
System/360 Pointers

Programming Techniques

This manual of System/360 pointers is devoted to examples
illustrating various coding techniques. It not only shows the
use of some of the features of the assembly language but more
importantly points out the power of the System/360 organization
in the solution of common problems or parts thereof. Although
many of the examples are slanted toward the mathematician,
there are those of sufficiently general interest to provide
knowledge for the commercially oriented.

Form C20-1620-0

Analysis

Programming

Scientific

FOREWORD

The examples presented in this manual are small in size and are intended for a reader
who is interested in an introduction to System/360 programming. While studying the
various pieces of code, it is advisable to have access to the following manuals:

System/360 Principles of Operation (A22-6821-1) -- referred to as "OM"

System/360 Operating System -- Assembly Language (C28-6514-1) -- referred to as "AM"

References are made to these manuals in the subsequent pages.

There are three basic sections in this document. In the first two sections, the basic
instruction set is illustrated through simple examples. It is intended that the examples
increase in complexity, each tending to illustrate some particular point relative to a
coding technique. Pertinent comments are included. The final section shows complete
problems, including the necessary assembly language parameters to produce a running
program. The problems of this section have actually been run on a machine.

The programs shown represent "good" coding practices. They have not been optimized
to their fullest. This optimization is left as an exercise to the reader. Where optional
methods of approach can be taken, they are shown and discussed.

Copies of this and other IBM publications can be obtained through IBM branch

offices. Address comments concerning the contents of this publication to

IBM, Technical Publications Department, 112 East Post Road, White Plains, N. Y. 10601

CONTENTS

1. Fixed-Point, Logical and Branch Instructions.
1. 1 Use of Multiple Registers for Storing Intermediate Results.

1
1
1
2
3
5
5
6
7

1. 2 Evaluation of a Simple Arithmetic Expression.
1. 3 Cyclic Purmutation of a Word Group Using Multiple Register Commands.
1.4 Clearing of a Space in Storage Using Loop Control Techniques
1. 5 Extraction of one Element of a Matrix - Two Dimensional Table Lookup.
1. 6 Cyclic Bit Shifting.
1. 7 Sum of Squares Using Double-Precision Fixed-Point Arithmetic
1. 8 Transposition of a Square Matrix Using Address Constants. . . .
1. 9 Length of an Unknown File Using Byte-Handling Capabilities and

Multiple Registers.
1. 10 Table Lookup Using the Translate Instruction

2. Floating-Point Instructions
2. 1 Polynomial Evaluation
2. 2 Separation of Integer and Fraction Parts of Floating-Point Numbers

Using Unnormalized Instructions.
2.3 Extracting the Integer Part of a Floating-Point Number
2.4 Converting a Fixed-Point Number to a Floating-Point
2.5 Double-Precision Square Root (SQRTD) ..
2. 6 Matrix Addition
2. 7 Product of Two Square Matrices.

3. Complete Problems
3.1 Sorting on the Basis of Subfields.
3.2 Removal of Keywords
3.3 Prime Number Generator
3.4 Min-Max Problem
3. 5 Double-Precision Binary-to-Decimal Conversion .
3. 6 Scanning a Message for Syntactical Errors

8
10
12
12

12

· 13
.. 15

16
17
19
20

. . 20
21
23

· 24
· 25

26

1. FIXED-POINT, LOGICAL AND BRANCH INSTRUCTIONS

1. 1 USE OF MULTIPLE REGISTERS FOR STORING INTERMEDIATE RESULTS

The fixed-point numbers a, b, c, d are contained in the general purpose registers GPR1,
GPR2, GPR3, and GPR4, respectively. Calculate the quantities

and

I' = a +b+ I c-d I
s = a+b- I c-d I

putting I' and s in GPR5 and G PR6, respectively.

AR

SR

LPR

AR

LNR

AR

Comments

1,2

3,4

5,3

5,1

6,3

6,1

a +b Register-to-register add.

c-d Register-to-register subtract.

I c-d I Make the sign positive.

r=a +b+ I c-d I
-I c-d I Make sign negative.

s=a+b -I c-d I

a. Fixed-point arithmetic is executed in the general purpose registers. Numbers
in these registers are treated as signed integers (O.M., p. 23).

b. The above example shows the advantage of multiple accumulators. Intermediate
results can be contained in registers, and no time-consuming reference to storage
has to be made. (We assume that the numbers are such that no overflow occurs
during any of the operations.)

1. 2 EVALUATION OF A SIMPLE ARITHMETIC EXPRESSION

Evaluate I' = -2.0* (a+b)* dlc, where a, b, c, d are the contents of general purpose
registers GPR1, GPR2, GPR3, and GPR4, respectively. Place the result in GPR5.

LCR 7,1 -a. Complement a and load into
GPR7.

SR 7,2 -(a+b). Subtract b from -a.

MR 6,4 -(a+b)*d. Note multiply and divide
conventions in MR and DR.

DR 6,3 -(a+b)*d/c

1

LR 5,7 Quotient to G PR5 .

SLA 5,1 Shift to multiply by 2.

Comments

a. This problem illustrates the positioning of operands and result in the fixed-point
multiply and divide operations (0. M., pp. 29-30).

b. Multiplication or division by a power of 2 for a number in fixed-point format can
be accomplished by shifting. This is generally more efficient than a multiplication.
Note, in the use of shifting for division, that the 2's complement notation implies a
different rounding, as the digits shifted out are always positive. Thus a right shift
on +25 yields +12, but a right shift on -25 yields -13. A division of -25 by 2
yields -12, with -1 as remainder.

c. Fixed-point arithmetic treats operands in the registers as if they were integers.
The mUltiply instruction takes the multiplicand from an odd register and develops a
double-length result in an even/odd register pair. For division the dividend is
taken to be a double-length number situated in an even/odd register pair. The
quotient is obtained in the odd register, while the remainder is in the even register
(0. M., pp. 29-30).

