IBM Operating System/360
TESTRAN User's Guide

This document presenfs guidelines to the effective use of program
testing and-debugging facilities provided by the test translator
(TESTRAN) of Operating System/360.

Included are guidelines to writing the TESTRAN macros,
assembling the problem program, executing the program in a test
environment, and, finally, deleting TESTRAN from a debugged
program. A sample program and its associated TESTRAN output
serve as a vehicle for the discussion.

An understanding of the information in the following publications is
prerequisite to use of this manual:

e IBM Operating System/360 Assembler Language (C28-6514)
e IBM Operating System/360 Linkage Editor (C28-6538)

o IBM Operating System/360 Job Control Language (C28-6539)

Reference is also made to IBM Operating System/360 Control
Program Services (C28-6541).

C20-1652-0

Programming

Copies of this and other IBM publications can be obtained through IBM branch
offices. Address comments concerning the contents of this publication to
IBM, Technical Publications Department, 112 East Post Road, White Plains, N.Y. 10601

CONTENTS

INErodUCHION « v v « v v e e e e e e e e e e e e e e e e 1
Chapter 1: How TESTRAN Operates v v v v v v v v v v u 2
TESTRAN Macro Instructions and the TIA Table 2
TIA Table e e e e e e e e e e e e s e e e e 2
TESTOPEN MacCro v v v v v e v v bt e et e e e e e e 2
TEST AT MaAcCro. . v v v v v v v v v v e v v e u e e e e e e 2
GO BACK MACTO. . + v v v v v v et et e e et e e e e e e e e s 3
TESTRAN Interpreter ¢ . i i v i i v v v v v v v v 3
TESTRANEditor 0 o v it e e e e e i e e e e e 4
Chapter 2: Writing the TESTRAN Control Section 5
Inclusion of TESTRAN with the Problem Program 5
Explanation of Figure 1A. o 0 0o 5
Explanation of Figure 1B. e e e e e e e 10
Chapter 3: General Procedures for Using TESTRAN 14
Assembling TESTRAN Macros with the Problem Program 14
Assembling TESTRAN Macros Separately from the
Problem Program. v . v v v v e e e e e e e e e e e e 14
TESTRAN Job Flow and Job Control Language 14
Assembly (Steps Land 1A) 17
Linkage Editor Procedure (STEP2). 17
Problem Program Execution (STEP3). 17
TESTRAN Editor Procedure (STEP4). 17
Chapter 4: TESTRAN Output v . v v v v v v e v e v v e 18

Appendix: Reference Summary of TESTRAN Macro Parameters . . . 24

INTRODUCTION

The test translator (TESTRAN) is a program testing and debugging aid
for 0OS/360 assembler language programs. The availability of TESTRAN
in the operating system is determined at system generation time
(SYSGEN).

TESTRAN consists of three parts:

1. TESTRAN macro instructions
2. TESTRAN interpreter
3. TESTRAN editor

The TESTRAN macros are the user's means of indicating (1) when testing
is to begin, (2) where in the program testing is to take place, and (3)
what tests are to be performed. The macros are expanded at assembly
time from their macro definitions, which are included in the system
macro library at SYSGEN. The expanded macro instructions are
assembled into a TESTRAN interpreter action (TIA) table, in the form

of a control section separate from the problem program control sections.

To execute the problem program with TESTRAN, the user must link-edit
the problem program and TIA table CSECT's together, to form a single
load module, which can then be fetched into main storage.

The TESTRAN interpreter operates in the supervisor state at program
execution time. At appropriate times during execution of the problem
program, the TESTRAN interpreter honors the test requests which have
been coded in the TIA table. The interpreter routines are entered via
SVC interruptions and LINK macro instructions, and are executed out of
line from, but in succession with, the problem program. Output from
the TESTRAN interpreter is placed on a system data set (SYSTEST) for
later editing and printing by the TESTRAN editor. The functions of the
interpreter are completed either when a TEST CLOSE statement is
encountered or when the problem program reaches end-of-task.

The TESTRAN editor is a processor that operates in the problem program
state. After completion of the user's program, the TESTRAN editor
must be executed in order to print the test output created by the

TESTRAN interpreter. This may be done immediately, or at a later
time, since execution of the editor is a separate job or job step.

The editor reads the data from SYSTEST, and determines from a
selection code whether a record is to be processed or skipped. If the
record is to be processed, the editor provides proper headings, applies
symbolic labels, converts the data to proper format, and writes the
record onto the system print (SYSPRINT) data set.

CHAPTER 1: HOW TESTRAN OPERATES

The following section presents a brief explanation of TESTRAN from an
internal viewpoint. Its purpose is to give the user some knowledge of how
TESTRAN performs its functions, as this will help in understanding the
procedure necessary to use TESTRAN effectively.

TESTRAN Macro Instructions and the TIA Table

The TESTRAN macro instructions can be grouped into five basic

macros: TEST, TRACE, DUMP, SET, and GO. There are, in all, 23
variations of these five macros. (Refer to Operating System/360 Control
Program Services, C28-6541, for a full description of the TESTRAN ‘
macros.) The TEST OPEN, TEST AT, and GO BACK macros have a
special significance. The TEST OPEN macro initiates testing; the TEST
AT ‘macro indicates where testing is to be performed; and the GO BACK
macro is used to return control to the problem program after a series of
tests is completed.

TIA TABLE

The TIA table is constructed from the assembler's expansion of the
TESTRAN macro instructions, according to their macro definitions
which are contained in the system macro library. The table consists
entirely of constants. Each macro instruction entry into the TIA table
has a specific format. The entries in the table are in the same sequence
as the source macro instructions that caused them to be created. Except
for the TEST OPEN entry, the TIA table is nonexecutable.

TEST OPEN MACRO

The TEST OPEN macro instruction entry is always the first entry in the
TIA table. Although this entry is identical to other macro instruction
entries in that it contains various constants, the TEST OPEN entry has
one important distinction. It is the only TIA table entry that is
executable. The first byte of each TIA entry is the '"entry type'' that is
specified in the macro definition; a different value is inserted for each of
the 23 macro instruction types. Because the entry type byte for the
TEST OPEN entry is the operation code for a supervisor call (SVC)
instruction, this entry becomes executable.

TEST AT MACRO

The TEST AT macro instruction entry in the TIA table indicates where
test services are to be performed in the problem program. At execution
time, a TESTRAN interpreter routine inserts SVC instructions into the
problem program at the places specified in the operands of the TEST AT
macro instructions. The two bytes displaced by the SVC are saved in an
interpreter table. When the problem program is executed, the inserted
SVC instructions cause interruptions that pass control to the TESTRAN
interpreter, which, in turn, initiates the performance of the test
services.

GO BACK MACRO

The GO BACK macro instruction entry in the TIA table indicates that
control is to be returned from the TESTRAN interpreter to the problem
program. Since all testing takes place in the supervisor state, it is
necessary to return control to the problem state before problem program
execution can be continued. The GO BACK macro also specifies to what
point in the problem program control is to be passed — to the next
sequential instruction or to another point (specified in the GO BACK
macro).

TESTRAN Interpreter

After assembly, the problem program and the TIA table must be
""linkage-edited'' and '"'fetched'' into main storage. Testing of the
problem program occurs in succession with the execution of the
problem program, but ''out of line'' from it. That is, the test service
routines of the interpreter are executed at the points within the problem
program where the user has indicated he wanted them. The requested
series of tests is performed, while the problem program execution is
temporarily suspended, and at the conclusion of the series of test
services, problem program execution is resumed.

At problem program execution time, control must be passed to the
TEST OPEN entry in the TIA table in order to initiate testing. Since
that entry is an SVC instruction, its execution causes an interruption
which passes control to the TESTRAN interpreter. The interpreter
inserts a TESTRAN SVC into the problem program at each point
specified in the TEST AT macro instruction. The two bytes of the
problem program displaced by the SVC instruction are stored in an
interpreter table for later retrieval and execution.

