
--- ------ - ---- ---- - ---- - - ----------_.-
A Guide to PL/I for
Commercial Programmers

Student Text

---- ------ - ---- ---- --- -. _ -- - - ----------- _.-
A Guide to PL/I for
Commercial Programmers

Student Text

Revision of Form SC20-1651-1 (April 1968)

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality. Address comments concerning the
contents of this publication to IBM Corporation, DPD Education Development -
Publications Services, Education Center, South Road, Poughkeepsie, New York 12602.

© Copyright International Business Machines Corporation 1966

PLjI is a multipurpose, high-level programming lan
guage that enables the programming not only of com
mercial and scientific applications but also of real-time
and systems applications. It also permits a programmer
to use the full power of his computer in an efficient
manner and to program applications in a relatively
machine-independent fashion. Because PLjI has a
modular deSign, it provides facilities for programmers
at all levels of experience. The novice need learn only
those features of the language that satisfy his needs.
The experienced programmer may use more advanced
features and take advantage of the subtler aspects of
the language so that he can program more efficiently
and with greater ease than in other programming
languages.

This publication presents those features of PLjI that
apply to commercial data processing. It does not re
strict itself to a particular aspect of commercial data
processing but attempts to discuss all features of PLjI
that may be used in the full spectrum of commercial
applications. The nature of commercial data processing
has become more complex in recent years. In the past,
as business operations grew in size and complexity,
commercial data processing problems were character
ized by piecemeal solutions, such as the addition of
more personnel to handle a problem or the increased
use of equipment. Within the past few years, however,
it has become apparent that total-systems methods,
formal long-range planning, and scientific techniques
are required to solve commercial data processing prob
lems, in somewhat the same way as they have been
required to solve production problems. Consequently,
the role of the commercial programmer has grown.
Besides being responsible for such activities as de
signing reports, producing payrolls, and solving ac
counting problems, the commercial programmer is
becoming increasingly involved with more sophisti
cated problems, such as decision making, linear pro
gramming, and production forecasting. This means

Preface

that the commercial programmer occaSionally is con
cerned with the scientific aspects of data processing;
he may be required to process binary data and to
perform arithmetic calculations in a floating-pOint for
mat. Such considerations are discussed in this publi
cation but are not developed in detail; the intent is
to make the commercial programmer familiar with
those features of PLjI that apply to advanced com
mercial applications.

This publication consists of five chapters and an
appendix. Chapter 1 discusses language notations and
deals with such matters as the language character set
and the rules for forming identifiers. Chapter 2 de
scribes the various types of data that are processed by
PLjI programs. Chapter 3 contains a discussion of
input and output. The structure of a PLjI program
and the control -of statement execution are presented
in Chapter 4. Data manipulation and data editing are
developed in Chapter 5. Appendix A contains sample
PLjI programs.

Because of the many similarities between PLjI and
COBOL (Common Business Oriented Language),
each chapter in this publication concludes with a sec
tion showing comparisons of the two languages. These
comparisons do not form a necessary part of this
publication and may be skipped by those readers who
do not have a knowledge of COBOL.

The material in this publication is quite compre
hensive, but by no means is it a complete description
of PLjI nor does it represent the definitive treatment
of any language feature. A full description of PLjI
is given in the publication IBM Operating Systemj
360, PLjI: Language Specifications, Form C28-6571.
Other publications which may be of interest to the
reader are A PLjI Primer, Form C28-6808; A Guide
to PLjI {or FORTRAN Users, Form C20-1637, and
PLjI Reference Data, Keywords and Character Sets,
Form X20-1744.

Contents

Chapter 1: Language Notation .. 7
Introduction 7
PL/I Format 7
Words, Delimiters, Blanks, and Comments 7
Character Set 7
Delimiters 8
Identifiers 8
Statements 8
PL/I and COBOL Comparison: Language Notation 9

Chapter 3: Input/Output ... 24
Introduction 24
External Storage Attributes .. 24

FILE Attribute . .. 24
STREAM and RECORD Attributes 24
INPUT, OUTPUT, and UPDATE Attributes 24
PRINT Attribute .. 24
BUFFERED and UNBUFFERED Attributes 24
ENVIRONMENT Attribute ... 24
Opening and Closing of Files 25

OPEN Statement .. 25
CLOSE Statement .. 25

Chapter 2: Data Description .. 10
Introduction 10
Data Types 10

String Data .. 10
Character-String Data Items ... 10
Bit-String Data Items 10

Arithmetic Data 10
Decimal Data Items 10
Binary Data Items 10
Fixed-Point and Floating-Point Formats .. 10

Label Data 10
Statement Labels 10
Names of Data Items 11

Constants 11
Character-String Constants 11
Bit-String Constants 11
Decimal Fixed-Point Constants ... 11
Binary Fixed-Point Constants 11
Decimal Floating-Point Constants 12
Binary Floating-Point Constants. 12
Label Constants .. 12

The DECLARE Statement ... 12

Data Transmission .. 26
Record-Oriented Transmission .. 26
Stream-Oriented Transmission 27

Edit-Directed Data Transmission 27
Data Format Descriptions 28

Character-String Format Descriptions ... 28
Bit-String Format Descriptions 30
Picture Format Description 30
Repetition of Fonnat Descriptions 30
Multiple Data Specifications 30
Data Specifications for Structures and Arrays 30

Control Format Descriptions 31
Spacing Format Description 31
Printing Format Descriptions 31

List-Directed Data Transmission 32
List-Directed Data Lists .. 32
Format of List-Directed Data 32
List-Directed Data Representation 32

Data-Directed Data Transmission 33
The STRING Option .. 33

DISPLAY Statement .. 34
PL/I and COBOL Comparison: Input/Output 34

Arithmetic Attributes 12
DECIMAL and BINARY Attributes 12 Chapter 4: Program Structure ... 35
FIXED and FLOAT Attributes 12 Introduction 35
Precision Attribute 12 Blocks .. 35

String Attributes 13
CHARACTER Attribute 13

Procedure Blocks 35
Begin Blocks 35

BIT Attribute 13 Internal and External Blocks 35
PICTURE Attribute 13 Scope of Declarations 36

Fixed-Point Decimal Attributes with PICTURE 14 Nested Blocks 37
Floating-Point Decimal Attributes with PICTURE .. 14 EXTERNAL and INTERNAL Attributes 37
Character-String Attributes with PICTURE 14 Parameters and Arguments 38
Repetition of PICTURE Characters 14 Entry-Name Parameters and the ENTRY Attribute 39

Exclusivity of Attributes 15 Sequence of Control 40
The DEFINED Attribute 15 RETURN Statement .. 40
Default Attributes 15 Activation and Tennination of Blocks 40

Data Aggregates 16 Dynamic Descendance of Blocks 41
Structures ... 16 GO TO Statement 41

Qualified Names .. 17 IF Statement .. 42
Arrays .. 18 Comparison Expressions 42

Subscripting 20 Comparison Expressions in an IF Statement 43
Structures Containing Arrays 20 DO Statement 43
ALIGNED and PACKED Attributes 21 ON Statement .. 45
LIKE Attribute 21 Use of the ON Statement .. 45
LABEL Attribute 21 Prefixes 46
INITIAL Attribute 21 Purpose of the Prefix .. 46
Factoring of Attributes 22 Scope of the Prefix 46

PL/I and COBOL Comparison: Data Description 22 ON Conditions.... 47

Storage Allocation 48
Static Storage 48
Automatic Storage 48
Controlled Storage 49
Based Storage 49

ALLOCATE Statement 49
FREE Statement 50

PL/I and COBOL Comparison: Program Structure 50

Chapter 5: Data Manipulation 51
51 Introduction

Assignment Statement ".".""". '"'''''''''''' 51
Conversion Between Data Types

Bit-String Data to Character-String Data
Character-String Data to Bit-String Data
Bit-String Data to Arithmetic Data ...
Character-String Data to Arithmetic Data
Arithmetic Data to Character-String Data
Arithmetic Data to Bit-String Data

Expressions Containing Operators
Arithmetic Expressions

Conversion of Arithmetic Data

53
53
53

. 53

................ 53
............... 53

.... 53
..... 54

54
55

Comparison Expressions . " '" 55
Bit-String Expressions .. 56
Concatenation Expressions .. 57
Array Expressions 57
Structure Expressions ... 58

Assignment BY NAME 59
Data Editing .. 59
PL/I and COBOL Comparison: Data Manipulation 62

Appendix... 63
Problem 1 - A Book Pricing Problem 63

Solution to Problem 1 63
Problem 2 - A Work Card Study... 64

Solution to Problem 2 64
Problem 3 - A File Search 64

Format of Code String 64
Solution to Problem 3 .. 65

Index 66

I ntrod udion
Programming languages may be classified as either
computer-oriented or problem-oriented. The instruc
tions used in a program written in a computer-oriented
language are specified in notations that reBect the
composition of machine instructions. Words, such as
ADD; acronyms, such as TSX; "fields," such as address
fields; might be contained in the instructions in such a
program. The number of letters that can be used in a
word, the set of acronyms, and the order of fields
within an instruction are fixed in accordance with the
order and size of the fields in a machine instruction.
In short, a computer-oriented language is designed for
a particular computer and is not intended for use on a
different type of computer.

In a problem-oriented language, the notation re
Bects the type of problem being solved rather than the
computer on which the program is to be run. In
COBOL, the notations used to write a program resem
ble English; FORTRAN notations resemble the lan
guage of mathematics; PL/I notations combine the
features of COBOL and FORTRAN notations.

Just as restrictions exist on the notation of English
and of mathematics, there also exist restrictions in the
notation of problem-oriented languages. Only a speci
fied set of numbers, letters, and special characters may
be used in writing a program; special rules must be
observed for punctuation and for the use of blanks.

The remainder of this chapter is a discussion of the
rules for the notations used in writing a PL/I program.

PLII Format
PL/I allows the programmer to write his program in
a free format, thus eliminating the need for coding on
special forms or for punching items in particular col
umns of a card.

Depending on the particular machine configuration
or the particular compiler, conventions can be estab
lished so that a program can be prepared for a com
puter through the medium of fixed-length records (for
example, punched cards). If this is the case, certain
predetermined fields in the records could be used for
the program.

For example, columns 2 through 72 could be used
for source text and columns 73 through 80 could be
used as a sequence number field.

Chapter 1: Language Notation

Words, Delimiters, Blanks, and Comments
All the elements that make up a PL/I program are
constructed from the PL/I character set. There are
two exceptions: character-string constants and com
ments. Character-string constants and comments may
contain any character permitted for a particular ma
chine configuration.

A PL/I program consists of words and/or delim
iters. Words belong to one of two categories: identi
fiers or constants. Adjacent words can be separated by
one or more delimiters and/or blanks. For example~
CALLA is considered to be one identifier; CALL A is con
sidered to be two identifiers; AB+ BC is considered to
be two identifiers separated by the delimiter + and is
equivalent to AB + BC, where + is surrounded by
blanks.

Comments may be used anywhere that a blank is
permitted except within a character-string constant or
a picture specification. Comments have the form:

/ ~ comment ~ /

Comments can consist of one or more of the char
acters permitted for a particular machine configura
tion. However, the character combination ~ / may not
be contained within a comment since it signifies the
termination of a comment.

Charader Set
The PL/I character set comprises 60 characters. These
characters are English language alphabetic characters,
decimal digits, and special characters.

There are 29 characters known as alphabetic char
acters. The alphabetic characters are the letters A
through Z, the currency symbol (written $), the com
mercial at-sign (written @) and the number sign
(written #) .

There are 10 digits, 0 through 9.
There are 21 special characters. The names and

graphics by which they are represented are:

Name Graphic
Blank
Equal or Assignment symbol
Plus +
Minus
Asterisk or Multiply symbol #

Slash or Divide symbol /
Left Parenthesis (

Chapter 1: Language Notation 7

Right Parenthesis
Comma
Decimal Point or Binary

Point or Period
Quotation mark
Percent symbol %
Semicolon
Colon
Not symbol I

And symbol &
Or symbol I
Greater Than symbol >
Less Than symbol <
Break character
Question mark ?

Delimiters

There are two classes of delimiters: separators and
operators.

The separators, their use in PL/I, and the graphics
by which they are represented are:

Name
of Separator Graphic

comma
semicolon

colon

period

parentheses ()

Use

separates elements of a list

terminates statements

follows statement labels
and condition prefixes

separates name qualifiers

used in expressions and for
enclosing lists and speci
fying information associ
ated with certain key
words

The operators are divided into four classes: arith
metic operators, comparison operators, logical opera
tors, and the concatenation operator. The operators are
identified below; their use is discussed in Chapter 5.

The arithmetic operators are:
+ denoting addition or a positive quantity

denoting subtraction or a negative quantity
~ denoting multiplication
/ denoting division
~ ~ denoting exponentiation

The comparison operators are:
> denoting greater than
I> denoting not greater than
> == denoting greater than or equal to

denoting equal to
1== denoting not equal to
< == denoting less than or equal to

8

< denoting less than
---, < denoting not less than

The logical operators are:
I denoting not
& denoting and
I denoting or

The concatenation operator is:

" Identifiers

An identifier can be a word created by the user to
identify a file, a data item, or all or any part of his'
program; or it can be one of the words used to identify
entities in the PL/I language, such as statements, attri
butes, and options. This latter type of identifier is
called a keyword. An example of a keyword would be
the word DECLARE when it is written as the, first
word in a DECLARE statement, because, as the first
word, it identifies the statement as a DECLARE state
ment.

Throughout the remainder of this publication, key
words will be printed entirely in capital letters; iden
tifiers assigned by the programmer will be printed in
small capital letters.

Words used as keywords may also be used by the
programmer to identify files, data items, or all or any
part of his program. For example, one could write a
DECLARE statement that specified within it a data
item named DECLARE.

All identifiers, whether used' as keywords or not,
must be written according to the following rules:

1. An identifier can be composed of alphabetic
characters, digits, and the break character. An
identifier must begin within an alphabetic char
acter.

2. Any number of break characters (-) are allowed
within an identifier; consecutive break characters
are permitted.

3. Identifiers must be composed of not more than
31 characters.

Statements

In PL/I the words, delimiters, blanks, and comments
that have been discussed up to now are used to form
statements. Statements are the basic program elements
used to construct a PL/I program. They are used for
the description of data, for the actual processing of
data, and for the control of the execution sequence of
other statements. All statements in PL/I terminate
with a semicolon. Except for the Assignment state
ment discussed in Chapter 5 and the Null statement
discussed in Chapter 4, all statements in PL/I begin
with a keyword.

PL/I and COBOL Comparison:
Language Notation
The following discussion compares the language nota
tions of PL/I and COBOL. In general, both languages
employ similar notations: programmer-defined words
use alphabetical characters and decimal digits; ex
pressions consist of sequences of names, constants, and
operators; keywords identify language elements; punc
tuation characters separate elements; statements have
an English-like appearance. However, the notation
rules of both languages do differ; the following list
contains some of the more significant differences.

1. In both PL/I and COBOL, keywords have pre
assigned meanings. In COBOL, keywords are reserved
for their intended purpose and cannot be used for
other purposes. In PL/I, however, keywords are not
reserved for special purposes and may appear wher
ever a programmer-defined word is permitted; for
example,·the keyword READ may be used in a PL/I
program as the name of a file. In PL/I, different mean
ings for the same word are determined from context.
This permits keywords to be created for new language
features. It also avoids having to reprogram old source
programs in which programmer-defined words might
conflict with new keywords.

2. COBOL requires a programming form, PL/I does
not. In PL/I, punctuation characters determine the
significance and grouping of language elements. This

permits PL/I programs to be treated as long strings
of characters and to be transmitted to a computer by
means of almost any input medium.

3. In COBOL, blank characters must surround arith
metic operators; this is not required in PL/I. In PL/I,
blank characters are only required between successive
words that are not separated by special characters
such as parentheses, operators, and punctuation char
acters.

4. COBOL restricts comments to the Procedure Divi
sion and requires that they be written in a NOTE
statement. PL/I allows comments to appear through
out the entire program and permits them to be used
wherever blank characters may appear (except in a
character-string constant or in a picture specification;
these language features are discussed in Chapter 2).

5. The COBOL character set consists of 51 charac
ters; PL/I uses 60 characters.

The following points show some of the less signifi
cant differences:

1. PL/I terminates all statements with a semicolon;
COBOL terminates statements with either a period,
a comma, or a semicolon.

2. Programmer-defined words in COBOL must not
be longer than 30 characters; in PL/I, the limit is 31
characters.

3. PL/I uses the break character (an underscore)
within programmer-defined words to improve read
ability; COBOL uses the hyphen.

Chapter 1: Language Notation 9

Chapter 2: Data Description

I ntrod ucfion
The discussions that follow deal with the types of
data that may be employed in a PLjI programming
application. The characteristics of the various data
types and the methods provided for organizing data
into aggregations such as arrays are also discussed.
However, the discussions in this chapter are restricted
to the description and organization of data within the
internal storage of a computer. The description of data
as it appears on external storage media is included
with the discussion of data transmission in Chapter 3.

Data Types
The instructions that are executed by a computer may
be divided into three general categories: logical in
structions, arithmetic instructions, and control instruc
tions. Logical instructions manipulate sequences of
bits and characters. Arithmetic instructions process
numeric data. Control instructions determine the order
in which other instructions are executed. Similar cate
gories may be used to classify the operations that are
provided by PLjl. For each category of PLjI opera
tions, there is a corresponding type of data that is
used by the operations. In PLjI, these types of data
are called: string data, arithmetic data, and label data.

String Data

In PLjI, string data is used primarily in logical opera
tions and consists of sequences of characters or bits.
String data items may be divided into two general
categories: character-string data items and bit-string
data items ..

,Character·String Data Items

A character-string data item consists of a sequence of
characters. In PLjI, the characters in a character
string item may be any of the characters allowed in a
particular computer.

Character-string data items are used primarily in
operations such as comparing, editing, and printing.

Bit.String Dat'fI Items
A bit-string data item consists of a sequence of bits,
each of which represents a series of "'on" or "of{" con
ditions. An "on" condition is represented by a 1 bit,

10

and an "off" condition is represented by a 0 bit. Within
a PLjI program, bit-string data items are frequently
used in logical operations, the results of which are used
for control purposes.

Arithmetic Data

Arithmetic data represents numeric information and is
used in arithmetic operations. There are two kinds of
arithmetic data items: decimal and binary, each of
which may have either a fixed-point representation
or a floating-point representation.

Decimal Data Items

A decimal data item represents numeric information
and consists of a sequence of decimal digits. A unique
bit pattern is defined for each decimal digit.

Binary Data Items
A binary data item represents numeric information
and consists of a sequence of bits. Although a binary
data item uses bits, it is not equivalent to a bit-string
data item. A binary data item represents a numeric
value; a bit-string data item represents a sequence of
"on" or "off" conditions.

Fixed-Point and Floating-Point Formats

Decimal data items and binary data items may have
either a fixed-point format or a floating-point format.
A floating-point format often results in a more com
pact form than does a fixed-point format. This is
generally the case when a large number of zeros is
required to fix the location of the decimal or binary
point in a fixed-point format. For example, the fixed
point decimal fraction .000000009 requires eight zeros
to establish the location of the decimal point. In float
ing-point format, the zeros are not needed because the
location of the decimal point is specified by an integer
exponent appearing within the floating-point data
item.

label Data

Statement Labels
In a PLjI program, data processing operations are
specified by means of statements. Statements may be
given labels so that the statements may be referred to
by other statements such as control statements, which

alter the sequence of statement execution. A label may
be used as a data item in certain statements (the use
of label data items is discussed in Chapter 4, "Program
Structure"). The value of a label is the location in a
program of the statement that the label identifies.

Names of Data Items

In a program, it is often necessary to use a name to
identify data items to be processed. A name that
identifies a data item is called a data name. Data
names conform to the rules established in Chapter 1
for forming identifiers.

At any specific time during the course of program
execution, a data name has a value; that is, it identi
fies a data item that represents a value.

The different data items that may be identified by
the same data name must have the same data char
acteristics. These characteristics are associated with the
data name by writing the data name and the associated
characteristics in a DECLARE statement (see "DE
CLARE Statement" in this chapter).

Constants

In a PL/I program it is not always necessary to
name every data item. Data items may actually appear
within a PL/I program and, consequently, are im
mediately available for use in the program.

A data item that appears in a PL/I program is called
a constant because the information it represents, that
is, its value, cannot change. The characteristics of a
constant are inherent in the representation of the con
stant. For example, in a PL/I program, the constant
98.6 is a data item that represents a numeric value.
This constant specifies that the data item is a decimal
data item with two digits to the left of the decimal
point and one digit to the right of the decimal point.

For each type of data permitted in a PL/I program
there is a corresponding type of constant available for
use in the program.

The following discussion describes the types of con
stants that may appear· in a PL/I program and the
manner in which they are written. Following the dis
cussion of constants, there is a discussion of the DE
CLARE statement and the way in which it is used
to describe data.

Character-String Constants

Character-string constants may contain any character
that can be recognized by a particular computer.
Character-string constants are enclosed in single quo
tation marks. For example:

'$123.45'
'JOHN JONES'

'45.62'

The quotation mark is not part of the constant. If it
is desired to represent a quotation mark as part of the
constant, a double quotation mark must be used. For
example:

'IT' 's'
Repetition of a character-string constant may be in

dicated by preceding the constant specification with
a decimal integer (enclosed in parentheses) indicating
the number of repetitions. For example:

(3)'~-~'

is equivalent to writing
,~ ~ ~ ~ ~ ~,

- - -

Bit-String Constants

Bit-string constants consist of a sequence of the digits
1 or 0, enclosed in single quotation marks and im
mediately followed by the letter B. For example:

'OlOO'B

Repetition may be specified for bit-string constants
in the same manner as for character-string constants.
Thus,

(10)'I'B

is equivalent to writing

'1111111111'B

Decimal Fixed-Point Constants

A decimal fixed-point constant is composed of one or
more digits (0 through 9) and may contain a decimal
point. For example,

72.192
.308
1965

Note that decimal fixed-point constants are not en
closed in quotation marks.

Binary Fixed-Point Constants

A binary fixed-point constant is composed of one or
more of the digits 1 or 0 and may contain a binary
point (discussed above); it is followed immediately
by the letter B. For example:

11011B
11.1101B
.OOIB

Note that binary fixed-point constants are not en
closed in quotation marks.

Chapter 2: Data Description 11

Decimal Floating-Point Constants

A decimal floating-point constant consists of a decimal
fixed-point constant that is immediately followed by
the letter E which, in turn, is followed by an option
ally signed exponent. The exponent is a decimal integer
and represents a power of ten which determines the
actual 'location of the decimal point. For example, the
decimal floating-point constant 123.45E+5 is equiva
lent in value to the arithmetic expression 123.45+105 ;

this expression is equivalent in value to the decimal
fixed-point constant 12345000. Other examples of deci
mal floating-point constants are:

317.5E-16
32.E-5

Binary Floating-Point Constants

A binary floating-point constant consists of a binary
fixed-point constant that is immediately followed by
the letter E which, in turn, is followed by an option
ally signed exponent; the exponent is immediately fol-

'''lowed by the letter B. The exponent is a decimal in
teger and represents a power of two which determines
the actual location of the binary point. For example,
the binary floating-point constant .10IE+9B is equiva
lent in value to the binary fixed-point constant
101000000B. Other examples of binary floating-point
constants are:

1.1011E-3B
1111.E+20B
10101E5B

Label Constants

A label constant identifies a statement. A label con
stant conforms to the rules established in Chapter 1
for forming an identifier. In PL/I, a statement is
labeled by writing a label constant immediately to
the left of the statement and following the label con
stant. An example of a label constant is the word
MESSAGE in the following:

MESSAGE:DISPLAY('END OF JOB');

MESSAGE is the label constant that identifies the DIS
PLAY statement (see "DISPLAY Statement" in Chap
ter 3; the use of label constants is discussed in Chap
ter 4, "GO TO Statement").

The DECLARE Statement
In a PL/I program, explicit descriptions of data char
acteristics are written in the form of statements. The
DECLARE statement is used to describe named data
as it is represented within the internal storage of a
computer. Those properties that characterize a data

12

item are called attributes. The attributes of a named
data item are specified by keywords. These keywords
may -appear with the name of a data item in a DE
CLARE statement. The general form of a DECLARE
statement may be written:

DECLARE name-l attributes, ••• , name-n
attributes;

Blank characters separate attributes. A comma fol
lows the last attribute appearing with a name except
at the end of the DECLARE statement in which case
the semicolon is used.

The following discussion presents those attributes
that may be used in a DECLARE statement to de
scribe named data.

The attributes for named data may be divided into
three categories. Each category corresponds to one of
the three general data types that were discussed pre
viously: arithmetic attributes, string attributes, and
label attributes.

Arthmetic Attributes

Arithmetic attributes are provided by PL/I to describe
data items that have a numeric value. Five of these
are of interest to the commercial programmer. They
are DECIMAL, BINARY, FIXED, FLOAT, and the
precision attribute.

DECIMAL and BINARY Attributes
The DECIMAL and BINARY attributes specify that
the data item named in the DECLARE statement is
of either the decimal or the binary data type. (An
additional discussion of these attributes appears later
in this chapter; see "Default Attributes.")

FIXED and FLOAT Attributes

The FIXED and FLOAT attributes specify that the
data item named in the DECLARE statement is repre
sented in either a fixed-point (FIXED) or a floating
point (FLOAT) format. (An additional discussion of
these attributes appears later in this chapter; see "De
fault Attributes.")

Precision Attribute

The precision attribute specifies the number oj digits
that are to be maintained in data items assigned to a
data name. For fixed-pOint data it also specifies the
location of the assumed decimal point.