1. 3 CYCLIC PERMUTATION OF A WORD GROUP USING MULTIPLE REGISTER
COMMANDS

Given the quantities AI, A2'" A16 in fullword locations starting at LaC. Cyclically
permute the information such that it is stored in the sequence A4, A5 ... A16 AIA2A3.

Method 1

LM

STM

STM

Comments

0,15, LaC

0,2, LOC+52

3,15, LaC

Load all registers with Al
through A 16.

Store AI, A2, A3 at end of
LaC area.

Store A4 through A16.

LOC+52 refers to the byte whose address is LOC+52. Since there are four bytes per
word, this refers to the 14th word of the group.

Method 2

LM 13,15, LaC

LM 0,12, LOC+12 Load register with A4 through A16.

STM 0,15, LaC Store multiple in permuted order.

2

Method 3

LM 13,12, LOC Load registers with Al through A16.

STM 0,15, LOC Store multiple in permuted order.

Comments

a. Method 3 makes use of the wraparound feature of the Load Multiple instruction
(O.M., p. 26).

b. The above methods assume that all 16 general purpose registers can be used-
that is, that no base registers are needed to generate address LOC. This confines
the numerical equivalent of LOC to less than 4096. Usually, of course, some
registers will have to be set aside as base registers, in which case the problem
will have to be done in several steps.

1. 4 CLEARING OF A SPACE IN STORAGE USING LOOP CONTROL TECHNIQUES

Replace the contents of 25 fullwords starting at LOC with zeros.

Method 1:

SR 0,0 Clear GPRO (see comment a).

SR 1,1 Clear GPRl.

L 2, COUNT Place a 25 in GPR2.

LOOP ST 0, LOC(I) Clear word at LOC indexed by GPRI.

A 1, FOUR Increment index by 4.

BCT 2, LOOP Reduce count by 1 and test for completion.

SVC ° Supervisor call (see comment c).

COUNT DC F'25' See comment b.

FOUR DC F'4' See comment b.

Comments

a. The fastest and most convenient way of clearing a register is to subtract it from
itself .

b. DC is a pseudo operation for setting up constants in the program. Hence, the steps
COUNT and FOUR are not treated as ~nstruction. The F denotes that the constant
following it is expressed in 32-bit fixed-point (A.M., p. 37).

c. SVC ° is a supervisor call denoting the end of the program. This is the standard
way of terminating the execution of a program.

3

Method 2

Instead of using a BCT to control the loop, one can use a BXLE (0. M., p. 65).

SR 0,0 Clear GPRO.

SR 1,1 Clear GPR1.

L 2, FOUR Set GPR2 to 4.

L 3,END Set end-of-loop test to 96.

LOOP ST 0, LOC(l) Clear word at LOC indexed by GPRl.

BXLE 1,2, LOOP Add GPR2 to GPR1 and test whether
greater than G PR3 .

SVC °
FOUR DC F'4'

END DC F'96' End-of-loop test = 25x4-4.

Comments

a. This method produces a more efficient program, but uses one more general
purpose register.

b. The steps L 2, FOUR and L 3, END can be replaced by LM 2, 3, FOUR since the
two words to be loaded are adjacent in memory.

Method 3

LM 0,9,C Load multiple with zero.

STM 0,9, LOC Store zeros in the first ten words.

STM 0,9, LOC+40 Store zeros in next ten words.

STM 0,4 LOC +80 Store zeros in remaining five words.

SVC ° Return to supervisor.

C DS 10F'0' Ten words of zero.

Comments

This method is faster than the first two, but less general.

4

Method 4

SR

STC

MVC

Comments

0,0

O,LOC

LOC(99), LOC+ 1

Set register ° to zero.

Store zero into first character of field.

Propagate zero through the 25 words
(100 bytes).

Method 4 is included here because of its intrinsic interest.

1. 5 EXTRACTION OF ONE ELEMENT OF A MATRIX --TWO-DIMENSIONAL TABLE
LOOKUP

Given a matrix of size M x N (M rows and N columns, M, N ~ 1000) stored row-wise in
consecutive fullwords beginning with All in MTRIX" Given also two binary integers p
and q in GPR1 and GPR2, respectively. Put the element Apq in GPR3.

L

S

MR

AR

SLA

L

SVC

N DC

ONE DC

Comments

5,N

1,ONE

0,5

1,2

1,2

3, MTRIX-4(1)

°
F'5'

F'l'

Load number of columns into GPR5.

p-1

GPR1 contains (p-1)*N.

q+(p-1)*N

4*(q+(p-1)*N) Multiply by 4, using a
left shift of 2.

Load element into GPR3 (see comment a).

N=5 in this example.

a. The element Apq has byte address MTRIX + 4*((q-1)+(p-1)*N) or
(MTRIX-4)+4*(q+(p-1)*N)

1. 6 C YC LIC BIT SHIFTING

Cyclic left shift seven bit positions the information in the 32-bit full word LOC and
store the result in RES.

5

SR

L

SLDL

OR

ST

SVC

Comments

2,2

3,LOC

2,7

3,2

3,RES

°

Separate 32 bits of information into 7
and 25 bits.

The OR instruction is used to add the seven bits back into register 3. One could also
use the ALR instruction to do this, but not an AR instruction. AR would give an in
correct result when the leading bit (sign position) of the shifted number is a 1.

1. 7 SUM OF SQUARES USING DOUBLE-PRECISION FIXED-POINT ARITHMETIC

Eight 32-bit integers starting at fullword boundary NUMB are given. Compute the sum
of the squares of these integers and store it at SUM in the format sign plus a 63-bit
integer. It may be assumed that the sum can be expressed as a 63-bit integer.

LM 0,5,REGIS Set up registers.

LOOP L 13, NUMB(4) Load integer.