Once the SVC insertions have been made, control passes to the entry
point specified for the problem program, and execution of the problem
program begins. When an SVC instruction is encountered in the
problem program, the interruption processed for the SVC causes control
to be passed to the interpreter's router routine, which determines the
TEST AT macro instruction that caused the interruption and analyzes the
TIA table entry which follows that TEST AT entry. The router then
passes control to the proper service routine for the performance of the
requested test service. When the current series of test requests in the
TIA table is completed, the router routine passes control to the GO
BACK routine. The GO BACK routine retrieves the two bytes of
displaced problem program instruction from the interpreter table where
they were stored when the TESTRAN SVC was inserted, reassembles the
instruction at a remote location and executes it, and finally passes control
back to the problem program. When the problem program reaches
end-of-task, the function of the TESTRAN interpreter is completed.

The test output data, generated during the execution of the interpreter
test service routines requested by the problem program under test, is
written onto a system data set (SYSTEST) for storage and later editing
by the TESTRAN editor.

TESTRAN Editor

The TESTRAN editor transcribes the information contained in the test
data created by the interpreter into a printable output. It is a
post-processor in that it functions only after the problem program
whose test output it is to edit is terminated. The editor consists of
discrete routines that read the test output data from the TESTRAN
interpreter and select the records with the proper select (priority) codes
for processing. The records are transcribed into the correct output
format as determined by the type of interpreter routine that generated
the data. Proper headings for the record type and available symbolic
labels are written — with the data — onto the system print data set.

The editor analyzes the select code associated with a test output data
record to determine whether or not it is to process that particular
record. This determination is based upon the select code or codes
specified in the job control EXEC statement for the TESTRAN editor
job step. The priority or priorities indicated are compared with the
select code in the record itself; those records whose select codes are
acceptable are processed, and those whose select codes have not been
specified are skipped. The actual select code for the job step is an
integer (1 to 8), a blank, or the letter A. The select code in the record
itself may be either an integer (1 to 8) or a blank. The TESTRAN editor
is always a separate job or job step. It is not automatically executed,
but must be called for in the same manner as any other processor.

CHAPTER 2: WRITING THE TESTRAN CONTROL SECTION

The purpose of this chapter is to present some guidelines to writing the
TESTRAN macros. Figure 1 shows a subroutine to be tested. The
subroutine, PRIMER, is designed to find prime numbers. Given an
integer, X, PRIMER will find the next larger integer that is a prime
number, and return this value to the calling program. It is desired

to test the logic of the subroutine. ‘

Inclusion of TESTRAN with the Problem Program

The first question is: ""When should the TESTRAN macros be coded —
before, during, or after the problem program has been coded?'!

It is nearly impossible to write the TESTRAN macros before the
subroutine has been written, since no labels have been defined in the
subroutine. Writing the TESTRAN section during the coding of the
subroutine has disadvantages in that the programmer must, in effect,
write two programs at the same time. After the problem program has
been coded, and all labels, data areas, and logic have been fully defined,
it becomes a fairly simple matter to write a TESTRAN control section to
go with it. Subroutines such as PRIMER present, a special testing
problem, since they depend on another program to call them. Often, the
subroutine is completed before the calling program which will use it.
The checkout and debugging of a subroutine, then, may depend on the
completion of another program. This is not desirable, because (1) it

. means checking out two programs at the same time, which compounds
the problems of debugging, and (2) the programmer who wrote the
subroutine cannot turn his full attention to another project until the
subroutine is checked out.

A classic solution to this problem has been to write a '"dummy'' calling
program that passes constants to the subroutine and prints results of the
calculations for a number of test cases. This has involved writing I/0
statements for printing the results, as well as several CALL's, in order
to present a significant number of test cases to the subroutine. This has
allowed the subroutine to be debugged independently of the actual calling
program,

This same basic procedure can be made easier through the use of
TESTRAN. TESTRAN, because of its dynamic dump capability, can
relieve the programmer of writing I/O statements to print results from
the subroutine. Also, through use of the SET VARIABLE macro, a
significant number of test cases can be generated to present to the
subroutine. This is the procedure followed in Figure 1.

Explanation of Figure 1A
The TESTRAN macros for the subroutine were written upon completion

of its céding. Since they were written before the ''dummy'' calling
program, we will examine them first.

LCC OBJECT CODE

0C0U53
000056

0V005¢
000060
000004
000060
000064
0uV06C
000070
000072
000076
000074
0000TE
000C82
060086
00006A
0C00EE
000090
000092
000094
060098
0C009¢C
0000YE
0000A0
0000A2
0000A4
000048
0000AC
0COo0BO
000084
000088
00008C

0GC00D8
ogcocons
ocooca
000058

56C1L
584C
12AA
4700
| §:1-23]
8CAU
128b
47170
sCAQ
“AB0
47FC
sCAQ
4A80
4190
1859
1045
1958
4720
4780
1838
1822
1029
1222
4780
4A90
4TF0
4Abl
47FO0
S56C1
So8C

0001
0002

0000
0000

FOT2
0001

FO2A
O01F
FOB0
FO32
00LF
F062
0003

FO60
FO58

FO58
Fo82
FO36
FOs2
Fu32
0004
0000

ADDKL ADDRZ STMT SOURCE STATEMENT € OLFEB66 3/30/66

1 PRINT UN,NOGEN
2 TTPRIME TEST OPEN

Figure 1A. ' PRIMER

3 #yk%% JEGMO4* — THIS MACRO ESTABLISHES CSFCT TTPRIME
11 TEST AT, PRIMER
12 Fykxk [EGMO9% — MACRO NUMBER 1 IN TTPRIME
23 TRACE FLUW,PRIMER,ERR
24 k% [EGMO9%* ~ MACRO NUMBER 2 IN TTPRIME
38 DUMP CHANGES,PRIMER,GOT+8
39 # %k« [EGMO9* — MACRO NUMBER 3 IN TTPRIME
53 GO BACK
54 *,%k& JEGMO9% — MACRO NUMBER 4 IN TTPRIME
63 TEST AT,PRIMER+12
&4 #o%kx% [EGMO9% — MACRC NUMBER 5 IN TTPRTIMF
75 DUMP PANCL,{G'10'),DATAM=F
76 Fokkx JEGMC9% — MACRC NUMZER 6 IN TTPRINE
89 GO BACK
90 X okwk JEGMOQE — MACRO NUMBER 7 IN TTPRIMS
99 TEST AT, (GOT+3,ERR)
100 % kxk IEGMCY% — MACRC NUMBER 8 IN TTPRIME
112 TRACE S10P
113 fy ik IEGMCGHE — MACRC NUMBER Q [N TTPRIVMES
120 * k%% TEGM4]1® — THIS TRACF STOP STOPS ALL TRACES
124 DUMP PANEL+(G'9,11"),DATAM=F
125 k& [EGMN9% — MACRO NUMBER 10 IN TTPRIME
140 GO BACK
141 *,%%% TEGMO9* - MACRD NUMBER 11 IN TTPRIME
150 PRIMER CSECT ¢
151 . USING *,415
152 SAVE {14,12)
€000GC 155 L 12,0(1) R1 POINTS TO ADCON FOR X
00600 156 L 10,0(12) PUT X IN R1l
157 LTR 10,10
oooca 158 BC L24ERR IF X IS LF O
159 SR 11,11 ZERO 0OUT R11
oowol 160 SROL 10,1 SHIFT LO-ORDER BIT INTO R11
161 LTR 11s11 Q-—WAS BIT A ZERD
00082 162 BNZ aoD NO
0001F 163 SROL 10,31 YES--X IS EVEN--MOVE INTO R11
ocovs 164 AH Lly=H"1" MAKE X QDD
0CCHA 165 B LOAD
GOULF 166 LDV SROL 10,31 MOVE X TO R11
000DA 167 AH Lly=H'2?
00003 168 LUAD LA 943 LOAD R9 WITH Y
169 AGAIN LR 549 MOVE Y TO RS
170 MR 445 SQUARE Y
171 CR S5e1l Q-—1S Y#%2 GT X
oooss 172 8H Gaor YES--X IS PRIME
000BO 173 BE INCR X = Y¥¥2--X NOT PRIME
174 LR 3,11 PREPARE
175 SR 242 TO DIVIDE
176 DR 249 X/7Y
177 LTR 242 Q)--REMAINDER
00080 178 174 INCR NO REMAINDER. X NOT PRIME
000DA 179 AH 9y=H*2? REMAINDER--ADD 2 TO Y
000sE 180 B AGAIN TRY DIVISION BY NEW Y
COo0LA 181 INCR AH 119=H'2! X WAS NOT PRIME--ADD 2 TO X
oocsA 182 B LOAD GO SEE IF X+2 IS PRIME
00004 183 6OT L 12,4(1) R1+4 POINTS TO RESULT FIELD ADCON
00000 134 ST 11,0(12) STORE RESULT
185 RETURN (14,12)4RC=4 NORMAL RETURN FROM PRIMER
189 ERR RETURN (14,12),RC=0 ERROR EXIT FROM PRIMER
194 LTORG
195 =H'1?
196 =Ht 2t
197 END PRIMER
Name Operation Operand
TTPRIME TEST OPEN

A TEST OPEN macro must be the first TESTRAN macro encountered
at assembly time. There must be a name in the name field, since this
becomes the name of the TESTRAN CSECT which is generated. No
optional operands were coded in this case, since all the additional
parameters for TEST OPEN will come from the TESTRAN control
section to be written in conjunction with the '"dummy'' calling program.
Encountering this TEST OPEN macro at execution time causes SVC's to
be placed at the locations specified in the following TEST AT macros
(PRIMER,PRIMER+12,GOT+8,ERR).

