binary or 
decimal multipliers.) For instance, in the System/360 
the number 1 is represented as 116 • 161• The ;6 is 
stored as a hexadecimal fraction: 0.lt6 = ;6 . The 
characteristic is written in "excess 64" notation, which 
means that every characteristic is 6410 greater than the 
power actually represented. Thus, instead of + 1 we 
write.+1 + 64 == 6510 = 4116. The characteristic -1 
becomes -1 + 64 = 6310 = 3F 16. The excess 64 
method is used to avoid the need of a sign for the 
characteristic. 

System/360 permits two types of floating-point num- . 
bers, called short and long. In each, the excess 64 ex
ponent is contained in the first byte, along with the 
sign of the number. In a short floating-point number, 
the fractional part consists of six hexadecimal digits 
contained in the next three bytes. In a long floating
point number the fractional part consists of 14 hexa
decimal digits contained in the next seven bytes. A 
short number therefore occupies a fullword and a long 
number a doubleword. 

The assembler accepts a DC instruction with a type 
specification of E for a short floating-point number and 
D for a long number. The number to be entered is 
written in quotes as usual, in decimal, with or without 
a decimal point as desired. Figure 104 shows DC en
tries for a series of floating-point numbers that will 
hopefully clarify the scheme of representation. 

We see that the integers from 1 to 15 are repre
sented by the corresponding hexadecimal digits, with 
a characteristic of 41. The form of 9 should be read 
as 161 • {6 . For 16 itself we have 42.100000, which we 
read as 162 • ;6 . Decimal 32 becomes 42.200000, or 
162 .2-

16 

These hexadecimal forms, considered as floating
point numbers, are arranged by the assembler 
to make easy reading. It might be well to display 
a few of these in pure hexadecimal form, as a demon
stration that the plus signs and decimal points pre
sented by the assembler are, of course, not in storage 
with the floating-pOint numbers. (See Figure 105, 
where the comment field gives the "pure" hexadecimal 
form.) 

Floating-Point Number Representation 

Figure 106 displays the same numbers as in Figure 
104, except that they are negative. In Figure 107 we 
have these in pure hexadecimal. Note that the sign of 
the entire number is contained in the leftmost bit. In 
the representation of 1, for instance, the exponent of 
C1 would be 1100 0001 in binary; the leftmost 1 is the 
minus sign, with the other seven bits being the ex
ponent in excess 64 form. 

In Figure 108 we have some numbers that are not 
integers. The decimal number 0.5, for instance, be
comes 40.800000, which we should read as 16° . 1

8
6 • 

The decimal number 1.5 becomes 41.180000, or 161 • i~ 
in decimal. It is interesting to note that the simple 
decimal number 0.1 is transformed into a nonterm in
ating hexadecimal fraction; there is no exact hexa
decimal representation for decimal 0.1. On the other 
hand, complex-looking decimal fractions that happen 
to be negative powers of 16 are transformed into par
ticularly simple floating hexadecimal numbers, as 
0.00390625 = 3F.100000. 

Figure 109 shows a few long floating-point numbers. 
The scheme is the same, the only difference being the 
presence of eight additional hexadecimal digits. This 
permits a more accurate representation of numbers 
that do not have an exact hexadecimal representa
tion, and naturally permits retention of much greater 
precision when arithmetic is performed. We shall ex
plore the latter aspect in studying the action of the 
floating-pOint instructions. 

The assembler allows a DC entry of type E or D 
to include a decimal exponent, for convenience in 
writing very large or very small numbers. This is done 
simply by following the number by the letter E and 
a plus or minus integer. Figure 110 shows some sam
ples, both short and long. In E'12.78E+8', for in
stance, we intend the decimal number 12.78-108, 

which we see becomes +48.4C2CBC in hexadecimal. 
When a floating-point number has a nonzero first 

hexadecimal digit, it is said to be normalized. It should 
be realized that a normalized floating hexadecimal 
number may have as many as three leading binary 
zeros. DC entries in assembler language are always 
converted to normalized form, with the exception of 
a floating-pOint entry written with a scale factor. This 
facility is used in the rare occasions when it is de
sired to have leading zeroes in the hexadecimal frac
tion. 

Floating-point representation can express decimal 
values ranging from about 5.4 . 10-79 to about 
7.2 - 1075• 
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000144 +00.000000 DC E'C' 
000148 +41.100000 DC E'I' 
0OO14C +41.200000 DC E ' 2' 
000150 +41.300000 DC E'3' 
000154 +41.900000 DC E'9' 
000158 +41.AOOOOO DC E'10' 
OC015C +41.800000 DC E '11' 
000160 +41.FOOOOO DC E'lS' 
000164 +42.100000 DC E'16' 
000168 +42.110000 DC E'17' 
0OO16C +42.1FOOOO DC E'31' 
000170 +42.200000 DC E'32' 
000174 +42.210000 DC E'33' 
000178 +42.FFOOOO DC E'255 ' 
00017C +43.100000 DC E'256' 
000180 +43.101000 DC E'257' 
000184 +43. FFFOOO DC E'4095' 
000188 +44.100000 DC E'4096' 
00018C +44.100100 DC E'4C97' 

Figure 104. Assembly listing illustrations of single-length floating-point DC entries 

OOOPiO +41.100000 DC E'l' 41100000 
000194 +41.200000 DC E'2' 41200000 
000198 +41.300000 DC E'3' 413000'00 
00019C +41.900000 DC E'9' 4190()OOO 
0001AO +41.AOOOOO DC E'10' 41AOOOOO 
0OOlA4 +41.800000 DC E'11' 41BOOOOO 
OOOlA8 +41.FOOOOO DC E'15' '41FOOOOO 
0001AC +42.100000 OC E'16' 421000'00 
OOOlEO +42.110000 DC E'17' 42110000 
0001 E4 +42.1FOOOO DC E'31' 421FOOOO 
OOOlE8 +42.200000 DC E'32' 42200000 
000lEC +42.210000 DC E'33' 42210000 
0001CO +42.FFOOOO DC E'25S' 42FfOOOO 
0001C4 +43.100000 DC E'256' 431000'00 
0001CS +43.101000 DC E'251' 43101000 
0001CC +43 .. FFFOOO DC E'409S' 43FFFOOO 
0001CO +44.100000 DC E'4096' 44100000 
0001C4 +44.100100 DC E'4C97' 44100100 

Figure 105. The examples of Figure 104, with entries in the comment field showing the pure hexadecimal form of the constants 

0001CS 
0001CC 
OOOlEO 
OC01E4 
0001ES 
000 1 EC 
0001fO 
0001F4 
OOOlFS 
000lFC 
000200 
000204 
000208 
00020C 
000210 
000214 
000218 
00021C 

-41.100000 
-41.200000 
-41.300000 
-41.900000 
-41.AOOOOO 
-41.800000 
-41.FOOOOO 
-42.100000 
-42.110000 
-42.1FOOOO 
-42.200000 
-42.210000 
-42.FFOOOO 
-43.100000 
-43.101000 
-43.FFFOOO 
-44.100000 
-44.100100 

DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

Figure 106. The examples of Figur.e 104 as negative numbers 
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e'-I' 
E'-2' 
e'-3' 
E'-9' 
E'-10' 
E '-.: 11 ' 
e'-lS' 
E'-l6' 
e'-11' 
e'-31' 
E'-32' 
e'-33' 
e'-25S' 
E'-256' 
E'-257' 
E'-4095' 
E '-4096' . 
e'-40Q7' 



000220 -41.1COOOO DC E'-l' CllOOOOO 
000224 -41.200000 DC E'-2' C1200000 
OCI)228 -41.300000 DC E'-3' C1300000 
o C022C . -41.900000 DC E'-9' C1900000 
00')230 -41./100000 DC E'-10' C1AOOOOO 
001)234 -41.800000 DC E'-ll' C1800000 
000238 -41.FO.cOOO DC E'-lS' C1FOOl)OO 
00023C -42.100000 DC E'-16' C2100000 
000240 -42.110000 DC E'-17' C2110000 
00:)244 -42. lFooee DC E'-31' C21FOOOO 
000248 -42.20(0(,C OC E'-32' C2200000 
0OO24C -42.. 21cooe DC E'-33' C2210000 
000250 -42. HCGee DC E'-2S5' C2FFOOOO 
000254 -43.100000 DC E'-2S6' C3100000 
000258 -43.101000 DC E'-2S7' C310l000 
OC02SC -43.FFFOCO DC E'-4095' C3FFFOOO 
000260 -44.100000 DC E'-4096' C4100000 
000264 -44.100100 DC E'-4097' C4100100 

Figure 107. The pure hexadecimal forms of the constants in Figure 106 

000268 +40.800000 DC E'C.5' 
000260 +41.180000 DC E'l.S' 
000210 +41.140000 DC E'1.2S' 
000214 +41.120000 DC E'1.125' 
000218 +41.110000 DC E t 1.062S' 
oe021(: +41.1COOOO DC E l 1.1S' 
000280 +41. lEOOOO DC E'1.81S t 

000284 +41. lFooao DC E'1.937S' 
000288 +40. 19999A DC E'C.1 ' 
00028C +3F.28FSC3 DC E'O.Ol' 
OC0290 +3E.418931 DC E'C.OC1' 
000294 +30.68CB8C DC E'C.COO1' 
000298 +3C.A1CSAC DC E'G.OOOOI' 
00029C +41. 11999A DC E'1.1' 
0002AO +40.400000 DC E'C.2S' 
0002A4 +40.100000 DC E'C.062S' 
0002A8 +3F.100000 DC E'C.C0390625' 

Figure 108. Assembly listing illustrations of single-length floating-point DC entries for numbers that are not integers 

0002EO 
0002E8 
0002CO 
0002C8 
0002[0 
0002[8 
0002EO 
OC02E8 
0002FO 
0002F8 
000300 

+OO.OCOOOOCOOOCOOJ 
+41~100000COOOOOOO 
+41.200000COOOCOOO 
+42.10000000000000 
+49.80000000000000 
+4B.B3A13CE5B59000 
+40.80000000000000 
+40.1Q999QQ999Q99A 
+41. 119999q999q99A 
-41.1A86B0134658D5 
+3E.IOOOOOOOOOOOOO 

DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

O'C' 
0'1' 
0'2' 
0'16' 
0'34359738368' 
0'12345678912345' 
0'0.5' 
0'0.1' 
0'1.1' 
0'-1.6S789516' 
0'C.000244140625' 

Figure 109. Assembly listing of illustrations of double-length floating-point DC entries 

0003e8 
OC03CC 
000310 
000314 
000318 
000320 
OC0328 
000330 
000338 

+48.4C2CBC 
+51.566C76 
-38.19256E 
-6A.BF9572 
+7A.25179157C93EC7 
+17.3BCCF495A9103E 
-50.89108789F3A6EC 
-3A.187B375E0424FA 
+40.1F9AO 3139635F 

DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

E'12.18E+S' 
E'lE+20' 
E'-22.87035E-12' 
E'-2.8E+50' 
O'O.lE+70' 
0'0.lE-49' 
0'-9.87654321555E+18' 
0'-0.00051E-5' 
0' 234 6 89 -5' 

Figure 110. Assembly listing of illustrations of single- and double-length floating-point DC entries with decimal multipliers 
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Floating-Point Registers and Instructions 

There are four floating-point registers, numbered 0, 2, 
4, and 6. All floating-point arithmetic instructions take 
one of the operands from a register and leave the re
sult in the same register. There is one set of instruc
tions for short operands; these are distinguished by the 
presence of the letter E in the instruction mnemonics 
for short operands. An entirely separate set operates 
on long operands; these are distinguished by a D in 
the mnemonics. A second classification applies to add 
and subtract, which may be done with or without 
normalization. The various actions are also available in 
RX and RR varieties. 

The many variations of the basic actions lead to 
quite a number of floating-point instructions, but there 
are not actually a great many basic types. For instance, 
there are eight separate floating-point add instructions 
and eight for subtract. Thus, although there are 44 
separate floating-point instructions, the various func
tions they perform are almost obvious from a listing of 
the names. 

Perhaps the best way to get an idea of the function
ing of the registers and instructions is to study an 
example. Figure III is a listing of a program to evalu
ate the formula: 

0001CO 

000102 
0001C6 
OC010A 
00 )lCC 
000110 
000114 
C CO 118 
OGOllA 
DOOllE 
00')120 
000122 
OC0126 
000128 

y = (_a".-::+~b-::-;-=-C_) 2 
3.17 - 2d 

05 FO BEGIN 
COCIC2 

78 20 F·032 
7C 20 F 036 
33 22 
7A 20 F 03A 
78 40 F 02A 
78 40 F 02E 
34 44 
7A 40 F 02'6 
3D 42 
3C 44 
70 40 F 03E 
OA 00 

START 256 
BALR 15,0 
USING *,15 
LE 2,0 
ME 2,FTWO 
LCER 2,2 
AE 2,CON1 
LE 4,B 
SE 4,C 
HER 4,4 
AE 4,A 
DER 4,2 
MER 4,4 
STE 4,Y 
SVC 0 
OS OF 

The first processing instruction is Load Short (LE), 
which places the value of D in floating-point register 
2. The fact that the 2 in this instruction refers to a 
floating-point register, rather than to a general pur
pose register, is implied in the operation code; Boat
ing-point is implied when we write LE. Floating-point 
register 2, along with the other three, is a double
length register. This short operation will load the left 
half of the double-length register, leaving the lower 
half unchanged. The previous value in the lower half, 
if any, will ordinarily have no significant effect on later 
operations. 

The second instruction multiplies the contents of 
floating-point register 2, which we just loaded, by the 
constant 2 in floating-point form. The result is left in 
the same register, destroying the previous contents. No 
other register is involved, in contrast to fixed-point 
multiplication. The lower haH of the floating-point 
register is involved, however. Both operands are pre
normalized, if necessary, which means to shift the 
fraction left until the leftmost hexadecimal digit is 
nonzero and reduce the characteristic by the number 
of shifts required. With both operands prenormalized, 
the product will either be normalized already or have 
at most one leading zero. In the latter case, the pro
duct fraction is shifted left one hexadecimal position 
to postnormalize it. The characteristic of the result is 
reduced by one if postnormalization is performed. The 

LOAD FLOATING REGISTER 2 WITH D 
MULTIPLY OJ IN REGISTER 2, BY 2 
REVERSE SIGN OF PRODUCT IN REGISTER 2 
ADD 3.17 
LOAD REGISTER 4 WITH B 
SUBTRACT C 
USE HALVE INSTRUCTION TO DIVIDE BY 2 
ADD A 
DIVIDE NUMERATOR BY DENOMINATOR 
SQUARE THE QUOTIENT 
STORE THE FINAL RESULT 

000128 41123456 A DC X'41123456' 
00012C 43356800 B DC X'43356800' 
000130 43252600 C DC X-.43252600-
000134 +3E.2C3EFD 0 DC E'6.904E-4' 
oa0138 +41.200000 FTWO DC 
00013C +41.32e852 CONI DC 
000140 y os 

END 

Figure 111. Assembly listing of a program illustrating single-length floating-point operations 
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characteristic of the fraction is computed by adding 
together the characteristics of the operands, and sub
tracting 4016. The reason for the latter is that both 
operands are in excess 40 form; adding together two 
such gets the extra 40 in twice. The basic idea of add
ing the exponents is based on the familiar rules of 
algebra, which we might symbolize as: 

(A·l6a
). (B·l6b )=A·B·16a +b 

The Load Complement Short Register reverses the 
sign of the product, as written here. (The instruction 
can also be used with two different register numbers.) 
It would of course be acceptable programming prac
tice to have stored the constant 2 as a negative number. 

Now we add the constant 3.17, using an Add Short 
instruction (AE). Floating-point addition starts with 
a comparison of the two operand characteristics; if 
they are the same, addition of the fractions takes place 
immediately. Otherwise, the fractional part of the 
number with the smaller characteristic is shifted right, 
as many places as the difference in characteristics. 
When this has been done, the decimal points (hexa
decimal points, really) have been "lined up", as addi
tion requires. The fractions are then added. The larger 
of the two characteristics becomes the "provisionar 
characteristic of the sum; we say provisional because 
it may have to be adjusted to account for overflow or 
underflow. 

If the addition caused overflow, the result fraction 
is now shifted right one place and the characteristic 
accordingly increased by 1. On the other hand, the 
addition might have resulted in a sum with leading 
zeros, which would happen if the operands were of 
about the same size but of opposite sign. The latter is 
called floating-point underflow. 

The extreme of floating-point underflow is for the 
result to be zero because the operands were equal but 
of opposite signs. The loss of significance is then com
plete, which may in some cases destroy the validity of 
all results of the computation. If this happens without 
the problem originator's knowledge, he may place 
confidence in results that are in fact meaningless. For 
this reason, System/360 is designed to provide a warn
ing in the form of a significance exception. If floating
point addition or subtraction results in complete loss of 
significance, and if the significance mask bit in the 
PSW is 1, a program interruption occurs. What is done 
as a result depends on the interrupt program. 

With the sample numbers that have been entered in 
this program, there will be no loss of significance. We 
leave the result in floating-point register 2 for later use 
and tum to an evaluation of the numerator. 

In loading B and subtracting C, instructions are 
used that are now familiar. Floating-point subtraction 
is just like addition, with the sign of the second operand 

reversed before adding the fractions. Since both addi
tion and subtraction are completely algebraic, and 
since either one can involve any of the four combina
tions of signs of the operands, they are truly very 
similar. 

The division by 2 is handled in a rather different way 
from what one might expect, in order to illustrate an 
interesting member of the floating-point instruction 
set. The halve instruction (HER) divides the second 
operand by 2 and places the result in the first operand; 
both registers are the same here, as they so often are in 
using the RR format instructions. What actually hap
pens is that the fraction part is shifted right by one 
binary place, which is equivalent to dividing by 2. 
There is no adjustment of the exponent, and the result 
is not postnormalized. This means that if the first hexa
decimal was exactly 1 (as it will be about once every 
15 times, since there are 15 nonzero hexadecimal dig
its), the result will not be a normalized number. If 
what follows could be disabled by the presence of the 
unnormalized number, some other course should have 
been taken. In our situation, however, no damage 
can be done. An unnormalized number is a correct 
representation of a quantity; the only issue is the form 
of representation and the possibility of loss of signifi
cance. In our case, there is no problem. 

The Add Short that follows is as before, except that 
it may find one of its operands to be an unnormalized 
number. If this operand is the one with the smaller 
characteristic, there is no net effect of the lack of nor
malization: the fraction will be shifted right and some 
right-end digits lost anyway. However, if the unnor
malized number also has the larger charactertistic, the 
other number may lose digits in shifting it to the right 
to make the characteristics the same. 

Here, however, we come to a feature of the Sys
tem/360 designed to protect against loss of signifi
cance: the sum formed in short addition and subtrac
tion is actually seven hexadecimal digits, rather than 
six. Then, if postnormalization is required because one 
or more leading digits are zero, the extra seventh digit 
is shifted back, thus preserving some extra signifi
cance. The extra digit is called the guard digit. (There 
is nothing analogous for long operands.) 

For example, suppose that the values of A, B, and C 
are as follows: 

VARIABLE 

A 
B 
C 

HEXADECIMAL 

VALUE 

1.23456 
356.8 
252.6 

FLOATING HEXADECIMAL 

REPRESENTATION 

41123456 
43356800 
43252600 

Subtracting C from B, we get 104.2, or 43104200. 
Writing this out in binary, we have: 

0100 0011 0001 0000 0100 0010 0000 0000 
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The halve operation means to shift just the fraction 
part to the right one place, giving: 

0100 0011 0000 1000 0010 0001 0000 0000 
Converted back to floating hexadecimal, this is 
43082100, which is the correct result of dividing by 
2: 10416 == 26010, and 8216 == 13010. 

This result, however, is unnormalized, and in the 
halve operation it stays that way. Now we Add Short, 
naming a second operand that in floating hexadecimal 
form is 41123456. This second operand happens to· be 
the one with the smaller exponent, so it is shifted right 
and its exponent increased until the exponent is the 
same as the larger. This leads to a shifted number 
430012345; the fraction here is seven digits, the extra 
one being the guard digit. Now we add fractions, 
as the fractions are now lined up. 

0012345 
+082100 

0833345 
This result is not normalized, so a postnormalization 
takes place: the fraction is shifted left and the ex
ponent decreased, until there is a leading nonzero 
hexadecimal digit in the fraction. This takes just one 
shift, of course, with the guard digit included: 

42833345 
This is the result that is left in the register. 

Without the guard digit, the result would have 
been: 

42833340 
That is, we would have lost a digit at the right be
cause of the unnormalized operand. We have of course 
lost the 6 that originally was a part of the variable 
named A, but that is unavoidable, since after lining 
up decimal points the sum has too many digits to be 
contained in a short floating-point word. The loss of 
significant digits as in this case is a serious concern 
in many scientific applications. The long form floating
point is often the answer to the problem. 

The guard digit was naturally not provided just to 
cover such contrived situations. It will be valuable 
any time both a prenormalization and a postnormal
ization are required in short floating addition or sub
traction. This will of course be a small fraction of all 
additions and subtractions, but nevertheless a signifi
cant number. 

At this point we have the numerator in floating
point register 4 and the denominator in 2; an RR for
mat floating division places the quotient in register 4. 
Floating-point division works as follows. Both oper
ands are prenormalized. The fractions are then divided 
to get the quotient fraction. The characteristic of the 
denominator is subtracted from that of the numerator, 
and then 4016 is added to get the characteristic again 
into excess 40 form. The subtraction is based on the 
rule from algebra: 
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A·16a 
_. -- = A/B. 16a-b 

B·16b 

Division of two normalized six-digit fractions will 
always give either six or seven digits, never more or 
less. The quotient may need to be shifted right by 
one position and the characteristic correspondingly 
increased by 1. 

An attempted division in which the fraction of the 
divisor is zero leads to suppression of the . operation, 
without the dividend having been affected. A program 
interruption occurs. 

When the dividend fraction is zero the quotient is 
made a true zero, which means that the exponent and 
fraction are all zeroes and the sign is plus. In terms 
of bits, a Boating-point true zero is all binary zeroes. 

The final operation is to square the result of the 
division, which is standing in register 4. An RR format 
multiply in which both operands are register 4 does 
the job. Finally a Store Short (STE) puts the result 
away as specified. 

Figure 112 is provided for those who may wish to 
follow the details of the arithmetic in this example. 
This output is a composite from the dump program. 
Each line gives the mnemonic for the instruction and 
floating-point registers 2 and 4 in floating hexadecimal 
and in floating decimal. The hexadecimal gives the 
full-length number, exactly as it appears in the ma
chine. The floating decimal is of course a converted 
number, and usually not an exact equivalent, since 
exact equivalents usually do not exist. Furthermore, 
the exponent in the decimal numbers is a true expo
nent, for our convenience, rather than the internal 
excess 64. The floating-point form here is the way 
floating-point numbers are usually presented on out
put. 

Figure 113 is a listing of the same program rewrit
ten to do all operations in double length. The basic 
ideas are pretty much the same, but there are diHer
ences in detailed considerations. 

The registers named here are the same registers 
as before; but this time the full length is used, where 
before the low-order haH was generally ignored. 

Perhaps the most important diHerence between short 
and long operations is that there is no guard digit 
for long operations. The reason is that, in contrast with 
short operations, there is no simple way to obtain it 
(from the standpoint of the machine deSigner), and 
anyway it is not as badly needed. Long operations 
have 14 hexadecimal digits, equivalent to about 16 
decimal digits, so in a certain sense they already con
tain their own guard digits. 

Figure 114 presents a trace listing of the results of 
the program, again in Boating hexadecimal and in 
floating decimal. 