The precision attribute consists of either a single
decimal integer enclosed in parentheses, for example,
(12), or two decimal integers, separated by a comma
and enclosed in parentheses, for example, (8,3). The
precision attribute must be immediately preceded in
the DECLARE statement by one of the attributes:

DECIMAL, BINARY, FIXED, or FLOAT. Only
blanks may intervene.

For a floating-point data item, only a single integer
is written in the precision attribute. It indicates the
number of digits appearing before the E in the data
item. For a fixed-point data item, two integers are
usually written; the first indicates the number of digits
appearing in the data item, the second indicates the
number of digits to the right of the decimal or binary
point. If there are to be no digits to the right of the
point, that is, the second integer is zero, only the first
integer need be written. Thus, the attribute (6,0) is
equivalent to the attribute (6).

Consider the following DECLARE statement:

DECLARE SALARY DECIMAL FIXED (7,2),
ESTIMATE FLOAT DECIMAL (10),
COUNTER FIXED (5) BINARY,
MEAN BINARY (10) FLOAT;

A data item assigned to SALARY would be a decimal
fixed-point data item, composed of seven digits, with
two of these digits assumed to be to the right of the
decimal point (for example, 78921.43).

A data item assigned to ESTIMATE would be a deci
mal floating-point data item, with ten digits preceding
the E (for example, .4325437894E5).

A data item assigned to COUNTER would be a binary
fixed-point data item, composed of five digits, with
none of these digits assumed to be to the right of the bi
nary point (for example, 11001.B).

A data item assigned to MEAN would be a binary
floating-point data item, with 10 digits preceding the
E (for example, 1000111011E-3B).

String Attributes

The string attributes specify either character-string
data items or bit-string data items. These attributes
are: CHARACTER and BIT.

CHARACTER Attribute
The CHARACTER attribute specifies that the data
name in the DECLARE statement represents charac
ter strings. The attribute is written in the following
form:

CHARACTER (length)

The length specification is a decimal integer constant
that specifies the number of characters in the data
items.

When the character string is of varying length, the
following is written:

CHARACTER (length) VARYING
The length specification indicates the maximum num
ber of characters in a varying-length character string.

The following statement:

DECLARE HEADER CHARACTER(80),
TITLE CHARACTER(40) VARYING;

specifies that the character-string data item called
HEADER is of fixed length and consists of 80 characters,
and that the number of characters in the character
string data item called TITLE may vary from 0 to 40.

SIT Attribute
The BIT attribute specifies that the data item named
in the DECLARE statement is represented as a bit
string consisting of a certain number of bits. The BIT
attribute may appear in two forms:

BIT(length)
BIT(length) VARYING

The length specification and VARYING attribute have
the same meaning as described for the attribute
CHARACTER, except that "length" indicates the num
ber of bits in the bit-string data item.

PICTURE Attribute

The PICTURE attribute is used to specify the detailed
characteristics of string data items and frequently is
used to edit the format of character-string data items
that are to be printed. The editing of a character-string
data item may involve replacing certain characters,
such as leading zeros, with other characters, and in
serting, within the character string, characters such as
the dollar sign and the period.

The PICTURE attribute is written in the following
way:

PICTURE 'picture-specification'

As indicated, the picture specification must be enclosed
in quotation marks; it consists of a sequence of char
acters called picture characters. The following discus
sion deals only with those picture characters that allow
the PICTURE attribute to serve as an alternative for
the arithmetic attributes and for the string attributes;
these characters are: A, X, 9, V, K, S. The remain
ing picture characters are for editing (see Chapter 5,
"Data Editing").

Although the PICTURE attribute may serve as an
alternative for the arithmetic attributes and, thereby,
specify the representation of a numeric value, the data
item described by the PICTURE attribute is a char
acter-string data item and not an arithmetic data
item. Consequently, the efficiency of computer opera
tions may be affected when performing arithmetic
calculations on data items described by the PICTURE
attribute. In most computers, this lack of efficiency re
sults from being unable to perform arithmetic calcu
lations directly on character-string data items. Conver
sion from character string representation to arithmetic
representation is required before arithmetic calcula-

Chapter 2: Data Description 13

tions are performed on data items described by a PIC
TURE attribute (see Chapter 5, "Conversion of Arith
metic Data").

Fixed-Point Decimal Attributes with PICTURE

The picture characters 9 and V may be used to specify
a character-string data item that has fixed-point deci
mal attributes. A sequence consisting of the picture
character 9 in a picture specification indicates that
corresponding character positions in the character
string data item always contain decimal digits (0
through 9). The character V specifies that a decimal
point should be assumed at the corresponding position
in the character-string data item; however, no decimal
point is actually present in the character string. The
character V may appear only once in a picture speci
fication. If no V character is used with a sequence con
sisting of the picture character 9, a decimal point is
assumed at the right-hand end of the character-string
data item. Consider the following DECLARE state
ment:

DECLARE COUNT PICTURE '999',
COST PICTURE '999V99',
TAX PICTURE 'V999';

This statement describes the characteristics of the
three character-string data items named COUNT COST

and TAX. The character string data item named 'COUN;

consists of three decimal digits; a decimal point is
assumed at the right-hand end. COST identifies a char
acter-string data item that contains five decimal digits;
a decimal point is assumed before the two rightmost
digits. There are three decimal digits in the character
string data item named TAX; a decimal point is as
sumed at the left-hand end.

Floating-Point Decimal Attributes with PICTURE

Floating-point decimal attributes may be specified for
a character-string data item by using the picture char
acters 9, V, K, and S. The picture specification for
floating-point decimal attributes consists of two parts.
The first part contains the picture characters for a
fixed-paint decimal data item; the second part is im
mediately to the right of the first part and represents
the floating-point exponent. The picture specification
for a floating-paint decimal exponent begins with the
letter K and is followed by the optional character S,
after which a sequence of the character 9 appears.
The character K does not represent an actual charac
ter in the character-string data item; it specifies the
beginning position of the exponent in the character
string. The character S indicates that either a + or
a - sign appears in the corresponding position of the

14

character-string data item and specifies the sign of
the exponent. When S is not used, the exponent is
positive. Consider the following statement:

DECLARE AVERAGE PICTURE 'V999KS99';

The character-string data item named AVERAGE consists
of six characters. The three rightmost characters in the
data item represent a signed exponent; the three left
most characters are decimal digits with a decimal point
assumed at the left.

Character-String Attributes with PICTURE

The picture characters X and A may be used to specify
character-string data items. In a picture specification,
the character X indicates that the corresponding char
acter position in a character-string data item may con
tain any character that can be represented in the com
puter. The picture character A is similar to X, except
that it is used to specify only letters of the alphabet
and the blank character. Consider the following state
ment:

DECLARE NAME PICTURE 'AAAAA',
SYMBOL PICTURE 'XXXXXXXXXX',
CODE PICTURE ' AAXXX';

This statement describes the characteristics of the
three character-string data items called NAME SYMBOL

and CODE. The character-string data item ide~tified b;
NAME consists of five characters, each of which may be
any letter of the alphabet or a blank character. SYMBOL

names a character-string data item consisting of 10
characters, each of which may be any character that
can be· represented in the computer. There are five
characters in the character-string data item named
CODE; each of the first two characters may be any
letter of the alphabet or a blank character; each of
the last three characters may be any character that
can be represented in the computer.

Repetition of Picture Characters

Successive occurrences of the same character in a pic
ture specification may be indicated by placing a deci
mal int~ger in parentheses before the character to be
repeated. The value of the decimal integer specifies
the number of repetitions. For example, the statement:

DECLARE GROSS PICTURE '(7)9V99',
PART PICTURE '(6)A(5)X(2)9',
FRACTION PICTURE 'V (8) 9';

is equivalent to the statement:

DECLARE GROSS PICTURE '9999999V99',
PART PICTURE ' AAAAAAXXXXX99',
FRACTION PICTURE 'V99999999';

Exclusivity of Attributes

The following rules apply to the attributes described
thus far:

BIT, CHARACTER, and PICTURE must not be
used to describe the same data item. An item described
with BIT, CHARACTER, or PICTURE must not also
be described with FIXED, FLOAT, BINARY, or
DECIMAL.

The DEFINED Attribute

It is often convenient to be able to refer to the same
data item by different names, particularly when several
programmers are involved with the same program and
each is using a different name for the same data item.
The DEFINED attribute may be used for that pur
pose; it is written in the following form:

new-name attributes DEFINED old-name
Consider the following statement:

DECLARE TITLE CHARACTER(80),
HEADER CHARACTER (80) DEFINED TITLE;

This statement specifies that the data item identified
by TITLE is a character-string data item consisting of
80 characters and that the same data item may be
identified by the name HEADER. Note that the attri
butes for the data item are specified for the new name,
even_ though they are identical to the attributes speci
fied for the old name.

The DEFINED attribute may also be used with
arithmetic data items, as illustrated by the following
statement:

DECLARE SALARY FIXED DECIMAL (5,2),
PAY FIXED DECIMAL (5,2) DEFINED
SALARY;

This. statement specifies that SALARY is the name of an
arithmetic data item and that the same data item may
be referred to by the name PAY.

In the case of a string data item, it is also possible
to use the DEFINED attribute to apply a data name
to a portion of a string. This is achieved by using a
character-string attribute with the new name to spe
cify the number of characters in the string to which
the new name applies. For example, the following
statement:

DECLARE DATE CHARACTER(6),
MONTH CHARACTER(2) DEFINED DATE;

specifies that DATE is the name of a character-string
data item consisting of six characters and that the
first two characters of that character string are named
MONTH.

When the new name applies to a portion of a
string data item that does not begin with the first
character in a character string or with the first bit in

a bit string, the DEFINED attribute is written with
the following attribute:

POSITION (decimal-integer-constant)

The decimal integer constant in the POSITION attri
bute specifies the starting position of that portion of
the string data item to which the new name refers.
When the starting position is the first position of the
string, the POSITION attribute is not required. Con
sider the following statement:

DECLARE DATE CHARACTER(6),
MONTH CHARACTER(2) DEFINED DATE,

DAY CHARACTER(2) DEFINED DATE

POSITION (3),
YEAR CHARACTER (2) DEFINED DATE

POSITION(5);

This statement specifies that the character-string data
item named DATE consists of six characters. The state
ment also specifies that the first two characters of the
character string named DATE are a character string
named MONTH, that the third and fourth characters
are a character string named DAY, and that the fifth
and sixth characters are a character string named
YEAR.

The attributes appearing with the new name in a
DEFINED attribute must be consistent with the attri
butes declared for the old name; for example, the new
name cannot employ the BIT attribute when the old
name employed the CHARACTER attribute. Further
more, the POSITION attribute must specify a 'starting
position that is consistent with the length indicated by
the attributes of the new name. Consider the following
statement:

DECLARE PART CHARACTER(10),
MODEL CHARACTER(4) DEFINED PART

POSITION (8);

This statement contains an inconsistency. The attribute
POSITION (8) indicates that the name MODEL refers
to a character string consisting of the eighth, ninth,
tenth, and eleventh characters of the character string
named PART. However, the character string named
PART consists of 10, not 11, characters; therefore, the
above statement is incorrect.

Default Attributes

In PL/I, there need not exist an explicit description in
a DECLARE statement £or every name in a program.
The characteristics of some data names are understood
from the context in which they appear and need not
be detailed. The characteristics of other data names
may be only partially described; certain attributes
may be specified for these partially described data
names and other attributes may be omitted.

Chapter 2: Data Description 15

When a data name is not explicitly described or
when it is partially described, certain attributes are
assumed to apply to the data name. These are called
'default' attributes.

The following is a set of default assumptions made:
l. When no explicit description of a data name has

been given, if the name begins with the letters I
through N, it is assumed to have the attributes
FIXED BINARY; if the name begins with a letter
other than I through N, it is assumed to have the
attributes FLOAT DECIMAL.

2. If a name has the attribute BINARY or DECI
MAL, it is assumed also to have the attribute FLOAT,
unless otherwise specified.

3. If a name has the attribute FIXED or FLOAT,
it is assumed also to have the attribute DECIMAL,
unless otherwise specified.

4. The default specification of precision will be
separately defined for each implementation of PL/I.

Data Aggregates
In PLjI, data items may be grouped together to form
data aggregates. Two kinds of aggregates are pro
vided by the language: structures and arrays. Aggre
gates or parts of aggregates may be referred to by
a single name.

Structures

Data items that neither have identical sizes nor are
of the same data type, but that possess a logical rela
tion to one another, may be grouped into a hierarchy
called a structure. The general concept of a structure
is evident in many areas other than computing. The
organization of a book illustrates one application of
the structure concept. A book may be divided into
several parts, and each part may consist of one or
more chapters. The chapters may comprise several
main topics, and each main topic may be composed
of subtopics, etc. This hierarchy is usually shown in
a table of contents, using indentations and different
type faces, so that the organization of the book is
evident at a glance.

Data in a PL/I program may be organized into a
hierarchy much like that of a book. Consider a data
structure that contains, as one item, an address. The
address might be given the data name ADDRESS. How
ever, if a programmer has to refer to the individual
parts of the address, he has to name them. For exam
ple, STREET, CITY, ZONE, and STATE. In this case,
ADDRESS is at a higher level than STREET, CITY, ZONE,
and STATE and includes each of them. Once a subdivi
sion of a data item has been specified, it may be fur
ther subdivided to permit more detailed references.
The most basic subdivisions of a data structure, that

16

is, those that have not been further subdivided, are
called elementary data items.

A system of level numbers is employed in PL/I to
specify the organization of elementary data items into
structures and, in tum, the organization of structures
into more inclusive structures. Level numbers start
at 1 for major structures; that is, structures not con
tained in other structures. Less inclusive structures,
that is, minor structures, are assigned higher (not
necessarily successive) level numbers. In general, the
higher the value of the level number, the lower is its
hierarchical level.

When a structure is described in a DECLARE state
ment, the level number associated with a data name
must appear immediately before the data name. Attri
butes of elementary items in a structure appear after
the name with which they are associated.

Note that the data names specified for all but the
elementary items in a structure are the names of
levels. A reference to such a name in the body of a
program is, in fact, a reference to the elementary items
subordinate to that name.

The effect of levels is illustrated in the following
example.

DECLARE
1 CHECICACCOUNT-RECORD,

2 NAME,
5 LAST CHARACTER (15),
5 FmST CHARACTER (10),
5 MIDDLE CHARACTER (10),

2 ACCOUNT-NUMBER CHARACTER (9),
2 ADDRESS,

4 STREET CHARACTER (20),
4 CITY CHARACTER (15),
4 ZONE CHARACTER (5),
4 STATE CHARACTER (15),

2 BALANCE FIXED (7,2);

This is the description of a record in a master file
containing the checking accounts of a bank. Each rec
ord contains information pertaining to one checking
account. In the foregoing example, NAME is assigned
the level 2. Immediately following are entries describ
ing LAST, FmsT, and MIDDLE. These three entries are
identified as being contained in NAME because they
follow NAME and no other data name with a level
number equal to or lower than that of NAME has inter
vened and because they have level numbers higher
than that of NAME.

ADDRESS is also assigned the level 2. Immediately
following are entries describing STREET, CITY, ZONE,
and STATE. These four entries are identified as being
contained in ADDRESS in the same way that LAST, FmsT,
and MIDDLE are identified as being contained in NAME.

Consider another example. This is one portion of
a payroll record:

DECLARE
1 PAYROLL-RECORD,

3 MAN-NUMBER CHARACTER (6),
3 NAME,

27 LAST CHARACTER (15),

27 FIRST CHARACTER (15),

27 MIDDLE CHARACTER (10),

3 ADDRESS,

12 STREET CHARACTER (20),

12 CITY CHARACTER (15),

12 ZONE CHARACTER (5),
12 STATE CHARACTER (15),

3 DATE-HIRED,

4 MONTH FIXED (2),

4 DAY FIXED (2),

4 YEAR,

14 DECADE FIXED (1),

14 YR FIXED (1),

3 RATE-OF-PAY FIXED (7,2);

The principal rules for assigning level numbers are
illustrated in this example and may be summarized
as follows:

1. Level 1 is reserved to identify a major structure.
2. A level with the name B is contained in a level

with the name A if all of the following conditions
are met:
a. B follows A.

b. B has been assigned a level number higher
than that assigned to A.

c. A name with a level number equal to or
lower than that for A does not appear between
A and B. Thus, even though DECADE has a high
er level number than STATE, it is not part of
STATE, because data names with level num
bers lower than 12 (for example, DATE_HIRED)

appear between STATE and DECADE.

3. Level numbers need not be assigned consecu
tively. Thus, MONTH, DAY, and YEAR could be
assigned any level number higher than that as
signed to DATE-HIRED and lower than that as
signed to DECADE.

4. A structure may include more than one level.
However, all data names that make up a level
within the same structure (for example, MONTH,

DAY, and YEAR) must have the same level number.
5. When a data name is to have a lower level num

ber than the one immediately preceding it, the
level number must be chosen from the level num
bers of the structures that include the preceding
data name. Thus, ADDRESS must be assigned
level 3, because that is the only level number

assigned to a structure that contains the pre
ceding data name, MIDDLE. The data name AD

DRESS could not be assigned the level number 1

because it is not a major structure. RATE-OF-PAY

could be assigned one of two level numbers, 3
or 4, because the data name YR is contained in
two structures, one with the level number 4 and
the other with the level number' 3. However,
if it were assigned the level number 4, it would
be treated as part of the structure called DATE

HIRED, which would probably not be the pro
grammer's intent.

Qualified Names

When specifying names of elementary items or of
minor structures, it is often convenient to use the same
data name for items in different parts of the structure
or to use the same data name for items in two differ
ent structures. For example, two major (level 1)
structures called CARDIN and CARDOUT could each have
an elementary item called P ARTNO. If the item named
P ARTNO were referred to in the body of a PL/I pro
gram, it would be a non-unique reference; that is to
say, it would not be clear whether PARTNO was the
elementary item in the structure CARDIN or the ele
mentary item in the structure CARDOUT. Therefore,
whenever a non-unique data name is used, it must
be associated with one or more of the names in the
structure containing it in order to make the reference
to it unique.

In PL/I, making a name unique is called qualifica
tion.

The name of an elementary item or of a minor
(not level 1) structure is qualified by preceding it
with the name of the structure to which the item
belongs. These names are arranged, from left to right,
in the order of increasing level number and are sepa
rated from one another, and from the name they
qualify, by ,periods. The periods may be surrounded
by blanks. The name of a major structure cannot be
qualified.

For exampie, consider the following structures:

DECLARE
1 CARDIN, 2PARTNO, 2DESCRIPTION,

1 CARDOUT,2PARTNO, 2DESCRIPTION;

The elementary data items can be referred to by the
following qualified names:

CARDIN.PARTNO

CARDIN . DESCRIPTION

CARDOUT.PARTNO

CARDOUT.DESCRIPTION

Chapter 2: Data Description 17

A name need be qualified by only those structure
names that make the name unique. Consider the fol
lowing structure:

DECLARE
1 MARRIAGE, 2 MAN, 3 NAME, 3 DATE,

2 WOMAN, 3 NAME, 3 DATE;

This structure may have its elementary data items
referred to as:

MAN.NAME or MARRIAGE.MAN.NAME

WOMAN. NAME or MARRIAGE. WOMAN. NAME

MAN.DATE or MARRIAGE.MAN.DATE

WOMAN.DATE or MARRIAGE.WOMAN.DATE

If the following structure:

DECLARE
1 BIRTH, 2 WOMAN, 3 NAME, 3 DATE;

appears in the same program with the above struc
ture, then the elementary data items in both struc
tures may be referred to as:

MAN.NAME or MARRIAGE.MAN.NAME

MARRIAGE. WOMAN. NAME

BIRTH.NAME or BIRTH.WOMAN.NAME

etc.

The minor structures in this case are referred to as:

MARRIAGE.MAN

MARRIAGE.WOMAN

BIRTH. WOMAN

Arrays

Data items having the same characteristics, that is,
of the same data type and of the same size (though
not necessarily having the same value), may be
grouped to form an array.

The simplest form of array is a sequence of data
items. Such an array would be analogous to a struc
ture with only one minor level. Thus, a structure con
sisting of 50 elementary items, the value of each item
being the abbreviated name of 1 of the 50 states,
could be specified by writing the following:

DECLARE
1 STATE,

2 ALABAMA CHARACTER(4),

2 WYOMING CHARACTER (4);

A simpler way of writing this grouping of data
would be to specify it as an array of 50 elements.
Each element would have to have the same size and
be of the same data type as the others.

18

Such an array may be specified by immediately fol
lowing the name of the array with a parenthesized
decimal integer representing the number of elements
in the array. This specification is then followed by the
attributes of the items in the array. Thus, in the fore
going example, the major structure STATE and the ele
mentary items under it could be specified as follows:

DECLARE STATE(50) CHARACTER (4);

Consider the following structure description:
DECLARE

1 CHECK-RECORD,

2 NAME,

3 LAST CHARACTER (15),

3 FIRST CHARACTER (15),

3 MIDDLE CHARACTER (15),

2 ADDRESS,

3 STREET CHARACTER (15),

3 CITY CHARACTER (15),

3 STATE CHARACTER (15);

Because all the elementary items in CHECK-RECORD

have the same size and are of the same data type, this
structure could be specified as an array. As an array,
it would consist of only elementary items. These ele
mentary items would be divided into two groups df
three items each.

The grouping of items within the structure CHECK

RECORD could be visually represented as follows:

Level 1 Level 2 Level 3

1
NAME {:::

CHECK-RECORD MIDDLE

ADDRESS {~;::ET
STATE

Such an array would be specified in a DECLARE
statement as follows:

DECLARE CHECK-RECORD (2,3)
CHARACTER (15);

The parenthesized integers following CHECK-RECORD

indicate the way items in this array are grouped. The
first integer (2) indicates that there are two major
groups of items .. The second integer (3) indicates that
each major group contains three items. Note that the
structure CHECK-RECORD could not have been specified
as an array if each major group had had a diHerent
number of items in it.

The grouping of items within the array CHECK

RECORD could be visually represented as follows:

CHECK-RECORD

1 U
2 U

The way in which items are grouped in an array
is analogous to the levels used in specifying a structure.
Thus, in the example above, the groups of three items
in the array are analogous to level 3 in the structure;
the group of two items in the array is analogous to
level two; and th~ single item CHECK-RECORD which is
the name of the array is analogous to level 1 in the
structure.

Just as the structure CHECK-RECORD could be ex
panded to contain another level, so also the array
CHECK-RECORD could be expanded to contain another
grouping. Consider the following expansion of the
structure CHECK-RECORD.

Level 1 Level 2 Level 3 Level 4

{INITIAL FmST
FULL

{ INITIAL NAME LAST
FULL

{ INITIAL MIDDLE
FULL

CHECK-RECORD

~smFEr
{ NUMBER

NAME

{ NAME
ADDRFSS ~ CITY

ZONE

{ NAME STATE
COUNTY

This structure could be expressed as an array, thus:

g
1 13: g

(g
CHECK-RECORD

1 g
2 2 g

3 11
t2

This array would be specified in a DECLARE state
ment as follows:

DECLARE CHECK-RECORD(2,3,2)
CHARACTER (15);

The parenthesized integers following CHECK-RECORD

would indicate that there were two major groups in
the array; that each major group was divided into
three minor groups and that each minor group con
tained two elementary items (a total of twelve ele
mentary items). Each set of groups is called a dimen
sion. In this example, there is a set of major, a set
of minor, and a set of elementary groups; that is, a
major, minor, and an elementary dimension.

In PL/I, arrays may have any number of dimen
sions. Thus, in the example above, the array CHECK

RECORD (2, 3, 2) could be expanded beyond the three
dimensions specified by the parenthesized integers.

Expressions can be used instead of integers to indi
cate the number of items in a dimension. For example,
one could write:

DECLARE TABLE (A+B, 2, 4);
The number of groups in the first dimension would

be equal to the integral value of the sum of A and B

(see expressions discussed in Chapter 5, «Assignment
Statements") .

Chapter 2: Data Description 19

Subscripting

A qualified name is used to refer to a minor structure
or to an elementary item in a structure. A subscripted
name is used to refer to an item in an array. Consider
an array specified as follows:

DECLARE CHECK-RECORD (2,3)

CHARACTER (15);

In order to refer to the second item in this array,
one would write CHECK-RECORD (1,2). Each integer
in the specification (1,2) is called a subscript. The
first integer refers to the first (or major) grouping in
the array; the second integer refers to the second item
within the first grouping. The first of several subscripts
always represents one of the groups in the first dimen
sion in an array; the second of several subscripts rep
resents one of the groups in the next most significant
dimension in the array, and so on; the last of several
subscripts represents the position of the elementary
item within the least significant dimension in the array.
One subscript is separated from another by a comma
and all subscripts for a particular reference are en
closed in parentheses. For example, the items in the
array CHECK-RECORD and the items to which they refer
are:

CHECK-RECORD (1,1) the first item in the first
grouping

CHECK-RECORD (1,2) the second item in the first
grouping

CHECK-RECORD (1,3) the third item in the first
grouping

CHECK-RECORD (2,1) the first item in the second
grouping

CHECK-RECORD (2,2) the second item in the second
grouping

CHECK-RECORD (2,3) the third item in the second
grouping

A subscript need not be represented by a constant;
it can be represented by a data name or by an expres
sion. Thus the following subscripted names could be
written:

CHECK-RECORD (A,2)
CHECK-RECORD (A,B)

CHECK-RECORD (A + 1,2)

In the first example above, the value of A would be
used as the value of the first subscript. In the second
example, the value of A would be used as the value
of the first subscript, the value of B as the value of the
second subscript. In the third example, the value of
the expression A + 1 (the sum of 1 and the value of A)

would be used as the value of the first subscript.

