
IBM Operating System/360

TESTRAN User's Guide

This document presents guidelines to the effective use of program
testing and·debugging facilities provided by the test translator
(TESTRAN) of Operating System/360.

Included are guidelines to writing the TESTRAN macros,
assembling the problem program, executing the program in a test
environment, and, finally, deleting TESTRAN from a debugged
program. A sample program and its associated TESTRAN output
serve as a vehicle for the discussion.

An understanding of the information in the following publications is
prerequisite to use of this manual:

• IBM Operating System/360 Assembler Language (C28-6514)

• IBM Operating System/360 Linkage Editor (C28-6538)

o IBM Operating System/360 Job Control Language (C28-6539)

Reference is also .made to IBM Operating System/360 Control
Program Services (C28-6541).

C20-1652-0

Programming

Copies of this and other IBM publications can be obtained through IBM branch

off ices. Address comments concerning the contents of this publication to

IBM, Technical Publications Department, 112 East Post Road, White Plains, N. Y. 10601

I

CONTENTS

Introduction . 1
Chapter 1: How TESTRAN Operates , 2

TESTRAN Macro Instructions and the TIA Table 2
TIA Table 2
TEST OPEN Macro . 2
TEST AT Macro. . . 2
GO BACK Macro. . 3

TESTRAN Interpreter 3
TESTRAN Editor 4

Chapter 2: Writing the TESTRAN Control Section . . 5
Inclusion of TESTRAN with the Problem Program 5
Explanation of Figure lA 5
Explanation of Figure lB 10

Chapter 3: General Procedures for Using TESTRAN 14
Assembling TESTRAN Macros with the Problem Program . 14
Assembling TESTRAN Macros Separately from the

Problem Program. 14
TESTRAN Job Flow and Job Control Language 14

Assembly (Steps 1 and lA) 17
Linkage Editor Procedure (STEP2) . . 17
Problem Program Execution (STEP3). 17
TESTRAN Editor Procedure (STEP4). 17

Chapter 4: TESTRAN Output 18
Appendix: Reference Summary of TESTRAN Macro Parameters 24

I

.INTRODUCTION

The test translator (TESTRAN) is a program testing and debugging aid
for OS/360 assembler language programs. The availability of TESTRAN
in the operating system is determined at system generation time
(SYSGEN).

TESTRAN consists of three parts:

1. TESTRAN macro instructions

2. TES TRAN interpreter

3. TESTRAN editor

The TESTRAN macros are the user's means of indicating (1) when testing
is to begin, (2) where in the program testing is to take place, and (3)
what tests are to be performed. The macros are expanded at assembly
time from their macro definitions, which are included in the system
macro library at SYSGEN. The expanded macro instructions are
assembled into a TESTRAN interpreter action (TIA) table, in the form
of a control section separate from the problem program control sections.

To execute the problem program with TESTRAN, the user must link-edit
the problem program and TIA table CSEC T's together, to form a single
load module, which can then be fetched into main storage.

The TESTRAN interpreter operates in the supervisor state at program
execution time. At appropriate times during execution of the problem
program, the TESTRAN interpreter honors the test requests which have
been coded in the TIA table. The interpreter routines are entered via
SVC interruptions and LINK macro instructions, and are executed out of
line from, but in succession with, the problem program. Output from
the TESTRAN interpreter is placed on a system data set (SYSTEST) for
later editing and printing by the TESTRAN editor. The functions of the
interpreter are completed either when a TEST CLOSE statement is
encountered or when the problem program reaches end-of-task.

The TESTRAN editor is a processor that operates in the problem program
state. After completion of the user's program, the TESTRAN editor
must be executed in order to print the test output created by the
TESTRAN interpreter. This may be done immediately, or at a later
time, since execution of the editor is a separate job or job step.

The editor reads the data from SYSTEST, and determines from a
selection code whether a record is to be processed or skipped. If the
record is to be processed, the editor provides proper headings, applies
symbolic labels, converts the data to proper format, and writes the
record onto the system print (SYSPRINT) data set.

1

CHAPTER 1: HOW TESTRAN OPERATES

The following section presents a brief explanation of TESTRAN from an
internal viewpoint. Its purpose is to give the user some lmowledge of how
TESTRAN performs its functions, as this will help in understanding the
procedure necessary to use TESTRAN effectively.

TES TRAN Macro Instructions and the TIA Table

The TESTRAN macro instructions can be grouped into five basic
macros: TEST, TRACE, DUMP, SET, and GO. There are, in all, 23
variations of these five macros. (Refer to Operating System/360 Control
Program Services, C28-6541, for a full description of the TESTRAN
macros.) The TEST OPEN, TEST AT, and GO BACK macros have a
special significance. The TEST OPEN macro initiates testing; the TEST
AT ·macro indicates where testing is to be performed; and the GO BACK
macro is used to return control to the problem program after a series of
tests is completed.

TIA TABLE

The TIA table is constructed from the assembler's expansion of the
TESTRAN macro instructions, according to their macro definitions
which are contained in the system macro library. The table consists
entirely of constants. Each macro instruction entry into the TIA table
has a specific format. The entries in the table are in the same sequence
as the source macro instructions th:;i.t caused them to be created. Except
for the TEST OPEN entry, the TIA table is nonexecutable.

TEST OPEN MACRO

The TEST OPEN macro instruction entry is always the first entry in the
TIA table. Although this entry is identical to other macro instruction
entries in that it contains various constants, the TEST OPEN entry has
one important distinction. It is the only TIA table entry that is
executable. The first byte of each TIA entry is the "entry type" that is
specified in the macro def in it ion; a different value is inserted for each of
the 23 macro instruction types. Because the entry type byte for the
TEST OPEN entry is the operation code for a supervisor call (SVC)
instruction, this entry becomes executable.

TEST AT MACRO

The TEST AT macro instruction entry in the TIA table indicates where
test services are to be performed in the problem program. At execution
time, a TESTRAN interpreter routine inserts SVC instructions into the
problem program at the places specified in the operands of the TEST AT
macro instructions. The two bytes displaced by the SVC are saved in an
interpreter table. When the problem program is executed, the inserted
SVC instructions cause interruptions that pass control to the TESTRAN
interpreter, which, in turn, initiates the performance of the test
services.

2

I

GO BACK MACRO

The GO BACK macro instruction entry in the TIA table indicates that
control is to be returned from the TESTRAN interpreter to the problem
program. Since all testing takes place in the supervisor state, it is
necessary to return control to the problem state before problem program
execution can be continued. The GO BACK macro also specifies to what
point in the problem program control is to be passed - to the next
sequential instruction or to another point (specified in the GO BACK
macro).

TESTRAN Interpreter

After assembly, the problem program and the TIA table must be
"linkage-edited" and "fetched" into main storage. Testing of the
problem program occurs in succession with the execution of the
problem program, but ''out of line'' from it. That is, the test service
routines of the interpreter are executed at the points within the problem
program where the user has indicated he wanted them. The requested
series of tests is performed, while the problem program execution is
temporarily suspended, and at the conclusion of the series of test
services, problem program execution is resumed.

At problem program execution time, control must be passed to the
TEST OPEN entry in the TIA table in order to initiate testing. Since
that entry is an SVC instruction, its execution causes an interruption
which passes control to the TESTRAN interpreter. The interpreter
inserts a TESTRAN SVC into the problem program at each point
specified in the TEST AT macro instruction. The two bytes of the
problem program displaced by the SVC instruction are stored in an
interpreter table for later retrieval and execution.

Once the SVC insertions have been made, control passes to the entry
point specified for the problem program, and execution of the problem
program begins. When an SVC instruction is encountered in the
problem program, the interruption processed for the SVC causes control
to be passed to the interpreter's router routine, which determines the
TEST AT macro instruction that caused the interruption and analyzes the
TIA table entry which follows that TEST AT entry. The router then
passes control to the proper service routine for the performance of the
requested test service. When the current series of test requests in the
TIA table is completed, the router routine passes control to the GO
BACK routine. The GO BACK routine retrieves the two bytes of
displaced problem program instruction from the interpreter table where
they were stored when the TESTRAN SVC was inserted, reassembles the
instruction at a remote location and executes it, and finally passes control
back to the problem program. When the problem program reaches
end-of-task, the function of the TESTRAN interpreter is completed.