MR 12,13 Square the number.

ALR 3,13 Low order of 64-bit sum.

BC 3, CARRY Branch if carry out of low-order word.

CONT AR 2,12 High order of 64-bit sum.

BXLE 4,0, LOOP Close loop.

STM 2,3,SUM Store result in SUM.

SVC °
CARRY AR 12,5 Carry into high-order word by adding 1.

B CONT

REGIS DC F'4, 28,0,0,0, l'

6

Comments

a. Loading of consecutive registers can be done efficiently with a LM instruction.

b. When a carry out of sign position in ALR instruetion occurs, the condition code
will be either 2 or 3 (O.M., p. 27). Hence BC3 results in a successful branch
whenever there is a carry.

1. 8 TRANSPOSITION OF A SQUARE MATRIX USING ADDRESS CONSTANTS

An NxM matrix has fullword elements and is stored row-wise beginning at MATRIX.
Create the transpose of this matrix and store it in the same area.

LM 5,11, PARAM

GO LR 12,9 column pointer.

LR 13,10 Row pointer.

TRANS L 3,0(12) Load a ...
1)

L 4, 0(13) Load a ...
)1

ST 3,0(13) Store a .. in a ...
IJ)1

ST 4,0(12) Store a .. in a ...
J1 IJ

AR 12,5 Step to next column.

BXLE 13,6, TRANS Step to next row and close loop.

AR 9,11 Set up for next column.

AR 10,11 Set up for next row.

BCT 8,GO

SVC °
PARAM DC F'4'

DC A(4*N, MA TRIX+4*(N*N-1))

DC A(N-1, MATRIX+4, MATRIX+4*N,4*(N+1))

7

Comments

a. We want to replace the element a .. of the matrix by a .. and vice versa.
. 1J J1

b. DC type A is used for setting up addres s constants (A. M., p. 48).

1. 9 LENGTH OF AN UNKNOWN FILE USING BYTE-HANDLING CAPABILITIES AND
MULTIPLE REGISTERS

Information of unknown length is written in consecutive eight-bit bytes beginning at
INFO. Its end is signified by a special character of eight binary l' s . Find the file
length (including the special character) in bytes, and put the answer in GPR1.

Method 1

SR 2,2 Set register to O.

L 6,ONE

LR 1,6

L 3,SPCH GPR3 has special character.

IC IC 2,INFO-1(1) Load one byte of information.

CLR 2,3 Compare it with GPR3.

BE EQUAL Branch if equal (see comment b).

AR 1,6

BC 15,IC Unconditional branch (see comment b).

EQUAL SVC 0

SPCH DC X' OOOOOOF F'

ONE DC F'1'

Comments

a. The IC instruction can be used to handle one byte at a time.

b. BC with mask = 15 results in an unconditional transfer. This could also be written
in extended mnemonic form (A. M., p. 33) simply as B. Conversely, the BE,
which is in extended mnemonic form, could be written as BC8.

c. DC type X is used for setting up hexadecimal constants (A. M., p. 43).

8

Method 2

LM 1,5,PARAM

IC IC 5,0(1,4)

AR 1,3 Add to counter.

CLR 3,5 Compare with eight binary l's.

BC 7,IC Branch i.f not equal.

SVC 0

PARAM DC F'O'

DC XL4'FF'

DC F'l'

DC A(INFO)

DC F'O'

Comments

a. The programmer may, if he so desires, specify which base register is to be used.
This is shown in the second step. Alternatively, one could write the second step
as Ie 7, INFO(3) and the assembler would assign the base register.

Method 3

LM 1,6,PARAM LOAD GP registers.

IC IC 3,0(1,6) Insert character into 3.

AR 1,4 Increment index

BXH 5,2,IC See com:ments

SVC 0

PARAM DC F'O' Reg 1 - Index.

DC F'O' Reg 2 - Zero.

DC F'O' Reg 3 - Character from field.

9

DC F'l' Reg 4 - Index increment.

DC XL4'FF' Reg 5 - Eight l's.

DC A(INFO) Reg 6 - Base address of field.

Comments

The eight l's are added to zero, and then compared with the target character in
register 3. Since eight l's will always be higher than any other character, the branch
will be taken unless there are eight l's in the target character. Then the exit will be
taken. This method is included to show a variation in use of index control instructions.

Comment On A Possible Method 4

If memory space is not critical, or if speed of function is critical, the most efficient
and probably best method is to use the "Translate and Test" instruction. The program
is left as an exercise for the reader.

1.10 TABLE LOOKUP USING THE TRANSLATE INSTRUCTION

It is desired to produce a list of eight-bit BCD code from a list of four-bit hexadecimal
characters. (This may be used, for example, for printing.) The given list is located
at fullword boundary HEX extending through eight doublewords for a total of 128
hexadecimal characters. The output BCD code is to be located at fullword boundary
BCD.

LM 1,5,REGIS

NEXT LH 8, HEX(l) Fetch four hex characters.

LR 6,4 Load GPR6 with 4.

LOOP SRDL 8,4 Shift to GPR9 one hex digit.

SRL 9,4 Expand to byte length.

BCT 6, LOOP

ST 9, BCD(5) Store four expanded characters.

AR 5,4

BXLE 1,2,NEXT

TR BCD(128), TABLE Translate entire line.

SVC 0

10

REGIS DC A(0,2, 63,4, 0)

TABLE DC X'FOFIF2F3F4F5F6F7'

DC X'F8F9CIC2C3C4C5C6'

Comments

The translate instruction (TR) works like a table-lookup scheme. It translates 256 bytes
with just one setup. Here the eight-bit arguments are located at BCD and the eight-bit
function bytes are located at TABLE. The translation of each argument byte is com
pleted with the function byte replacing the argument at BCD.