20

Structures Containing Arrays

In PL/I, an item in a structure may be an array. For
example, consider the following structure specification
(written here without data attributes):

ROLL: DECLARE
1 CARDIN,

2 NAME,

2 WAGES(2),

3 REGULAR(3),

.3 OVERTIME;

The parenthesized specification (2) indicates that the
structure WAGES is an array consisting of two groups.
Each group contains the items REGULAR and OVERTIME.

The item REGULAR is also an array consisting of three
items. The meaning of this structure may be described
by an equivalent structure that does not contain
arrays:

DECLARE
1 CARDIN,

2 NAME,

2 WAGES-I,

3 REGULAR-I,

3 REGULAR-2,

3 REGULAlL3,

3 OVERTIME,

2 WAGES-2,

3 REGULAR-I,

3 REGULAR-2,

3 REGULAR-3,

3 OVERTIME;

A combination of qualifying and subscripting may be
used to refer to an item in an array contained in a
structure. Thus, in order to refer to the second ele
ment of REGULAR in the first group of WAGES in the
ROLL structure specification, one could write:

CARDIN. WAGES (1) .REGULAR (2)

In the foregoing example, subscripts are written
following the structure names to which they apply.
This is the normal form of writing a combination of
qualification and subscripting. As long as the order of
the subscripts remains unchanged, subscripts may be
moved to the right of the names to which they nor
mally apply.

For example, the subscripted qualified name above
could be written:

CARDIN. WAGES.REGULAR (1,2)

ALIGNED and PACKED Attributes

The ALIGNED and PACKED attributes are used
only for structures or arrays composed of string data.
They specify the arrangement in core storage of all
of the character-string or bit-string elements that com
pose a particular array or structure. The PACKED
attribute indicates that there is to be no unused core
storage between any two elements of an array or be
tween any two bit-string elements or any two charac
ter-string elements of a structure. The ALIGNED
attribute indicates that the elements of an array or
structure are to start at a particular core storage
boundary and that there may, consequently, be
unused core storage between the elements. The
ALIGNED attribute often results in more efficient
processing, particularly when a great deal of packing
and unpacking of data would be required. (The stor
age boundary is defined individually for each imple
mentation.)

When these attributes are specified, they apply to
all the elements in a major structure or in an array.
When they are written for a structure, they must be
written for the data name level number 1. When they
are written for an array, that array may not be part
of a structure.

These attributes may be written in a DECLARE
statement as follows:

DECLARE lSTRUCTURE PACKED, 2SUBSTRI
BIT (4), 2SUBSTR2 BIT (5);

DECLARE ARRAY (4,2,4) ALIGNED;

LIKE Attribute

The LIKE attribute specifies that the name being de
clared is a structure with a substructure having ele
ments with attributes and names identical to the
names and attributes of the elements of the named
structure. The attribute has the following format:

LIKE structure-name
Consider, for example, the major structures A and

x, described with the following DECLARE statement.

DECLARE lA,
2FIELDl,

3DTLI PICTURE 'AA',
3DTL2 CHARACTER (10),

2FmLD2 CHARACTER (12),
lx,

2FmLDl,
3suBFmLDl LIKE A.FmLDl,

2FmLD2 LIKE A.FmLDl
2FmLD3 CHARACTER (5);

This specification of a major structure x is equiva
lent to writing:

lx,
2FmLDl,

3suBFmLDl,
4DTLI PICTURE 'AA',
4DTL2 CHARACTER (10),

2FIELD2,
3DTLI PICTURE 'AA',
3DTL2 CHARACTER (10),

2FIELD3 CHARACTER (5);

The following should be noted:
l. The difference between the level number of the

structure name following LIKE and the level
numbers of items subordinate to structure name
is maintained.

2. The names and attributes of items subordinate to
the structure name become subordinate to the
item with the LIKE attribute.

3. The level numbers of any items following the
item with the LIKE attribute must be less than
or equal to the level number of the item with
the LIKE attribute.

4. The structure name following LIKE may be
qualified but may not be subscripted.

5. Neither the structure name .following LIKE, nor
any item subordinate to it may be described with
the LIKE attribute.

LABEL Attribute

The keyword LABEL may be used to specify that a
name is a label name, representing a value that is a
label constant. For example, the statement:

DECLARE POINTER LABEL;

specifies that the value of the label name POINTER is a
label constant.

A label name may also identify an array of label
constants. Consider the f<;>llowing statement:

DECLARE SWITCH (10) LABEL;

This statement specifies that SWITCH is the name of
a 10-element array and that each element of the array
is a label constant. The use of label names is discussed
in Chapter 4, "GO TO Statement."

INITIAL Attribute

The INITIAL attribute specifies constants that are
assigned to data names when computer storage is
allocated (see "Storage Allocation" in Chapter 4). The
INITIAL attribute may be written in the following
form:

INITIAL (constant)

A constant appearing in the INITIAL attribute must
conform to the rules established earlier in this chap-

Chapter 2: Data Description 21

ter for writing constants. Consider the following state
ment:

DECLARE MAXIMUM FIXED DECIMAL (4)
INITIAL (1500);

This statement specifies that the data item identified
by MAXIMUM is a fixed-point decimal integer consist
ing of four digits, and that the data item assigned to
MAXIMUM, when computer storage is allocated, is
equivalent to the constant 1500.

In the following statement:

DECLARE NAME CHARACTER (4)
INITIAL ('JOHN'),

SWITCH LABEL INITIAL (DEDUCTIONS);

the initial character-string data item assigned to NAME

is the constant 'JOHN', and the initial constant assigned
to the label name SWITCH is the label constant DEDUC

TIONS.

The INITIAL attribute may also be used to assign
constants to arrays. When used with arrays, the INI
TIAL attribute may be written in the following form:

INITIAL (constant-I, ••• , constant-n)

Constants are assigned in successive order to succes
sive positions of an array. Consider the following
statement:

DECLARE PRICES (4) FIXED DECIMAL (4,2)
INITIAL (10.99, 20.49, 75.39, 99.99),

POINTER (3) LABEL
INITIAL (OVERTIME, COMMISSION, BONUS);

In this statement, PRICES is declared to be a one-dimen
sional array that contains four fixed-point decimal data
items. The initial data items assigned to the PRICES

array are specified by the constants: 10.99, 20.49, 75.39,
and 99.99. The one-dimensional array named POINTER

contains three labels that are initially specified by the
la bel constants: OVERTIME, COMMISSION, and BONUS.

Factoring of Attributes

In the DECLARE statement, one or more attributes
can be associated with a set of names by a method
known as factOring. Factoring is accomplished by
grouping a set of names in parentheses before the
associated attribute or attributes. Commas are used to
separate the members of each set. For example, the
statement:

DECLARE (YEAR, MONTH, DAY) CHARACTER
(2);

associates the attribute CHARACTER of length 2 with
the items named YEAR, MONTH, and DAY.

22

Attributes that apply to only one member of a
factored set are written following that member. For
example:

DECLARE (YEAR INITIAL (62), MONTH, DAY)

CHARACTER (2);

A set of factored items and their associated attri
butes may themselves be factored. For example:

DECLARE « YEAR, MONTH, DAY) CHARACTER
(2), (HOUR, MINUTE) FIXED (2» INITIAL
(00);

Level numbers may be factored. When this is the
case, the names associated with the level number ap
pear in a parenthesized set following the level num
ber. For example:

DECLARE lRECORD, 2(NAME, 3(FIRST, MIDDLE,

LAST), AGE, SALARY) CHARACTER(12);

PL/l and COBOL Comparison: Data Description
The following discussion compares the data descrip
tion features of PL/I and COBOL. In general, both
languages use similar methods for describing the
characteristics of data items stored within a com
puter: programmer-defined words are used to name
data items; keywords specify the characteristics of
named data items; data items may be collected into
aggregates; constants may be specified for each data
type; data names may be assigned initial values; and
a picture specification may serve as an alternative
method for describing data. There are differences,
however, between the data description features of both
languages; the following points contain some of the
more significant differences.

1. COBOL describes data in the Data Division'
PL/I uses the DECLARE statement. The CO~
BOL Data Division contains separate sections
for different kinds of data; PL/I does not require
a separation of the various data types in a DE
CLARE statement.

2. COBOL requires all programmer-supplied words
to be defined in the Data Division. PL/I allows
programmer-supplied words to be used in a pro
gram without being defined in a DECLARE
statement; the meaning of such words is deter
mined from context and a complete set of de
fault rules is used to determine unspecified data
characteristics.

3. In COBOL, the description of data on external
storage media is specified in the Data Division.
In PL/I, the input/output statements specify the
description of externally stored data (see Chap
ter 3, "Input/Output").

4. Bit strings and label data are PL/I data types
not contained in COBOL.

5. COBOL uses figurative constants; PL/I does not.
6. PL/I imposes no limit on the number of dimen

sions in an array or on the number of levels in
a structure. COBOL limits a table (the COBOL
equivalent of a PL/I array) to a maximum of

three dimensions, and a group (the COBOL
equivalent to a PL/I structure) to a maximum of
49 levels.

7. The order of name qualifiers in COBOL is the
reverse of the order used in PL/I. COBOL uses
the keywords IN and OF as qualification opera
tors; PL/I uses the period.

Chapter 2: Data Description 23

Chapter 3: Input/Output

I ntrod udion
Before a computer can process data that is recorded
on external storage media, the data must be repro
duced within the computer; this reproduction process
is called input. Likewise, when processing has been
completed, the processed data is made available by
reproducing it on external media; this reproduction
process 'is called output. This chapter discusses two
principal types of input/output.

External Storage Attributes
The discussions in the preceding chapter have dealt
with the description of data items that are stored
within a computer. However, most computer appli
cations are also concerned with the representation of
data on external storage media. It is by means of such
media that data is presented to and received from
a computer. When data is recorded on external media,
it is organized into collections called files. For exam
ple, a collection of time cards may constitute a file
in a payroll application. On magnetic tape, a file may
consist of data that will eventually be used to produce
a printed report.

A computer transmits data to and from a file by
means of input/output statements. However, when at
tention is focused primarily on the data being trans
mitted, the environment characteristics of a file are of
little concern. PL/I permits a file to be given a name
and allows the characteristics of a file to be described
with keywords called file attributes.

The following discussion presents the file attributes
that are provided by PL/I.

FILE Attribute

The FILE attribute indicates that the associated iden
tifier is a file name. In the following statement:

DECLARE MASTER FILE;
the identifier MASTER is declared to be a file name.

STREAM and RECORD Attributes

The STREAM and RECORD attributes describe the
manner in which data in a file is to be treated. They
indicate the type of data transmission (stream ori
ented or record oriented) that can be used in input/
output operations for the file. (see "Data Transmis
sion")

24

The STREAM attribute describes a file considered
as one continuous stream of data items in character
form.

The RECORD attribute describes a file containing
a number of physically separate records, each consist
ing of one or more data items in any form.

INPUT, OUTPUT and UPDATE Attributes

One of these attributes (INPUT, OUTPUT, or UP
DATE) may be specified to describe the type of data
transmission that is permitted for a file. The INPUT
attribute is used for files that are only to be read. The
OUTPUT attribute is used for files that are to be
created; OUTPUT files may only be written on. The
UPDATE attribute is used for existing files that are
to be read, or have new records added, or existing
records altered or deleted. In the following statement:

DECLARE DETAIL FILE INPUT,
REPORT FILE OUTPUT,
MASTER FILE UPDATE;

DETAIL is the name of an input file; REPORT is the name
of an output file; MASTER is the name of a file that is
used both for input and for output.

PRINT Attribute

The PRINT attribute indicates that the data in a file
will eventually be printed, that is, appear as output
on a printed page.

The PRINT attribute may be declared only for an
output file. A file with the RECORD attribute may not
have the PRINT attribute.

BUFFERED and UNBUFFERED Attributes

The BUFFERED and UNBUFFERED attributes ap
ply only to files that have the RECORD attribute. The
BUFFERED attribute indicates that the data in a rec
ord being transmitted to and from a file is to be
placed into a buffer (that is, an intermediate storage
area). The UNBUFFERED attribute indicates that
the data is to be assigned directly to and from a loca
tion specified by a data name.

ENVIRONMENT Attribute

The ENVIRONMENT attribute is used to specify
the physical characteristics of a file that depends on
the computer for which a PL/I program is written.
The attribute is written in the following form:

ENVIRONMENT (option-list)
The option list will be defined individually for each
PL/I compiler. Information such as file media, physi
cal record format, buffering, and file disposition may
be specified with the option list.

Opening and Closing of Files

Before a file is processed by a data transmission
statement, certain file preparation activities must oc
cur, such as checking for the availability of external
storage media, positioning the media, and allocating
appropriate programming support. This activity is
known as opening a file. Similarly, when processing is
completed, the file must be closed. Closing a file con
sists of releasing the facilities that were established
during the opening of the file. PL/I provides two
statements, OPEN and CLOSE, to perform these
functions. These statements, however, are optional.
If an OPEN statement is not executed for a file, the
file is opened antomatically when the first data trans
mission statement for that file is executed; in this case,
the automatic file preparation consists of standard
system procedures and uses information about the file
contained in a DECLARE statement. Similarly, if a
file has not been closed before completion of a pro
gram, the file is closed automatically upon completion
of the program.

OPEN Statement

The OPEN statement acquires and prepares files for
subsequent input/output operations. An OPEN state
ment has the following form:

OPEN FILE (filename) options;

Options may occur in any order and may be placed
before and after the specification FILE (filename).
Options include any of the external storage attributes
(except the FILE and ENVIRONMENT attributes)
that are discussed in Chapter 2; the IDENT option,
which regulates the reading and writing of header
label records; and the PAGESIZE and LINESIZE op
tions, which control the overall layout of each page
in a PRINT file. A discussion of the IDE NT, PAGE
SIZE, and LINESIZE options follows.

IDE NT (label information) Option

The IDENT option in an OPEN statement for an
output file specifies that a header label record is to be
placed in the file. For an input file, IDENT provides
information for reading a header label record.

The label information, for an input file, is the name
of a character string into which the header label is to
be read. For an output file, the label information is
either the name of a character string containing the

header label record to be written, or it is a character
string constant that is to be written as the header
label record. For an update file, the IDENT option
specifies label reading but does not specify label
writing.

The format of label records is defined by the com
piler for each implementation of PL/1. If the IDENT
option is not specified, no label operations are per
formed.

Consider the following statement:

OPEN INPUT FILE (TABLES) IDENT (SERIAL);

This statement opens the input file called TABLES,

positions the file at its logical beginning, and reads
the header label record into the character string iden
tified by SERIAL.

PAGESIZE(w) Option

The PAGESIZE option specifies the depth of a
printed page. w indicates the number of lines, includ
ing skipped lines, that are contained on a page. For
example, the specification PAGESIZE(45) means that
no more than 45 lines are to be printed or skipped on
a page. If an attempt is made to start a new line be
yond line 45, a new page is started unless the pro
grammer has specified another action inan ON state
ment (the ON statement is discussed in Chapter 4;
also see the ENDPAGE condition in Chapter 4, "ON
Conditions") .

The PAGESIZE option can be specified only for
files that have the PRINT attribute.

LINESIZE (w) Option

The LINE SIZE option specifies the maximum length
of the lines on a printed page; w indicates the number
of character positions available on a line. For example,
the specification LINESIZE (120) means that a line
extends from character position 1 to character posi
tion 120. If an attempt is made to place data to the
right of character position 120, the data in question
is placed on the next line, starting at character posi
tion 1.

The LINESIZE option can be specified only for
files that have the PRINT attribute.

If an OPEN statement is encountered for a file al
ready opened, the statement is ignored.

CLOSE Statement

The CLOSE statement releases facilities that were es
tablished during the opening of a file, repositions the
file to its logical beginning, and causes proper disposi
tion of the file. A CLOSE statement has the following
form:

CLOSE FILE (filename) IDENT (label
information) ;

Chapter 3: Input/Output 25

The meaning of the IDENT option is the same as
that for the OPEN statement, except that it handles
trailer label records rather than header label records.

If a CLOSE statement is encountered and the file
has not been opened, or has already been closed, the
statement is ignored.

Data Transmission
The basic function of input and output is data trans
mission, getting the data items into the computer for
processing and placing the results of the processing
on external storage media. In PL/I two types of data
transmission are available: record-oriented data trans
mission and stream-oriented data transmission. With
record-oriented transmission, the data on the external
medium is considered as a collection of physically
separate records, each of which consists of one or
more data items in any form. Data is transmitted,
one record at a time, in the same form as it is re
corded, either internally or externally; no conversion
is performed. With stream-oriented transmission, the
data on the external medium is considered as one
continuous stream of data items in character form.
Each data item is converted, if necessary, to and from
its appropriate internal form, which is determined
by the attributes of the data name to which a data
item is assigned.

Record-Oriented Transmission

Record-oriented data transmission deals with files that
are composed of a series of physically separate records.
Each record is read or written as an entity, either in
to or from an addressable buffer or into or from a
location specified by a data name (usually the name
of a structure or an array).

In record-oriented transmission the principal state
ments used to transmit data to and from input and
output files are the READ statement and the WRITE
statement.

Files referred to in READ and WRITE statements
must be declared to have the RECORD attribute.
This specifies that the file is to be used with record
oriented statements. The UNBUFFERED attribute
specifies that the data in the records does not go into
an addressable buffer, but is assigned directly to or
from the data name specified in the READ or WRITE
statement.

For an unbuffered file, the READ statement has
the following format:

READ FILE (filename) INTO (data name);

26

The WRITE statement has the format:
WRITE FILE (filename) FROM (data name);

When a READ statement is executed, causing a rec
ord to be read, there is no conversion of data types to
conform to the attributes declared for the names.
The data in the record should exactly match the dec
laratio.n of the name to which it is assi'gned. Similarly,
a record that is written has the same form externally
as its internal representation.

When records are to be read into and written out
of buffers instead of being directly assigned to data
names, the READ statement has a different form:

READ FILE (filename)
SET (pointer-variable);

The pointer variable is a name that is used to point
to the location of the buffer. It is associated with a
data name by means of a DECLARE statement. Such
a data name is called a based variable. For e,xample,
consider the following statement:

DECLARE 1 DETAIL BASED (N),

2 ACCT-# CHARACTER (7),
2 PAYMENT DECIMAL FIXED (6,2),
2 NAME CHARACTER (40);

In this statement, DETAIL is a based variable and N

is a pointer variable associated with DETAIL. As a
based variable, DETAIL must be declared to have the
BASED attribute (see Chapter 4, "Storage Alloca
tion," for a discussion of the BASED attribute). The
DECLARE statement indicates that N will point to
a buffer into which and from which records will be
read or written and that each record will consist of
three data items with the same attributes as those de
clared for ACCT-#, PAYMENT, and NAME. The follow
ing READ statement, when executed, causes a record
to be read into this buffer:

READ FILE (MASTER) SET (N);

The pointer variable N now points to the beginning
of the record (in effect, the value of N is the address
of the first storage location of the buffer). It is as
if the record were assigned directly to DETAIL; a ref
erence to ACCT-# becomes a reference to the first data
item in the buffer, a reference to PAYMENT becomes a
reference to the second data item in the buffer, a ref
erence to NAME becomes a reference to the third data
item in the buffer.

A record is written from this buffer (the buffer into
which it was read) when the following WRITE state
ment is executed:

WRITE FILE (OUTPUT) FROM (DETAIL);

A record can also be written from a buffer created
by a LOCATE statement. This statement has the form:

LOCATE based-variable FILE (filename) SET
(pointer-variable) ;

The LOCATE statement does not immediately cause
data to be written. It indicates that a buffer, having
the same attributes as the specified based variable, is
to be allocated. The specified pointer variable will
point to the buffer. Data is subsequently placed in the
buffer to form a record. The record is written into the
specified output file immediately before the next LO
CA TE statement or WRITE statement before the same
file is executed or immediately before the specified file
is closed.

For example, assume that a record containing an ac
count number, the amount of payment, and a customer
name has been read as described above. A record that
contains only the customer name and the amount of
payment is to be written in the output file. The fol
lowing statements would be needed to set up a based
variable and to allocate a new buffer:

DECLARE 1 BILL-RECORD BASED (p),
2 CUSTOMER CHARACTER (40),
2 AMOUNT DECIMAL FIXED (6,2),

LOCATE BILL-RECORD FILE (OUTPUT);

The output record is created when the appropriate
data items (referred to as NAME and PAYMENT) in the
input buffer are moved into the output buffer (here
they are referred to as CUSTOMER and AMOUNT). The
move is accomplished by using the following assign
ment statements (the exact statements are shown here
for the sake of example; the assignment statement is
discussed fully in Chapter 5) :

CUSTOMER = NAME;

AMOUNT = PAYMENT;

Once the record has been created, it remains in the
output buffer until the next LOCATE statement or
WRITE statement for the file OUTPUT is about to be
executed or until the file OUTPUT is about to be closed.
The LOCATE statement does not require the SET
(pOinter variable) option because the BASED attri
bute for BILL-RECORD specifies a pointer variable (p),
which is associated with the based variable.

Record-oriented transmission permits the use of up
date files. An update file is one that is both read from
and written into. Data is written into an update file
by means of the REWRITE statement. Each record
that is read is rewritten into the update file, with or
without change, before another record is read. If the
update file is unbuffered, that is, if records from the
file are assigned directly to data names, the REWRITE
statement has the following form:

REWRITE FILE (filename) FROM (data
name);

If the update file is buffered, that is, records are read
into and written out of buffers, only the following
statement is needed to cause a record to be written:

REWRITE FILE (filename);

There is no need to specify a data name because the
REWRITE statement always refers to the buffer into
which the record was read.

Stream-Oriented Transmission
Stream-oriented data transmission deals with files that
are considered as one continuous stream of data in
character form. Data items are assigned from the
stream to data names or from data names into the
stream. Stream-oriented transmission implies data con
version. All of the data items in the stream are in
character form. On input, they are converted auto
matically to conform to the attributes of the data name
to which they are assigned; on output, data items are
converted, if necessary, to characters. Of course, only
valid data conversions can be performed (see Chapter
5, "Conversion Between Data Types").

There are three modes of stream-oriented transmis
sion: edit-directed transmission, list-directed transmis
sion, and data-directed transmission. All three modes
use the same statements for input and output, the
GET statement and the PUT statement, respectively.
Whichever mode is used, the following information is
required for each GET or PUT statement:

l. The name of the file from which data is to be
obtained or to which data is to be assigned.

2. A list of data names representing storage areas to
which data items are to be assigned during in
put, or from which data items are to be obtained
during output. Such a list is known as a data list.

3. The format of each data item.

In certain circumstances, all of this required in
formation can be implied; in other cases, only a por
tion of it need be stated explicitly. If the file name is
not specified, standard system files will be assumed;
this applies to any of the three modes of stream trans
mission. In list-directed and data-directed transmission,
the format of the d~ta items is not specified. In data
directed input, not even the data list need be specified.

Edit-Directed Data Transmission

Edit-directed transmission specifies an explicit descrip
tion of data items as they exist or are about to exist in
the data stream. This explicit description is contained
in a GET or PUT statement. The GET statement is
used to transmit data from external to internal storage
and the PUT statement to transmit data from internal
to external storage. When used for edit-directed trans-

Chapter 3: Input/Output 27

mission, the GET and PUT statements have the fol
lowing form:

GET FILE (filename) EDIT (data list)
. (format list);

PUT FILE (filename) EDIT (data list)
(format list);

The data list in an edit-directed GET or PUT state
ment is a list of data names to which or from which
data items in external storage are to be assigned. The
data names in a data list are separated by commas.

The format list is a list of format descriptions sep
arated by commas. There are two types of format
descriptions: data format descriptions and control for
mat descriptions. Data format descriptions describe
data items in the data stream; control format descrip
tions specify page, line, and spacing operations.

When an edit-directed GET or PUT statement is
executed, the data names in the data list are paired
with the data format descriptions in the format list.
Data is transmitted in the following fashion:

1. If the statement is a GET statement, the data
item described by the format description is as
signed to the area identified by the data name
with which the format description is paired. For
example, in the statement:

GET FILE (FILE-A) EDIT (FIRST)

(A(20));
the data name FIRST is paired with the format
description A (20). The data item described by
A(20) is assigned to an area in internal storage
identified by FIRST.

2. If the statement is a PUT statement, the data item
assigned to the area identified by the data name
in the data list is placed into the data stream. The
representation of this value in the data stream
depends on the format description with which
the data name is paired. For example, in the state
ment

PUT FILE (FILE-A) EDIT (FIRST)

(A(20));

the data name FIRST is paired with the format
description A(20). The data item identified by
FIRST is placed into the data stream. The format
description A(20) indicates that the data item
is represented in the data stream as a character
string 20 characters long.

Note that there is no necessary correlation between
the way in which the same value is represented in in
ternal storage and in the data stream. The representa
tion of a value in internal storage depends on the
attributes of the data name for which it is a value;
the representation of a value in the data stream de
pends on its format description.

28

Data Format Descriptions

Data format descriptions are used to describe the rep
resentation and characteristics of data items in the
data stream .

Character-String Format Descriptions

• A(tV)

The format description A (tV) indicates that the value
of the item in the data list with which A(tV) is associ
ated is represented in the data stream as a character
string. The specificatio~ tv indicates the number of
characters in the string.

Consider a data item called UNIT declared with the
attribute CHARACTER (20), meaning that its inter
nal representation is a sequence of 20 characters. The
value of UNIT may be written in a file called UNIT_FILE

as a string consisting of 20 characters by using the
following statement:

PUT FILE (UNIT-FILE) EDIT (UNIT) (A (20));

In this statement, the A indicates that the data is to
be written as a character string, and the integer 20
specifies the length in characters of the string. If the
format description A(2S) had been used, S blank
characters would have been added to the value of UNIT

making the length of the item written 25 characters.
Similarly, if the format description were A(15), then
only 15 characters would be written. These 15 char
acters would contain the value of the first IS characters
of UNIT.