The test output data, generated during the execution of the interpreter
test service routines requested by the problem program under test, is
written onfo a system data set (SYSTEST) for storage and later editing
by the TESTRAN editor.

3

TESTRAN Editor

The TESTRAN editor transcribes the information contained in the test
data created by the interpreter into a printable output. It is a
post-processor in that it functions only after the problem program
whose test output it is to edit is terminated. The editor consi$ts of
discrete routines that read the test output data from the TESTRAN
interpreter and select the records with the proper select (priority) codes
for processing. The records are transcribed into the correct output
format as determined by the type of interpreter routine that generated
the data. Proper headings for the record type and available symbolic
labels are written - with the data - onto the system print data set.

The editor analyzes the select code associated with a test output data
record to determine whether or not it is to process that particular
record. This determination is based upon the select code or codes
specified in the job control EXEC statement for the TESTRAN editor
job step. The priority or priorities indicated are compared with the
select code in the record itself; those records whose select codes are
acceptable are processed, and those whose select codes have not been
specified are skipped. The actual select code for the job step is an
integer (1 to 8), a blank, or the letter A. The select code in the record
itself may be either an integer (1 to 8) or a blank. The TESTRAN editor
is always a separate job or job step. It is not automatically executed,
but must be called for in the same manner as any other processor.

4

I

CHAPTER 2: WRITING THE TESTRAN CONTROL SECTION

The purpose of this chapter is to present some guidelines to writing the
TESTRAN macros. Figure 1 shows a subroutine to be tested. The
subroutine, PRIMER, is designed to find prime numbers. Given an
integer, X, PRIMER will find the next larger integer that is a prime
number, and return this value to the calling program. It is desired
to test the logic of the subroutine.

Inclusion of TESTRAN with the Problem Program

The first question is: ''When should the TESTRAN macros be coded -
before, during, or after the problem program has been coded?"

It is nearly impossible to write the TESTRAN macros before the
subroutine has been written, since no labels have been defined in the
subroutine. Writing the TESTRAN section during the coding of the
subroutine has disadvantages in that the programmer must, in effect,
write two programs at the same time. After the problem program has
been coded, and all labels, data areas, and logic have been fully defined,
it becomes a fairly simple matter to write a TESTRAN control section to
go with it. Subroutines such as PRIMER present a special testing
problem, since they depend on another program to call them. Often, the
subroutine is completed before the calling program which will use it.
The checkout and debugging of a subroutine, then, may depend on the
completion of another program. This is not desirable, because (1) it
means checking out two programs at the same time, which compounds
the problems of debugging, and (2) the programmer who wrote the
subroutine cannot turn his full attention to another project until the
subroutine is checked out.

A classic solution to this problem has been to write a ''dummy'' calling
program that passes constants to the subroutine and prints results of the
calculations for a number of test cases. This has involved writing I/O
statements for printing the results, as well as several CALL' s, in order
to present a significant number of test cases to the subroutine. This has
allowed the subroutine to be debugged independently of the actual calling
program.

This same basic procedure can be made easier through the use of
TESTRAN. TESTRAN, because of its dynamic dump capability, can
relieve the programmer of writing I/O statements to print results from
the subroutine. Also, through use of the SET VARIABLE macro, a
significant number of test cases can be generated to present to the
subroutine. This is the procedure followed in Figure 1.

Explanation of Figure lA

The TESTRAN macros for the subroutine were written upon completion
of its coding. Since they were written before the I I dummy' I calling
program, we will examine them first.

5

LCC OBJtCT CO Of

OC005d
000058

OU005C 5bCl 0000
000060 58AC 0000
000004 12AA
000060 4 7C.O F072
00006A ll:lbll
ouu06C llCAli 0001
000070 12.i3b
000072 4770 F02A
000016 ti CAO OOlf·
0000/11 <tAbO FOllO
00007E: <t7fC f032
OOOC82 ti CAO OOlF
0000b6 4All0 F082
OOOObA 4190 0003
OOOOtE 1859
0000'10 lC.45
0000'12 1958
000094 472.0 F060
000098 4780 F05!l
OC009C l83tl
00009E 1822
OCOOAO 1029
OOOOA2 1222
OOOOA4 4780 F051l
OOOOAB 4A90 F082
OOOOAC 47Fu F036
OCOOl:!O 4A"bt; FO!l2
000084 47FO Fu32
OOOOBtl 5bCl 0004
OOOOBL 5UBC 0000

000008
OCOCD8 0001
OCOOCA 0002
000058

Figure IA.

ADDKl ADDR2 SHIT SOURCE STATEMENT E 01FEB66 3/30/66

1 t>ftltH ON,NOGEN
2 TTPK!ME HST IJPEN
3 *•*** 1EGM04* - THIS MACRO ESTABLISHES CSE'CT TTPR!ME

11 lE!:>T AT,PRIMER
12 *•*** l EGM09* - MACRO NUMBER 1 IN TTPR !ME
n TKACE flUW,PRIMER,ERR
24 *•*** IEGM09* - MACRO NU I' BER 2 IN TTPR !I-IE
:18 DUMP CHANGES,PRIMER,GOT+A
39 *•*** IEGM09* - MACRO NUMBER 3 IN TTPR J.11E
53 GO oi\CK
54 ~'. ~'** IEGM09* - MACRO NUMBER 4 IN TTPRTMF
b3 TEST AT,PRIMF.R•l2
b4 *•*** !EGM09* - l~t.CRO NUMBER 5 IN TTPPTMF
75 DUMP PA'JE"L, IG' 10 1 I ,OATAM=F
76 *·;(:..¢::* T C::GMC9* - '1ACRO :'-JU"'3ER 6 IN TTPR !1".E
tl9 GO fl ACK
90 * ·*·** I C::Gl'O<I* - Mt.CR'J N1JM'3E1' 7 H-1 rTPRI'-'':'
q9 TEST t.T,(GOT+l'!,ERR)

lN' *•*** !E'GMC9* - ~ACRC 'llUM81::'< 8 I:\' '"TPRl"E
112 TRACE Sl!lP
113 '(~' :.(~ ":* 1 <:Gt~09* - "ACP.C \'!J"'H:!~ q !!\' TTP~I'I':'

120 *•*** IIOG"'4l * - THIS nACF STOP SlOPS All TRACES
124 OUMP PANEL, (G 1 9, 11' I 1 DAT AM=F
125 *•*** IEGl.109* - "IACRO ll,IUMBER 10 IN TT.PR !ME
140 GO tlACK
141 *•*** Il:GM09* - MACRO NUMBER. 11 IN TT PRIME
150 PK!Mt:R CSECT
151 vSlNG *rl5
152 SAVE I 14,121

ooooc 155 L 12,0I ll Rl POINTS TO ADCON FOR x
00000 l5b L 10,0(121 PUT x IN Rll

157 LTR 10 rlO
OOOCA 15B l:lC U,ERR IF x IS LF 0

159 SR lL rl 1 ZERO OUT Rll
00001 160 SRDL 10 rl SHIFT LO-ORDE:R BIT lNTO Rll

161 L rn ll ,l l Q--WAS BIT A ZERO
00082 162 l:lNZ ODD NO
OOOlF 163 SROL ll) ,31 YES--X IS EVEN--MOVE INTO R lL
00008 164 AH 11, =H' l' MAKE X ODD
OOC8A 165 tl LOAD
OOOlF 166 (JDll SROL 10,31 MOVE x TO Rl 1
OOOOA 167 AH ll,=H'2'
ooou3 168 LUAD LA 9,3 LOAD R9 WITH Y

169 AGA!r.. LR 5,9 MOVE y TO R5
1'10 MR 4,5 SQUARE y

171 CK 5 ,11 Q--IS Y**2 GT x
000138 172 BH GOT YES--X IS PRIME
000130 173 l:lE INLR x = Y**2--X NDT PRIME

174 LR 3,11 PREPARE
l 75 SR 2,2 TO DIVIf)E
176 DR 2,9 X/Y
U7 LTR 2,2 Ql--REMAINDER

OOOBO l 78 oz INCR NO REMAINDER. x NOT PRIME
OOODA 119 AH 9,=H'2' REMAINDER--ADD 2 TO y

OOOtif: 180 13 AGAIN TRY DlVISION BY NEW y

OOOUA 181 lNCR AH 11,=H 1 2 1 x WAS NOT PRl"IE--ADD 2 TO x
OOCtlA l 82 B LOAD GO SEE IF X+2 IS PRIME
00004 ld3 GO r L 12, 4 I 11 Rl+4 POINTS TO RESULT FIELD AOC ON
00000 ld4 ST 11,01121 STORE RESULT

185 RETURN ll4,12l,RC=4 NORMAL RETURN FROM PRIMER
189 ERR RETUR.N 114,121,RC=O ERROR EX IT FROM PRIMER
194 LTORG
195 =H' 1 1

196 =H 1 2 1

197 END PRIMER

PRIMER

Name Operation Operand

TTPRIME TEST OPEN

A TEST OPEN macro must be the first TESTRAN macro encountered
at assembly time. There must be a name in the name field, since this
becomes the name of the TESTRAN CSECT which is generated. No
optional operands were coded in this case, since all the additional
parameters for TEST OPEN will come from the TESTRAN control
section to be written in conj unction with the ''dummy'' calling program.
Encountering this TEST OPEN macro at execution time causes SVC' s to
be placed at the locations specified in the following TEST AT macros
(PRIMER,PRIMER+ 12 ,GOT+S ,ERR).