11

2. FLOATING-POINT INSTRUCTIONS

2.1 POLYNOMIAL EVALUATION

Evaluate the polynomial
20

P(x) = L: AkXk

K=O

where x is located at X, a20 at A, a19 at A+4, etc. Store the result (single precision)
in POLY.

LOOP

INCRE

Comments

SR
LM
LE
SER
AE
MER
BXLE
AE
STE
SVC
DC
DC

1,1
2,3,INCRE
O,X
2,2
2, A(I)
2,0
1,2, LOOP
2, A(I)
2,POLY
o
F'4'
F'76'

Clear GPRI.
Load index value and limit.
Load argument in FPRO.
Zero FP register 2.
Add coefficient of kth term.
Multiply by x.

Add coefficient of Oth order.
Store result.
Return to supervisor.

The above technique is known as "nesting". P(x):::: (.... (A20x + A19) x + ... + AI) x + AO'
technique is more efficient than a term by term evaluation.

2.2 SEPARATION OF INTEGER AND FRACTION PARTS OF FLOATING-POINT
NUMBERS USING UNNORMALIZED INSTRUCTIONS

The single-precision (32-bit) floating-point number N in location DOG has a small
(~6) exponent magnitude. Create two floating-point numbers I, F in CAT and CAT+4
such that

and

SDR
LDR
LE
AW

LER
SDR
AU
STE
STE

I = an integer

I FI < 1. 0, sign of F = sign of N

1+ F = N.

6,6
2,6
6,DOG
6,X6

2,6
6,2
6,XO
2,CAT
6,CAT+4

12

Zero FPR 6 (double).
Zero FPR 2 (double).
Load N.
futeger in 1st and fraction 2nd half

of FPR6.
Load integer into FPR2.
Fraction in FPR6.
To force an unnormalized fraction.
Store integer part.
Store fractional part.

X6

Comments

SVC
DC
DC
DC

o
OD
X'4600000000000000'
X'40000000'

Place X6 on doubleword boundary.
Exp 6, fraction O.
Exp 0, fraction O.

a. I and F are generally unnormalized, the exponent of I being 6 and that of F zero.

b. Unnormalized addition of a number with a zero fraction can be used to force the
exponent of number to a predetermined value.

2.3 EXTRACTING THE INTEGER PART OF A FLOATING-POINT NUMBER

The 32-bit single-length floating-point number N in location DOG has a small exponent
(~ 6) and is therefore less than 224 in magnitude. Put the integer part of the number
in GPRI in fixed-point integer form.

Method 1

NOTNEG
TEMP
XZERO
X6
NSIGN

Comments

LE
AU

STE
L
N
LTR
BC
N
LNR
SVC
DS
DC
DC
DC

4,DOG
4,X6

4,TEMP
1, TEMP
I,XZERO
1,1
10, NOTNEG
1, NSIGN
1,1
o
IE
X'80FFFFFF'
X'46000000'
X'7FFFFFFF'

Integer part with exponent of 6
in FPR4.

Integer part with exponent in GPRl.
Blank out exp., leaving sign.
Test whether number is negative.
Branch if positive or zero.
Remove sign.
Take 2's complement.

Mask to eliminate exponent.
Floating zero with 6 exponent.
Mask to eliminate sign.

A negative number in fixed point is represented in two's complement form, while in
floating-point the fraction is represented in true form. Hence special steps have to be
taken to create the complement if necessary.

Method 2

This method does not use the fixed-point registers.

NOTNEG

LE
AU

BC
AU
AU
STE
MVI
SVC
STE

4,DOG
4,X6

10, NOTNEG
4, ONES
4, ONE
4, I
I,X'FF'
o
4, I

13

Load N into FPR 4.
Integer part with exponent of 6 in

FPR4.
Branch if positive or zero.
Form l's complement.
Form 2's complement.
Store result in I.
Place FF in exponent.

Store resul t in I.

MVI
SVC

I DS
X6 DC
ONES DC

ONE DC

Method 3

LE
AW
STD
L
BC
LCR

EXIT SVC
TEMP DS
MASK DC

Comments

1,X'00'
o

F
X'46000000'
X'46FFFFFF'

X'46000001'

4,DOG
4, MASK
4,TEMP
1, TEMP+4
10, EXIT
1,1
o
ID
X'4EOOOOOOOOOOOOOO'

Blank out exponent.

Align on full word boundary
Unnormalized zero.
Maximum positive floating-point

integer.
Unnormalized 1.

Integer part to right end of FPR4.
Does not change condition code.
Does not change condition code.

a. The AW instruction forces the integer part of the number to the extreme right end of
the 64-bit floating-point register.

b. The condition code set by the AW instruction is not affected by the two subsequent
instructions.

Method 4

LE 4,DOG
AU 4,X6 Integer part with exponent of 6 in

FPR4.
STE 4, TEMP
L 0, TEMP Integer part with exponent in GPRO.
LPR 1,0 Load absolute value if positive and

complement if negative into GPR1.
Correct sign still in GPRO.

SLDA 0,39 Shift quantity against sign and shift
out the exponent.

SRA 0,7 Shift to proper position.
SVC ° TEMP DS IE

X6 DC X'46000000'

Comments

LPR creates the correct quantity except for the exponent part, now extraneous, and sign.
The left double shift removes the exponent and regains the sign. The right shift provides
the proper offset. Negative numbers will have leading I-bits as prescribed by the two':::
complement notation.

14

2.4 CONVERTING A FIXED-POINT NUMBER TO FLOATING-POINT

GPRO contains a small integer which is less than 224 in magnitude. The integer is to be
converted into a floating-point number and left in FPRO in double-precision form.