Name Operation Operand

TEST AT ,PRIMER

The TEST AT macro defines a procedure and requests TESTRAN
services at a specific point or points in the problem program. In this
case, when the subroutine is entered at location PRIMER, the TESTRAN
interpreter honors the requests that follow the TEST AT,PRIMER macro.

Name Operation Operand

TRACE FLOW,PRIMER,ERR

This macro requests a flow trace of the entire subroutine (that is, from
location PRIMER to location ERR). This trace produces output describing
all branches that occur within the subroutine. This can be an invaluable
deb@ng aid.

When the request is honored at execution time, the TESTRAN interpreter
goes into ''trace mode'', that is, interpretive mode. Tracing activity
requires the examination of each problem program instruction executed
while the trace is active. This process is time-consuming, but the time
required can be minimized by limiting the duration of the trace and the
output the trace produces. The programmer can limit the duration of the
trace by means of TRACE STOP macro instructions; when encountered at
execution time, these macro instructions suspend tracing activities
specified as being of no current interest to the programmer. The
programmer can limit the output of the trace, within a general area of
main storage, to only those areas of special interest by specifying each
such area in a separate macro instruction. No more than ten traces
(corresponding to ten TRACE macro instructions) can be active
simultaneously.

The programmer must consider the following facts when interpreting the
output of trace routines:

e Tracing is suspended when supervisor-state control program routines
receive control, and is resumed when the control program relinquishes
control.

e A trace that is active in an overlay segment is suspended if the segment
is overlaid, and is not automatically resumed when the segment is
reentered.

o A subroutine or program segment must contain its own TRACE macro
instructions if it receives control from the control program through an
%synchronous exit or through an ATTACH, LINK, or XCTL macro
instruction. All traces active for a task are suspended upon execution
of an ATTACH, LINK, or XCTL macro and upon execution of a RETURN
macro instruction that terminates a task or program receiving control
through one of these macro instructions.

e Tracing is performed only in storage areas associated with the
problem program or with problem-state control program routines.

The range of addresses of those storage areas traced is determined by
the ''loaded addresses'' assigned to the operands of the TRACE FLOW
macro. Thus, TRACE FLOW,PRIMER,ERR will trace from the
location in which the instruction named PRIMER is actually loaded
through the location in which the instruction named ERR is actually
loaded. The storage addresses at which the program is actually
loaded are called ''loaded addresses''. In a problem program that is
scatter-loaded, the range of addresses traced may vary unpredictably
if the starting and ending addresses are in separate control sections.
The following conditions may occur:

o Control sections that were not part of the range in the source
program may be included in the range of loaded addresses.

o Control sections that were a part of the original range may be
omitted from the range of loaded addresses.

e The control section containing the starting address may be loaded
at a higher-numbered storage location than the control section
containing the ending address. If this situation occurs, the macro
instruction is ignored and a diagnostic message is inserted in the
test output each time the macro instruction is encountered.

A program that is scatter-loaded should therefore include a separate
macro instruction for each control section in which traces are to be
recorded.

Name Operation Operand

DUMP CHANGES, PRIMER, GOT+8

The DUMP CHANGES macro is used here to record any modification of
the program which might occur through an error. Anything that is
modified at execution time, from the beginning of the subroutine
(PRIMER) to the end (GOT+8), will be recorded. Although this will not
prevent the subroutine from erroneously modifying itself (for example,
by storing data over an instruction), it will at least give the programmer
an indication as to what was changed. This information, used in
conjunction with the trace output, would help him pinpoint the error. Or,
a TRACE REFER macro could be included later to exactly pinpoint the
instruction(s) that caused the modification.

Name -Operation Operand

GO BACK

The GO BACK macro returns control to the problem program. In this
case, since TRACEing has been requested, the TESTRAN interpreter

enters the TRACE mode. Thus, as the problem program is executed,
the TRACE routine inspects each op-code to see whether it is a branch,
and, if so, records the branch instruction, the addresses from and to
which the branch is made, as well as the condition code at the time of
the branch.

Name Operation Operand
DUMP PANEL,(G'10"),DATAM=F
GO BACK

At PRIMER+12, TESTRAN will dump general register 10, which should
at this point contain the test value for X. DATAM=F specifies that
register 10 contains fixed-point fullword data. The TESTRAN editor
will convert the data to decimal on output. If DATAM is not specified,
the register contents are formatted as four-byte hexadecimal.

GO BACK causes a return to the problem program. Note that TRACEing
will resume, since no TRACE STOP has been requested.

Name Operation Operand

TEST AT,(GOT+8,ERR)

This macro instruction indicates the beginning of a test procedure to be
executed at two locations in the problem program: GOT+8 and ERR.
When the problem program reaches GOT+8 or ERR, the following three
requests will be honored: '

Name Operation Operand
TRACE STOP
DUMP PANEL,G'9,11'),DATAM=F
GO BACK

The TRACE STOP macro causes the TESTRAN interpreter to leave the
trace mode. That is, tracing is suspended until requested again.

The DUMP PANEL statement calls for a dump of general registers 9, 10,
11. The DATAM=F specification performs the same function as in the
previous DUMP PANEL macro.

The GO BACK macro returns control to the problem program after
executing the instruction that was replaced by TESTRAN's SVC. This is
the end of the TESTRAN control section TTPRIME, since no more
TESTRAN macros appear before the END card for the assembly.

Explanation of Figure 1B

The dummy calling program, CALLTEST, is designed specifically to
supply the subroutine, PRIMER, with test data. The program relies on
TESTRAN macros to generate this data. CALLTEST supplies two data
areas: TESTVAR, which will be the test data supplied to the subroutine;
and ANS, where the subroutine will place the result of its calculation.
Also supplied is a save area, as dictated by linkage conventions. The
program calls PRIMER, and TESTRAN then dumps the result from the

subroutine.
Name Operation Operand v
DATAGEN TEST OPEN,CALLTEST,TESTING,LOAD,
OPTEST=(TTPRIME),SELECT=1

DATAGEN becomes the name of the TESTRAN control section.