6

I

Name Operation Operand

TEST AT,PRIMER

The TEST AT macro defines a procedure and requests TESTRAN
services at a specific point or points in the problem program. In this
case, when the subroutine is entered at location PRIMER, the TESTRAN
interpreter honors the requests that follow the TEST AT,PRIMER macro.

Name Operation Operand

TRACE FLOW,PRIMER,ERR

This macro requests a flow trace of the entire subroutine (that is, from
location PRIMER to location ERR). This trace produces output describing
all branches....that occur within the subroutine. This can be an invaluable
debliggi~g-;id.

When the request is honored at execution time, the TESTRAN interpreter
goes into "trace mode", that is, interpretive mode. Tracing activity
requires the examination of each problem program instruction executed
while the trace is active. This process is time-consuming, but the time
required can be minimized by limiting the duration of the trace and the
output the trace produces. The programmer can limit the duration of the
trace by means of TRACE STOP macro instructions; when encountered at
execution time, these macro instructions suspend tracing activities
specified as being of no current interest to the programmer. The
programmer can limit the output of the trace, within a general area of
main storage, to only those areas of special interest by specifying each
such area in a separate macro instruction. No more than ten traces
(corresponding to ten TRACE macro instructions) can be active
simultaneously.

The programmer must consider the following facts when interpreting the
output of trace routines:

• Tracing is suspended when supervisor-state control program routines
receive control, and is resumed when the control program relinquishes
control.

• A trace that is active in an overlay segment is suspended if the segment
is overlaid, and is not automatically resumed when the segment is
reentered.

• A subroutine or program segment must contain its own TRACE macro
instructions if it receives control from the control program through an

~synchronous exit or through an ATTACH, LINK, or XCTL macro
instruction. All traces active for a task are suspended upon execution
of an ATTACH, LINK, or XCTL macro and upon execution of a RETURN
macro instruction that terminates a task or program receiving control
through one of these macro instructions.

7

• Tracing is performed only in storage areas associated with the
problem program or with problem-state control program routines.

The range of addresses of those storage areas traced is determined by
the 'iloaded addresses'' assigned to the operands of the TRACE FLOW
macro. Thus, TRACE FLOW ,PRIMER,ERR will trace from the
location in which the instruction named PRIMER is actually loaded
through the location in which the instruction named ERR is actually
loaded. The storage addresses at which the program is actually
loaded are called "loaded addresses". In a problem program that is
scatter-loaded, the range of addresses traced may vary unpredictably
if the starting and ending addresses are in separate control sections.
The following conditions may occur:

• Control sections that were not part of the range in the source
program may be included in the range of loaded addresses.

• Control sections that were a part of the original range may be
omitted from the range of loaded addresses.

• The control section containing the starting address may be loaded
at a higher-numbered storage location than the control section
containing the ending address. If this situation occurs, the macro
instruction is ignored and a diagnostic message is inserted in the
test output each time the macro instruction is encountered.

A program that is scatter-loaded should therefore include a separate
macro instruction for each control section in which traces are to be
recorded.

Name Operation Operand

DUMP CHANGES, PRIMER, GOT+S

The DUMP CHANGES macro is used here to record any modification of
the program which might occur through an error. Anything that is
modified at execution time, from the beginning of the subroutine
(PRIMER) to the end (GOT+S), will be recorded. Although this will not
prevent the subroutine from erroneously modifying itself (for example,
by storing data over an instruction), it will at .least give the programmer
an indication as to what was changed. This information, used in
conjunction with the trace output, would help him pinpoint the error. Or,
a TRACE REFER macro could be included later to exactly pinpoint the
insfruction(s) that caused the modification.

Name Operation Operand

GO BACK

The GO BACK macro returns control to the problem program. In this
case, since TRACEing has been requested, the TESTRAN interpreter

8

I

enters the TRACE mode. Thus, as the problem program is executed,
the TRACE routine inspects each op-code to see whether it is a branch,
and, if so, records the branch instruction, the addresses from and to
which the branch is made, as well as the condition code at the time of
the branch.

Name Operation Operand

DUMP PANEL,(G' 101
) ,DATAM=F

GO BACK

At PRIMER+12, TESTRAN will dump general register 10, which should
at this point contain the test value for X. DATAM=F specifies that
register 10 contains fixed-point fullword data. The TESTRAN editor
will convert the data to decimal on output. If DATAM is not specified,
the register contents are formatted as four-byte hexadecimal.

GO BACK causes a return to the problem program. Note that TRACEing
will resume, since no TRACE STOP has been requested.

Name Operation Operand

TEST AT ,(GOT+8 ,ERR)

This macro instruction indicates the beginning of a test procedure to be
executed at two locations in the problem program: GOT+8 and ERR.
When the problem program reaches GOT+8 or ERR, the following three
requests will be honored:

Name Operation Operand

TRACE STOP

DUMP PANEL,(G'9,ll') ,DATAM=F

GO BACK

The TRACE STOP macro causes the TESTRAN interpreter to leave the
trace mode. That is, tracing is suspended until requested again.

The DUMP PANEL statement calls for a dump of general registers 9, 10,
11. The DATAM=F specification performs the same function as in the
previous DUMP PANEL macro.

The GO BACK macro returns control to the problem program after
executing the instruction that was replaced by TESTRAN' s SVC. ·This is
the end of the TES TRAN control section TTPRIME, since no more
TESTRAN macros appear before the END card for the assembly.

9

Explanation of Figure lB

LCC OBJECT CODE

occoco

OCOCC4 C5CO
OCCCC6
OCCOC6 5CCO C036
OOOOCA 41CO CC32
OCCCCE C7CC

OCOCEA 47FC COOS
OCOOFC
~
CCOOF8
OC0140 58CC CC36

The dummy calling program, CALLTEST, is designed specifically to
supply the subroutine, PRIMER, with test data. The program relies on
TESTRAN macros to generate this data. CALLTEST supplies two data
areas: TESTV AR, which will be the test data supplied to the subroutine;
and ANS, where the subroutine will place the result of its calculation.
Also supplied is a save area, as dictated by linkage conventions. The
program calls PRIMER, and TESTRAN then dumps the result from the
subroutine.

Name Operation Operand

DATAGEN TEST OPEN ,CALL TEST, TESTING, LOAD,
OPTEST=(TTPRIME),SELECT=l

DATAGEN becomes the name of the TESTRAN control section.