For output, the length of the character string need
not be specified with the A format. If omitted, the
length is determined from the declared attributes of
the name with which the format description is paired.
Thus, the PUT statement above could have been
written as follows:

PUT FILE (UNIT-FILE) EDIT (UNIT) (A);

Had UNIT been declared with the attribute BIT(20),
the value of UNIT would be converted from a 20-posi
tion bit string to a 20-position character string com
posed of the numeric characters zero and one and
written out as 20 characters. Similar conversions apply
to internally stored fixed-point and floating-point data
items. If UNIT had been declared with the attribute
FIXED (10), the value of UNIT would be converted
from internal fixed point to external character-string
form and extended on the right with blanks, if neces
sary, before being written out as a 10-position charac
ter string.

The statement:

GET FILE (UNIT-FILE) EDIT (UNIT) (A(20));

causes the next 20 characters in the file called UNIT

FILE to be aSSigned to UNIT. The value is automatically

transformed from its character representation specified
by the format A(20), to whatever representation is
specified by the attributes declared for UNIT.

• F(w,d)
The fixed-point format description F (w,d) indicates

that the value of the item in the data list with which
F(w,d) is associated is represented in the data stream
as a string of characters, with a decimal value and
containing an assumed or actual decimal point.

The specification w indicates the number of charac
terpositions in the string. The d specification indicates
that an assumed or actual decimal point appears d
characters before the end of the string.

When a data item is written from inside the com
puter, its value is right-adjusted in the field specified
by w in the format description. If d is greater than
zero, an actual decimal point will appear in the field
before the last d characters. If, in the data item being
written, the number of significant characters to the
right of the decimal point is less than d, trailing
zeros will be supplied.

When the value of an item being written is less than
zero, a minus sign character will be prefixed to the
external character representation of the value.

No sign appears when the value is greater than or
equal to zero and, therefore, the first position on the
left will be a blank. The w specification must include a
position for the minus sign and a position for the
decimal point. Should the value of the item being
written contain leading zeros, these will be changed
to leading blanks; should the value of the item not fill
the field specified by the format description, leading
blanks will be supplied.

When a data item is being read into the computer,
the value transmitted may appear anywhere in the
field specified by w. A decimal point is assumed to
appear in the field before the last d characters. The
specification d need not be written if the value to be
read is to have no decimal places. However, if an ac
tual decimal point appears in the value read, and its
position contradicts the position specified by d, the d
specification will be ignored and the position of the
actual decimal point will be used.

Consider a data item called AMOUNT which has the
attribute FIXED(4,2) meaning that it is a four-digit,
fixed-point decimal number with two decimal places.
It can be written in a standard output file by the fol
lowing statement:

PUT EDIT (AMOUNT) (F(6,2));
(6,2) specifies that a decimal point is to appear before
the last two numeric characters and that the number
be right-adjusted in a field of six characters. Leading
zeros are changed to blanks, and, if necessary, a minus
sign is placed to the left of the first numeric character.

If AMOUNT, as described above, were used in the
statement:

GET EDIT (AMOUNT) (F(6,2));

the next six characters from a standard input file would
be scanned for a fixed-pOint decimal number with two
decimal places. When located, the number would be
converted to a form compatible with the declared
attributes of AMOUNT.

If AMOUNT had the attributes FIXED BINARY(24,7)
indicating a 24-bit fixed-pOint binary number with
seven binary places, the statement:

PUT EDIT (AMOUNT) (F(6,2));

would produce, in a standard output file, six char
acters containing the value of AMOUNT converted from
internal fixed-point binary representation to a decimal
number and represented as a string of decimal char
acters with a decimal point two characters before the
end of the item. A GET statement would reverse the
conversion. Similar conversions would apply if the at
tributes of AMOUNT were either floating-point decimal
or floating-point binary. If AMOUNT had the CHAR
ACTER attribute or a picture specification of a char
acter string, conversion would still apply, provided,
in the case of output, the character string represented
a numeric value.

If the BIT attribute were declared for AMOUNT, the
bit-string data would be treated as a binary integer,
which would be converted to a decimal integer and
represented as a string of decimal characters.

• E(w,d)

The floating-point format description E (w,d) in
dicates that the value of the item in the data list with
which E(w,d) is associated is represented in the data
stream as a character string. This string has a decimal
value and contains both an assumed or actual decimal
point and a signed exponent preceded by the character
E.

The interpretation of wand d is the same as that for
wand d in the format description F (w,d) with the
following exceptions:

The specification w must include the number of
characters occupied by the following:

1. The exponent and its sign
2. E
3. A sign for the value, should it be negative
4. An actual decimal point, if present
When this format description is used, d indicates

the total number of characters between the decimal
point and E. On output an actual decimal point will
appear to the left of the significant digits. In the
statement:

GET EDIT (GROSS-ESTIMATE) (E(8,2));

Chapter 3: Input/Output 29

the value of the item in the data stream is assigned to
GROSS-ESTIMATE and is automatically converted to the
internal form specified by the attributes for GROSS
ESTIMATE.

Bit-String Format Descriptions

• B(w)
The bit-string format description B (w) indicates that
the value of the item in the data list with which B (w)
is associated is represented in the data stream as a
character-string containing only the characters 1 and O.
The specification w indicates the number of char
acters in the string.

Consider a data item called CODE which has the attri
bute BIT (40). The value of CODE may be written in a
.file called CODE-FILE as a string of 40 characters that
represent bits by using the following statement:

PUT ;FILE (CODE-FILE) EDIT (CODE) (B (40));

If the format description B (120) had been used in
the above statement, 80 zero characters would be ap
pended to the right of the string.

For output, the length of the string need not be spec
ified with the B format. If omitted, the length is deter
mined from the declared attributes of the name with
which the format description is paired. Thus, the PUT
statement above could have been written as follows:

PUT FILE (CODE-FILE) EDIT (CODE) (B);

Picture Format Description

The picture format description has the following form:
P , picture-specification'

The picture-specification is described in Chapter 2.
Editing by means of a picture specification is discussed
in Chapter 5.

The P format description may be used to describe
data values that are represented in the data stream in
an edited or unedited character format. Consider the
following statement:

GET EDIT (TITLE,COUNT) (P'AAAAA',P'9999');

When this statement is executed, the next nine char
acters in a standard input file are transmitted, and the
first five (alphabetic) characters are assigned to TITLE;
the integer located in the next four (numeric) charac
ter positions is assigned to COUNT. The internal repre
sentation of the data will conform to the attributes of
TITLE and COUNT.

Repetition of Format Description

For abbreviation purposes a decimal integer can ap
pear immediately before a format description to indi-

30

cate the number of times that format description is to
be used before the next format description is selected.
The statement:

GET EDIT (UNIT,ITEM,COST) (2A(10) ,F(4,2));
has the same effect as the statement:

GET EDIT (UNIT, ITEM, COST) (A(10), A(10),
F(4, 2»;

An expression enclosed in parentheses immediately
before a format description can also be used to specify
the number of times the format description is to be
used. When the expression has a zero or negative
value, the format description associated with it is not
used.

A repetition factor may be applied to more than one
format description by enclosing the format descriptions
in parentheses and preceding the left parenthesis with
the repetition factor.

Thus the statement:

PUT EDIT (UNIT, COST, ITEM, RATE)
(2 (A (10), F (4, 2»);

produces the same result as the statement:
PUT EDIT (UNIT, COST, ITEM, RATE) (A(10),

F(4, 2), A(10), F(4, 2»;

Multiple Data Specifications

In a GET or PUT statement, a data list and the for
mat list associated with it are called an edit-directed
data specification. Up to now, examples of GET and
PUT statements have each contained one data specifi
cation. More than one data specification can be writ
ten in a GET or PUT statement. More than one is
usually written in order to simplify the writing of state
ments employing long data lists and format lists. The
relationship between a format item and a data name
is more evident when data lists and format lists are
short. Successive data specifications are separated by
commas.

For example, the statement:

PUT EDIT (UNIT, COST, ITEM, RATE) (A(10),
F(4, 2), A(10), F(4, 2»;

might be more easily read as:
PUT EDIT (UNIT, COST)(A(10), F(4, 2»

(ITEM, RATE)(A(10), F(4, 2»;

Data Specifications for Structures and Arrays

The names in a data list may be the names of struc
tures and arrays. A structure or array name in a data
list serves as a concise representation of all the elemen
tary items in the structure or array.

Consider the following structure:

DECLARE 1 BILL,
2 ITEM

2 NUMBER
2 COST

CHARACTER (10),
FIXED(5),
FIXED (5,2);

The use of BILL in the statement:

PUT EDIT(BILL)(A(10), F(5), F(5,2»;
is equivalent to writing the following statement:

PUT EDIT (ITEM, NUMBER, COST) (A(10),
F (5), F (5,2));

In the foregoing example, when the structure BILL
is written, format descriptions are required for each
elementary item in BILL, because GET and PUT
statements transmit successive elementary items.

On output, a data list may specify expressions, in
cluding structure and array expressions. (Expressions
are discussed in Chapter 5.) Each expression, when
evaluated, is written in a format specified by an asso
ciated format item. For example, the statement:

PUT EDIT ('TOTAL IS ' II 2 0 SUM) (A(15»;

will convert the value of 2 0 SUM to a character string,
append the string to the right of the constant 'TOTAL IS',
and write the result as a I5-position character string
in a standard output file.

Control Format Descriptions

The format descriptions discussed up to now are
used to describe data items as they exist in the data
stream. The format descriptions discussed below are
not descriptions of data items; they describe spacing
and printing operations. These control format descrip
tions are written in the format list of a GET or PUT
statement together with the data format descriptions
discussed previously. They are not, however, asso
ciated with a data name in the data list of the GET
or PUT statement.

Spacing Format Description

The following format description is used in a format
list to indicate spacing.

• X(w)
On input, the X format item specifies that the next

w characters of the data in the stream are to be spaced
over and not to be transmitted. On output, the X for
mat specifies that w blank characters are to be in
serted into the stream. For example, the statement:

GET EDIT (COUNT, DEDUCfION) (A(5), X(5),
A(5));

specifies that the next 15 characters from a standard
input file are to be treated as follows: the first five
characters are assigned to COUNT, the next five charac-

ters are spaced over and ignored, and the remaining
five characters are assigned to DEDUCfION.

The statement:

PUT EDIT (ITEM, TOTAL) (A(4), X(2), F(5»;

places, in a standard output file, four characters that
contain the value of ITEM, followed by two blank char
acters, followed by five characters that contain the
value of TOTAL.

Printing Format Descriptions

The following format descriptions control printing
operations. They are used only with files that have the
PRINT attribute and, consequently, appear only in a
PUT statement.

• PAGE

The format description PAGE specifies that the next
data item written is to appear on a new page. For
example:

PUT EDIT ('CONTINUED ON NEXT PAGE')
(A(22» ('MONTHLY SALES REPORT')
(PAGE, A(20»;

This PUT statement causes the phrase CONTINUED ON
NEXT PAGE to be written on the current page and the
heading MONTHLY SALES REPORT to be written on a
new page.

• SKIP(w)

The format description SKIP (w) specifies that one
or more lines are to be skipped before the next data
item is written. w indicates the position of the next
line relative to the current line. The number of lines
skipped is equal to w-l. For example, the format de
scription SKIP(5) means that four lines are to be
skipped and the next data item is to be written on the
fifth line following the current line.

• LINE(w)

The format description LINE (w) specifies that the
next data item is to be written on a particular line. w
indicates the number of the line on the page. For
example, the format description LINE (20) means
that the next data item is to, be written on line 20
of the page.

• COLUMN(w)

The format description COLUMN(w) specifies hor
izontal positioning, giving the character position at
which the next data item is to begin. w is the number
of the character position for the first character of the
data item. For example, the format description COL
UMN (35) means that the first character of the next
data item is to appear in character position 35 of the
line.

Chapter 3: Input/Output 31

Among the· printing format descriptions, the SKIP
format description specifies relative positioning, while
LINE and COLUMN specify absolute positioning.
The following example shows the use of printing for
mat descriptions in combination with each other.

PUT EDIT ('MONTHLY BANK LOAN REPORT')

(PAGE, LINE(2), A(24));
PUT EDIT (LOAN-#, PRINCIPAL, INTEREST,

PAYMENT, BALANCE) (SKIP(3), A(7),
COLUMN(15), F(8,2), COLUMN(35),
F(3,3), COLUMN(45), F(6,2,)
COLUMN(65), F(8,2));

The first PUT statement specifies that the heading
MONTHLY BANK LOAN REPORT is to be written on line
two of a new page. The second statement specifies
that two lines are to be skipped and the value of
LOAN_# is to be written, beginning at the first char
acter of the fifth line; the value of PRINCPAL, begin
ning at charac~er position 15; the value of INTEREST at
character position 35; the value of PAYMENT at charac
ter position 45; and the value of BALANCE at character
position 65.

List-Directed Data Transmission

List-directed data transmission permits the program
mer to specify the variables to which data is to be as
signed (or from which data is to be acquired) without
specifically stating a format for the data. The format is
a standard one and is supplied by the compiler. List
directed transmission provides easy input/output oper
ations for programmers who do not require a special
format either on input or output, and who are inter
ested only in a list of the results of the processing.

The elementary form of the GET and PUT state
ments, when used for list-directed input and output, is:

GET FILE (filename) LIST (data list);
PUT FILE (filename) LIST (data list);

The FILE (filename) is the file specification; LIST
(data list) is the data specification. The file name and
the data list must each be enclosed in parentheses. The
two specifications need not appear in a particular or
der. If the file specification is omitted, it is assumed
that one of the standard files is to be used. In list
directed transmission, the keyword, LIST, must always
head the data specification.

List-Directed Data Lists

The data list in a list-directed GET statement is a list
of variables (representing internal storage areas) to
which data items in the data stream are to be assigned.
The variables (data names) in a data list are separated

32

by commas. An example of a list-directed GET state
ment follows:

GET FILE (MASTER) LIST
(LOAN-#, PRINCIPAL, RATE);

The GET statement in the above example causes three
data items from MASTER file to be assigned to the vari
ables of the data list in the sequence in which they are
listed; that is, the first data item is assigned to LOAN-#,

the second to PRINCIPAL, and the third to RATE. Assign
ment stops at this point because the data list has
been exhausted.

The data list in a list-directed PUT statement differs
from that of a GET statement only in that a data item
may be represented by an expression other than its
name, for example, an arithmetic expression whose
value is the item to be written. Once evaluated, the
value represented by an expression is transmitted in
the same way that the value represented by a variable
is transmitted. Items in the data list (including expres
sions, if any) are separated by commas. An example of
a list-directed PUT statement follows:

PUT FILE (OUT)

LIST (NAME,6.3~RATE;,NUMBER-10);

The PUT statement in the above example causes three
data items to be written in the file named OUT. The se
quence in which the data items are written follows the
sequence of the items in the data list; that is, the first
data item is the value represented by the variable
NAME, the second is the value resulting from the eval
uation of the expression 6.3~RATE, the third is the value
resulting from the evaluation of the expression NUM

BER-10. Writing stops at this point.
Note that in list-directed input/output or in any

form of stream-oriented transmission, it is the data list
that determines the number of data· items obtained
from the stream or inserted into the stream.

Format of List-Directed Data

In list-directed input, successive data items on the ex
ternal medium must be separated either by commas or
blanks. On output, blanks are supplied between items
automatically.

List-Directed Data Representation

The internal and external representation of a data item
in list-directed transmission is determined by the attri
butes declared for it by the programmer. For example,
a data item for which the attributes CHARACTER
(10) have been declared would be recorded internally
as a character string of 1ength 10. On output, it would
be written the same way. To better understand how
this applies to list-directed GET and PUT statements,

assume that the standard input file contains the follow
ing data:

'NEW YORK', 'JANUARY', -6.5, 72.6

Assume, further, that the following two statements ap
pear in the program:

DECLARE CITY CHARACTER (12), MONTH

CHARACTER (9), MINTEM FIXED
DECIMAL (4,2), MAXTEM FIXED
DECIMAL (5,2);

GET LIST (CITY, MONTH, MINTEM, MAXTEM);

The GET statement would cause the data items to be
assigned as follows:

1. CITY is assigned the character string NEW YORK,

left adjusted and padded on the right with four blanks.
2. MONTH is assigned the character string JANUARY,

left adjusted and padded on the right with two blanks.
3. MINTEM is assigned the value -06.50.
4. MAXTEM is assigned the value 072.60.

The character strings are padded on the right with
blanks to conform with the declared length of the
strings; quotation marks are not maintained internally.
The decimal fixed-point numbers are aligned on the as
sumed decimal point, to conform with the declared
precision. Consider the result of the following PUT
statement:

PUT, LIST (CITY, MONTH, MAXTEM,

MINTEM, 'RANGE:', MAXTEM-MINTEM);

The record would be printed as:
NEW YORK JANUARY 72.6 -6.5 RANGE: 79.1

Note that if a character string is printed, the single
quotation marks are not written, whether the string is
specified as the value of a variable (CITY and MONTH)

or is specified as a character constant ('RANGE:'). If a
character string is written in a file that does not have
the PRINT attribute, the enclOSing quotation marks
are supplied, if necessary, and are written.!

Data-Directed Data Transmission
The elementary forms of the GET and PUT state
ments in data-directed transmission are written as
follows:

GET FILE (filename) DATA;
PUT FILE (filename) DA TA (data list);

The data list need not be included in the GET state
ment because data items in the stream are accom
panied by the data names to which they are to be

1 When a bit string is written by a list-directed PUT statement,
the single quotation marks do appear, as does the letter B,
even in a PRINT file. The binary digits are converted to the
characters, 1 and O.

assigned. The data in the input stream might look like
this:

A == 7.3 B == 'ABCDE' c(4,2) == 9876;

The data name, followed by an assignment symbol,
followed by the value that is to be assigned, is called
an assignment. The assignmeIJ,ts in the input stream
can be separated by commas or by blanks. The last
assignment to be obtained by a single GET statement
must be followed by a semicolon. If the above stream
were part of the standard system input file, the state
ment:

GET DATA;

would cause values to be assigned to A, B, and c.
On output, the data list must appear to specify

which data items are to be written into the stream.
The PUT statement referring to the data items could
be:

PUT FILE (OUT) DATA (A, B, c(4,2));

The assignments are separated by blanks in the out
put stream and a semicolon is written after the last
item specified in the data list.

The STRING Option

One feature of stream-oriented data transmission is
concerned with internal data transmission, rather than
input and output. In either the GET statement or the
PUT statement, the FILE (filename) option can be
replaced by the STRING (string name) option. When
the string option is specified, the statement has nothing
to do with a file. In a GET statement, it indicates that
the designated string is to be considered as a stream
of input characters; in a PUT statement, it indicates
that the designated string is to be considered as the
output stream.

Although the string option can be used with any of
the three modes of stream-oriented transmission, it is
most practical in association with a format list since
individual items in the string need not be separated by
commas or blanks.

Consider the following example:

GET STRING (RECORD) EDIT (NAME, PAY-NO,

HOURS, RATE) (A(12), A(7), F(2),
F(4,2»);

This statement specifies that the character string
having the name RECORD, which is recorded in the in
ternal storage area, is to be scanned. The first 12 char
acters of the string are to be assigned to NAME, the
next 7 characters are to be assigned to PAY-NO, the
next 2 characters are to be converted to decimal fixed-

Chapter 3: Input/Output 33

point representation and assigned to HOURS, and the
last 4 characters specified are to be converted to a
fixed-point decimal number (with two digits after the
decimal point) and assigned to RATE. If any charac
ters remain in the string, they are to be ignored.

The PUT statement with a string option produces
the reverse effect. Consider the statement:

PUT STRING (RECORD) EDIT (NAME, PAY-NO,
HOURSORATE) (A(12), A(7), P '$$99.99');

This statement specifies that the character value of
NAME is to be assigned to the first 12 character posi
tions of the string named RECORD, and that the charac
ter value of PAY-NO is to be assigned to the next 7
character positions of RECORD. The value of HOURS is
to be multiplied by the value of RATE and the product
is to be converted to a character string and assigned
to the next 7 character positions of RECORD.

DISPLAY Statement

The DISPLAY statement causes a message to be dis
played to the machine operator. A response may be
requested. The device upon which the message is dis
played will be specified for each implementation of
PL/I.

The form of the DISPLAY statement is:
DISPLA Y (expression) REPLY (data name);

Execution of the DISPLA Y statement causes the
expression to be evaluated and, when necessary, con
verted to a character string. This character string is
the message that is displayed. The data name in the
REPLY option must be declared as a character string.
This data name receives the message supplied by the
operator of the computer. Execution of the program
is suspended until the operator's message is received,
or, if the EVENT option is specified, execution con
tinues and the reply is considered complete only after
an associated WAIT statement specifying the event
name is executed.
The REPLY specification is optional; when not used,
execution continues without interruption.

The following statement:
DISPLAY ('WHICH IS THE NEXT FILE?') REPLY

(NEXT-FILE) ;

34

displays the message: WHICH IS THE NEXT FILE?, and
causes the computer to wait for the operator's reply.
The operator's reply is assigned to NEXT-FILE.

The statement:

DISPLAY ('END OF PHASE-2');

displays the indicated message but does not interrupt
computer execution.

PL/I and COBOL Comparison: Input/Output
The following discussion compares the input/output
features of PL/I and COBOL. Both languages employ
similar methods for transmitting data between internal
and external storage areas to the extent that input/
output statements process files and identification rec
ords (label records) in files may be processed both on
input and on output. The languages differ, however, in
input/ output capabilities; the following points cover
some of the more Significant differences.

1. In COBOL, data transmission implies files that
are composed of logical records. One or more data
items form a logical record; data is transmitted one
logical record at a time.

PL/I provides two types of data transmission. Rec
ord-oriented transmission, like COBOL, deals with
logical records. Stream-oriented transmission handles
individual data items; a file is thought of as one con
tinuous stream of data items rather than as a collection
of logical records.

2. PL/I provides control format specifications that
regulate printing and spacing operations.

3. In PL/I, identification records (label records) are
read or written as a result of the IDE NT option in an
OPEN or CLOSE statement. In COBOL, label rec
ords are specified by a file description entry in the
Data Division, and special label procedures are speci
fied ina USE statement.

4. COBOL permits a filename to be used as a name
qualifier; PL/I does not.

5. In PL/I, the characteristics ofa file are specified
in a DECLARE statement or an OPEN statement. In
COBOL, file characteristics are specified in a file de
scription entry in the Data Division.

Introduction
Some of the statements in a PL/I program read in and
write out data, do calculations and perform the con
versions from one data representation to another that
are necessary to do these calculations. Some statements
control the order in which other instructions in the
program are executed. Because these statements con
trol the order of execution in a program, they define
the structure of a program. These statements specify
transfers in the flow of program execution, prepare
portions of a program and activate them for execution,
specify iterative execution of certain statements and
specify the control of program flow when program
errors occur.

The remainder of this chapter discusses how a PL/I
program is structured and explains the function of
those statements that define the structure of a PL/I
program and control the flow of program execution.

Blocks
In PL/I, a program consists of a set of external pro
cedures each of which is composed of one or more
blocks. A block is a collection of statements.

There are two kinds of blocks : procedure blocks and
begin blocks.

Procedure Blocks

A procedure block - or, more briefly, a procedure -
has the general form:

label: PROCEDURE;
statement 1

statement n
END label;

A label must precede the PROCEDURE statement.
An END statement need not contain a label; if it does,
the label must be the same as that for the PROCE
DURE statement.

Chapter 4: Program Structure

Begin Blocks

A begin block has the general form:

label: BEGIN;
statement 1

statement n
END label;

Two statements are required, a BEGIN statement and
an END statement. A label may be written before the
BEGIN statement to identify it as the start of a begin
block. The END statement need not include a label;
if it does, the label must be the same as that for the
BEGIN statement.

Internal and External Blocks

Any procedure or begin block may include within it
another entire procedure or begin block. One block
must be completely included in another .. Blocks may be
contained within blocks. When one procedure block
is not contained in any other block it is called an ex
ternal procedure. A procedure block included, in some
other block is called an internal procedure. Begin
blocks cannot be said to be external since every begin
block must appear in some other block.

A program consists of a set of one or more external
procedures which may contain internal blocks (nested
blocks). The first external procedure block to be ex
ecuted in a program must be identified by an im
plementation-defined keyword in the OPTIONS attri
bute. This keyword follows the keyword PROCE
DURE in the PROCEDURE statement of the block
and is required even when the program consists of
only one external procedure.

An example of a program containing procedure
blocks and begin blocks is the following:

Chilpter 4: Program Structure 35

A: PROCEDURE OPTIONS (MAIN);
statement 1
B: BEGIN;

statement 2
statement 3

END B;

statement 4
c: PROCEDURE;

statement 5
D: BEGIN

statement 6
statement 7

END D;

statement 8
END C;

statement 9
END A;

In this example, block A is an external procedure
and contains begin block B and internal procedure c.
Block D is a begin block contained in procedure c.

The implementation-defined keyword MAIN identi
fies block A as the first block to be executed.

Although the begin block and the procedure block
have a phYSical resemblance they differ in an impor
tant functional way. A begin block, like a single state
ment, is executed in the course of sequential program
How. With a procedure, however, program How passes
around the procedure, from the statement before the
PROCEDURE statement to the statement after the
END statement of that procedure.

The only way in which an internal procedure can be
executed is by means of a CALL statement. The ele
mentary form of a CALL statement is:

CALL entry name;

"Entry name" is the label of a PROCEDURE state
ment and, consequently, the name of a procedure. The
CALL statement causes control of program How to be
transferred to the procedure named by "entry name."