LE 
+.69039990194141863 E-C3 

FPR 2 3E203EFCCOCOCCOG 

ME 
+.13807998038828372 E-C2 

FPR 2 3E5A7DFACCCOCCCO 

LeER -.13801998038828312 E-02 
FPR 2 BE5A70FACCCOCCCO 

AE +.3168619155883789C E+C1 
FPR 2 4132B2AAOOOCCCCO 

LE T.~16861915588318gC E+C1 
FPR 2 413282AAOCCCOCCO 

SE 
+.3168619155883189C E+Ol 

FPR 2 4132B2AACCOCCCCO 

HER +.31686191558E378g~ E+Cl 
FPR 2 4132B2AACCCCCCCO 

AE 
+.316861915588378gC E+C1 

FPR 2 4132B2AAGOCGCCCO 

DER +.316861g1558E3789C E+Cl 
FPR 2 4132B2AAOCOCCCCG 

MER +.31686191558831890 E+Cl 
FPR 2 4132~2AACCCCCCCC 

STE 
~.31686191558E378gC E+Cl 

FPR 2 413282AACCCCCCCO 

0.0 
FPR 4 

0.0 
FPR 4 

0.0 
FPR 4 

C.O 
FPR 4 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

+.85450000000000000 E+03 
FPR 4 4335680000000POO 

+.26012500000000000 E+03 
FPR 4 4310420000000000 

+.13006250000000000 E+03 
FPR 4 4308210000000000 

+.13120027160644531 E+03 
FPR 4 4283334500000000 

+.41406121929687499 E+02 
FPR 4 422967F800000000 

+.11144674301296472 E+04 
FPR 4 436B271A98040000' 

+.11144674301296412 E+04 
FPR 4 436B217A98040000 

Figure 112. The contents of Hoating-point registers 2 and 4 after the execution of each instruction of the program of 
Figure 111. The top line is Hoating decimal, the bottom line pure hexadecimal, in each case. 

START 256 
0001CO 05 FC BEGIN BAl:R 15,0 

000102 USING *,15 
0001C2 68 20 F 03E LD 2,0 LCAD FLOATING REGISTER 2 WITH C 
000106 6e 20 F 046 MO 2,FTWD MULTIPLY 0, IN REGISTER 2, BY 2 
0001CA 23 22 LCOR 2',2 REVERSE SIGN OF PRODUCT IN REGISHR 
0001CC 6A 20 F 04E AD 2,CONl AOD 3.17 
000110 68 40 F 02E LD 4,B LOAD REGISTER 4 WITH B 
OCO 114 6B 40 F 036 SO 4,C SUBTRACT C 
000118 24 44 HDR 4,4 USE HALVE INSTRUCTION TO DIVIDE BY 2 
001) 11A 6A 40 026 AD 4,A ADO A 
00011E 20 42 OOR 4,2 DIVIDE NUMERATCR BY DENOMINATOR 
000120 2C 44 MOR 4,4 SQUARE THE QUOTIENT 
000122 60 40 F 056 SID 4,'1 STORE THE FINAL RESULT 
000126 OA 00 S\,/C 0 
000128 os 00 
000128 41123456789ABCCE A DC X'41123456189ABCoE' 
000130 4335680000COOCCO B DC X'4335680000000000' 
000138 43252600000000CO C DC X'4325260000000000' 
000140 +3E.2C3EFC6BC1C972 0 DC O'6.9C4E-4' 
00014.8 +41.20000CCOOOOOOO FTftO DC 0'2' 
000150 +41.32B851EB851EB8 CONI DC 0'3.17' 
000158 y OS 0 

END BEGIN 

Figure 113. Assembly listing of the program of Figure 111, modified to do all operations in double-length Hoating point 

a 
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+.69C3~9~99999S9993 E-C3 O.G 
LD FPR 2 3E2D3EFD6BDIC972 FPR 4 0000000000000000 

+.13807999999999997 E-C2 C.O MD FPR 2 3E5A7DFAD7A212EO FPR 4 OCCOOOOOCOOOOOOO 

-.138C7999999S99997 E-C2 C.O 
LCDR FPR 2 BE5A70FAD7A2l2EC FPR 4 0000000000000000 

+.3l686191999S99997 E+Cl c.o 
AD FPR 2 4132B2AACBD7A497 FPR 4 0000000000000000 

+.31686191999999997 E+Gl +.85450000000000000 E+03 
LD FPR 2 41328 2AAOBD7A4 97 FPR 4 4335680000000000 

+.31686191999999997 E+Cl +.26012500000000000 E+03 
SD FPR 2 4132B2AAOB07A497 FPR 4 4310420000000000 

+.31686191999999997 E+Cl +.13006250000000000 E+03 
HDR FPR 2 4132B2AAOBD1A497 FPR 4 4308210000000000 

+.31t861919999~9997 E+Cl +.13120021117717172 E+03 
AD FPR 2 4132B 2AAOB07 A497 FPR 4 428333456789ABCO 

+.31686191999999997 E+Cl +.41406136079014392 E+02 
DDR FPR 2 413282AACBD7A4<H FPR 4 422967F888B917AE 

+.31686191999999S~7 E+Cl +.17144681049938571 E+04 
MDR FPR 2 4132B2AAOBD¥A497 FPR 4 436B27705BA97B6Q 

+.31686191999S99997 E+Cl +.17144681049938571 E+04 
SrD FPR 2 4132B2AAOB07A497 FPR 4 436B27705BA97B60 

Figure 114. The contents of floating-point registers 2 and 4 after the 
execution of each instruction of the program of Figure 113 
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Loop Control in a Floating-Point Matrix Multiply Subroutine 

Matrix multiplication is a familiar application of com
puters, since it involves a great deal of highly repeti
tive arithmetic. Furthermore, it is a good sample 
problem because it provides a demonstration of what 
a computer can do in an area of heavily used floating
point loops, where time considerations become es
pecially important. 

For readers interested in the loop control and sub
routine ideas here but not familiar with matrix multi
plication, the problem is easily stated. 

We are given two arrays, called matrices, named 
A and B. Matrix A has M rows and N columns; matrix 
B has N rows and R columns. The numbers M, N, and 
R are fixed for any particular execution of the sub
routine we shall write, but the subroutine must be 
able to operate for any values. The task is to compute 
the elements of another matrix C which has M rows 
and R columns. Each element of C is the sum of the 
product of one row of A and one column of B. In sub
script notation, the elements of C are given by: 

N 

Clk = 1:. aij bjk 

j= 1 

i=1,2, ... ,M 

k=I,2, ... ,R 

This process can actually be described much more 
quickly. in terms of an example. Figure 115 shows 
three sample matrices, arranged as in A X B == C. 
Matrix A here has four rows and three columns; B has 
three rows and two columns. The element shown as 

Figure 115. Illustrations of matrices. The first two are multi
plied together to give the third, as described in the 
text 

22 in C is the sum of the products in multiplying the 
first row of A (1 2 5) by the first column of B (1 8 1): 

1·1 + 2·8+ 5·1 = 22 

We then multiply the first row of A (again) by the 
second column of B: 

1·8 + 2·2 + 5· (-4) =-8 

If there were further columns in B, they would be 
multiplied by the first row of A also, with the results 
going to make up the first row of C. 

Having multiplied the first row of A by all the 
columns of B, we multiply the second row of A by 
all the columns of B in turn, to get the second row 
of C: 

3·1 + 1·8+ 6·1 = 17 
3'8+1·2+6· (-4)=2 

Now we multiply the third row of A by all the col
umns of B in turn, to get the third row of C: 

-1·1 + 1·8 + 0·1 = 7 
-1·8 + 1·2 + o· (-4) =-6 

We finally multiply the fourth and last row of A 
by the columns of C to get the fourth and last row 
of C: 

4'1 + 2·8 + -5·1 = 15 
4·8 + 2·2 -5· (-4) = 56 

This process can be described in a flowchart, if we 
agree on some notation. Let us denote by aij the ele
ment in the ith row and the jth column of A, by bjk 
the element in the jth row and kth column of B, and 
by Cik the element in the ith row and kth column of 
C. With this much agreement on notation, we can 
describe the flowchart of Figure 116. The flowchart 
is of course drawn to reflect the coding methods that 
we shall use in the program to be described shortly. 

The first box has to do with the addressing system 
that will be used to run through the elements of the 
result matrix C. The i == 1 box says to start with the 
first row of A. This action is never repeated. The 
k ==1 means to pick up the first column of B; this is 
repeated. The action j == 1 means to start with the 
first product in the series of products; it refers to the 
first element in the ith row of A and to the first ele
ment in the kth column of B. Then before starting the 
multiplication loop we clear the element storage in C. 

The inner loop gets the sum of the products. The 
values of i, j, and k, which will be in base and index 
registers in the program, pick out the elements of A 
and B. We perform the multiplication and add the 
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j = j + 1 

k=k+l 

i = i + 1 

Figure 116. Flowchart of a method of matrix multiplication 
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product to the partial sum of products previously ac
cumulated. We then increment j to move on to the 
next element in the row of A and the next element in 
the column of B, and ask whether the computation 
of the element of C has been completed. If it has not, 
we return to form another product and add it to the 
partial product. 

If we have completed the computation of an ele
ment of C, we are ready to move on to the next col
umn of B and repeat the whole process in order to 
compute the next element of C. The return is to the 
box that resets the j index, so that we begin with the 
first element of the ith row of A and the first element 
of the kth column of B. 

If we have multiplied one row of A by all the col
umns of B, we are ready to move to another row of A 
and repeat the entire middle loop. 

Translating this Howchart into a program requires 
first of all a decision on how the elements of the three 
matrices are to be stored, that is, in row order or 
column order. For many purposes it would be best 
for all three to be in the same order, usually along the 
rows. We could certainly write a matrix multiplication 
program based on this assumption. For our purposes 
here, however, where we choose to emphasize the 
possibility of rapid loops, we shall set up the storage 
so as to save time and so as to make possible efficient 
computing loops. 

The storage scheme will be as follows. Matrix A is 
stored in row order, which, to be explicit, means that 
the elements are stored in consecutive fullword lo
cations starting with the first element in the first row. 
The second element in the list is the second element 
in the first row, etc., across the first row. The next 
element then is the first in the second row, etc., etc. 
Matrix B is stored in column order: down the columns, 
instead of across the rows. Matrix C is stored in row 
order. 

Now let us turn to the question of setting up this 
program as a subroutine. We are to be able to call the 
subroutine with a description of the three matrices, 
and have it operate correctly for any two matrices A 
and B. This will require an agreement on a calling 
sequence, as follows: 

L 13,AMMPY 
CNOP 2,4 
BALR 14,13 
DC A(A) 
DC A(B) 
DC A(C) 
DC F'M' 
DC F'N' 
DC F'R' 

The symbol AMMPY stands for an address con
stant that contains the address of the subroutine. A, 



B, and C are used to stand for the addresses of the 
first elements in the three matrices. Where we have 
written M, N, and R in the sample calling sequence, 
it is necessary to substitute actual numerical values. 

Figure 117 is the assembly listing of a main program 
that calls our matrix multiplication subroutine twice. 
Ih the first call, matrix A is to be multiplied by matrix 
B and the result called C. A is 4 by 3; B is 3 by 2; 
and C is therefore 4 by 2. In the second call, we have 
asked for the 3 by 3 matrix named D to be multiplied 
by the 3 by 1 matrix E and the result called F. The 
values for the elements of these matrices are entered 
with DC's. 

Figure 118 is the assembly listing of the subroutine. 
The basic idea of the loop control and element ad
dreSSing will be as follows. Register 2 will be used 
as an index to address the successive elements of 
matrix C. Incrementing this index will be done by a 
Load Address instruction. This index need never be 
tested. Register 3 will select a row of A, and must 
therefore start out with the address given in the call
ing sequence. This base will be incremented by the 
number of bytes in a row, 4N. This base will further
more be incremented and tested with a BXLE in
struction, so we place 4N in register 4 for an incre
ment and use 5 for the limit test. Register 5 needs to 
contain the starting address plus 4N times one less 
than the number of rows, or 4( M-l) N. 

Register 3 as a base picks a row of A; an element 
within that row is selected by register 7 used as an 
index. This starts at zero, is incremented by 4 (register 
8) and has a limit test value of 4( N-l) in register 9. 

Register 11 picks one column of B. The starting ad
dress is the first address in B; the increment is 4N 
(register 12); the limit test value is 4N ( R-l) (register 
13) . Register 7 as an index picks an element in a 

particular column of B, as well as picking an element 
in a particular row of A. 

In the subroutine program we begin by saving all 
registers. The instructions that follow set up the 
various registers as we have described above. Register 
6 happens to be available, so a zero is placed in it in 
advance to use in clearing storage locations in C. 

The outer loop begins at RET3, where we set regis
ter 11 (column selector for B) to its starting value, 
which is easily picked up from the calling sequence. 
We shall return to this point each time we move to 
a new row of A, at which time we start over on the 
columns of B. 

At RET2 we set index register 7 back to zero, which 
means to go back to the beginning of the A row, and 
to start at the top of what will be a new column of 
B. This happens only as we begin the multiplication 
and summing loop that computes another element of 
C, so we clear the C element location at this time as 
well. 

At RETI we enter the multiplication and summing 
loop itself. This inner loop is just five instructions long, 
including the BXLE. 

When the BXLE does not branch, it means that we 
have completed the computation of one element. We 
add 4 to the contents of register 2, in order to move to 
another element location in C, then execute a BXLE 
on 11, the base that picks a column of B. When this 
finally does not branch, we reach a BXLE that oper
ates on register 3, which picks a row of A. When this 
BXLE finally does not branch, the task is finished. We 
reset the registers, add 24 to link register 14, and 
branch back to the instruction just beyond the calling 
sequence. 

Figure 119 shows the computed values of matrices 
C and F. 
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0001CO 

0001C2 
000106 
000lCA 
OC01eE 
00010E 
oe0110 
000114 
000118 
OC011C 
000120 
000124 
000128 
00012A 
OC0120 
000130 
000134 
000134 
OC0136 
000138 
00013C 
000140 
000144 
000148 
OC014C 
OC0150 
OC0152 
000 155 
OC0158 
OC015A 

Doauc 
oe01EO 
OC01l:4 
OCClE8 
OOOHC 
Oe01(0 
0001(4 
0001(8 
Oe01(C 
0001[0 
0001[4 
0001F4 
000lf8 
OCOlFC 
0002CO 
0002C4 
0002C8 
00020C 
000210 
000214 
000218 
00021C 
000220 
000224 
000230 

05 FO 

41 40 C 004 
41 BO a coe 
58 AC F 12E 

05 EA 
0000018C 
000001BC 
00000lC4 
00000004 
000000e3 
00000002 
OA 01 
C01003 
00015A 
58 AO F 12E 

01 00 
05 EA 
oa0001F4 
00000218 
OQ000224 
0000C003 
00000CG3 
00000001 
OA 01 
C01003 
000172 
OA 00 
06 
00018C 
04 
OOOOOC 
Ob 

+41.30COOO 
+41. l"ocooe 
+41.6CCOOO 
-41.1COOOO 
+41.100000 
+00.']::';0000 
+41.4COOOC 
+41.200000 
-41.5CCOOO 
+41.100000 
+41.800000 
+41.100000 
+41.800000 
+41.20COOO 
-41.4COO()C 

+41.40COOO 
+41.100000 
+41.300000 
+41.400000 
+41.3000CO 
+41.200000 
+41.300000 
+41.10COOO 
+41.4CGOrO 
+41.100000 
-41.800000 
+41.500000 

00000234 

OOC 10 2 

START 
BEGIN BAlR 

LSING 
LA 
lA 
l 
CNOP 
BAlR 
DC 
DC 
DC 
DC 
DC 
DC 
SVC 
DC 
DC 
l 
CNOP 

BCR 
BAlR 
DC 
DC 
DC 
DC 
DC 
DC 
SVC 
DC 
DC 
SVC 

Cll DC 
DC 
DC 
DC 
DC 

DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

B DC 
DC 
DC 
DC 
DC 
DC 

C OS 
o DC 

DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

E DC 
DC 
DC 

F OS 
AMMPY DC 

256 
15,0 
it,15 
4,4 
11 J 11 
10,AMMPY 
2,4 
14,10 
A tA) 
AlB) 
A (C) 
F'4' 
F'3' 
F'2 ' 
1 
X'CC1003' 
Al3lCLU 
1C,AMMPY 
2,4 
O,G 
14,10 
A (0) 

AlE) 
A(F) 

F'3' 
F'3' 
F'l I 

1 
x'ce10C3' 
Al3(CL2) 
o 
X'Cb' 
AU (AI 
All (4) 
AU (12) 

E'l' 
E'2' 
E'S' 
E ' 3' 
E'l' 
E'6' 
E'-l' 
E '1 ' 
E'O' 
E'4' 
E'2' 
E'-5' 
E 'I ' 
E'S' 
E'l' 
E'S' 
E '2' 
E'-4' 
8F 
E'4' 
E '1' 
E'3' 
E'4' 
E'3' 
E'2' 
E'3' 
E '1' 
E'4' 
E '1 • 
E'-8' 
E'S' 
3F 
A(~MPYl 

Figure 117. Assembly listing of a main program that calls a matrix multiplication 
subroutine. The four sample matrices are entered with DC's. 
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00C234 USING *,10 
000234 90 OF A 01C MMPY STM C,15,TE~P SAVE REGISTERS 
000238 58 2E C ooe L 2,8(14) A(e) 
00023C 58 3E C ooe L 3,C(14) AlA) 
000240 58 5E 0 OOC L 5,12(14) M 
000244 58 50 A 018 S S,ONE M-I 
OC0248 5C 4E 0 OIC M 4,16(14) (fo'-l)N 
00024C 89 50 a 002 SLL 5,2 4(M-ltN 
000250 5A 5E 0 coe A 5,O{l4) A(A) + 4(~-I)N 
OC0254 58 4E 0 01C L 4,16(14) N 
000258 89 40 0 002 SLL 4,2 41\ 
00025C 41 80 0 004 LA 8,4 4 
000260 18 94 LR <:l,4 41\ 
OC0262 IB 98 SR <:l,8 4N-4 = 4(N-l) 
000264 58 DE 0 014 L 13,20(14) R 
000268 58 DO A 078 S 13,ONE R-l 
00026C lC C4 MR 12,4 4'dR-l) 
OC026E 5A DE 0 004 A 13,4(14) A(B) + 4NlR-l) 
OC0272 18 C4 LR 12,4 41\ 
000274 IB 66 SR 6,6 ZERC 
000276 58 BE 0 004 RET3 L 1l,4(l4) K = 1 
00027A IB 77 RET2 SR 1,7 J = 1 
OC027C 50 62 0 cec S1 6,0(2) CIK C 
000280 78 03 7 cce RETl LE e,0(3,7) AIJ 
000284 7C 08 7 ooe ME 0,0(11,7) AIJ .. BJK 
000288 7A 02 0 ooe AE 0,C(2) CIJ + AIJ • BJK 
oe028C 70 02 0 ace SIt: 0,0(2) CIK CIK + AIJ .. 6JK 
000290 87 78 A 04C BXLE 7,8,REll TEST AND INCREfo'ENT J 
000294 41 22 0 004 LA 2,4(2) MCVE TO NEXT ELEMENT OF C 
000298 81 BC A 046 BXLE 1l,12,RET2 TEST AND INCREfo'ENT K 
OC029C 81 34 A 042 BXLE 3,4,RET3 TEST AND INCREfo'ENT I 
0002AO 98 OF A 07C LM Q,15,TEMP FINISHED - RESTORE REGISTERS 
OC02J14 41 EE 0 018 LA 14,24(14) GET RETURN ADDRESS 
OC02~8 07 FE BCR 15,14 RETURN TO CALLING PROGRAM 
0002JlC oooocoe 1 ONE DC F '1' ADDRESS COMPUTATION CONSTANT 
00021:0 TEMP OS 16F REGISTER SAVE AREA 

BEGIN 

Figure 118. Assembly listing of a matrix multiplication subroutine 

+.22000000 E+02 -.80eooooo E+Ol 

+.17CCOOOO E+02 +.20000000 E+01 

+.10000000 E+Ol -.60000000 E+Ol 

+.15000000 E+02 +.5600COOO E+02 

+.11000000 E+O 2 

-.10000000 E+C2 

+.150COOOO E+02 

Figure 119. Printouts of the two product matrices produced when the programs of Figures 117 and 118 were run 
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The BXLE and BXH Instructions in Solving Laplace's Equation 

In this section we shall explore further loop control 
ideas through the medium of a common problem in 
scientific computing. Those who have worked with the 
problem- will perhaps find it especially indicative of 
the powers of the System/360,_ but the presentation 
assumes no knowledge of the mathematics involved. 
Furthermore, the full program will be developed in 
several stages, beginning with a very much simplified 
special case. 

Let us suppose that we are given an array of 20 sin
gle-length floating-point numbers as indicated in Fig
ure 120. These 20 numbers are stored in consecutive 
fullword locations beginning at symbol MATRIX, 
in row order, as suggested in Figure 121. Looking at 
either of these figures, we shall refer to the "outside" 
numbers as boundary values, and the other six as 
interior points. Our task is to find a solution to La
place's equation for the boundary values given. We 
shall say that we have arrived at a "solution" when 
each interior point is the average of its four neighbors; 
the exact solution is shown in Figure 122, in which we 
see, for instance, that the interior value 6 is the aver
age of 8, 9, 4, and 3; 4 is the average of 6, 6, 2, and 2. 

At the outset, of course, we do not know the values 
of the interior points that solve the problem, or at 

12 
8 
4 
o 

9 
o 
o 
o 

6 
o 
o 
o 

3 
o 
o 
o 

o 
o 
o 
o 

Figure 120. Array of numbers used to illustrate solution of 
Laplace's equation 

best we have only some initial guesses. We shall find 
the solution by continually improving a set of approxi
mations to the solution values, as follows. 

Beginning with the given initial values, that is, with 
zeroes for the interior points, we compute a new value 
for the interior point at MATRIX+24. This is done 
by averaging the four points at MATRIX+4, MATRIX 
+20, MATRIX+28, and MATRIX+44. The aver
age is 4.2S, which we immediately store in MATRIX+ 
24. We now move to the point at MATRIX+28, and 
compute a new value for it by averaging its four neigh
bors, using the new value at MATRIX+24. The aver
age of 4.2S, 6, 0, and 0 is about 2.S6, which is immedi
ately stored in MATRIX+28. A similar process places 
a value of 1.39 in MATRIX+32. Moving down to the 
next row, we find a new value for the interior point at 
MATRIX+44, by averaging the values at MATRIX+ 
24, MATRIX+40, MATRIX+48, and MATRIX+64; 
this value is 2.06. In computing a new value at MAT
RIX+48, we shall be using two recently computed 
approximations, the ones at MATRIX+44 and MAT
RIX+28; the average is 1.lS. At MATRIX+S2 we get 
a value of 0.63. The new values are shown in Figure 
123. 

MATRIX MATRIX +4 MATRIX + 8 MATRIX+12 MATRIX+16 
MATRIX +20 MATRIX+24 MATRIX+28 MATRIX + 32 MATRIX+36 
MATRIX +40 MATRIX +44 MATRIX +48 MATRIX+52 MATRIX+56 
MATRIX+60 MATRIX+64 MATRIX + 68 MATRIX+72 MATRIX+76 

Figure 121. Addressing system used in illustration of solution of Laplace's equation 

12 
8 
4 
o 

9 
6 
3 
o 

6 
4 
2 
o 

3 
2 
1 
o 

o 
o 
o 
o 

Figure 122. Exact solution of the example of Laplace's equation 
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12.00 
8.00 
4.00 
0.00 

9.00 
4.25 
2.06 
0.00 

6.00 
2.56 
1.15 
0.00 

3.00 
1.39 
0.63 
0.00 

0.00 
0.00 
0.00 
0.00 

Figure 123. After the first sweep of the method of solving the 
example of Laplace's equation 



This completes the computations in one sweep of 
the array. Are we finished? Clearly not, as we can see 
by looking at the solution in Figure 122. But naturally 
in a real application we would not be doing the prob
lem if we knew the solution. One acceptable way to 
determine whether the process has converged to a 
solution is to form the sum of absolute values of the 
residues at the interior points. The absolute value of 
the residue at a point is just the difference between 
the new and the old value, with any minus signs 
changed to plus. In the example at hand, the old 
values were all zero, so the sum of the residues is just 
the sum of the new values, or 12.04. 