ACCRl AOOR2 STMT SOURCE STATEMENT E 01FEB66

1 PRINT ON,NOGEN
2 ***
3 *****THIS TESTRAN CSECT IS DESIGNED TO SUPPLY TEST DATA ANO
4 *******TO DUMP RESULTS OF THE SUBROUTINE
5 ***
6 EXTRN TT PRIME
1 OATAGEN TEST OPEN,CALLTEST,TESTING,LOAO,CPTEST=ITTPRIME>,SELECT=l
8 *•*** IEGM04* - THIS MACRO ESTABLISHES CSFCT DATAGEN

20 TEST DEFINE,COUNTFR,Kl
21 *•*** IEGM09* - MACRO NUMBER IN DATA GEN
31 TEST AT,CALLTEST
32 *•*** I EGM09* - MACRO NUMBER 2 IN DATAGEN
43 SET COUNTER,Kl,=F 1 -3 1

44 *•*** IEGM09* - MACRO NUMBER 3 IN DATAGEN
57 GO BACK
58 *•*** IEGM09* - MACRO NUMBER 4 IN OATAGEN
67 TEST AT,TTSVCl
68 *•*** IEGM09* - MACRO NUMBER 5 IN DATAGEN
79 TEST ON,1,100,100,QUIT,COUNTER=Kl
80 *•*** IEGM09* - MACRO NUMBER 6 IN DA TAGEN
c;a SET VARIABLE,TESTVAR,Kl
99 *•*** IEGM09* - MACRO NUMBER ·1 IN DATAGEN

lD GO BACK
114 *•*** IEGM09* - MACRO NUMBER 8 IN DATA GEN
123 TEST AT,TTSVC2
124 *•*** IEGM09* - MACRO NUMBER 9 IN DATAGFN
135 DUMP DATA,TESTVAR,ANS+4
136 *•*** IEGM09* - MACRO NUMBER 10 IN DATAGEN
150 TEST WHEN,Kl,LT,=F'l' 9 MESSAGE,DATAM=F
151 *•*** IEGM09* - MACRO NUMBER 11 IN DATAGEN
169 GO BACK
1 70 *•*** IEGM09* - MACRO NUMBER 12 IN OATAGEN
119 MESSAGE DUMP PANEL,IG'l5'1
180 *•*** IEGM09* - MACRO NUMBER 13 IN DATA GEN
192 DUMP COMMENT, 1 REGISTER 15 SHOULD CONTAIN o•
193 *•*** IEGM09* - MACRO NUMBER 14 IN DA TAGEN
2C9 GO HACK
210 *•*** IEGM09* - MACRO NUMBER 15 IN DATAGEN
21 <; QUIT DUMP PANEL
220 *•*** IEGM09* - MACRO NUMBER 16 IN OATAGEN
231 GO BACK,RET
232 *•*** IEGl-109* - MACRO NUMBER 17 IN DATAGEN
243 CALL TEST CSECT
244 **************
245 *'************* CALL TEST IS A TEST ROUTINE FOR PRIMER
246 **************
247 SAVE I 14, 12 I
250 BALR 12,0
251 USING *• 12

OOOFC 252 ST 13,MINEi-4
COOFE 253 LA 13,MINE

254 TTSVCl NOPR 0
255 CALL PRIMER,ITESTVAR,ANSI

OOOCE 268 TTSVC2 B TTSVCl
269 TEST\IAR OS F
Lie mvs- O'S f'
271 MlNE OS lBF

OOOFC 212 RET L 13, MINE+4
213 RETURN (14, 121
276 END

Figure lB. CALLTEST

10

I

4/01166

CALLTEST is the entry point to the problem program. At the conclusion
of the TEST OPEN routine (that is, after SVC' shave been inserted at the
required places in the problem program), TESTRAN transfers control to
location CALLTEST in the problem program.

TESTING is a page heading to be printed on each page of TESTRAN
output.

LOAD specifies that the TESTRAN service routines (for example, DUMP,
TRACE) are to be resident throughout problem program execution, rather
than transient (loaded when needed). This requires more core storage
than the transient mode (specified by LINK), but results in faster
execution. TESTRAN will automatically default to transient (LINK) mode
if sufficient core storage is not available for LOAD mode operation.

l/ OPTEST=(TTPRIME) indicates that the TESTRAN control section,
TTPRIME, is to be opened at the same time as DATAGEN. Notice that
TTPRIME has been declared to be an external symbol (EXTRN TTPRIME).
This is necessary because the subroutine and its TESTRAN macros are
assembled separately from CALLTEST and its TESTRAN macros. This
would be necessary for any external symbol that appeared in the TESTRAN
macros. Similarly, TTPRIME or any other external reference must be
a CSECT name or must appear as the operand of an ENTRY statement
in another assembly.

SELECT=l specifies that a selection code of 1 is to be attached to the
output from this TESTRAN control section and from any other TESTRAN
CSECT' s opened at the same time (for example, TTPRIME). This
selection code will be in force for all macros unless overridden in a
particular macro. For example, a DUMP macro could specify
SELECT=5, in which case the output from that macro would have a
selection code of 5, rather than 1. Through the selection code, the user,
at TESTRAN Editor time, can selectively print the output produced by
the interpreter. This is done by supplying a parameter to the editor,
specifying that records with certain selection codes are to be printed
and that all others are to be skipped.

Name Operation Operand

TEST DEFINE,COUNTER,Kl

This macro sets up a COUNTER, to be named Kl, for use within the
TESTRAN control section. Kl becomes the name of a data area defined
by TESTRAN, and is initialized to zero (0).

Name Operation Operand

TEST AT~CALLTEST

SET COUNTER,Kl,=F' -3'

GO BACK

11

The test service requested at location CALLTEST is the initialization of
Kl to minus three. The third operand in a SET macro must be an
address. In this example, a literal is specified, which results in an
address. If the third operand is written as a self-defining value,
TESTRAN interprets it as an address. For example, SET COUNTER,
Kl,1000 will not set the counter to the value 1000, but rather will
transfer the contents of location 1000 to the counter.

Just before calling tbe subroutine, the program requests test services I
in order to generate test data.

Name Operation Operand

TEST AT,TTSVCl

TEST ON, 1,100, 100,QUIT, COUNTER= Kl

SET VARIABLE, TESTV AR,Kl

GO BACK

TEST ON ,1,100,100,QUIT,COUNTER=Kl increments Kl by 1, tests to see
whether Kl is between the limits specified by operands 2 and 3 (1 and 100),
and, if it is, tests to see whether Kl is a multiple of operand 4 (100). If
both conditions are true, TESTRAN transfers control to the macro named
QUIT. Otherwise, control passes to the next sequential macro.

The SET VARIABLE macro is used to change the value of a problem
program data area. In this case, TESTVAR is set to the current value
of Kl. This value changes before each CALL by virtue of the TEST ON
macro.

The GO BACK macro returns control to the location following TTSVCl,
where the problem program issues a CALL to PRThIER, and passes
TESTVAR as a parameter.

Name Operation Operand

TEST AT,TTSVC2

DUMP DATA,TESTVAR,ANS+4

TEST WHEN ,Kl,LT,=F' l ',MESSAGE,DATAM=F

GO BACK

At TTSVC2 (that is, after the subroutine returns control to the cal.ling
program), TES TRAN will DUMP all data between TES TV AR and ANS+4.
That is, the two data areas, TESTVAR and ANS, will be output and
formatted according to their definitions (fullword) .

The TEST WHEN macro transfers control to the TESTRAN macro named
MESSAGE when counter Kl is less than (LT) 1 (=F' l'). If Kl is greater
than or equal to 1, control passes to the next sequential macro - GO

12

BACK. The DATAM=F specifies that Kl is a fullword data area. This is
necessary because Kl' s attributes do not appear in the symbol table, and,
if not specified, TESTRAN assumes one-byte hexadecimal. (Note: This
is necessary only on TEST WHEN. The DATAM keyword is illegal if
operand 1 or 2 is a logical flag.) The GO BACK macro executes the
instruction at TTSVC2 (B TTSVCl) and returns control to the program at
location TTSVCl. Since TTSVCl is a TEST AT location, control returns
immediately to TESTRAN and the requested services are performed.

Name Operation Operand

MESSAGE DUMP PANEL, (G'l5')

DUMP COMMENT,'REGISTER 15 SHOULD
CONTAIN 0'.

GO BACK

_The subroutine, PRIMER, will refuse to process data which is zero or
negative. To indicate an error, it provides a return code of 0 in register
15. (The .normal return from PRIMER places a return code of 4 in
register 15 .) The TEST WHEN macro, above, determines when the data
supplied to PRIMER is zero or negative, and, when it is, passes control
to MESSAGE.

At location MESSAGE, general register 15 is displayed, along with a
comment indicating that register 15 should contain zero. If register 15
does not contain zero at this point, the logic of the subroutine did not
recognize the erroneous data.

Name Operation Operand

QUIT DUMP PANEL

GO BACK,RET

When Kl contains 100, TESTRAN passes control to the macro named
QUIT (see TEST ON above). At this point al.l registers are DUMPed.

The GO BACK macro returns control to location RET in the problem
program, which terminates the job via a RETURN macro.