Method 1

LR 4,0
N 4,SMASK Separate sign bit and leave in GPR4.
LPR 3,0 Load absolute value into G PR3.
OR 3,4 Put back sign bit.
0 3,X6 Tag on exponent of 6.
ST 3, TEMP Store into left half of TEMP.
LD 0, TEMP Load doubleword with right half of

FPRO zero.
AE 0,X6 Normalize the number.
SVC 0

TEMP DS ID
SMASK DC X'80000000'
X6 DC X'46000000'

Comments

The right half of FPRO may have contained extraneous bits. The use of TEMP as a
doubleword avoids an extra zeroing instruction.

Method 2

LPR
0
SLDA

ST
LD
AE
SVC

TEMP DC
MASK DC

Comments

1,0
1, MASK
0,32

0, TEMP
0, TEMP
0, MASK
0
D'O.O'
X46000000'

Load absolute value into GPRl.
Insert an exponent of 6.
Shift fraction and exponent into

GPRO. Original sign is preserved.

To force normalization.

a. The LPR instruction creates the absolute value (with eight lead zero-bits) in GPRl,
the SLDA instruction shifts the GPR(O, 1) pair to result in the correct sign-magnitude
notation. The additional instructions move the result to FPRO and perform normal
ization.

b. AE can be used to force normalization since the right-hand side of FPRO is known to
be zero.

15

2. 5 DOUBLE-PRECISION SQUARE ROOT SUBROUTINE

Given a double-precision number x in FPRO, create the double-precision square root
in FPRO
Algorithm: let x=16E . f whereri-:5 f<l

then an approximation YO to y = Vx can be obtained by the linear expression

Yo ~ (8: + ;) 16 [E/2] when I is even

YO ~ (3;f + :) 16 [E/2] when I is odd

(Here [E/2] denotes the integer part of E/2.)

It can be shown that such an approximation has a relative error which is nowhere greater
than 1/9. Therefore, four Newton-Raphson iterations of the form

Y =- Y+-1 (X) n+1 2 n Y
n

are sufficient to give better than 56-bit accuracy.

Conventions

In order to gain speed, the loop for the Newton-Raphson iterations was expanded and
single precision used whenever possible. In order to achieve the multiplication by 1/2,
the HALVE instruction is used when possible. However, this cannot be done on the
last step, since HALVE produces an unnormalized result. This can be overcome by
using a multiply by 1/2 on the last step. Alternatively one could use

Y = Y +!. (N _ Y \
4 3 2 Y3 3J

which is faster than a multiply but may give less accuracy (extra roundoff). The
argument is to be given in FPRO and the answer is returned in FPRO. GPRO, GPRl,
FPRO, FPR2, and FPR4 are used.

SQRTD LTDR 2,0 Test argument.
BC 12, EXCP Arg. ° or negative.
STE 0, TEMP
SR 0,0 Zero GPRO.
IC 0, TEMP Insert exponent byte in GPRO.
SRL 0,1 Divide exponent by 2.
A 0, MSKSI E/2 Regenerate excess-64 charac-

teristic.
SR 1,1 Zero GPRl.
TM TEMP,X'OI' Test exponent for even/odd.
BC 8, EVEN Branch to even if exponent even.

16

ODD
EVEN

EXCP

TEMP
MSKS1
FOUR
C2

C1

HALF

Comments

L
STC
STC
LE
ME
AE
LER
DER
AER
HER
LER
DER
AER
HER
LDR

DDR
ADR
HDR
DDR
ADR
MD
B
BC
B
DS
DC
DC
DC
DC
DC
DC
DC

1, FOUR
0, TEMP
0, C2(1)
O,TEMP
0, C1(1)
0, C2(1)
4,2
4,0
0,4
0,0
4,2
4,0
0,4
0,0
4,2

4,0
0,4
0,0
2,0
0,2
0, HALF
0(14)
4, ERROR
0(14)
IE
X'OOOOO020'
X' 00000004'
E'.222'
E'.8889'
E'.8889'
E'3.55556'
D'.5'

If exponent odd, set index to 4.

Insert gE/q
Insert E/2
Load f E/2
Multiply by either 8/9 or 32/9.
Initial approximation.
Start of 1st iteration.
x/Yn
(Yn + x/Yn)
1/2 (Yn + x/Y n)
Start of 2nd iteration.

Start of 3rd iteration-double pre
cision.

Start of 4th iteration.

Final result.
Normal return.
Error return.
Normal return for zero arg.

2/9
8/9
8/9
32/9

DC type D is used for setting up long floating-point constants. The constant is aligned
at the proper doubleword boundary (A.M., p. 45).

2. 6 MATRIX ADDITION

Two NxM matrices, whose elements are single-length (32-bit) floating-point numbers
stored row-wise starting at AMTX and BMTX respectively, are to be added and the
resultant matrix is to be stored row-wise starting at RMTX.

17

Method 1

LOOP

REGIS
N
M

Comments

LM
SR

SR

LE
AE
STE
BXLE
SVC
DC
EQU
EQU

1,5, REGIS
1,3

2,3

0,0(1,3)
0,0(2,3)
0,0(3)
3,4, LOOP
o

Load addresses.
Form difference so that when added

to G PR3 the correct AMTX element
address is formed.

Form difference for BMTX (see
above).

Load AMTX element.
Add BMTX element.
Store in RMTX.

A(AMTX, BMTX, RMTX, 4, RMTX+4(M*N-1)
3 N=3 for this example.
5 M=5 for this example.

a. Requires three registers for indexing but makes no restrictions on Nand M.

b. EQU is used to define a symbol (A.M., p. 36).

c. RMTX+4*(M*N-1)is the address of the last element on RMTX.

Method 2

L 5, LIMIT
SR 13,13
LA 1,AMTX Address of AMTX to GPR1
LA 2,BMTX Address of BMTX to GPR2
LA 3,RMTX Address of RMTX to GPR3

LOOP LE 0,0(13, 1)
AE 0,0(13, 2)
STE 0,0(13,3)
BXLE 13,4, LOOP
SVC 0

LIMIT DC A(4*(M*N-1»

where Nand M would be specified and GPR13 would take on values 0 to 4* (M*N-1) in
increments of 4.