LCC OBJECT CODE AGCRL ADDR2 STMT - SOURCE STATEMENT E O1FEB66 4/01/66
1 PRINT ON,NOGEN
2 FkktRbdkkkekgkbokkkhrRkkrkEkkrkk 2323332322 EL 222 23
3 #%#%*THIS TESTRAN CSECT IS DESIGNED TO SUPPLY TEST DATA AND
4 wxxxxx570 DUMP RESULTS OF THE SUBROUTINE
6§ kAR EEXXEEXKEFRAFGEREEELER PR ERARREERFRRTRRR SRR LR E LK
6 EXTRN TTPRIME
7 DATAGEN TEST OPEN,CALLTEST,TESTING,LOAD,CPTEST={TTPRIME),SELECT=1
8 %, %%% |EGMO4% — THIS MACRO ESTABLISHES CSFCT DATAGEN
20 TEST DEFINE,COUNTER,K1
21 #,%%% [EGMO9% - MACRO NUMBER 1 IN DATAGEN
31 TEST AT,CALLTEST
32 %,%%% [EGMO9% — MACRO NUMBER 2 IN DATAGEN
43 SET COUNTER,KL,=F*-3*
44 %, #%% [EGMO9% - MACRO NUMBER 3 IN DATAGEN
57 G0 BACK
58 %,6%% [EGMO9% — MACRO NUMBER 4 IN DATAGEN
67 TEST AT,TTSVC1
68 *, %% [EGMO9% — MACRO NUMBER 5 IN DATAGEN
79 TEST ONs1,100,100,QUIT,COUNTER=K1
80 %,%%¢ [EGMO9%* — MACRO NUMBER 6 IN DATAGEN
58 SET VARIABLE,TESTVAR,KL
99 %,%%% [EGMO9% — MACRO NUMBER-7 IN DATAGEN
113 GO BACK
T 114 ®,%6% [EGMO9® — MACRO NUMBER 8 IN DATAGEN
123 TEST AT, TTSVC2
124 w,&%%x [EGMO9* — MACRO NUMBER 9 IN DATAGEN
135 DUMP DATA,TESTVAR,ANS+4
136 %, %%% [EGMO9% — MACRO NUMBER 10 IN DATAGEN
150 TEST WHEN,KL,LT,=F?1% ,MESSAGE, DATAM=F
151 #,%%% TEGMO9% - MACRO NUMBER 11 IN DATAGEN
169 G0 BACK
170 %, 6%+ TEGMO9% — MACRO NUMBER 12 IN DATAGEN
179 MESSAGE DUMP PANEL,(G'15%)
180 % #%% [EGMO9% — MACRO NUMBER 13 IN DATAGEN
192 DUMP CCMMENT,'REGISTER 15 SHOULD CONTAIN O°
193 %, 4%% [EGMO9% — MACRO NUMBER 14 IN DATAGEN
2c9 GO BACK
210 % %%% [EGMO9% — MACRO NUMBER 15 IN DATAGEN
216 QuIT DUMP PANEL
220 %,%%% [EGMO9%* — MACRO NUMBER 16 IN DATAGEN
231 GO BACK yRET
232 k%% JEGMO9% — MACRO NUMBER 17 IN DATAGEN
0CCOCo 243 CALLTEST CSECT

244 FEERFFFREXEREE
245 *xxsxypveueses CALLTEST IS A TEST ROUTINE FOR PRIMER
246 FXEEXFXTBEEEEE

247 SAVE (14,12)

000CC4 €5C0 25 BALR 12,0
oceccs 251 USING #,12
0CC0C6 5CCO CO36 000FC 252 ST 13,MINE+4
0000CA 41C0 CC32 COOFE 253 LA 13,MINE
0CCGCE G7CC 254 TTSVCL NOPR O

255 CALL PRIMER,(TESTVARANS)
OCCCEA 47FC CO0B 000CE 268 TTSVC2 B TTSVCL
0CO0F0 265 TESTVAR DS F
otoors 27C ANS ps F
CCOCF8 271 MINE 0s 18F
0C0140 S8LC CC36 000FC 272 RET L 134 MINE+4

273 RETURN (14,12)

27¢ END

Figure 1B. CALLTEST

10

CALLTEST is the entry point to the problem program. At the conclusion
of the TEST OPEN routine (that is, after SVC's have been inserted at the
required places in the problem program), TESTRAN transfers control to
location CALLTEST in the problem program.

TESTING is a page heading to be printed on each page of TESTRAN
output. :

LOAD specifies that the TESTRAN service routines (for example, DUMP,
TRACE) are to be resident throughout problem program execution, rather
than transient (loaded when needed). This requires more core storage
than the transient mode (specified by LINK), but results in faster
execution. TESTRAN will automatically default to transient (LINK) mode
if sufficient core storage is not available for LOAD mode operation.

-"OPTEST=(TTPRIME) indicates that the TESTRAN control section,
TTPRIME, is to be opened at the same time as DATAGEN. Notice that
TTPRIME has been declared to be an external symbol (EXTRN TTPRIME).
This is necessary because the subroutine and its TESTRAN macros are
assembled separately from CALLTEST and its TESTRAN macros. This
would be necessary for any external symbol that appeared in the TESTRAN
macros. Similarly, TTPRIME or any other external reference must be

a CSECT name or must appear as the operand of an ENTRY statement

in another assembly.

SELECT=1 specifies that a selection code of 1 is to be attached to the
output from this TESTRAN control section and from any other TESTRAN
CSECT's opened at the same time (for example, TTPRIME). This
selection code will be in force for all macros unless overridden in a
particular macro. For example, a DUMP macro could specify
SELECT=5, in which case the output from that macro would have a
selection code of 5, rather than 1. Through the selection code, the user,
at TESTRAN Editor time, can selectively print the output produced by
the interpreter. This is done by supplying a parameter to the editor,
specifying that records with certain selection codes are to be printed
and that all others are to be skipped.

Name Operation Operand

TEST DEFINE,COUNTER,K1

This macro sets up a COUNTER, to be named K1, for use within the
TESTRAN control section. K1 becomes the name of a data area defined
by TESTRAN, and is initialized to zero (0).

Name Operation Operand
TEST AT,CALLTEST
SET COUNTER,1,=F'-3'
GO BACK

11

The test service requested at location CALLTEST is the initialization of
K1 to minus three. The third operand in a SET macro must be an
address. In this example, a literal is specified, which results in an
address. If the third operand is written as a self-defining value,
TESTRAN interprets it as an address. For example, SET COUNTER,
K1,1000 will not set the counter to the value 1000, but rather will
transfer the contents of location 1000 to the counter.

Just before calling the subroutine, the program requests test services
in order to generate test data.

Name Operation Operand
TEST AT, TTSVC1
TEST ON,1,100,100,QUIT,COUNTER=K1
SET VARIABLE,TESTVAR,/1
GO BACK

TEST ON,1,100,100,QUIT,COUNTER=K]1 increments K1 by 1, tests to see
whether K1 is between the limits specified by operands 2 and 3 (1 and 100),
and, if it is, tests to see whether K1 is a multiple of operand 4 (100). If
both conditions are true, TESTRAN transfers control to the macro named
QUIT. Otherwise, control passes to the next sequential macro.

The SET VARIABLE macro is used to change the value of a problem
program data area. In this case, TESTVAR is set to the current value
of K1. This value changes before each CALL by virtue of the TEST ON
macro.

The GO BACK macro returns control to the location following TTSVC1,
where the problem program issues a CALL to PRIMER, and passes
TESTVAR as a parameter.

Name Operation Operand
TEST AT, TTSVC2
DUMP DATA,TESTVAR,ANS+4
TEST WHEN,K1,LT,=F'1' MESSAGE,DATAM=F
GO BACK

At TTSVC2 (that is, after the subroutine returns control to the calling
program), TESTRAN will DUMP all data between TESTVAR and ANS+4.
That is, the two data areas, TESTVAR and ANS, will be output and
formatted according to their definitions (fullword).

The TEST WHEN macro transfers control to the TESTRAN macro named

MESSAGE when counter K1 is less than (LT) 1 (=F'1"). If K1 is greater
than or equal to 1, control passes to the next sequential macro — GO

12

BACK. The DATAM=F specifies that K1 is a fullword data area. This is
necessary because K1's attributes do not appear in the symbol table, and,
if not specified, TESTRAN assumes one-byte hexadecimal. (Note: This
is necessary only on TEST WHEN. The DATAM keyword is illegal if
operand 1 or 2 is a logical flag.) The GO BACK macro executes the
instruction at TTSVC2 (B TTSVC1) and returns control to the program at
location TTSVC1. Since TTSVCL1 is a TEST AT location, control returns
immediately to TESTRAN and the requested services are performed.

Name Operation Operand
MESSAGE DUMP PANEL, (G'15")
DUMP COMMENT,'REGISTER 15 SHOULD
CONTAIN 0'.
GO BACK

The subroutine, PRIMER, will refuse to process data which is zero or
negative. To indicate an error, it provides a return code of 0 in register
15. (The normal return from PRIMER places a return code of 4 in
register 15.) The TEST WHEN macro, above, determines when the data
supplied to PRIMER is zero or negative, and, when it is, passes control
to MESSAGE.