A CALL statement in a procedure or begin block
that causes control of program How to be transferred
to another procedure is known as an "activating"
CALL statement. The procedure to which control has
been transferred is known as an "activated" procedure.
When execution of an activated procedure is com
pleted, control is sent to the statement following the
activating CALL statement. Because a procedure can
be activated only by using the name of the procedure
as an entry name in an activating CALL statement,
every PROCEDURE statement must have a label.

In the previous example, statement 1 could be a
CALL statement that activated procedure C; it would
be written as:

CALL C;

36

Upon completion of procedure c, control would be
sent to the statement:

B: BEGIN;

because this statement would be the one following the
activating CALL statement.

Scope of Declarations
The same name may appear in several blocks and be
described with different attributes in each block. This
allows a programmer to partition a program into
many blocks and to use the same name in each block
for different data items. For example:

PAYROLL: PROCEDURE;
DECLARE TAX CHARACTER (5);

REPORT: BEGIN;

DECLARE TAX FIXED (4, 2);

END REPORT;

END PAYROLL;

PAYROLL is an external procedure and REPORT is a be
gin block internal to PAYROLL. The data name TAX is
described differently in each of these blocks. TAX, with
the attribute CHARACTER (5) applies to the entire
PAYROLL procedure except for the begin block REPORT.

In REPORT, the data name TAX has another meaning
and applies to a different data item.

The region of a program within which the descrip
tion of a name applies is called the scope of the decla
ration or the scope of the name established by the
declara tion.

In the above example, the scope of the declaration:

DECLARE TAX CHARACTER (5);

extends throughout the PAYROLL procedure but does
not include the REPORT block. The scope of the declara
tion:

DECLARE TAX FIXED (4, 2);

is limited to the REPORT block.
In general, separate declarations of the same name

imply unique names with distinct scopes that do not
overlap.

It may be necessary, however, to use the same data
item in different blocks. PLjI provides several ways

of accomplishing this: by nesting blocks, by using the
EXTERNAL attribute, and by employing names as
parameters and arguments. Each of these methods will
be discussed in turn.

Nested Blocks
The same data item may be used in different blocks
if the blocks are nested. When a data name is declared
in an outer block by means of a DECLARE statement
and is not redeclared in an internal block, the scope
of the declaration includes the internal block.

Consider the following example:
x: PROCEDURE;

DECLARE NUMBER FIXED (3), COST

FIXED (4, 2);

GET LIST (NUMBER, COST);

CALL Y;
Y: PROCEDURE;

DECLARE TITLE CHARACTER (10);

PUT LIST (TITLE, NUMBER, COST);

END Y;

END X;

When procedure x is executed, NUMBER and COST

are established as fixed point decimals and are assigned
values by the GET statement. The scope of NUMBER

and COST includes procedure Y. The references to these
two data names in the PUT statement employ the
declaration established in procedure x. The scope of
TITLE, however, is limited to procedure Y; when con
trolleaves procedure Y, the data of TITLE is not acces
sible by statements in procedure x. Consequently,
TITLE in procedure Y must not be used by statements
in procedure x.

Transfer of control from procedure x to procedure
y must be made by means of a CALL statement. If
procedure y had been written as a begin block, no
CALL statement would be necessary; sequential flow
of control would be allowed to proceed through the
BEGIN statement of block y.

EXTERNAL and INTERNAL Attributes

If procedure X and procedure y in the previous ex
ample had not been nested, and the same values of
NUMBER and COST were to be used in both procedures,
then the means of indicating this would be to declare
NUMBER and COST in both procedures with the attri
bute EXTERNAL. This is illustrated by rewriting the
previous example as follows:

X: PROCEDURE;
DECLARE NUMBER FIXED (3)

EXTERNAL, COST EXTERNAL
FIXED (4, 2);

GET LIST (NUMBER, COST);

END X;

y: PROCEDURE;
DECLARE TITLE CHARACTER (10),

NUMBER EXTERNAL FIXED (3), COST

FIXED (4, 2) EXTERNAL;

PUT LIST (TITLE, NUMBER, COST);

END y;

This example has the same effect with respect to
NUMBER and COST as did the previous example which
employed nesting.

If the EXTERNAL attribute had not been used
with NUMBER in both of the above procedures, then
the NUMBER in procedure X and the NUMBER in pro
cedure y would refer to two separate and distinct data
items.

When the same data name is employed in two or
more external procedures to refer to the same data
item, the data name must be declared with the EX
TERNAL attribute in each procedure. In all such
declarations for the same data name, the attributes
declared must be consistent, since the declarations in
volve a single data item.

The use of the EXTERNAL attribute is not re
stricted to procedure blocks; it may also appear in
begin blocks that are external with respect to each
other.

When the EXTERNAL attribute is not declared for
a data name, the INTERNAL attribute is assumed.

Chapter 4: Program Structure 37

However, file names and the label names of external
procedure blocks are assumed to have the EXTERNAL
attribute. (Label names of external procedures are
discussed later under "Entry Name Parameters and
the ENTRY Attribute.") The INTERNAL attribute
specifies that the scope of a name is that block to which
the declaration of the name is internal (a discussion of
the scope of declarations appears earlier in this chap
ter). The EXTERNAL and INTERNAL attributes are
called scope attributes and are also discussed later in
this chapter under "Storage Allocation".

Parameters and Arguments
Another way of employing the same data items in dif
ferent procedures is by specifying a parenthesized list
of names in a PROCEDURE statement following the
word PROCEDURE. The names in this list are called
parameters.

The parameters appear in a PROCEDURE state
ment in the following way:

label: PROCEDURE (parameter 1, ••• ,
parameter n);

statement 1

statement n
END label;

Parameters are never permitted in a BEGIN state
ment. Parameters may be declared in a procedure
with a DECLARE statement and may be data names,
filenames, and entry names (the names identifying
procedures). Parameters must be declared in the pro
cedure to which they apply; they cannot be declared
in any other blocks. If no explicit declaration is given,
an implicit or contextual declaration is assumed that
a pplies to the procedure containing the parameters.

Parameters permit the programming of procedures
that require the values of unknown data names. Con
sider a procedure that is used by several other pro
cedures to analyze a tax deduction. The person writing
the procedure may not know what other programmers
may call the tax deduction data item in their pro
cedures. However, the writer of the tax deduction pro
cedure can proceed by assigning whatever data name
he pleases to the tax deduction item. He might, for
example, use the data name TAX-DEDUCTION. This name
is placed in the parameter list of the procedure and
may also be used in the statements of the procedure.
Another programmer may name the tax deduction
item T-D in his procedure. Even though the tax deduc
tion item has two different names in two different pro-

38

cedures, an association between T--D and TAX--DEDUC

TION can be established. This is done by placing T-D

in a parenthesized list of names in the CALL state
ment that transfers control to the tax deduction pro
cedure. The names in this list are called arguments.
The arguments appear in the CALL statement in the
following way:

CALL entry name (argument 1, ••• ,argument n);

Arguments may be data names, filenames, and en
try names.

The parameters of an activated procedure and the
arguments of the activating CALL statement are
paired, from left to right, one by one. The number of
arguments must equal the number of parameters.

During execution of the activated procedure the
name of each parameter is made equivalent to the
name of its associated argument. In general, the attri
butes of an argument must be the same as those of
the corresponding parameter; arguments that identify
arrays must correspond to parameters' that identify
arrays, and arguments that identify structures must
correspond to parameters that identify structures.

Consider the following procedure:

OUTPUT: PROCEDURE (TITLE, NUMBER, COST);

DECLARE TITLE CHARACTER (10),
NUMBER FIXED (3), COST FIXED
(4, 2);

.'
PUT LIST (TITLE, NUMBER, COST);

END OUTPUT;

This procedure contains three parameters: TITLE,

NUMBER, and COST, the values of which are written in
a standard file as list-directed output. Assume that the
OUTPUT procedure is activated from the following pro
cedure:

PROCESS: PROCEDURE;
DECLARE NAME CHARACTER (10),

COUNT FIXED (3), PRICE FIXED
(4, 2);

CALL OUTPUT (NAME, COUNT, PRICE);

END PROCESS;

When control is sent to the OUTPUT procedure by the
CALL statement in the PROCESS procedure, the values
of the arguments NAME, COUNT, and PRICE become
the values of the corresponding parameters TITLE,

NUMBER, and COST. When the OUTPUT procedure is
completed, control returns to the statement following
the CALL statement in the PROCESS procedure.

When an argument is tbe name of an array, the
number of dimensions and the number of items in each
dimension of the array must correspond to those of the
associated parameter. When an argument is the name
of a character or bit string, the length of the string
must be the same as that of the corresponding param
eter. However, the number of items in the dimen
sions of an array and the length of a string may not be
known at the time a procedure is written. When this
is the case, an asterisk (0) may be used for each di
mension or for the string length in the declaration of
.the parameter. The asterisk then indicates that the
string length or number of items in a dimension is the
same as for the corresponding argument.

Consider the following example:

PRINT: PROCEDURE (TAX-TABLE)

DECLARE TAX-TABLE(O) FIXED
(4, 2);

•

PUT LIST (TAX-TABLE);

END PRINT;

This procedure contains one parameter, TAX-TABLE,

which is the name of a one-dimensional array. The
asterisk in the declaration indicates that the size of the
array is unspecified and will assume the size of the cor
responding argument in a CALL statement. Assume
that the PRINT procedure is activated from the follow
ing block:

BEGIN;
DECLARE WORK-TABLE (100) FIXED (4, 2);

•

CALL PRINT (WORK-TABLE);

END;

When control is sent to the PRINT procedure by the
CALL statement in the begin block, the length of

TAX-TABLE becomes the length of WORK-TABLE, which
in this case is 100, and the values of WORK-TABLE be
come the values of TAX-TABLE.

Each time the PRINT procedure is activated, TAX

TABLE can be associated with an argument of different
size. However, the array named by the argument must
be qne-dimensional and the elements in the array must
have the attribute FIXED (4,2);

In addition to data names, file names, and entry
names, arguments may also be expressions. (Expres
sions are discussed in Chapter 5.) For example, the
following statement:

CALL TAX (12° MON1'H-SALARY) ;

could be used to execute a procedure called TAX that
employed a parameter representing an annual salary.
The value of the expression:

12° MONTHLY-SALARY

would then become the value of the parameter em
ployed by the TAX procedure.

Entry-Name Parameters and the ENTRY Attribute

An entry-name has been defined as a label constant
directly following the word CALL in a CALL state
ment. Entry-names may also be used in parameter
lists and in argument lists. When an entry name is
used as an entry-name in a CALL statement it is
considered to be contextually declared as an entry
name; when it is used in an argument list of a CALL
statement, it is not considered to be contextually de
clared. (Contextual description is discussed in Chap
ter 2 under Default Attributes.) For example, consider
the following procedure:

ROUTINE: PROCEDURE (x, Y, z);
DECLARE X FIXED DECIMAL

(4), z LABEL;

•
CALL Y;

•

•
END ROUTINE;

The DECLARE statement in the procedure specifies
that parameter X is a four-digit fixed-point decimal in
teger, and parameter z is a label name that may be
used in the body of the procedure. Y is contextually
declared as an entry-name. If ROUTINE is activated by
a CALL statement in the following procedure:

Chapter 4: Program Structure 39

. PROCESS: PROCEDURE;
•

CALL ROUTINE (COUNT, EDIT, L5);

END PROCESS;

it is then necessary that argument COUNT have the
attributes of parameter x, that EDIT be an entry name,
and that L5 be a statement label. The appearance of
EDIT as an argument in the CALL statement does not
make it an entry name by context. Unless EDIT has
been used as an entry-name in a CALL statement, it
must be explicitly declared in the PROCESS procedure
as an entry-name. This is accomplished by using the
ENTRY attribute, as follows:

PROCESS: PROCEDURE;
DECLARE COUNT FIXED DECIMAL
(4), EDIT ENTRY, L5 LABEL;

CALL ROUTINE (COUNT, EDIT, L5);

END PROCESS;

In the PROCESS procedure, the name ROUTINE is de
fined contextually as an entry name because it im
mediately follows the keyword CALL.

Sequence of Control
When a program is being executed, its sequence of
control determines the order of execution of the state
ments.

Within a block, control normally passes sequentially
from one statement to the next. If a DECLARE
statement is encountered, control passes over it to the
next statement. Sequential execution of' statements is
modified, however, by the following statements:
CALL, PROCEDURE, END, RETURN, GOTO, IF,
DO, and ON. The first three of these statements have
been introduced. RETURN will be discussed in the
following text. Then a discussion dealing with the ac
tivation and termination of blocks will follow, after
which the GOTO, IF, DO, and ON statements will be
discussed. Because the allocation of core storage is
influenced by the sequence of control in a program,
this chapter also includes, at the end, a discussion of
storage allocation.

40

RETURN Statement

The PROCEDURE and END statements delimit a
procedure block so that sequential control passes
around an internal procedure block to the statement
following the END statement of the internal proce
dure block. The CALL statement is used to send con
trol to a specified procedure. When control reaches
the END statement of a procedure, control returns to
the statement following the CALL statement. It is pos
sible to return control before reaching the END state
ment of a procedure. The RETURN statement serves
that purpose. It is written:

RETURN;
Consider the following procedure:

TEST: PROCEDURE;

RETURN;

RETURN;

END TEST;

Whenever either of the RETURN statements or the
END statement is encountered in this procedure, con
trol returns to the statement following the CALL
statement that activated the TEST procedure.

Activation and Termination of Blocks

A begin block is said to be activated when control
passes through the BEGIN statement for the block.
A procedure block is said to be activated when a
CALL statement transfers control to the PROCE
DURE statement for the block.

There are several ways to terminate an active block:
1. A begin block is terminated when control passes

through the END statement for the block.
2. A procedure block is terminated on execution of

a RETURN statement or an END statement for
the block.

3. A block is terminated on execution of a GO TO
statement which transfers control to a paint not
contained in the block. (The GO TO statement is
discussed later in this chapter).

Dynamic Descendance of Blocks

When a block is terminated, all the dynamic descend
ants of that block are terminated.

In the discussion that follows, consider the two
blocks: block A and block B.

Block B is said to be an immediate dynamic descend
ant of block A if B is activated by a statement inter
nal to A. A statement is internal to block A if it is con
tained in A but it is not contained in any other block
which is itself contained in A.

Consider the following example:

R: PROCEDURE;
statement 1
statement 2

s: PROCEDURE;
statement 3
statement 4

T:" BEGIN;
statement 5

END T;
statement 6

END S;
statement 7

END R;

In this example, statements 1, 2, and 7 are internal
to R because they are contained in R and are not con
tained in another block which is itself contained in R.

Statements 3, 4, and 6 are not internal to R but are
internal to s. Statement 5 is internal only to block T.

Block B can become an immediate dynamic descend
ant of A in the following ways:

1. B is a procedure block immediately contained in
A (that is, B is not contained in another block
that is itself contained in A) and is referred to
by a CALL statement internal to A.

2. B is a procedure block not contained in A and is
referred to by a CALL statement internal to A.

3; B is a begin block that is executed as the result
of an interruption. (Interruptions are discussed
with the ON statement later in this chapter.)

Block B itself may have an immediate dynamic de
scendant C, etc., so that a chain of blocks (A, B, C, D,

•••) is created, in which all blocks are active. In this
chain, blocks, c, D, ••• are dynamic descendants of
A, but only B is an immediate dynamic descendant
of A.

When block A is terminated, all active blocks con
tained in B are also terminated.

GO TO Statement

The GO TO statement transfers control to a specified
statement. There are two forms of the GO TO state
ment:

GO TO label constant;
GO TO label name;

In the first form control is sent to the statement that
has the label constant as its label. In the second form
the GO TO statement has the effect of a multi-way
switch; control is transferred to the statement iden
tified by the current value of the label name. Because
the label name may have different values at each exe
cution of the GO TO statement, control may not al
ways pass to the same statement. The label name may
also be the name of an array of labels. The following
example illustrates the use of a GO TO statement
that effectively is a multi-way switch.

SWITCH: PROCEDURE;

L1:

L2:

MEET:

DECLARE L LABEL (L1, L2)

INITIAL (L2);

GO TO MEET;

x == Y - 1;

L == L2;

GO TO MEET;

Y == x - 1;

L == L1;

CALL FUDGE (x, Y, z);
IF z == LIMIT THEN GO TO L;

END SWITCH;

When the value of L is L2, the GO TO statement
sends control to the CALL statement. When L1 is the
value of L, control is sent to the first assignment state
ment.

The value of a label name is changed to L1 by exe
cuting the assignment statement L;"'L1. (The assign
ment statement is discussed in Chapter 5.)

A GO TO statement may not pass control to a block
that has not been activated or to a block that has
been terminated.

A GO TO statement that transfers control from a
block within a nest of blocks to an encompassing block
at a higher level in the nest terminates all other
blocks that are dynamic descendants of the block.

Chapter 4: Program Structure 41

In the following example:

FmST: PROCEDURE;

SECOND: BEGIN;

THIRD: BEGIN;

CALL FOURTH;

•
FOURTH: PROCEDURE;

GO TO SECOND;

END FOURTH;

END THIRD;

END SECOND;

END FmST;

the statement GO TO SECOND; sends control to the
begin block called SECOND, and terminates the blocks
FOURTH and THmD.

IF Statement

It is often desirable to execute a statement or a series
of statements only under certain circumstances. In
such a situation, it might be convenient to evaluate
an expression and, on the basis of this evaluation, se
lect or reject the statement or statements to be exe
cuted. PLjI provides the IF statement for this purpose.
It also provides eight comparison operators that are
used to construct comparison expressions that may be
either true or false. These expressions are used in the

42

IF statement to determine whether or not the state
ment or statements are to be executed.

Comparison Expressions

Comparison expressions use the following comparison
operators:

1=

(greater than)
(not greater than)
(greater than or equal to)
(equal to)
(not equal to)
(less than)
(not less than)
(less than or equal to)

These operators are used with data names and con
stants to form comparison expressions. For example,
the expression:

COUNT> 10

is a comparison expression in which the numeric value
of COUNT is compared with the constant 10. If the
value of COUNT is greater than 10 the expression is
true; otherwise it is false.

In addition to numeric data items, character-string
data items may appear in comparison expressions. The
expression:

NAME < 'ROBERT'

is true when the character-string value of NAME is less
than the character-string constant 'ROBERT; otherwise
it is false. Character strings are compared from left to
right, character by character. The comparison is based
on an implementation-defined collating sequence. If
the character strings are of different lengths, the
shorter string is extended on the right with blanks.

Bit strings are permitted in comparison expressions.
The following expression:

MASK 1='1010101'B

is true when the bit-string value of MASK does not
equal the bit-string constant '1010101'B. The expression
in~olves a left-to-right comparison of binary digits.
The binary digit zero is lower in comparison to the
binary digit one. If the bit strings are of different
lengths, the shorter is extended on the right with zero
bits.

A more detailed discussion of comparison expres
sions appears in Chapter 5.

The result of a comparison is a bit string of length
one; the value of a true comparison is the constant '1'
B; a false comparison has the value '0' B.

Comparison Expressions in an IF Statement

An IF statement can assume one of 2 forms:

IF comparison expression THEN unit
IF comparison expression THEN unit 1 ELSE

unit 2

Each "unit" is either a single statement, a begin
block, or a group. A group consists of a sequence of
statements and/or blocks preceded by a DO statement
and terminated by an END statement. An example of
a group is the following sequence of statements:

DO; GET LIST (GROSS, NET);

CALL PROFIT; END;

This group may appear in an IF statement as fol
lows:

IF SALES == 22500 THEN DO; GET LIST (GROSS,

NET); CALL PROFIT; END;

In this example, if the numerical value of SALES is
equal to the constant 22500, the group of statements
following the keyword THEN is executed; otherwise
the group is skipped and control passes to the state
ment after the END statement of the group.

When the unit is a single statement, the DO and
END statements need not be specified unless iteration
by means of the DO statement (discussed later) is
desired. The following statement is an example of a
single statement "unit."

IF PROFIT < 0 THEN GO TO LOSS;

When the numeric value of PROFIT is less than zero,
control is sent to the statement labeled LOSS; otherwise,
the statement following GO TO LOSS; is executed.

In the second form of an IF statement, a true com
parison causes the execution of the unit after the
THEN and causes the unit after the ELSE to be
skipped. When the comparison is false, the unit after
THEN is skipped, and the unit after the ELSE is
executed. Consider the following example:

IF SALES > 1000

THEN BEGIN;
DECLARE GROSS FIXED (7,2),
NET FIXED (6,2);
GET FILE (DETAIL) EDIT (GROSS,

NET) (F(7,2), F(6,2»;
CALL ANALYSIS (GROSS, NET);

PUT FILE (REPORT) LIST
(PROFIT);

END;

ELSE DO;
CALL TAX (SALES);

GO TO ADJUSTMENT;

END;

When the numeric value of SALES is greater than 1000
the begin block after the THEN is executed and the
DO group after the ELSE is skipped; otherwise the
DO group is executed and the begin block is skipped.

In an IF statement the units following THEN and
ELSE may also contain one or more IF statements.
When this is the case, the units following THEN and
ELSE are treated as pairs. Each ELSE unit 2 is paired
with the immediately preceding unpaired THEN
unit 1. It is, therefore, necessary to specify an ELSE
unit 2 for each THEN unit l. In this case, unit 2 can be
a "null" ELSE statement, that is, the word ELSE fol
lowed by a semicolon.

The following example illustrates the use of nested
IF statements, one of which employs a null ELSE
clause.

IF AGE> 21
THEN

IF WEIGHT < 150
THEN IF HAIR == 'BROWN'

THEN GO TO TYPE1;

ELSE GO TO TYPE2;

ELSE;
ELSE GO TO TYPE3;

In this example, the effect of the null ELSE state
ment is to execute nothing, and to transfer control to
the statement following GO TO TYPE3 should WEIGHT

< 150 be false and AGE > 21 be true.

DO Statment

The DO statement, used together with an END state
ment, provides a means for grouping a set of state
ments. It also provides for the repeated execution of
a sequence of statements and permits modification and
testing of data items to control the repetition. Being
able to repeat the execution of a set of statements a
specified number of times generally results in a small
er and more efficient program. A DO statement can
be specified in several ways.

Consider the following form of a DO statement:

DO WHILE (comparison expression);
statement 1

statement n
END;

This use of the DO statement causes the indicated
sequence of statements to be executed repeatedly as
long as the value of the comparison expression is true.
(Comparison expressions were discussed briefly with
the IF statement and will be discussed in greater de-

Chapter 4: Program Structure 43

tail in Chapter 5.) When the comparison expression
is false, control passes to the statement following the
END statement. In the following example:

DO WHILE (CODE == 1);
GET LIST (CODE, STRING);

PUT EDIT (STRING) (A);
END;

when the DO statement is first encountered the nu
meric va.lue of CODE is compared to 1. If the com
parison is equal, the GET and PUT statements are
executed, and the statement returns control to the DO
statement where the value of CODE is again com
pared to 1. When the comparison is not equal, control
is transferred to the statement following the END
statement. Each time a record is read, the data in the
first field of the record is assigned to CODE and should
contain a numeric value of 1. The last record proc
essed should contain a numeric value in the first field
not equal to 1.

Another form of the DO statement is the following:

DO data name == expression 1 TO expression
2 BY expression 3;

statement 1

statement n
END;

The expressions in this form of the DO statement
are arithmetic expressions and represent numeric
values. (Arithmetic expressions are discussed in de
tail in Chapter 5.) When the DO statement is first
encountered, data name is initialized to this value of
expression 1, and this value is compared to the value of
expression 2; if the result of the comparison falls inside
the range of values of expression 1 and expression 2,
the sequence of statements is executed. The END
statement then returns control to the DO statement
where the value of data name is incremented by the
value of expression 3. If the new value of data name
falls outside the limit specified by expression 2, con
trol is sent to the statement following the END state
ment; otherwise the sequence of statements is executed
and the END statement again transfers control to the
DO statement.

The following example illustrates this form of the
DO statement:

44

DO COUNTER == 1 TO 10 BY 1;
GET FILE· (MASTER) EDIT (ITEM(COUNTER))

(A(80));
END;

In this example, the data name COUNTER is used in
the GET statement as a subscript to specify a position
in an array called ITEM. When the DO statement is
first encountered, the value of COUNTER is set to 1 and
the GET statement is executed. The next 80 characters
in the MASTER file are assigned to the first position in
the ITEM array; then the END statement returns con
trol to the DO statement. The value of COUNTER is in
cremented by 1 and tested to determine if it exceeds
the range 1 to 10. The second execution of the GET
statement assigns the next 80 characters in the MASTER

file to the second position in the ITEM array. This
process is repeated until the value of COUNTER exceeds
10.

The expressions in this form of the DO statement
may have negative values. Because negative values are
permitted, expression 2 need not be greater than ex
pression 1, and the value of expression 3 may be used
as a decrement rather than an increment.

The two previous forms of the DO statement may be
combined as follows:

DO data name == expression 1 TO expression
2 BY expression 3 WHILE (expression 4);

statement 1

statement n
END;

When specified this way, the sequence of state
ments is executed repeatedly until one of the follow
ing takes place: either the value of the data name falls
outside the specified range, or the comparison expres
sion associated with the WHILE becomes false.

The following example illustrates the combined
form of the DO statement:

DO INDEX == 10 TO 1 BY - 1
WHILE (DEDUCTION < ESTIMATE);

END;

In this example the value of INDEX goes from 10 to
1 in decrements of 1. When either the value of INDEX

falls outside the range 10 to 1 or the comparison ex
pression DEDUCTION < ESTIMATE proves false, control
is sent to the statement following the END statement.

Control may transfer into a DO group from outside
the DO group only if the DO group is delimited by a
DO statement that does not specify repeated execu
tion.