Now we proceed to another complete sweep of the 
array, in all cases using the most recently computed 
values for the interior points. For MATRIX+24 this 
time we average the numbers 9.00, 8.00, 2.56, and 2.06, 
to get 5.40. Before actually storing this result back in 
MATRIX+24, we subtract the old value to get the 
residue of 1.15. The new value at MATRIX+28 is 
3.49, with a residue of 0.93; this residue is added to 
the 1.15. This process is continued until we have com
puted new values for all six interior points, thus com
pleting the second sweep. The values are as shown in 
Figure 124; the sum of the residues is 3.83. This sum 
of residues is a good bit less than on the first sweep, 
but still not very good. We sweep the array again, to 
get the values shown in Figure 125 and a sum of resi
dues of 1.35. Another sweep leads to Figure 126 and 
a sum of residues of 0.48. 

12.00 
8.00 
4.00 
0.00 

9.00 
5.40 
2.64 
0.00 

6.00 
3.49 
1.69 
0.00 

3.00 
1.78 
0.87 
0.00 

0.00 
0.00 
0.00 
0.00 

Figure 124. Mter the second sweep of the example of Laplace's 
equation 

12.00 9.00 6.00 3.00 0.00 
8.00 5.78 3.81 1.92 0.00 
4.00 2.87 1.89 0.95 0.00 
0.00 0.00 0.00 0.00 0.00 

Figure 125. Mter the third sweep 

12.00 9.00 6.00 3.00 0.00 
8.00 5.92 3.93 1.97 0.00 
4.00 2.95 1.95 0.98 0.00 
0.00 0.00 0.00 0.00 0.00 

Figure 126. Mter the fourth sweep 

The decision when to stop must be made by the 
problem formulator. If we were to require the sum 
of the residues to be less than 0.01, it would take an
other four iterations, giving the values shown in Fig
ure 127. 

12.0000 
8.0000 
4.0000 
0.0000 

9.0000 
5.9986 
2.9992 
0.0000 

6.0000 
3.9988 
1.9993 
0.0000 

3.0000 
1.9995 
0.9997 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 

Figure 127. Final solution of Laplace's equation, with a toler
ance of 0.01 

So much for the most basic ideas of the method of 
solution. Let us now write a program to do this, tak
ing just the same problem. 

This is of course a very small example. In practice, 
the arrays of interest are a great deal larger, and 
dozens or even hundreds of sweeps may be required 
for convergence. We therefore quickly become very 
interested in making the program as efficient as possi
ble. To this end, we would in particular like to mini
mize the amount of loop-control red tape. 

Suppose that we use general purpose register 1 as 
a base register, loading it initially with the address 
of the first element of the array, MATRIX. We then 
use general purpose register 5 as an index register, 
loading. it initially with zero. Now observe that the 
following five instructions refer to the five array loca
tions we need in computing a new value for MATRIX 
+24: 

LE 2,4(1,5) 
AE 2,20(1,5) 
AE 2,28(1,5) 
AE 2,44 ( 1,5) 
AE 4,24( 1,5) 

In the first instruction, for instance, the effective 
address is the sum of: the absolute equivalent of 
MATRIX, from the base; zero, from the index register; 
and 4, from the displacement. The other addresses are 
the same, except for the various other displacements. 

Now observe what happens if we increment the in
dex by 4: every effective address is increased by 4, 
leading to the five addresses needed to compute a 
new value for MATRIX+2B. Incrementing the index 
by 4 again leads to the five addresses needed for 
MATRIX+32. We are now at the end of the row. 
We should like to terminate this loop and branch out 
to the larger loop that increments the base register. 
We know, of course, that incrementing and testing 
a register can be done with one instruction, Branch 
on Index Low or Equal (BXLE). 

Upon reaching the end of the row, we should like 
to add 2-{) to the base register, set the index back to 
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zero, and go to work again: with these values for the 
base and index, the effective addresses will be those 
needed for MATRIX+44. Then incrementing the in
dex by 4, with the base register contents unchanged, 
leads to MATRIX+48. One more increment leads to 
the last interior point. 

To summarize: With the base and index register 
contents described above, we can access all the data 
values we need by using fixed displacements and vary
ing the base and index. The importance of all this, 
from a program execution time standpoint, is that the 
incrementing and testing of the registers can be done 
with one instruction each, if we set up the proper in
crement and final values for the BXLE instruction. 

The increment for the index is clearly 4. The limit 
is found to be 8, remembering that the test is made 
after adding the increment and that the branch is 
made if the sum is low or equal. The increment for 
the base is 20 and the limit is 20 more than MATRIX. 

We are almost ready to display a program segment 
to do all this in less space than it takes to describe it. 
The only additional feature needed is a way to limit 
the execution of the program in case for any reason 
convergence is much slower than anticipated. To this 
end we set up a fixed-point value LIMIT which is 
loaded into register 4. This value is counted down 
after each sweep; if it ever reaches zero, we come to 
a Supervisor Call to terminate program execution. 

The program is shown in Figure 128. The first five 
processing instructions are for initializing the various 
control registers. At AGAIN we have the beginning of 
a new sweep; we set the sum of the absolute values 
of the residues to zero. Then the base register is loaded 
with the initial address of the array, and at LOOPA 
the index is set to zero. At LOOPB begin the actual 
arithmetic instructions. The first four of these form 
the sum of the four surrounding values, which is div
ided by 4. Next we pick up the old value in float
ing-point register 4 and subtract the newly computed 
value from it. The difference is loaded positively into 
register 6, to destroy any possible minus sign. This 
absolute value is added to the previous sum of the 
residues in floating register zero. Finally, the new 
value is stored back in the array. 

We now reach the BXLE instruction to increment 
and test the index register. If the branch is taken, we 
go back to compute another new value in the same 
row. If the branch is not taken, we reach the BXLE 
that increments and tests the base register. If this 
branch is taken, we go back one extra instruction in 
order to reset the index to zero. If the branch is not 
taken, a sweep has been completed. A floating-point 

174 

comparison of the sum of the residues against the 
preestablished tolerance determines whether the proc
ess has converged. If not, we use a Branch on Count 
instruction to go back for another sweep - unless the 
limit of sweeps has been reached. 

The printout of Figure 129 shows the computed val
ues with a tolerance of 0.001. Eleven sweeps are re
quired. 

Now that we have a clear idea of the basic address
ing scheme, let us generalize the program. It is, after 
all, not very helpful to have a program that can only 
be used with four-by-five arrays. The next stage in 
the program development will be to make M, the 
number of rows, and N, the number of columns, param
eters of the assembly. Then we can assemble an 
object program to handle any size array, simply by 
changing a couple of cards. 

This approach will require use of the Equate Sym
bol (EQU) assembler instruction. We shall write: 

M EQU 4 
N EQU 10 

or whatever we wish for a particular array. Then, 
wherever M or N appears in the source program, the 
value written will be substituted - by the assembler 
program. We can therefore write the displacements 
and the instructions for setting and incrementing the 
registers in terms of M and N. The program as thus 
modified is shown in Figure 130. We see that the EQU 
technique led to the same displacements as before. 

In order to appreciate the need for speed in larger 
problems, let us go to a larger array. We substitute 
cards giving: 

M EQU 11 
N EQU 16 

The entry for MATRIX is modified to provide 176 full
words instead of 20, and input values for the boundary 
are established. The "shape" of the boundary is very 
similar to that in the previous example. In the "upper 
left" the~e is a value of 30; the values along the top 
decrease by two's, and along the side by three's. The 
values on the bottom and right are all zero. All interior 
points start at zero, as before. The new assembly list
ing is shown in Figure 131. 

This object program was run, using the 0.01 toler
ance shown. Convergence required 116 iterations, in
volving the execution of some 165,000 instructions. 
Now, this number of instructions can be executed in 
less than one second on the medium and large models 
of System/360, so for this problem speed is not a ma
jor consideration. But it must be realized that prob
lems of this sort are seldom as small as this one, where 



000100 

Oe01C? 
0001C6 
00010A 
00~10E 

000112 
OC0116 
000118 
oe011C 
000 11E 
000122 
000126 
o CO 12A 
00012E 
000132 
000136 
oe0138 
00013A 
000 l3C 
000140 
000144 
000148 
OC014C 
000150 
o CO 154 
000156 
000158 
00015B 
00015E 
000 ltO 
000 HI 
000164 
000 lC5 
OC0168 
OOOHC 
000170 
000174 
OC0178 
00017C 
000180 
000184 
OC0188 
D0018C 
0001GO 
OCOIG4 
OCOlg8 
OOOlgC 
000l.aO 
oeo H4 
CC01.a8 
oeo HC 
DeOlEO 
aCOIE4 
OODIE8 
OCOlEC 
000 lcO 

05 FO 

41 20 0 014 
41 30 F 086 
41 60 0 004 
41 70 0 008 
58 40 F 06A 
3B 00 
41 10 F 072 
IIj 55 
78 21 5 004 
7A 21 5 014 
7A 21 5 OlC 
7A 21 5 02C 
7D 20 F Oce 
78 41 5 018 
3B 42 
30 64 
3A 06 
70 21 5 018 
87 56 F elC 
87 12 F CIA 
79 00 F OCE 
47 40 F 054 
46 40 F 014 
OA 00 
OA 01 
C0300 1 
000160 
OA 00 
06 
000 1 74 
04 
000014 
+41.40COOO 
00000032 
+3E.418937 
+41.COOOCO 
+41. <.lOCOOO 
+41.600000 
+41.300000 
+00.000000 
+41.800000 
+OQ.COOOOO 
+Oo.oocooo 
+oo.oococo 
+00.000000 
+41.400000 
+OO.COOOOO 
+OO.OCCOCO 
+OO.OOCCOO 
+oo.('ccoco 
+OO.QOOOOO 
+oo.oocooo 
+oo.oocooo 
+OO.OOCO<:O 
+oo.oocooo 

OCOI02 
BEGIN 

AGAIN 

LOOPA 
LOOPB 

OU 

DL 

FFOLR 
LIMIT 
TOLER 
MATRIX 

START 256 
BALR 15.0 
USING *,15 
LA 2,2C 
LA 3,MATRIX+20 
LA 6,4 
LA 7,8 
L 4,LIMIT 
SER o,e 
LA l,MATRIX 
SR 5,5 
LE 2,4(1,5) 
AE 2,2C(1,5) 
AE 2,28(1,5) 
AE 2,44(1,5) 
DE 2,FFOUR 
LE 4,24(1,5) 
SER 4,2 
LPER 6,4 
AER 0,6 
STE 2,24(1,5) 
8XLE 5,6,LCOPB 
BXLE 1,2,LCOPA 
CE Q,ToLER 
BC 4,CLJT 
BCT 4,AGAIN 
SVC C 
SVC 1 
DC X 'C03COI • 
DC AU (DL) 
SVC 0 
DC X '06' 
DC AL3(MATRIX) 
DC ALI (4) 

DC AU (20 I 
DC E'4' 
DC F' 50' 
DC E'C.OOl' 
DC E'12.0' 
DC E "1.0' 
DC E'6.0' 
DC E'3.0' 
DC E'O.O' 
DC E'S.O· 
DC E'C.C' 
DC E'C.O' 
DC E'C.O' 
DC E'C.O' 
DC E'4.0' 
DC E'C.O' 
DC E'C.C' 
DC E'C.O' 
DC E'C.C' 
DC E'C.C' 
DC 
DC 
DC 
DC 
END 

E'C.C' 
E'C.C' 
E'C.O' 
E'C.C' 
BEGIN 

RCW INCREMENT - USED IN BXLE 
TEST CONSTANT - USED IN BXLE 
CCLUMN INCRE~E~T - USEe IN BXLE 
TEST CONSTANT - USED IN BXlE 
LIMIT ON NUMBER OF ITERATIONS 
SET SUM OF RESIDUES TO ZERO 
SASE - START AT FIRST ADDRESS OF MATRIX 
INDEX - START ~T ZERO FOR NEW ROW 
GET SUM OF FOUR SURROUNDING POINTS 

DIVIDE BY 4 TO GET AVERAGE 
VALUE FROM PREVIOUS SWEEP 
SUBTRACT NEW VALUE GIVING RESICUE 
LCAD POSITIVE TO CROP ANY MINUS SIGN 
ADO TO PARTIAL SUM OF RESIDUES 
STCRE NEW VALUE, ERASING OLD VALUE 
TC MOVE ALCNG A GIVEN ROW 
Te DROP DCWN Te T~E NEXT ROW 
SWEEP DCNE IF bERE - CHECK RESIDUE SUM 
ALL DONE IF SU~ LESS THAN TOLERANCE 
BACK FOR NEW SWEEP UNLESS lIMIT EXCEEDED 
DCES NOT CCNVERGE 

Figure 128. Assembly listing of a program for solving Laplace's equation 
for the boundary values shown in Figure 120 

+ .12000000 E+O 2 +.<;OOOCOCO E+Cl +.6CCCCOOO E+Ol +.30000000 E+Ol 0.0 

+.80000000 E+Ol +.59<199275 E+Ol 0.0 

+.40000000 E+01 c.c 

0.0 0.0 0.0 0.0 0.0 

Figure 129. Final solution of Laplace's equation, with a tolerance of 0.001 
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~IAKI ~:>O 

0001CO 05 FO BEGIN BALR lS,e 
0001C2 uSING 4,IS 
000004 M EQU 4 
COOO05 N EQU 5 

000102 41 20 0 014 LA 2,4*N 
000106 41 30 F 08t LA 3,MATRIX+4*N*~-12*N 

000lCA 41 60 0 004 LA 6,4 
00010E 41 10 0 008 LA 7,4*N-12 
000112 58 40 F 06.t1 L 4,LIMIT 
000116 3B 00 AGAIN SER o,e 
000118 41 10 F 072 LA l,MATRIX 
OOOllC lB 55 LOOPA SR 5,S 
OOOllE 18 21 S 004 LOOPB LE 2,4(1,S) 
000122 1A 21 S 014 AE 2,4*N(l,5) 
000126 1A 21 S o lC AE 2,4*N+80,S) 
0OO12A 1A 21 5 02C AE 2,8*N+4(l,5) 
00012E 10 20 F 06t DE 2,FFOliR 
000132 18 41 5 018 LE 4,4*N+4(l,S) 
000136 3B 42 SER 4,Z 
000138 30 64 LPER 6,4 
00013A 3A 06 AER 0,6 
00013C 10 21 5 018 STE 2,4*N+4(l,S) 
000140 81 56 F 01C BXLE 5,6,lCOPB 
000144 81 12 F OlA BXlE 1,Z,LOOPA 
000148 19 00 F 06E CE 0, TOLER 
00014C 41 40 F 054 BC 4,(J"'T 
000150 46 40 F 014 BCT 4,AGAIN 
0001S4 OA 00 SVC 0 
0001S6 OA 01 OUT SVC 1 
000158 C03001 DC X'CC3001' 
00015B 000160 DC Al3 toll 
00015E OA 00 SVC 0 
000160 06 Dl DC X'C6' 
000161 000114 DC ~l.3{MATRIX) 

000164 04 DC AlU4) 
000165 00001'1 DC Al3(20) 
0001t8 +41.400000 FFOlJ.R P.( Etlt • 
00016C 00000032 LIMIT DC F'50' 
000-170 +3E .. 418931 TOLER DC E'O.OOl-
000174 +41~COOOOO MATRIX DC E'12.0' 
000178 +41.900000 DC E'<;.O' 
OOO17C +41.600000 DC E'6.0' 
000180 +41.300000 DC .E' 3"Jl.' 
000184 +00.000000 DC E'O.O' 
000188 +41.flOOOOO DC E'B.O' 
00018C +00.000000 DC E'O.O' 
000190 +00.000000 DC E'O.O' 
000194 +00.000000 DC E'O.O' 
0001 '18 +00.000000 DC E'O.O' 
0001<;C +41;. 400000 DC E'4.0' 
00011'0 +00.000000 DC E'C.O' 
00011'4 +00.000000 DC E'C.O' 
.Qg.!U·8 +00.OQ0090 DC E'O.O' 
OOOl.C +00.000000 DC E'O.O' 
aOOHO +QO.OOOOOO DC E'C.O' 
aOOll!4 +00.000000 DC E'C.O' 
0()01E8 +00.000000 DC E'{l.O' 
OOOlEC +OO~OOOOOO DC E'C.O' 
OOOlCO +00.000000 DC E'C.O· 

END BEGIN 

Figure 130. Assembly listing of the program of Figure 128, modified to use EQU 
entries to define the size of the matrix 
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NUMBER OF ROWS 
NUMBER OF COLUMNS 
ROW INCRE~ENT - USED IN BXLE 
TEST CONSTANT - USED IN BXLE 
COLUMN INCREMENT - USED IN BXLE 
TEST CCNSTANT - USED IN aXLE 
LIMIT CN NUMBER OF ITERATIONS 
SET SUM OF RESIDUES TO ZERO 
BASE - START FIRST ADDRESS OF MATRIX 
INDEX - START AT ZERO FOR NEW ROW 
GET SUM OF FOUR SURROUNDING POINTS 

DIVIDE BY 4 TO GET AVERAGE 
VALUE FRO~ PREVIOUS SWEEP 
SUBTRACT NEW VALUE GIVING RESIDUE 
LOAD POSITIVE TO DROP ANY ~INUS SIGN 
ADO TO PARTIAL SUM OF RESIDUES 
STORE NEW VALUE, ERASING OLb VALUE 
TO MOVE ALONG A GIVEN ROW 
TO DROP DCWN TO THE NEXT ROW 
SWEEP DONE.IF HERE - CHECK RES SUM 
ALL D(f<iE IF SUH LESS THAN TOLERANCE 
BACK FOR NEW SWEEP UNLESS LIMIT EX 
DOES NCT CONVERGE 



000100 

00,0.102 
O£!0106 
OOOl(i«-
00010E 
000112 
000116 
000118 
00011C 
00011E 
000122 
000126 
00012A 
00012E 
000132 
000136 
OC0138 
00013A 
00013C 
000140 
000144 
000148 
00014C 
000150 
OC0154 
000156 
000158 
000156 
00015E 
000160 
000161 
000164 
000165 
000168 
00016C 
000110 
000114 
OC0118 
Oa011C 
000180 
0001S4 
OC01S8 
oOOlSC 
OOOHO 
000194 
000198 
OC019C 
000 HO 
000lJ!4 
0001.68 
OCOHC 
OOOleO 
000lE4 
000lE8 
OOOHC 
OOOHO 
0001(4 
000H8 
0001 

05 FO 

41 20 0 04C 
41 30 F 272 
41 60 0 004 
41 10 0 034 
58 40 F 06A 
36 00 
41 10 F 012 
16 55 
18 21 !> .004 
1A 21 5 040 
1A 21 5 048 
1A 21 5 084 
10 20 F 066 
18 41 5 044 
38 42 
30 64 
3A 06 
10 21 5 044 
81 56 F 01C 
81 12 F 0 1A 
19 00 F 06E 
41 40 F 054 
46 40 F 014 
CA 00 
OA 01 
C0300 1 
000160' 
OA 00 
06 
000174 
04 
0000110 
+41.400000 
00000096 
+3F.2SF5C3 
+42.lEaOOO 
+42.1(0000 
+42. lAOOOO 
+42.180000 
+42.160000 
+42.140000 
+42.120000 
+42.100000 
+41.EOOOOO 
+41.COOOOO 
+41.AOOOOO 
+41.S00000 
+41.600000 
+.41.400000 
+41.200000 
+00.000000 
+42.160000 
+00.000000 
+00.000000 
+00.000000 
+OO.OCOOOO 

+ 00 
+00.000000 
+00.000000 
+00.000000 
+00.000000 
+00.000000 
+00.000000 

OOC102 
COC006 
000010 

BEGIN 

M 
N 

AGAIN 

LOOPA 
LOOPS 

OliT 

DL 

FFOLR 
LIMIT 
TOLER 
MATRIX 

START 
SAlR 

LSING 
EQU 
EQU 
LA 
LA 
LA 
LA 
L 
SER 
LA 
SR 
LE 
AE 
AE 
AE 
DE 
LE 
SER. 
LPER 
AER 
STE 
BXLE 
BXLE 
CE 
BC 
BCT 
SVC 
SVC 
DC 
DC 
SVC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

C 

256 
15.C 
*,15 
11 
16 
2,4*N 
3,MATRIX+4*N*M-12*N 
6,4 
7 , 4*N-12 
4,LIMIT 
O,G 
1 , MATRIX 
5,5 
2,4U.5) 
2 , 4.NU,S) 
2,4*N+811,5) 
2 ,8*N+4t1,S) 
2,FfOUR 
4,4*N+4U,S) 
4,2 
6,4 
0,6 
2,4*N+4(l,5) 
5,6.LOOPB 
l,2,LCOPA 
O,TCLER 
4,eLT 
4,AGAIN 
o 
1 
X'C03001' 
AL3 WL) 
C 
X'C6' 
AL3(MATRIX) 
All (4) 
Al3 (16) 
E'4' 
F'150' 
E'c.el' 
E'3C' 
E'2S' 
E'26' 
E'24' 
E'22' 
E'2e' 
E'lS' 
E'16' 
E'14' 
E'12' 
E'l(l' 
E'a' 
E'6' 
E'4' 
E'Z' 
E'O' 
E'27' 

NUMBER Of ROWS 
NUMBER OF COLUMNS 
ROW INCRE~ENT - USED IN BXLE 
TEST CCNSTANT - USED IN aXLE 
COLUMN INtREMENT - USED IN aXLE 
TEST CONSTANT - USED IN BXLE 
LIMIT eN NUMBER OF ITERATIONS 
SET SU~ Cf RESIDUES TO ZERO 
BASE - START FIRST ADDRESS OF MATRIX 
INDEX - START AT ZERO FOR NEW ROW 
GET SUM OF FOUR SURROUNDING POINT.S 

DIVIDE SY 4 TO GET AVERAGE 
VALUE FRC~ PREVIOUS SWEEP 
SUBTRACT NEW VALUE GIVING RESIDUE 
LOAD PCSITIVE TO CROP ANY MINUS SIGN 
ADO TC PARTIAL SUM OF RESIOUES 
STORE NEW VALUE, ERASING OLO VALUE 
TO MCVE ALONG A GIVEN ROW 
TO DROP DCWN TO THE NEXT ROW 
SWEEP DONE IF HERE - CHECK RES SUM 
ALL DCNE IF SUM LESS THAN TOLERANCE 
BACK FeR NEW SWEEP UNLESS LIMIT EX 
DCES NeT CONVERGE 

DC~' __ ~~ ________ ----_ 
DC E'C' 
DC E'O' 
DC E'C' 
DC E'C' 
DC E'C' 
DC E'O' 
END BEGIN 

Figure 131. Assembly listing of the program of Figure 130, modiHed to accept 
an 11 by 16 matrix, and with suitably modified boundary values 
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we have only 11 rows and 16 columns. Problems with 
more than 100 rows and columns are not exceptional, 
and it is frequently necessary· to solve each such prob
lem with many variations in the boundary values. It 
is not really difficult to devise tasks of this general sort 
that can use dozens of hours of time on the fastest 
computers available. We have thus come to a situa
tion where anything reasonable that can reduce object 
program running time is worth considerable effort in 
numerical analysis and programming. 

Let us first turn to a possibility for improvement that 
will nicely illustrate the powers of the instruction 
repertoire and register operation of System/360. 

Suppose that the boundary values had been ar
ranged a little differently, as shown in the four-by-five 
case below; the zeros are at the left and top instead 
of the right and bottom. 

o 
o 
o 
o 

o 
o 
o 
3 

o 
o 
o 
6 

o 0 
o 4 
o 8 
9 12 

This means that as we sweep along the first row, all 
the new approximations comput~d in the first sweep 
will be zero except the last one in the row. In the 
second sweep, all but the last two values in the first 
row will still be zeros, etc. The new approximations 
are working "upstream," so to speak. Might not con
vergence be faster if the sweeps worked from right 
to left and bottom to top, rather than the way they 
do? To prove that there is some possible value to the 
scheme, we can run the program as it stands, but with 
the rearranged boundary values. Convergence this 
time requires 122 iterations as against 116. This is not 
a truly huge difference, but rewriting the program 
will be sufficiently educational to be well worth the 
effort. 