Comments

a. Requires four registers for indexing.

18

Method 3

LOOP

Comments

LE
AE
STE
BXLE

0,AMTX(13)
0, BMTX(13)
0, RMTX(13)
13,4, LOOP

a. Uses only one register for indexing but may not work when the matrices are large.

b. Another method would be to intersperse the matrices.

2.7 PRODUCT OF TWO SQUARE MATRICES

Two NXN single-precision (32-bit) floating-point matrices Land R are stored row-wise
beginning at LMTX and RMTX respectively. Create P=L*R and store it row-wise
beginning at PMTX. (Note:' C(12) means the contents of register 12.)

*
*
*
LOOP 2

LOOP 1

N
ROW
SQMX
REGIS

Comments

LM

LR
LR
SDR
LE
ME
AER
AR
BXLE
STE
AR
BXLE
SR
AR
BXLE
SVC
EQU
EQU
EQU
DC
DC

6,14, REGIS
C(12) = Starting address of a row of

LMTX.
C(13) = Address of RMTX.

3,13 C (3) = Index down columns of RMTX.
2,12 C(2) = Index across rows of LMTX.
0,0 C(FPRO) = Sum of products.
2,0(2) Start of inner loop.
2,0(3) Form product of elements.
0,2 Running sum.
3,8 Step to next row.
2,6 LOOP1 C(2) = C(2)+4 and loop.
0,0(14) Store element.
14,6 C(14) = C(14)+4.
13,10, LOOP2 C(13) = C(13)+4 and loop.
13,8 C(13) = address of RMTX.
7,8 Move to next row of LMTX.
12,8, LOOP2 C (12)=C (12)+4*N and loop.
0
1000 Any positive integer.
4*(N-1)
4*(N*N-1) Row +4
A(4, LMTX + ROW, ROW + 4 LMTX + SQMX)
A(4, RMTX+ROW, LMTX, RMTX, PMTX)

a. An asterisk in column 1 indicates a comments card (A. M., p.11).

19

3. COMPLETE PROBLEMS

3. 1 SORTING ON THE BASIS OF SUBFIELDS (see comments)

Given 256 consecutive fields each having an "A" subfield of eight bits and a "B"
subfield of 16 bits, sort on the basis of "A" at ANS. (All "A" fields are different.)

A B
(8 bits) (16 bits)

ORG 4096 See comment a.
BEGIN BALR 1,0

USING *,1 See comment b.
LM 4,7, REGIS

LOOP LM 9,11,0(6) Process four fields at a time.
SR 12,12 Clear GPR12.
IC 12,9(,6) Fetch "A" field into GPR12

(note displacement of nine
bytes).

AR 12,12 Double contents of GPR12.
STH 11,0(12,7) Store "B" field (two bytes).
SRDL 10,24 Shift to get B at any even boundary
SR 12,12
IC 12,6(,6)
AR 12,12
STH 11,0(12,7) Store second field.
SRDL 10,24
SR 12,12
IC 12,3(,6)
AR 12,12
STH 11,0(12,7) Store third field.
SRL 9,8
SR 12,12
IC 12,0(,6)
AR 12,12
STH 9,0(12,7) Store fourth field.
BXLE 6,4,LOOP Load to process four more

fields.
SVC ° ANS DS OF See comment d.
DS 256H

REGIS DC A(12,DATA+756, DATA,ANS)
DATA DC X'

256 data fields
END, BEGIN See comment c.

20

Comments

a. ORG is a pseudo instruction defining the beginning address of the program.

b. Assignment of base registers is done automatically by the assembler, but the
programmer must:

1. Specify what registers may be used as base registers and inform the assembler
of their contents

2. Load the base registers with the appropriate values

The standard method of achieving this is through the sequence

BALR
USING*,R

R,O
*,R Where R is a register.

c. END BEGIN is a pseudo instruction defining the end of the program. It also tells
the monitor to start execution at BEGIN when assembly is completed.

d. Word alignment on the fullword boundary can be achieved through a DS OF pseudo
instruction (A. M. , p.51).

e. This problem shows how information whose field length is not a fullword multiple
can be handled. The reader is urged to work through this problem, showing the
contents of the register at each step.

3.2 REMOVAL OF KEYWORDS

Given a string of 100 eight-bit bytes at DATA to DATA+99 (25 fullwords). Remove the
words which match the four-letter keyword KEY and place the condensed result at ANS.

Method 1: Character-by-Character Operation

ORG 4096
START BALR 15,0

USING *,15
LA 3, DATA
LA 4,ANS
L 0, ONE
L 1, NINE 6
AR 1,3
L 6,KEY
L 9, DATA
B CMP

EQUAL A 3, FOUR
CR 3,1
BH HIGH

LODE IC 9,0(,3)

21

Address of data to GPR3.
Address of answer to GPR4.

Ending address of data field.

First four characters.

Exit if data exhausted.
Load one byte.

SLL 9,8 Shift eight positions to make
room.

IC 9,1(,3) Load another byte.
SLL 9,8 Shift eight positions.
IC 9,2(,3) Load
SLL 9,8 Shift
IC 9,3(,3) Load
B CMP

IC IC 9,3(,3) Load another byte.
CMP CLR 6,9 Compare four bytes to KEY.

BE EQUAL Br anch if equal.
SLDL 8,8 Shift out one byte.
STC 8,0(,4) Store the byte.
AR 4,0 Step answer field pointer by 1.
BXLE 3,0,IC Increment G PR3 by 1.

HIGH A 1, FOUR
SR 1,3
BZ END
STC 1,MVC+1

MVC MVC 0, (1,4),0(3) Move the last bytes.
END SVC ° ONE DC F'l'
FOUR DC F'4'
NINE6 DC F'96'
ANSW DS 25F
KEY DC C'ABC' Keyword (note that last

character is a blank).
DATA DC C'ABC this ABC is•.•...