There is no TEST CLOSE macro in this example, because TEST CLOSE
returns control to the TEST AT location, which in this case is an
unconditional branch. The function of TEST CLOSE is to remove the
TESTRAN SVC' s from the problem program TEST AT locations. The
assumption is that the programmer wishes to resume execution of his
program without TESTRAN. Since CALLTEST is not designed to operate
free from TESTRAN, a TEST CLOSE macro would perform no useful
function, and is therefore unnecessary.

13

CHAPTER 3: GENERAL PROCEDURES FOR USING TESTRAN

After the problem program(s) and TESTRAN control section(s) have been
written, they must be assembled. A program and its TESTRAN control
section may be assembled either together or separately.

Assembling TESTRAN Macros with the Problem Program

If assembled with the problem program, the TESTRAN macros may be
written out of line (as in Figure 1) or in line (that is, interspersed with
the problem program instructions). In either case, the TIA tables
produced will reside in a separate control section from the problem
program. That is, whether the user chooses to write the source
statements for TESTRAN in line or out of line, the final result is an
out-of-line. TESTRAN control section. Since this is true, and since
TESTRAN request"s\vill not be executed in line, there is no advantage to
writing the macros in line with the problem program., The disadvantage,
of course, is that, should the user wish later to reassemble his program
without the TESTRAN macros, he must search through the source deck
in order to remove the TESTRAN statements.

Assembling TESTRAN Macros Separately from the
Problem Program

If the problem program is assembled separately from the TESTRAN
macros, the user must follow the rules for external references and entry

{/points. That is, any problem program symbol (label) which appears as
the operand of a TESTRAN macro must appear in an EXTRN statement
when the TESTRAN macros are assembled. These same symbols must
be control section names or operands of an ENTRY statement in another
assembly. In most cases, this is inconvenient. There are times,
however, when it may be desirable to assemble the TESTRAN macros
separately from the problem program. A user may wish to include
TESTRAN with an objecLdeck, for example, without reassembling the
problem program. In this case, the operands of the TESTRAN macros
must all be declared in EXTRN statements for the TE STRAN control
section, and must appear as ENTRY symbols in the external symbol
dictionary (ESD) of the problem prognim. Since the user has no way to

, add symbols to the ESD without reassembly, he is forced to use address
V adjustment to form the operands for the TESTRAN macros. This is, at

best, time-consuming.

Writing the TESTRAN macros out of line and assembling them with the
problem program appears to be the simplest and most convenient method
for using TESTRAN.

TESTRAN Job Flow and Job Control Language

Figure 2 is a general TESTRAN job flow in flowchart form. Figure .3 is
an example of the job control language to assemble, linkage-edit, and
execute the two programs of the previous example, and to edit the output
produced by TESTRAN.

14

I

SYSIN

~/--==-
SOURCE I STATEMENTS

SYSPUNCH

ASSEMBLED
PROGRAM &
SYM CARDS

SYSLI N

PROBLEM
PROGRAM
1/0

SYSPRINT

(CSECT
MODULES)

...-...-...-...-...-

(OBJECT
MODULES)

............
.............

.........
...........

.........
...........

.........

.Figure 2. General TESTRAN job flow

15

TES TRAN
CSECTS

PROBLEM
PROGRAM

CSECTS

TEST RAN
EDITOR

JOB STEP l

JOB STEP 2

JOB STEP 3

__..
...-

SVC

__..
...-

JOB STEP 4

TESTRAN
MACRO
DEF 1N

SYSLMOD

LINK
EDITED
MODULES
& SYM

I
I

I

I SYM CARDS
I (SYMBOL TABLE)

I
I

I

TESTRAN
INTERPRETER

\

SYM
CARDS

TEST
OUTPUT

The computing system used for this example requires at least three tape
drives and one 2311 disk drive. The unit designations (2400, 2311) used

· on the DD cards in the following examples are the·generic device names
defined in the Job Control Language manual.

1234,YCU~G,MSGLEVEL=l
PGM=IElASM,PARM=TE~T
UNIT=24CG,LABEL=(,~l)
UNlT~2400,LAeEL=(,NL)
UNIT=24CC,LAbEL=(,~l)
DSNAME=SYS1.MACLIB,UNI1=2311,DISP=OLO,VOLUME=SER=llllll

//JLHB JOE
I /STEP 1 f X l:C
//SYSUll CO
//SYSUT2 DD
//SYSUT3 DD
//SYSLIB CD
//SYSPUNCH CD
II

OSNAME=OaJl,UNIT=2311,0ISP=(NEW,PASS), X

//SYSPRINl LO
//S'tSil\ DD

SPACE=(TRK,(10,10)),VGLUME=SER=llllll
SYSOUT=A

*
---SOURCE DECK fGR PRIME~

//SH:PlA EXf:C
//SYSUTl DD
//SYSUT2 DO
//SYSUT3 GD
//SYSLIB CO
//SYSPUNCH LD
II
//SYSPF<INl LO
//SYSIN DD

PGM=IElASM,PARM=TEST
UNIT=240C,LABEL=(,~l)

UNIT=2400,LASEL=(,~l)
UNIT=24GC,LABEL=(,~l)
DSNAME=SYS1.MACLIB,UNIT=2311 1 DISP=OLD,VOLUME=SER=llllll

DSNAME=OHJ2,UNIT=2311,DISP=tNEW,PASS),
SPACE=(lRK,(10,lC)),VGLUME=StR=llllll

SYSOUT=A

*
----- SOURlE DECK fGR CALLTEST

11STE:P2 c X t: C PG M= LI i\K ED IT , PA RM= 'X RE f, TEST 1

//SYSUTl DD OSNAME=U1IL,UNIT=2211,SPACE=lTRK,(40,10))

x

//SYSLMOO DC OSNAME=GCfll(ABC},lNIT=2311,SPAC~=(TRK,(40,10,l)), X
II LlISP=(NEh,PASS)
l/SYSPRINl LD SYSCGT=A
//DGl CD DSNAME=GbJl,uNIT=2311,DISP=(GLD,OELETE),VOLUME=SER=llllll,X
II UCB=(RECF~=F,BLKSlZE=80)
/IDC2 DD DSNA~E=OBJZ,UNIT=23ll,DISP=(GLD,UELETE),VULUME=SER=llllll,X

II DCB=(RECfM=F,BLKSllE=80)
//SYSLIN CD *

INCLUDE DOI
INCLUDE: DD2
ENlRY CATAGEN

//STEP3 EXEC
//SYSTEST DL
II
//.STEP4 tX EL
//SYSTEST OD
II
//SYSUTl CD
I IS Y SPRINT LU

PGM=•.STEP2.SYSLMGL
DSNAM~=ltSTOUT,UNil=2400,DISP=(NEW,PASS),LABEL=(,NL), X
VOLUM~=SER=Alllll
PGM=IE:C::llE-01,PARM=lA
OSNAME=lESTOUT,UN11=2400~DISP=(OLO,DELETE),LABEL=(,NL), X
VOLUME:SER=Alllll
OS M~iE=W U~K, LNIT= 2::.11, SPACE= (TRK, (40, 10))
SYSOUl=A

Figure 3. Job Control Language for using TESTRAN

16

ASSEMBLY (STEPS 1 AND lA)

The assembly procedure specifies TEST as a parameter to the assembler.
This is a request to the assembler to include the symbol table in the object
modules produced for PRIMER and CALL TEST. This is necessary when
the problem program is assembled if the user wishes the TESTRAN
editor to perform automatic formatting of TESTRAN output.

The assembler requires three work data sets, SYSUTl, SYSUT2, and
SYSUT3, which, in the example, are specified as tape. The object
modules produced by the assembler are given the names OBJl and OBJ2,
and are PASSed to the Linkage Editor job step.

LINKAGE EDITOR PROCEDURE (STEP2)

The two object modules, containing CALLTEST, PRIMER, and their
respective TESTRAN control sections, are link-edited together.

The TEST parameter in the EXEC card for STEP2 specifies that
Linkage Editor is to process the symbol tab.le (SYM) cards that were
produced by the assembler. If TEST is not specified, the SYM cards
are ignored.

The user specifies that the entry point to the load module will be
DATAGEN. When the program is loaded, the first instruction executed
is the SVC for TEST OPEN, which will initiate testing.

PROBLEM PROGRAM EXECUTION (STEP3)

The user must provide an output data set for TESTRAN when his program
is executed. This is done by including a DD card for SYSTEST, specifying
a tape or direct access device.