The task before us is to rework the sweep logic. The 
basic tool this time will be the Branch on Index High 
(BXH) instruction, rather than the BXLE. This 
change will require rather different starting values for 
the index and base registers, and for their decrement 
and limit registers. We shall finally see an example 
where the decrement and limit can usefully be the 
same value, in the same register. 

This time we want the base register, which we re
member picks the row, to start at the second from the 
last row. The address of the first element in this row 
is MATRIX+4N (M -3); a Load Address instruction 
can put the value there. Register 8 is used for the base 
this time. Register 12 is the decrement register; it 
needs to contain -4N this time. This is best done by 
loading 4N into the register with a Load Address and 
then loading the register negatively from itself. The 
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limiting value must be considered carefully. We recall 
that BXH first adds the increment (which means 
a subtraction as we have arranged things), then 
branches if the sum is greater than the limit (not 
greater than or equal). Since we do want the loop exe
cuted with the base register containing the address 
of the first row, the limit will have to be the address 
that the row before the first row would have, if there 
were one. We accordingly load register 13 with 
MATRIX-4N. 

The index register this time should initially pick out 
the second from the last column. The element in the 
second from the last column in a row is 4{ N-3) bytes 
beyond the first element in that row; this is according
ly the value we place in register 10, the index register. 
The decrement value is -4. The limit value, as it hap
pens, is also -4. We want the index loop to be exe
cuted with the index containing zero, which requires 
a limit 4 less than zero, the way the BXH instruction 
works. Since the decrement and limit are both -4, 
there is no reason not to put them in the same register, 
11 in this case. This is based on the phrase in the de
scription of the BXH: "The limit register is odd and is 
either the same as the increment or one greater". That 
is, if the increment register is odd, then the limit is in 
the same register. 

These changes in the program are readily made, 
leading to Figure 132. The BXH instructions are se
quenced so that the base register varies most rapidly. 
This means that we first go up the rightmost interior 
column, then go up the next to the rightmost interior 
column, etc. If it were thought preferable, it would be 
a simple matter to have the index vary most rapidly, 
so that we would be going across the rows from bot
tom to top, instead of going up the columns from right 
to left. 

This program was run requiring the same number 
of iterations to converge that the previous program did 
on the original boundary values. 

As noted, this is not a very large percentage in
crease, however instructive it may be. We therefore 
turn to another method for speeding up convergence 
that will definitely be important. 

Suppose that each time a new approximation is com
puted, we inspect the difference between the new 
value and the old value. We can assume pretty safely 
that yet further change will be required for conver
gence; why not extrapolate a bit? In other words, we 
shall add to the old value some constant times the dif
ference between the new and old. This constant we 
my call w. Writing u for the values of the matrix ele
ments and using "old" and "new" subscripts to denote 
the previous and newly computed values, the formula 



START 256 
000100 05 Fa BEGIN BAlR 15,0 

000102 USING *,15 
000006 M EQU 11 NUMBER OF ROWS 
00C010 N EQU 16 NUMBER OF COLUMNS 

000102 41 CO 0 04C LA 12,4*N ROW DECRE~ENT - USED IN BXH 
000106 11 CC LNR 12,12 MAKE NEGATIVE 
000108 41 00 F 036 LA 13,MATRIX-4*N TEST CONSTANT - USED IN BXH 
OOOlOC 41 BO 0 004 LA 11,4 COLUMN DECREMENT AND TEST - FOR BXH 
000110 11 BB LNR 11,11 MAKE NEGATIVE 
000 112 58 40 F 06E L 4,lIMI T LIMIT eN NUMBER OF ITERATIONS 
000 116 3B 00 AGAIN SER 0,0 SET SU~ OF RESIDUES TO ZERO 
000118 41 AO 0 034 LA 10,4tt N-12 INDEX - START AT RIGHT OF NEW ROW 
OOOIlC 41 80 F 2U LOOPA LA 8,MATRIX+4tt N*M-IZ*N =4NU4-3) START BASE AT LAST ROW 
OC0120 78 28 A 004 LOOPB LE 2,4(8,10) GET SUM OF FOUR SURROUNDING POINTS 
000124 7A 28 A 040 AE 2,4 tt N(S,10) 
000128 7A 28 A 04e AE 2.4 tt N+S(8,10) 
OOOl2C 7A 28 A 084 AE 2,8 tt N+4(8.10) 
000130 70 20 F 06A DE 2,HOUR DIVIDE BY 4 Tt GET AVERAGE 
000U4 78 48 A 044 LE 4.4 ttN+4(8,10) VALUE FROM PREVIOUS SWEEP 
000138 38 42 SER 4,2 SUBTRACT NEW VALUE GIVING RESIDUE 
OQ013A 30 64 LPER 6,4 LOAD POSITIVE TO CROP ANY MINUS SIGN 
0OO13C 3A 06 AER 0,6 ADO TO PARTIAL SUM OF RESIDUES 
00013E 10 28 A 044 STE 2,4ttN+4(S,101 STORE NEW VALUE, ERASING OLD VALUE 
000142 86 ac F OlE BXH 8,12,LOOPB TO MCVE UP A ROW 
000146 86 AB F OlA BXH 10, ll, LC{]PA TO MeVE LEFT CNE COLUMN 
00014A 79 00 F 072 CE a,TOLER SWEEP DONE IF HERE - CHECK RES SUM 
00014E 47 40 f 056 BC 4,OUT ALL DCNE IF SWEEP lESS THAN TOLERANCE 
000152 46 40 F 014 BCT 4,AGAIN BACK FeR ~EW SWEEP UNLESS LIMIT EX 
000156 OA 00 SVC 0 DOES NGT CONVERGE 
000158 OA 01 OUT SVC 1 
00015A C03001 DC X'C03001' 
000150 000162 DC AU lOU 
000160 OA 00 SVC a 
000162 06 DL DC X'C6' 
000163 00017S DC A L3 ( MA TR I X) 
OC0166 04 DC All (4) 
000167 OOOOBO DC Al3 (116) 
OC016C +41.400000 HOUR DC E'4.0' 
000170 00000096 LIMIT DC F'150' 
000114 +3F.28F5C3 TOLER DC E'O.Ol' 
000118 +42.1EOOOO MATRIX DC E'30' 
OOOl7C +42.1COOOO DC E'2S' 
000180 .&.42.IAOOOO DC E'26' 

+00.00000 
+00.000000 E'C' 
+00.000000 E'C' 
+00.000000 E'C' 
+00.000000 E'C' 
+00.000000 E'C' 

BEGIN 

Figure 132. The program of Figure 131 modified through the use of BXH's instead of BXLE's 
to sweep in a different manner 
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becomes 

Unew = Uold +ro (average -uold) 
If the new value were all that was needed, we would 
write the program to implement this formula. But we 
also need the difference in explicit form itself, in order 
to accumulate the sum of the absolute values of the 
residues. The formula for the difference is: 

residue =' Unew -Uold 
= Uold + ro( average -uold)-uold 
= ro ( average -uOld) 

In other words, after computing the average as be
before, we can subtract the old value, then multiply 
by ro to get the residue. The absolute value is taken as 
before. We finally add the old value to the residue 
(with its minus sign, if any) and store the extrapolated 
new value. Figure 133 shows the program of Figure 
131 modified to compute the extrapolated residue and 
new value in the manner just described. Note that ro 

is called OMEGA in the program. 
The optimum value of ro is a function of the shape of 

the region and of the boundary values. For a value of 
ro =1, we have the original unaccelerated method; 
values of 2 and greater prevent convergence ever. The 

C00100 05 FO 
000102 
000008 
OOOOU) 

START 256 
BEGIN BAlR 15 t O 

USING .,15 
• EQU 11 
N EQU 16 

LA 2,4*N 

program of Figure 133 was run with a number of 
values for ro, to find the most effective value of roo 

This turned out to be 1.62, for which only 22 iterations 
were required. Clearly, the time saving is highly sig
nificant, approaching a factor of six over the unac
celerated version. 

Summary 

In this chapter we have considered two topics of 
prime importance to the scientific and engineering user 
of computers: floating-point operations and efficient 
loops. System/360 offers powerful capabilities in 
both areas. In floating operations System/360 provides 
the guard digit and fully automatic double-length 
operations, features not found in most other comput
ing systems. For heavily used loops, System/360 pro
vides the power of extremely efficient and flexible loop 
testing and modification instructions, together with the 
ability to modify an address with a base register and 
an index register, both of which may vary. 

NUMBER SF ROWS 
NUMBER OF COlUMNS 

(00102 
C00106 
COOI0A 
COOIOE 
C00112 
C00116 
C00118 
COOlle 
COOlIE 
£G0122 
C80126 
C8012A 
tOOl2E 
C00132 
C00136 
1001lA 
e0013t 
COOIlE 
(001"2 
(001"6 
C801"A 
'QI'4'f 
(00152 
&180156 
C0015A 
'COOI5(: 
(OOI5E 
coonll 
0.0164 
aOOU6 
COOl67 
(0016A 
(00168 
(l00170 
e00174 
':00179 
ClOOHC 
(00180 
COOl84 

41 20 0 040 
41 30 F 27£ 
41 60 0 004 
41 10 ~ ~3It 
58 40 F 072 
3B 00 

LA 3,MATRIX+4*N*M-12*N 
ROW INCREMENT - USEO IN aXLE 
TEST tONSTANT - USED IN 8XlE 
COtUMW INCREMENT - USED IN BXlE 
TEST CBNST_NT - USEO IN BXLE 
LIMIT UN NUMBER OF ITERATIONS 
SET SW" OF RESIDUES TO ZERO 

41 10 F 07E 
18 56 
78 21 5 004 
lA 21 5 OitO 
7A 21 5 048 
lA 21 5084 
10 20 F 06E 
lB 21 5 044 
lC 20 F 01A 
30 '42 
3A 04 
7A 21 5 044 
70 21 5 044 
87 56 F 01C 
87 12 F OlA 
19 00 F 016 
47 40 F 05A 
46 40 F Ollt 
OA 00 
OA 01 
C03001 
000166 
OA 00 
06 
000180 
04 
000080 
+41.400000 
00000096 
+3F.28F5C3 
+41.19E685 
+42.1EOOOO 
+ .ICOOOO 

LA 6,4 
LA 7,4*N-12 
l 4.LlMIT 

AGA IN SER 0.0 
LA l.MATRIX 

UJOPA SR 5,5 
lOOPB lE 2,4(1,5) 

AE 2,4*N(1,·5J 
AE 2,4*N+8(1.5J 
AE 2,8*N+4(I,5J 
DE 2,FFOUR 
SE 2,4*N+4(1.5) 
ME 2.0MEGA 
lPER 4,2 
AER 0,4 
AE 2."*N+4U,5J. 
S~E 2,4*N+4El,5) 
8XlE 5.6.l00PB 
8XlE 1.2,lOOPA 
CE o.rOLER 
Bt 4,OUT 
ReT 4,AGAIN 
sve 0 

OUT sve 1 
DC x'e03001· 
DC AJ..JfOU s. 0 

Dt. DC X.06' 
DC AL3'MA~RIXI 
DC ALU41 
DC Al31176) 

~OUR DC £' •• 0" 
lIlnT 1m F'1;SJ)· 
TOLER DC fl'O.OV 
OMEGA DC E'1.62' 
MATRIX DC E'30' 

DC E'28' 

BASE - Sf ART FIRST ADDRESS OF MATRIX 
INDEX - START AT ZERO FOR NEW ROW 
GET SUM OF FOUR SURROUNDING POINTS 

OIVIDE 8Y 4 TO GET AVERAGE 
NEW VALUE MINUS OLD VALUE 
ACCELERATED DIFFERENCE 
MOYE AB60lUTEVALvE TO REGISTER 4 
ADO TO PARTIAL SUM OF RESIDUES 
ADO OLD VALUE TO ACCELERATED DIFF 
STORE NEW VALUE. ERASING OLD VALUE 
TO MOVE ALONG A GIVEN ROW 
TO DR9R DOWN TO THE NEXT ROW 
SwEEP DONE IF HERE - CHECK RES SUM 
ALL DONE IF SUM LESS THAN TOLERANCE 
BACK FeR NEW SWEEP UNLESS LIMIT EX 
DOES NOT ~UNVERGE 

Figure 133. The program of Figure 131 modified to develop the residue and the new value 
by extrapolation 
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1. Write the DC instructions for the following short 
floating-point numbers: 

3.14159265 
-2.78 

38754 x 106 

.00000278 
-.000236 x 10-7 

2. Write the DC instructions for the following long 
floating-point numbers: 

3.141592653589793 
-2.78 
-0.003 x 10-3 

3.8 X 1030 

0.000000008 

3. Show the "pure" hexadecimal form that the fol
lowing DC entries will generate in storage (Note that 
16777216 equals 166 and that .59604644 X 10-7 equals 
16-7 ) : 

DC E'32' 
DC D'32' 
DC E'16777216' 
DC E' . 59604644E-7' 
DC E' -.59604644E-7' 
DC E' -16777216' 
DC X'C7100000' 

4. If BIN assumes the value of a positive binary 
integer, what will general register 14 contain at the 
end of the Add command? 

L 14,BIN 
A 14,CHAR 

BIN DS· F 
CHAR DC X' 46000000' 

Questions and Exercises. 

5. What will be in the affected registers after execu
tion of each of the following sets of instructions? 

a. LE 2,A 

h. 

c. 

AE 2,B 
HER 4,2 

A DC 
B DC 

LE 
SR 

A DC 
L 
A 

A DC 
B DC 

X' 41789ABC' 
X' 41876544' 
6,A 
6,6 

E'15' 
3,A 
3,B 

E'1.' 
X'01000000' 

6. Assume A, B, and C are floating-point numbers. 
Write a program segment to evaluate: 

A-BxC 

A+BxC 
7. Assume ai values are floating-point numbers, N is 
a binary number and cannot exceed 100. Write a pro
gram segment to evaluate: 

N 

N 
i==1 

a. Where the ai values are in the short form. 
h. Where the ai values are in the long form. 
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Chapter 11: Automatic Interrupts 

Since System/360 is designed to operate with a mini
mum of manual intervention, it must be capable of 
redirecting its activity when prescribed or unusual 
situations arise. Such situations, which require an in
terruption of the main program, may be the result of 
conditions external to the system, in input/output 
(I/O) units, or in the CPU itself. An I/O operation 
or the entire job may be finished, and the machine 
must be told what to do next. Unacceptable input 
data, a program error, or a machine error may require 
a corrective routine or, if the error is irrecoverable, a 
program dump. All these and many more situations 
necessitate use of the automatic interrupt system. 
Finally, the programmer himself frequently finds it 
necessary to switch from the problem state to the 

Introductory Concepts 

Programming vs Machine Interrupts 
Interruptions and changes of state in the CPU necessi
tated by program or machine errors, completion of in
put/output operations, and other conditions used to be 
handled by rather complex programming instead of 
automatic hardware-controlled interrupts. Where the 
equipment provided one or more independent chan
nels to permit overlapping I/O operations with proc
essing, the program had to interrogate the channels re
peatedly to determine whether they were free to start 
an I/O operation, such as reading input data or print
ing out results. At the end of each operation, the inter
rogation would start all over again, before the next I/O 
operation could begin. 

In contrast, in the System/360 the channels them
selves signal the processing unit when they become 
free upon completion of an I/O operation. The chan
nel signals are recognized by electronic circuitry, 
which automatically calls in the interrupt supervisory 
program to initiate and handle the I/O interrupt. This 
automatic interrupt procedure results in far more ef
ficient utilization of the processor than is possible with 
a program of repeated interrogation. 
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supervisory state, by calling the Supervisor via the 
automatic interrupt system. 

In the following pages we shall explore some of the 
features and implications of the System/360 interrupt 
system of interest to the prospective programmer. We 
shall find out what the system does by itself and what 
must be done by the problem programmer. In the 
process we shall also gain some familiarity with the 
control program (called the '1nterrupt Supervisor") 
that handles all System/360 interrupts. No specific 
level of programming support is assumed in the dis
cussion of control program and problem program 
functions. (We shall not be overly concerned with 
the details of the control program, since these are the 
responsibility of the IBM programmer and are de
scribed in the appropriate SRL publication.) 

Similarly, in processing arithmetic operations, it used 
to be the concern of the problem programmer to tell 
the machine what to do in case of an overHow. He had 
the choice of either letting the computer grind to a 
halt, for manual intervention and correction, or insert
ing a Branch on Condition to a fixup routine after 
each instruction that might conceivably result in an 
overflow. With the automatic interrupt system, how
ever, the machine itself recognizes the overflow condi
tion and automatically fetches the address of a correc
tive routine from a fixed location in storage. The CPU 
then branches to this routine, while temporarily inter
rupting the program in progress. Again, the program 
interrupt is accomplished automatically by circuitry, 
while the branch to the overflow fixup routine is han
dled by the interrupt supervisory program; the over
flow fixup routine itself is, of course, the problem pro
grammer's concern, as before. 

At this point we begin to see that there are really 
two types of independently prepared programs stored 
in any System/360 machine: one is the IBM-prepared 
supervisory program ("Interrupt Supervisor") that 
handles the various types of machine interrupts and 



automatic branching; the other consists of the user's 
application program and various mup and other cor
rective routines, to which the machine is directed to 
branch after the interrupt. Only the application pro
gram and corrective branch routines are prepared by 
the "problem" programmer at the installation; the 
IBM-prepared supervisory program is not normally his 
concern. Later on we shall explore how the System/ 
360 architecture distinguishes between the two types 
of independently prepared programs in storage. 

Return to Problem Program 
After an interrupt has occurred and has been taken 
care of, how does the system «remember" the point of 
return from which to resume processing the problem 
program? In the Branch on Condition type of situation 
discussed earlier, the programmer himself provided the 
linkage from the branch back to the original program. 
With an automatic interrupt, however, the programmer 
does not know the return point and, therefore, the ma
chine itself must save the return address in a fixed stor
age location. The return address alone, however, is in
sufficient information to automatically control the in
terrupt action and return. Along with the address, the 
complete status of the system at the time of the inter
rupt must be recorded, including the cause of the inter
rupt and related information. This will make it possi
ble, at the conclusion of the interrupt routine, for the 
machine to be restored to the state existing before the 
interrupt. 

The Program Status Word (PSW) 
The necessary status information of the system at the 
time of interruption is contained in a doubleword 
(eight bytes) known as the program status word 
(PSW). We shall look at the format and precise infor
mation contained in the PSW in more detail later on, 
but suffice it to say for the moment that the controlling 
or "current" PSW contains the location of the next in
instruction, the program state of the CPU (whether 
interruptible or not, stopped or operating, running 

OLDPSW 

CURRENT PSW 

NEWPSW 

MAIN STORAGE 

Figure 134. PSW switching during interrupt 

or waiting, and in a problem or supervisory state), 
the length of the last instruction, and the outcome 
of arithmetic or logical operations (called condition 
code). The current PSW is essentially equivalent to 
the "control register" of earlier computers. 

Since the relevant status information of the system 
is available at any time in the current PSW, all the 
machine need do upon the occurrence of an interrupt 
is. to record in some way the cause of the interrupt and 
then file away the current PSW at a fixed doubleword 
location in main storage; from there it may be re
trieved after the interrupt has been dealt with. Upon 
encounter of an interrupt, the current PSW thus be
comes an "old" PSW, which is stored at a fixed loca
tion in core (see Figure 134). A doubleword location 
with a different address is reserved for each major 
class of interrupt. Simultaneously, to service the inter
rupt and branch to the appropriate fixup (or other) 
routine, a "new" PSW must be fetched from a different 
fixed location in storage. Again, a new PSW double
word location with a different address is reserved in 
storage for each class of interrupt. Thus there are two 
fixed locations in main storage for each class of inter
rupt: one to receive the old PSW upon occurrence of 
an interrupt, and the other to furnish the new PSW 
that services that class of interrupt (see Figure 134). 

In brief, an interrupt of a particular class (there are 
five major classes) simply replaces the entire current 
PSW, by placing it in the old PSW location in main 
storage for that class, and then fetching a new PSW for 
the required class from its location in main storage. 
The new PSW contains the information necessary (lo
cation of fixup routine, etc.) for handling the inter
ruption. After the interrupt has been serviced, a single 
instruction recalls the old PSW and processing con
tinues from the point of interruption. 

Through previous studies in this book, you may re
call that a simple branch instruction replaces only the 
instruction address portion of the current PSW; this 
should be contrasted with the interrupt action, which 
replaces the entire current PSW. In essence, however, 
an interrupt is simply an automatic branch to a new 
sequence of instructions. 
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Interrupt Action 
The general pattern of interrupt action now begins to 
emerge; it is also graphically illustrated in Figure 135. 
When an interrupt occurs (perhaps because of an 
arithmetic overflow, completion of an I/O operation, 
or other condition), the machine first determines the 
general class of interrupts involved, and then proceeds 
to: 

1. Store the current PSW (which controls the prob
lem program) in the appropriate old PSW location. 
The old PSW preserves the general status of the proc
essor, gives the reason for the interrupt, and also con
tains the address of the «next" instruction of the prob
lem program (that is, the point at which we left it). 
All this is done automatically. 

2. Fetch a new PSW from the appropriate location 
in storage (for the particular class of interrupt) and 
load it as the current PSW. This new PSW "points" to 
the first instruction of the interrupt-handling routine, 

l?roblem 
State 

PROBLEM 
PROGRAM 

Machine 
Interrupt 

___ X Interrupt 
·Overflow (or 
other condition) 

FIX-UP 
ROUTINE---.... -

(To 
correct 
cause of 
Interrupt) ___ -I 

New PSW 

Figure 135. Action occurring during interrupt 
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which is part of the supervisory control program (the 
"Interrupt Supervisor"). Again, this is done by elec
tronic circuitry, though the «pointer" to the interrupt 
routine had to be initialized by a programmer. 

The interrupt routine now proceeds to analyze the 
cause of the interrupt, stored in the old PSW location. 
and then takes the appropriate action required for the 
type of interrupt involved. Depending on the cause of 
interrupt, this may consist of initiating an I/O oper
ation, branching to a «fixup routine" to correct the 
problem (see Figure 135), calling for a dump pro
gram, etc. 

Evidently, the interrupt-handling routines, with the 
associated corrective routines, dump programs, etc., 
are prepared by a programmer, but not usually the 
problem programmer at the installation. As we shall 
see later on in more detail, the interrupt-handling rou
tines, or Interrupt Supervisors, for various application 
programs are part of the control program package that 

(2) 

~ 
Resume 
Main 
Program 

Supervisory 
State 

INTERRUPT 
HANDLING ROUTINE 

(Supervisor) 

___ I AnalySis 

~ 
of (3) 

------- Interrupt 
----

LOAD (old) PSW 
(4) 



each installation receives. The Interrupt Supervisor 
portion of this control program resides permanently 
in storage. However, when desIred, special fixup rou
tines for particular applications may, of course, be 
prepared by the installation's programmers. 

After the interrupt has been taken care of, the in
struction sequence of the original problem program 
may be resumed from the point of interruption, if 
desired. This is accomplished by the last instruction 
(<<Load PSW") of the interrupt-handling routine. The 
Load PSW instruction recalls the old PSW from its lo
cation in storage and makes it again the current PSW; 
thus we are back in the problem program. 

Why must the Load PSW instruction address the old 
PSW? Why can't the machine recall the cause of the 
last interrupt and automatically fetch the old PSW 
associated with that cause? It could. However, by 
addressing a specific old PSW, the supervisory pro
gram gains a bit of added flexibility over the auto;. 
matic approach. As we shall see later on, the occur
rence of several simultaneous interrupts may require 
the supervisory (IBM) programmer to stack up a 
series of old PSW's in order of priority. Upon servicing 
a particular interrupt, he may wish to return to a dif-

ferent status or task from the one last interrupted. He 
then simply addresses the old PSW of his choice. This 
situation may occur quite frequently in multiprogram
ming, where switching to another task instead of re
turning to the original program would be desired. In 
all these cases, the nonautomatic addreSSing of the 
desired old PSW by the Load PSW instruction pro
vides the supervisory program with the requisite 
flexibility. 