ON Statement

During the course of program execution anyone of a
certain set of conditions may occur that can result
in an interruption. An interruption causes the suspen
sion of normal program activities, in order to permit
the execution of a special action. When the special
action has been performed, program execution may
or may not resume at the point where it was sus
pended. The place in a program where an interruption
may occur is generally unpredictable.

For most conditions that can cause an interruption,
the programmer may specify the special action to be
performed. To do this, he may specify the condition
in an ON statement; therefore these conditions are
called ON-conditions. A discussion of individual ON
conditions appears later. Each ON-condition is given
a unique name suggestive of the condition. For ex
ample, ZERODIVIDE names the condition resulting
from an attempt to divide by zero. These names (here
after called ON-conditions) are an intrinsic part of
the language, but the programmer may also use them
for other purposes (such as file names, data names,
and label names) so long as no ambiguity exists.

The general forms of an ON statement are:

ON condition SNAP unit;
ON condition SYSTEM;

The first form allows the programmer to state what
action is to be performed when the specified condition
occurs. The action is specified in the "unit"; it is writ
ten either as an unlabeled single statement or an un
labeled begin block. Note that a RETURN statement
may not appear in the unit. The keyword SNAP is
optional; if specified, it produces a listing of informa
tion relevant to the status of the program when the
specified condition occurs.

The second form specifies that a standard system
action is to be performed. (The standard system action
for each condition is discussed later.)

The following example:

ON ZERODIVIDE CALL ANALYSIS;
specifies that the statement:

CALL ANALYSIS;

be executed when division by zero is attempted. H
a standard system action is to be performed when divi
sion by zero is attempted, the following statement
may be employed:

ON ZERODIVIDE SYSTEM;

Use of the ON Statement

The ON statement is an executable statement. When
executed, an ON statement internal to a block (for
example, block B) establishes an ON-action. Hany

of the statements executed after the execution of the
ON statement and before termination of block B (in
cluding execution of statements in all dynamic descend
ants of block B) is interrupted by the occurrence of
the condition specified in the ON statement, the state
ment or begin block appearing in the ON statement
is executed as though it were activated as a procedure
block. Control normally will be returned to the point
following the interruption.

If, after a given action is established by execution
of an ON statement, and while this action specification
is still effective, another ON statement specifying the
same condition is executed, then the latter ON state
ment will take effect as described above, so that its
specified action will determine the interruption action
for the given condition. If both of these ON state
ments (old and new) are internal to the same block,
the effect of the old ON statement is completely nulli
fied. When the new ON statement is in a block dy
namically descended from the block containing the
old ON statement; the effect of the old ON statement
is temporarily suspended. The effect of the old ON
statement is restored upon termination of the block
containing the new ON statement.

The standard system action for ON conditions is
established automatically. In some situations, the pro
grammer may want to specify his own action for a
given condition, for part of the execution of the pro
gram, and then to have this specification nullified
and allow the standard system action to occur.

The following example illustrates how this may be
done.

A: PROCEDURE;

ON ZERODIVIDE CALL ANALYSIS;

ON ZERODIVIDE;

ON ZERODIVIDE SYSTEM;

ENDA;

When control is transferred to procedure A, the
ZERODIVIDE condition is enabled by the system;
any ZERODIVIDE condition that occurs before the
first ON ZERODIVIDE statement is executed will

Chapter 4: Program Structure 45

result in an interruption, with standard system action.
However, the execution of the first ON ZERODIVIDE
statement establishes the action speCified by the CALL
statement. Any ZERODIVIDE interruptions will cause
this action to be executed until the second ON ZERO
DIVIDE statement is executed. 'The action specified
here is a null statement; any subsequent ZERODI
VIDE interrupts will eHectively be ignored until con
trol reaches the third ON ZERODIVIDE statement,
which re-establishes the standard system action.

Prefixes
A prefix is a list of condition names, separated by
commas and enclosed in parentheses. A prefix may be
attached to a statement. When attached to a state
ment, the prefix precedes the entire statement, includ
ing any possible label for the statement, and is fol
lowed by a colon to separate it from the rest of the
statement.

A statement with a prefix has the general form:
(condition name 1, ••• , condition name n): label:

statement
The following condition names may appear in a

prefix:

UNDERFLOW
OVERFLOW
ZERODIVIDE
FIXEDOVERFLOW
CONVERSION
SIZE
SUBSCRIPTRANGE
CHECK (identifier-list)

Each condition name may be preceded by the word
NO; for example, NOOVERFLOW can be specified
in the prefix list.

Purpose of the Prefix
The conditions named in the prefix of a statement may
occur during program execution of a statement lying
within the scope of the prefix (the scope of the prefix
is discussed below). If one of these conditions actually
does occur, the appearance in the prefix of the cor
responding condition name - or its negation with the
word NO - determines whether or not an interruption
action will then take place.

A condition mayor may not cause an interruption
depending upon whether or not the condition is
enabled. Enabling of the conditions named UNDER
FLOW, OVERFLOW, ZERODIVIDE, FIXEDOVER
FLOW, and CONVERSION is provided automatically
by PL/I; any occurrence of one of these conditions will
cause an interruption unless the enabling has been
negated through the use of a prefix containing the

46

condition name preceded by the word NO. The pro
grammer must himself enable the conditions named
SIZE and SUBSCRIPTRANGE through the use of a
prefix. For example, no interrupt will occur for a SIZE
error, unless the error occurs in a statement within the
scope of a SIZE prefix.

Scope of the Prefix
The portion of a program for which a condition is en
abled by means of a prefix is known as the scope of
the prefix. The. scope of the prefix depends upon the
statement to which it is attached.

If the statement is a PROCEDURE or BEGIN state
ment, the scope of the prefix is the block defined by
this statement, including all nested blocks, except
those for which the condition is respecified by means of
a prefix. The scope does not include external procedure
blocks that are dynamic descendants of the blocks
within this scope.

When the statement is an IF statement or an ON
statement, the scope of the prefix does not include the
units (blocks or groups) that are part of the state
ment. Any such unit may itself have an attached prefix
whose scope rules conform to the rules stated below.

For any statement other than IF, ON, PROCE
DURE, or BEGIN, the scope of the prefix is that of
the statement itself. The scope includes any expres
sions appearing in the statement; it does not include a
procedure explicitly activated by the statement.

Consider the following example:

(SIZE): A: PROCEDURE

•
ON SIZE GO TO A--ERROR;

CALLB;
•
•

END A ;

(SIZE, NOOVERFLOW): B: PROCEDURE;

ON SIZE GO TOB-ERROR;

RETURN;
ENDB;

In this example, the prefix (SIZE) enables the SIZE
condition for procedure A and specifies that if a size

error occurs during any calculation in procedure A, an
interruption is to take place.

The prefix (SIZE, NOOVERFLOW) for procedure
B specifies the same requirement with respect to a
SIZE error for procedure B; in addition,· it specifies
for procedure B that any interruption that might
be caused by an OVERFLOW condition is to be
suppressed.

After the beginning of execution of procedure A,

and before the execution of the first ON statement,
any size error will result in an interruption with stand
ard system action. After execution of the first ON
statement, and before execution of the ON statement
in the activated procedure B, any SIZE error will result
in an interruption with execution of the statement GO
TO A-ERROR;. After execution of the ON statement iIi
procedure B, the statement GO TO B-ERROR; becomes
established for the SIZE condition, but the effect of
the previous ON statement is suspended only tem
-porarily. After the RETURN statement in procedure B

is executed, the effect of the previous ON statement is
reinstated, so that SIZE errors occurring after this point
result again in the execution of the statement GO TO
A-ERROR;.

If any overflow condition occurs during the ex
ecution of procedure A, an interruption will result
with the standard system action for the OVERFLOW
condition. However, for any occurrence of an overflow
condition during the execution of procedure B, the
interrupt will be suppressed.

In the following example:

(NOOVERFLOW): A: PROCEDURE;
•

(OVERFLOW): B: BEGIN;
•
•
•

END B;

•
•
•

END A;

interruptions will be suppressed for overflow condi
tions occurring during execution of that part of pro
cedure A that is not included in block B. Overflow
conditions occurring during execution of block B will
result in an interruption.

ON Conditions

The following discussion presents some of the condi
tion names used to identify ON-conditions and ex
plains the circumstances under which the conditions
occur, the standard system action specified by PL/I
that would be taken in the absence of a programmer
specified action and, where applicable, the result of
any calculation affected by a condition.

• CONVERSION
This condition occurs when conversion (either inter
nal or during input/output) from one data type to
another causes erroneous results; no assumption should
be made about the result of the conversion; the stand
ard system action is to list a comment and cause the
ERROR condition to occur.

• ENDFILE (filename)
This condition occurs during a GET or READ opera
tion when an attempt is made to read past the file
delimiter of the specified file; the standard system
action is to list a comment and cause the ERROR
condition. If the EVENT option has been specified,
the interrupt awaits execution of the associated WAIT
statement.
• ENDPAGE(filename)
This condition occurs during a PUT operation when
an attempt is made to start a new line beyond the
limit specified by the PAGESIZE option in the OPEN
statement; the condition occurs only once per page
so that additional lines can be printed on the page
as a result of a programmer-specified action; the
standard system action is to start a new page and con
tinue processing.

• ERROR
This condition occurs when an error situation forces
processing to terminate; the standard system action
is to cause the FINISH condition to occur.

• FINISH
This condition occurs immediately before processing
reaches its normal termination; the standard system
action is to terminate processing.

• FIXEDOVERFLOW
This condition occurs when the result of a fixed-point
arithmetic operation exceeds the maximum size de
fined by the implementation; the result is undefined;
the standard system action is to list a comment and
cause the ERROR condition to occur.

• OVERFLOW
This condition occurs when the exponent of a float
ing-point number exceeds the maximum size defined
by the implementation; the result is undefined; the

Chapter 4: Program Structure 47

standard system action is to list a comment and cause
the ERROR condition to occur.

• SIZE
This condition occurs when there is a loss of high
order bits or digits caused by assigning a fixed-point
value to a data name declared with the FIXED attri
bute; the SIZE condition depends upon the declared
size of the data name and not upon the maximum
size for fixed-point numbers defined by the imple
mentation; no assumption should be made about the
result of the assignment; the standard system action is
to list a comment and cause the ERROR condition to
occur.

• SUBSCRIPTRANGE
This condition occurs when a subscript is evaluated
and found to lie outside its specified bounds; no as
sumption should be made about the result of the
evaluation; the standard system action is to list a
comment and cause the ERROR condition to occur.

• TRANSMIT (filename)

This condition occurs when a permanent transmission
error is detected on the specified file; the standard
system action is to list a comment and cause the
ERROR condition to occur. If the EVENT Qption has
been specified, the interrupt awaits execution of the
associated WAIT statement.

• UNDERFLOW

This condition occurs when the exponent of a Hoating
point number is smaller than the permitted minimum
defined by the implementation; the result is undefined.
The standard system action is to list a comment and
cause the ERROR condition to occur.

• ZERODIVIDE
This condition occurs when division by zero is at
tempted; no assumption should be made about the
result of the division; the standard system action is
to list a comment and cause the ERROR condition
to occur.

Storage Allocation

Because the internal storage of a computer is limited
in size, the efficient use of this storage during the
execution of a program is frequently a crucial con
sideration. PL/I provides several methods for control
ling the allocation of storage to the values of a par
ticular data name in a program.

48

Allocation of storage to the values of a data name
may occur statically, that is, before execution of the
program, or dynamically, that is, during execution .
Storage may be allocated dynamically to the values
of a data name and subsequently be released.

Every data name in a program is described with
a storage class, which specifies the manner of storage
allocation for the data name. There are four storage
classes; each is specified by d~claring a data name
with one of the four storage class attributes : STATIC,
AUTOMATIC, CONTROLLED, or BASED. The stor
age class attributes can be declared for arrays and
major structures also. The storage class of a data name
may be described either contextually or by default.

Static Storage

Storage for a data name with the STATIC attribute
is allocated before execution of the program and is
never released during execution. A data name de
clared with the STATIC attribute may be declared
with either the EXTERNAL or INTERNAL scope
attribute (discussed earlier in this chapter). An EX
TERNAL data name with an unspecified storage class
has, by default, the STATIC attribute .

Automatic Storage

If a data name has the attribute AUTOMATIC, the
block in which this data name is declared determines
the dynamic allocation for the data name. When this
block is activated during execution of a program,
storage is allocated to the data name, and remains
allocated until termination of the block.

Note that termination of a block by means of a
GO TO statement may cause simultaneous termination
of other blocks and, consequently, simultaneous re
lease of storage for all data names declared in these
blocks with the AUTOMATIC attribute.

The scope attribute of a data name declared with
the APTOMATIC attribute must be INTERNAL.
The INTERNAL attribute may be explicitly declared
or may apply by default. A data name declared with
the INTERNAL attribute but with an unspecified

storage class has, by default, the AUTOMATIC attri
bute. If both the storage and scope attributes are not
specified for a data name, AUTOMATIC storage is
assumed to apply to it.

Controlled Storage

When a data name has the attribute CONTROLLED,
storage allocation must be specified for the data name
with the ALLOCATE and FREE statements. CON
TROLLED data names may be declared with either
the EXTERNAL or INTERNAL scope attribute.

Based Storage

The BASED attribute relates to list processing and
RECORD transmission. The BASED attribute can
establish a pointer variable that automatically main
tains the storage address of the data associated with
the based variable.

A data name having the BASED attribute may iden
tify and describe data having any storage class, but
the EXTERNAL attribute cannot be associated with
it. The default storage class for the pointer variable is
AUTOMATIC.

ALLOCATE Statement

The ALLOCATE statement, when executed, causes
storage to be allocated to a specified data name de
clared with either the CONTROLLED or BASED
attribute. An ALLOCATE statement may have the
following form:

ALLOCA TE data name attribute 1 • • • attribute
n;

The data name in an ALLOCATE statement may
be the name of an array or of a major structure. If
storage is to be allocated for a major structure, then
the entire structure, including all level numbers and
identifiers, must be included in the ALLOCA TE state
ment in the same manner as they appear in the DE
CLARE statement. The ALLOCATE statement may
allocate to a structure an amount of storage that dif
fers from the amount of storage specified for the
structure in a DECLARE statement. When this oc
curs, attributes are required in the ALLOCATE state
ment only for those elementary items in the structure
that require a new size.

The only attribute names permitted in an ALLO
CATE statement are BIT, CHARACTER, and INI
TIAL. These attributes are required only to indicate
a change in the length of a string or to specify a new
initial value to be assigned when allocation occurs;

otherwise, no attributes are needed. Because the attri
butes FIXED, FLOAT, DECIMAL, and BINARY are
not permitted in an ALLOCA TE statement, it is not
possible to alter the storage size allocated to data
items described with these attributes.

When the length of a string or the number of items
in a dimension of an array is specified in an ALLO
CATE statement, it overrides similar information given
in a DECLARE statement. If the length of a string or
the number of items in a dimension of an array is not
specified in an ALLOCATE statement, it must be
specified in a DECLARE statement.

Asterisks may be used in place of the string length
or the number of items in a dimension for a data name
specified in an ALLOCATE statement. The asterisks
indicate that the string length or dimension limits are
the same as those of the most recent allocation for the
data name.

Consider the following example:
A: PROCEDURE;

DECLARE PRICE (100) FIXED (4, 2)
CONTROLLED, COUNT FIXED (2)

INITIAL (50);

•

ALLOCATE PRICE;

ALLOCATE PRICE. (75);

ALLOCATE PRICE (~);

ALLOCATE PRICE (COUNT);

END A;

The array called PRICE is declared to consist of 100
positions. The attribute CONTROLLED, however, in
dicates that storage for PRICE will be allocated only
when an ALLOCATE statement is executed for
PRICE. The first ALLOCATE statement in the example
uses the number 100 specified in the DECLARE
statement as the number of positions in PRICE. When
the second ALLOCATE statement is executed, only
75 array positions are allocated to PRICE. The third
ALLOCA TE statement uses the number of positions
established in the most recent allocation to PRICE.

Chapter 5: Data Manipulation 49

The last ALLOCATE statement uses the value of
COUNT to determine the number of positions to be
allocated to PRICE.

The storage class for COUNT is AUTOMATIC. Each
time procedure A is activated, storage is allocated
to COUNT~ and the integer 50 is assigned as the value
of COUNT. When control leaves procedure A the stor
age allocated to COUNT is released; however, the stor
age allocated to PRICE remains allocated until re
leased by a FREE statement.

An ALLOCATE statement may be used to allocate
storage for more than one data name. Successive data
names appearing in an ALLOCATE statement are
separated by commas. In the following example:

ALLOCATE SCHEDULE (50), COST,

CODE CHARACTER (10), AMOUNT;

the storage required for the data names SCHEDULE,

COST, CODE, and AMOUNT is allocated when the ALLO
CA TE statement is executed.

FREE Statement

The FREE statement causes the storage most recently
allocated to specified data names to be released. The
general form of a FREE statement is:

FREE data name 1, • • • , data name n;
Each data name must be of the CONTROLLED

storage class and may also be the name of an array
or a structure. If a specified data name has no allo
cated storage when the FREE statement is executed,
no action occurs for that data name.

The following example illustrates the use of a FREE
statement together with an ALLOCATE statement:

50

A: PROCEDURE;
DECLARE TAX (100) FIXED (4,2)

CONTROLLED;

ALLOCATE TAX;

GET LIST (TAX);

PUT EDIT (TAX) (F(4,2));

FREE TAX;

•

END A;

TAX is declared as an array containing 100 positions
and has the CONTROLLED storage class .. When the
ALLOCATE statement is executed storage is gener
ated for TAX. Data is then read into and written from
the TAX table and, when the FREE statement is ex
ecuted, the storage for TAX is released.

Storage may be allocated to a data name. in one
block and freed in another block if the data name has
been declared so that its scope includes both blocks.

PLII and COBOL Comparison:
Program Structure
The following discussion compares the ways in which
programs are constructed in PLjI and in COBOL. Al
though both languages are problem-oriented and em
ploy the statement as the basic program element for
processing data and for altering the sequence of pro
gram execution, it is in the area of program construc
tion that PLjI and COBOL differ the most. The fol
lowing list points out some of the more significant
differences in the program structure of the two lan
guages.

1. In general, a COBOL program is equivalent to
one external procedure in PLjI. The Data Divi
sion and the Environment Division of COBOL
correspond for the most part to the DECLARE
statement in PLjI. The COBOL Procedure Divi
sion is equivalent to the executable statements in
a PLjI procedure. The function served by the
COBOL Identification Division is provided in
PLjI by comments.

2. The ENTER statement in COBOL is equivalent
to the CALL statement in PLjI when the CALL
statement is used to activate separately com
piled external procedures. However, the concept
of nested procedure blocks (internal procedure
blocks) in PLjI has no counterpart in COBOL.
Consequently, it is not possible within the same
COBOL source program to define internal sub
programs to which arguments may be assigned.

3. COBOL does not provide the equivalent PLjI
facilities for automatic and controlled allocation
of storage.

4. The AT END, INVALID KEY, and SIZE ER
ROR options in COBOL are provided in PLjI
by the ON statement. However, PLjI provides
a fuller range of interruption conditions than
does COBOL.

5. The effect of the ALTER statement in COBOL
is achieved in PLjI by assigning a label constant
to the label name in a GO TO statement.

6. The PERFORM statement in COBOL and the
DO statement in PLjI may be used for similar
purposes. The PERFORM statement, however,
is used for out-of-line loop control whereas the
DO statement is used for in-line loop control.

Introduction
The discussions in previous chapters have explained
how data is described, how it is transmitted into and
out of a computer, and how a program is organized
to control the sequence of statement execution. This
chapter discusses the means provided by PL/I for
manipulating and processing data.

In general, data processing is concerned with using
available data to generate or modify other data. For
example, the data contained in an employee's time
card can be used to generate his paycheck and to
update his year-to-date earnings stored in a master
file. Such manipulations are indicated in PL/I by
means of expressions that employ data names, con
stants, and operators. When an expression is evalu
ated, the value of the expression is assigned to a data
name by means of the assignment statement. The fol
lowing discussion shows how different types of ex
pressions may be employed in an assignment state
ment to generate or modify string and arithmetic data
items. This chapter includes a discussion of the pic
ture specification and how it is used to modify data
through editing.

Assignment Statement
The form of an assignment statement may be written:

data name == expression;
No keyword appears at the beginning of an assign

ment statement. The equal sign serves as a keyword
and states that the value of the expression on the right
is to be assigned as the value of the data name on
the left. An expression in an assignment statement
may consist of:

1. A constant
2. A data name
3. A sequence of constants, data names, and

operators
The following assignment statement illustrates the

use of a constant as an expression:

PRICE == 19.95;

When this statement is executed, a data item equiv
alent in value to the constant 19.95 is created and
stored in the storage area associated with PRICE. Any
previous data item stored in the storage area for PRICE

is no longer available, because it is replaced by the

Chapter 5: Data Manipulation

new data item. The representation of the new data
item must conform to the attributes of PRICE; this may
involve the creation of a data item that differs in its
characteristics from the constant 19.95. For example,
if PRICE has the attributes FIXED DECIMAL (5, 2),
indicating that the data item named PRICE is a five
digit fixed-point decimal number with two decimal
places, then the data item created for PRICE in the
above example will be equivalent to the constant
019.95; the zero digit on the left is automatically pro
vided to satisfy the 5-digit length as specified by the
attributes of price.

Assume PRICE has the same attributes as described
above and is employed in the following assignment
statement:

PRICE == 5;

Execution of this statement creates for PRICE a data
item equivalent to the constant 005.00; again, the zero
digits are provided to satisfy the requirements for
length and number of decimal places as specified by
the attributes of PRICE.

It is also possible for the length of a numeric con
stant to exceed the length specified for PRICE. Con
sider the following example:

PRICE == 12345.678;

If PRICE has the attributes FIXED DECIMAL
(5,2), the data item created for PRICE is equivalent to
the constant 345.67; in this case two digits are trun
cated on the left and one on the right to satisfy the
requirements for length and number of decimal places
as specified by the attributes of PRICE.

In addition to automatically adjusting the size of
a created data item, an assignment statement may
perform more complicated types of data adjustment.
For example, it could convert the representation of
an arithmetic value from floating-point to fixed-point.
Suppose PRICE had the attributes descrihed above, and
appeared in the following assignment statement:

PRICE == 1.23E2;

Execution of this statement would cause the data
item created for PRICE to be equivalent to the constant
123.00. The floating-point decimal number 1.23E2 is
converted to the equivalent fixed-point decimal num
ber 123; this number is then extended on the right
with zeros to provide two decimal places as required
by the attributes of PRICE.

Chapter 5: Data Manipulation 51

The following statement employs the same attri
butes for PRICE stated above, but involves an auto
matic conversion from fixed-point binary to fixed
point decimal.

PRICE = 100.1B;

In effect, the fixed-point binary constant 100.lB is
converted to the fixed-point decimal constant 4.5; this
number is extended with zeros to satisfy the number
of digits and decimal places required by the attributes
of PRICE. A data item equivalent to the constant 004.50
is then assigned to PRICE.

The statement above could also have been written
using a floating-point binary constant.

PRICE = 1.001E2B;

Because the floating-point binary constant l.OOlE2B
is equivalent in value to the fixed-point binary con
stant 100.IB, the same data item assigned to PRICE

by the previous statement is also assigned by this
statement.

String data can be used in an assignment statement.
Consider the following example where NAME has the
attribute CHARACTER (5).

NAME = 'JONES';

When this statement is executed, a data item equiv
alent to the character-string constant' JONES' is created
and stored in the storage area associated with NAME.

If the length of the chara,cter-string constant ex
ceeds the length specified by the attributes of NAME,

characters are removed from the right end of the
string created for NAME. Consider the statement:

NAME = 'SMITHSONIAN';

If NAME still has the attribute CHARACTER (5),
then execution of this statement creates the character
string constant 'SMITH' and assigns it to NAME. Be
cause the data item assigned to NAME cannot exceed
a length of five characters, the six characters at the
right-hand end of the character-string constant
'SMITHSONIAN' are deleted.

When the length of the character-string constant
is less than the length specified for NAME, the charac
ter string created for NAME is extended on the right
with blank characters until the specified length is
attained.

In the case of varying-length character string, blank
characters are not appended on the right. For exam
ple, assume TITLE has been declared to be the name
of a varying-length character string with maximum
length 30, that is, it has the attributes VARYING
CHARACTER (30). The following statement:

TITLE = 'ACCOUNTING PRACTICE';

52

creates a character string data item equivalent to the
string constant 'ACCOUNTING PRACTICE' and assigns it
to TITLE. No blank characters are appended on the
right because the character length specified for TITLE

may vary. When this statement is executed the current
length for TITLE becomes 19 characters. This length
may be increased or decreased by subsequent assign
ment statements. However, when the length of the
created character string exceeds the maximum length
of 30, the excess characters are deleted from the right
end of the created string.

Bit-string constants are treated like character-string
constants, except that short bit strings are extended
on the right with zero bits. Truncation of bit strings
also occurs on the right. The following example illus
trates the use of a bit-string constant in an assignment
statement.

CODE = '10101' B;

Assume that CODE has the attribute BIT (10); then
the bit string constructed for CODE is equivalent to the
bit-string constant '1010100000'B.

PL/I also allows a label constant to appear as an
expression in an assignment statement. When this oc
curs, the name on the left-hand side of the equal sign
in the assignment statement must be a label name.
Assume that the name POINTER has been declared with
the attribute LABEL and consider the use of POINTER

in the following assignment statement:

POINTER = DEDUCTION;

Because POINTER is a label name,. DEDUCTION must
be a statement label. When this statement is executed
the data item created for POINTER is the statement
label DEDUCTION. There are two restrictions on the
use of a label constant in an assignment statement.
The label constant must not be an entry name, that is,
it must not be the label of a PROCEDURE statement.
This restriction prevents the erroneous transfer of con
trol to a PROCEDURE statement by means of a GO
TO statement (PROCEDURE statements must be ac
tivated only by a CALL statement). The second re
striction is that the scope of the label constant must
be the same as the scope of the label name on the
left side of the assignment statement. Without this
restriction a GO TO statement might erroneously at
tempt to send control to a block outside the scope
of the label name.