END START

Comments

The MVC instruction has an SS format. The assembler language format for these
instructions differs from previously encountered format (A. M., p.24).

The instructions between LODE and the subsequent branch could have been replaced by

LODE

LOC

MVC
L
B

DC

LOC,0(3)
9,LOC
CMP

F'O'

22

Method 2

Use the TRT instruction to detect the occurrence of leading character in KEY, then
examine next three characters for matchedness.

ORG 4096
START BALR 15,0

USING *,15 Rl START ADDR &END OF HIT
(START-I).

INITIALIZE R2 FUNCT=2.

LM 1, 6, HOSKP
WORKING R3 START+98.
REGISTERS R4 O,NEW START ADDR WORK REG.

R5 0, LENGTH OF REMAINING SCAN.
R6 ANSWER ADDRESS.

LOOP2 LR 4,1 New start addr~ R4.
LOOPI LR 5,3 End addr~R5.

SR 5,1 Length of T RT .
EX 5,TRT Execute TRT inst.
BC 5, OUT End of field.
CLC KEY+l(3),I(I) Test remainder of key.
BNE LOOPI Continue test cycle on /:..
SR 1,4 { Set up length for data move to answer area.
SR 1,2
EX I,MVC Execute data move.
LA 6,1(1,6) { Set up to test remainder of the field.
LA 1,5(1,4)
BC LOOP2 Continue test.

OUT SR 3,4 Calc. final length.
EX 3, MVC Execute final move.
SVC ° Return to monitor.

TRT TRT 1(0,1), TABLE
MVC MVC 0(0,6),1(4)
Ha3KP DC (Storage for 6 reg. loading)
TABLE DC (Table for TRT inst (Function=2))

PRIME NUMBER GENERATOR

Find all prime numbers whose value is less than a certain number LIM. Algorithm: To
decide whether a number N is a prime, we divide it by all primes with value ~ ~ If
no exact divisor is found, N is a prime.

ORG 4096
START BALR 15,0

USING *,15
L 14, ONE
ST 14,M First number = 1.
AR 14,14
ST 14,M+4 Second prime = 2.
A 14, ONE

23

ST 14,M+8 Third prime = 3.
SR 13,13 Zero GPR13.
ST 13,MNS Zero MNS
ST 14,NM Store C(14) in previous prime number.
L 9, TWELVE GPR9 = Index on prime number array.

LOOP1 L 14,NM Load previous number.
A 14,M+4 Add 2 to previous number.
ST 14,NM Next number to be tested.
S 14, LIM Test for end.
BP STOP
L 13, EIGHT

LOOP2 LM 10,11,MNS Load current numbers to be tested.
D 10,M(13) Remainder in Reg. 10.
BXLE 10,11, LOOP1 If Rem = 0, number is not prime, so branch to

LOOP1 to next candidate.
S 11, M (13) Square root test.
BM PRllVIE Number is prime.
A 13,FOUR Try next prime number as divisor.
B LOOP2

PRIME L 8,NM Load number found to be prime.
ST 8,M(9) Store in prime array.
A 9, FOUR Bump prime array index.
B LOOP1

STOP SVC 0
MNS DS IF
NM DS IF Previous prime number.
ONE DC X'OOOOOOOl'
FOUR DC X'00000004'
EIGHT DC X' 00000008'
TWELVE DC X'OOOOOOOC'
LIM DC X' 00000064' LIM = 100 in this example.
M DS 50E Prime numbers stored here.

END START

3.4 MIN-MAX PROBLEM

Given an array of N rows and M columns, whose elements are 32-bit integers stored
row-wise beginning at ARRAY. Find the maximum of eaqh row and store the addresses
of these maxima in fullwords beginning at MAX. Then find the minimum of these
maxima and store its address at MIN. For this example an array of three rows and
five columns is used.

ORG 4096

START BALR 15,0
USING *,15
LM 2,7, REGIS
L 1, 0(3) C(l) = MIN of MAX.
ST 3,MIN Address of current minimum.

REPLACE L 14,0(3) C(14) = MAX.

24

ST 3,MAX(2) Address of current maximum for this row.
B BXH

CMP C 14,0(3) Compare current maximum with operand new
BL REPLACE maximum discovered.

BXH BXH 3,4,CMP Repeat until row is exhausted.
CR 1,14 Is NEW MAX less than MIN?
BH NEWMIN Branch if so.

AR AR 2,4 Handle next member of MAX vector.
BXH 5,6,REPLACE Proceed to next row.
SVC ° NEWMIN LR 1,14 New minimum generated.
L 10,MAX(2)
ST 10,MIN Address of new MIN saved.
B AR

N EQU 3
M EQU 5
END EQU 4*(N*M-l)
MT4 EQU M*4
ARRAY DC F'I,3,5,7,-9,-I,-3,-50,-7,S,2,4,0,S,10'
MAX DS 5E
MIN DS IE
REGIS DC A (4*N-4, ARRAY+END, -4, ARRAY+END-MT4, -MT4, ARRAY -S)

END START

Comments

a. Candidate for max is at GPRI4, with address of candidate at MAX(2). Candidate
for min is at 1, with address at MIN.

3.5 DOUBLE-PRECISION BINARY-TO-DECIMAL CONVERSION

Given a 64-bit binary positive integer beginning at full word boundary BIN, convert it
into decimal beginning at DEC.

ORG 4096
START BALR 15,0

USING *,15
LM 2,3, BIN 64-bit number to GPR2 and GPR3.
CVD 2, DEC+S Convert high-order part.
MP DEC (16), TW032 (6) Decim.al-multiply high-order by 232•
SLDA 2,31 Shift low order to G PR2. Save low-order bit

in sign of G PR3.
CVD 2, TEMP Convert low-order part.
MP TEMP(S), TWO(I) Decimal-multiply low order by 2.
LTR 3,3 Set condition code.
BC 4,ADD Test for low-order bit.