The general interrupt action sketched above leaves 
out many details and refinements with which we shall 
have to concern ourselves later on. We have not de
scribed, for example, how the machine is able to 
identify (1) what caused the interrupt, (2) how a fix
up routine would go about finding the last-completed 
instruction, rather than the «next" instruction address 
contained in the old PSW, (3) what the machine 
would do in the event of several interrupts occurring 
at roughly the same time, or (4) how certain types of 
interrupt causes might be ignored altogether. Leaving 
these important questions for later, let us look at a 
typical example of a program interrupt occurring dur
ing the processing of a few simple arithmetical opera
tions. 
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An Example 

To illustrate the diHerence between a programmed 
branch and an automatic machine interrupt, we have 
chosen a simple example, involving fixed-point addi
tion of a few numbers whose sum might overflow the 
register. 

Figure 136 shows the partial assembly listing of the 
fixed-point add routine, in which the programmer has 
inserted instructions to check for overflow after each 
addition. If an overflow occurred, the program is to 
branch to an overflow fixup routine to correct the con
dition (if possible), before returning to the mainline 
program. Since we are interested oJ)ly in the branching 
process, we shall not concern ourselves with the over
How fixup routine at this time. 

The mst three lines of the listing (Figure 136) -
START, BALR (Branch and Link Register), and us
ING - are the standard prE;liminary instructions with 
which we are familiar. In brief, they establish that the 
assembly will start at location 256, and that register 15 
will serve as base register and contain the location of 
the first byte after the USING instruction. 

The next two instructions (SR 4,4 and SPM 4) are 
still preliminary, but have some relevance to later 
processing. 

The Subtract instruction 
SR 4,4 

specifies that the contents of register 4 are to be sub
tracted from register 4, which is equivalent, of course, 
to clearing the register to zero. Whenever the first and 
second operand locations of the SR instruction specify 
the same register, the register is simply to be cleared or 
«initialized". We are clearing register 4 at this time in 

0 1 * EXAMPLE 1 

anticipation of a possible overflow from the add opera
tions performed in register 5 later on. Register 4 will 
receive any high-order overHow bits. 

The Set Program Mask instruction 

SPM 4 

simply places the zero bits in register 4 into the condi
tion code (CC) and program mask bit positions (36-
39) of the current PSW. As we shallleam in more de
tail later on, this «mask" prevents all types of program 
interrupts, including overflow. Since the program is 
going to do the branching in case of overflow (in this 
initial illustration), we do not want an automatic pro
gram interrupt. In effect the SPM instruction simulates 
a system without automatic interrupts. 

Processing proper begins with the Load 

L 5,A 

instruction, which simply places the data at effective 
storage location A (to be defined by a DC) into regis
ter 5. For simplicity, we shall say that the value or 
number A is loaded into register 5. By means of the 
Add instruction 

A 5,B 

we then add the number B (defined by another DC) 
to A in register 5. This is a standard operation. 

Since we don't know the magnitudes of A and B, an 
overflow may already have occurred, and, consequent
ly, the next instruction 

BC 14,OKI 

is designed to check for overflow - or, rather, its ab
sence. 

ADD ROUTINE 
000100 2 MAIN START 256 
000100 05FO 3 BALR 15,0 
000102 4 US ING *,15 
000102 1B44 5 SR 4,4 
000104 0440 6 SPM 4 MASK OUT PROGRAM INTERRUPT 
000106 5850 F05A 0015C 7 L 5,A 
00010A 5A50 F05E 00160 8 A 5,B 
00010E 47EO F014 00116 9 BC 14, OK 1 CONTI NUE IF OVERFLOW OTHERWISE GO TO OK1 
000112 45EO F048 0014A 10 BAL 14,OVERFL 
000116 SASO F062 00164 11 OK1 A 5,C 
OOOllA 47EO F020 00122 12 BC 14,OK2 
OOOllE 45EO F048 0014A 13 BAL 14,OVERFL 
000122 SASO F066 00168 14 OK2 A 5,0 
000126 47EO F02C 0012E 15 BC 14,OK3 
00012A 45EO F048 0014A 16 BAL 14,OVERFL 

Figure 136. Partial assembly listing of add routine with branching in case of overflow 
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You will recall from earlier work in fixed-point 
operations and branching, that the Branch on Condi
tion (BC) instruction tests the condition code in the 
program status word (PSW). The condition code (0, 
1, 2, or 3) is set by any of a large number of instruc
tions and indicates the result of executing that instruc
tion. Thus, for the example of the Add instruction 
above (A 5,B), the condition code settings 0, 1, 2, and 
3 indicate, respectively, whether the result of the add 
was zero, less than zero (i.e., negative), more than 
zero (positive), or caused an overflow. To test the con
dition code, the BC instruction has a four-bit mask, 
with each bit checking one of the condition code set
tings. The decimal mask value of 14 in the BC 14,OKI 
instruction, above, se.ts the mask bits to 1110, which in 
turn tests condition code setting 0, 1, or 2. If the Add 
instruction resulted in setting up anyone of these con
dition codes (that is, the result was equal to, less, or 
more than zero but did not overflow), one of the mask 
bits in the BC instruction will match it and the Branch 
to OKl will be taken. As we shall see presently, the 
OKI branch is simply a continuation of the adding 
routine. 

If, however, an overflow occurred during the first 
add, condition code 3 (rather than 0, 1, or 2) will be 
set up, the branch to 0 Kl will not be taken, and the 
program will go on to the next line of coding, which is 
the Branch and Link instruction 

BAL 14,OVERFL 

This places the address of the next instruction in se
quence into register 14, to provide a return link, and 
then branches to the OVERFL (overflow) routine, 
which is not shown in the assembly listing (Figure 
136). The overflow fixup routine is designed to correct 
a part of the overflow condition (the sign bit), so that 
continued addition can take place. At the end of this 
routine it is necessary only to execute an unconditional 
branch (not shown) to the address in register 14 by 
means of the BCR instruction, in order to continue the 
main program. 

OKI continues the adding routine with the 

A 5,C 

instruction, which adds C to the contents of register 5. 
Again we test for overflow by means of the Branch on 
Condition instruction 

BC 14,OK2 

If there was no overflow (condition code equals a bit 
in decimal mask value 14), we branch to OK2, the 

continuation of the adding routine; otherwise, we go 
on to the next instruction 

BAL 14,OVERFL 
which is the Branch and Link to the overflow fixup 
routine, described earlier. 

Routine OK2 is entered either directly, through the 
branch address in the BC 14,0K2 instruction, or at the 
end of the overflow fixup routine through an uncon
ditional branch instruction. The routine adds D to the 
sum contained in register 5, followed again by the BC 
and BAL instructions, as described earlier. This group 
of three instructions presents nothing new. 

The final part of the program is entered at OK3, 
either through the branch address in the previous BC 
140K3 instruction or at the end of the overflow rou
ti~e (in the event of an overflow). The OK3 routine, 
which is not shown in the assembly listing, would con
sist of checking whether or not an overflow occurred 
anywhere in the program, and if so, it would fix up the 
portion that could not be corrected in the overflow 
routine. 

Consider now the same example programmed to take 
advantage of the automatic interrupt mechanism, as 
shown in the partial assembly listing (Figure 137). 
Note that only eight lines of coding were needed to 
get to the point in the program (completion of add
ing) that required 15 lines of coding in the branching 
routine (Figure 136). 

The first four instructions are preliminary and are 
identical to those shown in Figure 136. The Set Pro
gram Mask (SPM 4) instruction is· omitted, since we 
want an automatic program interrupt in case of over
flow during this run. The actual processing is coded 
very compactly in the remaining four (Load and Add) 
instructions, which consist of loading A into register 
5 and then adding B, C, and D in sequence. No Branch 
on Condition (BC) and Branch and Link (BAL) in
structions were needed, since in the event of over
flow after any add, the program will be interrupted 
automatically and control will be passed to the «In
terrupt Supervisor". 

So that you not be deceived, however, by the seem
ing simplicity of this program, consider that the prob
lem programmer still has to take care of the overflow 
by writing the appropriate fixup routine. Upon oc
currence of the interrupt, the Supervisor will im
mediately branch to this user-prepared routine, and, 
if this routine detennines that recovery is not possible, 
it will request the Supervisor program to dump and 
abort the program. 
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a 1 * EXAMPLE 2 AN AUTOMATIC INTERRUPT ROUTINE 
000100 
000100 05FO 
000102 

2 
3 
4 

PROGA START 256 
BALR 15,0 
USING *,15 

000102 1844 5 SR 4,4 
000104 5850 F02E 00130 6 
000108 5A50 F032 00134 7 

L 5,A 
A 5,B IF OVERFLOW OCCURS, CONTROL WILL BE PASSED 

8 * AUTOMATICALLY TO AN INTERRUPT ROUTINE 
00010C 5A50 F036 00138 9 A 5,C 
000110 5A50 F03A 0013C 10 A 5,0 

Figure 137. Partial assembly listing of add routine shown in Figure 136, with automatic program interrupt in case of overHow 

Classes of Interrupts 

We have studied one type of interrupt, a fixed-point 
overflow, which is one of 15 possible interrupt condi
tions in the general class of program interrupts. Let 
us briefly review the five classes of interrupts: pro
gram, input; output, machine check, external, and 
supervisor call. Detailed information on each of these 
appears in IBM System/360 Principles of Operation 
(A22-6821). 

Each of the five classes of interrupts has two dis
tinct storage locations, for the old and new PSW's 
respectively, as listed below (in decimal notation): 

INTERRUPT OLD psw NEW psw 
CLASS LOCATION LOCATION 

External 24 88 
Supervisor 32 96 
Program 40 104 
Machine 48 112 
Input/output 56 120 

Note that the storage locations are all divisible by 
eight, since each contains a doubleword (eight bytes). 

Bits o 16 31 

Interruption 
Code 

The new PSW location is always 64 bytes higher than 
the old. These storage locations are, of course, perma
nently assigned. 

Program Interrupts 
Program interrupts are caused by various kinds of pro
gramming errors and other unusual conditions, such as 
incorrect operands or operand specifications, and ex
ceptional results. Eight of the 15 possible interrupt 
conditions involve arithmetic overflow, improper di
vides, lost significance, and exponent underflow. (The 
last two can occur only in floating-point arithmetic.) 
The remaining seven conditions are concerned with 
improper addressing and specifications, attempted ex
ecution of invalid instructions, violation of storage 
protection, and similar conditions. (The 15 program 
interrupt causes are explained in A22-6821.) 

40 63 

Instruction 
Address 

Figure 138. Interruption code and instruction address portions of PSW 
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How can the Interrupt Supervisor program deter
mine what caused the interruption? There are really 
two ways. The general class of interrupts (one of five) 
is apparent from the fixed storage locations of the old 
and new PSW's. Thus, the fact that the machine 
fetched the new PSW from location 104 and stored the 
old PSW in location 40 tells the Supervisor program 
that the interrupt was caused by a program check. 
Identifying what, specifically, caused the program 
check is the function of the interrupt code in the PSW. 
The interrupt code takes up bit positions 16-31 in the 
64-bit PSW (see Figure 138). These bits identify the 
specific cause of the interrupt. When an interrupt oc
curs, the current PSW is stored in one of the perma
nent locations reserved for old PSW's - in this case, 
location 40 for a program check. At the same time the 
interrupt code is automatically set and recorded in 
this location. Thus the Interrupt Supervisor need only 
examine the interrupt code specified by bits 16-31 
of the old PSW to determine whether the cause of 
the program check was faulty addressing, improper 
specification, fixed-point overflow, or some other ex
ceptional condition. 

For reference, the codes for the 15 conditions that 
cause program interrupt are given in the following 
chart (only bits 24-31 are listed, since bits 16-23 are 
all zeros): 
NO. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

INTERRUPT CODE 

(BITS 24-31) 
00000001 
00000010 
00000011 
00000100 
00000101 
00000110 
00000111 
00001000 
00001001 
00001010 
00001011 
00001100 
00001101 
00001110 
00001111 

Input/Output Interrupts 

PROGRAM INTERRUPT 

CAUSE 

Operation 
Privileged operation 
Execute 
Protection 
Addressing 
Specification 
Data 
Fixed-point overflow 
Fixed-point divide 
Decimal overflow 
Decimal divide 
Exponent overflow 
Exponent underflow 
Significance 
Floating-point divide 

When an input/output device ends an operation, a sig
nal goes to the CPU that the channel is free and ready 
to accept a new operation. This signal causes an I/O 
interrupt. You will recall that in System/360 the I/O 
operations on one or more channels are overlapped 
with processing; that is, they take place independently 
from and at the same time as processing. The chan
nels must, therefore, let the processor (or more speci
fically, the supervisor program) know whenever an 
I/O operation has been completed; the I/O interrupt 
circuitry does just that in the most efficient manner. 

In addition, error or other conditions (bad tape, end 
of tape, etc.) existing on channels or I/O devices 
alert the system by causing an I/O interrupt. The in
terruption code of the old PSW (stored in location 
56) will tell the Interrupt Supervisor which channel 
and I/O unit caused the interrupt, so that appro
priate action can be taken. Additional information 
about the status of the I/O device and channel is pre
served in the channel status word (CSW), which is 
also stored in a fixed location (64) as part of the 
machine's interrupt procedure. 

You will learn con~iderably more about I/O inter
rupts if you take up i/o programming. For the pres
ent, note that more than one request for an I/O inter
rupt may occur at the same time, but one only can be 
processed at a time. The remaining requests are stored 
in the I/O channel, control unit, or device until they 
can be accepted by the CPU, one at a time and in or
der of priority. For reference, the following chart lists 
the I/O interruption code (stored in bits 21-31 of 
the old PSW) and identifies the channel and device 
causing the interrupt. 
I/O INTERRUPT CODE 

(PSW BITS 16-31) 
00000000 aaaaaaaa 
00000001 aaaaaaaa 
00000010 aaaaaaaa 
00000011 aaaaaaaa 
00000100 aaaaaaaa 
00000161 aaaaaaaa 
00000110 aaaaaaaa 

CHANNEL IDENTIFICATION 

Multiplexor Channel 
Selector Channel 1 
Selector Channel 2 
Selector Channel 3 
Selector Channel 4 
Selector Channel 5 
Selector Channel 6 

NOTE: a = I/O device address 

Machine Check Interrupts 
Machine check interrupts are caused by various types 
of machine errors and hardware malfunctions, as de
tected by the machine-checking circuits. Invalid in
structions or data cannot result in a machine check, 
with one exception: after a power interruption or sys
tem reset, incorrect parity may exist in storage or 
registers, which will cause a machine check. Once the 
registers have been cleared and new information has 
been loaded, this can no longer happen. 

Upon occurrence of a machine check, the current in
struction is abruptly terminated (that is, the results 
may not be stored) and a hardware procedure to re
cord the status of the system is initiated. Part of this 
procedure consists of a "scan-out" of the CPU hard
ware status into the storage area, starting with loca
tion 128 and extending through as many words as are 
required by the CPU and I/O channels of the par
ticular system used. The old PSW is then stored in lo
cation 48 with an interrupt code (bits 16-31) of all 
zeros, and a new PSW is brought out from location 
112. The storage locations and interrupt code of zero 
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will inform the Interrupt Supervisor that a machine 
check interrupt has occurred. The supervisor then 
takes certain actions depending on the programming 
system used (Basic Programming Support, Basic Op
erating System, or Operating System/360). Some su
pervisors place the system in a wait state, allowing the 
operator to load and execute a stand-alone program 
(obtainable from the Customer Engineer) that will 
preserve in the form of printed output (for later 
analysis by the Customer Engineer), the contents of 
the scan-out area and such other information as the 
old machine check PSW. Other supervisors allow the 
automatic recording of the scan-out area on disk or 
drum without operator intervention. 

We shall see later that a machine check interrupt 
can be prevented (or masked), if desired. When this 
is done, no interrupt or recording procedure occurs, 
and the machine attempts to continue the instruction 
sequence in the presence of a machine check. 

External Interrupts 
Three types of conditions can cause an external inter
rupt of the CPU: 

1. The operator presses the Interrupt key on the 
console. 

2. The value in the built-in interval timer turns 
from positive to negative. 

3. An external signal (part of the Direct Control 
feature) occurs. 

Requests for an external interrupt may occur at any 
time and, possibly, from several different sources si
multaneously. When an external interrupt occurs, the 
old PSW is stored at location 24 and a new PSW is 
fetched from location 88. The source of the interrupt 
is recorded by the interrupt code bits 24-31 of the old 
PSW; bits 16-23 are made zero. As is evident from 
the following listing, each external interruption source 
sets a corresponding bit of the interrupt code to 1. 
INTERRUPT INTERRUPT CODE EXTERNAL 

CODE BIT (PSW BITS 24-31) INTERRUPT CAUSE 

24 1nnnnnnn Timer 
25 nlnnnnnn Interrupt key 
26 nnlnnnnn External signal 2 
27 nnn1nnnn External signal 3 
28 nnnn1nnn External signal 4 
29 nnnnninn External signal 5 
30 nnnnnnin External signal 6 
31 nnnnnnni External signal 7 

n = Other external-interruption conditions 
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Supervisor Call Interrupts 
A Supervisor Call is a special instruction used by the 
program to force an interrupt. A supervisor call inter
rupt, therefore, differs from the other classes of inter
rupts in that the program makes use of the automatic 
interrupt linkage, rather than the machine itself rec
ognizing some exceptional condition. The most fre
quent use of the supervisor call interrupt is to switch 
from the problem state to the supervisory state; that 
is to turn over control to the supervisor (operating 
s;stem) ... Certain instructions - for example, to carry 
out an I/O operation - are executable only in the su
pervisory state of the machine. We shall consider this 
and other forms of status switching through use of 
the Supervisor Call instruction in greater detail, in the 
section entitled "The Interrupt Supervisor". 

When a Supervisor Call instruction causes a super
visor call interrupt, the old PSW is automatically 
stored at location 32 and a new PSW is fetched from 
location 96. Simultaneously, eight bits from the Super
visor Call instruction (bits 8-15 of the Rl and R2 
fields) are placed into bit positions 24-31 of the in
terrupt code in the old PSW, to permit identification 
of the interrupt. These eight bits are used, in effect, to 
convey messages from the calling, or problem program 
to the supervisory program. The message may consist, 
for example, of a request to begin an I/O operation for 
the problem program, or of notification that the prob
lem program is finished and a request to the super
visor to read in a new program. After the request has 
been honored, the supervisor program returns control 
to the problem program via the Load PSW instruc
tion. In the examples above, the Supervisor Call is the 
last instruction of the problem program. Depending 
upon the service requested, however, a supervisor call 
interrupt may occur at any point of the problem pro
gram. More about the SVC instruction later on. 



Automatic interrupts are convenient, but sometimes it 
is desirable, or even necessary, to prevent interrupts 
or, at least, postpone recognizing them. Preventing an 
interrupt, or keeping it pending till later, is called 
masking. External, I/O and machine check interrupts 
can be kept pending until a later time. Four of the 15 
programming exceptions can be ignored ( masked) 
completely (prevented from causing interrupts). How
ever, the remaining eleven program interrupt condi
tions and the supervisor call interrupt cannot be 
masked. 

One situation where masking is absolutely essential 
is characterized by multiple interrupts of the same 
type. Without masking, this condition would cause 
the CPU to be caught in a program loop, from which 
it could not return to the problem program. Consider, 
for example, a condition of simultaneous I/O opera-

Problem 
Program Location 56 

OLDPSW 

First 
I/O 
Interrupt 

---X --------

How Interrupts Can Be Prevented (Masking) 

tions occurring on two or more channels. Since, with 
more than one channel present, simultaneous I/O 
operations are going on all the time, this situation 
could easily occur. As shown in Figure 139, the first 
I/O interrupt - occurring sometime during the execu
tion of the problem program - will cause the current 
PSW to be stored in the old PSW location 56. The old 
PSW provides for the eventual return to the problem 
program and also tells the Supervisor program (via the 
interrupt code) which channel and I/O device caused 
the interrupt. A new PSW will then be fetched from 
location 120 and the instruction address in this PSW 
will immediately direct the Supervisor program to 
the appropriate I/O interrupt routine. Note (in Figure 
139) that the last instruction of this routine provides 
for loading the old PSW from location 56, in order to 
resume the problem program. 

I/O Interrupt 
Routine in 

\ Supervisor Program 

NEW PSW 

Location 120 

\ 
------\-----

\ 
\ , , 

'..... X Attempted --
2nd I/O 
Interrupt 

"LOAD PSW" from 
Location 56 

(results in loop) 

Figure 139. Need for masking. H an I/O interrupt were allowed to occur during execution of a previous I/O interrupt-handling 
routine, the "old" PSW from the problem program would be destroyed and the CPU would be caught in an I/O in
terrupt loop, making return to the problem program impossible. 
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Assume now that during the execution of the I/O 
interrupt-handling routine (that is, before the first 
I/O interrupt has been completely serviced), a second 
I/O interrupt occurred. This new interrupt would 
cause the current PSW from the (first) I/O interrupt 
routine to be stored in location 56, thus destroying the 
old PSW from the original problem program. A new 
PSW would then be fetched to handle the second I/O 
interrupt, at the completion of which the old PSW 
would bring us back to the first I/O interrupt routine, 
and so on. There would be no way to return to the 
problem program. 

Clearly, in this or any similar case, the same type 
of interrupt must be prevented from occurring during 
the execution of an interrupt routine. As we shall see 
presently, this is done by masking one's own class of 
interrupts in the new PSW. However, the problem 
programmer need never worry about this case, since 
the masking is performed by the control (Supervisor) 
program. 

Regardless of who does it (sometimes the Super
visor, sometimes the programmer), how is masking ac
complished? Like almost everything else, masking -
the prevention of interrupts - is taken care of in the 
PSW. Specifically for the purpose of masking, the 
PSW provides certain fields, known as system mask, 
machine check mask, and program mask (see Figure 
140). The system mask is concerned with the preven
tion-of I/O and external interrupts, while the machine 
check and program masks apply to the corresponding 
classes of interrupts. As is evident in Figure 140: 

Bits 0-7 of the PSW form the system mask. 
Bit 13 of the PSW is the machine check mask. 
Bits 36-39 of the PSW constitute the program mask. 

Whenever the mask bits for particular types of inter
rupts are made zero, these types are prevented from 
occurring, or masked. When the mask bits are set to 
one, on the other hand, the CPU is interruptible for 
the corresponding types of interrupts. Let us look a 
little more closely at each of the masks. 

o 7 13 16 

~ 

System 
Mask Machine 

Check 
Mask 

Interruption 
Code 

31 36 40 

t 
Program 

Mask 

Instruction 
Address 

System Mask 
As mentioned, the system mask (consisting of PSW 
bits 0-7) can be used to mask all types of external 
and I/O interrupts. Masking here means that the af
fected types of interrupts can be held pending for 
later execution, but not completely ignored. The fol
lowing chart lists the system mask bits that must be 
made zero to individually or collectively mask the cor
responding I/O and external interrupts: 
SYSTEM 

MASK BIT 

o 
1 
2 
3 
4 
5 
6 
7 

INTERRUPTION SOURCE 

Multiplexor Channell 
Selector Channel 1 
Selector Channel 2 
Selector Channel 3 
Selector Channel 4 
Selector Channel 5 
Selector Channel 6 

{
External Signal, 
Timer, Interrupt Key 

CLASS 

110 
110 
110 
110 
110 
110 
110 
External 

During an I/O or external interrupt the Supervisor 
program will mask the identical interruption source, 
by setting the corresponding system mask bit in the 
new PSW to zero, at the beginning of the interrupt. 
In addition, the programmer has the choice of keeping 
interrupts from certain channels or external sources 
pending, by setting the appropriate mask bits to zero. 
For example, a system mask of 10000001 would hold 
I/O interrupts from all selector channels pending, 
while permitting interrupts only from the multiplexor 
channel and external sources. Similarly, a system mask 
of 01110000 would permit I/O interrupts only from 
selector channels 1-3, and mask interrupts from se
lector channels 4-6, the multiplexor channel, and ex
ternal sources. 