The expressions considered so far have consisted
solely of constants. An expression to be considered in
an assignment statement may be a data name rather
than a constant. The following example illustrates the
use of such an expression:

PRICE = COST;

When this statement is executed, a data item equiv
alent in value to the data item currently assigned to
COST is created and stored in the storage area asso
ciated with PRICE. The data item associated with COST

remains unmodified. The conversion techniques dis
cussed for constants also apply to this statement. For
example, if the attributes of PRICE specify a fixed-point
decimal number, and the attributes of COST specify
a floating-point binary number, the creation of the
data item for PRICE will involve a conversion from
floating-point binary representation to fixed-point deci
mal representation.

Label names are also permitted as expressions in
an assignment statement. If the names SWITCH and
POINTER are declared with the LABEL attribute, then
execution of the following assignment statement:

POINTER == SWITCH;

assigns to POINTER the current location identified by
SWITCH.

Conversion Between Data Types
Data names and expressions of unlike data type can
be used in assignment statements. For example, if
CODE is declared with the attribute CHARACTER
(10) and MASK with an attribute BIT (10), the fol
lowing assignment statement:

CODE == MASK;

will create, as a data item for CODE; a string of ten
characters that contains only the characters 1 and O.
The 1 bits in MASK become the 1 characters in CODE,

and the 0 bits in MASK become the 0 characters in CODE.

If the character length specified for CODE exceeds the
bit length specified for MASK, the data item created
for CODE is extended on the right-hand side with blank
characters. Truncation of excess characters on the
right of the data item created for CODE occurs when
the bit length specified for MASK exceeds the character
length specified for CODE.

The example above illustrates how an assignment
statement may convert the bit-string representation
of a value to the equivalent character-string represen
tation. In an assignment statement, there are six ways
in which data values can be converted from one repre
sentation to another.

1. Bit-string Data to Character-String Data
2. Character-String Data to Bit-String Data
3. Bit-String Data to Arithmetic Data
4. Character-String Data to Arithmetic Data
5. Arithmetic Data to Character-String Data
6. Arithmetic Data to Bit-String Data
The following discussion states the rules employed

by PLjI for each of these conversions.

Bit-String Data to Character-String Data

A character string is created that contains 1 charac
ters and 0 characters. The 1 characters in the charac
ter string correspond to the 1 bits in the bit string. The
o characters correspond to the 0 bits.

Character-String Data to Bit-String Data

A bit string is created that contains 1 bits and 0 bits.
The 1 and 0 bits in the bit string correspond, respec
tively, to the 1 and 0 characters in the character string.
No characters other than 1 and 0 characters are per
mitted in the character string; otherwise, the CON
VERSION error-condition will occur (see "ON-Con
ditions" in Chapter 4).

Bit-String Data to Arithmetic Data

The value of the bit string is interpreted as an un
signed fixed-point binary integer and is represented as
an arithmetic data item. This data item has the attri
butes of the data name for which it is created (for
example, floating-point decimal, fixed-point binary,
etc.). When the length of a varying-length bit string is
zero, the value of the bit string (and of the arithmetic
data item) is zero.

Character-String Data to Arithmetic Data

The character string must have the form of a PLjI
arithmetic constant, otherwise the CONVERSION
error-condition will occur (see the ON statement in
Chapter 4). The value of this arithmetic constant is
used to create an arithmetic data item. The attributes
of the data name for which the arithmetic data item
is created determine the representation of the data
item (for example, fixed-point decimal, floating-point
binary, etc.). When the length of a varying-length
character string is zero, the value of the character
string (and of the arithmetic data item) is zero.

Arithmetic Data to Character-String Data

The value of the arithmetic data item i~ represented
as a character string. The format of this character
string is determined by the rules for list-directed out
put discussed in Chapter 3.

Arithmetic Data to Bit-String Data

The value of the arithmetic data item is represented
as a fixed-point binary number. The integral portion
of this number is then used to create the bit-string
data item.

Chapter 5: Data Manipulation 53

Expressions Containing Operators
PL/I provides four classes of operators: arithmetic,
comparison, bit, and concatenation. These operators
may be combined with constants and data names to
form more intricate expressions than previously con
sidered in this chapter. Such expressions may appear
not only in assignment statements, but also in other
statements. For example, the IF and DO statements
employ expressions for control purposes. In the DE
CLARE statement, expressions may appear with the
INITIAL, BIT, and CHARACTER attributes. Expres
sions are used in input/output statements with some
of the control format items and as optional repetition
factors before format items. Expressions are also used
to specify subscript values for subscripted names. An
expression may also be used in the DISPLAY state
ment to create a message.

Arithmetic Expressions

Five arithmetic operators are available in PL/I for
arithmetic expressions:

+

/
00

(addition)
(subtraction)
(multiplication)
(division)
(exponentiation)

The exponentiation operator consists of two adja
cent asterisks and is used to raise a value to a power.
For example, the expression:

COUNT~ ~2

indicates that the value of COUNT is to be squared.
Arithmetic expressions may employ parentheses in

order to group the constants and data names ap
pearing in the arithmetic expression and to alter the
order in which the operations are executed. A priority
system (discussed later) is employed to control the
sequence of operations when parentheses are not
present in an expression.

The following examples illustrate how data names
and constants may be combined with arithmetic oper
ators to form arithmetic expressions:

GROSS-NET

139.99+TAX

NUMBER ~ PRICE

144~11.50

256/LENGTH

(SUM/COUNT) ~ ~0.5

+50

-(2~INDEX)

A+((B-C) ~ (D+E))

«B~ ~2)-(4~

A ~C)) ~ ~.5

Blank characters are not required on either side of
operators or parentheses. Only + and - are permitted
as prefix operators. A prefix operator applies to con
stants and data names that appear to the right of the

54

prefix operator; an infix operator applies to the con
stants and data names on either side of the infix oper
ator. In these examples, the + and - operators are
used as prefix operators in +50 and in -(2~INDEX),
and as infix operators in 139.99+TAX and GROSS-NET.

When parentheses are not employed, the priority
of arithmetic operators is:

~ ~ , prefix +, prefix - (highest priority)
~,/

infix +, infix - (lowest priority)

Consider the evaluation of the following expression:

A == COMMISSION + BASE ~ ADJUSTMENT

Because multiplication has a higher priority than
addition, the value of BASE is first multiplied by the
value of ADJUSTMENT and the result is then added to
the value of COMMISSION. In order to specify the exe
cution of addition before the execution of multiplica
tion, the same expression may employ parentheses as
follows:

B == (COMMISSION+BASE) ~ ADJUSTMENT

In this expression, the values of COMMISSION and
BASE are added, and the resulting value is then multi
plied by the value of ADJUSTMENT. Note that the val
ues given by the two expressions are not equal.

Successive operators of equal priority are executed
from left to right; for example, in the expression:

BASE+COMMISSION + OVERTIME

BASE and COMMISSION are added first and the result
is then added to OVERTIME. However, the operators
00, prefix +, and prefix - are an exception to this
rule; when used successively, these operators are exe
cuted from right to left. The following expression
demonstrates this usage:

AVERAGE ~ ~-0.5

This expression is evaluated as though it were writ
ten as:

AVERAGE~ ~ (-0.5)

The following examples are additional illustrations
of the priority rules discussed above:

A~B/C

A/B~C

A~B-C~D

A-B~C-D

A ~B~ ~-C

-A-B

is equivalent to (A ~B)/C
is equivalent to (A/B) ~ C

is equivalent to (A ~B)-(C~D)
is equivalent to (A-(B~C))-D
is equivalent to A ~ (B~ ~ (-C))
is equivalent to (-A)-B

In the last expression, the first minus sign is a pre
fix - and is applied to the A before the infix - is
executed.

Conversion of Arithmetic Data

Arithmetic operators in an expression may be used
with data names and constants that possess different
data characteristics. When the value of a decimal
number and the value of a binary number are joined
by an arithmetic operator, the value of the decimal
number is converted to a binary value. Similarly, the
value of a fixed-point data item is converted to a
floating-point value, except when the fixed-point item
is a positive exponent, that is, a positive integer ap
pearing to the right of an exponentiation operator. In
the latter case, the fixed-point value is not converted
to floating-point.

When floating-point data appears on the left of an
arithmetic operator, the result of the arithmetic oper
ation is in floating-point format, and the accuracy of
the result is the greater accuracy of the two numbers
involved in the operation.

Fixed-point data on the left of an arithmetic opera
tor causes the result to be in fixed-point format. How
ever, if the operation is exponentiation and if the fixed
point item on the right is not a positive integer, both
numbers involved in the exponentiation are converted
to floating-point format and the result is in Hoating
point format.

Conversion from floating-point format to fixed-point
format occurs only when explicitly required, as in the
case of an assignment statement that has a data name
described as fixed-point to the left of the equal sign.
If this name cannot accommodate the converted float
ing-point value with full accuracy, truncation will oc
cur as required on both sides of the decimal point,
and the SIZE error-condition may be produced (see
"ON Statement" in Chapter 4).

After conversions have occurred, the arithmetic
operation is performed. The accuracy of intermediate
arithmetic results occurring in the evaluation of an
expression is automatically accounted for; however,
each implementation of PLjI may restrict the accuracy
of intermediate results to a specified maximum.

Arithmetic expressions are permitted as subscripts
(see Chapter 2). When a subscript expression is eval
uated, the result is converted, if necessary, to fixed
point binary and truncated, if necessary, to an integer.
A maximum subscript value is specified for each PL/I
implementation.

String data may also be employed in an arithmetic
operation; when this occurs the string data is converted
to arithmetic data. The conversion satisfies the rules
discussed earlier in this chapter under "Conversion
Between Data Types." The use of string data in arith
metic expressions may result in the inefficient execu
tion of a compiled program; this is particularly true
when the same expression must be evaluated many

times during the execution of a program. When effi
ciency is desired, string data should be converted to
an arithmetic representation before it is employed in
arithmetic expressions.

Comparison Expressions

A brief description of comparison expressions appears
in Chapter 4. The following discussion presents a more
detailed description of the various types of comparison
expressions, and shows how comparison expressions
may be used for purposes other than that of controlling
the sequence of execution within an IF statement.

The eight comparison operators are:

> (greater than)
,> (not greater than)
> == (greater than or equal to)

(equal to)
,== (not equal to)
< (less than)
, < (not less than)
< == (less than or equal to)

They may be used to form three types of comparison
expressions: arithmetic, character, and bit. The values
of arithmetic data items are compared algebraically;
negative values compare lower than positive values.
Character strings are compared character by character
from left to right. When the character strings differ in
length, both lengths are made equal by appending
blank characters to the right of the shorter string. An
implementation-defined collating sequence specifies
the order of character comparison. Bit strings involve
the left-to-right comparison of binary digits. When
the bit strings differ in length, the shorter string is
extended on the right with zero bits. A zero bit com
pares lower than a one bit.

The value of a comparison expression is represented
by a bit string of length one. The bit constant 'l'B
represents the value of a true comparison; the bit con
stant 'O'B represents the value of a false comparison.
Consider the following comparison expression:

HOURS> 40

This expression is true when the numeric value of
HOURS is greater than 40; when this occurs, the value
of the comparison expression is the bit constant 'l'B;
otherwise, the value is 'O'B.

The data names and constants used in a comparison
expression may be of different d.at~ types. A priority
on data types is used to convert tM values involved in
a comparison expression fropI/ "one data type to an
other. Arithmetic data has "the highest priority; char
acter-string data, the next; and bit-string data, the
lowest priority. Conversion of data types in a com-

Chapter 5: Data Manipulation 55

paris on expression is always from a lower priority to
a higher priority. Conversion of data types follows
the rules discussed earlier in this chapter.

A comparison expression may be used in IF state
ments. A comparison expression may also be used in
an assignment statement. For example, the following
assignment statement:

CODE == HOURS> 40;

contains the comparison expression HOURS > 40.
When this statement is executed, the value f'f the
comparison expression is represented as a bit string
one bit long and is assigned to CODE. The assignment
conforms to the attributes of CODE and may involve
conver-sion from one data representation to another.
Conversion, if required, follows the rules specified
earlier in this chapter.

Comparison expressions may appear in arithmetic
expressions. Consider the following assignment state
ment:

SALARY == BASE + (HOURS> 40) ~BONUS;

When this statement is executed, the value of the
comparison expression HOURS > 40 is multiplied by the
numeric value of BONUS. Because the value of the com
parison is represented as a bit string, a conversion
from bit-string representation to arithmetic represen
tation is required before the multiplication is per
formed. If the comparison is true the value of BONUS
is multiplied by the integer one; otherwise, the value
of BONUS is multiplied by the integer zero. The result
of the multiplication is then added to the value of
BASE, and this result becomes the value of SALARY.

The comparison operators have a lower priority
than the arithmetic operators. Hence, the following
expression:

BASE + HOURS > 40 ~ BONUS

is equivalent to the expression:

(BASE + HOURS) > (40 ~ BONUS)

Bit-String Expressions

The three bit-string operators are:

, (not)
& (and)
I (or)

They are used with bit-string data to form bit-string
expressions. The operator & and I are infix operators,
that is, they operate upon a pair of bit strings. The
operator ' is a prefix operator and, consequently,
operates on a single bit string.

When the & and I operators are applied to bit
strings of unequal length, the lengths are made equal
by appending zero bits to the right of the shorter bit

56

string. The result of a bit-string operation is a bit
string equal in length to the bit strings involved in
the operation.

Bit-string operations are performed bit by bit, from
left to right. Each position in the resulting bit string
has the value defined in the following table:

If If Then Then Then Then
Ais: B is: 'A is: 'B is: A&B is: AIBis:

1 1 0 0 1 1
1 0 0 1 0 1
0 1 1 0 0 1
0 0 1 1 0 0

Consider the three data names MASK, CODE, and
SWITCH, and assume each has been declared with the
attribute BIT (6); also assume that:

MASK has the value 'OlOlll'B
CODE has the value '1IIIll'B
SWITCH has the value 'lOI'B

The following expressions illustrate the effect of
applying bit-string operators to these data names.

'MASK has the value 'IOlOOO'B
SWITCH & CODE has the value 'lOlOOO'B
SWITCH I MASK has the value 'llllll'B

Bit-string expressions that employ two or more bit
string operators are evaluated from left to right ac
cording to a priority on the bit-string operators. The
operator' has the highest priority; the operator I has
the lowest priority. As is the case with arithmetic ex
pressions, parentheses may be used in bit-string ex
pressions to alter the priority of bit-string operators.
The following examples illustrate the effect of this
priority.

is equivalent to AI (B&C)
is equivalent to (A&B) Ic

AIB&e
A&Ble
'AIB&e
'A&Ble
'A&'Ble

is equivalent to ('A) I (B&C)
is equivalent to (('A) &B) Ie
is equivalent to (('A)&(-'B)) Ie

Bit-string operators may be combined with arithmet
ic and comparison operators in the same expression.
In general, bit-string operators have a lower priority
than the comparison operators, and, as mentioned
earlier, the comparison operators have a lower priority
than the arithmetic operators. However, the operator
, takes precedence over any operators immediately to
its left or to its right. Parentheses may modify the
priority of all operators. The following examples illus
trate the use of arithmetic, comparison, and bit-string
operators in the same expression.

A>B&C<D
is equivalent to

(A>B)&(C<D)

A+B<c-DIE>F
is equivalent to

((A+B)«C-D))I(E>F)

'A<B&C==D
is equivalent to

(('A) < B) & (C==D)

A& 'B I'C > D

is equivalent to
(A& ('B)) I (('C) > D)

A+B & C~D
is equivalent to

(A+B)&(C~D)

When expressions are evaluated, intermediate re
sults are converted from one data representation to
another as required by each operator. In the last ex
ample above, the arithmetic results of the expressions
A + Band C ~ D are converted to bit strings before the
operator & is carried out.

Bit-string expressions can be used as well as com
parison expressions in an IF statement. In an IF
statement, when a bit-string expression is evaluated
and this resulting bit string contains one or more 1
bi~s, the expression is considered to be true; otherwise,
it is considered to be false. In the following example:

IF, (A&B) THEN GO TO REORDER;
ELSE GO TO INVENTORY;

when the bit string resulting from the evaluation of
the bit-string expression' (A&B) contains one or more
1 bits, the statement GO TO REORDER is executed;
otherwise, the statement GO TO INVENTORY is per
formed.

Concatenation Expressions

The concatenation operator II enables one bit or char
acter string to be appended to the right end of another.

For example, the following concatenation expression:

, 1234' II ' ABCD'

is equivalent to the character-string constant:

'1234ABCD'

When bit strings are concatenated, the result is a
bit string. The value of the following concatenation
expression:

'l1l1'B II 'oooo'B II 'l1l1'B

is equivalent to the bit-string constant:

'111100001111'B

When one of the data items in a concatenation
operation is not a character string, the data item is

converted to character string, and the result is a char
acter string. Consider the following expression:

, l0101'B II 'Z9X8Y7'

When evaluated, this expression is equivalent to the
following character string:

, lO101Z9X8Y7'

Execution of the following statement:

LABEL == NAME II ADDRESS;

causes the values of NAME and ADDRESS to be converted,
if necessary, to character strings. The character string
representing the value of ADDRESS is then appended to
the right end of the character string associated with
NAME. The resulting character string is assigned to
LABEL in conformity with the attributes of LABEL.

The concatenation operator may appear with arith
metic, comparison, and bit-string expressions; when
so employed, this concatenation operator has the low
est priority of all operators.

Consider the following statement:

COMMENT == 'SALARY IS $'1 I BASE + COMMISSION;

The arithmetic expression BASE + COMMISSION is
evaluated and the result is converted to a character
string. This string is then appended to the character
string constant 'SALARY IS $', and the result is assigned
to COMMENT.

Array Expressions

The data names permitted in an assignment statement
may be subscripted names. Consider the following
declaration, where TAX, TAXABLE, and RATE are the
names of three arrays:

DECLARE TAX (100) FIXED (4,2),
TAXABLE (100) FIXED (5,2), RATE (100)

FIXED (2,2);

The following assignment statement:

TAX (1) == TAXABLE (1) ~ RATE (1)
multiplies the first value in the TAXABLE array by the
first value in the RATE array and stores the result in
the first position of the TAX array. If similar calcula
tions are to be performed for all positions in these
arrays, a DO statement may be employed as follows:

DO I == 1 TO 100 BY 1 ;
TAX (I) == TAXABLE (I) ~ RATE (I) ;
END;

When this group of statements is executed, the data
name I is initially set to .1, and the assignment state
ment is executed. Control then returns to the DO
statement; the value of I is increased to 2, and the
assignment statement is executed again. This cycle of

Chapter 5: Data Manipulation 57

operations is repeated until I has been incremented to
100.

PL/I provides a simpler way of obtaining the re
sults described above; an array name may be used
without subscripts to indicate that all positions in the
array are to be operated upon. For example, the fol
lowing assignment statement:

TAX== TAXABLE (t RATE ;

is equivalent in effect to the DO group discussed above.
Operations performed on arrays are performed ele

ment by element; therefore, all arrays involved in an
array expression must have the same number of ele
ments and the same number of dimensions.

The result of an array expression is itself an array.
A constant or a data name for an item that is not an
array may be employed with an array name in an ar
ray expression; when so employed, the value of the
constant or the data name is applied to each position
in the array. For example, if a one-dimensional array
called COUNT consisting of six elementary items had
the following values:

5 , - 10 , 11, - 3 , 2 , 7
the array expression - COUNT would have as its values
the following:

- 5 , 10 , - 11 , 3 , - 2 , - 7
The expression 3 ~ (-COUNT) would have the fol

lowing values:

- 15 , 30 , - 33 , 9 , - 6 , - 21
If INDEX is another one-dimensional array consisting

of six elementary items with the following values:

2, - 10 , - 10 , 1 , 0 , 40
then the value of the array expression COUNT + INDEX

would be:

7, - 20, 1, - 2, 2, 47
Similarly, the expression COUNT ~ INDEX would have

the value:

10 , 100 , - 110, - 3 , 0 , 280

Structure Expressions

The names of structures are also permitted in expres
sions. All structures in an assignment statement must
have identical structuring, that is, each structure must
contain the same number of data names; however,
level numbers need not be identical. The data types
written for items in structures need not be the same.
Items in structures specified in an assignment statement
may themselves be arrays or the structures themselves
may be arrays. Should this be the case, arrays speci
fied at equivalent levels in different structures must
have the same number of dimensions and must have
the same number of items in corresponding (limen
sions.

58

Consider the following structures:

1 TOTAL, 2 GROSS, 2 NET, 2 TAX,

1 OLD, 2 OLD-GROSS, 2 OLD-NET, 2 OLD-TAX,

1 NEW, 2 NEW-GROSS, 2 NEW-NET, 2 NEW-TAX,

The assignment statement:
TOTAL == OLD + NEW;

is equivalent to the following sequence of statements:

GROSS == OLD-GROSS + NEW-GROSS;

NET == OLD-NET + NEW-NET;

TAX == OLD-TAX + NEW-TAX;

This example shows that using the name of a struc
ture in an assignment statement is a concise notation
for using the data names of the elementary items with
in the structure. A structure expression causes elemen
tary items in corresponding positions of the structures
to be operated upon; therefore, the result of a struc
ture expression is itself a structure.

Constants and data names that are not the names
of structures or arrays may be used with structure
names in a structure expression; when so used, the
value of the constant or the data name applies to each
elementary item in the structure. Using the structure
TOTAL described above, consider the following state
ment.

TOTAL == TOTAL (t 2;

This statement is equivalent to the following sequence
of statements:

GROSS GROSS (t 2;
NET == NET (t 2;
TAX == TAX (t 2;

The names of structures and the names of arrays
must not appear in the same expression. However, an
expression may employ an array composed of struc
tures. Consider the following structures:

1 TOTAL (10), 2 GROSS, 2 NET, 2 TAX,

1 OLD (10), 2 GROSS, 2 NET, 2 TAX,

1 NEW (10), 2 GROSS, 2 NET, 2 TAX,

Each structure consists of 30 elementary items; the
elementary items GROSS, NET, and TAX are repeated 10
times in each structure. The statement:

TOTAL(I) == OLD (J) + NEW (K);

is equivalent to the following sequence of statements:

TOTAL (I) .GROSS == OLD (J) .GROSS +
NEW (K) .GROSS;

TOTAL(I).NET == OLD(J).NET + NEW(K).NET;

TOTAL(.I).TAX == OLD(J).TAX + NEW(K).TAX;

Qualification in these statements is required to make
GROSS, NET, and TAX unique. Each of the subscripts I,

J and K specifies one of the ten possible sets of data
names consisting of GROSS, NET, and TAX.

Because subscripts may be moved to the right end
of a qualified name, the above statements may be
written:

TOTAL. GROSS (I) == OLD. GROSS (J) +
N~W .GROSS (K) ;

TOTAL.NET(I) == OLD.NET(J) + NEW.NET(K);
TOTAL. TAX (I) ==OLD. TAX (J) + NEW. TAX (K);

Assignment BY NAME
An assignment statement involving structures may per
form element-by-element assignment on the basis of
corresponding names rather than on the basis of cor
responding positions in the structures. This type of
assignment is called assignment by name and is indi
cated by appending BY NAME (with a separating
comma) to the right of the structure expression in the
assignment statement, thus:

structure-name==structure-expression, BY
NAME;

When structures are used with the BY NAME option
in an assignment statement, corresponding data names
must be contained in their respective structures in the
following manner: any names by which corresponding
data names may be qualified must be identical, except
for the name written in the assignment statement.
Thus, the following structures could be used in an
assignment statement with the BY NAME option:

1 MASTER,2NAME,3FIRST,3LAST,2ADDRESS,
1DETAIL,2ADDRESS,2NAME,3FIRST,3MIDDLE,

3LASI',

The corresponding names in these structures are NAME,
FIRST, LAST, and ADDRESS. This example shows that the
declared order of the items within structures used in
an assigmnent statement with the BY NAME option
need not be the same. This example also shows that it
is not necessary for structures to have identical struc
turing when used in an assignment statement with the
BY NAME option.

Using the structures described above, consider the
following statement:

MASTER == DETAIL, BY NAME;

This statement is equivalent to the following sequence
of statements:

MASTER. NAME. FIRST == DETAIL.NAME.FIRST;
MASTER.NAME.LAST == DETAIL.NAME.LAST;
MASTER.ADDRESS == DETAIL. ADDRESS;

Expressions are also evaluated on the basis of corre
sponding names when the expressions appear in an

assignment statement that uses the BY NAME op
tion. Consider the following structures:

1 TOTAL, 2 GROSS, 2 NET, 2 TAX,
1 OLD, 2 DATE, 2 GROSS, 2 NET,
1 NEW, 2 DATE, 2 NET, 2 GROSS,

The following assignment statement:

TOTAL == OLD + NEW, BY NAME;

is equivalent to the following sequence of statements:

TOTAL.GROSS == OLD.GROSS + NEW.GROSS;
TOTAL. NET == OLD.NET + NEW.NET;

Although DATE appears in both the OLD and the NEW
structures, no addition is carried out for DATE because
this name is not part of the structure TOTAL.