At location MESSAGE, general register 15 is displayed, along with a
comment indicating that register 15 should contain zero. If register 15
does not contain zero at this point, the logic of the subroutine did not
recognize the erroneous data.

Name Operation Operand
QUIT DUMP PANEL
GO BACK,RET

When K1 contains 100, TESTRAN passes control to the macro named
QUIT (see TEST ON above). At this point all registers are DUMPed.

The GO BACK macro returns control to location RET in the problem
program, which terminates the job via a RETURN macro.

There is no TEST CLOSE macro in this example, because TEST CLOSE
returns control to the TEST AT location, which in this case is an
unconditional branch. The function of TEST CLOSE is to remove the
TESTRAN SVC's from the problem program TEST AT locations. The
assumption is that the programmer wishes to resume execution of his
program without TESTRAN. Since CALLTEST is not designed to operate
free from TESTRAN, a TEST CLOSE macro would perform no useful
function, and is therefore unnecessary.

13

CHAPTER 3: GENERAL PROCEDURES FOR USING TESTRAN

After the problem program(s) and TESTRAN control section(s) have been
written, they must be assembled. A program and its TESTRAN control
section may be assembled either together or separately.

Assembling TESTRAN Macros with the Problem Program

If assembled with the problem program, the TESTRAN macros may be
written out of line (as in Figure 1) or in line (that is, interspersed with
the problem program instructions). In either case, the TIA tables
produced will reside in a separate control section from the problem
program. That is, whether the user chooses to write the source
statements for TESTRAN in line or out of line, the final result is an
out—of-linef.TESTR.AN control section. Since this is true, and since
TESTRAN requests will not be executed in line, there is no advantage to
writing the macros in line with the problem program. The disadvantage,
of course, is that, should the user wish later to reassemble his program
without the TESTRAN macros, he must search through the source deck
in order to remove the TESTRAN statements.

Assembling TESTRAN Macros Separately from the
Problem Program

If the problem program is assembled separately from the TESTRAN
macros, the user must follow the rules for external references and entry

lf"points. That is, any problem program symbol (label) which appears as
the operand of a TESTRAN macro must appear in an EXTRN statement
when the TESTRAN macros are assembled. These same symbols must
be control section names or operands of an ENTRY statement in another
assembly. In most cases, this is inconvenient. There are times,
however, when it may be desirable to assemble the TESTRAN macros
separately from the problem program. A user may wish to include
TESTRAN with an object.deck, for example, without reassembling the
problem program. In this case, the operands of the TESTRAN macros
must all be declared in EXTRN statements for the TESTRAN control
section, and must appear as ENTRY symbols in the external symbol
dictionary (ESD) of the problem program. Since the user has no way to

. add symbols to the ESD without reassembly, he is forced to use address

v adjustment to form the operands for the TESTRAN macros. This is, at

best, time-consuming.

Writing the TESTRAN macros out of line and assembling them with the
problem program appears to be the simplest and most convenient method
for using TESTRAN.

TESTRAN Job Flow and Job Control Language
Figure 2 is a general TESTRAN job flow in flowchart form. Figure.3 is
an example of the job control language to assemble, linkage-edit, and

execute the two programs of the previous example, and to edit the output
produced by TESTRAN.

14

SYSIN

(CSECT
SOURCE M ?ULES)
STATEMENTS T ——
-
-
SYSPUNCH -7
ASSEMBLED (OBJECT
PROGRAM & MODULES)
SYM CARDS \ ™~ __
~
SYSLIN -
~
S~

PROBLEM
PROGRAM
/O

SYSPRINT

EDITED
TEST
OUTPUT

LINKAGE

EDITOR

TESTRAN
CSECTS

PROBLEM

PROGRAM
CSECTS

SUPER-
VISOR JOB STEP

TESTRAN
EDITOR

” -

Figure 2. General TESTRAN job flow

15

TESTRAN
MACRO
DEF'N

- SYSLMOD

LINK
EDITED

MODULES MODULES)

(LOAD

— 7\ & SYM

/

SYM CARDS

// (SYMBOL TABLE)

/
/

/

TESTRAN
INTERPRETER

4

SYM
CARDS

SYSTEST

The computing system used for this example requires at least three tape
drives and one 2311 disk drive. The unit designations (2400, 2311) used

"on the DD cards in the following examples are the generic device names
defined in the Job Control Language manual.

//7Jt8B | JUGE 1234, YCUNGy MSGLEVEL=1

//5TEP1 EXEC PGM=IETASM,PARM=TEST

//5YSUT1 LD UNIT=24CCyLABEL=(4ML)

//5YSUTZ2 ©D UN1T=24CGsLABEL=(4NL)

//SYSUT3 CD UNIT=Z4CCoLABEL=(4]M)

//7S5YSLIB CB DSNAME=5YS1«MACLIE,UNIT=2311,DI5P=0LD,VOLUME=SER=111111
//SYSPUNCH LD DSNAME=CBJ1,UNIT=2311,DISP=(NEW,PASS), X
//

SPACE=(TRKs(10410))+sVCOLUME=SER=111111

J/SYSPRINT LB SYSOUT=A

//SYSIN

cp *

———SGURCE DECK FUR PRIMER

//STEPLA EXEC POGM=IETASM,PARM=TEST

//5YSUT1 DD UNIT=24(CC4LABEL={ 41L)

//5YSUTZ CD UNIT=24CCoLABEL=(4ML)

//5YSUT3 LD UNIT=24CCyLABEL=(4NL)

//7SYSLIB LD DSNAME=SYS1MACLIE UNIT=2311,0I5P=0CLDyVOLUME=SER=111111
//SYSPUNCH LD DSNAME=0BJ2.UNIT=23119DISP={NEWsPASS), X
// SPACE=(TRKy(1041C))9 VOLUME=SER=111111

//SYSPRINT LD SYSGUT=A

//SYSIN

BD *

----- SOURCE DECK FGR CALLTEST

J/STEP2 EXEC PGM=LINKEDIToPARM=9XREF,TEST?
//SYSUTL CD OSNAME=UTILyUNIT=22114SPACE=(TRK,y{40,10))
//5YSLMGD DU DSNAME=GCFIL(ABC)yUNIT=2311,SPACE=(TRKy(4041051)), X
// LISP=(NEhyFASS) '
//SYSPRINT LD SYSCUT=A
//6C1 LD DSNAME=CGEJ1yUNIT=2311,01SP={CLLsDELETE)»VOLUME=SER=111111,X
/7 DCB=(RECF¥=FyBLKSIZE=80)
//8¢2 UL DSNAME=CEJZyUNIT=2311,0ISP=(ULU,LCELETE) s VOLUME=SER=111111,X
// DCA={RECFM=F,BLKS1ZE=8Q0)
//SYSLIN LD %
INCLUCE D1
INCLUDE LD2
ENTRY CATAGEN
//STEP3 EXEC POM=%*.STEPZ2.SYSLMCL
//SYSTEST L DSNAME=TESTOUTSUNIT1=2400yDISP={NEWsPASS) o LABEL=(4NL), X
/7 VOLUME=SER=A11111
//STEP4 EXEC PGM=IECTTEDRT,PARM=TA
//SYSTEST DL DSNAME=TESTGUTSUNIT=240CoDISP=(CLDyDELETE)yLABEL=(4NL), X
// VOLUME=SER=A11111
//SYSUT1 LD DSMAME=WCRKyUNIT=2211,SPACE=(TRKy(40,10))

//SYSPRINT LB SYSGUT=A

Figure 3. Job Control Language for using TESTRAN

16

ASSEMBLY (STEPS 1 AND 1A)

The assembly procedure specifies TEST as a parameter to the assembler.
This is a request to the assembler to include the symbol table in the object
modules produced for PRIMER and CALLTEST. This is necessary when
the problem program is assembled if the user wishes the TESTRAN

editor to perform automatic formatting of TESTRAN output.

The assembler requires three work data sets, SYSUT1, SYSUT2, and
SYSUT3, which, in the example, are specified as tape. The object
modules produced by the assembler are given the names OBJ1 and OBJ2,
and are PASSed to the Linkage Editor job step.

LINKAGE EDITOR PROCEDURE (STEP2)

The two object modules, containing CALLTEST, PRIMER, and their
respective TESTRAN control sections, are link-edited together.