System masks may be set in two different ways. The 
first consists of introducing an entirely new PSW with 
the desired mask bits, either through the Load PSW 
instruction or a supervisor call interrupt. The second 
way is through use of the Set System Mask (SSM) 
privileged instruction, which replaces only the system 
mask bits of the current PSW for the duration of the 
routine, until execution of the next SSM or Load 
PSW instruction. 

63 

Figure 140. Location of system, machine check, and program masks in PSW 
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Machine Check Mosie 
A machine check can cause an interrupt only when 
PSW bit 13, the machine check mask, is set to 1. As 
described earlier, the machine check will start a re
cording routine to locate the fault, begin a scanout of 
the status of the CPU from location 128, store the old 
PSW, and finally cause a machine interrupt. (The 
scanout, sometimes called logout, automatically places 
information concerning the state of the internal circui
try into storage.) 

The conditions would be rare, indeed, where one 
would want to keep pending a machine check and the 
resulting recording procedure, by masking the inter
rupt. The IBM supervisor programmer can do so, how
ever, by making PSW bit 13 a zero. Then if a machine 
check occurs, the associated recording procedure and 
interrupt do not take place and the machine will at
tempt to continue the instruction sequence. Of course, 
you always have the additional option of turning on 
the Error Stop switch on the CE section of the System 
Control Panel. A machine check will then cause an 
error stop of the system, regardless of the setting of 
the machine check mask bit. 

Program Mosie 
Bits 36-39 of the PSW constitute the program mask 
(Figure 140). These bits are reserved for certain pro-

gram exceptions which, on occasi.on, are not to be 
treated as program checks. To prevent interruptions 
caused by these exceptions, the corresponding pro
gram mask bits must be made zero, as follows: 

PROGRAM MASK 

BIT (IN psw) 
36 
37 
38 
39 

PROGRAM EXCEPTION 

Fixed-point overflow 
Decimal overflow 
Exponent underflow 
Significance 

The first two of these exceptions pertain to fixed
point and decimal overflow conditions. A programmer 
may want to mask either or both of these exceptions 
- for example, when he is' using a general register as 
a counter in a- program. He may want to test the 
counter for overflow without incurring a program 
check. Thus, he would set PSW bit 36 and/or 37 to 
zero, to mask the corresponding overflow exception. 
In eur earlier example of a fixed-point overflow dur
ing an add operation, we used the Set Program Mask 
instruction to make PSW bits 36 and 37 zero, thus pre
venting an automatic program interrupt due to over
Bow; we then branched to a "fixup" routine to correct 
the overflow condition resulting from continued addi
tion. Exponent underflow and "Significance" (PSW 
bits 38 and 39, respectively) are concerned with Boat
ing-point operations. 
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Interrupt Mechanics 

Now that we have a better appreciation of the PSW, 
masking, and other features, we are in a position to 
recap the interrupt action in more detail and become 
acquainted with some refinements (see Figure 141, 
which gives a more complete picture of the mechanics 
of interrupts). 

We have discussed the five classes of interrupts 
(I/O, program, external, machine check, and super
visor call) and the numerous possible sources of in
terrupts within each class. When one of these many 
possible exceptions takes place, an interrupt may oc
cur, provided certain conditions are fulfilled - and 
then only after certain preliminaries are out of the way. 
The necessary condition for an interrupt to occur is 
that the CPU be interruptible for the particular in
terruption source. As we have seen in the last section, 
this means that the system mask, program mask, or 
machine check mask (depending upon the class of 
interrupt) in the PSW must be checked to verify 
whether the appropriate mask bits are zero or one. 
If the mask bits for the source of interruption are 
one, the program will be interrupted; if they are zero, 
the CPU is not interruptible for this source. ( Some 
interruptions cannot be masked, of course.) Before 
an interrupt can take place, however, even with mask
ing absent, the CPU has to decide what to do with the 
instruction presently being processed - that is when 
to interrupt. 

Timing of Interrupt 
In general, interrupts can take place only after the 
current instruction has been finished and before the 
next instruction is started; you cannot have an inter
rupt in the middle of an instruction. However, the 
manner in which the instruction preceding an interrupt 
is finished depends to some extent on the cause and 
type of interrupt. The preceding instruction may be 
complete4, terminated, or suppressed. 

In the case of input/output, external, and super
visor call interrupts, the current instruction is com
pleted in a normal manner before the interrupt is tak
en. This means that the result of the instruction is 
stored (though it may be wrong, depending upon the 
exception) and the condition code is set as for any 
normal instruction. (We shall take a look at the con
dition code in the PSW presently.) 

In the case of program or machine interrupts - indi-

194 

cating programming and hardware errors, respectively 
- the interrupt still occurs at the end of the current in
struction. However, upon detection of a machine mal
function (machine check), the execution of the in
struction is terminated during E (execution) time, 
rather than being completed. When an instruction is 
terminated, all, part, or none of the result may be 
stored; hence, it should not be used for further compu
tation. The setting of the condition code also is un
predictable after an instruction termination. 

In the case of a program check interrupt, depending 
upon the type of programming error and just when in 
the machine cycle the error is detected, the current in
struction may be completed, terminated, or suppressed. 
The instruction is completed after detection of 
most computation errors, such as fixed-point and deci
mal overflows, or floating-point operations. A fixed
point divide error detected during instruction fetch 
time, however, causes the execution of the current in
struction to be suppressed; that is, the called-for 
operation is not carried out at all, the results are not 
stored, and the condition code is not changed. If the 
program check is caused by a violation of storage pro
tection or improper addreSSing, the current instruction 
is either suppressed or terminated, depending upon 
whether the error was detected during instruction 
fetch time or execution (E) time, respectively. ("Sum
mary Chart of Interrupt Action"· at the end of thi~ 
chapter shows the mode of execution of instructions 
preceding all types of interrupts. ) 

The Instruction Length Code 
After the current instruction has been finished, the in
terrupt actually takes place (provided, of course, the 
CPU is interruptible for the interruption source). At 
this point, the machine is ready to record the specific 
cause of the interrupt by setting the interrupt code in 
the current PSW and then filing it away in the appro
priate old PSW location for the class of interrupts in
volved. After the interrupt has been serviced, the ma
chine will want to come back to this old PSW to re
sume the instruction sequence of the problem pro
gram. This should not be difficult. With the instruction 
preceding the interrupt having been executed, the In
struction Address portion of the old PSW (bits 40-63 ) 
will automatically have been updated to point to the 
address of the next instruction in the sequence. In the 
case of external and input/output interrupts, where the 
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Figure 141. Mechanics of interrupt 
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problem program had nothing to do with the cause of 
interrupt, this is exactly what we want. After the inter
rupt has been serviced, we shall want the machine to 
continue with the next instruction of the problem pro
gram, as if nothing had happened. 

Consider now, however, the case of program or 
supervisor call interrupts, where an instruction in the 
problem program actually caused the interrupt. We 
may want to get back to this last instruction preceding 
the interrupt, either to analyze it for the cause of 
trouble or to execute it correctly after the cause of the 
interrupt has been taken care of. The instruction ad
dress of the PSW tells us the location of the next in
struction that would have been executed if the inter
rupt had not taken place. To find the location of the 
last instruction executed, we must know its length (in 
bytes) and then subtract this value from the "next" in
struction address in the PS"V. This is the function of 
the instruction length code (ILC) in the PSW (see 
Figure 142). The ILC, consisting of PSW bits 32 and 
33, is set at the time of an interrupt to 1, 2, or 3 de
pending upon the length of the last instruction, as 
follows: 

ILC PSW BITS INSTRUCTION INSTRUCTION 

SETTING 32-33 LENGTH FORMAT 

1 01 1 haHword (2 bytes.) RR 
2 10 2 halfwords (4 bytes) RX, RS, or SI 
3 11 3 halfwords (6 bytes) SS 

Thus, if the instruction address in the old PSW is 
3000 and the ILC setting is 3 (binary 11), the op code 
of the last instruction executed before the interrupt is 
located at address 2994 (that is, six bytes less than the 
"next" instruction address). 

A Supervisor Call instruction is one halfword in 
length and, therefore, the ILC for a supervisor call in
terrupt is always 1. For program interrupts, the ILC 
setting may be 1, 2, or 3, depending upon the format 
of the instruction preceding the interrupt. If the length 
of the instruction preceding a program interrupt is not 
available, an instruction length code of 0 is entered in 

16 3234 36 

Interruption 0 0 
Code ....:I 0 

~ 

the PSW (bits 32-33 are 00). For machine check in
terruptions, the malfunction may affect the setting of 
the ILC, so that the code is not predictable. Finally, 
for external and I/O interrupts, which were not caused 
by the last-interpreted instruction, the ILC is not 
needed and is not predictable. ("Summary Chart of 
Interrupt Action" at the end of this chapter summa
rizes all ILC settings. ) 

The Condition Code 
Figure 142 also shows the location of the condition 
code (CC), consisting of bits 34 and 35, in the PSW. 
In brief, the setting of the condition code reflects the 
status of the CPU at the time of the interrupt. Mter an 
arithmetic operation, as we have seen in our example, 
the setting of the condition code (0, 1, 2, or 3) indi
cates, respectively, whether the result is zero, negative, 
positive, or has caused an overflow condition. The con
dition codes for all operations and instructions are 
summarized in the applicable SRL publication (see 
A22-6821, the section on branching). The setting of the 
condition code in the current PSW is updated after 
each instruction and (as illustrated in Figure 136) it 
can be examined by means of the Branch on Condition 
( BC ) instruction. The important information con
tained in the condition code is automatically stored 
with the old PSW at the time of interrupt. 

The Interrupt-Handling Routine (Supervisor) 
After the current PSW has been stored in the appro
priate doubleword location at the time of interrupt, a 
new PSW is fetched from one of the doubleword lo
cations reserved for the .five major classes of interrupts. 
The instruction address portion of this new PSW 
"points" to the first instruction of the interrupt-hand
ling routine, or Interrupt Supervisor, as we have seen 
earlier. Note that everything so far has been complete-
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Figure 142. Location of instruction length code and condition code in PSW 
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ly automatic and that nothing has required the use of 
programmed instructions; it has all been done by elec
tronic circuitry. 

As indicated in Figure 141, the Interrupt Handler or 
Supervisor is a program of instructions that tells the 
CPU what to do for each possible type of interrupt. 
The program is not usually prepared by the installa
tion,s problem programmers, but is part of the control 
program package. We shall learn in the next .section 
how the system is able to differentiate between the 
problem program and the supervisory interrupt-handl
ing routines. For the moment, however, it is sufficient 
to note that the interrupt-handling routine (Super
visor) analyzes the cause of the interrupt, as indicated 
in the interrupt code of the old PSW, and then takes 
the appropriate action. Depending on the cause, this 
may require correcting the error via a user-prepared 
fix-up routine and later resumption of the mainline pro
gram (see Figure 135) or it may require calling for a 
dump program resulting in termination of the problem 
program. Different situations will require various cor
rective actions and routines, and it is sometimes im
possible to recover and resume the mainline program. 

Return to Problem Program 

The last instruction of the interrupt-'handling routine 
returns control to the problem program in those cases 
where it is possible and desirable to recover the error 
and resume the mainline instruction sequence from the 
point of interrupt. This is the Load PSW instruction, 
which has an SI format, and is generally used by the 
Supervisor when it wants to change the current PSW 
and go on to something else. Its main use is, of course, 
the resumption of the problem program after an I/O, 
supervisor call, or external interrupt has been serviced. 
In this case, the Supervisor programmer will simply 
write the eHective address of the old PSW that was in 
charge before the interrupt into the Bl and Dl fields 
of the Load PSW instruction. The instruction will then 
fetch the old PSW from the designated doubleword lo
cation and load it again as the current PSW. The CPU 
now resumes the problem instruction sequence from 
the point of interruption. (Note, by the way, that the 
current PSW in charge during the interrupt routine is 
not automatically stored anywhere and therefore is 
lost.) 
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The Interrupt Supervisor 

The basic design philosophy of the operating systems 
available for System/360, that of nonstop operation, 
assumes that a Supervisor program be in control of the 
system at all times, and that manual intervention be 
kept to a minimum. This design philosophy requires 
not only the automatic interrupt mechanism, but also 
a comprehensive control program that will free the in
stallation's programmer from handling such common 
control functions as program loading, input/output 
operations, error detection and recovery, and com
munication between the program and operator. Thus, 
the presence of an independently prepared control pro
gram for handling these common functions found in all 
programs, permits the installation programmer to con
centrate on the problem-solving aspects of his applica
tion or problem programs. 

Only a portion of the control program known as the 
Supervisor is kept permanently in main storage. The 
Supervisor calls in other sections of the control pro
gram when necessary. Since the Supervisor and the 
problem program constitute two distinct programs in 
core storage, processing in the CPU alternates between 
the two, and the CPU is said to be operating in either 
the problem or supervisor state, depending upon which 
program is currently being executed. As we have seen, 
the Supervisor receives control of the CPU either 
through an automatic, machine-caused interrupt or 
through a programmed (supervisor call) interrupt. We 
shall learn a little later just how the System/360 CPU 
is able to distinguish between the separate Supervisor 
and problem programs in storage. 

The Supervisor program performs the following ma-
jor functions: 

1. Interrupt handling 
2. Input/output control and channel scheduling 
3. Device error recovery 
4. Program loading and retrieval 
5. Operator communication 
6. End-of-job handling 
7. Checkpoint and restart 
8. Label processing 

In this section we shall be concerned only with the 
portion of the Supervisor that handles interrupts - the 
Interrupt Supervisor. Let us see just what it does upon 
occurrence of each major class of interrupts. This is a 
generalized discussion of concepts applicable to al] 
operating systems for System/360. For a discussion of 
the functions of the Supervisor in a specific operating 
system, see the appropriate SRL publication. 
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How the Interrupt Supervisor Handles Interrupts 
The Interrupt Supervisor must perform certain tasks 
common to all types of interrupts. It gains control of 
the CPU, by an interrupt. This is accomplished by the 
automatic exchange of PSW's, as we have seen. The 
status of the interrupted program is saved by placing 
the current PSW in the appropriate old PSW location, 
in accordance with the class of interrupt. A new PSW 
for this class of interrupt is then fetched from its re
served storage location. The instruction address por
tion of the new PSW "points" to the beginning of the 
Interrupt Supervisor routine, thus transferring control 
to it. 

Having gained control of the CPU, the Interrupt 
Supervisor must perform three major tasks (see Fig
ure 143). 

1. It must analyze the type of reason and the spe
cific reason for the interrupt. As was described earlier, 
the type or class of interrupt is revealed by the perma
nent storage locations of the old and new PSW's. The 
specific cause of the interrupt is contained in th6 inter
ruption code (bits 16-31) of the old PSW. 

2. It must take the appropriate action - that is, it 
must transfer control to the appropriate routine for 
handling the particular type of interrupt. As will be ex
plained presently, some interrupt-handling routines are 
prepared by the user, others by IBM - again depend
ing on the type. 

3. Upon completion of the handling routine, it 
must, whenever possible, restore the mainline program 
via the old PSW. This is accomplished by the Super
visor program issuing a Load PSW instruction, which 
normally returns control to the interrupted program at 
the point of interruption recorded in the old PSW. 

Input I Output Interrupts 

Upon detection of an input/output interrupt, caused 
either by completion of an I/O operation or by the 
need for an I/O device to receive attention, control is 
immediately transferred to an element that might be 
termed the Input/Output Supervisor portion of the 
Supervisor program (see Figure 143). In general, the 
Input/Output Supervisor consists of a series of rou
tines that handle all I/O operations, including I/O in
terrupts. At the normal end of an I/O operation, the 
Input/Output Supervisor starts any pending new I/O 
operations and then returns control to the problem 
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program. The Input/Output Supervisor also detects 
and handles such specific conditions as a parity error, 
end of file (EOF), or a wrong-length record (WLR). 
Upon detection of an input parity error, for example, 
all interrupts are masked, and control is passed to the 
appropriate error recovery routine for the particular 
I/O device involved. If recovery is not possible, the 
user may (1) have the error ignored, (2) bypass the 

erroneous record, ( 3) transfer control to a user
prepared routine, or (4) terminate the job. 

Machine Check Interrupts 

Detection of a machine check interrupt caused by 
some malfunction causes the type of action previously 
described in the discussion of machine checks in the 
section on "Classes of Interrupts". 
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Supervisor Call Interrupts 
This interrupt is caused by a request from the problem 
program via the Supervisor Call (SVC ) instruction. 
The SVC interrupt routine in the Supervisor examines 
the interrupt code supplied with the SVC instruction 
and transfers control to the proper routine to handle 
the request. Some of the Supervisor routines that may 
be requested via the SVC instruction are listed below: 

TYPE OF 

l\O'OTlNE 

FETCH 

MSG 

EXCP 

EXIT 

EO] 

FUNCOON 

To load a program from the core image library 
into storage for execution 
To provide communication between the opera
tor and the problem program 
Execute Channel Program - to request an I/O 
operation by the Input/Output Supervisor 
To return to the main problem program after a 
user-prepared timer routine or operator inquiry 
To terminate the program and prepare for the 
next job to be run 

External Interrupts 

External interrupts may be caused by external signals 
(available with the Direct Control feature), by the 
timer going from a positive to a negative value, or by 
the operator pressing the interrupt key at the console. 
External device signal interrupts are ignored by the 
general purpose version of the Supervisor; control is 
passed directly back to the problem program at the 
point of interrupt. Interrupts caused by pressing the 
interrupt key on the console are handled by Operator 
Communication Routines. These routines handle mes
sages directed to the Supervisor program by the opera
tor and issued to the operator by the Supervisor pro
gram. In some operating systems, the operator indi
cates his desire to send a message to the Supervisor by 
the depression of a "'request" key on the system console 
device (a 1052, for example). In this situation, opera
tor communication routines to handle the message 
would be entered because of an input! output inter
rupt. Finally, timer interrupts are turned over to a 
user-supplied timer routine for handling. The last in
struction of this routine returns control to the Super
visor via the EXIT Supervisor Call. If there is no user's 
timer routine, the interrupt will be ignored. 

Program Interrupts 

In the event of a program interrupt, the Supervisor will 
transfer control to the address of a user-supplied pro
gram error fixup routine, provided one exists. Thus, in 
our earlier example of a fixed-point overflow during 
adding, the installation's programmer would have to 
supply an overflow fixup routine to which the Super
visor could branch. The user's subroutine itself would 
determine where the interrupt occurred by examining 
the address in the program check old PSW. Upon 
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completion of this routine, control can be returned to 
the Supervisor and then to the interrupted problem 
program. If no fixup routine is supplied, however, the 
program is terminated, either immediately or after 
printing the contents of the problem program area in 
core storage (that is, program dump). 

How the System/360 CPU Recognizes Super
visor and Problem Programs 
We have indicated that two independently prepared 
programs are always in main storage: the Supervisor 
and the problem program. It is evident that these two 
programs should be kept separate at all times and that, 
moreover, the Supervisor must be protected from acci
dental interference or destruction by the problem pro
gram. Thus, two questions arise: How does the ma
chine know which of the two programs is in control at 
any time? and How is the Supervisor program por
tected from interference? To answer these interrelated 
questions, we shall need to explore briefly the follow
ing aspects of the System/360 architecture: 

Processor program states 
Instruction classification 
Storage protection 

These topics are more fully covered in A22-6821 and 
will be reviewed only briefly in the following para
graphs. 

Processor Program States 

The overall status of the processor is determined by 
four types of program states, with which you have al
ready become somewhat familiar. They are the stop
ped or operating, wait or running, masked or inter
ruptible, and problem or Supervisor program states. 
Each of these program state alternatives is identified 
by the setting of a bit in the current PSW, but in this 
context we are interested only in bit 15, which is the 
problem state bit (see Figure 144). When bit 15 of the 
current PSW is zero, the processor is in the Supervisor 
state; when bit 15 is one, the processor is in the prob
lem state. Thus, the machine assumes that the problem 
program is being executed when current PSW bit 15 
is one, and that the Supervisor program is being exe
cuted when bit 15 is zero. 

Switching between the problem and Supervisor 
states is accomplished by changing bit 15 of the cur
rent PSW, and this can be done only by introducing a 
new PSW. As we know already, a new PSW can be in
troduced as the current PSW either through an inter
rupt or through the Load PSW instruction. Thus, an 
interrupt - whether executed automatically by circui
try or through the Supervisor Call instruction - will 
switch from the problem to the Supervisor state by in-



8 11 12 

PROTECTION 
KEY AMWP 

15 16 

�_ __ Problem State Bit (15) 

---- Wait State Bit (14) 

Figure 144. Protection key, problem state, and wait state indications in PSW 

troducing a new PSW with a zero in bit position 15. 
At the same time, an old PSW will be stored with a 
one in bit position 15, to indicate where we left the 
problem program. . 

Instruction Classification 

A second way the CPU distinguishes between problem 
and Supervisor program states is by the type of in
struction: either processing or privileged. Processing 
instructions are concerned only with the problem-solv
ing aspects of the application program and have no 
control over the supervisory portions, such as I/O 
operations and program loading. Privileged instruc
tions, on the other hand, are concerned with the de
vices and operations traditionally controlled by an In
put/Output Control System (IOCS) or other super
visor. Thus, all instructions relating to I/O operations, 
storage protection, direct-control devices, and other 
partS' of the Supervisor program are considered privi
leged. This means that they cannot be called for and 
are not valid, when the processor is in the problem 
state. A privileged instruction encountered in the prob
lem state results in a program exception that causes a 
program interruption. In the Supervisor state, however, 
all instructions - whether processing or privileged -
are valid. 

Let us look at some privileged instructions. We 
would expect the Supervisor rather than the problem 
programmer to have control over the entire current 
PSW and CPU status. Consequently, the Load PSW 
instruction, which replaces the entire current PSW, is 
obviously privileged. The Load PSW instruction may 
be used by the Supervisor to switch back to the prob
lem program, but not vice versa. In contrast, the Su
pervisor Call instruction is not privileged and, hence, 

can be used by the problem program to switch to the 
Supervisor via the automatic interrupt linkage. Simi
larly, the Set System Mask instruction is privileged, 
since it aHects I/O interrupts, which are the concern 
of the Supervisor. The Set Program Mask (SPM) in
struction is not privileged, since we would want the 
problem programmer to be able to mask his program 
exceptions. Other privileged instructions are listed in 
the applicable SRL publication. 

Storage Protection 

The storage protection feature is concerned with the 
protection of a number of programs and data in main 
storage, not only the Supervisor program. In this con
text, we will only touch on the principle underlying 
this feature. 

You are familiar with the file protect rings used in 
earlier computers to protect the data on a reel of tape 
from accidental destruction. In System/360 this feature 
has been extended to all-electronic protection of large 
areas of storage. In brief, each block of 2048 bytes in 
main storage is associated with a four-bit storage key. 
(Four bits provide for protection of up to 15 pro
grams.) The storage key is not part of addressable stor
age, but is controlled by special instructions. The stor
age key is set or changed by the privileged instruction 
Set Storage Key (SSK) and is inspected by the privi
leged instruction Insert Storage Key (ISK). 

When data is to be stored in a protected storage 
block, the storage key is compared with a four-bit pro
tection key, occupying bits 8-tl of the current PSW 
(see Figure 144). Storage takes place only if the pro
tection key and storage key match, or when the pro
tection key is zero. Any other condition results in a 
program interrupt. 
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Simultaneous Interrupts 

What happens when several interrupt requests occur 
at roughly the same time - that is during the same in
struction cycle? We know that interrupt routines are 
normally handled in the order in which they occur, but 
only one request at a time can be serviced. When mul
tiple interrupt requests occur at the same time as a 
result of a variety of causes, which will be taken first, 
and which last? 