TESTRAN EDITOR PROCEDURE (STEP4)

Upon termination of program execution, the user may execute the
TESTRAN Editor (IEGTTEDT). Three DD cards are necessary:
SYSTEST, SYSPRINT, and SYSUTl. SYS TEST is, of course, the data
set produced in STEP3. SYSPRINT is the systems print data set.
SYSUTl is a direct access device to be used by the editor as an
intermediate work file. The parameter TA on the EXEC card specifies
that all data is to be edited, regardless of its selection code.

At the conclusion of STEP4, SYSUTl will be deleted from the VTOC of the
2311. OBJl and OBJ2 were deleted following STEP2. GOFIL, the
Partitioned Data Set created in STEP2, is automatically deleted at the
end of STEP4, by virtue of the fact that its disposition in STEP2 was
NEW, PASS, and no further disposition was found.

17

CHAPTER 4: TESTRAN OUTPUT

On the following pages are presented the first six pages of the output
produced by TESTRAN for the programs of Figure 1. In the accompanying
explanation of selected lines, the circled numbers correspond to the
numbers on the listing. Refer to IBM Operating System/360 Control
Program Services (C28-6541) for a complete and detailed description of
TESTRAN output.

(D The output from TEST OPEN. The maximum number of pages and
maximum number of statements are the default figures established
at system generation for this particular system.

® Indicates the execution of an inserted TESTRAN SVC. The TESTRAN
control section referenced is TTPRIME and the SVC is at relative
location 000058 (loaded address is 5778) in control section PRIMER.
Note that this relative location is the location noted on the assembly
listing.

® Indicates that a TRACE FLOW has been initiated in TTPRIME. The
trace is to be active between relative locations 5816 and CA16 in
control section PRIMER.

@ DUMP CHANGES output. Since this is the first time that this macro
has been encountered, the entire area of core is dumped. Each ·
output group consists of two or three lines. The first line contains
the relative location of the dumped area (for example, 58), and any
labels that appeared in the assembly (for example, ODD,AGAIN).
The second line contains the loaded address of the area (5778) and
the data, formatted according to type. In this case the data
consisted of instructions, and so was formatted accordingly. The
third line indicates SVC 26 at those locations where a TESTRAN SVC
was inserted.

@ Indicates that a trace event has. occurred at relative location 64 in
PRIMER. The event was the execution of an SVC 26, as indicated
on the second line. Also printed are the contents of the standard
linkage registers, 0, 1, 14, and 15. SVC 26 is the SVC inserted at
TEST OPEN time as a result of the macro TEST AT,PRil\1ER+12.
Note that relative location 64 is equivalent to PRIMER+12.

@ Output of the DUMP PANEL macro in TTPRIME which requested
that general register 10 be dumped.

© Indicates the occurrence of a trace event in PRIMER. A branch

18

(BC CO F 072) has occurred from relative location 000066 to relative
location OOOOCA. The condition code was 1 (CC=l). Also displayed
is general register 15, since that is the base register for the branch
address.

/,\ TESTING TESTRAN OUTPUT DATE 66/08~

\.:_)11 MACRO ID 000, TEST OPEN , TESTRAN CONTROL SELTIUN = DATAGEN , IDENTIFICATION

MAXIMUM NUMBER OF PAGES 150, MAXIMUM NUMBER OF STATEMENTS 2500

IPRlMER 000058 005778 ENTER TTPRI '1E ®.T LllCATICN

@) MACIW Ill 002, TRACE fLuW ' TTPRIME ' FROM I PK I MER I 000058 005778 TO I PRIMER

©., MACRO 10
0058

OC5778

006A
OC5713A

OC7A
00579A

008E
0057AE

009(.
OC571:lC

OOAtl
0057Ctl

OOtlC
OC57DC

003,

STM
SVC

SR

AH
llGAIN
LR

LR

AH

5T

CUMP CHANG!: S

EC 0 ooc L
26

BB SiiDL

t30 F UBO BC

59 l"R

313 SR

9C 082 BL

BC 0 000

Cl 0 000 AC 0 000 LTR
SVC

AO 0 001 LTR BB BC
ODD

FO 032 SRDL AO 0 OlF AH

45 CR SB BC

22 OR 79 LTR
INCR

FC F 036 AH AO F 082 BC

®.I l"AC.RO
SVC. 26

lO 002, TRACE FLOW , TTPl<IMF , FRCM IPR1:1E:K I 000064 005784, CC=O
G'OC' COOC003C G'Ol' 80005131C G1 14' 400C~d2A G1 15' 00005778

AT LOCATICN IPRIMEK I 000064 00~784 ENTEK TTPRIME

~11 MAC.RO IO 006, DUMP PANtl
(.;' 10' -2

AA
26

70

BO

20

22

FO

TIME 00/00

TESTING

I OOOOCA 0057EA, STARTED

BC co F 072

OZA SRDL AO 0 OlF
LOAD

F 082 LA 90 003

F 060 ac 80 058

BC 80 058
GOT

F 032 L Cl 0 004

PSW FF J ' 0026 4 0 005786 CC=O FIX POINT OVE~ LOW llFF DEC OVERFLOW OFF EXP UN~FRFLOW OFF SIGNIFICANCE OFF

MACRO IO 002, TRAC.i:: FLC.t , TTPkll':E , FROM IPR:MER I 000066 005786 TO (PRIMER I OOOOCA 0057EA, CC=l
IH. CC F 072 G1 15' 00005778

AT LCCATICN (PRIMER OOOOCA 0057EA ENTER TTPR I ME

~I MA~RU ID GC9, TRACE srGP TT Pk IME 002

PAGE

®. TESTING TESTRAN OUTPUT DATE 66/084 TIME 00/00 PAGE

9 11 MA~KO ID 010, DUMP PANEL
1.>'09' +1073790202 G'lC' -2 l.1'11' -tl30932
PSW fF 0 5 0026 ~ 0 C057EC CC=l FIX POINT OVER~LUW OFF DEC OVERFLOW OFF

LLCAT ION TTSVC2 ICALLTESTl CCCCEA 00582A ENH:R OATAGEN

MACRO ID 010, DUMP DATA STARTING IN SECTION CALLTEST
OOFo· TEST\'AR AJ\S

005b30 -2 -d38773242

~XECUTEO STATEMENTS O~TAGEN 011, 013

~I MACRJ ID Dl3, DUMP PAJ\EL
G'l5' CCCCOCOO
PSn FF G ~ uOL6 5 0 005b2C CC=l fIX POINT UVERfLOW OFF

~I MACRO ID 014, OuMP CCMMENT
REGISTtR l~ SHOULD COJ\TAIN 0

AT LOCAT ICN I PRIMER I 000058 005778 ENTER TTPRIME

DlC OVERFLOW OFF

EXP UNDERFLOW OFF SIGNIFICANCE OFF

EXP UNDERFLOW OFF SIGNIFICANCE OFF

~) MACRO ID 002, TRACE FLOW

l) MACRO IO 003, DUMP CHANGES

, TTFRIME , FRGM IP~IMER I 000058 005778 TO !PRIMER I OOOOCA 0057EA, STARTED

NONE

11 MACRO lD 002, TRACE FLOW , TTPRIME , FROM (PRIMER I 000064 005784, CC=l
SVC 26 G'00 1 0000003C G1 01' 9000581C G'l4' 5000582A G1 15' 00005778

AT LOCATIC~ (PRIMER l 000064 005784 ENTER TTPRIME

11 MACRO ID OC6, DUMP PANEL
G1 10' -1
PSW FF 0 5 0026 5 0 C057e6 CC=l FIX POINT OVERFLOW OFF ·DEC OVEKFLOW OFF EXP UNDERFLOW OFF ·SIGNIFICANCE OFF

19

2

TESTING TESTRAN OUTPUT DATE 66/084 TIME 00/00

11 MACRO ID 002, TRACE FUilf , TTPRIME , FROM !PRIMER 000066 005786 TO CPR1MER 1 OOOOCA 0057EA, CC=l
BC CO F 072 G'l5' 00005778

AT LOCATION (PRIMER OOCOCA 0057EA ENTER TTPRl~E

11 MACRO ID 009, TRACE STOP TTPR1ME 002

11 MACRO IO 010, DUMP PANEL
G1 09' +1073790202 G1 1C' -1 G'll' +130~32
PS~ FF 0 ~ 0026 5 0 C051tC CC=l FIX POINT OVERFLOW OFF nEc· OVERFLOW OFF "EXP UNDERFLOW OFF SIGNIFICANCE OFF