The TEST parameter in the EXEC card for STEP2 specifies that
Linkage Editor is to process the symbol table (SYM) cards that were
produced by the assembler. If TEST is not specified, the SYM cards
are ignored.

The user specifies that the entry point to the load module will be
DATAGEN. When the program is loaded, the first instruction executed
is the SVC for TEST OPEN, which will initiate testing.

PROBLEM PROGRAM EXECUTION (STEP3)

The user must provide an output data set for TESTRAN when his program
is executed. This is done by including a DD card for SYSTEST, specifying
a tape or direct access device.

TESTRAN EDITOR PROCEDURE (STEP4)

Upon termination of program execution, the user may execute the
TESTRAN Editor (IEGTTEDT). Three DD cards are necessary:
SYSTEST, SYSPRINT, and SYSUT1. SYSTEST is, of course, the data
set produced in STEP3. SYSPRINT is the systems print data set.
SYSUT1 is a direct access device to be used by the editor as an
intermediate work file. The parameter TA on the EXEC card specifies
that all data is to be edited, regardless of its selection code.

At the conclusion of STEP4, SYSUT1 will be deleted from the VTOC of the
2311. OBJ1 and OBJ2 were deleted following STEP2. GOFIL, the
Partitioned Data Set created in STEP2, is automatically deleted at the
end of STEP4, by virtue of the fact that its disposition in STEP2 was
NEW, PASS, and no further disposition was found.

17

CHAPTER 4: TESTRAN OUTPUT

On the following pages are presented the first six pages of the output
produced by TESTRAN for the programs of Figure 1. In the accompanying
explanation of selected lines, the circled numbers correspond to the
numbers on the listing. Refer to IBM Operating System/360 Control
Program Services (C28-6541) for a complete and detailed description of

TESTRAN output.

@ The output from TEST OPEN. The maximum number of pages and

maximum number of statements are the default figures established
at system generation for this particular system.

@ Indicates the execution of an inserted TESTRAN SVC. The TESTRAN

control section referenced is TTPRIME and the SVC is at relative
location 000058 (loaded address is 5778) in control section PRIMER.
Note that this relative location is the location noted on the assembly
listing.

(3) Indicates that a TRACE FLOW has been initiated in TTPRIME. The

trace is to be active between relative locations 58 16 and CA16 in
control section PRIMER.

@ DUMP CHANGES output. Since this is the first time that this macro

has been encountered, the entire area of core is dumped. Each
output group consists of two or three lines. The first line contains
the relative location of the dumped area (for example, 58), and any
labels that appeared in the assembly (for example, ODD,AGAIN).
The second line contains the loaded address of the area (5778) and
the data, formatted according to type. In this case the data
consisted of instructions, and so was formatted accordingly. The
third line indicates SVC 26 at those locations where a TESTRAN SVC
was inserted.

@ Indicates that a trace event has occurred at relative location 64 in

PRIMER. The event was the execution of an SVC 26, as indicated
on the second line. Also printed are the contents of the standard

linkage registers, 0,1,14, and 15. SVC 26 is the SVC inserted at
TEST OPEN time as a result of the macro TEST AT ,PRIMER+12.
Note that relative location 64 is equivalent to PRIMER+12.

@ Output of the DUMP PANEL macro in TTPRIME which requested

that general register 10 be dumped.

@ Indicates the occurrence of a trace event in PRIMER. A branch

18

(BC CO F 072) has occurred from relative location 000066 to relative '
location 0000CA. The condition code was 1 (CC=1). Also displayed
is general register 15, since that is the base register for the branch
address.

TESTING TESTRAN QUTPUT DATE 66/084 TIME 00/00 PAGE

1) MACRO 10 000y TEST OPEN sy TESTRAN CONTROL SELTIUN = DATAGEN , IDENTIFICATION TESTING

@

AT LOCATICN (PRIMER) 000058 005778 ENTER "TTPRIME

MAXIMUM NUMBER OF PAGES 150, MAXIMUM NUMBER OF STATEMENTS 2500

(::?) MACRO ID 002y TRACE FLUGW o TTPRIME , FROM (PRIMER) GOQO58 005778 TO (PRIMER) OOOOCA 0057EA, STARTED

@.) MACRQ 1D 003, CUMP CHANGES

0058

0C5778 STM EC D cOC L Cl 0 000 L AC 0 000 LTR AA 8c CO0 F 072

SvC 26 SvC 26

006A

0C578A R 88 SKDL A0 0 001l LTR B8 8C 70 F 02A SROL AQ O O1F
oc7aA 000 LOAD

00579A AH 80 F (80 ;18 FO F 032 SROL A0 O OL1F AH 80 F 082 LA 90 0 003
003t AGAIN

00STAE LR 59 MR 45 CR 58 8cC 20 F 060 3C 80 F 058
009C

ocs78C LR 3B SK 22 DR 29 LTR 22 B8C 80 F 058
QCASB INCR 507

0c57C8 An 9C F 082 :18 FC F 036 AH BO F 082 8C FO F 032 L Cl 0 004
oosC

0cs7cC T BC 0 Q00

©

1) MACRO ID 002, TRACE FLOW , TTPKIME , FRCM {PRIMER) 0C0064 005784, CC=0
SVL 26 G*OC*' GOOCUO03C G*Cl' BLOOSBLC G*l4' 400C532A G'15* 00005778

AT LGCATICN (PRIMER) 000064 005764 ENTER TTPRIME

®

1) MACRO 1D 0Cé6, DUMP PANEL
G110 -2
PSH FF 0 5 0026 4 0 005786 CC=0 FIX POINT OVERt LOW OFF ODEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF

S

1) MACRU ID 002, TRACE FLUW , TTPRIME , FRCM (PRIMER } 000066 005786 TO (PRIMER) 0000CA 0057EA, CC=1
BL CC F Q12 G*15¢ 00005718

AT LCCATICN (PRIMER) UCQUCA O0S7EA ENTER TTPRIME

©

1) MACRU I0 GCY9, TRACE STGP TTPRIME 002

TESTING TESTRAN OUTPUT DATE 66/084 TIME 00/00 PAGE

©

1} MALRO 1D 010, DUMP PANEL
G*09" +1073790202 G*'1C* -2 L*11* +130932
PSW FF 0 5 0020 5 0 CUSTEC CC=1 FIX PGINT OVERFLUW OFF DEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF

T LUCATICN TTSVL2 (CALLIEST) GCCCEA 00582A ENTER DATAGEN

BS

) MACRG ID 01G, DUuMP DATA STARTING IN SECTION CALLTEST
00F0" TESTVAR ANS
058630 -2 -3387173242

XECUTED STATEMENTS DATAGEN Oil, 013

@IS}

1) MACRU D 013, DUMP PANEL
G*'15* CcCccocao
PSKW FF G b5 (0026 5 0 005820 (C=1 F+IX POINT OVERFLOW OFF DEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF

®

1) MACRO ID Ol4, OUMP CCMMENT
REGISTER 15 SHOULD CCNTAIN O

AT LOCATIGN (PRIMER) OCO058 N05778 ENTER TTPRIME
1) MACRO ID 002, TRACE FLCW 4 TTFRIME , FRGM (PRIMER) 000058 005778 TO {(PRIMER) 0000CA d057EA' STARTED
1) MACRC ID 003, DUMP CHANGES

NONE

1} MACRO 1D 002, TRACE FLOW ; TIPRIME , FRGM (PRIMER) 000064 005784, CC=1
SVC 26 G'00*' 0G0O0003C G'Ol* 9000581C G*l4*' 5000582A G*15* 00005778

AT LGCATICN (PRIMER) 000064 005784 ENTER TTPRIME

1) MACRU 1D 0C6, DUMP PANEL
G*10° -1
PSW FF 0 5 0026 5 0 C05786 " CC=1 FIX POINT OVERFLOW OFF "DEC OVERFLOW OFF ~“EXP UNDERFLOW OFF ~SIGNIFICANCE OFF

19

TESTING TESTRAN OQUTPUT DATE 66/08L TIME 00/00 PAGE

1) MACRO ID 00Z, TRACE FLGW o TTPRIME , FROM (PRIMER) 000066 005786 TO (PRIMER '} 0000CA 0057EA, CC=1
BC Co F 072 G'15' 000057178