To answer these questions, consider first that we 
have some control over the order and occurrence of in
terrupts by means of the masking process. You will re
call that during an I/O or external interrupt the super
visory programmer had to "mask out" the same type of 
interrupt source in order not to get caught in an end
less program loop. He did this by setting the appropri
ate system mask bits in the new PSW to zero through 
use of the Set System Mask (SSM) privileged instruc
tion. Thus, if an I/O or external interrupt request oc
curred on top of an interrupt from the same source, 
the new interrupt request would be kept pending until 
the first request had been serviced. Similarly, we have 
seen that the problem programmer has the choice of 
ignoring four of the 15 possible program exceptions 
that cause a program check interrupt, by setting (to 
zero) the appropriate program mask bits (36-39) in 
the PSW, through use of the Set Program Mask (SPM) 
instruction. The remaining eleven program exceptions 
and the supervisor call interrupt cannot be masked, 
however. 

Stacking Order 

1. Machine Check 

2. Program lor I Supervisor CalI 

3. External I 
4. Input/Output 

When simultaneous interrupt requests occur that are 
not or cannot be masked, they are "stacked up" in a 
certain pre-determined order, just like airplanes in a 
landing pattern. The order in which simultaneous, un
masked interrupt requests are stacked (recognized or 
honored) is as follows (see Figure 145) : 

1. Machine check 
2. Program or supervisor call 
3. External 
4. Input; output 

The program and supervisor call interrupts are shown 
on the same line, since they are mutually exclusive; 
both cannot occur at the same time. (A supervisor call 
is a valid instruction and cannot result in a program 
error.) 

The fact that interrupt requests are stacked in the 
order shown above does not mean, however, that they 
are executed in this order; almost the reverse is true. 
The order of priority for executing interrupt subrou
tines is: 

1. Machine check 
2. Input; output 
3. External 
4. Program or supervisor call 

The machine check interrupt has the highest priority. 
When it occurs, the current operation is terminated 
and no other interrupts are normally taken until the 
recording procedure is completed. 

When no machine check occurs, but other simulta-

Order of Execution 

1. Machine Check 

4. Input/Output 

3. External I 
2. Program lor I Supervisor Call 

Figure 145. Order of stacking and executing simultaneous interrupt requests 
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neons interrupt requests are present, the program or su
pervisor call interrupt is stacked first, the external in
terrupt is next, and the I/O interrupt is stacked last. 
The execution of the problem program is delayed, 
while the old PSW's are stored and the new ones are 
fetched, for each interrupt in tum. No instructions are 
actually executed during the stacking of the PSW's, 
and the process of storing and fetching continues until 
no more interrupts are to be recognized. When the last 
interrupt request has been serviced, the execution of 
instructions is resumed, starting with the PSW last 
fetched. Thus, with the exception of the machine check 
interrupt, the order of execution of interrupt subrou
tines (the priority order) is the reverse of the order in 
which PSW's are fetched (the stacking order). The 
most important interrupts - input/output - are actu
ally serviced first; the external interrupts are next and 
then come program or supervisor call interrupts. 

A business analogy illustrates why interrupt requests 
are stacked in reverse order of priority. A secretary has 
three phones on her desk. The most important, a red 
phone, is connected to the manager's office. A white 
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40 struction in interrupted 

problem program) 

EXTERNAL 

24 (New Program PSW) 

INPUT/OUTPUT 

56 (New External PSW) 

~ CURRENT PSW 

(New I/O PSW) 

phone - slightly less important - is for calls from im
portant clients, and a black phone is for calls from 
vendors and salesmen, considered least important. If 
all three phones ring simultaneously and she wants to 
take care of all callers, she will answer the phones in 
reverse order of their importance (taking a chance, 
however, on antagonizing her manager). She first an
swers the black phone, notes down the vendor's name 
and tells him to hold. She then answers the white 
phone, takes note of the client's name and request, and 
puts the phone on hold. Finally, she answers the boss's 
phone and takes care of his request completely. Now 
she comes back first to the client and handles his re
quest, and then to the vendor and takes care of him. 
In this way, she has serviced all requests in order of 
priority without ignoring any calls. 

Consider now the mechanics of the action involved 
if, for example, an I/O, a program check, and an exter
nal interrupt all occur during the execution of a single 
instruction (see Figure 146). The program interrupt 
request is recognized first. Accordingly, the current 
PSW is stored in location 40, the old PSW location for 
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Figure 146. Stacking of PSW's during simultaneous program, external, and I/O interrupt requests 
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a program interrupt, and a new PSW is fetched from 
location 104 to serve as the current PSW. The external 
interrupt request will prevent the first instruction of 
the program interrupt subroutine from being executed 
at this time, provided, however, that the current PSW 
is not masked for the external interrupt cause. If the 
CPU is interruptible for the external interrupt source, 
the current PSW is stored in old PSW location 24, and 
a new external PSW is fetched from location 88 and 
becomes the current PSW. Again, the existence of an 
I/O interrupt request prevents the execution of the 
external interrupt subroutine, provided the current 
PSW is interruptible for the I/O interruption cause. If 
so, the latest current PSW is stored in location 56, re
served for old I/O PSW's, and a new I/O PSW is 
fetched from location 120. This now becomes the cur
rentPSW. 

With no further interrupts pending, the CPU auto
matically branches to the address of the I/O subrou
tine, contained in the current PSW, and executes it. 
The last instruction of this subroutine (the Load PSW 
instruction) causes the old I/O PSW (in location 56) 

Summary 

System/360 is designed to operate continuously with 
a minimum of manual intervention. The comprehen
sive automatic interrupt system handles input/output 
interrupts, external device signals, program exceptions, 
machine errors, and similar conditions that may affect 
the sequence of instructions being executed. Since in
terrupts are handled and serviced by electronic circui
try and an IBM-prepared supervisory program, the 
problem programmer need not usually concern him
self with these conditions. 

The interrupt system recognizes five general classes 
of interrupts: machine check, program, supervisor call, 
external, and input/output interrupts. Each class of in
terrupts has both an old and a new PSW in reserved 

204 

to be restored as the current PSW. It, in tum, contains 
the address of the external interrupt subroutine, which 
is entered and executed. Again, the last step of this 
subroutine causes the old external PSW (in location 
24) to be restored as the current PSW. Since this PSW 
contains the address of the program interrupt sub
routine, the CPU enters it and executes it, in turn. The 
old program PSW now becomes the current PSW 
again, and directs the CPU to the address of the next 
instruction in the problem program, at the point of the 
multiple interruption. Instruction sequencing and exe
cution of the original problem program then resume. 

The example illustrates the logical order of stacking 
and executing simultaneous interrupts. All interrupt re
quests were serviced, with the highest priority being 
given to the I/O devices. The slight delay encountered 
in handling pending interrupt requests is of little prac
tical consequence. Most important, all PSW switching 
was done automatically by the circuitry and, hence, 
required no attention whatsoever from the problem 
programmer. 

storage locations. In all classes, an interrupt involves 
storing the current PSW in its old storage position and 
making the PSW at the new position the current PSW. 
Machine check interrupts, external interrupts, I/O in
terrupts, and some program interrupts can be masked 
(ignored) by setting the appropriate mask bits in the 
current PSW (usually through the control program). 
In the event of an interrupt, the old PSW holds the 
cause of the interruption and also all necessary status 
information pertaining to the system at the time of in
terrupt. If the last instruction of the interrupt routine 
is the Load PSW instruction, the old PSW is restored 
to current status and the interrupted program con
tinues. 



Summary Chart of Interrupt Action 

SOURCE INTERRUPTION CODE MASK n.C EXE-

IDENTIFICATION PSW BITS 16-31 BITS SET CUTION 

Input/Output (old PSW 56, new PSW 120) 
Channel 0 00000000 aaaaaaaa 0 x completed 
Channell 00000001 aaaaaaaa 1 x completed 
Channel 2 00000010 aaaaaaaa 2 x completed 
Channel 3 00000011 aaaaaaaa 3 x completed 
Channel 4 00000100 aaaaaaaa 4 x completed 
Channel 5 00000101 aaaaaaaa 5 x completed 
Channel 6 00000110 aaaaaaaa 6 x completed 

Program (old PSW 40, new PSW 104) 
Operation 00000000 00000001 1,2,3 suppressed 
Privileged 00000000 00000010 1,2 suppressed 

operation 
Execute 00000000 00000011 2 suppressed 
Protection 0000000000000100 0,2,3 suppressed 

or 
terminated 

Addressing 00000000 00000101 0,1,2,3 suppressed 
or 
terminated 

Specification 00000000 00000110 1,2,3 suppressed 
Data 00000000 00000111 2,3 terminated 
Fixed-point 00000000 00001000 36 1,2 completed 

overflow 
Fixed-point divide 0000000000001001 1,2 suppressed 

or 
completed 

Decimal overflow 0000000000001010 37 3 completed 
Decimal divide 00000000 00001011 3 suppressed 
Exponent 00000000 00001100 1,2 terminated 

overflow 
Exponent 00000000 00001101 38 1,2 completed 

underflow 
Significance 00000000 00001110 39 1,2 completed 
Floating-point 00000000 00001111 1,2 suppressed 

divide 

Supervisor Call (old PSW 32, new PSW 96) 
Instruction bits 00000000 rrrrrrrr 1 completed 

External (old PSW 24, new PSW 88) 
Timer OOOOOOOOlnnnnnnn 7 x completed 
Interrupt key 00000000 nlnnnnnn 7 x completed 
External signal 2 00000000 nnlnnnnn 7 x completed 
External signal 3 00000000 nnn1nnnn 7 x completed 
External signal 4 00000000 nnnnlnnn 7 x completed 
External signal 5 00000000 nnnnninn 7 x completed 
External signal 6 00000000 nnnnnnin 7 x completed 
External signal 7 00000000 nnnnnnni 7 x completed 

Machine Check (old PSW 48, new PSW 112) 
Machine 00000000 00000000 13 x terminated 

malfunction 

NOTES 

a Device address bits 
n Other external-interruption conditions 
r Bits of Rl and R2 field of SUPERVISOR CALL 

x Unpredictable 
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Questions and Exercises 

Note: Blanks are not necessarily to be filled in with 
only one word. 

1. In noninterruptible systems of the past, exceptional 
conditions, such as arithmetic overflows or I/O errors, 
had to be handled by the program, by repeated pro
gram testing for the particular condition and branch
ing to the appropriate corrective subroutine. With the 
automatic interrupt system, the machine itself recog
nizes the exceptional condition and automatically 
fetches the appropriate corrective routine. True or 
False? 

2. An automatic branch to the Supervisor program is 
called an -----

3. An interrupt of a particular class replaces the en-
tire program status word (PSW) by 
placing it in the location in main storage 
for that class and then fetching a from 
main storage. 

4. The general status of the processor, the reason for 
the interrupt, and the address of the next instruction in 
the problem program sequence are all contained in the 
-----PSw. 

5. The interrupt-handling routine is initiated by the 
automatic fetching of the from storage 
and loading it as the PSW. 

6. After the interrupt has been serviced, the instruc
tion sequence of the original problem program may be 
resumed from the point of interruption by means of 
the instruction, which is the ----
instruction of the interrupt-handling routine. 

7. In the example of a fixed-point overflow without 
automatic machine interrupt, the programmer uses the 
----- instruction after each arithmetic opera
tion to test the code in the PSW for over
flow. 

8. If an overflow occurred in the example (7, above), 
the instruction is used to go to the over
How fixup routine and provide a return link. 

9. In the example of fixed-point overflow using the 
automatic interrupt mechanism, neither BC nor BAL 
instructions are needed, since the program is inter
rupted automatically in the event of overflow and con
trol is passed to a corrective subroutine. True or False? 
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10. a. Name the five general classes of interrupts. 
b. Each class has two distinct -----word 

. storage locations for the and -----
PSW's, respectively. 

11. The specific reason for an interrupt is given by 
the code, contained in bits 16-31 of the 
_____ PSW. The interruption code is set auto-
matically after an occurs. 

12. Program interrupts can be caused by ----
different types of programming errors. Most of these 
are due to errors; the remainder are con-
cerned with improper , invalid ----
or data specification, and violation of -----, 

13. One cause of an input! output interrupt is the 
-----of an I/O operation. 

14. Which of the following is/are true? 
a. Machine check interrupts are caused by vari

ous machine errors and hardware malfunctions. 
b. Invalid data can never result in a machine 

check. 
c. A machine check can cause an error stop. 
d. Incorrect parity due to a power interruption 

will cause a machine check. 

15. External interrupts may be caused by (a) exter
nal device signals (available with the Direct Control 
feature) , (b) the depression of the Interrupt key at 
the console, and (c) a condition within the CPU. De
scribe this condition. 

16. The supervisor call interrupt differs from other 
types of interrupts in that the makes use 
of the automatic interrupt linkage by means of the 
----- instruction. The most common use of 
the supervisor call interrupt is to switch from the 
----- state to the state. 

17. Preventing an interrupt or keeping it pending is 
called ----_ 

18. By masking the PSW, the detailed status of the 
CPU can be preserved for subsequent inspection. True 
or False? 

19. Machine check interrupts, 
and four of 15 exceptions can be masked: 
the remaining exceptions and the ----
interrupt cannot be masked. 



20. When an interrupt condition occurs on top of an 
interrupt of the same type, the second interrupt must 
be to prevent the CPU from getting 
caught in a program due to destruction 
of the PSW from the problem program. 

21. Masking is handled by three fields in the PSW: 
the mask, mask, and the 
-----mask. 

22. Input/output and external interruptions may be 
masked by the mask, which contains 
----- bits: bits are used for se-
lector channel masking, while one bit each is used for 
the and for ----_ 

23. To prevent a particular type of interrupt from 
occurring, the mask bits for that type must be made 
----; when the mask bits are set to ---
the CPU is interruptible for that type of condition. 

24. A system mask contains the bit configuration 
01100001. Which interrupts are permitted and which 
are masked? 
25. Bits 36-39 of the PSW constitute the ---
mask. These bits permit masking the following pro
gram exceptions: (a) (b) -----
(c) (d) --__ 

26. Interrupts take place after the current instruction 
is finished and before the next instruction is started. 
The execution of the current instruction is not af
fected by the occurrence of an interrupt. True or 
False? 

27. Depending on the cause and type of interrupt, 
the preceding instruction may be either ----
-----,or-----

28. In the event of I/O, external, and supervisor call 
interrupts, the instruction preceding the interrupt is 
-----; in the event of a machine check inter
rupt, the current instruction is and the 
result may not be stored. 

29. In the event of a program check interrupt, the 
current instruction may be , ----
or , depending upon the type of pro-
gramming error and the time of its detection. 

30. The length of the last executed instruction in the 
interrupted program is indicated by the --------
code in the PSW. 

31. For the supervisor call interruption, the ILC is 
-----, while for a program interrupt it may be 
---- ----,or------

32. The instruction length code must be 1, 2, or 3. 
True or False? 

33. The Interrupt Supervisor is a that 
analyzes the cause of the interrupt and takes the prop
er action. 

34. The Supervisor is the part of the IBM-prepared 
program that is permanently kept in 

main storage. When necessary, the Supervisor calls in 
other portions of the control program and processing 
alternates between the and ---
programs. 

35. In case of I/O interrupts, the Supervisor passes 
control immediately to the , which con
sists of a series of routines for handling I/O operations 
or detecting I/O error conditions. 

36. Describe five supervisor functions that may be 
requested by the problem program via the Super
visor Call (SVC) instruction. 

37. Timer and program interrupts are turned over by 
the Supervisor to the appropriate rou
tines for handling. 

38. There are always two independently prepared 
programs in main storage: the program 
and the program. 

39. The major way the machine recognizes which of 
the two programs is in control at any time is by dif-
ferentiating between (a) and -----
program states, and (b) and ------
instructions. 

40. When bit 15 of the PSW is , the CPU 
is in the supervisory state: when bit 15 is ----
the CPU is in the problem state. 

41. Switching between the problem and supervisor 
states can be done only by introducing a new PSW 
via the Load PSW instruction. True or False? 

42. Instructions relating to I/O operations, storage 
protection, direct -control devices, and other parts of 
the Supervisor program are considered -----
and, hence, are not when the CPU is in 
the state; in the state all 
instructions are valid. 

43. If a privileged instruction is encountered in the 
problem state, a results. 

44. Which of the following instructions is/are valid 
when the machine is in the problem state (PSW bit 
15 is 1) and which may be issued only by the Super
visor program (PSW bit 15 is 0): 

a. Load PSW 
b. Supervisor Call 
c. Set System Mask 
d. Set Program Mask 
e. Start I/O 
f. Any I/O instruction 
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Answers to Ouestions and Exercises 

Chapter 1: Architecture 

1. Data from a tape unit may be transmitted over a 
multiplexor channel, in which case the channel oper
ates in burst mode. Like other I/O devices, tape units 
are attached to a control unit, which, in turn, is at
tached to a channel. 
2. The Load PSW instruction is a privileged. instruc
tion, and an attempt to execute this instruction by the 
problem program will cause a program interrupt. 
3. Because the Supervisor Call instruction contains 
an eight-bit code that is stored in the old supervisor 
call PSW in the course of interruption, the routine 
must first examine this code in the old PSW. The code 
may be regarded as a message conveyed by the in
struction to the supervisor. 
4. The valid packed decimal digit codes are: 

0000 0001 0010 0011 0100 
0101 0110 0111 1000 1001 

which represent the digits 0-9. 
5. Hollerith code read by a card reader is trans
ferred from the card reader's control unit as EBCDIC. 

Chapter 2: Number Systems 

1. ( 121,001) 3 == (3213) 5 == (110,110,001) == (433) 10 

(100011h == (35}Io; (0.111111h == (0.984375)10 

2. (9B4D.3A 7)I6 == (39,757.228 ... ho 

3. 100010102 == 8A16; 10011101002 == 27416; 

( 1110101.001110101 h == (75.3A8}I6 

4. A72B == 1010 01110010 1011; 
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39BF4D == 111001 1011 1111 0100 1101; 
ABCDEF == 1010 10111100 1101 1110 1111; 
52.A7EF98 == 1010010.101001111110 111110011; 
123.ABC == 1 0010 0011.1010 1011 11 

6. Fixed-point arithmetic instructions are part of the 
standard instruction set. Neither the optional decimal 
nor floating-point instruction set is sufficient in itseH 
to perform processing. 
7. The position of the sign depends on the format of 
the data. A binary quantity is represented internally 
by a 32-bit binary number. The sign occupies the 
high-order (leftmost) bit position. The sign of a num
ber in EBCDIC occupies the zone position of the least 
significant digit. The sign of a packed decimal number 
occupies the low-order four bits of the field. 
8. The effective address is specified by the 24 least sig
nificant bits in register 5. 
9. Length is not a criterion for the selection of in
structions. The programmer knows the location (in 
storage, registers, or both) of data to be operated 
upon and the operations to be performed. His selec
tion is made accordingly, and halfword, word, and 
three-halfword instructions are mixed within a pro
gram. 

5. 1100011 
+ 0111001 

111101111 
+ 111101111 

10011100 1111011110 
1000 1111 1010 0001 

+ 0001 0011 1110 0101 

1010 0011 1000 0110 

6. 1234516 8F85 
+ 56789 + CD69 

68ACE 15DIE 
ABCD.09EF 

+ 1234.5698 

8E01.6087 

345.789 
+ 832.BDE 

878.367 



7. 100000 - 1 == 11111; 
111010 111111111 10001.11001 

- 100100 - 100000000 1101.00110 

10110 11111111 100.10011 

8. F865 E73F.A983 
-9AB7 -A9CD.87FE 

5DAE 3D72.2185 

9. 1100 X 11 == 100100; 1010 X 1001 == 1011010; 
10.001 X 1.01 == 10.10101 

10. 3E7 X 5B9 == 1654EF; D.38 X 6.EF == 5B.A748 

11. (39) 10 == 1001112; 583 == 1001000111; 
7946 == 1111100001010 

12. ( 89 ) 10 == (59) 16; 438 == IB6; 999 == 3E7; 
5793 == 16Al; ( 875,472,925 ho == (34,2EA,81D) 16 

13. 11010h == 5310; 1110110001 == 945; 
111111111 == 511 (i.e., 29 -1) 

14. (7E5) 16 == (2021) 10; F8D == 3981; 
89F7 == 35,31910 

15. (0.79)10 == (0.1100 1010 0011h == (0.CA3}t6 
(0.6666666)10 == (0.10101010101010101010 .. ')2 

== (O.AAAAAA ... ) 16 
(0.123) 10 == (0.00011111 011) 2 == (.IF6) 16 
(34.675) 10 == (100010.1010 1100 1100 1100 ... ) 2 == 
(22.ACCC ... ) 16 

Chapter 3: Introduction to Assembler Language Programming 

1. Leftmost, leftmost 

2. Hexadecimal 

3a. 112 
b. 130 
c. (1) 15 

(2) 102 
(3) 02E 
(4) 130 

4. The DC will cause data to be placed into storage. 
The DS will allocate space in storage without placing 
any data there. 

5. 130 

6a. 130-133 
b. 138-13B 
c. 140-147 

7. 148,150,158,160 
The assembler will automatically align a double
word area specified as shown on a doubleword 
boundary. Therefore, locations were skipped pre
ceding AREA2, AREA4, and AREA6 so that each 
starts on a doubleword boundary. 

8. DS D 
DS D 
DS D 
DS F 
DS F 
DS F 
Note that this arrangement saves 12 bytes of the 
48 bytes assumed by the arrangement in question 
7. Thus ~ of the original 48 bytes were saved by 
the new sequence of statements. 
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Chapter 4: Fixed-Point Operations 

1. Fullword 
2. Receives 
3. Sends 

Exception 
4. No. The first operand must specify an even-num
bered register of an even-odd pair. 
5. An even-numbered register of an even-odd pair 
that contains the dividend. 

Divisor 
The quotient is in th~ odd-numbered register. 
The remainder is in the even-numbered register. 

6. START 256 
BEGIN BALR 15,0 

Using ·,15 
L 2,XANDY 
SRDL 2,12 
SRL 3,20 
ST 2,X 
STH 3,Y 
SVC 0 

XANDY DS F 
X DS F 
Y DS H 

END BEGIN 
7. ( c) Condition code is 1 or 3. 
8. BC 15,NEWONE 
9. LM 2,5,Xl 
10. SR 5,5 
11. It will be the sum of the contents of register 15 

(the base register), register 11 (the index regis
ter), and the displacement. 