AT LOCATION TTSVC2 ICALLTEST) OCCOEA 00582A ENTER DATAGEN

11 MACRO ID 010, DUMP UATA STARTING IN SECTIUN CALLTEST
OOFO TESTVAR ANS

005830 -1 -838773242

EXECUTEC STATEMtNlS CATAGtN 011, 013

ll MACRO IC 013, O~MP PANFL
G' 15 1 CCGCOCOO
PSH FF 0 5 0026 5 0 00582C CC=l FIX POINT OVERFLOW OFF DEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF

11 MACRO 10 014, CUMP COMMENT
RtGISTEk 15 SHOULD CCNTAlN 0

AT LOCATICN !PRIMER OC0058 005178 ENTER TTPRIME

11 MACRO 10 002, TRACE FLGH 1 TTPRIME , FROM !PRIMER I 000058 005778 TO !PRIMER I OOOOCA 0057EA, STARTED

ll MACRO ID OOJ, DUMP ChA~GES

NONE

ll MACRO 10 002, TRACE FLJH , TTPklME , FROM !PRIMER I 000064 005784, CC=l
SVC Zo G•oo• OOOJD03C G'Ol' 900G581C G1 14' 5000582A G1 15 1 00005778

TESTING TESTRAN OUTPUT

AT LGCATICN !PRIMER I 000064 005784 ENTER TTPRIME

11 MACRO ID 006, OUMP PA~EL

G1 1C 1 +O

DATE 66/084 TIME 00/00

PSk FF 0 5 0026 5 0 005786 CC=l FIX PCINT OVERFLOW OFF DEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF

11 MACRO 10 002 1 TRACE FLOW , TTPRIMt , FRCM (PRIMER l 000066 005786 TO !PRIMER I OOOOCA 0057EA, CC=O
tlC CO F 072 G'l5' 00005778

AT LOCATILN !PRIMER OOCOCA 0057EA ENTER TTPKIME

11 'MACKO ID OC9, TRACE STOP TTPR lME 002

11 MACRO lD 010, tUMP PANEL
G1 09 1 +1073790202 G1 1C' +0 G'll' +13oq32
PSW FF 0 5 002b 4 0 005/EC CC=O FIX POINT OVEfifLOri OFF DEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF

AT LOCATION TTSVC2 ICALLTESTI OCCOEA 00582A ENrER DATAGEN

11 MACRO ID 010, DUMP DATA STARTING IN SECTION CALLTEST
OOFO TESTVAR ANS

005830 +O _. 83 87 73242

EXECUTED STATEMENTS DATAGEN 011, 013

l l MACRO IO 013, OUMP PANH
G' 15 1 CCOCOCOO
PSW FF 0 5 0026 4 0 00582C CC=O FIX POINT OVERFLOW OFF DEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF

11 MACRO 10 014, DUMP COMMENT
REGISTER 15 SHOULD CONTAIN 0

AT LOCATIGN (PRIMER C0005tl 005778 ENTER TTPKIME

ll MACRO ~O 002, TRACE FLGW , TTPRIME , FROM (PRIMER I 000058 005778 TO (PRIMER I OOOOCA 0057EA, STARTED

20

PAGE 3

PAGE

TESTING TESTRAN OUTPUT DATE 66/084

11 MACRO 10 003, DUMP CHANGES

NONE

ll MACRO ID 002, TRACE FLCW , TTPRIME , FRCM IP~IMER I 000064 005784, CC=O
SVC 26 G'OO' 0000003C G'Ol' 8000~81C G'l4 1 4000582A G1 15' 00005778

AT LOCATION (PRIMER I 000064 005784 ENTER TTPRIME

11 MACRO IU 006, DUMP PANEL
G1 10 1 +l

TIME 00/00

PSW FF 0 5 0026 4 0 005786 CC=O FIX POINT OVE~FLOW OFF DEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF

11 MACRO ID 002, TRALE FLOW , TTFRlMc , FRCM IPidMER I 000072 005792 TO ODD
BC 7C F 02A G'l5' 00005778

11 MACRO 10 oc2, TRACE FLLW ' TTPRIME ' FRCM IPklMER I 000094 0057B4 TO GOT
BC 20 F OcO G1 15' 00005778

11 MACRU IO oc2, TRACI: FLCW ' TTPRIME ' FRCM IP~IMER I ooooco 0057EO, CC=2
SVC 26 G'GC' C000003C G'Ol' d000581C G1 14' 4000582A G1 15' 00005778

AT LCCATICN IPRIMER 0000CO 0057EC ENTER TTPRIME

ll MACRO ID OC9, TRACE STOP TTPRIME 002

11 MACRO ID 010, DUMP PANEL
G1 09' +3 G1 10' +O G'll' +3

(PRIMER I 000082 0057A2, CC=l

(PRIMER I 000088 0057D8 1 CC=2

PSW FF 0 5 0026 6 0 0057E2 CC=2 FIX POINT UVERrLOW OFF UEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF

AT LOCATION TTSVC2 ICALLTESTI OCCCEA 00582A ENTfR OATAGEN

·@
11 MACRO ID 010, DUMP DATA STARTING IN SECTION LALLTEST

OuFO TESTVAR· ANS
OC5830 +l +3

~T LCCATILN (PRIMER 000058 00!:77t3 ENTER TTPRI ME

TESTING TESTRAN OUTPUT DATE 66/084

11 MALdO ID 002, TRACE FLOW , TTPRIME , FROM IPRl~ER 000058 005778 TO (PRIMER

11 MACRO ID 003, DUMP CHA~GES

11 MACRO IO 002, lRACE FLOW , TTPRIME , FRCM !PRIMER I 000064 005784, CC=2
SVC 26 G•oc• CCOOu03C G'Cl' A000581C ~·14• 6000582A G'l5' 00005778

AT LGCATICN (PRIMER I 000064 005784 ENfER TTPRIME

ll MACRO 10 006, CUMP PANEL
G'lO' +2

TIME 00/00

OOOOCA 0057EA, STARTED

PSW fF 0 5 0026 6 0 005786 CC=2 FIX POINT OVERFLOW OFF UEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF

11 MACRO IO 002, TRACE FLUl'I , TTPRIME , FRCM (PRIMER I 00007E 00579E TO LOAD
BC fO F 032 G'l5' OOOC5778

U MALRO ID 002, TKACE FLOW , TTPRIME , FROM IPR!:IER l 000094 005784 TO GOT
BC 2C F. 060 G'l5' 00005778

11 MACRO IO 002, TRACE FLCW , TTPRIME , FRCM IP!Ur~ER I OOOOCO 0057EO, CC=2
SVC 26 G 1 0~' COOOJ03C G'Ol' AD00581C b 1 l4 1 b000582A G1 15 1 00005778

AT LOCATICN (PRIMER OCOOCO UC57EO ENTER TTPRIME

11 MACRO ID 009, TRACE STOP TIPRIME 002

11 MACRO IU 010, DUMP PAN(L
G•og• +3 G1 10' +D G1 11 1 ~3

(PRIMER I 00008A 0057AA, CC=2

IPRIMER I 000088 005708, CC=2

PSW FF 0 5 0026 6 0 0057E2 CC=2 FIX-POINT OVtRFLOW OFF DEC OVERFLOW OFF EXP UNDERFLOW OFF SIGNIFICANC~OFF

AT LOCATION TTSVC2 ICALLTESTI OCCCEA 00582A ENT~R DATAGEN

11 MALRO lU DlO, CUMP DATA SfARTING IN SECTION LALLTEST
OOFO TESTVAR ANS

OC5830 +2 ~J

21

PAGE 5

PAGE 6

@ Indicates that a TRACE STOP macro has been encountered. The
TRACE that was stopped is in TTPRIME, and has a macro number
of 002. (Note that each TESTRAN macro was assigned a number on
the assembly listing.)

®Output from a DUMP PANEL macro. General registers 9, 10, and
11 are displayed. Note: At this point in the program, general
registers 9, 10, and 11 have not been used, and their contents are
therefore meaningless. Output from this DUMP PANEL macro
becomes meaningful when. the subroutine receives valid test data.