AT LOCATICN (PRIMER) 0OCOCA QOS7EA ENTER TTPRINE
1) MACRO [D 0C9, TRACE STUP TIPRIME GO2

1} MACRO ID 010, DUMP PANEL
G*'09* +1073790202 G*1C' —1 G'11°* +130932
PSW FF 0 5 0026 5 0 CO57cC CC=1 FIX POINT OVERFLOW OFF 'DEC OVERFLOW OFF "EXP UNDERFLOW OFF SIGNIFICANCE OFF

AT LOCATION TTSVC2 (CALLTEST) OCCOEA 00582A ENTER DATAGEN

1) MACRO 1D 010, UUMP UVATA STARTING IN SECTIUN CALLTEST
00F0 TESTVAR ANS
005830 -1 —-838773242

EXECUTEC STATEMENTS DATAGEN Oll, 013

1) MACRG IC 013, DUMP PANFEL
G*'15* CCGCocoo
PSW FF 0 5 0026 5 0 00582C CC=1 FIX PGINT OVERFLOW OFF OUEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF

1} MACRG 1D 014, CUMP CGMMENT
REGISTEK 15 SHUULL CCNTALN O

AT LOCATICN (PRIMER) 0CO0S8 005173 ENTER TTPRIME
1} MACRG Id 002, TRACE FLGH o TTPRIME 4 FROM (PRIMER) 000058 005778 TO (PRIMER) 0000CA OOSTEA, STARTED
1) MACRG ID 003, DUMP ChANGES

NONE

1) MACRO 10 002, TRACE FLJW , TTPRIME , FRGM (PRIMER) 000064 005784, CC=1
SvC 26 G*CO' 0003003C G*01' 900G581C G'14* 5000582A G'15* 00005778

TESTING TESTRAN OUTPUT DATE 66/084 TIME 00/00 PAGE

AT LGCATICN (PRIMER) 000064 005784 ENTER TTPRIME

1) MACRO 1D 006y OUMP PANEL
G'1CY +0
PSW FF C % 0026 5 0 C05786 CC=1 FIX PCINT OVERFLOW OFF DEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF

L) MACRO 1D 002, TRACE FLOW , TTPRIME , FRCM (PRIMER) 000066 005786 TGO (PRIMER) 0000CA 0057EA, CC=0
BC COo F 072 G*15* 0C0O05778

AT LOCATIGN (PRIMER) 0O0COCA 00S57EA ENTER TTPRIME
1) 'MACRO ID 0C9, TRACE STGP TTPRIME 002

1) MACRO 10 010, CUMP PANEL
G'09' +10737902C2 G*1C* +0 G*11° +130932
PSW FF O 5 0020 4 0 00S7EC CC=0 FIX POINT OVERFLOW OFF DEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF

AT LOCATION TTSVC2 (CALLTEST) OCCCEA 00582A ENVER DATAGEN

1) MACRO 1D 010, DUMP DATA STARTING IN SECTION CALLTEST
00FC TESTVAR ANS L
005830 +0 —838713242

EXECUTED STATEMENTS DATAGEN 011, 013

1) MACRO 1D 013, DUMP PANEL
615" ccococoo
PSW FF 0 5 0026 4 0 00582C CC=0 FIX POINT OVERFLOW OFF DEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF

1) MACRU 10 Ol4, CUMP COMMENT
REGISTER 15 SHOULD CONTAIN O

AT LOCATIGN (PRIMER)} C00058 005178 ENTER T1PRIME

1) MACRC-ID 002, TRACE FLCW , TTPRIME , FROM (PRIMER)} 000058 005778 TO (PRIMER) 0000CA 0O57EA, STARTED

20

TESTING TESTRAN OUTPUT DATE 66/084 TIME 00/00 PAGE
1) MACRO I0 003, DUMP CHANGES
NONE

1) MACRO ID 002, TRACE FLCW o TTPRIME , FRCM (PPIMER) 000064 005784, CC=0
SVC 26 6*00* 0000003C G*O1* 8000581C G*l4' 4000582A G*15' 00005778

AT LOCATION (PRIMER) 000064 005784 ENTER TTPRIME

1) MACRO ID 006, CUMP PANEL
G'10°' +1
PSW FF 0 5 0026 4 0 005786 CC=C FIX POINT OVERFLOW OFF DEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF

1) MACRU 1D 002, TRACE FLGW 4, TTFRIME s FRCM (PiIMER) 000072 005792 TO 00D (PRIMER '} 000082 0057A2, CC=1
BC 7C F 0zA G'15* 000057178
1) MACRO ID 0C2y TRACE FLCW , TTPRIME , FRCM (PKIMER) 0000934 005784 TO GOT (PRIMER) ©00088 0057D8, CC=2
8C 20 F 0¢0 G*1S*' 00005778

1) MACRU ID 0C2y TRACE FLGCW » TTPRIME , FRCM (PRIMER) 0000CO OO057E0, CC=2
SVC 26 G'GC® COU0003C G'0l* B000581C G*l4' 4000582A G*'15' 00005778

AT LCCATICN (PRIMER) OGOOCO 0057EC ENTER TTPRIME
1) MACRO ID 0C9, TRACE STUP TTPRIME 002

1) MACRU 1D 010, DUMP PANEL
G*09* +3 G'10* +0 G'11" +3
PSW FF O 5 0026 6 0 0057E2 CC=2 FIX PUINT UVERFLOW OFF DEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF

AT LGCATICN TTSVC2 (CALLTEST) OCCCEA 00582A ENTFR DATAGEN

1) MACRO 1D 010, DUMP DATA STARTING IN SECTION CALLTEST
CuFO TESTVAR"- ANS
0C5830 +1 +3

@T‘LCCATILN (PRIMER) 000058 005778 ENTER TTPRIME
TESTING TESTRAN OUTPUT DATE 66/08% TIME 00/00 PAGE

1) MACRD 1D 002, TRACE FLCOW 4 TTPRIME , FRGM (PRIMER) 000058 005778 TO (PRIMER } 0000OCA OO057EA, STARTED
1) MACRG ID 003, ULUMP CHANGES
NONE

1) MACRO I0 002, TRACE FLUW + TTPRIME , FRCM (PRIMER) 000064 005784, CC=2
SVC 26 G*0C* CCO0003C G*CL' ADOO0581C G*'l4* 6000582A G*15' 00005778

AT LGCATICN (PRIMER) (00LO64 002784 ENTER TTIPRIME

1) MACRC I0 0C6s CUMP PANEL
G'10 +2)
PSW FF 0 5 0026 6 0 005786 <CTC=2 FI1x POINT OVERFLOW OFF DEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF

1) MACRO ID 002, TRACE FLUW 4 TTPRIME , FRCM (PRIMER) OOOO7E 0O0579E TO LODAD (PRIMER)} 00008A 0057AA, CC=2
BC FO F 032 G*15* C00C57178
1) MALRO 10 002, TRACE FLOW o TTPRIME , FROM (PR{{ER) 000094 0057B4 TO GOT (PRIMER) 0000B8 0057D8, CC=2
BC 2C F 060 G*15¢ 00005778

1) MACRO ID 002, TRACE FLCW , TTPRIME , FRCM (PRIMER) 0000CO 0057€0, CC=2
SVC 26 G*0C! CO0QO03C G*OLl* AQ00581C 6'l4' 0000582A G*15* 000057748

AT LGCATICN (PRIMER) 0COOCO OC57EQ0 ENTER TIPRIME
1) MACRO 1D 0C9, TRACE STOP TIPRIME 002

1) MACRO 1D 010, OUMP PANEL
G'09* +#3 G'10' +0 G*11* +3
PSW FF 0 5 0026 6 0 0057€2" CC=2" FIX POINT OVERFLOW OFF ODEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE" OFF

AT LOCATICGN TTSVC2 (CALLTEST) OCCCEA 00582A ENTER DATAGEN

1) MACRO 10 010, CUMP DATA STARTING IN SECTIUN CALLTEST
00FQ TESTVAR ANS
0C5830 +2 +3

21

Indicates that a TRACE STOP macro has been encountered. The

TRACE that was stopped is in TTPRIME, and has a macro number
of 002. (Note that each TESTRAN macro was assigned a number on
the assembly listing.)