12. BXLE 5,6,NEWONE 
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Chapter 5: Programming with Base Registers and the USING Instruction 

lao USING °,15 

b. BALR15,0 

Va lue Assumed 
by Assembler 

Value Loaded at Execution Time 

Reg 15 

Program Toaded T Program loaded 
at 20016 at 120016 

202. 202 I 1202 

Location Location Execution Time 
(relocated) Object Instruction Effective Address 

Program Program 
Base Displace- Loaded Loaded 
Register ment at 20016 CIt 120016 

1200 200 BEGIN 

1202 202 F 102 .304- 1304 
flOb 206 F i22 324- 1.324 

· 
12.34 234 F 106 308 1308 
1238 238 F 126 BtB 1.3Z8 

· 
12.52 252 F 142 344 1344-

1304 304 DATA 

1308 308 

1924 324 TEN 

1328 328 RESULT 

· 
1344- 344 BINI 

Symbol Table 
Location Length 

BEGIN 200 2 
BINI 344 4 
DATA 304 4 
RESULT 328 4 
TEN 324 4 

Note that the object instruction base register specifi
cations and displacements still work perfectly even 
though the program is relocated. This is because the 
displacement factor always indicates how far away 
the location of the symbolic operand is from the base 

START 512 
BALR 15,0 

USING *,15 

L 2,(pATA:J 

A 2.fiEN) 

S 2~ 
ST 2~ -

L 6,(81 NIl -
DC F'2S' 

DC F'IS' 

DC F'10' 

DS F 

DC F'12' 

END BEGIN 

address. If the program is loaded at 200, DATA is 
104 bytes past the base address 102. If the program 
is loaded at 1200, DATA is still 104 bytes past the 
base address. 
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Value Assumed Value Loaded at Execution Time 

by Assembler Program loaded 
at 100016 

Reg 15 1002, .f dOt. 
Reg 14 1002 .2.~()2 

Reg 13 :3 (hJl, Jd()j. J 

Location Object Instruction Execution Time 
Effective Address 

Program 
Base Displace- Loaded 

Register ment at 100016 

START 4096 

1000 BEGIN BALR 15,0 

USING FIRST, 15 

1002 FIRST BC 15, SKIP 

1006 DATA DC F'3472' 

· · · · · · 
1024 BASEl DC A(FIRST +4096) 

1028 BASE2 DC A(FIRST +8192) 

· · · · · · 
1104 F" OLZ 101.4 SKIP L 14~rsASW · USING FIRST+4096,14 · · 
1108 F 01.' 102! L 13,(BASE2) 

· USING --· FIRST +8192, 13 · · · · · · · 
2504 D 901 .3904 BC 15,\cK8) · · ----.." · · · · 
2898 F 004- 1006 LOOP A 4{r:JA.TA) 
· · -· · · · 

3204 LOOPB S 5, DATA · · · · · · -3508 £' 8J6 2891 BC 8~LOOP) · · ---· · · · 
3904 [) 1.01. 3.2d4 CK8 BC 8,(LOOPB) 

END BEGIN 
~-

Symbol Table 

Symbol location 
BIISE 1 10.2/1 
4115£2- /t>2f 
~£G/N' 1000 
eKe 39-0¥ 
P/I Til L006 
FIRST 10t>2 
LO()P 2. 199 
LOOP B '3204-
SKIP l1tJ4 
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Chapter 6: Decimal Operations 

la. CON3 DC PL5'3' 
b. 000000003F 

2. Assembler 
Data definitions 
Programmer 

3. Equal to 

4. One less than 

5a. A storage area which contains the multiplicand 
in the low-order positions and zeros in the high-order 
positions. 

Multiplier 
b. In the storage area specified by the first operand. 

6a. 00 02 48 9+ 10 3+ 
158 159 15A 15B 15C 15D 

b. 15A 

7. Storage area containing the dividend. 
Divisor 
The quotient will be in the left portion of the 

dividend area, and the remainder in the right portion. 

8a. 2 

b. 8 

9a. SOURCE 66 55 44 33 22 11 
DEST 11 22 66 55 44 6S 

b. SOURCE 66 55 44 33 22 11 
DEST 11 22 33 45 55 6S 

c. SOURCE 66 55 44 33 22 11 
DEST 00 00 00 04 43 3S 

10. No. The ZAP instruction, as all the decimal 
arithmetic instructions and the decimal compare in
structions, requires a legitimate sign in the low-order 
byte of the "sending" field. 

Ila. MVN RESULT+5(1),FACTOR+4 
MVO RESULT,FACTOR(4) 

b. MVN FACTOR+3(1),FACTOR+4 
ZAP RESUL T,F ACTOR( 4) 

12a. SI 
b. NI HOLD,X'OO' 
c. NI HOLD+3,X'OF' 

13. In both cases, each bit position of the referenced 
storage operand is analyzed against the corresponding 
bit position of the immediate portion of the instruc-

tion. The storage byte referenced by the first operand, 
after execution will be: 

a. For the And Immediate instruction, a 1 in each 
bit position in which both operands had Is, and zeros 
elsewhere. 

b. For the Or Immediate instruction a 1 in the bit 
positions in which either or both operands had a 1, 
and a zero where both operands had zeros. 

14. Packed decimal 

15. PACK 

16. UNPK (Unpack) 

17a. DC F'578' 
b. DC ZL3'578' 
c. DC PL2'578' 

18. There are at least four ways to write the DC 
statement. Keep in mind that 4B is the hexadecimal 
equivalent of 7510• 

a. DC F'75' would generate the 4-byte constant: 
00 00 004B. 

b. DC H'75' would generate the 2-byte constant: 
004B. 

c. DC X'4B' would generate the I-byte constant: 
4B. 

The advantage of methods a and b over method c 
is that the programmer does not have to convert from 
decimal to hexadecimal. A disadvantage is that more 
space is used than is perhaps necessary. 

d. The statement DC FL1'75' would remove this 
disadvantage since the characters Ll specify that the 
length (L) of the constant is to be 1 byte. Thus a 1-
byte field of 4B would be generated. A point to re
member is that when a length is stated for an F-type 
constant no boundary alignment is performed by the 
assembler. 

19. IC 6,OLD 

20. STC 6,OLD 

21a. No. MASK is not located on a fullword bound
ary. The N instruction requires the operand in storage 
to be on a fullword boundary. 

b. The statement DS OF could be inserted im
mediately before the DC defining MASK. 

c. DC F'15' 
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Chapter 7: Logical Operations on Characters and Bits 

1. XI KEY,15 (immediate data in decimal) 
XI KEY,X'OF' (immediate data in hexadecimal) 
XI KEY,B'OOOOI111' (immediate data in binary) 

2. TM ADDR,X'3O' 
BC 5,ANIMAL 

3. TM ADDR,X'06' 
BC 4,LIST2 

(There are many acceptable ways of performing tests 
such as 2 and 3. The TM instruction, where it can be 
used, has the advantages of leaving storage unchanged 
and obviating the need for registers or work areas.) 
4a.05 

b. 2C (the final C is the code for + ) 
c.43 

5. 8 bits, 1 byte 
6. 2048 bits, 256 bytes 
7. (b) Alphameric characters. (Despite their plausi
bility, a and c are not correct in the general case be
cause of possible difficulty with sign codes.) 
8. ( c) An inequality. All codes are valid. 
9. ( a) 5, ( b) 2, (c) 3 plus the contents of general 
register 1, (d) the computed effective address for 
FIELD (not the word stored at that address). 
10. Among the many ways to solve this are the fol
lowing: 

CLC FIELD ( 1) ,FIVE 
BC 6,NOT5 

FIVE DC X'05' 
or, 

CLI FIELD,X'05' 
BC 6,NOT5 

or, 
TM FIELD,X'05' 
BC 12,NOT5 
TM FIELD,X'F A' 
BC 5,NOT5 

11. The second byte of the BC instruction, containing 
the mask Ml and index X2 fields. 

12. (d) The 01 instruction changes the BC 0 instruc
tion, which never branches, to a BC 15 instruction, 
which branches unconditionally. Hence, after the first 
time ~round, the sequence between the BC and sym
bolic address ADDR is always skipped. 

13. The instruction sequence between the BC in
struction and the address ADDR will be alternately 
executed and skipped. 

14. N 5,MASK 

MASK DC X'FF()()()()()()' 

Chapter 8: Edit, Translate, and Execute Instructions 

1. BBB1540 

2. BBB5721BB 

3. BBBBBBB.OIBCR 

4. BBBBBBBBB 

5. BBO,OOO.10BB 

6. BBBBlOl.43CRBBBBBBl.07 BeR 

7 a. PATRN DC X'40206B2020206B2020214B202040C3D9' 
b. BBBB92,500.01BCR 
c. BBBB92,500.01BCR 

8. (c) PATRN+2 

9. No 

10. (e) ACBD 

214 

11. (d) Address of AREA+2 and X'OI' respectively 

12. 12345678991000000000 
Area is first set to zeros by the MVI and MVC in
structions. The EX instruction first causes the low-order 
8 bits of register 2{ OA) to be OR'd with the 8-bit 
length code portion (00) of the MOVE instruction. 
The result of the OR'ing is a length code of OA (10 in 
decimal). Since the object instruction length code is 
always one less than the number of bytes to be af
fected, the MOVE instruction will cause 11 bytes to 
be moved. 

13. 10000000000000000000 



Chapter 9: Subroutines and Subprograms 

lao Point F 

h. Point D 

C. Point C 

d. Point E 

e. Point D 

2. No operation 

3. CALLER 
EXTRNROUTI 

CALLED 
ENTRY ROUTI 

ROUTI .. 

4. CALLER 
EXTRNROUTI 

CALLED 
ENTRY ROUTI 

LR l3,ACON ROUTI. . 
BALR 14,13 

ACON DC A(ROUTl) 
5. See next page. 
6. BASEl contains 00005002. 

BASE2 contains 00006002. 
7. See next page. 
8. See next page. 
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Value Assumed Value Loaded at Execution Time 
Relocation Constant 

by Assembler Program loaded Program loaded 
3000 at 100016 at 400016 

Reg 15 100Z 100l 4002.. 
Reg 14 2.001, ZOOl. 5"002 
Reg 13 3002 3002.. 6002-

Location Object Instruction Execution Time 
Location Effective Address 
(relocated) 
at 400016 Program Program 

Base Displace- Loaoed Loaoed 
Register ment pt 100016 at 40001~ 

START 4096 

4000 1000 BEGIN BALR 15,0 

USING FIRST,15 

4002 1002 FIRST BC 15,SKIP 
4-006 1006 DATA DC F'3472' 

· · · · · · 
40Z4- 1024 BASEl DC A(FIRST+4096) 

4028 1028 BASE2 DC A(FIRST +8192) 

· · · · · · 4104 1104 f: 022 1024 4014 SKIP L 14,lBASEi) 
USING FIRST +4096, 14 

4108 1108 f: 01.6 1028 402.8 L 13~ · -· USING FIRST+8192,13 · · · · · · · 
5504 2504 0 902. 1904 6904 BC 15,(Ci(8) · · -· · · · 5998 2898 F' 004 1006 4006 LOOP A 4[riATA) · · --..,..... · · · · 6204 3204 LOOPS S 5, DATA · · · · · · 
6S08 3508 E 896 2898 5998 BC 8,([()Op) · · ----· · · · 6901- 3904 p 202 3204 '21J4 CK8 BC 8,(LOOP8) 

END BEGIN-

Symbol Table 

Symbol Location 
811S£' L //)24 
8ASE .l lDZ8 
BEfTlN LOOO 
eKe 3904 
/).1/711 J()O~ 
~/RST to02.. 
LOOP zege 
LOOPS 32.04 
SI<'IP 1.104 
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Chapter 10: Floating Point and Advanced L~ops in Scientific Applications 

1. DC E'3.14159265' 7a. L 13,N NtoGR13 
DC E'-2.78' LR 4,13 NtoGR4 
DC E'38754E+6' A 4,CON46 Converted to 

(DC E'3.8754E+I0' is another possibility) floating 
DC E'0.278E-5' ST 4,FLN unnormalized 
DC E' -2.36E-ll' S 13,ONE (N-l) to GR13 

SLL 13,2 4(N-l) to GR13 
2. DC D'3.141592653589793' LA 12,4 4 to GR12 

DC D'-2.78' LA 11,4 4 to GRII 
DC D'-3E-6' LE 6,A A(I) to FPR 6 
DC D'3.8E+30' NEXT AE 6,A(II) Add Ai to FPR6 
DC D'8E-9' BXLE 11,12,NEXT Test 

DE 6,FLN Prenormalize N 
3. 42200000 and divide into ~ Ai 

4220000000000000 STE 6,AVER Store result 
47100000 ONE DC F'l' 
3Al00000 CON46 DC X' 46000000' 
BAl00000 N DS F 
C7I00000 FLN DS F 
C7I00000 AVER DS F 

A DS l00F 
4. 46XXXXXX 

The effect of the instructions is to construct a Th. L 13,N N to GR13 

short floating-point unnormalized number from a LR 4,13 N to GR4 

positive binary integer and a hexadecimal con- A 4,CON46 Converted to 

stant. floating 
ST 4,FLN unnormalized 

5a. Floating-point register 2 - 42100000 S 13,ONE (N-l) to GR13 
Floating-point register 4 - 42080000 SLL 13,3 8-(N-l) to GR13 

b. Floating-point register 6 - 4lFOOOOO LA 12,8 8 to GR12 
General register 6 - 00000000 LA 11,8 8 to GRII 

c. A==42l000oo LD 6,A A(I) to FPR6 
General register 3 -42100000 NEXT AD 6,A(ll) Add Ai to FPR6 

BXLE ll,12,NEXT Test 
6. LE 2,B B in Reg. 2 DD 6,FLN Prenormalize N 

ME 2,C B x-C in Reg. 2 and divide into ~ Ai 
LCER 4,2 -B x C in Reg. 4 STD 6,AVER Store result 
AE 2,A A+B xC in Reg. 2 ONE DC F/l' 
AE 4,A A-B xC in Reg. 4 N DS F 
DER 4,2 A-BxC CON46 DC X' 46000000' 

A+BxC FLN DC D'O' 
( see note below) 

AVER DS D 

A DS F A DS looD 

B DS F Note: Provide for use of N as a long floating-point 
C DS F number with zeros in the last 8 positions. 
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Chapter 11: Automatic Interrupts 

1. True 

_2. Interrupt 

3. Current, old PSW, new PSW 

4. Old 

5. New PSW, current 

6. Load PSW, last 

7. Branch on Condition, condition 

B. Branch and Link 

9. True 

10. a. external, supervisor, program, machine, input/ 
output 

b. double, old, new 

11. Interrupt, old, interrupt 

12. 15, arithmetic, addressing, instructions, storage 
protection 

13. Completion 

14. a, c, and d. b is false because, after a power in
terruption or system reset, incorrect parity may exist 
in storage or registers 

15. Timer value changes from positive to negative 

16. Program, Supervisor Call, problem, supervisor 

17. Masking 

lB. False 

19. External, I/O, program, program, Supervisor Call 

20. Masked, loop, old 

21. System, machine check, program 

22. System, eight, six, multiplexor channel, external 
interrupts 

23. Zero, one 

24. External interrupts and I/O interrupts from selec
tor channels 1 and 2 are permitted. Multiplexor chan
nel interrupts and selector channels 3-6 are masked, 
that is, kept pending. 

25. Program 
a. fixed-point overflow 
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b. decimal overflow 
c. exponent overflow 
d. significance 

26. False. The cause of the interrupt may aHect the 
manner in which the current instruction is completed. 

27. Completed, terminated, suppressed 

28. Completed, terminated 

29. Completed, terminated, suppressed 

30. Instruction length, old 

31. 1, 1, 2, 3 

32. False; it could be zero 

33. Program of instructions 

34. Control, problem, supervisor 

35. Input/output supervisor 

36. Load a library program 
Provide operator communication 
Request an I/O operation (Execute Channel Pro
gram) 
Return to the main program after a timer routine 
or operator inquiry 
Terminate the program and prepare for the next 
job 

37. User-prepared 

38. Supervisor, problem 

39. a. Problem, supervisor 
b. Processing, privileged 

40. Zero, one 

41. False. Switching between states also occurs as a 
result of any interrupt, including the supervisor call 
interrupt. 

42. Privileged, valid, problem, supervisor 

43. Program interruption 

44. The problem program may issue band d. 
a, c, e, and f are privileged instructions. 
All of the listed instructions may be issued by the 
Supervisor program. 



STANDARD INSTRUCTION SET 

NAME MNEMONIC TYPE OPERAND CODE DECIMAL FEATURE INSTRUCTIONS 

Add AR RR R1,R2 lA 
Add A RX R1, D2(X2, B2) 5A Add Decimal AP SS D1(Ll, B1), D2(L2, B2) FA 
Add Halfword AH RX R1, D2(X2, B2) 4A Compare Decimal CP SS D1(L1, B1), D2(L2, B2) F9 
Add Logical ALR RR R1,R2 IE Divide Decimal DP SS D1(L1, B1), D2(L2, B2) FD 
Add Logical AL RX R1, D2(X2, B2) 5E Edit ED SS D1(L, B1),D2(B2) DE 
AND NR RR R1,R2 14 Edit and Mark EDMK SS D1(L, B1),D2(B2) DF 
AND N RX R1, D2(X2, B2) 54 Multiply Decimal MP SS D1(L1, B1), D2(L2, B2) FC 
AND NI SI D1(B1),12 94 Subtract Decimal SP SS D1(L1, B1), D2(L2, B2) FB 
AND NC SS D1(L, B1), D2(B2) D4 Zero and Add ZAP SS D1(L1, B1), D2(L2, B2) F8 
Branch and Link BALR RR R1,R2 05 
Branch and Link BAL RX R1, D2(X2, B2) 45 DIRECT CONTROL FEATURE INSTRUCTIONS 
Branch on Condition BCR RR M1,R2 07 
Branch on Condition BC RX M1, D2(X2, B2) 47 Read Direct RDD SI Dl(B1),12 85 
Branch on Count BCTR RR R1,R2 06 Write Direct WRD SI D1(B1),12 84 
Branch on Count BCT RX R1, D2(X2, B2} 46 
Branch on Index High BXH RS R1, R3, D2(B2) 86 PROTECTION FEATURE INSTRUCTIONS 
Branch on Index 

Low or Equal BXLE RS R1, R3, D2(B2) 87 Insert Storage Key ISK RR Rl,R2 09 
Compare CR RR R1,R2 19 Set Storage Key SSK RR R1,R2 08 
Compare C RX R1, 02(X2, B2) 59 
Compare Halfword CH RX Rl, D2(X2, B2) 49 
Compare LOgical CLR RR R1,R2 15 
Compare Logical CL RX R1, 02(X2, B2) 55 
Compare Logical CLC SS D1(L, B1), D2(B2) 05 
Compare Logical CLI SI 01(B1),12 95 
Convert to Binary CVB RX R1, 02(X2, B2) 4F 
Convert to DeCimal CVD RX R1, 02(X2, B2) 4E 

FLOATING-POINT FEATURE INSTRUCTIONS Diagnose SI 83 
Divide DR RR R1,R2 10 Add Normalized 
Divide D RX Rl, D2(X2, B2) 5D (Long) NADR RR R1,R2 2A Exclusive OR XR RR R1,R2 17 Add Normalized 
Exclusive OR X RX R1, 02(X2, B2) 57 (Long) NAD RX R1, 02(X2, B2) Exclusive OR Xl SI D1(B1),12 97 6A 

Exclusive OR XC SS 01(L, B1), 02(B2) 07 Add Normalized 

Execute EX RX R1, 02(X2, B2) 44 (Short) NAER RR R1,R2 3A 

Halt I/O HlO SI 01(Bl) 9E Add Normalized 

Insert Character IC RX R1, 02(X2, B2) 43 (Short) NAE RX R1, 02(X2, B2) 7A 
Load LR RR R1,R2 18 Add Unnorm-

Load L RX Rl, 02(X2, B2) 58 alized (Long) AWR RR R1,R2 2E 
Load Address LA RX Rl, 02(X2, B2) 41 Add Unnorm-
Load and Test LTR RR Rl,R2 12 alized (Long) AW RX R1, D2(X2, B2) 6E 
Load Complement LCR RR R1,R2 13 Add Unnorm-
Load Halfword LH RX R1, 02(X2, 132) 48 alized (Short) AUR RR Rl,R2 3E 
Load Multiple LM RS Rl, R3, D2(B2) 98 Add Unnorm-
Load Negati ve LNR RR Rl,R2 11 alized (Short) AU RX R2, 02(X2, 82) 7E 
Load Positive LPR RR Rl,R2 10 Compare (Long) CDR RR R1,R2 29 
Load PSW LPSW SI 01(Bl} 82 Compare (Long) CO RX Rl, 02(X2, 82) 69 
Move MVI SI 01(Bl),12 92 Compare (Short) CER RR Rl,R2 39 
Move MVC SS 01(L, B1), 02(B2) 02 Compare (Short) CE RX Rl, 02(X2, 82) 79 
Move NumeriCS MVN SS 01(L, B1), D2(B2) 01 Divide (Long) NDDR RR Rl,R2 20 
Move with Offset MVO 5S D1(L1, B1), D2(L2, 82) F1 Divide (Long) NDO RX Rl, D2(X2, 82) 60 
Move Zones MVZ SS D1(L, B1), D2(B2) 03 Divide (Short) N DER RR Rl,R2 30 
Multiply MR RR Rl,R2 lC Divide (Short) N DE RX Rl, D2(X2. 82) 70 
Multiply M RX Rl, 02(X2, B2) 5C Hal ve (Long) HDR RR Rl,R2 24 
Multiply Halfword MH RX R1, 02(X2, 82) 4C Halve (Short) HER RR Rl,R2 34 
OR OR RR Rl,R2 16 Load and Test (Long) LTOR RR Rl,R2 22 
OR 0 RX Rl, 02(X2, B2) 56 Load and Test (Short) LTER RR Rl,R2 32 
OR 01 SI 01(B1),12 96 Load Complement 
OR OC SS D1(L, B1), 02(B2) D6 (Long) LCOR RR RI,R2 23 Pack PACK 5S 01(Ll, BI), D2(L2, 82) F2 
Set Program Mask 5PM RR R1 04 Load Complement 

Set System Mask SSM SI 01(BI) 80 (Short) LCER RR RI,R2 33 

Shift Left Oouble SLDA RS Rl,D2(B2) 8F Load (Long) LDR Rl} RI,R2 28 

Shift Left Single 5LA RS RI,02(82) 8B Load (Long) LD RX Rl, 02(X2, 82) 68 
Shift Left Double Load Negative (Long) LNDR RR;' RI,R2 21 

Logical SLDL RS R1,02(B2) 8D Load Negative (Short) LNER RR Rl,R2 31 
Shift Left Single Load Positive (Long) LPDR RR RI,R2 20 

LogIcal SLL RS Rl,02(B2) 89 Load Positive (Short) LPER RR Rl,R2 30 
Shift Right Double SRDA RS RI,02(82) 8E Load (Short) LER RR RI,R2 38 
Shift Right Single SRA RS Rl,D2(82) SA Load (Short) LE RX Rl, D2(X2, B2) 78 
Shift Right Double Multiply (Long) N MDR RR Rl,R2 2C 

Logical SRDL RS Rl,02(82) 8C Multiply (Long) NMD RX Rl, 02(X2, B2) 6C 

Shift Right Sl'lt1e Multiply (Short) N MEH HR RI,R2 3C 
Logical SRL RS Rl, D2(B2) 88 Multiply (Short) N ME RX RI, 02(X2, 82) 7C 

Start I/O 810 51 Ol(Bl) 9C Store (Long) STD RX IU, D2(X2, 82) 60 

Store ST RX RI,02(X2, B2) 50 Store (Short) STE RX RI, 02(X2, 82) 70 

Store Character STC RX Rl, D2(X2, B2) 42 Subtract Norm-

Store Hallword STH RX Rl, 02(X2, B2) 40 alized (Long) NSDR RR IU,R2 2B 

Store Multiple STM RS Rl,R3,02(B2) 90 Subtract Norm-

Subtract SR RR RI,R2 IB alized (Long) NSD RX RI, 02(X2, 82) 6B 
Subtract S RX RI, 02(X2, B2) 5B Subtract Norm-

Subtract Hallword SH RX RI, D2(X2, B2) 4B alized (Short) N SER RR RI,R2 3B 

Subtract Lot{kal SLR RR Rl,R2 IF Subtract Norm-

Subtract LOKlcal SL RX Rl, D2(X2, B2) 5F alized (Short) NSE RX RI, 02(X2, B2) 7B 

Supervisor Call SVC RR I OA Subtract Unnorm-

Test and Set TS SI 01(BI) 93 aUzed (Long) SWH RR Rl,R2 2F 
Test Channel TCH SI Dl(BI) 9F Subtract Unnorm-

Teat I/O TIO 51 OI(Bl) 90 aliz('<i (Long) SW RX RI, D2(X2, 82) 6F 

Teat Under Mask TM 51 01(BI). I2 91 Subtra<.:l Unnorm-

Translate TR 58 OI(L, Bl). D2(82) DC :IUZt~ (Short) sun RR HI,R2 3F 
Translate and Test TRT 58 Dl(L. Bl), 02(B2) DO Subtract Unnorm-

Unpack UNPK SS 01(Ll, BI), 02(L2. 82) F3 aHzt'd (Short) SU RX Rl, D2(X2, B2) 7F 
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