CONT AP DEC (16), TEMP(S) Add two parts together.
SVC ° ADD AP TEMP(S),ONE(I) Add in low-order one.
B CONT

25

TW032 DC X'04294967296C' Decimal constant 232 .
TWO DC X'2C' Decimal constant 21.
ONE DC X'IC' Decimal constant 1.
TEMP DS ID
DEC DS 2D

END START

Comments

a. A 63-bit binary integer plus sign is equivalent to a decimal number of not more
than 20 digits plus sign. A 128-bit field is used to store this decimal result.

b. The CVD instruction converts a 32-bit signed integer to decimal. The 63-bit
magnitude field is, therefore, broken into two 31-bit fields and a I-bit field. The
high-order part is converted and then multiplied by 232 ; the lower part is converted
and multiplied by 2. The remaining bit contributes either a 0 or 1 to the result.

3. 6 SCANNING A MESSAGE FOR SYNTACTICAL ERRORS

SINISCAN is a very simple scanner which could be used for precompilation scanning of
programs. In this use it would locate low-level syntactic errors without wasting the
time of the compiler proper.

The code shows a standard use of TRT (translate and test). It also exemplifies use of
several general registers for keeping track of a multidimensional situation.

Problem

Given a string of characters starting at a known location and terminating with a period.
The string is called error-free if and only if:

1. There is either one or no equal sign.

2. No two arithmetic connectives (+, -, *, /) are adjacent.

3. At no point during a left-to-right scan have more right parentheses than left
parentheses been encountered, and the total number of occurrences of each is the
same.

Solution

SIMS CAN is written as a quasi-subroutine. The program below contains not only
SIMSCAN but a main program called CONTROL and several input strings.

26

The register usage table, which follows, explains the code:

General Purpose
Register No.

CONTROL

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

CSECT
BALR
USING
L
L

15,0
*,15
7, TW056
12,ADSCAN

Contents

= 1
Argument address for TRT.
Function byte for TRT.
(not used)

"
"
"

= 256
Left-right parenthesis count (start at 0).
Equal sign count (start at -1).
Address of last previous connective encountered.
Base address for STRINGS.
Base address for SIMSCAN.
=4
Length of current statement.
Program base address.

Controlling program.
Addressability.

Load bases.
L 11,ADSTRNGS
L
L
L
SR
AR
LR
BR

NEWDATA AR
L
LTR
BM
AR
LR
BR

FINISHED SVC
ERROR SVC

DC
B

ADSCAN DC
ADSTRNGS DC
FOUR DC

14, 0(11)
13, FOUR
0, ONE
2,2
11,13
1,11
12
11,14
14, 0(11)
14,14
FINISHED
11,13
1,11
12
0
1
X'0010'
NEWDATA
A(SCAN)
A(STRINGS)
F'4'

27

Length of current string.
=4
= 1

Skip length word.
Input to simscan.
Call simscan.
Address of new input.

Check for end signal

Stop
Print

ONE DC F'l'
TW056 DC F'256'
SIMSCAN CSECT * * * Scanner * * *

USING *,12 Loaded by control.
SR 8,8 Clear scratch pad.
LCR 9,0 Clear scratch pad.
LCR 10,13 Clear scratch pad.
SR 1.0 Initialize.

CONTINUE AR 1.0 Advance beyond detected symbol.
TRT 0(255.1), TABLE Start or continue scan.
BC 6, SIMSCAN(2) Symbol found, take action.
AR 1,7 No symbol, advance,
B CONTINUE Continue.

LPAREN AR 8,0 Increase (count.
B CONTINUE

RPAREN SR 8,0 Decrease (count.
BM ERROR
B CONTINUE

EQUALS AR 9,0 Increase = count.
BP ERROR Check for. GT. 1.
B CONTINUE

CONNECT AR 10,0 See if last previous
SR 10,1 connective
BC 10, ERROR was too close.
LR 10,1 Reset
B CONTINUE

PERIOD LTR 8,8 End of message
BP ERROR Check (count.
B NEWDATA

TABLE DC 9D'0' for ASCII code
DC ALl(LPAREN -SIMSC AN)
DC ALI (RPARE N -SIMSC AN)
DC ALl(CONNECT-SIMSCAN)
DC ALI (C ONNECT -SIMSCAN)
DC 2X'0'
DC ALl(C ONNECT -SIMSCAN)
DC ALI (PERIOD-SIMSCAN)
DC ALl(CONNECT-SIMSCAN)
DC l3X'0'
DC ALI (E QU ALS-SIMSC AN)
DC X'OO'
DC 20D'0'

STRINGS CSECT
DC F'30'
DC C'THIS (E*F-L+-)
DC F'3l'
DC C'BEEP (0)0(0 »)«
DC F'lO'
DC C'X=Y+Z=2
DC F'lO'

28

DC C' «X)«.
DC F'IO'
DC C'X+Y(=)-2Z. '
DC F'-l'

TABLE DC 9D'O' for EBCDIC code
DC CL3'OOO'
DC ALI(PERIOD-SIMSCAN)
DC CLI'O'
DC ALI (LPAREN -SIMSCAN)
DC ALI(CONNECT-SIMSCAN)
DC 18CLI'O'
DC ALI(CONNECT-SIMSCAN)
DC 12CLI'O'
DC ALI (C ONNECT -SIMSCAN)
DC 15CLI'O'
DC ALI (EQU ALS-SIMSC AN)
DC CLI'O'
DC 16D'O'

29

C20-1620-0

International Business Machines Corporation

Data Processing Division

112 East Post Road, White Plains, New York 10601

n
N o
I
......
0'\
N o
I
o

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	36