Data Editing
The previous discussions in this chapter have con
sidered those aspects of data manipulation that involve
the evaluation of expressions and the assignment of
values to names. The following discussion presents
an additional type of data manipulation that permits
the detailed editing of data items for printing pur
poses. Editing may be described as an alteration of the
format and/or punctuation of a character-string data
item, usually for such purposes as improving read
ability or, as with paychecks, protecting the data item
against unauthorized alteration. Editing involves the
addition of characters to the data item and/or the
replacement of specified characters with other char
acters. For example, in a payroll application, the digits
representing an employee's salary might be 0015089.
These digits would be much more meaningful on a
paycheck in an edited form, such as $ <1- <1-150.89; the
asterisks would also hamper an attempt to alter the
amount.

Editing is specified by a picture specification in
either a PICTURE attribute (discussed in Chapter 2)
or a P format description (discussed in Chapter 3).
The' PICTURE attribute appearing with a data name
in a DECLARE statement determines how data items
are edited when they are assigned to that data name.
Data items may be assigned to data names by either
the assignment statement, the GET statement, or the
READ statement. The P format description is used
to specify data editing during the execution of an
edit-directed PUT statement.

The following discussion describes the picture char
acters that may be used to edit a character-string data
item. Examples are used to illustrate the effect of each
picture character and to show its relationship with the
other picture characters.

Chapter 5: Data Manipulation 59

Source Picture Edited
Data Specification Data

The decimal point may be used only once in a picture speci- 12345 ZZZV.9 2345.0
fication of numeric data. It indicates that the corresponding
position in the character string contains a decimal point.

+ The + picture character is used the same way the $ picture 123 +999 +123
character is used, except that a + sign will appear when the 012 ++99 b+12
numeric value of the character string is greater than or -12 +999 bb12
equal to zero; otherwise no sign will appear. 000 +999 bOOO

$ The $ picture character, when used once in a picture speci- 123 $999 $123
fication, must appear at either the left or the right end of 123 999$ 123$
the picture specification. It indicates that a $ is present in 012 999$ 012$
the corresponding position of the character string. A se- 012 $999 $012
quence of $ picture characters may appear at the left end 123 $$99 $123
of the picture specification to indicate a drifting $; this 012 $$99 b$12
specifies that leading zeros be changed to blanks and that
the right-most leading zero be changed to a $. When all
numeric positions in the picture specification contain the $ 000 $$$.$ bbbbb
picture character and the numeric value of the character
string is zero, all positions of the character string are
changed to blank even if a decimal point is present.

~ The ~ picture character is similar to the Z picture character 00100 ~0099 ~0100

except that the 0 character is used instead of a blank char- 00000 000 ~~ ~oo ~o

acter to replace a leading zero. The 0 picture character must 00123 $00,999 $0~0123

not be used with a Z picture character in the same picture
specifica tion.

The - picture character is similar to the + picture char- 123 -999 b123
acter except that a - sign will appear when the numeric -15 -99 -15
value of the character string is less than zero. -001 --99 bb-l

000 -999 000

/ The / picture character is used the same way the comma 12345 99/99/9 12/34/5
picture character is used, except that a / is present in the
corresponding position of the character string.

The comma picture character specifies that a comma is 1234 9,999 1,234
present in the corresponding position of the character string. 00123 $$$,999 bbb$123
If zero suppression occurs, the comma will appear only if
there is an unsuppressed digit to the left of the comma. If
there is no unsuppressed digit to the left of the comma, then
three possibilities arise:
a. The preceding character is ~ ; then the comma position 00123 ~,999 0~123

will contain an asterisk.
b. The preceding character is a drifting $, +, - or S; then 00123 $$,999 bb$123
the comma position is treated as though it too contained
the drifting character.
c. The preceding character is other than the above; then 00123 ZZ,999 bbb123
the corresponding position in the data contains a blank
character.

B The B picture character specifies that a blank character be 12345 ZZB999 12b345
inserted in the corresponding position of a character string.

60

Source Picture Edited
Data Specific a tion Data

CR The CR character pair may appear only at the right end of -123 $Z.99CR $1.23CR
a picture specification. It indicates that the chani.cter string 1234 $ZZ.99CR $12.34bb
contains CR if the numeric value of the character string is
less than zero; otherwise, blank characters are used instead
of the CR characters.

DB The DB character pair is used in the same way as the char- -1234 $ZZ.99DB $12.34DB
acter pair CR, except that the characters DB are used when 1234 $ZZ.99DB $12.34bb
the numeric value of the character string is less than zero. I

I The I picture character specifies that the corresponding 1021 Z99I
position in the character string contains a digit with an over-

010000) punched + sign when the numeric value of the character
string is greater than or equal to zero.

I 1 3 4 5 6t

1"1"
221222)

R The R picture character is similar to the I picture char- -1021 Z99R
I acter except that a - sign is overpunched when the numeric

value of the character string is less than zero. 01 0000
I 1 3 • 5 6

1"111

S The S picture character is similar to the + and - picture 12345 S$9999
characters; it specifies that either a + or a - sign will -1234 S$9999
always appear with fhe character string.

T The T picture character indicates that the corresponding 1021 Z99T
position in the character string contains a digit with an
overpunched + or - sign. 01 0000

113456

1"111
221222

V The V picture character is used only once in a picture speci- 12345 ZZZV99 34500
fication of numeric data. It specifies that a decimal point 123.4 ZV999 3400
should be assumed at the corresponding position in the 123.4 ZV.999 3.400
character string. No decimal point is actually present in the
character string. Aligns on decimal point present in data
item.

Y The Y picture character specifies a conditional digit posi- 01020 Y9Y9Y b1b2b
tion. When the corresponding position in a character string
contains a zero (leading or non-leading), the zero will be
changed to a blank character; otherwise a non-zero digit
will remain.

Z The Z picture character specifies a conditional digit position. 12345 ZZZZZ 12345
When the corresponding position in a character string con- 01234 ZZZZZ b1234
tains a leading zero, the zero will be changed to a blank
character; otherwise a non-zero digit will remain. When all 00000 ZZZ.Z bbbbb
digits in the character string are changed to blank char- 0123 ZZZZ$ b123$
acters, a decimal point, if present, will also be changed to 0123 $ZZZZ $b123
a blank character. In a picture specification, the Z picture 0000 $ZZZZ bbbb
character must not be used to the right of the 9 picture 0000 ZZZ.9 bbbbb
character or to the right of a drifting picture character.

9 The 9 picture character indicates that the corresponding 12345 99999 12345
position in a character string always contains a decimal digit 123 $$99 $123
(0 through 9).

Chapter 5: Data Manipulation 61

PL/I and COBOL Comparison:
Data Manipulation
The following discussion compares the data manipula
tion features of PL/I and COBOL. Both languages
use expressions to specify data calculations and the
picture specification to edit data. However, PL/I uses
a single statement for all types of data manipulation,
whereas COBOL uses several different statements. The
following list contains some of the more significant dif
ferences in the data manipulation features of both
languages:

1. The effects of the COBOL statements MOVE,
COMPUTE, ADD, SUBTRACT, MULTIPLY,
and DIVIDE are achieved in PL/I with the as
signment statement. However, when the MOVE
statement in COBOL is used with groups (the
equivalent of PL/I structures), data is moved

62

without regard to the level structure of the
groups, and data conversion, if specified, is ig
nored. When the assignment statement in PL/I
is applied to structures, the assignment is per
formed elementary item by elementary item and
all data conversion is done as specified.

2. The BY NAME option in PL/I is similar to the
CORRESPONDING option in COBOL.

3. PL/I permits expressions to use data items that
contain edit characters. COBOL does not pro
vide this feature.

4. The bit string operators in PL/I are similar to
the logical operators in COBOL. However, CO
BOL has no data type that corresponds to the
bit string data type of PL/I.

5. The concatenation operator of PL/I is not avail
able in COBOL.

The following pages contain sample problems that
demonstrate some of the ways in which PL/I may be
used to solve data processing problems. The solution
to each problem is by no means unique and makes no
attempt at being optimum. Although these problems
illustrate some concepts and uses of PL/I, they are
not intended to teach programming or programming
systems design.

Problem I - A Boole. Pricing Problem
The catalog number, unit price, and title of each book
stocked by a book distributor are kept on a master
file. The file is arranged in sequence according to the
catalog number of each book. The file is on tape and
has a standard end-of-file mark. A transaction file,
also on tape, contains orders for books that specify the
catalog number, quantity of the book ordered, and the
customer making the order. The orders are arranged
according to catalog number in the same sequence as
the master file. The last order in the transaction file
contains the dummy catalog number 99999, and indi
cates the end of the file. The total- price of each trans
action is to be calculated; a 3% discount is given for
orders over $150.00. A report is to be printed showing
the customer, catalog number, hook title, quantity
ordered, unit price, and total price.

In the master file the information for each book has
the following format: the first five characters are alpha
meric and represent the catalog number; the next four
are decimal digits and represent the unit price - a
decimal point is assumed before the last two digits;
the next 30 character positions contain alphameric
data representing the book title.

The orders in the transaction file have the following
format: the first five character positions contain an
alphameric catalog number; the next five positions are
blank; a numeric integer representing the quantity
occupies the next four positions; then five blanks fol
low; the next 40 alphameric positions represent the
customer.

The report is to have 50 lines per page and is to be
double-spaced. The first line of each page is to con
tain the heading BOOKS ORDERED, and each page
is to be numbered in sequence, beginning with 1. The
information printed on each line is to begin at charac
ter position 10 and is not to extend beyond character
position 115. The customer, catalog number, book title,

Appendix

quantity ordered, unit price, and total price appear
in that order on each line, and are placed at the follow
ing character positions: 10, 52, 59, 91, 97, and 104.
Actual decimal points, but no dollar signs, are to be
printed in the unit price and total price. Leading zeros
in these amounts are to be changed to blanks. The
total price will always be less than $10,000.00

Solution to Problem 1

BOOK-PRICING: PROCEDURE OPTIONS (MAIN);

DECLARE
1 MASTER,

2 CATALOG-NO

2 UNIT-PRICE

2 TITLE

CHARACTER (5),
FIXED (4,2),
CHARACTER (30),

1 TRANSACTION,

2 CATALOG-NO

2 QUANTITY

2 CUSTOMER

CHARACTER (5),
FIXED (4),
CHARACTER (40),

1 REPORT,

2 CUSTOMER CHARACTER (40),
2 CATALOG-NO CHARACTER (5),
2 TITLE CHARACTER (30),
2 QUANTITY FIXED (4),
2 UNIT-PRICE FIXED (4,2),
2 TOTAL-PRICE FIXED (6,2),

PAGE-COUNT FIXED (2) INITIAL (0);
OPEN

FILE (MASTER-FILE) INPUT,
FILE (TRANSACTION-FILE) INPUT,
FILE (REPORT-FILE) PRINT P AGESIZE (50)

LINESIZE(115);
ON ENDPAGE (REPORT-FILE) GO TO HEADING;

ON ENDFILE (MASTER-FILE) GO TO ERROR;

HEADING: PAGE-COUNT == PAGE-COUNT + 1;
PUT FILE (REPORT-FILE) EDIT

('BOOKS ORI?ERED', 'PAGE', PAGE-COUNT)

(PAGE, COLUMN(10), A(13),
COLUMN(104),

A(4), COLUMN(109), P'Z9');

IF PAGE-COUNT > 1
THEN GO TO PRINT;

GET FILE (MASTER-FILE) EDIT (MASTER)

(A (5), F (4,2), A (30));
TRANSACTION-READ: GET. FILE

(TRANSACTION_FILE) EDIT (TRANSACTION)

(A(5), X(5), F(4), X(5), A(40»;

Appendix 63

IF TRANSACTION .CATALOG-NO == '99999'
THEN GO TO FINISH;

COMPARE: IF TRANSACTION.CATALOG-NO-'==
MASTER. CATALOG-NO

THEN DO;
GET FILE (MASTER-FILE) EDIT

(MASTER) (A(5), F(4,2), A(30));
GO TO COMPARE;
END;

TOTAL-PRICE == TRANSACTION. QUANTITY ~

MASTER. UNIT-PRICE;
IF TOTAL-PRICE > 150.00 THEN TOTAL-PRICE ==

0.97 ~ TOTAL-PRICE;

REPORT == TRANSACTION, BY NAME;
REPORT == MASTER, BY NAME;
PRINT: PUT FILE (REPORT-FILE) EDIT (REPORT)

(SKIP(2), COLUMN(10), A(40),
COLUMN(52), A(5), COLUMN(59), A(30),
COLUMN(91), F(4), COLUMN(97),
P'ZZ.99', COLUMN(104), P'ZZZZ.99')

GO TO TRANSACTION-READ;
ERROR: DISPLAY ('END OF FILE ON MASTER

BEFORE TRANSACTIONS FINISHED');
FINISH: CLOSE FILE (MASTER-FILE),

FILE (TRANSACTION-FILE),
FILE (REPORT-FILE);

END BOOK-PRICING;

Problem 2 - A Work Card Study
The computer is directed to read a series of work
cards showing the hours worked by employees and
then to compute the daily average for each employee.
Each card contains several fields, one field for each
data item; a comma separates fields. The first data
item on each card is a name consisting of 15 alpha
meric characters. The next item is five alphameric
characters representing a department number. The
next five items are numeric and consist of five charac
ters each with an actual decimal point in the third
character position. These are daily time items, repre
senting the hours worked on each of five workdays.

An output file is to be created according to the con
ventions of list-directed output. The data items on
the input cards are to be duplicated in the output file.
The data for each card is to be followed by the total
time and the average daily time.

In the actual processing the five daily time items are
treated as an array and a subscript N is used to ob
tain each time value in turn.

64

Solution to Problem 2

WORK-CARD: PROCEDURE OPTIONS(MAIN);
DECLARE N FIXED (1), WORK-FILE FILE,

NEW-WORK-FILE FILE, NAME CHARACTER
(15), DEPT CHARACTER (5),
TIME (5) PICTURE '99.99',
TOTAL-TIME PICTURE '99V99',
AVERAGE-TIME PICTURE '99V99';

OPEN FILE (WORK-FILE) INPUT, FILE
(NEW-WORK-FILE) OUTPUT;

ON ENDFILE (WORK-FILE) GO TO CLOSE;
READ: GET FILE (WORK-FILE) LIST (NAME,

DEPT, TIME);
TOTAL-TIME == 0;
DO N == 1 TO 5 BY 1;

TOTAL-TIME == TIME (N) + TOTAL-TIME;
END;

AVERAGE-TIME == TOTAL-TIME / 5;
PUT FILE (NEW -WORK-FILE)

LIST (NAME,DEPT,TIME,TOTAL-TIME,
AVERAGE-TIME) ;

GO TO READ;
CLOSE: CLOSE FILE (WORK-FILE), FILE

(NEW -WORK-FILE) ;
END WORK-CARD;

Problem 3 - A File Searcli
This example illustrates a type of analysis often re
quired in marketing research and similar studies. A
personnel file is searched to find all records containing
certain specified data. Each record found is written
in a separate file and, when finished, a count of the
number of records found is displayed on a standard
display device.

Each record consists of a 16-character name followed
by a 24-bit code-string. Each bit position within the·
code-string represents specific personnel data.

Format of Code-String

Items

Sex

Age

Height

Characteristics

Male
Female

Less than 20
At least 20 but not

over 50
Over 50
Over six feet
At least five feet,

six inches, but not
over six feet

Less than five feet,
six inches

Bit
Positions

1
2

3

4
5

6

7

8

Weight Over 185 pounds 9

At least 120 pounds,
but not over 185

pounds 10

Less than 120 pounds 11

Eyes Blue 12

Brown 13

Hazel 14

Grey 15

Hair Brown 16

Black 17

Grey 18

Red 19

Blond 20

Bald 21

Education College 22

High School 23

Grammar School 24

The presence of a characteristic is indicated by a
one bit in the corresponding bit position of the code
string. A zero bit indicates the absence of a character
istic.

A search is made to obtain the records of all persons
having the following characteristics:

1. Females under 20 years of age, five feet six inches
and over in height, from 120 to 185 pounds in
weight, with either hazel or brown eyes, not bald,
having a high school education.

2. Males over 50 years of age, over six feet in height,
over 185 pounds in weight, and college-educated.

Solution to Problem 3

FILE-SEARCH : PROCEDURE OPTIONS (MAIN);

DECLARE
1 PERSONNEL-RECORD BASED (P),
2 NAME CHARACTER (16),

2 CODE-STRING,

3 SEX,

(4 MALE,

4 FEMALE) BIT (1),

3 AGE,

(4 UNDER-20,

4 TWENTY-TO_50,

4 OVER-50) BIT (1),

3 HEIGHT

(4 OVER-B,

4 FIVE-AND-A-HALF -To-B,
4 UNDER-FIVE--AND-A-HALF) BIT (1),

3 WEIGHT,

(4 OVER-I85,

4 BETWEEN_I85-AND_I20,

4 UNDER-I20) BIT (1) ,

3 EYES,

(4 BLUE,

4 BROWN,

4 HAZEL,

4 GREY) BIT (1),

3 HAIR,

(4 BROWN,

4 BLACK,

4 GREY,

4 RED,

4 BLOND,

4 BALD) BIT (1),

3 EDUCATION,

(4 COLLEGE,

4 HIGH-SCHOOL,

4 GRAMMAR-SCHOOL) BIT (1),
COUNT FIXED (5),

(RESULT-FILE FILE OUTPUT,
PERSONNEL-FILE FILE INPUT) RECORD;

OPEN FILE (PERSONNEL-FILE),

FILE (RESULT-FILE);

ON ENDFILE (PERSONNEL-FILE) GO TO FINISH;

COUNT = 0;

INPUT: READ FILE (PERSONNEL-FILE) SET (p);
IF (FEMALE & AGE. UNDER--20

& 'HEIGHT. UNDER-FIVE--AND-A-HALF

& WEIGHT.BETWEEN-I85--AND-I20

& (EYES.HAZEL , EYES.BROWN)

& 'HAIR. BALD & EDUCATION. HIGH-SCHOOL)

I (MALE & AGE. OVER-50 & HEIGHT.OVER-B

& WEIGHT.OVER-I85 & EDUCATION.COLLEGE)

THEN DO; COUNT = COUNT + 1;

WRITE FILE (RESULT-FILE) FROM
(PERSONNEL-RECORD) ;

END
GO TO INPUT;

FINISH: DISPLAY ('COUNT IS ' " COUNT);

CLOSE FILE (PERSONNEL-FILE), FILE
(RESULT-FILE) ;

END FILE-SEARCH;

Appendix 65

Index

accuracy , .. 55
activation of blocks .. 36, 40
addition .. 54
ALIGNED attribute .. 21
ALLOCATE statement ... _ .. 49
allocation ... 49

also see storage class attributes
arguments ... 38
arithmetic data .. 10

attributes .. 12
arithmetic operations .. 54
array .. 18

allocation .. 49
assignment .. 57
bounds .. 39

also see asteri"sks
dimensions "....................... 19
expressions '" 57
manipulation 58
of structures .. 20, 58

assignment
array .. 57
statement .. . 51
string .. 52
structure 58

asterisks 39, 49
attributes 12, 13, 14

defaults for 15
factoring of ... 22

AUTOMATIC attribute ... 48
BASED attribute ... 26
based variable 26
begin block 22, 35
BEGIN statement 22, 35
BINARY attribute .. 12
BIT attribute 13
bit-string data 10
bit-string operation 53, 56
blanks 7
blocks 35

activation of 36, 40
begin 35
nested -............... 37
procedure 35
termination of 40

BUFFERED attribute 24
buffering attributes 24
BY and TO 44
BY NAME option 59

CALL statement 38
CHARACTER attribute.
character string

data .. .
pictures

also see string
characters

alphabetic
data character set

13

28
30,61

language character set

7
7
7
7 special...

CLOSE statement
collating sequence
COLUMN format item
comment
comparison operations

66

25
55
31

7
42,55

concatenation operations
condition prefixes
conditions
constants

bit-string
character-string
fixed-point binary
fixed-point decimal
floating-point binary
floating-point decimal
statement-label

contextual declarations
also see declarations

control

57
46
47
11
11
11
11
11
12
12
12
39

format items 31
sequence of '. 40

CONTROLLED attribute 49
also see storage

CONVERSION condition
conversion

arithmetic
in expressions
type

data

.................................. 47
53
55
51
53

aggregates 16
arithmetic 10
bit-string 10
character set " 7
character-string . .. 13
conversions 53
description 10
editing 59
format items '" 28, 29, 30
manipulation 51
name 8,11,53
specification 30

repetitive specification for 30
transmission 26

statements 26, 27
types 10

defaults for 15, 47
data-directed transmission. 33

data specification for. 33
input 33
output 33

DECIMAL attribute 12
declarations

contextual
external
scope of "

DECLARE statement

39
36
36

12,40
default attributes. 15
DEFINED attribute.
defined item ..

. delimiters
descendance of blocks .. .
DISPLAY statement
division .. ,

15,58
. 15,58

8
41

..................... 34
. .. 54
. .. 43 DO statement .

EDIT . .. 27
edit-directed transmission 27

,28 format of
editing

symbols '"
drifting

. ... 59,60,61
. .. 61

ELSE clause .. 43 list-directed
enable .. 46 data specification .. 32
END statement ... 35 input .. 32

use of ..• 35 output .. 32
ENDFILE condition .. 47 transmission 32
ENDPAGE condition .. 47 LOCATE statement .. 26, 27
ENTRY attribute .. 39
entry name .. 39
ENVIRONMENT attribute 24
ERROR condition .. 47
exponentiation .. : 54
expressions

arithmetic 54
array . '" 54, 57
evaluation of .. 51
structure 58
subscripts .. 20,55

EXTERNAL attribute .. 37
external declarations '" 37
external procedure . .. 35

multiplication .. :....... 54
names .. 8,11

qualified 17, 27
subscripted .. 20, 27
use of .. 8,45

nesting .. 37
NO prefix .. 46
ON statement .. 45

use of .. 45
ON-conditions .. 45,47

nullification of .. 46
prefixes used with .. 46
programmer-defined .. 45

OPEN statement .. 25
factoring .. " 22 operations
file arithmetic .. " .. ,....... 54

attributes .. 24 array-array .. 57
closing .. 25 bit string .. 56
names .. 25 comparison 55
opening .. 25 concatenation ... 57

FILE attribute .. 24 priority of .. 54
FINISH condition .. 47 string ... 57
FIXED attribute 12 operators
FIXEDOVERFLOW condition .. 47 arithmetic .. '" 54
fixed-point 11 bit string .. 56
FLOAT attribute .. 12 comparison .. 55
floating-point .. 12 infix ... 54
form, coding .. 7 prefix .. 54
format string .. 57

of data-directed output .. 33 output .. 24
of list-directed I/O .. 32 OUTPUT attribute .. 24

format items OVERFLOW condition .. 47
control .. 31 PACKED attribute .. 21
data .. 28 PAGE format item 31
format list :; , .. 28

FREE statement .. 50
FROM option .. 26

P AGESIZE option .. 25
parameters '" 38
PICTURE attribute .. 13, 30, 59

GET statement : 27
GO TO statement .. 41

with numeric data .. 14,60
specification .. 60
with string data 14, 61

IDENT option .. 25 picture format items 60
identifiers ... '" 8 pointer .. 26

length of .. 8 POSITION attribute .. 15
keywords .. 8

IF statement .. 42
precision , , '" 12
prefix .. 46

infix operators .. 54
INITIAL attribute .. 21

operators .. '" 54
PRINT attribute .. 24

INPUT attribute .. 24 printing format items .. 31
input/output .. 24
INTERNAL attribute .. 37

priority of operations .. 54
procedure " 35

internal procedure .. 35
internal to .. 41

external .. 35
internal '" 35

keyword .. 8
name .. 35
termination of .. 35

label .. 8, 12, 53
LABEL attribute 21
length

PROCEDURE statement .. 35
program structure 35, 20
PUT statement .. 27

data item ... 51
identifiers '" 8

qualified names 17
quotation marks .. 11

strings ... 52 READ statement .. 26
level numbers 16 RECORD

also see structures attribute .. 24
LIKE attribute .. 21 transmission statements .. 26
LINE format item .. 31
LINE SIZE option 25

repetition 11, 14,30
REPLY option .. 34

Index 67

RETURN statement .. 40 data-directed .. 33
REWRITE statement .. 27 edit-directed .. 27

scope
of declarations 36
of condition prefixes .. 46

scope attributes 37
sequence

collating .. 55
of control .. 40

~T ~
sign pi~·t~~~··~h~~~~t~~~·· .. 60
SIZE condition .. 48
SKIP format item .. 31
SNAP option .. 45
spacing, printing .. 31
specification .. 30
statements .. 8
STATIC attribute .. 48

list-directed .. 32
string

assignment .. 52
attributes 13
data .. 10

STRING option .. 33
structure .. 16

assignment .. 58
BY NAME .. 59
declarations and attributes .. 16
with LIKE attribute .. 21
level numbers .. 17

SUBSCRIPTRANGE condition .. 48
subscripts 20

subtraction ,... ... 54
SYSTEM option .. 45

storage
also see allocation

TO and By .. 44
TRANSMIT condition .. 48

ALLOCATE statement .. 49 truncation on assignment .. 51
automatic .. 48 UNBUFFERED attribute ... 24
controlled 49 UNDEFINEDFILE condition .. 48
FREE statement .. 50 UNDERFLOW condition .. 48
static .. 48 UPDATE attribute 24

storage class attributes '" , ... 48
default for .. 48
restrictions .. 48
with structures .. 49

STREAM

variables, based 26
VARYING .. 13
WHILE clause .. 43
WRITE statement .. 26

attribute .. 24 ZERODIVIDE condition .. 48
transmission modes 27 zero suppression 48, 60,

68

-------- - ---- ---- - ---- - - -----------·T

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains , New York 10601
(USA only)

IBM World Trade Corporation
821 United Nations Plaza, New York , N.Y. 10017
(International)

SC2G-1651·2