@ Indicates that a TESTRAN SVC has been encountered at location
TTSVC2 in control section CALL TEST. The relative address of
TTSVC2 is OOOOEA, and the loaded address is 00582A.

@ Output from a DUMP DATA macro. The contents of TESTVAR and
ANS are displayed, along with the relative (OOFO) and loaded
(005830) addresses of TESTVAR. TESTVAR contains -2. Since
this data is negative, PRIMER considers it invalid, and, therefore,
did not return a value in ANS. The contents of ANS are therefore
meaningless on this execution.

@ Indicates that macros numbered 11 and 13 in control section
DATAGEN have been executed. These are the TEST WHEN macro
(11) and the DUMP PANEL (G' 151

) macro. This is an indication
that the TEST WHEN macro caused a branch to the DUMP PANEL.

@ The output of the DUMP PANEL macro.

@ The output of a DUMP COMMENT macro.

@ The second execution of DUMP CHANGES indicates that there have
been no changes since the last DUMP of the same area.

From this point on, the output follows a pattern similar to that on
the first two pages. This is, of course, because the program is
looping through the same series of requests for TESTRAN services
in the normal course of its execution.

Inspection of the output will reveal the effect of DATAGEN. The
value of TESTV AR increases by 1 in each occurrence of the DUMP
DATA output. As long as TESTVAR is negative or 0, the
subroutine sets register 15 to 0, and DUMPS a comment to that
effect.

Eventually, TESTVAR becomes a valid input value to PRIMER.
That is, TESTVAR becomes a positive number. The first

· occurrence of this is on page 5 of the TESTRAN output.

@ This output line reflects the first valid input to, and output from,
PRIMER. TESTVAR contains +1, the input to PRIMER, and ANS
contains +3, the next prime integer, as provided by PRIMER.

22

The logic of PRThIER can be easily checked by referring to the
TRACE FLOW output near the middle of the same page. These
output lines indicate a branch to ODD, followed by a branch to
GOT.

@ This line indicates that PRIMER has again been entered and a
TESTRAN SVC encountered. Because there was valid data supplied,
register 15 was not dumped.

23

The output from this point on is similar to that presented here. In
total, 134 pages of output were produced.

APPENDIX: REFERENCE SUMMARY OF TESTRAN
MACRO PARAMETERS

The General Form of TESTRAN Macros

Name Oper~tion

~ny nam~ Mnemonic
operation code

Name Field: Identification or entry point

Operand

operand 1, ... operandn,
keyword parameters

Operation: DUMP, TRACE, TEST, GO, SET

Operand: Positional operands and keyword parameters

Common Keyword Parameters:

SELECT = integer (1 - 8)

Used to control output of TESTRAN editor.

DA TAM = data modifier

Specifies attributes to be used.

NAME = any name

Symbolic name to be printed with output

COMMENT = character string

Up to 120 characters of information to be printed with output.

DSECT = dsect name

To identify operands as referring to a dummy control section.

The DUMP Macro

Name Operation Operand

ITtny nam~ DUMP operand 1 ~ operand ~
[, operand 3]
[, keyword parameters J

Operand 1: DATA, CHANGES, MAP, TABLE, PANEL, or
....----. . - ---- ---COMMENT

24

Operand 2: Starting address for DATA and CHANGES; DCB, DEB,
or TCB for TABLE; registers to be recorded for PANEL
(optional); comment field for COMMENT; not used for
MAP.

Operand 3: Ending address for DATA and CHANGES (optional);
dcbname for DUMP TABLE, DCB or DUMP TABLE, DEB.
Not used for DUMP TABLE, TCB; not used for MAP,
PANEL, or COMMENT.

Keyword parameters :

SELECT= integer

DA TAM = data modifier

NAME= any name

DSECT = (dsect name[, repeat integer])

The TRACE Macro

Name Operation Operand

~ny nam~ TRACE Operand 1 ~ Operand ~
[, Operand 3]
[, keyword parameters]

Operand 1: FLOW, CALL, REFER, or STOP
~A· ~...,, .,._...__..._._..,...._ ..,..,.,.._..,..~

Operand 2: Starting address for FLOW, CALL, and REFER; name of
TRACE macro(s) to be stopped for STOP.

Operand 3: Ending address for FLOW, CALL, or REFER, (optional);
not used for STOP.

Keyword Parameters:

SELECT= integer (ALL)

DATAM =data modifier (REFER)

NAME = any name (REFER)

COMMENT = comment field (FLOW, CALL, REFER)

DSECT = (dsect name[, repeat-integer]) (REFER)

25

,/

The TEST Macro

Name Operation Operand

*any name TEST OPEN [operand 2]

*mandatory

Operand 2:

Operand 3:

Operand 4:

C operand 3] ~ operand ±]
C keyword parameter~

Specifies return address from execution of OPEN. This
is required if OPEN receives control through a problem
program branch or if OPEN is entry point of problem
program.

Specifies standard page heading.

LINK or LOAD

Keyword parameters:

MAXP = count 1 (specifies the maximum number of pages of test data
to be produced)

MAXE = count 2 (specifies the maximum number of test macros to be
encountered)

OPTEST = specifies symbolic names of other TEST OPEN macros _____ .-
SELECT= integer

Name Operation Operand

§ny name_] TEST WHEN, operand 2, operand 3,
operand 4, operand 5
[, DATAM =Mod]

Operand 2: Value 1 or flagname 1.

Operand 3:

Operand 4:

Operand 5:

26

Operators AND and OR used with flagname. Comparative
operators such as LT and EQ used with values.

Value 2 or flagname 2.

specifies name of next TESTRAN instruction to be
executed if test is affirmative.

Name Operation Operand

~ny nam~ TEST ON, (9perand 2, operand~

Operand 2:

Operand 3:

Operand 4:

Operand 5:

Name

, (9perand 4, operand [}
C COUNTER = counter nam~

Lower limit

Upper limit

Interval

Specifies name of next TESTRAN instruction to be
executed if test is affirmative.

Operation Operand

~my nam~ TEST AT, (Addr 1, ... Addrn)
[,SELECT = integer]

Name Operation Operand

@ny nam~ TEST DEFINE, operand 2,

Operand 2:

Operand 3:

Name

(operand 3, ... operand 3)

Specifies whether a flag or one or more counters are to
be defined. - -~

Specifies unique name for each counter or flag, each of
which is set to an initial value of 0. Each name is
1 to 8 characters in length. The first character must be
a letter.

Operation Operand

[imy nam~ TEST CLOSE

The GO Macro

Name Operation Operand

(iiny nam~ GO operand 1 [operand ~

Operand 1:

Operand 2:

27

TO, IN, OUT, BACK

Specifies name of next TESTRAN macro to be executed
for TO, IN; optional return address for BACK; not used
for OUT.

The SET Macro

Name Operation Operand

[E.ny nam~ SET operand 1, operand 2,

Operand 1:

Operand 2:

Operand 3:

operand 3
C keyword paramete!)

FLAG, COUNTER, VARIABLE

Name for FLAG and COUNTER; symbolic address for
VARIABLE

Flagname 2 or condition for FLAG, value for COUNTER
and VARIABLE (must be specified as an address)

Keyword Parameter:

DA TAM = data modifier for VARIABLE

28

READER'S COMMENTS

IBM Operating System/360 TESTRAN User's Guide (C20-1652-0)

Your comments regarding this publication will help us improve future editions. Please
comment on the usefulness and readability of the publication, suggest additions and
deletions, and list specific errors and omissions.

USEFULNESS AND READABILITY

fold fold

SUGGESTED ADDITIONS AND DELETIONS

ERRORS AND OMISSIONS (give page numbers)

fold fold

Name

Title or Position

FOLD ON TWO LINES, STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

~~~~~~~~~ 



C20-1652-0 

fold fold 
' ....................................................................................................................... . 

Attention: Technical Publications 

fold 

TI!fil~ 
fl) 

BUSINESS REPLY MAIL 
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES 

POST AGE Will BE PAID BY ..• 

IBM Corporation 

112 East Post Road 

White Plains, N. Y. 10601 

International Business Machines Corporation 

Data Processing Division 

112 East Post Road, White Plains, N.Y. 10601 

FIRST CLASS 

PERMIT NO. 1359 

WHITE PLAINS, N, Y. 

fold 



C20-1652-0 

International Business Machines Corporation 

Data Processing Division 

112 East Post Road, White Plains, New York 10601 