@ Output from a DUMP PANEL macro. General registers 9,10, and

®® ®

22

11 are displayed. Note: At this point in the program, general
registers 9, 10, and 11 have not been used, and their contents are
therefore meaningless. Output from this DUMP PANEL macro
becomes meaningful when the subroutine receives valid test data.

Indicates that a TESTRAN SVC has been encountered at location
TTSVC2 in control section CALLTEST. The relative address of
TTSVC2 is 0000EA, and the loaded address is 00582A.

Output from a DUMP DATA macro. The contents of TESTVAR and
ANS are displayed, along with the relative (00F0) and loaded
(005830) addresses of TESTVAR. TESTVAR contains -2. Since
this data is negative, PRIMER considers it invalid, and, therefore,
did not return a value in ANS. The contents of ANS are therefore
meaningless on this execution.

Indicates that macros numbered 11 and 13 in control section
DATAGEN have been executed. These are the TEST WHEN macro
(11) and the DUMP PANEL (G'15') macro. This is an indication
that the TEST WHEN macro caused a branch to the DUMP PANEL.

The output of the DUMP PANEL macro.
The output of a DUMP COMMENT macro.

The second execution of DUMP CHANGES indicates that there have
been no changes since the last DUMP of the same area.

From this point on, the output follows a pattern similar to that on
the first two pages. This is, of course, because the program is
looping through the same series of requests for TESTRAN services
in the normal course of its execution.

Inspection of the output will reveal the effect of DATAGEN. The
value of TESTVAR increases by 1 in each occurrence of the DUMP
DATA output. As long as TESTVAR is negative or 0, the
subroutine sets register 15 to 0, and DUMPS a comment to that
effect.

Eventually, TESTVAR becomes a valid input value to PRIMER.
That is, TESTVAR becomes a positive number. The first

- occurrence of this is on page 5 of the TESTRAN output.

This output line reflects the first valid input to, and output from,
PRIMER. TESTVAR contains +1, the input to PRIMER, and ANS
contains +3, the next prime integer, as provided by PRIMER.

The logic of PRIMER can be easily checked by referring to the
TRACE FLOW output near the middle of the same page. These
output lines indicate a branch to ODD, followed by a branch to
GOT.

This line indicates that PRIMER has again been entered and a
TESTRAN SVC encountered. Because there was valid data supplied,
register 15 was not dumped.

The output from this point on is similar to that presented here. In
total, 134 pages of output were produced.

APPENDIX: REFERENCE SUMMARY OF TESTRAN

MACRO PARAMETERS

The General Form of TESTRAN Macros

Name

Operation

Operand

[any name]

Mnemonic
operation code

operand 1, ...operandn,
keyword parameters

Name Field: Identification or entry point

Operation: DUMP, TRACE, TEST, GO, SET

Operand: Positional operands and keyword parameters

Common Keyword Parameters:

SELECT = integer (1 - 8)

Used to control output of TESTRAN editor.

DATAM = data modifier

Specifies attributes to be used.

NAME = any name

Symbolic name to be printed with output

COMMENT = character string

Up to 120 characters of information to be printed with output.

DSECT = dsect name

To identify operands as referring to a dummy control section.

The DUMP Macro

Name

Operation

Operand

[any name]

DUMP

operand 1 [, operand 2]
[, operand 3]
[, keyword parameters’]

Operand 1: DATA, CHANGES, MAP, TABLE, PANEL, or
e ~— —————— ————————

COMMENT

St e a e i,

24

: Operand 2: Starting address for DATA and CHANGES; DCB, DEB, P
or TCB for TABLE; registers to be recorded for PANEL ¢
(optional); comment field for COMMENT; not used for
MAP.

Operand 3: Ending address for DATA and CHANGES (optional); '//
dcbname for DUMP TABLE, DCB or DUMP TABLE, DEB.
Not used for DUMP TABLE, TCB; not used for MAP,
PANEL, or COMMENT.
Keyword parameters:
SELECT = integer
DATAM = data modifier
NAME = any name

DSECT = (dsect name [, repeat integer:l)

The TRACE Macro

Name Operation Operand

[any name] TRACE Operand 1[, Operand 2]
[, Operand 3]
[, keyword parameters’]

Operand 1: FLOW, CALL, REFER, or STOP

Operand 2: Starting address for FLOW, CALL, and REFER; name of
TRACE macro(s) to be stopped for STOP.

Operand 3: Ending address for FLOW, CALL, or REFER, (optional);
not used for STOP.

Keyword Parameters:
SELECT = integer (ALL)
DATAM = data modifier (REFER)
NAME = any name (REFER)
COMMENT = comment field (FLOW, CALL, REFER)

DSECT = (dsect name [, repeat—integer]) (REFER)

25

The TEST Macro

Name Operation Operand
*any name TEST OPEN E operand 2:|
[, operand 3] [, operand 71_-|
[keyword parameters]
*mandatory
Operand 2: Specifies return address from execution of OPEN. This

Operand 3:

Operand 4:

is required if OPEN receives control through a problem
program branch or if OPEN is entry point of problem
program.

Specifies standard page heading.

LINK or LOAD

Keyword parameters:

MAXP = count 1 (specifies the maximum number of pages of test data
to be produced)

MAXE = count 2 (specifies the maximum number of test macros to be
encountered)

OPTEST = specifies symbolic names of other TEST OPEN macros

s

SELECT = integer

Name Operation Operand
[2ny name] TEST WHEN, operand 2, operand 3,

operand 4, operand 5
[, DATAM = Mod |

Operand 2: Value 1 or flagname 1.

Operand 3: Operators AND and OR used with flagname. Comparative

operators such as LT and EQ used with values.
Operand 4: Value 2 or flagname 2.
Operand 5: specifies name of next TESTRAN instruction to be

26

executed if test is affirmative.

Name Operation Operand
[any name] TEST ON, [operand 2, operand 3]
, [operand 4, operand 5]
[COUNTER = counter name]
Operand 2: Lower limit
Operand 3: Upper limit
Operand 4: Interval
Operand 5: Specifies name of next TESTRAN instruction to be
executed if test is affirmative.
Name Operation Operand
I:a_my name] TEST AT, (Addr 1,...Addrn)
[, SELECT = integer |
Name Operation Operand
[any name] TEST DEFINE, operand 2,
(operand 3, ...operand 3)
Operand 2: Specifies whether a flag or one or more counters are to
be defined.
Operand 3: Specifies unique name for each counter or flag, each of
which is set to an initial value of 0. Each name is
1 to 8 characters in length. The first character must be
a letter.
Name Operation Operand
[any name] TEST CLOSE
The GO Macro
Name Operation Operand
[:any namtﬂ GO operand 1[: operand 2:]
Operand 1: TO, IN, OUT, BACK
Operand 2: Specifies name of next TESTRAN macro to be executed

27

for TO, IN; optional return address for BACK; not used
for OUT.

The SET Macro

Name Operation Operand
@ny name_ﬂ SET operand 1, operand 2,
operand 3
[keyword parameter]

Operand 1: FLAG, COUNTER, VARIABLE

Operand 2: Name for FLAG and COUNTER; symbolic address for
VARIABLE

Operand 3: Flagname 2 or condition for FLAG, value for COUNTER
and VARIABLE (must be specified as an address)

Keyword Parameter:

DATAM = data modifier for VARIABLE

28

READER'S COMMENTS
IBM Operating System/360 TESTRAN User's Guide (C20-1652-0)

Your comments regarding this publication will help us improve future editions. Please
comment on the usefulness and readability of the publication, suggest additions and
deletions, and list specific errors and omissions.

USEFULNESS AND READABILITY

fold fold

SUGGESTED ADDITIONS AND DELETIONS

ERRORS AND OMISSIONS (give page numbers)

fold fold

Name

Title or Position

Address

FOLD ON TWO LINES, STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

C20-1652-0

fold fold

...

FIRST CLASS

PERMIT NO. 135
WHITE PLAINS, N.Y,

BUSINESS REPLY MAIL

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY . ..

IBM Corporation
112 East Post Road
White Plains, N, Y, 10601

Attention: Technical Publications

..

M

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601

C20-1652-0

IV

®
International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York 10601

‘V°S'N arpaguld 0-¢S91-020

